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L. Inttoduction

A number of detailed environmental studies are now being conducted in association with
efforts to relicense the Lake Wissota hydro electric dam. (FERC project no. 2567). These
studies are being administered by the Wisconsin Department of Natural Resources, Bureau of
Water Resources, Western District, through EPA Lakes Diagnostic Grant #CL995799-01-0
and Wis. Lakes Planning Grant #3007-1.

The individual studies are being coordinated as a comprehensive Lake Planning Project, to
document the biological effects of lake draw-down on Little Lake Wissota and Moon Bay,
and to assess water quality impacts from land use in the contributing watersheds.
Individual segments of the Lake Planning Project are being conducted by the Wisconsin
Department of Natural Resources (WDNR), University of Wisconsin-Eau Claire, Northern
States Power, Winona State University and the Chippewa County Land Conservation
Department (LCD).

Major components of the project include:

1. An inventory of land use and non-point source pollution in the Lower Yellow
River and Paint Creek watersheds;

2. Water quality monitoring, conducted at 4-6 key sites on Lake Wissota, and on
tributary streams in the Lower Yellow River Basin;

3. A revised bathymetric map for the lake;
4, A hydrologic budget for Lake Wissota, Moon Bay and Little Lake Wissota;

5. A water quality model, to estimate a phosphorus budget for Moon Bay and
Little Lake Wissota;

6. A survey of benthic invertebrate populations; and

7. An evaluation of fish stranding in draw-down areas.



Issue

Lake Wissota i1s one of the largest and most heavily used recreational resources in western
Wisconsin. It is a major impoundment on the Chippewa River and receives inflow from
extensive areas of the Chippewa River Basin.  Given its physical characteristics, Lake Wissota
is moderately eutrophic with a Trophic State Index range of 53-64.

For purposes of water quality management, WDNR has classified Lake Wissota as a Class [B
lake, indicating that it is sensitive to increased phosphorous loads and that water quality is now
poor to very poor. It is further classified as a high-value resource which should be protected.
To date, information has not been adequate to aliow the state to rank Lake Wissota for future
management based upon its potential for response to non-point source poflution controls (Lower
Chippewa River Water Quality Basin Plan, 1995).

Algal blooms now oceur regularly during most vears, from June until late September. The most
frequent of these blooms occur in Moon Bay, and Littie Lake Wissota, where the Yellow River
and Paint Creek adjoin the larger water body. (Art Bemhardt, pers. comm.)

Information regarding basin pollutant loads is limited to baseline data collected through the
National Eutrophication Survey (NES) (Lower Chippewa River Basin Plan, 1989). Results of
that survey suggest that unit area phosphorous loads contributed by the Yellow River and Paint
Creek Basins are 211% and 159% higher than the load contributed by the Chippewa River (NES,
1974). Ongoing observation following storm events indicate that large volumes of scdiment and
nutrients are being delivered in runoft to Moon Bay and Little Lake Wissota (Figure 1).

Before mformed water quality and lake management decisions can be made, greater information
regarding non-point source pollutant toads and potential lake response must be gathered.



Figure 1: Post-Storm Event Sediment Delivery to Moon Bay
and Little Lake Wissota




IIL_Purpose

This component of the Lake Wissota Planning Project has been conducted to document existing
land cover in the Lower Yellow River and Paint Creek basins; and to estimate the non-point
pollutant load contributed to Moon Bay and Little Lake Wissota. For the purposes of this
investigation, major sources of non-point potlutants were assumed to be phosphorus and sediment
delivered from upland land use, bamyards and streambank erosion.

Individual inventories of each pollutant source were conducted to estimate the volume and rate
of sediment and phosphorous delivered from designated watersheds. Results of this study will
be used by other researchers, who will compare estimated poliutant loads to concentrations of
suspended solids and dissolved phosphorous as sampled from tributary streams in these same
watersheds. [f validated, these estimates will be used as mputs to a water quality model and
phosphorus budget being developed for Lake Wissota.

The ultimate purpose of this pollutant inventory and water quality modeling effort is to determine
whether best management practices, applied in the watershed area, can effectively reduce non-
point source poliution to a level that will improve water quality in Moon Bay and Little Lake
Wissota.

IV. Study Area

Lake Wissota 1s a 2550 ha (6300 acre) impoundment located in west central Wisconsin. It is
situated at the confluence of the Chippewa River and Yellow River. Moon Bay and Little Lake
Wissota are major bays of Lake Wissota which receive inflow from the Lower Yellow River and
Paint Creek Basins. The Lower Yellow River and Paint Creek basins cover an large part of
eastern Chippewa County with have a combined drainage area of approximately 53,381 ha
(132,000 acres) (Figure 2).

The Lower Yellow River and Paint Creek basins are formed on a gently rolling till plain
underlain by cambrian sandstone or pre-cambrian granite or gnetss. Drainage patterns are poorly
defined. Many perched and groundwater contact wetlands are found in closed surface
depressions and along drainage ways. Soils are generally of the Mangor-Almena-Spencer
Association. The location of major watersheds within these basins is provided in Figure 3.
Land ts used predominately to support dairy based agriculture (Chippewa County Animat Waste
Management Plan. 1986). Forested regions are Jocated mainly in the upper reaches of the Lower
Yellow River Basin. Urban land uses are limited to the Village of Boyd, City of Cadott, and
urbanizing areas of the Towns of Lafayetie and Hallie.
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Figure 2: Location of Lower Yellow River and Paint Creek Basins
in Chippewa County, Wisconsin

\\\\ f.ake Wissnta
Source: This graphic produced from 1:24000 USGS |:| Yellow River Basin
topographic maps and 1' 100000 Digital Line Graphs |—_—| Paint Creck Basm

Produced- August, 1995 N Major Walerways




Figure 3: Watersheds of the Lower Yellow River
and Paint Creek Basins

Project Boundary

— Major Subwatershed
Boundaries

1 Yellow River Watershed
[ ] Paint Creek Watershed

A Source: This graphic was produced using 1:24000 USGS
Seale = 1:200,000 topographic maps and 1:100000 Digital Line Graphs
N Produced: August, 1995
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V.  Methods

A M to ifv Land Cover

A single seven band Landsat Thematic Mapper (TM) satellite image was used to documnent the
type and extent of land cover within the Lower Yellow River and Paint Creek basins. The
Landsat image was recorded on June 11, 1992. The original image covered an area of 185km
x 170km. This larger scene was clipped to include only the area within Chippewa County. The
Chippewa County subset was then used for all further analyses.

Earth Resource Data Analysis Software (ERDAS) software (v.7.5) was used to classify the raw
satellite data into land cover classes. From the original satellite data a Normalized Difference
Vegetation Index (NDVI) image was calculated to assist in distinguishing row crops. The
original data were submitted to Principal Components Analysis (PCA) to help distinguish
between heavy urban and light urban land cover. The NDVI and PCA bands were then added
to the original seven bands of TM data.

An iterative self-organizing data analysis technique (ISODATA) was used to assign each picture
element (pixel) in the image to one of 200 unique spectral clusters based upon similar reflectance
patterns in each of the input bands. These spectral clusters were then used as a base for
determining land cover within the watersheds.

The 200 spectral clusters were re-classified, using a supervised classification approach, and
merged to assign each spectral cluster to one of the following land cover types:

1) water,

2) wetland,

3) coniferous forest,
4) deciduous forest,
5) hay/pasture,

6) row crops,

7} heavy urban, and
&) light urban

Accuracy assessment was performed on the classified image using 180 randomly generated
points. The actual land cover for each of these points was determined through GIS analysis of
USGS TIGER files, and manual interpretation of aerial photographs taken during June and July
of 1992. These reference data points were then compared to the same pixels on the classified
land cover map to determine the overall accuracy of the classification.




B. eth t im: livery fr ]

The rate of phosphorus delivered to the stream network from upland land use, was estimated by
assigning phosphorus delivery coefficients to the acreage of individual land cover types, as
determined through the land cover analysis,

Phosphorus delivery coefficients were selected based upon soil types as reported in EPA manual
440/5-80-011; (6/90). Phosphorus delivery coefficients assigned to land cover types are as

follows:
kg/ha/yr
Row crops 1.25
Grassland/Pasture/Hay .66
Forest (hardwood and Pine) 035

The estimated rate of phosphorus delivery was calculated for each land cover type in each
watershed using the following equation:

X

Estimated Rate of Fhosphorous - Arez ofEach Land Phosphorous D elivery
Delwvery from Upiand Landuse Cover T ype Coeftecient for Each
X X

within a watershaed (Hogfyr) Land Cover Type (Kgihatyr}
i

vvhare X = # of Land Cover Types

The total estimated rate of phosphorus delivery from all land cover types in each basin was then
obtained by calculating the sum of the estimated rates of phosphorous delivery from all land
cover types within each of the watersheds situated in the basin.

For the purpose of geographic comparison, each watershed was placed in one of three categories,
based upon the total volume of upland phosphorus as delivered to the stream network.
Categories of pollutant load were assumed as follows:

Low < 1100 kg/yr

Medium 1100 - 1800 kg/yr

High > 1800 kg/yr

14




Met t tirmate

The rate of sediment delivered 1o the stream network from upland land use, was estimated by
assigning sediment delivery coefficients to the acreage of individual land cover types, generated
through the land cover analysis.

The statistical relationship that exists between soil erosion and sediment delivery was assumed
to be similar to that documented in an adjacent watershed with similar physical characteristics.
(Duncan Creek Watershed Plan; Upland Soil Erosion and Sediment Inventory, Oct. 1991).

During the inventory phase of the Duncan Creek study, the WIN model (WDNR Bureau of Water
Resources) was applied to calculate current rates of soil erosion and associated rates of sediment
delivery using a sample of approximately 1300 parcels located in 33 minor subwatersheds. From
this data set, sediment delivery coefficients were developed for each of 11 major watersheds
using linear regression. Results indicate that soil erosion sediment delivery coefficients in that
basin range from 0.14 to 0.29, with mean of 0.17.

As part of the same study, linear regression was applied to the WIN data set, to determine the
average rate of soil erosion and associated sediment delivery from specific land cover types.
Results suggest that the average rate of sediment delivery for individual land cover types in the
Duncan Creek Basin are as follows:

Land Cover Type kghalyr
Row Crops 1530
Grassland/Pasture/Hay 160
Woodland 90
Residential 630

New sediment delivery coefficients were not developed for the current investigation. Instead,
sediment delivery rales for the Lower Yellow River and Paint Creek basins were estimated by
multiplying the average sediment delivery rate for each land cover type, as reported above, by
the area of each land cover type, as measured in the study area.

The following equation was used:

Estmated R ate of Sedment Area of Each Land Sedmerit Delivery Rate for
Delveryin @ Basin (Mghr) Cover Type (ha) Each Land Cover Type (Kg/halyr) X

Wwhere X = # of Land Cover Types

15




D. th timate T Phosph 1v

The rate of phosphorus delivered to the stream network from barnyard runoff was estimated by
assigning average discharge rates to documented barnyard locations.

To develop estimates of bamnyard phosphorus delivery in the study area, an inventory of barnyard
size and location was completed using 7.5 min. topographic maps, and 1993 CFSA section slides.
A windshield survey was then conducted to verify operational status and approximate herd size.
Results of this inventory showed that the herd size and physical characteristics of barnyard
locations in the study area were similar to those as previously documented in an adjacent
agricultural basin (Duncan Creek Watershed Plan; Bamyard Inventory, Oct. 1991)

During the inventory phase of Duncan Creek study, the BARNY model (WDNR 1989), was
applied to calculate the rate of phosphorus discharge at 355 bamyard sites. As part of that effort
a spatial analysis was conducted using pc Arc Info software (V.3.4D+) to calculate the average
phosphorus delivery from bamyards located within each of five shoreland buffer zones. Individual
buffer zones were selected based upon the distance to stream channels and areas of concentrated
flow, as defined on 7.5' USGS topographic quadrangle maps.

The mean phosphorus delivery rate for bamyards located within each buffer zone was then
calculated using the following equation:

X

(Phosphorous Dealivery Rate)
E : for Each B d
Mean Barnyard Phosphorous or Each Barnyard (Kg/yr) X

CelveryVWithin 2 Bufier Zone (Kghr) = 1

X

Where X = # of Barnyards Within a Buffer Zone

Results of that initial buffer analysis are provided in Appendix A-1.
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To estimate the rate of barnyard phosphorus delivery in the Lower Yellow River and Paint Creek
basins, the location of each bamyard within the study area was plotted on 1:24000 USGS
topographic maps and digitized into pc ARCANFO format. A buffer analysis was then
conducted, as previously described, to determine the number of bamyards within each of the

defined buffer zones.

Individual barnyards located within each buffer zone were assigned the average bamyard
phosphorus delivery rate, as previously calculated for bamyards in the Duncan Creek basin for
that particular bufler zone. Average discharge rates were assumed as follows:

Buffer Mean Phosphorous
Category  Delivery (kg/yr)

< 100 14
100-200' 32
200-500" I8
500-1000' 14
>1000' 11

The estimated volume of phosphorus delivered from each buffer zone and watershed was then
calculated as the sum of the assigned phosphorus delivery rates using the following equation:

P 4

Estimated Phosphorous Delivery  _ Phosphorous Delivery Rate
from each Butfer Zone (Kghr) for Each Barmyard (Kgtyr)

1

Yhere X = # of Barnyards WWithin = Bu#fer Zone

For purposes of geographic comparison, each major watershed was categorized based upon the
total volume of bamnyard phosphorus delivered to the stream network. Categories of pollutant
load were assumed as follows:

Low < 400 kg/y

Medium 400 - 600 kg/yr

High > 600 kefyr

17




E. hods t timate Sediment Delivered from ank [
ites.

The rate of sediment delivered to the stream network from streambank erosion sites was
estimated by developing a linear equation based upon the physical characteristics of the stream
and associated watershed.

Rates of streambank erosion and associated sediment defivery are thought to be related to the
physical parameters affecting stream geomorphology. Specifically, the physical parameters
assumed to be of greatest significance include; watershed size, cumulative drainage area, main
channel length, stream gradient and stream sinuosity.'

To assess the nature of this relationship, an investigation was conducted, as part of the Duncan
Creek Clean Water Project streambank inventory, to quantify the amount of sediment delivered
to a stream from streambank erosion sites. To obtain these values, each perennial stream reach,
as delineated on 7.5' USGS topographic maps, was inventoried to document the number and
location of erosion sites, as well as the width, height and rate of lateral recession at each site.
The volume of sediment delivered from each site was then calculated using the following
equation:

Sediment Delivered from  _ Site , Site % Site x g0

Streambank Erosion Ste Length Height Lateral Recession 200

To obtain quantitative measures of the physical parameters thought to affect streambank and
sediment delivery, a spatial analysis was performed in pc Arc/Info (v.3.4D+) on the streams of
the Duncan Creek Watershed. FEach stream segment’, as delineated on USGS 7.5 minute
topographic maps, was digitized as a map layer. Main channel length for each segment was then
determined from this layer. The physical parameters of watershed size and cumulative drainage
area were obtained by overlaying existing topographic layers over the stream segment layer and
digitizing the areal extent of the land area draining to each stream segment.

1 Sinuosity is defined as the ratio of watershed length or main channel length to the straight line length from the
upper to {ower end of the stream.
2 A stream segment is defined as the portion of a stream lying entirely within a minor subwatershed.

18




The sinuosity ratio of each stream segment” was cafculated using the following equations:

2
Straight Line Length = \j (x_end - x_begm)2 + [(v_end - y_begin)

Stream Segmemt Length

Sinuosity Ratio =
Straight Line Length

Correlation analysis was used to quantify relationships between streambank erosion and the
physical characteristics of the drainage network thought to affect the rate of this erosion. The
extent of these correlations are as follows:

Streambank Erosion
Variable rrelation 1ci
Cumulative Drainage Are -0.10
Main Channel Length 0.31
Stnuosity Ratio 0.26
Stream Gradient 0.08
roach Used to Calculate Sty <rosion in the Study An

The information obtained from the streambank erosion nventory and analysis in the Duncan
Creek watershed was used to estimate the rate of streambank erosion within the study area of the
Lower Yellow River and Paint Creek basins. Regression analysis was used to predict the
sediment delivery from each stream reach in the Duncan Creek watershed based upon its physical
characteristics and those of the associated watershed. The regression analysis of the Duncan
Creek data yielded the following predictive equation:

Streambank

= 132 . )
Erasion ( x (main channel k2ngth)) + (11 x{cumulative ares)) + 4.9
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To input variables for the equation, all perennial stream segments and associated watershed
boundaries within the study area were first digitized into pc ARC\INFO format. A spatial
analysis was then conducted to calculate watershed area, cumulative drainage area, main channel
length, sinuosity ratio, and strearn gradient for each stream segment.

The predictive equation was then applied to each watershed, using the variables main channel
tength and cumulative area, to estimate the rate of sediment delivery from streambank erosion
sites, in each watershed, and cumulative totals for each basin.

To validate the model a representative sample composed of nine stream segments was field
checked to document the number of erosion sites, and to measure the rate of lateral recesston at
each site. These rates of streambank erosion were then compared to the predicted rates of
sediment delivery for the same stream segment. The accuracy of the estimates was then
quantified by comparing the paired sets of observed and predicted data.
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VL Results
A. Its of Land Cov ification.

Table 1 shows the area and percent of each land cover class as determined for the watersheds
of the Lower Yellow River and Paint Creek basins. Figure 4 illustrates the distribution of land
cover types within the study area. Figure 3 illustrates the proportion of major land cover types
found within each basim.

Results show that the land cover pattern is very similar in both basins. The grassland/pasture/hay
land cover type ts dominant, comprising approximately 55% of the study area. Deciduous and
coniferous forest covers approximately 32% of each basin. It is important to note that row crops
comprise approximately 10% of the study area, and tend to be concentrated in specific
watersheds, including Tumer Creek, Drywood, and South Fork Paint watersheds.

In developing land cover estimates, difficulties were encountered in attempting to separate
permanent grassland vegetation (grassiand/pasture) from hay managed as part of a multi-year crop
rotation. Additional difficulties were encountered in separating the combined
grassland/hay/pasture land cover type from sedge meadow wetlands. Total estimates of wetland
areas, as reported in Table 1, are low for both basins based on comparison with USDA and
WDNR wetland maps.

Areas of urban land use are limited to the village of Boyd, City of Cadott and shoreland areas
of the Yellow River and Little Lake Wissota.

Results of the land cover classification evaluation indicate that the land cover map for the project
area has an accuracy of 87%. This error in the classification is aftributed to similarity in spectral
signatures between land cover classes, Major sources of error may result from differences in
planting dates between fields, confusion between fallow cropland and grassland, and seasonal
differences between the satellite imagery and the aenal photography used in the classification
accuracy assessment.
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Figure 4: Land Cover Types Within
the Lower Yellow River and Paint
Creek Basins

B wetland
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Urban

Streams
Watershed Divide

i E This graphic was produced using 1:24000 USGS
topographic maps, 1:100000 scale Digital Line
Scale = 1:200,000 Graphs, and Landsat Thematic Mapper imagery
N captured on June 11, 1992
Produced: August, 1995
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B. ul land Phosph and Sediment v

As may be anticipated. results of the upland phosphorus and sediment analyses are strongly
related to results of the land cover classification. Table 2 shows the estimated rate of upland
phosphorus and sediment delivered in runoff from the Lower Yellow River and Paint Creek
basins.

Results indicate that after accounting for land cover distribution and total area, approximately 2
x 10* kg/yr of phosphorus and 8.7 x 10° kg/yr of sediment are contributed from upland runoff
to the stream network of the Lower Yellow River basin. Approximately 4 x 10° kg/yr of
phosphorus and 1.9 10° kg/yr of sediment are contributed to streams in the Paint Creek basin.

When calculated by unit area, average pollutant loading rates are significantly higher in the Paint
Creck basin than in the Lower Yellow River Basin; reflecting more intensive agricultural land
use. Average rates of upland phosphorus load in Lower Yellow River basin are approximately
0.45 kg/hatyr, as compared to 0.53 kg/ha/yr in the Paint Creek basin. Results are similar when
comparing average rates of upland sediment load, with approximately 196 kg/ha/yr in the Lower
Yellow River basin and 228 kg/ha/yr discharged in the Paint Creek Basin.

Figures 6 and 7 show the location of watersheds in the study area and the approximate upland
phosphorus and sediment load attributed to each area. In the Lower Yellow River basin areas
of greatest upland pollutant load include the Colburn, Delmar, Tumner Creek and Drywood
Watersheds; with additional contributions from other surrounding agricuttural watersheds. In the
Paint Creek basin, the watersheds with relatively high rates of upland phosphorus and sediment
delivery include the South Fork and Lower Paint watersheds.
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Figure 6: Rates of Upland Phosphorous Delivery in the Lower
Yettow River and Paint Creek Basins;
Shown by Watershed

1%
P < 1100 kg/vr

Medium
1100 - 1800 kg/yr

18
P> 1800 kgivr

. Sowrce: This graphic was produced using 1:24000 USGS
Seale = 1:200,000 topographic maps and 1:100000 Digital Line Graphs
P g P
N Produced: Angust, 1995
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Figure 7: Rates of Upland Sediment Delivery in the Lower
Yellow River and Paint Creek Basins;
Shown by Watershed

Low
< 500,000 kg/vr
Mexdium

500,000 - 750,000 kgfvr
High

> 750,000 kp/vr

ERN

Source: This graphic was produced using 1:24000 USGS
Scale = 1:200,000 topographic maps and 1: 100000 Dhgital Line Graphs
N Produced: August, 1995




C. Results o ard Analysis.

Table 3 provides the results of the barnyard analysis, showing the number of barnyard sites and
the estimated rate of barnyard phosphorus delivered from each of four riparian zones. Results
are presented by watershed, as well as for the Lower Yellow River and Paint Creek basins.

Results of the barnyard analysis indicate that there are 432 active barnyards in the Lower Yellow
River basin with a combined phosphorus delivery rate of approximately 6 x 10? kg/yr. There are
88 sites in the Paint Creek basin with an estimated combined discharge of approximately 1 x 10°

kg/yr.

Results of the buffer analysis suggest that less then 5% of all barnyards are located within 200
ft. of an mtermittent or perennial stream. These barnyards represent less than 9% of the total
bammyard phosphorus load. The largest number of yards, representing the greatest potential
phosphorus load, are situated 200 ft - 1000 ft from areas of channelized flow.

Figure 8 shows the location of watersheds within the study area, and the relative rate of total
barnyard phosphorus delivered from each. As anticipated results show that the highest rates of
total bamyard phosphorus are found in agricultural watersheds having the greatest area of
cropland.
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Figure 8: Rates of Barnyard Phosphorous Delivery in the Lower
Yellow River and Paint Creek Basins;
Shown by Watershed

Low
P < 400 kg/vr
Medium

400 - 600 kghr
High

P > 600 kg/yr

Y

topographic maps and 1:10000¢ Digital Line Graphs

Source: This graphic was produced using 1:24000 USGS
Scale = 1:200,000
N Produced: August, 1995
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D. Results of Streambank Erosion Analysis.

Table 4 provides results of the watershed and stream analysis conducted to document the physical
characteristics of watersheds and associated stream networks in the study area. Physical
characteristics are presented by watershed and include the following: number of perennial stream
segments, average cumulative drainage area, average length of perennial stream segments,
sinuosity ratio, and estimated rate of streambank erosion.

Results of the watershed analysis show that the stream drainage network is composed of
relatively low gradient meandering streams, characteristic of a glaciated basin formed in upland
all.

Results of the streambank analysis suggest that erosion sites in the Yellow River basin, contribute
sediment to the stream network at a rate of approximately 3 x 10° kg/yr. Results for the Paint
Creek basin suggest that streambank erosion sites contribute sediment to the stream network at
a rate of approximately 5.6 x 10° kg/yr.

Figure 9 shows the location of watersheds in the study area and the estimated rate of streambank
erosion delivered to the stream network of each watershed. The greatest rates of streambank
erosion are found in the Colburn, Delmar, and Cadott watersheds.

Table 5 contains results of the stream inventory sub-sample comparing sediment delivery, as
measured at inventoried sites in the study area, 1o predicted rates of sediment delivery at the
same sites. Results of the statistical analysis indicates that observed rates of sediment delivery
ranged from 3.4 x 10* kg/yr below predicted rates to 1.1 x 10" kg/yr above predicted rates, at a
95% confidence interval.

Results of this sub-sample analysis suggest that the regression equation developed to predict
sediment delivery from streambank erosion sites provided estimates that are within two orders
of magnitude of observed conditions. Error in the predictive equation may be a result of the
method used to calculate observed erosion, or the complexity of variables affecting stream
geomorphology and streambank erosion.
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Figure 9: Rates of Streambank Erosion and Sediment Delivery
in the Lower Yellow River and Paint Creek Basins;
Shown by Watershed

Low
P < 200,000 kghr
Medium

200,000 - 550,000 kg
High

P > 550,000 kghr

K

Source: This graphic was produced using 1:24000 USGS
Scale = 1:200,000 topographic maps and 1:100000 Digitat Line Graphs
N Produced: August, 1995
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E. esu { in Hutant [ .0ad F jor Non-point

Results from individual pollutant inventories, as previously described, were combined to provide
an estimate of total non-point pollutant load from major upland sources. These results provide
insight into the approximate pollutant load to Moon Bay and Little Lake Wissota from the Lower
Yellow River Basin and Paint Creek Basin, respectively.

Figure 10 and 11 show the geographic distribution of the combined rates of sediment delivery
from inventoried sources within the Lower Yellow River and Paint Creek Basins. Results
coincide with the findings of the land cover analysis and show the greatest sources of non-point
pollution to be contributed from agricultural watersheds.

Figure 12 shows the volume and relative contributions of phosphorus discharged from upland
runoff and bamyards in the Lower Yellow River and Paint Creek basins. Results suggest that
approximately 80% of total phosphorus delivered in runoff to the stream network is attributed
to upland land use. Of this amount approximately 60% is generated from areas used for hay,
grass and pasture, with 25% generated from row crops. Urban contributions appear negligible.
In both basins, bamyard phosphorus discharge represents approximately 25% of the total
phosphorus load.

Figure 13 shows the volume and relative proportion of sediment assoctated with upland runoff
and stream erosion sites in the study area. Results suggest that nearly 50% of the sediment
contributed to the stream network is generated from cropland areas, with approximately 20%
generated from streambank erosion sites.
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Figure 10: Combined Rates of Phosphorous Delivery
from Upland and Barnyard Runoff within the Lower

Yellow River and Paint Creek Basins;
Shown by Watershed

Low

E:I P < 4 mullion kghr
D Medium
4 mllion - 6 million kg/vr

High
P > 6 mullion kgir

Source: This graphic was produced using 1:24000 USGS
Scate = 1:200,000 topographic maps and 1: 100000 Dngital Line Graphs
N Produced: August, 1995
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Figure 11: Combined Rates of Sediment Delivery
from Streambank Erosion and Upland

Erosion within the Lower Yellow River
and Paint Creek Basins;
Shown by Watershed

Low
0 - 430,000 kehr
Medium

450,000 - 900,000 kghr
High

> 900,000 kght

ElNin

A Source: This graphic was produced using 1:24000 USGS
Scale = 1.200,000 topographic maps and 1:1¢0000 Digital Line Graphs

N Produced: August, 1995
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VIL Discussion

Evaluation of Remote Sensing Technigues

The land cover classification proved 1o be an effective method for distinguishing the following
land cover classes; row crops, hay/grass/pasture,woodlands and urban areas at 85% accuracy.

Difficulties were encountered in attempting to separate hay from permanent grassland; oats from
all other classes; and delineating wetland boundaries. To alleviate these difficulties, cultivated
hay crops were grouped with permanent grassland vegetation. This decision was made based on
the assumption that the phosphorus and sediment delivery coefficients are comparable among
these land cover types and are not expected to significantly affect pollutant source estimates.

For the purpose of general basin wide inventories, the use of remote sensing technologies, at this
level of quantifiable error, should be recognized as being a cost effective means of obtaining
general land cover and associated land use information. To improve the utility of satellite
imagery, it 1s recommended that two distinct images be used in future analyses. This will record
land cover at different times during the growing season, adding a multi-temporal property to the
classification.

Limitations of polhitant load estimates

The major focus of this study was to document existing land cover and to estimate rates of
potlutant load from major non-point sources. These pollutants and sources included phosphorous
and sediment from upland erosion, phosphorous from bamyards runoff, and sediment delivered
from streambank erosion.

The accuracy of sediment and phosphorous delivery estimates are largely dependant upon the
accuracy of the sediment and phosphorous coefficients applied in the analysis. This accuracy
assumes the coefficients used are valid and can be applied to the physical conditions of the study
arca. This investigation recognizes that these coefficients have not been validated for this study
area.

It should be noted that the sediment delivery estimates reflect the estimated rate of sediment
delivery to the stream network and do not estimate the volume of sediment which is transported
through the system or deposited to surface water impoundments.
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Ph rouS ¢ iment

Estimates of phosphorous delivery, developed through the land cover analysis and bamyard
inventory, offer an indication of relative pollutant contributions from each of these sources.
Phosphorus delivery estimates associated with upland runoff suggest that row crops in the basin
account for approximately 20% of the total phosphorous load. Notably, the greatest proportion
of the total phosphorous load is generated from extensive areas of hay, grassland, and pasture.
Cumulatively, the hay, grass,pasture areas Cover a much larger area(=53%) than any other land
cover type. When comparing phosphorous delivery on a kg/a/yr basis, however, row crops
deliver nearly 20 times as much phosphorous as does hay/gras.pasture land cover.

Results of this study suggest that while barnvards are a significant and visible source of
phosphorus load to the stream network; the greatest potential barnyard phosphorous load is from
sites which are widely dispersed throughout the basin and not generally located on streams.

Estimates of sediment delivery, as developed through the upland watershed analysis and
streambank inventory, provide insight regarding the relative pollutant contribution of each of
these sources.

Estimates of sediment delivery from upland land vse indicate approximately 80-85% of the
sediment delivered to the stream network may be attributed to upland erosion. The volume of
sediment delivered from streambank erosion is relatively minor.

The rate of streambank erosion appears to be consistent throughout the basins with the exception
of the Delmar and Colbum watersheds which each contribute approximately three times as much
sediment from streambank erosion as each of the other watersheds (Figure 9). Both these
watersheds have a large drainage area, coupled with a low sinuosity ratio. These factors indicate
stream networks in these watersheds have a higher flow velocity with fewer meanders, resulting
in increased erosive capacity.
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Control of Non-Point Source Pollutants

Based upon the land cover analysis, runoff from upland land use in the Lower Yellow River and
Paint Creek basins is the most significant source of both phosphorous and sediment delivered to
Little Lake Wissota and Mooen Bay.

Phosphorous in runoff occurs as particulate phosphorous and dissolved phosphorous. Particuiate
phosphorous is the major portion of P transported in runoff from cultivated land, accounting for
approximately 75% - 90% of total phosphorous (Schuman et al., 1973). Of this particulate
phosphorous, approximately 10% - 90% may ultimately become available for algal uptake. When
considering possible impacts on eutrophication, the combination of dissolved phosphorous and
bioavailable particulate phosphorous should be recognized (Sharpley, ef al., 1993).

Research conducted in agricultural watersheds suggests that concentrations of soil phosphorous
are affected by crop rotations, P fertilizer application rate, tillage, subsoil P, and crop removal
of P (Pierzynsky and Logan, 1993). Other research indicates that phosphorous movement in a
watershed can be controlled by agricultural management practices which affect transport (runoff
and erosion potential}; and those that affect the concentration of soil phosphorous int the surface
horizon (Sharpley et al., 1993).

The effectiveness of installing best management practices, and the amount of pollutant reduction
that can be achieved in a watershed through their use, is the subject of ongoing research. It is
important to note that the current investigation did not document the extent of agricultural best
management practices now used in the study area. Consequently, it is difficult to accurately
determine, from study results, the potential for reducing non-point source pollutant loads.

Certain assumptions regarding anticipated pollutant load reductions can be drawn from the results
of earlier priority watershed projects administered through the Wisconsin Non-Point Source
Poliution Abatement Program. In selected agricultural basins with similar physical characteristics
and land uses, it has been possible to readily achieve up to 50% of the stated pollutant reduction
goals for contro} of barnyard phosphorous and streambank sediment erosion. Using these same
watershed projects, it has not been possible to adequately measure or document the amount of
phophorous or sediment reduction resulting from widespread installation of upland best
management practices (D. Simonson, pers. comm.)

Given these experiences, and lack of information regarding soil phosphorous levels and
agricultural management practices in the Lower Yellow River and Paint Creek basins; it 1s not
possible to accurately estimate the amount of phosphorous and sediment reduction which could
be readily achieved in the study area. It is likely, however, that widespread adoption of best
management practices within the study area would significantly reduce the rate of phosphorous
and sediment delivery to Moon Bay and Little Lake Wissota.

Recognizing limited resources, strategies to control non-point source poliutants must be targeted
to areas of greatest need. Although representing the largest source of total phosphorus and

43




sediment, it may not be feasible to further reduce the concentrations of sediment and phosphorus
delivered in runoff from permanent, hay, grass and pasture land use. Similarly, it is questionable
whether it is cost effective to control the limited volume of sediment contributed from
streambank erosion. As such it is very likely that strategies to control non-point source pollution
will focus on upland phosphorous discharged from row crops and barnyard phosphorous
discharged from feedlot sites.



VIIL Conclusions

This study was initiated to document the major land cover types in the Lower Yellow River and
Paint Creek Basins and to estimate major non-point source pollution loads within these basins.

The ultimate purpose of this investigation was to assess whether non-point source pollutant loads
can be reduced to levels which would affect water chemistry and associated trophic status of
Moon Bay and Little Lake Wissota.

This study suggests the following conclusions:

1) The classification of Landsat satellite imagery provides a viable means of
determining land cover types for river basin based analysis.

2) Major sources of non-point source pollutants in the Lower Yellow River and
Paint Creek Basins are phosphorous and sediment delivered in upland runoff
and phosphorous delivered in bamyard runoff.

3) Sediment and phosphorous movement in the basin can be limited by upland
management practices which affect soil fertility, soil erosion, storm runoff, and
sediment delivery.

4) Large reductions of upland sediment and phosphorous could be obtained
through use of the following best management practices including: manure and
nutrient management; crop residue management; contour plowing and strip
cropping; field and streambank buffers; and animal waste management systems;
and construction site erosion control.

5) Management practices which limit the rate and volume of phosphorous and
sediment delivered to the stream network will likely tmpact concentrations of
suspended sediments and bioavailable phosphorous, delivered to Moon Bay and
Little Lake Wissota.

6) The extent of this impact on the water chemistry trophic status of Moon Bay
and Little Lake Wissota should be evaluated through use of specific hydrologic
and limnologic models to document response to potential phosphorous
reductions associated with upland best management practices.
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APPENDIX A-1.

Results of Spatial Bamyard Phosphorus Delivery Analysis Within the Duncan Creek

Watershed.

The average phosphorus delivery from bamyards within the Duncan Creek basin is estimated

at 39 Ibs/yr. This value is consistent with other priority watershed projects.

Results of the spatial analysis within the Duncan Creek basin, comptled by buffer category,

are shown below.

Subbasin ed. Del. Coeflicient

Beaver Creek .29

Bloomer .16

Como Creek 17

Glen Loch 20

Hallie 10

Hay Creek 15

Lower Duncan 15

Middle Duncan 17

Tilden Creek 14

Trout Creek .16

Upper Duncan 18

Number of Mean Phos. | Standard

Buffer Barnyards Delivery Deviation Mintmum Maximum
< 100 9 14 22 0.0 75
100-200' 15 32 27 0.3 83
200-500' 80 18 31 0.0 171
500-1000" 23 14 27 0.0 181
> 1000 150 11 21 0.0 134
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