Lake Name	County	WBIC	Date(s)	AIS sign?	Secchi (ft or m)	Conductivity (ZM tow if > 99 umhos/cm)
Nuggest Lake	Pierce	2053400	9/12/13	Y (N)	3.25	that collected
Data collectors	March of	Lead Monitor phone an		15 min)	End time (~ 15 min)	Total collector time (hrs x # collectors)
Erin Vennic-Va	diam i	Erin VI: 608-266-			سرارا	2 * 3.5 hrs =
Tina wall	us	Evin. Vennie vollrach Ca	Phisconsingov 75	an	115 pm	7 hrs

Look for the following species: Purple loosestrife, Phragmites, flowering rush, Hydrilla, Brazilian waterweed, Eurasian water-milfoil, curly-leaf pondweed, yellow floating heart, zebra mussel, quagga mussel, Chinese mystery snail, banded mystery snail, faucet snail, New Zealand mud snail, didymo, water flea, and any other AIS found.

STEP 1: Record locations of sampling sites (in decimal degrees). Sampling sites include all public boat landings (BL), 5 targeted sites (TS) and the meander survey sites (MS). List AIS found at each site or record none. Collect a sample of any new AIS found. Collect five new invasive plant specimens, 20 Dreissenids, and 30 of each snail species and label with species, collector, date, lake name, WBIC and sampling site.

Site	Latitude	Longitude	Snorkel (Y or N*)	If N snorkel, indicate why	Species, density 1-5 [‡]	
TS1	44.68566	-92.22153	N	Milbid	No Als -found	by fishing pier
M51	4410B 229	22 22 22 22 22 22 22 22 22 22 22 22 22	i mus manian in manian panana and and and and and and and and	management and control of the contro	NANK PNY	PIEV
162	44.6577	-92.21896	N	furbid	No AIS	down flow
T53	44.66855	-92.21375	Pé	11	No Als	Stream
MS3	44.660836	-92.20516	H	meander	narrow-leaf catifal -2	
T54	44.66900	-92.20496	N	hubid	No Als	downwind
155	44,107541	-92.21244	N	11	CUP-1	- Principle
BL	44.68-714	-92.22396	N	1	No AIS	
,	,					

al in only a few sport

*For lakes/sites not snorkeled, substitute:

Boat landing site - 15 rake throws and 15 D-net samples OR 30 minutes, whichever comes first

Targeted site - 5 rake throws and 5 D-net samples OR 10 minutes, whichever comes first

50 meander sites - 10 rake throws and 10 D-net samples during meander survey between sampling sites for a total of 50 meander survey sites

†If lake/site was not snorkeled, indicate why: stained water, turbid water, blue-green bloom, chemical treatment, other (please describe).

‡ Density Ratings

Notes:

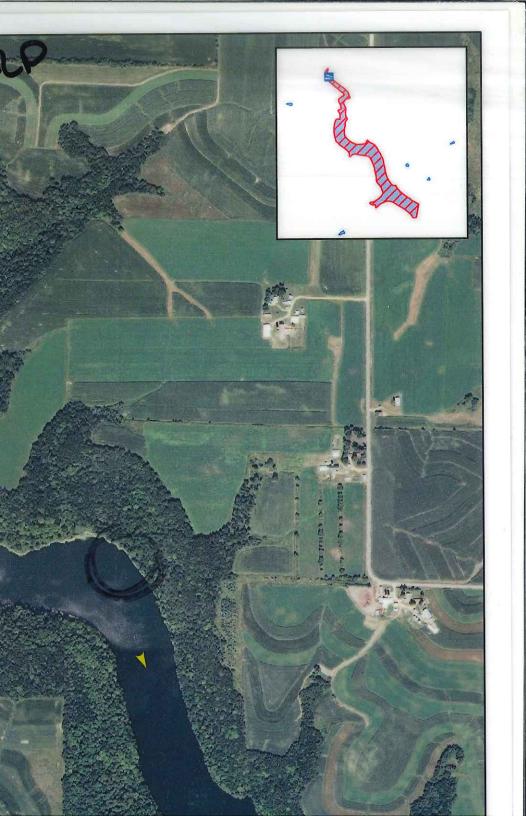
1 – A few plants or invertebrates

4 – Dense plant, snail or mussel growth in a whole bay or portion of the lake

2 – One or a few plant beds or colonies of invertebrates

5 – Dense plant, snail or mussel growth covering most shallow areas

3 – Many small beds or scattered plants or colonies of invertebrates


Step 2: Collect Waterflea Tows from 3 sites: the deep hole (DH) and 2 other sites in water deeper than 15 feet (if possible). Submit sample and datasheet to Science Services.

Site	Depth sampled	Method (hor, obliq, vert)	Net diameter (30 or 50 cm)	Ethanol added (Y or N)	Samples combined (Y or N)	Sample sent to, date
1	COM	0619	50 am	Y	Y	Gina L. 9/20/13
2	1		1	<u></u>		1
3	1	4	V	4	V	1

Step 3: Collect Veliger Tows from 3 sites; the deep hole (DH), outlet site (OS), and or downwind site (DS) in water depth of about 4 meters (if possible). Submit sample and Mussel Veliger Tow Monitoring Report form to Science Service.

Site	Depth sampled	Net diameter (30 or 50 cm)	Ethanol added (Y or N)	Samples combined (Y or N)	Sample sent to, date
1.	4 m	50 cm	Y	Y	Gina 1. 9/20/13
1			Į.		1
3	VI	V	- 1	V	

- N		l .				
Step 4: Were plant voucher specimens submitted? Yes (No (circle) If yes, where? (circle) Freckmann Herbarium, Other						
Step 5: Were snail voucher specimen	ns submitted (separate into Chinese,	banded, all others)? (Yes) No (circle) If	yes, where? (circle) UW La Crosse, or Other			
Step 6: Data was entered into SWIM	IS on 9/17/13	by Evin Vennle-	Willredto			
Step 7: Data was proofed on	9/23/13	by Evin Vennin-	Vollvach			

