PI Data Analysis

 Kemp Aquatic Macrophyte Workshop June 25-26, 2013

PI Data Analysis

So we have all this data...

now what?

Data Analysis and Interpretation

- Analyzing plant distributions
- Qualitative data (maps)
- Semi-quantitative data (frequency of occurrence)
- Analyzing changes in plant distributions
- 2 sampling events
- Chi Square analysis: Baseline \& pre/post treatment assessment
- more than 2 sampling events
- Chi Square in series, generalized linear models
- Analyzing plant communities

Qualitative data - maps

Qualitative data - maps

- Visual representation of plant community

Qualitative data - maps

- Visual representation of plant community
- Species-specific maps

Qualitative data - maps

- Visual representation of plant community
- Species-specific maps
- Spatially-informed management decisions

Qualitative data - maps

Vegetated sites

Eurasian Watermilfoil

Enterprise Lake, Langlade

Species of Special Concern

N Tomahawk Lake, Bayfield Co. EWM Distribution 2006

Rake fullness
No EWM

- 1

2

- 3

Visual
Not Sampled

Rake fullness
No EWM
- 1
2
- 3
Visual
Not Sampled

Tomahawk Lake, Bayfield Co. Native Vegetated Sites 2006

Tomahawk Lake, Bayfield Co. Native Vegetated Sites 2007

No Natives

- Natives Present Not Sampled

Tomahawk Lake, Bayfield Co. Native Vegetated Sites 2008

Quantitative Data?

- EWM decreased by 45\% in the second survey

Quantitative Data?

- EWM decreased by 45\% in the second survey
- 45\% decrease in what of EWM

Quantitative Data?

- EWM decreased by 45% in the second survey
- 45% decrease in what of EWM
- Acres?
- g dry weight per m^{2} ?
- Points?
- Number of nuisance areas?

Quantitative Data?

- EWM decreased by 45\% in the second survey
- 45% decrease in what of EWM
- Second survey compared to what?

Quantitative Data?

- EWM decreased by 45\% in the second survey
- 45\% decrease in what of EWM
- Second survey compared to what?
- Pre-treatment year survey, similar timing?
- An earlier spring survey?
- Compared to a survey conducted in 1995?

(Semi-) Quantitative data!

- Frequency of occurrence
- Number of times an event occurs given a finite number of samples
- NUMERATOR: number positive hits
- DENOMINATOR: total number of samples
- Total number of samples??

Frequency of occurrence

Number of positive hits:

Number of points:

Frequency of occurrence =

Frequency of occurrence

Number of positive hits: 5
Number of points: 10

Frequency of occurrence =

Frequency of occurrence

Number of positive hits: 5

Number of points:

Frequency of occurrence =

Frequency of occurrence

Number of positive hits: 5

Number of points:

Frequency of occurrence =

EWM frequency of occurrence

\# points with EWM

Lakewide - total \# sample points (50\%)
Littoral - \# points shallower than max depth of plant growth (83\%)
Vegetated - \# vegetated points (100\%)

Aquatic Plant Survey Data Workbook

Z Microsoft Excel

File Edit Yiew Insert Format Iools Data Window Help ASAP Utilities
Type a question for help

(

The Statistics

Total number of sites visited: Total number of sites where the boat stopped, even if much too deep to have plants.

Total number of sites with vegetation: Total number of sites where at least one plant was found

Total number of sites shallower than maximum depth of plants: Number of sites where the depth was
less than or equal to the maximum depth where plants were found.

This value is used for Frequency of occurrence at sites shallower than maximum depth of plants.

Frequency of occurrence within vegetated areas (\%): Number of times a species was seen in a
vegetated area divided by the total number of vegetated sites.

Frequency of occurrence at sites shallower than maximum depth of plants: Number of times a species was seen
divided by the total number of sites shallower than maximum depth of plants

Species Richness: Total number of species collected. Does not include visual sightings.

Species Richness (including visuals): Total number of species collected including visual sightings.

Relative frequency of occurrence

- How common or rare a species is relative to other species
- NUMERATOR: number positive hits
- DENOMINATOR: sum of frequencies of all species observed
- High RFOO = dominant species

Analyzing community change

- Tomahawk Lake - 2,4-D in 2008
- Littoral frequency of occurrence 2007-2008
- EWM: 40\% to 0 \%
- Robbins' pondweed: 35% to 25%
- Elodea: 38\% to 13\%
- Sandbar Lake - not treated
- Littoral frequency of occurrence 2007-2008
- EWM: 26\% to 31\%
- Robbins'pondweed: 7\% to 11\%
- Elodea: 35\% to 31\%

Tomahawk Chi Square

- Presence/Absence data
- Two outcomes - plant is present, or not
- Binomial error distribution - non-normal!
- Chi Square test
- Non-parametric
- Test difference between expected results and actual observed results

$$
\mathrm{X}^{2}=\Sigma \frac{(\text { Observed frequency }- \text { Expected frequency })^{2}}{\text { Expected frequency }}
$$

Tomahawk Chi Square

- Example-

Tomahawk Chi Square

- Graph frequency of occurrence
- Indicate significant changes (***)

Tomahawk Lake

Tomahawk Lake

Sandbar Lake

- Pre/Post-treatment monitoring polygons
- If possible - compare to controls!

Detecting change over >2 events

- Chi square analysis, pairwise
- Nested chi square analyses (caveat!)
- 2005 v. 2006
- 2006 v. 2007
- 2005 v. 2007
- More complex models
- Linear mixed models
- Time series analysis

Predict:

Given:

TREATMENT
 Untreated
 Chemical
 Mechanical

Species Presence Absence
 Random year differences

Generalized Linear Mixed Model SPECIES ~ TREATMENT + YEAR + (1 | PLOT) + (YEAR | PLOT)

Fitted frequency of occurrence

EWM

Plo 0 0 0

Year

Diversity / Quality Indicators

- Natives per vegetated point
- Simpson's diversity index
- Ranges 0 - 1; 1 = maximally diverse
- FQI
- Based on conservatism value 1-10
- 1 is most likely to be in impacted systems
- 10 is most often found in pristine systems
- Mean C divided by $\sqrt{ } \mathrm{N}$
- AMCI
- Like FQI but incorporates more factors

Making comparisons

- How is my lake relative to:
- Wisconsin lakes
- Wisconsin lakes in my region
- Wisconsin lakes of similar type in my region

Wisconsin Lakes

Southern Wisconsin Lakes

AMCl

Southern Wisconsin Drainage Lakes

AMCI

Analyzing plant communities

- Different species respond to environmental conditions differently
- Analyze each species' response curve - Many dimensions - species/sites/environment
- Ordination - force multi-dimensional data into fewer dimensions that are easier to understand

Water Residue Sampling

- 2,4-D residues

Enzyme-linked immunosorbant assay (ELISA)

Residuals often reported as 2,4-D acid equivalent

ELISA - for 2,4-D

- Add water samples to microtiter plate containing 2,4-D antibody
- Wash plates
- Add color solution
- Measure color with spectrophotometer
- Quantity of 2,4-D in sample

Data Analysis and Interpretation

- Analyzing plant distributions
- Qualitative data (maps)
- Semi-quantitative data (frequency of occurrence)
- Analyzing changes in plant distributions
- 2 sampling events
- Chi Square analysis: Baseline \& pre/post treatment assessment
- more than 2 sampling events
- Chi Square in series, generalized linear models
- Analyzing plant communities

Tools

- Making Maps
- Aquatic Plant Survey Data Workbook
- Datasheets, Data Entry, Stats, MDC check, FQI calculation
- Pre/Post Treatment Guidance
- Chi Square Workbook

Free Map Making Software

Freeware for map making

- SAGA
- MapWindow
- GRASS

Map making ideas

- Use to display different species
- Identify invasive locations

Vegetated sites

ER326

区 Microsoft Excel－Arrowhead＿Vilas＿1541500＿2011

：这］File Edit Yiew Insert Format Iools Data Window Help

File and Folder Tasks
Rename this file
Cublish this file to the
Web
E-mail this file
Delete this file

S. SAGA [C:Documents and SettingshdministratorDesktoplsaga_2.0.8_bin_msw_win32larrowhead_example_kemp.sprj] - [01. arrowhead_vilas_154... \square 回國 File Modules Map Window?

圆回

$$
\text { [2012-06-25/08:44:36] Load shapes: C:\{Documents and Settings\{Administrator',My Documents'2010 FSM Data\};Folders from weeks past 2010\}Arrowhead_Vilas_1541500 (WGS } 1984 \text { world LatLong) }
$$ arrowhead_vilas_1541500_poly_WGS.shp...okay

[2012-06-25/08:44:36] Load shapes: C:', Documents and Settings'\{Administrator'(My Documents'2010 FSM Data'|Folders from weeks past 2010\}Arrowhead_Vilas_1541500 (WGS 1984 world LatLong) harrowhead_vilas_1541500_35mpts_WGS.shp...okay
(1) General Execution (1) Errors

SSAGA [C:Documents and SettingsMdministratorDesktoplsaga_2.0.8_bin_msw_win32larrowhead_example_kemp.sprj] - [01. arrowhead_vilas_154... \square 回回 File Modules Map Window ?

[2012-06-25/08:50:24] Executing module: Convert Table to Points
[2012-06-25/08:50:24] Module execution succeeded
[2012-06-25/08:58:50] Save shapes: C:', Documents and Settings'\{Administrator',Desktop'saga_2.0.8_bin_msw_win32\},Arrowhead_Vilas_1541500_2011.shp...okay
[2012-06-25/08:58:50] Save shapes: C:,Docume
[2012-06-25/08:58:50] Project has been saved.
(1) General $\$$ Execution (O) Errors

ready	01. arrowhead_vilas_1541500_poly_WGS					
14 start	$\underline{4}$	C SAGA - 5ystem fo...	©] Microsoft PowerP...	6) SAGA [C:\Docume...	\% Microsoft Excel - A...	

5. SAGA [C:Documents and Settings\AdministratorVesktoplsaga_2.0.8_bin_msw_win32larrowhead_example_kemp.sprj] - [01. arrowhead_vilas_154... \square X File Modules Map-Layout Window ?

Workspace \qquad

Messages

[2012-06-25/08:50:24] Executing module: Convert Table to Points
[2012-06-25/08:50:24] Executing module: Convert Ta
[2012-06-25/08:58:50] Save shapes: C:'\{Documents and Settings'iAdministrator'\Desktop'saga_2.0.8 bin msw win 32'Arrowhead Vilas_1541500_2011.shp....okay
[2012-06-25/08:58:50] Save shapes: C:,Documen
(1) General Execution (0) Errors

Hydroacoustic Mapping

- Change in vegetation biovolume following
- Herbicide treatment
- Invasive species invasion
- EWM
- Zebra mussels
- Rusty Crayfish
- Bathymetry Mapping
- Predictive Drawdown Maps
- Fish Habitat

New CI BioBase Topics and Features
06/06/2012 - Resilience!
06/05/2012 - CI Welcomes Jesse Amo to the Team 05/24/2012 - Virtual SAV Ground Truthing 05/10/2012 - What to do with all this data!? 05/04/2012 - Assessing Fish Habitat in Rivers 05/03/2012 - Analysis of Alternative Mapping Methods 05/01/2012 - New Polygon Management Tool! 05/01/2012 - New Polygon Management Tool!
04/13/2012 - Verification of ciBioBase Depth Output 04/13/2012 - Verification of ciBioBase Depth Output
04/06/2012 - Ray Valley Joins CI as Aquatic Biologist 04/06/2012 - Ray Valley Joins CI as Aquatic Biologist
03/27/2012 - New Z-offset (depth offset) Feature

Recent CI News via Twitter
Contour Innovations
ContourInnov Beautiful day and our biologists are out on the water performing "acoustic
accuracy testing." pic.twitter.com/MjVSecL accuracy testing." pip.twitter.com,
10 days ago r reply. retweet . favorite
ContourInnov CI BioBase: CI Welcomes
Jesse Amo to the Team
cibiobase.blogspot.com/2012/06/ci-wel. 12 days ago - reply retweet - favorite
ContourInnov CI continues to grow! We ar
proud to announce the addition of biologist
proud to announce the addition of biologist
Join the conversation

Home Blog Contact Us
Now In: Martha Barton's Home Page

Download
CIBiobase Upload Tool v3.92

My Uploaded Trips
Filter by Lake: None... v

-

Lake Ivanhoe Walworth county, WI
6/7/2012 1:35:47 PM 11 days ago View Report
Download Report
File Info:
IVANHOE2.s12

Create objective aquatic bathymetric nd vegetation maps and exportable and vegetation maps and exportab GIS data in just minutes with CI

 centralized and scientifically proverO Learn more about ciBioBase
How does ciBioBase work?
Pricing and options

- FAQ

Reference Documents

- Operator's Guide (Full)

O Operator's Guide (Quick)
\bullet
Lake Ivanhoe
Walworth County, WI
6/7/2012 11:20:35
11 days ago
View Report
Download Report
File Info:
IVANHOE.s
interactiv
Viewer
-2
Oconomowoc Lake
Wukksha Countrk

View Report
Download Report

File Info:
OCONO4.sl

Vegetation Analysis Report

E Vegetation Analysis Report (6/8/2012 3:36:40 PM) - Windows Internet Explorer provided by Wisconsin DNR
(3) e http://filies1.contourinnovations.com/ReportOutput/cz3bbb5e-63a4-4f04-a451-107ea66816176/report.htm

File Edit View Favorites tools Help
5) कुष

More Charts...

Legal

chofísASE

Keyword Definitions

BV - Biovolume - Refers to the percentage of the water column taken up by vegetation.
PAC - Percent Area Covered - Refers to the overall surface area that has vegetation growing.

Interactive Viewer

Interactive Viewer

```
e View Interactive Trip.Windows Internet Explorer provided by Wisconsin DNR
@@ - http://wwww.cioioase.com/viewsonarlogmmp.asp\timesit=30966c=59126
File Edit New Favorites Tools Help
it \% \(e\) view Interactive Trip
```


View / Edit Data

Export Data

File Edit View Favorites Tools Help
os the view Interactive Trip

Merged Trips

Merged Trips

\& http://cibiobase.com/viewsonarlogmap.aspx?t=3108%c=5912
\& http://cibiobase.com/viewsonarlogmap.aspx?t=3108%c=5912
File Edit Miew Favorites Tools Help
File Edit Miew Favorites Tools Help
e) wis) Interactive Trip
e) wis) Interactive Trip

$$
\text { Actions: View Map and Data } v
$$

| View Map \& Sonar | View/Edit Data | Data Offset | Trip Reprocessing | Merge Trips | GIS Management | Export Data |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Merged Trips

EView Interactive Trip - Windows Internet Explorer provided by Wisconsin DNR

File Edit View Favorites Tools Help

Home Blog Contact Us
Now In: View Trip
Actions: View Map and Data

Blog

wEDNsSDAY, JUNE 6, 2012
Resilience!
Merriam-Webster Defines resilience as an ability to recover from or adjust easily to misfortune or change. Eminent University of Wisconsin-Madison Ecologist Dr. misfortune or change. Eminent University of Wisconsin-Madison Ecologist Dr.
Steve Carpenter further adds that resilience is the ability for a system to withstan a "shock" without losing its basic functions, http://www.youtube.com/watch?

Resilience is a relatively easy concept to understand, but it can be difficult to measure in lakes without monitoring subtle changes over time. This stresses the importance of long-term monitoring and being on guard for new changes to wate quality, aquatic plants, and fish. Volunteer networks and agencies across the country are making geat strides in monitoring water quality by dropping a dis.
the water and scooping up some water and sending it to a lab for analysis. In essence, taking the lake's 'blood's sample. Indeed, water quality samples can be very telling. But what is happening to the rest of the lake "body"? How is it changing in relation to its liquid diet of runoff or medication to treat invasive species? Unfortunately, until now, natural resource agencies, lake managers, and volunteers have not had the capabilities to objectively and efficiently assess these changes without time-intensive, coarse surveys of vegetation cover.

Your body's immune system is the engine of resilience. When your immune system becomes compromised, you become vulnerable to a wide range of ailments that may not be a threat to someone with a healthy immune system. The same goes for lakes. In the glaciated region of the Upper Midwestern US and Canada, health lakes are those that have intact watersheds where the hydrologic cycle is in balance. Without going into great depth, keeping water where it falls (or at lea slowing it down, goes a long way in keeping the hydrologic cycle in balance). Healthy glacial lakes also have clear water, a diverse assemblage of native aquatic
plants, and balanced fish communities. When humans or the environment alter plants, and balanced fish communities. When humans or the environment alter any alterations and remain in a healthy state. The ability of the lake to do so is this concept of resilience (Figure 1).

mportant links
CI BioBase FAQ
CI Rinaze Home
Download ciRingace overvie

- Log in to ciBioBase

Regiter with ciBioBase

EY topics

- automated mapping (6)
- mapping with acoustics (6)
- Lowrance accuracy (3)
- ciBioBase (3)
- lake mapping (3)
water volume (3)
CI BioBase (2)
Features (2)
- cIs (2)
- ciBioBase accuracy (2)

Other options: USACOE
 Software and user's

manual may be downloaded by clicking on Technology
Transfer/Aquatic Plant Models at
http://el.erdc.usace.army.mil/aqua/aqua.html

Graphical output from SAVEWS Jr. processor.

