

APPENDIX A

Public Participation Materials

NR 107 – Aquatic Plant Management Conditions

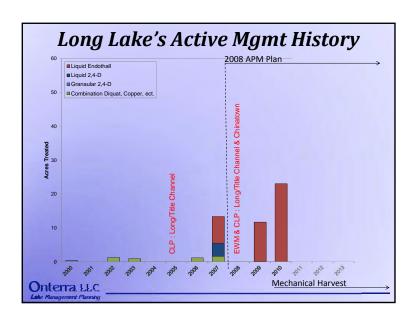
- (1) The department may stop or limit the application of chemicals to a body of water if at any time it determines that chemical treatment will be ineffective, or will result in unreasonable restrictions on current water uses, or will produce unnecessary adverse side effects on non-target organisms.
- (4) Treatment of areas containing high value species of aquatic plants shall be done in a manner which will not result in adverse long—term or permanent changes to a plant community in a specific aquatic ecosystem.

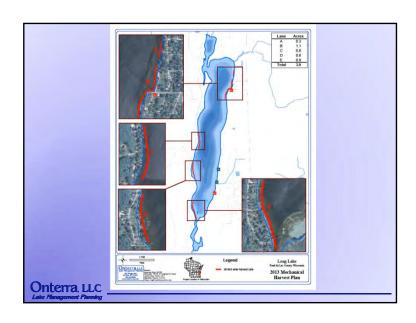
Onterra LLC

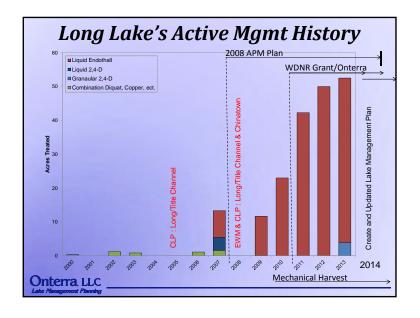
Are herbicides "safe?"

Registration by the EPA does not mean that the use of the herbicide poses no risk to humans or the environment, only that the benefits have been determined to outweigh the risks.

Because product use is not without risk, the EPA does not define any pesticide as "safe."


Onterra LLC


How do herbicides work?


- **2,4-D** absorbed by plant tissue; inhibits plant growth and cell division (auxin hormone mimic)
- Triclopyr absorbed by plant tissue; inhibits plant growth and cell division(auxin hormone mimic)
- Endothall commonly referred to as a contact herbicide, inhibits respiration and protein synthesis, disrupts cell membranes
- Fluridone inhibits plant-specific enzyme (carotene) which protects chlorophyll from UV (sun) damage
- Diquat Inhibits photosynthesis & destroys cell membranes

Why create a lake management plan?

- To create a better understanding of lake's positive and negative attributes.
- To discover ways to minimize the negative attributes and maximize the positive attributes.
- To update ongoing management strategies, goals, expectations, and triggers.
- To foster realistic expectations and dispel myths.
- To create a snapshot of the lake for future reference and planning.

Onterra LLC

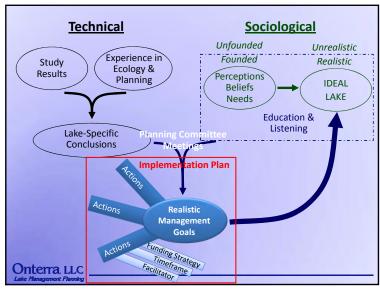
Elements of an Effective Lake Management Planning Project

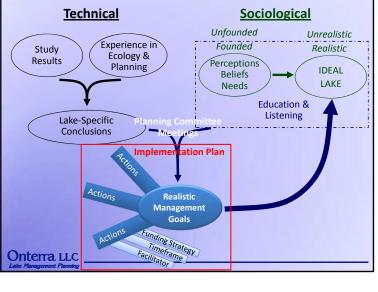
Data and Information Gathering

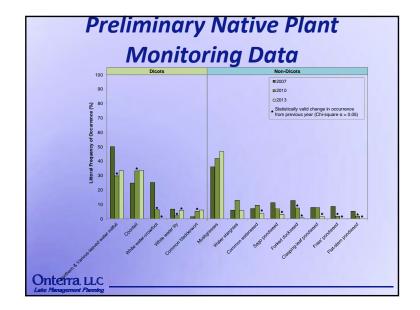
Environmental & Sociological

Planning Process

Brings it all together


Onterra LLC
Lake Management Planning


Data and information gathering


- Study Components
 - Water Quality Analysis
- Assess Shoreland/CWH
 - Watershed Assessment
 - Fisheries Data Integration
 - Aquatic Plant Surveys
- Stakeholder Survey

		2014			2015														
Task	F	М	Α	М	J	J	Α	s	0	Ν	D	J	F	М	Α	М	J	J	Α
Water Quality Sample																			Г
T2014 Pretreatment Survey																			Г
Kick-off Meeting																			Г
Early-Season AIS Survey																			Г
Community Mapping Survey																			Г
EWM Peak-Biomass Survey																			Г
Project Update																			Г
Shoreland Assessment Survey																			Г
Data Analysis																			Г
Planning Comm. Meeting																			Г
Report – First Draft																			Г
Report - Final Draft																			
Wrap-up Meeting	Т																		

Develop AIS Control Strategy & Monitoring Plan

Control Strategy

- Realistic and ecologically beneficial for the lake
- Inline with lake group's lake management goals
- Based upon lake group's support for various methods (e.g. drawdown, herbicide use)
- Prioritization based upon financial limitations and/or volunteerism
- Obtain support from additional management entities

Monitoring Plan

Collection of Pretreatment & Post Treatment Data

Onterra LLC

- Onterra, LLC
- Why Create a Management Plan?
- Elements of a Lake Management Planning Project
 - Data & Information
 - Planning Process

Onterra LLC

Onterra, LLC

- Founded in 2005
- Staff
 - Four full-time ecologists
 - One part-time ecologist
 - Two field technicians
 - Four summer interns
- Services
 - Science and planning
- Philosophy
 - Promote realistic planning
 - Assist, not direct

Onterra LLC

Why create a lake management plan?

- To create a better understanding of the lake's positive and negative attributes.
- To discover ways to minimize the negative attributes and maximize the positive attributes.
- To foster realistic expectations and dispel myths.
- To create a snapshot of the lake for future reference and planning.

Onterra LLC

June 2014 1

Elements of an Effective Lake Management Planning Project

Data and Information Gathering

Environmental & Sociological

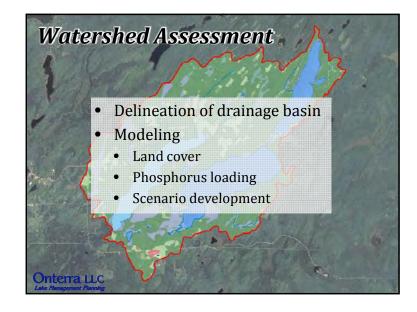
Planning Process

Brings it all together

Onterra LLC

Data and information gathering

- Study Components
 - Water Quality Analysis
 - Watershed Assessment
 - Aquatic Plant Surveys
 - Fisheries Data Integration
 - Shoreline Assessment
 - Stakeholder Survey

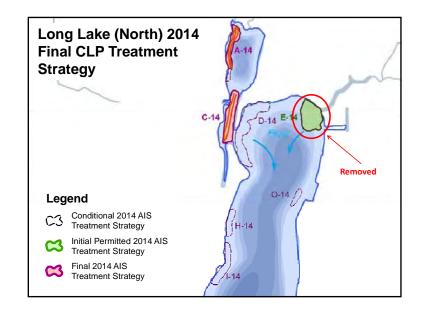


Onterra LLC

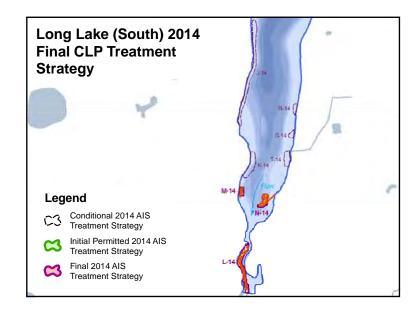
Water Quality Analysis

- General water chemistry (current & historic)
 - Citizens Lake Monitoring Network
- Nutrient analysis
 - Lake trophic state (Eutrophication)
 - Limiting plant nutrient
- Supporting data for watershed modeling.

June 2014


Aquatic Plant Surveys

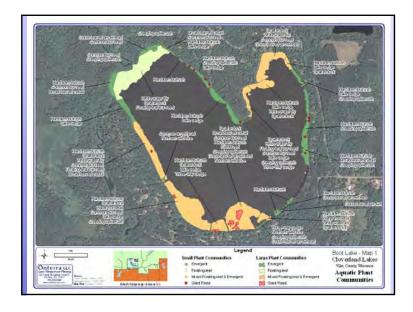
 Concerned with both native and nonnative plants


Onterra LLC

June 2014 3

Aquatic Plant Surveys

- Concerned with both native and nonnative plants
- Multiple surveys used in assessment
 - Early-season AIS survey
 - Point-intercept survey


Onterra LLC

Aquatic Plant Surveys

- Concerned with both native and nonnative plants
- Multiple surveys used in assessment
 - Early-season AIS Survey
 - Point-intercept survey
 - Aquatic plant community mapping

Onterra LLC

June 2014 4

Aquatic Plant Surveys

Stakeholder Survey

• Planning committee potentially develops

• Must not lead respondent to specific answer

additional questions and options

- Concerned with both native and nonnative plants
- Multiple surveys used in assessment
 - Early-season AIS Survey
 - Point-intercept survey
 - Aquatic plant community mapping
 - Volunteer survey findings

Fisheries Data Integration

- No fish sampling completed
- Assemble data from WDNR, USGS, USFWS, & GLIFWC
- Fish survey results summaries (if available)
- Use information in planning as applicable

Survey must be approved by WDNR

through a "loaded" question

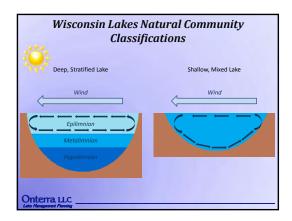
Standard survey used as base

Onterra, LLC

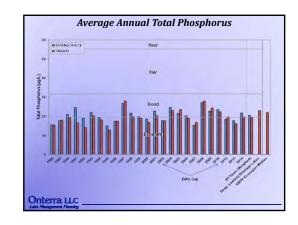
June 2014

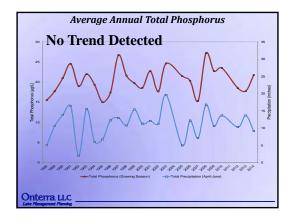
Onterra, LLC

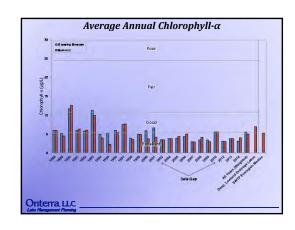
5

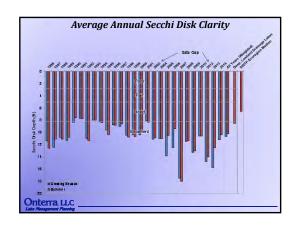

June 2014 6

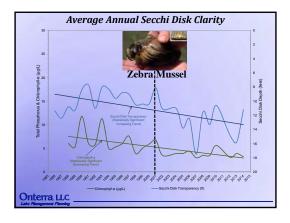


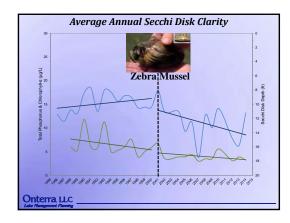


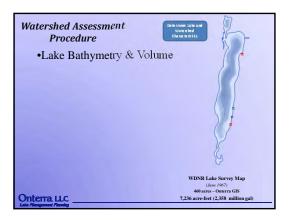




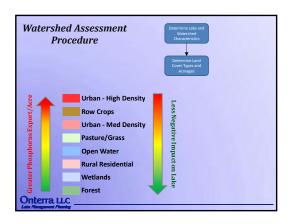


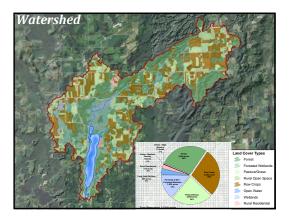


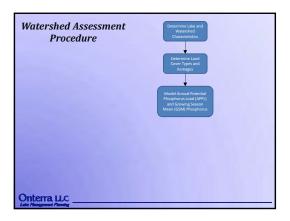


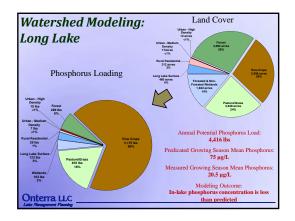


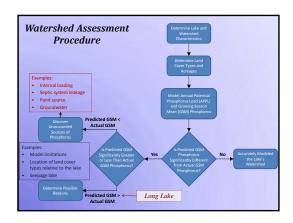
October 2014

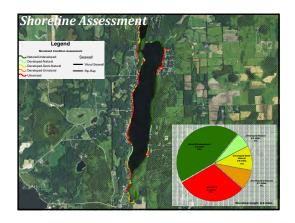




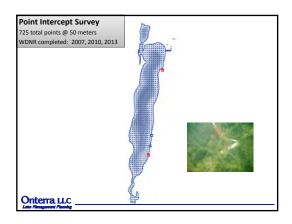


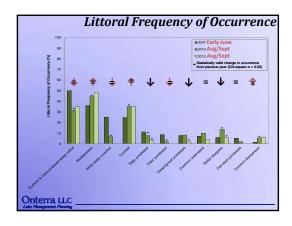


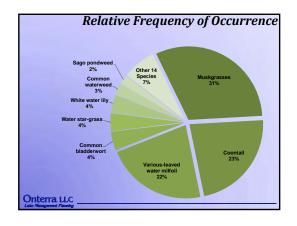


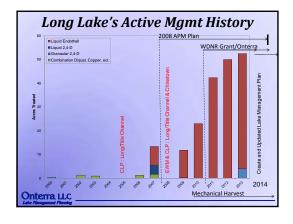


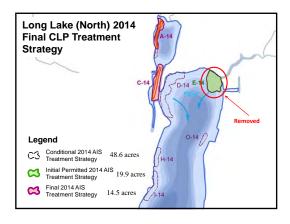


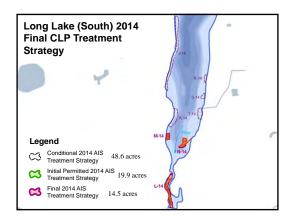


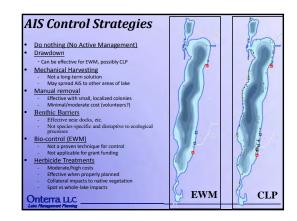




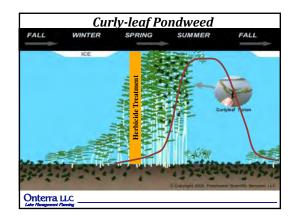


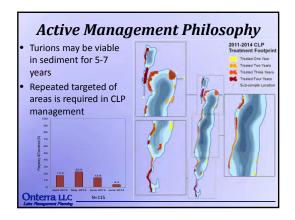


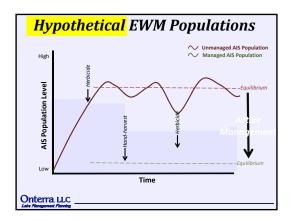


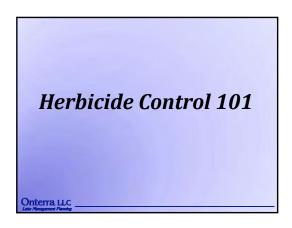












How do they work?

- 2,4-D absorbed by plant tissue; inhibits plant growth and cell division (auxin hormone mimic)
- **Triclopyr** absorbed by plant tissue; inhibits plant growth and cell division(auxin hormone mimic)
- Endothall commonly referred to as a contact herbicide, inhibits respiration and protein synthesis, disrupts cell membranes
- Fluridone inhibits plant-specific enzyme (carotene) which protects chlorophyll from UV (sun) damage
- Diquat Inhibits photosynthesis & destroys cell membranes

Onterra LLC

Are herbicides "safe?"

Registration by the EPA does not mean that the use of the herbicide poses no risk to humans or the environment, only that the benefits have been determined to outweigh the risks.

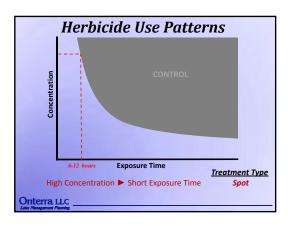
Because product use is not without risk, the EPA does not define any pesticide as "safe."

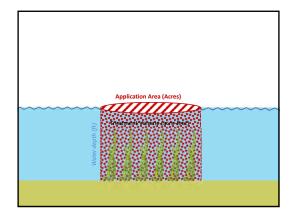
Onterra LLC

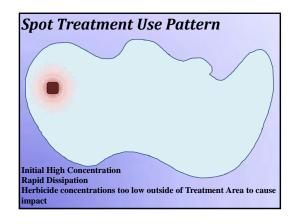
WDNR Administrative Code (NR 107): Aquatic Plant Management Conditions

- (1) The department may stop or limit the application of chemicals to a body of water if at any time it determines that chemical treatment will be ineffective, or will result in unreasonable restrictions on current water uses, or will produce unnecessary adverse side effects on non-target organisms.
- (4) Treatment of areas containing high value species of aquatic plants shall be done in a manner which will not result in adverse long-term or permanent changes to a plant community in a specific aquatic ecosystem.

Underscores the importance of proper planning and monitoring
Onterna LLC


Early-season Herbicide Control Strategy


- Exotic species are small, actively growing, and most vulnerable
- Many native species are dormant
- Cool water temperatures result in slower microbial degradation
- Minimize biomass decomposition



Herbicide Use Patterns

- Dissipation: horizontal and vertical movement of herbicide within the water column
 - Water flow
 - Wind
 - Treatment area relative to lake
 - Water depth
- Degradation: physical breakdown of herbicide into inert components
 - Microbial
 - Photolytic

Conclusions Water quality is "Good" Excellent historical data Trends detected, likely as a result of ZM establishment Watershed is in "Fair" condition Watershed contains a variety of land cover types, including approximately half in Row Crop or Pasture/Grass Modeling was not effective, likely due to large state-owned area of buffer Shoreland zone is polar mix of Natural/Undeveloped and Urbanized

Conclusions continued • Aquatic plant community • Based upon standard analysis, native plant community is of high quality • High diversity, number of species • Species present are of good quality • Aquatic plant community has changed little from 2007-2014 • Concerns over AIS • Fisheries • Not Yet Addressed – in progress • Stakeholder Survey • Not Yet Addressed – in progress

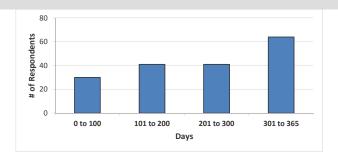
B

APPENDIX B

Stakeholder Survey Response Charts and Comments

Long Lake Property Owners Association - Anonymous Stakeholder Survey

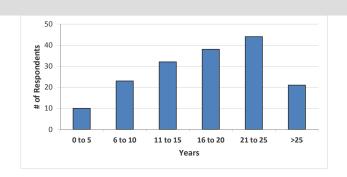
Surveys Distributed: 292 Surveys Returned: 69 Response Rate: 24%


Long Lake Property

Answer Op	ptions	Response Percent	Response Count
isited on		37.7% 30.4% 23.2% 1.4% 0.0%	26 21 16 1 0
proj rent	operty ter and do not own the property ase specify)	0.0% 4.3% 2.9%	0 3 2
		answered question skipped question	69 0
mber	Other (please specify) Live in NC now. Was my year round it summer and at other times during the		/isit during the

2. How many days each year is your property used by you or others?

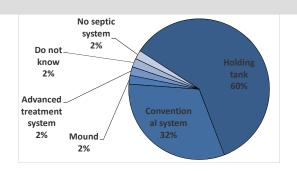
Answer Options	Response Count
	64
answered question	64
skipped question	5


Category (# of days)	Responses		
Ò to 100		30	17%
101 to 200		41	23%
201 to 300		41	23%
301 to 365		64	36%

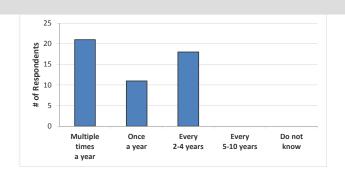
3. How long have you owned or rented your property on Long Lake?

Answer Options		Response Count
		65
	answered question	65
	skipped question	4

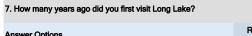
Category (# of years)	Responses	%	Response
0 to 5		10	6%
6 to 10		23	14%
11 to 15		32	19%
16 to 20		38	23%
21 to 25		44	26%
>25		21	13%



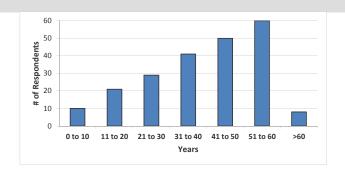
4. Is your property located on the shoreline of Long Lake (lakefront property) or not located on the lake's shoreline (not lakefront property)?


Answer Options	Response Percent	Response Count
Lakefront property	78.8%	52
Not lakefront property	21.2% answered question	14 66
	skipped question	3

5. What type of septic system does your property utilize?


Answer Options	Response Percent	Response Count
Holding tank	60.0%	30
Conventional system	32.0%	16
Mound	2.0%	1
Advanced treatment system	2.0%	1
Municipal sewer	0.0%	0
Do not know	2.0%	1
No septic system	2.0%	1
	answered question	50
	skipped question	19

6. How often is the septic system on you	r property pumped?	
Answer Options	Response Percent	Response Count
Multiple times a year	42.0%	21
Once a year	22.0%	11
Every 2-4 years	36.0%	18
Every 5-10 years	0.0%	0
Do not know	0.0%	0
	answered question	50
	skipped guestion	19



Recreational Activity on Long Lake

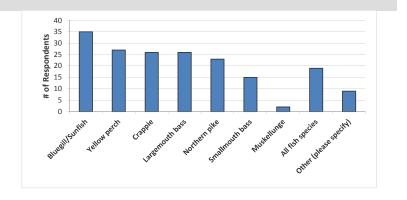
Answer Options	Count
	68
answered question	68
skipped question	1

Category (# of days)	Responses	% F	lesponse
0 to 10		10	5%
11 to 20		21	10%
21 to 30		29	13%
31 to 40		41	19%
41 to 50		50	23%
51 to 60		60	27%
>60		8	4%

8. For how many years have you fished on Long Lake?

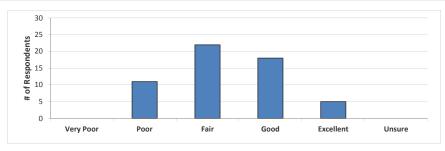
Answer Options	Response Count
	67
answered que	stion 67
skipped que	stion 2

Category (# of days)	Responses	% F	Response
0 to 10		22	8%
11 to 20		32	12%
21 to 30		44	16%
31 to 40		51	18%
41 to 50		61	22%
51 to 60		66	24%
>60		1	0%

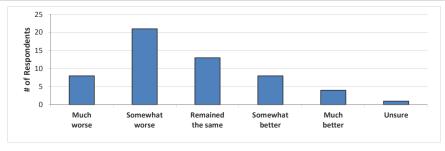

9. Have you personally fished on Long Lake in the past three years?

Answer Options	Response Respon Percent Coun	
Yes	83.6% 56	
No	16.4% 11	
	answered question	67
	skipped guestion	2

10. What species of fish do you like to catch on Long Lake?


Answer Options	Response Percent	Response Count
Bluegill/Sunfish	62.5%	35
Yellow perch	48.2%	27
Crappie	46.4%	26
Largemouth bass	46.4%	26
Northern pike	41.1%	23
Smallmouth bass	26.8%	15
Muskellunge	3.6%	2
All fish species	33.9%	19
Other (please specify)	16.1%	9
	answered question	56
	skipped question	13

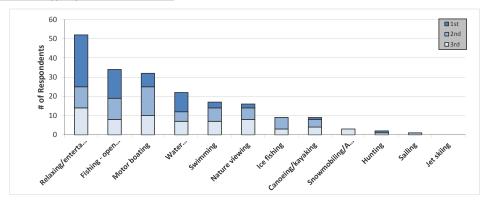
Number	Other (please specify)
1	Walleye
2	Walleye and Bullhead
3	Bullhead
4	walleye
5	Walleye
6	Walleye
7	walleye, rock bass, bull heads
8	walleye
9	walleye


11. How would you describe the current quality of fishing on Long Lake?

Answer Options	Very Poor	Poor	Fair	Good	Excellent	Unsure	Response Count
	0	11	22	18	5	0	56
					an:	swered question	56
					s	kipped question	13

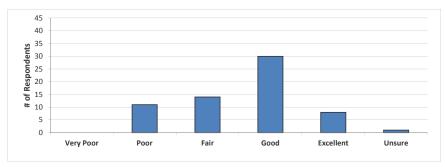
12. How has the quality of fishing changed on Long Lake since you have started fishing the lake?

Answer Options	Much worse	Somewhat worse	Remained the same	Somewhat better	Much better	Unsure	Response Count	
	8	21	13	8	4	1	55	
					ans	wered question	£	5 <i>5</i>
					Si	kipped question	7	14

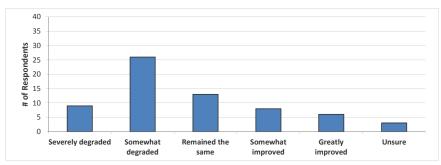

13. What types of watercraft do you currently use on Long Lake?

Answer Options	Response Percent	Response Count
Pontoon	59.7%	40
Canoe/kayak	43.3%	29
Motor boat with greater than 25 hp motor	41.8%	28
Motor boat with 25 hp or less motor	29.9%	20
Rowboat	22.4%	15
Paddleboat	20.9%	14
Jet ski (personal water craft)	13.4%	9
Sailboat	3.0%	2
Jet boat	0.0%	0
Do not use watercraft	3.0%	2
	answered question	67
	skipped question	2

14. For the list below, rank your top three activities that are important reasons for owning or renting your property on or near Long Lake, with 1 being the most important activity.


Answer Options	1st	2nd	3rd	Response Count
Relaxing/entertaining	27	11	14	52
Fishing - open water	15	11	8	34
Motor boating	7	15	10	32
Water skiing/tubing	10	5	7	22
Swimming	3	7	7	17
Nature viewing	2	6	8	16
Ice fishing	0	6	3	9
Canoeing/kayaking	1	4	4	9
Snowmobiling/ATV	0	0	3	3
Hunting	1	0	1	2
Sailing	0	1	0	1
Jet skiing	0	0	0	0
None of these activities are important to me	0	0	1	1
Other (please specify below)	1	0	0	1
		ar	swered question	67
			skipped question	2

Number "Other" responses
1 Family home
2 Hiking and Exploring the paths around the east side park...


Long Lake Current and Historic Condition, Health and Management

15. How would you describe the current water quality of L	ong Laker						
Answer Options	Very Poor	Poor	Fair	Good	Excellent	Unsure	Response Count
	0	11	14	30	8	1	64
					ans	swered question	64
					S	kipped question	5

16. How has the current water quality changed in Long Lake since you first visited the lake?

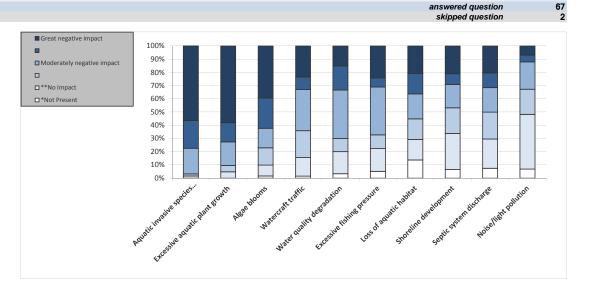
Answer Options	Severely degraded	Somewhat degraded	Remained the same	Somewhat improved	Greatly improved	Unsure	Response Count
	9	26	13	8	6	3	65
					an	swered question	65
					s	kipped question	4

17	Before reading the statement	above had very ave	or board of carrette t	Coolege anagles?

Answer Options	Response Percent	Response Count
Yes	97.0%	64
No	3.0%	2
	answered question	66

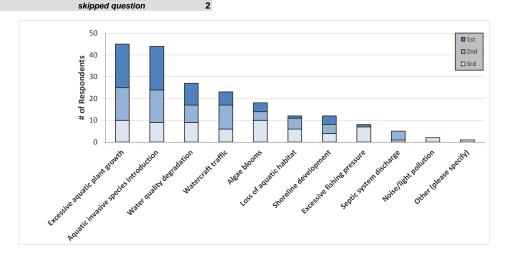
18. Do you believe aquatic invasive species	are present within Long Lake?	
Answer Options	Respo Perce	
Yes	100.0	0% 65
No	0.09	% 0
	answered gu	estion 65

19. Which aquatic invasive species do you believe are in Long Lake?

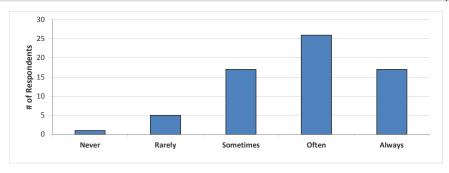

Answer Options	Response Percent	Response Count
Eurasian water milfoil	85.9%	55
Zebra mussel	85.9%	55
Curly-leaf pondweed	76.6%	49
Carp	62.5%	40
Purple loosestrife	48.4%	31
Chinese mystery snail	9.4%	6
Rusy crayfish	4.7%	3
Flowering rush	3.1%	2
Pale yellow iris	1.6%	1
Spiny water flea	1.6%	1
Heterosporosis (Yellow perch parasite)	1.6%	1
Freshwater jellyfish	0.0%	0
Alewife	0.0%	0
Round goby	0.0%	0
Rainbow smelt	0.0%	0
I don't know but presume that AIS are present in the lake	10.9%	7
Other (please specify)	0.0%	0
a	nswered question	64
	skipped question	5

20. To what level do you believe each of the following factors may currently be negatively impacting Long Lake? Not Present means that you believe the issue does not exist on Long Lake. No Impact means that the issue may exist on Long Lake but it is not negatively impacting the lake.

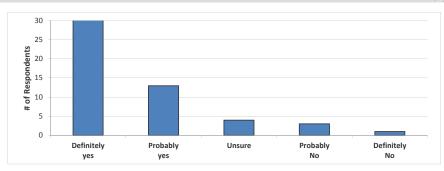
Answer Options	*Not Present	**No Impact		Moderately negative impact		Great negative impact	Unsure: Need more information	Rating Average	Response Count
Aquatic invasive species introduction	0	1	1	12	13	35	2	3.19	64
Excessive aquatic plant growth (excluding algae)	0	3	3	11	9	36	3	3.02	65
Algae blooms	1	5	8	9	14	24	3	2.56	64
Watercraft traffic	1	9	13	20	6	15	2	1.98	66
Water quality degradation	2	10	6	22	11	9	5	1.83	65
Excessive fishing pressure	3	10	6	21	4	14	6	1.81	64
Loss of aquatic habitat	8	9	9	11	9	12	6	1.66	64
Shoreline development	4	17	12	11	5	13	4	1.53	66
Septic system discharge	4	12	11	10	6	11	9	1.48	63
Noise/light pollution	4	24	11	12	3	4	6	0.94	64
Other (please specify)									5
							ans	wered question	67


Number	Other (please specify)
	1 Wash Water Discharge
:	groundwater runoff from roads and roof drains
:	people abusing fish limits & no size limit on northern -negative impact
	4 chemical weed control in spawning areas
	Runoff such as highway salt and fertilizer from the watershed

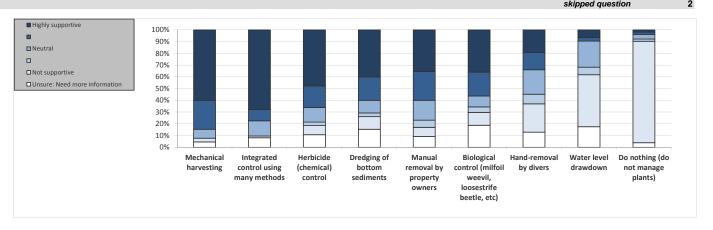
21. From the list below, please rank your top three concerns regarding Long Lake, with 1 being your greatest concern.


Answer Options	1st	2nd	3rd	Response Count
Excessive aquatic plant growth (excluding algae)	20	15	10	45
Aquatic invasive species introduction	20	15	9	44
Water quality degradation	10	8	9	27
Watercraft traffic	6	11	6	23
Algae blooms	4	4	10	18
Loss of aquatic habitat	1	5	6	12
Shoreline development	4	4	4	12
Excessive fishing pressure	1	0	7	8
Septic system discharge	0	4	1	5
Noise/light pollution	0	0	2	2
Other (please specify)	0	0	1	1
" ''		a	nswered question	67
			akinnad avaatian	2

Number	"Other" responses
	This year many boaters broke no wake rule, worst I've seen in 35 yrs and drive boats closely to shore/raft. Little enforcement by water police
	2 chemical weed control1st
	The amount of Lily Pads and Muck in front of all cottages in our area


22. During open water season how often does aquatic plant growth, including algae, negatively impact your enjoyment of Long Lake?

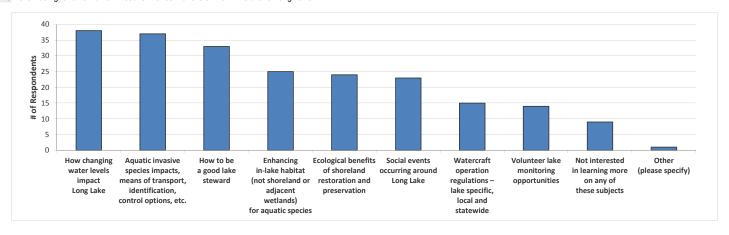
Answer Options	Never	Rarely	Sometimes	Often	Always	Response Count
	1	5	17	26	17	66
				aı	nswered question	66
					skipped question	3


23. Considering your answer to the question above, do you believe aquatic plant control is needed on Long Lake?

Answer Options	Definitely yes	Probably yes	Unsure	Probably No	Definitely No	Response Count	
	46	13	4	3	1	67	
				ans	swered question	67	7
				skipped question		2	2

24. Aquatic plants can be managed using many techniques. What is your level of support for the responsible use of the following techniques on Long Lake?

Answer Options	Not supportive		Neutral		Highly supportive	Unsure: Need more information	Rating Average	Response Count
Mechanical harvesting	2	0	5	16	39	3	3.17	65
Integrated control using many methods	1	0	8	6	42	5	3.02	62
Herbicide (chemical) control	5	2	8	12	31	7	2.60	65
Dredging of bottom sediments	7	2	7	13	26	10	2.37	65
Manual removal by property owners	5	4	11	16	23	6	2.35	65
Biological control (milfoil weevil, loosestrife beetle, etc)	7	3	6	13	23	12	2.25	64
Hand-removal by divers	15	5	13	9	12	8	1.61	62
Water level drawdown	28	4	14	2	4	11	0.92	63
Do nothing (do not manage plants)	45	1	2	1	1	2	1.04	52
						ans	swered question	67
							kinned auestion	2

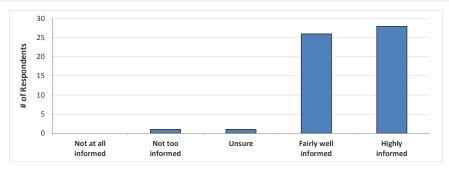


25. Stakeholder education is an important component of every lake management planning effort. Which of these subjects would you like to learn more about?

Answer Options	Response Percent	Response Count
How changing water levels impact Long Lake	58.5%	38
Aquatic invasive species impacts, means of transport, identification, control options, etc.	56.9%	37
How to be a good lake steward	50.8%	33
Enhancing in-lake habitat (not shoreland or adjacent wetlands) for aquatic species	38.5%	25
Ecological benefits of shoreland restoration and preservation	36.9%	24
Social events occurring around Long Lake	35.4%	23
Watercraft operation regulations - lake specific, local and statewide	23.1%	15
Volunteer lake monitoring opportunities (Clean Boats Clean Waters, Citizens Lake Monitoring	21.5%	14
Not interested in learning more on any of these subjects	13.8%	9
Other (please specify)	1.5%	1
	answered question	65
	skipped question	4

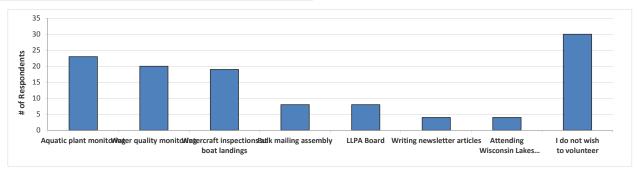
Number Other (please specify)

1 Action being taken on other Wisconsin lakes that are similar in nature to Long Lake



Long Lake Preservation Association (LLPA)

26. Before receiving this mailing, have you ever heard of the LLPA?					
Answer Options	Response Percent	Response Count			
Yes No	100.0% 0.0%	67 0			
•	answered question skipped question	•	67 2		


27. What is your membership status with the LLPA?				
Answer Options		Response Percent	Response Count	•
Current member Former member		83.6% 4.5%	56 3	
Never been a member	ans	11.9% wered question	8	67
		kipped question		2

Answer Options	Not at all informed	Not too informed	Unsure	Fairly well informed	Highly informed	Response Count	
	0	1	1	26	28	56	
				answered question		56	
					skipped question	13	

29. The effective management of your lake will require the cooperative efforts of numerous volunteers. Please circle the activities you would be willing to participate in if the LLPA requires additional assistance.

Answer Options	Response Percent	Response Count
Aquatic plant monitoring	35.4%	23
Water quality monitoring	30.8%	20
Watercraft inspections at boat landings	29.2%	19
Bulk mailing assembly	12.3%	8
LLPA Board	12.3%	8
Writing newsletter articles	6.2%	4
Attending Wisconsin Lakes Convention	6.2%	4
I do not wish to volunteer	46.2%	30
an	swered question	65
s	kipped question	4

30. Please feel free to provide written comments concerning Long Lake, its current and/or historic condition and its management.

Answer Options	Response Count
	20
answered question	20
skipped question	49

mber	Response Text
	1 Water quality is getting worse every year
	2 I feel over the past few years, there seems to be more scum forming on the bottom of the lake. This fish seem to hide in this scum making fishing not as good as it used be. The level of the scum seem to continue to grow, which I feel will impact the health of the lake if it is not monitored more closely.
	3 We need to get the weeds under control. I cannot even get my boat out during the peak season without clearing my prop several times.
	4 Thank you for all you're doing to help keep Long Lake a wonderful place for all to enjoy!
	5 I do like seeing the weed patrol boat out trimming the weeds
	6 who are you to Long Lake???
	7 Almost never see fish, both along the shoreline and when on the water. Nothing like 10-15 years ago. Looks like there's not a fish in the lake! Clarity is pretty good except on weekends with the boat traffic and people coming too close to the shore. Too much boat traffic.
	8 Keep up the god work! I am no longer a member of the fishing club!
	9 The current LLPA has become a leader in trying to make the lake better for the property owners.
	I wish it would find a way to get more policing to enforce lake speeding rules.
	10 I am in favor of aggressive, responsible control of weeds and invasive species. I have no concerns about what happened at Lake Ellwood affecting our lake.
	11 I am answering this survey for my elderly mother based on what I believe her answers would be. Her primary residence was at Long Lake for almost 40 years. Over that time, her main concerns were the shoreline erosion and the thick weeds. During the last 15 years she lived there year round (1990- 2006) she did feel that the fishing wasn't as good as it had been in the past. I believe that the LLPA is doing a wonderful job in educating the property owners and working to protect and preserve the lake
	12 Seems that some areas of the lake get more attention than others (China Town), I don't believe the area around my property has been sprayed or harvested over the patwo years, although the week growth is significant.
	13 There needs to be a boat patrol present on the weekends.
	14 Mu;ch improvement over the last few years.
	15 You can see a major difference between the areas that are treated and not treated. Keep up the treating.
	16 My opinion, LLPA has and is doing a magnificent job. Thank you LLPA. Too bad we can not get more volunteers to help out.
	17 Managing weed control by chemical herbicide on another lake for seven years I saw the negative effects on the spawning fish and decline of the ability of fishing public catch fish. Contrary to the DNR and the chemical applicators it does effect fishing. Look at the ditch and channel during spring south of Title lake here, The fishing has declined. The crappie have moved to other areas.
	18 20+ years ago, I could catch fish off of my pier. I could also get my boat in and out without plugging the motor with mud and weeds. Today it is awful. I, more than likel will not re-join the association again this year because of these problems. I would spend a lot more time at the lake if these conditions were taken care of and would als be willing to pay my share. BUT the mud and the lily pads, and the weeds must go. Because I am stating facts, I am willing to state my name. It is Mike Schuler and I li in the channel. Thank you for the opportunity to voice my opinion.
	19 As a child I could jump off the end of the pier and swim, weeds make that impossible now. Also, there is so much muck you sink into. I am thankful that the LLPA is working to better the lake conditions.
	20 I'm very pleased to see the pro-active approach the LLPA is taking to ensure the longer-term health of Long Lake. In the same breath, I'm disappointed that Town Government is not more actively involved given the taxes generated by the landowners. I'm also disappointed the State is not stepping up in a larger manner financially given the huge piece of frontage owned by the state combined with the public use of the Lake.

APPENDIX C

Water Quality Data

 Date: 5/14/2014
 Max Depth: 44.1

 Time: 14:15
 LOLS Depth (ft): 3.0

 Weather: 58F, breezy, overcast
 LOLB Depth (ft): 42.0

 Entry: EEH
 Secchi Depth (ft): 13.7

Depth (ft)	Temp (°C)	D.O. (mg/L)	pН	Sp. Cond (µS/cm)
1	15.2	8.6	·	
3	14.9	8.6	8.3	
6	14.7	8.6		
9	14.6	8.6		
12	14.5	8.6		
15	14.3	8.6		
18	12.6	8.9		
21	11.8	8.9	8.2	
24	11.0	8.8		
27	10.2	8.6		
30	9.9	8.6		
33	9.5	8.1		
36	9.2	7.9		
39	8.9	7.6		
42	8.7	7.0	7.9	
43	8.6	6.6		

		May '	14, 2014			
0	5	10	15	20	25	30
0		I	7			
5 -		Ī	Ţ			
10 -		İ	İ			
15 -		Į	J			
Depth (Ft) 20 - 25 - 25		1 /				
±d 25 −		<u>†</u> /				
30		J /				
35	ı	[Temp	
40	1	i <u>i</u>			D.O. (mg/L)	
45					(IIIg/L)	

Parameter	LOLS	LOLB
Total P (µg/L)	28.10	18.60
Dissolved P (μg/L)	6.10	5.60
Chl-a (µg/L)	0.52	NA
TKN (µg/L)	555.00	410.00
$NO_3 + NO_2 - N (\mu g/L)$	165.00	243.00
NH ₃ -N (μg/L)	16.50	41.40
Total N (µg/L)	720.00	653.00
Lab Cond. (µS/cm)	496.00	510.00
Lab pH	8.25	8.11
Alkalinity (mg/L CaCO ₃)	225.00	230.00
Total Susp. Solids (mg/L)	ND	ND
Calcium (mg/L)	47.70	NA
Magnesium (mg/L)	29.90	NA
Hardness (mg/L)	242.00	NA
Color (SU)	20.00	NA
Turbidity (NTU)	NA	NA

Data collected by DAC and EEH (Onterra)		

 Date:
 6/16/2014
 Max Depth:
 43.0

 Time:
 10:00
 LOLS Depth (ft):
 3.0

 Weather:
 Clear, light breeze,
 78F
 LOLB Depth (ft):
 40.0

 Entry:
 EEH
 Secchi Depth (ft):
 16.9

Depth (ft)	Temp (°C)	D.O. (mg/L)	pН	Sp. Cond. (µS/cm)
1	21.8	7.7	Pii	(долонн)
3	21.3	7.7		
6	20.9	7.7		
9	20.6	7.8		
12	20.4	7.8		
15	20.0	7.4		
18	16.9	5.8		
21	13.6	5.4		
24	12.3	4.9		
27	11.2	4.5		
30	10.8	4.1		
33	10.4	3.6		
36	10.1	3.5		
39	10.0	3.4		
42	9.9	2.9		
				-
				-
				+
				-
				-

June 16, 2014							
0	5	10	15	20	25	30	
0		I		7			
5 -		Ī					
10 -		Ì		Í			
15 -		4					
£ 20	Ţ						
Depth 52 -	#	_	1				
30 -	#	#					
35 -	Ī	,			——Temp	.	
40	<u></u>	<u> </u>			(°C) D.O.		
45	_				(mg/l	-)	

Parameter	LOLS	LOLB
Total P (µg/L)	14.90	41.30
Dissolved P (μg/L)	NA	NA
Chl-a (µg/L)	1.83	NA
TKN (μg/L)	NA	NA
$NO_3 + NO_2 - N (\mu g/L)$	NA	NA
NH ₃ -N (μg/L)	NA	NA
Total N (µg/L)	NA	NA
Lab Cond. (µS/cm)	NA	NA
Lab pH	NA	NA
Alkalinity (mg/L CaCO ₃)	NA	NA
Total Susp. Solids (mg/L)	NA	NA
Calcium (mg/L)	NA	NA
Magnesium (mg/L)	NA	NA
Hardness (mg/L)	NA	NA
Color (SU)	NA	NA
Turbidity (NTU)	NA	NA

Data collected by TAH (Onterra)			

 Date:
 7/28/2014
 Max Depth:
 44.2

 Time:
 13:50
 LOLS Depth (ft):
 3.0

 Weather:
 25% clouds,
 68F
 LOLB Depth (ft):
 41.0

 Entry:
 EEH
 Secchi Depth (ft):
 7.1

Depth	Temp	D.O.		Sp. Cond.
(ft)	(°C)	(mg/L)	pН	(μS/cm)
1	22.6	6.9		
3	22.6	6.9		
	22.5	6.8		
9	22.5	6.7		
12	22.4	6.6		
15	22.3	6.6		
18	22.3	6.6		
21	16.3	0.1		
24	13.6	0.0		
27	12.6	0.0		
30	12.0	0.0		
33	11.5	0.0		
36	11.3	0.0		
39	11.0	0.0		
41	10.9	0.0		
42	10.7	0.0		
43	10.7	0.0		

		July	28, 2014			
0	5	10	15	20	25	30
5 -	Ī				•	
10 -	‡			1	,	
15 -	+			4	}	
Depth (Ft) 50 25					f	
25 P		!				
30		<i>•</i>	,			
35		ļ		Temp (*C)		
40		Í		D.O. (mg/L)		
45 🖳						

Parameter	LOLS	LOLB
Total P (µg/L)	20.90	119.00
Dissolved P (μg/L)	ND	89.70
Chl-a (µg/L)	3.35	NA
TKN (μg/L)	614.00	878.00
$NO_3 + NO_2 - N (\mu g/L)$	ND	31.90
NH ₃ -N (μg/L)	ND	311.00
Total N (µg/L)	614.00	909.90
Lab Cond. (µS/cm)	475.00	524.00
Lab pH	8.34	7.89
Alkalinity (mg/L CaCO ₃)	219.00	239.00
Total Susp. Solids (mg/L)	2.50	ND
Calcium (mg/L)	46.00	NA
Magnesium (mg/L)	29.10	NA
Hardness (mg/L)	235.00	NA
Color (SU)	500.00	NA
Turbidity (NTU)	NA	NA

Data collected by TWH (Onterra)		

 Date:
 8/18/2014
 Max Depth:
 43.5

 Time:
 13:00
 LOLS Depth (ft):
 3.0

 Weather:
 80% clouds,
 70F
 LOLB Depth (ft):
 40.0

 Entry:
 EEH
 Secchi Depth (ft):
 7.1

Depth	Temp	D.O.		Sp. Cond.
(ft)	(°C)	(mg/L)	pН	(μS/cm)
1	24.2	7.4		
3	24.0	7.5		
6	23.8	7.5		
9	23.4	7.4		
12	22.8	6.5		
15	22.1	5.2		
18	20.4	0.6		
21	17.7	0.1	<u> </u>	
24	15.8	0.0		
27	13.8	0.0		
30	12.4	0.0		
33	11.9	0.0		
36	11.5	0.0		
39	11.3	0.0		
40	11.1	0.0		
42	10.9	0.0		
		, in the second second		

		Augus	t 18, 201	4		
0	5	10	15	20	25	30
0	7				7	
5 -	Į	, I			Ţ	
10	/	l			#	
15 -					•	
= 20 1 = 1						
Depth (Ft) 50 25						
30 ₽		ŗ				
35		#		─ Ter	mp	
I		Î		(*C)	
40		7		D.C). g/L)	
45						

Parameter	LOLS	LOLB
Total P (µg/L)	23.20	159.00
Dissolved P (µg/L)	NA	NA
Chl-a (μg/L)	6.93	NA
TKN (µg/L)	NA	NA
$NO_3 + NO_2 - N (\mu g/L)$	NA	NA
NH ₃ -N (µg/L)	NA	NA
Total N (µg/L)	NA	NA
Lab Cond. (μS/cm)	NA	NA
Lab pH	NA	NA
Alkalinity (mg/L CaCO ₃)	NA	NA
Total Susp. Solids (mg/L)	NA	NA
Calcium (mg/L)	NA	NA
Magnesium (mg/L)	NA	NA
Hardness (mg/L)	NA	NA
Color (SU)	NA	NA
Turbidity (NTU)	NA	NA

Data collected by TWH and EAT (Onterra)		

Date: 10/28/2014 Time: 14:10 Weather: 80% clouds, 56F, windy Entry: EEH

Max Depth: 44.5 LOLS Depth (ft): 3.0 LOLB Depth (ft): 42.0 Secchi Depth (ft): 12.2

Depth (ft)	Temp (°C)	D.O. (mg/L)	pН	Sp. Cond. (μS/cm)
1	11.7	(IIIg/L) 8.8	рп	(μο/σιιι)
			0.0	
3	11.8	8.8	8.2	
6	11.8	8.7		
9	11.8	8.7		
12	11.8	8.6		
15	11.8	8.6		
18	11.8	8.6		
21	11.9	8.6	8.1	
24	11.8	8.6		
27	11.7	8.3		
30	11.6	8.3		
33	11.5	8.1		
36	11.5	8.0		
39	11.5	7.9		
42	11.5	7.5	7.6	
, and the second	, and the second			

		Octobe	er 28, 20°	14		
0	5	10	15	20	25	30
0		1 1				
5 -		II				
10		ł t				
15 -		ĮĮ				
25 -		1 1				
25 P		† †				
30		ļ ļ				
35	ĺ	•			Ter (°C	mp
40	1	• •			D.0	
45					(11)	9-7

Parameter	LOLS	LOLB
Total P (µg/L)	28.40	28.70
Dissolved P (μg/L)	NA	NA
Chl-a (µg/L)	1.92	NA
TKN (μg/L)	NA	NA
$NO_3 + NO_2 - N (\mu g/L)$	NA	NA
NH ₃ -N (μg/L)	NA	NA
Total N (µg/L)	NA	NA
Lab Cond. (µS/cm)	NA	NA
Lab pH	NA	NA
Alkalinity (mg/L CaCO ₃)	NA	NA
Total Susp. Solids (mg/L)	ND	ND
Calcium (mg/L)	NA	NA
Magnesium (mg/L)	NA	NA
Hardness (mg/L)	NA	NA
Color (SU)	NA	NA
Turbidity (NTU)	NA	NA

Data collected by TWH (Onterra)		

 Date:
 2/10/2015
 Max Depth: 44.9

 Time:
 10:00
 LOLS Depth (ft): 3.0

 Weather:
 100% clouds, 18F
 LOLB Depth (ft): 42.0

 Entry:
 EEH
 Secchi Depth (ft): 5.5

Depth (ft)	Temp (°C)	D.O. (mg/L)	рН	Sp. Cond (μS/cm)
1	0.4	16.2		
3	1.7	15.5		
6	2.7	14.3		
9	3.0	14.0		
12	3.2	13.0		
15	3.4	10.5		
18	3.5	9.7		
21	3.5	8.9		
24	3.5	8.0		
27	3.6	7.3		
30	3.8	5.9		
33	3.9	6.7		
36	4.2	4.8		
39	4.4	5.0		
42	4.5	5.6		
44	4.7	4.2		

		Februa	ry 10, 20	15		
0	5	10	15	20	25	30
			7			
5 -	Ħ		f			
10 -	1		,			
15 -	ļ					
Depth (Ft) 520 - 525 - 5	Ì	<i></i>				
£ 25	Ţ	✓				
	† /	4				
30 -	1 🔨					
35 -	1				Ter (°C	np
40 -	#				D.C	o.
45	.				(mg	g/L)

Parameter	LOLS	LOLB
Total P (µg/L)	24.50	50.50
Dissolved P (μg/L)	2.00	33.00
Chl-a (µg/L)	NA	NA
TKN (μg/L)	596.00	484.00
$NO_3 + NO_2 - N (\mu g/L)$	137.00	847.00
NH ₃ -N (μg/L)	ND	139.00
Total N (µg/L)	733.00	1331.00
Lab Cond. (µS/cm)	NA	NA
Lab pH	NA	NA
Alkalinity (mg/L CaCO ₃)	NA	NA
Total Susp. Solids (mg/L)	NA	NA
Calcium (mg/L)	NA	NA
Magnesium (mg/L)	NA	NA
Hardness (mg/L)	NA	NA
Color (SU)	NA	NA
Turbidity (NTU)	NA	NA

Data collected by BTB and TWH (Onterra). Ice thickness = 1.2 feet.

Water Quality Data

2014-2015	Surface		Bot	tom
Parameter	Count	Mean	Count	Mean
Secchi Depth (feet)	6	10.4	NA	NA
Total P (µg/L)	6	23.3	6	69.5
Dissolved P (µg/L)	3	4.1	3	42.8
Chl a (µg/L)	5	2.9	0	NA
TKN (µg/L	3	588.3	3	590.7
NO3+NO2-N (µg/L)	3	151.0	3	374.0
NH3-N (µg/L)	3	16.5	3	163.8
Total N (µg/L)	3	689.0	3	964.6
Lab Cond. (µS/cm)	2	485.5	2	517.0
Lab pH	2	8.3	2	8.0
Alkal (mg/l CaCO3)	2	222.0	2	234.5
Total Susp. Solids (mg/l)	3	2.5	3	ND
Calcium (µg/L)	2	46.9	0	NA
Magnesium (mg/L)	2	29.5	0	NA
Hardness (mg/L)	2	238.5	0	NA
Color (SU)	2	260.0	0	NA
Turbidity (NTU)	0	NA	0	NA

Trophic State Index (TSI)							
Year	TP	Chl-a	Secchi				
1986			40.6				
1987			42.4				
1988	43.7	48.2	42.5				
1989	45.8	45.4	42.8				
1990	46.9	55.5	47.9				
1991	44.7	48.7	47.6				
1992	42.2	48.3	42.1				
1993	47.5	53.2	47.2				
1994	46.0	44.3	46.5				
1995	40.9	38.8	43.4				
1996	45.4	47.3	45.8				
1997	52.2	50.7	46.1				
1998	47.2	43.1	42.9				
1999	46.6	46.2	43.0				
2000	44.8	43.6	44.0				
2001	47.6	44.8	46.6				
2002	45.6	43.0	42.7				
2003							
2004	49.4	43.9	42.6				
2005	49.7	45.2	43.2				
2006	46.6	46.5	44.8				
2007	44.8	41.1	35.5				
2008	52.2	44.6	42.1				
2009	50.2	41.5	40.2				
2010	49.0	47.5	43.1				
2011							
2012	47.1	41.5	39.1				
2013	44.2	43.9	40.7				
2014	47.1	44.3	43.4				
All Years (Weighted)	46.8	46.4	43.6				
Deep, Lowland Drainage Lakes Median	49.4	49.7	46.2				
SWTP Ecoregion Median	48.7	47.0	50.0				

		Secch	i (feet)		Chlorophyll-a (μg/L) Total Phosphorus (μ			horus (µg/L)	(μg/L)			
	Growing	Season	Sum	mer	Growing	Season	Sum	mer	Growing	Season	Sum	mer
Year	Count	Mean	Count	Mean	Count	Mean	Count	Mean	Count	Mean	Count	Mean
1986	6	11.4	3	12.6								
1987	19	12.4	12	11.1								
1988	18	10.8	12	11.1	3	6.0	3	6.0	2	15.5	2.0	15.5
1989	18	11.3	14	10.8	4	5.3	2	4.5	4	17.8	2.0	18.0
1990	20	8.4	15	7.6	4	11.8	3	12.7	5	21.0	3.0	19.3
1991	15	7.7	11	7.7	4	6.0	3	6.3	9	24.6	5.0	16.6
1992	14	11.0	9	11.4	4	5.8	3	6.1	7	19.0	4.0	14.0
1993	9	8.0	7	8.0	6	11.3	4	10.0	6	22.0	4.0	20.3
1994	8	8.3	6	8.4	9	5.0	6	4.0	9	19.3	6.0	18.2
1995	8	9.6	5	10.4	8	5.3	5	2.3	8	15.0	5.0	12.8
1996	15	8.8	14	8.8	7	6.0	6	5.5	7	17.4	6.0	17.5
1997	7	9.0	5	8.6	9	7.6	6	7.7	7	26.7	5.0	28.0
1998	8	10.5	6	10.8	9	3.9	7	3.6	8	21.6	6.0	19.8
1999	8	10.4	6	10.7	8	5.0	6	4.9	8	19.8	6.0	19.0
2000	10	10.4	8	9.9	7	5.9	5	3.8	7	18.6	5.0	16.8
2001	5	8.1	3	8.3	4	6.7	3	4.2	4	22.8	3.0	20.3
2002	5	11.1	4	10.9	3	3.5	3	3.5	3	17.7	3.0	17.7
2003												
2004	1	11.0	1	11.0	2	3.9	2	3.9	3	24.7	2.0	23.0
2005	3	13.8	1	10.5	3	3.9	2	4.4	4	21.5	2.0	23.5
2006	12	12.5	6	9.4	5	4.4	4	5.0	6	20.3	4.0	19.0
2007	8	17.5	6	18.0	5	3.0	4	2.9	6	15.3	4.0	16.8
2008	14	11.5	7	11.4	4	3.5	3	4.2	5	27.2	3.0	28.0
2009	4	13.3	3	13.0	4	3.5	3	3.0	4	22.8	3.0	24.3
2010	6	10.6	6	10.6	4	5.6	4	5.6	6	23.5	5.0	22.4
2011												
2012	4	14.8	2	14.0	4	3.1	3	3.0	6	18.5	3.0	19.7
2013	4	15.8	2	12.5	3	3.9	3	3.9	4	17.8	3.0	16.1
2014	5	11.4	3	10.4	5	2.9	3	4.0	5	23.1	3.0	19.7
All Years (Weighted)		10.7	<u>-</u>	10.2		5.6	<u>-</u>	5.0		20.5		19.2
Deep, Lowland Drainage Lakes				8.5				7.0				23.0
SWTP Ecoregion Median				6.6				5.3				22.0

APPENDIX D

Watershed Analysis WiLMS Results

Date: 10/16/2014 Scenario: Long Lake Watershed Current

Lake Id: LongFDL_Watershed_Current

Watershed Id: 0

Hydrologic and Morphometric Data

Tributary Drainage Area: 12371.0 acre

Total Unit Runoff: 7.9 in.

Annual Runoff Volume: 8144.2 acre-ft Lake Surface Area <As>: 460 acre Lake Volume <V>: 7237 acre-ft Lake Mean Depth <z>: 15.7 ft

Precipitation - Evaporation: 3.1 in. Hydraulic Loading: 8263.1 acre-ft/year Areal Water Load <qs>: 18.0 ft/year Lake Flushing Rate : 1.14 1/year Water Residence Time: 0.88 year

Observed spring overturn total phosphorus (SPO): 23.9 mg/m³ Observed growing season mean phosphorus (GSM): 20.5 mg/m³

% NPS Change: 0%
% PS Change: 0%

NON-POINT SOURCE DATA

Land Use	Acre	Low Most	Likely	High Loading	g % Low	Most Likely	High	
	(ac)	Load	ling (kg/h	a-year)		Loa	ding (kg/y	ear)
Row Crop AG	3558	0.50	1.00	3.00	68.8	720	1440	4320
Mixed AG	0.0	0.30	0.80	1.40	0.0	0	0	0
Pasture/Grass	3048	0.10	0.30	0.50	17.7	123	370	617
HD Urban (1/8 Ac)	12	1.00	1.50	2.00	0.3	5	7	10
MD Urban (1/4 Ac)	17	0.30	0.50	0.80	0.2	2	3	6
Rural Res (>1 Ac)	312	0.05	0.10	0.25	0.6	6	13	32
Wetlands	1822	0.10	0.10	0.10	3.5	74	74	74
Forest	3602	0.05	0.09	0.18	6.3	73	131	262
Lake Surface	460.0	0.10	0.30	1.00	2.7	19	56	186

POINT SOURCE DATA

Point Sources Water Load Low Most Likely High Loading %
(m^3/year) (kg/year) (kg/year) _

SEPTIC TANK DATA

Description		Low	Most Likely	High	Loading %
Septic Tank Output (kg/capita-year)		0.3	0.5	0.8	
# capita-years	0.0				
% Phosphorus Retained by Soil		98	90	80	
Septic Tank Loading (kg/year)		0.00	0.00	0.00	0.0

TOTALS DATA

Description	Low	Most Likely	High	Loading %
Total Loading (lb)	2252.6	4616.7	12137.7	100.0
Total Loading (kg)	1021.8	2094.1	5505.6	100.0
Areal Loading (lb/ac-year)	4.90	10.04	26.39	0.0
Areal Loading (mg/m^2-year)	548.89	1124.93	2957.53	0.0
Total PS Loading (lb)	0.0	0.0	0.0	0.0
Total PS Loading (kg)	0.0	0.0	0.0	0.0
Total NPS Loading (lb)	2211.6	4493.6	11727.2	100.0
Total NPS Loading (kg)	1003.2	2038.3	5319.4	100.0

Phosphorus Prediction and Uncertainty Analysis Module

Date: 10/16/2014 Scenario: Long Lake Watershed Current Observed spring overturn total phosphorus (SPO): 23.9 mg/m^3 Observed growing season mean phosphorus (GSM): 20.5 mg/m³ Back calculation for SPO total phosphorus: 0.0 mg/m^3

Back calculation GSM phosphorus: 0.0 mg/m³

% Confidence Range: 70%

Nurenberg Model Input - Est. Gross Int. Loading: 0 kg

Lake Phosphorus Model	Low 1	Most Likely	High	Predicted	% Dif.
	Total P	Total P	Total P	-Observed	
	(mg/m^3)	(mg/m^3)	(mg/m^3)	(mg/m^3)	
Walker, 1987 Reservoir	28	58	153	38	185
Canfield-Bachmann, 1981 Natural Lake	45	75	146	55	268
Canfield-Bachmann, 1981 Artificial Lake	38	59	100	39	190
Rechow, 1979 General	30	62	163	42	205
Rechow, 1977 Anoxic	78	161	422	141	688
Rechow, 1977 water load<50m/year	46	94	247	74	361
Rechow, 1977 water load>50m/year	N/A	N/A	N/A	N/A	N/A
Walker, 1977 General	56	116	304	92	385
Vollenweider, 1982 Combined OECD	39	71	157	49	221
Dillon-Rigler-Kirchner	30	61	160	37	155
Vollenweider, 1982 Shallow Lake/Res.	33	62	145	40	180
Larsen-Mercier, 1976	52	106	279	82	343
Nurnberg, 1984 Oxic	36	74	195	54	263

Lake Phosphorus Model C	Confidence	Confidence	Parameter	Back	Model
	Lower	Upper	Fit?	Calculation	Type
	Bound	Bound		(kg/year)	
Walker, 1987 Reservoir	34	120	FIT	0	GSM
Canfield-Bachmann, 1981 Natural Lake	23	216	FIT	1	GSM
Canfield-Bachmann, 1981 Artificial Lake	18	170	FIT	1	GSM
Rechow, 1979 General	35	129	FIT	0	GSM
Rechow, 1977 Anoxic	95	329	FIT	0	GSM
Rechow, 1977 water load<50m/year	53	194	P	0	GSM
Rechow, 1977 water load>50m/year	N/A	N/A	N/A	N/A	N/A
Walker, 1977 General	57	249	FIT	0	SPO
Vollenweider, 1982 Combined OECD	34	142	FIT	0	ANN
Dillon-Rigler-Kirchner	36	125	P	0	SPO
Vollenweider, 1982 Shallow Lake/Res.	30	126	FIT	0	ANN
Larsen-Mercier, 1976	65	216	P Pin	0	SPO
Nurnberg, 1984 Oxic	38	157	P	0	ANN