Instructions: Bold fields must be completed.

Location Name	WBIC	County	Date(s)	AIS sign?	Secchi (ftyor m)	Conductivity (ZM ≥ 99 umhos/cm)	Collector(s)	Start Time	End Time	Total Hours (hrs x # ppl)
Heidmann	85200		8/23/1	Xs incort	12	380	Stegenon Klemme	11:30	D845	2.5

STEP 1: Circle species that you looked for and review the Identification Handout.

AQUATIC PLANTS/ALGAE European frogbit Parrot feather Water chestnut	Phragmites Japanese hop New Zealand mudsnails Faucet snails
Starry stonewort Hydrilla Water hyacinth Didymo	Purple loosestrife INVERTEBRATES Chinese/Banded mystery snalls Other
Yellow floating heart Curly leaf pondweed Water lettuce RIPARIAN PLANTS	Yellow flag iris Zebra/quagga mussels Rusty/red swamp crayfish
Brazilian waterweed Fanwort Eurasian water milfoll Flowering rush	Japanese knotweed Asian clam Spiny/fishhook waterflea

STEP 2: Record locations of sampling sites (in decimal degrees). While snorkeling is optional, please indicate whether snorkeled or why not. List AIS found and density at each site or record none. Collect photographs and samples of any new AIS found. Include internal and external labels with WBIC, name of lake, county, sample date, and collector. Legibility is appreciated. If needed, preserve with adequate ethanol.

Site*	Latitude	Longitude	Snorkel (Y/N)	If no, indicate why†	Species name, density (1-5) [‡] , and live (L) or dead (D) [§]	Sample (Y/N)	Photo (Y/N)	No AIS	Comments
BLI	44.34366	-87.71207		brook and the second se	EWH &D Nor coult Hybrid-3C	N	Υ		treated a catter 1 - 8
151	44.34385	-87.71339	N	**************************************	EWM-(2L); Narrow Hybrid-3L	7	2		
152	44.34498	-87. 71419	7		EWM- 3L ; Narrow+ 3L	N	2		,
153	44. 346152	-87.71452	12	The same of the sa	EMM- HL ; Narrow - 3L	N	1)		
154	44.34504	-87.71143	N	Will the control of t	EWM-2L; Narrow-2L	7	Z		
155	4434378	-87.71098	N		Hybrid + Narrow - 3L	N	N		
	144.				,				

^{*}boat landing (BL), target site (TS), meander survey (MS).

[†]Stained water, turbid water, blue-green bloom, chemical treatment, other (please describe).

[‡]Density ratings: 1-a few plants or invertebrates, 2-one or a few plant beds or colonies of invertebrates, 3-many small beds or scattered plants or colonies of invertebrates, 4-dense plant, snail, or mussel growth in a while bay or portion of the lake, or 5-dense plant, snail or mussel growth covering most shallow areas. [§]Live (L) animals will contain flesh and live plants will generally be rooted. Dead (D) animals will not contain flesh and dead plants include sterile fragments.

STEP 3: Regional verifier examination specimen(s) and photographs and provide identification results. Submit to next verifier. Create ROI and attach documents.

Species	Specimen (Y/N)	Photo Name	Date sent	Comments	This section is completed by the verifier(s)						
					Verifier #1	Date	iiD	Verifier #2	Date	lD	
						į					
										:	
		:									
				r, collect photographs and samples. MMDD_WBIC or STATIONID or LAT L			pecimens, an	d copies of the da	atasheet to	the region	
	•	red into SWIMS	on	by							
STEP 5:	Data was entei			htral office (<u>Maureen.Ferry@Wisco</u>	nsin.gov).	*****					

Notes: SWF- Elmon & ZM- 4m-3x , 44.34402; -87.71138