APPENDIX A **Public Participation Materials** June 8, 2013 # Elements of an Effective Lake Management Planning Project ## **Data and Information Gathering** Environmental & Sociological ## **Planning Process** Brings it all together Onterra LLC # Data and information gathering - Study Components - Water Quality Analysis - Watershed Assessment - Aquatic Plant Surveys - Fisheries Data Integration - Shoreline Assessment - Stakeholder Survey Onterra LLC ## Water Quality Analysis - General water chemistry (current & historic) - Citizens Lake Monitoring Network - Nutrient analysis - Lake trophic state (Eutrophication) - Limiting plant nutrient - Supporting data for watershed modeling. June 8, 2013 2 # Aquatic Plant Surveys Concerned with both native and nonnative plants Onterra LLC June 8, 2013 # Aquatic Plant Surveys - Concerned with both native and nonnative plants - Multiple surveys used in assessment - Early-season AIS survey - Point-intercept survey Onterra, LLC June 8, 2013 4 # **Aquatic Plant Surveys** - Concerned with both native and nonnative plants - Multiple surveys used in assessment - Early-season AIS Survey - Point-intercept survey - Aquatic plant community mapping # **Aquatic Plant Surveys** - Concerned with both native and nonnative plants - Multiple surveys used in assessment - Early-season AIS Survey - Point-intercept survey - Aquatic plant community mapping - Volunteer survey findings Onterra, LLC June 8, 2013 5 ## Fisheries Data Integration - No fish sampling completed - Assemble data from WDNR, USGS, USFWS, & GLIFWC - Fish survey results summaries (if available) - Use information in planning as applicable # Shoreland Assessment - Shoreland area is important for buffering runoff and provides valuable habitat for aquatic and terrestrial wildlife. - It does not look at lake shoreline on a property-byproperty basis. - Assessment ranks shoreland area from shoreline back 35 feet ## Stakeholder Survey - Standard survey used as base - Planning committee potentially develops additional questions and options - Must not lead respondent to specific answer through a "loaded" question - Survey must be approved by WDNR Onterra LLC June 8, 2013 June 8, 2013 April 8, 2014 April 8, 2014 Potential Sources of Intermittent Years with Elevated Phosphorus Concentrations - Point source input? None that we know of - Non-point source input? Watershed in good condition - Curly-leaf pondweed die-off? Population much too small - Septic system inputs? # Potential Sources of Intermittent Years with Elevated Phosphorus Concentrations - Point (or non-point) source input? Watershed in good condition - Curly leaf pondweed die off? Population too small - Septic system inputs? Possible, but not likely - Ground water inputs? Possible, but not likely - Phosphorus release from bottom sediments (internal nutrient loading)? • Data indicate high probability Onterrallic # Internal Phosphorus Loading – What is it? Release of phosphorus from bottom sediments under anoxic (no oxygen) conditions Where does phosphorus-laden sediment come from? Can be both anthropogenic (e.g. agriculture, urban areas) or natural Lakes with higher resident times (low water exchange) can accumulate phosphorus ## ## Evidence for Internal Phosphorus Loading In Kentuck Lake - 1. Kentuck Lake is polymictic; Osgood Index Value of 1.9. - 2. Near-surface total phosphorus concentrations increase throughout the summer. - 3. Historical near-bottom (hypolimnetic) phosphorus concentrations average 325 µg/L. Onterra LLC # Evidence for Internal Phosphorus Loading In Kentuck Lake Onterna Lic Lake Management Planning ## Evidence for Internal Phosphorus Loading In Kentuck Lake - Internal nutrient loading likely occurring in Kentuck Lake annually - Why was the magnitude of phosphorus increase so much greater in certain years (e.g. 1988, 1991, 2011, & 2013)? - May be dependent on differences in lake's initial stratification based on weather Onterra, LLC ### Evidence for Internal Phosphorus Loading In Kentuck Lake - Why was the magnitude of phosphorus increase so much greater in certain years (e.g. 2011 & 2013)? - May be dependent on differences in lake's initial stratification based on weather - In most years, epilimnion initially extends to 25 30 feet, yielding smaller area of anoxia - In some years, like 2011 & 2013, epilimnion is shallower (15-20 feet), and area of anoxia is much larger and more phosphorus is available for release over the summer - Likely caused by period of hot, calm weather early in the season - Erosion of hypolimnion (or complete mixing in shallower areas) throughout the summer delivers Onterra LLC Poorer water quality in 2011 and 2013 do not necessarily indicate declining trend in lake's water quality; this has happened before (late 1980s & early 1990s) Total Prosphorus Onterra. LC Lake Management Planning # Other Water Quality Results - Alkalinity = 34.2 mg/L as CaCO₃ indicates very little sensitivity to acid rain - Low calcium concentrations (6.7 mg/L) - Very low susceptibility for zebra mussel establishment Onterra, LLC April 8, 2014 April 8, 2014 April 8, 2014 April 8, 2014 ## Kentuck Lake Fishery - · Historically managed by the WDNR for bass and panfish fishery - Natural recruitment of walleye occurring the 1980s - Large decline in walleye population in late 1980s/early 1990s - Walleye stocking began in 1999; 35 fingerlings per acre to be stocked in 2014 - No natural reproduction of walleye is believed to be occurring - Bass, crappies, and perch are declining - Bluegill die-off in 2011 - GLIFWC to conduct walleye population estimate and muskellunge tagging in 2014 - WDNR to complete a fall 2014 electrofishing survey and comprehensive survey in 2015 Onterra, LLC Lake Management Planning ## **Conclusions** - In most years, water quality for deep lowland drainage lake is good - Ample historical data; no apparent trends over time - However, the lake experiences intermittent years of poor water quality conditions - While internal loading likely occurs annually on Kentuck Lake, weather-driven differences in early-season stratification increase magnitude - Watershed is in excellent shape; majority is comprised of intact forests and the lake's surface itself - Modeling predicted more phosphorus than measured; likely due to internal phosphorus loading Onterra LLC ## **Conclusions continued** - Overall, immediate shoreland areas are in good condition - Aquatic plant community - Based upon standard analysis, native plant community is of comparable quality to lakes state-wide. - High abundance of coontail and common waterweed are indicative of eutrophic conditions - Low species diversity; likely driven by eutrophic conditions - 2013 EWM treatment was highly successful and population remains low - 2013 survey also indicated CLP population is very low - No herbicide treatments are proposed for 2014; surveys in 2014 will reveal if treatment strategy needs to be developed for 2015 Onterra, LLC ### Kentuck Lake Proposed Three-Year Water Quality Study - 2014: Record only temp/dissolved oxygen profiles from 7 locations (pictured) biweekly starting after ice-out through fall turnover and during/immediately after storm events - 2015-2016: Temp/dissolved oxygen profiles & near-surface and near-bottom TP (likely from 4-5 locations) from ice-out through October. Chl-a concentrations from 2 locations. Winter TP samples in February of 2015 & 2016 through the ice by Onterra staff. - 2015: Sediment core collection & analysis; 2 cores May 1, 2014 May 1, 2014 Planning Meeting II Appendix A # Kentuck Lake Fishery - · Historically managed by the WDNR for bass and panfish fishery - Natural recruitment of walleye occurring the 1980s - Large decline in walleye population in late 1980s/early 1990s - Walleye stocking began in 1999; 35 fingerlings per acre to be stocked in 2014 - No natural reproduction of walleye is believed to be occurring - Bass, crappies, and perch are declining - Bluegill die-off in 2011 - GLIFWC to conduct walleye population estimate and muskellunge tagging in 2014 - WDNR to complete a fall 2014 electrofishing survey and comprehensive survey in 2015 Onterra, LLC May 1, 2014 3 Planning Meeting II Appendix A # **Conclusions** - In most years, water quality for deep lowland drainage lake is good - Ample historical data; no apparent trends over time - However, the lake experiences intermittent years of poor water quality conditions - While internal loading likely occurs annually on Kentuck Lake, weather-driven differences in early-season stratification increase magnitude - Watershed is in excellent shape; majority is comprised of intact forests and the lake's surface itself - Modeling predicted more phosphorus than measured; likely due to internal phosphorus loading Onterra LLC # **Conclusions continued** - Overall, immediate shoreland areas are in good condition - Aquatic plant community - Based upon standard analysis, native plant community is of comparable quality to lakes state-wide. - High abundance of coontail and common waterweed are indicative of eutrophic conditions - Low species diversity; likely driven by eutrophic conditions - 2013 EWM treatment was highly successful and population remains low - 2013 survey also indicated CLP population is very low - No herbicide treatments are proposed for 2014; surveys in 2014 will reveal if treatment strategy needs to be developed for 2015 Onterra LLC # Kentuck Lake Proposed Three-Year Water Quality Study - 2014: Record only temp/dissolved oxygen profiles from 7 locations (pictured) biweekly starting after ice-out through fall turnover and during/immediately after storm events - 2015-2016: Temp/dissolved oxygen profiles & near-surface and near-bottom TP (likely from 4-5 locations) from ice-out through October. Chl-a concentrations from 2 locations. Winter TP samples in February of 2015 & 2016 through the ice by Onterra staff. - 2015: Sediment core collection & analysis; 2 cores May 1, 2014 Planning Meeting II
Appendix A May 1, 2014 5 B # **APPENDIX B** **Stakeholder Survey Response Charts and Comments** | Returned Surveys | 90 | |-------------------|------| | Sent Surveys | 149 | | Response Rate (%) | 60.4 | #### **KENTUCK LAKE PROPERTY** #### #1 How is your property on Kentuck Lake utilized? | | Total | % | |---|-------|-------| | Visited throughout the year | 41 | 45.1 | | A year-round residence | 29 | 31.9 | | Seasonal residence (summer only) | 11 | 12.1 | | Undeveloped | 4 | 4.4 | | Resort property | 0 | 0.0 | | Rental property | 0 | 0.0 | | Other | 0 | 0.0 | | I am a renter and do not own the property | 0 | 0.0 | | I do not live on the lake | 6 | 6.6 | | | 91 | 100.0 | #### #2 How many days each year is your property used by you or others? | Answered Question | 84 | |--------------------|-------| | Average | 158.3 | | Standard deviation | 140.7 | #### #3 How long have you owned or rented your property on Kentuck Lake? | | Total | % | |-------------|-------|-------| | 1-5 years | 7 | 8.4 | | 6-10 years | 14 | 16.9 | | 11-15 years | 12 | 14.5 | | 16-20 years | 9 | 10.8 | | 21-25 years | 7 | 8.4 | | >25 years | 34 | 41.0 | | | 83 | 100.0 | #### #4 What type of septic system does your property utilize? | | Total | % | |---------------------------|-------|-------| | Holding tank | 13 | 15.3 | | Mound | 6 | 7.1 | | Advanced treatment system | 5 | 5.9 | | Conventional system | 57 | 67.1 | | Municipal sewer | 0 | 0.0 | | Do not know | 1 | 1.2 | | No septic system | 3 | 3.5 | | | 85 | 100.0 | #### #5 How often is the septic tank on your property pumped? | | Total | % | |-----------------------|-------|-------| | Multiple times a year | 2 | 2.4 | | Once a year | 7 | 8.5 | | Every 2-4 years | 64 | 78.0 | | Every 5-10 years | 8 | 9.8 | | Do not know | 1 | 1.2 | | | 82 | 100.0 | #### RECREATIONAL ACTIVITY ON KENTUCK LAKE #### #6 How many years ago did you first visit Kentuck Lake? | Answered Question | 89 | |--------------------|------| | Average | 26.8 | | Standard deviation | 14.1 | #### **#7** For how many years have you fished Kentuck Lake? | | Total | % | |-------------|-------|-------| | Never | 4 | 4.5 | | 1-5 years | 9 | 10.1 | | 6-10 years | 10 | 11.2 | | 11-15 years | 13 | 14.6 | | 16-20 years | 12 | 13.5 | | 21-25 years | 9 | 10.1 | | >25 years | 32 | 36.0 | | • | 89 | 100.0 | #### #8 Have you personally fished on Kentuck Lake in the past three years? | | Total | % | |-----|-------|-------| | Yes | 77 | 88.5 | | No | 10 | 11.5 | | | 87 | 100.0 | #### #9 What species of fish do you like to catch on Kentuck Lake? | | Total | |------------------|-------| | Walleye | 57 | | Crappie | 51 | | Yellow perch | 47 | | Smallmouth bass | 43 | | Bluegill/Sunfish | 35 | | Largemouth bass | 31 | | Muskellunge | 31 | | Other | 3 | | All fish species | 16 | # #10 How would you describe the current quality of fishing on Kentuck Lake? | | Total | % | |-----------|-------|-------| | Very Poor | 6 | 7.9 | | Poor | 14 | 18.4 | | Fair | 31 | 40.8 | | Good | 21 | 27.6 | | Excellent | 4 | 5.3 | | Unsure | 0 | 0.0 | | | 76 | 100.0 | # #11 How has the quality of fishing changed since you started fishing on the lake? | | Total | % | |-------------------|-------|-------| | Much worse | 22 | 28.2 | | Somewhat worse | 38 | 48.7 | | Remained the Same | 11 | 14.1 | | Somewhat better | 4 | 5.1 | | Much better | 2 | 2.6 | | Unsure | 1 | 1.3 | | | 78 | 100.0 | #### #12 What types of watercraft do you currently use on the lake? | | Total | |--|-------| | Motor boat with greater than 25 hp motor | 58 | | Canoe/Kayak | 52 | | Rowboat | 24 | | Pontoon | 21 | | Motor boat with 25 hp or less motor | 19 | | Paddleboat | 15 | | Sailboat | 9 | | Jet ski (personal water craft) | 5 | | Jet boat | 0 | | Do not use watercraft | 2 | #### #13 Please rank up to three activities that are important reasons for owning your property on or near the lake. | | 1st | 2nd | 3rd | % ranked | |--|-----|-----|-----|----------| | Fishing - open water | 38 | 17 | 17 | 27.4 | | Relaxing/entertaining | 25 | 20 | 5 | 19.0 | | Nature viewing | 6 | 9 | 11 | 9.9 | | Swimming | 6 | 6 | 14 | 9.9 | | Ice fishing | 1 | 12 | 4 | 6.5 | | Hunting | 4 | 5 | 7 | 6.1 | | Canoeing/kayaking | 2 | 7 | 7 | 6.1 | | Water skiing/tubing | 2 | 5 | 8 | 5.7 | | Pleasure boating | 3 | 5 | 4 | 4.6 | | Snowmobiling/ATV | 0 | 0 | 8 | 3.0 | | Jet skiing | 0 | 1 | 0 | 0.4 | | Sailing | 0 | 0 | 0 | 0.0 | | Other | 1 | 0 | 1 | 0.8 | | None of these activities are important to me | 1 | 1 | 0 | 0.8 | | · | 89 | 88 | 86 | 100.0 | #### KENTUCK LAKE CURRENT AND HISTORIC CONDITION, HEALTH AND MANAGEMENT #### #14 How would you describe the current water quality of Kentuck Lake? | | Total | % | |-----------|-------|-------| | Very Poor | 17 | 19.3 | | Poor | 38 | 43.2 | | Fair | 24 | 27.3 | | Good | 7 | 8.0 | | Excellent | 0 | 0.0 | | Unsure | 2 | 2.3 | | | 88 | 100.0 | # 50 40 40 30 30 Very Poor Poor Fair Good Excellent Unsure # #15 How has the water quality changed in Kentuck Lake since you first visited the lake? | | Total | % | |-------------------|-------|-------| | Severely degraded | 42 | 47.2 | | Somewhat degraded | 39 | 43.8 | | Remained the same | 6 | 6.7 | | Somewhat improved | 1 | 1.1 | | Greatly improved | 0 | 0.0 | | Unsure | 1 | 1.1 | | | 80 | 100.0 | # **#16** Do you believe that management actions specific to water quality are needed? | | Total | % | |----------------|-------|-------| | Definitely yes | 47 | 52.8 | | Probably yes | 24 | 27.0 | | Unsure | 12 | 13.5 | | Probably no | 5 | 5.6 | | Definitely no | 1 | 1.1 | | | 89 | 100.0 | #### #17 Have you ever heard of aquatic invasive species? | | Total | % | |-----|-------|-------| | Yes | 88 | 98.9 | | No | 1 | 1.1 | | | 89 | 100.0 | #### #18 Do you believe aquatic invasive species are present within Kentuck Lake? | | Total | % | |-----|-------|-------| | Yes | 88 | 100.0 | | No | 0 | 0.0 | | | 88 | 100.0 | #### #19 Which aquatic invasive species are you aware of in the lake? | | Total | |--|-------| | Eurasian water milfoil | 85 | | Rusty crayfish | 48 | | Curly-leaf pondweed | 36 | | Purple loosestrife | 25 | | Freshwater jellyfish | 11 | | Heterosporosis (yellow perch parasite) | 10 | | Chinese mystery snail | 7 | | Zebra mussel | 6 | | Rainbow smelt | 2 | | Pale yellow iris | 1 | | Spiny water flea | 1 | | Round goby | 1 | | Flowering rush | 0 | | Alewife | 0 | | Carp | 0 | | Other | 5 | #### #20 To what level do you believe each of the following factors may currently be negatively impacting Kentuck Lake? | | 0-Not
present | 1-No
Impact | 2 | 3-Moderately
negative
impact | 4 | 5-Great
negative
impact | Unsure | Total | Average | |--|------------------|----------------|----|------------------------------------|----|-------------------------------|--------|-------|---------| | Algae blooms | 0 | 1 | 1 | 15 | 10 | 60 | 1 | 87 | 4.5 | | Water quality degradation | 1 | 1 | 3 | 22 | 22 | 35 | 4 | 83 | 4.0 | | Aquatic invasive species introduction | 1 | 4 | 6 | 34 | 19 | 18 | 5 | 81 | 3.5 | | Septic system discharge | 3 | 6 | 8 | 12 | 12 | 19 | 29 | 57 | 3.4 | | Escessive aquatic plant growth (excluding algae) | 1 | 6 | 11 | 31 | 16 | 19 | 2 | 83 | 3.3 | | Excessive fishing pressure | 1 | 12 | 11 | 32 | 13 | 14 | 2 | 82 | 3.0 | | Loss of fish habitat | 7 | 10 | 7 | 23 | 15 | 10 | 13 | 65 | 2.8 | | Shoreline development | 1 | 10 | 8 | 6 | 4 | 8 | 3 | 36 | 2.7 | | Unsafe watercraft practices | 2 | 14 | 6 | 4 | 6 | 5 | 1 | 35 | 2.4 | | Watercraft traffic | 2 | 26 | 18 | 22 | 11 | 5 | 2 | 82 | 2.3 | | Shoreline erosion | 9 | 29 | 16 | 18 | 5 | 5 | 6 | 73 | 2.0 | | Noise/light pollution | 11 | 29 | 16 | 11 | 8 | 5 | 6 | 69 | 1.9 | | Other | 1 | 2 | 2 | 3 | 2 | 11 | 2 | 20 | 3.7 | #### #21 From the list below, please rank your top three concerns regarding Kentuck Lake. | | 1st | 2nd | 3rd | % Ranked | |---------------------------------------|-----|-----|-----|----------| | Algae blooms | 32 | 22 | 15 | 26.2 | | Water quality degradation | 35 | 11 | 10 | 21.3 | | Aquatic invasive species introduction | 8 | 24 | 14 | 17.5 | | Excessive fishing pressure | 2 | 9 | 11 | 8.4 | | Septic system discharge | 4 | 6 | 8 | 6.8 | | Excessive aquatic plant growth | 2 | 4 | 10 | 6.1 | | Shoreline development | 1 | 6 | 4 | 4.2 | | Loss of fish habitat | 1 | 1 | 4 | 2.3 | | Watercraft traffic | 1 | 2 | 3 | 2.3 | | Unsafe watercraft practices | 0 | 2 | 1 | 1.1 | | Shoreline erosion | 0 | 0 | 2 | 0.8 | | Noise/light pollution | 0 | 0 | 1 | 0.4 | | Other | 3 | 2 | 2 | 2.7 | | | 89 | 89 | 85 | 100.0 | # #22 During open water season how often does aquatic plant growth, including algae, negatively impact your enjoyment of Kentuck Lake? | | Total | % | |-----------|-------|-------| | Never | 1 | 1.1 | | Rarely | 4 | 4.5 | | Sometimes | 27 | 30.7 | | Often | 41 | 46.6 | | Always | 15 | 17.0 | | | 88 | 100.0 | # #23 Considering your answer to the question #22, do you believe aquatic plant control is needed on Kentuck Lake? | | Total | % | |----------------|-------|-------| | Definitely yes | 39 | 43.8 | | Probably yes | 33 | 37.1 | | Unsure | 12 | 13.5 | | Probably no | 4 | 4.5 | | Definitely no | 1 | 1.1 | | | 89 | 100.0 | #### #24 Aquatic plants can be professionally managed using many techniques. What is your level of support for the responsible use of the following techniques on Kentuck Lake? | | 1 - Not supportive | 2 | 3 - Neutral | 4 | 5 - Highly supportive | Unsure | Total | Average | |---------------------------------------|--------------------|---|-------------|----|-----------------------|--------|-------|---------| | Hand-removal by divers | 4 | 1 | 21 | 14 | 39 | 8 | 79 | 4.1 | | Integrated control using many methods | 3 | 2 | 18 | 16 | 31 | 18 | 70 | 4.0 | | Biological control | 5 | 3 | 20 | 20 | 22 | 15 | 70 | 3.7 | | Herbicide (chemical)
control | 9 | 6 | 15 | 19 | 28 | 10 | 77 | 3.7 | | Manual removal by property owners | 12 | 3 | 25 | 15 | 25 | 7 | 80 | 3.5 | | Mechanical harvesting | 19 | 8 | 11 | 24 | 12 | 13 | 74 | 3.0 | | Dredging of bottom sediments | 25 | 9 | 15 | 9 | 12 | 16 | 70 | 2.6 | | Water level drawdown | 66 | 7 | 3 | 1 | 1 | 10 | 78 | 1.3 | | Do nothing (do not manage plants) | 61 | 7 | 6 | 2 | 1 | 10 | 77 | 1.4 | Appendix B #### #25 Which of these subjects would you like to learn more about? | | Total | |---|-------| | Information regarding algae blooms | 64 | | How changing water levels impact Kentuck Lake | 60 | | How septic systems impact the health of the lake | 40 | | Aquatic invasive species impacts, means of transport, identification, control options, etc. | 32 | | How to be a good lake steward | 29 | | Enhancing in-lake habitat (not shoreland or adjacent wetlands) for aquatic species | 22 | | Ecological benefits of shoreland restoration and preservation | 18 | | Social events occuring around Kentuck Lake | 14 | | Watercraft operation regulations - lake specific, local and statewide | 11 | | Volunteer lake monitoring opportunities | 9 | | Not interested in learning more on any of these subjects | 3 | | Some other topic | 2 | #### KENTUCK LAKE PROTECTION & REHABILITATION DISTRICT (KLPRD) #26 Before receiving this mailing, have you ever heard of the Kentuck Lake Protection and Rehabilitation District? | | Total | % | |-----|-------|-------| | Yes | 80 | 92.0 | | No | 7 | 8.0 | | | 87 | 100.0 | #27 What is your membership status with the Kentuck Lake Protection and Rehabilitation District? | | Total | % | |---------------------|-------|-------| | Current member | 64 | 83.1 | | Former member | 0 | 0.0 | | Never been a member | 13 | 16.9 | | | 77 | 100.0 | #28 How informed has the Kentuck Lake Protection and Rehabilitation District kept you regarding issues with the lake and its management? | | Total | % | |----------------------|-------|-------| | Not at all informed | 1 | 1.3 | | Not too informed | 4 | 5.3 | | Unsure | 6 | 8.0 | | Fairly well informed | 44 | 58.7 | | Highly informed | 20 | 26.7 | | | 75 | 100.0 | #### #29 Please circle the activities you would be willing to participate in if the Kentuck Lake Protection and Rehabilitation District requires additional assistance. | | Total | |---|-------| | Watercraft inspections at boat landings | 28 | | Water quality monitoring | 26 | | Aquatic plant monitoring | 24 | | Bulk mailing assembly | 19 | | Writing newsletter articles | 9 | | Attending Wisconsin Lakes Convention | 8 | | KLPRD Board | 6 | | I do not wish to volunteer | 28 | #### KENTUCK LAKE STAKEHOLDER SURVEY # **Individual Question Comments** ## **QUESTION 5** How often is the septic system on your property pumped? #58 – My septic is taken care of every 2 years. Vilas county does not need to keep track of me. # **QUESTION 9** What species of fish do you like to catch on Kentuck Lake? #10 – Added after muskellunge – Do I Wish! #20 – Lake Trout added. #21 – Rock Bass added. ### **QUESTION 10** How would you describe current quality of fishing? #42 – Very poor for walleye, balance good for other added. #72 – Except walleye which is much worse. ## **QUESTION 13** Rank 3 activities that are important for owning your property. #20 – Living there added. #24 – Scuba added. #41 – Too much algae listed as a problem for swimming. ## **QUESTION 19** What aquatic invasive species do you believe are in Kentuck Lake? #18 - Rock Bass added. #31 – Cyanobacteria added. #49 – Probably others added. #64 – Algae added. 2013 Onterra, LLC ## **QUESTION 20** What level do you believe listed factors negatively impact Kentuck Lake? - #2 Indian Spearing was added and rated as great negative impact. - #6 Lower water level was added and rated as 4, between moderate and great. - #13 Fireworks at late hours added. - #20 Spear fishing by native Americans added. - #21 Campground on lake added. - #30 Spearing added. - #33 Low water level added. - #34 Spearing added. - #41 Check every septic system on Kentuck added. - #50 Fishing tournaments on our lake and duck hunting added. - #52 Too much walleye spearing by the native Americans added. - #58 Over-managed added. - #60 Spear fishing by native Americans added. - #64 Way over-fished added. - #65 Spearing and shocking/netting by Indians. - #78 Low water level added. - #79 Lawn fertilizer, fish kills in spring added. - #88 Excessive fishing pressure by the Indians when they are allowed to spear. #### **QUESTION 21** Rank top 3 concerns regarding Kentuck Lake. - #2 Indian spearing and Fertilizer added. - #6 Low water level added. - #30 Spearing added. Kentuck Lake Appendix B Stakeholder Survey Comments - #33 Low water level added. - #34 Spear fishing added. - #76 Low water level added. - #79 Lawn fertilizer, fish kills in spring added. ## **QUESTION 22** During open water season, how often does aquatic plant growth impact your enjoyment of Kentuck Lake? #60 – Have not felt safe swimming last few years added. ## **QUESTION 23** Do you believe aquatic plant control is needed on Kentuck Lake? #1 – Unsure, with the exception of Eurasian Milfoil. # **QUESTION 24** What is your level of support for responsible use of techniques to control problems on Kentuck Lake? - #8 We have gone from normal plant growth, to no plants (rusty crayfish), to normal plant growth. Plants are cover for fry. Invasive species is not normal plant growth. - #58 Water level already too low due to natural dam being destroyed by forest service. - #88 It seems like the water level is going down each year why is that? # **QUESTION 25** Education is important. Which subjects would you like to learn more about? - #49 It's not that I'm not interested, I am, but people hurt lakes. - #64 Adding more fish cribs. #### **QUESTION 29** Activities you would be willing to participate in if help is needed. #30 – I do not have time to volunteer added as choice. 2013 Onterra, LLC # **Question #30 – General Comments Concerning Kentuck Lake** #1 – Since the day users of the lake are likely responsible for the introduction of invasive species (including Eurasian water milfoil), I believe it is reasonable to have them share in the costs of controlling these species now that they have been introduced into the lake. The boat ramp on the west side of the lake is always busy on weekends and currently does not charge a launch fee. I understand it may be difficult to get approval to add a fee that can be used to offset the cost currently covered by property owners (and DNR), but I believe it's worth the effort. Prior to the road being paved on that side of the lake, I believe there were less day users on the lake and most used the ramp at the public camp ground that does charge a daily user fee. Day users have a right to use the lake, but have no incentive to protect the quality and value of our lake. At a minimum, we should try to find a way that they share in the cost of maintaining its quality. The damage likely caused by these day users has not only lead to increased annual fees for property owners, but is also having a significant impact on our ability to enjoy the substantial investment we have in our property as well as the value of their investment. #3 – Since owning in 1994, we have watched the lake water quality deteriorate greatly over the past 4 – 5 years with algae blooms. I can only speculate that one or more lake property septic systems are to blame, and new owners clear cutting to the water instead of keeping a natural barrier. I also have witnessed the rise, fall and rise again of pan fishing due to walleye stocking. A few years ago bluegill /perch fishing was destroyed by the walleye and excessive over fishing during the ice fishing season. Very happy the pan fishing is on the rise again. Keep walleye stocking out of Kentuck Lake. - #4 Other than management of invasive species, leave the lake alone. Many of the issues are cyclical and will correct themselves. It's a terrific, healthy lake. - #6 Several years ago the DNR removed a dam that had been in place for decades. They stated that it was to restore outlet to a trout stream. That outlet has since I have come here been completely dry in mid June to very early July. I have never seen more than a few inches of water going down that outlet. It is in no way a navigable waterway. I also believe that the lower water level has affected he water quality, weed growth, and algae bloom as well as number of waterfowl. - #7 Kentuck Lake has changed dramatically since we first came to the lake. A spillway at the entrance to Kentuck Creek would help to maintain a specific lake level. A committee should be started to address this possibility with the corp of engineers. - #8 Bought on Kentuck 1974. Lots of healthy perch, bass, and walleye no musky. Many years pass, one summer a plane flew over Kentuck, dropped water into lake (seen by wife and kids). Not long after (years) we have musky and less perch, bass, and walleye. DNR and Indians say they never stocked lake with musky. Indians have stocked males and/or females and left them (walleyes). Somebody removed "small fish" for feeding elsewhere – DNR? If the Indians spear, they should stock walleye fry. I would donate money to stock walleye. I do not believe the musky presence has done anything to enhance my life at Kentuck. Best thing DNR ever did, one of the best actually was dynamite the dam by the stream source at the north end – which had caused shoreline erosion be raising the water level. Thanks for the opportunity. Appendix B #10 – My husband and I have made Kentuck Lake our permanent home since June, 2006. I have owned my property here since 1983 but have spent most summer vacations here since 1973. When I spent my first vacation here at my Uncle's cabin (built in 1971) I fell in love with the peaceful surroundings,
serenity, wildlife, crystal clear water and star-filled skies. We built our retirement home here for those reasons and it is so sad to see that many of the reasons we love it here are all too quickly disappearing. For the past 3 summers our beautiful lake has been a stinky, bubbling mass of green sludge not fit for swimming, fishing or kayaking. Fishing has declined the loons left this year because they can't see below the surface to fish. The increase in jet skis and the noise and carelessness that accompany most of them should be banned or restricted. On most summer nights it is almost impossible to see the stars due to all the bright lights lining the shore. One of my bigger concerns is the drastic changes to our water quality! Are septics outdated/ failing/ leaking? Are people using phosphorous containing products which can leach into the lake? Can we do some shore land restoration to prevent run-off? Thanks! Also, there is a home in the South End who party's almost every summer weekend, much drinking, very loud music and talking, fireworks and when repeatedly asked to stop (after 10PM) only escalates. People need to be considerate of their neighbors and friends as a few are ruining the peace for many. The lack of willingness of many people to volunteer for Clean Boats Clean Waters leaves much of the protection of the lake from invasive species up to few people! - #11 Better of method of warnings on lake conditions than posting at boat launches. - #12 As an infrequent visitor, I am unable to volunteer. - #13 Kentuck Lake as we experienced summer of 2013 is/was a mess when we cannot use the lake due to algae bloom. There is a problem. Will we be able to locate/determine the problem and deal with it? Thanks for your efforts. - #16 My property is a vacation home. Unfortunately my ability to be enjoying this cabin has been curtailed due to gas prices and more commitment with a side business. If not for those two major factors, I would volunteer. I am wondering why we are not using more e-mail transport in newsletters and other mailings to communicate with members. Most lake owners have one published in the directory. - #18 Water level being very low because of outlet and lack of moisture to replenish lake. Walleye numbers are way down and muskie numbers too high. 2013 Onterra, LLC #19 – Probably the most significant health issue for the lake and any users (people or domestic animals) is the highly toxic algae bloom. To find the source of the problem would be highly beneficial and would probably impact answers to prior questions. I feel our board is doing an excellent job. Given the high spearing volume it does not make sense to me to expend funds (ours or others) to restock walleyes. Kentuck was at one time the highest walleye density (per acre) fishery in the state. After years of native American harvesting and extreme angling pressure, Kentuck is in sad shape as a walleye destination. The walleyes are not naturally reproducing. Let nature take its course in terms of the fishery development. #20 – After a little reading about the lake history, it seems that is has always been a rather "dirty" lake; but I believe the present share owners have an individual and collective responsibility to keep it as healthy as possible under the current high pressure it receives by many landowners. I have grass, but DO NOT fertilize it but I must say I leave the clippings in place. I have a steep lakeshore under many hemlocks; the runoff I try to deviate and minimize. We have not paved a square foot of land beyond the buildings. I worry about the potential of back-land development and its future impact on the lake. When we came here many years ago there was not "management" but "management" is necessary where there is a crowd – "fish-on". We thank you for your services. #22 – We need to stock walleye in the lake and limit fishing numbers from the camp ground. I would like to see the lake level increased by several inches. #24 – Many lake members are active and dedicated to monitoring and enhancing the lake. Unfortunately, too many show little or no interest. As an example, irrespective of all the info available regarding EWM, our infestations took root in front of members' properties and piers. Boats passed through well developed infestations of EWM and either did not care or were too intent on other activities to take notice and report. Kentuck is too big for a few to do the heavy lifting. Having frequented Kentuck for many years (60+) the current frequency of algae blooms and weed growth is troublesome and points out a trajectory none of us will be happy with. We cannot depend on continued grant monies from the DNR to fund remedial efforts. I believe the current conditions are controllable, but if allowed to gain a foothold could exceed our financial and technical abilities to deal with them. #25 – I would like to see 2 specific things occur: 1. Inspection of all septic systems to see that there is no seepage from any systems into the lake. 2. Additional effort to set a higher lake level and keep it at that level. Look at the water marks on boulders or stones around the lake – their marks show what the level used to be. The DNR has mismanaged the law as to the lake level. #27 – I am very disturbed about the changes in the water quality of Kentuck Lake. The blue/green algae growth makes it impossible to enjoy the water. The green cast to the water "turns off" my visitors. I am very glad that you are conducting this survey. Hopefully, we will see some positive changes in Kentuck Lake in the future. #31 – I have been a property owner on the lake since 1999. At the time of purchase the water was clear and visibility far better than it is at the present time. While I realize that AIS is a serious problem, it has not prevented us from using the lake and we are dealing with Milfoil at this time. Appendix B A far greater concern for the health of residents and visitors is the problem of Algae blooms and specifically Cyanobacteria. Over the last three years we have had blooms every summer and they have gotten more severe each year and lasted longer each year. This past summer we were only able to swim for about 2 weeks in June due to the algae scum. Visibility in the lake went from 15 ft down to 2 ft and stayed that way for most of the summer. The green color of the water lasted from June through September. Historically, we first noticed this problem shortly after the DNR and Forest Service made the opening from the lake larger than it has ever been, around 2008. The lake level fell dramatically and has never recovered. A professor at UW has stated that when the water level drops, algae can become more concentrated. The blooms have occurred in both a very warm summer and a cooler one. It has lasted through 80 degree water temperature down to 60 degree water temp, so I am not convinced this is a natural occurrence caused by weather, water temperature or turnover. In the spring of 2013 we experienced an unusual pan fish kill, loons left our lake in July and fishing has been poor, probably due to lack of visibility. Our once flourishing weeds are gone and it seems to us that our lake is in serious trouble. I feel a number of steps need to be taken. We need to know if there are too many nutrients in the lake feeding the algae and where they are coming from. We need to test septic systems (especially the older ones) beyond the mandatory testing which does not test for leakage. The absence of plant life indicates an imbalance in the lake. Why is this happening so fast since 2008, and what can we do about it? I would suggest that the lake study be expanded to deal with the algae problem and stakeholders be informed of what can be done to correct the problem. - #32 Algae concerns in summer. Fishing seems to have become softer for musky and walleye. Overabundance of small pan fish. Mandatory septic system inspection required. Support 48" musky length limit. - #33 We understand that the water levels have been very low in the north, but even with the rain we have received our quality of use has not improved. - #36 The algae blooms seem to be more frequent and longer in duration most recently. This is a major health concern for residents and animals. Water level stability is also an important issue. - #37 If we lived on Kentuck Lake full time, we would be greatly involved. But we are there 100 days or so each year. I really love Kentuck Lake, but feel I really can't do much because of my part time residence. 2013 Onterra, LLC - #38 I did the water quality monitoring for 12 years, but I would be willing to help out if needed. - #44 Used to catch crappies of good size. Lake is over fished. People seem to keep every "little fish" SAD! One lady and husband had pails full of small fish in front of me: Ice fishing they were taking home to freeze and use as fertilizer for spring garden. Very sad! Don't know if that is typical, but how do you change that. Wife and I still working full time. Would help when can. - #45 Reporting a septic problem on lake @ residence Robert Sheder, 16860 Shady Lane. Chain O Lakes Septic pumped out in August and condemned metal tank completely full of holes and leaking sewage into lake. Please check out for myself and neighbors are very concerned. Thank you. - #47 Blue-green algae is a major problem. - #48 We would like to see personal watercraft (jet skis) hours limited: 10:00AM to 4:00PM is plenty of time for them to disturb the fishermen and those of us that don't enjoy the sensory assault. This should also include water skiing, tubing, etc. - #49 I live near the lake. I like fishing and the loons. I avoid high summer months because the water skis and the jet skis are OBNOXIOUS! I think they should be limited to a very few lakes. I think there should be a lot of regulation regarding shoreline properties as to vegetation and septic systems and fertilizer. There should be a speed limit. Those fast boats are dangerous to
other boats and wildlife and make waves that damage the shore. It's a lake in a forest. If people want noise and fast boats go somewhere else. There should be significant fines or something for people violating rules. That would help pay for enforcement like speeding tickets, unsafe boating, unsafe shoreline practices, etc. wildlife harassment etc. - #50 My family has had a presence on Kentuck Lake since the 1950's. We love the lake and want it to remain the asset it has become for us. We have grave concerns about fishing tournaments that use our lake and don't contribute to its restocking and protection. We heard from a local guide how a group from Southern Wisconsin took many muskies and how inexperienced fishers left undersize muskies to die while waiting for official measurements. If this is true, the lake association needs to address this with the DNR and Eagle River Chamber of Commerce. Fishermen also need to be more courteous to others enjoying the lakefront. Numerous times a boat has come right up to our dock while we were sitting, and when asked politely to provide distance, the fishermen have been very rude. Hunting along the shore needs to be better regulated. Numerous hunters and fishermen trespass on our property throughout the year. Ice fishermen are particularly pesty and their fresh cud etc. is found on our property. - #52 In the last 25 years fishing quality has greatly decreased and our water level is far too low! - #53 We do enjoy the lake with the grandchildren. #56 – We are concerned about personal health issues because of blue-green algae in the lake. We would like to be informed through e-mail about all concerns regarding lake usage/safety when they occur. Postings at the boat launches do not inform the majority of lake residents throughout the year. We would also like information about what types of vegetation would be best for shore land protection. Could e-mail be used when possible to send information to lake property owners rather than having to mail items? - #57 It will take many to help Kentuck to revive its past glory. Blue-green algae very concerning. Need more information and better communication of danger to children and pets. Please monitor old septic systems. Leaking systems are a danger to all. - #58 This lake has been studied, surveyed and managed by multiple groups at multiple times since 1991 when I purchased land. When will the "study" stop and concerns be arrived at that are actionable and relatable to us all? Maybe the problem is too much studying. As a landowner, I only want to know what is good and what is harmful to the lake so I (we) can do what we need to do to protect our asset, our property on our lake. Nobody on the lake bought property to ruin anything. I don't appreciate being told I may be the source of evil because I and others do not. Get over it! - #59 Walleye population almost non-existant. Boat numbers too high for August musky fishing tournament. Algae bloom is a big concern, preventing lake use this year. I support catch and release only for musky fishing. Stop spear fishing from desimating our fish populations. These are my major concerns. Thank you for all your hard work! - #60 Until a few years ago, Kentuck Lake was a beautiful, pristine lake. Great for swimming, boating, fishing, etc. Our enjoyment of our home on Kentuck Lake has been greatly reduced. We no longer can have family and friends here to swim or boat as it is no longer safe for them to do. I can't imagine what could have happened to create such a change so suddenly to our beautiful lake. I find it very frustrating that no one can pinpoint how this happened and where the source of the blue-green algae is in Kentuck. - #63 It's not enjoyable when there are fishing tournaments and you wake up to 40+ boats pounding the lake on a weekend. Algae blooms seem more prevalent in 2012 and 2013. It's no fun when 3-4 weeks of the short summer the lake turns to pea soup. - #64 Way over fished for muskies. Large algae bloom. Southern half is all weeds. Would be nice to clean it up and/or add more cribs to give fish structure. - #65 Keep DNR management and Indian fisheries away from Kentuck. It was much better they started fooling around. We used to have brook trout and cisco in the lake. Where are they now? - #69 Converting the north woods into residential Appleton, Milwaukee, Chicago, or any other metropolitan area is not desirable. Our first contact with Kentuck Lake was in the summer of 2013 Onterra, LLC 1986. Between 1986 and 1996 we had periodic annual time on Kentuck on fishing trips and vacations. We bought our property in fall of 1996 and moved up full time in February 2000. During this time, there were sporadic algae blooms. Beginning in 2011, the algae bloom has been occurring annually and with increasing duration. Something has happened in the last 3 to 5 years to change this. I know of no major watershed change that would cause this. We believe it is probably the result of new and upgraded cottages and homes using grandfathered septic systems that are not designed for the greater load. Reed bed destruction by new owners to open up their waterfront. This has been substantial on the west and northwest shore. I think that anyone engaging in catch and release fishing should be using barbless hooks. Otherwise, there is too much damage done to the released fish, especially bass. There are a few boats on the lake that are obnoxiously loud. Between these and the personal watercraft (jet skis), the character of the lake is being changed from a peaceful, northwoods retreat to a place where intrusion into the general tranquility of the lake in the pursuit of personal pleasure is acceptable. One of the pleasures of the northwoods is the spectacular night sky uninhibited by artificial lighting. Dock lights, decorative lights and security lights have greatly impacted this. - #71 Kentuck is an awesome lake. It would be nice to find out and fix its' problem. - #72 We have lived on this lake for 7 years. The first 4 years were wonderful with regards to water quality. The next 3 years the water quality has gone down. This year our dogs, grandchildren, guests, and we were NOT able to go swimming or play in the water. I miss having a lake we can use on a daily basis. Please help us figure this out. - #74 Do not publish Lakes (Kentuck) after Musky Tournaments just invites more pressure and boat traffic. Use zones or lake families instead of names. - #74 Find something to do about blue-green algae ASAP. Never ever EVER use chemical herbicides!!!! If you do, you will hear from me and you won't stop hearing from me until you vow to NEVER use chemicals in our beautiful lake! The intention of their use is understandable; along with their effectiveness. But I don't want chemicals in my lake and I am speaking on behalf of my family and friends who enjoy the serenity of this lake. A lake is a living thing not to be poisoned by humans for ANY reason. What is the purpose of the dam? Do we really need to control lake levels because we are greedy fishermen and property owners? Is our greed really worth the disruption of a stream Kentuck Creek is like an artery? The water is like blood. Clog the artery and the system is unhealthy. - #76 I'm concerned that the lake level is low and water still flows out by campgrounds. Used to be that once the lake hits a certain level water wouldn't flow out any more, but that doesn't seem the case any more. - #79 We have owned our property since 2000. The water quality was wonderful for the first several years and the depth was fairly consistent from year to year. Ever since the dam washed away that now allows the lake to empty into the marsh and the water quality and depth have deteriorated. It seems like the shallower water allows the algae to grow quickly and easily. It is surprising that the DNR is content to have everyone deal with the poor water quality when it would be very simple to re-build the dam and see if that improves the quality in a couple years. It could always be removed again if that does not appear to have an impact. Also, we have not been able to put our boat on/off of our lift for about 3 years unless we get in the water and push/pull it on/off because the water is so shallow. This was not a problem in the past. #80 – Diversion of runoff should be investigated at both boat landings. All septic systems at Kentuck Lake should be tested NOW! Water level has been an issue for many years on Kentuck (i.e. outlet dams). This issue should be revisited, an increased height may be beneficial. #84 – Discourage the planting of walleye and musky by DNR. They desimated the native fish population. Prohibit power launching/retrieving of boats at the west shore boat ramp. They have created a crater in the lake bottom that's over my head. The aluminum dock provided there is tipping sideways into it. #88 – We love Kentuck Lake and are very concerned about the water levels over the last few years. What can be done to bring up the levels? 2013 Onterra, LLC # **APPENDIX C** **Water Quality Data** Kentuck Lake Date: 5/16/2013 Time: 13:10 Weather: Clear, 68F, Breezy Entry: EEC 1 Max Depth: 33.0 KLS Depth (ft): 3.0 KLB Depth (ft): 30.0 Secchi Depth (ft): 6.6 | Depth
(ft) | Temp
(°C) | D.O.
(mg/L) | pН | Sp. Cond.
(µS/cm) | |---------------|--------------|----------------|-----|----------------------| | 1 | 10.4 | 11.2 | 7.6 | 68.0 | | 3 | 10.1 | 11.4 | 7.7 | 68.0 | | 6 | 9.7 | 11.4 | 7.7 | 69.0 | | 9 | 9.2 | 11.2 | 7.7 | 69.0 | | 12 | 9.1 | 11.2 | 7.6 | 68.0 | | 15 | 9.1 | 11.1 | 7.6 | 68.0 | | 18 | 9.1 | 11.0 | 7.6 | 68.0 | | 21 | 9.0 | 10.9 | 7.5 | 68.0 | | 24 | 9.0 | 10.9 | 7.5 | 68.0 | | 27 | 8.8 | 10.6 | 7.4 | 69.0 | | 30 | 8.8 | 10.4 | 7.4 | 68.0 | _ | Parameter | KLS | KLB | |---|--------|--------| | Total P
(µg/L) | 28.00 | 26.90 | | Dissolved P (µg/L) | ND | ND | | Chi-a (µg/L) | 8.21 | NA. | | TKN (µg/L) | 667.00 | 534.00 | | NO ₂ + NO ₂ ·N (μg/L) | 30.40 | 41.10 | | NH ₂ ·N (µg/L) | ND | 18.30 | | Total N (µg/L) | 697.40 | 593.40 | | Lab Cond. (µS/cm) | 72.40 | 72.40 | | Lab pH | 7.58 | 7.49 | | Alkalinity (mg/L CaCG) | 34.20 | 33.90 | | Total Susp. Solids (mg/L) | 2.40 | 2.20 | | Calcium (mg/L) | NA | NA. | | Magnesium (mg/L) | NA | NA. | | Hardness (mg/L) | NA | NA. | | Color (SU) | NA | NA | | Turbidity (NTLD) | MA | NA | Data collected by TAH (Orderra) Kentuck Lak Date: 6/17/2013 Time: Weather: Entry: EEH Max Depth: KLS Depth (ft): KLB Depth (ft): Secchi Depth (ft): 8.5 | Depth | Temp | D.O. | | Sp. Cond. | |-------|------|--------|----|-----------| | (ft) | (°C) | (mg/L) | pH | (μS/cm) | Parameter | KLS | KLB | | |--|--------|-----|--| | Total P (µg/L) | NA | NA. | | | Dissolved P (µg/L) | NA | NA | | | Chl-a (µg/L) | 9.65 | NA | | | TKN (µg/L) | 652.00 | NA | | | NO ₂ + NO ₂ N (µg/L) | ND | NA. | | | NH ₂ N (µg/L) | ND | NA. | | | Total N (µg/L) | 652.00 | NA. | | | Lab Cond. (µS/cm) | NA | NA | | | Lab pH | NA | NA | | | Alkalinity (mg/L CaCG _i) | NA | NA. | | | Total Susp. Solids (mg/L) | NA | NA | | | Calcium (mg/L) | 6.65 | NA | | | Magnesium (mg/L) | 3.46 | NA | | | Hardness (mg/L) | NA | NA | | | Color (SU) | NA | NA | | | Turbidity (NTLI) | NΔ | NA | | Sample Collected by Calody Purdy | Kentuc | k Lake | |-----------------|--------------------| | Date: 7/25/2013 | Max Depth: | | Time: | KLS Depth (ft): | | Weather: | KLB Depth (ft): | | Entry: EEH | Secchi Depth (ft): | | Depth | Temp | D.O. | | Sp. Cond | |-------|------|--------|----|----------| | (ft) | (°C) | (mg/L) | pH | (µS/cm) | Parameter | KLS | KLB | |---|---------|-----| | Total P (µg/L) | 73.90 | NA | | Dissolved P (µg/L) | NA | NA | | Chl-a (µg/L) | 56.10 | NA | | TKN (µg/L) | 1420.00 | NA | | NO ₃ + NO ₂ -N (µg·L) | ND | NA | | NH ₂ N (µg/L) | 181.00 | NA | | Total N (µg/L) | 1601.00 | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA | | Alkalinity (mg/L CaCC _i) | NA | NA | | Total Susp. Solids (mg/L) | NA | NA | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA. | NA | | Date: 8/26/2013 | Max Depth: | Time: | KLS Depth (ft): | Kesther: | KLE Depth (ft): | Entry: EEH | Secol Depth (ft): | | Depth | Temp | D.O. | | Sp. Cond | |-------|------|--------|----|----------| | (ft) | (°C) | (mg/L) | pH | (µS/cm) | _ | | | | | | | | | | | | _ | | | | | | _ | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | - | | | | | | 1 | | | | | | 1 | | | | | | 1 | | | | | | 1 | | Parameter | KLS | KLB | |--|---------|-----| | Total P (μg/L) | NA | NA. | | Dissolved P (µg/L) | NA | NA. | | Chl-a (µg/L) | NA | NA | | TKN (µg/L) | 1000.00 | NA | | NO ₂ + NO ₂ N (µg/L) | ND | NA. | | NH ₂ N (µg/L) | 42.90 | NA. | | Total N (µg/L) | 1042.90 | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA | | Alkalinity (mg/L CaCQ) | NA | NA. | | Total Susp. Solids (mg/L) | NA NA | NA | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA | Sample collected by Candy Purdy | Depth | Temp | D.O. | | Sp. Cond | |-------|------|--------|----|----------| | (ft) | (°C) | (mg/L) | pH | (µS/cm) | | 1 | 14.3 | 7.0 | | | | 3 | 14.2 | 6.9 | | | | 6 | 14.1 | 6.9 | | | | 9 | 14.1 | 6.9 | | | | 12 | 14.1 | 6.9 | | | | 15 | 14.0 | 6.9 | | | | 18 | 14.0 | 6.9 | | | | 21 | 14.0 | 6.9 | | | | 24 | 13.9 | 6.9 | | | | 27 | 13.9 | 6.8 | | | | 30 | 13.9 | 6.8 | | | | 33 | 13.9 | 6.8 | | | | 36 | 13.9 | 6.8 | | | | 39 | 13.9 | 6.8 | 1 - | | | | | | | | | | Octob | er 9, 201 | 3 | | | |------------------|----|-------|-----------|----|------|-----| | . 0 | 5 | 10 | 15 | 20 | 25 | 30 | | • | Ī | | Ť | | | | | 5 | Į | | Į | | | | | 10 | İ | | İ | | | | | ⊋15 | + | | + | | | | | 15
H 20
25 | 1 | | 1 | | | | | 즈 ₂₅ | t | | İ | | | | | 30 | Ī | | Ī | | Ter | тр | | 35 | 1 | | 1 | | (°C | , | | 40 | į. | | į. | | tend | pc) | | Parameter | KLS | KLB | |--|--------|-------| | Total P (µg/L) | 36.80 | 34.00 | | Dissolved P (µg/L) | NA | NA. | | Chl-a (µg/L) | 10.40 | NA. | | TKN (µg/L) | 669.00 | NA. | | NO ₂ + NO ₂ N (µg/L) | 104.00 | NA. | | NH ₂ ·N (µg/L) | 21.50 | NA. | | Total N (µg/L) | 700.90 | NA. | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA | | Alkalinity (mg/L CaCG) | NA | NA | | Total Susp. Solids (mg/L) | 2.40 | 2.40 | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA | Oata collected by TVM and TAH (Onterna) Date: 2/20/2014 Time: 9:00 Weather: 20F, 100% clouds, light breeze Entry: EEH Max Depth: 39.6 KLS Depth (ft): 3.0 KLB Depth (ft): 37.0 Secchi Depth (ft): 11.9 | Depth | Temp | D.O. | | Sp. Cond. | |-------|------|--------|----|-----------| | (ft) | (°C) | (mg/L) | pH | (µS/cm) | | 1 | 0.4 | 10.7 | | | | 3 | 0.3 | 10.9 | | | | 6 | 1.2 | 9.3 | | | | 9 | 1.9 | 7.5 | | | | 12 | 2.6 | 4.3 | | | | 15 | 3.6 | 0.6 | | | | 18 | 3.8 | 0.5 | | | | 21 | 3.9 | 0.3 | | | | 24 | 4.0 | 0.1 | | | | 27 | 4.2 | 0.0 | | | | 30 | 4.2 | 0.0 | | | | 33 | 4.3 | 0.0 | | | | 36 | 4.4 | 0.0 | | | | 38 | 4.7 | 0.0 | 1 | | | | | | 1 | | | | | | | | | | | | | | Parameter | KLS | KLB | |---------------------------------------|-------|-------| | Total P (μg/L) | NA | NA. | | Dissolved P (µg/L) | NA | NA. | | Chl-a (µg/L) | NA | NA. | | TKN (µg/L) | NA | NA. | | $NO_3 + NO_2 \cdot N (\mu g \cdot L)$ | NA | NA. | | NH ₂ N (µg/L) | NA | NA NA | | Total N (µg/L) | NA | NA. | | Lab Cond. (µS/cm) | NA | NA NA | | Lab pH | NA | NA. | | Alkalinity (mg/L CaCQ) | NA | NA NA | | Total Susp. Solids (mg/L) | NA NA | NA. | | Calcium (mg/L) | NA | NA. | | Magnesium (mg/L) | NA | NA. | | Hardness (mg/L) | NA | NA. | | Color (SU) | NA | NA. | | Turbidity (NTU) | NA | NA. | ata collected by DAC and TWH (Onterra). Ice thickness: 1.9 feet | Water Quality Data | | | | | | | | |---------------------------|-------|-------|-------|-------|--|--|--| | 2013 | Sur | face | Bot | tom | | | | | Parameter | Count | Mean | Count | Mean | | | | | Secchi Depth (feet) | 4 | 9.2 | NA | NA | | | | | Total P (µg/L) | 3 | 46.2 | 2 | 30.5 | | | | | Dissolved P (µg/L) | 1 | ND | 1 | ND | | | | | Chl a (µg/L) | 4 | 21.1 | 0 | NA | | | | | TKN (µg/L | 5 | 881.6 | 1 | 534.0 | | | | | NO3+NO2-N (µg/L) | 5 | 67.2 | 1 | 41.1 | | | | | NH3-N (µg/L) | 5 | 81.8 | 1 | 18.3 | | | | | Total N (µg/L) | 5 | 938.8 | 1 | 593.4 | | | | | Lab Cond. (µS/cm) | 1 | 72.4 | 1 | 72.4 | | | | | Lab pH | 1 | 7.6 | 1 | 7.5 | | | | | Alkal (mg/l CaCO3) | 1 | 34.2 | 1 | 33.9 | | | | | Total Susp. Solids (mg/l) | 2 | 2.4 | 2 | 2.3 | | | | | Calcium (µg/L) | 1 | 6.7 | 0 | NA | | | | | Magnesium (mg/L) | 1 | 3.5 | 0 | NA | | | | | Hardness (mg/L) | 0 | NA | 0 | NA | | | | | Color (SU) | 0 | NA | 0 | NA | | | | | Turbidity (NTU) | 0 | NA | 0 | NA | | | | | Parameter | Value | |-------------------------------|----------------------| | Acreage | | | Volume (acre-feet) | | | Perimeter (miles) | | | Shoreland Developmetnt Factor | | | Maximum Depth (feet) | | | County | | | WBIC | | | Lillie Mason Region (1983) | NLF Ecoregion Median | | Nichols Ecoregion (1999) | NLFL | | WiLMS Class | Acreage | kg/yr | lbs/y | |---------------------------|---------|-------|-------| | Forest | | | 0.0 | | Open Water | | | 0.0 | | Pasture/Grass | | | 0.0 | | Row Crops | | | 0.0 | | Urban - Rural Residential | | | 0.0 | | Wetland | | | 0.0 | | Year | TP | Chl-a | Secchi | |------------------------|------|-------|--------| | 1986 | | | 61.0 | | 1987 | | | 52.8 | | 1988 | 67.0 | 74.3 | 50.1 | | 1989 | 54.9 | 60.9 | 46.2 | | 1990 | 53.7 | 55.0 | 45.0 | | 1991 | 60.8 | 70.5 | 51.8 | | 1992 | 54.9 | 62.4 | 50.5 | | 1993 | 54.3 | 59.3 | 44.9 | | 1994 | 52.2 | 57.2 | 43.6 | | 1995 | 54.6 | 57.6 | 43.2 | | 1996 | 48.5 | 50.6 | 41.3 | | 1997 | 55.3 | 58.6 | 48.6 | | 1998 | 51.9 | 56.5 | 47.2 | | 1999 | 58.2 | 56.8 | 57.8 | | 2000 | 51.3 | 50.8 | 45.7 | | 2001 | 46.9 | 49.2 | 46.6 | | 2002 | 46.4 | 50.4 | 41.5 | | 2003 | 51.7 | 52.5 | 43.2 | | 2004 | 51.8 | 53.5 | 46.0 | | 2005 | 46.1 | 52.4 | 43.9 | | 2006 | 49.4 | 50.2 | 46.3 | | 2007 | 50.0 | 53.7 | 46.7 | | 2008 | 50.6 | 49.9 | 46.7 | | 2009 | 47.8 | 50.5 | 44.9 | | 2010 | 47.5 | 53.2 | 45.2 | | 2011 | 64.1 | 73.9 | 60.2 | | 2012 | 54.6 | 59.4 | 53.0 | | 2013 | 61.5 | 70.3 | 58.2 | | 2014 | 53.8 | 58.0 | 47.5 | | All Years (Weighted) | 53.6 | 59.3 | 48.1 | | Deep, Lowland Drainage | 49.4 | 49.7 | 46.2 | | Lakes Median | | | | | NLF Ecoregion Median | 48.1 | 47.5 | 45.7 | | | | Secch | i (feet) | | | Chlorophy | /II-a (µg/L) | | | Total Phosp | horus (µg/L) | | |---------------------|---------
--------|----------|------|---------|-----------|--------------|------|---------|-------------|--------------|------| | | Growing | Season | Sun | mer | Growing | Season | Sum | mer | Growing | Season | Sun | mer | | Year | Count | Mean | Count | Mean | Count | Mean | Count | Mean | Count | Mean | Count | Mean | | 1986 | 16 | 3.5 | 11 | 3.1 | | | | | | | | | | 1987 | 17 | 6.0 | 10 | 5.4 | | | | | | | | | | 1988 | 15 | 7.5 | 9 | 6.5 | 2 | 86.0 | 2 | 86.0 | 2 | 78.0 | 2.0 | 78. | | 1989 | 14 | 8.7 | 9 | 8.5 | 5 | 18.0 | 3 | 22.0 | 4 | 31.0 | 3.0 | 33. | | 1990 | 14 | 9.5 | 9 | 9.3 | 4 | 10.3 | 3 | 12.0 | 4 | 34.0 | 3.0 | 31. | | 1991 | 14 | 7.2 | 10 | 5.8 | 3 | 58.3 | 3 | 58.3 | 3 | 51.0 | 3.0 | 51. | | 1992 | 16 | 8.5 | 9 | 6.3 | 3 | 25.5 | 3 | 25.5 | 3 | 33.7 | 3.0 | 33. | | 1993 | 8 | 9.7 | 6 | 9.4 | 7 | 16.4 | 5 | 18.7 | 7 | 30.7 | 5.0 | 32 | | 1994 | 11 | 11.3 | 7 | 10.3 | 8 | 15.0 | 7 | 15.0 | 8 | 29.3 | 7.0 | 28 | | 1995 | 14 | 9.7 | 7 | 10.5 | 5 | 16.8 | 2 | 15.7 | 5 | 31.8 | 2.0 | 33 | | 1996 | 3 | 12.0 | 3 | 12.0 | 8 | 9.4 | 6 | 7.7 | 8 | 24.1 | 6.0 | 21 | | 1997 | 5 | 8.0 | 3 | 7.3 | 8 | 15.5 | 6 | 17.3 | 9 | 32.3 | 6.0 | 34 | | 1998 | 2 | 7.0 | 1 | 8.0 | 12 | 11.9 | 8 | 14.0 | 8 | 24.5 | 6.0 | 27 | | 1999 | 4 | 4.4 | 3 | 3.8 | 2 | 14.5 | 2 | 14.5 | 2 | 42.5 | 2.0 | 42 | | 2000 | 7 | 8.5 | 3 | 8.8 | 12 | 7.8 | 10 | 7.8 | 5 | 24.8 | 3.0 | 26 | | 2001 | 7 | 7.9 | 5 | 8.3 | 4 | 7.3 | 3 | 6.7 | 4 | 19.3 | 3.0 | 19 | | 2002 | 5 | 11.8 | 3 | 11.8 | 3 | 7.4 | 2 | 7.5 | 5 | 19.8 | 3.0 | 18 | | 2003 | 6 | 14.1 | 2 | 10.5 | 4 | 11.0 | 3 | 9.3 | 6 | 23.3 | 3.0 | 27 | | 2004 | 8 | 8.4 | 6 | 8.7 | 6 | 9.4 | 5 | 10.4 | 8 | 25.5 | 6.0 | 27 | | 2005 | 6 | 10.4 | 3 | 10.0 | 4 | 11.1 | 3 | 9.2 | 6 | 18.3 | 3.0 | 18 | | 2006 | 6 | 8.1 | 4 | 8.5 | 4 | 8.5 | 3 | 7.3 | 4 | 25.8 | 3.0 | 23 | | 2007 | 6 | 7.8 | 2 | 8.3 | 2 | 10.6 | 2 | 10.6 | 3 | 21.3 | 2.0 | 24 | | 2008 | 7 | 7.4 | 5 | 8.3 | 4 | 11.1 | 3 | 7.2 | 5 | 25.0 | 3.0 | 25 | | 2009 | 10 | 10.1 | 6 | 9.4 | 5 | 7.8 | 4 | 7.6 | 8 | 22.5 | 5.0 | 20 | | 2010 | 10 | 9.1 | 6 | 9.2 | 6 | 12.4 | 4 | 10.0 | 8 | 26.1 | 5.0 | 20 | | 2011 | 10 | 4.6 | 7 | 3.2 | 6 | 71.6 | 5 | 82.9 | 7 | 63.9 | 5.0 | 64 | | 2012 | 9 | 6.1 | 6 | 5.3 | 6 | 18.4 | 5 | 18.8 | 7 | 31.9 | 5.0 | 33 | | 2013 | 11 | 5.3 | 5 | 3.7 | 8 | 43.0 | 5 | 57.3 | 9 | 46.0 | 5.0 | 53 | | 2014 | 8 | 7.3 | 4 | 7.8 | 5 | 18.8 | 4 | 16.3 | 7 | 29.5 | 4.0 | 31 | | Il Years (Weighted) | | 8.1 | | 7.5 | | 17.2 | | 18.7 | | 29.8 | | 30 | | Drainage Lakes | | | | 8.5 | | | | 7.0 | | | | 23 | | Median | | | | | | | | | | | | | | F Ecoregion Median | | | | 8.9 | | | | 5.6 | | | | 21 | | TP | | |----------------------|------| | Weighted (1999-2009) | 23.4 | | Weighted (2010-2013) | 39.5 | | | | | Chl-a | | | Weighted (1999-2009) | 9.1 | | Weighted (2010-2013) | 33.9 | July 2013 N: 1601.0 July 2013 P: 73.9 Summer 2012 N:P 22 :1 11.240641 Onters, LLC # **APPENDIX D** Watershed Analysis WiLMS Results Kentuck Lake Appendix D ### Date: 10/15/2015 Scenario: Kentuck Lake Watershed Current Lake Id: Kentuck_WS_Current Watershed Id: 0 ## Hydrologic and Morphometric Data Tributary Drainage Area: 1756.0 acre Total Unit Runoff: 14 in. Annual Runoff Volume: 2048.7 acre-ft Lake Surface Area <As>: 1008 acre Lake Volume <V>: 13359 acre-ft Lake Mean Depth <z>: 13.3 ft Precipitation - Evaporation: 5.5 in. Hydraulic Loading: 2510.7 acre-ft/year Areal Water Load <qs>: 2.5 ft/year Lake Flushing Rate : 0.19 1/year Water Residence Time: 5.32 year Observed spring overturn total phosphorus (SPO): 21.0 mg/m³ Observed growing season mean phosphorus (GSM): 31.9 mg/m³ % NPS Change: 0% % PS Change: 0% #### NON-POINT SOURCE DATA | Land Use | Acre | Low Mos | t Likely | High Loadin | g % Low | Most Likely | High | | |-------------------|--------|---------|------------|-------------|---------|-------------|--------------|-----| | | (ac) | Loa | ading (kg/ | ha-year) | | Loa | ding (kg/yea | ar) | | Row Crop AG | 0.0 | 0.50 | 1.00 | 3.00 | 0.0 | 0 | 0 | 0 | | Mixed AG | 0.0 | 0.30 | 0.80 | 1.40 | 0.0 | 0 | 0 | 0 | | Pasture/Grass | 10 | 0.10 | 0.30 | 0.50 | 0.6 | 0 | 1 | 2 | | HD Urban (1/8 Ac) | 0.0 | 1.00 | 1.50 | 2.00 | 0.0 | 0 | 0 | 0 | | MD Urban (1/4 Ac) | 0.0 | 0.30 | 0.50 | 0.80 | 0.0 | 0 | 0 | 0 | | Rural Res (>1 Ac) | 0.0 | 0.05 | 0.10 | 0.25 | 0.0 | 0 | 0 | 0 | | Wetlands | 139 | 0.10 | 0.10 | 0.10 | 2.9 | 6 | 6 | 6 | | Forest | 1607 | 0.05 | 0.09 | 0.18 | 30.2 | 33 | 59 | 117 | | Lake Surface | 1008.0 | 0.10 | 0.30 | 1.00 | 63.1 | 41 | 122 | 408 | 2014 Onterra, LLC Kentuck Lake Appendix D #### POINT SOURCE DATA | Point Sources | Water Load | Low | Most Likely | | Loading % | |---------------|------------|-----------|-------------|-----------|-----------| | | (m^3/year) | (kg/year) | (kg/year) | (kg/year) | _ | ### SEPTIC TANK DATA | Description | | Low | Most Likely | High | Loading % | |-------------------------------------|-----|------|-------------|-------|-----------| | Septic Tank Output (kg/capita-year) | | 0.3 | 0.5 | 0.8 | _ | | # capita-years | 125 | | | | | | % Phosphorus Retained by Soil | | 98 | 90 | 80 | | | Septic Tank Loading (kg/year) | | 0.75 | 6.25 | 20.00 | 3.2 | #### TOTALS DATA | Description | Low | Most Likely | High | Loading % | |-----------------------------|-------|-------------|--------|-----------| | Total Loading (lb) | 176.6 | 427.7 | 1218.4 | 100.0 | | Total Loading (kg) | 80.1 | 194.0 | 552.6 | 100.0 | | Areal Loading (lb/ac-year) | 0.18 | 0.42 | 1.21 | 0.0 | | Areal Loading (mg/m^2-year) | 19.63 | 47.56 | 135.48 | 0.0 | | Total PS Loading (lb) | 0.0 | 0.0 | 0.0 | 0.0 | | Total PS Loading (kg) | 0.0 | 0.0 | 0.0 | 0.0 | | Total NPS Loading (lb) | 85.0 | 144.1 | 274.9 | 96.8 | | Total NPS Loading (kg) | 38.5 | 65.4 | 124.7 | 96.8 | # Phosphorus Prediction and Uncertainty Analysis Module Date: 10/15/2015 Scenario: Kentuck Lake Watershed Current Observed spring overturn total phosphorus (SPO): 21.0 mg/m^3 Observed growing season mean phosphorus (GSM): 31.9 mg/m^3 Back calculation for SPO total phosphorus: 0.0 mg/m^3 Back calculation GSM phosphorus: 0.0 mg/m^3 % Confidence Range: 70% Nurenberg Model Input - Est. Gross Int. Loading: 0 kg Onterra, LLC Kentuck Lake Appendix D | Lake Phosphorus Model | Total P | Most Likely Total P | High
Total P | Predicted -Observed | % Dif. | |---|---------|---------------------|-----------------|---------------------|--------| | | | (mg/m^3) | (mg/m^3) | (mg/m^3) | | | Walker, 1987 Reservoir | 11 | 27 | 77 | -5 | -16 | | Canfield-Bachmann, 1981 Natural Lake | 9 | 17 | 34 | -15 | -47 | | Canfield-Bachmann, 1981 Artificial Lake | 10 | 17 | 31 | -15 | -47 | | Rechow, 1979 General | 2 | 4 | 11 | -28 | -88 | | Rechow, 1977 Anoxic | 13 | 31 | 88 | -1 | -3 | | Rechow, 1977 water load<50m/year | 3 | 8 | 23 | -24 | -75 | | Rechow, 1977 water load>50m/year | N/A | N/A | N/A | N/A | N/A | | Walker, 1977 General | 9 | 23 | 65 | 2 | 10 | | Vollenweider, 1982 Combined OECD | 8 | 17 | 41 | -9 | -34 | | Dillon-Rigler-Kirchner | 6 | 15 | 42 | -6 | -29 | | Vollenweider, 1982 Shallow Lake/Res. | 6 | 14 | 34 | -12 | -45 | | Larsen-Mercier, 1976 | 8 | 19 | 54 | -2 | -10 | | Nurnberg, 1984 Oxic | 5 | 13 | 36 | -19 | -60 | | Lake Phosphorus Model | Confidence | Confidence | Parameter | Back | Model | |---|------------|------------|-----------|-------------|-------| | | Lower | Upper | Fit? | Calculation | Type | | | Bound | Bound | | (kg/year) | | | Walker, 1987 Reservoir | 15 | 59 | Tw | 0 | GSM | | Canfield-Bachmann, 1981 Natural Lake | 5 | 49 | FIT | 1 | GSM | | Canfield-Bachmann, 1981 Artificial Lake | e 5 | 49 | FIT | 1 | GSM | | Rechow, 1979 General | 2 | 9 | L | 0 | GSM | | Rechow, 1977 Anoxic | 17 | 67 | FIT | 0 | GSM | | Rechow, 1977 water load<50m/year | 4 | 18 | FIT | 0 | GSM | | Rechow, 1977 water load>50m/year | N/A | N/A | N/A | N/A | N/A | | Walker, 1977 General | 11 | 52 | FIT | 0 | SPO | | Vollenweider, 1982 Combined OECD | 8 | 36 | FIT | 0 | ANN | | Dillon-Rigler-Kirchner | 8 | 32 | L qs p | 0 | SPO | | Vollenweider, 1982 Shallow Lake/Res. | 6 | 29 | FIT | 0 | ANN | | Larsen-Mercier, 1976 | 11 | 41 | P Pin | 0 | SPO | | Nurnberg, 1984 Oxic | 6 | 29 | FIT | 0 | ANN | Onterra, LLC # **APPENDIX E** **Aquatic Plant Survey Data** | | al Degrees) | mal Degrees) | | | | | | | 92 | atum | ersum | | | sn | um | ē | | | ensis | snguc | riformis | neus | folius | | tus | | | | dsonii | te) | | | | lum
mn | gens | terminalis | ernaemontani | | |-------------|----------------------------|-----------------------------|----------|--------------|--------------|----------|-------|----------|---------------------|-----------------------|------------------------|-------------------|----------------|----------------------|------------------------|-----------------------|------------|------------------|-------------------------|------------------------|---------------------------|-----------------------|-------------------------|--------------------|-----------------------|----------------------|-----------------------|--------------|--------------------------|--------------------------|--------------|-------------------|-------------------|-----------------------|------------------------|------------------------------|--------------------------------|----------------| | PointNumber | LATITUDE (Decimal Degrees) | LONGITUDE (Decimal Degrees) | рертн | SEDIMENT | POLE_ROPE | COMMENTS | NOTES | NUSIANCE | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Najas flexilis | Potamogeton pusillus | Myriophyllum sibiricum | Vallisneria americana | Chara spp. | Elodea nuttallii | Potamogeton illinoensis | Potamogeton praelongus | Potamogeton zosteriformis | Potamogeton gramineus | Potamogeton amplifolius | Heteranthera dubia | Schoenoplectus acutus | Eleocharis palustris | Eleocharis acicularis | Nitella spp. | Potamogeton richardsonii | Sagittaria sp. (rosette) | Isoetes spp.
Juncus pelocarpus	Lemna turionifera	Myriophyllum tenellum	Schoenoplectus pungens	Schoenoplectus subterminalis	Schoenoplectus tabernaemontani	Sparganium sp.		1	45.97841	-89.0164503	2.5	Sand	Pole	Ŏ.	ž	ž	ĭ	ě.	Če	ă	ž	Pc	Σ	>	t	ă	Po	ď	ĕ	δ.	ĕ	ž	S	E	ă	ž	Pc	Sa	35	2	Le	Σ	S	S	S	용		2	45.977636	-89.016464	3.5	Rock	Pole				1		1																													3	45.976862	-89.0164777	3.5	Rock	Pole				1		1		1																1						_	_	_	\dashv		5	45.976088 45.979174	-89.0164914 -89.0153265	6	Sand	Pole				2		2	1	1	1	1	1												1	1											6	45.978401	-89.0153403	8	Rock	Pole				1			1		1	1																									7	45.977627	-89.015354	10	Muck	Pole				2		2	1											1													_		_		- 8 9	45.976853 45.976079	-89.0153677 -89.0153814	8 5.5	Rock	Pole				3		1	1	1	1	2																				+		_	-		10	45.975305	-89.0153951	4	Rock	Pole				1				1																						\Box					11	45.980713	-89.014189	5	Rock	Pole				1		1	1	1																						_	-	_	_		12	45.979939 45.979165	-89.0142027 -89.0142165		Muck	Pole				3		3	1								1																	_	-		14	45.978391	-89.0142302		Muck	Pole				2		2	1			1																									15	45.977617	-89.0142439	12	Muck	Pole				2		2			1	1																				_	_	_	_		16 17	45.976843 45.976069	-89.0142577 -89.0142714	12	Muck	Pole				3		3				1					1															-	-				18	45.975295	-89.0142851	8	Rock	Pole				3		3	1		1	1								1																	19	45.974521	-89.0142989	4	Sand	Pole				1							1																			_	_	_	_		20 21	45.983799 45.983025	-89.0130239 -89.0130376	1.5	Rock	Pole Pole				1																	V								1	-	+	+	-		22	45.982251	-89.0130514	6	Sand	Pole				2		2	1	1				1				1																			23	45.981477	-89.0130651	12.5	Sand	Pole				2		2				1																				_	_	_	_		24	45.980703	-89.0130789	14.5	Sand	Pole				2		2																								-	-	\dashv	_		25 26	45.979929 45.979155	-89.0130927 -89.0131064		Muck Muck	Pole				2		2								1																		-			27	45.978381	-89.0131202	17	Muck	Pole																																			28	45.977607	-89.0131339	15.5	Muck	Pole				1		1																								-	-	\dashv	_		29 30	45.976834 45.97606	-89.0131477 -89.0131614		Muck	Pole				2		2								1																					31	45.975286	-89.0131751	12.5	Muck	Pole																																			32	45.974512	-89.0131889		Muck	Pole				2		2				1					1	1														_	-	\dashv	-		33	45.973738 45.984563	-89.0132026 -89.0119	6	Rock	Pole				1		1	1_														1									+		-	_		35	45.983789	-89.0119137		Sand	Pole																														\Box					36	45.983015	-89.0119275	6	Rock	Pole				1				1																						_	-	_	_		37	45.982241 45.981467	-89.0119413 -89.011955	12	Rock	Pole				_11		1	1	1																								_			39		-89.0119688		Muck	Pole				2		2																													40		-89.0119826		Muck	Pole																														_	_	_	_		41		-89.0119963 -89.0120101		Muck Muck	Pole				2		2																								-	+	\exists	=		43		-89.0120239		Muck	Pole				3		3																													44		-89.0120376		Muck	Pole				2		2						-														H				+	\dashv	\dashv	_		45 46		-89.0120514 -89.0120652		Muck Muck	Pole Pole				2		2					1																			\dashv	\dashv	+	=		47		-89.0120652 -89.0120789		Muck	Pole				2		2																										I			48		-89.0120927		Muck	Pole				2		2																								_	_	_	_		49		-89.0121064 -89.010776		Sand	Pole				3		3	2		1	1					1															-	+	+	-		50 51		-89.010776 -89.0107898		Rock	Pole				1		1		1	1																										52	45.98378	-89.0108036	9	Rock	Pole				1		1	1	1		1	-																			\dashv	\dashv	4	_		53		-89.0108174		Sand	Pole				3		3					+	\dashv												-		-				\dashv	\dashv	\dashv	\dashv		54 55		-89.0108311 -89.0108449		Muck	Pole Pole				2		2																				L	L			_		_			56		-89.0108587		Muck	Pole				2		2					I	1																		4	\dashv	4	_		57		-89.0108725		Muck	Pole				1		1					+	-														-				\dashv	\dashv	\dashv	\dashv		58 59		-89.0108863 -89.0109001		Muck Muck	Rope				2		2																					L								60		-89.0109138		Muck	Rope												1																		1	4	\exists			61	45.976814	-89.0109276	17.5	Muck	Pole								<u> </u>		Ш													<u> </u>				<u> </u>			_						egrees)	Degrees)									Ε									s	sie .							·=							inalis	emontani			-------------	----------------------------	-----------------------------	-------	--------------	-----------	----------	-------	----------	---------------------	-----------------------	------------------------	-------------------	----------------	----------------------	------------------------	-------------------------	------------	------------------	-------------------------	------------------------	---------------------------	-------------------------	--------------------	------------------------	----------------------	-----------------------	--------------	--------------------------	--------------------------	--------------	-------------------	-------------------	-----------------------	------------------------	------------------------------	--------------------------------	----------------		umber	LATITUDE (Decimal Degrees)	LONGITUDE (Decimal Degrees)		FNE	ROPE	SL		CE	Total Rake Fullness	Myriophyllum spicatum	Ceratophyllum demersum	Elodea canadensis	xilis	Potamogeton pusillus	Myriophyllum sibiricum	Vallis neria a mericana	.dc	Elodea nuttallii	Potamogeton illinoensis	Potamogeton praelongus	Potamogeton zosteriformis	Potamogeton amplifolius	Heteranthera dubia	Schoenople ctus acutus	Eleocharis palustris	Eleocharis acicularis	pp.	Potamogeton richardsonii	Sagittaria sp. (rosette)	.dds	Juncus pelocarpus	Lemna turionifera	Myriophyllum tenellum	Schoenoplectus pungens	Schoenoplectus subterminalis	Schoenoplectus tabernaemontani	ium sp.		PointNumber	ГАТП	ONGIL	DEPTH	SEDIMENT	POLE_ROPE	COMMENTS	NOTES	NUSIANCE	Fotal R	Myriopt	Ceratop	Elodea	Najas flexilis	Potamo	Myrioph	/allisne	Chara spp.	Elodear	Potamo	Potamo	Potamo	ortamo	Heteran	Schoenc	Eleocha	Eleocha	Nitella spp.	Potamo	Sagittar	Isoetes spp.	nucns	-emna t	Myrioph	schoenc	Schoenc	Schoenc	Sparganium sp.		62	45.97604	-89.0109414	17.5		Pole				1		1				_														,		_						-		63	45.975267	-89.0109552	16.5	Muck	Pole				2		2																												64	45.974493		17.5	Muck	Pole				2		2																									_	_		65	45.973719	-89.0109827	14	Muck	Pole				2		2																			+						+	\dashv		66	45.972945 45.986866	-89.0109965 -89.0096382	10.5	Sand	Pole				1		2	1								2																7	_		68	45.986092	-89.009652	12	Sand	Pole				1		1	1																								T			69	45.985318	-89.0096658	15	Muck	Pole																																		70	45.984544	-89.0096796	16	Muck	Pole				1		1																									4	_		71	45.98377	-89.0096934	17.5	Muck	Pole				1		11																									_	_		72	45.982996	-89.0097072		Muck	Pole				1		1											
			+											-						-	_		73	45.982222 45.981448	-89.009721 -89.0097348	17.5	Muck	Pole				1		1																									7			75	45.980674		16	Muck					1		1																												76	45.9799	-89.0097624	16.5		Rope				1		1					J	Ţ	I	Ţ		\Box	L							Ţ	J	I				Ţ	$oldsymbol{\bot}$	_]		77	45.979127	-89.0097762	16	Muck					2		2					-	4		4	\downarrow	+	+	-	-					_	4					4	\dashv	4		78	45.978353	-89.00979	17	Muck			-		2		2		-			\dashv	\dashv		\dashv	+	-	+		-					-	\dashv					\dashv	\dashv	\dashv		79	45.977579	-89.0098038		Muck	Rope				1		1																									+	_		80	45.976805 45.976031	-89.0098176 -89.0098314	16.5		Rope				3		3																									_	_		82	45.975257	-89.0098452	15.5	Muck	Rope				2		2																												83	45.974483	-89.009859	15	Muck	Rope				2		2																												84	45.973709	-89.0098728	16.5	Muck	Pole				2		2																									_	_		85	45.972935	-89.0098866	14	Muck	Pole				1		1			1																						+	_		86	45.972161		6	Rock	Pole				1		1	. 1			1															+						+	-		87 88	45.971387 45.988404	-89.0099142 -89.0085004	2.5	Rock	Pole				11			. 1																								7			89	45.98763	-89.0085142	10.5		Pole				1		1	1			1																								90	45.986856	-89.008528	15	Muck	Pole				2		2																												91	45.986082	-89.0085418	15	Muck	Pole				3		3								4																	_	_		92	45.985308	-89.0085556	16	Muck	Pole				1_		1			1					-																	+	_		93	45.984534	-89.0085694	17	Muck	Pole				2		2								+											-						-	_		94 95	45.98376 45.982986	-89.0085833 -89.0085971	15.5	Muck	Rope				2		2																									7			96	45.982213	-89.0086109	17	Muck	Rope				1		1																												97	45.981439	-89.0086247	17	Muck	Rope				2																											_			98	45.980665	-89.0086385	17	Muck	Rope				2		2																									4	_		99		-89.0086523		Muck					1		1																			_						\dashv	_		100	45.979117 45.978343	-89.0086661 -89.00868	17.5	Muck					1		1								1																	+	-		102		-89.0086938			Rope				2		2																									7			103		-89.0087076		Muck																																			104	45.976021	-89.0087214	15.5	Muck	Rope				1		1					_	_		4	_	4	-		-						_					_	4	_		105		-89.0087352					-						-			_	-		-	-	-	-	-	-	-					-					-	\dashv	_		106		-89.008749			Pole				2		2					-	\dashv		\dashv	+	+	+	+	-	-					\dashv					\dashv	\dashv	\dashv		107		-89.0087628 -89.0087766		Muck	Pole				1_		11					\dashv	\dashv	1	\dashv	+	\dagger	+	-						\dashv	\dashv	1	1			\dashv	\dashv	\dashv		108		-89.0087766			Pole				2		2	1		1			\dashv	1	1	\top	T	t	t	T						\dashv	1	1			\dashv	\exists	ㅓ		110		-89.0088042		Sand	Pole				1		1	1			v		1				1	2																	111	45.970604	-89.008818	3.5	Sand	Pole				1				1				4		1	4	\perp			-						_					4	\dashv	_		112		-89.0073763		Rock	Pole		-		1		1		-			_	-		-	-	-	-	-	-	-					-					-	\dashv	_		113		-89.0073901		Sand	Pole				1		1			1	1	-	\dashv		\dashv	+	+	+	+	-	-					\dashv					\dashv	\dashv	\dashv		114		-89.0074039 -89.0074178		Muck Muck	Pole				2		2					\dashv	+		\dashv	+	\top	\dagger	+							+					+	\dashv	\dashv		115		-89.0074178 -89.0074316		Muck																_†																	╛		117		-89.0074454		Muck		-			2		2										I	I														I			118	45.984525	-89.0074593	15	Muck	Rope				2		2						4		1	4	\perp			-						_					4	\dashv	_		119		-89.0074731		Muck			-						-			_	-		-	-	-	-	-	-	-					-					-	\dashv	_		120		-89.0074869			Rope				1		1					\dashv	\dashv	-	\dashv	+	+	+	-					\dashv	\dashv	\dashv	-				\dashv	\dashv	\dashv		121		-89.0075008	16	Muck	Rope											\dashv	\dashv	1	\dashv	+	\dagger	+	-						\dashv	\dashv	1	1			\dashv	\dashv	\dashv		122	45.961429	-89.0075146	1/	Muck	KUPE		-			ı —			-											1	1	· —														(sea	rees)																																	s	ontani		-------------	----------------------------	-----------------------------	----------	--------------	--------------	----------	-------	----------	---------------------	-----------------------	------------------------	-------------------	----------------	----------------------	------------------------	-----------------------	------------	--------------------------	-------------------------	---	-----------------------	---	--------------------	-----------------------	----------------------	-----------------------	--------------	--------------------------	--------------------------	-------------------	-------------------	-------------------	-----------------------	------------------------	------------------------------	--			LATITUDE (Decimal Degrees)	LONGITUDE (Decimal Degrees)							ess	icatum	mersum			illus	iricum	ana		siones	oens s	Potamogeton praelongus Potamogeton zosteriformis	and and	mineus	eia	cutus	ş	ž.		ardsonii	ette)				mllen	nugens	Schoenoplectus subterminalis	Schoenoplectus tabernaemontani Sparganium sp.		PointNumber	JDE (Deci	rude (De		ENT	ROPE	ENTS		NCE	Total Rake Fuliness	Myriophyllum spicatum	Ceratophyllum demersum	Elodea canadensis	exilis	Potamogeton pusillus	Myriophyllum sibiricum	Vallisneria americana	Chara spp.	marraille apton illin	Potamogeton illinoensis	Potamogeton praelongus Potamogeton zosteriform	Dotamonton graminosis	Potamogeton gramineus Potamogeton amplifolius	Heteranthera dubia	Schoenoplectus acutus	Eleocharis palustris	Eleocharis acicularis	ib.	Potamogeton richardsonii	Sagittaria sp. (rosette)	sbb.	Juncus pelocarpus	Lemna turionifera	Myriophyllum tenellum	Schoenoplectus pungens	oplectus s	Schoenoplectus t		Point	LATIT	LONG	DEРТН	SEDIMENT	POLE_ROPE	COMMENTS	NOTES	NUSIANCE	TotalR	Myriop	Ceratop	Elodea	Najas flexilis	Potamo	Myriop	Vallisne	Chara spp.	Potamo	Potamo	Potamo	a de	Potamo	Heterar	Schoen	Eleocha	Eleocha	Nitella spp.	Potamo	Sagittar	Isoetes spp.	Juncus	Lemna	Myriop	Schoen	Schoen	Schoen		123 124	45.980655 45.979881	-89.0075284 -89.0075423	17 17	Muck Muck	Rope				1		1																									+		125	45.979107	-89.0075561	17	Muck	Rope																															1		126	45.978333	-89.0075699		Muck	Rope				1		1																						\dashv			+		127	45.977559 45.976785	-89.0075837 -89.0075976		Muck Muck	Rope				1		1																											129	45.976012	-89.0076114	16.5	Muck	Rope				2		2																									+		130	45.975238 45.974464	-89.0076252 -89.007639	16 15	Muck Muck	Rope														+														+			+		132	45.97369	-89.0076529	15	Muck	Rope																																	133	45.972916	-89.0076667		Muck	Pole				1		1										-															+		134	45.972142 45.971368	-89.0076805 -89.0076943	14	Sand	Pole				1				1						+																	+		136	45.970594	-89.0077082	7	Muck	Pole				3		3									1																		137	45.989158	-89.006266	8	Sand	Pole				2		2								+																																																																																																																																
							\dashv			_		138	45.988385 45.987611	-89.0062799 -89.0062937	13 15	Muck Muck	Pole				1		1						+	+	\dagger	1	t									$\mid \cdot \mid$	1		1	1	\dagger	+		140	45.986837	-89.0063076	16	Muck	Rope				2		2						1																			1		141	45.986063	-89.0063214	15	Muck	Rope														+																	+		142	45.985289 45.984515	-89.0063353 -89.0063491	16 15	Muck	Rope				2		2																											144	45.983741	-89.0063629	16	Muck	Rope																															1		145	45.982967	-89.0063768		Muck	Rope																												1			+		146	45.982193 45.981419	-89.0063906 -89.0064045	18	Muck	Rope																															1		148	45.980645	-89.0064183	18	Muck	Rope																												_			4		149	45.979872 45.979098	-89.0064322 -89.006446	18	Muck	Rope				1		1																									+		150 151	45.979098	-89.0064599	18 19	Muck Muck	Rope																																	152	45.97755	-89.0064737		Muck	Rope																-												4			_		153	45.976776 45.976002	-89.0064875 -89.0065014	17	Muck	Rope																												1			+		155	45.975228	-89.0065152		Muck	Rope				3		3																											156	45.974454	-89.0065291	15	Muck	Rope																															+		157	45.97368 45.972906	-89.0065429 -89.0065567	17 15	Muck Muck	Rope				1		1																											159		-89.0065706		Muck	Pole				1		1							1	1																	1		160		-89.0065844		Sand					1		1	V	1																							-		161		-89.0065983 -89.0051557		Muck					2		2	V			1			1		1																		163	45.988375	-89.0051696	13	Muck	Pole				2		2						\bot		1				1							μŢ	J	-	-			\bot		164 165		-89.0051835 -89.0051973		Muck Muck	Pole Rope				2		2	1				+	+	+	+	+	+	+	+							\vdash	1	\dashv	\dashv	+	+	+		166		-89.0051973 -89.0052112		Muck	Rope				1		1									1															1	\pm		167		-89.0052251		Muck	Rope												+		+	+			-							\sqcup			-		+	+		168 169		-89.0052389 -89.0052528		Muck Muck	Rope				1		1					+	+	+	\parallel	+		+											\dashv		\dagger	+		170		-89.0052667			Rope						•										T															工		171		-89.0052805		Muck	Rope												+		+	+			-							\sqcup			-		+	+		172		-89.0052944 -89.0053082		Muck Muck					1		1					+	+		\parallel	+		+											\dashv		\dagger	+		174		-89.0053221	17	Muck	Rope																															工		175		-89.005336		Muck	Rope												+	+	+	+	+		-	-						\vdash			-	-	-	+		176 177	45.978314 45.97754	-89.0053498 -89.0053637		Muck Muck	Rope												1		1	╛		1	İ												\rfloor	\pm		178		-89.0053775		Muck	Rope											1			Ţ	I											1		1		1			179	45.975992			Muck	Rope											+	+	+	+	+	+	+	-	-						\vdash		-	-	-	+	+		180		-89.0054052 -89.0054191		Muck Muck	Rope				1		1							İ	t	1	İ		L												1	\pm		182	45.973671	-89.005433	15.5	Muck	Rope				1		1				1	\blacksquare		$oxed{F}$			F										\exists	\dashv	\dashv	I	-	\bot		183	45.972897	-89.0054468	15	Muck	Pole				<u> </u>	İ .													1	1		<u> </u>	<u> </u>	<u> </u>		Ш						—		ber	LATITUDE (Decimal Degrees)	LONGITUDE (Decimal Degrees)			3	g			Total Rake Fullness	Myriophyllum spicatum	Ceratophyllum demersum	idensis	8	Potamogeton pusillus	Myriophyllum sibiricum	Vallis neria a mericana	ille	ciodea nutraliii Dotamogaton Illinoansis	as a colored to	Potamogeton praelongus Potamogeton zosteriformis	Potamogeton gramineus	Potamogeton amplifolius	Heteranthera dubia	Schoenoplectus acutus	Eleocharis palustris	Eleocharis acicularis		Potamogeton richardsonii	Sagittaria sp. (rosette)		carpus	onifera	Myriophyllum tenellum	Schoenoplectus pungens	Schoenoplectus subterminalis	Schoenoplectus tabernaemontani	ı sp.		-------------	----------------------------	-----------------------------	----------	--------------	--------------	---------------	-------	----------	---------------------	-----------------------	------------------------	-------------------	----------------	----------------------	------------------------	-------------------------	----------------	---	-----------------	--	-----------------------	-------------------------	--------------------	-----------------------	----------------------	-----------------------	--------------	--------------------------	--------------------------	--------------	-------------------	-------------------	-----------------------	------------------------	------------------------------	--------------------------------	----------------		PointNumber	тпире	NGITUE	рертн	SEDIMENT	POLE_ROPE	COMMENTS	NOTES	NUSIANCE	vtal Rake	rriophyll	ratophyl	Elodea canadensis	Najas flexilis	tamoget	yriophyll	llisneria	Chara spp.	Dotamogaton il	ramoger	tamoget	tamoget	tamoget	teranthe	hoenople	ocharis _I	ocharis a	Nitella spp.	tamoget	gittaria s	Isoetes spp.	Juncus pelocarpus	Lemna turionifera	yriophyll	hoenople	hoenople	hoenople	Sparganium sp.		184	45.972123	-89.0054607	6	Sand	Pole	ŏ	ž	ž	1	ě.	1	ă	ž	Pc	Σ	Š	т т	ăă	2 8	1	- 2	2	ž	S	ä	ă	ž	Pc	Sa	Isc	η	3	Σ	S	S	S	망		185	45.971349	-89.0054745	3	Sand	Pole				1				1																					\exists	_	4			186	45.970575 45.989913	-89.0054884 -89.0040316	5	Rock	Pole	NON NAVIGABLE																												\dashv	+	\dashv	-		188	45.989139	-89.0040316	11	Muck	Pole				2		2	1																						1					189	45.988365	-89.0040594	14	Muck	Pole				2		2						1	1																\dashv	_	\dashv	4		190	45.987591 45.986817	-89.0040732 -89.0040871	16 19	Muck Muck	Pole				2		1																									1	\dashv		192	45.986044	-89.004101	17	Muck	Rope				1		1																							1	1	1			193	45.98527	-89.0041149		Muck	Rope																													\dashv	_	\dashv	_		194 195	45.984496 45.983722	-89.0041288 -89.0041426		Muck Muck	Rope																													\dashv	1	7	\dashv		196	45.982948	-89.0041565	18	Muck	Rope																																		197	45.982174	-89.0041704		Muck	Rope				1																									\dashv	+	\dashv	-		198	45.9814 45.980626	-89.0041843 -89.0041981	18	Muck Muck	Rope				1		1																												200	45.979852	-89.004212	17	Muck	Rope				1		1																							\downarrow	4	4	_		201	45.979078 45.978304	-89.0042259 -89.0042398	17	Muck Muck	Rope				1		1																							+	+	\dashv	\dashv		203	45.97753	-89.0042536	18	Muck	Rope				1		1																							1					204	45.976757	-89.0042675	17	Muck	Rope																													\dashv	4	\dashv	=		205	45.975983 45.975209	-89.0042814 -89.0042953	17	Muck Muck	Rope																													_		+	-		207	45.974435	-89.0043091	16.5	Muck	Rope																															\Box			208	45.973661	-89.004323	16	Muck	Pole																													4	_	\dashv	_		209	45.972887 45.972113	-89.0043369 -89.0043507	6	Muck	Pole				1		2							1												1						\dashv	-		211	45.989903	-89.0029213		Sand	Pole																													\Box		\Box	_		212	45.989129	-89.0029352		Sand	Pole				1		1						1	1																																																																																																																																																															
								\dashv	+	\dashv	-		213 214	45.988356 45.987582	-89.0029491 -89.002963	15 16	Muck Muck	Pole				2		2						1																	\dashv	1	7	\dashv		215	45.986808	-89.0029769		Muck	Rope																																		216	45.986034 45.98526	-89.0029908 -89.0030047		Muck	Rope																													\dashv	-	\dashv	\dashv		217	45.984486	-89.0030047 -89.0030186		Muck Muck	Rope																														T				219	45.983712	-89.0030325	18	Muck	Rope																													\dashv	4	\dashv	=		220 221	45.982938 45.982164	-89.0030464 -89.0030603	21	Muck	Rope																													+	+	\dashv	-		222		-89.0030742		Muck					1		1						1	1																		\Box			223		-89.0030881		Muck																														\dashv	4	\dashv	_		224		-89.0031019 -89.0031158		Muck																														\dashv	+	\dashv	-		226	45.978295			Muck	Rope																															\Box			227		-89.0031436		Muck	Rope																													_	+	\dashv	_		228		-89.0031575 -89.0031714	20	Muck	Rope				1		1																									\top	_		230		-89.0031853		Rock	Pole				2		2	1					1	1																					231		-89.0031992		Sand					1		1	1					1																	\dashv	+	\dashv	\dashv		232	45.973651 45.990668	-89.003213 -89.0017971	5 7	Sand					1			1	1				1	1																					234		-89.001811	11	Sand												-		-	F	-		1												4	4	\dashv	4		235	45.98912	-89.001825	11	Muck	Pole				2		2					+	+	+	+	+	+													\dashv	+	+	\dashv		236	45.988346 45.987572	-89.0018389 -89.0018528		Muck Muck	Rope																															\exists			238	45.986798	-89.0018667	19														\perp	-		_		_										_	_	\downarrow	4	4	4		239 240	45.986024 45.98525	-89.0018806 -89.0018945		Muck Muck	Rope Rope											+	+	+	+	+	+	-												+	+	\dashv	\dashv		240		-89.0018945 -89.0019084		Muck	Rope														İ															\Box	I	士			242		-89.0019223		Muck												+		\perp	-	\perp	+													\dashv	\dashv	\dashv	\dashv		243 244		-89.0019362 -89.0019502		Muck Muck	Rope											-	+	+	+	+	\dagger													\dashv	+	\dashv	\dashv						uon				•					•																•											egrees)	Degrees)								E	mn								s	sn	rmis	sı	sn						ini					-	sı	minalis	aemontani			-------------	----------------------------	-----------------------------	-------	----------	--------------	----------	-------	----------	---------------------	-----------------------	------------------------	-------------------	----------------	----------------------	------------------------	-----------------------	------------	------------------	-------------------------	------------------------	---------------------------	-----------------------	-------------------------	--------------------	-----------------------	----------------------	-----------------------	--------------	--------------------------	--------------------------	--------------	-------------------	-------------------	-----------------------	------------------------	------------------------------	--------------------------------	----------------		PointNumber	LATITUDE (Decimal Degrees)	LONGITUDE (Decimal Degrees)	E	SEDIMENT	POLE_ROPE	COMMENTS	S	NUSIANCE	Total Rake Fuliness	Myriophyllum spicatum	Ceratophyllum demersum	Elodea canadensis	Najas flexilis	Potamogeton pusillus	Myriophyllum sibiricum	Vallisneria americana	spp.	Elodea nuttallii	Potamogeton illinoensis	Potamogeton praelongus	Potamogeton zosteriformis	Potamogeton gramineus	Potamogeton amplifolius	Heteranthera dubia	Schoenoplectus acutus	Eleocharis palustris	Eleocharis acicularis	Nitella spp.	Potamogeton richardsonii	Sagittaria sp. (rosette)	Isoetes spp.	Juncus pelocarpus	Lemna turionifera	Myriophyllum tenellum	Schoenoplectus pungens	Schoenoplectus subterminalis	Schoenoplectus tabernaemontani	Sparganium sp.					DEPTH			СОМ	NOTES	NUS	Total	Myric	Cerat	Elode	Najas	Potar	Myric	Vallis	Chara spp.	Elode	Potar	Potar	Potar	Potar	Potar	Hete	Schoe	Eleoc	Eleoc	Nitel	Potar	Sagitt	Isoet	Junca	Lemn	Myric	Schoe	Schoe	Schoe	Sparg		245 246	45.981381 45.980607	-89.0019641 -89.001978	19	Muck	Rope												1																			\dashv		_		247	45.979833	-89.0019919		Muck	Rope																																			248	45.979059	-89.0020058		Muck	Rope																															\dashv	_	_		249 250	45.978285 45.977511	-89.0020197 -89.0020336		Muck	Rope				2		2																									\dashv		-		251	45.976737	-89.0020330		Sand	Pole				2		2						1		1																					252	45.975963	-89.0020614		Rock	Pole				1																											_				253	45.99298	-89.0006451		Sand	Pole				1								+										1									\dashv	+	\dashv		254 255	45.992206 45.991432	-89.000659 -89.0006729	8	Sand	Pole				1		1	1	1	1			1																			\forall		_		256	45.990658	-89.0006868		Sand	Pole				1		1			·																										257	45.989884	-89.0007008	11	Sand	Pole				1		1																									\dashv		_		258	45.98911 45.988336	-89.0007147		Sand	Rope				1		1					-	+	-	\dashv		+	+	+	+	-	-	1									+	\dashv	\dashv		259 260	45.988336 45.987562	-89.0007286 -89.0007426		Muck	Rope																																			261	45.986788	-89.0007565		Muck	Rope																															ightharpoons		\Box		262	45.986014	-89.0007704	20	Muck	Rope												-																			4	_	_		263	45.985241	-89.0007843 -89.0007983		Sand	Rope												+																			\dashv	-	\dashv		264 265	45.984467 45.983693	-89.0007983 -89.0008122		Sand	Rope																															\top				266	45.982919	-89.0008261	18	Muck	Rope																															\Box				267	45.982145	-89.00084	19	Muck	Rope												-																			4	_	_		268	45.981371	-89.000854	20	Muck	Rope												+																			+	-	-		269 270	45.980597 45.979823	-89.0008679 -89.0008818		Muck	Rope																															+				271	45.979049	-89.0008957	18	Sand	Rope																															\Box				272	45.978275	-89.0009096		Rock	Pole				1																											\dashv		4		273 274	45.993744 45.99297	-88.9995208 -88.9995347		Sand	Pole				1			1	1				+																			\dashv	-	\dashv		275	45.99297	-88.9995487		Muck	Pole				1		1	1								1																\top		٦		276	45.991422	-88.9995626		Sand	Pole																															\Box				277	45.990648	-88.9995766		Sand	Rope																															\dashv	+	_		278 279	45.989874 45.9891	-88.9995905 -88.9996044		Muck	Rope																															\dashv		_		280	45.988326	-88.9996184		Muck	Rope																																			281		-88.9996323		Muck	Rope																															\downarrow				282		-88.9996463							1		1						+																			\dashv	4	-		283		-88.9996602 -88.9996741			Rope				2	1	2						1																			+	-	\dashv		285		-88.9996881							2																															286		-88.999702		Sand	Rope												4				- -							
					\downarrow	4	4		287		-88.999716		Sand	Pole				2		2					+	+				+	+	+	+	-	-	-	-								\dashv	\dashv	\dashv		288		-88.9997299 -88.9997438		Sand	Pole Pole				2		2						\dagger	1	1		1	1	1	1	1		1									+	\dashv	\dashv		290		-88.9997578		Rock	Pole				1		1	1																								I				291		-88.9997717		Rock	Pole				1			1				-	4	-	-			-	4	4		-	V					V				\dashv	4	\dashv		292		-88.9984104		Sand					1			1	1						-		+	+	+	+	-		-									\dashv	\dashv	\dashv		293 294		-88.9984244 -88.9984383		Sand	Pole Pole				1		1	1	1	1	1		1	1				+	\dagger	\dagger	1		1	1								+	+	\dashv		295		-88.9984523		Sand	Pole				1					1													1									コ		\exists		296		-88.9984663		Sand	Pole												4		-		-		-	-												\dashv	_	\dashv		297		-88.9984802		Muck	Rope											-	+	-	\dashv		+	+	+	+	-	-	1									+	\dashv	\dashv		298 299		-88.9984942 -88.9985081		Muck	Rope												1				\dagger		1	1												\dashv	1	\dashv		300		-88.9985221		Muck	Rope																															ightharpoons		\Box		301		-88.9985361		Sand	Pole				2		1	1					+		\dashv		1		\dashv	\dashv	1		-									\dashv	-	\dashv		302	45.985995	-88.99855 -88.998564	19	Muck	Rope				1					1		-	+	=			\dashv	-	+	+		=	1	-								+	-	\dashv		303				Sand	Pole				1		1	1		1																						_†				305		-88.9985919			Pole												1																			$oldsymbol{\perp}$		\Box																																										Point Number	LATITUDE (Decimal Degrees)	LONGITUDE (Decimal Degrees)	DEРТН	SEDIMENT	POLE_ROPE	COMMENTS	NOTES	NUSIANCE	Total Rake Fullness	Myriophyllum spicatum	Ceratophyllum demersum	Elodea canadensis	Najas flexilis	Potamogeton pusillus	Myriophyllum sibiricum	Vallis neria a mericana	Chara spp.	Elodea nuttallii	Potamogeton illinoensis	Potamogeton praelongus	Potamogeton zosteriformis	Potamogeton gramineus	Heterathers dubia	Schoenoplectus acutus	Eleocharis palustris	Eleocharis acicularis	Nitella spp.	Potamogeton richardsonii	Sagittaria sp. (rosette)	Isoetes spp.	Juncus pelocarpus	Lemna turionifera	Myriophyllum tenellum	Schoenoplectus pungens	Schoenoplectus subterminalis	Schoenoplectus tabernaemontani	Sparganium sp.		--------------	----------------------------	-----------------------------	------------	--------------	--------------	-----------------------	-------	----------	---------------------	-----------------------	------------------------	-------------------	----------------	----------------------	------------------------	-------------------------	------------	------------------	-------------------------	------------------------	---------------------------	-----------------------	-------------------	-----------------------	----------------------	-----------------------	--------------	--------------------------	--------------------------	--------------	-------------------	-------------------	-----------------------	------------------------	------------------------------	--------------------------------	----------------		306	45.982899	-88.9986058	11	Sand	Pole				1	_	1	_																Ī				_				_			307 308	45.982125 45.981352	-88.9986198 -88.9986337		Sand	Pole Pole				1		1		1																						+	+	-		309	45.995272	-88.9972721	2	Sand	Pole				1					1									1		1	1					1					\Box	v		310	45.994498	-88.9972861	4	Sand	Pole				1			1	1											1											\dashv	\dashv	4		311	45.993724 45.99295	-88.9973001 -88.997314	8.5 9	Sand	Pole				2		1	1		1	1		1																		+	\dashv	\dashv		313	45.992177	-88.997328		Sand	Pole				2		2	1																											314	45.991403	-88.997342	9.5	Sand	Pole																														\dashv	_	_		315 316	45.990629 45.989855	-88.997356 -88.9973699	18 19.5	Sand	Rope																														+	+	+		317	45.989081	-88.9973839		Muck	Rope																														\Box	\Box	_		318	45.988307	-88.9973979		Muck	Rope																														\dashv	_	_		319 320	45.987533 45.986759	-88.9974119 -88.9974258		Sand	Rope Rope																														\forall	\forall	-		321	45.985985	-88.9974398		Sand	Rope				1		1																								\Box	\Box			322	45.985211	-88.9974538		Sand	Pole		-											+	-	+	+	+	+					-	-						+	+	\dashv		323 324	45.984437 45.983664	-88.9974678 -88.9974817		Sand	Pole Pole																														\top	\forall	-		325	45.98289	-88.9974957		Sand	Pole				1		1			1																					4	4	_		326	45.982116	-88.9975097 -88.9975236		Sand	Pole				2		2	1	_																						\dashv	\dashv	_		327 328	45.981342 45.99681	-88.9975236 -88.9961337		Rock	Pole	TERRESTRIAL			1				1																						1				329	45.996036	-88.9961477	2.5	Sand	Pole				1															1											4	4	1		330	45.995262	-88.9961617		Rock	Pole				1			1										-													\dashv	\dashv	-		331 332	45.994489	-88.9961757 -88.9961897		Sand Sand	Pole Pole				2		1	1			1				1			1	2												I				333	45.992941	-88.9962037	9	Sand	Pole				1					1			1																		_	4	4		334 335	45.992167 45.991393	-88.9962177 -88.9962317		Sand	Pole Pole				1		1	1																							+	+	\dashv		336		-88.9962457		Sand	Rope																														I				337	45.989845	-88.9962597		Muck	Rope																														4		_		338	45.989071	-88.9962737 -88.9962877		Muck	Rope Rope																														+	+	-		340	45.987523	-88.9963016		Sand	Rope																														I				341	45.986749	-88.9963156	19	Sand	Rope																														_	4	4		342 343	45.985976	-88.9963296 -88.9963436		Sand Sand	Pole				4																										\dashv	+	-		344	10.000E0E	-88.9963576		Sand	Pole																														I				345	45.983654	-88.9963716	10.5	Sand	Pole				2		2	1																							_	4	_		346		-88.9963856		Sand	Pole				3		3	1		1	1																				\dashv	\dashv	-		347		-88.9963995 -88.9950093		Rock	Pole				3		1				1	1			1					3	1							1					v		349		-88.9950233				NONNAVIGABLE (PLANTS)																													4	4	4		350		-88.9950373		Sand	Pole				1		1	1				+		+				+	+	V						1					+	+	\dashv		351 352		-88.9950513 -88.9950654	8	Sand Sand	Pole Pole				1			1				1	1			1		t	t					L							\exists	\exists			353	45.993705	-88.9950794	9	Sand	Pole				1		1	1		1			1																		_	_			354		-88.9950934		Sand	Pole				1		1	1						-			\perp	+			-			H	-						+	+	\dashv		355 356		-88.9951074 -88.9951214		Sand	Pole Pole																	1	1		T			L							_	_			357		-88.9951354		Sand	Rope													1			1														1	4	1		358		-88.9951494		Muck	Rope											-		+		-	-	+	+	-											+	+	\dashv		359 360		-88.9951634 -88.9951774		Muck	Rope Rope														+			+	1						-	1					+	+	\dashv		361		-88.9951914			Rope																														コ	ightharpoons			362		-88.9952054		Muck	Rope											-		+	-	-	\perp	+	+	-					-																							
\dashv	\dashv	\dashv		363 364		-88.9952194 -88.9952334		Sand	Pole Pole				1		1							+	+	+	+	+	+					H							+	+	\dashv		365		-88.9952474		Sand	Pole				Ė		Ė											T	T												コ	\exists			366	45.998339	-88.9938849				NONNAVIGABLE (PLANTS)																																		(s	(ses)																																		Т	tani	٦		-------------	----------------------------	-----------------------------	-----------	--------------	--------------	-----------------------	-------	----------	---------------------	-----------------------	------------------------	-------------------	----------------	----------------------	------------------------	-------------------------	------------	------------------	-------------------------	------------------------	---------------------------	-----------------------	-------------------------	--------------------	-----------------------	----------------------	-----------------------	--------------	--------------------------	--------------------------	--------------	-------------------	-------------------	-----------------------	------------------------	------------------------------	--------------------------------	----------------			LATITUDE (Decimal Degrees)	LONGITUDE (Decimal Degrees)							_	tum	mnsı			s	Ę				sis	sngu	formis	ens	snilo		sn				sonii	(6)				Ę	sens	Schoenoplectus subterminalis	Schoenoplectus tabernaemontani			Jec.	(Decima	E (Decim			щ	ø			Fullness	ım spica	am deme	densis		n pusillu	m sibiria	mericana		=	n illinoer	in praeloi	ın zosteri	ın gramin	n amplife	ra dubia	ctus acuti	alustris	cicularis		ın richard	· (rosette		carpus	nifera	m tenell	ctus pung	ctus subt	ctus tabe	.ds		PointNumber	тпире	ИСППР	рертн	SEDIMENT	POLE_ROPE	COMMENTS	NOTES	NUSIANCE	Total Rake Fullness	Myriophyllum spicatum	Ceratophyllum demersum	Elodea canadensis	Najas flexilis	Potamogeton pusillus	Myriophyllum sibiricum	Vallis neria a mericana	Chara spp.	Elodea nuttallii	Potamogeton illinoensis	Potamogeton praelongus	Potamogeton zosteriformis	Potamogeton gramineus	Potamogeton amplifolius	Heteranthera dubia	Schoenoplectus acutus	Eleocharis palustris	Eleocharis acicularis	Nitella spp.	Potamogeton richardsonii	Sagittaria sp. (rosette)	Isoetes spp.	Juncus pelocarpus	Lemna turionifera	Myriophyllum tenellum	Schoenoplectus pungens	oenople	oenople	Sparganium sp.		367	45.997565	-88.9938989	DE	SE	Po	NONNAVIGABLE (PLANTS)	ON.	2	Į.	My	Cer	읍	Naj	Pot	Ā	\ al	ਤੌਂ	읍	Pot	Pot	Pot	Pot	Pot	He	Sch	Ele	Ele	ž	Pot	Sag	lso	Ę	Len	Σ	Sch	ş	ž	Spa		368	45.996791	-88.9939129				NONNAVIGABLE (PLANTS)																														1	1			369	45.996017	-88.9939269	5	Sand	Pole				1				1												٧										1	_	\dashv	=		370 371	45.995243 45.994469	-88.993941 -88.993955	9.5	Sand	Pole				1			1	1	1			1					1															1			372	45.993695	-88.993969	10	Sand	Pole				1		1	1	1																						4	\downarrow	\downarrow			373 374	45.992921 45.992147	-88.993983 -88.9939971	16	Sand	Rope																															-	+	_		375	45.991373	-88.9940111	19	Muck	Rope																																			376	45.990599	-88.9940251	20	Muck	Rope																														4	_	\dashv			377 378	45.989826 45.989052	-88.9940391 -88.9940531	21	Muck Muck	Rope Rope																															+	+	_		379	45.988278	-88.9940672	23	Muck	Rope																																			380	45.987504	-88.9940812	10	Sand	Pole				1		1	1																			Н				-	\dashv	+	_		381 382	45.98673 45.985956	-88.9940952 -88.9941092	15	Sand	Pole										1	\dashv																			\dashv	+	+	_		383	45.985956	-88.9941232	12	Sand	Pole																															#	#			384	45.984408	-88.9941373	6.5	Sand	Pole				1		1	1			1	1																			-	_	\dashv	_		385 386	45.998329 45.997555	-88.9927744 -88.9927885	3	Sand	Pole				2		2	1			1					1					1 V	1										+	+	_		387	45.996781	-88.9928025	5	Sand	Pole				1		1														v											\perp				388	45.996007	-88.9928165	8	Sand	Pole				1				1			1												1							1	_	+	_		389	45.995233 45.994459	-88.9928306 -88.9928446	9 9.5	Sand	Pole				1		1	1		1		1						1	1													+				391	45.993685	-88.9928587	16.5	Muck	Rope				1		1																									1	\blacksquare			392	45.992911	-88.9928727	18.5	Muck	Rope				1		1																									+	+			393 394	45.992138 45.991364	-88.9928867 -88.9929008	19	Muck	Rope				1		1																									+	+	_		395	45.99059	-88.9929148		Muck	Rope																															_				396	45.989816	-88.9929289	20	Muck	Rope																														\dashv	+	+	=		397	45.989042 45.988268	-88.9929429 -88.9929569	21	Muck	Rope																																1			399	45.987494	-88.992971	11	Rock	Pole																														_	_	\dashv	_		400	45.98672 45.985946	-88.992985 -88.992999	10	Sand	Pole				1		1																									-	+	-		401	45.985946	-88.9930131	10 8.5	Sand	Pole				2		2	1						1																						403		-88.9930271		Sand	Pole				1		1	1	1			1	1					1														4	\downarrow			404		-88.9930411 -88.9930552		Sand					3		3	1		1	1			1		2	1		3													-	+	_		406		-88.9930692		Muck	Pole				1		1				V					2																				407	45.981303	-88.9930832	5.5	Muck	Pole				1		1	1			1						1															4	\downarrow			408 409	45.980529 45.998319	-88.9930973 -88.991664	3 2.5	Muck Sand	Pole				1		1				V										٧					1						-	+	_		410		-88.991664 -88.991678		Sand	Pole				1			1			1	1				1					V					1						\downarrow	1			411		-88.9916921	7	Sand	Pole				1		1	1				1	-	-	-			1													-	1	\dashv	-		412 413		-88.9917061 -88.9917202		Sand	Pole				2		2	1		1		+	1	+					1								H				1	+	+	_		414		-88.9917343		Sand					2		1	2		1	1																					\downarrow	1			415		-88.9917483		Muck	Rope										-		-	-																	-	\downarrow	\dashv			416 417		-88.9917624 -88.9917764			Rope										\dashv	+	+	+																	\dashv	+	+	\dashv		417		-88.9917764 -88.9917905		Muck	Rope																														1	1	\downarrow			419		-88.9918045		Muck	Rope										-		-	-																	-	\downarrow	\dashv	\dashv		420 421		-88.9918186 -88.9918326		Muck Muck	Rope				1		1	11			\dashv	+	+	+																	\dashv	+	+	\dashv		421		-88.9918326 -88.9918467		Muck																																士				423		-88.9918607		Sand	Pole				1		1					-																			4	\downarrow	\downarrow			424 425		-88.9918748 -88.9918888		Sand	Pole Pole				1 2		2	1			\dashv	+	+	1																	\dashv	+	+	-		425		-88.9919029	8	Sand	Pole				2		2							1																	1	#	\downarrow			427	45.984389	-88.9919169	7	Sand	Pole				3		3	1																													egrees)	Degrees)								Ε	E								s	sn	rmis	sı	sn						Ē					_	sı	minalis	aemontani			-------------	----------------------------	---	------------	--------------	-----------	----------	-------	----------	---------------------	-----------------------	------------------------	-------------------	----------------	----------------------	------------------------	-----------------------	------------	------------------	-------------------------																																																																																																																																																																																																					
------------------------	---------------------------	-----------------------	-------------------------	--------------------	-----------------------	----------------------	-----------------------	--------------	--------------------------	--------------------------	--------------	-------------------	-------------------	-----------------------	------------------------	------------------------------	--------------------------------	----------------		PointNumber	LATITUDE (Decimal Degrees)	LONGITUDE (Decimal Degrees)	E	SEDIMENT	POLE_ROPE	COMMENTS	ES	NUSIANCE	Total Rake Fuliness	Myriophyllum spicatum	Ceratophyllum demersum	Elodea canadensis	Najas flexilis	Potamogeton pusillus	Myriophyllum sibiricum	Vallisneria americana	Chara spp.	Elodea nuttallii	Potamogeton illinoensis	Potamogeton praelongus	Potamogeton zosteriformis	Potamogeton gramineus	Potamogeton amplifolius	Heteranthera dubia	Schoenoplectus acutus	Eleocharis palustris	Eleocharis acicularis	Nitella spp.	Potamogeton richardsonii	Sagittaria sp. (rosette)	Isoetes spp.	Juncus pelocarpus	Lemna turionifera	Myriophyllum tenellum	Schoenoplectus pungens	Schoenoplectus subterminalis	Schoenoplectus tabernaemontani	Sparganium sp.					DEPTH			сом	NOTES	NUS	Total	Myric		Elode	Najas	Potar	Myric	Vallis	Chara	Elode	Potar	Potar	Potar	Potar		Hete	Schoe	Eleoc	Eleoc	Nite	Potar	Sagiti	Isoet	Junc	Lemn	Myrk	Schoe	Schoe	Schoe	Sparg		428 429	45.983615 45.982841	-88.991931 -88.991945	9.5 8.5	Muck Muck	Pole				2		2			1					1				1 V																	430	45.982067	-88.9919591		Sand	Pole				2		1					1						1																		431	45.998309	-88.9905535		Sand	Pole																				V											-		\dashv		432	45.997535 45.996761	-88.9905676 -88.9905817		Sand	Pole				2		2	1							1		1	1		1												_		_		434	45.995987	-88.9905957		Sand	Pole				3		3	1						1	1		1																			435	45.995214	-88.9906098		Sand	Pole				2		1	1						1	1																	-		\dashv		436	45.99444 45.993666	-88.9906239 -88.990638	19	Sand Muck	Rope																															-	_	\exists		438	45.992892	-88.990652	20	Muck	Rope																																			439	45.992118	-88.9906661		Muck	Rope																															_		4		440	45.991344	-88.9906802		Muck	Rope																																	\dashv		441	45.99057 45.989796	-88.9906942 -88.9907083		Muck Muck	Rope											1																								443	45.989022	-88.9907224		Muck	Rope												J		J		\Box	J														\dashv	_]	_]		444	45.988248	-88.9907364		Muck	Rope				2		2					-	\dashv		1	1	\dashv	\dashv									-							\dashv		445 446	45.987474 45.986701	-88.9907505 -88.9907646		Sand Sand	Rope				3		3						\dashv	1	1																	\dashv		\exists		447	45.985927	-88.9907786		Muck	Pole				Ŭ		Ŭ																													448	45.985153	-88.9907927	13.5	Muck	Pole				1																											_		_		449	45.984379	-88.9908068		Sand	Pole				2		2	2					2		1			1		1												-		-		450 451	45.983605 45.982831	-88.9908208 -88.9908349		Sand	Pole				2		2	2					1				1															7		\exists		452	45.998299	-88.9894431		Sand	Pole				1		1	٧			٧	1		v	v			٧														\Box				453	45.997525	-88.9894572		Sand	Pole																																	_		454 455	45.996752 45.995978	-88.9894713 -88.9894854		Sand Sand	Pole				1		2	-									1			1														-		456	45.995204	-88.9894994		Sand	Pole				1		1										1																			457	45.99443	-88.9895135	22	Sand	Rope				2		2																											_		458	45.993656 45.992882	-88.9895276 -88.9895417		Muck	Rope						1																									-		-		459 460	45.992882	-88.9895558		Muck Muck	Rope				1																															461	45.991334	-88.9895699	20	Muck	Rope																																			462	45.99056	-88.989584	20	Muck	Rope																																	-		463 464	45.989786 45.989012	-88.989598 -88.9896121	20	Muck	Rope																																	\exists		465		-88.9896262																																						466		-88.9896403		Sand	Pole				1		1																									_		_		467		-88.9896544 -88.9896684		Muck	Pole											-	\dashv	1			+	\dashv									-					\dashv	-	\dashv		468 469		-88.9896825		Muck Muck	Pole																									L	L									470		-88.9896966		Sand	Pole				2		2	1	1		1	I	_[1		$-\mathbb{I}$	1								L	1					_Ţ	_]	_]		471		-88.9897107		Sand	Pole				1				1			-	\dashv	-			-	+								-		_					_	_		472 473		-88.9883468 -88.9883609		Sand	Pole				1		1	1	1	1			+				\dashv	V 1		1	V											\dashv		\dashv		474	45.995968			Sand	Pole				3		2					1		1		1																				475		-88.9883891		Sand	Pole				1							-	4			1	-	4														\dashv	_	4		476		-88.9884032		Sand	Rope				1		1					1	\dashv	-			+	+									-					\dashv	\dashv	\dashv		477 478		-88.9884173 -88.9884314		Muck Muck	Rope																								L	L										479		-88.9884455		Muck	Rope												1																					\exists		480		-88.9884596		Muck	Rope				1			1					4				-	4								-						\dashv		\dashv		481	45.99055	-88.9884737 -88.9884878		Muck	Rope											1	\dashv	+			\dashv	\dashv									\vdash					-		\dashv		482 483		-88.9884878 -88.9885019		Muck Muck	Rope																								ľ	L	L									484	45.988229			Muck	Rope												1				\Box	_														\Box		╝		485		-88.9885301		Sand	Pole				2		2						\dashv				1	-									-					-		\dashv		486 487	45.986681 45.985907	-88.9885442 -88.9885583		Muck Sand	Pole	2			3		2					1	+	=	1		+	+														\dashv	+	\dashv		488		-88.9885724		Sand	Pole	-			2		2	1							1																							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							-																					•										Point Number	LATITUDE (Decimal Degrees)	LONGITUDE (Decimal Degrees)	DEРТН	SEDIMENT	POLE_ROPE	COMMEVIS	NOTES	NUSIANCE	Total Rake Fullness	Myriophyllum spicatum	Ceratophyllum demersum	Elodea canadensis	Najas flexilis	Potamogeton pusillus	Myriophyllum sibiricum	Vallis neria americana	Chara spp.	Elodea nuttallii	Potamogeton illinoensis	Potamogeton praelongus	Potamogeton zosteriformis	Potamogeton amplifolius	Heteranthera dubia	Schoenoplectus acutus	Eleocharis palustris	Eleocharis acicularis	Nitella spp.	Potamogeton richardsonii	Sagittaria sp. (rosette)	Isoetes spp.	Juncus pelocarpus	Lemna turionifera	Myriophyllum tenellum	Schoenoplectus pungens	Schoenoplectus subterminalis	Schoenoplectus tabernaemontani	Sparganium sp.		--------------	----------------------------	-----------------------------	-------	----------	-----------	-----------------------	-------	----------	---------------------	-----------------------	------------------------	-------------------	----------------	----------------------	------------------------	------------------------	------------	------------------	-------------------------	------------------------	---------------------------	-------------------------	--------------------	-----------------------	----------------------	-----------------------	--------------	--------------------------	--------------------------	--------------	-------------------	-------------------	-----------------------	------------------------	------------------------------	--------------------------------	----------------		489	45.984359	-88.9885864	5	Sand	Pole				1		1		1				4				1																																																																																																																																																																																																																																																																																																										
				4	_		490	45.997506	-88.9872363				TEMPORARY OBSTACLE											4																			4			491	45.996732	-88.9872504		Sand	Pole				1								\dashv				1															1	-		492	45.995958	-88.9872646		Sand	Pole				1		1					1																				+	-		493	45.995184 45.99441	-88.9872787 -88.9872928	9	Sand	Pole	DEEP			1		1	1	1						1																	+			495	45.993636	-88.9873069				DEEP											T																				_		496	45.992862	-88.987321				DEEP																																	497	45.992088	-88.9873352				DEEP																																	498	45.991315	-88.9873493				DEEP																														4			499	45.990541	-88.9873634	25	Muck	Rope												4																			4			500				Muck	Rope		-	-								-	-	\dashv		+	+	-								-					\dashv	\dashv	\dashv		501	45.988993	-88.9873916		Muck	Rope											-	\dashv	\dashv	\dashv	+	+	+							-	-	\dashv		-		\dashv	+	\dashv		502 503	45.988219 45.987445	-88.9874057 -88.9874198		Sand	Pole				2		2			1			\dashv	\dashv	\dashv	1		+							\dashv		\dashv		\dashv		\dashv	+	\dashv		503	45.986671	-88.987434	9	Rock	Pole				2		2						1		1	1	1															7			505	45.985897			Sand	Pole				2		1	2					İ	1										1											506	45.985123	-88.9874622		Sand	Pole				1		1	1									1																		507	45.984349	-88.9874763	2	Rock	Pole																																		508	45.996722	-88.98614	1	Sand	Pole				1				1		٧	1	_																			٧	V		509	45.995948	-88.9861542	4	Sand	Pole				1				1			1		1																		_	4		510	45.995174	-88.9861683		Sand	Pole				1		1					1																				-	-		511	45.9944	-88.9861824	10	Sand	Pole				1		1	1					1																			\dashv	_		512	45.993626	-88.9861966				DEEP																														+	-		513 514	45.992853	-88.9862107 -88.9862248				DEEP DEEP											1																			+	_		515	45.991305	-88.986239				DEEP																																	516	45.990531	-88.9862531				DEEP																																	517	45.989757	-88.9862672	15	Sand	Rope																																		518	45.988983	-88.9862814	9	Sand	Pole				3		3	1					1	1																		4	4		519	45.988209	-88.9862955	8	Sand	Pole												4																			4	_		520	45.987435	-88.9863096		Sand	Pole				1		1						+	1			1															-	\dashv		521	45.986661	-88.9863237		Sand	Pole				1			1	1			1	1						1													\dashv	\dashv		522	45.985887	-88.9863379	3	Sand	Pole				1		1				1		1							1												+	\dashv		523 524	45.995938	-88.9850438 -88.9850579	5	Sand	Pole				1		1				V	1																				7	٦		525		-88.9850721		Muck	Pole				1			٧				1	1			v																	٦		526		-88.9850862				DEEP																																	527		-88.9851004				DEEP																														ightharpoons	\Box		528	45.992069	-88.9851145				DEEP											4	4																	4	\dashv	4		529		-88.9851287		Muck	Rope				1		1				-		\dashv	-	_	\dashv									-		_		-		-	\dashv	4		530		-88.9851428	10	Muck	Pole				1		1				-		\dashv	-		\dashv									-				-		-	\dashv	\dashv		531		-88.985157	2	Rock	Pole				1			1					\dashv	\dashv		\dashv	+														\dashv	\dashv	\dashv		532		-88.9839476		Sand	Pole						V				v	4	\dashv	1		\dashv	+														1	\dashv	\dashv		533		-88.9839617 -88.9839759		Sand	Pole				1		1		1		V	1	1	\dashv		+			1							1					\dashv	\dashv	ᅦ		535	45.992833	-88.98399	9	Sand	Pole				'								1	\exists		1															\exists	\exists	٦		536		-88.9840042		Rock	Pole				1		1	1		1																									537		-88.9840184		Sand	Pole				1								I	Ţ		$oxed{\mathbb{I}}$	1														Ţ	\prod	_]		538	45.990511	-88.9840325	5	Rock	Pole												_				1															4	4		539	45.994371	-88.9828514				NONNAVIGABLE (PLANTS)									-		-	-	-	-	\perp								-		-		-		-	\dashv	\dashv		540		-88.9828655		Muck	Pole				1		1	1	1	1	-		+	\dashv	1	1	+	-	1	1					-		\dashv		-		\dashv	\dashv	\dashv		541		-88.9828797		Rock	Pole											-	\dashv	\dashv	-	\dashv	+									-	-				\dashv	\dashv	\dashv		542		-88.9828939		Rock	Pole						_						\dashv	\dashv	\dashv	1		+		4					\dashv		\dashv		\dashv		\dashv	+	\dashv		543	45.991275	-88.9829081	2.5	Rock	Pole	<u> </u>	1	ı	1		1		ı							1	1		1	1 7																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		