A

APPENDIX A

Public Participation Materials

2016 Studies Project Overview Existing AIS-Established Population Control grant funds Update certain aspects of studies completed in 2009 Study Components Water Quality Shoreland Condition Aquatic Plants

Introduction to Lake Water Quality

Phosphorus

Naturally occurring & essential for all life Regulates phytoplankton biomass in most WI lakes Most often 'limiting plant nutrient' (shortest supply) TN:TP = 16:1 Human development often increases P delivery to lakes

Chlorophyll-a

Pigment used in photosynthesis Used as surrogate for phytoplankton biomass

Secchi Disk Transparency

Measure of water clarity Measured using a Secchi disk

Onterra LLC

Why is phosphorus & algal abundance higher in Boot Lake? • • Cannot say for certain given limited data collected during this project • • First have to look at the watershed, or drainage basin

Why is phosphorus & algal abundance higher in Boot Lake?

- Cannot say for certain given limited data collected during this project
- First have to look at the watershed, or drainage basin
- Other potential sources of *unaccounted* phosphorus:
 - Internal nutrient recycling
 - Upstream lakes
 - Groundwater

Onterra, LLC

Why is phosphorus & algal abundance higher in Boot Lake?

- Cannot say for certain given limited data collected during this project
- First have to look at the watershed, or drainage basin
- Other potential sources of *unaccounted* phosphorus:
 - Internal nutrient recycling
 - Upstream lakes
 - Groundwater
- Could be one or a combination of these factors
- More detailed study would need to be completed

Onterra LLC

- Upstream lakes (e.g. Pickerel Lake) are also *polymictic*, and phosphorus from internal nutrient recycling in these lakes may impact Boot Lake
- Nutrient-rich groundwater
 - USGS study on nearby Muskellunge Lake (2010)
 - Found ~60% of annual phosphorus load coming from groundwater
 - Groundwater passing through anoxic wetlands adjacent to the lake

Onterra LLC

Onterra LLC

Lake Manag

Aquatic Plant Surveys

- Assess both non-native & native species
- Three surveys completed in 2016
 - Whole-lake point-intercept survey
 - Emergent/Floating-leaf plant community mapping survey
 - Eurasian watermilfoil peak-biomass mapping survey

Onterra LLC

	Growth		Common	Coefficient of	2016
	Form	Scientific Na	ame Name	Conservatism (C)	(Onterra
		Carex utriculata	Common yellow lake sedge	7	1
 41 species located 39 native 2 non-native 	Emergent	Dulichium arundinaceum	Three-way sedge	9	1
		Eleocharis palustris	Creeping spikerush	6	1
		Equisetum fluviatile	Water horsetail	7	х
		Lythrum salicaria	Purple loosestrife	Exotic	1
		Phragmites australis subsp. america	anus Common reed	5	
		Pontedena cordata	Pickererweed	9	
		Sagittana latirolia	Common arrownead	3	1
		Schoenopiectus acutus	Hardstern burush	5	x
		Tunha latifolia	Broad leaved cattail	5	
 Eurosian watermilfeil 		r pperta tata tata	Cross-Raved Cattal		1
• Eurasian Waterminon	æ	Brasenia schreberi	Watershield	7	1
Purple loosestrife		Nuphar variegata	Spatterdock	6	х
		Nymphaea odorata	White water lify	6	х
		Sparganium angustifolium	Narrow-leaf bur-reed	9	1
		Sparganium fluctuans	Floating-leaf bur-reed	10	1
	R./E	Sparganium sp.	Bur-reed sp.	N/A	1
	Submergent	Ceratophyllum demersum	Coontail	3	х
		Chara spp.	Muskgrasses	7	х
		Elodea canadensis	Common waterweed	3	х
		Heteranthera dubla	Water stargrass	6	х
		Isoetes spp.	Quilwort spp.	8	х
		Myriophyllum sibiricum	Northern watermitfol	7	X
		Mynophysum spicatum	Eurasian waterminoi	EXODO	x
		Allelle and	Stender maau	0	÷
		Potamonton amplifolium	Large leaf poortwood	7	Ŷ
		Potamogeton foliosus	Leafy pondweed	6	x
		Potamogeton friesi	Eries' pondweed	8	x
		Potamogeton gramineus	Variable-leaf pondweed	7	x
		Potamogeton praelongus	White-stem pondweed	8	x
		Potamogeton richardsonii	Clasping-leaf pondweed	5	х
		Potamogeton robbinsii	Fern-leaf pondweed	8	х
		Potamogeton spinillus	Spiral-fruited pondweed	8	х
		Potamogeton strictifolius	Stiff pondweed	8	х
		Potamogeton zosteriformis	Flat-stem pondweed	6	x
		Sagittaria sp. (rosette)	Arrowhead sp. (rosette)	N/A	X
		Vallisneria americana	Wild celery	6	X
		Flassbaris selavisis	Months anti-much		~
	S.	Saoittaria graminea	Grass-Jeaved arrowhead	9	X
		Sagitana gianinaa	Grass-leaved arrownead	9	

Boot Lake Informational Meeting

Study Conclusions

Water Quality

- Phosphorus is good for shallow lowland drainage lake, but higher than expected (possible internal nutrient recycling).
- Chlorophyll-*a* (algae) and Secchi disk depth (water clarity) are *fair* for shallow lowland drainage lakes.
- Plant community indicates possible reduction in clarity around 2007/2008. Cause is unknown.
- Limited data do not allow trends analysis.

Immediate Shoreland Zone

- >70% of shoreline undeveloped
- ~12% with higher degree of development

Onterra LLC

Study Conclusions

Aquatic Plants

- Eurasian watermilfoil abundance varies from year to year, but overall declining trend from 2005-2016.
- Native plant community of high quality.
 - Some changes in abundance of native plants from 2005-2016.
 - Most notable is large reduction/loss of forked duckweed between 2007-2008.
- Increase in acreage of floating-leaf & emergent plants between 2009 and 2016 surveys.

Onterra LLC

Managing Our Shorelands to Protect Our Lakes

Cathy Higley Lake Conservation Specialist Vilas County Land and Water Conservation Dept.

Program Overview

Shoreland Programs

What is the "Shoreland Buffer Zone"?

Shoreland

Aquatic

Zones of Vegetation: Upland & in Lake

Buffer Zone

What is the Shoreland Buffer Zone?

Consists of Vegetation "Layers"

Ribbon of Life

Littoral Zone

Shoreline

Flood Plain

Why are Shoreland Buffers Important?

Stabilize Soil

Provide Food & Nesting Habitat

Take Up Nutrients

Shelter for Wildlife

Protection for Fish

90% of all lake life is born, raised, sheltered, and fed or grows in the

area where land and water meet:

The Shoreland Buffer Zone

Natural Lake Shorelands

Rich Mosaic of Vegetation

Natural Scenic Beauty

Habitat

Lake Protection

The Very Essence of Being "Up North"

What's Happening to our Shoreland Buffers?

Everyone takes loving care of their own property....

But when everyone does it, the effects add up!

The effect of land disturbance on water quality

IF ONLY AREA A (home site) IS CLEARED:

IMPACT ON LAKE (June - Sept.)

- 1 ton sediment to lake
- 2 lbs. phos. to lake

IF ENTIRE LOT IS CLEARED

IMPACT ON LAKE (June - Sept.)

- up to 18 tons sediment to lake
- up to 36 lbs. lbs. phos. to lake

Cumulative Impacts:

Increased Erosion

Increased Nutrient Input

Decreased Biological Diversity

Decreased Lake Water Quality

Score your Shoreland

- 1) Is there natural ground cover? How much?
- 2) Is there a shrub layer? How much?
- 3) Is there a tree layer? How much?
- 4) Is there any soil erosion? How much?

GIS Lake Shoreland Inventory

- Identify areas of shoreland that may need protection or restoration
- Provide a different perspective
- Develop a baseline for future comparison
- Provide specific information to property owners
- Inventory of potential workload for municipal/agency professionals

Shoreland Condition Assessment

Coarse Woody Habitat

Now we know what the condition of our shoreland is -

What can we do?

Restoration Options:

Protection

Natural Recovery

Accelerated Recovery

Protection

- No serious erosion problem
- Native vegetation present
- Diversity of structure
- Shoreland buffer requirement met

Natural Recovery

- Elements of 3 layers present
- Turf grasses not well established
- Leave it be no mowing or weed whacking
- Discourage disturbance (people and critters)

Accelerated Recovery

- Turf grass well established
- No natives present
- Exposed soil
- Lots of traffic
- Sand beach maintained
- Quick results wanted

Accelerated Recovery Steps

- Site Plan Design
- Find a reference site
- Bioengineering required?
- Permits needed?
- Plant native plant species

<u>"What about the toe erosion of my</u> <u>shoreland?"</u>

Restoration Assistance

- Vilas County Land & Water Conservation Department
 - Technical Assistance
 - Cost Share Program

WI DNR's Healthy Lakes Implementation Grant Through Lake Association Shovel Ready Projects

Construction

BACKGROUND Lean Government Charter

Goal: protect and improve the health of Wisconsin lakes by increasing lakeshore property owner participation in habitat restoration and runoff and erosion control proiects.

Healthy Lakes

PLANNING

Wisconsin's 2014-2017 Healthy Lakes Implementation Plan

- Apply for Healthy Lakes grant funding, or
- Integrate into local planning efforts, or
- Do it yourself.

TECHNICAL ASSISTANCE

Wisconsin's 2014-2017 Healthy Lakes Implementation Plan

WISCONSIN'S HEALTHY LAKES **IMPLEMENTATION PLAN**

Statewide Plan

• Implementation focus

I sets are interest, an immuse open practice, are unge incorp natural so occurs that units mode trees grouped copenselver, resulting in the placement of more than 1 tree gene 20 feet of shoreline. This Sticks are anchored to the shore and are partially or huly submerged. Fish sticks are not tree drops since the trees unliked for the projects come from further than 35 feet from shore, thus they don't "rob from the bank" of trees that may observice grow and fail in naturally.

and wildife habitat best practice creates food, shelter, and breeding areas for all sort from small aquatic insects, to fish, to turtles, ducks, and songbirds. Fish Sticks can a ank erosion - protecting lakeshore properties and your lak

HOW TO BUILD t may be necessary to work with your local URH tisnenes burugos, county and lepartment, or landscaper to design and/or construct this practice. Logging or e supply cutting, and transportation. Check with your local zoning dept

nce is found here: http://dncwi.opv/topic/fishing/o

a bays. High ice energy areas on lakes g

area of your lakeshore that is not used for pier(s) or swi choose to add more than a single Fish Sticks cluster.

PROJECT END

Fact Sheets

- 5 Best Practices
- Funding & Admin FAOs

Technical Guidance

• More project installation detail

FUNDING

Healthy Lakes Grants

- \$1000/best practice funding cap
- Eligible sponsor applies on behalf of landowners with \$25,000 grant award cap (multiple best practices)
- 2-year grant agreement and 10-year individual landowner contract with maintenance requirements

RESULTS

2015-2017: 407 Best Practices, 267 Properties, 56 Lakes, 21 Counties \$377K state investment

www.healthylakeswi.com

I own lakeshore property.

You can make a difference. Learn about Healthy Lakes best practices for your property and how

to find help.

Get Started

l'm an eligible grant applicant.

Qualified lake associations, lake districts, municipalities, and tribal governments can apply for Healthy Lakes grant funding on behalf of multiple lakeshore property owners.

ESOURCES

- www.healthylakeswi.com
- Professional Shoreland Habitat Training (UW-Extension)
- Future workshops Wisconsin Lake Partnership Convention April 5 -7

DNR's Healthy Lakes Implementation Plan

- Grants available to Lake Associations or other entities
- 5 Best Practices (pick 1 or more)
 - Fish Sticks
 - 10 x 30 ft area of Native Plantings
 - Diversion
 - Infiltrations Pit
 - Rain Garden

Restoration in progress

Rain Gardens

- Increase the amount of water filtering into ground rather than running across the ground and causing soil erosion
- Recharge groundwater
- Provide wildlife habitat
- Enhance beauty of yard and neighborhood
- Protect against flooding and drainage problems
- Protect lakes from damaging flows and reduces erosion
- Reduce the need for costly municipal storm water treatment structures

Rain Gardens - Defined

•Shallow depressions planted with native plants usually located near drain spouts of a building or adjacent to pavement areas

•Allows water to infiltrate into the soil

•Reduces soil erosion caused by runoff, to protect the quality of lake water or storm water drainage

•Functional garden

Illustration 1: French Drain

Foundation

Not to scale

Funding the Projects

Healthy Lakes

- DNR Grant Funded
 - Lake Organizations typically hold grant
 - \$1,000 max per practice awards
 - Requires 25% match (cash and/or labor)
 - Lake Organizations often have property owners cover the 25% match on practices implemented
 - Works well for minor erosion problems

Funding the Projects

Cost Share Funding

- DATCP funding managed by Land & Water Conservation Depts.
 - Can provide engineering design
 - Requires match % varies depending on project
 - Dept. work directly with the land owners
 - Typically for moderate erosion problems
 - Funds more expensive projects (up to \$13,999)

Questions?