Instructions: Bold fields must be completed.

+ Wild Rivers Co. sign

Camp Six	Location Name
	WBIC
Torest.	County
77	Date(s)
Yes/	AIS sign?/
9.5.74	Secchi (ftorm)
30	Conductivity (ZM≥99 umhos/cm)
M. Nault R. Moriff	Collector(s)
10:15 m	Start Time
10:15=m 12:10pm	End Time
	Start Time End Time (hrs x # ppl)

STEP 1: Circle species that you looked for and review the Identification Handout.

STEP 2. Record locations of sampling sites (in decimal degrees). In	AQUATIC PLANTS/ALGAE Hydrilla Water hyacinth Water lettuce European frogbit Curly leaf pondweed Water lettuce RIP Yellow floating heart Fanwort Eurasian water milfoil Floor Brazilian waterweed Parrot feather Didymo Phr
STEP 2. Record locations of sampling sites (in decimal degrees). Indicate whether snorkeled or why not. List AIS found and density at each site or record none. Collect a	Water chestnut Purple loosestrife INVERTEBRATES Faucet snails Other RIPARIAN PLANTS Yellow flag iris Zebra/quagga mussels Chinese/Banded mystery snails (please specify) Flowering rush Japanese knotweed Asian clam Rusty/red swamp crayfish ————— Phragmites Japanese hop New Zealand mudsnails Spiny/fishhook waterflea —————

WBIC, name of lake, county, sample date, sample type (snails, spiny water flea or zebra mussel) and collector. Legibility is appreciated. If needed, preserve with adequate sample of any new AIS found. Collect five new invasive plant specimens, 20 Dreissenids, and up to 3 of each invertebrate species. Include internal and external labels with

			3 3 3 3 3	3		335		
olle.	Latitude	Tonyillano	(N/N)	(Y/N) why [†]	Species name, density (1-5), and live (L) or dead (D) (Y/N) (Y/N)	(Y/N)	(Y/N)	
31	BL1 45.59706	-88,43201	4			1	١	×
75.	45,59362 -88,4342	-86,4342	~			1	l	*
152	45,59200	-88,43201	~	1		}	١	X
53	153 45,59588	-88.42960	~	\		٠	-	人
75	7h15tr 88-1 h19655th	7h1ch: 88-	~	GENERALITY		مستنست	-	7.
3	TS5 45.59702	608th 98-	,<			acconduction of the second of		X
								,
	; -		-					

^{*}boat landing (BL), target site (TS), meander survey (MS).

[†]Stained water, turbid water, blue-green bloom, chemical treatment, other (please describe).

SLive (L) animals will contain flesh and live plants will generally be rooted. Dead (D) animals will not contain flesh and dead plants include sterile fragments. invertebrates, 4-dense plant, snail, or mussel growth in a while bay or portion of the lake, or 5-dense plant, snail or mussel growth covering most shallow areas. *Density ratings: 1-a few plants or invertebrates, 2-one or a few plant beds or colonies of invertebrates, 3-many small beds or scattered plants or colonies of

completed copy of this data form, and a completed copy of the Water Flea Tow Monitoring Report (3200-128) to DNR Science Services. Legibility is appreciated. STEP 3: Collect Waterflea Tows from the deep hole (DH). Decant water and preserve the sample. Preserve with 4 parts ethanol and 1 part sample. Submit the sample, a

Latitude	Longitude	Method*	Method* Net ring Net	Net	Ethanol [‡]	Samples combined Date sent	Date sent
	40.0		depth (m)	depth (m) diameter†		(Y or N)	
45.59317	-88,43233 went	t ver			No N	7	
45,59312 -88.43233	-86.43233						
45.59313 -88.43235	-88.43235	Contraction				-	

STEP 4: Collect vertical Veliger Tows from 3 sites; the deep hole (DH) and two other deep areas along the downwind side of the lake. Preserve with 4 parts ethanol and 1 Legibility is appreciated. part sample. Submit the sample, a copy of this completed data form, and a completed copy of the Mussel Veliger Tow Monitoring Report (3200-135) to DNR Science Service.

Latitude	Longitude	Net ring Net depth (m) diamet	ert	Ethanol [‡]	Samples combined (Y or N)	Date sent
7	cond = 30	٠				
				-		
W.					-	

^{*}Horizontal, oblique, or vertical.

‡Non-denatured or denatured ethanol

STEP 5: Coordinate voucher and sample submission and verification with regional DNR staff for all AIS records for the specific region.

- Plants will be compiled and entered into a spreadsheet to be verified and submitted to a herbarium by an in-person appointment. Please indicate which herbarium: Freckmann Herbarium, Wisconsin State Herbarium, Other Date of herbarium meeting
- Snails will be compiled with other regional snail specimens and sent to UW La Crosse. Date sent
- Dreissenids will be sent to Science Services. Date sent

ů O	•
D 6. Data was entered into SWING on	Crayfish compiled and sent to: Craig Roesler or Scott VanEgeren. Date
	g Roesier or Scott VanEgeren.
5	Date
	•

STEP 7: Data was proofed on Once data is entered, send scans of data sheets to central office (Maureen. Ferry@Wisconsin.gov and Amanda. Perdzock@Wisconsin.gov) þ

Notes: