APPENDIX A **Public Participation Materials** Kick-Off Meeting 1 ### Water Quality Analysis - General water chemistry (current & historic) - Citizens Lake Monitoring Network - Nutrient analysis - Lake trophic state (Eutrophication) - Limiting plant nutrient - Supporting data for watershed modeling. Onterra LLC ### **Aquatic Plant Surveys** Concerned with both native and nonnative plants Onterra LLC ### **Aquatic Plant Surveys** - Concerned with both native and nonnative plants - Multiple surveys used in assessment - Early-season AIS survey (ULERCLA Project) - Point-intercept survey (ULERCLA Project) Interra LLC ### **Aquatic Plant Surveys** - Concerned with both native and nonnative plants - Multiple surveys used in assessment - Early-season AIS survey (ULERCLA Project) - Point-intercept survey (ULERCLA Project) - · Aquatic plant community mapping Onterra LLC ### Fisheries Data Integration - No fish sampling completed - Assemble data from WDNR, USGS, USFWS, & GLIFWC - Fish survey results summaries (if available) - Use information in planning as applicable Onterra LLC ### Standard survey used as base Planning committee develops additional questions and options Must not lead respondent to specific answer through a "loaded" question Survey must be approved by WDNR Survey must be approved by WDNR Onterra LLC ## Planning Process Planning Committee Meetings Study Results Conclusions & Initial Recommendations Kick-Off Meeting 3 ### Eagle River Chain Planning Process - Chain-wide project brings on unique situation - · Cost savings are great - Providing attention to individual lakes is difficult - Lake representatives - Communication link between stakeholders from individual lakes and Planning Committee - Stakeholder survey comments will be important Onterra LLC ### **Cranberry Lake Management Planning Project Update** December 2013 Submitted by: Dan Cibulka, Onterra, LLC With the securing of grant funds from the State of Wisconsin in April of 2013, studies are underway to complete a management planning project for Cranberry Lake. Specifically, these studies are designed to update a management plan prepared in 2006. The design of the project is comprehensive in nature to understand and document multiple components of the Cranberry Lake ecosystem: its water quality, shoreland condition, native and non-native aquatic plants, its surrounding watershed and the perceptions of stakeholders that live on and near the lake. To begin this project, data collection on many environmental variables was required. Onterra staff visited Cranberry Lake numerous times in 2013, starting right away in April with the collection of water quality samples. Monitoring of water quality continued through the summer and fall to characterize the lake's water quality during different times of the year. This tells ecologists much about the way physical and chemical components react as lake conditions change. A shoreland condition survey was also conducted on Cranberry Lake to characterize the level of development in this ecologically sensitive area of the lake. Data from this survey will help Cranberry Lake stakeholders prioritize areas for remediation, if it is something that the Cranberry Lake Association wishes to pursue. Native and non-native aquatic plant inventories have been conducted as a part of an Aquatic Invasive Species Established Population Control (AIS-EPC) Grant. Monitoring of Eurasian water Cranberry Lake shoreland condition. milfoil (EWM) will continue in 2014 and 2015 through this grant. These data will be incorporated within the planning project management discussion and decision-making. There are several stakeholder engagement opportunities for those wishing to discuss management of Cranberry Lake. A project Kick-Off Meeting was held in July of 2013 to introduce stakeholders to the project and what it entails. The second meeting scheduled for this project includes a planning committee meeting, which will be held in spring/summer of 2014. Lastly, an anonymous survey will be distributed in 2014 to capture the perceptions of Eagle River Chain stakeholders on issues such as water quality, recreational use of the lake, issues of concern, and general management of the ecosystem. This will be a great opportunity for Cranberry Lake residents to contribute to the planning process through voicing their opinion on how Cranberry Lake is managed. ### Eagle River Chain of Lakes Management Planning Process - Chain-wide project brings on unique situation - Cost savings are great - Providing attention to individual lakes can be difficult - Lake representatives - Communication link between stakeholders from individual lakes and Planning Committee - Stakeholder survey information is important Onterra, LLC ### **APPENDIX H** **Agency Comments on Draft Documents** WDNR Comments Regarding Draft Phase I & II Plan Received January 8, 2016 Onterra response in red. ### **Comments: Eagle River Chain Comprehensive Lake Management Plan** - 1. Overall the management plan is well organized and descriptive - 2. Title page should include the actual lake grant # The grant numbers for the Phase I & II project lakes have been added to the title page - 3. Table of contents: Summaries and Conclusion is on page 83 not page 82 Thank you. Correction has been made. - 4. Page 9 Table 2.0-1 are the occurrences of pale yellow iris and garden loosestrife vouchered? There is no record of occurrences on the DNR website. Both of these plants were initially discovered in the chain by the county, and according to our database it does not look like we vouchered any specimens. We can certainly voucher these next year if needed. Please let me know. - 5. Page 17 Par. 1 Spelling "<u>following</u>" should be <u>flowing?</u> Yes, thank you. Correction has been made. - 6. Page 62 Figure 3.4-3 <u>Littoral Frequency of Occurrence (%)</u> scale could be decreased for better visual analysis Change has been made. - 7. Page 63 What was the p-value used for the chi square analysis Chi-square $\alpha = 0.05$. I have added this to the figure caption. - 8. Page 86 Par. 1 "While it would be ideal to be have all the lakes…" Remove the extra "be" Correction has been made. - 9. Throughout all documents there seemed to be a formatting error that caused erratic spacing, and even made some words appear as the first letter was separated from the rest of the word. This may be due to the conversion from a word document to a pdf. I will look into this and see if it can be corrected. - 10. Will there be further investigation and analysis into the incidental losses of native aquatic vegetation due to whole lake 2-4-D treatments. Particularly wild rice. A whole-lake treatment was conducted in Scattering Rice Lake in 2010 and in Watersmeet in 2013. Our whole-lake point-intercept data displayed in the report were collected in 2012 prior to the treatment in Watersmeet. The only wild rice populations we have encountered in the chain have been in Watersmeet, and no treatments have occurred in or upstream of these areas. Because of this, we have attributed the reduction in wild rice occurrence to natural fluctuations that this species experiences (boom/bust) every 3-4 years. Chainwide, our 2012 data indicate that compared with surveys from 2005/2006 that there were other small reductions in occurrence of spatterdock, flat-stem pondweed, and large-leaf pondweed. Reductions in the occurrence of some native plants in Scattering Rice Lake are discussed within that individual lake section. ### **Comments: Voyageur Lake** 1. Figure 8.3.1-1 7/23/14 data is ordered incorrectly. It appears after 8/27/14 Correction has been made. ### **Comments: Scattering Rice Lake** 1. Throughout the management goals section, the body of water is frequently referred to as "Scattering Rice River Chain Of Lakes." Change to either Eagle River Chain of Lakes, or Scattering Rice Lake, depending on the goal being addressed. Correction has been made. ### **Comments: Appendix B (User Survey)** 1. Most users surveyed seem relatively unconcerned about shoreland development and loss of aquatic habitat, despite being very concerned about excessive plant growth, a perceived decline in fishery quality, and water quality degredation. Excellent opportunity here for education on the root causes of water quality and habitat issues rather than just treating the symptoms. There is an educational/outreach goal within the chain-wide implementation plan (Goal #4). Are you suggesting additional actions? WDNR Comments on Draft Phase III Plan Received July 24, 2018 Onterra responses in orange. - These comments are for the Comprehensive Plan (no comments from the individual plans): - o Page 26. 2nd Par. 2nd sent. Reference to Archibald lake? Corrected - o Pages 26-27. Sent. The proportion of...... This info was not asked as part of this survey and this sentence should be removed. - Agreed. The sentence was modified to say some sort of unassessed form of lake or lake water degradation. - O Page 43. Coarse woody habitat. 2nd Par. Recommend putting in the last sentence about coarse woody habitat as in the individual plans with the reference to Christensen and how that paper helps gives the data collected as part of this project context. - Added the requested sentence from the individual lake report section and some 'qualifying' verbiage about the lakes we sampled that we have used in other plans. - Page 72. 2nd Par. Last sent. Recommend adding the words (or declined) along with the current word "reduced" to this sentence as I think a large part of the EWM has declined in abundance in Watersmeet (i.e, reduced implies from management). - Agreed. The sentence has been modified. General comment – Concerned about hard triggers/thresholds that might automatically be used to determine an AIS (EWM/CLP) management action. If a developed trigger/threshold invokes data collection and discussion that might lead to management, that would seem reasonable. This would allow
each individual year to be compared with previous actions and successes or failures, look at emerging science, the rest of the lake biota as a whole picture in considering further management, and perhaps other issues that may arise during a project. Would be glad to discuss. This area has been updated with text similar to other plans where reaching the trigger brings about discussion regarding a possible treatment and initiates monitoring. General comment – glad to see that folks might be interested in shoreland and stormwater improvement projects, either via healthy lakes and/or a lake protection grant. Look forward to possibly working with folks in this endeavor. This is something that the ERCLA board has promoted since the beginning of this project. The most difficult part for this group and many of our other lake groups, is getting the first few property owners to take plunge (bad pun intended). July 18, 2014 ### **Aquatic Plant Surveys** - Concerned with both native and nonnative plants - Multiple surveys used in assessment - Early Season AIS Survey - Point-intercept survey - Systematic sampling method - Can compare lakes within same ecoregion - Plant community mapping - Accurately map floating-leaf & emergent communities - May compare to future surveys Onterra, LLC # Plant Data Overview • 63 Native plants • 31 Submergent (1 listed as special concern: Vasey's pondweed) • 17 Emergent • 3 Floating-leaf • 6 Floating-leaf/Emergent • 2 Submergent/Emergent • 4 Free-floating • 4 Non-native plant species • Eurasian water milfoil (All Lower Eagle River Chain of Lakes) • Purple loosestrife (Cranberry & Catfish so far...) • Pale yellow iris (Cranberry & Catfish so far...) • Yellow garden loosestrife (Cranberry Lake so far...) ### **Conclusions** - Shoreline Condition - Cranberry: 50% is either undeveloped or developed-natural with just over 20% comprised of developed-unnatural or urbanized - Catfish: Just over 20% is undeveloped or developed natural, while over 40% is developed-unnatural or urbanized - Aquatic plant community - · Based upon standard analysis, native community is of high quality - No significant lake-wide impacts to native community from EWM treatments detected (2005/2006 – 2012) - EWM has been significantly reduced chain-wide from 2007-2013, but problem areas remain (Cranberry channel & Watersmeet) - Purple loosestrife and pale-yellow iris were located in Cranberry & Catfish Lakes thus far, while yellow garden loosestrife was located in Cranberry thus far Onterra, LLC ### **Conclusions** - Water Quality for Cranberry & Catfish Lakes overall is good - Phosphorus and chlorophyll-a levels indicate algae blooms may occur in some years - Watershed comprised of forests and wetlands responsible for stained water - Minimal historical data are available from either lake, but no apparent trends are occurring within available dataset - Watershed is in great condition - · Land cover is of high quality - Majority is comprised of forests and wetlands which export minimal amounts of phosphorus - Watershed is very large when compared to the area of the lakes - Sheer size of watershed is sufficient to deliver enough phosphorus to create productive, eutrophic lakes Onterra, LLC ### Next Steps... - Phase I Planning Committee to meet again with Onterra ecologists to develop Implementation Plan framework - Implementation Plan - Includes realistic management goals (to meet challenges) - Management goals include one or more management actions - · Management actions include a facilitator and a timeframe - Phased Management Plan will include a Chain-Wide Implementation Plan and individual lake Implementation Plans - Chain-Wide Implementation Plans - Changed and adopted with each phase of the management planning project - Individual Lake Implementation Plans - Advantage of phased project is that this can also be amended as the project progresses Onterra, LLC ### Implementation Plan Example - Chain-Wide - Management Goal: Continue to Control EWM and Prevent Other AIS Infestations on the Eagle River Chain of Lakes - Management Action: Continue Clean Boats Clean Waters watercraft inspections at Eagle River Chain of Lakes public access locations ### Individual Lake - Management Goal: Maintain Reasonable Navigation within Rest Lake (Manitowish Chain) - Management Action: Use mechanical harvesting to maintain reasonable navigation on Rest Lake Onterra, LLC July 18, 2014 August 14, 2015 4 August 14, 2015 5 ### Scattering Rice Lake Impairment Listing - 2014 total phosphorus & Chl-a concentrations exceed recreational use standards (40 μ g/L for TP; 20 μ g/L for Chl-a) - WDNR currently assessing Scattering Rice Lake (3 years of data) - If listed as impaired, WDNR to determine management actions (if any) can be taken to reduce TP loading Onterra, LLC ## **Aquatic Plant Surveys** - Concerned with both native and nonnative plants - Multiple surveys used in assessment - Early Season AIS Survey - Point-intercept survey - Systematic sampling method - Can compare lakes within same ecoregion - Plant community mapping - Accurately map floating-leaf & emergent communities - May compare to future surveys Onterra, LLC #### **Conclusions** - Water Quality overall for Voyageur, Eagle, & Scattering Rice is good - Phosphorus and chlorophyll-a levels indicate algae blooms may occur in some years - Expected given size of lakes' watersheds & lake morphology - Internal phosphorus loading in Eagle & Scattering Rice Lakes - Likely a greater impact on Scattering Rice Lake (polymictic) - Additional watershed modeling in final phase will shed more light - Watershed is in great condition - · Land cover is of high quality - Majority is comprised of forests and wetlands which export minimal amounts of phosphorus - Watershed is very large when compared to the area of the lakes - Sheer size of watershed is sufficient to deliver enough phosphorus to create productive, eutrophic lakes ### **Conclusions** - Shoreline Condition - Voyageur: ~41% is highly developed, while ~50% contains little to no development - Eagle: ~48% is highly developed, while ~37% contains little to no development - Scattering Rice: ~18% is highly developed, while ~63% contains little to no development - Aquatic plant community - Based upon standard analysis, native community is of high quality - No significant lake-wide impacts to native community from EWM treatments detected (2005/2006 – 2012) - EWM has been significantly reduced chain-wide from 2007-2014, but problem areas remain (Cranberry channel & Watersmeet) - Purple loosestrife, pale-yellow iris, yellow garden loosestrife Onterra, LLC ## Next Steps... - Phase II Planning Committee to meet again with Onterra ecologists to modify/add to Implementation Plan framework - Implementation Plan - Includes realistic management goals (to meet challenges) - Management goals include one or more management actions - Management actions include a facilitator and a timeframe - Phased Management Plan will include a Chain-Wide Implementation Plan and individual lake Implementation Plans (if applicable) - Chain-Wide Implementation Plans - Changed and adopted with each phase of the management planning project - Individual Lake Implementation Plans - Advantage of phased project is that this can also be amended as the project progresses Onterra, LLC ## Implementation Plan Example - Chain-Wide - Management Goal: Continue to Control EWM and Prevent Other AIS Infestations on the Eagle River Chain of Lakes - Management Action: Continue Clean Boats Clean Waters watercraft inspections at Eagle River Chain of Lakes public access locations - Individual Lake - Management Goal: Maintain Reasonable Navigation within Rest Lake (Manitowish Chain) - Management Action: Use mechanical harvesting to maintain reasonable navigation on Rest Lake Onterra, LLC ## **Implementation Plan** - Management Goal 3: Actively Manage Existing and Prevent Further Aquatic Invasive Species Establishment within the Eagle River Chain of Lakes - Management Action: Continue annual monitoring of the Eagle River Chain's Eurasian water milfoil (EWM) population - Management Action: Enact Eurasian water milfoil active management strategy and necessary management strategy assessments - Management Action: Continue annual early-season AIS monitoring to detect potential occurrences of curly-leaf pondweed (CLP) Onterra, LLC ### Implementation Plan - Management Goal 1: Maintain Current Water Quality Conditions - Management Action: Monitor water quality through WDNR Citizens Lake Monitoring Network (CLMN) - Management Goal 2: Lessen the Impact of Shoreline Development on the Eagle River Chain of Lakes - Management Action: Investigate restoring highly developed shoreland areas on the Eagle River Chain of Lakes - Management Action: Preserve natural shoreland areas on the Eagle River Chain of Lakes - Management Action: Investigate with WDNR and private landowners to expand coarse woody habitat in the Eagle River Chain of Lakes Onterra, LLC #### Implementation Plan - Management Goal 3: Actively Manage Existing and Prevent Further Aquatic Invasive Species Establishment within the Eagle River Chain of Lakes continued... - Management Action: Continue monitoring and control of purple loosestrife populations in Eagle River Chain of Lakes shoreland areas - Management Action: Continue garden yellow loosestrife monitoring project on the Eagle River Chain of Lakes - Management Action: Continue monitoring and control of pale-yellow iris on the Eagle River Chain of Lakes - Management Action: Initiate aquatic invasive species rapid response plan upon discovery of new infestation Onterra, LLC September 17, 2015 ## **Implementation Plan** - Management Goal 3: Actively Manage Existing and Prevent Further Aquatic Invasive Species Establishment within the Eagle River Chain of Lakes continued... - Management Action: Continue and expand Clean Boats Clean Waters watercraft inspections at Eagle River Chain of Lakes public
access locations Onterra, LLC ## **Implementation Plan** - Management Goal 4: Continue and Expand Awareness and Education of Lake Management and Lake Stewardship Matters to Eagle River Chain of Lakes Riparians and General Public - Management Action: ERCLA will support an Education and Communication Committee to promote stakeholder involvement, inform stakeholders of various lake issues, as well as the quality of life of the Eagle River Chain - Management Action: Increase ERCLA membership and participation Onterra, LLC September 17, 2015 ## **Eagle River Chain of Lakes Management Planning Project** November 2015 Update Submitted by: Brenton Butterfield, Onterra, LLC The non-native, invasive aquatic plant Eurasian water milfoil (Myriophyllum spicatum; EWM) has been actively managed on the Lower Eagle River Chain of Lakes via herbicide control methods annually since 2008. Understanding that it important periodically assess the health of these lakes that are undergoing large-scale **EWM** management, the Eagle River Chain of Lakes Association, (ERCLA) with Inc. the assistance of Onterra, Figure 1. Eagle River Chain of Lakes comprehensive management planning phases. initiated a multi-phased project to complete comprehensive management plan updates for the 10 lakes in the Lower Eagle River Chain beginning in 2013. Due to the size of the chain and the time needed to conduct the studies, the project was designed to be completed in four phases each comprised of two to three lakes, starting with the upstreammost lakes (Catfish and Cranberry) in 2013 and finishing downstream (Yellow Birch and Watersmeet) in 2016-17 (Figure 1). Following ERCLA's successful application of two Wisconsin Department of Natural Resources (WDNR) Aquatic Invasive Species (AIS) Education, Planning and Prevention (EPP) Grants, baseline studies to assess the health the aquatic plant communities, water quality, watersheds, and immediate shoreland areas have already been completed by Onterra on the Phase I and Phase II lakes in 2013 and 2014, respectively. However, due to revisions to the methods for which the WDNR reviews AIS grant applications in 2014, ERCLA's application to aid in funding the 2015 studies on the Phase III lakes (Otter, Lynx, and Duck) was unsuccessful. Therefore, these studies were postponed for one year and another AIS-EPP Grant is being sought to fund the Phase III studies in 2016-17. Studies are now slated to be completed on Yellow Birch Lake and Watersmeet Lake in 2017-18. While all of the results of the Phase I and Phase II study lakes cannot be presented here, some of the highlights are discussed. Overall, these lakes are very healthy in terms of their aquatic plant community, water quality, and watersheds. However, shoreland health assessments indicate that these lakes have a higher degree of development along their shorelines and are lacking natural habitat. In terms of water quality, phosphorus is the primary nutrient that controls algae growth within the majority of Wisconsin's lakes and in the Eagle River Chain. Phosphorus is one of the primary parameters used in assessing a lake's water quality. Of the five Phase I and Phase II lakes studied thus far, data indicate that there is some variance in average summer near-surface phosphorus concentrations between the lakes, but all the lakes fall within the *good* category for their respective lake type – shallow, lowland drainage lakes or deep, lowland drainage lakes (Figure 2). While the phosphorus concentrations in Cranberry, Catfish, Voyageur, and Eagle Lakes are what are to be expected given their morphology and watershed size, phosphorus concentrations in Scattering Rice Lake are slightly higher than expected. It is believed this higher-than-expected phosphorus is due to a natural process termed *internal phosphorus loading*. Internal phosphorus loading involves the release of phosphorus from bottom sediments when the overlying water becomes anoxic, or devoid of oxygen. During the summer the lake stratifies during periods of calm weather, or forms distinct layers of water based on temperature and density, and decomposition of organic matter on the lake bottom uses up available oxygen. Because of stratification, this bottom layer of water can no longer mix with the warmer layer of water above and as a result is no longer receiving atmospheric inputs of oxygen. In the absence of oxygen, phosphorus is released from bottom sediments into the overlying water. Given Scattering Rice Lake's shallow nature, strong winds can easily break stratification and mix these layers together delivering phosphorus-rich water near the bottom to the surface where it becomes available to free-floating algae. This process is believed to be driving the higher phosphorus concentrations in Scattering Rice Lake. Figure 2. Average summer (June-August) near-surface total phosphorus concentrations in the Lower Eagle River Chain of Lakes. NLF = Northern Lakes and Forests. While phosphorus concentrations in the chain are higher than the median value for other lakes within the region, this is to be expected given the size of watershed, or drainage basin, of these lakes. Watershed assessments indicate that the majority of land cover within the Eagle River Chain's watershed is comprised of forests and wetlands, land cover types which typically deliver the least amount of phosphorus to our waterbodies. However, given the sheer size of the watershed relatively to the size (volume) of the lakes, there is sufficient phosphorus in the Eagle River Chain to create periodic, perceptible algae blooms. Chlorophyll-a concentrations, a measure of free-floating-algae, fell within the *good* category for all of the Phase I and Phase II lakes. Water clarity, which is largely driven by free-floating algae and dissolved compounds within the water, also fell in the *good* category for these lakes, as well. Comprehensive aquatic plant studies were completed on the Eagle River Chain in 2012 as a part of the EWM management project (Onterra, 2013). These studies found that the native aquatic plant community of the chain was of higher quality than the majority of the lakes within the region and the state, and that the chain supports a number of rare species. These studies have also revealed that the occurrence of EWM has been significantly reduced chain-wide since 2008. Additional studies to map areas of floating-leaf and emergent plants are also being completed with each phase. The comprehensive plant surveys are scheduled to be completed on the chain again in 2017. Shoreland assessment surveys completed on the Phase I and Phase II lakes found that approximately 50% or greater of the shorelines of Cranberry, Catfish, Voyageur, and Eagle Lakes were comprised of areas with higher degrees of development and little natural habitat (Figure 3). Approximately 60% of Scattering Rice Lake's shoreland zone is comprised of more natural shoreline. Figure 3. Eagle River Chain of Lakes shoreland condition by lake. Created using data from late summer surveys. Onterra ecologists have held planning meetings with Planning Committees from both the Phase I and Phase II lakes to present the study results and develop a chain-wide Implementation Plan. The Implementation Plan will contain management goals with associated actions detailing how these goals will be reached. Some of these management goals are specific to the chain itself such as Lessening the Impact of Shoreline Development on the Eagle River Chain of Lakes, while others focus on increasing stakeholder involvement and education, like Continue and Expand Awareness and Education of Lake Management and Stewardship Matters to Eagle River Chain of Lakes Riparians and the General Public. The Implementation Plan is currently being developed and is under review by the Phase I and Phase II Planning Committees. Following approval by the Planning Committee members, the first draft of the Phase I and Phase II report will be submitted to the WDNR for approval. In addition, a WDNR AIS-EPP Grant application will be submitted this December to seek funding for the Phase III studies slated to be completed on Otter, Lynx, and Duck Lake in 2016. - Why Create a Lake Management Plan? - ERC Phased Project Overview - Elements of a Lake Management Planning Project - Data & Information - Planning Process - Project Update Onterra, LLC ## Why create a lake management plan? - Reassess chain's aquatic plant community & other aspects following multiple years of annual EWM control - To create a better understanding of a lake's positive and negative attributes. - To discover ways to minimize the negative attributes and maximize the positive attributes. - To foster realistic expectations and dispel myths. - To create a snapshot of the lake for future reference and planning. Onterra, LLC July 16, 2016 July 16, 2016 ## Elements of an Effective Lake Management Planning Project #### **Data and Information Gathering** Environmental & Sociological **Planning Process** Brings it all together Onterra, LLC # Data and information gathering - Study Components - Water Quality Analysis (each phase) - Watershed Assessment (Phase IV) - Aquatic Plant Surveys - Fisheries Data Integration (Phase III) - Shoreline Assessment (each phase) - Stakeholder Survey (completed Phase I) Onterra, LLC ## **Planning Process** ## **Planning Committee Meetings** Study Results (including a stakeholder survey) Conclusions & Initial Recommendations Management Goals Management Actions Timeframe Facilitator(s) **Implementation Plan** Onterra, LLC ## Management Plan Documents - Multiple documents - Chain-wide results & Implementation Plan - Individual lake results & Implementation Plans - Appendices (raw data) ## Phase I & II Study Highlights - Water Quality - Overall good and expected with the exception of... - Scattering Rice Lake: phosphorus concentrations ~58% higher than predicted - Internal Nutrient Loading suspected cause - Weekly volunteer monitoring
of temp/D0 in 2016 & additional water samples being collected - Watershed - 531 square miles - >90% comprised of natural land cover #### Implementation Plan Development - Current chain-wide management goals: - 1. Maintain current water quality conditions - 2. Lessen the impact of shoreline development on the ERC - 3. Actively manage existing & reduce the likelihood of further AIS establishment within the ERC - 4. Continue & expand awareness and education of lake management and stewardship matters to ERC riparians and the general public #### Next Steps - Complete studies on Phase III lakes - Seek grant for Phase IV lakes in December 2016 - Meet with Phase III planning committee next year to continue development of plan Onterra, LLC ## Phase I & II Study Highlights - Aquatic Plant Community - Native community is of high quality - High number of species and many sensitive species present - No detectable lake-wide impacts to native aquatic plant community following EWM management - Non-native plants: EWM, purple loosestrife, pale-yellow iris, yellow garden loosestrife - Shoreland Condition - Overall, higher degree of shoreland development - Likely largest stressor to the chain at present Onterra, LLC July 16, 2016 ## **Eagle River Chain of Lakes Management Planning Project** December 2016 Update Submitted by: Brenton Butterfield, Onterra, LLC In 2013, the Eagle River Chain of Lakes Association, Inc. (ERCLA), with the assistance of Onterra, initiated a multi-phased project to systematically study and create comprehensive management plan updates for the 10 lakes within the Lower Eagle River Chain (Figure 1). Given the number of lakes being studied and the time needed to conduct the studies, the project was designed to be completed in four phases each comprised of two to three lakes. Figure 1. Lower Eagle River Chain of Lakes Management Planning Project Phases. Following ERCLA's successful application of two Wisconsin Department of Natural Resources (WDNR) Aquatic Invasive Species (AIS) Education, Planning and Prevention Grants, baseline studies were completed on the Phase I and II lakes in 2013 and 2014, respectively. However, due to revisions to the methods for which the WDNR reviews AIS grant applications in 2014, ERCLA's application to aid in funding the studies for the Phase III lakes in 2015 was unsuccessful and the management planning project was postponed until the grant application could be resubmitted the following year. Following the resubmission of the grant application in December of 2015, ERCLA was successful in securing funding to move forward with the management planning project and complete the studies on the Phase III lakes in 2016. To date, baseline studies to assess the health of the aquatic plant communities, water quality, watersheds, and immediate shoreland areas have been completed by Onterra on the Phase I, II, and III lakes. In addition, perceptions of the chain's stakeholders were also gathered through the distribution of an anonymous stakeholder survey in 2014. This project update is intended to provide Eagle River Chain stakeholders with some study highlights from the lakes studied thus far, as well as provide a timeline for the remaining actions that will be taken as part of this project. While much of the data are still being analyzed for the Phase III lakes, some study highlights that are available are discussed. #### Water Quality Studies Water quality data were collected from each lake within each phase multiple times during the growing season and once during the winter months. These data provide ecologists with a picture of what nutrient dynamics are like within the lake over the course of a year as well as which nutrients (phosphorus or nitrogen) regulate algal growth. In addition, any available historical data are also analyzed to determine if water quality has changed over time. Results from the Phase I and II lakes and preliminary results from the Phase III lakes indicate that water quality parameters fall within the *good* category for Wisconsin's drainage lakes. In addition to collecting water quality data on the Phase III lakes in 2016, additional water quality data were also collected from Scattering Rice Lake. Analysis of water quality data collected from Scattering Rice Lake in 2014 under Phase II indicated that phosphorus concentrations were higher than expected. It was suspected that the elevated concentrations of phosphorus were due to a natural process known as *internal nutrient loading*. Internal nutrient loading is a process by which anoxic (devoid of oxygen) bottom waters cause phosphorus to be released from bottom sediments into the overlying water. While internal nutrient loading occurs on many lakes, Scattering Rice Lake's shallow nature allows this sediment-released phosphorus to be mixed to surface waters where it can fuel higher levels of algal growth. To gain a better understanding of nutrient dynamics in Scattering Rice Lake and to determine if internal nutrient loading is contributing to the higher-than-expected phosphorus concentrations, additional water quality data were collected from the lake in 2016. This included samples collected by Onterra ecologists as well as temperature and dissolved oxygen data collected on a weekly basis from June through October by Scattering Rice Lake volunteers. These data are currently being analyzed, and results will be included within the Phase III draft report that will be created later this winter. #### Aquatic Plant Studies Comprehensive aquatic plant studies were completed on the Eagle River Chain in 2012 as a part of the **EWM** management project. These studies found that the native aquatic plant community of the chain was of higher quality than the majority of the lakes within the region and the state. Of the 67 aquatic plant species located in the chain, the most abundant are two Figure 2. Two relatively rare native aquatic plants, alpine pondweed (left) and Vasey's pondweed (right), found in the Lower Eagle River Chain of Lakes. Photo credit Onterra. native species, slender naiad (*Najas flexilis*) and wild celery (*Vallisneria americana*). Four nonnative, invasive species were located and include Eurasian water milfoil (*Myriophyllum spicatum*), purple loosestrife (*Lythrum salicaria*), garden yellow loosestrife (*Lysimachia vulgaris*), and paleyellow iris (*Iris pseudacorus*). The chain was also found to harbor two native aquatic plant species that are considered relatively rare in Wisconsin, Vasey's pondweed (*Potamogeton vaseyi*) found in all 10 lakes, and alpine pondweed (*Potamogeton alpinus*) found in Cranberry, Voyageur, and Scattering Rice Lakes (Figure 2). #### Shoreland Condition While water quality within the lakes studied thus far is good for Wisconsin drainage lakes and the aquatic plant community within the chain is of higher quality than the majority of lakes within the state, shoreland conditions assessment surveys completed on the Phase I, II, and III lakes by Onterra ecologists revealed a higher degree of shoreland development. Of the lakes studied thus far, approximately 32% (12.6 miles) of the chain's shoreline is considered *urbanized* or *developed-unnatural*, categories which are assigned to areas with little to no intact natural habitat. These areas provide little benefit to and may have adverse impacts to the chain's ecology. Shoreland development is likely one of the largest stressors to the ecology of the Eagle River Chain, and in planning meetings held with Planning Committees from both the Phase I and II lakes a management goal was developed address shoreland development. This management goal is to lessen the impact of shoreland development on the Eagle River Chain of Lakes, and includes actions to restore developed shorelands and protect those that currently have little to no development. **Figure 3. Eagle River Chain of Lakes shoreland condition.** Created using data from Onterra shoreland condition assessment surveys. #### Additional Lake Studies In addition to water quality, aquatic plant, and shoreland studies, Onterra ecologists will also be completing a watershed modeling assessment which will be completed in the final phase of the project. This assessment is designed to determine if phosphorus concentrations measured within each lake match phosphorus concentrations predicted based on each lakes' watershed size and land cover composition. This modeling has already been completed for Scattering Rice Lake, and aided in determining that phosphorus concentrations were higher than expected based upon the size and composition of its watershed. This modeling will be completed for the remaining lakes following the collection of water quality data from the Phase IV lakes. #### Remaining Steps In summary, all project components are on schedule and proceeding as planned. Onterra is currently analyzing the data collected on the Phase III lakes in preparation for a meeting with the Phase III Planning Committee in the spring/early summer of 2017. The meeting will be held to discuss the results of the studies completed to date from a chain-wide perspective along with a specific focus on the results from the Phase III lakes. The Implementation Plan developed by the Planning Committees for the Phase I and II lakes was recently approved by the WDNR, and the Implementation Plan will continue to be developed with the Phase III Planning Committee. In addition, another WDNR AIS-Education, Planning and Prevention Grant application will be submitted in December to seek funding for the Phase IV studies scheduled to completed on Yellow Birch Lake and Watersmeet in 2017. B ## **APPENDIX B** **Stakeholder Survey Response Charts and Comments** #### Eagle River Chain of Lakes Association - Anonymous Stakeholder Survey Surveys Distributed: 1623 Surveys Returned: 238 Response Rate: 15% Because of the low response rate, these results should not be interpreted as being statistically representative of all
ERC stakeholders. They may indicate possible trends about stakeholder perceptions, but that cannot be stated with any statistical confidence. #### Eagle River Chain of Lakes Property #### 1. On which lake or waterway is your Eagle River Chain property located? | Answer Options | | Response
Percent | Response
Count | |-------------------------------------|---------|---------------------|-------------------| | Cranberry Lake | | 19.3% | 46 | | Catfish Lake | | 19.3% | 46 | | Watersmeet Lake | | 10.5% | 25 | | Duck Lake | | 8.8% | 21 | | Scattering Rice Lake | | 8.4% | 20 | | Yellow Birch Lake | | 8.0% | 19 | | Eagle Lake | | 6.7% | 16 | | Otter Lake | | 6.3% | 15 | | Voyageur Lake | | 3.4% | 8 | | Lynx Lake | | 0.8% | 2 | | I do not live on any of these lakes | | 8.4% | 20 | | | answere | ed question | 238 | | | skippe | ed question | 0 | #### 2. What type of property do you own on or near the Eagle River Chain? | Answer Options | Response
Percent | Response
Count | |----------------------------------|---------------------|-------------------| | A year round residence | 44.2% | 96 | | Seasonal residence (summer only) | 24.9% | 54 | | Weekends throughout the year | 22.1% | 48 | | Resort property | 3.7% | 8 | | Undeveloped | 0.9% | 2 | | Other (please specify) | 4.1% | 9 | | answer | ed question | 217 | | skipp | ed question | 21 | | Number | Other (please specify) | |--------|---| | 1 | Seasonal residence (not summer only) | | 2 | 2 a condo that sometimes is for rent | | 3 | vacation property used throughout the year at various times | | 4 | Camp | | 5 | Cabin at Eagle Waters used throughout the year | | • | all seasons. but not year round | | 7 | summer and holidays | | 8 | deducation facility/usfs property | | 9 | about four months throughout the year | #### 3. How long have you owned your property on the Eagle River Chain? | Answer Options | Response | |-------------------|----------| | Answer Options | Count | | | 216 | | answered question | 216 | | skipped question | 22 | | Category
(# of years) | Responses | Re | %
esponse | |--------------------------|-----------|----|--------------| | 0 to 5 | | 33 | 15% | | 6 to 10 | | 38 | 18% | | 11 to 15 | | 39 | 18% | | 16 to 20 | | 28 | 13% | | 21 to 25 | | 15 | 7% | | >25 | | 63 | 29% | #### 4. What type of septic system does your property utilize? | Answer Options | Response
Percent | Response
Count | |---------------------------|---------------------|-------------------| | Conventional system | 55.6% | 120 | | Holding tank | 20.8% | 45 | | Mound | 7.9% | 17 | | Do not know | 6.9% | 15 | | Municipal sewer | 3.7% | 8 | | Advanced treatment system | 3.2% | 7 | | No septic system | 1.9% | 4 | | | answered question | 216 | | | skipped question | 22 | #### 5. How often is the septic system on your property pumped? | Answer Options | Response
Percent | Response
Count | |-----------------------|---------------------|-------------------| | Multiple times a year | 6.8% | 14 | | Once a year | 14.0% | 29 | | Every 2-4 years | 67.6% | 140 | | Every 5-10 years | 4.3% | 9 | | Do not know | 7.2% | 15 | | answer | answered question | | | skipp | ed question | 31 | #### Recreational Activity on the Eagle River Chain #### 6. For how many years have you fished the Eagle River Chain? | Answer Options | Response
Count | |-------------------|-------------------| | | 213 | | answered question | 213 | | skipped question | 25 | | Category
(# of years) | Responses | Re | %
esponse | |--------------------------|-----------|----|--------------| | 0 to 10 | | 73 | 34% | | 11 to 20 | | 53 | 25% | | 21 to 30 | | 30 | 14% | | 31 to 40 | | 20 | 9% | | 41 to 50 | | 24 | 11% | | 51 to 60 | | 10 | 5% | | >60 | | 3 | 1% | | | | | | #### 7. Have you personally fished on the Eagle River Chain in the past three years? | Answer Options | Response | Response | |-----------------|------------------|----------| | Allswei Options | Percent | Count | | Yes | 78.4% | 182 | | No | 21.6% | 50 | | а | nswered question | 232 | | | skipped question | 6 | #### 8. What species of fish do you like to catch on the Eagle River Chain? | Answer Options | Response
Percent | Response
Count | |------------------------|---------------------|-------------------| | Walleye | 67.4% | 124 | | Crappie | 54.9% | 101 | | Yellow perch | 44.6% | 82 | | Bluegill/Sunfish | 44.0% | 81 | | Muskellunge | 37.0% | 68 | | Northern pike | 33.7% | 62 | | Smallmouth bass | 29.3% | 54 | | Largemouth bass | 16.8% | 31 | | All fish species | 31.0% | 57 | | Other (please specify) | 1.6% | 3 | | | answered question | 184 | | | skipped question | 54 | | Number | Other (please specify) | |--------|--------------------------| | 1 | rock bass | | 2 | Walleye is our favorite! | | 3 | walleye | #### 9. How would you describe the current quality of fishing on the Eagle River Chain of Lakes? | Answer Options | Very Poor | Poor | Fair | Good | Excellent | Unsure | Response
Count | |----------------|-----------|------|------|------|-----------|-------------|-------------------| | | 4 | 27 | 86 | 61 | 3 | 4 | 185 | | | | | | | answere | ed question | 185 | | | | | | | skippe | ed question | 53 | #### 10. How has the quality of fishing changed on the Eagle River Chain since you have started fishing the chain? | Answer Options | Much
worse | Somewhat worse | Remained the same | Somewhat better | Much
better | Unsure | Response
Count | |----------------|---------------|----------------|-------------------|-----------------|----------------|-------------|-------------------| | | 25 | 68 | 66 | 16 | 2 | 8 | 185 | | | | | | | answei | ed question | 185 | | | | | | | skipp | ed question | 53 | #### 11. What types of watercraft do you currently use on the Eagle River Chain? | Answer Options | Response
Percent | Response
Count | |-------------------------------------|---------------------|-------------------| | Boat with greater than 100 hp motor | 47.9% | 113 | | Pontoon | 47.0% | 111 | | Canoe/kayak | 46.6% | 110 | | Boat with 26-100 hp motor | 32.2% | 76 | | Jet ski (personal water craft) | 19.9% | 47 | | Boat with 25 hp or less motor | 19.1% | 45 | | Paddleboat | 18.2% | 43 | | Rowboat | 18.2% | 43 | | Sailboat | 8.5% | 20 | | Do not use watercraft | 1.3% | 3 | | answer | ed question | 236 | | skipp | ed question | 2 | ## 12. For the list below, rank your top three activities that are important reasons for owning or renting your property on or near the Eagle River Chain, with 1 being the most important activity. | Answer Options | 1st | 2nd | 3rd | Rating
Average | Response
Count | | |------------------------------|-----|-----|--------|-------------------|-------------------|--| | Relaxing/entertaining | 89 | 36 | 32 | 1.64 | 157 | | | Motor boating | 41 | 48 | 47 | 2.04 | 136 | | | Fishing - open water | 44 | 46 | 31 | 1.89 | 121 | | | Nature viewing | 24 | 29 | 23 | 1.99 | 76 | | | Swimming | 8 | 20 | 24 | 2.31 | 52 | | | Water skiing/tubing | 13 | 20 | 16 | 2.06 | 49 | | | Canoeing/kayaking | 3 | 7 | 21 | 2.58 | 31 | | | Snowmobiling/ATV | 5 | 12 | 12 | 2.24 | 29 | | | Ice fishing | 0 | 9 | 7 | 2.44 | 16 | | | Jet skiing | 3 | 2 | 10 | 2.47 | 15 | | | Hunting | 2 | 0 | 3 | 2.2 | 5 | | | Sailing | 0 | 3 | 0 | 2 | 3 | | | None of these activities | 0 | 0 | 2 | 3 | 2 | | | Other (please specify below) | 3 | 0 | 2 | 1.8 | 5 | | | | | | answei | red question | 235 | | | | | | skipp | skipped question | | | | Number | "Other" responses | |--------|---| | 1 | 4) Fishing, 5)Motor Boating, | | 2 | trees, summer and fall | | 3 | for retirement | | 4 | gathering place for family | | 5 | My grandparents owed the land before me and to honor my grandpa's memory & his dreams, I build a cottage on the land for our entire family. | | 6 | All of the recreational activities - hiking, | | 7 | 1. cross country skiing 2. | | 8 | snow shoe walking | #### Eagle River Chain Current and Historic Condition, Health and Management #### 13. How would you describe the current water quality of the Eagle River Chain? | Answer Options | Very Poor | Poor | Fair | Good | Excellent | Unsure | Response
Count | |----------------|-----------|------|------|------|-----------|-------------|-------------------| | | 3 | 15 | 65 | 126 | 20 | 6 | 235 | | | | | | | answer | ed question | 235 | | | | | | | skipp | ed question | 3 | #### 14. How has the current water quality changed in the Eagle River Chain since you first visited the chain? | Answer Options | Severely degraded | | | Somewhat improved | Greatly improved | Unsure | Response
Count | |----------------|-------------------|----|----|-------------------|------------------|-------------|-------------------| | | 9 | 66 | 87 | 39 | 22 | 11 | 234 | | | | | | | answere | ed question | 234 | | | | | | | skippe | ed question | 4 | ## 15. Before reading the statement above, had you ever heard of aquatic invasive species? | aquatic invasive species: | | | |---------------------------|---------------------|-------------------| | Answer Options | Response
Percent | Response
Count | | Yes | 98.7% | 233 | | No | 1.3% | 3 | | answei | red question | 236 | | skipp | ed question | 2 | | 16. Do you believe aquatic invasive species are present within the Eagle River Chain of Lakes? | | | | | |--|--------|---------------------|-------------------|--| | Answer Options | | Response
Percent | Response
Count | | | Yes | | 99.6% | 232 | | | No | | 0.4% | 1 | | | answered question 233 | | | | | | | skippe | d question | 5 | | #### 17. Which aquatic invasive species do you believe are in the Eagle River Chain of Lakes? skipped question | Answer Options | Response | Response |
--|-------------|----------| | Aliswei Options | Percent | Count | | Eurasian water milfoil | 94.8% | 220 | | Purple loosestrife | 64.7% | 150 | | Heterosporosis (Yellow perch parasite) | 22.0% | 51 | | Pale yellow iris | 17.7% | 41 | | Curly-leaf pondweed | 16.8% | 39 | | Rusty crayfish | 16.8% | 39 | | Carp | 10.3% | 24 | | Zebra mussel | 9.5% | 22 | | Garden yellow loosestrife | 9.1% | 21 | | Spiny water flea | 6.9% | 16 | | Chinese mystery snail | 2.2% | 5 | | Flowering rush | 1.7% | 4 | | Freshwater jellyfish | 1.3% | 3 | | Round goby | 1.3% | 3 | | Alewife | 0.9% | 2 | | Rainbow smelt | 0.4% | 1 | | Unsure, but I believe AIS are present | 11.6% | 27 | | Other (please specify) | 2.6% | 6 | | answere | ed question | 232 | | Number | Other (please specify) | | |--------|-------------------------------------|---------| | | 1 way too much wild rice | | | | 2 wild rice | | | | 3 snails | | | | 4 Sea Grass not sure of the technic | al name | | | 5 too many weeds | | | | 6 water lily | | 5 skipped question #### 18. To what level do you believe each of the following factors may currently be negatively impacting the Eagle River Chain? * Not Present means that you believe the issue does not exist on the Eagle River Chain. ** No Impact means that the issue may exist on the Eagle River Chain but it is not negatively impacting the lake. | Answer Options | *Not
Present | **No
Impact | | Moderately
negative
impact | | Great
negative
impact | Unsure:
Need more
info | Rating
Average | Response
Count | |---------------------------------------|-----------------|----------------|----|----------------------------------|----|-----------------------------|------------------------------|-------------------|-------------------| | Aquatic invasive species introduction | 0 | 1 | 8 | 42 | 43 | 127 | 5 | 3.23 | 226 | | Excessive aquatic plant growth | 1 | 7 | 24 | 59 | 44 | 83 | 8 | 2.68 | 226 | | Watercraft traffic | 2 | 25 | 37 | 75 | 31 | 56 | 4 | 2.19 | 230 | | Algae blooms | 6 | 14 | 31 | 61 | 30 | 52 | 29 | 2.02 | 223 | | Loss of aquatic habitat | 4 | 22 | 38 | 65 | 36 | 35 | 21 | 1.88 | 221 | | Shoreline development | 3 | 41 | 37 | 71 | 24 | 41 | 6 | 1.86 | 223 | | Water quality degradation | 12 | 21 | 25 | 84 | 29 | 31 | 27 | 1.76 | 229 | | Excessive fishing pressure | 8 | 42 | 57 | 49 | 25 | 32 | 12 | 1.59 | 225 | | Noise/light pollution | 10 | 48 | 47 | 54 | 15 | 38 | 14 | 1.56 | 226 | | Septic system discharge | 10 | 32 | 40 | 40 | 12 | 44 | 48 | 1.47 | 226 | | Other (please specify) | | | | | | | | | 27 | | | | | | | | | answere | d question | 233 | | Number | Other (please specify) | |--------|--| | | wake boarding-because the slower moving boats | | 1 | make bigger wakes and the lower props disturb | | | the bottom and weeds! | | 2 | Too many musky tournaments | | 3 | FERTILIZER | | 4 | shoreline erosion | | 5 | jet ski-great negative impact | | 6 | Eurasian Water Milfoil is the #1 problem facing | | 7 | Weed control on the Wisconsin river north of | | | Watersmeet lake | | 8 | spearing | | | shoreline sludge buildup when chain water level is | | 9 | dropped-I was told its from millfoil treatments | | | | | 10 | water quality | | 11 | Lack of law enforcement presence on the water | | 12 | Don't know | | 13 | Spearing - Great Negative Impact | | 1.4 | Indian spearing is the single biggest negative | | 14 | impact on the Chain | | 15 | Tribal Fishing - 5 (Great Negative Impact) | | 16 | Native American Spearing | | 17 | excessively loud boats/music and fireworks all | | 18 | Indian fishing rights | | | the weeds make it impossiable to swim or go | | 19 | boating | | 20 | Excessive and wasteful tribal spearing season | | 21 | lack of enforcement of watercraft rules | | 22 | larger and larger and faster watercraft | | 23 | spearing, great negative impact on fishing | | 24 | Do not know | | 25 | oversize floating rafts and trampoline | | 26 | People don't know boating rules | | 27 | use of ground fertilizers, weed killers | | | | #### 19. From the list below, please rank your top three concerns regarding the Eagle River Chain, with 1 being your greatest concern. | Answer Options | 1st | 2nd | 3rd | Response
Count | | | |---------------------------------------|-----|--------|------------------|-------------------|--|--| | Aquatic invasive species introduction | 83 | 54 | 28 | 165 | | | | Water quality degradation | 45 | 30 | 42 | 117 | | | | Excessive aquatic plant growth | 29 | 32 | 20 | 81 | | | | Watercraft traffic | 23 | 27 | 28 | 78 | | | | Loss of aquatic habitat | 16 | 19 | 25 | 60 | | | | Shoreline development | 13 | 17 | 25 | 55 | | | | Septic system discharge | 8 | 14 | 18 | 40 | | | | Excessive fishing pressure | 9 | 11 | 16 | 36 | | | | Algae blooms | 2 | 11 | 20 | 33 | | | | Noise/light pollution | 3 | 15 | 9 | 27 | | | | Other (please specify) | 3 | 4 | 2 | 9 | | | | | | answer | ed question | 235 | | | | | | skipp | skipped question | | | | | Number | "Other" responses | |--------|---------------------------------| | 1 | lack of slow no wake times | | 2 | shoreline erosion | | 3 | Poor creel countall species | | 4 | spearing | | 5 | disregarding speed limits | | 6 | wild rice taking over!! | | 7 | Spearing | | | Lack of water flow during | | 8 | summer from Burnt Rollaway | | | Dam | | | Indain spearing is top concern, | | 9 | stop the spearing and save | | | tourism industry. | | 10 | Tribal Fishing | | 11 | Native American Spearing | | 12 | Excessive tribal spearing | | 12 | practices | | 13 | Indian spearing | | 14 | Spearing | #### 20. During open water season how often does aquatic plant growth, including algae, negatively impact your enjoyment of the Eagle River Chain? | Answer Options | Never | Rarely | Sometimes | Often | Always | Response
Count | |----------------|-------|--------|-----------|--------|-------------|-------------------| | | 5 | 54 | 117 | 40 | 18 | 234 | | | | | | answei | 234 | | | | | | | skipp | ed question | 4 | #### 21. Considering your answer to the question above, do you believe aquatic plant control is needed on the Eagle River Chain? | Answer Options | Definitely | Probably | Unsure | Probably | Definitely | Response | | |----------------|----------------|----------|--------|----------|-------------------|-------------|-------| | | Answer Options | yes | yes | Olisure | no | no | Count | | | | 108 | 88 | 29 | 8 | 2 | 235 | | | | | | | answered question | | 235 | | | | | | | skipp | ed question | 3 | ## 22. Aquatic plants can be managed using many techniques. What is your level of support for the responsible use of the following techniques on the Eagle River Chain? | Answer Options | Not
supportive | | Neutral | | Highly
supportive | Unsure:
Need more
info | Rating
Average | Response
Count | |--|-------------------|----|---------|----|----------------------|------------------------------|-------------------|-------------------| | Herbicide (chemical) control | 21 | 8 | 21 | 48 | 112 | 17 | 2.77 | 227 | | Biological control | 10 | 6 | 27 | 41 | 108 | 36 | 2.53 | 228 | | Integrated control using many methods | 8 | 5 | 31 | 40 | 108 | 36 | 2.5 | 228 | | Hand-removal by contracted professionals | 14 | 7 | 51 | 48 | 82 | 22 | 2.23 | 224 | | Hand-removal by property owners | 29 | 8 | 45 | 41 | 82 | 18 | 2.22 | 223 | | Mechanical harvesting | 29 | 15 | 49 | 41 | 55 | 36 | 1.79 | 225 | | Dredging of bottom sediments | 34 | 19 | 50 | 29 | 38 | 53 | 1.39 | 223 | | Water level drawdown | 133 | 18 | 13 | 7 | 11 | 40 | 1.05 | 222 | | Do nothing (do not manage plants) | 178 | 7 | 12 | 3 | 4 | 6 | 1.03 | 210 | | | | | | | | answere | 233 | | | | | | | | | skinne | d auestion | 5 | ## 23. Stakeholder education is an important component of every lake management planning effort. Which of these subjects would you like to learn more about? | Answer Options | Response
Percent | Response
Count | |--|---------------------|-------------------| | Aquatic invasive species impacts, means of transport, identification, control options, e | etc. 56.8% | 130 | | How to be a good lake steward | 54.1% | 124 | | Enhancing in-lake habitat (not shoreland or adjacent wetlands) for aquatic species | 42.8% | 98 | | Ecological benefits of shoreland restoration and preservation | 39.7% | 91 | | Watercraft operation regulations – lake specific, local and statewide | 37.6% | 86 | | Social events occurring around the Eagle River Chain | 27.1% | 62 | | Volunteer lake monitoring opportunities | 25.8% | 59 | | Not interested in learning more on any of these subjects | 11.4% | 26 | | Some other topic (please specify) | 5.2% | 12 | | | answered question | 229 | | | skinned auestion | 9 | | Number | Other (please specify) | |--------|--| | | L shoreline erosion prevention | | | 2 already informed on all of the above | | ; | Biological control of lake weeds (crayfish, beetles) and chemical controls as well. | | | spearing | | | s water quality along shoreline(moving, water sniffing quality sampling) (boat) | | (| 5 Enforcement of boating regulations lacks. The lakes are becoming unsafe. | | • | 7 Why are we not building artificial reefs and replacing old fish cribs. | | : | 3 Algae Blooms | | | Improving fishing! Get rid of slot limit that doesn't work. | | 10 | Deducation of the various lake associations and purpose | | 1: | I What impact does septic tanks have on water quality especially when they must be inspected every three years | | 1: | I think stakeholders should learn more about woodland habitat and the benefits to the humans as well as all the other creatures that share the
northwoods and the lakes. | #### Eagle River Chain of Lakes Association (Eagle River Chain of Lakes Association) #### 24. Before receiving this mailing, have you ever heard of the Eagle River Chain of Lakes Association? | Answer Options | Response | Response | | |-----------------|-------------------|----------|--| | Allswei Options | Percent | Count | | | Yes | 97.0% | 226 | | | No | 3.0% | 7 | | | answer | answered question | | | | skippe | skipped question | | | #### 25. What is your membership status with the Eagle River Chain of Lakes Association? | Answer Options | Response | Response | | |---------------------|-------------------|----------|--| | Answer Options | Percent | Count | | | Current member | 70.5% | 158 | | | Former member | 12.1% | 27 | | | Never been a member | 17.4% | 39 | | | answer | answered question | | | | skipp | skipped question | | | #### 26. How informed has the Eagle River Chain of Lakes Association kept you regarding issues with your lake and its management? | Answer Options | Not at all
informed | Not too
informed | Unsure | Fairly well
informed | Highly informed | Response
Count | |----------------|------------------------|---------------------|--------|-------------------------|-----------------|-------------------| | | 0 | 5 | 8 | 93 | 54 | 160 | | | | | | answere | 160 | | | | | | | skippe | ed question | 78 | ## 27. How informed has the Eagle River Chain of Lakes Association been in fulfilling its purpose, which is to "..organize and coordinate the efforts of both entitites in the achievement of our common goals of maintaining, protecting, and improving the quality of the lakes? | Answer Options | Not at all
informed | Not too
informed | Unsure | Fairly well
informed | Highly informed | Response
Count | |----------------|------------------------|---------------------|--------|-------------------------|-----------------|-------------------| | | 0 | 6 | 18 | 88 | 50 | 162 | | | | | | answered question | | 162 | | | | | | skippe | 76 | | #### 28. Do you have any knowledge of an individual lake association on your lake? | Answer Options | Response | Response | | |------------------------|-----------------|----------|--| | Answer Options | Percent | Count | | | Yes | 89.7% | 209 | | | No | 5.6% | 13 | | | I don't live on a lake | 4.7% | 11 | | | ans | wered question | 233 | | | s | kipped question | 5 | | #### 29. If your lake has an individual lake association, please indicate your membership status with this association below. | Answer Options | Response
Percent | Response
Count | |---------------------|---------------------|-------------------| | Current member | 84.3% | 177 | | Former member | 7.6% | 16 | | Never been a member | 8.1% | 17 | | answe | answered question | | | skip | skipped question | | ## 30. What services do you believe your lake association should provide? | Answer Options | Response | |-----------------|-----------------| | Allswer Options | Count | | | 116 | | answer | ed question 116 | | skipp | ed question 122 | | | skipped question 122 | |--------|--| | | | | Number | Response Text | | | 1 Monitor lake traffic 2 Primary to work with FRCI A provided picture and the place. | | | 2 Primary-to work with ERCLA on maintaining water quality on the chain. | | | Represent the specific interests of residents of Catfish Lake. | | | 4 Eliminate AIS | | | 5 Provide information on water quality issues, get lakefront owners involved in maintaining their waterfront (pulling milfoil is effective if everyone did it), etc. | | | 6 Maintaining good water quality free from AIS. | | | 7 information to new residents, membership encouragement, information on activities and efforts to improve the lake and the shoreline. | | | 8 Information about current lake issues and plans for improvement | | | 9 Knowledge of fish population & reasons for fish regulations beteen lakes. | | 1 | 0 police boat like we use to have | | | 1 semi annual mailing, monitor and advise status and prposed ideas of lake management | | 1 | 2 *Controlling aquatic plant growth *Enforcing "NO WAKE" zones *Shoreline erosion prevention | | 1 | 3 Education, management, volunteers and getting all involved. | | 1 | 4 lake monitoring for water quality and weeds | | | e mail, us mail, phone informing members of future lake issues and programs to improve quality of lake that members reside on. | | 1 | Social get together s to maintain neighborly atmosphere amongst property owners. | | 1 | .6 Information and feedback on planned management | | | Control invasive species, water monitoring. Jet ski speed and uncontrolled driving of jet skis. Wildlife monitoring loons, eagles, etc. Oppose | | 1 | Native American spearing. Political and legislative activities pertaining to inland water lakes. | | 1 | 8 Funding for EWM Treatments | | | .9 information regarding quality of the water | | | 0 education on lake management and protection | | | 1 Maintaining good water quality free from invasives. | | | Plan of action for invasive species; Work with local law enforcement to enforce boating restrictions; Extensive fishing stocking and creel | | 2 | surveys; Social planning for events to include riparians. | | - 2 | 3 Controlling invasive aquadic plants | | | 4 Regular updates on what is being done about aquatic invasive species, which the Cranberry Lake Association does. It is on top of all important | | | 5 Main purpose of the Lake association should be to fight the ongoing problem of water quality. ie. algae blooms, eurasion milfoil and water | | | 6 Update current information about our lake | | | 7 Sharing mutual concerns. | | | 8 current | | | 9 There is nothing I can currently think of. | | | O Control of AIS and more control of speeding motor boats that race across the lake. | | | 1 Try to maintain lake water environment for future generations | | | 2 More education regarding Chain issues. | | | 3 information | | 3 | 4 Watersmeet Lake Association, help in controlling the rice and weeds in the Wisconsin River | | | 5 I think they are doing a good job. | | | 6 Keep me informed of problems with water quality. Tell us what we as property owners can do to help. | | | 7 info on shore line, monitor invasive weeds, and species | | | 8 Invasive control | | | 9 lake improvement projects | | | money to control aquatic should not be used for boat control | | | | | | Response Text | |-----|--| | | continue to recruit volunteers keeping members/potential members informed of needs and concerns to keep the water body in good condition | | | | | | There needs to be controls (hours) when jet skiing, water skiing, & tubing is allowed. monitor water quality | | | More monitoring of boat traffic by law enforcement, more monitoring of boat noise and illegal fireworks | | | Monitor the quality of many items of lake | | | weed control | | | | | | skeep landowners informed on how to be good stewards general information | | | Weed manangement, lake issues | | | Get more people involved. Some of our neighbors just throw the mailings away and remain uninformed. I don't know how to fix this | | | | | | continue e-mail to members and posted information at ramps for lake users control milfoil on Otter lake | | | | | 54 | Unsure-need more information as to the range of options. In other words, please share with us the spectrum of services offered by ALL lake | | | 1) Effectively use funds to manage water quality (ie: contribute to invasive species monitoring and control, contribute to monitoring of | | | chemicals present in lakes such as fertilizers and report findings to enforcement agencies), 2) Lack of boater safety, and following boating r | | 55 | is making the ER chain unsafe. I really cannot believe some of the things I see and it's getting worse. I
don't know what the lake association | | | can do about this. I'm not saying for lake property owners to try enforcement, but something needs to be done a) for the enjoyment of all | | | using the lakes, and b) before someone gets hurt or killed. | | | Social activities, invasive species monitoring, work to reduce fishing tournaments. | | 57 | They spend all their time and money on milfoil which is currently under control. Why not build fish habitats in the lakes with artificial reefs | | 58 | Plant & ais control, Noise & light pollution, Education | | 59 | awareness | | 60 | Preserve lake quality for a wide variety of recreational activities | | 61 | AIS control, light pollution control, support for removing sediment from the Deerskin Dam | | 62 | high speed internet is the biggest problem in the area | | 63 | All fundraising and coordination with ercla | | 64 | Information NOT regulation. | | 65 | Buoy management. Buoys are placed too near the shoreline so boats pass very close to my dock. Regulate the pirate ship. The ship come thru in the evening with the music so loud you can't carry on a conversation or listen to TV. It also sits in the lake with the music volume to high. | | 66 | Education and efforts to improve lake quality. | | | information | | | education, collective voice on issues | | | information on what individuals can do to help the lake such as a reporting process to the association or recommendations on who to call v | | 69 | particular problems, ex. noise pollution, light pollution, just general good neighbor stuffthe proper way to hand pull AIS | | 70 | protect the water quality | | | coordinate with ERCLA, lobby for the interests of our lake. provide funding for AIS and other efforts | | | They are doing fine as is | | | Educate and improve the overall norhwoods waterways experience. | | | I am a member of Watersmeet Assn and live on the Wisconsin river between G and Watersmeet. You did not offer a river choice for where | | 74 | live. The enrichment of AIS in the river along with the expanding, and never harvested rice beds is a major concern and must be addressed | | , , | with the tribal organization. | | 75 | Information regarding the status of the lake. Water quality; updates on invasive species control, etc | | | Support to eradicate invasive aquatic species and excessive weeds | | | More newsletters to keep me informed. | | | | | | Information, updates | | | education and information | | 80 | I think they should over see the treatment for the lake we live on to make sure the Milfoil doesn't get any worse. We have a Very hard time | | οU | getting money from some of the owners on our lake, I'm on the board. | | | The live of DCIA should condition with the findividual laboratorials at the second state of sta | | 81 | I believe ERCLA should combine with the individual lakes association to create a stronger more effective voice for property owners. I believe that both ERCLA and Cranberry Lake Associations are doing a great job of protecting the ER chain of lakes. | | Number | Response Text | |--------|---| | 8 | 4 Increase membership, keep membership informed and participating in lake quality issues. | | 8 | 5 Happy they are taking action on eurasin milfoil on Yellow Birch | | 8 | 6 water quality control and maintanance | | 8 | 7 Preservation and improvement of the lake only. Should not infringe upon personal property/land rights. | | 8 | 8 current info on lake status | | 8 | 9 AIS control | | 9 | 0 Communication and coordination | | 9 | 1 Education in regards to water treatment times and reports of numbers of fish the tribes spear. | | 9 | 2 I don't expect them to do anything. | | 9 | 3 maintain water quality, control invasive species, maintain some sort of social interaction with other lake property owners | | 9 | 4 help control milfoil - Catfish association was the first. | | 9 | 5 Same as ERCLA, just more focused. | | 9 | 6 makes studies as required. most is controlled by ercla | | 9 | 7 info on current status | | 9 | 8 milfoil control, regulate boating hours | | 9 | 9 Control Invasive species of all types | | 10 | Continue to monitor invassivestry to get more homeowners to pay dues/membership so that we can continue to fight the invasive species (| | 10 | milfoil) so we homeowners can continue to enjoy our waterfront property | | 10 | 1 Improve fish habitat, proper weed control | | 10 | 2 Provide relevant information. Organize and implement water quality and quality of life initiatives. | | 10 | 3 Information on the lake, it's status | | 10 | A Should inform riparians on the status of their lake and be actively involved in stabilizing and improving the quality of the lake on an ongoing | | 10 | ⁴ basis | | 10 | 5 continued treatment of evasive species and current information on evasive species status | | 10 | 6 Doing a great job currently | | 10 | Limit fishermen from other lakes. Have a higher launch fee for public boat landings to discourage fishermen from entering our lakes. They | | 10 | brought the invasive species to our lakes | | 10 | 8 Pictures of invasive species for better identification | | 10 | 9 Applying for grants to provide for studies and corrective measures concerning lake quality and maintenance. | | 11 | Active role in AIS information on treatment and effectiveness. Health concerns must be explained one source says no issues and doctors say | | 11 | health concerns exist | | 11 | 1 Educational Woodland creatures, benefits of "forest bathing" (a Japanese concept), healthy shoreline, light and noise pollution, history of | | 11 | 2 education on aquatic invasive species | | 11 | 3 Support efforts to maintain a clean lake and animal habitat. | | 11 | 4 Primarily the fight against invasive species of all types. Education and action. | | 11 | 5 Continue information distribution. | | 11 | 6 bouy, boat traffic ,control invasive species with others | | | | 31. The effective management of the Eagle River Chain will require the cooperative efforts of numerous volunteers. Please circle the activities you would be willing to participate in if the Eagle River Chain of Lakes Association requires additional assistance. | Answer Options | Response | Response | |---|----------|----------| | , | Percent | Count | | Aquatic plant monitoring | 36.7% | 83 | | Water quality monitoring | 35.4% | 80 | | Participate on ERCLA committees | 19.5% | 44 | | Watercraft inspections at boat landings | 17.3% | 39 | | Recruit new members | 10.2% | 23 | | Attending Wisconsin Lakes Convention | 9.3% | 21 | | Writing newsletter articles | 7.5% | 17 | | ERCLA Board | 7.5% | 17 | | I do not wish to volunteer | 41.6% | 94 | | answered question | | | | skipped question | | | 32. Recently, Wisconsin Act 142 was passed by the state legislature which requires all operating snowmobiles to display a Wisconsin Trail Pass, which would be purchased annually. The revenue generated from the sale of trail passes supports local trail maintenance and the state snowmobile program fund. A similar program has been proposed for watercraft use, where the purchase of a statewide stamp would be required for all registered watercraft and would assist funding for the management of aquatic invasive species. Do you believe this program would be a good idea to help to reduce the spread of aquatic invasive species and assist with management costs? | Answer Options | Response | Response | |----------------|-----------------|----------| | | Percent | Count | | Yes | 73.6% | 170 | | No | 26.4% | 61 | | ans | wered question | 231 | | Si | kipped question | 7 | #### 33. What do you believe would be a fair annual dollar amount in support of this program? Please select one choice on the scale below. | Answer Options | \$2 | \$5 | \$10 | \$15 | Other* | Response
Count | |---|-----------------|------|------|--------|--------------|-------------------| | | 6 | 33 | 76 | 35 | 20 | 170 | | *If you selected "Other" please indicate of | lollar amount b | elow | | | | 21 | | | | | | answei | red question | 170 | | | | | | skipp | ed question | 68 | | Category | "Other" Responses | | % | |-------------|-------------------|----|----------| | (dollars) | Other Responses | | Response | | \$0 to \$10 | | 1 | 5% | | \$15 | | 0 | 0% | | \$20 | | 2 | 10% | | \$25 | | 11 | 52% | | \$30 | | 2 | 10% | | \$50 | | 4 | 19% | | >\$50 | | 1 | 5% | | | | | | ### 34. Please feel free to provide written comments concerning the Eagle River Chain of Lakes, its current and/or historic condition and its management. | Answer Options | | Response
Count | |----------------|-------------------|-------------------| | | | 97 | | | answered question | 97 | | | skipped auestion | 141 | | lumber | Response Text | |--------|---| | | I see an increasing need for slow no wake times to curtail and control the increasing boat traffic. Slow no wake should be before 10am and after 6pm. 8 hours of fast
boating should be more than sufficient for anyone. | | | Our shoreline is being ruined by high speed watercraft traffic. We have spent \$8000 to try and save our shoreline. Watersmeet Lake is not big enough 2 for jet skis, wave runners, etc. They play chicken with our piers to see how close they can come. If you canoe you could get killed! No one patrols anymore! No Wake on Watersmeet! | | | 3 Eliminate AIS | | | 4 Besides declining water quality there seems to be a decline in cabbage beds on the Eagle River Chain and areas treated for milfoil are slim to recover after treated taking years- no weeds no fish. | | | I do not want the chain to look like lakes in the southern part of the state with milfoil and algae blooms as far as the eye can see. Property owners need to step up to the plate on this issue with both man hours and money. | | | 6 Watersmeet lake and the river leading to the lake NEEDS to have the plant growth removed | | | The eagle chain has no area for smaller boats, kayaks, canoes etc.years ago the eagle river waas no wake on the river. with increased boat traffic it has become a outright dangerous ride and no enjoymenyt.to my surprise there has not been any deaths on the river west of the highway45 bridge. This would be a perfect area for small boats to enjoy.have witnessed numerous times 2-3 boats wide pulling tubes causing 2-3 foot wakes and degrading shoreline and water quality. It would be great to make this no wake for fishing and slow boat enjoyment. MAKE IT NO WAKE. The number of rental boats with inexperienced boaters and no boating etiquite can be witnessed every day. The ental bussinesses obviously are only looking for profits and do not care. Shame, Shame. My recommendation is to make the eagle river no wake from watersmeet to the highway 45 bridge. | | | Our property is the last property on the channel before the lake. Most boats do not slow down until they have passed the "No Wake" buoy. The sudden slow down or the early acceleration causes a huge wake that is destroying our shoreline and filling in our lake. | | | 9 keep up the fight to control foreign weeds etc. | | 1 | 0 Wonderful way of life to be able to live on a lake on Eagle Lake Chain | | 1 | My family has owned this property for 48 years. As a child I remember catching crayfish (crabs) now they are very scarce, maybe i see one every 2 years. The weeds are so thick in spots they tangle in the boat motor and it makes it impossible to fish from the dock. The property taxes have risen and we have had no improvements to justify that. I plan on never selling my property and love going there whenever I can. I love watching all the wildlife in the area and have made lifelong friends in the area. | The weed growth in front of my property has intentionally been allowed to grow out of control. I or my dog cannot even swim. I have trouble getting my boat away from the dock. I have complained to no avail. That is why I do not support our lake assoc. The chain is getting a reputation of being a noisy sewer. Our warden is spread too thin to patrol and enforce laws. We need a lake patrol. The weed growth is getting out of control and causes too much algae growth early. The boat noise is horrendous and illegal. Arrests have to be made to control some of the excessive noise. I would write a book on the improvements needed. As you can see I own two properties on the chain.. I now fish other lakes. We should follow the example of the Minocqua chain. Don Schoessow 949 Waterhaven Trl Eagle River (Catfish Lake) ALSO 1552 Mc Kinley Blvd (Yellow Birch Lake) 13 | support 100% question number 32. Needed legislation, I will contact my state legislators. ## Number **Response Text** There should be certified boat cleaning stations in each county. In the spring all boats should be cleaned and a county sticker attached to the boat. If 14 you go out of the county the boat must be cleaned and that county sticker is attached to the boat. With all the tourist and fishing tournaments it is only a matter of time for zebra mussels and others to show up in the ER chain. 15 keep it going have been a part of ER fo over 50 years. I have seen the river almost closed by the weeds when the 1st no wake bouys were put up. the change in the water and the traffic on the river has changed dramatically. I believe the water has improved and is close to what it was like 40 years ago 17 I believe that all of the massive condos have hurt the chain the most. Very unsightly. 18 ERCLA is doing a great job of informing the public of the care and problems of invasive species. 19 Keep killing the weeds with the chemicals that have been being used. Good Job folks In recent years, the various lake associations, state biologists, and other groups have done a tremendous job on helping control the weed problem on the Eagle River Chain of Lakes. I love what they have done. Scattering Rice lake used to be the worst of the chain in terms of weeds. The lake is 90% perfect but some areas along the North shore are starting to get some weeds back. It isn't bad yet but it would be nice to nip it in the bud before it gets out of hand again. Kudos to all that have worked on our lakes. I also applaud your survey taking here as well. I used to volunteer back in the days of "Weed buckets at the boat launches". I would be happy to volunteer again. Incidentally, our family vacations on Big Green Lake and they have a very bad weed problem. They are making the problem worse with their mechanical harvesters. All it is doing is spreading more weeds. They could use your/our help as well. Thanks, and keep up the good work. Jim Lovas hounded@charter.net Thank-you for the hard work you are doing for our lakes. When i can pay it forward i will do so. I look forward to the day i am living on the chain I do worry about irresponsible shoreline development throughout the chain (Three Lakes Chain, too), and wish there were more stringent rules/zoning laws about keeping shorelines as natural as possible. Have been aware of invasive species most of my 50+ years. Learned that on the Chain as a kid from my dad when he owned the place. Have seen the 23 water improve since the mid-60's and consider myself a responsible shore land owner. Would favor some of your "water use fee" used to enforce boat inspections at landings statewide. Thank you. Milfoil is rampant in Watersmeet lake. ERCLA seems more concerned with the "money lakes", eg, Eagle, Yellow Birch, Catfish, Cranberry. DO SOMETHING where the milfoil abatement is DESPERATELY needed, on the "poor" end of the chain. 25 The lakes are just fine except the treat of more Milfoil returning. Continue treating milfoil and leave the lakes alone. lt is very evident that there has been considerable improvement of the lakes. My only concern is the safety of boaters. We were personally missed by a half inch by a boater whose head was under the deck. If it were not for his wife getting his attention there would have been several fatalities. 27 Please keep up your efforts. I have been enjoying the lakes for 45 years. I live in the 1200 blk of Drager Rd. This needs to be a no wake zone. The navigation lane is too narrow to allow full speeds. Can't swim and getting into a boat lift can be extremely challenging due to the excessive wake. 29 I am proud to be a landowner on the Chain. It's a great place and I want to contribute any way I can to better the resources for all who use it. As stated in previous comments, the channel on the Wisconsin river need attention. The waterway is narrowing more and more each year but no one will take action. The stamp discussed previously is more palatable if you charge everyone that uses the lakes. This includes out of state participants in fishing tournaments and vacationers. 32 I like everthing about the Eagle River chain. 33 The native aquatic plants are disappearing along with the invasive ones. The fish have less cover. I have moved off the chain for fishing. 34 The weed growth on Wisconsin River north of Watersmeet lake makes fishing impossible. Our shoreline gets excessive sludge/debri, chopped up plant, dead vegetation buildup. It starts around July 15-20. It got so bad this year the debri 35 extended 8' out. The water level is dropped way too low to flush out the debri. I can send pictures: The Tripolis, 600 Cloverhill Lane, Elk Grove, IL 60007 cell:630-207-0981 Keep the water level up! It makes a cleaner shoreline. I Have found ewm in the lakes while fishing in areas that have been shown on maps as clear. Better education of the public is needed for lake user can help locate problem areas. On the Yellow Birch Lake we need a slow down area (no wake) from the T dock to the highway 17/45 bridge within the Eagle River city limits. I also 37 think we should limit the number of jet skis or time of day use!!! The water quality of the entire chain needs to be better monitored and if need be 2014 Onterra, LLC rural sewer districts to gather and treat the sewage before getting into the lakes. As far as I'm concerned the water quality is marginal!! ## Number Response Text 38 definite need of a law patrol on chain-too much adverse behavior When I moved up here, about eleven yrs ago, there were times when I could barely get through the Eagle River. Since the unified lakes committee has been functioning, the water conditions are much better. I hope we are able to continue to keep the waterways open. I will gladly do what I can to help. I have concerns about water depths-esp. in channels & perhaps increased placement of channel markers-- plus-- potential dredging of shallow channel areas. As a regular contributor/member we have been impressed with reduction in Eurasian Milfoil Yes, all the resorts and campgrounds should help by telling their renters to clean their boats before they are put in the chain. All all the fishing tour 41 should do the same. And they should have to pay Lake Association Membership Dues to ERCLA. Also boat rental on the
chain should have to be a member of ERCLA. 1. I congratulate the efforts of everyone to control Eurasian Milfoil 2. Do we have to have a muskie tournament every other week? 3. There needs to be something done to control waterskiers, tubers, jet skis early in the morning, and in the evening. Everyone has equal rights to quiet in the morning & 42 evening. Time to fish, canoe, & kayak, etc. I am sick and tired of waterskiers, tubers & jet skis while I am trying to fish at 9:00 at night. No Respect!!! I would suggest no wake before 9:00 am and after 6:00 pm. I support ERCLA & Eagle Lake Association. Where are these people? I am a property tax payer, it is time for some balance!!!! Let's respect everyone not just the jet skier, water tuber, waterskier, and muskie tournament fisher!!!!!!!! We are selling because we are sick of the noise & flagrant arrogance of the boating laws, & noise too close to boats, piers, skiing after dark & loud radios on boats. We are some of the people that retired up here for the peace & quiet. No longer true!! Boaters & vacationers have no regard for the property owners that pay the taxes & are stewards for our lakes. Fireworks are fine for the 4th of July, but we have to put up with the noise almost every night and certainly every weekend until after Labor Day---sometimes after midnight or 1am. Wait til the ATVs take over --- more noise. Dust 7 Erosion & washouts wherever they travel-- there will be no enforcement because "we don't want to upset the tourists". All in all -- this is not the "Northwoods" we moved here to enjoy & used to love! 1 believe this is a very good idea only if administrative costs are kept to a very minimum AND if the funds provided by this program would go back to each county on a pro rata basis as determined by the % of navigable surface water area in the county --versus to total state wide navigable water No patrols for "crazy" watercraft users! They run 10-20' off dock - I see a big loss of revenue via fines here! Hell with the big resorts!!!! Since herbacide 45 use on milfoil my favorite fishing spots are dead- not sure if chemicals being used are effecting our health if fish consumed? *Who can trust the government's say on it? It's time sell - ER has lost it's "up Noth" feeling? Too many users. 46 No more dollar amount-we pay high taxes now. 47 Thank you for your efforts. We live on the Wisconsin River before it flows into the north end of Watersmeet Lake. I would be more than happy to join the ERCLA if something 48 would be done about the infestation of wild rice. It's getting hard to navigate in our area. We purchases our place to have a place to fish in our senior years. The wild rice and the rediculous spearing of walleye are ruining this. Prior to 1996 there was only cabbage, dill weed. Few weeds. Rusty crayfish helped manage the eurasian milfoil. Loss of crayfish let weed growth to expand. Chemical treatment helped control weed growth. Stain water was prevelent before 1996. 50 all water frontage property sewage systems & outhouses need to be checked for runoff. 51 I think you guys have done a great job getting started but more needs to be done to control the invasive species and make sure people are operating boats in a safe manner - More traffic cops :-) We live on Eagle River near Watersmeet. Befor treatment Watersmeet was practically un-uasble from late July onward because of the milfoil. Now practically the whole lake is clear for the whole season! Very good results! Please make sure the boating fee is also passed on to the resort owners and people who bring a boat up to the chain and put it in the water. Any boat 53 that is put onto the chain should pay the fee. It is because of these people that we are in the milfoil situation now. Too many people put their boats into the water with no thought of the consequences. 54 we dont seem to get the milfoil treatments on Otter around the point. 55 Statewide watercraft registration does not guarantee assistance for the eagle river chain. Great to have a lake management association. Concerned about boat traffic and the impact of spearing on the lakes. Spearing was typically needed in 56 the 1800's and early 1900's. If we are to still allow spearing, then technology from that era should be required. Canoes and candles. Also lower the impact of schools on chain property owners. How many on the chain send their kids to school? How many are Wisconsin residents? #### Number **Response Text** I am 3rd generation family to the ERC and grew up coming here. I realize lakes change over time, but what is happening on the ERC is alarming especially from my historical view. I know experts say there are lots of fish to catch. They say the weeds help the fish population. Why are we not able to catch fish like we were able to not all that long ago then? Don't insult me by thinking, 'he must not be that good of a fisherman'. Like I said, I grew up going there. I know the lake structures, weed lines, etc. Catching fish is not the ultimate goal for me. I just do not believe the fishing is as good as it used to be. There is excessive weed growth. The water is florescent green in the fall. While not able to do so as much now, people have torn out the shoreline habitat upon buying property. I understand people come to the ERC to recreate. It seems to me in many cases that visitors do not respect the ERC environment. Boating can be dangerous with people operating watercraft way too close to one another. No wake rules are frequently ignored (in one case a man and woman were on separate jet ski's in a no wake zone. The man was calling to his wife to ignore the no wake rule. That he was on vacation and wanted to get going. Thankfully she refused). I have almost boated over to people on boats that are blaring music to compliment them on their boat but then ask them if they really think everyone on the lake wants to hear their music but that would I'm sure create conflict which I wouldn't - 57 want. It seems to me like visitors come to the ERC and have the attitude in a lot of cases that, 'darn it I'm on vacation and I've spent money to come here and I'm going to do whatever I want'. The spread of weeds on the ERC is alarming. There is no shoreline on the ERC that is free of weeds anymore as it was years ago. Maybe it's that a lot of owner turnover has taken place and lots of owners don't know what it used to be like, but it's alarming. People are either ignorant to it, or just don't care about how they can affect the quality of the ERC (ie; during the musky tournament last weekend I saw multiple boats get into weedy areas and to clear their props just tilt the motor and gun it, cutting and contributing to the spread of weeds. The Burnt Rollaway Dam is wide open all winter, then is shut down most of the summer. Without the water flow the weeds that get cut up by boaters simply sink and grow contributing to their spread. You can hardly cast baits when fishing because your line just collects floating weeds and fouls the bait. I grew up around and love the ERC. We are looking at putting a significant investment into our property at the moment. But we are concerned about the future of the ERC and honestly, as much as it would kill me to do this, have considered selling and going somewhere else. I do know how things can improve, but that would require owners and visitors to become a lot more responsible, and stewards of the land and water than they are today. What I don't know is how to get that to happen which leaves a BIG question mark on the future of the ERC. - My neighbor has been on the chain for decades and says the fishing has dropped off to the point where he NEVER fishes the chain anymore. He fishes 58 all the time but goes to other lakes to do so. I think the tournaments have a detrimental effect overall- they are aggressive boaters, we find litter after tournaments, and we find dead fish floating after tournaments. We have had people urinating off the boat right at our frontage. They will cast just a few feet from where we are sitting on our dock. Maybe legal, but hardly courteous. - The State of WI should use it's taxing power to apply leverage to the tribes to give up spearing. The State needs to find a way to apply economic 59 The State of Wishbulu use it's taking power to apply, it is apply for a pressure to the Indian casino industry as a means to obtain spearing and harvesting concessions. - 60 I am grateful that ercla is taking this initiative - ERCLA is doing a good job of keeping issues in front of the public...but it could do more with news stories or features that do not only focus on grants - 62 expensive and limited air service to Rhinelander and no high speed internet are the biggest challenges. - The great concern I have is further regulation and impingement on my property rights. I am also concerned that regulation will adversely affect 63 enjoyment of this great resource - the chain of lakes. Already the tribal fish harvest has destroyed the fishery with great impact on the communities - 64 I like looking at natural shoreline and do not understand why every year I see more giant homes with open lakefronts. Are not the lake property zoning regulations being enforced? - 65 AIS statewide stamp fee should be 2 tiered one for residents and another for non-residents - Ever since the hazmat clothed crews sprayed toxic herbacide in the north end of Cranberry Lake we have had a degadation of aquatic native species, a decline in fish species. If the chemical application requires a hazmat suit it is a severe environmental poison far worse than millfoil. Reproductive effects of 2 4 D are well documented in all species. I will no longer consume fish from such toxic waters. Lake Associations are composed of people ignorant of the science lead by an elitist small group advancing their own agenda of control. - New on the chain (3 yrs) but it is a great water system that we need to protect. After seeing what AIS did to the
Door county area that is my biggest fear for the Chain. - 10 years ago when I first purchased my property I would see traffic daily fishing /boating etc., today because of the weeds and plants etc., I rarely see 68 traffic on my side of the lake, its very upsetting to know that the property that I love will soon be a swamp infested with weeds and algae if something is not done! I'm willing to do my part, but I do not live there full time, therefore how could I organize such a task. - I've been pleased with what ERCLA has been doing on the lakes and have seen some positive results. I am disappointed that more is not being done on the Wisconsin river portion between G and Watersmeet I see more encroachment each year. - Now that the milfoil has been contained, there needs to be an effort to clear other weeds along the boating waterways and around docks. Can hardly get my boat out to the clear areas. - 71 I would support a moderate fee for boats to use any Wisc lake. This would provide funds to maintain the fresh quality of the lakes - As a long time property owner I believe the ER chain should impose lake front and water guidelines for noise, watercraft operation and other 72 disruptive practices. I think more on the water enforcement should be established. I have not seen a patrol craft on the chain in 10 years. We are getting to the point where it is embarrassing to have visitors due to noise pollution. - \$10 daily Public boat ramps fee (no annual fees), the fees would be used locally. The lake associations educate that one of the possible causes of 73 invasive species is the contamination from boaters from other lakes. The fishing tournament organizers should require boat operators have a boat safety certificate. I believe ERC has too many buoys hoping to discourage large wakes close to shore, boat operators should be require to have boaters safety (not taken on line). A fee to Property/boat/PWC rental businesses because of their customer's potential risk to the ERC eco system. - 74 Wild rice is becoming a real problem on Watersmeet and the Wis River - 75 Please keep up all your efforts to improve the Eagle River Chain. Thank You! - 76 I wish the ERCLA would provide info on the status of my membership. I get multiple notices per year and am not sure if I've already paid for current year or not. Because I think they are trying to get me pay numerous times, I don't know if I have a current membership or not. ### Response Text Number I now believe the E.R. side of the chain should have hours for non wake use of watercraft so both fisherman and recreational boats can enjoy the use 77 of the water. The size of so many large boats causing large wake is distroying the shores and makes it difficult for fisherman to enjoy their sport. There needs to be some quiet time. Other lakes I have been on allow waterskiing, tubing, etc from 10am to 5pm giving fisherman calmer time to fish. 78 Until the almighty tourist dollar ceases to be the deciding factor in every decision made in northern Wisconsin, we will see all the lakes continue to decline. we already pay fees for everything from soup to nuts. parts of those fees can be utilized for lake, water conservation....maybe some portion of Casino 79 profits should be taxed to support the loss of fishing quality that tribal spearing has resulted in. Why plan a fishing trip to Vilas County when the daily limit is 2(two), 3(three) if your lucky, Walleyes? 80 Work on improving the fishing. the management is controlled by a small group. the missing point is all out of town boaters and none control of there use. we do not have enough 81 enforcement on the busy times of the year. pwc use is out of control the survey is too general of a question approach and does not get into the meat of subjects the question of what lake takes out some of the anonymous approach 82 superior work done in the past boating in general is dangerous - jet skis are operated at high speeds too close to other watercraft, pontoon operators don't realize they make a wake and are also too close to other watercraft, people are water skiing and tubing after dark, many boaters do not use their lights properly especially as it nears sundown, the size of some of the boats are too big for our lakes, I think their should be restrictive hours on skiing and tubing, boaters should be instructed to use their depth finders when on the water, they go through weed beds, especially slalom skiing and cut up weeds - how do think milfoil 83 moves around the lake??? I usually and picking up weeds on the shoreline after busy boating days, warden shows up and gives a grandpa helping grandchildren fish off the dock as a jet skiier or pontoon boat buzzes by too close to shore, perhaps we need a lake patrol boat, we'll have more injuries from boat accidents before anything is done, too many people don't care about the rules, you'll never get rid of milfoil at best you can knock it down but it's all over the chain and spread by boaters cutting it, the Onterra guys only go to specific GPS points so they miss a lot of milfoil, why do musky fisherman primarily use surface baits -too much milfoil 84 It is a beautiful place The Association is doing a good job. They need to continue to monitor the lakes for invasives. In particular there is a problem with boat traffic dragging milfoil back into lakes from adjoining waterways. I:E Mud Creek, Rice Creek, Wisconsin river into Watersmeet lake. during the summer months when the milfoil is at its highest alot of non-property owners will boat into these smaller areas that have a higher amount of weeds then drag 85 them back to the larger lakes. Although there is nothing that can be done about "tourist" watercraft going into these weeded areas I would like to see the ERCLA do more to control weed growth on these tributaries. Also if another survey is done in the future please include these tributaries (Mud creek, Rice creek, Wisconsin river) as a choice instead of the main lakes so you have a better grasp as to who and where property owners reside. Thankyou to all who continue to care about this great waterway! 86 Large boats have had a detrimental impact. Heavy development has changed the character of the chain 87 I believe native vegetation has been adversely affected by chemical treatment of EWM. 88 EWM is definitely better than it was. We are happy that we are taking steps to manage the quality of our lakes. We feel government support is absolutely necessary and appreciate all the efforts to continue to obtain government participation 90 Cranberry Lake's channel is in need of future control of evasive species. It is impossible to fish in the area due to the abundance of milfoil. 91 Didn't like the DNR approval of the Wild Eagle piers. 92 Need to control no wake speeds other than in Eagle River. Catfish/Cranberry. Haven't seen an officer in 2 years. What are we paying taxes for??????? 93 Less than 30% of the lakes owners belong to ERCLA why is this. Many people feel that belonging to a lake association is sufficent and not ERCLA. More education is needed and put out so people understand the reason ERCLA is there in the first place 94 Perhaps collecting a fee every other year in online fashion would be easier for all involved. 95 Because of ERCLA, the community of lake property owners was energized and much progress has been made in reversing the effects of invasive 96 I would say managing the lake is effectively managing water quality. Typically individuals will not be very active until the water becomes degraded, for whatever reason. Therefore, it will be difficult generate a lot of interest in a preservation effort without a perceived, identifiable threat. 97 nonresident property taxes should be used to address these issues # **APPENDIX C** **Water Quality Data** Cranberry Lake Date: 5/15/2013 Time: 15:15 Weather: Clear, breezy, 68l Max Depth: 23.9 CRLS Depth (ft): 3.0 CRLB Depth (ft): 21.0 Secchi Depth (ft): 4.9 | Depth | Temp | D.O. | | Sp. Cond. | |-------|------|--------|-----|-----------| | (ft) | (°C) | (mg/L) | pH | (µS/cm) | | 1 | 11.4 | 10.2 | 6.9 | 71. | | 3 | 11.3 | 10.1 | 6.9 | 71. | | 6 | 11.0 | 10.1 | 6.9 | 71.0 | | 9 | 10.9 | 10.1 | 7.0 | 70.0 | | 12 | 10.8 | 10.2 | 7.0 | 70.0 | | 15 | 10.9 | 10.1 | 7.0 | 71.0 | | 18 | 10.5 | 10.2 | 7.0 | 71.0 | | 21 | 10.1 | 10.2 | 6.9 | 71.0 | Parameter | CRLS | CRLB | |---|--------|--------| | Total P (µg/L) | 32.30 | 32.00 | | Dissolved P (µg/L) | 2.60 | 2.30 | | Chl-a (µg/L) | 13.20 | NA | | TKN (µg/L) | 414.00 | 467.00 | | NO ₃ + NO ₂ -N (μg/L) | 55.80 | 64.00 | | NH ₃ -N (µg/L) | ND | ND | | Total N (µg/L) | 469.80 | 531.00 | | Lab Cond. (µS/cm) | 73.60 | 73.60 | | Lab pH | 7.32 | 7.34 | | Alkalinity (mg/L CaCO ₃) | 27.00 | 27.20 | | Total Susp. Solids (mg/L) | 3.25 | 4.00 | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | 50.00 | NA | | Turbidity (NTU) | NA | NA. | Data collected by TAH (Onterra) #### Cranberry Lak Date: 6/26/2013 Time: 12:50 Weather: 75F, breezy, 90% clouds Entry: EEH Max Depth: 23.7 CRLS Depth (ft): 3.0 CRLB Depth (ft): 20.0 Secchi Depth (ft): 4.9 | Depth
(ft) | Temp
(°C) | D.O.
(mg/L) | pН | Sp. Cond.
(µS/cm) | |---------------|--------------|----------------|----|----------------------| | 1 | 24.3 | 9.3 | | | | 2 | 24.0 | 9.4 | | | | 4 | 23.7 | 9.4 | | | | 6 | 23.4 | 9.5 | | | | 8 | 21.4 | 7.8 | | | | 10 | 20.5 | 6.0 | | | | 12 | 19.0 | 2.3 | | | | 14 | 17.5 | 0.1 | | | | 16 | 16.4 | 0.1 | | | | 18 | 15.2 | 0.1 | | | | 20 | 14.1 | 0.0 | | | | 22 | 13.0 | 0.0 | Parameter | CRLS | CRLB | |--------------------------------------|-------|--------| | Total P (µg/L) | 21.10 | 109.00 | | Dissolved P (µg/L) | NA | NA | | Chl-a (µg/L) | 15.50 |
NA | | TKN (μg/L) | NA | NA | | $NO_3 + NO_2 - N (\mu g/L)$ | NA | NA NA | | NH ₃ -N (µg/L) | NA | NA NA | | Total N (µg/L) | NA | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | | NA. | | Alkalinity (mg/L CaCO ₃) | | NA NA | | Total Susp. Solids (mg/L) | NA | NA | | Calcium (mg/L) | | NA | | Magnesium (mg/L) | 3.15 | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | | NA | | Turbidity (NTU) | NA NA | NA | Data collected by TAH and DAC (Onterra) #### Cranberry Lake Date: 7/24/2013 Time: 11:45 Weather: 75% clouds, 67F, light breeze Entry: EEH Max Depth: 21.0 CRLS Depth (ft): 3.0 CRLB Depth (ft): 18.0 Secchi Depth (ft): 3.1 | Depth | Temp | D.O. | | Sp. Cond. | |-------|------|--------|-----|-----------| | (ft) | (°C) | (mg/L) | pH | (µS/cm) | | 1 | 22.8 | 7.7 | 8.1 | 77 | | 3 | 22.6 | 7.7 | 8.1 | 77 | | 6 | 22.6 | 7.7 | 8.1 | 76 | | 9 | 22.4 | 7.4 | 7.9 | 76 | | 12 | 22.4 | 7.4 | 7.9 | 77 | | 15 | 22.2 | 7.0 | 7.7 | 77 | | 18 | 17.3 | 0.2 | 7.5 | 189 | | 20 | 14.4 | 0.0 | 7.6 | 203 | Parameter | CRLS | CRLB | |---|---------|---------| | Total P (µg/L) | 41.20 | 142.00 | | Dissolved P (µg/L) | ND | 42.30 | | Chl-a (µg/L) | 31.10 | NA | | TKN (µg/L) | 1140.00 | 4310.00 | | NO ₃ + NO ₂ -N (μg/L) | ND | ND | | NH ₃ -N (µg/L) | ND | 2290.00 | | Total N (µg/L) | 1140.00 | 6600.00 | | Lab Cond. (uS/cm) | 79.30 | 137.00 | | Lab pH | 7.60 | 6.98 | | Alkalinity (mg/L CaCO ₃) | 30.70 | 65.50 | | Total Susp. Solids (mg/L) | 6.75 | 10.00 | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | 40.00 | NA | | Turbidity (NTU) | NA | NA | Data collected by DAC and TAH (Onterra) Cranbarry Lake Date: 8/22/2013 Time: 10:00 Weather: Clear, light breeze, 65F Entry: EEH Max Depth: 21.7 CRLS Depth (ft): 3.0 CRLB Depth (ft): 19.0 Secchi Depth (ft): 3.7 | Depth
(ft) | Temp
(°C) | D.O.
(mg/L) | pН | Sp. Cond
(µS/cm) | |---------------|--------------|----------------|----|---------------------| | 1 | 21.7 | 7.3 | | | | 3 | 21.8 | 7.1 | | | | 6 | 21.7 | 7.0 | | | | 9 | 21.6 | 6.7 | | | | 12 | 21.5 | 6.3 | | | | 15 | 19.5 | 0.1 | | | | 18 | 19.1 | 0.0 | | | | 21 | 18.4 | 0.0 | Parameter | CRLS | CRLB | |--------------------------------------|-------|-------| | Total P (µg/L) | 20.90 | 48.00 | | Dissolved P (µg/L) | NA | NA | | Chl-a (µg/L) | 29.90 | NA | | TKN (µg/L) | NA | NA | | $NO_3 + NO_2 - N (\mu g/L)$ | NA | NA | | NH ₅ -N (µg/L) | NA | NA | | Total N (µg/L) | NA | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA. | | Alkalinity (mg/L CaCO ₃) | NA | NA | | Total Susp. Solids (mg/L) | NA | NA | | Calcium (mg/L) | 8.25 | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA | Data collected by MKH and TAH (Onterra) Cranberry Lake Date: 10/9/2013 Time: 10:52 Weather: 25% clouds, 65F Entry: EEH Max Depth: 21.6 CRLS Depth (ft): 3.0 CRLB Depth (ft): 19.0 Secchi Depth (ft): 4.1 | Depth
(ft) | Temp
(°C) | D.O.
(mg/L) | pH | Sp. Cond.
(µS/cm) | |---------------|--------------|----------------|----|----------------------| | 1 | 14.6 | 7.6 | pn | (долсии) | | 3 | 14.5 | 7.6 | | - | | | 14.4 | 7.5 | | | | 6 | | | | | | 9 | 14.3 | 7.5 | | | | 12 | 14.2 | 7.5 | | | | 15 | 14.2 | 7.5 | | | | 18 | 14.1 | 7.5 | | | | 21 | 14.1 | 7.4 | Parameter | CRLS | CRLB | |--------------------------------------|-------|-------| | Total P (µg/L) | 42.40 | 44.20 | | Dissolved P (µg/L) | NA | NA | | Chl-a (µg/L) | 21.20 | NA | | TKN (µg/L) | NA | NA | | $NO_3 + NO_2 - N (\mu g/L)$ | | NA | | NH ₃ -N (µg/L) | NA | NA | | Total N (µg/L) | NA | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA | | Alkalinity (mg/L CaCO ₃) | NA NA | NA | | Total Susp. Solids (mg/L) | 5.33 | 5.67 | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA | Data collected by TWH and TAH (Onterra) Cranberry Lake Date: 2/20/2014 Time: 10:40 Weather: 25F, 100% clouds, 15-20 mph winds Entry: EEH Max Depth: 21.7 CRLS Depth (ft): 3.0 CRLB Depth (ft): 19.0 Secchi Depth (ft): 5.3 | Depth
(ft) | Temp
(°C) | D.O.
(mg/L) | pH | Sp. Cond
(µS/cm) | |---------------|--------------|----------------|----|---------------------| | - 1 | 0.3 | 8.0 | | | | 3 | 0.4 | 7.9 | | | | 6 | 0.7 | 7.8 | | | | 9 | 1.7 | 5.7 | | | | 12 | 2.9 | 3.3 | | | | 15 | 4.0 | 0.4 | | | | 18 | 4.7 | 0.2 | | | | 20 | 5.0 | 0.1 | 1 | | Parameter | CRLS | CRLB | |--------------------------------------|------|-------| | Total P (µg/L) | NA | NA NA | | Dissolved P (µg/L) | NA | NA NA | | Chl-a (µg/L) | NA | NA | | TKN (μg/L) | NA | NA | | $NO_3 + NO_2 - N (\mu g/L)$ | NA | NA NA | | NH ₀ -N (μg/L) | NA | NA | | Total N (μg/L) | NA | NA NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA NA | | Alkalinity (mg/L CaCO ₃) | NA | NA | | Total Susp. Solids (mg/L) | NA | NA NA | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA NA | | Hardness (mg/L) | NA | NA NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA | Data collected by DAC and TWH (Onterra). Ice thickness: 1.9 feet | Water Quality Data | | | | | | |---------------------------|-------|-------|-------|--------|--| | 2013-2014 Surface Bottom | | | | | | | Parameter | Count | Mean | Count | Mean | | | Secchi Depth (feet) | 6 | 4.3 | NA | NA | | | Total P (µg/L) | 5 | 31.6 | 5 | 75.0 | | | Dissolved P (µg/L) | 2 | 2.6 | 2 | 22.3 | | | Chl a (µg/L) | 5 | 22.2 | 0 | NA | | | TKN (µg/L | 2 | 777.0 | 2 | 2388.5 | | | NO3+NO2-N (µg/L) | 2 | 55.8 | 2 | 64.0 | | | NH3-N (µg/L) | 2 | ND | 2 | 2290.0 | | | Total N (µg/L) | 2 | 804.9 | 2 | 3565.5 | | | Lab Cond. (µS/cm) | 2 | 76.5 | 2 | 105.3 | | | Lab pH | 2 | 7.5 | 2 | 7.2 | | | Alkal (mg/l CaCO3) | 2 | 28.9 | 2 | 46.4 | | | Total Susp. Solids (mg/l) | 3 | 5.1 | 3 | 6.6 | | | Calcium (µg/L) | 2 | 7.7 | 0 | NA | | | Magnesium (mg/L) | 1 | 3.2 | 0 | NA | | | Hardness (mg/L) | 0 | NA | 0 | NA | | | Color (SU) | 2 | 45.0 | 0 | NA | | | Turbidity (NTU) | 0 | NA | 0 | NA | | | Parameter | Value | |-------------------------------|---------------| | Acreage | | | Volume (acre-feet) | | | Perimeter (miles) | | | Shoreland Developmetnt Factor | | | Maximum Depth (feet) | | | County | | | WBIC | | | Lillie Mason Region (1983) | NLF Ecoregion | | Nichols Ecoregion (1999) | NLFL | | Watershed Data | | | | | | |---------------------------|---------|-------|--------|--|--| | WiLMS Class | Acreage | kg/yr | lbs/yr | | | | Forest | | | 0.0 | | | | Open Water | | | 0.0 | | | | Pasture/Grass | | | 0.0 | | | | Row Crops | | | 0.0 | | | | Urban - Rural Residential | | | 0.0 | | | | Wetland | | | 0.0 | | | | Watershed to Lake Area | | | | | | | Year | TP | Chl-a | Secchi | |------------------------------------|------|-------|--------| | 1979 | 55.0 | 55.7 | 52.6 | | 1992 | 55.8 | 54.9 | 53.4 | | 1993 | | | 52.5 | | 1994 | | | 50.1 | | 1995 | | | 50.0 | | 1996 | | | 53.6 | | 1997 | | | 49.8 | | 2002 | | | | | 2008 | 59.5 | 56.6 | 50.7 | | 2009 | 53.0 | 54.2 | 50.9 | | 2010 | 56.5 | 61.2 | 53.6 | | 2011 | 57.2 | 62.9 | 55.7 | | 2012 | 51.3 | 55.9 | 52.1 | | 2013 | 55.0 | 62.4 | 54.6 | | | | | | | All Years (Weighted) | 55.6 | 59.3 | 51.9 | | Shallow, Lowland
Drainage Lakes | 54.6 | 52.6 | 52.4 | | NLF Ecoregion | 48.1 | 47.5 | 45.7 | | | | Secch | ii (feet) | | | Chloroph | yll-a (μg/L) | | | Total Phosp | horus (µg/L) | | |------------------------------------|---------|--------|-----------|------|---------|----------|--------------|------|---------|-------------|--------------|------| | | Growing | Season | Sun | imer | Growing | Season | Sun | nmer | Growing | Season | Sum | nmer | | Year | Count | Mean | | 1979 | 1 | 5.5 | 1 | 5.5 | 1 | 12.9 | 1 | 12.9 | 1 | 34.0 | 1.0 | 34.0 | | 1992 | 3 | 5.1 | 2 | 5.2 | 3 | 13.5 | 2 | 11.9 | 3 | 33.0 | 2.0 | 36.0 | | 1993 | 19 | 5.1 | 13 | 5.5 | | | | | | | | | | 1994 | 17 | 6.1 | 12 | 6.5 | | | | | | | | | | 1995 | 18 | 6.3 | 13 | 6.6 | | | | | | | | | | 1996 | 13 | 5.2 | 11 | 5.1 | | | | | | | | | | 1997 | 9 | 6.7 | 9 | 6.7 | | | | | | | | | | 2002 | 8 | 3.9 | 0 | | | | | | | | | | | 2008 | 10 | 5.9 | 7 | 6.2 | 3 | 14.2 | 3 | 14.2 | 3 | 46.3 | 3.0 | 46.3 | | 2009 | 9 | 6.5 | 6 | 6.2 | 3 | 11.1 | 3 | 11.1 | 4 | 30.8 | 3.0 | 29.7 | | 2010 | 14 | 5.9 | 10 | 5.1 | 3 | 22.7 | 3 | 22.7 | 4 | 35.5 | 3.0 | 37.7 | | 2011 | 8 | 4.4 | 6 | 4.4 | 3 | 26.9 | 3 | 26.9 | 4 | 39.3 | 3.0 | 39.7 | | 2012 | 9 | 6.3 | 6 | 5.7 | 3 | 13.2 | 3 | 13.2 | 5 | 25.6 | 3.0 | 26.3 | | 2013 | 15 | 4.7 | 8 | 4.8 | 7 | 23.3 | 5 | 25.7 | 8 | 33.8 | 5.0 | 33.9 | III Years (Weighted) | | 5.6 | | 5.8 | | 18.5 | | 18.7 | | 34.1 | | 35.4 | | Shallow, Lowland
Drainage Lakes | | | | 5.6 | | | | 9.4 | | | | 33.0 | | NLF Ecoregion | | | | 8.9 | | | | 5.6 | | | | 21.0 | July 2013 N: 1140.0 July 2013 P: 41.2 Summer 2013 N:P 28 :1 Catfish Lake Date: 5/15/2013 Time: 16:00 Weather: Clear, breezy, 68l Max Depth: 30.7 CATLS Depth (ft): 3.0 CATLB Depth (ft): 27.0 Secchi Depth (ft): 4.2 | Depth
(ft) | Temp
(°C) | D.O.
(mg/L) | pH | Sp. Cond.
(uS/cm) | |---------------|--------------|----------------|-----|----------------------| | 1 | 10.3 | 10.8 | 7.1 | 79.0 | | 3 | 10.2 | 10.8 | 7.3 | 79.0 | | 6 | 10.2 | 10.8 | 7.4 | 79.0 | | 9 | 10.2 | 10.8 | 7.4 | 79.0 | | 12 | 10.2 | 10.8 | 7.4 | 79.0 | | 15 | 10.1 | 10.7 | 7.4 | 79.0 | | 18 | 10.1 | 10.7 | 7.4 | 79.0 | | 21 | 10.1 | 10.7 | 7.4 |
79.0 | | 24 | 10.0 | 10.7 | 7.4 | 79.0 | | 27 | 10.0 | 10.6 | 7.4 | 79.0 | | 30 | 10.0 | 10.6 | 7.4 | 79.0 | 1 | | | 1 | | | May 15, 2013 | | | | | | | | | |-----------------|--|---|------------|----|----|--------------|----|--| | 0 | | 5 | 10 | 15 | 20 | 25 | 30 | | | ١ | | | _ <u>T</u> | | | | ╗ | | | 5 | | | Ţ. | | | | | | | € 10 | | | Ħ | | | | | | | 10 Depth (Ft) | | | # | | | | | | | ے ₂₀ | | | Į | | | Tomo | ٦. | | | 25 | | | # | | | (°C)
D.O. | | | | 30 | | | | | | (mg/L) | Ш | | | Parameter | CATLS | CATLB | |---|--------|--------| | Total P (µg/L) | 34.60 | 34.70 | | Dissolved P (μg/L) | ND | ND | | Chl-a (µg/L) | 19.00 | NA | | TKN (µg/L) | 592.00 | 551.00 | | NO ₃ + NO ₂ -N (μg/L) | ND | ND | | NH ₃ -N (µg/L) | ND | ND | | Total N (µg/L) | 592.00 | 551.00 | | Lab Cond. (µS/cm) | 81.70 | 82.20 | | Lab pH | 7.45 | 7.38 | | Alkalinity (mg/L CaCO ₃) | 30.70 | 30.90 | | Total Susp. Solids (mg/L) | 4.00 | 3.50 | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | 30.00 | NA | | Turbidity (NTU) | NA | NA. | Data collected by TAH (Onterra) #### Catfish Lake Date: 6/25/2013 Time: 13:30 Weather: 75F, breezy, 90% clouds Entry: EEH Max Depth: 29.1 CATLS Depth (ft): 3.0 CATLB Depth (ft): 26.0 Secchi Depth (ft): 5.2 | Depth
(ft) | Temp
(°C) | D.O.
(mg/L) | pH | Sp. Cond.
(µS/cm) | |---------------|--------------|----------------|----|----------------------| | 1 | 24.2 | 9.7 | | | | 3 | 23.8 | 9.7 | | | | 6 | 23.5 | 9.7 | | | | 9 | 22.5 | 9.6 | | | | 12 | 20.3 | 7.0 | | | | 15 | 18.4 | 3.3 | | | | 18 | 15.8 | 0.1 | | | | 21 | 14.5 | 0.1 | | | | 24 | 13.4 | 0.1 | | | | 27 | 12.6 | 0.0 | Parameter | CATLS | CATLB | |--------------------------------------|-------|-------| | Total P (µg/L) | 22.60 | 32.20 | | Dissolved P (µg/L) | | NA | | Chl-a (µg/L) | 9.82 | NA | | TKN (μg/L) | NA | NA | | $NO_3 + NO_2 - N (\mu g/L)$ | NA | NA NA | | NH ₃ -N (µg/L) | NA | NA NA | | Total N (µg/L) | NA | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | | NA. | | Alkalinity (mg/L CaCO ₃) | | NA NA | | Total Susp. Solids (mg/L) | NA | NA | | Calcium (mg/L) | | NA | | Magnesium (mg/L) | 3.25 | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | | NA | | Turbidity (NTU) | NA NA | NA | Data collected by TAH and DAC (Onterra) #### Catfish Lake Date: 7/24/2013 Time: 12:45 Weather: 75% clouds, 67F, light breeze Entry: EEH Max Depth: 27.7 CATLS Depth (ft): 3.0 CATLB Depth (ft): 25.0 Secchi Depth (ft): 3.0 | Depth | Temp | D.O. | | Sp. Cond. | |-------|------|--------|-----|-----------| | (ft) | (°C) | (mg/L) | pH | (µS/cm) | | 1 | 23.0 | 7.3 | 7.8 | 81. | | 3 | 23.0 | 7.3 | 7.8 | 80. | | 6 | 22.8 | 7.3 | 7.8 | 81. | | 9 | 22.7 | 7.2 | 7.8 | 80. | | 12 | 22.5 | 7.0 | 7.7 | 80. | | 15 | 22.3 | 6.7 | 7.6 | 80. | | 18 | 17.5 | 0.0 | 7.1 | 111. | | 21 | 14.4 | 0.0 | 7.3 | 155. | | 24 | 13.6 | 0.0 | 7.5 | 170. | July 2 | 4, 201 | 3 | | | |---------------|-----|--------|--------|----|-----------------|----| | 0 ← | 5 | 10 | 15 | 20 | 25 | 30 | | | | , | | | I | | | 5 - | - | • | | | • | | | ₽10 | 1 | | | | ľ | | | £ 15 | اسر | | | ر | 1 | | | 10 Depth (Ft) | | | | | | | | 25 | | | 1 | - | Temp
(°C) | 1 | | | | | | - | ■D.O.
(mg/L) | J | | 30 — | | | | | | | | Parameter | CATLS | CATLB | |---|--------|---------| | Total P (μg/L) | 27.70 | 329.00 | | Dissolved P (µg/L) | ND | 82.90 | | Chl-a (µg/L) | 24.60 | NA | | TKN (μg/L) | 857.00 | 2820.00 | | NO ₃ + NO ₂ -N (μg/L) | ND | ND | | NH ₃ -N (µg/L) | ND | 1620.00 | | Total N (µg/L) | 857.00 | 4440.00 | | Lab Cond. (µS/cm) | 82.50 | 123.00 | | Lab pH | 7.61 | 6.80 | | Alkalinity (mg/L CaCO ₃) | 31.80 | 57.00 | | Total Susp. Solids (mg/L) | 5.20 | 8.33 | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | 30.00 | NA | | Turbidity (NTU) | NA | NA. | Data collected by TAH and DAC (Onterra) Costich Lake Date: 8/22/2013 Time: 10:00 Weather: Clear, light breeze, 70F Entry: EEH Max Depth: 21.7 CATLS Depth (ft): 3.0 CATLB Depth (ft): 19.0 Secchi Depth (ft): 3.7 | Depth
(ft) | Temp
(°C) | D.O.
(mg/L) | pН | Sp. Cond
(µS/cm) | |---------------|--------------|----------------|----|---------------------| | - 1 | 23.4 | 7.6 | | | | 3 | 22.8 | 7.8 | | | | 6 | 22.4 | 7.7 | | | | 9 | 22.2 | 7.4 | | | | 12 | 21.3 | 5.7 | | | | 15 | 19.8 | 2.4 | | | | 18 | 19.1 | 0.1 | | | | 21 | 18.6 | 0.0 | | | | 24 | 18.2 | 0.0 | | | | 27 | 16.5 | 0.0 | | | | 29 | 15.2 | 0.0 | 1 | | Parameter | CATLS | CATLB | |---|-------|-------| | Total P (µg/L) | 17.00 | 42.50 | | Dissolved P (µg/L) | NA | NA | | Chl-a (µg/L) | 16.60 | NA | | TKN (µg/L) | NA | NA | | NO ₃ + NO ₂ -N (µg/L) | NA | NA. | | NH ₃ -N (μg/L) | NA | NA. | | Total N (µg/L) | NA | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA | | Alkalinity (mg/L CaCO ₃) | NA | NA | | Total Susp. Solids (mg/L) | NA | NA | | Calcium (mg/L) | 8.74 | NA. | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA | Data collected by MKH and TAH (Onterra) _ Date: 10/9/2013 Time: 11:23 Weather: 25% clouds, 65F Entry: EEH Max Depth: 31.0 CATLS Depth (ft): 3.0 CATLB Depth (ft): 28.0 Secchi Depth (ft): 4.3 | П | Depth | Temp | D.O. | | Sp. Cond. | |---|-------|------|--------|----|-----------| | | (ft) | (°C) | (mg/L) | pH | (µS/cm) | | П | 1 | 15.1 | 7.3 | | | | П | 3 | | 7.3 | | | | L | 6 | | 7.1 | | | | | 9 | | 7.2 | | | | | 12 | | 7.1 | | | | L | 15 | | 7.0 | | | | L | 18 | | 7.0 | | | | L | 21 | 14.4 | 6.9 | | | | L | 24 | | 6.7 | | | | L | 27 | 14.4 | 6.6 | | | | L | 29 | 14.3 | 6.7 | | | | L | | | | | | | L | | | | | | | L | | | | | | | L | | | | | | | L | | | | | | | L | | | | | | | | | | | | | | Parameter | CATLS | CATLB | |--------------------------------------|-------|-------| | Total P (µg/L) | 52.20 | 55.00 | | Dissolved P (µg/L) | NA | NA | | Chl-a (µg/L) | 26.80 | NA | | TKN (µg/L) | NA | NA | | $NO_3 + NO_2 - N (\mu g/L)$ | | NA | | NH ₃ -N (µg/L) | NA | NA | | Total N (µg/L) | NA | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | | NA | | Alkalinity (mg/L CaCO ₃) | NA | NA | | Total Susp. Solids (mg/L) | 6.80 | 5.00 | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA | Data collected by TWH and TAH (Onterra) Catfish Lake Date: 2/20/2014 Time: 15:30 Weather: 30% clouds, 40F, breezy Entry: EEH Max Depth: 29.6 CATLS Depth (ft): 3.0 CATLB Depth (ft): 27.0 Secchi Depth (ft): 5.9 | Depth
(ft) | Temp
(°C) | D.O.
(mg/L) | pН | Sp. Cond
(µS/cm) | |---------------|--------------|----------------|----|---------------------| | 1 | 0.4 | 9.4 | | | | 3 | 0.4 | 9.4 | | | | 6 | 0.8 | 9.0 | | | | 9 | 1.6 | 7.9 | | | | 12 | 2.5 | 5.9 | | | | 15 | 3.3 | 4.3 | | | | 18 | 3.7 | 3.5 | | | | 21 | 4.2 | 2.6 | | | | 24 | 5.2 | 0.2 | | | | 27 | 5.8 | 0.0 | | | | 29 | 6.0 | 0.0 | Parameter | CATLS | CATLB | |---|-------|-------| | Total P (µg/L) | NA | NA | | Dissolved P (µg/L) | NA | NA | | Chl-a (µg/L) | NA | NA | | TKN (μg/L) | NA | NA | | NO ₃ + NO ₂ -N (µg/L) | NA | NA NA | | NH ₃ -N (µg/L) | NA | NA NA | | Total N (µg/L) | NA | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA | | Alkalinity (mg/L CaCO ₃) | NA | NA NA | | Total Susp. Solids (mg/L) | NA | NA | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA | Data collected by DAC and TWH (Onterra). Ice thickness: 1.9 feet | | Water Q | uality Data | | | |---------------------------|---------|-------------|-------|--------| | 2013-2014 | Sur | face | Bot | tom | | Parameter | Count | Mean | Count | Mean | | Secchi Depth (feet) | 6 | 4.4 | NA | NA | | Total P (µg/L) | 5 | 30.8 | 5 | 98.7 | | Dissolved P (µg/L) | 2 | ND | 2 | 82.9 | | Chl a (µg/L) | 5 | 19.4 | 0 | NA | | TKN (µg/L | 2 | 724.5 | 2 | 1685.5 | | NO3+NO2-N (µg/L) | 2 | ND | 2 | ND | | NH3-N (µg/L) | 2 | ND | 2 | 1620.0 | | Total N (μg/L) | 2 | 724.5 | 2 | 2495.5 | | Lab Cond. (µS/cm) | 2 | 82.1 | 2 | 102.6 | | Lab pH | 2 | 7.5 | 2 | 7.1 | | Alkal (mg/l CaCO3) | 2 | 31.3 | 2 | 44.0 | | Total Susp. Solids (mg/l) | 3 | 5.3 | 3 | 5.6 | | Calcium (µg/L) | 2 | 8.1 | 0 | NA | | Magnesium (mg/L) | 1 | 3.3 | 0 | NA | | Hardness (mg/L) | 0 | NA | 0 | NA | | Color (SU) | 2 | 30.0 | 0 | NA | | Turbidity (NTLI) | 0 | NΔ | 0 | NΔ | | Parameter | Value | |-------------------------------|---------------| | Acreage | | | Volume (acre-feet) | | | Perimeter (miles) | | | Shoreland Developmetnt Factor | | | Maximum Depth (feet) | | | County | | | WBIC | | | Lillie Mason Region (1983) | NLF Ecoregion | | Nichols Ecoregion (1999) | NLFL | | Watershed Data | | | | | | | | |---------------------------|---------|-------|--------|--|--|--|--| | WiLMS Class | Acreage | kg/yr | lbs/yr | | | | | | Forest | | | 0.0 | | | | | | Open Water | | | 0.0 | | | | | | Pasture/Grass | | | 0.0 | | | | | | Row Crops | | | 0.0 | | | | | | Urban - Rural Residential | | | 0.0 | | | | | | Wetland | | | 0.0 | | | | | | Watershed to Lake Area | | | | | | | | | Tropl | nic State Ind | ex (TSI) | | |------------------------------------|---------------|----------|--------| | Year | TP | Chl-a | Secchi | | 1973 | 53.2 | | 53.9 | | 1974 | 63.2 | | 56.8 | | 1979 | 52.2 | 61.8 | 55.4 | | 1992 | 52.7 | 55.1 | 59.5 | | 1993 | | | 48.8
 | 2002 | | | 58.1 | | 2003 | | | 50.9 | | 2007 | | | | | 2008 | | | 54.7 | | 2009 | | | 54.5 | | 2010 | | | 52.1 | | 2013 | 49.0 | 58.4 | 56.7 | | | | | | | All Years (Weighted) | 53.4 | 58.2 | 53.9 | | Shallow, Lowland
Drainage Lakes | 54.6 | 52.6 | 52.4 | | NLF Ecoregion | 48.1 | 47.5 | 45.7 | | | | Secch | i (feet) | | | Chloroph | yll-a (μg/L) | | | Total Phosphorus | | | |--|---------|--------|----------|------------|-------|----------|--------------|-------------|---------|------------------|-------|------| | | Growing | Season | Sun | nmer | | Season | Sun | nmer | Growing | | | nmer | | Year | Count | Mean | Count | Mear | | 1973 | 2 | 5.3 | 1 | 5.0 | | | | | 2 | 30.0 | 1.0 | 30.0 | | 1974 | 3 | 5.9 | 1 | 4.1 | | | | | 3 | 50.0 | 1.0 | 60.0 | | 1975 | 0 | | 0 | | | | | | 0 | | 0.0 | | | 1979 | 2 | 4.5 | 2 | 4.5 | 1 | 24.2 | 1 | 24.2 | - 1 | 28.0 | 1.0 | 28.0 | | 1992 | 5 | 3.0 | 4 | 3.4 | 3 | 15.1 | 2 | 12.2 | 3 | 30.3 | 2.0 | 29.0 | | 1993 | 8 | 7.1 | 7 | 7.1 | | | | | | | | | | 2002 | 17 | 4.4 | 5 | 3.8 | | | | | | | | | | 2003 | 4 | 5.8 | 3 | 6.2 | 1 | | | | | | | | | 2007 | 3 | 4.3 | 0 | | 1 | | | | | | 1 | | | 2008 | 5 | 4.7 | 5 | 4.7 | | | | | | | | | | 2009 | 6 | 4.7 | 5 | 4.8 | | | | | | | | | | 2010 | 5 | 6.4 | 3 | 5.7 | | | | | | | | | | 2013 | 5 | 4.2 | 3 | 4.1 | 5 | 19.4 | 3 | 17.0 | 5 | 30.8 | 3.0 | 22. | | | | | | | | | | | | | | | | I Years (Weighted)
Shallow, Lowland
Drainage Lakes | | 5.0 | | 5.0
5.6 | | 18.5 | | 16.6
9.4 | | 34.5 | | 30.4 | | NLF Ecoregion | 1 | | | 8.9 | | | | 5.6 | | | | 21.0 | July 2013 N: 857.0 July 2013 P: 27.7 Summer 2013 N:P 31 :1 Eagle Lak Date: 5/28/2014 Time: 14:13 Weather: 10% clouds, light breeze, 75F Entry: EEH Max Depth: 28.2 ELS Depth (ft): 3.0 ELB Depth (ft): 26.0 Secchi Depth (ft): 4.9 | Depth
(ft) | Temp
(°C) | D.O.
(mg/L) | pН | Sp. Con
(µS/cm | |---------------|--------------|----------------|-----|-------------------| | 1 | 22.1 | 8.8 | | | | 3 | 20.2 | 9.0 | 9.2 | | | 6 | 19.2 | 8.9 | | | | 9 | 14.9 | 9.6 | 8.8 | | | 12 | 13.3 | 8.4 | | | | 15 | 12.2 | 6.4 | | | | 18 | 11.5 | 5.0 | 7.9 | | | 21 | 10.7 | 3.2 | | | | 24 | 10.5 | 2.0 | | | | 26 | 10.2 | 1.0 | 7.4 | | | 27 | 10.1 | 8.0 | Parameter | ELS | ELB | |--------------------------------------|--------|--------| | Total P (µg/L) | 24.00 | 62.90 | | Dissolved P (µg/L) | ND | 14.60 | | Chl-a (µg/L) | 7.15 | NA | | TKN (μg/L) | 519.00 | 684.00 | | $NO_3 + NO_2 - N (\mu g/L)$ | ND | 26.80 | | NH ₃ -N (µg/L) | ND | 157.00 | | Total N (µg/L) | 519.00 | 710.80 | | Lab Cond. (µS/cm) | 72.40 | 79.50 | | Lab pH | 7.55 | 6.83 | | Alkalinity (mg/L CaCO ₃) | 27.90 | 31.40 | | Total Susp. Solids (mg/L) | 2.20 | 10.00 | | Calcium (mg/L) | 7.36 | NA | | Magnesium (mg/L) | 3.10 | NA | | Hardness (mg/L) | 31.20 | NA | | Color (SU) | 40.00 | NA | | Turbidity (NTU) | NA | NA | Data collected by EAT, SDF, and EEH (Onterra) anla I aka Date: 6/24/2014 Time: 12:15 Weather: 79F, no wind, 50% clouds Entry: EEH Max Depth: 31.9 ELS Depth (ft): 3.0 ELB Depth (ft): 29.0 Secchi Depth (ft): 5.4 | Depth | Temp | D.O. | | Sp. Cond | |-------|------|--------|----|----------| | (ft) | (°C) | (mg/L) | pН | (µS/cm) | | 1 | 24.5 | 8.3 | | | | 3 | 23.4 | 8.4 | | | | 6 | 22.6 | 8.3 | | | | 9 | 20.5 | 7.5 | | | | 12 | 19.7 | 6.9 | | | | 15 | 18.0 | 5.1 | | | | 18 | 16.2 | 2.7 | | | | 21 | 12.8 | 0.0 | | | | 24 | 11.8 | 0.0 | | | | 27 | 11.4 | 0.0 | | | | 30 | 10.9 | 0.0 | | | | 31 | 10.8 | 0.0 | 1 | | | | | | | | | | | | | | Parameter | ELS | ELB | |--------------------------------------|-------|-------| | Total P (µg/L) | 17.20 | 47.70 | | Dissolved P (µg/L) | NA | NA | | Chl-a (µg/L) | 8.92 | NA | | TKN (μg/L) | NA | NA | | $NO_3 + NO_2 - N (\mu g/L)$ | NA | NA | | NH ₃ -N (µg/L) | NA | NA | | Total N (μg/L) | NA | NA | | Lab Cond. (μS/cm) | NA | NA | | Lab pH | NA | NA | | Alkalinity (mg/L CaCO ₃) | NA | NA | | Total Susp. Solids (mg/L) | NA | NA | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA | Data collected by TAH (Onterra) Engle I ale Date: 7/23/2014 Time: 9:15 Weather: 25% clouds, 63F Entry: EEH Max Depth: 28.3 ELS Depth (ft): 3.0 ELB Depth (ft): 26.0 Secchi Depth (ft): 4.5 | Depth | Temp | D.O. | | Sp. Con | |----------|--------------|--------|----|---------| | (ft) | (.C) | (mg/L) | pH | (μS/cm | | - 1 | 21.1 | 7.6 | | | | 3 | 21.3 | 7.6 | | | | 6 | 21.4 | 7.5 | | | | 9 | 21.4 | 7.3 | | | | 12 | 21.4 | 7.3 | | | | 15 | 21.3 | 7.1 | | | | 18 | 19.7 | 4.3 | | | | 21 | 18.1 | 2.8 | | | | 24 | 14.6 | 0.0 | | | | 26
27 | 13.8
13.2 | 0.0 | | _ | | 2/ | 13.2 | 0.0 | | _ | | | | | | _ | | | | | | _ | | | | | | _ | | | | | | + | | | | | | + | Parameter | ELS | ELB | |--------------------------------------|--------|---------| | Total P (µg/L) | 27.60 | 59.10 | | Dissolved P (µg/L) | ND | 23.00 | | Chl-a (µg/L) | 21.50 | NA | | TKN (µg/L) | 681.00 | 1390.00 | | $NO_3 + NO_2 - N (\mu g/L)$ | ND | ND | | NH ₃ -N (µg/L) | ND | 813.00 | | Total N (µg/L) | 681.00 | 1390.00 | | Lab Cond. (µS/cm) | 80.90 | 106.00 | | Lab pH | 7.63 | 7.18 | | Alkalinity (mg/L CaCO ₃) | 32.60 | 48.10 | | Total Susp. Solids (mg/L) | 4.33 | 8.67 | | Calcium (mg/L) | 7.94 | NA | | Magnesium (mg/L) | 3.29 | NA | | Hardness (mg/L) | 33.40 | NA | | Color (SU) | 40.00 | NA | | Turbidity (NTU) | NA | NA | Data collected by TWH and SDF (Onterra) Eagle Lak Date: 8/27/2014 Time: 10:10 Weather: 25% clouds, light breeze, 60F Entry: EEH Max Depth: 33.3 ELS Depth (ft): 3.0 ELB Depth (ft): 30.0 Secchi Depth (ft): 4.6 | Depth | Temp | D.O. | | Sp. Cond | |-------|------|--------|----|----------| | (ft) | (.C) | (mg/L) | pH | (µS/cm) | | 1 | 21.3 | 8.5 | | | | 3 | 21.3 | 8.4 | | | | 6 | 21.2 | 8.3 | | | | 9 | 21.1 | 8.2 | | | | 12 | 21.0 | 7.7 | | | | 15 | 21.0 | 7.5 | | | | 18 | 20.6 | 5.2 | | | | 21 | 20.4 | 3.8 | | | | 24 | 16.3 | 0.1 | | | | 27 | 14.7 | 0.1 | | | | 30 | 13.4 | 0.0 | | | | 32 | 12.7 | 0.0 | 1 | | Parameter | ELS | ELB | |--------------------------------------|-------|--------| | Total P (µg/L) | 34.10 | 116.00 | | Dissolved P (µg/L) | NA | NA | | Chl-a (µg/L) | 22.00 | NA | | TKN (µg/L) | NA | NA | | $NO_3 + NO_2 - N (\mu g/L)$ | NA | NA | | NH ₃ -N (µg/L) | NA | NA | | Total N (µg/L) | NA | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pĤ | | NA | | Alkalinity (mg/L CaCO ₃) | NA | NA | | Total Susp. Solids (mg/L) | NA | NA | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA | Data collected by MKH and TAH (Onterra) Engle I al Date: 10/23/2014 Time: 15:00 Weather: Rain, 45F, overcast Entry: EEH Max Depth: 32.2 ELS Depth (ft): 3.0 ELB Depth (ft): 30.0 Secchi Depth (ft): 5.8 | Depth | Temp | D.O. | | Sp. Con | |-------|------|--------|----|---------| | (ft) | (.C) | (mg/L) | pH | (μS/cn | | 1 | 8.4 | 9.1 | | | | 3 | 8.4 | 9.0 | | | | 6 | 8.3 | 9.0 | | | | 9 | 8.3 | 8.9 | | | | 12 | 8.5 | 8.9 | | | | 15 | 8.5 | 8.9 | | | | 18 | 8.4 | 8.9 | | | | 21 | 8.4 | 8.9 | | | | 24 | 8.4 | 8.8 | | | | 27 | 8.3 | 8.8 | | | | 30 | 8.3 | 8.8 | | | | 32 | 8.3 | 8.7 | 1 | | Parameter | ELS | ELB | |--------------------------------------|-------|-------| | Total P (µg/L) | 37.50 | 33.50 | | Dissolved P (µg/L) | NA | NA | | Chl-a (µg/L) | 7.04 | NA | | TKN (µg/L) | NA | NA | | $NO_3 + NO_2 - N (\mu g/L)$ | NA | NA | | NH ₃ -N (µg/L) | NA | NA | | Total N (µg/L) | NA | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA | | Alkalinity (mg/L CaCO ₃) | NA | NA | | Total Susp. Solids (mg/L) | 2.60 | 2.40 | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NΔ | NΔ | Data collected by TAH and DAC (Onterra) Eagle Lake Date: 2/18/2015 Time: 9:24 Weather: -7 F, very windy, 90% clouds Entry: EEH Max Depth: 31.9 ELS Depth (ft): 3.0 ELB Depth (ft): 29.0 Secchi Depth (ft): 3.8 | Depth | Temp | D.O. | | Sp. Cond | |-------|------|--------|----|----------| | (ft) | (.C) | (mg/L) | pH | (µS/cm) | | 1 | | | | | | 3 | 0.4 | 9.7 | | | | 6 | 0.9 | 9.2 | | | | 9 | 1.3 | 8.7 | | | | 12 | 1.5 | 7.6 | | | | 15 | 2.3 | 6.9 | | | | 18 | 3.1 | 6.5 | | | | 21 | 4.0 | 3.4 | | | | 24 | 4.7 | 0.9 | | | | 27 | 5.0 | 0.3 | | | | 29 | 5.2 | 0.2 | | | | 30 | 5.4 | 0.2 | Parameter | ELS | ELB | |--------------------------------------|--------|--------| | Total P (µg/L) | 34.10 | 36.60 | | Dissolved P (µg/L) | 4.80 | 6.80 | | Chl-a (µg/L) | NA | NA | | TKN (µg/L) | 481.00 | 836.00 | | $NO_3 + NO_2 - N (\mu g/L)$ | 152.00 | 54.40 | | NH ₃ -N (µg/L) | ND | 415.00 | | Total N (µg/L) | 633.00 | 890.40 | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA | | Alkalinity (mg/L CaCO ₃) | NA | NA | | Total Susp. Solids (mg/L) | NA | NA | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity
(NTU) | NA | NA | Data collected by EEH and TWH (Onterra). Ice thickness: 1.5 feet | 2014-2015 | Surf | ace | Bottom | | | |---------------------------|------------|-------|--------|-------|--| | Parameter | Count Mean | | Count | Mean | | | Secchi Depth (feet) | 6 | 4.8 | NA | NA | | | Total P (µg/L) | 6 | 29.1 | 6 | 59.3 | | | Dissolved P (µg/L) | 3 | 4.8 | 3 | 14.8 | | | Chl a (µg/L) | 5 | 13.3 | 0 | NA | | | TKN (μg/L | 3 | 560.3 | 3 | 970.0 | | | NO3+NO2-N (µg/L) | 3 | 152.0 | 3 | 40.6 | | | NH3-N (µg/L) | 3 | ND | 3 | 461.7 | | | Total N (µg/L) | 3 | 611.0 | 3 | 997.1 | | | Lab Cond. (µS/cm) | 2 | 76.7 | 2 | 92.8 | | | Lab pH | 2 | 7.6 | 2 | 7.0 | | | Alkal (mg/l CaCO3) | 2 | 30.3 | 2 | 39.8 | | | Total Susp. Solids (mg/l) | 3 | 3.0 | 3 | 7.0 | | | Calcium (µg/L) | 2 | 7.7 | 0 | NA | | | Magnesium (mg/L) | 2 | 3.2 | 0 | NA | | | Hardness (mg/L) | 2 | 32.3 | 0 | NA | | | Color (SU) | 2 | 40.0 | 0 | NA | | | Turbidity (NTU) | 0 | NA | 0 | NA | | | Parameter | Value | |-------------------------------|---------------| | Acreage | | | Volume (acre-feet) | | | Perimeter (miles) | | | Shoreland Developmentt Factor | | | Maximum Depth (feet) | | | County | | | WBIC | | | Lillie Mason Region (1983) | NLF Ecoregion | | Nichols Ecoregion (1999) | NLFL | | WiLMS Class | Acreage | kg/yr | lbs/yr | |---------------------------|---------|-------|--------| | Forest | | | 0.0 | | Open Water | | | 0.0 | | Pasture/Grass | | | 0.0 | | Row Crops | | | 0.0 | | Urban - Rural Residential | | | 0.0 | | Wetland | | | 0.0 | | Year | TP | Chl-a | Secchi | |--|--------------|--------------|--------------| | 1979 | 52.7 | 56.6 | 51.3 | | 1992 | 54.6 | 57.4 | 52.3 | | 1993 | | | 48.1 | | 1996 | | | 53.2 | | 1997 | | | 48.2 | | 1998 | | | 50.1 | | 1999 | | | 52.0 | | 2000 | 51.4 | 54.1 | 50.1 | | 2001 | 51.7 | 50.1 | 51.9 | | 2002 | 47.6 | 51.1 | 51.4 | | 2003 | 49.2 | 50.2 | 50.2 | | 2004 | 50.2 | 54.1 | 51.9 | | 2005 | 48.7 | 51.4 | 48.3 | | 2007 | | | | | 2008 | | | 50.3 | | 2012 | | | 54.2 | | 2014 | 51.3 | 58.7 | 54.4 | | | | | | | All Years (Weighted)
Deep, Lowland Drainage | 50.7
49.4 | 53.9
49.7 | 50.7
46.2 | | Lakes
NLF Ecoregion | 48.1 | 47.5 | 45.7 | | | | Secch | i (feet) | | | Chloroph | /II-a (μg/L) | | | Total Phosp | horus (µg/L) | | |-----------------------------------|---------|--------|----------|------|---------|----------|--------------|------|---------|-------------|--------------|------| | | Growing | Season | Sum | mer | Growing | Season | Sun | nmer | Growing | Season | Sun | mer | | Year | Count | Mean | | 1979 | 1 | 6.0 | 1 | 6.0 | 1 | 14.2 | 1 | 14.2 | 1 | 29.0 | 1.0 | 29.0 | | 1992 | 4 | 5.4 | 3 | 5.6 | 3 | 19.3 | 2 | 15.3 | 3 | 34.0 | 2.0 | 33.0 | | 1993 | 6 | 7.5 | 6 | 7.5 | | | | | | | | | | 1996 | 7 | 5.3 | 4 | 5.3 | | | | | | | | | | 1997 | 10 | 6.2 | 5 | 7.5 | | | | | | | | | | 1998 | 13 | 6.9 | 9 | 6.5 | | | | | | | | | | 1999 | 16 | 5.7 | 11 | 5.7 | | | | | | | | | | 2000 | 19 | 6.1 | 14 | 6.5 | 5 | 12.4 | 4 | 11.0 | 5 | 30.0 | 4.0 | 26.5 | | 2001 | 14 | 5.8 | 10 | 5.8 | 5 | 12.6 | 3 | 7.3 | 6 | 34.3 | 3.0 | 27.0 | | 2002 | 15 | 5.7 | 9 | 6.0 | 3 | 12.0 | 2 | 8.1 | 5 | 24.8 | 3.0 | 20.3 | | 2003 | 18 | 6.3 | 12 | 6.5 | 4 | 9.6 | 3 | 7.3 | 5 | 27.8 | 3.0 | 22.7 | | 2004 | 14 | 5.7 | 10 | 5.8 | 4 | 25.6 | 3 | 10.9 | 5 | 56.0 | 3.0 | 24.3 | | 2005 | 10 | 7.3 | 8 | 7.4 | 3 | 8.4 | 3 | 8.4 | 4 | 24.3 | 3.0 | 22.0 | | 2007 | 6 | 5.1 | 0 | | | | | | | | | | | 2008 | 9 | 6.3 | 5 | 6.5 | | | | | | | | | | 2012 | 2 | 4.1 | 1 | 4.9 | | | | | | | | | | 2014 | 5 | 5.0 | 3 | 4.8 | 5 | 13.3 | 3 | 17.5 | 5 | 28.1 | 3.0 | 26.3 | l | | | | | Il Years (Weighted) Deep, Lowland | | 6.0 | | 6.3 | | 14.1 | | 10.8 | | 32.5 | | 25.2 | | Drainage Lakes | | | | 8.5 | | | | 7.0 | | | | 23.0 | | NLF Ecoregion | I | | | 8.9 | | | | 5.6 | | | | 21.0 | July 2014 N: 681.0 27.6 25 :1 Summer 2014 N:P Scattering Rice Lake Date: 5/28/2014 Time: 13:40 Weather: 10% clouds, light breeze, 70F Entry: EEH Max Depth: 16.2 SRLS Depth (ft): 3.0 SRLB Depth (ft): 14.0 Secchi Depth (ft): 4.3 | Depth
(ft) | Temp
(°C) | D.O.
(mg/L) | рН | Sp. Cond
(µS/cm) | |---------------|--------------|----------------|-----|---------------------| | 1 | 22.8 | 7.6 | | | | 3 | 21.8 | 7.7 | 9.7 | | | 5 | 19.4 | 6.9 | | | | 7 | 16.9 | 6.6 | 8.3 | | | 9 | 14.9 | 6.3 | | | | 11 | 13.4 | 5.1 | | | | 13 | 12.4 | 3.9 | | | | 14 | 12.0 | 3.1 | 7.3 | | | 15 | 11.5 | 2.1 | Parameter | SRLS | SRLB | |--------------------------------------|--------|--------| | Total P (µg/L) | 34.10 | 36.40 | | Dissolved P (µg/L) | 3.20 | 5.90 | | Chl-a (µg/L) | 6.93 | NA | | TKN (µg/L) | 493.00 | 419.00 | | $NO_3 + NO_2 - N (\mu g/L)$ | ND | ND | | NH ₃ -N (µg/L) | ND | ND | | Total N (µg/L) | 493.00 | 419.00 | | Lab Cond. (µS/cm) | 82.40 | 79.30 | | Lab pH | 7.51 | 6.90 | | Alkalinity (mg/L CaCO ₃) | 36.60 | 34.80 | | Total Susp. Solids (mg/L) | 3.40 | 2.40 | | Calcium (mg/L) | 9.11 | NA | | Magnesium (mg/L) | 3.63 | NA | | Hardness (mg/L) | 37.70 | NA | | Color (SU) | 50.00 | NA | | Turbidity (NTU) | NA | NA | Data collected by EAT, SDF, and EEH (Onterra) Scattering Rice Lake Date: 6/24/2014 Time: 12:45 Weather: 79F, no wind, 50% clouds Entry: EEH Max Depth: 16.7 SRLS Depth (ft): 3.0 SRLB Depth (ft): 14.0 Secchi Depth (ft): 3.3 | Depth | Temp | D.O. | | Sp. Cond. | |-------|------|--------|----|-----------| | (ft) | (.C) | (mg/L) | pH | (µS/cm) | | 1 | 23.5 | 10.9 | | | | 3 | 22.8 | 11.4 | | | | 5 | 20.4 | 8.1 | | | | 7 | 19.6 | 7.0 | | | | 9 | 18.7 | 5.3 | | | | 11 | 17.4 | 4.3 | | | | 13 | 16.5 | 3.2 | | | | 15 | 16.1 | 1.8 | June | 24, 2014 | | | | |-----------------|----------|------|----------|----|----------------|----| | 0 | 5 | 10 | 15 | 20 | 25 | 30 | | | | | | | p | | | 2 | | 7 | | | 1 | | | 4 - | | | | / | _ | | | 6 | | 1 | | f | | | | 9 10 Depth (Ft) | l d | | | # | | | | 듚 8 | _/ | | | 1 | | | | ۵ ₁₀ | - [| | | / | | | | 12 | 7 | | - / | • | | _ | | | <i>*</i> | | # | | -B-Tem
(°C) | P | | 14 | , | | 1 | | D.O.
(mg/ | . | | 16 | | | | | (mg | L) | | Parameter | SRLS | SRLB | |--------------------------------------|-------|-------| | Total P (µg/L) | 34.60 | 51.60 | | Dissolved P (µg/L) | NA | NA | | Chl-a (µg/L) | 29.50 | NA | | TKN (µg/L) | NA | NA | | $NO_3 + NO_2 - N (\mu g/L)$ | NA | NA | | NH ₃ -N (µg/L) | NA | NA | | Total N (µg/L) | NA | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA | | Alkalinity (mg/L CaCO ₃) | NA | NA | | Total Susp. Solids (mg/L) | NA | NA | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA | Data collected by TAH (Onterra) Scattering Rice Lake Date: 7/23/2014 Time: 9:45 Weather: 75% clouds, 63F Entry: EEH Max Depth: 16.4 SRLS Depth (ft): 3.0 SRLB Depth (ft): 14.0 Secchi Depth (ft): 3.6 | Depth | Temp | D.O. | | Sp. Cond | |-------|------|--------|----|----------| | (ft) | (.C) | (mg/L) | pН | (µS/cm) | | 1 | 21.2 | 7.9 | | | | 3 | 21.6 | 7.7 | | | | 5 | 21.7 | 7.5 | | | | 7 | 21.7 | 7.2 | | | | 9 | 21.6 | 7.1 | | | | 11 | 20.4 | 4.4 | | | | 13 | 18.6 | 1.6 | | | | 14 | 17.6 | 0.2 | | | | 15 | 16.8 | 0.0 | - | | | | | | - | | | | | | - | | | | | | + | | | | | | + | | | | | | + | | | | | | + | | | | | | | | Parameter | SRLS | SRLB | |--------------------------------------|--------|--------| | Total P (µg/L) | 49.70 | 91.70 | | Dissolved P (µg/L) | ND | 15.70 | | Chl-a (µg/L) | 23.50 | NA | | TKN (µg/L) | 663.00 | 717.00 | | $NO_3 + NO_2 - N (\mu g/L)$ | ND | 20.40 | | NH ₃ -N (µg/L) | ND | 225.00 | | Total N (µg/L) | 663.00 | 737.40 | | Lab Cond. (µS/cm) | 96.00 | 101.00 | | Lab pH | 7.78 | 7.29 | | Alkalinity (mg/L CaCO ₃) | 44.10 | 47.10 | | Total Susp. Solids (mg/L) | 5.20 | 2.80 | | Calcium (mg/L) | 10.40 | NA | | Magnesium (mg/L) | 4.29 | NA | | Hardness (mg/L) | 43.50 | NA | | Color (SU) | 50.00 | NA | | Turbidity (NTU) | NA | NA | Data collected by TWH and SDF (Onterra) Scattering Rice Lake Date: 8/27/2014 Time: 10:43 Weather: 25% clouds, light breeze, 60F Entry: EEH Max Depth: 16.1 SRLS Depth (ft): 3.0 SRLB Depth (ft): 14.0 Secchi Depth (ft): 4.1 | Depth | Temp | D.O. | | Sp. Cond. | |-------|------|--------|----|-----------| | (ft) | (.C) | (mg/L) | pH | (µS/cm) | | 1 | 21.6 | 9.9 | | | | 2 | 21.5 | 9.9 | | | | 4 | 21.3 | 9.9 | | | | 6 | 20.9 | 9.4 | | | | 8 | 20.4 | 7.8 | | | | 10 | 19.8 | 4.0 | | | | 12 | 18.8 | 8.0 | | | | 14 | 17.7 | 0.2 | _ | | | | | | | | | | | | | | | | Parameter | SRLS | SRLB | |---|-------|--------| | Total P (μg/L) | 44.60 | 121.00 | | Dissolved P (µg/L) | NA | NA | | Chl-a (µg/L) | 24.50 | NA | | TKN (μg/L) | NA | NA | | NO ₃ + NO ₂ -N (µg/L) | NA | NA | | NH ₃ -N (μg/L) | NA | NA | | Total N (μg/L) | NA | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA | | Alkalinity (mg/L CaCO ₃) | NA | NA | | Total Susp.
Solids (mg/L) | NA | NA | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA | Data collected by MKH and TAH (Onterra) Scattering Rice Lake Date: 10/23/2014 Time: 14:10 Weather: Rainy, 45F, overcast Entry: EEH Max Depth: 16.8 SRLS Depth (ft): 3.0 SRLB Depth (ft): 15.0 Secchi Depth (ft): 4.0 | Depth | Temp | D.O. | | Sp. Cond | |-------|------|--------|-----|---------------------| | (ft) | (.C) | (mg/L) | pH | Sp. Cond
(µS/cm) | | 1 | 7.6 | 9.0 | 6.4 | | | 3 | 7.6 | 8.9 | | | | 6 | 7.6 | 8.9 | | | | 9 | 7.6 | 8.9 | | | | 12 | 7.6 | 8.9 | | | | 15 | 7.6 | 8.9 | | | | 16 | 7.6 | 8.8 | Parameter | SRLS | SRLB | |--------------------------------------|-------|-------| | Total P (µg/L) | 46.30 | 42.80 | | Dissolved P (μg/L) | NA | NA | | Chl-a (µg/L) | 2.36 | NA | | TKN (µg/L) | NA | NA | | $NO_3 + NO_2 - N (\mu g/L)$ | NA | NA | | NH ₃ -N (µg/L) | NA | NA | | Total N (µg/L) | NA | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA | | Alkalinity (mg/L CaCO ₃) | NA | NA | | Total Susp. Solids (mg/L) | 2.20 | 2.50 | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA | Data collected by DAC and TWH (Onterra) Scattering Rice Lake Date: 2/18/2015 Time: 11:29 Weather: -7F, very windy, 90% clouds Entry: EEH Max Depth: 16.5 SRLS Depth (ft): 3.0 SRLB Depth (ft): 14.0 Secchi Depth (ft): 5.8 | Depth | Temp | D.O. | | Sp. Cond.
(µS/cm) | |-------|------|--------|----|----------------------| | (ft) | (.C) | (mg/L) | pH | (µS/cm) | | 1 | | | | | | 3 | 0.5 | 6.6 | | | | 5 | 1.2 | 6.0 | | | | 7 | 2.7 | 2.1 | | | | 9 | 3.2 | 0.8 | | | | 11 | 3.1 | 0.7 | | | | 13 | 4.2 | 0.2 | | | | 14 | 4.3 | 0.2 | | | | 15 | 4.4 | 0.1 | - | | | | + | | - | | | | + | | - | | | | + | | - | | | | + | | - | | | | + | | | l | | l | | | Parameter | SRLS | SRLB | |---|--------|--------| | Total P (μg/L) | 25.10 | 35.90 | | Dissolved P (µg/L) | 7.20 | 10.20 | | Chl-a (µg/L) | NA | NA | | TKN (μg/L) | 185.00 | 323.00 | | NO ₃ + NO ₂ -N (µg/L) | 129.00 | 171.00 | | NH ₃ -N (μg/L) | 45.80 | 146.00 | | Total N (μg/L) | 314.00 | 494.00 | | Lab Cond. (µS/cm) | NA | NA | | "Lab pĤ | NA | NA | | Alkalinity (mg/L CaCO ₃) | NA | NA | | Total Susp. Solids (mg/L) | NA | NA | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA | Data collected by TWH and EEH (Onterra). Ice thickness: 1.6 feet | Water Quality Data | | | | | | | | | |---------------------------|-------|-------|-------|-------|--|--|--|--| | 2014-2015 | Surf | face | Bot | tom | | | | | | Parameter | Count | Mean | Count | Mean | | | | | | Secchi Depth (feet) | 6 | 4.2 | NA | NA | | | | | | Total P (µg/L) | 6 | 39.1 | 6 | 63.2 | | | | | | Dissolved P (µg/L) | 3 | 5.2 | 3 | 10.6 | | | | | | Chl a (µg/L) | 5 | 17.4 | 0 | NA | | | | | | TKN (µg/L | 3 | 447.0 | 3 | 486.3 | | | | | | NO3+NO2-N (µg/L) | 3 | 129.0 | 3 | 95.7 | | | | | | NH3-N (µg/L) | 3 | 45.8 | 3 | 185.5 | | | | | | Total N (µg/L) | 3 | 490.0 | 3 | 550.1 | | | | | | Lab Cond. (µS/cm) | 2 | 89.2 | 2 | 90.2 | | | | | | Lab pH | 2 | 7.6 | 2 | 7.1 | | | | | | Alkal (mg/l CaCO3) | 2 | 40.4 | 2 | 41.0 | | | | | | Total Susp. Solids (mg/l) | 3 | 3.6 | 3 | 2.6 | | | | | | Calcium (µg/L) | 2 | 9.8 | 0 | NA | | | | | | Magnesium (mg/L) | 2 | 4.0 | 0 | NA | | | | | | Hardness (mg/L) | 2 | 40.6 | 0 | NA | | | | | | Color (SU) | 2 | 50.0 | 0 | NA | | | | | | Turbidity (NTU) | 0 | NA | 0 | NA | | | | | | Parameter | Value | |-------------------------------|---------------| | Acreage | | | Volume (acre-feet) | | | Perimeter (miles) | | | Shoreland Developmentt Factor | | | Maximum Depth (feet) | | | County | | | WBIC | | | Lillie Mason Region (1983) | NLF Ecoregion | | Nichols Ecoregion (1999) | NLFL | | WiLMS Class | Acreage | kg/yr | lbs/yr | |---------------------------|---------|-------|--------| | Forest | | | 0.0 | | Open Water | | | 0.0 | | Pasture/Grass | | | 0.0 | | Row Crops | | | 0.0 | | Urban - Rural Residential | | | 0.0 | | Wetland | | | 0.0 | | Year | TP | Chl-a | Secchi | |------------------------------------|------|-------|--------| | 1979 | 52.7 | 53.3 | 50.1 | | 1992 | | | | | 1993 | | | | | 1996 | | | 53.2 | | 1997 | | | 50.5 | | 1998 | | | 55.4 | | 1999 | | | | | 2000 | | | 52.6 | | 2001 | | | 53.9 | | 2002 | | | 52.6 | | 2003 | | | 53.1 | | 2004 | | | 52.1 | | 2005 | | | 56.1 | | 2007 | | | | | 2008 | | | | | 2012 | | | | | 2014 | 58.4 | 62.5 | 57.8 | All Years (Weighted) | 57.2 | 60.9 | 53.7 | | Shallow, Lowland
Drainage Lakes | 54.6 | 52.6 | 52.4 | | NLF Ecoregion | 48.1 | 47.5 | 45.7 | | | | Secch | i (feet) | - | | Chloroph | /II-a (μg/L) | | | Total Phosp | horus (µg/L) | | |---------------------------------|-----------------------|-------|----------|-----------------------|-------|----------|--------------|----------------|-------|-------------|--------------|------| | | Growing Season Summer | | Growing | Growing Season Summer | | | Growing | Growing Season | | Summer | | | | Year | Count | Mean | Count | Mear | | 1979 | 1 | 6.5 | 1 | 6.5 | 1 | 10.1 | 1 | 10.1 | 1 | 29.0 | 1.0 | 29.0 | | 1992 | | | | | | | | | | | | | | 1993 | | | | | | | | | | | | | | 1996 | 3 | 5.0 | 2 | 5.3 | | | | | | | | | | 1997 | 4 | 5.9 | 3 | 6.3 | | | | | | | | | | 1998 | 4 | 4.9 | 2 | 4.5 | | | | | | | | | | 1999 | • | 4.0 | - | 4.0 | | | | | | | | | | 2000 | 5 | 5.4 | 2 | 5.5 | | | | | | | | | | 2000 | 5 | 5.0 | 3 | 5.0 | 1 | | l | | | | | | | 2001 | 8 | 5.4 | 2 | 5.5 | | | | | | | | | | | | | 6 | | | | | | | | | | | 2003 | 10 | 5.3 | | 5.3 | | | | | | | | | | 2004 | 6 | 5.3 | 3 | 5.7 | | | | | | | | | | 2005 | 8 | 4.5 | 4 | 4.3 | | | | | | | | | | 2007 | | | | | | | | | | | | | | 2008 | | | | | | | | | | | | | | 2012 | | | | | | | | | | | | | | 2014 | 9 | 3.9 | 5 | 3.8 | 5 | 17.4 | 3 | 25.8 | 5 | 41.9 | 3.0 | 43.0 | Years (Weighted) | | 5.0 | | 5.1 | | 16.1 | | 21.9 | • | 39.7 | | 39.5 | | allow, Lowland
rainage Lakes | | | | 5.6 | | | | 9.4 | | | | 33.0 | | NLF Ecoregion | | | | 8.9 | | | | 5.6 | | | | 21.0 | July 2014 N: July 2014 P: 663.0 49.7 Summer 2014 N:P 13 :1 Voyageur Lake Date: 5/28/2014 Time: 15:00 Weather: light breeze, 75F Entry: EEH Max Depth: 12.9 VLS Depth (ft): 3.0 VLB Depth (ft): 10.0 Secchi Depth (ft): 4.3 | Depth | Temp | D.O. | | Sp. Cond. | |--------|------|---------------|-----|-----------| | | (.c) | (mg/L) | | (μS/cm) | | (ft) 1 | 20.9 | (mg/L)
7.9 | pН | (µo/cm) | | 2 | 20.9 | 7.9 | | | | 3 | 19.1 | 7.9 | 9.3 | | | 4 | 18.5 | 7.9 | 5.5 | | | 5 | 17.7 | 7.9 | | | | 6 | 17.3 | 7.8 | 8.7 | | | 7 | 17.1 | 7.7 | 0.7 | | | 8 | 16.8 | 7.5 | | | | 9 | 16.6 | 7.2 | | | | 10 | 16.3 | 6.8 | 8.3 | | | 11 | 16.3 | 6.7 | 0.0 | | | 12 | 16.0 | 6.5 | | | | | 10.0 | 0.0 | 1 | , | , | · · | Parameter | VLS | VLB | |--------------------------------------|--------|--------| | Total P (µg/L) | 25.60 | 25.90 | | Dissolved P (µg/L) | 2.40 | ND | | Chl-a (µg/L) | 7.15 | NA | | TKN (µg/L) | 571.00 | 586.00 | | $NO_3 + NO_2 - N (\mu g/L)$ | ND | ND | | NH ₃ -N (μg/L) | ND | ND | | Total N (μg/L) | 571.00 | 586.00 | | Lab Cond. (µS/cm) | 71.60 | 71.10 | | Lab pH | 7.25 | 7.11 | | Alkalinity (mg/L CaCO ₃) | 26.60 | 26.70 | | Total Susp. Solids (mg/L) | 2.20 | 3.00 | | Calcium (mg/L) | 7.14 | NA | | Magnesium (mg/L) | 3.06 | NA | | Hardness (mg/L) | 30.40 | NA | | Color (SU) | 40.00 | NA | | Turbidity (NTU) | NA | NA | Data collected by EAT, SDF, and EEH (Onterra) Voyageur Lake Date: 6/24/2014 Time: 11:40 Weather: 79F, no wind, 50% clouds Entry: EEH Max Depth: 11.9 VLS Depth (ft): 3.0 VLB Depth (ft): 10.0 Secchi Depth (ft): 5.0 | Depth | Temp | D.O. | | Sp. Cond | |-------|------|--------|----|----------| | (ft) | (.C) | (mg/L) | pH | (µS/cm) | | 1 | 25.9 | 7.6 | | | | 3 | 24.4 | 7.7 | | | | 5 | 23.5 | 7.5 | | | | 7 | 21.7 | 6.9 | | | | 9 | 20.4 | 5.5 | | | | 11 | 19.7 | 3.3 | Parameter | VLS | VLB | |---|-------|-------| | Total P (µg/L) | 21.20 | 25.30 | | Dissolved P (µg/L) | NA | NA | | Chl-a (µg/L) | 11.10 | NA | | TKN (μg/L) | NA | NA | | NO ₃ + NO ₂ -N (µg/L) | NA | NA | | NH ₃ -N (µg/L) | NA | NA | | Total N (μg/L) | NA | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA | | Alkalinity (mg/L CaCO ₃) | NA | NA | | Total Susp. Solids (mg/L) | NA | NA | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA | Data collected by TAH (Onterra) Onterra, LLC Vovageur Lai Date: 7/23/2014 Time: 8:45 Weather: 25% clouds, 63F Entry: EEH Max Depth: 12.7 VLS Depth (ft): 3.0 VLB
Depth (ft): 10.0 Secchi Depth (ft): 3.6 | Depth
(ft) | Temp
(°C) | D.O.
(mg/L) | pН | Sp. Cond
(µS/cm) | |---------------|--------------|----------------|-----|---------------------| | 1 | 22.4 | (mg/L)
6.5 | pri | (долени) | | 2 | 22.6 | 6.4 | | 1 | | 3 | 22.7 | 6.3 | | | | 4 | 22.8 | 6.3 | | | | 5 | 22.8 | 6.3 | | | | 6 | 22.7 | 5.7 | | | | 7 | 22.7 | 5.5 | | | | 8 | 22.7 | 5.5 | | | | 9 | 22.6 | 5.6 | | | | 10 | 22.5 | 5.2 | | | | 11 | 22.2 | 3.6 | | | | 12 | 21.7 | 0.9 | 1 | | Parameter | VLS | VLB | |--------------------------------------|--------|-----| | Total P (µg/L) | 34.90 | NA | | Dissolved P (µg/L) | ND | NA | | Chl-a (µg/L) | 11.50 | NA | | TKN (μg/L) | 631.00 | NA | | $NO_3 + NO_2 - N (\mu g/L)$ | ND | NA | | NH ₃ -N (μg/L) | ND | NA | | Total N (µg/L) | 631.00 | NA | | Lab Cond. (µS/cm) | 75.20 | NA | | Lab pH | 7.34 | NA | | Alkalınıty (mg/L CaCO ₃) | 27.70 | NA | | Total Susp. Solids (mg/L) | 5.00 | NA | | Calcium (mg/L) | 7.32 | NA | | Magnesium (mg/L) | 3.16 | NA | | Hardness (mg/L) | 31.30 | NA | | Color (SU) | 40.00 | NA | | Turbidity (NTU) | NA | NA | Data collected by TWH and SDF (Onterra) Voyageur Lake Date: 8/27/2014 Time: 9:30 Weather: 25% clouds, light breeze, 60F Entry: EEH Max Depth: 12.6 VLS Depth (ft): 3.0 VLB Depth (ft): 10.0 Secchi Depth (ft): 3.5 | Depth | Temp | D.O. | | Sp. Cond. | |-------|------|--------|----|-----------| | (ft) | (.C) | (mg/L) | pH | (µS/cm) | | 1 | 21.4 | 8.7 | | | | 2 | 21.7 | 8.8 | | | | 4 | 21.7 | 8.6 | | | | 6 | 21.6 | 8.0 | | | | 8 | 21.5 | 7.3 | | | | 10 | 21.3 | 5.5 | | | | 12 | 21.2 | 4.2 | Parameter | VLS | VLB | |--------------------------------------|-------|-------| | Total P (µg/L) | 35.30 | 40.30 | | Dissolved P (µg/L) | NA | NA | | Chl-a (µg/L) | 24.60 | NA | | TKN (µg/L) | NA | NA | | $NO_3 + NO_2 - N (\mu g/L)$ | NA | NA | | NH ₃ -N (µg/L) | NA | NA | | Total N (µg/L) | NA | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA | | Alkalinity (mg/L CaCO ₃) | NA | NA | | Total Susp. Solids (mg/L) | NA | NA | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTLI) | NA | NΔ | Data collected by MKH and TAH (Onterra) 2014 Onterra, LLC Vovageur Lak Date: 10/23/2014 Time: 14:35 Weather: Rainy, 45F, overcast Entry: EEH Max Depth: 12.6 VLS Depth (ft): 3.0 VLB Depth (ft): 11.0 Social Depth (ft): 6.7 | | - | | | | |-------|------|--------|-----|-----------| | Depth | Temp | D.O. | | Sp. Cond. | | (ft) | (°C) | (mg/L) | pH | (µS/cm) | | 1 | 8.1 | 9.5 | | | | 2 | 8.1 | 9.4 | 6.4 | | | 4 | 8.1 | 9.4 | | | | 6 | 8.1 | 9.4 | | | | 8 | 8.1 | 9.4 | | | | 10 | 8.1 | 9.3 | | | | 11 | 8.1 | 9.3 | | | | 12 | 8.1 | 9.3 | Parameter | VLS | VLB | |--------------------------------------|-------|-------| | Total P (µg/L) | 26.20 | 23.90 | | Dissolved P (µg/L) | NA | NA | | Chl-a (µg/L) | 7.56 | NA | | TKN (µg/L) | NA | NA | | $NO_3 + NO_2 - N (\mu g/L)$ | NA | NA | | NH ₃ -N (µg/L) | NA | NA | | Total N (µg/L) | NA | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA | | Alkalinity (mg/L CaCO ₃) | NA | NA | | Total Susp. Solids (mg/L) | 2.75 | 2.40 | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA | Data collected by DAC and TAH (Onterra) Voyageur Lake Date: 2/18/2015 Time: 13:30 Weather: -SF, breezy, 100% clouds Entry: EEH Max Depth: 13.1 VLS Depth (ft): 3.0 VLB Depth (ft): 10.0 Secchi Depth (ft): 2.9 | Depth | Temp | D.O. | | Sp. Cond | |-------|------|--------|----|----------| | (ft) | (.C) | (mg/L) | pH | (µS/cm) | | 1 | 0.1 | 8.7 | | | | 3 | 0.2 | 8.7 | | | | 5 | 0.5 | 8.1 | | | | 7 | 0.8 | 7.9 | | | | 9 | 0.5 | 8.4 | | | | 10 | 0.4 | 8.4 | | | | 11 | 0.7 | 8.1 | | | | 12 | 0.9 | 8.0 | Parameter | VLS | VLB | |--------------------------------------|--------|--------| | Total P (µg/L) | 25.40 | 25.90 | | Dissolved P (µg/L) | 6.90 | 7.20 | | Chl-a (µg/L) | | NA | | TKN (μg/L) | 439.00 | 479.00 | | $NO_3 + NO_2 - N (\mu g/L)$ | 165.00 | 172.00 | | NH ₃ -N (µg/L) | ND | ND | | Total N (µg/L) | 604.00 | 651.00 | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA | | Alkalinity (mg/L CaCO ₃) | NA | NA | | Total Susp. Solids (mg/L) | NA | NA | | Calcium (mg/L) | NA | NA | | Magnesium (mg/L) | NA | NA | | Hardness (mg/L) | NA | NA | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA | Data collected by EEH and TWH (Onterra). Ice thickness: 1.4 feet. 2014 | Water Quality Data | | | | | | | | |---------------------------|-------|-------|-------|-------|--|--|--| | 2014-2015 Surface Bottom | | | | | | | | | Parameter | Count | Mean | Count | Mean | | | | | Secchi Depth (feet) | 6 | 4.3 | NA | NA | | | | | Total P (µg/L) | 6 | 28.1 | 5 | 28.3 | | | | | Dissolved P (µg/L) | 3 | 4.7 | 2 | 7.2 | | | | | Chl a (µg/L) | 5 | 12.4 | 0 | NA | | | | | TKN (µg/L | 3 | 547.0 | 2 | 532.5 | | | | | NO3+NO2-N (µg/L) | 3 | 165.0 | 2 | 172.0 | | | | | NH3-N (µg/L) | 3 | ND | 2 | ND | | | | | Total N (µg/L) | 3 | 602.0 | 2 | 618.5 | | | | | Lab Cond. (µS/cm) | 2 | 73.4 | 1 | 71.1 | | | | | Lab pH | 2 | 7.3 | 1 | 7.1 | | | | | Alkal (mg/l CaCO3) | 2 | 27.2 | 1 | 26.7 | | | | | Total Susp. Solids (mg/l) | 3 | 3.3 | 2 | 2.7 | | | | | Calcium (µg/L) | 2 | 7.2 | 0 | NA | | | | | Magnesium (mg/L) | 2 | 3.1 | 0 | NA | | | | | Hardness (mg/L) | 2 | 30.9 | 0 | NA | | | | | Color (SU) | 2 | 40.0 | 0 | NA | | | | | Turbidity (NTU) | 0 | NA | 0 | NA | | | | | Color (SU) | | 40.0 | U | | |----------------------|---------------|----------|--------|--| | Turbidity (NTU) | 0 | NA | 0 | | | | | | | | | Tron | hic State Ind | ov (TSI) | | | | Year | TP | Chl-a | Secchi | | | 1993 | IF. | CIII-a | 53.8 | | | 1993 | | | 53.8 | | | | | | 53.9 | | | 1995 | | | | | | 1996 | | | 44.4 | | | 1997 | | | 41.3 | | | 2014 | 53.4 | 57.6 | 57.0 | All Years (Weighted) | 53.4 | 57.6 | 50.2 | | | Challant Landand | l | l | l | | | Morphological / Geographical Data | | | | | | |-----------------------------------|---------------|--|--|--|--| | Parameter | Value | | | | | | Acreage | | | | | | | Volume (acre-feet) | | | | | | | Perimeter (miles) | | | | | | | Shoreland Developmetnt Factor | | | | | | | Maximum Depth (feet) | | | | | | | County | | | | | | | WBIC | | | | | | | Lillie Mason Region (1983) | NLF Ecoregion | | | | | | Nichols Ecoregion (1999) | NI FI | | | | | | WiLMS Class | Acreage | kg/yr | lbs/yr | |---------------------------|---------|-------|--------| | orest | | | 0.0 | | Open Water | | | 0.0 | | Pasture/Grass | | | 0.0 | | Row Crops | | | 0.0 | | Jrban - Rural Residential | | | 0.0 | | Vetland | | | 0.0 | | | | Secch | i (feet) | | | Chlorophy | /II-a (μg/L) | | | Total Phosp | horus (µg/L) | | |----------------------|---------|--------|----------|------|---------|-----------|--------------|------|---------|-------------|--------------|------| | | Growing | Season | Sum | mer | Growing | Season | Sum | mer | Growing | Season | Sum | mer | | Year | Count | Mean | | 1993 | 7 | 5.2 | 4 | 5.0 | | | | | | | | | | 1994 | 3 | 5.4 | 2 | 5.0 | | | | | | | | | | 1995 | 5 | 5.5 | 4 | 5.3 | | | | | | | | | | 1996 | 4 | 8.5 | 3 | 9.7 | | | | | | | | | | 1997 | 2 | 12.0 | 2 | 12.0 | | | | | | | | | | 2014 | 5 | 4.6 | 3 | 4.0 | 5 | 12.4 | 3 | 15.7 | 5 | 28.6 | 3.0 | 30.4 | All Years (Weighted) | | 6.2 | | 6.5 | | 12.4 | | 15.7 | | 28.6 | | 30.4 | | Shallow, Lowland | | | | | | | | | | | | | | Drainage Lakes | | | | 5.6 | | | | 9.4 | | | | 33.0 | | NLF Ecoregion | | | | 8.9 | | | | 5.6 | | | | 21.0 | July 2014 N: 631.0 July 2014 P: 34.9 Summer 2014 N:P 18 :1 | Date: 5/3/2
Time: 12:2
Weather: over
Entry: EEH | eo
rcast, very w | indy, light rain, | Otter Lake | | Se | Max Depth:
LS Depth (ft):
LB Depth (ft):
cchi Depth (ft): | 3.0
18.0 | _ | | | | | |--|--|-------------------|---------------------|-----|----------------------|--|-------------------------|---|-----|---------|----|-----------| | Di | epth (ft) | Temp (°C) | D.O. (mg/L)
10.4 | рН | Sp. Cond.
(µS/cm) | | | | | | | | | - | 3 | 11.1 | 10.4
10.4 | 8.4 | | - | | | May | 3, 2016 | | | | | 9 | 11.0 | 10.4 | | | 1 | | 5 | 10 | 15 | 20 | 25 | | | 12
15 | 10.9
10.0 | 10.4 | | | | 0 | - | | | | | | | 15 | 9.3 | 9.7
8.5 | | | | 2 | | II | | | | | | 21 | 8.8 | 7.9 | | | | 4 | | TT | | | | | _ | | | | | | | 6 | | - 4 | | | | | | | | | | | | 8 | | | | | | | | | | | | | | | | - # | | | | | _ | | | | | | 4 | E 10 | | ll. | | | | | | | | | | | 1 | (t) 10
41 12
0 14 | | 77 | | | | | | | | | | | | | | | | | | | - | | | | | | + | 16 | | π | | | |
| | | | | | | | 18 | | ψψ | | | | | | | | | | | | 20 | | П | | - | Temp (°C | | | | | | | | | 22 | | 44 | | | | | | | | | | | | 24 | | | | - | -D.O. (mg | | _ | 1 | | | | | | | | | | | | | |] | Parameter | tal P (ug/L) | LS
30.00 | LB
NA | | | | | | | | | | | Dissolve | ed P (µg/L) | 2.80 | 3.80 | | | | | | | | | | | | hl-a (µg/L) | 7.65 | NA | | | | | | | | | | | NO ₁ + NO | TKN (µg/L)
O ₂ -N (µg/L) | 497.00
ND | NA
NA | | | | | | | | | | | N | H₂-N (µg/L) | 16.30 | NA NA | | | | | | | | | | | Tot | tal N (µg/L) | 497.00
77.70 | NA
77.30 | | | | | | | | | | | | nd. (µS/cm)
Lab pH | 7.57 | 7.27 | | | | | | | | | | | Alkalinity (m | g/L CaCQ) | 28.50 | 28.40 | | | | | | | | | | | Total Susp. Sc | olids (mg/L)
sium (mg/L) | ND
8.10 | 2.00
NA | | | | | | | | | | | Magnes | sium (mg/L) | 3.43 | NA
NA | | | | | | | | | | | Hardn | iess (mg/L) | 34.30 | NA. | | | | | | | | | | | | Color (SU)
sidity (NTU) | 50.00
NA | NA
NA | 49.50 | 34.00 | Total P (µg/L) | |-------|-------|---| | NA | AA | Dissolved P (µg/L) | | NA | 6.07 | Chl-a (µg/L) | | NA | NA | TKN (µg/L) | | NA | NA | NO ₂ + NO ₂ -N (μg/L) | | NA | NA | NH ₂ -N (µg/L) | | NA | NA | Total N (µg/L) | | NA | NA | Lab Cond. (µS/cm) | | NA | AA | Lab pH | | NA | NA | Alkalinity (mg/L CaCC _i) | | NA | NA | Total Susp. Solids (mg/L) | | NA | AA | Calcium (mg/L) | | NA | AA | Magnesium (mg/L) | | NA | NA | Hardness (mg/L) | | NA | NA | Color (SU) | | NA | NA | Turbidity (NTU) | Data collected by TAH (Onterra). Onterra, LIC. | | | | Otter Lake | | | | | | | | |-------|----------------|-----------|-------------|----|-----------|--|-------------|-----|---|--------| | Time: | 100% clouds, 4 | OF | | | Se | Max Depth:
LS Depth (ft):
LB Depth (ft):
cchi Depth (ft): | 3.0
22.0 | | | | | | | | | | Sp. Cond. | 7 | | | | | | | Depth (ft) | Temp (°C) | D.O. (mg/L) | pH | (µS/cm) | | | | | | | | 1 | 8.8 | 9.9 | | | | | | | | | | 2 | 8.9 | 9.8 | | | 1 | | | | | | | 3 | 9.0 | 9.8 | | | 1 | | | | Octobe | | | 4 | 9.1 | 9.7 | | | | | 0 | 5 | 10 | | | 6 | 9.1 | 9.7 | | | | | · — | | | | | 8 | 9.2 | 9.7 | | | 1 | | - 1 | | | | | | | | | | | | 2 | | | | Depth (ft) | Temp (°C) | D.O. (mg/L) | pH | (µS/cm) | | | |------------|-----------|-------------|----|---------|---|------------| | - 1 | | 9.9 | | |] | | | 2 | 8.9 | 9.8 | | | 1 | | | 3 | | 9.8 | | |] | | | 4 | 9.1 | 9.7 | | | | | | 6 | 9.1 | 9.7 | | | | | | 8 | | 9.7 | | | | | | 10 | | 9.7 | | | | | | 12 | 9.2 | 9.6 | | | | | | 14 | 9.2 | 9.6 | | | | | | 16 | | 9.5 | | | | | | 18 | | 9.3 | | | | | | 20 | | 9.1 | | | | | | 22 | 9.1 | 8.9 | | | | €1 | | 23 | 9.2 | 8.7 | | | | Depth (ft) | | | | | | | | 윰. | | | | | | | | മ് 1 | | | | | | | | 1 | | | | | | | | | | | | | | | 1 | 1 | | | | | | | | 2 | | | | | | | 4 | | | | | | | | - | 2 | | | | | | 1 | 4 | 24 | | | | | | | | | | | | | | | 4 | Octobe | r 27, 201 | 16 | | | |-------------------------|---|--------|-----------|----|-------------|----| | 0 | 5 | 10 | 15 | 20 | 25 | 30 | | 2 | | 9.9 | | | | | | | | 77 | | | | | | 4 | | Ħ | | | | | | 6 | | # | | | | | | 8 | | ₩ | | | | | | € 10 | | # | | | | | | 10 th
12 th
12 th | | # | | | | | | B 14 | | # | | | | | | 16 | | 4 | | | | | | 18 | | į. | | | | | | 20 | | 4 | | | Temp ('C) | | | 22 | | 4 | | | -D.O. (mg/L | Ш | | 24 | | - | | | | | | Parameter | LS | LB | |---|-------|-------| | Total P (µg/L) | 47.80 | 41.10 | | Dissolved P (µg/L) | NA | NA. | | Chl-a (µg/L) | 3.16 | NA. | | TKN (µg/L) | NA | NA | | NO ₂ + NO ₂ -N (µg/L) | NA | NA | | NH ₂ -N (µg/L) | NA | NA | | Total N (µg/L) | NA | NA | | Lab Cond. (µS/cm) | NA | NA | | Lab pH | NA | NA. | | Alkalinity (mg/L CaCQ _i) | NA | NA. | | Total Susp. Solids (mg/L) | 2.80 | 3.20 | | Calcium (mg/L) | NA | NA. | | Magnesium (mg/L) | NA | NA. | | Hardness (mg/L) | NA | NA. | | Color (SU) | NA | NA | | Turbidity (NTU) | NA | NA. | Data collected by JMB (Onterra). | Otter Lake | Max Depth: | Time: LS Depth (th: LB Depth (th: Entry: Secola Depth (th: LB | Depth (ft) | Temp (°C) | D.O. (mg/L) | pH | Sp. Cond.
(µS/cm) | |------------|-----------|-------------|----|----------------------| _ | | _ | - | - | _ | | _ | | | | | | + | | | | | | 1 | | | | | | | | | | | | | | | | | | - | | | - | - | | + | | Parameter | LS | LB | |---|-------|-----| | Total P (µg/L) | NA | NA. | | Dissolved P (µg/L) | NA | NA. | | Chl-a (µg/L) | NA | NA. | | TKN (µg/L) | NA | NA. | | NO ₃ + NO ₂ -N (µg/L) | NA. | NA. | | NH ₂ -N (µg/L) | NA NA | NA. | | Total N (µg/L) | NA | NA. | | Lab Cond. (μS/cm) | NA | NA. | | Lab pH | | NA. | | Alkalinity (mg/L CaCC ₆) | NA NA | NA. | | Total Susp. Solids (mg/L) | NA NA | NA. | | Calcium (mg/L) | NA | NA. | | Magnesium (mg/L) | NA | NA. | | Hardness (mg/L) | NA | NA. | | Color (SU) | NA | NA. | | Turbidity (NTU) | NA | NA. | Inable to sample winter water quality due to ice conditions. | 2016-2017 | Sur | face | Bot | tom | |--|-------|-------|-------|--------| | Parameter | Count | Mean | Count | Mean | | Secchi Depth (feet) | 5 | 4.5 | NA | NA | | Total P (µg/L) | 5 | 38.9 | 4 | 77.4 | | Dissolved P (µg/L) | 2 | 2.3 | 2 | 8.5 | | Chl a (µg/L) | 5 | 11.8 | 0 | NA | | TKN (µg/L | 2 | 510.5 | 1 | 1050.0 | | NO ₃ +NO ₂ -N (µg/L) | 2 | ND | 1 | ND | | NH ₃ -N (µg/L) | 2 | 16.3 | 1 | 708.0 | | Total N (µg/L) | 2 | 510.5 | 1 | 1050.0 | | Lab Cond. (uS/cm) | 2 | 79.7 | 2 | 90.2 | | Alkal (mg/l CaCO ₃) | 2 | 29.8 | 2 | 36.4 | | Total Susp. Solids (mg/l) | 3 | 3.1 | 3 | 3.7 | | Calcium (mg/L) | 2 | 8.4 | 0 | NA | | Magnesium (mg/L) | 2 | 3.6 | 0 | NA | | Hardness (mg/L) | 2 | 35.7 | 0 | NA | | Color (SU) | 2 | 40.0 | o o | NA | | Trophic State Index (TSI) | | | | | | | | |---------------------------|------|-------|--------|--|--|--|--| | Year | TP | Chl-a | Secchi | | | | | | 1979 | | | 49.1 | | | | | | 1992 | | | 57.9 | | | | | | 1993 | | | 53.9 | | | | | | 2002 | | | 56.3 | | | | | | 2003 | | | 52.6 | | | | | | 2004 | | | 49.6 | | | | | | 2005 | | | 53.9 | | | | | | 2006 | | | 53.7 | | | | | | 2007 | | | 51.0 | | | | | | 2008 | | | 52.0 | | | | | | 2009 | | | 52.8 | | | | | | 2010 | | | 51.7 | | | | | | 2011 | | | 54.1 | | | | | | 2012 | | | 55.1 | | | | | | 2013 | | | 55.1 | | | | | | 2014 | | | | | | | | | 2015 | | | 51.1 | | | | | | 2016 | 57.0 | 57.8 | 56.8 | | | | | | 0 | | | | | | | | | 0 | | | | | | | | | 0 | | | | | | | | | 0 | | | | | | | | | 0 | | | | | | | | | 0 | | | | | | | | | 0 | | l | | | | | | | 0 | | | | | | | | | 0 | | l | | | | | | | 0 | | l | | | | | | | 0 | | l | | | | | | | 0 | | l | | | | | | | 0 | | | | | | | | | All Years (Weighted) | 53.9 | 56.6 | 53.1 | | | | | | DLDL Median | 49.4 | 49.7 | 46.2 | | | | | | NLF Ecoregion Median | 48.1 | 47.5 | 45.7 | | | | | | | | | ii (feet) | | | | yll-a (μg/L) | | | | horus (µg/L) | | |----------------------|---------|--------|-----------|------|---------|--------|--------------|------|---------|--------|--------------|------| | | Growing | Season | Sum | mer | Growing | Season | Sun | nmer | Growing | Season | Sun | nmer | | Year | Count | Mean | | 1979 | - 1 | 7.0 | 1 | 7.0 | 1 | 14.0 | 1 | 14.0 | - 1 | 27.0 | 1.0 | 27.0 | | 1992 | 6 | 2.9 | 4 | 3.8 | 3 | 17.2 | 2 | 11.6 | 3 | 27.0 | 2.0 | 22.5 | | 1993 | 1 | 5.0 | 1 | 5.0 | | | | | | | | | | 2002 | 3 | 4.9 | 1 | 4.3 | | | | | | | | | | 2003 | 5 | 6.4 | 2 | 5.5 | | | | | | | | | | 2004 | 5 | 6.4 | 2 | 6.8 | | | | | | | | | | 2005 | 4 | 4.4 | 2 | 5.0 | | | | | | | | | | 2006 | 11 | 5.0 | 3 | 5.1 | | | | | | | | | | 2007 | 11 | 5.9 | 5 | 6.1 | | | | | | | | | | 2008 | 13 | 5.5 | 6 | 5.7 | | | | | | | | | | 2009 | 9 | 5.6 | 4 | 5.4 | | | | | | | | | | 2010 | 10 | 5.7 | 4 | 5.8 | | | | | | | | | | 2011 | 8 | 5.1 | 4 | 5.0 | | | | | | | | | | 2012 | 4 | 4.6 | 4 | 4.6 | | | | | | | | | | 2013 | 2 | 5.1 | 1 | 4.6 | | | | | | | | | | 2014 | 0 | | 0 | | | | | | | | | | | 2015 | 5 | 5.3 | 2 | 6.1 | | | | | | | | | | 2016 | 5 | 4.5 | 3 | 4.1 | 5 | 11.8 | 3 | 16.1 | 5 | 38.9 | 3.0 | 39.0 | 1 | | l | | l | | 1 | | 1 | | 1 | | | l | 1 | | l | | l | | 1 | | 1 | | 1 | | | All Years (Weighted) | | 5.3 | | 5.3 | • | 13.8 | | 14.2 | • | 33.6 | | 31.5 | | DLDL Median | | | | 8.5 | | | | 7.0 | | | | 23.0 | | NLF Ecoregion Median | 1 | | | 8.9 | | | | 5.6 | | | | 21.0 | | Time: | 100% cloudy, vi | ery windy, 59F | Lynx Lake | | L | Max Depth:
YLS Depth (ft):
YLB Depth (ft):
cchi Depth (ft): | 3.0
21.0 | - | | | |-----------|-----------------|----------------|-------------|----|----------------------|--|---------------------|---|-------|---------| | | Depth (ft) | Temp (°C) | D.O. (mg/L) | pH | Sp. Cond.
(µS/cm) | | | | | | | | 3 | 10.9 | 10.7 | | | 4 | | | | | | | 6 | 10.7 | 10.7 | | | 1 | | | May 3 | 3, 2016 | | | 9 | 10.7 | 10.7 | | | 1 | 0 | 5 | 10 | 15 | | | 12 | 10.7 | 10.7 | | | 1 | 0 ← | | 10 | 10 | | | 15 | 10.6 | 10.6 | | | 1 | | | | | | | 18 | 9.6 | 9.5 | | | 1 | 2 | | - 1 | | | | 21 | 9.2 | 8.1 | | | | 4 | | T | | | | | | | | | 4 | 6 | | 1 | | | | | | | | | - | | | Ī | | | | | | | | | 4 | 8 | | 1 | | | | | | | | - | - | ₽ 10 | | | | | | | | |
 | - | 10 http://discourse | | - 1 | | | | | | | | | 1 | 늄 12 | | | | | | | | | | | 1 | å 14 | | | | | | | | | | | 1 | 16 | | , | | | | | | | | | | | | / | | | | | | | | | | 18 | | , p | | | | | | | | | 1 | 20 | | // | | | | | | | | | | 22 | | 44 | | | | | | | | | 4 | 22 | | | | | | | | | | | 1 | 24 | | | | | | | | | | | 1 | | | | | | | | | | | | 1 | | | | | | | | | | | | 1 | | | | | | | - | | | | | - | | | | | | Parameter | | LS | LB | | | | | | | | | | Total P (µg/L) | 32.00 | 34.00 | | | | | | | | | Dis | solved P (µg/L) | 2.70 | 3.10 | | | | | | | | | | Chl-a (µg/L) | 13.40 | NA. | | | | | | | | | | TKN (un/l) | 521.00 | 562.00 | | | | | | | | | Parameter | LS | LB | |---|--------|--------| | Total P (µg/L) | 32.00 | 34.00 | | Dissolved P (µg/L) | 2.70 | 3.10 | | Chl-a (µg/L) | 13.40 | NA. | | TKN (µg/L) | 521.00 | 562.00 | | NO ₂ + NO ₂ -N (µg/L) | | 21.60 | | NH ₂ -N (µg/L) | ND | ND | | Total N (µg/L) | 521.00 | 583.60 | | Lab Cond. (μS/cm) | 78.40 | 78.40 | | Lab pH | | 7.34 | | Alkalinity (mg/L CaCQ) | 28.70 | 28.80 | | Total Susp. Solids (mg/L) | ND | 2.20 | | Calcium (mg/L) | 7.84 | NA. | | Magnesium (mg/L) | 3.30 | NA. | | Hardness (mg/L) | 33.20 | NA. | | Color (SU) | 50.00 | NA. | | Turbidity (NTU) | NA | NA. | Data collected by BTB (Onterra). | | | | | Sp. Cond. | |------------|-----------|-------------|----|-----------| | Depth (ft) | Temp (°C) | D.O. (mg/L) | pH | (µS/cm) | | 1 | 24.3 | 8.8 | | | | 3 | 23.6 | 8.7 | | | | 5 | 22.8 | 8.8 | | | | 7 | 22.5 | 8.6 | | | | 9 | 22.1 | 8.3 | | | | 11 | 21.7 | 7.6 | | | | 13 | 19.7 | 4.8 | | | | 15 | 15.4 | 0.2 | | | | 17 | 14.0 | 0.1 | | | | 19 | 12.9 | 0.1 | | | | 21 | 11.8 | 0.1 | | | | 22 | 11.5 | 0.1 | | | | 23 | 11.1 | 0.1 | -B-Temp (°C) -B-D.O. (mg/L) | Parameter | LS | LB | |---|-------|-------| | Total P (µg/L) | 30.50 | 54.40 | | Dissolved P (µg/L) | NA | NA. | | Chl-a (µg/L) | 7.19 | NA. | | TKN (µg/L) | NA | NA. | | NO ₂ + NO ₂ -N (µg/L) | NA | NA. | | NH ₂ -N (µg/L) | NA | NA. | | Total N (µg/L) | NA | NA. | | Lab Cond. (µS/cm) | NA | NA. | | Lab pH | NA | NA. | | Alkalinity (mg/L CaCQ) | NA | NA. | | Total Susp. Solids (mg/L) | NA | NA. | | Calcium (mg/L) | NA | NA. | | Magnesium (mg/L) | NA | NA. | | Hardness (mg/L) | NA | NA. | | Color (SU) | NA | NA. | | Turbidity (NTU) | NA | NA NA | Data collected by TAH (Onterna) Date: 10/27/2016 Time: 14:35 Weather: 100% clouds, 40F Entry: JMB Max Depth: 13.8 LS Depth (ft): 3.0 LB Depth (ft): 11.0 Secchi Depth (ft): 5.0 October 27, 2016 10 15 20 25 0 2 4 6 8 8 (3) 10 112 12 14 16 18 20 22 24 Date: 2/20/2017 Time: 13:00 Weather: 100% clouds, 42F, 5mph wind Entry: JMB Max Depth: 24.3 LS Depth (ft): 3.0 LB Depth (ft): 21.0 Secchi Depth (ft): 5.2 February 20, 2017 10 15 20 0 2 4 6 8 8 10 110 112 12 16 18 10 22 24 -E-Temp (°C) -E-D.O. (mg/L) | 2016-2017 Surface Bottom | | | | | | | | | | | |--|-------|-------|-------|--------|--|--|--|--|--|--| | Parameter | Count | Mean | Count | Mean | | | | | | | | Secchi Depth (feet) | 6 | 4.7 | NA | NA | | | | | | | | Total P (µg/L) | 6 | 37.0 | 6 | 49.8 | | | | | | | | Dissolved P (µg/L) | 3 | 5.4 | 3 | 9.4 | | | | | | | | Chl a (µg/L) | 5 | 11.9 | 0 | NA | | | | | | | | TKN (µg/L | 3 | 502.3 | 3 | 1480.0 | | | | | | | | NO ₃ +NO ₂ -N (µg/L) | 3 | 180.0 | 3 | 127.3 | | | | | | | | NH ₃ -N (µg/L) | 3 | 23.9 | 3 | 800.0 | | | | | | | | Total N (µg/L) | 3 | 562.3 | 3 | 523.9 | | | | | | | | Lab Cond. (µS/cm) | 2 | 80.5 | 2 | 103.2 | | | | | | | | Alkal (mg/l CaCO ₃) | 2 | 29.9 | 2 | 43.2 | | | | | | | | Total Susp. Solids (mg/l) | 3 | 3.3 | 3 | 4.6 | | | | | | | | Calcium (mg/L) | 2 | 8.3 | 0 | NA | | | | | | | | Magnesium (mg/L) | 2 | 3.5 | 0 | NA | | | | | | | | Hardness (mg/L) | 2 | 35.5 | 0 | NA | | | | | | | | Color (SU) | 2 | 40.0 | 0 | NA | | | | | | | | Year | TP | Chl-a | Secchi | |----------------------|------|-------|--------| | 1985 | | | 58.7 | | 2010 | | | 60.8 | | 2011 | | | 54.1 | | 2012 | | | 54.9 | | 2013 | | | 54.5 | | 2014 | | | 67.1 | | 2015 | | | 51.3 | | 2016 | 56.6 | 57.1 | 55.9 | | 0 | | | | | All Years (Weighted) | 56.8 | 57.1 | 55.4 | | DLDL Median | 49.4 | 49.7 | 46.2 | | NLF Ecoregion Median | 48.1 | 47.5 | 45.7 | | | | Secch | | | | | yll-a (μg/L) | | | | horus (µg/L) | | |--------------------|---------|--------|-------|------|---------|------|--------------|------|---------|------|--------------|------| | | Growing | Season | Sum | | Growing | | Sum | | Growing | | | nmer | | Year | Count | Mean | | 1985 | - 1 | 3.6 | 1 | 3.6 | | | | | 1 | 40.0 | 1.0 | 40.0 | | 2010 | 6 | 4.8 | 1 | 3.1 | | | | | | | | | | 2011 | 8 | 5.0 | 4 | 5.0 | | | | | | | | | | 2012 | 3 | 4.7 | 3 | 4.7 | | | | | | | | | | 2013 | 2 | 5.2 | 1 | 4.8 | | | | | | | | | | 2014 | 1 | 2.0 | 1 | 2.0 | | | | | | | | | | 2015 | 5 | 5.4 | 2 | 6.0 | | | | | | | | | | 2016 | 5 | 4.6 | 3 | 4.4 | 5 | 11.9 | 3 | 14.8 | 5 | 38.7 | 3.0 | 38.0 | | | | | | | | | | | | | | | | I Years (Weighted) | | 4.8 | | 4.5 | 1 | 11.9 | 1 | 14.8 | l | 38.9 | 1 | 38.5 | | DLDL Median | | 4.0 | | 8.5 | | 11.5 | | 7.0 | | 30.5 | | 23.0 | | | | | | 8.9 | | | | 5.6 | | | | 21.0 | Duels: 50/2016 Max Depth: 13.2 Time: 13.15 DUA.5 Depth (tt): 3.0 Weather: Overcast, light rain, 50F, windy DUA.5 Depth (tt): 1.0 Entry: Elb Secola begain, tty: 4.8 | Depth (ft) | Temp (°C) | D.O. (mg/L) | pН | Sp. Cond
(µS/cm) | |------------|-----------|-------------|-----|---------------------| | - 1 | 10.8 | 10.7 | | | | 3 | 10.7 | 10.7 | 8.1 | | | 6 | 10.7 | 10.7 | | | | 9 | 10.7 | 10.7 | | | | 12 | 10.7 | 10.6 | | | | 13 | 10.5 | 10.4 | Parameter | LS | LB | |---|--------|--------| | Total P (µg/L) | 18.70 | 31.70 | | Dissolved P (µg/L) | 2.70 | 2.80 | | Chl-a (µg/L) | 13.20 | NA NA | | TKN (µg/L) | | 442.00 | | NO ₃ + NO ₂ -N (µg/L) | ND | ND | | NH ₂ -N (μg/L) | ND | ND | | Total N (µg/L) | 617.00 | 442.00 | | Lab Cond. (µS/cm) | 79.20 | 79.10 | | Lab pH | | 7.63 | | Alkalinity (mg/L CaCQ) | 29.00 | 28.90 | | Total Susp. Solids (mg/L) | 2.60 | 3.60 | | Calcium (mg/L) | 8.05 | NA NA | | Magnesium (mg/L) | 3.41 | NA. | | Hardness (mg/L) | 34.10 | NA | | Color (SU) | 50.00 | NA NA | | Turbidity (NTU) | NA | NA NA | Data collected by 8TB (Onterna). Duck Date: 6/23/2016 Time: 13:00 Weather: Clear, light breeze, 72F Entry: JLW Max Depth: 12.8 LS Depth (ft): 3.0 LB Depth (ft): 11.0 Secchi Depth (ft): 4.1 | | | | | Sp. Cond. | |------------|-----------|-------------|----|-----------| | Depth (ft) | Temp (°C) | D.O. (mg/L) | pH | (μ\$/cm) | | 1 | 24.4 | 8.6 | | | | 2 | 24.0 | 8.6 | | | | 4 | 23.2 | 8.6 | | | | 6 | 22.8 | 8.5 | | | | 8 | 22.6 | 8.2 | | | | 10 | 22.2 | 7.3 | | | | 11 | 21.5 | 4.4 | | | | 12 | 21.1 | 4.1 | Parameter | LS | LB | |---|-------|-------| | Total P (µg/L) | 36.80 | 42.40 | | Dissolved P (µg/L) | NA | NA. | | Chl-a (µg/L) | 8.85 | NA. | | TKN (µg/L) | NA | NA. | | NO ₂ + NO ₂ -N (µg/L) | NA | NA. | | NH ₂ -N (µg/L) | NA | NA. | | Total N (µg/L) | NA | NA. | | Lab Cond. (µS/cm) | NA | NA. | | Lab pH | NA | NA. | | Alkalinity (mg/L CaCG) | NA | NA. | | Total Susp. Solids (mg/L) | NA | NA. | | Calcium (mg/L) | NA | NA. | | Magnesium (mg/L) | NA | NA. | | Hardness (mg/L) | NA | NA. | | Color (SU) | NA | NA. | | Turbidity (NTU) | NA | NA. | Data collected by TAH (Onterra). | | | Duck Lake | | | | | _ | | | | |--|--------------|-------------|----|----------------------|--|------------|-----|-------|-------------|-----| | Date: 8/24/2016
Time: 11:30
Weather: | | | | | Max Depth:
LS Depth (ft): 3
LB Depth (ft): | 1.0 | | | | | | Entry: JMB | | | | Se | cchi Depth (ft): 3 | 1.1 | | | | | | Depth (ft) | Temp (°C) | D.O. (mg/L) | pH | Sp. Cond.
(µS/cm) |] | | | | | | | 1 3 | 22.2
22.4 | 7.8
7.7 | | | - | | | | | | | 5 | 22.4 | 7.6 | | _ | 1 | | | Augus | t 24, 2016 | | | 7 | 22.3 | 7.5 | | | 1 | 0 | 5 | 10 | 15 | 20 | | 9 | 22.3 | 7.2 | | | | 0 | | | _ | | | 11 | 22.3 | 6.8 | | | 4 | | | 7 | | | | 13
15 | 22.2 | 5.9
4.4 | | | 4 | 2 | | 1 | | | | 16 | 21.9 | 4.3 | | | 1 | | | • | | | | | | | | | 1 | 4 | | 1 | | | | | | | | | 1 | 6 | | T | | | | | | | | | | _ | | į. | | | | | | | | | | Depth (ft) | | l | | | | | | | | - | - | 통 | | 1 | | | | | | | | | 1 | ē 10 | - 1 | | | | | | | | | | 1 | 12 | , | | | | | | | | | | | *- 1 | | | | | | | | | | | 4 | 14 | | | | | | | | | | | | | - 4 | _ | Temp ('C) | - 4 | | | | | | - | - | 16 | | | | | | | | | | | 1 | | | - | D.O. (mg/L) | | | | | | | 1 | 1 | 18 | | | | | | | | | | |] | | | | | | | | | | | 1 | 4 | | | | | | | | | | | | J | | | | | | | arameter | LS | LB | | | | | | | | | | Total P (µg/L) | 47.60 | 61.50 | | | | | | | | | | P: 1 1 P (P 2 1 | | | | | | | | | | | | Parameter | LS | LB | |---|-------|-------| | Total P (µg/L) | 47.60 | 61.50 | | Dissolved P (µg/L) | NA | NA. | | Chl-a (µg/L) | 23.50 | NA. | | TKN (µg/L) | NA |
NA. | | NO ₂ + NO ₂ -N (µg/L) | NA | NA. | | NH ₂ -N (µg/L) | NA | NA. | | Total N (µg/L) | NA | NA. | | Lab Cond. (µS/cm) | NA | NA. | | Lab pH | NA | NA. | | Alkalinity (mg/L CaCC _t) | NA | NA. | | Total Susp. Solids (mg/L) | NA | NA. | | Calcium (mg/L) | NA | NA. | | Magnesium (mg/L) | NA | NA. | | Hardness (mg/L) | NA | NA. | | Color (SU) | NA | NA. | | Turbidity (NTU) | NA | NA. | Data collected by TAH (Onterra). | | | | Duck Lake | | | | | _ | | | | | | | | |--|--|--|---|-----|----------------------|---|--|---|---|-------|----------------|------|-----|-----------------------|-----| | Date:
Time: | 10/27/2016
14:15
100% clouds, 4
JMB | 105 | | | | Max Depth:
LS Depth (ft):
LB Depth (ft):
cchi Depth (ft): | 13.5
3.0 | | | | | | | | | | Entry: | JMB | ••• | | | | cchi Depth (ft): | 5.2 | | | | | | | | | | | Depth (ft) | Temp (°C) | D.O. (mg/L) | pH | Sp. Cond.
(µS/cm) | | | | | | | | | | | | | 1 2 | 8.9
9.0 | 9.8 | | | | | | | 0-4-1 | er 27, 2 | 2040 | | | | | | 3 | 8.9
9.0 | 9.7 | | | 1 | | 0 | 5 | 10 | er 27, 2
15 | | 20 | 25 | 30 | | | 5 | 9.0 | 9.6
9.6 | | | | 0 | | - | | | | | | | | | 7 | 9.1
9.1 | 9.5
9.5
9.5 | | | | 2 - | | | P | | | | | | | | 9
10 | 9.1
9.1 | 9.5 | | | | 4 - | | | # | | | | | | | | 11 | 9.1
9.1 | 9.4
9.3 | | | | 6 - | | | # | | | | | | | | 13 | 9.1 | 8.7 | | | | £ 8 | | | # | | | | | | | | | | | | | | Depth 10 | | | - | | | | | | | | | | | | | | 12 - | | | ż | | | | | | | | | | | | | | 14 | | | | | - | | ('0') | - I | | | | | | | | 1 | 16 - | | | | | | | emp (°C)
.O. (mg/L |) | | | | | | | | 1 | 18 | 1 | J | | | | | | | | | | | Parameter | Total P (µg/L) | LS
47.00 | LB
46.50 | 1 | | | | | | | | | | | | | Di | | 47.00
NA
2.02 | NA
NA | | | | | | | | | | | | | | NO | Chl-a (µg/L)
TKN (µg/L)
+ NO ₂ -N (µg/L) | NA
NA | NA
NA | | | | | | | | | | | | | | | NH ₂ -N (µg/L)
Total N (µg/L) | NA
NA | NA
NA | | | | | | | | | | | | | | La | | | NA. | | | | | | | | | | | | | | Alkalini
Total Su | Lab pH
ty (mg/L CaCC _L)
sp. Solids (mg/L | NA
NA
3.20 | NA
NA
3.40 | | | | | | | | | | | | | | M | Calcium (mg/L
agnesium (mg/L | NA
NA
NA | NA
NA
NA | | | | | | | | | | | | | | 1 | Hardness (mg/L)
Color (SU) | NA
NA | NA
NA | | | | | | | | | | | | | | | Turbidity (NTU) | NA. | NA | j | | | | | | | | | | | | | Data collected by JMB (Onterr | a). | Donald Labo | | | | | | | | | | | | | | Date: | | | Duck Lake |
| | Max Depth: | | _ | | | | | | | | | Date:
Time:
Weather: | | | Duck Lake | | So | Max Depth:
LS Depth (ft):
LB Depth (ft): | | | | | | | | | | | Time: | : | 1 | Duck Lake | I | | Max Depth:
LS Depth (ft):
LB Depth (ft):
cchi Depth (ft): | | | | | | | | | | | Time:
Weather: | Depth (ft) | Temp (°C) | Duck Lake | pH | Sp. Cond.
(μS/cm) | Max Depth:
LS Depth (ft):
LB Depth (ft):
cchi Depth (ft): | | _ | | | | | | | | | Time:
Weather: | | Temp (°C) | T | рН | Sp. Cond. | Max Depth:
LS Depth (ft):
LB Depth (ft):
cchi Depth (ft): | | _ | | | DATE | | | | | | Time:
Weather: | | Temp (°C) | T | pH | Sp. Cond. | Max Depth:
LS Depth (ft):
LB Depth (ft):
cchi Depth (ft): | | 0 | 5 | 10 | DATE
15 | 2 | 20 | 25 | 30 | | Time:
Weather: | | Temp (°C) | T | pH | Sp. Cond. | Max Depth:
LS Depth (ft):
LB Depth (ft):
cchi Depth (ft): | 0 | • | 5 | | | - | 20 | 25 | 30 | | Time:
Weather: | | Temp (°C) | T | pH | Sp. Cond. | Max Depth:
LS Depth (ft):
LB Depth (ft):
cchi Depth (ft): | 0 - | 0 | 5 | | | | 20 | 25 | 30 | | Time:
Weather: | | Temp (°C) | T | рН | Sp. Cond. | Max Depth:
LS Depth (ft):
LB Depth (ft):
cchi Depth (ft): | 2 - 4 - | 0 | 5 | | | 3 | 20 | 25 | 30 | | Time:
Weather: | | Temp (°C) | T | рН | Sp. Cond. | Max Depth:
LS Depth (ft):
LB Depth (ft):
cchi Depth (ft): | 0 - 2 - 4 - 6 - 6 - 2 - a | 0 | 5 | | | 2 | 220 | 25 | 30 | | Time:
Weather: | | Temp (°C) | T | рН | Sp. Cond. | Max Depth:
LS Depth (ft):
LB Depth (ft):
cchi Depth (ft): | 0 - 2 - 4 - 6 - 6 - 2 - a | D | 5 | | | 1 | 220 | 25 | 30 | | Time:
Weather: | | Temp (°C) | T | рН | Sp. Cond. | Max Depth:
LS Depth (ft):
LB Depth (ft):
cchi Depth (ft): | 2 4 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10 | 0 | 5 | | | 1 | 220 | 25 | 30 | | Time:
Weather: | | Temp (°C) | T | pH | Sp. Cond. | Max Depth:
LS Depth (ft):
LB Depth (ft):
Cchi Depth (ft): | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | 5 | | | - 1 | 220 | 25 | 30 | | Time:
Weather: | | Temp (°C) | T | рН | Sp. Cond. | Max Dapth:
LS Dapth (ft):
LS Dapth (ft):
cohl Dapth (ft): | 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | 0 | 5 | | | 1 | | 25 25 Temp (*C) | | | Time:
Weather: | | Temp (°C) | T | pH | Sp. Cond. | Max Depth:
LS Depth (t):
LB Depth (t):
cont Depth (t): | 0 - 2 - 4 - 6 - (1) 8 - 10 - 10 - 12 - 14 - 16 - 16 - 16 - 16 - 16 - 17 - 17 - 18 - 18 - 18 - 18 - 18 - 18 | 0 | 5 | | | 1 | | | | | Time:
Weather: | | Temp (°C) | T | pH | Sp. Cond. | Max Depth:
LS Depth (ft):
LB Oepth (ft):
Cochi Depth (ft): | 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | 0 | 5 | | | 1 | | Temp (°C) | | | Time:
Weather: | | Temp (°C) | T | pH | Sp. Cond. | Max Depth:
LS Depth (ft):
LB Oepth (ft):
Cochi Depth (ft): | 0 - 2 - 4 - 6 - (1) 8 - 10 - 10 - 12 - 14 - 16 - 16 - 16 - 16 - 16 - 17 - 17 - 18 - 18 - 18 - 18 - 18 - 18 | | 5 | | | 1 | | Temp (°C) | | | Time. Wastber | | | D.O. (mg/L) | pH | Sp. Cond. | Max Depth:
LS Depth (ft):
LB Depth (ft):
coli Depth (ft): | 0 - 2 - 4 - 6 - (1) 8 - 10 - 10 - 12 - 14 - 16 - 16 - 16 - 16 - 16 - 17 - 17 - 18 - 18 - 18 - 18 - 18 - 18 | | 5 | | | 2 | | Temp (°C) | | | Time. Weather Entry | Depth (ft) | LS
NA | D.O. (mg/L) | pH | Sp. Cond. | Max Depth:
LS Depth (R):
cchi Depth (R): | 0 - 2 - 4 - 6 - (1) 8 - 10 - 10 - 12 - 14 - 16 - 16 - 16 - 16 - 16 - 17 - 17 - 18 - 18 - 18 - 18 - 18 - 18 | | 5 | | | 2 | | Temp (°C) | | | Time. Watter Enry Personder | Depth (ft) Total P (upt. | LS
NA
NA
NA | D.O. (mg/L) | pH | Sp. Cond. | Max Depth: LS Depth (ft):
LS Depth (ft):
LS Depth (ft):
LS Depth (ft): | 0 - 2 - 4 - 6 - (1) 8 - 10 - 10 - 12 - 14 - 16 - 16 - 16 - 16 - 16 - 17 - 17 - 18 - 18 - 18 - 18 - 18 - 18 | | 5 | | | 1 | | Temp (°C) | | | Time. Watter Enry Personder | Depth (ft) Total P (upt. | LS
NA
NA
NA
NA | LB NA NA NA | pH | Sp. Cond. | Max Dophin LS Depth (ft): LB Depth (ft): cohi Depth (ft): | 0 - 2 - 4 - 6 - (1) 8 - 10 - 10 - 12 - 14 - 16 - 16 - 16 - 16 - 16 - 17 - 17 - 18 - 18 - 18 - 18 - 18 - 18 | | 5 | | | 3 | | Temp (°C) | | | Time. Waster Enry Personder D N N N N N N N N N N N N | Fotal P (µg)L
Soolwel P (µg)L
Title (pg)L
Title (pg)L | LS
NA
NA
NA
NA
NA | LB LB NA NA NA NA NA | Ме | Sp. Cond. | Max Dophi. LS Depth (R): LB Depth (R): | 0 - 2 - 4 - 6 - (1) 8 - 10 - 10 - 12 - 14 - 16 - 16 - 16 - 16 - 16 - 17 - 17 - 18 - 18 - 18 - 18 - 18 - 18 | | 5 | | | 1 | | Temp (°C) | | | Time. Weather Entry Parameter D. N. N. N. L. | Total P (upA:
solved P (upA:
TNO, N (upA):
TNO, N (upA):
TNO, N (upA):
SOLVED (upA):
NIA, N (upA):
SOLVED (upA):
S | LS
NA
NA
NA
NA
NA
NA | LB
LB
NA
NA
NA
NA
NA | pH | Sp. Cond. | Man Dophith
LE Dophith | 0 - 2 - 4 - 6 - (1) 8 - 10 - 10 - 12 - 14 - 16 - 16 - 16 - 16 - 16 - 17 - 17 - 18 - 18 - 18 - 18 - 18 - 18 | D | 5 | | | 1 | | Temp (°C) | | | Time. Weather Entry Parameter D. N. N. N. L. | Popth (ft) Total P (µg)t. Total P (µg)t. Total N | LS
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | L8 NA. NA. NA. NA. NA. | pH | Sp. Cond. | Max Lepsh (t): LB Depth (t): LB Depth (t): LB Depth (t): Depth (t): | 0 - 2 - 4 - 6 - (1) 8 - 10 - 10 - 12 - 14 - 16 - 16 - 16 - 16 - 16 - 17 - 17 - 18 - 18 - 18 - 18 - 18 - 18 | | 5 | | | - 1 | | Temp (°C) | | | Ferender Parameter D AAA AAA Total S | Total P (pp.1. Total P (pp.1. Total P (pp.1. TRN (pp.1. TRN (pp.1. TRN) | LS NA | LB LB NA NA NA NA NA NA NA | pH | Sp. Cond. | Max Depin fit: LS L | 0 - 2 - 4 - 6 - (1) 8 - 10 - 10 - 12 - 14 - 16 - 16 - 16 - 16 - 16 - 17 - 17 - 18 - 18 - 18 - 18 - 18 - 18 | 0 | 5 | | | 1 | | Temp (°C) | | | Florence Control of Co | Popth (ft) Total P (µg)L Soolwed P (µg)L Total N (µg)L Total N (µg)L Total N (µg)L College | LS
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | 1.5 LS NA | pH. | Sp. Cond. | Max Dupph (t): LS L | 0 - 2 - 4 - 6 - (1) 8 - 10 - 10 - 12 - 14 - 16 - 16 - 16 - 16 - 16 - 17 - 17 - 18 - 18 - 18 - 18 - 18 - 18 | D | 5 | | | 2 | | Temp (°C) | | | Ference Control of Con | Begin (ff) Total P (sign) (ff) Total (sign) (ff) Carlo (sign) (ff) Carlo (sign) (ff) Carlo (sign) (ff) | L.S. NA. NA. NA. NA. NA. NA. NA. NA. | LB LB NA NA NA NA NA NA NA | pit | Sp. Cond. | Max Depin fit: LS L | 0 - 2 - 4 - 6 - (1) 8 - 10 - 10 - 12 - 14 - 16 - 16 - 16 - 16 - 16 - 17 - 17 - 18 - 18 - 18 - 18 - 18 - 18 | D | 5 | | | 2 | | Temp (°C) | | Ontern, LLC | Water Quality Data | | | | | | | | |--|-------|-------|-------|--------|--|--|--| | 2016-2017 | Sur | face | Bot | tom | | | | | Parameter | Count | Mean | Count | Mean | | | | | Secchi Depth (feet) | 5 | 4.4 | NA | NA | | | | | Total P (µg/L) | 5 | 39.3 | 5 | 52.4 | | | | | Dissolved P (µg/L) | 2 | 2.3 | 2 | 4.6 | | | | | Chl a (µg/L) | 5 | 12.1 | 0 | NA | | | | | TKN (µg/L | 2 | 574.5 | 2 | 1141.0 | | | | | NO ₃ +NO ₂ -N (µg/L) | 2 | ND | 2 | ND | | | | | NH ₃ -N (µg/L) | 2 | ND | 2 | 52.7 | | | | | Total N (µg/L) | 2 | 574.5 | 2 | 1141.0 | | | | | Lab Cond. (µS/cm) | 2 | 81.3 | 2 | 84.5 | | | | | Alkal (mg/l CaCO ₃) | 2 | 30.0 | 2 | 32.0 | | | | | Total Susp. Solids (mg/l) | 3 | 3.2 | 3 | 4.2 | | | | | Calcium (mg/L) | 2 | 8.3 | 0 | NA | | | | | Magnesium (mg/L) | 2 | 3.6 | 0 | NA | | | | | Hardness (mg/L) | 2 | 35.4 | 0 | NA | | | | | Color (SU) | 2 | 40.0 | 0 | NA | | | | | Trophi | Trophic State Index (TSI) | | | | | | | | |----------------------|---------------------------|-------|--------|--|--|--|--|--| | Year | TP | Chl-a | Secchi | | | | | | | 1979 | | | 52.6 | | | | | | | 1992 | | | 59.9 | | | | | | | 1993 | | | 50.1 | | | | | | | 1996 | | | 56.3 | | | | | | | 1997 | | | | | | | | | | 1998 | | | | | | | | | | 2002 | | | 56.7 | | | | | | | 2003 | | | 51.2 | | | | | | | 2004 | | | 50.8 | | | | | | | 2005 | | | 51.7 | | | | | | | 2006 | 54.3 | 57.6 | 54.3 | | | | | | | 2007 | 52.0 | 54.0 | 53.5 | | | | | | | 2008 | 52.0 | 54.3 | 52.6 | | | | | | | 2009 | 50.4 | 55.4 | 51.1 | | | | | | | 2010 | 45.0 | 48.0 | 51.7 | | | | | | | 2015 | | | 53.5 | | | | | | | 2016 | 58.6 | 57.2 | 57.3 | | | | | | | 0 | | | | | | | | | | 0 | | | | | | | | | | 0 | | | | | | | | | | 0 | | | | | | | | | | 0 | | | | | | | | | | 0 | | | | | | | | | | 0 | | l | | | | | | | | 0 | | | | | | | | | | 0 | | l | | | | | | | | 0 | | l | | | | | | | | 0 | | l | | | | | | | | 0 | | | | | | | | | | 0 | | l | | | | | | | | | | | | | | | | | | All Years (Weighted) | 53.3 | 55.4 | 52.8 | | | | | | | SLDL Median | 54.6 | 52.6 | 52.4 | | | | | | | NLF Ecoregion Median | 48.1 | 47.5 | 45.7 | | | | | | | | | | ii (feet) | | | | yll-a (μg/L) | | | | horus (µg/L) | | |------------------|---------|----------|-----------|------|-------|--------|--------------|------|---------|------|--------------|------| | | Growing | g Season | Sum | | | Season | | nmer | Growing | | Sum | | | Year | Count | Mean | | 1979 | 1 | 5.5 | 1 | 5.5 | 1 | 16.6 | 1 | 16.6 | 1 | 27.0 | 1.0 | 27.0 | | 1992 | 3 | 2.6 | 2 | 3.3 | 3 | 17.6 | 2 | 11.1 | 3 | 34.0 | 2.0 | 31.5 | | 1993 | 1 | 6.5 | 1 | 6.5 | | | | | | | | | | 1996 | 2 | 5.1 | 1 | 4.3 | | | | | | | | | | 1997 | 1 | 3.0 | 0 | | | | | | | | | | | 1998 | 1 | 8.0 | 0 | | | | | | | | | | | 2002 | 7 | 5.0 | 2 | 4.1 | | | | | | | | | | 2003 | 10 | 5.7 | 8 | 6.0 | | | | | | | | | | 2004 | 7 | 5.5 | 5 | 6.2 | | | | | | | | | | 2005 | 11 | 5.6 | 10 | 5.9 | | | | | | | | | | 2006 | 11 | 4.6 | 7 | 4.9 | 3 | 15.2 | 2 | 15.7 | 3 | 33.7 | 2.0 | 32.5 | | 2007 | 8 | 4.7 | 6 | 5.2 | 3 | 10.9 | 3 | 10.9 | 3 | 27.7 | 3.0 | 27.7 | | 2008 | 10 | 4.7 | 6 | 5.5 | 3 | 11.3 | 3 | 11.3 | 3 | 27.7 | 3.0 | 27.7 | | 2009 | 9 | 5.7 | 5 | 6.1 | 3 | 12.6 | 3 | 12.6 | 4 | 33.8 | 3.0 | 24.7 | | 2010 | 3 | 5.8 | 3 | 5.8 | 1 | 5.9 | 1 | 5.9 | 2 | 18.0 | 1.0 | 17.0 | | 2015 | 10 | 4.5 | 6 | 5.2 | | 0.0 | | 0.0 | - | 10.0 | 1.0 | 11.5 | | 2016 | 5 | 4.4 | 3 | 4.0 | 5 | 12.1 | 3 | 15.1 | 5 | 39.3 |
3.0 | 43.6 | | 2010 | 3 | 4.4 | 3 | 4.0 | 3 | 12.1 | 3 | 10.1 | | 35.3 | 3.0 | 43.0 | Years (Weighted) | | 5.0 | | 5.4 | | 13.0 | 1 | 12.5 | 1 | 31.8 | 1 | 30.2 | | SLDL Median | | | | 5.6 | | | | 9.4 | | | | 33.0 | | Ecoregion Median | | | | 8.9 | | | | 5.6 | | | | 21.0 | ## **APPENDIX D** Watershed Analysis WiLMS Results Е ## **APPENDIX E** **2012 Aquatic Plant Survey Data** | Point Number | atitude (Decimal Degrees) | ongitude (Decimal Degrees) | Q | .ake Name | County | Date | Field Crew | | Point Number
Depth (ft) | Sediment | Pole; Rope | Comments | Nuisance | Fotal Rake Fullness | Myrlophyllum spicatum | Brasenia schreberi | Ceratophyllum echinatum | Eleocharis acicularis | Elodea canadensis | Heterarthera dubia | Bidens beckii | Myriophyllum sibiricum | Myriophyllum verticillatum
Najas flexilis | Nitella sp. | Nuphar variegata | lymphaea odorata | otamogeton amplifolius | Potamogeton epihydrus | Potamogeton follosus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton zosteriformis | Sagitaria sp. (rosette) | Sparganium androcladum | Sparganium angustifolium | Utricularia vulgaris | Vallisneria americana | Freshwater sponge | Filamentous algae | |--------------|---------------------------|----------------------------|---|-------------------------------|----------------|------------------------|------------|------|----------------------------|--------------|--------------|----------|----------|---------------------|-----------------------|--------------------|-------------------------|-----------------------|-------------------|--------------------|---------------|------------------------|--|-------------|------------------|------------------|------------------------|-----------------------|----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|---------------------------|-------------------------|------------------------|--------------------------|----------------------|-----------------------|-------------------|-------------------| | 1 | 45.898212 | -89.178130 | - | Cranberry Lake | Vilas | 7/31/2012 | BTB & TV | | 1 4 | Muck | Pole | 0 2 | _ | 2 | - ' | | , 0 | ш | 1 | | 1 | - | 1 | | _ | 2 (| _ | | | | | | <u> </u> | | 2 | 0) | 0 | 00 0 | , , | _ | L | | | 2 | 45.897492 | -89.178141 | | 1 | Vilas | 7/31/2012 | BTB & TV | | 2 2 | Sand | Pole | | | 2 | | | | | | | | | 1 | | | | 1 | $\ \cdot\ $ | + | 1 | | | 1 | | | | | | | 1 | ┝ | H | | 4 | 45.898925
45.898205 | -89.177088
-89.177099 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TV | | 4 5 | Sand | Pole Pole | | | 2 | | | | | | | | | 2 | 2 | | | | 1 | | | | | | | 1 | | | | | | | | | 5 | 45.897485 | -89.177110 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TV | | 5 6 | Sano | Pole | | | 2 | | | | | | | | | 2 | : | | | | | + | 1 | | | 4 | | 1 | | | | | | ┝ | \blacksquare | | 7 | 45.901077
45.900357 | -89.176025
-89.176036 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | BTB & TV | | 7 7 | Sand | Pole Pole | | | 0 | | | | | | | | | | | | | | | | | | | 1 | | 1 | | | | | | Ė | 1 | | 8 | 45.899637 | -89.176047 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TV | | 8 1 | Sano | Pole | | | 0 | | | - | | | | | | | | | | | | 4 | | | | 4 | | | | | | | | Ļ | H | | 10 | 45.898917
45.898197 | -89.176057
-89.176068 | | | Vilas
Vilas | 7/31/2012
7/31/2012 | BTB & TV | | 9 6 | Rock | Pole | | | 0 | | | | | | | | | | | | | | H | 1 | | | | 1 | | | | | | | | H | H | | 11 | 45.897478 | -89.176079 | | | Vilas | 7/31/2012 | BTB & TV | | 11 12 | | Pole | | | 0 | L | | | 12 | | -89.176089
-89.176100 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | BTB & TV | | 12 12 | Muck
Sand | Pole
Pole | | | 0 | | | + | | | | | | | | | | | $\frac{1}{1}$ | + | | | | 1 | | | | | + | | | ╁ | H | | 14 | 45.895318 | -89.176111 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TV | | 14 6 | Sano | Pole | | | 2 | | | | | | | | | 1 | | | | | Ш | | 1 | | | 2 | | 1 | | | | | 1 | L | | | 15 | | -89.176121 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TV | | 15 5 | Sand | | | | 2 | | | | ļ., | | | | | 1 | | | | 1 | $\ \cdot\ $ | + | | | | 1 | | 1 | | | | | 2 | ┝ | H | | 16 | | -89.176132
-89.174962 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & E | | 16 2
17 3 | Sand | Pole Pole | | | 2 | | | t | 1 | | | | | 2 | | | | | | | | | | | | | | | | | 1 | İ | | | 18 | | -89.174973 | H | Cranberry Lake | Vilas | 7/31/2012 | DAC & El | | 18 7 | Rock | Pole | | L | 1 | | - | + | | | + | 1 | | 1 | 1 | | H | + | H | 4 | | | | \downarrow | 1 | Ŧ | | | - | | | F | \mathbb{H} | | 19 | 45.901790
45.901070 | -89.174983
-89.174994 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EL | | 19 8 | Rock | Pole
Pole | | | 1 | H | 1. | + | | | \parallel | + | | \dagger | 1 | | \parallel | - | \mathbb{H} | \dagger | 1 | | | 1 | ł | + | 1 | | + | + | | H | 1 | | 21 | 45.900350 | -89.175005 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TV | VH | 21 6 | Sand | Pole | | | 3 | | | | | | | | | 1 | 1 | | | | 1 | 1 | 1 | | | 1 | 1 . | 1 | | | 1 | | | I | | | 22 | 45.899630
45.898910 | -89.175015
-89.175026 | | Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | BTB & TV | | 22 12 | Muck
Sand | Pole | | | 0 | H | + | + | | H | + | + | | + | 1 | | \dashv | + | + | + | 1 | | | + | + | + | | | + | + | + | H | H | | 24 | 45.898190 | -89.175037 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TV | | 24 12 | Muck | Pole | | | 1 | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | I | | | 25 | 45.897470 | -89.175047 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TV | | 25 12 | | Pole | | | 0 | | | | | | | | | | | | | | $\ \cdot\ $ | + | | | | + | | | | | | | | ┝ | H | | 26 | 45.896750
45.896030 | -89.175058
-89.175069 | | Cranberry Lake Cranberry Lake | Vilas | 7/31/2012
7/31/2012 | BTB & TV | | 26 12 | Muck
Muck | Pole | | | 0 | İ | | | 28 | 45.895310 | -89.175079 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TV | | 28 11 | | Pole | | | 0 | | | | | | | | | | | | | | \perp | | | | | | | | | | | | | _ | H | | 30 | 45.894590
45.893870 | -89.175090
-89.175101 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | BTB & TV | | 29 12 | Sano | Pole | | | 0 | | | | | | | | | | | | | | H | 1 | | | | 1 | | | | | | | | H | H | | 31 | 45.893150 | -89.175111 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TV | | 31 10 | | Pole | | | 0 | | | | | | | | | | | | | | П | | | | | | | | | | | | | L | | | 32 | 45.892430
45.901782 | -89.175122
-89.173952 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & E | | 32 6 | Sand | Pole | | | 2 | | | | | | | | | 2 | 1 | | | | | | | | | 1 | | | | | + | | 2 | ╁ | Н | | 34 | 45.901062 | -89.173963 | | | Vilas | 7/31/2012 | BTB & TV | | 34 6 | Sano | Pole | | | 2 | | | | | | | | | 2 | | | | | | 1 | 1 | | | 1 | | 1 | | | | | | L | | | 35 | | -89.173974 | | 1 | Vilas | 7/31/2012 | BTB & TV | | 35 7 | Sano | Pole | | | 2 | | | | | | | | | | | | | | $\ \cdot\ $ | + | 2 | | | + | | | | | | | | ┝ | 1 | | 36 | 45.899623
45.898903 | -89.173984
-89.173995 | | Cranberry Lake | Vilas
Vilas | 7/31/2012 | BTB & TV | | 36 13 | Muck
Muck | Pole | | | 0 | | | t | L | İ | | | 38 | | -89.174006 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TV | | 38 1 | Muck | | | | 0 | | | + | | | | | | | | | | | | + | | | | 4 | | | | | - | | | ┡ | H | | 39
40 | 45.897463
45.896743 | -89.174016
-89.174027 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | BTB & TV | | 39 13
40 13 | Muck
Muck | Pole | | | 0 | | | | | | | | | | | | | | | 1 | | | | 1 | | | | | | | l | t | H | | 41 | | -89.174038 | | | Vilas | 7/31/2012 | BTB & TV | VH - | 41 13 | Muck | Pole | | | 0 | L | | | 42 | 45.895303
45.894583 | -89.174048
-89.174059 | | Cranberry Lake | Vilas | 7/31/2012
7/31/2012 | BTB & TV | | 42 12 | | Pole | | | 0 | + | Н | | 44 | | | | Cranberry Lake | Vilas | | | | | | Pole | | | 0 | | 1 | ļ | | | | | | 1 | | | | | П | 1 | | | | 1 | 1 | ļ | | | 1 | 1 | L | I | | | 45 | | | Н | | Vilas | 7/31/2012 | | | | | | | | 0 | | | - | | | + | - | | - | - | - | H | - | H | + | - | | H | + | | + | - | H | + | - | + | \vdash | Н | | 46 | | | | Cranberry Lake | | | | | 46 1 | Sand | | | | 2 | | | | 1 | | | | | 1 | | | | 1 | | | 1 | | | | | | | | | \downarrow | 1 | İ | П | | 48 | | -89.172910 | | | Vilas | | | | | | | | | 2 | | - | - | | | | - | | 2 | + | | \vdash | - | H | + | + | | | + | - . | 1 | - | | + | | 1 | \vdash | \dashv | | 49
50 | | -89.172921
-89.172932 | H | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EL | | 49 7
50 13 | | Pole Pole | | l | 0 | H | | t | | H | | 1 | | 2 | 1 | | H | | Ħ | _ | | | | 1 | | H | 1 | | + | | 1 | \vdash | H | | 51 | 45.900335 | -89.172942 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TV | VH | 51 13 | Muck | Pole | | | 0 | | 1 | I | | | 1 | | | Ŧ | | | | | П | 7 | | | | 7 | 1 | I | | | 7 | I | I | lacksquare | | | 52
53 | | -89.172953
-89.172964 | | Cranberry Lake Cranberry Lake | |
7/31/2012
7/31/2012 | | | | Muck
Muck | | | | 0 | H | + | + | | H | + | + | | + | 1 | | \dashv | + | + | + | 1 | | | + | + | + | | | + | + | + | H | H | | 54 | | -89.172974 | | Cranberry Lake | | | | | | Muck | | | | 0 | | | | | | | | | | | | | | П | 1 | | | | 1 | | | | | 1 | | ļ | I | П | | 55 | | | Н | Cranberry Lake | | | | | | Muck | Pole | | | 0 | \vdash | \perp | + | | \vdash | + | - | | | - | - | \vdash | + | H | + | - | | | + | \perp | + | | | + | + | + | \vdash | H | | 56
57 | | | | Cranberry Lake | | | | | | Muck
Muck | | | | 0 | | | | | | | | | | L | | | | | | L | | | | | | | | | | t | İ | | | 58 | 45.895295 | -89.173017 | H | Cranberry Lake | Vilas | 7/31/2012 | BTB & TV | VH | 58 12 | Muck | Pole | | | 0 | | - | + | | | + | 1 | | 1 | | | H | + | H | 4 | | | | \downarrow | - | Ŧ | | | - | | | F | H | | 59
60 | | | | Cranberry Lake Cranberry Lake | | | | | | Muck
Muck | | | | 0 | H | ł | \dagger | | | \parallel | + | | \dagger | 1 | | \parallel | - | \mathbb{H} | \dagger | 1 | | | + | ł | + | 1 | | + | + | | H | H | | 61 | | | | Cranberry Lake | | 7/31/2012 | BTB & TV | VH | 61 12 | Muck | Pole | | | 0 | | 1 | ļ | | | | | | ļ | | | | | П | 1 | | | | 1 | 1 | ļ | | | 1 | | | I | Д | | | 45.892415 | | H | Cranberry Lake Cranberry Lake | | | | | | | | | | 2 | \vdash | + | + | | \vdash | + | + | | _ | 2 | - | \dashv | + | + | + | + | | | \dashv | + | + | - | | + | + | | \vdash | | | 63 | 45.891695
45.890975 | | | Cranberry Lake Cranberry Lake | | | | | | | | | | 1 | | | | | 1 | | | | 2 | | | | 1 | П | 1 | | | | 1 | 1 | | | | | | 1 | L | | | | 45.902487 | | H | Cranberry Lake | | | | | | Sand | | | | 2 | H | + | 1 | | | + | - | | 1 | + | | H | + | + | + | + | | | 1 | 1 | + | - | | + | - | + | H | 1 | | | 45.901767
45.901048 | | | Cranberry Lake | | | | | | | | | | 0 | \downarrow | t | İ | П | | | 45.900328 | | Н | Cranberry Lake | Vilas | 7/31/2012 | | | | | | | L | 0 | Н | - | + | | | + | - | | + | - | | \sqcup | + | \mathbb{H} | + | - | | | 4 | - | + | | H | \downarrow | + | - | Ļ | \sqcup | | 69 | 45.899608 | -89.171922 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TV | VH | 69 13 | Muck | Pole | | _ | 0 | Ш | | | <u> </u> | Ш | | | | | | <u> </u> | Ш | | | _ | | | Ш | | | | | | | | <u> </u> | 上 | Ш | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Lake Name | County | Date | Field Crew | Point Number | Depth (ft)
Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | mynopnynum spicarum
Brasenia schreberi | Ceratophyllum demersum | Ceratophyllum echinatum | Eleocharis acicularis
Elodea canadensis | Heteranthera dubia | Lemna trisulca
Bidens beckii | Myrlophyllum sibiricum | Myriophyllum verticillatum | Nitella sp. | Nuphar variegata | Nymphaea odorata | Pontederia cordata
Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton follosus | Potamogeton Illinoensis
Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus
Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Sparganium androcladum | Sparganium angus tifolium | Sparganium fluctuans
Utricularia vulgaris | Vallisneria americana | Freshwater sponge
Filamentous algae | |--------------|----------------------------|-----------------------------|----------------|----------------|--------------------------|------------|--------------|------------------------|------------------|--------------|----------|----------|---------------------|---|------------------------|-------------------------|--|--------------------|---------------------------------|------------------------|----------------------------|-------------|------------------|------------------|---|-----------------------|----------------------|---|--------------------------|-----------------------|--|--------------------|---------------------------|------------------------|---------------------------|--|-----------------------|--| | 70 | 45.898888 | -89.171933 | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 70 | 13 Muc | k Pole | | | | 0 | Ŧ | H | | | 71 | 45.898168
45.897448 | -89.171943
-89.171954 | Cranberry Lake | | 7/31/2012
7/31/2012 | BTB & TWH | 71
72 | 13 Muc
14 Muc | | | | | 0 | H | | | 73 | 45.896728 | -89.171965 | Cranberry Lake | | 7/31/2012 | BTB & TWH | 73 | 13 San | d Pole | | | | 0 | Ŧ | I | | | 74
75 | 45.896008
45.895288 | -89.171975
-89.171986 | Cranberry Lake | | 7/31/2012
7/31/2012 | BTB & TWH | 74
75 | 12 Muc | | | | | 0 | + | H | + | | 76 | 45.894568 | -89.171997 | Cranberry Lake | | 7/31/2012 | BTB & TWH | 76 | 12 Muc | | | | | 0 | Ŧ | I | | | 77
78 | 45.893848
45.893128 | -89.172008
-89.172018 | Cranberry Lake | | 7/31/2012
7/31/2012 | BTB & TWH | | 13 Muc | k Pole | DEEP | H | | 0 | | | | | t | | | | | | | | H | H | | | | | | | | | + | H | _ | | 79 | 45.892408 | -89.172029 | Cranberry Lake | | 7/31/2012 | BTB & TWH | 79 | 13 | | DEEP | Ŧ | H | | | 80 | 45.891688
45.890968 | -89.172040
-89.172050 | Cranberry Lake | | | BTB & TWH | 80 | 6 San
7 San | d Pole | | | | 1 | | | | | | | | - | 3 | | | | | 1 | | | | 1 | | | | | + | 1 | 1 | | 82 | 45.890248 | -89.172061 | Cranberry Lake | | 7/31/2012 | BTB & TWH | 82 | 5 Muc | k Pole | | | | 3 | 1 | | | Ŧ | 2 | 1 | | 83 | 45.908960
45.908240 | -89.170751
-89.170762 | Cranberry Lake | | 7/31/2012
7/31/2012 | DAC & EEC | 83 | 6 San | d Pole | | | | 0 | | | | | \parallel | | | 1 | 1 | | | | | | | | | 1 | | | + | | + | H | _ | | 85 | 45.907520 | -89.170773 | Cranberry Lake | | 7/31/2012 | DAC & EEC | 85 | 11 Muc | | | | | 0 | 1 | I | 1 | | 86
87 | 45.906800
45.906080 | -89.170784
-89.170794 | Cranberry Lake | | 7/31/2012
7/31/2012 | DAC & EEC | 86 | 8 Roc | k Pole | | | | 2 | | | | | | | | - | , | | | | | | | | | 2 | 1 | | | | + | H | + | | 88 | 45.905360 | -89.170805 | Cranberry Lake | | | DAC & EEC | 88 | 4 Muc | | | | | 3 | ļ | 1 | | 1 | L | | 1 | ľ | 1 | L | | 1 | | | ļ | L | | 1 | Ė | | 1 | | # | 1 | 1 | | 89
90 | 45.903920
45.903200 | -89.170826
-89.170837 | Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EEC | 89
90 | 12 Muc | k Pole | | | | 0 | + | H | - | + | + | | H | + | + | | | + | | | + | | | + | | ${\mathbb H}$ | + | H | + | \vdash | + | | 91 | 45.903200 | -89.170837
-89.170848 | Cranberry Lake | | 7/31/2012 | DAC & EEC | 91 | 16 Muc | Rope | | | | 0 | | | | | t | | | | İ | | | | | | | | | | | | İ | | 1 | | | | 92 | 45.901760 | -89.170859 | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 92 | 13 Muc | k Pole | | | | 0 | | | | | + | | | | + | | | | | | | | | | | | + | | + | H | | | 93
94 | 45.901040
45.900320 | -89.170869
-89.170880 | Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | BTB & TWH | 93
94 | 13 Muc
13 Muc | k Pole | | | | 0 | 95 | 45.899600 | -89.170891 | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 95 | 13 San | d Pole | | | | 0 | | | | | + | | | | - | | | | | | | | | | | | - | | + | H | | | 96
97 | 45.898880
45.898160 | -89.170901
-89.170912 | Cranberry Lake | | 7/31/2012
7/31/2012 | BTB & TWH | 96
97 | 13 Muc
8 San | | | | | 1 | | | | | | | | - | 1 1 | | | | | | | | | 1 | | | | | $^{+}$ | + | _ | | 98 | 45.897440 | -89.170923 | Cranberry Lake | | 7/31/2012 | BTB & TWH | 98 | 0 San | d Pole | | | | 0 | Į | \blacksquare | | | 100 | 45.896720
45.896000 | -89.170934
-89.170944 | Cranberry Lake | | 7/31/2012
7/31/2012 | BTB & TWH | 99 | 2 San
12 San | | | | | 2 | | | | | | | | 1 | 1 | | | 1 | | | 1 | | | | | 2 | | | + | H | _ | | 101 | 45.895280 | -89.170955 | Cranberry Lake | | | BTB & TWH | | 12 Muc | | | | | 0 | Į | I | | | 102 | 45.894560
45.893840 | -89.170966
-89.170976 | Cranberry Lake | | 7/31/2012
7/31/2012 | BTB & TWH | | 12 Muc
6 San | | | | | 0 | | | | | + | | | | + | | | | | | | | | | | | + | | + | H | | | 103 | 45.893120 | -89.170976 | Cranberry Lake | | | BTB & TWH | | 13 | u Pole | DEEP | | | U | t | | | | 105 | 45.892400 | -89.170998 | Cranberry Lake | | | BTB & TWH | | 13 | | DEEP | | | | | | | | - | | | | + | | | | | | | | | | | | + | | + | H | | | 106 | 45.891681
45.890961 | -89.171009
-89.171019 | Cranberry Lake | | | BTB & TWH | 106 | 13 Muc | k Pole | DEEP | | | 0 | İ | | | | 108 | 45.890241 | -89.171030 | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 108 | 12 Muc | k Pole | | | | 0 | - | | | | | | | | | - | | | | | - | - | | | | | | | + | H | | | 109 | 45.889521
45.888801 | -89.171041
-89.171051 | Cranberry Lake | | | BTB & TWH | | 12 Muc
6 San | k Pole
d Pole | | | | 1 | | | | | | | 1 | | | | | | | | | | | | | | | | Ī | | | | 111 | 45.909672 | -89.169709 | Cranberry Lake | | | DAC & EEC | | 9 San | d Pole | | | | 0 | - | | | | - | | | - | | | | | | | - | | | | | | | | + | H | | | 112 | 45.908952
45.908232 | -89.169720
-89.169731 | Cranberry Lake | | | DAC & EEC | | | k Pole | | Ħ | | 0 | | | | | T | | \dagger | | | | | | | Ħ | | | | | | | | |
\dagger | H | _ | | 114 | 45.907512 | -89.169741 | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 114 | 11 San | d Pole | | | | 0 | Ŧ | \blacksquare | | | 115 | 45.906792
45.906072 | -89.169752
-89.169763 | Cranberry Lake | | | DAC & EEC | | | | | H | | 0 | | | | | t | | | | | | | | H | H | | | | | | | | | + | H | _ | | | 45.905352 | -89.169774 | Cranberry Lake | | | DAC & EEC | 117 | 8 Roc | k Pole | | | | 0 | 1 | П | | | 118 | 45.904632
45.903912 | -89.169784
-89.169795 | Cranberry Lake | | | DAC & EEC | | 14 Muc | k Pole
Rope | | | | 0 | | | | | H | | | | + | | | | | | | | | | | | + | | + | H | _ | | 120 | 45.903192 | -89.169806 | Cranberry Lake | | | DAC & EEC | | | | | | | 0 | Į | I | | | 121 | 45.902472
45.901753 | -89.169817
-89.169827 | Cranberry Lake | | | DAC & EEC | | | | | \vdash | | 1 | + | Н | 1 | + | + | | Н | + | + | - | \vdash | + | + | \vdash | + | - | | + | | H | + | H | + | H | + | | 123 | 45.901753
45.901033 | -89.169827
-89.169838 | Cranberry Lake | | | BTB & TWH | | | | | | | 0 | ļ | | | | t | | | 1 | t | L | | İ | | | İ | L | | ╽ | | | t | | # | Þ | I | | 124 | 45.900313 | -89.169849 | Cranberry Lake | | | BTB & TWH | | | | | | | 0 | + | H | - | + | + | \vdash | H | + | + | - | \dashv | + | | | + | - | | + | | \vdash | + | | + | \vdash | + | | 125 | 45.899593
45.898873 | -89.169860
-89.169870 | Cranberry Lake | | | BTB & TWH | | 13 Muc
8 San | | | | | 3 | | | | | L | | | | 1 3 | | | | | | | | | 1 | | | | | 土 | Ħ | I | | 127 | 45.895993 | -89.169913 | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 127 | 2 San | d Pole | | | | 2 | + | \sqcup | 4 | + | L | | H | _ 2 | 2 | H | \sqcup | 1 | H | | 1 | H | Н | 1 | | Н | + | H | + | 1 | \perp | | 128 | 45.895273
45.894553 | -89.169924
-89.169935 | Cranberry Lake | | | BTB & TWH | | 8 San
6 San | | | | | 0 | | H | | | t | | | | 1 1 | Ŀ | | ╁ | İ | | | Ŀ | | 1 | | H | 1 | | 1 | H | \pm | | 130 | 45.893833 | -89.169945 | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 130 | 8 San | | | | | 0 | - | H | 1 | 1 | - | | H | 1 | - | | H | Ŧ | | | - | | | | | | - | П | \bot | Ц | F | | 131 | 45.893113
45.892393 | -89.169956
-89.169967 | Cranberry Lake | Vilas | 7/31/2012
12:00:00 AM | | 131 | 0 | | DEEP | | | | - | Н | | + | + | | H | + | + | | | | | | | | \vdash | + | | H | + | H | + | H | + | | 133 | 45.891673 | -89.169978 | | | 12:00:00 AM | | 0 | 0 | | DEEP | | | | - | | 1 | | | | Ц | | - | | | | | | | | | ļ | | | - | Ц | Ŧ | П | Ŧ | | | 45.890953
45.890233 | -89.169988
-89.169999 | Cranberry Lake | | | | | | - | DEEP
DEEP | \dashv | | + | + | Н | - | + | + | \vdash | H | + | + | - | \dashv | + | + | \dashv | + | - | H | + | | \vdash | + | H | + | H | + | | | 45.889513 | -89.170010 | Cranberry Lake | | | | | | | DEEP | | | | İ | | | | L | | | 1 | | | | | | | | | | 1 | | | | | 1 | Ħ | I | | | 45.888793
45.888073 | -89.170020
-89.170031 | Cranberry Lake | | | | | | d Pole | DEEP | | | 3 | | | | | | | | - | 1 3 | | | 1 | | | | | | 1 | | | | H | 1 | | \pm | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft)
Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Mynophyllum spicatum
Brasenia schreberi | Ceratophyllum demersum | Ceratophyllum echinatum | Eleocharis acicularis | Heteranthera dubia | Lemna trisulca | Bidens beckii | Myriophyllum sibiricum
Myriophyllum verticillatum | Najas flexilis | Nitella sp. | Nuphar variegata | Nymphaea odorata
Pontederia cordata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton follosus
Potamogeton illinoensis | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii
Potamogeton spirillus | Potamogeton strictifolius | Potamogeton zosteriformis | Sagitaria sp. (rosette) | Sparganium androcladum
Sparganium angustifolium | Sparganium fluctuans | Utricularia vulgaris
Vallisneria americana | Freshwater sponge | Filamentous algae | |--------------|----------------------------|-----------------------------|----|-------------------------------|----------------|----------------------------|------------------------|--------------|------------------------|------------|--------------|---------|----------|---------------------|--|------------------------|-------------------------|-----------------------|--------------------|----------------|---------------|--|----------------|-------------|------------------|--|-------------------------|-----------------------|---|----------------------|--------------------------|--|---------------------------|---------------------------|-------------------------|--|----------------------|---|-------------------|-------------------| | 139 | 45.886633 | -89.170053 | | Cranberry Lake | Vilas | 7/31/2012
7/31/2012 | BTB & TWH | 139 | 3 Muck | Pole | | | | 3 | | 1 | | 3 | 3 | | 1 | | | | | 1 | 1 | | | Н | + | | | 1 | | | | | H | | | 140 | 45.910385
45.909665 | -89.168667
-89.168678 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012 | DAC & EEC | 141 | 12 Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | 1 | | | | | İ | | | T | | | 142 | 45.908945 | -89.168689 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 142 | 12 Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | + | | | | | + | | | H | | | 143 | 45.908225
45.907505 | -89.168699
-89.168710 | | Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EEC | 143 | 11 Muck
12 Muck | Pole | | | | 0 | 145 | 45.906785 | -89.168721 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 145 | 12 Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | + | | | | | + | | | H | | | 146 | 45.906065
45.905345 | -89.168732
-89.168742 | | Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EEC
DAC & EEC | 146 | 13 Muck
14 Muck | Pole | | | | 0 | 148 | 45.904625 | -89.168753 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 148 | 14 Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | + | | | | | + | | | H | | | 149 | 45.903905
45.903185 | -89.168764
-89.168775 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012 | DAC & EEC | 149 | 14 Muck | Pole | | | | 0 | 151 | 45.902465 | -89.168785 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 151 | 13 Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | + | | | | | + | | | H | | | 152 | 45.901745
45.901025 | -89.168796
-89.168807 | | Cranberry Lake Cranberry Lake | Vilas | 7/31/2012
7/31/2012 | DAC & EEC
BTB & TWH | 152 | 13 Muck
13 Muck | Pole | | | | 0 | 154 | 45.900305 | -89.168818 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 154 | 13 Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | - | | | + | | | | | + | | | 155 | 45.899585
45.898865 | -89.168828
-89.168839 | | Cranberry Lake | Vilas | 7/31/2012
7/31/2012 | BTB & TWH
BTB & TWH | 155
156 | 11 Sand
3 Sand | Pole | | | | 2 | | | | | | | | | 2 | | | | | | | 1 | | 1 | | 1 | | | | 1 | İ | | | 157 | 45.894545 | -89.168904 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 157 | 2 Sand | Pole | | | | 1 | 1 | + | | | 158 | 45.893825
45.893105 | -89.168914
-89.168925 | | Cranberry Lake Cranberry Lake | Vilas | 7/31/2012
7/31/2012 | BTB & TWH | 158
159 | 12 Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | H | | | | | H | | | | | | | 160 | 45.892385 | -89.168936 | | | | 12:00:00 AM | | 0 | 0 | | DEEP | 161 | 45.891666
45.890946 | -89.168946
-89.168957 | | | | 12:00:00 AM | | 0 | 0 | | DEEP | | | 1 | + | | | 163 | 45.890226 | -89.168968 | | | | 12:00:00 AM | | 0 | 0 | | DEEP | \Box | | | 164 | 45.889506
45.888786 | -89.168979
-89.168989 | | Cranberry Lake | Vilas | 12:00:00 AM
7/31/2012 | BTB & TWH | 0
165 | 0 | | DEEP
DEEP | | | 1 | | | | | | | | | | | | | | | | Н | + | | | | | | | | + | | | 166 | 45.888066 | -89.169000 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 166 | 9 Sand | Pole | DEEP | | | 0 | 1 | | 167 | 45.887346 | -89.169011 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 167 | 4 Sand | Pole | | | | 1 | | | | 1 | 1 | | | | 1 | 1 | | | 1 | | | | | 1 | | | | | | 1 | + | 1 | | 168 | 45.886626
45.911097 | -89.169022
-89.167625 | | Cranberry Lake Cranberry Lake | Vilas | 7/31/2012
7/31/2012 | DAC & EEC | 168 | 4 Sand
8 Rock | Pole | | | | 0 | | | | | | | | | 2 | | | | | | | | | 1 | | | | | | 1 | | | | 170 | 45.910377 | -89.167636 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 170 | 13 Muck | Pole | | | | 0 | H | | | | + | | | 171 | 45.909657
45.908937 | -89.167647
-89.167657 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EEC | 171 | 0
13 Muck | Pole | DEEP | | | 0 | H | | | 173 | 45.908217 | -89.167668 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 173 | 13 Muck | Pole | | | | 0 |
 | | | 174 | 45.907497
45.906777 | -89.167679
-89.167690 | | Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EEC | 174 | 0 | | DEEP | + | | | 176 | 45.906057 | -89.167700 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | | 14 Muck | Pole | | | | 0 | 177 | 45.905337
45.904617 | -89.167711
-89.167722 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EEC | 177 | 14 Muck | Pole | | | | 0 | + | | | | | + | | | 179 | 45.903897 | -89.167733 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 179 | 14 Muck | Pole | | | | 0 | 180 | 45.903177
45.902457 | -89.167743
-89.167754 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 180 | 13 Muck | Pole | | | | 0 | + | | | | | + | | | | 45.902457 | -89.167765 | | Cranberry Lake | Vilas | | DAC & EEC | | | Pole | | | | 0 | 183 | 45.901018 | -89.167776 | | Cranberry Lake | Vilas | | BTB & TWH | | 13 Sand | Pole | | | | 0 | + | | | 184 | 45.900298
45.899578 | -89.167786
-89.167797 | | Cranberry Lake | Vilas
Vilas | | BTB & TWH
BTB & TWH | | 8 Sand
0 Rock | Pole | | | | 0 | | | | | | | | | 1 | | | | | | | 1 | | | | | | | | | Ħ | | | 186 | 45.893818 | -89.167883 | H | Cranberry Lake | Vilas | | BTB & TWH | | | Pole | | H | | 0 | - | H | - | + | - | - | H | + | - | Н | - | + | - | Н | - | H | + | - | | | H | + | + | | \vdash | | | 187 | 45.893098
45.892378 | -89.167894
-89.167905 | | Cranberry Lake | Vilas | 7/31/2012
12:00:00 AM | BTB & TWH | 187 | 0 | | DEEP
DEEP | H | | _ | t | H | | t | t | L | Ħ | t | t | | _ | 1 | t | H | 1 | Н | + | | H | t | H | \pm | | \pm | Ħ | _ | | 189 | 45.891658 | -89.167915 | | | | 12:00:00 AM | | 0 | 0 | | DEEP | П | | 7 | | Н | 1 | - | | | H | | | | 1 | Ŧ | | H | I | H | 1 | | | | П | Ŧ | H | | | J | | 190 | 45.890938
45.890218 | -89.167926
-89.167937 | H | | | 12:00:00 AM
12:00:00 AM | | 0 | 0 | | DEEP
DEEP | H | | + | + | H | + | + | + | - | H | + | t | H | \dashv | \dagger | t | H | + | H | + | + | H | \dagger | H | + | H | + | H | - | | 192 | 45.889498 | -89.167948 | | | | 12:00:00 AM | | 0 | 0 | | DEEP | Ц | | 1 | | Ц | | 1 | | | Ц | | | | | - | | | | П | 1 | | | | П | | П | | П | 4 | | 193 | 45.888778
45.888058 | -89.167958
-89.167969 | H | Cranberry Lake Cranberry Lake | | | BTB & TWH | | 13 | | DEEP
DEEP | | | + | + | H | 1 | \parallel | + | 1 | H | | - | | \dashv | + | - | | + | | + | + | \vdash | + | | + | H | + | H | | | 195 | 45.887338 | -89.16798 | | Cranberry Lake | Vilas | | BTB & TWH | | 11 Sand | Pole | JEC. | П | | 0 | T | П | | 1 | ļ | | | 1 | | | 1 | 1 | | | | | 1 | | | | П | 1 | П | | Į | 1 | | 196
197 | 45.886618
45.911809 | -89.167991 | H | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | | 6 Sand
9 Rock | | | H | | 1 | + | H | + | + | + | - | H | + | 1 | | + | + | H | H | + | H | + | - | \vdash | - | H | + | + | + | H | | | 197 | 45.911809
45.91109 | -89.166583
-89.166594 | | Cranberry Lake | Vilas | 7/31/2012
7/31/2012 | DAC & EEC | | | | | Ц | | 0 | | | | | | | | | | | | 1 | | | | | 1 | | | | | 1 | | | Ħ | | | 199 | 45.91037 | -89.166604 | H | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | | 0 | | DEEP | H | | 1 | - | H | - | + | - | - | H | + | - | Н | - | + | - | Н | - | H | + | - | | | H | + | + | | \vdash | | | 200 | 45.90965
45.90893 | -89.166615
-89.166626 | | Cranberry Lake | Vilas | 12:00:00 AM
7/31/2012 | DAC & EEC | 201 | 0 | | DEEP
DEEP | Ħ | | | 202 | 45.90821 | -89.166637 | H | Cranberry Lake | | 7/31/2012 | DAC & EEC | 202 | 0 | | DEEP | \prod | | + | + | | -[| | - | | | | | | \parallel | | | | + | | + | - | \mathbb{H} | + | H | + | + | | igdot | \dashv | | 203 | 45.90749
45.90677 | -89.166647
-89.166658 | | | | 12:00:00 AM | | 0 | 0 | | DEEP
DEEP | H | | _ | t | H | | | t | L | Ħ | | t | | _ | | t | | | Н | + | | H | t | H | $\frac{1}{2}$ | | \pm | Ħ | _ | | 205 | 45.90605 | -89.166669 | | Cranberry Lake | | 7/31/2012 | DAC & EEC | 205 | | | | П | | 0 | | П | 1 | - | | | H | | | | 1 | Ŧ | | H | I | | 7 | | | F | П | Ŧ | H | I | ₽ | 1 | | 206 | 45.90533
45.90461 | -89.16668
-89.166691 | | Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EEC | | 14 Muck | Pole | DEEP | | | 0 | | | | | | | | 1 | | | | | | | 1 | | | L | | | | | | | \Box | | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fuliness | Mynophyllum spicatum
Brasenia schreberi | Ceratophyllum demersum | Ceratophyllum echinatum | Elodea canadensis | Heteranthera dubia | Lemna trisulca | Bidens beckii | Myriophyllum verticillatum | Najas flexilis | Nitella sp. | Nuphar variegata | Nymphaea odorata
Pontederia cordata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton foliosus
Potamogeton illinoensis | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii
Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Sparganium androcladum | Sparganium angustifolium | Sparganium fluctuans
Utricularia vulgaris | Vallisneria americana | Freshwater sponge | Filamentous algae | |--------------|----------------------------|-----------------------------|----|-------------------------------|----------------|----------------------------|------------------------|--------------|--------------|--------------|----------|-------|----------|---------------------|--|------------------------|-------------------------|-------------------|--------------------|----------------|---------------|----------------------------|----------------|-------------|------------------|--|-------------------------|-----------------------|---|----------------------|--------------------------|--|---------------------------|--------------------|---------------------------|------------------------|--------------------------|--|-----------------------|-------------------|-------------------| | 208 | 45.90389 | -89.166701 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 208 1 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | + | | | | ļ | | | | | + | + | Н | - | | 209 | 45.90317
45.90245 | -89.166712
-89.166723 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EEC | 210 1 | Muck
Muck | Pole | | | | 0 | 211 | 45.90173 | -89.166734 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 211 1: | 2 Sand | Pole | | | | 0 | 1 | _ | _ | | 212 | 45.90101
45.90029 | -89.166744
-89.166755 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | BTB & TWH | 212 9 | Sand | Pole
Pole | | | | 2 | | 1 | | | | | | | 1 | | | | | | | 1 | | | | 1 | | | | - | 2 | Н | - | | 214 | 45.89381 | -89.166852 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 214 1 | 3 | | DEEP | | | | | | | | | | | | Ĺ | | | | | | | | | | | Ì | | | | I | Ī | П | 1 | | 215 | 45.89309 | -89.166863 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 215 | | | DEEP | | | - | | | | | | | | | | | | | | | - | | | | | | | | H | + | + | \vdash | _ | | 216
217 | 45.89237
45.891651 | -89.166874
-89.166884 | | | | 12:00:00 AM | | 0 0 | | | DEEP | İ | | | | 218 | 45.890931 | -89.166895 | | | | 12:00:00 AM | | 0 0 | | | DEEP | | | 4 | | | | - | | | | - | | | | | | | | | | | | | | | | _ | ╄ | \vdash | _ | | 219 | 45.890211
45.889491 | -89.166906
-89.166917 | | | | 12:00:00 AM | | 0 0 | | | DEEP | + | + | | - | | 221 | 45.888771 | -89.166927 | | | | 12:00:00 AM | | 0 0 | | | DEEP | 1 | L | | _ | | 222 | 45.888051
45.887331 | -89.166938
-89.166949 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | BTB & TWH | | Muck | Pole | DEEP | | | 0 | | | - | + | | | | | | | - | | | | + | | | | | | | | H | + | + | H | - | | 224 | 45.886611 | -89.16696 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 224 7 | Sand | Pole | | | | 2 | | | | | | | | | 2 | 1 | | | | | | | | 1 | | | | | | I | I | | | | 225 | 45.912522 | -89.165541 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 225 1 | | Pole | | | | 0 | | | | - | | | | + | | | | | | | | | - | | | | | - | | + | ┾ | \vdash | _ | | 226 | 45.911802
45.911082 | -89.165551
-89.165562 | | Cranberry Lake | Vilas | 7/31/2012
7/31/2012 | DAC & EEC | 226 1 | Muck | Pole | DEEP | | | 0 | | | | | | | | t | | | | | | | | | | | | | | | | + | + | H | - | | 228 | 45.910362 | -89.165573 | | | | 12:00:00 AM | | 0 0 | | | DEEP | 1 | L | | | | 229 | 45.909642
45.908922 | -89.165584
-89.165595 | | | | 12:00:00 AM
12:00:00 AM | | 0 0 | | | DEEP | | | + | | | | | | | | + | | | | | | | + | | | | | | | | H | + | + | H | - | | 231 | 45.908202 | -89.165605 | | | | 12:00:00 AM | | 0 0 | | | DEEP | l | | | | 232 | 45.907482 | -89.165616 | | | | 12:00:00 AM | | 0 0 | | | DEEP | | | + | | | | _ | | | | | | | | | | | + | | | | | | - | - | Н | + | ╀ | H | _ | | 233 |
45.906762
45.906042 | -89.165627
-89.165638 | | Cranberry Lake | Vilas | 12:00:00 AM
7/31/2012 | DAC & EEC | 234 1 | 4 Muck | Pole | DEEP | | | 0 | | | | t | | | | | | | | | | | | | 1 | | | | | | | + | + | Н | - | | 235 | 45.905322 | -89.165649 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 235 1 | 4 Muck | Pole | | | | 0 | I | I | П | 1 | | 236 | 45.904602 | -89.165659 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 236 1 | 4 Muck | Pole | | | | 0 | | | | + | | | | + | | | | | | | + | | | | | | + | + | Н | + | + | H | - | | 237 | 45.903882
45.903162 | -89.16567
-89.165681 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EEC | 237 1 | | Pole | | | | 0 | l | | | | 239 | 45.902442 | -89.165692 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 239 1 | 3 Muck | Pole | | | | 0 | _ | \perp | - | _ | | 240 | 45.901722
45.901003 | -89.165702
-89.165713 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EEC
BTB & TWH | 240 1 | | Pole
Pole | | | | 0 | | | | | | | | + | | | | | | | + | | | | | | | | H | + | + | H | - | | 242 | 45.900283 | -89.165724 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 242 5 | | Pole | | | | 2 | | | | | | | | | 1 | | | | | | | | | 1 2 | | 1 | 1 | | | I | İ | | | | 243 | 45.893803 | -89.165821 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | | 3 Sand | Pole | | | | 0 | _ | + | \vdash | _ | | 244 | 45.893083
45.892363 | -89.165832
-89.165843 | | Cranberry Lake | Vilas | 7/31/2012
12:00:00 AM | BTB & TWH | 0 0 | | | DEEP | | | | | | | t | | | | | | | | | | | | | 1 | | | | | | | + | + | Н | - | | 246 | 45.891643 | -89.165853 | | | | 12:00:00 AM | | 0 0 | | | DEEP | Į | | П | _ | | 247 | 45.890923
45.890203 | -89.165864
-89.165875 | | | | 12:00:00 AM
12:00:00 AM | | 0 0 | | | DEEP | _ | + | Н | _ | | 249 | 45.889483 | -89.165886 | | | | 12:00:00 AM | | 0 0 | | | DEEP | I | | | | 250 | 45.888763 | -89.165896 | | | | 12:00:00 AM | | 0 0 | | | DEEP | | | 4 | | | | - | | | | - | | | | | | | | | | | | | | | | _ | ╄ | \vdash | _ | | 251
252 | 45.888043
45.887323 | -89.165907
-89.165918 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | | BTB & TWH | | Muck | Pole | DEEP | | | 0 | | | | | | | | \parallel | | | | | | | | | | | | | | | | + | + | | = | | 253 | 45.886603 | -89.165929 | | Cranberry Lake | Vilas | | BTB & TWH | | | Pole | | | | 0 | L | Щ | | | 254
255 | 45.913234 | -89.164498
-89.164509 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | | | Pole | | H | | 0 | + | | + | + | + | | | + | Н | - | + | + | + | \dashv | + | Н | \dashv | + | | | + | - | H | + | + | \dashv | \dashv | | 255 | 45.912514
45.911794 | -89.164509
-89.16452 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | | 255 1 | | role | DEEP | | | U | | | | | | | | | | | | t | | | | | | | | | | | | \pm | t | | | | 257 | 45.911074 | -89.164531 | | | | 12:00:00 AM | | 0 0 | | | DEEP | Н | = | 4 | + | H | 4 | + | 1 | | | + | H | -[| 4 | ļ | L | \sqcup | - | H | 4 | \perp | <u> </u> | H | - | _ | H | \downarrow | Ł | oxdapprox | 4 | | 258
259 | 45.910355
45.909635 | -89.164542
-89.164552 | H | | | 12:00:00 AM
12:00:00 AM | | 0 0 | | | DEEP | H | | + | + | H | + | + | + | | H | + | H | 1 | + | + | | \forall | + | H | + | + | + | H | + | t | H | + | + | H | \dashv | | 260 | 45.908915 | -89.164563 | | | | 12:00:00 AM | | 0 0 | | | DEEP | | | 1 | | | | İ | | | | | | | | ļ | | | Ţ | | 1 | | | | | İ | | # | İ | I | 1 | | 261 | 45.908195 | -89.164574 | | | | 12:00:00 AM | | 0 0 | | | DEEP | H | | + | + | | + | + | + | | H | + | H | - | + | + | + | \mathbb{H} | + | Н | + | + | | | + | | H | + | + | \dashv | \dashv | | 262 | 45.907475
45.906755 | -89.164585
-89.164596 | | | | 12:00:00 AM | | 0 0 | | | DEEP | H | | | | | | t | \dagger | | \forall | | H | | | + | | | + | H | + | \dagger | | | + | | H | + | + | \forall | \dashv | | 264 | 45.906035 | -89.164606 | | Cranberry Lake | | 7/31/2012 | | | 4 Muck | Pole | | П | | 0 | 1 | П | 7 | ļ | I | | 4 | Ţ | П | 1 | 7 | ļ | | H | 1 | | 7 | 1 | | | 7 | I | П | 1 | F | \prod | 1 | | 265 | 45.905315 | -89.164617 | | Cranberry Lake | | 7/31/2012 | DAC & EEC | | 4 Muck | | | H | | 0 | + | | + | + | + | | | + | Н | - | + | + | + | \dashv | + | H | \dashv | + | | | + | - | H | + | + | \dashv | \dashv | | 266
267 | 45.904595
45.903875 | -89.164628
-89.164639 | | Cranberry Lake | | 7/31/2012
7/31/2012 | DAC & EEC | | | | | | | 0 | | | | | | | | | | | | t | | | | | | | | | | | | \pm | İ | Ħ | | | 268 | 45.903155 | -89.16465 | | Cranberry Lake | Vilas | | DAC & EEC | | | | | Н | | 0 | + | Н | + | + | - | | \sqcup | - | Н | _ | + | \perp | - | \sqcup | + | H | 4 | + | - | H | + | + | H | + | \bot | \sqcup | 4 | | 269
270 | 45.902435
45.901715 | -89.16466
-89.164671 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EEC | | Muck | Pole
Pole | | H | | 0 | + | | + | + | $\frac{1}{1}$ | | \mathbb{H} | + | H | - | + | + | | | + | | \dashv | + | 1 | | + | | H | + | + | \forall | \dashv | | 271 | 45.900995 | -89.164682 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | | | Pole | | | | 0 | 1 | | 1 | ļ | | | | 1 | | 1 | 1 | ļ | | | 1 | | 1 | 1 | | | 1 | | | I | I | I | 1 | | | 45.900275 | -89.164693 | | Cranberry Lake | | | BTB & TWH | | Sand | Pole | | Н | | 2 | + | H | + | + | - | | \dashv | + | Н | - | + | + | - | \dashv | + | H | \dashv | + | - | | + | + | H | + | 2 | \dashv | \dashv | | 273 | 45.893795
45.893075 | -89.16479
-89.164801 | H | Cranberry Lake | Vilas | 7/31/2012
12:00:00 AM | BTB & TWH | 0 0 | 3 | | DEEP | H | | _ | | | | t | t | L | H | 1 | H | _ | | t | ľ | H | + | | _ | _ | L | | _ | İ | H | + | 1 | H | 1 | | 275 | 45.892355 | -89.164812 | | | | 12:00:00 AM | | 0 0 | | H | DEEP | HŢ | | Ī | F | П | Ţ | F | 1 | L | H | F | П | J | Ţ | F | | H | - | П | Ţ | | | | -[| | H | \perp | Ŧ | H | 4 | | 276 | 45.891635 | -89.164822 | Ш | | لــــا | 12:00:00 AM | | 0 0 | 1 | | DEEP | Ш | | | | Ш | | | | <u> </u> | | | Ш | | | | | Ш | | Ш | [_ | | 1 | Ш | | | Ш | | Щ | ш | Ш | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Brasenia schreberi | Ceratophyllum demersum | Ceratophyllum echinatum
Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Lemna trisulca | Bidens beckii
Mydorbyllum sibiricum | Myriophyllum verticillatum | Najas flexilis | Nitella sp. | Nuphar variegata | Pontederia cordata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton follosus
Potamogeton illinoensis | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsli | Potamogeton sprinting | Potamogeton vaseyi | Potamogeton zosteriformis | Sagitaria sp. (rosette)
Sparganium androcladum | Sparganium angustifolium | Sparganium fluctuans | Vallisneria americana | Freshwater sponge | Filamentous algae | |--------------|----------------------------|-----------------------------|----|-------------------------------|----------------|----------------------------|------------------------|--------------|------------------|------------|----------|----------|----------|---------------------|--------------------|------------------------|--|-------------------|--------------------|----------------|--|----------------------------|----------------|--------------|------------------|--------------------|-------------------------|-----------------------|---|----------------------|--------------------------|-----------------------|-----------------------|--------------------|---------------------------|---|--------------------------|----------------------|-----------------------|-------------------|-------------------| | 277 | 45.890915 | -89.164833 | | | | 12:00:00 AM | | 0 1 |) | | DEEP | + | + | Н | 4 | | 278 | 45.890196
45.889476 | -89.164844
-89.164855 | | | | 12:00:00 AM | | 0 1 |) | | DEEP | | | | | | | | | | | | | | | | | H | | | | | | | | | | | + | Ħ | - | | 280 | 45.888756 | -89.164866 | | | | 12:00:00 AM | | 0 1 |) | | DEEP | Į | | 1 | | 281 | 45.888036 | -89.164876 | | Cranberry Lake | Vilas | 7/31/2012 | | 231 1 | 3 | | DEEP | | | | | | + | | | - | | | | | | + | | | | | | | | | | | | + | + | \vdash | 4 | | 282 | 45.887316
45.913947 | -89.164887
-89.163456 | | Cranberry Lake | Vilas | 7/31/2012
7/31/2012 | DAC & EEC | 282 1 | 3 Muck
S Sand | Pole | | | | 1 | | H | | | | | | | 1 | | | | | | | | | | | t | | | | | 1 | Ħ | 1 | | 284 | 45.913227 | -89.163467 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 284 1 | 3 Muck | Pole | | | | 0 | I | | _ | | 285 | 45.912507 | -89.163478 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 285 | | | DEEP | \perp | + | H | - | | 286 | 45.911787
45.911067 | -89.163489
-89.163499 | | | | 12:00:00 AM | | 0 1 | | | DEEP | t | Ħ | - | | 288 | 45.910347 | -89.16351 | | | | 12:00:00 AM | | 0 (|) | | DEEP |
| 1 | Ŧ | | 4 | | 289 | 45.909627 | -89.163521 | | | | 12:00:00 AM | | 0 1 | | | DEEP | | | | | Н | | + | | | | | | + | + | | | H | | | H | | + | | | | | | + | H | \dashv | | 290 | 45.908907
45.908187 | -89.163532
-89.163543 | | | | 12:00:00 AM | | 0 1 |) | | DEEP | T | | | | 292 | 45.907467 | -89.163553 | | | | 12:00:00 AM | | 0 |) | | DEEP | | | | | | | - | | | | | | - | - | | | | | | | | - | | | | | \perp | 4 | | 4 | | 293
294 | 45.906747
45.906027 | -89.163564
-89.163575 | | Cranberry Lake | Vilas | 12:00:00 AM
7/31/2012 | DAC & EEC | 294 1 | 3 Muck | Pole | DEEP | | | 0 | + | H | - | | 295 | 45.905307 | -89.163586 | | Cranberry Lake | Vilas | 7/31/2012 | | | 3 Muck | Pole | | | | 0 | I | | | | 296 | 45.904587 | -89.163597 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 296 1 | 3 Muck | Pole | | | | 0 | + | \bot | \sqcup | 4 | | 297
298 | 45.903867
45.903147 | -89.163608
-89.163618 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EEC | 297 1 | 4 Muck | Pole | DEEP | | | 0 | + | H | - | | 299 | 45.902427 | -89.163629 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 299 1 | 3 Muck | Pole | DEEP | | | 0 | I | | | | 300 | 45.901707 | -89.16364 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 300 1 | 3 Muck | Pole | | | _ | 0 | | | | - | | | | | | - | - | - | | | | | | | - | | | | | - | + | \vdash | 4 | | 301 | 45.900987
45.894508 | -89.163651
-89.163748 | | Cranberry Lake | Vilas | 7/31/2012
7/31/2012 | BTB & TWH | 301 1 | 2 Muck | Pole | | | | 0 | | | | + | | | | | | | + | | 1 | H | | | | 1 | | | | | | | - | \vdash | - | | 303 | 45.893788 | -89.163759 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 303 1 | 3 | role | DEEP | | | _ | Ĺ | | | | 304 | 45.893068 | -89.16377 | | | | 12:00:00 AM | | 0 1 |) | | DEEP | + | + | Н | 4 | | 305 | 45.892348
45.891628 | -89.16378
-89.163791 | | | | 12:00:00 AM | | 0 |) | | DEEP | + | H | 1 | | 307 | 45.890908 | -89.163802 | | | | 12:00:00 AM | | 0 |) | | DEEP | I | | | | 308 | 45.890188 | -89.163813 | | | | 12:00:00 AM | | 0 |) | | DEEP | | _ | | | | | - | | | | | | - | + | | | | | | | | + | | | | | \vdash | + | \vdash | 4 | | 309 | 45.889468
45.888748 | -89.163824
-89.163835 | | | | 12:00:00 AM
12:00:00 AM | | 0 1 | | | DEEP | | | | + | H | | + | | | | | | | | t | | H | | | | | | + | | | | | + | H | 1 | | 311 | 45.888028 | -89.163845 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 311 1 | 3 | | DEEP | I | | | | 312 | 45.887308 | -89.163856 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | | 1 Sand | | | | _ | 0 | | | | - | | | | | | - | + | | | | | | | | + | | | | | \vdash | + | \vdash | 4 | | 313 | 45.913939
45.913219 | -89.162425
-89.162436 | | Cranberry Lake Cranberry Lake | Vilas | 7/31/2012
7/31/2012 | DAC & EEC | 313 | | Pole | DEEP | | | 1 | | | | + | | | | | 1 | 1 | | t | | H | | | | - 1 | 1 | 1 | | | | | t | Ħ | 1 | | 315 | 45.912499 | -89.162446 | | | | 12:00:00 AM | | 0 |) | | DEEP | Į | | 1 | | 316 | 45.911779 | -89.162457 | | | | 12:00:00 AM | | 0 1 |) | | DEEP | \perp | + | H | 4 | | 317 | 45.911059
45.910339 | -89.162468
-89.162479 | | | | 12:00:00 AM
12:00:00 AM | | 0 1 |) | | DEEP | | | | | | | | | | | | | | | | | П | | | | | | | | | | | \dagger | | 1 | | 319 | 45.909619 | -89.16249 | | | | 12:00:00 AM | | 0 1 |) | | DEEP | I | | _ | | | 45.908899 | -89.1625 | | | | 12:00:00 AM | | 0 (| | | DEEP | | _ | | - | H | | - | | | | + | | + | + | | | | | | H | | + | + | | | | + | + | H | + | | 321 | 45.90818
45.90746 | -89.162511
-89.162522 | | Cranberry Lake | Vilas | | DAC & EEC
DAC & EEC | | | | DEEP | | | | | | | | | | | | | | | | | П | | | | | | | | | | | \dagger | | 1 | | 323 | 45.90674 | -89.162533 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | |) | | DEEP | Ţ | | | | 324 | 45.90602 | -89.162544 | | Cranberry Lake | Vilas | | DAC & EEC | | | | | | | 0 | + | + | \vdash | - | | 325 | 45.9053
45.90458 | -89.162555
-89.162565 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EEC | | 3 Muck
2 Muck | Pole | | | | 0 | t | | | | 327 | 45.90386 | -89.162576 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 327 1 | 3 Muck | Pole | | | | 0 | \perp | \downarrow | \sqcup | 4 | | 328 | 45.90314 | -89.162587 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | | Rock | Pole | | H | | 0 | + | \vdash | + | | | \dashv | + | + | 1 | + | + | + | \vdash | - | | \vdash | H | + | 1 | - | H | + | \vdash | + | 1 | H | \dashv | | 329 | 45.90242
45.9017 | -89.162598
-89.162609 | | Cranberry Lake | Vilas | 7/31/2012 | | | Sand | Pole | | | | 0 | | | | | | 1 | | | | 1 | 1 | t | | | | | | | | | | t | | 士 | t | | 1 | | 331 | 45.8945 | -89.162717 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 331 1 | 2 Muck | Pole | | Ц | | 0 | | \prod | 1 | L | Ц | 4 | - | | Ц | 4 | 1 | 1 | | | | | Ц | | | L | Ш | 1 | | \perp | \perp | Ц | 4 | | 332 | 45.89378 | -89.162728 | H | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 332 1 | 3 | | DEEP | H | | | + | H | | | Н | - | | + | | + | + | + | - | H | | | H | + | + | | H | | | + | + | H | \dashv | | 333 | 45.89306
45.89234 | -89.162739
-89.162749 | | | | 12:00:00 AM | | 0 1 |) | | DEEP | | | | | | | | | | | | | 1 | 1 | | | | | | | | t | | | | | 土 | 1 | Ħ | | | 335 | 45.89162 | -89.16276 | | - | | 12:00:00 AM | | 0 1 | | | DEEP | Ц | 4 | $-\Gamma$ | | μŢ | Ŧ | L | Ц | -[| -[| | Ц | \downarrow | \downarrow | F | L | H | | | Ц | \bot | Ţ | L | LΤ | | | Ŧ | \bot | Ц | 4 | | 336 | 45.8909 | -89.162771 | H | | | 12:00:00 AM | | 0 1 | | | DEEP | H | | - | + | H | + | l | Н | \dashv | + | + | Н | + | + | + | + | 1 | + | H | H | + | + | H | H | + | H | + | + | H | \dashv | | 337 | 45.89018
45.88946 | -89.162782
-89.162793 | | | | 12:00:00 AM | | 0 1 | | | DEEP | | | | t | | | | | | | | | 1 | | | | | | | | | | | | | | 土 | 1 | | | | 339 | 45.888741 | -89.162804 | | | | 12:00:00 AM | | 0 (| | | DEEP | | | | | $oldsymbol{\sqcup}$ | # | | Ц | _[| - - | | Ш | \downarrow | 4 | 1 | | | \perp | | Ц | - - | - | | H | | | + | Ŧ | Ц | 4 | | 340 | 45.888021
45.887301 | -89.162814
-89.162825 | H | Cranberry Lake Cranberry Lake | | | BTB & TWH | | 3 Sand | Polo | DEEP | H | | 0 | - | \forall | + | - | H | 1 | + | + | H | + | + | + | \vdash | H | | \vdash | H | + | + | - | H | - | \vdash | + | + | H | \dashv | | 342 | | | | Cranberry Lake | | | DAC & EEC | | Sand | | | | | 2 | L | П | 1 | | | | | L | | 1 | 1 | Ţ | | | | | | 1 | 1 | | П | 1 | | I | 2 | I | | | | 45.915372 | -89.161372 | | Cranberry Lake | | 7/31/2012 | DAC & EEC | | | Pole | | \sqcup | | 2 | + | | + | | Н | - | - | | 2 | 1 | + | + | | | + | | | 4 | 1 | - | | - | | + | 1 | H | 4 | | 344 | 45.914652
45.913932 | -89.161382
-89.161393 | | Cranberry Lake | Vilas | 7/31/2012
7/31/2012 | DAC & EEC | | 3 Muck | Pole | DEEP | | | 0 | l | | l | | | | | | | | | | L | | | | | | | | | l | | 1 | İ | | | | Point Number | atitude (Decimal Degrees) | ongitude (Decimal Degrees) | ake Name | County | Date | Field Grew | Point Number | Depth (ft) | Pole; Rope | Comments | Votes | Nuisance | Total Rake Fullness | Myriophyllum spicatum
Brasenia schreberi | Seratophyllum demersum | Seratophyllum echinatum | Eleocharis acicularis
Elodea canadensis | Heteranthera dubia | emna trisulca
3Idens beckii | Myrlophyllum sibiricum | Myriophyllum verticillatum | Nitella sp. | Nuphar variegata | Nymphaea odorata | Pontederia cordata
Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton follosus
Potamogeton Illinoensis | otamogeton pusillus | otamogeton richardsonii | otamogeton spirillus | Potamogeton strictifolius | otamogeton zosteriformis | Sagitaria sp. (rosette) | Sparganium androciadum
Sparganium angustifolium | Sparganium fluctuans | Utricularia vulgaris | Vallisneria americana
Freehwater enonge | Filamentous algae | |--------------|---------------------------|----------------------------|----------------|--------|--------------------------|------------------------|--------------|----------------|------------|-----------|-------|----------|---------------------|---|------------------------|-------------------------|--|--------------------|--------------------------------|------------------------|----------------------------|-------------|------------------|------------------|---|-----------------------|---|---------------------|-------------------------|----------------------|---------------------------|--------------------------|-------------------------|--|----------------------|----------------------|--|-------------------| | 346 | 45.913212 | -89.161404 | | 0 | 12:00:00 AM | L | 0 |
0 | | DEEP | _ | _ | - | | | 0 | | _ | | - | | | _ | 2 1 | _ | _ | | _ | | | | | 0 0 | 3 00 | 0 | | | | | 347 | 45.912492 | -89.161415 | | | 12:00:00 AM | | 0 | 0 | | DEEP | | | | | | | | | | | | + | | + | | | | | | | | | | + | | \dashv | _ | + | | 348 | 45.911772
45.911052 | -89.161426
-89.161437 | | | 12:00:00 AM | | 0 | 0 | | DEEP | İ | | | # | | | 350 | 45.910332 | -89.161447 | | | 12:00:00 AM | | 0 | 0 | | DEEP | H | | | | | | | | | + | | | | | | \vdash | | | | | | - | \blacksquare | + | | _ | + | \perp | | 351
352 | 45.909612
45.908892 | -89.161458
-89.161469 | Cranberry Lake | | 7/31/2012
7/31/2012 | DAC & EEC | 351
352 | 0 | | DEEP | 1 | | | | | | 353 | 45.908172 | -89.16148 | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 353 | 13 Mu | ck Pol | | | | 0 | | | | | | | | | | | 4 | | | | | | | | | | + | | \dashv | _ | \perp | | 354 | 45.907452
45.906732 | -89.161491
-89.161502 | Cranberry Lake | | 7/31/2012
7/31/2012 | DAC & EEC | - | 13 Mu | | | | | 0 | | | | | | | | | + | | 1 | | | | | | | | | | t | | | + | + | | 356 | 45.906012 | -89.161512 | Cranberry Lake | | | DAC & EEC | 356 | 0 | | DEEP | Į | | | 1 | | | 357
358 | 45.905292
45.904572 | -89.161523
-89.161534 | Cranberry Lake | | | DAC & EEC | | 0
13 Mu | ck Pol | DEEP | | | 0 | | | | | | | | | | | + | | | | | | | | | | + | | \dashv | + | - | | 359 | 45.903852 | -89.161545 | Cranberry Lake | | 7/31/2012 | DAC & EEC | | 12 Mu | ck Pol | | | | 0 | | | | | | | | | | | 1 | | | | | | | | | | I | | I | I | | | 360
361 | 45.903132
45.902412 | -89.161556
-89.161567 | Cranberry Lake | | 7/31/2012
7/31/2012 | EJH & CRS | | 5 Sa
5 Mu | | | | | 3 | + | | - | ١. | - | | | 2 | 2 1 | | | | H | | 1 | | 1 | 1 | _ | | + | | + | 1 | - | | 362 | 45.902412 | -89.161567 | Cranberry Lake | | 7/31/2012 | EJH & CRS | 362 | 3 Sa | nd Pol | | | | 1 | | 1 | | | | | 2 | | | | | | , | | | | | ľ | | | İ | | I | | 1 | | 363 | 45.900972 | -89.161588 | Cranberry Lake | | 7/31/2012 | EJH & CRS | 363 | 3 Mu | | | Н | | 2 | + | 1 | + | + | | \vdash | | - | + | Н | + | - | H | - | - | | + | + | | H | + | - | \dashv | 2 | + | | 364
365 | 45.900252
45.899532 | -89.161599
-89.16161 | Cranberry Lake | Vilas | 7/31/2012
7/31/2012 | EJH & CRS | 364
365 | 4 Mu
4 Sa | ck Pol | 9 | H | | 3 | 1 | _1 | _ | 1 | İ | H | H | \pm | t | Ħ | _ | \pm | 2 | | t | 1 | | t | T | H | 1 | | ┪ | 1 | ± 1 | | 366 | 45.898812 | -89.161621 | Cranberry Lake | | 7/31/2012 | EJH & CRS | 366 | 5 Mu | | | H | | 2 | Ţ | 1 | 1 | - | | H | H | | - | H | 1 | I | H | I | | | 1 | 1 | | | Ŧ | | 4 | \downarrow | Д | | 367 | 45.898092
45.897373 | -89.161632
-89.161643 | Cranberry Lake | Vilas | 7/31/2012
7/31/2012 | EJH & CRS | 367
368 | 5 Mu | ck Pol | | H | | 2 | | 1 | | | | | | | | | 1 | | H | | | ١, | , | | + | | t | | \exists | 1 | + | | 369 | 45.896653 | -89.161653 | Cranberry Lake | Vilas | 7/31/2012 | EJH & CRS | 369 | 6 Sa | nd Pol | | | | 1 | | | | | | | | 1 | 1 | | | | | | | | 1 | | | | Į | | | 1 | \blacksquare | | 370 | 45.895933
45.895213 | -89.161664 | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 370
371 | 7 Sa | nd Pol | 9 | H | | 2 | | | | | | | | 2 | 2 | | + | | | | | | 1 | 1 | + | H | + | | \pm | + | \forall | | 371 | 45.895213
45.894493 | -89.161675
-89.161686 | Cranberry Lake | | 7/31/2012 | BTB & TWH | | 12 Mu
13 Mu | ck Pol | 9 | | | 0 | İ | | I | | | | 373 | 45.893773 | -89.161697 | Cranberry Lake | | 7/31/2012 | BTB & TWH | 373 | 13 | | DEEP | H | | | | | | | | | + | | | | | | \vdash | | | | | | - | \blacksquare | + | | _ | + | \perp | | 374 | 45.893053
45.892333 | -89.161708
-89.161718 | Cranberry Lake | Vilas | 7/31/2012
12:00:00 AM | BTB & TWH | 374
0 | 0 | | DEEP | H | | | | | | | | | \dagger | | | | 1 | | H | | | | | | T | | t | | \exists | + | + | | 376 | 45.891613 | -89.161729 | | | 12:00:00 AM | | 0 | 0 | | DEEP | Į | | | 1 | | | 377 | 45.890893
45.890173 | -89.16174
-89.161751 | Cranberry Lake | | | BTB & TWH | | 20 | | DEEP | Н | + | | \pm | - | + | | 379 | 45.889453 | -89.161762 | Ordinorry Lanc | VIII | 12:00:00 AM | DID WITH | 0 | 0 | | DEEP | | | | | | | | | | | | | | 1 | | | | | | | | | | I | | I | I | | | 380 | 45.888733 | -89.161773 | Cranberry Lake | | | BTB & TWH | | 13 | | DEEP | H | | | | | | | | | | | + | | + | | | | | | | | + | H | + | | \pm | + | \forall | | 381 | 45.888013
45.916804 | -89.161783
-89.160318 | Cranberry Lake | | | DAC & EEC | | 8 Ro
6 Mu | | | | | 1 | İ | | I | 1 | | | 383 | 45.916084 | -89.160329 | Cranberry Lake | | | DAC & EEC | | 12 Mu | ck Pol | | | | 0 | | | - | | - | | | | | | - | | | | | | | | - | | + | | + | + | - | | 384 | 45.915364
45.914644 | -89.16034
-89.160351 | Cranberry Lake | | 7/31/2012
7/31/2012 | DAC & EEC | 384 | 0 | | DEEP
0 | İ | | 1 | | | | 386 | 45.913924 | -89.160362 | | | 12:00:00 AM | | | 0 | | DEEP | | | | | | | | | | | | | | | | Н | | | | | | - | | \perp | | | _ | _ | | 387 | 45.913204
45.912484 | -89.160373
-89.160383 | | | 12:00:00 AM | | 0 | 0 | | DEEP | H | | | | | | | | | | | | | 1 | | H | | | H | | | + | | t | | \exists | + | + | | 389 | 45.911764 | -89.160394 | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 389 | 0 | | DEEP | Į | | | 1 | | | 390
391 | 45.911044
45.910324 | -89.160405
-89.160416 | Cranberry Lake | | | DAC & EEC | 390 | | | DEEP | H | | | + | | | | | | + | | | | | | \vdash | | | | | | | H | + | | _ | + | + | | | 45.909604 | -89.160427 | Cranberry Lake | | | DAC & EEC | | | nd Pol | | | | 3 | | | | | | | | 1 | 1 3 | | | | | | | | 1 | | | Ш | I | | I | # | | | 393 | 45.908884 | -89.160438 | Cranberry Lake | | | DAC & EEC | | | | | H | | 3 | + | | + | + | - | \vdash | H | 1 | 1 3 | Н | + | - | H | + | - | | 2 | + | | H | + | - | \dashv | + | H | | 394
395 | 45.908164
45.907444 | -89.160449
-89.160459 | Cranberry Lake | | | DAC & EEC
DAC & EEC | | 12 Mu
13 Mu | | | | | 0 | 1 | | | t | | | | | | | | | | | | | | | | Ш | 1 | | | \pm | | | 396 | 45.906724 | -89.16047 | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | | 13 Mu | | | H | | 0 | - | - | 4 | - | 1 | \mathbb{H} | H | | + | H | 4 | + | H | - - | 1 | \sqcup | \mathbb{H} | - | | \sqcup | + | 1 | \dashv | + | \forall | | 397 | 45.906005
45.905285 | -89.160481
-89.160492 | Cranberry Lake | | | DAC & EEC | | 12 Mu
12 Mu | | | H | | 0 | + | + | + | + | + | + | + | + | + | Н | + | - | H | + | | H | + | + | + | H | + | | \dashv | + | \forall | | 399 | 45.904565 | -89.160503 | Cranberry Lake | | 7/31/2012 | DAC & EEC | 399 | 11 Mu | ck Pol | | | | 0 | | | 1 | | | П | | | ļ | | 1 | ļ | | | | | П | | | П | Į | | 1 | # | П | | 400 | 45.903845
45.903125 | -89.160514
-89.160525 | Cranberry Lake | | | DAC & EEC
EJH & CRS | | 11 Mu
11 Sa | | | H | | 0 | + | | \dashv | + | + | \vdash | | + | + | H | + | + | H | + | + | \vdash | + | + | | ${\mathbb H}$ | + | + | \dashv | + | H | | 401 | 45.903125
45.902405 | -89.160525
-89.160535 | Cranberry Lake | | | EJH & CRS | | 11 Sa
9 Sa | | | | | 1 | | 1 | 1 | | L | Ħ | | | 1 | | | | П | | 1 | | | | | П | # | | ightrightarrowth | # | Ħ | | 403 | 45.901685 | -89.160546 | Cranberry Lake | Vilas | 7/31/2012 | EJH & CRS | 403 | 4 Sa | nd Pol | | | | 2 | + | + | \dashv | + | - | \vdash | H | 1 | 1 | H | + | 1 | | + | 1 | | 1 | + | | \sqcup | + | + | \dashv | + | \mathbb{H} | | 404 | 45.900965
45.900245 | -89.160557
-89.160568 | Cranberry Lake | | | EJH & CRS | | 5 Mu
5 Sa | | | Ħ | | 1 | | t | _ | | t | H | | | t | H | _ | İ | Ħ | j | t | ┇ | | | 1 | H | t | t | ┪ | # | ± 1 | | 406 | 45.899525 | -89.160579 | Cranberry Lake | Vilas | 7/31/2012 | EJH & CRS | 406 | 8 Mu | ck Pol | 9 | H | | 3 | Ţ | 1 | 1 | Ţ | | H | | I | | | 1 | | Н | I | | 3 | П | 1 | 1 | П | Ŧ | | 4 | 4 | \blacksquare | | 407 | 45.898805
45.898085 | -89.16059
-89.160601 | Cranberry Lake | | | | | 8 Mu | | | H | | 1 0 | + | 1 | + | + | | + | | 1 | 1 | H | \dashv | + | H | + | + | \forall | + | + | | \dashv | + | + | \dashv | + | \forall | | | 45.897365 | -89.160611 | Cranberry Lake | Vilas | 7/31/2012 | EJH & CRS | 409 | 10 Sa | nd Pol | 3 | | | 1 | 1 | | 1 | 1 | | | | 1 | 1 | | 1 | 1 | | | | | | 1 | | П | 1 | | 1 | # | 耳 | | | 45.896645 | | Cranberry Lake | | | | | | | | H | | 0 | + | - | \dashv | + | + | \vdash | H | - | + | | + | + | H | - | | | + | + | - | \dashv | + | | \dashv | + | + | | | 45.895925
45.895205 | -89.160633
-89.160644 | Cranberry Lake | | | | | | | | | | 0 | | | | | | | | | | | | | | | | | | 1 | | П | I | | \pm | 士 | \parallel | | 413 | 45.894485 | -89.160655 | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 413 | 12 Mu | ck Pol | | H | | 0 | - | - | 4 | + | - | \vdash | | - | + | H | 4 | - | H | - | 1 | \sqcup | \mathbb{H} | \downarrow | - | \sqcup | + | 1 | \dashv | + | \dashv | | 414 | 45.893765 | -89.160666 | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 414 | 13 Mu | ck Pol | 9 | Ш | | 0 | | | | | | Ш | Ш | | | Ш | | | Ш | | | | | | | | _ | | | ㅗ | Ш | | Point Number | -atitude (Decimal Degrees) | ongitude (Decimal Degrees) | | ake Name | County | Date | Field Crew | Point Number | Depth (ft)
Sediment | Pole; Rope | omments | Notes | Nuisance | otal Rake Fullness | my nopnyllum spicatum
Brasenia schreberi | Ceratophyllum demersum | Ceratophyllum echinatum | Elodea canadensis | Heteranthera dubia | emna trisulca | Bidens beckii | Myriophyllum verticillatum | Vajas flexilis | Nitella sp.
 Nuphar variegata | Pontederia cordata | otamogeton amplifolius | otamogeton epihydrus | otamogeton illinoensis | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton spirillus | Potamogeton strictifolius | otamogeton vaseyi | Sagitaria sp. (rosette) | Sparganium androcladum | Sparganium fluctuans | Utricularia vulgaris | Vallisneria americana
Freshwater sponge | Filamentous algae | |--------------|----------------------------|----------------------------|---|-------------------------------|----------------|--------------------------|------------------------|--------------|------------------------|--------------|-----------------------|-------|----------|--------------------|---|------------------------|-------------------------|-------------------|--------------------|---------------|---------------|----------------------------|----------------|-------------|------------------|--------------------|------------------------|----------------------|------------------------|----------------------|--------------------------|-----------------------|---------------------------|-------------------|-------------------------|------------------------|----------------------|----------------------|--|-------------------| | 415 | 45.893045 | -89.160676 | □ | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 415 | <u>ත</u>
13 | ď | DEEP | Ž | Ž | ř: | E @ | ō | Ö | i 0 | Í | 2 | œ 1 | 2 | Ž | Z : | Ž Ž | | ď | ă ă | ı a | ă, | مَ مَ | | ď | 4 | | Ø 6 | 5 5 | 5 × | ž (ī | - | | 416 | 45.892325 | -89.160687 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 416 | 13 | | DEEP | - | H | | | | | 4 | _ | \blacksquare | | 417 | 45.891605
45.890885 | -89.160698
-89.160709 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 417 | 9 Rock | Pole | DEEP | | | 0 | | | | | | | | | H | | | | | | | | | + | | | | | | + | + | + | | 419 | 45.890165 | -89.16072 | | Cranberry Lake | Vilas | 7/31/2012 | | 419 | 6 Rock | Pole | | | | 0 | 1 | 1 | | | 420
421 | 45.889445
45.888725 | -89.160731 | | Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | BTB & TWH | 420
421 | 13 Muck | Pole | DEEP | | | 0 | | | - | + | | | | | H | | | | H | + | | | | | | | | + | | + | + | + | | 422 | 45.888725 | -89.160742
-89.159276 | | Cranberry Lake Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 422 | 6 Sano | Pole | | | | 1 | | | | | | | | | 1 | | | | | | | | | | | | | | | | 1 | | | 423 | 45.916796 | -89.159287 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | | 12 Muck | Pole | | | | 0 | | | | - | | | | | | - | | - | | + | | | | - | | | | + | | _ | + | + | | 424 | 45.916076
45.915356 | -89.159298
-89.159309 | | Cranberry Lake | Vilas | 7/31/2012
12:00:00 AM | DAC & EEC | 0 | 0 | | DEEP | 1 | | | 426 | 45.914636 | -89.159319 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 426 | 0 | | DEEP | - | | | | | | 4 | _ | \blacksquare | | 427 | 45.913916
45.913197 | -89.15933
-89.159341 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 427 | 0 | | DEEP | | | | | | | | | | | | H | | | | | | | | | + | | | + | | | + | + | + | | 429 | 45.912477 | -89.159352 | | Cranberry Lake | Vilas | 7/31/2012 | | 429 | 0 | | DEEP | 1 | 1 | | | 430 | 45.911757
45.911037 | -89.159363
-89.159374 | | Cranberry Lake | Vilas | 7/31/2012
7/31/2012 | DAC & EEC | 430
431 | 10 Sand | Pole | | | | 0 | _ | - | + | | 432 | 45.911037 | -89.159374
-89.159428 | | Cranberry Lake Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 432 | 2 Sano | Pole | | | | 2 | | | | | | | | | 1 | 1 | 1 | | 1 | 1 | | | | 1 | 2 | 1 | | | | | 1 | | | 433 | 45.906717 | -89.159439 | H | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 433 | 5 Sand | | | H | | 2 | + | H | + | + | | | \dashv | + | 1 | 1 | + | + | H | + | + | \sqcup | + | 1 | H | 1 | \mathbb{H} | + | | + | 2 | H | | 434 | 45.905997
45.905277 | -89.15945
-89.159461 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EEC | 434 | 6 Sand | Pole Pole | | | | 0 | | | | | İ | L | | 1 | 1 | 2 | _ | ľ | | _ | İ | H | _ | 1 | | | \perp | _ | \perp | _ | \pm | Ħ | | 436 | 45.904557 | -89.159472 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 436 | 11 Muck | Pole | | | | 0 | | | _ | _ | 4 | | \blacksquare | | 437
438 | 45.903837
45.903117 | -89.159482
-89.159493 | | Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EEC
EJH & CRS | 437
438 | 11 Muck | Pole | | | | 0 | | | | | | | | | 1 | 1 | | | | | | 2 | | 1 | | 2 | | | | + | + | + | | 439 | 45.902397 | -89.159504 | | Cranberry Lake | Vilas | 7/31/2012 | EJH & CRS | 439 | 5 Sand | Pole | | | | 3 | | | | 1 | | | | | 3 | 1 | | | | | | 1 | | 1 | | 1 | | | | | 1 | | | 440 | 45.901677 | -89.159515 | | Cranberry Lake | Vilas | 7/31/2012 | EJH & CRS | 440 | 5 Sano | Pole | | | | 1 | | | | _ | - | | | | H | | _ | | | _ | | | 1 | + | H | | + | _ | | + | + | + | | 441 | 45.900957
45.900237 | -89.159526
-89.159537 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | EJH & CRS | 441 | 5 Sand | Pole Pole | | | | 0 | + | + | + | | 443 | 45.899517 | -89.159548 | | Cranberry Lake | Vilas | 7/31/2012 | EJH & CRS | 443 | 6 Sano | Pole | | | | 2 | | | | | | | | | 2 | 1 | | | | | | | | | | 1 | | | | 1 | I | П | | 444 | 45.898797 | -89.159559 | | Cranberry Lake | Vilas | 7/31/2012 | EJH & CRS | 444 | 9 Muck | Pole | | | | 1 | | | | | | | | | Н | | | | \vdash | | | | | | | 1 | | | | + | + | + | | 445
446 | 45.898077
45.897357 | -89.159569
-89.15958 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012 | EJH & CRS | 445
446 | 10 Muck
10 Muck | Pole | | | | 0 | 447 | 45.896637 | -89.159591 | | Cranberry Lake | Vilas | 7/31/2012 | EJH & CRS | 447 | 11 Muck | Pole | | | | 0 | 4 | _ | \perp | | 448 | 45.895917
45.895197 | -89.159602
-89.159613 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012 | BTB & TWH | 448 | 7 Sand | Pole | | | | 2 | _ | | | | | | | | 2 | 1 | | | H | ١. | 1 | | | 1 | H | | | | | + | + | \forall | | 450 | 45.894478 | -89.159624 | | Cranberry Lake | Vilas | 7/31/2012 | | | 5 Sand | | | | | 2 | | 1 | | | | | | | 1 | | | | | | | 1 | | Ė | | | | | | | 2 | | | 451 | 45.893758 | -89.159635 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 451 | 3 Sano | Pole | | | | 2 | | | | | | | | | 2 | | _ | - | | - | 1 | 1 | _ | + | | | + | _ | | + | 1 | + | | 452
453 | 45.892318
45.891598 | -89.159656
-89.159667 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012 | BTB & TWH | 452
453 | 4 Rock | Pole Pole | | | | 1 | | | | | | | | | 2 | 1 | | | | | | 1 | | 2 | | | | | | | | | | 454 | 45.890158 | -89.159689 | | Cranberry Lake | Vilas | 7/31/2012 | | 454 | 6 Sand | | | | | 1 | | | | | | | | | 1 | 1 | | | | | | | | | | | | | | _ | 1 | 1 | | 455
456 | 45.889438
45.888718 | -89.1597
-89.159711 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | BTB & TWH | | 8 Sand | Pole Pole | | | | 0 | | | | | | | | | H | 1 | | | H | | | | | t | H | | | | | + | + | \forall | | 457 | 45.917509 | -89.158244 | | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | | 13 Sano | Pole | | | | 0 | 1 | | | 45.916789 | -89.158255 | | Cranberry Lake | Vilas | | DAC & EEC | | | Pole | | | | 0 | | | | | | | | | Н | | | | \vdash | | | | | | | | | | | + | + | + | | 459
460 | 45.916069
45.915349 | -89.158266
-89.158277 | | Cranberry Lake | Vilas | 7/31/2012
12:00:00 AM | DAC & EEC | | 0 | | DEEP | | | | | | 1 | t | | | | | П | | | | | | | | | T | | | | | | - | + | \top | | 461 | 45.914629 | -89.158288 | | Cranberry Lake | | 7/31/2012 | DAC & EEC | | 0 | | DEEP | | | 7 | I | | 1 | I | | | | F | | 7 | Ţ | | | 1 | | H | Ţ | | | ļ | | 1 | | 1 | Ŧ | Ħ | | 462
463 | 45.913909
45.913189 | -89.158299
-89.15831 | H | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EEC | | 13 Muck | | | H | | 3 | + | H | + | + | | | | | H | 1 | + | + | H | + | + | H | + | 4 | H | - | H | + | | + | 3 | Н | | 464 | 45.905269 | -89.158429 | | Cranberry Lake | Vilas | 7/31/2012 | | 464 | 5 Sand | | | | | 1 | | | | ļ | | | | | 1 | 1 | 1 | | | 1 | | | 1 | Ľ | П | 1 | | 1 | | Ϊ, | Ī | 耳 | | 465 | 45.904549 | -89.15844 | H | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | | 10 Muck | | | Н | | 0 | + | H | + | + | - | | + | + | H | + | + | + | H | + | + | H | + | + | H | + | \mathbb{H} | + | + | + | + | H | | 466
467 | 45.903829
45.903109 | -89.158451
-89.158462 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EEC
EJH & CRS | | 7 Sand | Pole
Pole | | | | 1 | t | | | t | L | L | | İ | 1 | | 1 | t | | 1 | t | 1 | 1 | | | 1 | | 1 | b | | 1 | Ħ | | 468 | 45.90239 | -89.158473 | Н | Cranberry Lake | Vilas | 7/31/2012 | EJH & CRS | 468 | 4 Sano | Pole | | | | 1 | F | | Ţ | F | | | Į. | | 1 | Ţ | - | | | Ţ | | HŢ | - | F | H | I | | Ţ | \perp | 4 | \blacksquare | 4] | | 469
470 | 45.90167
45.90095 | -89.158484
-89.158495 | H | Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | EJH & CRS | | 4 Rock | | | Н | | 0 | + | H | + | + | H | | \forall | + | H | + | + | + | H | 1 | + | H | + | - | H | + | \forall | + | + | + | + | H | | 471 | 45.90095 | -89.158506 | | Cranberry Lake | | 7/31/2012 | EJH & CRS | | 5 Sano | | | | | 1 | | | | 1 | L | | | ļ | | 1 | 1 | | 1 | 1 | ļ | | 1 | | | 1 | | 1 | | # | I | П | |
472 | 45.89951 | -89.158516 | H | Cranberry Lake | Vilas | 7/31/2012 | EJH & CRS | | 5 Rock | | | H | | 0 | + | H | + | + | | | \dashv | + | H | + | + | + | H | + | + | H | + | - | H | + | + | + | 1 | + | + | H | | 473
474 | 45.89879
45.89807 | -89.158527
-89.158538 | | Cranberry Lake Cranberry Lake | | 7/31/2012 | EJH & CRS | | 6 Sand | | | | | 0 | İ | 1 | _ | t | İ | L | | t | 2 | 2 | 1 | Ī | H | \pm | İ | Ħ | 1 | 1 | | 1 | | \pm | t | _ | \pm | Ħ | | 475 | 45.89735 | -89.158549 | Ц | Cranberry Lake | | 7/31/2012 | EJH & CRS | 475 | 11 Muck | Pole | | П | | 0 | F | П | Ţ | Ŧ | | L | H | I | П | Ţ | Ţ | F | Ц | Ţ | F | Ц | Ţ | F | H | Ţ | \blacksquare | Ţ | | Ţ | Ŧ | 4] | | 476
477 | 45.89663
45.89591 | -89.15856
-89.158571 | H | Cranberry Lake Cranberry Lake | Vilas
Vilas | 7/31/2012
7/31/2012 | EJH & CRS | | 11 Muck | | | Н | | 0 | + | H | + | + | H | | \forall | + | 1 | + | + | + | H | + | + | 2 | + | - | H | 1 . | \forall | + | + | + | + | H | | 478 | 45.89591 | -89.158571
-89.158582 | | Cranberry Lake | | | BTB & TWH | | | Pole | | | | 3 | | 1 | | | | | | | 2 | | 1 | | | | | | 1 | 2 | | ľ | | | | 1 | 1 | П | | | 45.919661 | -89.15718 | H | Cranberry Lake | | | DAC & EEC | | 0 | | NONNAVIGABLE (PLANTS) | | | \dashv | - | H | + | + | | | \sqcup | + | Н | \dashv | + | - | | + | + | H | + | | \sqcup | + | + | + | + | + | + | H | | 480 | 45.918941
45.918221 | -89.157191
-89.157202 | H | Cranberry Lake Cranberry Lake | | 7/31/2012
7/31/2012 | DAC & EEC | | 3 Muck
5 Sand | Pole Pole | | | YES | 1 | | 3 | | 1 | İ | L | | l | H | _ | 1 | t | H | ╅ | t | H | † | t | H | 1 | \parallel | ╅ | 1 | _ | 1 | Ħ | | 482 | 45.917501 | -89.157213 | П | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 482 | 11 Sand | Pole | | П | | 0 | F | П | Ţ | Ŧ | | L | H | I | П | Ţ | Ţ | F | Ц | Ţ | F | Ц | Ţ | F | H | Ţ | \blacksquare | Ţ | | Ţ | Ŧ | 4] | | 483 | 45.916781 | -89.157224 | Ш | Cranberry Lake | Vilas | 7/31/2012 | DAC & EEC | 483 | 12 Muck | Pole | | Ш | | 0 | | Ш | | | | | | | | | | 1_ | Ш | | | Ш | | | | | Ш | | | | _ | Ш | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | ID
Lake Name | | County | Date | Field Crew | Doint Mumber | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum
Brasenia schreberi | Ceratophyllum demersum | Ceratophyllum echinatum | Eleocharis acicularis | Elodea canadensis
Heteranthera dubia | Lemna trisulca | Bidens beckii | Myriophyllum sibiricum
Myriophyllum verticillatum | Najas flexilis | Nitella sp. | Nymphaea odorata | Pontederia cordata | Potamogeton amplifolius | Potamogeton follosus | Potamogeton illinoensis | Potamogeton pusillus | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius
Potamogeton vasevi | Potamogeton zosteriformis | Sagitaria sp. (rosette)
Sparganium androcladum | Sparganium angustifolium | Sparganium fluctuans | Vallisneria americana | Freshwater sponge | Filamentous algae | |--------------|----------------------------|-----------------------------|-----------------|--------|----------------|------------------------|------------|--------------|------------|----------|--------------|-----------------------|--------|----------|---------------------|---|------------------------|-------------------------|-----------------------|---|----------------|---------------|--|----------------|-------------|------------------|--------------------|-------------------------|----------------------|-------------------------|----------------------|-----------------------|-----------------------|---|---------------------------|---|--------------------------|----------------------|-----------------------|-------------------|-------------------| | 484 | 45.916061 | -89.157235 | Cranberry | | Vilas | 7/31/2012 | DAC & EE | | 34 13 | Muck | Pole | | | | 0 | - | | | | | | | | | - | | | | | | | | H | | + | | | | | - | Н | | 485
486 | 45.915341
45.914621 | -89.157246
-89.157257 | Cranberry | | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EE | | | Muck | Pole | DEEP | | | 0 | \parallel | | | | | | | | | | | | | | | | | | | \parallel | | | | | + | H | | 487 | 45.913901 | -89.157267 | Cranberry | | Vilas | 7/31/2012 | DAC & EE | | 37 4 | Sand | Pole | | | | 3 | | | | | | | | | 3 | | | | 1 | | | | | 1 | 1 | | | | | 1 | Į | П | | 488
489 | 45.905262
45.904542 | -89.157398
-89.157409 | Cranberry | | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EE | | 38 3 | Sand | Pole | | | | 3 | + | | | | | | | | 1 | | | | | | | | | 1 | 1 | H | | | | 3 | + | H | | 490 | 45.903822 | -89.15742 | Cranberry | | Vilas | 7/31/2012 | DAC & EE | \top | | Sand | Pole | | | | 2 | | | | | | | | | 2 | | | | | | | | | | 1 | | | | | | | | | 491 | 45.903102 | -89.157431 | Cranberry | | Vilas | 7/31/2012 | EJH & CR | | | Sand | Pole | | | | 2 | - | | | | | | | | 2 | 1 | | | | | | 1 | | H | 1 | + | | | | | - | Н | | 492 | 45.902382
45.901662 | -89.157442
-89.157453 | Cranberry | | Vilas | 7/31/2012
7/31/2012 | EJH & CR | | | Sand | Pole | | H | | 2 | \parallel | | H | | | | | | 2 | | | | 2 | | H | | | H | 1 | \parallel | | | | | + | H | | 494 | 45.900942 | -89.157464 | Cranberry | | Vilas | 7/31/2012 | EJH & CR | S 49 | 94 4 | Sand | | | | | 0 | ┰ | П | | 495
496 | 45.900222
45.899502 | -89.157474
-89.157485 | Cranberry | | Vilas
Vilas | 7/31/2012
7/31/2012 | EJH & CR | | 95 4 | Sand | Pole
Pole | | | | 0 | | | | | | | | | | | | | | | | | | H | - | + | | | | | + | Н | | 497 | 45.898782 | -89.157496 | Cranberry | | Vilas | 7/31/2012 | EJH & CR | | 96 5 | Muck | Pole | | | | 3 | | | | | | | | | 1 | 2 | | | | | | | | 2 | 1 | | | | | | | | | 498 | 45.898062 | -89.157507 | Cranberry | | Vilas | 7/31/2012 | EJH & CR | | 98 10 | Muck | Pole | | \Box | | 0 | 4 | Н | | 499
500 | 45.897342
45.896622 | -89.157518
-89.157529 | Cranberry | | Vilas
Vilas | 7/31/2012
7/31/2012 | EJH & CR | | 99 10 | Muck | Pole | | | | 0 | \parallel | + | H | | 501 | 45.895902 | -89.15754 | Cranberry | | Vilas | 7/31/2012 | EJH & CR | | 01 1 | Sand | Pole | | | | 1 | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | 502 | 45.921093 | -89.156127 | Cranberry | | Vilas | 7/31/2012 | DAC & EE | | | Muck | Pole | | | YES | 3 | + | 3 | | | | 1 | | | | 1 | | 1 | | | | | | H | | H | | | | | + | Н | | 503 | 45.920373
45.918933 | -89.156138
-89.15616 | Cranberry | | Vilas | 7/31/2012
7/31/2012 | DAC & EE | | 03 0 | Sand | Pole | NONNAVIGABLE (PLANTS) | | | 2 | | | | | | | | | 1 | | | | | | | | | Ħ | 1 | Ħ | | | | 1 | Ħ | П | | 505 | 45.918213 | -89.156171 | Cranberry | Lake \ | Vilas | 7/31/2012 | DAC & EE | C 50 | 5 5 | Sand | Pole | | | | 2 | | | | | | | | | | | | | | | | | | 1 | 1 | | | | | 2 | | | | 506 | 45.917493
45.916774 | -89.156181
-89.156192 | Cranberry | | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EE | | 06 10 | Sand | Pole
Pole | | | | 0 | + | - | | | + | | H | + | H | | | | | | | | | | | | | - | H | | + | H | | 508 | 45.916054 | -89.156203 | Cranberry | | Vilas | 7/31/2012 | DAC & EE | | | Sand | Pole | | | | 0 | 509 | 45.915334 | -89.156214 | Cranberry | Lake \ | Vilas | 7/31/2012 | DAC & EE | | 9 7 | Sand | Pole | | | | 0 | \parallel | | | 4 | | | | | | | | | | - | H | | | | | | | - | | | \perp | 1 | | 510 | 45.914614
45.905254 | -89.156225
-89.156367 | Cranberry | | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EE | | 10 5 | Muck | Pole | | | | 3 | | 1 | | | | t | H | | H | | | | | | | | | H | | 1 | | | | 3 | + | H | | 512 | 45.904534 | -89.156378 | Cranberry | | Vilas | 7/31/2012 | DAC & EE | | | Muck | Pole | | | | 0 | ┚ | 1 | | 513 | 45.903814 | -89.156389 | Cranberry | | Vilas | 7/31/2012 | DAC & EE | | - | Muck | Pole | | | | 0 | \perp | | | 4 | | | | | | | | | | | H | | | | | | | | - | | - | Н | | 514
515 | 45.903094
45.902374 | -89.1564
-89.156411 | Cranberry | | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EE | | | Sand | Pole | | | | 2 | | | | | | | | | | 1 | | | | | | 1 | | | 1 | | | | | | | | | 516 | 45.901654 | -89.156421 | Cranberry | Lake \ | Vilas | 7/31/2012 | EJH & CR | | 16 3 | Muck | Pole | | | | 3 | # | | | 4 | 1 | | | 1 | | | | | | 3 | | 1 | | Н | 1 | \blacksquare | | | | | | Н | | 517 | 45.900934
45.900214 | -89.156432
-89.156443 | Cranberry | | Vilas
Vilas | 7/31/2012
7/31/2012 | EJH & CR | | 17 4 | Sand | Pole | | | | 2 | | | | | | t | H | 1 | 1 | | | | | | | | 1 | H | | H | | | | 1 | + | H | | 519 | 45.899494 | -89.156454 | Cranberry | | Vilas | 7/31/2012 | EJH & CR | Т | 19 2 | Sand | Pole | | | | 1 | | | | 1 | | | | | | | | | | | | | Ĺ | | | | | | | | | | | 520 | 45.898775 | -89.156465 | Cranberry | | Vilas | 7/31/2012 | EJH & CR | | 20 5 | Sand | Pole | | | | 3 | + | | | 1 | | - | | | 1 | + | | | | | | | - | H | | H | | - | | 2 | + | H | | 521
522 | 45.898055
45.897335 | -89.156476
-89.156487 | Cranberry | | Vilas
Vilas | 7/31/2012
7/31/2012 | EJH & CR | | 21 7 | Muck | Pole | | | | 1 | | | | | 1 | 523 | 45.896615 | -89.156498 | Cranberry | Lake \ | Vilas | 7/31/2012 | EJH & CR | | 23 1 | Sand | Pole | | | | 1 | \parallel | | | | | | | | 1 | | | | | | | | 1 | | | | | | | 1 | | Ц | | 524
525 | 45.921806
45.918926 | -89.155084
-89.155128 | Cranberry | | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EE | | 24 2 | Muck | Pole | | | | 3 | + | 2 | | | 1 | 1 | | | Н | 1 |
| | | | | | | H | 1 | 1 | | | - | 1 2 | + | H | | 526 | 45.918206 | -89.155139 | Cranberry | | Vilas | 7/31/2012 | DAC & EE | | 26 8 | Sand | Pole | | | | 0 | Ĭ | | | | 527 | 45.917486 | -89.15515 | Cranberry | | | | | | | Muck | | | | | 0 | | | | | | | | | | | | | | | | | | H | | + | | - | | | + | Н | | 528
529 | 45.916766
45.905247 | -89.155161
-89.155336 | Cranberry | | Vilas | 7/31/2012
7/31/2012 | DAC & EE | | | Muck | Pole | | | | 2 | | | 1 | | 2 | | | 1 | H | | | | | | | | | Ħ | | Ħ | | | | 1 | Ħ | П | | 530 | 45.904527 | -89.155347 | Cranberry | Lake \ | Vilas | 7/31/2012 | DAC & EE | C 5 | 30 3 | Rock | Pole | | | | 1 | 1 | | | 4 | Ŧ | | H | 1 | | 1 | | | 1 | F | | 1 | | H | Ţ | | | | | F | \blacksquare | IJ. | | 531
532 | 45.903807
45.903087 | -89.155357
-89.155368 | Cranberry | | Vilas
Vilas | 7/31/2012
7/31/2012 | DAC & EE | | | Sand | | | | | 2 | + | | Н | | + | | H | 1 | 2 | + | | Н | + | - | H | + | + | 1 | 1 | H | + | | | 1 | + | Н | | 533 | 45.902367 | -89.155379 | Cranberry | | Vilas | 7/31/2012 | EJH & CR | | | Muck | | | | | 0 | 1 | | | 1 | 1 | | | | | 1 | İ | | 1 | ļ | | 1 | | | ľ | | | | | ļ | I | Д | | 534 | 45.901647 | -89.15539 | Cranberry | | Vilas | 7/31/2012 | EJH & CR | | | Sand | Pole | | H | | 1 | + | 1 | | + | + | + | | 1 | 1 | + | - | 1 | + | + | H | + | 1 | H | + | H | + | | \mathbb{H} | + | \vdash | H | | 535
536 | 45.900927
45.898767 | -89.155401
-89.155434 | Cranberry | | | 7/31/2012
7/31/2012 | EJH & CR | | | Muck | Pole | TERRESTRIAL | H | | 2 | _ | t | | _ | t | | 1 | 1 | 1 | ╽ | | H | \dagger | t | H | _ | 1 | H | | H | | l | Ħ | t | H | Н | | 537 | 45.898047 | -89.155445 | Cranberry | Lake \ | Vilas | 7/31/2012 | EJH & CR | S 5 | 37 2 | Muck | Pole | | | | 3 | 1 | | | 1 | 1 | | П | Ī | П | 1 | I | | 1 | Ŧ | П | 1 | 1 | П | 1 | П | 1 | | | 3 | Д | Д | | 538
539 | | -89.154096
-89.154107 | Cranberry | | Vilas | 7/31/2012
7/31/2012 | DAC & EE | | | Sand | | | H | | 2 | + | H | | | + | + | H | + | 1 | + | | H | 1 | | \parallel | 1 | 4 | 1 | + | \forall | + | - | \mathbb{H} | 1 | + | Н | | 540 | 45.918198
45.917478 | -89.154107
-89.154118 | Cranberry | | Vilas
Vilas | 7/31/2012 | DAC & EE | | | Sand | Pole | | | | 2 | 1 | | 1 | | t | | | | 1 | t | T | | 1 | T | | | 1 | 1 | | | | | | 2 | T | Ճ | | 541 | 45.903079 | -89.154337 | | - | | 12:00:00 AM | | | 0 | | | DEEP | | | - | + | - | | | + | + | \sqcup | \perp | H | - | | | + | - | | + | - | H | + | + | - | - | \vdash | - | \perp | H | | 542
543 | 45.902359
45.901639 | -89.154348
-89.154359 | Cranberry | | Vilas
Vilas | 7/31/2012
7/31/2012 | EJH & CR | | 12 4 | Muck | Pole | | H | | 2 | V | 1 | Н | 1 | 1 | | \forall | + | 2 | | + | H | 1 | \dagger | H | 1 | + | H | 1 | H | \perp | + | | t | Ħ | H | | 544 | 45.903791 | -89.153295 | Cranberry | | Vilas | 7/31/2012 | BTB & TW | \top | 14 5 | Muck | Pole | | | | 2 | 1 | | | | 1 | | Ц | | П | 1 | | | 1 | ļ | Ц | 1 | | Ц | 2 | | | | | ļ | ┇ | П | | 545 | 45.903071 | -89.153306 | Cranberry | | Vilas | | BTB & TW | | | Muck | Pole | | H | | 2 | + | ŀ | Н | \dashv | + | + | H | + | 1 | + | + | H | + | + | H | + | + | H | 2 | H | + | + | + | + | + | Н | | 546
547 | 45.902351
45.904504 | -89.153317
-89.152253 | Cranberry | | Vilas
Vilas | | BTB & TW | | | Sand | Pole | | | | 3 | | | | | 2 | | | | 1 | | | | | | | 1 | | 1 | 1 | | | | | | I | П | | 548 | 45.903784 | -89.152264 | Cranberry | Lake \ | Vilas | 7/31/2012 | BTB & TW | H 5 | | Muck | Pole | | | | 2 | + | | | | 1 | 1 | \prod | _ | 1 | - - | | | - | | | - | | 1 | 2 | \mathbb{H} | - | | | 1 | \perp | Н | | 549
550 | 45.903064
45.905936 | -89.152275
-89.151199 | Cranberry | | Vilas
Vilas | 7/31/2012
7/31/2012 | BTB & TW | | | Sand | Pole | NONNAVIGABLE (PLANTS) | H | | 3 | + | | Н | 1 | 1 | | H | + | 1 | + | | H | + | + | H | + | + | H | + | H | + | | | 3 | \forall | Н | | 551 | 45.905936 | -89.151199
-89.15121 | Cranberry | | Vilas | 7/31/2012 | BTB & TW | | | Muck | Pole | | | | 2 | v | | | | 2 | I | П | 1 | | 1 | | | 1 | Ţ | | 1 | 1 | П | 1 | | | | 1 | ļ | ┇ | Д | | 552 | 45.904496 | -89.151221 | Cranberry | Lake \ | Vilas | 7/31/2012 | BTB & TW | H 5 | 52 4 | Muck | Pole | | Ш | | 3 | | | Ш | | 3 | | Ш | | | | | Ш | | Т | Ш | | | Ш | 1 | Ш | | 1_ | Ш | | Ш | Ш | | | | _ | | | | , | _ | _ | | _ | | |--------------|----------------------------|----------------------------|----|----------------|--------|-----------|------------|--------------|------------|----------|------------|-----------------------|-------|----------|---------------------|-----------------------|------------------------|-------------------------|-----------------------|-------------------|--------------------|---------------|------------------------|----------------------------|----------------|-------------|------------------|--------------------|-------------------------|-----------------------|-------------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|-------------------------|--------------------------|----------------------|----------------------|-----------------------|-------------------|-------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myrlophyllum spicatum | Ceratophyllum demersum | Ceratophyllum echinatum | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Bidens beckii | Myriophyllum sibiricum | Myriophyllum verticillatum | Najas flexilis | Nitella sp. | Nymphaea odorata | Pontederia cordata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton illinoensis | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Sagitaria sp. (rosette) | Sparganium angustifolium | Sparganium fluctuans | Utricularia vulgaris | Vallisneria americana | Freshwater sponge | Filamentous algae | | 553 | 3 45.903776 | -89.151232 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 553 | 4 N | Auck | Pole | | | | 0 | ╙ | | | L | | | 55 | 4 45.906648 | -89.150157 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 554 | 0 | | | NONNAVIGABLE (PLANTS) | 555 | 5 45.905928 | -89.150168 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 555 | 3 N | Auck | Pole | | | | 3 | | | | | 2 | | | 1 | | | | | | | 1 | | | | | | | | | | | | | | | | | 556 | 6 45.905208 | -89.150179 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 556 | 7 N | Auck | Pole | | | | 0 | ╧ | | | | | | 557 | 7 45.904488 | -89.15019 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 557 | 5 N | Auck | Pole | | | | 0 | 558 | 8 45.907361 | -89.149115 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 558 | 5 S | and | Pole | | | | 2 | 2 | | 1 | | | | | | | | | | 559 | 9 45.906641 | -89.149126 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 559 | 3 N | Nuck | Pole | | | | 3 | v | 1 | | | 3 | | | | | | | | | 1 | 1 | | | | 1 | | | | | | | | | | | | | 560 | 0 45.905921 | -89.149137 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 560 | 5 N | Muck | Pole | | | | 2 | v | ╧ | L | L | 2 | | | L | | | ╝ | L | | | | ╧ | L | | | | ╝ | ╝ | | ╧ | l | ╧ | L | L | L | | | 56 | 1 45.905201 | -89.149148 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 561 | 4 N | Auck | Pole | | | | 0 | L | L | | L | 1 | | 562 | 2 45.908073 | -89.148073 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 562 | 2 N | Nuck | Pole | | | | 3 | | 1 1 | | | 1 | | | | | | | 1 | | | | | | | 2 | | | | | | | ╚ | L | | L | 1 | | 563 | 3 45.907353 | -89.148084 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 563 | 3 N | Auck | Pole | | | | 2 | | | | | 2 | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | 564 | 4 45.906633 | -89.148095 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 564 | 3 N | Auck | Pole | | | | 3 | 1 | | | | 3 | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | 568 | 5 45.905913 | -89.148106 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 565 | 1 S | and | Pole | | | | 2 | | | | | 1 | | | | | 1 | | | | | | | | | | 1 | | | | | | | | 1 | | | | 566 | 6 45.908065 | -89.147041 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 566 | 2 N | Auck | Pole | | | | 2 | | 1 | | | 1 | | | | | 1 | | | 1 | | | | | | | | | | | | | 1 | 1 | | | | | 567 | 7 45.907345 | -89.147052 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 567 | 2 N | Auck | Pole | | | | 3 | v | 1 | | | 3 | 1 | | | | | | | | | | | | | | | | | 1 | | | | | | | | | 568 | 8 45.906625 | -89.147063 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 568 | 2 N | Auck | Pole | | | | 2 | 1 | | | | 2 | | | | | 1 | | | 1 | | | | | | | 1 | | | | | | | | | | | | 569 | 9 45.908057 | -89.14601 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 569 | 2 N | Auck | Pole | | | | 1 | v | | | | | | 1 | | | | | | 1 | | | | | | | | | | | 1 | | 1 | 1 | | | | | 570 | 45.907337 | -89.146021 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 570 | 4 S | and | Pole | | | | 1 | | 1 | 1 | | 57 | 1 45.906617 | -89.146032 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 571 | 4 N | Nuck | Pole | | | | 2 | v | | | | 2 | | | | | | | | | | | | | | | 1 | | | | | | 1 | | | | | |
572 | 2 45.905898 | -89.146043 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 572 | 4 N | Auck | Pole | | | | 2 | | 1 | | | 1 | | | | | | | | | | | | | | | 1 | | 1 | | | | | | | | | | 573 | 3 45.90661 | -89.145001 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 573 | 2 N | Auck | Pole | | | | 3 | | 2 | | | | | 1 | | | | | | | 1 | | | | | 1 | | | | | 1 | | | | | | | | 574 | 4 45.90589 | -89.145012 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 574 | 3 N | Nuck | Pole | | | | 3 | 1 | 1 | | | 3 | | | | | | | | | | 1 | | | | | | | | | | | ╧ | | | | | | 575 | 5 45.90517 | -89.145023 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 575 | 5 N | Auck | Pole | | | | 2 | v | 1 | | | 2 | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | 576 | 6 45.90445 | -89.145034 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 576 | 5 N | Auck | Pole | | | | 1 | | | | | 1 | 577 | 7 45.906602 | -89.143969 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 577 | 0 | | | NONNAVIGABLE (PLANTS) | ╧ | L | | L | Ш | | 578 | 8 45.905882 | -89.14398 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 578 | 3 N | Nuck | Pole | | | | 2 | | 1 | 1 | | 1 | | | | | | | | | | 1 | | | | 1 | | | 1 | | | | 1 | L | 1 | L | Ш | | 579 | 9 45.905162 | -89.143991 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 579 | 3 N | Muck | Pole | | | | 3 | | | | | 3 | | | | | | | 1 | | | | | | | 1 | | | | | | | ╧ | L | 1 | L | Ш | | 580 | 0 45.906594 | -89.142938 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 580 | 0 | | | TERRESTRIAL | ╧ | L | | L | Ш | | 58 | 1 45.905874 | -89.142949 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 581 | 3 N | Muck | Pole | | | | 2 | | 2 | | | 1 | | | | | | | | | | | | | | | 1 | | 1 | | | | 1 | L | | L | Ш | | 582 | 2 45.905154 | -89.14296 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 582 | 0 | | | NONNAVIGABLE (PLANTS) | ╧ | L | | L | | | 583 | 3 45.904434 | -89.142971 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 583 | 0 | | | NONNAVIGABLE (PLANTS) | ╧ | L | | L | | | 584 | 4 45.906587 | -89.141907 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 584 | 0 | | | NONNAVIGABLE (PLANTS) | \perp | L | L | L | Ш | | 58 | 5 45.905867 | -89.141918 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 585 | 2 N | Muck | Pole | | | | 1 | | | | | 1 | ╧ | L | | L | 1 | | 586 | 6 45.905147 | -89.141929 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 586 | 3 N | Muck | Pole | | | | 2 | | 1 | | | 2 | | | | | | | | | | | | | | 1 | | | | | | | ╧ | L | | L | Ш | | 587 | 7 45.906579 | -89.140875 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 587 | 0 | | | NONNAVIGABLE (PLANTS) | Ţ | L | L | L | Щ | | 58 | 8 45.905139 | -89.140898 | | Cranberry Lake | Vilas | 7/31/2012 | BTB & TWH | 588 | 0 | | | TERRESTRIAL | L | L | | L | rees) | grees) | | | | | | | | | | | | | | un: | | | | | - | | | | - | 8 2 | | | sni | | onii | | ius | | rmis | | naemontani | | | | | |--------------|----------------------------|-----------------------------|----------|-----------|----------------|------------------------|------------|--------------|------------|----------|--------------|---|-------|----------|---------------------|---|------------|-----------------------|-------------------|--------------------|---------------------------------------|----------------|-------------|------------------|------------------|-----------------------|----------------------|---------------------|------------------------|----------------------|-------------------------|-----------------------|---------------------------|--------------------|---------------------------|-------------------------|--------------------------------|---------------------|-----------------------|--------------|-------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole;Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum
Ceratophyllum demersum | Chara spp. | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Isoetes sp.
Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nuphar variegata | Nympnaea odorata | Potamodeton enihydrus | Potamogeton foliosus | Potamogeton friesii | Potamogeton praelongus | Potamogeton pusillus | Potamogeton richardsoni | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Sagitaria sp. (rosette) | Schoenoplectus tabernaemontani | Spirodela polyrhiza | Vallisneria americana | Aquatic moss | Filamentous algae | | 1 | 45.895796 | | | Catfish | | | DAC & EE | | 5 | Muck | Pole | | | | 3 | 2 | | | 3 | | | | | | - | | | | | | | | | 1 | | 4 | 1 | | 2 | Н | _ | | 3 | 45.895076
45.894356 | -89.216547
-89.216557 | 38
45 | Catfish | Vilas
Vilas | 8/1/2012
8/1/2012 | DAC & EE | | 12 | Muck | Pole | | | | 1 | | | | | | | 1 | | | | | | | | | | | | H | | + | | | + | | = | | 4 | 45.895789 | -89.215506 | 40 | Catfish | Vilas | 8/1/2012 | DAC & EE | | 5 | Muck | Pole | | | | 3 | 1 | | | 2 | | | ľ | | | | 1 | | | | | | | | | 2 | | | | | | | | 5 | 45.895069 | -89.215516 | 37 | Catfish | Vilas | 8/1/2012 | DAC & EE | C 5 | 12 | Sand | Pole | | | | 0 | 4 | - | | ╀ | Ш | 4 | | 6 | 45.894349 | -89.215526 | 46 | Catfish | Vilas | 8/1/2012 | DAC & EE | | 13
7 | Muck | Pole | | | | 0 | | | | | | | 1 | | | | | | | | | | | | Ш | H | + | | | H | H | _ | | 7 | 45.893629
45.896502 | -89.215537
-89.214465 | 59
44 | Catfish | Vilas | 8/1/2012 | DAC & EE | | 0 | Sand | Pole | NONNAVIGABLE (PLANTS) | | | 1 | | | | | | | 1 | | | | | | | | | | | | m | П | 1 | l | | + | | 7 | | 9 | 45.895782 | -89.214475 | 41 | Catfish | Vilas | 8/1/2012 | DAC & EE | С 9 | 0 | | | NONNAVIGABLE (PLANTS) | \prod | | | | 10 | 45.895062 | -89.214485 | 36 | Catfish | Vilas | 8/1/2012 | DAC & EE | | | Sand | Pole | | | | 3 | 1 | | | | | | 1 | | | | | | | | | | 2 | | <u> </u> | Н | + | + | | 2 | H | 4 | | 11 | 45.894342
45.893622 | | | Catfish | Vilas | | | | | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | H | H | + | | | + | H | - | | 13 | 45.892902 | | | Catfish | | | DAC & EE | | | Sand | | | | | 0 | T | 1 | | | 14 | 45.901535 | -89.213363 | 1 | Catfish | Vilas | 7/31/2012 | EJH & CR | S 14 | 2 | Sand | Pole | | | | 2 | - | | | | \downarrow | - | 2 | | \parallel | + | + | - | | | \downarrow | - | + | | H | H | 4 | + | - | \perp | Н | 1 | | 15 | 45.900815 | -89.213373 | | Catfish | | | DAC & EE | | 5 | Sand | Pole | | | | 3 | + | - | - | 2 | + | + | 1 | H | | + | + | + | | | \dashv | + | 1 | - | H | H | + | + | + | 3 | H | \dashv | | 16 | 45.896495
45.895775 | -89.213434
-89.213444 | | Catfish | Vilas | 8/1/2012
8/1/2012 | DAC & EE | | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | m | П | 1 | T | | + | | 7 | | 18 | 45.895055 | -89.213454 | | Catfish | Vilas | 8/1/2012 | DAC & EE | | 6 | Sand | Pole | | | | 2 | 1 | | | | | | 1 | | | | | | | | | | 1 | | | | | | | 1 | | | | 19 | 45.894335 | -89.213464 | 48 | Catfish | Vilas | 8/1/2012 | DAC & EE | C 19 | 14 | | Rope | | | | 0 | - | - | | | | | | | | - | - | - | | | - | | | | H | Н | \dashv | | - | <u> </u> | Н | _ | | 20 | 45.893615 | -89.213474 | | Catfish | Vilas | 8/1/2012 | DAC & EE | | | | Rope | | | | 0 | | | | | + | | | | | | | | | | | | | | H | H | + | + | | + | H | - | | 21 | 45.892895
45.892175 | | | Catfish | Vilas | 8/1/2012
8/1/2012 | | | 6 | Sand | Rope | | | | 2 | | | | | | | 1 | | | | | | | | | | 2 | | П | | 1 | | | 1 | | - | | 23 | 45.902248 | -89.212321 | 18 | Catfish | Vilas | 7/31/2012 | EJH & CR | S 23 | 8 | Sand | Pole | | | | 3 | | | | | | | 1 | 1 | | | | | | | | | 2 | | | | | | | \prod | | | | 24 | 45.901528 | -89.212331 | 2 | Catfish | Vilas | | | | 9 | Sand | Pole | | | | 0 | Н | + | + | | - | Н | 4 | | 25 | 45.900808
45.900088 | -89.212341
-89.212352 | 12 | Catfish | Vilas | 7/31/2012
7/31/2012 | | | | Muck | Pole | | | | 0 | | | | | + | | | | | t | + | + | | | 1 | | | | H | H | + | | | + | H | - | | 27 | 45.899368 | -89.212362 | 13 | Catfish | Vilas | 7/31/2012 | | | 2 | Sand | Pole | | | | 2 | | | | 1 | | | 1 | | | | | | | | | | | | | | 1 | T. | 1 | 1 | | | | 28 | 45.895048 | -89.212423 | 34 | Catfish | Vilas | 8/1/2012 | DAC & EE | C 28 | 2 | Sand | Pole | | | | 1 | | | | | | | 1 | | 1 | | 1 | | | | | | | | | Щ | _ | | | <u> </u> | Ш | | | 29 | 45.894328 | | | Catfish | Vilas | | | | 15 | | Rope | | | | 0 | | | | | | | | | | | | | | | | | | | \Box | H | \dashv | + | | ₽ | H | - | | 30 | 45.893608
45.892888 | -89.212443
-89.212453 | 56
62 | Catfish | Vilas | 8/1/2012 | DAC & EE | | 15 | | Rope | | | | 0 | | | | | | | | | | | | | | | | | | | H | H | + | | | + | П | _ | | 32 | 45.892168 | -89.212464 | | Catfish | Vilas | 8/1/2012 | | | 15 | | Rope | | | | 0 | 33 | 45.891448 | -89.212474 | 67 | Catfish | Vilas | 8/1/2012 | DAC & EE | C 33 | 13 | Sand | Pole | | | | 0 | Н | + | + | | - | Н | 4 | | 34 |
45.902240
45.901520 | -89.211290
-89.211300 | | Catfish | Vilas
Vilas | 7/31/2012
7/31/2012 | EJH & CR | | | Sand | Pole
Pole | | | | 0 | | | | | + | | | | | t | + | + | | | 1 | | 2 | | H | H | + | | | + | H | - | | | | -89.211310 | | | | | | | | | | | | | 0 | 1 | | | | | | | 37 | 45.900081 | -89.211320 | 11 | Catfish | Vilas | 7/31/2012 | DAC & EE | C 37 | 9 | Muck | Pole | | | | 1 | | | | | | | | | | | | | | | 1 | | | | <u> </u> | Ш | 4 | | | ļ! | Ш | | | | | -89.211331 | | | | | | | | | | | | | 2 | | | | | | | 1 | | | | 1 | | | | | | 2 | | | Н | + | | | 1 | Н | _ | | | | -89.211361
-89.211392 | | | | | | | | Sand | | | | | 2 | | | 1 | 1 | | | 1 | | 1 | 1 | 2 | | | | 1 | | | | 1 | H | + | T | 1 | 1 | | = | | | | -89.211402 | | | | | | | | | Rope | | | | 0 | -89.211412 | | | | | | | | | | DEEP | Н | + | + | | - | Н | 4 | | | | -89.211422 | | | | | | | | | D | DEEP | | | 0 | | | | | 1 | | | | | | | | | | | | | | H | H | + | + | | H | H | - | | | | -89.211433
-89.211443 | | | | | | | | | Rope
Rope | | | | 0 | | İ | İ | | | | İ | | | j | | ľ | Ħ | | | ┪ | | İ | Ħ | | _ | ┪ | | \perp | | | | | | -89.211453 | | | | | | | | Sand | | | | | 2 | 1 | | | 1 | 1 | | 1 | | 1 | Ţ | Ţ | I | | | 1 | 1 | 2 | | Г | Д | 1 | 1 | Ţ | F | Ц | \exists | | | | -89.210259 | | | | | | | | | Pole | | | | 1 | + | - | | 1 | + | + | - | H | + | + | + | - | | | \dashv | - | + | | 1 | Н | + | + | + | 1 | Н | \dashv | | | | -89.210269
-89.210279 | | | | | | | | | | | | | 0 | t | H | t | H | \dashv | + | | H | | \dagger | + | + | H | | \dashv | + | + | H | H | H | + | \dagger | + | + | H | + | | | | -89.210279
-89.210289 | | | | | | | | | | | | | 0 | | | | | | | | | | Ţ | | | | | | | | | İ | | 1 | | | T | | | | 51 | 45.899353 | -89.210299 | 15 | Catfish | Vilas | 7/31/2012 | DAC & EE | C 51 | 5 | Sand | Pole | | | | 1 | | | | | _ | 1 | 1 | | | | | | | | 4 | | | | oxdot | Ц | 4 | 4 | | 1 | Ц | _ | | | | -89.210310 | | | | | | | | | Pole | | | | 1 | + | \vdash | | H | - | + | 1 | H | + | + | 1 | - | H | | \dashv | + | + | | H | H | + | + | + | 1 | Н | - | | | | -89.210320
-89.210330 | | | | | | | | | | | | | 3 | 2 | | | 1 | \dashv | + | 2 | | + | \dagger | \dagger | 1 | | | \dagger | l | 1 | H | H | H | + | \dagger | t | 3 | | 1 | | | | -89.210361 | | | | | | | | Sand | | | | | 2 | ľ | | | 2 | 1 | | 1 | | | Ţ | | | | | | 1 | 2 | | I | | 1 | 1 | Ī | 1 | | | | | | -89.210371 | | | | | | | | | Rope | | | | 0 | + | - | | H | - | \perp | - | H | - | + | + | - | | | - | \downarrow | + | | ۲ | Н | \dashv | + | + | ╀ | Н | _ | | | | -89.210381 | | Catfish | Vilas | 8/1/2012
18991230 | DAC & EE | C 57
0 | | | | DEEP | | | + | + | \vdash | | H | \dashv | + | - | H | + | + | + | - | H | | \dashv | + | + | - | Н | H | + | + | + | + | Н | \dashv | | 58 | 45.092874 | -89.210391 | U | | | 10991230 | 1 | U | U | | L | DEEP | | Ш | | | | 1 | ш | | | | ш | | | | | ш | | | | | 1 | ш | ш | | | | للل | ш | | | | grees) | egrees) | | | | | | | | | | | | | | | | | | | Ę | | | | line | SIL SIL | | | snb | inos | | ø | lius | | ormis | lustuomout | olium | | | | | |--------------|----------------------------|-----------------------------|----|--------------------|--------|-----------------------|------------|--------------|------------|----------|--------------|--------------|-------|----------|---------------------|---|------------|-----------------------|-------------------|--------------------|---------------------------------------|----------------|-------------------|------------------|---|-----------------------|----------------------|---------------------|------------------------|----------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|-------------------------|--------------------------|---------------------|-----------------------|--------------|-------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | OI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole;Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllim spicatum
Geratophyllim demersim | Chara spp. | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | lsoetes sp.
Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nuphar variegata | Nymphaea odorata
Dotamogoton amplifo | Potamodeton epihydrus | Potamogeton foliosus | Potamogeton friesii | Potamogeton praelongus | Potamogeton pusillus | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Sagitaria sp. (rosette) | Sparganium angustifolium | Spirodela polyrhiza | Vallisneria americana | Aquatic moss | Filamentous algae | | 59 | 45.892154 | -89.210401 | | Catfish | | | DAC & EEC | | 0 | | | DEEP | | | | | | | | | | | Ī | | | | | _ | | | | Ī | | | | | | | | Ì | _ | | 60 | 45.891434
45.890714 | -89.210412
-89.210422 | | Catfish
Catfish | | 8/1/2012
8/1/2012 | DAC & EEC | | 15 | Sand | Rope
Pole | | | | 0 | + | | | | | | | | | + | | | | | | | | | | | | | | | + | - | | 62 | 45.902226 | -89.209227 | 15 | Cattish | | 7/31/2012 | | | 5 | Sand | Pole | | | | 2 | | | | | | | 1 | | | 1 | 1 | | | | | | | | | | | | | 1 | | | | 63 | 45.901506 | -89.209238 | 5 | Catfish | Vilas | 7/31/2012 | EJH & CRS | 63 | 14 | | Rope | | | | 0 | _ | _ | | 64 | 45.900786 | -89.209248 | 5 | Catfish | Vilas | 7/31/2012 | | | | | Pole | | | | 0 | | - | | | | | | | - | + | | | | | | - | | | | | - | | | | \dashv | - | | 65 | 45.900066
45.899346 | -89.209258
-89.209268 | 9 | Catfish
Catfish | Vilas | | | | 6 | Sand | Pole | | | | 0 | 7 | - | | 67 | 45.898626 | | | Catfish | | | DAC & EEC | | 11 | Sand | | | | | 0 | 68 | 45.897906 | -89.209289 | 22 | Catfish | Vilas | 7/31/2012 | | | 0 | | | DEEP | _ | | 70 | 45.897186
45.896466 | -89.209299
-89.209309 | 23 | Catfish
Catfish | | | DAC & EEC | | 7 | Sand | Pole | | | | 3 | | | | 1 | | | 1 | | | | + | | | | 1 | | 3 | | | | | | | | + | - | | 71 | 45.895746 | | | Catfish | | | DAC & EEC | | | Sand | | | | | 1 | | | | | | | Ľ | | | | | | | | | | 3 | | | | 1 | | | | 1 | | | 72 | 45.895026 | -89.209330 | 32 | Catfish | Vilas | 8/1/2012 | DAC & EEC | 72 | 0 | | | DEEP | | | 1 | 1 | | | | _ | | L | igwdapsilon iggl[| | 1 | 1 | L | | | 1 | | L | | | | - | Ļ | L | Ц | 4 | 4 | | 73 | 45.894307
45.893587 | | | Catfish | | | DAC & EEC | | 0 | | | DEEP | | | + | | - | | Н | \dashv | + | | H | + | + | + | | Н | - | + | - | | | - | + | + | - | | | \dashv | \dashv | | 74 | 45.893587
45.892867 | -89.209350
-89.209360 | | Catfish | Vilas | 8/1/2012
18991230 | DAC & EEC | 74 | 0 | | | DEEP
DEEP | | | | | | | | | | İ | H | _ | t | 1 | l | | | _ | | | | | _ | _ | 1 | l | | 7 | 1 | | 76 | 45.892147 | -89.209370 | | Catfish | Vilas | 8/1/2012 | DAC & EEC | | 0 | | | DEEP | 77 | 45.891427 | -89.209381 | 74 | Catfish | Vilas | 8/1/2012 | DAC & EEC | 77 | 15 | | Rope | | | | 0 | | - | | | | | - | | | - | | | | | | - | | | | - | - | | | | 4 | | | 78 | 45.890707 | -89.209391 | 72 | Catfish | | 8/1/2012 | DAC & EEC | | 8 | Sand | Pole | | | | 3 | 1 | | | | | 1 | 1 | | | + | + | | | | | | 2 | | | | | | | | + | - | | 79 | 45.902219
45.901499 | -89.208196
-89.208206 | | Catfish
Catfish | | | | | 13 | Sand | Pole | | | | 0 | 1 | | | | | 1 | 2 | | | | | | | | 1 | | | | 2 | | | | | | T | 1 | | 81 | 45.900779 | -89.208217 | | Catfish | | | | | 0 | | | DEEP | 82 | 45.900059 | -89.208227 | 7 | Catfish | | 7/31/2012 | | | 13 | Sand | Pole | | | | 0 | | - | | | | | - | | | - | | | | | | - | | | | - | - | | | | 4 | | | 83 | 45.899339
45.898619 | -89.208237
-89.208247 | 17 | Catfish
Catfish | | 7/31/2012 | | | 0 | | | DEEP | | | | | | | | | | | | | + | $\frac{1}{1}$ | | | | | | | | | | | | | | + | - | | 85 | 45.897899 | -89.208258 | 0 | Catilisti | VIIdS | 18991230 | DAC & EEC | 0 | 0 | | | DEEP | 86 | 45.897179 | -89.208268 | 24 | Catfish | Vilas | 7/31/2012 | DAC & EEC | 86 | 0 | | | DEEP | 87 | 45.896459 | | | Catfish | | | DAC & EEC | | 0 | | | DEEP | | | | + | | | | | | | | | | + | | | | | | | | | | | | | | 4 | 4 | | 88 | 45.895739
45.895019 | -89.208288
-89.208298 | 30 | Catfish | Vilas | 8/1/2012
18991230 | DAC & EEC | 0 | 0 | | | DEEP | | | | | + | | | | | | | | + | | | | | | + | | | | | + | | | | + | - | | 90 | 45.894299 | | | | | 18991230 | | 0 | 0 | | | DEEP | 1 | | | 91 | 45.893579 | -89.208319 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 92 | 45.892859 | | | | | 18991230 | | 0 | 0 | | | DEEP | | | | + | | | | | | | | | + | + | | | | | | | | | | | | | | + | - | | 93 | 45.892139
45.891419 | -89.208339
-89.208350 | | Catfish | | | DAC & EEC | | 14 | | Rope | DEEP | | | 0 | 1 | 1 | | | | -89.208360 | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | 1 | | | 1 | | | | | | | | | | -89.208380 | | | | | | | | | Pole | | | | 3 | 3 | | | 2 | | | - | | | 1 | | | | | | 3 | | | | - | - | | 1 | | 4 | | | | | -89.207134
-89.207144 | | | | | | | | Sand | Dolo | | | | 0 | | + | | 2 | + | | 2 | H | + | + | + | | | |
 + | | | | | + | | | | + | \dashv | | | | -89.207144
-89.207155 | | | | | | | | | | | | | 1 | | | | | | | 2 | | | 1 | 1 | | | | | | 1 | | | | | | | 1 | \exists | | | 100 | 45.902212 | -89.207165 | 13 | Catfish | Vilas | 7/31/2012 | EJH & CRS | 100 | 9 | Sand | Pole | | | | 1 | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | -89.207175 | | | Vilas | | | | | Rock | Pole | | | | 0 | + | - | | Н | \dashv | | | H | + | + | + | | Н | | | - | | | | | + | | | | 4 | 4 | | | | -89.207185
-89.207196 | | | Vilas | 18991230
7/31/2012 | | 0 103 | | | | DEEP | | | + | | + | l | Н | \dashv | + | | H | \dagger | + | \dagger | | Н | 1 | | + | | | 1 | \dagger | \dagger | | | | + | \dashv | | | | -89.207206 | | | | 18991230 | | 0 | 0 | | | DEEP | | | 1 | T | | L | | | | Ī | | | T | T | | | | I | | | | | | I | İ | | | I | | | 105 | 45.898612 | -89.207216 | 0 | | | 18991230 | | 0 | | | | DEEP | | 4 | 4 | 1 | | | | | | | | - | 1 | 1 | | | | - | | | | | - | - | | | | 4 | 4 | | | | -89.207226 | | | | 18991230 | | 0 | | | | DEEP | | | + | + | + | H | H | | + | + | H | + | + | + | + | H | | + | + | | Н | - | + | + | + | H | H | \dashv | \dashv | | | | -89.207237
-89.207247 | | Catfish | Vilas | 18991230
8/1/2012 | | 0 | 0 | | | DEEP | | 1 | \dagger | \dagger | | H | H | 1 | + | | \dagger | \dagger | \dagger | \dagger | 1 | H | 1 | t | | | | 1 | \dagger | \dagger | t | | | 1 | 1 | | | | -89.207257 | | | | | | | | | | DEEP | | | 1 | | | | | | | | | | Ţ | | | | | | | | | | | | | | | I |] | | | | -89.207267 | | | Vilas | | | | | | | DEEP | | | + | + | - | L | Н | 4 | \perp | - | \Box | + | + | + | L | Н | 4 | + | - | | | 4 | \downarrow | + | + | L | Н | 4 | 4 | | | | -89.207278
-89.207288 | | | V 63 | 18991230 | | 0 | | | | DEEP | | | + | + | - | \vdash | H | - | - | \vdash | \vdash | + | + | + | + | H | - | + | - | | | - | + | + | + | H | H | \dashv | - | | | | -89.207288
-89.207298 | | | | | | | | | | DEEP | | 1 | 1 | t | T | t | П | | | t | H | \dagger | \dagger | \dagger | t | | 1 | t | T | l | | 1 | \dagger | \dagger | t | L | H | 7 | 1 | | | | -89.207308 | | | | | | | | | Rope | | | | 0 | | | | | | | | | | Ţ | | | | | | | | | | | | | | | I |] | | | | -89.207319 | | | | | | | | | | | | | 0 | | - | | Н | - | + | | | + | + | + | | | - | | - | | | | + | + | - | | | 1 | 4 | | 116 | 45.890692 | -89.207329 | 79 | Catfish | Vilas | 8/1/2012 | DAC & EEC | 116 | 6 | Sand | Pole | | | | 1 | | 1 | | 1 | | | 1_ | Ш | | | | _ | Ш | | | | <u> </u> | Ш | | | | | | Ш | | 1 | | | grees) | Degrees) | | | | | | | | | | | | | | un | | | | | un | | | | ding | rus | 82 | | sngu | S | III III III III III III III III III II | 13 | olius | | formis | e) | folium | | а | I | | |--------------|----------------------------|-----------------------------|-----------|--------------------|--------|-----------------------|------------|--------------|------------|----------|--------------|-------------|-------|----------|---------------------|------------------------------------|------------|-----------------------|-------------------|--------------------|---------------------------------------|----------------|-------------|------------------|---|-----------------------|----------------------|---------------------|------------------------|----------------------|--|-----------------------|---------------------------|--------------------|---------------------------|-------------------------|--------------------------|---------------------|-----------------------|--------------|-------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | ۵ | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole;Rope | Comments | Notes | Nuisance | Total Rake Fullness | Regional Speaking Ceratom Generaum | Chara spp. | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Isoetes sp.
Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nuphar variegata | Nymphaea odorata
Potamonefon amplifolius | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton friesii | Potamogeton praelongus | Potamogeton pusillus | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Sagitaria sp. (rosette) | Sparganium angustifolium | Spirodela polyrhiza | Vallisneria americana | Aquatic moss | Filamentous algae | | 117 | 45.889972 | -89.207339 | | Catfish | | | DAC & EEC | | | Sand | | 0 | | | 3 | 1 | | | | _ | | 1 | 1 | | | | Ĺ | | | | | | | _ | _ | 0, 0 | , 0, | 0, | 3 | | | | 118 | 45.889252 | -89.207349 | 87 | Catfish | Vilas | 8/1/2012 | DAC & EEC | | | Muck | Pole | | | | 3 | 3 | | | 1 | | | 1 | | | | | | | | 1 | | | | 1 | | | | | 3 | + | - | | 120 | 45.905085
45.904365 | -89.206093
-89.206103 | 33
26 | Catfish
Catfish | | 8/1/2012
8/1/2012 | EJH & CRS | | | Sand | Pole | | | | 1 | 3 | | | 1 | | | 1 | | | | | 1 | | | | | | | | 1 | | | | | | | | 121 | 45.903645 | -89.206113 | 23 | Catfish | Vilas | 8/1/2012 | EJH & CRS | 121 | 13 | Muck | Pole | | | | 0 | 4 | | | 122 | 45.902925 | -89.206123 | | Catfish | Vilas | 8/1/2012 | EJH & CRS | | | Muck | Pole | | | | 0 | 1 | | | | | | 1 | | | + | | | | | | + | | | | | | | | | \dashv | 4 | | 123 | 45.902205
45.901485 | -89.206134
-89.206144 | 12 | Catfish | Vilas | 7/31/2012 | | | | Sand | Pole
Rope | | | | 0 | 1 | | | 1 | | | | 1 | | | | | | | 1 | T | | | | | | | | | + | 1 | | 125 | 45.900765 | | | | | 18991230 | | 0 | 0 | | | DEEP | 126 | 45.900045 | -89.206164 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | + | | | | | | + | | | | | | | | | \dashv | 4 | | 127 | 45.899325
45.898605 | -89.206175
-89.206185 | 0 | | | 18991230
18991230 | | 0 | 0 | | | DEEP | + | 1 | | 129 | 45.897885 | | | | | 18991230 | | 0 | 0 | | | DEEP | 130 | 45.897165 | -89.206205 | | | | 18991230 | | 0 | 0 | | | DEEP | | | + | + | | | H | 1 | - | | H | + | + | - | | | - | + | + | | | | | + | + | | H | \dashv | 4 | | 131 | 45.896445
45.895725 | -89.206216
-89.206226 | 70 | Catfish
Catfish | Vilas | 8/1/2012
8/1/2012 | BTB & TWH | | | Sand | Pole | | | 1 | 3 | + | | H | H | + | + | 1 | 1 | + | 4 | + | H | | | 2 | \dagger | 1 | | 1 | | $^{+}$ | $^{+}$ | | 2 | + | 1 | | 133 | 45.895005 | -89.206236 | | Catfish | | 8/1/2012 | | | | WIGGK | Rope | | | | 0 | | | | | | | Ċ | | | ľ | | | | | _ | | Ċ | | | | | | | _ | I | | | 134 | 45.894285 | -89.206246 | 115 | Catfish | Vilas | 8/1/2012 | DAC & EEC | 134 | 0 | | | DEEP | 4 | 4 | | 135 | 45.893565 | -89.206257 | 105 | | Vilas | 8/1/2012 | DAC & EEC | | | | Rope | | | | 0 | | - | + | - | | 136 | 45.892845
45.892125 | -89.206267
-89.206277 | 103
94 | | Vilas | 8/1/2012
8/1/2012 | DAC & EEC | | | Rock | Pole | | | | 1 | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | 138 | 45.891405 | -89.206288 | 91 | Catfish | Vilas | 8/1/2012 | DAC & EEC | 138 | 7 | Muck | Pole | | | | 3 | | | | | | | | | | | | | | | 1 | | | | | | | | | 3 | 4 | | | 139 | 45.890685 | -89.206298 | | Catfish | Vilas | 8/1/2012 | DAC & EEC | | | Muck | Pole | | | | 2 | - | | | 1 | | | | | | | - | | | | | | | | 1 | 2 | | | | | + | - | | 140 | 45.889965
45.889245 | -89.206308
-89.206318 | 84 | Catfish | Vilas | 8/1/2012
8/1/2012 | DAC & EEC | | | Muck | Pole | | | | 3 | 3 | | | 1 | | 1 | | | | | | | | | | | | | | | | | | 2 | + | 1 | | 142 | 45.905797 | -89.205051 | | | | 8/1/2012 | | | | Sand | | | | | 3 | 1 | | | 1 | | | 1 | | | | | | | | 1 | | 1 | | | | | | | 1 | I | | | 143 | 45.905077 | -89.205061 | 32 | Catfish | Vilas | 8/1/2012 | EJH & CRS | | 13 | Muck | Pole | | | | 0 | 4 | _ | | 144 | 45.904358
45.903638 | -89.205072
-89.205082 | | Catfish | | 8/1/2012
8/1/2012 | EJH & CRS | | 14 | | Rope | DEEP | | | 0 | + | - | | | 45.902918 | -89.205092 | | | | | | | | | | DEEP | I | | | 147 | 45.902198 | -89.205102 | 11 | Catfish | Vilas | 7/31/2012 | | | 11 | Sand | Pole | | | | 0 | 4 | _ | | 148 | 45.901478
45.900758 | -89.205113
-89.205123 | 9 | Catfish | Vilas | 7/31/2012
18991230 | EJH & CRS | 0 | 19 | | | DEEP | + | - | | | 45.900758 | | | | | 18991230 | | 0 | 0 | | | DEEP | 151 | 45.899318 | -89.205143 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 4 | | | | | -89.205154 | | | | 18991230 | | 0 | 0 | | | DEEP | | | | | - | + | - | | | | -89.205164
-89.205174 | | Catfish | Vilas | 18991230
8/1/2012 | | | | | | DEEP | 155 | 45.896438 | -89.205185 | 72 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 155 | 0 | | | TERRESTRIAL | -89.205195 | | | | | | | | | | TERRESTRIAL | | | | | | | | | | | | | + | | | | | | + | | | | | | | | | \dashv | - | | | | -89.205205
-89.205215 | | | | | | | | | | | | | 0 | | | | | | | 2 | | | | | | | | 1 | | | | | 1 | | | | 1 | 1 | 1 | | | | -89.205226 | | | | | | | | | Rope | | | | 0 | \Box | | | | | -89.205236 | | | | | | | | | | | | | 1 | | - | | 1 | | | 1 | | | | | | | | | | 1 | | | 1 | | | | | 4 | 4 | | | |
-89.205246
-89.205256 | | | | | | | | | | | | | 0 | | | | 1 | | | 1 | | | | | | | | | 1 | | | | | | | | 1 | + | 1 | | | | -89.205267 | | | | | | | | | Pole | | | | 2 | | | | | | | 1 | | | | | | | | 1 | | 1 | | | | | | | | # | 1 | | | | -89.205277 | | | | | | | | | | | | | 0 | + | - | | | - | \perp | | H | \parallel | + | - | | | - | \downarrow | + | | | | | + | + | | | \dashv | 4 | | | | -89.204020
-89.204030 | | | | | | | | | | | | | 1 | + | | H | H | + | - | 1 | H | | + | + | H | | \dashv | 1 | + | 1 | | 1 | 1 | + | + | | 1 | + | \dashv | | | | -89.204030
-89.204040 | | | | | | | | | Rope | | | | 0 | t | L | | | 1 | t | | | | 1 | t | L | | | 1 | t | L | | | | 1 | t | | | | | | 168 | 45.903630 | -89.204051 | 36 | Catfish | Vilas | 8/1/2012 | EJH & CRS | 168 | 10 | Sand | | | | | 0 | | | | | Ī | | | | Ţ | | | | | J | _[| F | | | | 1 | | | | П | Ţ | 1 | | | | -89.204061 | | | | | | | | | | DEEP | | | + | + | - | - | | + | + | | H | + | + | - | | H | - | + | + | | | | - | + | + | - | H | + | \dashv | | | | -89.204071
-89.204081 | | Catfish | Vilas | 7/31/2012
18991230 | | 0 | | | | DEEP | | 1 | \dagger | | | | | l | + | | | | \dagger | 1 | | | | \dagger | t | | | | 1 | 1 | 1 | | | \dagger | 1 | | | | -89.204092 | | | | 18991230 | | 0 | | | | DEEP | | 1 | 1 | | | | | 1 | | | | | 1 | | | | | | 1 | | | | 1 | 1 | l | | |] | 1 | | | | -89.204102 | | | | 18991230 | | 0 | | | | DEEP | | - | \downarrow | - | | | | - | | | | | + | - | | | - | \downarrow | + | | | | | + | 1 | | | \dashv | 4 | | 174 | 45.899311 | -89.204112 | 0 | | | 18991230 | 1 | 0 | 0 | | | DEEP | | | | | 1 | | Ш | | | _ | Ш | | | 1_ | _ | Ш | | | | | Ш | | | | | | Ш | \perp | ┙ | | | egrees) | Degrees) | | | | | | | | | | | | | tim. | ersum | | s | | | crm | | | | | folius | Sn. | | snbuc | sn | dsonii | IISI | folius | | riformis | (e) | ernaemontani | | па | | | |--------------|----------------------------|-----------------------------|-----|--------------------|----------------|----------------------|------------|--------------|------------|--------------|--------------|--------------|-------|----------|---------------------|------------------------------------|------------|-----------------------|-------------------|--------------------|---------------------------------------|----------------|-------------|------------------|------------------|-------------------------|----------------------|---------------------|------------------------|----------------------|-------------------------|-----------------------|---------------------------|--------------------|---------------------------|-------------------------|--------------------------------|---------------------|---------------------------|--------------|-------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | OI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Regional Speaking Ceratom Generaum | Chara spp. | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Isoetes sp.
Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nuphar variegata | Nymphaea odorata | Potamogeton amplifolius | Potamogeton foliosus | Potamogeton friesii | Potamogeton praelongus | Potamogeton pusillus | Potamogeton richardsoni | Potamodeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Sagitaria sp. (rosette) | Schoenoplectus tabernaemontani | Spirodela polyrhiza | Vallisneria americana | Aquatic moss | Filamentous algae | | 175 | 45.898591 | -89.204123 | | | | 18991230 | | 0 | 0 | | | DEEP | 1 | | | \blacksquare | | | | 176 | 45.897871
45.897151 | -89.204133
-89.204143 | 67 | Catfish | Vilas | 18991230
8/1/2012 | | 0 | 9 | Sand | Pole | DEEP | | | 0 | _ | | | | | | | 178 | 45.896431 | -89.204153 | | Catfish | Vilas | 8/1/2012 | BTB & TWH | | | Muck | Pole | | | | 3 | | | | | | | 2 | | | | | | | | 2 | | 2 | | H | H | + | | | 1 | H | | | 179 | 45.895711
45.894991 | -89.204164
-89.204174 | | Catfish | Vilas | 8/1/2012
8/1/2012 | BTB & TWH | | | Muck
Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | H | H | \dagger | | | \forall | | _ | | 181 | 45.894271 | -89.204184 | | Catfish | Vilas | 8/1/2012 | DAC & EEC | | 7 | Sand | | | | | 2 | | | | | | | 2 | | | | | | | | | | | | L | | 1 | | | П | | | | 182 | 45.893551 | -89.204195 | 108 | Catfish | Vilas | 8/1/2012 | DAC & EEC | | | Sand | Pole | | | | 2 | 1 | | | | | | _ | | | | | | | | 1 | | | | 1 | H | + | | | 1 | | _ | | 184 | 45.892831
45.892111 | -89.204205
-89.204215 | 96 | Catfish
Catfish | Vilas | 8/1/2012 | DAC & EEC | | 8 | Sand
Muck | Pole | | | | 0 | | | | | | | 2 | | | | | | | | | | | | Ė | | | | | Ü | | | | 185 | 45.891391 | -89.204225 | 89 | Catfish | Vilas | 8/1/2012 | | | | Muck | Pole | | | | 2 | | | | | | | 1 | | | | | | | | | | | | H | 2 | + | | | 1 | H | | | 186 | 45.890671
45.905063 | -89.204236
-89.202999 | | Catfish | Vilas
Vilas | 8/1/2012
8/1/2012 | | | | Muck
Sand | Pole | | | | 1 | | | | | | | 1 | | | | | | | | | | | | H | H | 1 | 1 | | 2 | | _ | | 188 | 45.904343 | -89.203009 | | Catfish | Vilas | 8/1/2012 | EJH & CRS | | 8 | Sand | Pole | | | | 1 | | | | | | | 1 | 1 | | | | | | | | | 1 | | | | İ | ľ | | | 1 | | | 189 | 45.903623 | -89.203019 | | | | 8/1/2012 | | | 11 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | H | | \dashv | | | + | = | | | 190 | 45.902903
45.902183 | -89.203030
-89.203040 | | Catfish | Vilas | 8/1/2012
18991230 | EJH & CRS | 0 | 0 | | | DEEP | Н | | \dagger | | | \forall | | | | 192 | 45.901463 | -89.203050 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 1 | | | \square | | | | 193 | 45.900743 | -89.203060 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | H | | + | | | + | \vdash | | | 194 | 45.900023
45.899303 | -89.203071
-89.203081 | 0 | | | 18991230
18991230 | | 0 | 0 | | | DEEP | 1 | | | | | | | 196 | 45.898583 | -89.203091 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \bigsqcup | | \downarrow | | | \sqcup | Ц | | | 197 | 45.897863
45.897143 | -89.203102
-89.203112 | | Catfish | Vilas | 18991230
8/1/2012 | | 0 | 9 | Sand | Pole | DEEP | | | 0 | | | | | | | | | | | | | | | | | | | H | - | + | | | \forall | | _ | | 199 | 45.896423 | -89.203112 | | Catfish | Vilas | 8/1/2012 | BTB & TWH | | | Muck | Pole | | | | 0 | I | | | | | | | 200 | 45.895703 | -89.203133 | | Catfish | Vilas | 8/1/2012 | BTB & TWH | 200 | 14 | | Rope | | | | 0 | \downarrow | | | \sqcup | Щ | | | 201 | 45.894984
45.894264 | -89.203143
-89.203153 | | Catfish
Catfish | Vilas
Vilas | 8/1/2012
8/1/2012 | DAC & EEC | | 6 | Rock | Pole
Pole | | | | 1 | | | | | | 1 | | | | | | | | | | | | | H | H | + | | | 1 | Н | _ | | 203 | 45.893544 | -89.203163 | | | Vilas | 8/1/2012 | DAC & EEC | | | Sand | Pole | | | | 1 | | | | | | | 1 | | | | | | | | | | | | | | 1 | | | П | | | | | 45.892824 | -89.203174 | | Catfish | Vilas | | | | | Muck | | | | | 1 | | | | | | | | | | | | | | | | | | | H | 1 | 4 | | | \dashv | \vdash | _ | | 205 | 45.892104
45.903616 | -89.203184
-89.201988 | | Catfish | Vilas | 8/1/2012
8/1/2012 | DAC & EEC | | 7 | Muck | Pole | | | | 0 | | | | 2 | | | | | | | | | | | 1 | | | | H | | + | | | 2 | | _ | | 207 | 45.902896 | -89.201998 | | Catfish | Vilas | 8/1/2012 | EJH & CRS | | 19 | | · | DEEP | 1 | | | | | | | | 45.902176 | | | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | - | + | | H | | + | | | \dashv | \vdash | | | 209 | 45.901456
45.900736 | -89.202019
-89.202029 | 0 | | | 18991230
18991230 | | 0 | 0 | | | DEEP | Н | | \dagger | | | \forall | | _ | | | | -89.202040 | | | | 18991230 | | 0 | 0 | | | DEEP | 4 | | | | | | | | | -89.202050 | | | | 18991230 | | 0 | | | | DEEP | H | | + | | | + | \vdash | | | | | | | | | | BTB & TWH | | | | | DEEP | 1 | | | | | | | 215 | 45.897136 | -89.202081 | 82 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 215 | 14 | | Rope | | | | 0 | | | | | | | | | | | | | | | | | | | Ш | H | 4 | | | $\perp \mid$ | Ц | | | | | | | | | | BTB & TWH | | | Deel | Rope
Pole | | | | 0 | | | | | | | | | | | | | | | | | + | | H | H | + | | | \forall | H | = | | | | | | | | | BTB & TWH | | | | | | | | 0 | 1 | | | | | | | 219 | 45.894256 | -89.202122 | 111 | Catfish | Vilas | 8/1/2012 | DAC & EEC | 219 | 4 | Sand | Pole | | | | 1 | | | | | | | 1 | | | | 1 | | | | | | | | H | | \perp | | | Щ | | | | | | | | | | | DAC & EEC | | | | Pole
Pole | | | | 1 | | | | H | \dashv | | 1 | | 1 | + | + | + | | | | + | + | | H | H | + | + | | \forall | Н | - | | | | | | | | | EJH & CRS | | | | | | | | 2 | | | | | | | 1 | | | | | | | | 1 | 1 | 2 | | 1 | | 1 | | | 1 | | | | 223 | 45.902889 | -89.200967 | 43 | | | 8/1/2012 | EJH & CRS | 223 | 20 | | | DEEP | | | - | | | | | \parallel | | | | | 1 | - | | | | | - | 1 | | $oxed{oxed}$ | oxdot | 4 | - | | Ц | Ц | | | | | -89.200977
-89.200988 | | | | 18991230
18991230 | | 0 | | | | DEEP | | - | | + | | | H | \dashv | + | | | 1 | + | | + | | | - | 1 | + | | H | H | + | | - | \forall | H | - | | | | -89.200988
-89.200998 | | | | 18991230 | | 0 | | | | DEEP | Ħ | | 1 | | | | | | | | |
-89.201008 | | | | 18991230 | | 0 | 0 | | | DEEP | | | | | L | | | -[| | | | | - | | | | | | - | 1 | | $oxed{\square}$ | dash | \downarrow | | | Ц | Ц | | | | | -89.201019
-89.201029 | | Cattion | Vilor | 18991230
8/1/2012 | BTB & TWH | 0 | 0 | | | DEEP
DEEP | | | + | + | | | H | + | - | - | | + | + | + | | | | | + | + | - | H | H | + | + | - | \forall | Н | \dashv | | | | | | | | | BTB & TWH | | | Muck | Pole | DEEF | | | 0 | | | | | | | | | | | | | | | | 1 | t | | | | 1 | | | | | | | | | | | | | | BTB & TWH | | | | | | | | 0 | + | | | H | 4 | - | | Н | 4 | + | + | - | | | - | + | + | | $oxed{oxed}$ | H | + | + | - | $ \downarrow \downarrow $ | Ц | _ | | 232 | 45.896409 | -89.201060 | 78 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 232 | 11 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | Ш | | | | | Ш | Ш | \perp | | | Ш | Ш | 1 | III all | | | | | |--------------|----------------------------|-----------------------------|----------|--------------------|--------|----------------------|------------|--------------|------------|----------|------------|-------------------------|-------|----------|---------------------|-----------------------|------------|-----------------------|-------------------|--------------------|-------------|------------------------|----------------|-------------|------------------|-------------------------|-----------------------|----------------------|---------------------|------------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|-------------------------|--------------------------|---------------------|-----------------------|--------------|-------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Chara spp. | Fleocharis acicularis | Elodea canadensis | Heteranthera dubia | Isoetes sp. | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nymphaea odorata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton friesii | Potamogeton praelongus | Potamodeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Sagitaria sp. (rosette) | Sparganium angustifolium | Spirodela polyrhiza | Vallisneria americana | Aquatic moss | Filamentous algae | | 233 | 45.902882 | | | Catfish | | | | | | Sand | | | | | 3 | | | | 2 | | | | 1 | | | | | | | - | 1 | 1 | | | 1 | | | | | | \vdash | 1 | | 234 | 45.902162
45.901442 | -89.199946
-89.199956 | 45
46 | Catfish
Catfish | Vilas | 8/1/2012 | EJH & CRS | | | | Rope | DEEP | | | 0 | _ | | 236 | 45.900722 | -89.199967 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | Ц | _ | | 237 | 45.900002 | | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | + | | | | | | | | | | | H | \dashv | | 238 | 45.899282
45.898562 | -89.199988
-89.199998 | 61 | Catfish | Vilas | 18991230
8/1/2012 | BTB & TWH | | | | | DEEP | 240 | 45.897842 | -89.200008 | 60 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 240 | 8 | Sand | Pole | | | | 1 | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | 2 | | | 45.897122 | | | | | | BTB & TWH | | | Muck | Pole | | | | 3 | | | | | | | | 3 | | | | | | | | 1 | | 1 | | 1 | | | | | | H | _ | | 242 | 45.902874
45.902154 | -89.198905
-89.198915 | 51
47 | Catfish | Vilas | 8/1/2012
8/1/2012 | EJH & CRS | | | | | TEMPORARY OBSTACLE DEEP | _ | | 244 | 45.901434 | | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 245 | 45.900714 | | | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | + | | | | | | | - | | | | \sqcup | _ | | 246 | 45.899994
45.899274 | -89.198946
-89.198956 | | | | 18991230
18991230 | | 0 | 0 | | | DEEP | H | | + | + | + | + | | | H | | | + | | - | | + | 1 | + | + | | | | + | 1 | + | + | | | Н | \dashv | | 248 | 45.898555 | -89.198956
-89.198967 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 249 | 45.897835 | -89.198977 | 59 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 249 | 0 | | | DEEP | Ц | _ | | 250 | 45.902867 | -89.197873 | | Catfish | Vilas | 8/1/2012 | EJH & CRS | | | Sand | Pole | | | | 3 | 2 | 2 | + | 1 | | | | 1 | | | | | - | | | 1 | | 1 | | | | + | | | 1 | H | \dashv | | 251 | 45.902147
45.901427 | -89.197884
-89.197894 | 49 | Catfish | Vilas | 8/1/2012
18991230 | EJH & CRS | 0 | 0 | | | DEEP | П | | | 253 | 45.900707 | | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 254 | 45.899987 | | | | | 18991230 | | 0 | 0 | | | DEEP | \vdash | _ | | 255
256 | 45.899267
45.898547 | -89.197925
-89.197936 | | | | 18991230
18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | \dashv | | 257 | 45.897827 | -89.197946 | | Catfish | Vilas | | BTB & TWH | | | | | DEEP | 258 | 45.897107 | -89.197956 | 57 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 258 | 6 | Muck | Pole | | | | 3 | | | | | | | 1 | | | | | | | | | | | | | | 1 | | | | 3 | Ц | _ | | 259 | 45.902860 | -89.196842 | 53 | Catfish | | 8/1/2012 | EJH & CRS | | | Sand | Pole | | | | 2 | | 1 | | | | | | 1 | | | | | | | | | | 1 | | | | | | | 1 | H | - | | 260 | 45.902140
45.901420 | | 52 | Catfish | Vilas | 8/1/2012
18991230 | EJH & CRS | 0 | 16 | | | DEEP | | | | | | | | | | | | | | | | | | T | | | | | | | | | | | | \neg | | | | -89.196873 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 263 | 45.899980 | -89.196884 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | - | | | | | | | - | | | Н | _ | | 264 | 45.899260
45.898540 | -89.196894
-89.196904 | 0 | | | 18991230
18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | \dashv | | | | -89.196915 | | | | 18991230 | | 0 | 0 | | | DEEP | 267 | 45.897100 | -89.196925 | 56 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 267 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | Щ | 4 | | | | -89.195821 | | | | | | | | Sand | Pole | 2552 | | | 0 | | | | | | | | | | | | | 1 | | + | | | | | | | + | | | | H | \dashv | | | | -89.195832
-89.195842 | | | | | | | | | | DEEP | 271 | 45.899973 | -89.195852 | 59 | Catfish | Vilas | 8/1/2012 | EJH & CRS | 271 | 21 | | | DEEP | -89.195863 | | | | 18991230 | | 0 | | | | DEEP | | | | | | | | | | | | | | | | | | + | | | | | | | - | | | | H | \dashv | | | | -89.195873
-89.195884 | | | | 18991230
18991230 | | 0 | | | | DEEP | | | | | t | | | | | | | | | | | 1 | | 1 | | | | | | | + | | | | H | \dashv | | | | -89.195894 | | Catfish | Vilas | | | | | | | DEEP | -89.195904 | | | | | | | | | | | | | 2 | | | | | | | | 1 | 1 | | | | | | - | 1 | | 1 | | | | | | | | Щ | 4 | | | | -89.194811 | | | | | | | | Sand | | | - | | 0 | + | + | + | - | - | | \dashv | + | + | + | | H | + | 1 | + | + | | H | | | - | + | + | - | 1 | H | + | | | | -89.194821
-89.194832 | | | | | | | | sand | role | DEEP | L | | U | | 1 | 1 | İ | L | | | | | İ | İ | | | | 1 | İ | İ | | | | _ | <u> </u> | İ | t | L | | _ | | | | -89.194842 | | | | 18991230 | | 0 | | | | DEEP | | | 1 | | | | | | | | 1 | | | | | 1 | | 1 | | | | | \Box | 1 | 1 | | | | Ц | 1 | | | | -89.194852 | | | | 18991230 | | 0 | | | | DEEP | | | + | + | + | + | - | | H | \sqcup | + | + | + | - | | + | - | + | + | - | H | | \dashv | 4 | + | + | - | | Н | 4 | | | | -89.194863
-89.194873 | | | | | | | | | Rope | DEEP | | | 0 | \dagger | \dagger | \dagger | | | | | + | \dagger | \dagger | H | | \dashv | + | + | \dagger | l | | + | \dashv | | + | \dagger | L | | H | + | | | | -89.194884 | | | | | | | | Muck | | | | | 3 | | | | | | | | 1 | | | | | | | | 3 | | 1 | | 1 | | | | | | | 1 | | | | -89.194894 | | | | 18991230 | | 285 | | | | TEMPORARY OBSTACLE | | | - | | - | | - | | H | | | | | | | - | | + | | | | | | | \downarrow | | - | | Ц | 4 | | | | -89.193800 | | | | | | | | Sand | Pole | 2552 | H | | 3 | + | + | + | | | Н | 1 | 3 | 1 | | | | \dashv | - | + | 1 | | | | + | - | + | + | - | 1 | Н | \dashv | | | | -89.193811
-89.193821 | | Cattish | vilas | 8/1/2012
18991230 | | 0 | | | | DEEP | | | 1 | | | t | | | | | | | | | | 1 | | 1 | T | | H | | | | \dagger | T | | | H | ٦ | | | | -89.193832 | | | | 18991230 | | 0 | | | | DEEP | 290 | 45.896358 | -89.193842 | 50 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 290 | 0 | | | DEEP | | | | | | | | | Ш | | | | | | | | | | \perp | | | | | | | \perp | | | Ш | ╝ | | | | | | | | | | | | | | | | | T | | | T | T | | | | | | | | | | | | l | | $\overline{}$ | | T | ani | | | T | П | |--------------|----------------------------|-----------------------------|----------|-----------|--------|----------------------|------------
--------------|------------|----------|------------|----------|-------|----------|---------------------|-----------------------|------------|-----------------------|-------------------|--------------------|--------------|----------------|-------------|------------------|------------------|-------------------------|--|---------------------|------------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|------------------------|--------------------------------|--------------------------|---------------------|--------------|-------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | OI OI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyrium spicatum | Chara spo. | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Isoetes sp. | Naiae flexilie | Nitella sp. | Nuphar variegata | Nymphaea odorata | Potamogeton amplifolius | Potamogeton epinyarus Potamogeton foliosus | Potamogeton friesii | Potamogeton praelongus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Socitorio en (rocotto) | Schoenoplectus tabernaemontani | Sparganium angustifolium | Spirodela polyrhiza | Aquatic moss | Filamentous algae | | 291 | 45.895638 | -89.193852 | 49 | Catfish | Vilas | 8/1/2012 | BTB & TW | | 14 | | Rope | | | | 0 | | | | | | | + | | | | | | | | | | | \dashv | | | | | | + | H | | 292 | 45.894918
45.894198 | -89.193863
-89.193873 | 48 | Catfish | Vilas | 8/1/2012 | BTB & TW | | 8 | Muck | Pole | | | | 1 | | | | | | | 1 | 1 | | | | | | - | 1 | | 1 | + | 1 | | | | | 1 | Н | | 293 | 45.898511 | -89.192780 | 63 | Catfish | Vilas | 8/1/2012 | EJH & CR | | Ť | Sand | Pole | | | | 3 | | | | | | | 2 | ! 1 | | | 1 | 1 | | 1. | | | | | | 1 | | | | Ή | П | | 295 | 45.897791 | -89.192790 | 64 | Catfish | Vilas | 8/1/2012 | EJH & CR | | 13 | | Rope | | | | 0 | I | | | 296 | 45.897071 | -89.192800 | 65 | Catfish | Vilas | 8/1/2012 | EJH & CR | 3 296 | 18 | | | DEEP | \downarrow | Ш | | 297 | 45.896351 | -89.192811 | 43 | Catfish | Vilas | 8/1/2012 | BTB & TW | H 297 | 0 | | | DEEP | \dashv | | _ | | | _ | + | \vdash | | 298 | 45.895631 | -89.192821 | 44 | Catfish | Vilas | 8/1/2012 | BTB & TW | | 16 | | _ | DEEP | | | | | | | | | | | | | | | | | + | | | | + | | | | | + | + | + | | 300 | 45.894911
45.894191 | -89.192832
-89.192842 | 45
46 | Catfish | Vilas | 8/1/2012 | BTB & TW | | 6 | Sand | Rope | | | | 0 1 | v | | | | | | | | | | | | | | | | | 7 | | | | | 1 | \dagger | \forall | | 301 | 45.899944 | -89.191728 | 72 | Catfish | Vilas | 8/1/2012 | EJH & CR | | 7 | Sand | Pole | | | | 3 | | | | | | | 2 | | | | | | | | 2 | | 1 | | | | | | | I | | | 302 | 45.899224 | -89.191738 | 71 | Catfish | Vilas | 8/1/2012 | EJH & CR | 302 | 9 | Muck | Pole | | | | 1 | | | | | | | | | | | | | | | ı | | | | | | | | | \perp | | | 303 | 45.898504 | -89.191748 | 70 | Catfish | Vilas | 8/1/2012 | EJH & CR | 303 | 14 | | Rope | | | | 0 | | | - | | | | | _ | | | | | | _ | | | | \dashv | | | | | _ | + | + | | 304 | 45.897784 | -89.191759 | | Catfish | | 8/1/2012 | EJH & CR | | 7 | Sand | Pole | | | | 3 | + | + | + | | Н | + | 2 | 1 | | - | + | + | H | 1 | + | | 1 | \dashv | + | + | + | | + | + | Н | | 305 | 45.897064
45.896344 | -89.191769
-89.191780 | 66 | Catfish | Vilas | 8/1/2012
18991230 | EJH & CR | 0 | 19 | | | DEEP | | | \dagger | | \dagger | \dagger | | | + | | | | | \dashv | + | H | | + | | | + | \dagger | \dagger | \dagger | | + | + | H | | 307 | 45.895624 | -89.191790 | 42 | Catfish | Vilas | 8/1/2012 | BTB & TW | | 14 | | Rope | DEEP | | | 0 | T | \Box | | 308 | 45.894904 | -89.191801 | 41 | Catfish | Vilas | 8/1/2012 | BTB & TW | | | | Rope | | | | 0 | I | Ţ | Γ | | | | I | | | | I | | | I | Ι | | | | I | Ţ | T | | I | floor | П | | 309 | 45.894184 | -89.191811 | 40 | Catfish | Vilas | 8/1/2012 | BTB & TW | H 309 | 7 | Rock | Pole | | | | 1 | | | | | | | 1 | 1 | | | | | | | | | | | | | | | | 4 | 1 | | 310 | 45.893464 | -89.191822 | 39 | Catfish | Vilas | 8/1/2012 | BTB & TW | H 310 | 3 | Rock | Pole | | | | 1 1 | v | | | | | | | | | | 1 | | | + | | | | \dashv | | _ | | | + | + | \blacksquare | | 311 | 45.903536 | -89.190644 | 103 | Catfish | Vilas | 8/1/2012 | EJH & CR | | 2 | Sand | Pole | | | | 2 | | | | | | | 1 | | | | | | | + | | | 1 | + | | | | | + | + | + | | 312 | 45.900656
45.899936 | -89.190686
-89.190696 | 75
73 | Catfish | Vilas | 8/1/2012
8/1/2012 | EJH & CR | | | Sand | Pole | | | | 0 | | | | | | | | | | | | | | t | | | | $^{+}$ | | | | | t | \dagger | Н | | 314 | 45.899216 | -89.190707 | 74 | Catfish | Vilas | 8/1/2012 | EJH & CR | | | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | T | | | | | | T | П | | 315 | 45.898496 | -89.190717 | 69 | Catfish | Vilas | 8/1/2012 | EJH & CR | 315 | 0 | | | DEEP | Ţ | | | 316 | 45.897776 | -89.190728 | 18 | Catfish | Vilas | 8/1/2012 | BTB & TW | H 316 | 0 | | | DEEP | | | | | - | | | | | | | | | | | | | | | | 4 | | _ | | | _ | 4 | \vdash | | 317 | 45.897056 | -89.190738 | | Catfish | Vilas | 8/1/2012 | BTB & TW | | 16 | | | DEEP | | | | | | | | | | | | | | | | | - | | | | \dashv | | | | | - | + | + | | 318 | 45.896336 | -89.190749 | 30 | Catfish | Vilas | 8/1/2012 | BTB & TW | | 16 | | D | DEEP | | | 0 | | | | | | | | | | | | | | | | | | + | | | | | | + | Н | | 320 | 45.895617
45.894897 | -89.190759
-89.190770 | 31 | Catfish | Vilas | 8/1/2012
8/1/2012 | BTB & TW | | 14 | | Rope | | | | 0 | | | | | | | | | | | | | | | | | | \top | | | | | | t | Ħ | | 321 | 45.894177 | -89.190780 | 37 | Catfish | Vilas | | BTB & TW | | | Sand | | | | | 0 | I | | | 322 | 45.893457 | -89.190790 | 38 | Catfish | Vilas | 8/1/2012 | BTB & TW | H 322 | 1 | Sand | Pole | | | | 2 | | | | | | | 2 | ! | | | | | | | 1 | | | | | | | | | \downarrow | Ш | | 323 | 45.905689 | -89.189581 | 114 | Catfish | Vilas | 8/1/2012 | EJH & CR | 323 | 5 | Sand | Pole | | | | 2 | | | - | | | | 1 | | | | 1 | | | | 1 | 1 | 1 | \dashv | 1 | | | | | 1 | + | | 324 | 45.904969 | -89.189592 | 104 | Catfish | Vilas | 8/1/2012 | EJH & CR | | 13 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | + | | | | + | | | | | + | + | + | | | | -89.189602
-89.189613 | | | | | | | | Muck | | | | | 0 | | | | | | | | | | | | | | t | | | | $^{+}$ | | | | | t | \dagger | Н | | | | -89.189623 | | | | | | | | | | | | | 0 | T | П | | 328 | 45.901369 | -89.189644 | 76 | Catfish | Vilas | 8/1/2012 | EJH & CR | 328 | 12 | Muck | Pole | | | | 0 | 1 | | | | | -89.189655 | | | | | | | | | | | | | 0 | $\frac{1}{2}$ | + | + | - | | - | + | - | | 4 | \dashv | - | Н | + | + | | | \dashv | + | + | + | | - | + | \dashv | | | | -89.189665 | | | | | | | | Muck | | | | | 0 | + | + | + | | | - | + | | | | + | - | H | + | - | | | \dashv | + | + | + | | + | + | Н | | | | -89.189676
-89.189686 | | | | | | | | | Rope | | | | 0 | t | + | | | | | \parallel | | H | | 1 | 1 | H | 1 | | | | + | | \dagger | + | | | + | H | | | | -89.189697 | | | | | | | | | Rope | | | | 0 | j | İ | İ | | | ╛ | İ | İ | | | | 1 | | | 1 | | | | | | İ | | | I | П | | | | -89.189707 | | | | | | | | | Rope | | | | 0 | | Ţ | | | | | Ţ | | | | | | | Ţ | | | | \Box |] | | | | 1 | Ţ | П | | 335 | 45.896329 | -89.189718 | 29 | Catfish | Vilas | 8/1/2012 | BTB & TW | H 335 | 14 | | Rope | | | | 0 | | + | - | - | | \downarrow | \downarrow | + | | _ | 4 | | \sqcup | \downarrow | | | | 4 | | - | - | | - | \bot | \sqcup | | | | -89.189728 | | | | | | | | | Rope | | | | 0 | + | + | + | | | - | + | | | - | + | - | H | + | + | | | \dashv | + | + | + | | + | + | H | | | | -89.189738
-89.188477 | | | | | | | | | Rope | | | | 2 | \dagger | \dagger | \dagger | | | + | 1 | | | 1 | \dashv | + | H | + | + | | | \dashv | \dagger | \dagger | + | | 1 | + | \forall | | | | -89.188477
-89.188529 | | | | | | | | | | | | | 0 | | \dagger | \dagger | 1 | | t | 2 | | | | \top | T | Ħ | | T | | | \forall | 1 | t | T | П | 1 | T | Ħ | | | | -89.188540 | | | | | | | | | | | | | 0 | İ | I | | | 341 | 45.905681 | -89.188550 | 113 | Catfish | Vilas | 8/1/2012 | EJH & CR | 341 | 14 | Muck | Pole | | | | 0 | 1 | | | | | | 1 | | | | | | Ш | 1 | | | | \downarrow | | | | | | \perp | Ц | | | | -89.188561 | | | | | | | | | | | | | 0 | + | + | + | | | - | + | | | 4 | \dashv | - | \sqcup | + | + | | | \dashv | + | + | + | | - | + | \dashv | | | | -89.188571 | | | | | | | | | | | | | 0 | + | + | + | | Н | + | + | | | - | + | + | H | + | + | | | \dashv | + | + | + | | + | + | Н | | | | -89.188582
-89.188592 | | | | | | | | Muck | Pole | DEEP | | | 0 | \dagger | \dagger | \dagger | t | | 1 | t | \dagger | H | 1 | \dagger | | H | + | \dagger | H | | + | \dagger | \dagger | \dagger | H | + | + | H | | | | -89.188602 | | | | | | | | Sand | Pole | SELI | | | 2 | | İ | İ | L | | | 2 | ! 1 | | | | 1 | | j | İ | L | 1 | | | | İ | | ╛ | 1 | Ħ | | | | -89.188613 | | | | | | | | | Rope | | | Ц | 0 | | | | | | | | | | | | | Ш | | | | Щ | Ţ | | \prod | | Ц | | Ţ | \coprod | | 348 | 45.900642 | -89.188623 | 86 | Catfish | Vilas | 8/1/2012 | EJH & CR | 348 | 13 | Sand | Pole | | | | 0 | | | | | Ш | | | | | | | | | | | | | \perp | | | | | | 丄 | Ш | | | (se | rees) | | | | | | | | | | | | | | E | | | | | | | |
| | ø | | | s | | = | | | 0 | nis | | emontani | E | | T | | |--------------|----------------------------|-----------------------------|----------|--------------------|----------------|----------------------|------------|--------------|------------|--------------|--------------|----------|-------|----------|---------------------|------------------------|------------|-----------------------|-------------------|--------------------|-------------|----------------|-------------|------------------|------------------|-------------------------|--|---------------------|------------------------|----------------------|--------------------------|-----------------------|----------------------|--------------------|---------------------------|-------------------------|--------------------------------|--------------------------|---------------------|---------------------------------------|-------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Ceratophyllum demersum | Chara spp. | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Isoetes sp. | Naias flexilis | Nitella sp. | Nuphar variegata | Nymphaea odorata | Potamogeton amplifolius | Potamogeton epinyarus Potamogeton foliosus | Potamogeton friesii | Potamogeton praelongus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spiritus | Potamogeton vasevi | Potamogeton zosteriformis | Sagitaria sp. (rosette) | Schoenoplectus tabernaemontani | Sparganium angustifolium | Spirodela polyrhiza | Vallisneria americana
Aquatic moss | Filamentous algae | | 349 | 45.899922 | -89.188634 | | Catfish | | | | | 13 8 | Sand | Pole | | | | 0 | | | | | | | - | | | | | | | | | | | | - | | | | | _ | + | + | | 350 | 45.899202
45.898482 | -89.188644
-89.188655 | 84 | Catfish
Catfish | Vilas
Vilas | 8/1/2012
8/1/2012 | EJH & CRS | | 14 | | Rope | | | | 0 | + | + | | 352 | 45.897762 | -89.188665 | | Catfish | Vilas | 8/1/2012 | BTB & TW | | 7 N | Muck | Pole | | | | 3 | 1 | | | | | | 2 | 1 | | | | | | | 1 | | | 1 | 1 | | | | | | I | I | | 353 | 45.897042 | -89.188676 | 21 | Catfish | Vilas | 8/1/2012 | BTB & TW | 353 | 14 | | Rope | | | | 0 | | | | | | | | | | | | | | | | | | | - | | | | | _ | 4 | \bot | | 354 | 45.896322
45.895602 | -89.188686
-89.188697 | 28
34 | Catfish | Vilas | 8/1/2012
8/1/2012 | BTB & TWI | | 14 M | Muck
Rock | Pole
Pole | | | | 0 | | | | | | | | | | | | | | | | | | | + | | | | | | + | + | | 356 | 45.912874 | -89.187414 | 145 | Catfish
Catfish | Vilas | 8/1/2012 | EJH & CRS | | | Sand | Pole | | | | 1 | | | | | | | 1 | | | | | | | | 1 | | 1 | | 1 | 1 | | | | | | | | 357 | 45.912154 | -89.187424 | 144 | Catfish | Vilas | 8/1/2012 | EJH & CRS | 357 | 10 N | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | - | | | | | | ╀ | 1 | | 358 | 45.911434 | -89.187435 | 143 | Catfish | Vilas | 8/1/2012 | EJH & CRS | | 13 N | Muck | Pole | | | | 0 | | | | | | + | + | | | - | | | | | | | | + | + | | | | | - | + | + | | 359 | 45.910714
45.909994 | -89.187445
-89.187456 | | Catfish | Vilas | 8/1/2012
8/1/2012 | | | 13 S | Sand
Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | t | | | | | | | T | | 361 | 45.909274 | | | Catfish | | | | | | Muck | | | | | 0 | L | | 362 | 45.908554 | -89.187477 | | | | 8/1/2012 | EJH & CRS | | 15 | | | DEEP | | - | - | + | - | - | Н | | + | + | | H | _ | + | + | | | | + | + | + | + | + | | | | + | + | + | | 363 | 45.907834
45.907114 | | | Catfish
Catfish | | 8/1/2012
8/1/2012 | EJH & CRS | | 17 | | | DEEP | | | \dagger | | | | | | + | \dagger | | H | \dashv | | t | H | | | + | = | \dagger | + | H | | | | + | + | + | | 365 | 45.906394 | | | | | 8/1/2012 | | | 14 | | | DEEP | I | | | | | | | L | | 366 | 45.905674 | -89.187519 | 112 | Catfish | Vilas | 8/1/2012 | EJH & CRS | 366 | 13 M | Иuck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | _ | | | | | _ | 4 | 1 | | 367 | 45.904954 | -89.187529 | | Catfish | Vilas | 8/1/2012 | EJH & CRS | | 14 N | | Pole | | | | 0 | | | | | | + | + | | | - | | | | | | | | + | + | | | | | - | + | + | | 368 | 45.904234
45.903514 | -89.187540
-89.187550 | | Catfish
Catfish | | | EJH & CRS | | 14 N | Muck | Pole | DEEP | | | 0 | | | | | | | | | | | | | | | | | | | t | | | | | | | T | | 370 | 45.902794 | -89.187561 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | I | | | | | | I | I | | 371 | 45.902074 | | | Catfish | Vilas | 8/1/2012 | | | 17 | | | DEEP | | | | | - | | | | - | | | | | | - | | | | | - | | + | | | | | _ | + | ╄ | | 372 | 45.901354
45.900634 | -89.187582
-89.187592 | 88
89 | Catfish
Catfish | Vilas | 8/1/2012
8/1/2012 | EJH & CRS | | 14 M | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | + | | | + | | | | | | + | + | | 374 | 45.899914 | | | Catfish | | 8/1/2012 | | | 13 N | | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | I | | | | | | I | Ī | | 375 | 45.899194 | -89.187613 | 91 | Catfish | Vilas | 8/1/2012 | EJH & CRS | 375 | 13 M | Иuck | Pole | | | | 0 | | | | | | | | | | 4 | | | | | | | | - | - | | | | | _ | 4 | \perp | | 376 | 45.898474 | -89.187624 | | Catfish | | 8/1/2012 | EJH & CRS | | | | Pole | | | | 0 | | | | | | | + | | | 1 | | | | | | 1 | | + | + | | | | | - | + | + | | 377 | 45.897754
45.897035 | | | Catfish
Catfish | Vilas | 8/1/2012
8/1/2012 | BTB & TWI | | 13 N | Muck | Pole | | | | 0 | + | T | | 379 | 45.896315 | -89.187655 | 27 | Catfish | Vilas | 8/1/2012 | BTB & TWI | | 5 8 | Sand | Pole | | | | 2 | | | | | | | 2 | | | | | | | | | | | | I | | | | | | I | I | | 380 | 45.912866 | -89.186382 | | Catfish | Vilas | 8/1/2012 | EJH & CRS | | 16 | | | DEEP | | | | | - | | | | - | | | | | | - | | | | | - | | + | | | | | _ | + | ╄ | | 381 | 45.912146
45.911427 | -89.186393
-89.186403 | | | Vilas | 8/1/2012
8/1/2012 | | | 12 M | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | + | | | | | | - | + | | 383 | 45.910707 | | | Catfish | | 8/1/2012 | | | | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | I | | | | | | I | I | | | | -89.186424 | | | | | | | | Muck | Pole | | | | 0 | | - | | | | - | | | | | | - | | | | | - | | + | | | | | | + | ╄ | | | | -89.186435
-89.186445 | | | | | | | | | | DEEP | | | | | | | | | | + | | | 1 | | | | | | 1 | | + | + | | | | | - | + | + | | | | -89.186456 | | | | | | | | | | DEEP | İ | | | | | | | | | 388 | 45.907107 | -89.186466 | 117 | Catfish | Vilas | 8/1/2012 | EJH & CRS | 388 | 15 | | | DEEP | _ | | | | | | _ | \perp | | | | -89.186477 | | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | + | | | | | | | | | | | | - | | | | | _ | + | + | | | | -89.186487
-89.186498 | | | | | | | | | | DEEP | | | | | | | | | | T | | | | | | | | | | | | + | | | | | _ | + | + | | | | -89.186508 | | | | | | | | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | I | | | | | | I | I | | | | -89.186519 | | | | | | | | | | DEEP | | | | - | \vdash | - | Н | | \perp | 1 | | H | | + | + | | | | 4 | + | + | \downarrow | - | | | | \downarrow | + | + | | | | -89.186530 | | | | | | | | | | | | | 3 | + | \vdash | - | H | | + | 2 | 1 | H | \dashv | + | + | | | 2 | + | + | 1 | 1 | + | | | | + | + | + | | | | -89.186540
-89.186551 | | | | | | | | | | | | | 0 | 1 | İ | İ | | | 1 | Ī | ľ | | | | İ | İ | L | 1 | | | 1 | 1 | İ | | | | _ | İ | T | | | | -89.186561 | | | | | | | | | | | | | 0 | | | | | | 1 | I | | | | | | | | | | | Ţ | I | | | | | 1 | Į | \perp | | | | -89.186572 | | | | | | | | | | | | | 0 | + | - | - | Н | | + | + | | \dashv | 4 | + | + | H | | | + | + | + | + | ŀ | | | | + | + | + | | | | -89.186582
-89.186593 | | | | | | | | | | | | | 0 | \dagger | | | Н | | + | 2 | 1 | H | \dashv | + | \dagger | H | | 2 | \dashv | \dagger | 1 | 1 | H | | | | + | + | + | | | | -89.186603 | | | | | | | | | Rope | | | | 0 | | | | | | | | | | | | | | | | | | | I | | | | | | I | I | | 402 | 45.897027 | -89.186614 | 23 | Catfish | Vilas | 8/1/2012 | BTB & TW | H 402 | 7 F | Rock | Pole | | | | 0 | + | | - | | | + | + | | | 4 | - | - | | | | 4 | \downarrow | + | \downarrow | 1 | | | | \downarrow | + | 1 | | | | -89.186624 | | | | | | | | | | | | | 2 | + | \vdash | - | Н | | + | 2 | | H | - | 1 | + | | | | + | + | + | + | + | | | | + | 1 | + | | | | -89.185351
-89.185361 | | | | | | | | | | | | | 0 | | | | Н | | \dagger | | | H | 1 | | | | | | 1 | | T | + | | | | | \dagger | \dagger | + | | | | -89.185372 | | | | | | | | | | | | | 0 | I | | | | | | | | | | | | | | | | | | I | | | | | 1 | I | L | | | (s | (see | si | | momtanı | | | | | |--------------|----------------------------|-----------------------------|-----|--------------------|--------|----------------------|------------|--------------|------------|--------------|-----------|----------|-------|----------|---------------------|-----------------------|-----------|-----------------------|-------------------|--------------------|-------------|------------------------|----------------|------------------|------------------|-------------------------|-----------------------|----------------------|---------------------|------------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|-------------------------|-------------------------|--------------------------|---------------------
-----------------------|--------------|-------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole;Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Chara enn | Fleocharis acicularis | Elodea canadensis | Heteranthera dubia | Isoetes sp. | Myriophyllum sibiricum | Najas flexilis | Nuchar variedata | Nymphaea odorata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton friesii | Potamogeton praelongus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriform | Sagitaria sp. (rosette) | Spargapium angustifolium | Spirodela polyrhiza | Vallisneria americana | Aquatic moss | Filamentous algae | | 407 | 45.910699 | -89.185382 | | Catfish | | | | | | | | DEEP | H | _ | | 408 | 45.909979
45.909259 | -89.185393
-89.185403 | | Catfish | Vilas | 8/1/2012
18991230 | EJH & CRS | 408 | 0 | | | DEEP | | | | | | | | | | | | | | | | | + | | | | | | | | | | | | H | | | 410 | 45.908539 | -89.185414 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 411 | 45.907819 | -89.185425 | 119 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 411 | 14 | | | DEEP | | | | | | | | | | | | | | | | | 4 | | | | | | | | | | | | Щ | _ | | 412 | 45.907099 | -89.185435 | 118 | Catfish | Vilas | 8/1/2012 | BTB & TWH | | 14 | | | DEEP | | | 0 | | | | | | | | | | | | | | + | | | | | | | | | | - | | Н | _ | | 413 | 45.906379
45.905659 | -89.185446
-89.185456 | 112 | Catfish | Vilas | 8/1/2012 | BTB & TWH | | 14 | Muck | Pole | DEEP | | | U | 415 | 45.904939 | | | Catfish | | | BTB & TWH | | 13 N | Muck | Pole | | | | 0 | 416 | 45.904220 | -89.185477 | 103 | Catfish | Vilas | 8/1/2012 | BTB & TWI | | 14 | | | DEEP | | | | | | | | | | | | | | | | | | | - | | | | | | | | - | | Н | _ | | 417 | 45.902060
45.901340 | -89.185509
-89.185519 | | Catfish
Catfish | Vilas | | BTB & TWI | | | Sand
Muck | Pole | | | | 0 | | | | | | | | 1 | ı | | | | | | | | | | | | | | | | | | 1 | | | 45.900620 | | | Catfish | | | BTB & TWH | | | Muck | | | | | 0 | 420 | 45.899900 | -89.185540 | 5 | Catfish | Vilas | 8/1/2012 | BTB & TWI | 420 | 0 | | | DEEP | 421 | 45.899180 | | | Catfish | | | | | 0 | | | DEEP | | - | \parallel | + | + | + | | | | \dashv | + | - | | | - | + | + | + | + | + | | | | - | \parallel | + | + | | Н | \dashv | | 422 | 45.898460
45.897740 | -89.185561
-89.185572 | | Catfish | Vilas | 8/1/2012
8/1/2012 | BTB & TWI | | 16 | Sand | Pole | DEEP | | | 0 | - | | 424 | 45.897020 | -89.185582 | | | Vilas | 8/1/2012 | BTB & TWH | | | Sand | Pole | | | | 3 | | | | | | | | 3 1 | ı | | | | | | | 1 | | | | 1 | 1 | | | | 1 | | | | 425 | 45.896300 | -89.185593 | 25 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 425 | 1 5 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | 426 | 45.912852 | -89.184319 | | Catfish | Vilas | 8/1/2012 | EJH & CRS | | 6 5 | Sand | Pole | | | | 2 | | | | | | | | 1 | | | | | | + | | 1 | | 1 | | 1 | | | | | | Н | | | 427 | 45.912132
45.911412 | | | Catfish
Catfish | Vilas | 8/1/2012
8/1/2012 | EJH & CRS | | 14 | | | DEEP | | | | | | | | | | | | | | | | | + | | | | | | | | | | | | H | | | 429 | 45.910692 | | | Catfish | | | EJH & CRS | | 15 | | | DEEP | 430 | 45.909972 | -89.184362 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 431 | 45.909252 | | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | + | | - | | | | | | - | | | | + | + | | | | | | | | | | - | | Н | _ | | 432 | 45.908532
45.907812 | -89.184383
-89.184393 | | Catfish | Vilas | 18991230
8/1/2012 | BTB & TWI | 0 | 14 | | | DEEP | | | | | | | | | | | | | | | | | T | | | | | | | | | | | | | _ | | 434 | 45.907092 | -89.184404 | | | | 8/1/2012 | BTB & TWH | | 14 | | | DEEP | 435 | 45.906372 | -89.184414 | 113 | Catfish | Vilas | 8/1/2012 | BTB & TWF | 435 | 14 | | | DEEP | | | | | - | | | | | | | | | | | | 4 | | | | | | | | | | | | Ц | | | | 45.905652 | | | Catfish | | | BTB & TWI | | 14 | | | DEEP | | | | + | | | | | | | | + | | | | + | + | | + | | | | | | | | + | | Н | _ | | 437 | 45.904932
45.904212 | -89.184435
-89.184446 | | Catfish | Vilas | 8/1/2012
8/1/2012 | BTB & TWH | | 13 N | Muck
Muck | Pole | | | | 0 | _ | | 439 | 45.902052 | -89.184478 | | Catfish | Vilas | 8/1/2012 | BTB & TWH | | | Sand | Pole | | | | 0 | 440 | 45.901332 | -89.184488 | 94 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 440 | 13 1 | Muck | Pole | | | | 0 | Щ | _ | | 441 | 45.900612 | -89.184499
-89.184509 | | Catfish | | | | | | Muck | Pole | | | | 0 | | + | | | | | | | | | | | | + | | | H | | | | | | ł | | | H | _ | | | | -89.184509
-89.184520 | | | | | | | | | | | | | 0 | | | | | | | | | | | | | | T | | | | | | | | | | | | | | | | | -89.184530 | | | | | | | | | Pole | | | | 1 | | | | | | | | 1 | -89.183288 | | | | | | | | Sand | Pole | | | | 2 | | | | 1 | | | | 1 1 | ı | | | | | - | | 1 | | | | | 1 | | | | 1 | H | _ | | | | -89.183298
-89.183309 | | | | | | | | | | DEEP | _ | | | | -89.183320 | | | | | | | | | | DEEP | 449 | 45.909965 | -89.183330 | 138 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 449 | 0 | | | DEEP | Щ | | | | | -89.183341 | | | | | | | | | | DEEP | | - | \parallel | + | + | + | | | | \dashv | + | - | - | | - | + | + | + | + | + | | | | - | \parallel | + | + | | Н | \dashv | | | | -89.183351
-89.183362 | | | | | | | | | | DEEP | | 1 | 1 | + | \dagger | + | | | | \dagger | + | \dagger | + | H | + | + | + | t | \dagger | + | | | | \dashv | 1 | \dagger | \dagger | | H | \dashv | | | | -89.183372 | | | | | | | | | | DEEP | -89.183383 | | | | | | | | Muck | Pole | | | | 0 | \downarrow | 1 | | | | | 4 | | 1 | | | _ | \downarrow | 4 | | 1 | | | | | _ | _ | 1 | 1 | | Ш | 4 | | | | -89.183394 | | | | | | | | | | | | | 0 | + | + | + | | | | \dashv | + | + | - | H | - | + | + | + | + | + | | | 4 | - | \downarrow | + | + | | H | \dashv | | | | -89.183404
-89.183415 | | | | | | | | | | | | | 0 | \dagger | \dagger | + | | | | + | 1 | 1 | + | | + | \dagger | + | \parallel | t | 1 | | | | 1 | | \dagger | \dagger | 1 | H | - | | | | -89.183478 | | | | | | | | | | | | _ | 0 | 1 | İ | t | t | | | | Ì | t | t | | | 1 | 1 | İ | İ | İ | L | | | | | İ | t | | | | | | | -89.183489 | | | | | | | | | | | | | 2 | \downarrow | 1 | | 1 | | | | 2 1 | | | | _ | \downarrow | 1 | | 1 | | | | | _[| | 1 | | | Ц | 4 | | | | -89.183499 | | | | | | | | | | | | | 1 | + | + | + | - | | | \dashv | 1 | + | - | 1 | 1 | + | + | + | + | - | | | 1 | - | | + | + | | Н | \dashv | | | | -89.182256
-89.182267 | | | | | | | | Sand | Pole | DEEP | | 1 | 1 | + | + | | | | | \dashv | 1 | + | \downarrow | H | \dashv | + | + | | 1 | t | 1 | | | \dashv | + | + | + | 1 | H | \dashv | | | | -89.182278 | | | | | | | | | | DEEP | | | | | T | | | | | | | | | | | | | t | T | | | | | | | İ | T | | | | | 464 | 45.910677 | -89.182288 | 135 | Catfish | Vilas | 8/1/2012 | EJH & CRS | 464 | 15 | | | DEEP | | | | | | | | | Ш | T | | | | | | | | | | | | | | | T | | | | | ani | | | \top | П | |--------------|----------------------------|-----------------------------|------------|-----------|--------|----------------------|------------|----------------------|------------|--------------|------------|--------------------|-------|----------|---------------------|------------------------|------------|-----------------------|-------------------|--------------------|-------------|----------------|-------------|------------------|------------------|-------------------------|----------------------|---------------------|------------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|--|--------------------------|---------------------|---------------------------------------|-------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | OI OI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Coratophyllim demorsim | Chara spp. | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Isoetes sp. | Najas flexilis | Nitella sp. | Nuphar variegata | Nymphaea odorata | Potamogeton amplifolius | Potamogeton foliosus | Potamogeton friesii | Potamogeton praelongus | Potamodeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Sagitaria sp. (rosette) Schoenoplectus tabernaemontani | Sparganium angustifolium | Spirodela polyrhiza | Vallisneria americana
Aquatic moss |
Filamentous algae | | 465 | 45.909957 | -89.182299 | 137 | Catfish | Vilas | 8/1/2012 | BTB & TW | | | | | DEEP | | | | + | + | | | + | H | | 466 | 45.909237
45.908517 | -89.182309
-89.182320 | 129
126 | Catfish | Vilas | 8/1/2012 | BTB & TW | | | | | DEEP | | | | t | | T | | | | | | | | | | | | | | | | | 1 | | | | - | Ħ | | 468 | 45.907797 | -89.182331 | 122 | Catfish | Vilas | 8/1/2012 | BTB & TW | | | Muck | Pole | | | | 1 | | | | 1 | | | | | | | | | | 1 | 1 | | | | | | | | | | | | 469 | 45.907077 | -89.182341 | 115 | Catfish | Vilas | 8/1/2012 | BTB & TW | H 469 | 6 | Muck | Pole | | | | 3 | | | | 1 | | | 1 | | | | 1 | | | 1 | 1 | | | | | | - | | | 2 | \perp | | 470 | 45.900598 | -89.182436 | 1 | Catfish | Vilas | 8/1/2012 | | | | | | DOCK | | | | + | + | H | | 471 | 45.899878
45.899158 | -89.182447
-89.182457 | 9 | Catfish | Vilas | 8/1/2012
8/1/2012 | BTB & TW | | | Sand | | | | | 3 | | | | | | | 3 | 1 | | | | | | 2 | 2 | | 1 | | | | | | | 1 | Ħ | | 473 | 45.898438 | -89.182468 | 10 | Catfish | Vilas | 8/1/2012 | BTB & TW | | | Sand | Pole | | | | 3 | | | | 1 | | | 3 | | | | | | | | | | | | 1 | | | | | 1 | | | 474 | 45.913550 | -89.181214 | 164 | Catfish | Vilas | 8/1/2012 | EJH & CR | S 474 | 3 | Sand | Pole | | | | 3 | 1 | | | 1 | | 1 | 1 | | | | | + | | - | 1 | | 1 | | 1 | 1 | + | | | 1 | H | | 475
476 | 45.912830
45.912110 | -89.181225
-89.181236 | 163 | Catfish | Vilas | 8/1/2012
8/1/2012 | EJH & CR | | | Sand | Pole | DEEP | | | 2 | | | | | | | 1 | 1 | | | 1 | | | 1 | 1 | | 1 | | 1 | | | | | 1 | H | | 477 | 45.912110 | -89.181246 | | Catfish | | 8/1/2012 | EJH & CR | | | Muck | Pole | DEEP | | | 0 | + | П | | 478 | 45.910670 | -89.181257 | 136 | Catfish | Vilas | 8/1/2012 | EJH & CR | S 478 | 14 | | | DEEP | 479 | 45.909950 | -89.181267 | 136 | Catfish | Vilas | 8/1/2012 | BTB & TW | | 0 | | | DEEP | | | + | + | - | 1 | | \sqcup | - | - | | \sqcup | 4 | + | + | | + | + | - | Н | | 4 | 4 | + | Н | 4 | + | \sqcup | | 480 | 45.909230 | -89.181278 | | | | 8/1/2012 | BTB & TW | | 0 | | | DEEP | | Н | + | + | + | + | | H | + | + | | H | + | + | + | Н | + | + | + | H | | \dashv | + | + | H | + | + | \forall | | 481 | 45.908510
45.907790 | -89.181289
-89.181299 | | Catfish | Vilas | 8/1/2012
8/1/2012 | BTB & TW | | 2 | Sand | Pole | DEEP | | | 0 | + | П | | 483 | 45.917862 | -89.180119 | | Catfish | Vilas | 8/1/2012 | BTB & TW | | | Sand | Pole | | | | 2 | | | | | 1 | | 2 | | | | | | | | | | | | 1 | | | | | 1 | | | 484 | 45.917142 | -89.180130 | 193 | Catfish | Vilas | 8/1/2012 | EJH & CR | S 484 | 5 | Sand | Pole | | | | 3 | | | | 1 | | | | | | | | | | | | 1 | | | | | - | | | 2 | \perp | | 485 | 45.916422 | -89.180141 | | Catfish | Vilas | 8/1/2012 | EJH & CR | | | | | TEMPORARY OBSTACLE | | | | - | _ | H | | 486 | 45.914262
45.913542 | -89.180172
-89.180183 | | | Vilas | 8/1/2012
8/1/2012 | EJH & CR | | | Sand | | | | | 0 | 1 | | | | | | | | | | | | 1 | 1 | 1 | | | | 1 | | | | | + | Ħ | | 488 | 45.912822 | -89.180194 | | Catfish | Vilas | 8/1/2012 | EJH & CR | | | muon | 1 010 | DEEP | 489 | 45.912102 | -89.180204 | 157 | Catfish | Vilas | 8/1/2012 | EJH & CR | S 489 | 15 | | | DEEP | ┷ | H | | 490 | 45.911382 | -89.180215 | | Catfish | Vilas | 8/1/2012 | BTB & TW | | | | | DEEP | | | | + | | | | | | | | | | | | | | | | | | | + | | | | _ | H | | 491 | 45.910662
45.909942 | -89.180225
-89.180236 | | Catfish | Vilas | 8/1/2012
8/1/2012 | BTB & TW | | 14 | | | DEEP | 1 | | | | + | Ħ | | 493 | 45.909222 | -89.180247 | | Catfish | Vilas | 8/1/2012 | BTB & TW | | 12 | Sand | Pole | DEL | | | 0 | 494 | 45.908502 | -89.180257 | 124 | Catfish | Vilas | 8/1/2012 | BTB & TW | H 494 | 0 | | | DOCK | _ | | | 495 | 45.919294 | -89.179067 | | | Vilas | | | | | Sand | | | | | 0 | + | | | | | | | | | | | | | | | | | | | + | | | | _ | H | | 496 | 45.918575
45.917855 | -89.179077
-89.179088 | 211 | Catfish | Vilas | 8/1/2012
8/1/2012 | BTB & TW | | | Sand | Pole | | | | 0 | | | | 1 | | | 1 | 1 | | | | | | 2 | 2 | | | | 1 | | | | | 1 | Ħ | | 498 | 45.917135 | -89.179098 | 194 | Catfish | Vilas | 8/1/2012 | EJH & CR | | | Muck | Pole | | | | 0 | 499 | 45.916415 | -89.179109 | 191 | Catfish | Vilas | 8/1/2012 | EJH & CR | S 499 | 6 | Sand | Pole | | | | 3 | 3 | 3 | | | | | 1 | 1 | | | | | | | | | 1 | | 1 | 1 | | | | \perp | \perp | | | | -89.179130 | | | | | | | | | | | | | 3 | 1 | | | 1 | | | 1 | 1 | | - | | | | 2 | 2 1 | | 1 | | 1 | 1 | + | | | + | + | | | | -89.179141
-89.179152 | | | | | | | | | | | | | 0 | \dagger | | | + | Ħ | | | | -89.179162 | | | | | | | | | | | | | 0 | 504 | 45.912095 | -89.179173 | 158 | Catfish | Vilas | 8/1/2012 | EJH & CR | S 504 | 14 | | | DEEP | | | 1 | 1 | - | 1 | | | - | | | | 4 | - | - | | - | + | - | | | _ | - | - | | 4 | + | \sqcup | | | | -89.179183 | | | | | | | | | | | | | 0 | + | + | + | H | \dashv | + | + | | \dashv | + | + | - | | + | + | + | Н | | \dashv | + | + | Н | + | + | H | | | | -89.179194
-89.179205 | | | | | | | | | Pole | DEEP | | | 0 | \dagger | | t | | H | \dagger | t | | H | + | \dagger | + | | \dagger | \dagger | | H | | 1 | 1 | \dagger | H | + | + | \forall | | | | -89.179215 | | | | | | | | Sand | Pole | | | | 3 | T | İ | | | | T | 2 | 1 | | 1 | I | | | T | 1 | I | | | 1 | 1 | T | | 1 | | | | 509 | 45.919287 | -89.178035 | 209 | Catfish | Vilas | 8/1/2012 | BTB & TW | H 509 | 9 | Sand | Pole | | | | 0 | + | | | | | - | _ | | | 4 | - | 1 | | - | _ | | \sqcup | | | 1 | \perp | \sqcup | - | + | \sqcup | | | | -89.178046 | | | | | | | | | | | | | 1 | 1 | + | | | | | + | - | | + | - | + | | 1 | 1 | | Н | | + | 1 | + | Н | + | + | H | | | | -89.178056
-89.178067 | | | | | | | | Sand
Sand | | | | | 0 | + | + | + | | H | | | | | + | + | \dagger | | + | \dagger | + | H | | \dashv | + | + | H | \dashv | + | \forall | | | | -89.178078 | | | | | | | | | | | | | 2 | 1 | İ | ľ | L | | 1 | | 1 | | | İ | l | | Ì, | 1 | ľ | 1 | | 1 | 1 | Ī | | | I | | | | | -89.178088 | | | | | | | | Sand | | | | | 1 | Ţ | 1 | 1 | | LŢ | | 1 | | | \prod | ſ | | | | | L | 1 | 1 | _[| Ī | \downarrow | П | - | ┰ | \sqcup | | | | -89.178099 | | | | | | | | | | | | | 1 | + | - | + | | | + | 1 | 1 | | \dashv | + | + | | 1 | 1 | + | Н | | - | - | + | Н | \dashv | + | \dashv | | | | -89.178109
-89.178120 | | | | | | | | | Do!- | DEEP | | | 0 | + | + | + | | H | + | + | - | H | + | + | 1 | | + | + | | H | | | + | + | H | + | + | \forall | | | | -89.178120
-89.178131 | | | | | | | | | | | | | 0 | 1 | 1 | T | İ | | | İ | İ | | | | ľ | | | İ | T | | | | _ | 1 | | | | Ħ | | | | -89.178141 | | | | | | | | | | DEEP | | | Ţ | $oxed{\Box}$ | | | | Ц | | | | Ц | Ţ | I | | | | F | | Ц | | J | I | | Ц | \prod | ┰ | Ц | | | | -89.178152 | | | | | | | | | | | | | 2 | + | - | | | | + | - | 2 | | \dashv | + | - | | + | + | | Н | | \dashv | - | + | Н | + | + | 1 | | | | -89.178163
-89.178173 | | | | | | | | Muck | | | | | 3 | + | + | t | H | H | + | 1 | , | H | + | + | | | ١, | , | t | 1 | | 1 | + | + | H | + | + | \forall | | 322 | -10.303326 | 00.110113 | 133 | oauisti | v IIdS | 0/1/2012 | LOID & IW | . 1 ₁ UZZ | 10 | oand | i ole | | | | J | | | 1 | 1 | ш | | 11 | 1 4 | | | | _1 | | 1.2 | - | | 1 1 | | - 1 | | | ш | | | ш | | | | (S | _ | | ontani | | T | T | | |--------------|----------------------------|-----------------------------|------------|--------------------|--------|----------------------|------------|--------------|------------|--------------|--------------|--------------------|-------|----------|---------------------|-----------------------|-----------|-----------------------|-------------------|--------------------|--------------|------------------------|-------------------------------|------------------|------------------|-------------------------|-----------------------|---------------------|------------------------|----------------------|--------------------------|-----------------------|-----------------------|--------------------|---------------------------|-------------------------|--------------------------------|--------------------------|--|--------------|-------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Chara spn | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Isoetes sp. | Myriophyllum sibiricum | Najas riexiiis
Nitella sp. | Nuphar variegata | Nymphaea odorata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton friesii | Potamogeton praelongus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamodeton vasevi | Potamogeton zosteriformis | Sagitaria sp. (rosette) | Schoenoplectus tabernaemontani | Sparganium angustifolium | Spirodela polyrniza
Vallisneria americana | Aquatic moss | Filamentous algae | | 523 | 45.919280 | | | | | | BTB & TW | | | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | + | | | | | + | + | | | 524
525 |
45.918560
45.917840 | -89.177014
-89.177025 | | Catfish
Catfish | Vilas | 8/1/2012
8/1/2012 | BTB & TW | | | Muck
Sand | Pole
Pole | | | | 1 | | | | | | | | 1 | | | | | | | | | | | | | | | | 1 | | | | 526 | 45.917120 | | | Catfish | Vilas | 8/1/2012 | EJH & CR | | 10 | Sand | Pole | | | | 0 | + | | | 527
528 | 45.916400
45.915680 | -89.177046
-89.177057 | 189
184 | Catfish
Catfish | Vilas | 8/1/2012
8/1/2012 | EJH & CR | | | Sand
Sand | Pole
Pole | | | | 1 | | | | 1 | | | | | | | 1 | | | | | | | | | 1 | | | | 1 | | | | 529 | 45.914960 | -89.177067 | 178 | | Vilas | 8/1/2012 | EJH & CR | | | Sand | | | | | 0 | ľ | | | | 530 | 45.914240 | -89.177078 | 172 | Catfish | Vilas | 8/1/2012 | EJH & CR | 530 | 14 | | | DEEP | | | | | | - | | | | | | | | | | | | | | | | - | | | | | - | _ | H | | 531 | 45.913520
45.912800 | -89.177089
-89.177099 | 168 | Catfish | Vilas | 8/1/2012
8/1/2012 | EJH & CR | | 13 | Muck | Pole | DEEP | | | 0 | + | + | | | 533 | 45.912080 | | | Catfish | Vilas | 8/1/2012 | | | 11 | Rock | Pole | JEC. | | | 0 | I | l | | | 534 | 45.911360 | | | Catfish | | | | | | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | - | | | | | + | + | H | | 535 | 45.910640
45.909920 | -89.177131
-89.177142 | | Catfish | Vilas | 8/1/2012
18991230 | BTB & TW | 535
536 | 10 | Muck | Pole | TEMPORARY OBSTACLE | | | 2 | | | | | | | | 1 1 | | | | | | | 2 | | | | | | | | | + | + | H | | 537 | 45.919272 | -89.175972 | | Catfish | Vilas | | BTB & TW | H 537 | 5 | Sand | Pole | | | | 3 | | | | 1 | | | | 1 | | | | | | | | | | | | 1 | | | | 3 | | | | 538 | 45.918552 | -89.175983 | | Catfish | | 8/1/2012 | BTB & TW | | 5 | Sand | Pole | | | | 2 | | | | | | | | 1 | | | | | | | 1 | | | | 1 | | | | | | + | | | 539 | 45.917832
45.917112 | | | Catfish
Catfish | | 8/1/2012
8/1/2012 | EJH & CR | | | Sand
Muck | Pole | | | | 0 | + | + | H | | 541 | 45.916392 | -89.176015 | | Catfish | Vilas | 8/1/2012 | EJH & CR | | | Sand | | | | | 0 | I | I | 1 | | 542 | 45.915672 | -89.176025 | | Catfish | | | EJH & CR | | 6 | Sand | Pole | | | | 1 | | | | 1 | | | | | | | | | | | | | | | - | | | | | 1 | + | \vdash | | 543 | 45.914952
45.914232 | | | Catfish
Catfish | | | EJH & CR | | 15 | | | DEEP | + | + | H | | 545 | 45.913513 | -89.176057 | | Catfish | | | EJH & CR | | 14 | | | DEEP | I | İ | | | 546 | 45.912793 | -89.176068 | | | Vilas | | BTB & TW | | | Rock | Pole | | | | 0 | _ | | | 547 | 45.912073
45.911353 | -89.176079
-89.176089 | | Catfish | | 8/1/2012
8/1/2012 | BTB & TW | | | Muck
Muck | Pole | | | | 0 | - | + | H | | 549 | 45.910633 | -89.176100 | | | | 8/1/2012 | BTB & TW | | | Muck | Pole | | | | 0 | I | | | 550 | 45.909913 | -89.176110 | | | | 18991230 | | 550 | 0 | | | TEMPORARY OBSTACLE | - | | | | | + | + | \vdash | | 551
552 | 45.919265
45.918545 | | | Catfish
Catfish | | | BTB & TW | | | Sand
Sand | | | | | 1 | | | 1 | 1 | | | | 1 | | | | | | | 1 | | | 1 | 1 | | | | | 1 | +- | | | 553 | 45.917825 | -89.174962 | | | Vilas | 8/1/2012 | BTB & TW | | | Muck | Pole | | | | 0 | | | ľ | | | | | | | | | | | | Ė | | | | | | | | | ľ | I | | | 554 | 45.917105 | -89.174972 | 198 | Catfish | Vilas | 8/1/2012 | EJH & CR | 554 | 14 | | | DEEP | + | | | 555
556 | 45.916385
45.915665 | -89.174983
-89.174994 | | Catfish
Catfish | Vilas | 8/1/2012
8/1/2012 | | | 13 | Muck | Pole | DEEP | | | 0 | - | + | H | | 557 | 45.914945 | -89.175004 | | Catfish | | | EJH & CR | | 14 | | | DEEP | -89.175015 | | | | | | | | | | | | | 0 | _ | | | | | -89.175026
-89.175036 | | | | | | | | | | | | | 0 | - | + | H | | | | -89.175047 | | | | | | | | | Pole | | | | 0 | I | | | | | -89.175058 | | | | | | | | | | | | | 0 | | | | | | | | | | | | | | | | | | | - | | | | | + | + | \vdash | | | | -89.175068
-89.173920 | | | | | | | | | | | | | 3 | | | | 1 | | | - : | 2 1 | | | | | | | 1 | | 1 | 1 | 1 | 1 | | | | - 2 | , | | | | | -89.173930 | | | | | | | | | | | | | 0 | | | | Ė | | | | | | | | | | | | | | | ľ | Ė | | | | Ī | | | | | | -89.173941 | | | | | | | | | | DEEP | | | - | - | - | + | | | \dashv | + | - | | | | + | - | | | | - | + | + | - | | | 1 | + | + | \dashv | | | | -89.173952
-89.173962 | | | | | | | | | | | | | 0 | + | \dagger | \dagger | | | \dashv | + | + | | H | H | + | + | | H | | 1 | + | \dagger | - | Н | | + | + | + | \forall | | | | -89.173962
-89.173973 | | | | | | | | | | | | | 0 | | 1 | ļ | | | | | | | | | 1 | | | | | | 1 | | | | | | 1 | I | | | | | -89.173984 | | | | | | | | | | | | | 0 | + | | | | | 4 | \downarrow | | | | Н | 1 | - | | | | | + | - | | | _ | - | + | \bot | \sqcup | | | | -89.173994
-89.174005 | | | | | | | | | | | | | 0 | + | + | - | | | + | + | - | H | | | + | H | | | 1 | 1 | + | + | - | | + | + | + | + | + | | | | -89.174016 | | | | | | | | | | | | | 0 | 1 | | t | | | | | | | | | | | | | | | | l | | | | 1 | I | 1 | | | | | -89.174026 | | | | | | | | Muck | Pole | | | | 0 | - | 1 | 1 | | | \downarrow | | | L | | | \downarrow | | | | | | | | | | _ | - | Ŧ | Ļ | \sqcup | | | | -89.174037 | | | | | | | | 0 | D-2 | DOCK | | H | 0 | + | + | + | | | \dashv | + | + | \vdash | H | H | + | + | | | 1 | 1 | + | + | - | H | \dashv | + | + | + | H | | | | -89.172888
-89.172899 | | | | | | | | | | | | | 0 | | l | İ | L | | | | l | L | L | | 1 | İ | L | | | | 1 | İ | L | | | | 1 | İ | | | 578 | 45.917090 | -89.172909 | 200 | Catfish | Vilas | 8/1/2012 | BTB & TW | H 578 | 13 | Muck | Pole | | | | 0 | Ţ | | 1 | - | | - | - | | | L | Ц | | L | | | Ţ | Ţ | - | 1 | | H | - | 1 | Ŧ | Ļ | \sqcup | | | | -89.172920 | | | | | | | | | | | | | 0 | + | + | + | | | + | + | + | | | | + | | - | | 1 | + | + | + | | | - | + | + | + | \dashv | | 580 | 45.915650 | -89.172931 | 191 | Cattish | Vilas | ರ/1/2012 | RIR & TW | nj 580 | 10 | Sand | Pole | | | <u> </u> | 0 | | | | 1 | ш | | | | 1_ | 1 | ш | | | 1_ | ш | | | | | 1 | ш | | | | ш | ш | | - | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | | | | | | | | | | | | ullness | Myriophyllum spicatum
Ceratophyllum demersum | | cicularis | densis | dubia | n sibiricum | | | igata | Nymphaea odorata
Potamogeton amplifolius | epihydrus | foliosus | Potampoeton praelongus | busillus | Potamogeton richardsonii | robbinsii | spirillus | Potamogeton strictifolius | Potamogeton zosteriformis | (rosette) | Schoenoplectus tabernaemontani | Sparganium angustifolium | iyrniza
mericana | 5 | algae | |--------------|----------------------------|-----------------------------|-----|-----------|--------|----------|------------|--------------|------------------------|------------|----------|-------|----------|---------------------|---|------------|-----------------------|-------------------|--------------------|---------------------------------------|----------------|-------------|------------------|---|-----------------------|----------------------|------------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|---------------------------|-------------------------|--------------------------------|--------------------------|--|--------------|-------------------| | Point Number | Latitude (De | Longitude (F | OI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft)
Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum
Ceratophyllum demersi | Chara spp. | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Isoetes sp.
Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nuphar variegata | Nymphaea odorata
Potamogeton ampl | Potamogeton epihydrus | Potamogeton foliosus | Potamodeto | Potamogeton pusillus | Potamogeto | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictii | Potamogeto | Sagitaria sp. (rosette) | Schoenopled | Sparganium | spirodela polyrniza
Vallisneria americana | Aquatic moss | Filamentous algae | | 581 | 45.914930 | -89.172941 | 182 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 581 | 7 Muc | | | | | 2 | | | | 1 | | | | | | | | | | 1 | | | 1 | 1 | | | | | | | | | 582 | 45.914210 | -89.172952 | 179 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 582 | 12 Mud | k Pole | | | | 0 | L | | | 583 | 45.913490 | -89.172963 | 170 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 583 | 12 Mud | k Pole | | | | 0 | Ļ | | | 584 | 45.912770 | -89.172974 | 163 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 584 | 11 Sar | d Pole | | | | 0 | ┸ | Ш | | 585 | 45.912050 | -89.172984 | 158 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 585 | 12 Mu | k Pole | | | | 0 | L | | | 586 | 45.911330 | -89.172995 | 146 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 586 | 7 Sar | d Pole | | | | 2 | | | | 1 | | | 1
| 1 | | | | | | 1 | | | | | | | | | 2 | : | | | 587 | 45.918522 | -89.171856 | 204 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 587 | 1 Sar | d Pole | | | | 0 | L | Ш | | 588 | 45.917802 | -89.171867 | 202 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 588 | 8 Sar | d Pole | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | | | | | L | Ш | | 589 | 45.917082 | -89.171878 | 199 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 589 | 13 Mu | k Pole | | | | 0 | ┸ | Ш | | 590 | 45.916363 | -89.171889 | 193 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 590 | 10 Sar | d Pole | | | | 0 | L | Ш | | 591 | 45.915643 | -89.171899 | 190 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 591 | 6 Sar | d Pole | | | | 2 | | | | | | | 1 | 1 | | 2 | | | | 1 | | | | | | | | | | L | | | 592 | 45.914923 | -89.171910 | 183 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 592 | 10 Mu | k Pole | | | | 0 | L | | | 593 | 45.914203 | -89.171921 | 178 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 593 | 11 Muc | k Pole | | | | 0 | L | | | 594 | 45.913483 | -89.171931 | 171 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 594 | 9 Mud | k Pole | | | | 2 | | | | | | | | 2 | | | | | | | | | 1 | 1 | 1 | | | | | L | | | 595 | 45.912763 | -89.171942 | 162 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 595 | 11 Muc | k Pole | | | | 0 | L | | | 596 | 45.912043 | -89.171953 | 159 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 596 | 7 Sar | d Pole | | | | 3 | 1 | | | | | | 2 | | | | | | | | | | 1 | 1 | | | | | 1 | L | | | 597 | 45.917795 | -89.170836 | 203 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 597 | 3 Sar | d Pole | | | | 1 | | | | 1 | | 1 | 1 | | | | | | | | | | | | 1 | | | | 1 | L | | | 598 | 45.917075 | -89.170846 | 198 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 598 | 5 Sar | d Pole | | | | 1 | | | | | | | 1 | 1 | | | | | | 1 | | | | 1 | | | | | 1 | | | | 599 | 45.916355 | -89.170857 | 194 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 599 | 6 Sar | d Pole | | | | 3 | | | | 1 | | 1 | | | | | | | | 2 | 1 | | | 1 | | | | | 2 | ! | | | 600 | 45.915635 | -89.170868 | 189 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 600 | 7 Sar | d Pole | | | | 3 | 2 | | | | | 1 | | 1 | | | | | | 1 | | | | 1 | 1 | | | | 1 | L | | | 601 | 45.914915 | -89.170879 | 184 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 601 | 9 Mud | k Pole | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | 602 | 45.914195 | -89.170889 | 177 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 602 | 10 Mu | k Pole | | | | 0 | 603 | 45.913475 | -89.170900 | 172 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 603 | 10 Mu | k Pole | | | | 1 | 1 | | | | | | | | | | | | | 1 | | | | | | | | | | L | | | 604 | 45.912755 | -89.170911 | 161 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 604 | 8 Roo | k Pole | | Ш | | 1 | | | | | | | | 1 | | | | | | | | | | | | | | | | L | | | 605 | 45.917068 | -89.169815 | 197 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 605 | 4 Sar | d Pole | | Ш | | 2 | | | | | | | 1 | Ш | | | | | | 1 | | | | | | | | | 2 | : | | | 606 | 45.916348 | -89.169826 | 195 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 606 | 6 Sar | d Pole | | | | 1 | | | | 1 | 607 | 45.915628 | -89.169836 | 188 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 607 | 7 Mud | k Pole | | | | 3 | 1 | | | | | | 1 | | | | | | | 1 | | | | | | | | | 3 | | | | 608 | 45.914908 | -89.169847 | 185 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 608 | 7 Mud | k Pole | | | | 2 | 1 | | | 1 | | | | | | | | | | 1 | | | | 1 | | | | | 1 | | | | 609 | 45.914188 | -89.169858 | 176 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 609 | 9 Mu | k Pole | | Ш | | 1 | | | | | | | 1 | 1 | | | | | | 1 | | | | 1 | | | | | | L | Ш | | 610 | 45.913468 | -89.169869 | 173 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 610 | 9 Mu | k Pole | | | | 0 | L | | | 611 | 45.912748 | -89.169879 | 160 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 611 | 6 Sar | d Pole | | | | 3 | 2 | | | | | | 1 | 1 | | | 1 | | | | | | 1 | 1 | | | | | 2 | ! | Ш | | 612 | 45.916340 | -89.168794 | 196 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 612 | 5 Mu | k Pole | | | | 2 | | | | | | | | | | | Ш | | | | | | | 1 | | | | | 2 | : | | | 613 | 45.915620 | -89.168805 | 187 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 613 | 6 Mu | k Pole | | | | 2 | | | | | | | | | | | | | | | | 1 | | | 1 | | | | 2 | | | | 614 | 45.914900 | -89.168816 | 186 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 614 | 6 Mu | k Pole | | | | 2 | 1 | | | 1 | | | 1 | 1 | | | | | | | 1 | | | | 1 | | | | 1 | L | Ш | | 615 | 45.914180 | -89.168826 | 175 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 615 | 6 Mu | k Pole | | | | 3 | | | | | | | 1 | 1 | | | Ш | | | 1 | | | | 2 | 1 | | | | 1 | L | Ш | | 616 | 45.913460 | -89.168837 | 174 | Catfish | Vilas | 8/1/2012 | BTB & TWH | 616 | 0 | | DOCK | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name
County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | My riophyllum spicatum | Ceratophyllum demersum | Chara spp. | Elodea canadensis | Heteranthera dubia | Megalodonta beckii | My riophyllum sibiricum | Myriophyllum verticillatum
Najas flexilis | Nitella sp. | Nuphar variegata | Nymphaea odorata | Potam ogeton amplifolius | Potamogeton epirtydrus | Potamogeton pusillus | Potamogeton richardson | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton v aseyi | Potamogeton zosteriform is | Sparganium fluctuans | Utricularia vulgaris | Vallis neria americana
Freshwater sponge | Filamentous algae | |--------------|----------------------------|-----------------------------|-----|----------------------------------|----------|------------|--------------|------------|--------------|------------|----------------|----------|----------|---------------------|------------------------|------------------------|------------|-------------------|--------------------|--------------------|-------------------------|--|-------------|------------------|------------------|--------------------------|------------------------|----------------------|------------------------|-----------------------|---------------------------|---------------------|----------------------------|----------------------|----------------------|---|-------------------| | 1 | 45.925078 | -89.198316 | | Voyageur Vilas | | DAC & EEC | 1 | 6 | Sand | Pole | | | | 2 | | | | | | | | 1 | | | | | | | | | | | | | | 2 | \blacksquare | | 2 | 45.924628 | | | Voyageur Vilas
Voyageur Vilas | | | | | | Pole | | | | 2 | | | | | | | | 2 | | | | | | 1 | + | + | 1 | | | | \dashv | _ | | | 3 | | | | Voyageur Vilas
Voyageur Vilas | | | | | Rock
Rock | | | | | 1 | | | | | | | | 2 | | | | | | 1 | T | | 1 | | | | | 1 | П | | 5 | | | | Voyageur Vilas | | | | | Rock | | | | | 0 | 6 | | | | Voyageur Vilas | | | | 6 | Sand | Pole | | | | 2 | | | | | | | 1 | | | | | | | | | | | | | | | 2 | | | 7 | | | | Voyageur Vilas | | | | 6 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | - | | - | | | | 4 | _ | Ш | | - 8 | 45.922805 | | | Voyageur Vilas | | | | 6 | Sand | Pole | | | | 1 | | | | | | | | 1 | | | | | | | + | + | - | | | | - | 1 | \vdash | | 9 | | | | Voyageur Vilas
Voyageur Vilas | | | | 7 | Sand
Sand | | | | | 0 | | | - | | | | - | | | | | | \dashv | | | | | | | | | _ | \vdash | | 11 | | | | Voyageur Vilas | | | | | Muck | | | | | 3 | | | | | | | | | | | | 1 | | | | | | 1 | | | | 3 | | | 12 | | | | Voyageur Vilas | | | | 0 | | | DOCK | 13 | 45.922351 | -89.194486 | 219 | Voyageur Vilas | 8/1/2012 | DAC & EEC | 13 | 1 | Sand | Pole | | | | 1 | | | | | | | | 1 | | | | | 1 | | | | | | | | | 1 | | | 14 | | | | Voyageur Vilas | | | | | Muck | Pole | | | | 0 | _ | H | | 15 | | | | Voyageur Vilas | | | | | Sand | Pole | | | | 0 | | | | | | | | | | | | | _ | | + | + | + | - | | | _ | _ | | | 16
17 | | | | Voyageur Vilas
Voyageur Vilas | | | | 6 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | . 🕇 | | | | | | _ | \vdash | | 18 | | | | Voyageur Vilas | | | | 7 | Muck | Pole | | | | 1 | | 1 | | | | | | | | | | | - | | | | | | | | | 1 | П | | 19 | | | | Voyageur Vilas | | | | | Muck | Pole | | | | 0 | 20 | 45.920996 | | | Voyageur Vilas | | | | 7 | Muck | Pole | | <u> </u> | | 0 | | \sqcup | 4 | | | 1 | 4 | - | | | | | _ | - | 4 | \bot | 1 | - | | Н | 4 | \bot | \sqcup | | 21 | | | | Voyageur Vilas | | | | | Muck | Pole | | | | 3 | | | | | | | | | | | | | - | 1 | | + | | | | 1 | _ | 3 | | | 22 | | | | Voyageur Vilas
Voyageur Vilas | | | | 5 | Muck | De l' | DOCK | - | H | | , | \forall | \dashv | - | | + | | + | | | H | - | \dashv | + | + | + | + | - | | H | \dashv | _ | \forall | | 23 | | | | Voyageur Vilas
Voyageur Vilas | | | | | Muck | | | | | 0 | 1 | | | | | | 1 | | | | | | | | T | | | | | | | 1 | П | | 25 | 45.920542 | | | Voyageur Vilas | | | | | Muck | | | | | 1 | | | | | | | | 1 | | | | | | | | | | | 1 | | | | П | | 26 | 45.920092 | | | Voyageur Vilas | | | | 3 | Sand | Pole | | | | 3 | | 1 | | 1 | | | 2 | 1 | | | | | | | | | | 1 | 1 | | 1 | 1 | | | 27 | 45.920987 | | | Voyageur Vilas | | | | | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | _ | | | | | | | | | 28 | 45.920537 | | | Voyageur Vilas | | | | | Muck | | | | | 1 | | | | | | | | | | | | | - | | | + | | | 1 | | _ | _ | | | 29 | | | |
Voyageur Vilas | | | | | Muck | | | | | 2 | | 2 | | | | | | | | | | | | | + | 1 | - | | | | - | | | | 30 | 45.921433
45.920983 | | | Voyageur Vilas
Voyageur Vilas | | | | | Sand
Muck | | | | | 0 | | | | | | | | | | | | | _ | | | | | | | | | 1 | H | | 32 | | | | Voyageur Vilas | | | | | Sand | | | | | 1 | | | | | 1 | | | 1 | | | | | | | | | | | 1 | 1 | | 1 | | | 33 | 45.921428 | -89.191275 | 199 | Voyageur Vilas | 8/1/2012 | DAC & EEC | 33 | 6 | Sand | Pole | | | | 1 | 1 | | | 34 | | | | Voyageur Vilas | | | | | Muck | | | | | 3 | 1 | 3 | | | | | 1 | 1 | | | | | | | - | | - | 1 | 1 | | 4 | 1 | Ш | | 35 | | | | Voyageur Vilas | | | | | Muck | | | | | 0 | | | | | | | | | | | | | | | + | + | - | | | | - | | | | 36
37 | | | | Voyageur Vilas
Voyageur Vilas | | | | | Muck
Muck | | | | | 0 | 38 | | | | Voyageur Vilas | | | | | Sand | | | | | 0 | П | | 39 | 45.924119 | -89.189946 | 193 | Voyageur Vilas | 8/1/2012 | DAC & EEC | 39 | 3 | Muck | Pole | | | | 3 | | | | | 1 | | 1 | 2 | | | | | 1 | | | 1 | | 1 | 1 | | | 1 | | | 40 | | | | Voyageur Vilas | | | | | Muck | | | | | 1 | | | | | | | | | | | | | | | | - | | 1 | | | | _ | Ш | | 41 | | | | Voyageur Vilas | | | | | Muck | Pole | | | | 0 | | | | | | | | | | | | | _ | | + | + | + | - | | | _ | _ | | | 42 | 45.922769
45.922319 | | | Voyageur Vilas
Voyageur Vilas | | | | 10 | Muck
Muck | Pole | | | | 0 | \vdash | | 44 | | | | Voyageur Vilas | | | | | MUCK | POIE | DOCK | | | U | | | | | | | | | | | | | | | | | l | | | | | _ | П | | 45 | | | | Voyageur Vilas | | | | | Muck | Pole | | | | 3 | | | | 1 | | | | | | | | 1 | | | | | | 1 | 1 | | | 2 | | | 46 | | | | Voyageur Vilas | | | | | | | | | | 0 | | | | | | | | | | | | | | | | _ | | | | | | | | | 47 | | | | Voyageur Vilas | | | | | | | | - | | 0 | | \dashv | + | | | + | + | - | | | | | + | + | + | + | - | | | \vdash | \dashv | + | H | | 48 | | | | Voyageur Vilas
Voyageur Vilas | | | | | Muck
Sand | | | | H | 2 | | \forall | + | 1 | | + | + | 1 | | | H | 1 | + | + | + | ١. | 1 | | 4 | H | \dashv | 1 | \forall | | 50 | | | | Voyageur Vilas
Voyageur Vilas | | | | | | | | L | | 3 | | | | 1 | | | | _[" | | | | 1 | | | | . 1
1 | İ | 1 | 2 | | | 2 | П | | 51 | | | | Voyageur Vilas | | | | | Sand | | | | | | | | | | | | | | 1 | | | | | | | | | | Ė | | | | | | 52 | 45.923210 | -89.188670 | 180 | Voyageur Vilas | 8/1/2012 | DAC & EEC | 52 | 11 | | | | | Ш | 0 | | | _ | | | 1 | _ | \perp | | | Ш | | _ | | 1 | 1 | 1 | - | | Ш | 4 | _ | Ш | | 53 | | | | Voyageur Vilas | | | | | | | | | H | 1 | | \vdash | 4 | - | | - | 4 | 1 | | | H | | - | + | + | - | 1 | 1 | | \sqcup | \dashv | _ | \vdash | | 54 | | | | Voyageur Vilas
Voyageur Vilas | | | | | | | | - | H | 0 | | \forall | \dashv | - | | + | \dashv | + | | | H | - | \dashv | + | + | + | + | - | | H | \dashv | + | + | | 55
56 | | | | Voyageur Vilas
Voyageur Vilas | | | | | | | | | H | 0 | | | \dashv | 1 | | 1 | \dashv | + | | | H | 1 | 7 | + | \dagger | + | t | | | H | \dashv | + | Н | | 57 | | | | Voyageur Vilas | | | | | | | | | | 0 | 58 | | | | Voyageur Vilas | | | | | | | | | | 1 | | | | | | | | _ _ | | | | | _ | | 1 | | L | | 1 | Ш | _ | | Ш | | 59 | | | | Voyageur Vilas | | | | | | | | | | 2 | | \sqcup | \dashv | | | - | \dashv | 1 | | | | 1 | - | | + | 1 | 1 | 1 | | $\vdash \vdash$ | 4 | 1 | \vdash | | 60 | | | | Voyageur Vilas | | | | | | | | - | | 2 | 1 | 1 | \dashv | - | - | + | 1 | + | | | | - | \dashv | + | + | + | + | | | \vdash | + | 1 | \forall | | 61 | | | | Voyageur Vilas
Voyageur Vilas | | | | | | | | | H | 0 | | H | \dashv | 1 | | + | \dashv | + | | | H | 1 | \dashv | + | \dagger | \dagger | t | | | H | \dashv | + | Н | | 63 | | | | Voyageur Vilas | | | | | | | | | | 1 | | | | | | | | | L | | | | | | 1 | 1 | İ | | | 1 | | | | | 64 | | | | Voyageur Vilas | | | | | | | NO INFORMATION | | | J | | П | Ţ | I | | I | Ţ | | | | | | Ţ | $oxed{T}$ | Ţ | Ţ | | | | П | Ţ | | Ц | | 65 | | | | Voyageur Vilas | | | | | Sand | | | | | 3 | | 1 | 4 | | | 4 | 4 | \perp | | | | | 4 | + | + | + | 1 | - | 2 | Н | 4 | 3 | \sqcup | | 66 | | | | Voyageur Vilas | | | | | | | | | | 2 | | 1 | \dashv | | - | + | \dashv | + | | | | | \dashv | + | + | + | 1 | - | 1 | \vdash | \dashv | 2 | \dashv | | 67 | | | | Voyageur Vilas
Voyageur Vilas | | | | | Muck | | | | H | 0 | | \forall | + | 1 | | + | + | + | | | H | 1 | + | + | + | + | 1 | | | H | \dashv | + | \forall | | 69 | | | | Voyageur Vilas | | | | | Sand | | | | | 3 | | Ħ | 7 | | | 1 | 7 | 3 | | | | 1 | 7 | T | T | t | t | 1 | 1 | 1 | 7 | 1 | П | | | | | | v.ido | | | 1 | | | | | _ | | - 1 | | | | | | | | | | • | | | | | | | | | | | | | | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name
County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | My riophyllum spicatum | Ceratophyllum demersum | Chara spp. | Elodea canadensis | Heteranthera dubia | Megalodonta beckii Myriophyllum sibiricum | Myriophyllum verticillatum | Najas flexilis | Nitella sp. | Nuphar v ariegata | Nymphaea odorata | Potamogeton amplifolius | Potamogeton epirtydrus | Potamogeton pusillus | Potamogeton richardsoni | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius
Potamogeton vasevi | Potamogeton zosteriform is | Sparganium fluctuans | Utricularia vulgaris | Vallis neria americana | Freshwater sponge | Filamentous algae | |--------------|----------------------------|-----------------------------|-----|----------------------------------|----------|------------|--------------|------------|----------|--------------|-----------------------|----------|----------|---------------------|------------------------|------------------------|--------------|-------------------------|--------------------|---|----------------------------|----------------|-------------|-------------------|------------------|-------------------------|------------------------|----------------------|-------------------------|-----------------------|-----------------------|---|----------------------------|----------------------|----------------------|------------------------|-------------------|-------------------| | 70 | 45.925437 | -89.185413 | | Voyageur Vilas | | DAC & EEC | | 3 | Muck F | Pole | | | | 2 | _ | 1 | | _ | | | | 1 | | 1 | | | _ | | | | + | _ | 2 | 1 | | 1 | Щ | _ | | 71 | | -89.185420 | | Voyageur Vilas | | | | | | Pole | | | | 3 | | 1 | + | + | | | + | | | | | | | | | | 1 | - | 2 | | | 3 | \vdash | | | 72
73 | | | | Voyageur Vilas
Voyageur Vilas | | | | | Muck F | | | | | 0 | _ | | | + | | | \dagger | | | | | | _ | | | | $^{+}$ | + | | | | | H | \exists | | 74 | | | | Voyageur Vilas | | DAC & EEC | | 11 | Muck F | Pole | | | | 0 | | | | | | | | | | | | | | | | | T | | | | | | | | | 75 | 45.923187 | -89.185446 | 162 | Voyageur Vilas | 8/1/2012 | DAC & EEC | 75 | 8 | Sand F | Pole | | | | 0 | | | | | | | | | | | | | | | | | ┵ | \perp | | | | | | | | 76 | | | | Voyageur Vilas | | | | 3 | Sand F | Pole | | | | 3 | _ | 4 | | _ | 1 | 1 | | 3 | | | | | _ | | | | + | _ | 1 | | | | Щ | _ | | 77 | 45.925432 | | | Voyageur Vilas | | | | 3 1 | Muck F | Pole | | | | 2 | | + | | | | + | | | | | | | | | | 1 | + | + | 1 | 1 | | 2 | H | = | | 78
79 | | | | Voyageur Vilas
Voyageur Vilas | | | | | Muck F | | | | | 0 | | $^{+}$ | | + | | | | | | | | | | | | | + | + | 2 | | | 3 | H | = | | 80 | | | | Voyageur Vilas | | | | | | Pole | | | | 2 | | | | | | | | | | | | | | | | | 1 | | | | | 2 | | | | 81 | | | | Voyageur Vilas | | | | 8 : | Sand F | Pole | | | | 0 | 82 | 45.923182 | -89.184801 | | Voyageur Vilas | | DAC & EEC | | | Muck F | Pole | | | | 0 | | 4 | 4 | | | | | | | | | | | | | | 4 | _ | | | | | Ш | | | 83 | | -89.184808 | | Voyageur Vilas | | DAC & EEC | | 10 | Muck F | Pole | | | | 0 | | \dashv | + | + | | | + | | | | | | | | | | + | - | | | | | \vdash | | | 84
85 | | | | Voyageur Vilas
Voyageur Vilas | | | | 6 | Sand F | Pole | | | | 0 | \dashv | 1 | | + | | 1 | + | | | | | | \dashv | | | | + | + | | | | 2 | + | _ | | 86 | | | | Voyageur Vilas | | DAC & EEC | | 4 | Muck F | Pole | | | | 2 | | | | | | | | | | | | | | | | 2 | T | \top | 1 | | 1 | 1 | П | _ | | 87 | | | | Voyageur Vilas | | DAC & EEC | | 3 | Sand F | Pole | | | | 2 | | | 1 | I | | | | 1 | 1 | | | 1 | | 1 | | | 1 | I | I | | | 1 | | | | 88 | 45.924077 | -89.184143 | | Voyageur Vilas | | DAC & EEC | 88 | 5 | Sand F | Pole | | | | 1 | _ | 4 | 4 | 4 | 4 | _ | + | | | | | | _ | - | _ | - | 4 | 4 | 1 | | 1 | | Ш | \dashv | | 89 | 45.923627 | -89.184150 | | Voyageur Vilas | | DAC & EEC | | 9 | Sand F | Pole | | | Н | 0 | + | + | + | + | + | - | + | | - | | | | + | + | + | + | + | + | + | - | - | | H | \dashv | | 90 | | | | Voyageur Vilas
Voyageur Vilas | | DAC & EEC | | 11 | Muck F | Pole | | | | 0 | | $^{+}$ | | + | | | | | | | | | | | | | + | + | | | | | +1 | \dashv | | 91
92 | | | | Voyageur Vilas
Voyageur Vilas | | | | | Muck F | -oie
Pole | | | | 0 | 7 | \dashv | \dagger | \dagger | + | + | \dagger | 1 | | | | | 7 | t | \dagger | ╫ | \dagger | \dagger | \dagger | | | | Ħ | \exists | | 93 | | | | Voyageur Vilas | | | | | Muck F | Pole | | | | 2 | | | | | | | | 2 | | | | | | | | | 1 | | | | | 1 | | | | 94 | 45.927673 | -89.183446 | 101 | Voyageur Vilas | 8/1/2012 | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | | | | | | | _ | | | _ | | | | | | | | _ | | 4 | 4 | | | | | | | | 95 | | | | Voyageur Vilas | | DAC & EEC | | 0 | | |
NONNAVIGABLE (PLANTS) | | | | | + | - | | | | | | | | | | | | | | + | + | | | | | \vdash | = | | 96
97 | 45.924073
45.923623 | | | Voyageur Vilas
Voyageur Vilas | | DAC & EEC | | | Sand F | | | | | 3 | | $^{+}$ | | + | 1 | | | 2 | 1 | | | | | 1 | | 1 | + | + | | | | | +1 | \dashv | | 98 | | | | Voyageur Vilas
Voyageur Vilas | | | | | Muck F | | | | | 0 | | T | T | | | | | | 1 | | | | | | | | + | + | | | | | H | | | 99 | | | | Voyageur Vilas | | | | | Muck F | | | | | 0 | | | | | | | | | | | | | | | | | I | | | | | | | | | 100 | | | | Voyageur Vilas | | | | | Muck F | Pole | | | | 1 | | 1 | | | | | | | | | | | | | | | 4 | 4 | | | | | Ш | | | 101 | | | | Voyageur Vilas | | | | | Sand F | Pole | | | | 2 | _ | 1 | | _ | | | | 2 | | | | 1 | _ | | | 1 | + | 1 | | | | 1 | H | = | | 102 | 45.928118 | | | Voyageur Vilas
Voyageur Vilas | | | | 0 | | | NONNAVIGABLE (PLANTS) | | | | | + | + | + | | | + | | | | | | | | + | | + | + | + | | | | H | \exists | | 103 | | | | Voyageur Vilas | | | | | | | NONNAVIGABLE (PLANTS) | T | \top | | | | | П | | | 105 | | | | Voyageur Vilas | | | | | | | NONNAVIGABLE (PLANTS) | 106 | | | | Voyageur Vilas | | | | | Muck F | Pole | | | YES | 3 | | 1 | 4 | | | | | | | | 2 | | | | | 2 | 4 | _ | | | | | Ш | | | 107 | | | | Voyageur Vilas | | | | 4 | Muck F | Pole | | | | 3 | - | | + | 3 | 1 | + | + | | | | 1 | | - | | + | | + | + | 1 | | | 1 | H | | | 108 | | | | Voyageur Vilas
Voyageur Vilas | | | | 8 1 | Sand F | Pole | | | | 1 | | $^{+}$ | | | | | | 2 | 1 | | | | | | | 1 | 1 | 1 | 1 | 1 | | | H | _ | | 110 | | | | Voyageur Vilas | | | | | Sand F | Pole | | | | 0 | | | | | | | | | | | | | | | | | T | Ť | | | | | П | | | 111 | | -89.182867 | | Voyageur Vilas | | DAC & EEC | | 10 | Muck F | Pole | | | | 0 | | | | | | | | | | | | | | | | | 1 | | | | | | | | | 112 | 45.922718 | -89.182874 | 131 | Voyageur Vilas | 8/1/2012 | DAC & EEC | 112 | 9 1 | Muck F | Pole | | | | 0 | | 4 | 4 | | | | | | | | | | | | | | 4 | _ | | | | | Ш | | | 113 | | | | Voyageur Vilas | | | | | Sand F | | | | | 1 | | + | | | | + | | | | | | | | | | | + | 1 | 1 | | | | H | = | | 114 | | | | Voyageur Vilas | | DAC & EEC | | 0 | Sand F | ole | NONNAVIGABLE (PLANTS) | | H | 1 | \dashv | \dashv | + | \dagger | \dashv | + | \dagger | 1 | | | | | \dashv | 1 | + | | + | 1 | + | | | | H | \dashv | | 116 | | | | Voyageur Vilas | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | | | | | 1 | 1 | 1 | ╽ | | İ | L | | | | | | 1 | 1 | ╽ | 1 | I | İ | İ | L | | | | | 117 | | | | Voyageur Vilas | | DAC & EEC | | 0 | \bot | | NONNAVIGABLE (PLANTS) | | Ш | $-\mathbb{I}$ | J | _[| _[| $oxed{\Box}$ | | | Ļ | | L | | | I | J | | | | 4 | # | L | L | | | П | آـــ | | 118 | | | | Voyageur Vilas | | DAC & EEC | | 0 | \dashv | _ | NONNAVIGABLE (PLANTS) | | | - | 4 | + | - | + | - | - | + | - | | | | - | 4 | - | + | + | + | + | - | 1 | - | | \sqsubseteq | \dashv | | 119 | | | | Voyageur Vilas | | DAC & EEC | | 0 | + | - | NONNAVIGABLE (PLANTS) | | H | \dashv | \dashv | + | + | + | + | + | + | - | | - | H | - | \dashv | + | + | + | + | + | + | - | | | H | | | 120 | 45.926763
45.926313 | -89.182169
-89.182176 | | Voyageur Vilas | | DAC & EEC | | 0 | \dashv | | NONNAVIGABLE (PLANTS) | | H | \dashv | 7 | + | † | \dagger | † | \top | \dagger | | | | H | 1 | 7 | 1 | \dagger | + | + | + | \dagger | | | | H | \exists | | 122 | | | | Voyageur Vilas | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | I | 1 | | | | | | | | 123 | | | | Voyageur Vilas | | DAC & EEC | 123 | 4 | Muck F | Pole | | | Ц | 3 | _ | 1 | 1 | 4 | 4 | - - | <u> </u> | | | 1 | 1 | _[| _ | 1 | 1 | 3 | 4 | 4 | _ | | | 1 | \sqcup | \square | | 124 | | | | Voyageur Vilas | | DAC & EEC | | | Muck F | | | | | 3 | 4 | 1 | + | 2 | + | + | + | - | | | | | 4 | - | + | 3 | + | + | 2 | - | 1 | 1 | 1 | \dashv | | 125 | | | | Voyageur Vilas
Voyageur Vilas | | DAC & EEC | | | Sand F | | | | | 0 | \dashv | 1 | + | + | + | + | + | + | 1 | | | | \dashv | + | + | + | + | + | 1 | + | + | | H | \dashv | | 126 | 45.924064
45.923614 | | | Voyageur Vilas | | | | | | Pole | | | | 0 | 7 | 1 | 1 | 1 | | \top | T | | | | | | 7 | | \dagger | | \dagger | \dagger | + | t | | | Ħ | H | | 128 | | | | Voyageur Vilas | | | | | Muck F | | | | | 0 | | | | | | | | | | | | | | | | | I | I | | | | | | | | 129 | | | | Voyageur Vilas | | DAC & EEC | 129 | 9 | Muck F | Pole | | | | 0 | 4 | 4 | 4 | 4 | 4 | _ | \downarrow | | | | | | 4 | - | _ | - | 4 | 4 | 1 | | 1 | | Ш | ᆈ | | 130 | | | | Voyageur Vilas | | DAC & EEC | | | Sand F | Pole | | | Н | 1 | 4 | + | + | + | + | + | + | - | | | | - | 4 | - | + | + | + | + | 1 | + | + | | \vdash | \dashv | | 131 | | | | Voyageur Vilas | | | | 0 | + | - | NONNAVIGABLE (PLANTS) | | H | \dashv | \dashv | + | + | + | + | + | + | - | | - | H | - | \dashv | + | + | + | + | + | + | - | | | H | | | 132 | 45.927209
45.926759 | -89.181518
-89.181525 | | Voyageur Vilas | | DAC & EEC | | 0 | \dashv | | NONNAVIGABLE (PLANTS) | | H | \dashv | 7 | + | † | \dagger | † | \top | \dagger | | | | H | 1 | 7 | 1 | \dagger | + | + | + | \dagger | | | | H | \exists | | 134 | 45.926309 | -89.181531 | | Voyageur Vilas | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | | | | | ╧ | 1 | | 1 | | I | I | | | | | | 1 | | 1 | I | I | | L | | | | | | 135 | 45.925859 | -89.181538 | | Voyageur Vilas | | DAC & EEC | | 0 | \bot | | NONNAVIGABLE (PLANTS) | | Ш | Ţ | Ţ | _[| _[| $oldsymbol{\downarrow}$ | | | Ļ | | L | | | I | Ţ | | \bot | | 4 | # | L | L | | | Ц | J | | 136 | 45.925409 | -89.181544 | 70 | Voyageur Vilas | 8/1/2012 | DAC & EEC | 136 | | Muck F | | | | Н | 3 | 4 | 1 | - | + | - | + | + | | - | | 1 | | 4 | - | + | 3 | + | + | 1 | - | | | Н | = | | 137 | 45.924959 | -89.181551 | | Voyageur Vilas | | DAC & EEC | | | Muck F | Pole | | | Н | 3 | + | + | + | + | + | + | + | + | - | | H | 1 | + | + | + | 3 | + | + | 1 | - | + | - | H | \dashv | | 138 | 45.924509 | -89.181558 | 72 | Voyageur Vilas | 8/1/2012 | DAC & EEC | 138 | 8 | Muck F | Pole | | <u> </u> | ш | 0 | | | | | | | | | 1 | <u> </u> | ш | | | L | | | ㅗ | | | | | 1 | ш | \square | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Q | Lake Name
County | Date | Field Crew | | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | | my noprysium spicarum | Chara spp. | Elb dea canadensis | Heteranthera dubia | Megalodonta beckiii | Myriophyllum sibiricum | Myriophyllum verticillatum | Najas nexiiis | Number variated | Nymphaea odorata | Potam ogeton amplifolius | Potam ogeton e pihydrus | Potamogeton pusillus | Potamogeton richardsoni | Potemoraton enigilise | D of contract of the state t | Potamogeton v asevi | Potamogeton zosteriform is | Sparganium fluctuans | Utricularia vulgaris | Vallis neria americana | Freshwater sponge | Filamentous algae | |--------------|----------------------------|-----------------------------|-----------|----------------------------------|----------|------------|-----|------------|----------|------------|---|-------|----------|---------|-----------------------|------------|--------------------|--------------------|---------------------|------------------------|----------------------------|---------------|-----------------|------------------|--------------------------|-------------------------|----------------------|-------------------------|-----------------------|--|---------------------|----------------------------|----------------------|----------------------|------------------------|-------------------|-------------------| | 139 | 45.924059
45.923609 | -89.181564
-89.181571 | 73
74 | Voyageur Vilas
Voyageur Vilas | | DAC & EEC | 139 | 7 8 | Sand F | Pole | | |
| 1 | | | T | | | | | 1 | | | | | | | | | | | | | | | \exists | | 141 | 45.923159 | -89.181578 | | Voyageur Vilas | | DAC & EEC | 141 | 6 5 | Sand F | Pole | | | | 1 | | | 1 | | | 1 | | | | | | | | | | | | | | | 1 | | | | 142 | 45.922709 | -89.181584 | 76 | Voyageur Vilas | | DAC & EEC | | - 1 | Muck F | Pole | | | | 3 | + | | | | | | | | + | | | | | | | | | 2 | | | 2 | _ | - | | 143 | 45.922259
45.929454 | -89.181591
-89.180840 | 77
124 | Voyageur Vilas
Voyageur Vilas | 8/1/2012 | DAC & EEC | | 4 8 | Sand F | Pole | NONNAVIGABLE (PLANTS) | | | 2 | | | | | | | 1 | 1 | | | | | 1 | | | | 1 | 1 | | | | | - | | 145 | 45.929004 | -89.180847 | | Voyageur Vilas | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | 146 | 45.927204 | -89.180873 | 96 | Voyageur Vilas | 8/1/2012 | DAC & EEC | 146 | 0 | | | NONNAVIGABLE (PLANTS) | _ | | 147 | 45.926754 | -89.180880 | | Voyageur Vilas | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | | | | | | | | | | | | | | | | | | + | | | | | | | + | \dashv | | 148 | 45.925404
45.924954 | -89.180900
-89.180906 | | Voyageur Vilas | | DAC & EEC | | | Muck F | Pole | NONNAVIGABLE (PLANTS) | | | 3 | | | | | 1 | | | | | | | | | | 3 | | | | | | | | - | | 150 | 45.924504 | -89.180913 | | | | DAC & EEC | | 6 1 | Muck F | Pole | | | | 3 | | | 2 | | | | | | | | 1 | | | | | | | 3 | | | 1 | | | | 151 | 45.924054 | -89.180920 | | Voyageur Vilas | | DAC & EEC | | 6 8 | Sand F | Pole | | | | 0 | | | | | | | | | + | - | | | | | - | | | | | | | - | - | | 152 | 45.923604
45.923154 | -89.180926
-89.180933 | 64 | Voyageur Vilas
Voyageur Vilas | | DAC & EEC | | 4 8 | Sand F | Pole | | | | 0 | | | | | | | | 1 1 | | | | | | | | | | | | | | | _1_ | | 154 | 45.922704 | -89.180939 | | Voyageur Vilas | | DAC & EEC | | | Sand F | | | | | 2 | | | 1 | | | | | 2 | | | | | | | | | | | | | 1 | | | | 155 | 45.930349 | -89.180182 | 122 | Voyageur Vilas | 8/1/2012 | DAC & EEC | 155 | 0 | | | NONNAVIGABLE (PLANTS) | _ | | 156 | 45.929899 | -89.180189 | | Voyageur Vilas | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | | | | | | | | | | | | | | | | | | + | | | | | | | + | = | | 157 | 45.928549
45.928100 | -89.180208
-89.180215 | | Voyageur Vilas | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | - | | 159 | 45.927650 | -89.180222 | | Voyageur Vilas | | | | 0 | | | NONNAVIGABLE (PLANTS) | 160 | 45.925400 | | | Voyageur Vilas | | | | 0 | | | NONNAVIGABLE (PLANTS) | | | | + | | - | | | | | | + | | | | | | | | | | | | | + | _ | | 161 | 45.924950
45.924500 | -89.180262
-89.180268 | | Voyageur Vilas
Voyageur Vilas | | | | | Muck F | | | | YES | 2 | | 3 | 2 | | | 1 | | | 1 | | | | | - 1 | 2 | | | 1 | 1 | H | 1 | | - | | 163 | 45.924050 | -89.180275 | | Voyageur Vilas | | DAC & EEC | | | Muck F | Pole | | | | 3 | | | ľ | | | | | 1 | | | | 1 | | 1 | | | | | | | 3 | | | | 164 | 45.923600 | -89.180281 | 59 | Voyageur Vilas | 8/1/2012 | DAC & EEC | 164 | 6 8 | Sand F | Pole | | | | 1 | | | | | | | | 1 | | | | | | | | | | | | | | | _ | | 165 | 45.923150 | -89.180288 | 60 | Voyageur Vilas | | DAC & EEC | | | - | Pole | | | | 0 | | | - | | | | | | + | | | | | | | | | | | | | _ | - | | 166 | 45.922700
45.930345 | -89.180295
-89.179537 | 61
121 | Voyageur Vilas
Voyageur Vilas | | DAC & EEC | | 3 8 | Sand F | Pole | NONNAVIGABLE (PLANTS) | | | 1 | | | | | | | | 1 | | | | | | | | | | | | | | | - | | 168 | 45.929895 | -89.179544 | | Voyageur Vilas | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | 169 | 45.928995 | -89.179557 | 117 | Voyageur Vilas | 8/1/2012 | DAC & EEC | 169 | 0 | | | NONNAVIGABLE (PLANTS) | _ | _ | | 170 | 45.928545 | -89.179564 | | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | Н | | | - | | 171 | 45.928095
45.927645 | -89.179570
-89.179577 | 111 | Voyageur Vilas
Voyageur Vilas | 8/1/2012 | DAC & EEC | 171 | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | - | | 173 | 45.926295 | -89.179597 | | Voyageur Vilas | | DAC & EEC | 173 | 0 | | | NONNAVIGABLE (PLANTS) | 174 | 45.925845 | -89.179603 | | Voyageur Vilas | | DAC & EEC | 174 | 0 | | | NONNAVIGABLE (PLANTS) | _ | _ | | 175
176 | 45.925395
45.924945 | -89.179610
-89.179617 | | Voyageur Vilas
Voyageur Vilas | | DAC & EEC | | 0
3 N | Muck F | Pole | NONNAVIGABLE (PLANTS) | | YES | 3 | | 2 | 1 | | | | | | 1 | | | | | | 3 | | | | 1 | | | | - | | 177 | 45.924495 | -89.179623 | | Voyageur Vilas | | | | 4 h | Muck F | Pole | | | | 3 | | | 1 | | | | | | | | | | | | 3 | | | | | | | | | | 178 | 45.924045 | -89.179630 | | | | DAC & EEC | | | Muck F | Pole | | | | 3 | | 2 | 1 | | | | | | - | | | | | | 3 | | | 1 | | | | _ | _ | | 179 | 45.923595 | -89.179637 | | Voyageur Vilas | | | | | Muck F | | | | | 1 | | 1 | | | | | | | | | | | | | | | 1 | | | | 1 | | - | | 181 | 45.922695 | | | Voyageur Vilas | | DAC & EEC | | | Sand F | | | | | 3 | | | | | | | | 2 | | | | | | | | | | | | | 3 | | | | 182 | 45.922245 | -89.179657 | 20 | Voyageur Vilas | 8/1/2012 | DAC & EEC | 182 | 3 8 | Sand F | Pole | | | | 1 | | | | | | | | 1 | | | | | | | | | | | 1 | | 1 | | _ | | 183 | | | | Voyageur Vilas | | | | | Muck F | | | | | 3 | | 2 | | | | | | | | | | | | | 1 | | | | | | 3 | + | = | | 184 | | | | Voyageur Vilas
Voyageur Vilas | | | | | Sand F | | | | | 3 | | | 1 | T | | | | 1 2 | | | | | 1 | | | | 1 | 1 | 1 | Ħ | 3 | | | | 186 | | | | Voyageur Vilas | | | | | Rock F | | | | | 1 | 1 | | | | | | | 1 | I | | | | 1 | Ţ | Ţ | 1 | T | | | | | \Box | \exists | | 187 | | | | Voyageur Vilas | | | | | Sand F | | | | H | 2 | + | + | - | - | - | | - | 2 | + | | - | | - | + | + | - | 1 | - | - | \vdash | | 4 | _ | | 188 | 45.919545
45.929890 | | | Voyageur Vilas
Voyageur Vilas | | | | 7 1 | Muck F | Pole | NONNAVIGABLE (PLANTS) | | H | 2 | \dagger | 2 | 1 | - | | | + | + | \dagger | | | H | \dashv | + | + | \dagger | 1 | | - | H | | | 1 | | 190 | 45.929890 | | | Voyageur Vilas | | | | 0 | | | NONNAVIGABLE (PLANTS) | | | | Ī | | | | | | | | | | | | | | | t | | | | | | | | | 191 | | | | Voyageur Vilas | | | | | 4 | | NONNAVIGABLE (PLANTS) | | | \perp | - | - | 1 | - | _ | | 4 | \perp | + | - | | \sqcup | | \downarrow | \perp | | \perp | 1 | - | \mathbb{H} | | 4 | _ | | 192 | | | | Voyageur Vilas | | | | 0 | \dashv | | NONNAVIGABLE (PLANTS) | | | + | + | + | + | \vdash | H | | + | + | + | + | | H | + | + | + | + | + | + | - | H | | \dashv | - | | 193 | 45.928090
45.927640 | -89.178925
-89.178932 | | Voyageur Vilas
Voyageur Vilas | | DAC & EEC | | 0 | _ † | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | | _† | | | ľ | İ | | | | _ | | | | | | | _ | | _ | | İ | Ħ | | | | | 195 | 45.926290 | | | Voyageur Vilas | | DAC & EEC | | 0 | T | | NONNAVIGABLE (PLANTS) | | | I | 1 | T | | | | | 7 | I | Ţ | | | | 1 | Ţ | Ţ | 1 | I | | | | | \Box | \exists | | 196 | 45.925840 | -89.178959 | | Voyageur Vilas | | DAC & EEC | | 0 | \dashv | | NONNAVIGABLE (PLANTS) | | | + | + | - | + | \vdash | | | + | + | + | + | | \vdash | \dashv | + | + | - | + | - | - | \vdash | | \dashv | _ | | 197 | | | | Voyageur Vilas
Voyageur Vilas | | DAC & EEC | | 0 | + | 1 | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | H | | + | + | 1 | - | | | \dashv | + | \dagger | | | H | \dashv | + | + | \dagger | + | | - | H | | - | \dashv | | 199 | | | | Voyageur Vilas | | | | 0 | | | NONNAVIGABLE (PLANTS) | | | | 1 | | | | | | | | | | | | | | | İ | | | | | | | | | 200 | 45.924040 | -89.178985 | | Voyageur Vilas | | | | | Sand F | Pole | | | YES | 3 | + | 2 | 1 | - | | | _ | - | 1 | | | | 1 | - : | 3 | + | - | | 1 | \vdash | 1 | \dashv | _ | | 201 | 45.923590 | | | Voyageur Vilas | | | | | Sand F | | | | H | 1 | + | + | + | \vdash | H | | + | 1 | + | + | | H | _ | + | + | + | + | + | 1 | H | 1 | \dashv | - | | 202 | 45.923141
45.922691 | -89.178998
-89.179005 | | Voyageur Vilas
Voyageur Vilas | | DAC & EEC | | | Sand F | | | | | 0 | t | | 1 | İ | | | | 2 | T | | | | 1 | | | t | | | 2 | Ħ | _1_ | | | | 204 | | | | Voyageur Vilas | | | | | Sand F | | | | | 2 | | | | | | 1 | | 1 1 | | | | | | | | | 1 | | | | | \Box | \Box | | 205 | | | | Voyageur Vilas | | | | | Sand F | | | | | 1 | + | 1 | + | - | | | | + | + | + | | | + | - | + | + | + | - | 1 | \vdash | | - | - | | 206 | | | | Voyageur Vilas
Voyageur Vilas | | | | | Muck F | Pole | DOCK | | | 3 | \dagger | 2 | + | | | | + | 1 | \dagger | + | | H | + | + | 1 | + | 1 | + | \vdash | H | 3 | \dashv | \dashv | | 20/ | 45.9ZU891 | -09.179032 | ь | voyageur Vilas | 0/1/2012 | DAC & EEC | 201 | U | | | DUCK | L | لــــا | | | | | | 1 | | | | | | | | L | | 1 | | | | 1 | ш | | | — | | Point Number | atitude (Decimal Degrees) | ongitude (Decimal Degrees) | 0 | .ake Name | County | Date | ield Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Om ments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demers um | Chara spp. | Elo dea canadensis | Heteranthera dubia | Megalodonta beckii | Myriophyllum sibiricum | Myriophyllum verticillatum
Najas flexills | Nitella sp. | Nuphar v ariegata | Nymphaea odorata | Polam ogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus | Polamogeton robbinsii | Potamogeton s pirillus | Potamogeton s trictifolius | Potamogeton v aseyi | Potamogeton z osteriform is | Sparganium fluctuans | Utricularia vulgaris | Vallis neria americana | Freshwater sponge | |--------------
---------------------------|----------------------------|----|-----------|--------|----------|-----------|--------------|------------|----------|------------|-----------------------|-------|----------|---------------------|-----------------------|-------------------------|------------|--------------------|--------------------|--------------------|------------------------|--|-------------|-------------------|------------------|--------------------------|-----------------------|----------------------|-----------------------|------------------------|----------------------------|---------------------|-----------------------------|----------------------|----------------------|------------------------|-------------------| | 208 | 45.920441 | -89.179038 | | Voyageur | | | DAC & EEC | | 0 | 0, | | DOCK | _ | _ | | _ | Ĭ | Ŭ | <u>.</u> | • | | - | | Ť | Ĺ | _ | _ | _ | | | _ | | | Ĭ | 0, | _ | 1 | | | 209 | 45.919991 | | | | | | DAC & EEC | | | Rock | D-I- | BOCK | T | | | 210 | 45.926736 | | | | | | DAC & EEC | | 0 | NOCK | role | NONNAVIGABLE (PLANTS) | | | | | | | | | | | | T. | | | | | | | | | | | | | 7 | _ | | 211 | 45.926286 | | | Voyageur | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | | | | | | T | | | | | | | | | | | | | | | | | | | \top | | | 212 | 45.925836 | | | Voyageur | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | | | | | | T | | | | | | | | | | | | | | | | | | | \top | | | 213 | 45.925386 | -89.178321 | | | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | | | | | | | | | | | | 1 | † | | | | | | | | | | | | 7 | + | | 214 | 45.924936 | | | | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | 7 | _ | | 215 | 45.924486 | | | Voyageur | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | | | | | | T | | | | | | | | | | | | | | | | | | | \top | | | 216 | 45.927181 | | | | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | | | | | | T | | | | | | | | | | | | | | | | | | | \top | | | 217 | 45.926731 | | | | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | 7 | _ | | 218 | 45.926281 | -89.177662 | | Voyageur | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | | | | | | T | | | | | | | | | | | | | | | | | | | \top | | | 219 | 45.925831 | -89.177669 | | | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | 220 | 45.925381 | | | | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | 221 | 45.924931 | | | | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | 222 | 45.924481 | | | | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | 223 | 45.927176 | | | | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | 224 | 45.926726 | -89.177011 | | | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | 225 | 45.926276 | | | | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | 226 | 45.925826 | | | | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | T | | | 227 | 45.925376 | | | | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | 228 | 45.927172 | | | | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | 229 | 45.926722 | | | | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | 230 | 45.926272 | -89.176373 | 47 | Voyageur | Vilas | 8/1/2012 | DAC & EEC | 230 | 0 | | | NONNAVIGABLE (PLANTS) | 231 | 45.925822 | -89.176379 | | | | | DAC & EEC | | 0 | | | NONNAVIGABLE (PLANTS) | | | | T | | | | | | | | | | | | | | T | | | | | | | | | | 232 | 45.925372 | -89.176386 | 49 | Voyageur | Vilas | 8/1/2012 | DAC & EEC | 232 | 0 | | | NONNAVIGABLE (PLANTS) | Point Number | attude (Decimal Degrees) | ongitude (Decimal Degrees) | Q | Lake Name | County | Date | ied Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes
Nuisance | Total Rake Fulhess | Myriophyllum spicatum | Ceratophyllum demersum | Chara spp. | Eleocharis palustris | Elodea canadensis | Heteranthera dubia | Soeles sp.
Menalodoma back i | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nuphar variegata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogelon pusillus | Potamogeton richardsonii | Potamogeton robbinsii | otamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogelon zosteriformis | Scho enoplectus tabernaemonta | Sparganium emersum | Spiro dela polyrhiza | Utricularia vulgaris | Vallisneria americana | Flamentous algae | |--------------|--------------------------|----------------------------|-----|----------------|--------|----------------------|-----------|--------------|------------|----------|--------------|----------|-------------------|--------------------|-----------------------|------------------------|---------------|----------------------|-------------------|--------------------|---------------------------------|------------------------|----------------|-------------|------------------|-------------------------|-----------------------|----------------------|--------------------------|-----------------------|----------------------|---------------------------|--------------------|---------------------------|-------------------------------|--------------------|----------------------|----------------------|-----------------------|------------------| | 1 | 45.935336 | -89.221745 | | | | 8/2/2012 | EJH & CRS | _ | | | Pole | Ŭ | | 1 | | Ŭ | | | | | | | | | • | | _ | | | _ | _ | 1 | | | | | | | | | | 2 | 45.934706
45.934076 | -89.221754
-89.221763 | | Eagle
Eagle | | 8/2/2012 | | 2 | 7 | Sand | Pole | DEEP | | 0 | - | - | - | | 4 | 45.934076
45.933446 | -89.221763
-89.221771 | | Eagle | | 8/2/2012 | | | 8 | Muck | Pole | DEEP | | 1 | | 1 | 5 | 45.935960 | -89.220833 | 69 | Eagle | | 8/2/2012 | | 5 | 9 | Sand | Pole | | | 0 | 4 | | | | _ | 4 | 4 | | 6 | 45.935330
45.934700 | -89.220842
-89.220851 | | Eagle
Eagle | | 8/2/2012
8/2/2012 | EJH & CRS | 6 | 14 | Sand | Pole | DEEP | | 0 | | | | | | | | | | | | | | | 1 | | | | | + | | | | - | - | \dashv | | 8 | 45.934700 | -89.220860 | | Eagle | | 8/2/2012 | | 8 | 16 | | | DEEP | 9 | 45.933440 | -89.220869 | | Eagle | Vilas | 8/2/2012 | EJH & CRS | 9 | 7 | Sand | Pole | _ | | | | | _ | _ | | 10 | 45.935954
45.935324 | -89.219930
-89.219939 | | Eagle
Eagle | | 8/2/2012 | EJH & CRS | 10 | 6 | Muck | Pole | DEEP | | 0 | | | | | | | | | | | | | | | 1 | | | | | + | | | | - | - | \dashv | | 12 | 45.934694 | -89.219948 | | Eagle | | 8/2/2012 | | 0 | 0 | | | DEEP | 13 | 45.934064 | -89.219957 | | Eagle | | 8/2/2012 | EJH & CRS | 13 | 16 | | | DEEP | | | | | | | | | \perp | | | | | | | | | | | | | _ | | | | _ | | 4 | | 14 | 45.933434
45.932804 | -89.219966
-89.219975 | | Eagle | | 8/2/2012 | | 14 | 10 | Rock | Pole
Pole | | | 0 | | | | | | | | | | | | | | | 1 | | | | | + | | | | - | - | 1 | | 16 | 45.932174 | -89.219983 | | Eagle | | 8/2/2012 | | 16 | 3 | Sand | Pole | | | 2 | | 1 | | | | | 1 | | 1 | | | | 1 | | | | | | | | | | | | 1 | | | 17 | 45.935948 | -89.219027 | | Eagle | | 8/2/2012 | | 17 | 3 | Sand | Pole | | | 1 | | | | | | | | | 1 | | | | 1 | 1 | | | | | | 4 | | | | | 1 | \dashv | | 18 | 45.935318
45.934688 | -89.219036
-89.219045 | | Eagle
Eagle | | 8/2/2012 | | 18 | 17 | | | DEEP | \dashv | | | | | \dashv | \dashv | | 20 | 45.934688 | -89.219045
-89.219054 | | Eagle | | 8/2/2012 | | 20 | 16 | | | DEEP | | | | | | | | | | | | | | | | | | İ | | | | \Box | | | | 1 | _ | | | 21 | 45.933428 | -89.219063 | | Eagle | | 8/2/2012 | | | 9 | Rock | Pole | | | 0 | | | | | | | \perp | | | | | | | | | | | | | _ | | | | _ | | 4 | | 22 | 45.932798
45.932168 | -89.219072
-89.219081 | | Eagle
Eagle | | 8/2/2012
8/2/2012 | | 22 | 15 | | | DEEP | + | | | - | \dashv | - | + | - | + | - | \vdash | | | \dashv | - | \dashv | | - | | - | 1 | + | \dashv | - | \dashv | + | + | \dashv | | 24 | 45.932168 | -89.219081 | | Eagle | | | EJH & CRS | | | Muck | Pole | DLCF | | 1 | | | 1 | | | | | | 1 | | | | | | | | | | | | | | | 1 | ightharpoonup | | | 25 | 45.935942 | -89.218125 | | Eagle | | 8/2/2012 | | 25 | 4 | Sand | Pole | | | 3 | | | | | 1 | | | | 1 | | | | 1 | 1 | 2 | | | | | _ | | | | | 4 | 4 | | 26 | 45.935312
45.934682 | -89.218133
-89.218142 | | Eagle
Eagle | | 8/2/2012
8/2/2012 | | | 16
17 | | Rope | DEED | | 0 | \dashv | | | | _ | \dashv | \dashv | | 27 | 45.934682
45.934052 | -89.218142
-89.218151 | | Eagle | | 8/2/2012 | | | 0 | | | DEEP | 7 | | | | | \dashv | \neg | | 29 | 45.933422 | -89.218160 | | | | 8/2/2012 | | 29 | 18 | | | DEEP | \Box | | | | | \Box | \Box | | 30 | 45.932792 | -89.218169 | | Eagle | | 8/2/2012 | | | 15 | | | DEEP | - | | | | _ | - | \dashv | | 31 | 45.932162
45.931532 | -89.218178
-89.218187 | | Eagle
Eagle | | 8/2/2012 | EJH & CRS |
| 7 | Sand | Pole | DEEP | | 3 | v | 2 | | | | | | 2 | | | | | | 1 | | 1 | | | | 1 | | | | | 1 | \dashv | | 33 | 45.930902 | -89.218195 | | Eagle | | 8/2/2012 | | | 1 | Muck | Pole | | | 1 | | | | | | | 1 | | 1 | | 1 | | | 1 | | | | | | | | | | | | | | 34 | 45.935935 | -89.217222 | | Eagle | | 8/2/2012 | EJH & CRS | 34 | 5 | Sand | Pole | | | 2 | | 1 | | | | | + | | 2 | | | | | 1 | 1 | 1 | | | 1 | - | | | | - | - | \dashv | | 35
36 | 45.935305
45.934675 | -89.217231
-89.217239 | | Eagle
Eagle | | 8/2/2012 | EJH & CRS | 35
36 | 17 | | Rope | DEEP | | 0 | \dashv | | | | - | \dashv | \dashv | | 37 | 45.934045 | -89.217248 | | Eagle | | 8/2/2012 | | 0 | 0 | | | DEEP | 38 | 45.933415 | -89.217257 | | Eagle | | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | - | | | | _ | _ | \dashv | | 39
40 | 45.932786
45.932156 | -89.217266
-89.217275 | | Eagle
Eagle | | 8/2/2012 | EJH & CRS | 40 | 15 | | | DEEP | + | | | | | + | \dashv | | 41 | 45.931526 | -89.217284 | | Eagle | | 8/2/2012 | EJH & CRS | 41 | 7 | Sand | Pole | | | 2 | | | | | | | | | 1 | | 1 | | | 2 | | | | | 1 | \exists | | | | | 1 | | | 42 | 45.930896 | -89.217293 | | | | 8/2/2012 | | | 7 | Sand | Pole | | | 1 | | | | | | | | 1 | | | | | | 1 | | | | | | - | | | | | _ | _ | | 43 | 45.930266
45.935299 | -89.217301
-89.216328 | | | | | EJH & CRS | | 16 | Sand | Pole
Rope | | | 0 | | | | | | | | | 1 | | | | | | | | | | | + | | | | | \dashv | - | | 45 | 45.934669 | | | | | | EJH & CRS | | | | | DEEP | ╛ | | 46 | 45.934039 | | | | | | EJH & CRS | | 0 | | | DEEP | - | | | | | | + | - | + | - | | | | | | - | | - | | | - | \dashv | - | | - | _ | + | 4 | | 47 | 45.933409
45.932779 | | | | | | EJH & CRS | | 0 | | | DEEP | + | | | - | - | - | + | + | + | 1 | | | | - | 1 | \dashv | + | 1 | | - | | + | \dashv | 1 | \dashv | + | + | \dashv | | 49 | 45.932149 | | | | | | EJH & CRS | | | | | DEEP | | | | _ | | _ | | | 1 | | | | | | | | | 1 | | _ | 1 | ゴ | | | | コ | 1 | I | | 50 | 45.931519 | | | | | | EJH & CRS | | | | | DEEP | + | | | | - | | \dashv | - | + | - | 1 | | | - | - | | 4 | - | | | | \dashv | | - | | - | \dashv | 4 | | 51
52 | 45.930889
45.930259 | | | | | | EJH & CRS | | | | Pole | DEEP | | 0 | | | + | | + | + | + | + | 1 | | | + | + | + | \dashv | 1 | | | 1 | + | + | + | + | + | + | \dashv | | 53 | 45.929629 | | | | | | EJH & CRS | | | | | | | 1 | | | | | | | | 1 | 1 | | | | | 1 |] | | | | 1 | \exists | | | | I | 1 | | | 54 | 45.928999 | | | | | | EJH & CRS | | | | | | | 2 | | 1 | _ | | + | - | + | | 2 | | | _ | - | - | 1 | - | 4 | | 1 | \dashv | - | - | - | - | 1 | \dashv | | 55
56 | 45.928370
45.927740 | | | | | | EJH & CRS | | | | | | | 3 | | 1 | \dashv | | 1 | + | + | + | 1 | | 1 | \dashv | 1 | \dashv | 1 | 3 | | | + | + | \dashv | 1 | \dashv | + | + | \dashv | | 57 | 45.935923 | | | | | | EJH & CRS | | | Muck | | | | 3 | | | | | | | 1 | | Ė | | | | | | | 3 | | | | \Box | | | 1 | 1 | 1 | | | 58 | 45.935293 | | | | | | EJH & CRS | | | Rock | Pole | | \perp | 0 | H | | _ | | 4 | - | + | - | - | H | | _ | | 4 | + | - | | | - | \dashv | 4 | | 4 | 4 | 4 | \dashv | | 59
60 | 45.934663
45.934033 | | | | | | EJH & CRS | | 20
0 | | | DEEP | + | | | - | - | - | + | - | + | - | - | | | - | - | \dashv | \dashv | - | + | - | 1 | + | \dashv | - | \dashv | + | + | \dashv | | 60 | 45.934033
45.933403 | | | | | | EJH & CRS | | 0 | | | DEEP | \exists | | | | I | \exists | \exists | | 62 | 45.932773 | -89.215460 | 0 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | - | | | | | | 4 | | 1 | | | | | | _ | _ | 4 | _[| \exists | | | 4 | _ | _ | _ | 4 | 4 | \downarrow | | 63 | 45.932143
45.931513 | -89.215469 | | | | | EJH & CRS | | 0 | | | DEEP | \perp | | H | - | | - | + | | + | | - | H | | | | \dashv | \dashv | - | | - | | + | \dashv | | \dashv | \dashv | + | \dashv | | 64 | 45.931513
45.930883 | | | | | | EJH & CRS | | 17 | | | DEEP | 1 | | | | | | | 1 | T | t | L | | | | | | | | | | 1 | | | | | \exists | \exists | | | 66 | 45.930253 | -89.215496 | 101 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 66 | 16 | | | DEEP | | | | J | $-\mathbb{I}$ | J | $-\Gamma$ | Į | \bot | | L | | | $-\mathbb{I}$ | _[| - | _[| J | | J | Į | ightharpoons | - | _[| - | Į. | _Ţ | \dashv | | 67 | 45.929623 | | | | | | EJH & CRS | | 14 | | | DEEP | + | 0 | | | \dashv | | + | + | + | - | - | | | \dashv | + | + | \dashv | - | | | - | + | + | + | + | + | + | \dashv | | 68
69 | 45.928993
45.928363 | | | | | | EJH & CRS | | | Sand | | | | 3 | | | | | 1 | | 1 | l | 1 | | | | | | | _ | 1 | | | | | | | _ | 1 | \exists | | Point Number | Lattude (Decimal Degrees) | Longitude (Decimal Degrees) | D | Lake Name | County | Date | Feb Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes
Nuisance | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Chara spp. | Eleocharis palustris | Elodea canadensis | Heteranthera dubia | Isoeles sp.
Megalodonta beck i | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nuphar variegata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogelon pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogelon zosteriformis | Schoenoplectus tabernaemontani | Sparganium emersum | Spirodela polyrhiza | Utricularia vulgaris | Vallisneria americana | Fiamentous algae | |--------------|---------------------------|-----------------------------|-----|----------------|--------|----------|-----------|--------------|------------|--------------|--------------|----------|-------------------|---------------------|-----------------------|------------------------|------------|----------------------|-------------------|--------------------|-----------------------------------|------------------------|----------------|-------------|------------------|-------------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|--------------------------------|--------------------|---------------------|----------------------|-----------------------|------------------| | 70 | 45.927733 | -89.215531 | 113 | Eagle | Vilas | | EJH & CRS | 70 | | Muck | Pole | | | 3 | | 1 | | | 3 | | | 1 | | | | | | | | | | | | | | | | 1 | 1 | | | 71 | 45.935287
45.934657 | -89.214522
-89.214531 | | Eagle
Eagle | | | EJH & CRS | | | Sand
Rock | Pole
Pole | | | 0 | | | | | | | | | | | | | | | | - | | | | | | | | + | + | + | | 73 | 45.934027 | -89.214540 | | Eagle | | | EJH & CRS | | 20 | NOCK | POIG | DEEP | | Ü | I | | | 74 | 45.933397 | -89.214549 | | Eagle | Vilas | | EJH & CRS | | 0 | | | DEEP | | | | | | | | | | | | | | | _ | | | 4 | | | | | | | | _ | \dashv | 4 | | 75
76 | 45.932767
45.932137 | -89.214558
-89.214566 | | Eagle
Eagle | | | EJH & CRS | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 1 | | | | | | | | + | + | + | | 77 | 45.931507 | -89.214575 | | | | | EJH & CRS | | 0 | | | DEEP | I | | | 78 | 45.930877 | -89.214584 | | Eagle | | | EJH & CRS | | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 4 | | | | | | | | _ | + | 4 | | 79
80 | 45.930247
45.929617 | -89.214593
-89.214602 | | Eagle
Eagle | | | EJH & CRS | 79
80 | 16 | | | DEEP | | | | | | | | | | | | | | | | | | 1 | | | | | | | | + | + | + | | 81 | 45.928987 | -89.214611 | | Eagle | | | EJH & CRS | 81 | 11 | Sand | Pole | | | 0 | _ | 1 | | | 82 | 45.928357 | -89.214620 | | Eagle | Vilas | 8/2/2012 | EJH & CRS | 82 | 8 | Sand | Pole | | | 0] | | | | | | | | | | | | | - | | + | + | | | | | | | | + | + | + | | 83
84 | 45.936541
45.935911 | -89.213601
-89.213610 | | Eagle
Eagle | | | EJH & CRS | | | Sand | Rope
Pole | | | 1 | | 1 | | | | | | | 1 | | | | | 1 | | | | 1 | 1 | | | | | + | \dagger | 7 | | 85 | 45.935281 | -89.213619 | | Eagle | | 8/2/2012 | EJH & CRS | | 14 | | Rope | | | 0 | _ | I | 1 | | 86 | 45.934651 | -89.213628 | | Eagle | | | EJH & CRS | | 15 | | Rope | DEEE | + | 0 | | | - | - | \dashv | - | + | | | | | | | 1 | + | + | | + | | | | | | + | + | \dashv | | 87 | 45.934021
45.933391 | -89.213637
-89.213646 | 48 | Eagle
Eagle | | 8/2/2012 | EJH & CRS | 87 | 0 | | | DEEP | 1 | L | | | | | | | 1 | | | | | | | | 1 | 1 | | | | | | | | \equiv | 士 | 1 | | 89 | 45.932761 | -89.213655 | 0 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | | | | | | I | 1 | | I | | | | | | | | 1 | 4 | | | | | | | | 4 | 4 | 1 | | 90 | 45.932131 | -89.213664
-89.213672 | | Eagle
Eagle | | | EJH & CRS | | 0 | | | DEEP | + | | | Н | | - | \dashv | - | + | | | | | - | - | + | + | + | | - | | | | | - | + | + | + | | 91
92 | 45.931501
45.930871 | -89.213672
-89.213681 | | Eagle | | | EJH & CRS | | 0 | | | DEEP | 士 | | | 93 | 45.930241 | -89.213690 | | | | 8/2/2012 | DAC & EEC | 93 | 0 | | | DEEP | _ | 4 | | | 94 | 45.929611 | -89.213699
-89.213708 | | Eagle | | | DAC & EEC | | 9 : | Sand | Pole
Pole | | | 0 | | | | | | | | | | | | | + | | | + | | | | | | | | + | + | + | | 95
96 | 45.928981
45.928351 | | | Eagle | | | EJH & CRS | | | Sand
Muck | Pole | | | 3 | | 2 | | | 1 | | | 1 | 1 | | | | | 2 | | | 1 | | 1 | | | | | | 1
 | | 97 | 45.938424 | -89.212672 | | | | | EJH & CRS | | 6 | Muck | Pole | | | 1 | | | | | | | | | 1 | | | | | 1 | | 4 | 1 | | 1 | | | | | _ | 1 | 4 | | 98
99 | 45.937794
45.937164 | -89.212681
-89.212689 | | Eagle
Eagle | | | EJH & CRS | | | Sand
Sand | Pole
Pole | | | 0 | | | | | | | | | 2 | | | | + | | | + | | | | | | | | + | _ | + | | 100 | 45.936534 | -89.212698 | | Eagle | | | EJH & CRS | | | Sand | Pole | | | 0 | | | | | | | | | 2 | | | | | | | | | | | | | | | | Ϊ | | | 101 | 45.935904 | -89.212707 | | Eagle | | | EJH & CRS | | | Sand | Pole | | | 0 | | | | | | | | | | | | | | | | 4 | | | | | | | | _ | + | 4 | | 102 | 45.935274
45.934644 | -89.212716
-89.212725 | | Eagle
Eagle | | | EJH & CRS | | 9 1 | Rock | Pole | | | 0 | | | | | 1 | | | | | | | | | | | 1 | | | | | | | | + | + | \dashv | | 104 | 45.934014 | -89.212734 | | Eagle | | | EJH & CRS | | 0 | NOCK. | role | DEEP | | Ů | I | | | 105 | 45.933384 | -89.212743 | | Eagle | Vilas | | EJH & CRS | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | _ | | | 4 | | | | | | | | _ | \dashv | 4 | | 106 | 45.932754
45.932125 | -89.212752
-89.212761 | | Eagle
Eagle | | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | + | | | + | | | | | | | | + | + | + | | 108 | 45.931495 | -89.212770 | | Eagle | | | EJH & CRS | 0 | 0 | | | DEEP | 1 | | 109 | 45.930865 | -89.212779 | | | | | DAC & EEC | | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 4 | | | | | | | | _ | + | 4 | | 110 | 45.930235
45.929605 | -89.212788
-89.212796 | | Eagle
Eagle | | | DAC & EEC | | | Sand
Sand | Pole
Pole | | | 2 | | 1 | | | | | | | | 2 | | | | 1 | | 1 | | | | | | | | + | , | + | | 112 | | -89.212805 | | | | | | | | | Pole | | | 1 | | | | | | | | | 1 | Î | | | | 1 | | | 1 | | 1 | | | | | | | 1 | | 113 | | -89.212814 | | | | | | | | | Pole | | | 0 | | | | | | | | | | | | | - | | | 4 | | _ | | | | | | _ | + | + | | 114 | | -89.211760
-89.211769 | | | | | | | | | | | + | 0 | V | | | 1 | + | | | | 1 | H | | | | 1 | 1 | + | | + | | | | | | + | 1 | + | | 116 | | -89.211778 | | | | | | | | | | | | 0 | | | | | | | | | | | | | | | 1 | 1 | | | | | | | | # | 1 |] | | 117 | | -89.211787 | | | | | | | | | | | + | 1 | | Н | - | - | \dashv | | + | - | 1 | | | | - | - | + | + | | \dashv | | - | | | | + | + | 4 | | 118 | | -89.211795
-89.211804 | | | | | | | | | Rope
Rope | | + | 0 | | H | | | + | | + | | | | | 1 | | | \dagger | + | | + | | | | | 1 | + | + | \forall | | 120 | | -89.211813 | | | | | | | | | | | | 0 | 1 | 1 | I | | 121 | | -89.211822 | | | | | | | | | | DEEP | + | | | Н | - | - | \dashv | | + | - | | | | | - | - | + | + | | \dashv | | _ | | | | + | + | \dashv | | 122 | 45.934008
45.933378 | -89.211831
-89.211840 | | | | | | | | | | DEEP | + | H | | H | | | + | | + | | | | | 1 | | | \dagger | + | | + | | | | | 1 | + | + | + | | 124 | | -89.211849 | | | | | | | | | | DEEP | | | | | | | | | | | | | | | | | 1 | 1 | | | | | | | | # | 1 | I | | 125 | 45.932118 | | | | | | | | | | | DEEP | - | | | H | | | \dashv | | + | | | \vdash | | | | - | + | + | | + | | _ | | | | + | + | \dashv | | 126 | 45.931488
45.930858 | -89.211867
-89.211876 | | | | | | | | | | DEEP | + | H | | H | | | + | | + | | | | | 1 | | | \dagger | + | | + | | | | | 1 | + | + | + | | 128 | 45.930228 | -89.211885 | | | | | | | | Sand | Pole | | 1 | 1 | | | | | 7 | 1 | | | | | | | | | 1 | 1 | | | | | | | | 1 | 1 | 1 | | 129 | 45.929598 | | | | | | DAC & EEC | | | | | | - | 0 | | H | | | \dashv | | + | | | \vdash | | | | - | + | + | | + | | _ | | | | + | + | \dashv | | 130 | 45.928968
45.928338 | | | | | | DAC & EEC | | | | | | | 0 | | | | | | | | L | L | | | _ | _ | | | _† | | | | | | | _ | _ | \pm | 1 | | 132 | 45.927708 | | | | | | DAC & EEC | | | | | | 1 | 0 | | | | | 1 | 1 | | | | | | | | | 1 | 1 | | 1 | | _ | | | | 4 | 4 | 1 | | 133 | 45.927079 | | | | | | | | | | | | + | 3 | | | | - | \dashv | - | + | 1 | 1 | | | | | 2 | + | 1 | 1 | | | | | | | + | + | + | | 134 | 45.926449
45.925819 | | | | | | | | | | | | 1 | 3 | | | | | 2 | | 1 | 1 | 2 | | | | | 1 | 1 | 1 | | | | | | | | \equiv | 士 | 1 | | 136 | 45.925189 | -89.211956 | 130 | Eagle | Vilas | 8/2/2012 | DAC & EEC | 136 | 2 | Sand | Pole | | 1 | 1 | | | | 1 |] | | I | | | | | | 1 | 1 | 1 | 1 | | | | | | | | 1 | 4 | 1 | | 137 | 45.924559 | | | | | | | | | | | | + | 1 | - | H | | | 1 | | + | | | \vdash | 1 | - | 1 | - | + | + | | + | | _ | | | - | 1 | + | \dashv | | 138 | 45.939042 | -89.210857 | 23 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 138 | 7 | Sand | Pole | | | 1 | Ь_ | ш | | _ | _ | | | | 1 | Ш | | | | | _ | _ | | | | _ | | | | _ | 1 | | | Point Number | Lattude (Decimal Degrees) | Longitude (Decimal Degrees) | Q | Lake Name | County | Date | Febt Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes
Nuisance | Total Rake Fulhess | Myriophyllum spicatum | Ceratophyllum demersum | Chara spp. | Eleocharis palustris | Elodea canadensis | Heteranthera dubia | Isoeles sp. | Megalodonta beck i | Myriophyllum sibiricum | Najas Ilovilis | Nifelia sp.
Nuphar variegata | Potamogeton amplifolius | Potamogeton epiltydrus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogelon zosteriformis | Schoenoplectus tabernaemontan | Sparganium emersum | Spiro dela polyrhiza | Utricularia vulgaris | Vallisneria americana | Filamentous algae | |--------------|---------------------------|-----------------------------|-----|----------------|----------------|----------------------|-----------|--------------|------------|--------------|--------------|-----------|-------------------|--------------------|-----------------------|------------------------|------------|----------------------|-------------------|--------------------|-------------|--------------------|------------------------|----------------|---------------------------------|-------------------------|------------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|-------------------------------|--------------------|----------------------|----------------------|-----------------------|-------------------| | 139 | 45.938412 | -89.210866 | | | Vilas | | EJH & CRS | 5 13 | 9 15 | | Rope | | | 0 | 1 | 1 | | | 140 | 45.937782
45.937152 | -89.210875
-89.210884 | | | Vilas
Vilas | | | | | Rock | Pole
Pole | | | 1 | | | | | | | | | | | | | | 1 | | | | | 1 | | | | | + | + | \dashv | | 141 | 45.93/152
45.936522 | -89.210884
-89.210893 | | | | | | | | Sand | Pole | DEEP | | 0 | 士 | | | | 143 | 45.935892 | -89.210902 | | | Vilas | | | | 3 21 | | | DEEP | | | | | | | | | | | | _ | | - | | | | | | | | | | | | 4 | 4 | 4 | | 144 | 45.935262
45.934632 | -89.210910
-89.210919 | 43 | | Vilas
Vilas | 8/2/2012
8/2/2012 | EJH & CRS | | 1 | | | DEEP | | | | | | | | | | | | | | - | | | | | | | | | | | | + | - | + | | 146 | 45.934002 | -89.210919
-89.210928 | 0 | | Vilas | 8/2/2012 | | | | | | DEEP | 1 | | | | 147 | 45.933372 | -89.210937 | 0 | Eagle | Vilas | 8/2/2012 | EJH & CRS | | | | | DEEP | + | 4 | _ | | 148 | 45.932742
45.932112 | -89.210946
-89.210955 | 0 | Eagle
Eagle | | 8/2/2012
8/2/2012 | EJH & CRS | | | | | DEEP | | | | | | | | | | | | | | - | | | | | | | | | | | | + | - | \dashv | | 150 | 45.931482 | -89.210964 | | Eagle | | 8/2/2012 | | | 0 | | | DEEP | I | | | 151 | 45.930852 | -89.210973 | | Eagle | | 8/2/2012 | EJH & CRS | | 0 | | | DEEP | | | | | | | | | | | _ | + | | - | | | | | | | | | | | | \dashv | _ | 4 | | 152
153 | 45.930222
45.929592 | -89.210982
-89.210991 | | Eagle | | 8/2/2012
8/2/2012 | | | 2 0 | | | DEEP | | | | | | | | | | | | | | - | | | | | | | | | | | | + | - | + | | 154 | 45.928962 | -89.211000 | | | | 8/2/2012 | | | 4 0 | | | DEEP | I | I | ╛ | | 155 | 45.928332 | -89.211009 | | | | 8/2/2012 | | | | | | DEEP | 4 | 4 | 4 | | 156
157 | 45.927702
45.927072 | -89.211018
-89.211027 | | Eagle
Eagle | | 8/2/2012
8/2/2012 | | | | | | DEEP | + | + | - | | 157 | 45.926442 | -89.211027
-89.211035 | | | | | DAC & EEC | | | | | DEEP | | | | | | | | | | | | T | | | | | | | | | | | | | | 1 | 1 | | | 159 | 45.925812 | -89.211044 | | | | | DAC & EEC | | | Sand | Pole | | | 0 | | | | | | | | | _ | + | | - | | | | | | | | | | | | \dashv | _ | 4 | | 160
161 | 45.925182
45.924552 | -89.211053
-89.211062 | | | | | DAC & EEC | | | Sand
Sand | Pole
Pole | | | 0 | | | | | 2 | | | | 1 | | ١. | + | | 1 | | | 1 | | 1 | 1 | | - | - | + | + | - | | 162 | 45.939665 | -89.209945 | | | Vilas | | EJH & CRS | | | Saliu | Pole | SWIM AREA | | U | | | | | | | | | | | ľ | | | | | | | | | | | | | | I | | | 163 | 45.939036 | -89.209954 | 18 | | Vilas | 8/2/2012 | | | | Sand | Pole | | | 0 | 4 | 4 | _ | | 164
165 | 45.938406
45.937776 | -89.209963
-89.209972 | | | Vilas
Vilas | | | | | Sand | Pole | DEEP | | 2 | | | | | | | | | - | | | | | | | | | | | | | | | + | + | - | | 166 | 45.937116 | -89.209981 | | | Vilas | | | | | Saliu | Rope | | | 0 | ľ | | | | - | | | | | | | | | | | | | | | _ | | | | I | 1 | | | 167 | 45.936516 | -89.209990 | | | Vilas | 8/2/2012 | | | 7 21 | | |
DEEP | 4 | 4 | | | 168
169 | 45.935886
45.935256 | -89.209999
-89.210008 | | Eagle | | 8/2/2012
8/2/2012 | | | | | | DEEP | + | + | \dashv | | 170 | 45.935256 | -89.210008
-89.210016 | 0 | Eagle
Eagle | Vilas | 8/2/2012 | EJH & CRS | | | | | DEEP | | | | | | | | | | | | | | T | | | | | | | | | | | | \dagger | \top | 寸 | | 171 | 45.933996 | -89.210025 | 0 | | Vilas | 8/2/2012 | EJH & CRS | 6 0 | 0 | | | DEEP | 1 | 4 | | | 172 | 45.933366 | -89.210034 | 0 | | Vilas | 8/2/2012 | | | 0 | | | DEEP | + | + | - | | 173 | 45.932736
45.932106 | -89.210043
-89.210052 | 0 | Eagle
Eagle | | 8/2/2012
8/2/2012 | EJH & CRS | | 0 | | | DEEP | \dagger | 1 | 7 | | 175 | 45.931476 | -89.210061 | 0 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 3 0 | 0 | | | DEEP | 4 | \downarrow | _ | | 176 | 45.930846 | -89.210070
-89.210079 | 0 | Eagle | | 8/2/2012
8/2/2012 | EJH & CRS | | 0 | | | DEEP | + | + | - | | 177 | 45.930216
45.929586 | -89.210079
-89.210088 | | | | 8/2/2012 | | | 3 13 | Sand | Pole | DEEP | | 0] | 1 | | | | 179 | 45.928956 | -89.210097 | 153 | Eagle | Vilas | 8/2/2012 | DAC & EEC | 179 | 9 0 | | | DEEP | 4 | \downarrow | _ | | 180 | 45.928326 | -89.210106 | | | Vilas | 8/2/2012 | | | 0 | | | DEEP | + | + | - | | 181 | 45.927066 | -89.210115
-89.210124 | | | | | | | | | | DEEP | 1 | | | | 183 | 45.926436 | -89.210133 | | | | | | | | | | DEEP | 4 | \downarrow | 4 | | 184
185 | 45.925806
45.925176 | -89.210142
-89.210151 | | | | | | | | Sarr | Po!- | DEEP | + | 0 | | | | | \dashv | | - | + | + | + | + | + | H | | | | | | | - | | \dashv | \dashv | + | + | \dashv | | 185 | 45.925176
45.924546 | -89.210160 | | | | | | | | Sand | | | | 1 | | | | | | | | | | t | 1 | | | | | | | | | | | 1 | | 士 | \downarrow | | | 187 | 45.939659 | -89.209042 | 16 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 18 | 7 0 | | | SWIM AREA | - - | | | | | | 4 | | _[| _ | - - | + | | | L | | | | | | | | | - | - | 4 | 4 | 4 | | 188 | 45.939029
45.938399 | -89.209051
-89.209060 | | | | | | | | | Rope | DEEP | + | 0 | | | | | \dashv | | - | = | + | + | + | + | | | | | | Н | | | | \dashv | \dashv | + | + | \dashv | | 190 | 45.938399 | -89.209060 | | | | | | | | | Pole | DLEF | | 0 | | | | | | | | | | t | | | | | | | | | | | | | | 士 | \pm | | | 191 | 45.937139 | -89.209078 | | | | | | | | | | DEEP | - | | | | | | | | | - | + | - | - | 1 | - | | | | | | | 4 | | 4 | 4 | + | 4 | \dashv | | 192
193 | 45.936509
45.935879 | -89.209087
-89.209096 | | | | | | | | | | DEEP | + | | | | | | \dashv | | - | + | + | + | + | + | H | | | | | | | - | | \dashv | \dashv | + | + | \dashv | | 193 | 45.935879
45.935249 | -89.209096
-89.209105 | | | | | | | | | | DEEP | 士 | 1 | ╛ | | 195 | 45.934619 | -89.209114 | 0 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 3 0 | 0 | | | DEEP | - | | | | | | 4 | | | | - | + | | - | | | | | | | | | | _ | | 4 | 4 | 4 | | 196
197 | 45.933990
45.933360 | -89.209123
-89.209132 | | | | | | | | | | DEEP | + | | | | | | \dashv | | - | + | + | + | + | + | H | | | | | | | - | | \dashv | \dashv | + | + | \dashv | | 197 | 45.933360 | -89.209132
-89.209141 | | | | | EJH & CRS | | | | | DEEP | | | | | | | | | | | | İ | | | | | | | | | | | | | | 士 | \downarrow | ╛ | | 199 | 45.932100 | -89.209149 | | | | | | | | | | DEEP | + | L | | | | | 4 | | | - | - | + | - | - | - | | | | | | | | - | 4 | 4 | + | + | 4 | | 200 | 45.931470
45.930840 | -89.209158
-89.209167 | | | | | EJH & CRS | | | | | DEEP | + | | | | | | | | | + | + | + | | + | | | | | | | | | | \dashv | \dashv | + | + | \dashv | | 201 | 45.930840
45.930210 | -89.209167
-89.209176 | | | | | | | | | | DEEP | 1 | | | | | | | | | | | İ | | L | | | | | | | | | | | | 士 | \perp | | | 203 | 45.929580 | -89.209185 | 148 | Eagle | Vilas | 8/2/2012 | DAC & EEC | 20: | 3 12 | Sand | Pole | | - - | 0 | | | | | 4 | | _[| _ | - - | + | | | L | | | | | | | | | - | - | 4 | 4 | 4 | | 204 | 45.928950
45.928320 | -89.209194
-89.209203 | | | | | DAC & EEC | | | | | DEEP | + | | | | | | | | | = | + | + | + | 1 | | | | | | H | | | | \dashv | \dashv | + | + | \dashv | | 205 | 45.928320
45.927690 | -89.209203
-89.209212 | | | | | | | | | | DEEP | 1 | 1 | 1 | | 207 | 45.927060 | -89.209221 | 0 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | | | <u> </u> | Ш | | | | | | | | l | | | | <u> </u> | | | | Ш | | | | | | \perp | \perp | ╛ | | Point Number | Lattude (Decimal Degrees) | Longitude (Decimal Degrees) | D | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes
Nuisance | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Chara spp. | Eleocharis palustris | Elodea canadensis | Heteranthera dubia | Isoeles sp. | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nuphar variegata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogelon zosteriformis | Schoenoplectus tabernaemontani | Sparganium emersum | Spirodela polyrhiza | Utricularia vulgaris | Vallisneria americana | Fiamentous algae | |--------------|---------------------------|-----------------------------|-----|----------------|----------------|----------------------|------------|--------------|------------|----------|--------------|----------|-------------------|---------------------|-----------------------|------------------------|------------|----------------------|-------------------|--------------------|-------------|------------------------|----------------|-------------|------------------|-------------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|--------------------------------|--------------------|---------------------|----------------------|-----------------------|------------------| | 208 | 45.926430 | -89.209230 | | Eagle | | | EJH & CRS | | 0 | | | DEEP | _ | | 209 | 45.925800
45.925170 | -89.209239
-89.209248 | | Eagle
Eagle | | | | | | Sand | Pole | DEEP | | 0 | + | - | | 211 | 45.939653 | -89.208139 | | Eagle | | | EJH & CRS | | 6 | Muck | Pole | | | 1 | | 1 | | | | | | | | | | | | | 1 | | 1 | | | | | | | | 1 | 1 | | 212 | 45.939023 | -89.208148 | | Eagle | | 8/2/2012 | EJH & CRS | 212 | 13 | Sand | Pole | | | 0 | + | + | | 213 | 45.938393
45.937763 | -89.208157
-89.208166 | | Eagle
Eagle | Vilas
Vilas | 8/2/2012
8/2/2012 | EJH & CRS | | 20 | | | DEEP | 215 | 45.937133 | -89.208175 | | Eagle | Vilas | 8/2/2012 | EJH & CRS | | 19 | | | DEEP | 4 | 4 | | 216
217 | 45.936503
45.935873 | -89.208184
-89.208193 | | | Vilas | 8/2/2012
8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | + | + | | 217 | 45.935873 | -89.208193
-89.208202 | | Eagle
Eagle | Vilas
Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | 1 | 1 | | 219 | 45.934613 | -89.208211 | 0 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | _ | 4 | | 220
221 | 45.933983
45.933353 | -89.208220
-89.208229 | | Eagle
Eagle | Vilas | 8/2/2012
8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | + | + | | 222 | 45.932723 | -89.208238 | | | | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | 223 | 45.932093 | -89.208247 | | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | 4 | 4 | | 224
225 | 45.931463
45.930833 | -89.208256
-89.208265 | | Eagle
Eagle | | 8/2/2012
8/2/2012 | EJH & CRS | | 0 | | | DEEP | | | | | | \dashv | + | | + | + | - | - | | | | \dashv | | | | | | | | | \dashv | - | + | \dashv | | 226 | 45.930203 | -89.208274 | | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | I | 1 | | 227 | 45.929573 | | | Eagle | | | DAC & EEC | | 0 | | | DEEP | 4 | 4 | | 228 | 45.928943
45.928314 | -89.208291
-89.208300 | | Eagle
Eagle | | 8/2/2012
8/2/2012 | EJH & CRS | | 0 | | | DEEP | + | - | | 230 | 45.927684 | -89.208309 | | Eagle | | | EJH & CRS | | 0 | | | DEEP | I | | | 231 | 45.927054 | -89.208318 | | Eagle | | | | 0 | 0 | | | DEEP | _ | 4 | | 232 | 45.926424
45.925794 | -89.208327
-89.208336 | | Eagle | | 8/2/2012
8/2/2012 | EJH & CRS | 233 | 0 | | | DEEP | + | - | | 234 |
45.925164 | | | Eagle | | | | | 6 | Sand | Pole | DELI | | 1 | | | | | | | | | 1 | | | | | | 1 | | | | | | | | | | I | | | 235 | 45.939647 | -89.207236 | | Eagle | | | EJH & CRS | | 6 | Sand | Pole | | | 0 | + | 4 | | 236 | 45.939017
45.938387 | -89.207245
-89.207254 | | Eagle
Eagle | | 8/2/2012
8/2/2012 | EJH & CRS | | 12
20 | Sand | Pole | DEEP | | 0 | + | - | | 238 | 45.937757 | -89.207263 | | | | | EJH & CRS | | 0 | | | DEEP | 1 | | | 239 | 45.937127 | -89.207272 | | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | + | 4 | | 240 | 45.936497
45.935867 | -89.207281
-89.207290 | | Eagle
Eagle | Vilas | 8/2/2012
8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | + | 7 | | 242 | 45.935237 | -89.207299 | | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | 4 | | | 243
244 | 45.934607
45.933977 | -89.207308
-89.207317 | | Eagle | Vilas | 8/2/2012
8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | | | | | | | | | + | | | | | | | | | | | | | | | | | | + | + | | 245 | 45.933347 | -89.207317 | | Eagle
Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | I | | | 246 | 45.932717 | -89.207335 | | Eagle | | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | _ | 4 | | 247 | 45.932087
45.931457 | -89.207344
-89.207353 | | Eagle
Eagle | | 8/2/2012
8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | + | + | | 249 | 45.930827 | -89.207362 | | Eagle | | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | 250 | | -89.207371 | | | | | | | | | | DEEP | 4 | 4 | | 251
252 | | -89.207380
-89.207389 | | | | | | | 0 | | | DEEP | + | + | | 253 | | -89.207398 | | | | | | | | | | DEEP | I | | | 254 | | -89.207407 | | | | | | | 0 | | | DEEP | | | | | | | - | | + | + | - | - | | | | | | | | | | | | | \dashv | + | + | \dashv | | 255
256 | | -89.207416
-89.207425 | | | | | | | | | | DEEP | | L | L | | | | _ | | | | | | | | | | | | | | | | | | _ | | _+ | \exists | | 257 | | -89.207434 | 117 | Eagle | Vilas | 8/2/2012 | DAC & EEC | 257 | 11 | | | | | 0 | | | | | I | | 1 | | | | | | | | | | | | | | | | 1 | | 7 | 7 | | 258 | 45.925157 | | | | | | | | | | | | | 2 | | H | | | + | | + | + | 2 | | | | | | | | | | | | | | - | - | + | \dashv | | 259
260 | 45.939640
45.939010 | | | | | | | | | Sand | Pole
Rope | | | 0 | L | | | | | | | 1 | 1 | L | | | | 1 | | | | | 1 | | | | | | \pm | \exists | | 261 | 45.938381 | -89.206351 | 3 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 261 | 19 | | | DEEP | | | | | | | I | | | | | | | | | | | | | | | | | | 1 | | 7 | 1 | | 262 | 45.937751 | | | | | | EJH & CRS | | | | | DEEP | | | | H | | | + | | + | - | \vdash | | | | | | | | | | | | | | - | | + | \dashv | | 263
264 | 45.937121
45.936491 | -89.206369
-89.206378 | | Eagle
Eagle | | | EJH & CRS | | 0 | | | DEEP | | L | L | | | | | | | 1 | l | L | | | | | | | | | | | | | | | \exists | ╛ | | 265 | 45.935861 | -89.206387 | 0 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | | | | | | | 7 | | 1 | Ţ | | | | | | | | | | | | | | | 7 | | 7 | J | | 266 | 45.935231 | -89.206396 | | | | | EJH & CRS | | | | | DEEP | | | | | | | + | | + | - | | | | | | | | | | | | | | | \dashv | | + | \dashv | | 267
268 | 45.934601
45.933971 | -89.206405
-89.206414 | | Eagle
Eagle | | | EJH & CRS | | 0 | | | DEEP | | L | | | | | | | 1 | T | L | | | | | | | | | | | | | | | | \pm | 1 | | 269 | 45.933341 | -89.206423 | 0 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | | F | F | | | | 4 | | Ţ | T | | | | | | | | | | | | | | | 1 | 1 | 4 | 1 | | 270 | 45.932711 | -89.206432 | | | | | EJH & CRS | | 0 | | | DEEP | | | | | | | \dashv | - | + | - | | - | | | | | | | | | | | | - | + | | + | \dashv | | 271
272 | 45.932081
45.931451 | -89.206441
-89.206450 | | | | | EJH & CRS | | 0 | | | DEEP | | L | | | | | | | 1 | T | L | | | | | | | | | | | | | | | | \pm | 1 | | 273 | 45.930821 | -89.206459 | 0 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | | | | | | -1 | - | Į | - | \perp | | | | | | -1 | | J | | | | | J | Į | \dashv | Ţ | 4 | 4 | | 274
275 | 45.930191
45.929561 | -89.206468
-89.206477 | | | | | EJH & CRS | | 0 | | | DEEP | | | | | | | \dashv | - | + | - | | - | | | | | | | | | | | | - | \dashv | | + | \dashv | | 276 | 45.929561 | | | | | | EJH & CRS | | 0 | | | DEEP | 1 | | | \pm | 7 | | Point Number | Lattude (Decimal Degrees) | Longitude (Decimal Degrees) | D | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sedim ent | Pole; Rope | Comments | Notes
Nuisance | Total Rake Fulhess | Myriophyllum spicatum | Ceratophyllum demersum | Chara spp. | Eleocharis palustris | Elodea canadensis | Heteranthera dubia | Isoetes sp. | Megalodonta beck i | Mynoprynum sibincum
Najas flexilis | Nitella sp. | Nuphar variegata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vasey i | Potamogeton zosteriformis | Scho enoplectus tabernaemontan | Sparganium emersum | Spirodela polyrhiza | Utricularia vulgaris | Vallisneria americana | Flamentous algae | |--------------|---------------------------|-----------------------------|-----|----------------|--------|----------------------|------------|--------------|------------|-----------|--------------|----------|-------------------|--------------------|-----------------------|------------------------|------------|----------------------|-------------------|--------------------|-------------|--------------------|---------------------------------------|-------------|------------------|-------------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|---------------------|---------------------------|--------------------------------|--------------------|---------------------|----------------------|-----------------------|------------------| | 277 | 45.928301 | -89.206495 | 0 | Eagle | | 8/2/2012 | EJH & CRS | | | | | DEEP | _ | | 278 | 45.927671 | -89.206504 | | | | | | | | | | DEEP | | | | | | | | | | | | - | | | | | | | | | | | | | | - | + | + | | 279
280 | 45.927041
45.926411 | -89.206513
-89.206522 | | Eagle
Eagle | | | DAC & EEC | | | | | DEEP | 281 | 45.925781 | -89.206531 | | Eagle | | 8/2/2012 | | | 9 | Rock | Pole | | | 0 | 282 | 45.925151 | -89.206540 | | | | 8/2/2012 | | | | Rock | Pole | | | 0 | | | | | | | | | | - | | | | | | | | | | | | | | - | + | \dashv | | 283
284 | 45.940264
45.939634 | -89.205421
-89.205430 | | Eagle
Eagle | | 8/2/2012 | DAC & EEC | | | Sand | Pole | | | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | | | | - | 1 | \dashv | | 285 | 45.939004 | -89.205439 | | Eagle | | 8/2/2012 | | | | Curio | Rope | | | 0 | 286 | 45.938374 | -89.205448 | 4 | Eagle | Vilas | 8/2/2012 | | | 0 | | | DEEP | 4 | 4 | | 287
288 | 45.937744
45.937114 | -89.205457
-89.205466 | | Eagle | | 8/2/2012
8/2/2012 | EJH & CRS | | 0 | | | DEEP | | | | | | | - | | | | | | | | | | | | | | | | | | | - | + | \dashv | | 289 | 45.936484 | -89.205475 | | Eagle
Eagle | | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | 290 | 45.935854 | -89.205484 | | Eagle | | 8/2/2012 | | 0 | 0 | | | DEEP | \Box | | 291 | 45.935224 | -89.205493 | | Eagle | | 8/2/2012 | | | 0 | | | DEEP | | | | | | | - | | | | | | | | | | | | | | | | | | | - | + | \dashv | | 292 | 45.934594
45.933964 | -89.205502
-89.205511 | | Eagle
Eagle | | 8/2/2012 | EJH & CRS | | 0 | | | DEEP | - | + | \dashv | | 293 | 45.933334 | -89.205520 | | Eagle | | 8/2/2012 | | | 0 | | | DEEP | 1 | ╛ | | | 295 | 45.932705 | -89.205529 | | Eagle | | 8/2/2012 | | | 0 | | | DEEP | | | | | | | _ | | 4 | - | - | + | | | | | | | | | | | | | | - | 4 | \dashv | | 296 | 45.932075 | -89.205538 | | Eagle | | 8/2/2012 | | | | | | DEEP | | | | | | | | | | - | | + | | | | | | | | | | | | | | | - | \dashv | | 297
298 | 45.931445
45.930815 | -89.205547
-89.205556 | | Eagle
Eagle | | 8/2/2012
8/2/2012 | | | 0 | | | DEEP | | | | | | | | | | | | İ | L | | | | | | | | | | | | | _ | _† | ╛ | | 299 | 45.930185 | -89.205565 | | Eagle | | 8/2/2012 | | | 0 | | | DEEP | | | | | | | | | | 1 | | | | | | | | | | | | | | | | 1 | I | 1 | | 300 | 45.929555 | -89.205574 | | Eagle | | | EJH & CRS | | 0 | | | DEEP | | | | | | | | | \dashv | + | + | + | | | | | | | | | | | | | | + | + | \dashv | | 301 | 45.928925
45.928295 | -89.205583
-89.205592 | | Eagle
Eagle | | 8/2/2012
8/2/2012 | | | 0 | | | DEEP | | | | | | | | | | | | 1 | | | | | | | | | | | | | | - | + | \dashv | | 302 | 45.928295 | -89.205692
-89.205601 | | | | 8/2/2012 | | | | | | DEEP | | | | | | | | | | | | t |
 | | | | | | | | | | | | 7 | 7 | ┪ | | 304 | 45.927035 | -89.205610 | | | | 8/2/2012 | DAC & EEC | 304 | 10 | Sand | Pole | | | 0 | | | | | | | | | | _ | | | | | | | | | | | | | | | | 4 | | 305 | 45.926405 | -89.205619 | | | | | DAC & EEC | | | Sand | Pole | | | 0 | | | | | - | | | | | | | | | | | | | | | | | | | - | + | \dashv | | 306
307 | 45.925775
45.925145 | -89.205628
-89.205637 | | Eagle | | 8/2/2012 | DAC & EEC | | | Sand | Pole
Pole | | | 0 | | | | | | | | | 1 | | | | | | | | | | | | | | | - | 1 | \dashv | | 308 | 45.940258 | -89.204518 | | Eagle | | 8/2/2012 | | | | Sand | Pole | | | 2 | | | | | | | | | 1 | | | | | | | | | | | | | | | | 2 | | | 309 | 45.939628 | -89.204527 | 7 | Eagle | Vilas | 8/2/2012 | DAC & EEC | | 16 | | Rope | | | 0 | _ | 4 | 4 | | 310 | 45.938998 | -89.204536 | | Eagle | | 8/2/2012 | | | 17 | | Rope | | | 0 | | | | | | | | - | | + | | | | | | | | | | | | | | | - | + | | 311 | 45.938368
45.937738 | -89.204545
-89.204554 | | Eagle
Eagle | | 8/2/2012
8/2/2012 | DAC & EEC | | 0 | | | DEEP | | | | | | | | | | | | t | | | | | | | | | | | | | | 7 | 7 | T | | 313 | 45.937108 | -89.204563 | | Eagle | | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | _ | | 314 | 45.936478 | -89.204572 | | Eagle | | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | | | | | | | | | | - | | + | | | | | | | | | | | | | | | + | + | | 315
316 | 45.935848
45.935218 | -89.204581
-89.204590 | | Eagle
Eagle | | 8/2/2012
8/2/2012 | | | 0 | | | DEEP | - | \dashv | | 317 | 45.934588 | -89.204599 | | Eagle | | 8/2/2012 | EJH & CRS | | 0 | | | DEEP | 318 | 45.933958 | -89.204608 | 0 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | _ | _ | | | | -89.204617 | | | | | | | | | | DEEP | | | | | | | | | | - | | + | | | | | | | | | | | | | | _ | - | \dashv | | 320
321 | 45.932698
45.932068 | -89.204626
-89.204635 | | | | | | | | | | DEEP | | | | | | | | | | | | t | | | | | | | | | | | | | | 7 | 7 | 寸 | | 322 | 45.931438 | -89.204644 | | | | | | | | | | DEEP | 1 | 1 | I | | 323 | 45.930808 | -89.204653 | | | | | | | | | | DEEP | | | | | | | - | | \dashv | - | - | + | 1 | | | | | | | | | | | | | + | + | \dashv | | 324
325 | 45.930178
45.929548 | -89.204662
-89.204671 | | | | | | | | | | DEEP | | | | H | | | 1 | | \dashv | + | + | l | H | | | | | | | | | | 1 | 1 | 1 | + | + | \dashv | | 326 | 45.928918 | -89.204680 | | | | | | | | | | DEEP | 1 | ╛ | ⇉ | | 327 | 45.928288 | -89.204689 | 0 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | | | | | | | _ | | 4 | _ | - | | | | | | | | | | | | | | | 4 | 4 | 4 | | 328 | 45.927658 | -89.204698 | | | | | | | | | D. I | OTHER | \vdash | 0 | | Н | | | + | | \dashv | + | + | 1 | 1 | | | | | | - | | | | - | - | - | + | + | \dashv | | 329 | 45.927028
45.926399 | -89.204707
-89.204716 | | | | | | | | | | | | 2 | 1 | | | | 1 | | 1 | | 2 | t | | | | 1 | | | | | 1 | | | | | 7 | \dashv | \dashv | | 331 | 45.925769 | -89.204725 | 105 | Eagle | Vilas | 8/2/2012 | DAC & EEC | 331 | 6 | Sand | Pole | - | | 2 | | | 1 | | 1 | | | | 1 | I | | 1 | | | | 1 | | 1 | | | | | | 1 | 1 | J | | 332 | 45.925139 | -89.204734 | | | | | | | | | | | | 0 | | Н | | | - | | \dashv | + | + | + | 1 | | | | | | - | | | | | | | + | + | \dashv | | 333
334 | 45.940252
45.939622 | -89.203615
-89.203624 | | | | | | | | Sand | Pole
Rope | | \vdash | 0 | - | Н | | | \dashv | | \dashv | \dashv | 2 | | | | | | | | | 1 | | | | | | \dashv | 2 | \dashv | | 335 | 45.939622 | -89.203624
-89.203633 | | | | | | | | | Rope | | | 0 | ╛ | | 336 | 45.938362 | -89.203642 | 12 | Eagle | Vilas | 8/2/2012 | DAC & EEC | 336 | 0 | | | DEEP | | | | | | | _ | | 4 | _ | - | | | | | | | | | | | | | | | 4 | 4 | 4 | | 337 | 45.937732 | -89.203651 | | | | | EJH & CRS | | | | | DEEP | \vdash | | | | | | + | | \dashv | + | + | + | | | | | | | | | | | - | - | - | + | + | \dashv | | 338 | 45.937102
45.936472 | -89.203660
-89.203669 | | | | | EJH & CRS | | | | | DEEP | | | | | | | 1 | | 1 | | | t | | | | | | | | | | | | | | \dashv | \dashv | \dashv | | 340 | 45.935842 | -89.203678 | | | | | EJH & CRS | | | | | DEEP | 1 | 1 | I | | 341 | 45.935212 | -89.203687 | | | | | | | 0 | | | DEEP | | | _ | | | | 4 | | - | \dashv | + | | | | | | | | | | | | _ | _ | _ | _ | + | \dashv | | 342
343 | 45.934582
45.933952 | -89.203696
-89.203705 | | | | | | | 0 | | | DEEP | \vdash | | - | Н | | | + | | \dashv | \dashv | + | | | | | | | | | | | | | | | \dashv | + | \dashv | | 343 | 45.933952
45.933322 | -89.203705
-89.203714 | | | | | | | | | | DEEP | | | | | | | | | | | t | L | L | | | | | | | | | | | | | I | I | | | 345 | 45.932692 | -89.203723 | 0 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | | | | Ш | | | | | | | ┸ | _ | | | | | | | | | | | | | | | \perp | \Box | | Point Number | Lattude (Decimal Degrees) | Longitude (Decimal Degrees) | D | Lake Name | County | Date | Feld Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes
Nuisance | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Chara spp. | Eleocharis palustris | Elodea canadensis | Heteranthera dubia | Soeles sp. | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nuphar variegata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Scho enoplectus tabernaemontan | Sparganium emersum | Spirodela polyrhiza | Utric ularia vulgaris | Vallisneria americana | Fiamentous algae | |--------------|---------------------------|-----------------------------|-----|----------------|--------|----------------------|-----------|--------------|------------|----------|------------|----------|-------------------|---------------------|-----------------------|------------------------|------------|----------------------|-------------------|--------------------|------------|------------------------|----------------|-------------|------------------|-------------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|--------------------------------|--------------------|---------------------|-----------------------|-----------------------|------------------| | 346 | 45.932062 | -89.203733 | | Eagle | | 8/2/2012 | EJH & CRS | | 0 | | | DEEP | 1 | | 347 | 45.931432 | -89.203742 | | Eagle
Eagle | | | EJH & CRS | | 0 | | | DEEP | + | - | | 348 | 45.930802
45.930172 | -89.203751
-89.203760 | | Eagle
Eagle | | 8/2/2012
8/2/2012 | EJH & CRS | | 0 | | | DEEP | 7 | | 350 | 45.929542 | -89.203769 | | Eagle | | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | 351 | 45.928912 | -89.203778 | | Eagle | | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | | | | | | | _ | + | 4 | | 352
353 | 45.928282
45.927652 | -89.203787
-89.203796 | | Eagle | | 8/2/2012
8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | - | + | | 354 | 45.927022 | -89.203805 | | Eagle
Eagle | | 8/2/2012 | EJH & CRS | - | 0 | | | DEEP | 1 | | | 355 | 45.926392 | -89.203814 | 101 | Eagle | Vilas | 8/2/2012 | DAC & EEC | 355 | 0 | | | DEEP | _ | | 356 | 45.925762 | -89.203823 | | Eagle | | | DAC & EEC | | 13 | Sand | Pole | | | 0 | + | 4 | | 357
358 | 45.925132
45.924502 | -89.203832
-89.203841 | | Eagle
Eagle | Vilas | 8/2/2012 | DAC & EEC | 357 | 4 | Sand | Pole | | | 1 | | | | | | | | 1 | 1 | | | 1 | | | | | | | | | | | | | - | + | | 359 | 45.940245 | -89.202712 | | Eagle | | | DAC & EEC | | 6 | Sand | Pole | | | 2 | | | | | | | | | | | | | | | 2 | | | 1 | | | | | | | 1 | | | 360 | 45.939615 | -89.202721 | 14 | Eagle | Vilas | 8/2/2012 | DAC & EEC | 360 | 17 | | Rope | | | 0 | 4 | _ | | 361 | 45.938985 | -89.202730 | | Eagle | | 8/2/2012 | DAC & EEC | 361 | 0 | | | DEEP | | | | | | | | | | + | | | | | | | | | | | | | | | | | \pm | - | | 362
363 | 45.938355
45.937725 | -89.202739
-89.202748 | | Eagle
Eagle | | 8/2/2012 | EJH & CRS | | 0 | | | DEEP | | | | H | | | | + | \top | + | | | | | | 1 | \dashv | 1 | | | | | | | | + | + | \forall | | 364 | 45.937095 | -89.202757 | 31 | Eagle | Vilas | 8/2/2012 | DAC & EEC | 364 | 0 | | | DEEP | | | | | | | | | 1 | | | | | | | | | | | | | | | | | 1 | I | 1 | | 365 | 45.936465 | | | Eagle | | | DAC & EEC | | 0 | | | DEEP | - | | - | | | | | _ | - | | | | | | 4 | | _ | | | | | | | | | | 4 | 4 | | 366 | 45.935835 | | | | | | DAC & EEC | | 0 | | | DEEP | + | | | | | | \dashv | \dashv | + | + | + | | | | + | - | \dashv | 4 | | | | | | | - | - | + | + | | 367
368 | 45.935206
45.934576 | -89.202785
-89.202794 | | Eagle
Eagle | | | DAC & EEC | | 0 | | | DEEP | | | | H | | | | + | \top | + | | П | | | | 1 | \dashv | 1 | | | | | | | | + | + | \forall | | 369 | 45.933946 |
-89.202803 | | Eagle | | | EJH & CRS | | 0 | | | DEEP | 1 | | 370 | 45.933316 | -89.202812 | 0 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | 4 | | 371 | 45.932686 | -89.202821 | | Eagle | | | EJH & CRS | | 0 | | | DEEP | - | + | 4 | | 372
373 | 45.932056
45.931426 | -89.202830
-89.202839 | | Eagle
Eagle | | | EJH & CRS | | 0 | | | DEEP | | | | | | | | | | t | | | | | | | | | | | | | | | | | + | + | | 374 | 45.930796 | -89.202848 | | Eagle | | | EJH & CRS | | 0 | | | DEEP | 1 | 7 | | 375 | 45.930166 | -89.202857 | | Eagle | | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | 376 | 45.929536 | -89.202866 | | Eagle | Vilas | | EJH & CRS | | 0 | | | DEEP | + | 4 | | 377
378 | 45.928906
45.928276 | -89.202875
-89.202884 | | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | | | | | | | | | | + | | | | | | | | | | | | | | | | | + | + | | 378 | 45.928276 | -89.202884
-89.202893 | | Eagle
Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | 1 | 7 | | 380 | 45.927016 | -89.202902 | | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | I | 1 | | 381 | 45.926386 | -89.202911 | | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | 0 | | | DEEP | | | | | | | _ | | | - | | | | | | | | | | | | | | | | | 4 | 4 | | 382 | 45.925756 | -89.202920 | | Eagle | Vilas | | EJH & CRS | 0 | 0 | | | DEEP | | | | | | | | | | + | | | | | | | | | | | | | | | | | + | + | | 383 | 45.925126
45.924496 | -89.202929
-89.202938 | | Eagle
Eagle | Vilas | 8/2/2012 | DAC & EEC | 383 | 6 | Sand | Pole | DEEP | | 1 | | | | | | | | 1 | | | | | | | | | | | | | | | | | 1 | 7 | | 385 | 45.923866 | -89.202947 | | Eagle | | 8/2/2012 | DAC & EEC | | 2 | Sand | Pole | | | 1 | 1 | | | | 1 | 1 | | 386 | 45.940239 | -89.201809 | | Eagle | | 8/2/2012 | DAC & EEC | | 7 | Sand | Pole | | | 2 | | | | | 1 | | | | 1 | | | | | | | | | | | | | | | | 2 | 4 | | 387 | 45.939609 | -89.201818 | | Eagle | | | DAC & EEC | | 17 | | Rope | DEED | | 0 | | | | | | | | + | | | | | | | | | | | | | | | | | + | \dashv | | 388 | | -89.201827
-89.201836 | | | | | | | | | | DEEP | + | ┪ | | 390 | | -89.201846 | | | | | | | | Sand | Pole | | | 0 | 1 | | 391 | | -89.201855 | | | | | | | | | | | - | 1 | | | | - | 4 | 4 | + | - | 1 | | | | _ | 1 | 4 | _ | | | | | | | | 4 | 4 | 4 | | 392 | | -89.201864
-89.201873 | | | | | | | | | | | + | 0 | - | | | | \dashv | + | + | + | | | | | _ | | - | | | | | | | | | \dashv | + | + | | 393
394 | | -89.201873
-89.201882 | | | | | | | | | | | \dagger | 0 | | | | 1 | 1 | \dashv | \dagger | t | t | | | H | 1 | 1 | \dashv | | | | | | | | 1 | 1 | + | 1 | | 395 | | -89.201891 | | | | | | | | | Rope | | Ţ | 0 | | | | | I | I | 1 | | | | | | | | I | | | | | | | | | 1 | I | J | | 396 | | -89.201900 | | | | | | | | | | DEEP | + | | | | | - | 4 | 4 | + | - | 1 | | | | _ | | 4 | _ | | | | | | | | 4 | 4 | 4 | | 397 | | -89.201909 | | | | | | | | | | DEEP | + | | | Н | | | \dashv | \dashv | + | + | | | | | + | | \dashv | | | | | | | | - | - | + | \dashv | | 398 | 45.932679
45.932049 | -89.201918
-89.201927 | | | | | | | | | | DEEP | \dagger | | | | | 7 | 7 | \dashv | \dagger | t | t | | | H | 1 | 1 | \dashv | 7 | | | | | | | 1 | \dashv | + | \forall | | 400 | 45.931419 | | | | | | | | | | | DEEP | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | 1 | I | | 401 | 45.930789 | -89.201945 | | | | | | | | | | DEEP | - | | - | Н | | | 4 | 4 | - | | | | | | 4 | | _ | 4 | | | | | | | | _ | 4 | 4 | | 402 | 45.930159 | -89.201954 | | | | | EJH & CRS | | | | | DEEP | - | | - | H | | | + | \dashv | + | - | | | | | _ | - | + | | | | | - | | | | \dashv | + | \dashv | | 403 | 45.929529
45.928900 | -89.201963
-89.201972 | | | | | | | | | | DEEP | + | | | | | | + | \dashv | + | \dagger | \vdash | | | | 1 | | \dashv | 1 | | | | | | | - | + | + | \dashv | | 405 | 45.928270 | -89.201981 | | | | | EJH & CRS | | 0 | | | DEEP | I | I | | 406 | 45.927640 | -89.201990 | 0 | Eagle | Vilas | 8/2/2012 | EJH & CRS | 0 | | | | DEEP | | | | Ш | | [| 4 | 4 | \perp | + | | | | | _ | _[| _ | _ | | | | | | | _[| - | 4 | 4 | | 407 | 45.927010 | -89.201999 | | | | | EJH & CRS | | 0 | | | DEEP | - | | - | H | | | + | \dashv | + | - | | | | | _ | - | + | | | | | - | | | | \dashv | + | \dashv | | 408 | 45.926380
45.925750 | -89.202008
-89.202017 | | | | | | | | | Rope | DEEP | + | 0 | | | | | + | \dashv | + | \dagger | \vdash | | | | 1 | | \dashv | 1 | | | | | | | - | + | + | \dashv | | 410 | 45.925750 | -89.202017
-89.202026 | | | | | | | | | rope | DEEP | | J | | | | | | | 1 | L | L | | | | | | | | | | | | | | | | 1 | ╛ | | 411 | 45.924490 | -89.202035 | | | | | | | | Sand | Pole | | | 2 | L | Ш | | _[| J | \bot | _[| Ļ | 1 | Ш | | 1 | Ţ | I | J | | | | | | | | J | -[| 2 | 4 | | 412 | 45.923860 | | | | | | DAC & EEC | | | | | | + | 1 | - | Н | | | | - | - | - | 1 | | 1 | | | | | | | | | | | | _ | | + | 4 | | 413 | 45.940233 | -89.200906 | | | | | | | | | | | + | 1 | - | | | | \dashv | + | + | + | | | | | \dashv | - | 1 | | | | | - | | | | \dashv | + | + | | 414 | 45.939603 | -89.200915 | 19 | Eagle | Vilas | 8/2/2012 | DAC & EEC | 414 | 9 | Sand | Pole | | | 0 | Ь | ш | | | _ | _ | | | | ш | | ш | _ | _ | _ | ! | | Ь. | <u> </u> | Ь | | | _ | _ | | _ | | Point Number | Lattude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | (man) | Date | Field Crew | Doint Mumbor | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Chara spp. | Eleocharis palustris | Elodea canadensis | Heleranthera dubia | lsoeles sp. | Megalodonta beck i | Myriophyllum sibiricum | Najas flexilis | Nuphar variegata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vasey i | Potamogeton zosteriformis | Schoenoplectus tabernaemontan | Sparganium emersum | Spirodela polyrhiza | Utricularia vulgaris | Vallisneria americana | Flamentous algae | |--------------|---------------------------|-----------------------------|----|-----------|---------|-------|----------------------|------------|--------------|---------------|--------------|--------------|----------|---------|---------------------|-----------------------|------------------------|------------|----------------------|-------------------|--------------------|-------------|--------------------|------------------------|----------------|------------------|-------------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|---------------------|---------------------------|-------------------------------|--------------------|---------------------|----------------------|-----------------------|------------------| | 415 | 45.938973 | -89.200925 | | | le Vila | | 8/2/2012 | DAC & EEC | 4 | 15 17 | | Rope | | | 0 | | _ | | | | | | | | | | | | | | | | | | _ | | | | _ | | | | 416 | 45.938343 | -89.200934 | | | le Vila | | | DAC & EEC | | | Sand | Pole | | \perp | 2 | | + | - | | | | | | | | | 1 | | | | | | | | + | | | + | + | 1 | + | | 417 | 45.937713
45.937083 | -89.200943
-89.200952 | | | | | | DAC & EEC | | | Sand | Pole
Pole | | | 1 | | | | | | | | | | 1 | | | | 1 | 1 | | | | 1 | | | | - | _ | 1 | - | | 419 | 45.936453 | -89.200961 | | | | | | DAC & EEC | | | Sand | Pole | | | 2 | | | | | | | | | | 2 | | | | 1 | 1 | | | | | | | | I | | | 1 | | 420 | 45.935823 | -89.200970 | | | | | | DAC & EEC | Т | 20 5 | Sand | Pole | | | 2 | | 1 | - | | 1 | 1 | | | | 1 | | | | 1 | | | | | | 1 | | | _ | _ | _ | _ | | 421 | 45.935193 | -89.200979
-89.200988 | | | | | | DAC & EEC | | | Sand | Pole
Pole | | | 2 | | | | | | | | | | 2 | | | | 1 | 2 | | | | 1 | - | | | + | + | 1 | - | | 422
423 | 45.934563
45.933933 | -89.200988
-89.200997 | | | | | | | | | Sand | | | | 0 | | | | | | | | | | 1 | | | | 1 | 2 | | | | | | | | 7 | _ | + | 7 | | 424 | 45.933303 | -89.201006 | | | | | | DAC & EEC | | 24 0 | | | DEEP | 425 | 45.932673 | -89.201015 | | | | | | | | 25 0 | | | DEEP | _ | | | _ | _ | _ | _ | | 426
427 | 45.932043
45.931413 | -89.201024
-89.201033 | 0 | | le Vila | | 8/2/2012 | | | 0 0 | | | DEEP | | | | 1 | | | | | | | | | | | | | | | | | | - | | | + | - | + | - | | 427 | 45.931413 | -89.201033
-89.201042 | | | | | | DAC & EEC | Т | 28 0 | | | DEEP | 7 | | T | 7 | | 429 | 45.930153 | -89.201051 | | | le Vila | | 8/2/2012 | DAC & EEC | 4: | 29 0 | | | DEEP | 430 | 45.929523 | -89.201060 | | | le Vila | | 8/2/2012 | | | | | | DEEP | | | | | - | | | | | | | | | | | | | | | | | 4 | | | + | _ | 4 | - | | 431
432 | 45.928893
45.928263 | -89.201069
-89.201078 | | | le Vila | | 8/2/2012
8/2/2012 | | | 31 0 | | | DEEP | + | + | + | + | + | 1 | | | | - | \dashv | + | | | | | | | | | - | \dashv | | + | + | + | + | \dashv | | 433 | 45.927633 | -89.201078 | | | le Vila | | 8/2/2012 | EJH & CRS | Т | 0 0 | | | DEEP | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | 434 | 45.927003 | -89.201096 | | | le Vila | | 8/2/2012 | | | 0 0 | | | DEEP | - | Į | Į | L | | | | | - | I | Į | | | | | | | | | | I | J | | Į | Į, | \bot | Į | Į | | 435 | 45.926373 | -89.201105 | | | | | 8/2/2012 | | Т | 35 0 | | | DEEP | + | 4 | | _ | \dashv | + | + | 4 | | 436
437 | 45.925743
45.925113 | -89.201114
-89.201124 | | | le Vila | | 8/2/2012 | DAC & EEC | | 36 17
37 9 | Sand | Rope
Pole | | | 0 | | + | + | | | | | | | | | | | | | | | | | + | | | + | + | + | + | | 437 | 45.924483 | -89.201124 | | | le Vila | | | DAC & EEC | Т | 38 2 | Sand | Pole | | | 1 | 1 | | | 439 | 45.939596 | -89.200013 | 18 | Eag | le Vila | as 8 | 8/2/2012 | DAC & EEC | 4: | 39 1 | Sand | Pole | | | 1 | | | | | | | | | | | | | | | | | | 1 | | _ | | | | _ | 1 | | | 440 | 45.938966 | -89.200022 | | | le Vila | | | DAC & EEC | | 40 4 | Sand | Pole | | | 3 | | - | - | | | 1 | | | | 1 | | 2 | | 1 | | | | | | + | | | + | + | 3 | 4 | | 441 | 45.934557
45.933927 | -89.200085
-89.200094 | | | le Vila | | | DAC & EEC | | | Sand | Pole | | | 0 | | + | + | | 1 | | | | | 2 | | | | | | | 1 | | 1 | + | | | + | + | 1 | + | | 443 | 45.933297 | -89.200103 | | | | | | DAC & EEC | | | Sand | Pole | | | 3 | | | | | | | | | | | | | | | | | | 3 | | | | | | | 1 | | | 444 | 45.932667 | -89.200112 | | | | | 8/2/2012 | DAC & EEC | 4 | 44 10 | Sand | Pole | | _ | 0 | | _ | | | | | | | | | | | | | | | | | | _ | | | _ | _ | | | | 445 | 45.932037 | -89.200121 | | | | | | DAC & EEC | Т | | | | DEEP | + | | | + | + | + | - | | 446
447 | 45.931407
45.930777 | -89.200130
-89.200139 | | | | | | DAC & EEC | _ | | | Rope | DEEP | | 0 | - | _ | - | - | | 448 | 45.930147 | -89.200148 | | | | | | | | | Sand | | | | 0 | I | | 449 | 45.929517 | -89.200157 | | | le Vila | | | DAC & EEC | | | Sand | Pole | | | 0 | _ | _ | | _ | | 450 | 45.928887 | -89.200166 | | | | | | | | | Sand | Pole | | | 0 | + | | | + | + | + | - | | 451
452 | 45.928257
45.927627 | -89.200176
-89.200185 | 73 | | le Vila | | 8/2/2012 | | | 52 0 | | | DEEP | 7 | _ | + | 7 | | 453 | 45.926997 | -89.200194 | | | | | | DAC & EEC | Т | 53 0 | | | DEEP | 454 | 45.926367 | -89.200203 | 79 | Eag | le Vila | | 8/2/2012 | | Т | 54 0 | | | DEEP | 4 | | - | 4 | 4 | 4 | 4 | | 455 | 45.925737 | -89.200212 | 85 | | le Vila | | 8/2/2012 | DAC & EEC | | | Sand | Pole | | + | 0 | | + | + | | | | | | | | | | | | | | | | | - | | | \dashv | + | + | + | | 456
457 | 45.925107
45.924477 | -89.200221
-89.200230 | 86 | | le Vila | | 8/2/2012
8/2/2012 | DAC & EEC | 4 | 57 4 | Sand
Sand | Pole
Pole | | | 3 | | İ | İ | l | | | | | | 3 | T | | L | 1 | | | | | | 1 | | | | _ | 1 | ╛ | | 458 | 45.933290 | -89.199200 | 48 | Eag | le Vila | | | DAC & EEC | 4 | 58 1 | Sand | Pole | | | 0 | L | Ļ | | | | | | J | J | | | | | | | | | | J | J | J | J | Ţ | J | Į | J | | 459 | 45.932660 | -89.199209 | | | | | | | | | Sand | | | + | 1 | + | + | + | - | | | | | + | 1 | + | | 1 | | | | | | | \dashv | | - | \dashv | + | 1 | \dashv | | 460
461 | 45.932030
45.931400 | -89.199218
-89.199227 | | | | | | | | | Sand
Sand | | | | 1 2 | t | + | + | + | | | | | 1 | 1 | + | 1 | | | 2 | | 1 | | | \dashv | | 1 | \dashv | + | 1 | \dashv | | 462 | 45.930770 | -89.199227
-89.199237 | | | | | | | | | | | | | 0 | İ | L | | L | | | | | | | | | | | | | | | | J | | | | I | İ | ╛ | | 463 | 45.930141 | -89.199246 | | | | | | DAC & EEC | | | Sand | Pole | | - - | 1 | 1 | Ļ | 1 | | | | [| | 4 | 1 | | | | | | | 1 | | | _[| | | 4 | 4 | 1 | 4 | | 464 | 45.929511 | -89.199255 | | | | | | | | | | | | + | 1 | H | + | - | - | | | | - | + | 1 | + | | | | | | | | _ | \dashv | - | + | \dashv | + | 1 | \dashv | | 465
466 | 45.928881
45.928251 | -89.199264
-89.199273 | | | | | | | | | Sand
Sand | | | | 2 | | \dagger | + | | 1 | | | | 1 | l | | | | 1 | 1 | | | | 1 | \dashv | | 1 | \dashv | | 1 | \dashv | | 467 | 45.927621 | -89.199282 | | | | | | | | | | | | | 2 | | | | | | | | | | 1 | | | | 1 | | | | | 1 | | | | 耳 | | 1 | \Box | | 468 | 45.926991 | -89.199291 | | | | | | | | | Sand | | | \perp | 2 | - | + | - | | | | | | 4 | - | | 1 | | | | | | | | 4 | | _ | 4 | 4 | 1 | 4 | | 469 | 45.926361 | -89.199300 | | | | | | | | | | | | + | 1 | + | + | 1 | - | | | - | | + | + | + | | | | | | | 1 | | \dashv | | + | \dashv | + | + | \dashv | | 470
471 | 45.925731
45.925101 | -89.199309
-89.199318 | | | | | | | | | Sand
Sand | | | t | 1 | L | t | \dagger | | | | 1 | | 1 | 1 | | | H | 1 | | | | | | \dashv | | 1 | \forall | \dagger | 1 | \dashv | | 472 | 45.928244 | -89.198370 | | | | | | | | | Rock | | | | 1 | | | 1 | | | | | | | | | | | | | | | | | \Box | | | 耳 | 1 | 1 | \exists | | 473 | 45.927614 | -89.198379 | | | | | | | | | | | | \perp | 1 | - | + | - | - | | | _ | | | 1 | - | | 1 | | | | | | 1 | 4 | | _ | \dashv | + | 1 | 4 | | 474
475 | 45.926984
45.926354 | -89.198388 | | | | | | | Т | | | | | | 0 | | + | - | | | | | | - | 1 | | 1 | | | | | | 1 | | \dashv | | | + | + | 1 | \dashv | | 475 | 45.926354 | -89.198397
-89.198406 | | | | | | | | | Sand | | | | 1 | İ | L | L | L | | | | | | | İ | L | | | 1 | | | | | | | | \exists | _ | 1 | ╛ | | Point Number | Latítude (Decimal Degrees) | Longitude (Decimal Degrees) | ID
Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nulsance | Total Rake Fuliness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Lemna trisulca | Megalodonta beckii | Myriophyllum sibiricum | Najas flexilis | Nicelasp. | Nymphaea odorata | Pontederia cordata | Potamogeton amplifolius | Potamogeton epihy drus | Potamogeton pusillus | Potamogeton richardsonii | Potamodeton spirillus | Potamogeton zostenformis | Sparga nium androcla dum | Utricularia vulgaris | Vallisneria americana | Filamentous algae
Riccia sp. | Utricularia minor | |--------------|----------------------------|-----------------------------|--|--------|----------|------------|--------------|------------|----------|------------|---------------------------|-------|----------|---------------------|-----------------------|------------------------|-------------------|--------------------|----------------|--------------------|------------------------|----------------|-----------|------------------|--------------------|-------------------------|------------------------|----------------------|--------------------------|-----------------------|--------------------------|--------------------------|----------------------|-----------------------|---------------------------------|-------------------| | 2 | 45.939790
45.939250 | -89.198876
-89.198884 | 1 Scattering Rice
2 Scattering Rice | | | | 1 2 | 7 | Sand | Pole | | | | 1 | | | | | | | | 1 | 1 | + | | | | | | | | | | | - | Н | | 3 | 45.940324 | -89.198094 | 5 Scattering Rice | | | BTB & TWH | | 8 | Muck | Pole | | | | 0 | 4 | 45.939784 | -89.198102 | 4 Scattering Rice | | | BTB & TWH | | 10 | Muck | Pole | | | | 0 | _ | _ | | 5
6 | 45.939244
45.940859 | -89.198110
-89.197312 | 3 Scattering Rice
6 Scattering Rice | | | BTB & TWH | 5 | 8 | Muck | Pole | | | | 0 | + | Н | | 7 | 45.940319 | | 7 Scattering Rice | | | BTB & TWH | 7 | 9 | Muck | Pole | | | | 0 | 8 | | -89.197328 | 8 Scattering Rice | | | | | 10
7 | Muck | | | | | 0 | | | | | | | | | | | | | | | | + | | | H | | _ | + | | 10 | 45.939239
45.940854 | -89.197336
-89.196538 | 9 Scattering Rice
13 Scattering Rice | | | | | 7 | Muck | Pole | TEMPORARY OBSTACLE | | | 1 | | | | | | | | 1 | | | | | | 1 | | | | | | | | Н | | 11 | 45.940314 | | 12 Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 11 | 10 | Muck | Pole | | | | 0 | \blacksquare | | 12 | 45.939774 | | | | | | | 10
6 | | Pole | | | | 0 | | | | | | | | | | + | | | | | | + | | | | | + | $^{\rm H}$ | | 13 | 45.939234
45.940308 | -89.196562
-89.195772 | | | | | | | Sand | | | | | 0 | | | | 1 | | | | 2 | | | | | | 2 | | 1 | | | | 1 | | \blacksquare | | 15 | 45.939768 | -89.195780 | 15 Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 15 | | Muck | Pole | | | | 0 | _ | \perp | | 16 | | | 16 Scattering Rice | | | | | 7 | Sand | Pole | | | | 0 | | | | | | | | 1 | | + | | | | | | | | | | | + | $^{\rm H}$ | | 17 | 45.940303 | | 20 Scattering Rice
19 Scattering Rice | | | | | 12 | Muck | Pole | | | | 0 | 19 | 45.939223 | -89.195014 | 18 Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 19 | 11 | Muck | Pole | | | | 0 | _ | Н | | 20 | | | 17 Scattering Rice
21 Scattering Rice | | | | | | Sand | Pole | | | | 0 | | | | | | | | | | + | | | | | | | 1 | | | 1 | + | $^{\rm H}$ | | 22 | | | 22 Scattering Rice | | | | | | Muck | | | | | 0 | 23 | | | 23 Scattering Rice | | | | | | Muck | Pole | | | | 0 | | | | | | | | | | - | | | | | | | | | | | _ | \blacksquare | | 24
25 | 45.938677
45.940832 | | 24 Scattering Rice
30 Scattering Rice | | | | | 11 | Muck | | | | | 0 | | | | | | | 1 | | | - | | | | | | | | | | | _ | + | | 26 | 45.940832 |
 29 Scattering Rice | | | | | | Muck | | | | | 0 | 27 | 45.939752 | | 28 Scattering Rice | | | | | 13 | | | DEEP | _ | | | | _ | \mathbb{H} | | 28 | 45.939212
45.938672 | | 27 Scattering Rice
26 Scattering Rice | | | BTB & TWH | | 12 | Muck | Pole | | | | 0 | | | | | | | 1 | | | - | | | | | | | | | | | _ | + | | 30 | 45.938132 | | 25 Scattering Rice | | | BTB & TWH | | 10 | | Pole | | | | 0 | \blacksquare | | 31 | 45.941366 | -89.192661 | 31 Scattering Rice | | | | | 9 | Sand | Pole | | | | 0 | | | | | | | - | | | - | | | | | | | | | | | | \mathbb{H} | | 32 | 45.940826
45.940286 | | 32 Scattering Rice
33 Scattering Rice | | | | | 12 | Muck | Pole | DEEP | | | 0 | _ | + | | 34 | 45.939746 | | 234 Scattering Rice | | | | | 13 | | | DEEP | 35 | 45.939206 | | 233 Scattering Rice | | | | 35 | 12 | | | DEEP | + | + | | 36
37 | 45.938666
45.938126 | | 232 Scattering Rice
230 Scattering Rice | | | | | 12 | | | DEEP | | | | | | | | | | | | | + | | | | | | | | | | | | + | | 38 | 45.937586 | -89.192716 | 229 Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 38 | 8 | Sand | Pole | | | | 1 | | | | | | | | 1 | 1 | | | | | | | | | | | | | \blacksquare | | 39 | 45.941901 | | 37 Scattering Rice | | | | | 12 | Sand | | | | | 0 | | | | | | | | | | | | | | | | + | | | H | | 1 | + | | 40 | | | 36 Scattering Rice
35 Scattering Rice | | | | | 15 | Muck | Pole | DEEP | | | 0 | 42 | | | 34 Scattering Rice | | | | | 17 | | | DEEP | | | | | | | | | | | | | - | | | | | | | | | | | _ | \blacksquare | | 43 | | | 0 Scattering Rice
0 Scattering Rice | | | | | 0 | | | DEEP | | | | | | | | | | 1 | | | - | | | | | | | | | | | _ | + | | 45 | | | 0 Scattering Rice | | | | | 0 | | | DEEP | \blacksquare | | 46 | | | 231 Scattering Rice | | | | | | | | DEEP | | | | | | | | | | | | | - | | | | | | | | | | | | + | | 47 | | | 228 Scattering Rice
220 Scattering Rice | | | | | | Muck | | | | | 0 | | | \dashv | | | 1 | \dashv | | | + | | | | | | + | | | H | \dashv | + | \forall | | 49 | | | 208 Scattering Rice | | | | | | Muck | | | | | 2 | | 2 | 1 | | | 1 | | | | | | | | | | 1 | | | | 1 | | П | | 50 | 45.933261 | | 218 Scattering Rice | | | | | | | | NONNAVIGABLE (PLANTS) | | | | | - | - | | | + | - | - | \perp | + | | | | | - | + | - | | H | - | _ | \mathbb{H} | | 51
52 | | | 219 Scattering Rice
38 Scattering Rice | | | | | | Muck | Pole | NONNAVIGABLE (PLANTS) | | | 0 | | _1 | _ | | | | | | ╁ | | L | | | | | _ | | | | _ | | † | | 53 | 45.941355 | -89.191113 | 39 Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 53 | 14 | | | DEEP | | | | | | 1 | | | | 1 | | Ţ | | | | | | | Ţ | | | | 1 | 1 | Д | | 54 | | | 0 Scattering Rice | | | | | 0 | | | DEEP | | | | | | + | | | - | - | + | + | - | | | | | - | - | + | \vdash | | + | + | + | | 55
56 | 45.940275
45.939735 | | 0 Scattering Rice 0 Scattering Rice | | | BTB & TWH | | 0 | | | DEEP | | | | | | | | | | | | ╧ | 1 | | | | | | 1 | İ | L | | | | † | | 57 | 45.939195 | -89.191144 | 0 Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 0 | 0 | | | DEEP | | | | | 1 | 1 | | | 1 | 1 | 1 | | | | | | | 1 | | | | | 1 | \perp | \blacksquare | | 58 | | | 0 Scattering Rice | | | | | 0 | | | DEEP | | | | - | 1 | | | \dashv | + | - | - | + | + | | | \dashv | | | - | + | - | H | | + | \mathbb{H} | | 59
60 | | | 227 Scattering Rice
221 Scattering Rice | | | | | 10 | Muck | Pole | DEEP | | | 0 | | | | | | | | | t | t | | | | | | l | L | L | | | | | | 61 | 45.937035 | -89.191176 | 206 Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 61 | 9 | Muck | | - | | | 0 | | 1 | 4 | | | 1 | 7 | 1 | I | | | | | 1 | 1 | I | | | | 4 | \perp | \Box | | 62 | 45.936495 | | 207 Scattering Rice | | | | | 7 | Muck | Pole | MONINAVIICADI E (DI AVIII | H | | 0 | V | | \dashv | | | - | | | | + | | | | | | + | | | H | \dashv | + | + | | 63 | | | 209 Scattering Rice
210 Scattering Rice | | | | | | Muck | Pole | NONNAVIGABLE (PLANTS) | | | 1 | | | 1 | | | | | | ╧ | 1 | | | | | | 1 | İ | L | | | | Ħ | | 65 | 45.933796 | -89.191223 | 211 Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 65 | 2 | Muck | Pole | | | | 2 | \exists | 2 | 1 | | 1 | 1 | Ţ | I | $-\Gamma$ | 1 | 1 | | J | 1 | | \bot | 1 | 1 | 1 | 1 | 1 | 1 | | 66 | | | 216 Scattering Rice | | | | | | | | NONNAVIGABLE (PLANTS) | | | | | - | + | | - | + | \dashv | + | + | + | | | - | | + | + | | | \Box | + | + | \mathbb{H} | | 67 | | | 215 Scattering Rice
42 Scattering Rice | | | | | | Muck | Pole | NONNAVIGABLE (PLANTS) | | | 0 | | | | | | | | | | T | | | | | | | | | | | | П | | 69 | 45.941890 | -89.190331 | 41 Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 69 | 13 | | | DEEP | | | | | | | | | | | | \perp | | | | | | | | | | | | | Ш | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | ID
Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fuliness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Lemna trisulca | Megalodonta beckii | Myriophyllum sibiricum | Najas flexilis
Nitelia sp. | Nuphar variegata | Nymphaea odorata | Pontederia cordata | Potamogeton amplifolius | Potamogeton epilny drus | Potamogeton pusillus | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton zosteriformis | Sparga ni um androcla dum | Utricularia vulgaris | Vallisheria americana | Filamentous algae
Riccia sp. | Utricularia minor | |--------------|----------------------------|-----------------------------|--|--------|----------|------------|--------------|------------|--------------|------------|-----------------------|-------|----------|---------------------|-----------------------|------------------------|-------------------|--------------------|----------------|--------------------|------------------------|-------------------------------|------------------|------------------|--------------------|-------------------------|-------------------------|----------------------|-----------------------|-----------------------|---------------------------|---------------------------|----------------------|-----------------------|---------------------------------|-------------------| | 70 | 45.941350
45.940810 | -89.190339
-89.190347 | 40 Scattering Rice
0 Scattering Rice | | | | 70 | 16 | | | DEEP | | | | | | | | | | - | | | | | | | | | | | | | | + | - | | 72 | 45.940270 | | Scattering Rice Scattering Rice | | | BTB & TWH | 0 | 0 | | | DEEP | 73 | 45.939730 | -89.190362 | | | | | 0 | 0 | | | DEEP | | | | | 4 | 4 | | | | 4 | | | | | | | | | | | | | | + | 4 | | 74
75 | 45.939190
45.938650 | -89.190370
-89.190378 | 0 Scattering Rice
224 Scattering Rice | | | BTB & TWH | 75 | 12 | | | DEEP | + | - | | 76 | 45.938110 | | | | | BTB & TWH | 76 | 11 | Sand | Pole | DELI | | | 0 | 77 | 45.937570 | | 222 Scattering Rice | | | | | 6 | Sand | | | | | 1 | | 4 | 4 | | | | \perp | 1 | | | | | | | | 1 | | | | 1 | + | _ | | 78
79 | 45.937030
45.933790 | | 205 Scattering Rice
217 Scattering Rice | | | | | 5 | Muck | Pole | NONNAVIGABLE (PLANTS) | | | 1 | | 1 | | | | | 1 | | | | | | | | | | | | | | + | 7 | | 80 | 45.933250 | | 214 Scattering Rice | | | | | 0 | | | NONNAVIGABLE (PLANTS) | 81 | 45.932710 | | 213 Scattering Rice | | | | | 0 | | | NONNAVIGABLE (PLANTS) | | | | | - | - | | | | + | | | | | | | | + | | | | | | + | - | | 82 | 45.942964
45.942424 | -89.189541
-89.189549 | 43 Scattering Rice
44 Scattering Rice | | | | | 10 | Muck
Muck | | | | | 0 | 84 | 45.941884 | | 45 Scattering Rice | | | | | 13 | | | DEEP | | | | | 4 | 4 | | | | 4 | | | | | | | | | | | | | | | _ | | 85 | 45.941344 | | 0 Scattering Rice | | | | | 0 | | | DEEP | | | | | - | - | | | | + | | | | | | | | + | | | | | | + | \dashv | | 86 | 45.940804
45.940264 | | 0 Scattering Rice 0 Scattering Rice | | | BTB & TWH | | 0 | | | DEEP | | | | | | | | | | | | | | | | 1 | | | | | | | | \perp | | | 88 | 45.939724 | -89.189588 | 0 Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 0 | 0 | | | DEEP | | | 1 | $-\mathbb{I}$ | $oxed{I}$ | $oxed{I}$ | 1 | 1 | I | Ī | | | | \exists | | - | $-\Gamma$ | \bot | | | $-\mathbb{I}$ | | | $oldsymbol{\bot}$ | 4 | | 89
90 | | | 0 Scattering Rice
225 Scattering Rice | | | | | 11 | | | DEEP | | | | | | | - | - | | | | | | | | \dashv | | | | | | | | + | \dashv | | 90 | 45.938644
45.937025 | | 181 Scattering Rice | | | | | | Muck | Pole | DEEP | | | 0 | | | | | | | | | | | | | | | | | | | 1 | | | | | 92 | | | 212 Scattering Rice | | | | | 0 | | | NONNAVIGABLE (PLANTS) | | | | | 4 | 4 | | | | _ | | | | | | | | | | | | | | | 4 | | 93
94 | 45.943499
45.942959 | -89.188759
-89.188767 | 49 Scattering Rice
48 Scattering Rice | | | | | 10 | | | | | | 0 | ٧ | + | \dashv | | 95 | 45.942419 | | | | | | | 11 | Muck | Pole | | | | 0 | 96 | 45.941879 | | | | | | | 12 | Muck | Pole | | | | 0 | | | | | | | _ | | | | | | | | | | | | | | 4 | _ | | 97
98 | 45.941339
45.940799 | -89.188791
-89.188799 | 55 Scattering Rice
0 Scattering Rice | | | BTB & TWH | 97 | 0 | | | DEEP | + | \dashv | | 99 | 45.940259 | -89.188807 | 0 Scattering Rice | | | BTB & TWH |
0 | 0 | | | DEEP | 100 | 45.939719 | -89.188815 | 0 Scattering Rice | | | BTB & TWH | 0 | 0 | | | DEEP | + | 4 | | 101 | 45.939179
45.938639 | | 0 Scattering Rice
226 Scattering Rice | | | BTB & TWH | 102 | 9 | Sand | Pole | DEEP | | | 0 | | 1 | 1 | | | | $^{+}$ | | | | | | | | | | | | | | + | 1 | | 103 | 45.937019 | | 182 Scattering Rice | | | | | 5 | Muck | Pole | | | | 1 | | 1 | | | | | | | | | | 1 | | | | | | | | | | _ | | 104 | 45.936479 | | 183 Scattering Rice | | | BTB & TWH | | 5 | Muck | Pole | | | | 3 | | 2 | 4 | | | 1 | \perp | | | | | 1 | | | 1 | | | | | | + | 4 | | 105 | 45.935939
45.935399 | | 184 Scattering Rice
185 Scattering Rice | | | BTB & TWH | | 5 | Muck | Pole | SHALLOW | | | 2 | | | | | | | 1 | | | | | | | | 2 | | | | | | + | 7 | | 107 | 45.933239 | -89.188909 | 204 Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 107 | 2 | Muck | Pole | | | | 2 | | 2 | 1 | | | | 1 | | 1 | 1 | | | | | 1 | | | | | 1 | | | | 108 | 45.943493 | | 50 Scattering Rice | | | | | 10 | Muck | | | | | 0 | | - | - | | | | + | | | | | | | | + | | | | | | + | - | | 109 | 45.942953
45.942413 | | 51 Scattering Rice
52 Scattering Rice | | | | | 10 | | | | | | 0 | 111 | | | 53 Scattering Rice | | | | | | Muck | Pole | | | | 0 | | 4 | 4 | | | | _ | | | | | | | | | | | | | | | _ | | 112 | | | 54 Scattering Rice
0 Scattering Rice | | | | | 13 | | | DEEP | | | | | | | | | | - | | | | | | | | | | | | | | + | - | | 113 | | | 0 Scattering Rice | | | | | 0 | | | DEEP | 115 | | | 0 Scattering Rice | | | | | | | | DEEP | | | | | | | | | | _ | | | | | | | | | | | | | | 4 | _ | | 116
117 | | | 0 Scattering Rice
191 Scattering Rice | | | | | 0 | | | DEEP | | | - | | - | - | \dashv | \dashv | 1 | + | + | - | | | | \dashv | + | + | - | H | | + | + | + | \dashv | | 117 | | | 190 Scattering Rice | | | | | | ı | Pole | DEEP | | | 1 | | 1 | | | | | | 1 | | | | | | | | | | | | | 耳 | | | 119 | 45.937553 | | 189 Scattering Rice | | | | | | Sand | | | | | 0 | | - | - | _ | _ | - | - | - | - | | | | 4 | - | \perp | | | | - | - | + | _ | | 120 | | | 188 Scattering Rice
187 Scattering Rice | | | | | | Muck | | | | | 0 | | | | \dashv | \dashv | 1 | + | + | 1 | | | | \dashv | Ŧ | 1 | \vdash | | | 1 | + | + | \dashv | | 122 | 45.935934 | | 186 Scattering Rice | | | BTB & TWH | | | Muck | | | | | 3 | ν | | | | | 1 | 1 | | | | | | 1 | | 1 | | | | | 3 | П | 1 | | 123 | 45.933774 | | 202 Scattering Rice | | | | | | | | NONNAVIGABLE (PLANTS) | H | | | | - | - | - | - | - | - | + | | | | | \dashv | + | + | - | H | | + | | + | \dashv | | 124 | 45.933234
45.943488 | | 203 Scattering Rice
60 Scattering Rice | | | | | 7 | Sand | Pole | NONNAVIGABLE (PLANTS) | | | 0 | \exists | | 126 | 45.942948 | -89.187219 | 59 Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 126 | 8 | Muck | Pole | | | | 0 | | | | | | | | | | | | | 1 | 1 | I | | | | 1 | | \blacksquare | | | 127 | | | 58 Scattering Rice | | | | | | | | | | - | 0 | | - | - | \dashv | \dashv | - | + | + | | | | | \dashv | + | - | | | | - | + | + | 4 | | 128 | | | 57 Scattering Rice
56 Scattering Rice | | | | | | Muck | Pole | DEEP | | | 0 | | | | 1 | 1 | 1 | ł | t | | | | | + | + | | | H | | 1 | | + | \dashv | | 130 | 45.940788 | | | | | | | 0 | | | DEEP | | | | | 1 | 1 | | | | | | | | | | | | | | | | | | \blacksquare | 1 | | 131 | 45.940248 | | 0 Scattering Rice | | | | | 0 | | | DEEP | | | - | | + | + | + | + | 1 | + | + | - | | | - | + | + | + | | | | + | + | + | \dashv | | 132 | | | 0 Scattering Rice
0 Scattering Rice | | | | | 0 | | | DEEP | | | | | | | | | | | | L | | | | _ | | 1 | L | H | | | | ± 1 | _ | | 134 | | | 192 Scattering Rice | | | | | | | | DEEP | | | | | 1 | 1 | | | | | | | | | | | | | | | | | | \blacksquare | 1 | | 135 | | | 193 Scattering Rice | | | | | | | | DEEP | | - | | | - | - | \dashv | \dashv | - | + | + | | | | | \dashv | + | - | | | | - | + | + | \dashv | | 136 | | | 194 Scattering Rice 195 Scattering Rice | | | | | | Muck | Pole | DEEP | | | 0 | | | | | | | | l | | | | | 1 | 1 | l | L | | | ╛ | 1 | | \exists | | 138 | | | 196 Scattering Rice | | | | | | Muck | Pole | | Ш | | 0 | | | | | | | | | | | | | | | | | Ш | | [_ | | | ╝ | | The | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | ID | Lako Namo | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fuliness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Lemna trisulca | Megalodonta beckii | Myriophyllum sibiricum | Najas liekiiis
Niteliasp. | Nuphar variegata | Nymphaea odorata | Pontederia cordata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton zosteriformis | Sparganium androcladum | Utricularia vulgaris | Vallisneria americana | Filamentous algae | Riccia sp.
Utricularia minor | | |--|--------------|----------------------------|-----------------------------|-----|-----------------|--------|----------|------------|--------------|------------|----------|------------|----------|-------|----------|---------------------|-----------------------|------------------------|-------------------|--------------------|----------------|--------------------|------------------------|------------------------------|------------------|------------------|--------------------|-------------------------|-----------------------|---|-----------------------|-----------------------|---------------------------|------------------------|----------------------|-----------------------|-------------------|---------------------------------|---| | 14 | | | | | | | | | | | | Pole | \dashv | | | + | 1 | | March Marc | | | | | | | | | | | | Pole | I | ĺ | | March Control of Contr | | | | | | | | | | | | Pole | | | | | | 2 | | | | | | | | 1 | | | | | 1 | | | | | | | + | - | | Section Company Comp | | | | | | | | | | 6 | Sand | Pole | | | | 1 | | | | | | | | 1 1 | | | | | | | | 1 | | | | | | | | | 1.50 | | | | | | | | | | 8 | Muck | Pole | | | | 0 | + | - | | No. 5, 1972 - 1, 1982
- 1, 1982 - 1, | | | | | | | | | | | Muck | Pole | | | | 0 | 1 | | March Marc | 148 | | | 66 | Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 148 | 13 | | | DEEP |] | | 5.70. 5.000.00 | | | | | | | | | | 0 | \dashv | | | + | 1 | | 1.50 | | | | | | | | | | 0 | 1 | | 1.00 | | | | | | | | | | 0 | + | 1 | | 1.00 | | | | | | | | | | 0 | 1 | | | | 1 | | 1.00 | 155 | | | | | | | | | | | | DEEP | \perp | - | | 1.5 | | | | | | | | | | | | | | | | 0 | | | | | | + | + | + | + | | | | | + | | | H | | \dashv | + | 1 | + | 1 | | March Marc | | | | | | | | | | | | | | | | | | | 1 | | | | 1 | | | | | | | | | | | | | 1 | 1 | 1 | 1 | | 1 | | | | | | | | | | | | | | | | | | \dashv | - | | - | - | + | - | | - | | | | + | - | - | \vdash | | \dashv | | - | + | 1 | | 5-04 A-545407 A 510500 F 3 Sections (See 1) The Sections (See 1) The Section T | 1 | | 2 | | | 3 | | | | | 1.5 | 162 | | | | | | | | | | Muck | Pole | | | | 0 | _ | - | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | - | | Math | | | | | | | | | | | | Pole | SAMPTY | | | | | | | | | | | Muck | Pole | | | | 0 | \perp | - | | 160 | 1 | | | | | | | | | | | 0 | 0 | 1 | | T72 | | | | | | | | | 0 | 0 | + | 1 | | 172 4509007 36 18700 17 S Continuing Real Valle 20022 17 S A Year 17 S 10 Mark Prof. 10 S 10 Mark Prof. 17 S 10 Mark Prof. 10 S 10 Mark Prof. 17 18 S 10 Mark Prof. 18 S 10 Mark Prof. 18 S 10 Mark Prof. 18 S 10 Mark Prof. 18 S 10 Mark Prof. 18 S | | | | | | | | | 0 | 0 | 1 | | 175 | | | | | Scattering Rice | Vilas | | | | 0 | \perp | - | | 177 | | | | | | | | | | 11 | Muck | Pole | DEEP | | | 0 | 1 | | 179 | | | | | | | | | | | | | | | | 0 | 179 | + | - | | 151 45 454271 49:18499 77 Seathering Rev Value 822012 STB 8 TWH 151 7 Musk Pole 152 45.942931 49:18499 77 Seathering Rev Value 822012 STB 8 TWH 152 8 Musk Pole 153 45.942931 49:18499 77 Seathering Rev Value 822012 STB 8 TWH 153 11 Musk Pole 154 45.942931 49:18499 77 Seathering Rev Value 822012 STB 8 TWH 154 13 Musk Pole 155 45.94131 49:184920 8 Seathering Rev Value 822012 STB 8 TWH 154 13 Musk Pole 156 45.94131 49:184920 8 Seathering Rev Value 822012 STB 8 TWH 154 13 Musk Pole 156 45.94131 49:184920 8 Seathering Rev Value 822012 STB 8 TWH 154 13 Musk Pole 156 45.94131 49:184920 8 Seathering Rev Value 822012 STB 8 TWH 154 13 Musk Pole 157 45.94123 99:184937 8 Seathering Rev Value 822012 STB 8 TWH 154 13 Musk Pole 158 45.94151 49:184920 8 Seathering Rev Value 822012 STB 8 TWH 154 14 Musk Pole 159 45.94151 99:18493 10 Seathering Rev Value 822012 STB 8 TWH 154 14 Musk Pole 159 45.94151 99:18493 10 Seathering Rev Value 822012 STB 8 TWH 154 11 11 Seathering Rev Value 822012 STB 8 TWH 154 11 11 Seathering Rev Value 822012 STB 8 TWH 154 11 11 Seathering Rev Value 822012 STB 8 TWH 154 11 11 Seathering Rev Value 822012 STB 8 TWH 154 11 11 Seathering Rev Value 822012 STB 8 TWH 154 11 11 Seathering Rev Value 822012 STB 8 TWH 154 11 11 Seathering Rev Value 822012 STB 8 TWH 154 11 11 Seathering Rev Value 822012 STB 8 TWH 154 11 11 Seathering Rev Value 822012 STB 8 TWH 154 11 11 Seathering Rev Value 822012 STB 8 TWH 154 11 11 Seathering Rev Value 822012 STB 8 TWH 154 11 11 Seathering Rev Value 822012 STB 8 TWH 154 154 Seathering Rev Value 822012 STB 8 TWH 154 154 Seathering Rev Value 822012 STB 8 TWH 154 154 Seathering Rev Value 822012 STB 8 TWH 154 154 Seathering Rev Value 822012 STB 8 TWH 154 154 Seathering Rev Value 822012 STB 8 TWH 154 154 Seathering Rev Value 822012 STB 8 TWH 154 154 Seathering Rev Value 822012 STB 8 TWH 154 154 Seathering Rev Value 822012 STB 8 TWH 154 154 Seathering Rev Value 822012 STB 8 TWH 154 154 Seathering Rev Value 822012 STB 8 TWH 154 154 Seathering Rev Value 822012 STB 8 TWH 154 154 Seathering | 1 | | | | | | | | | | | | | | 1 | | | 182 45-94291 46-194007 77 Scattering Roc Vision 202012 8T8 A TWH 182 8 Music Pole 0 0 0 0 0 0 0 0 0 | 180 | \perp | - | | 1833 46.542261 -49.184006 78 Scattering Rice Visite 82/2012 8TB A TWH 183 11 Made Pulse DEEP | - | | 186 45.941311
49.184021 0.0 Scattering Rice Visia 82.2012 STB & TWH 186 14 DEEP | 186 | | | | | | | | | | | Muck | Pole | \dashv | | | + | 4 | | 187 | _ | 1 | İ | L | | | | | t | L | | | | | _ | \pm |] | | 189 | 187 | 45.940231 | -89.184937 | 0 | Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 0 | | | | DEEP | | | | | 4 | 4 | | | 1 | 1 | \bot | | | | | | | | | | | 1 | 7 | 1 | 1 | - | | 190 | | | | | | | | | | | | | | | | | | - | | | | - | + | - | + | | | | | | 1 | 1 | | | \dashv | \dashv | - | + | 1 | | 192 | 1 | | | | | | 1 | 1 | | | | | 1 | 1 | | # | 1 | | 193 45.9369091 -89.18492 169 Scattering Rice Vilas 8/2/2012 BTB & TWH 193 10 Muck Pole 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | L | DEEP | | | | | \dashv | | | | - | + | - | - | - | | | | + | + | - | | | \dashv | \dashv | - | + | 1 | | 194 | _ | 1 | İ | L | | | | | t | L | | | | | _ | \pm |] | | 196 45.945086 -89.1841 87 Scattering Rice Vilas 82/2012 BTB & TWH 196 5 Muck Pole 0 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 2 2 1 | | 45.936452 | -89.184992 | 169 | Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 194 | 8 | Muck | | - | | | 0 | | 4 | 1 | | | 1 | 1 | | | | | | | | | | | | 1 | 1 | 1 | Ŧ | 1 | | 197 45,944546 -89,1841 87 Scattering Rice Vilas 82/2012 BTB & TWH 197 6 Muck Pole 2 1 1 1 2 2 1 1 1 2 2 | | | | | | | | | | | | | | | | 2 | | | | | | + | + | + | + | - | | | | + | | | | | + | 2 | - | + | 1 | | 198 | | | | | | | | | | | | | | | | 2 | | | | | | 1 | | 1 | | | | 1 | | | | | | | | 2 | | # | 1 | | 200 45.942926 -89.184123 84 Scattering Rice Villas 8/2/2012 BTB 8.TWH 200 8 Muck Pole 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | -89.184107 | 86 | Scattering Rice | Vilas | 8/2/2012 | | | | | | | | | | | - | | | | - | + | - | | | | | | 1 | | - | | | - | 2 | - | + | 1 | | 201 45.942386 -89.184131 83 Scattering Rice Vilia 8/2/2012 BTB & TWH 201 10 Muck Pole 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | 0 | | + | | | | + | + | + | | - | | | | | 1 | | | | \dashv | \dashv | 1 | + | 1 | | 203 45.941306 -99.184147 81 Scattering Rice Vilas 82/2012 8TB & TWH 203 14 DEEP | | | | | | | | | | _ | | | | | | 0 | | | | | | | 1 | | | | | | | | | | | | | 1 | 1 | 1 | 1 | | 204 45.940766 -89.184155 0 Scattering Rice Vilas 82/2012 BTB & TWH 0 0 DEEP 205 45.940226 -89.184163 0 Scattering Rice Vilas 8/2/2012 BTB & TWH 0 0 DEEP | | | | | | | | | | | Muck | Pole | | | | 0 | | \dashv | | | | + | + | + | | - | | | | + | | - | | | \dashv | \dashv | - | + | - | | 205 45.940226 -99.184163 0 Scattlering Rice Vilas 82/2012 BTB & TWH 0 0 DEEP | L | | | | | | t | | | | | | | | 1 | | 206 45.939886 89.184171 0 Scattering Rice Vilas 8/2/2012 BTB & TWH 0 0 DEEP | | 45.940226 | -89.184163 | 0 | Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 0 | | | | DEEP | | | | _[| - | - | Ī | Į | | - | | | | | | | \perp | | | | | -[| - | J | # | - | | 207 45.939146 -89.184179 0 Scattering Rice Vilas 8/2/2012 BTB & TWH 0 0 DEEP | | | | | | | | | | | | | | | | | | \dashv | | | - | + | + | + | | \vdash | | | | + | + | - | | | 1 | \dashv | - | + | 1 | | | <u>©</u> | (500 | | | | | | | | | | I | | | | _ | | | | | | | | | T | | | | _ | | | şi | _ | | | | | |--------------|----------------------------|--------------------------|--|--------|----------|------------|-------------|------------|----------|--------------|--------------|----------|----------|---------------------|-----------------------|------------------------|-------------------|--------------------|----------------|--------------------|------------------------|----------------|-------------|------------------|--------------------|-------------------------|------------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|----------------------------|----------------------|-----------------------|---|-----------| | | Latitude (Decimal Degrees) | al Degrees | | | | | | | | | | | | ss | catrum | Ceratophyllum demersum | s | ia | | ē | ilicum | | | , g | | Potamogeton amplifolius | ydrus | sn III | Potamogeton richardsonii | binsii | illus | Potamogeton zosteriformis | Sparga ni um a ndrocla dum | 9 | ana | | | | per | ecimal | Longitude (Decimal | | | | | per | | | | _ | | | Total Rake Fuliness | Myriophyllum spicatum | lum de | Elodea canadensis | Heteranthera dubia | nlca | Megalodonta beckii | Myriophyllum sibiricum | <u>s</u> | Nitelia sp. | Nymphaea odorata | Pontederia cordata | on amp | Potamogeton epihy drus | Potamogeton pusillus | on rich | Potamogeton robbinsii | Potamogeton spirillus | soz uo: | mandr | Utricularia vulgaris | Vallisneria americana | Filamentous algae
Riccia sp. | minor | | Point Number | D) epnt | gitude | ID
Lake Name | County | | Field Crew | Point Numbe | Depth (ft) | Sediment | Pole; Rope | Comments | se | Nuisance | II Rake | iophyll | atophyl | lea can | eranthe | Lemna trisulca | alodor | lophyll | Najas flexilis | Nitella sp. | phaea | tederia | amoget rganiu | cularia | sneria | mentou
da sp. | cularia | | | | | | | Date | | | | | Š. | | Notes | ž | Tota | Α̈́ | Cer | <u>e</u> | Het | Len | Meg | Myr | Z
Z | 2 2 | Ž | Po | Pot Spa | 5 | Sa Sa | Ric Ai | 돌 | | 208 | 45.938606
45.938066 | | 153 Scattering Rice
156 Scattering Rice | | | | | 12
7 | | Pole | DEEP | | | 0 | + | ٦ | | 210 | | | 162 Scattering Rice | | | | | | | | | | | 0 | 211 | 45.936986 | | 165 Scattering Rice | | | | | | Muck | Pole | | | | 0 | | | | | | | | | | - | | | | | | | | | | | | \perp | | | 212 | 45.936446 | | 168 Scattering Rice | | | | | 6 | Sand | Pole | | | | 3 | | 1 | | | | | | | | | | | | | | 1 | | | | | 3 | + | _ | | 213
214 | 45.94562
45.94508 | | 89 Scattering Rice
90 Scattering Rice | | | | | | Muck | Pole
Pole | | | | 2 | | | 1 | | | | | | 1 | t | | | | 1 | | 1 | | | | | | + | | | 215 | 45.94454 | | 91 Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 215 | 5 | Muck | Pole | | | | 3 | | | | | | | | | | | | 1 | 1 | | | | | | | | 3 | | | | 216 | 45.944 | | 92 Scattering Rice | | | | | | Muck | | | | | 0 | | _ | | | | | | | | + | - | | | | | | | | | | | + | = | | 217 | 45.94346
45.94292 | | 93 Scattering Rice
94 Scattering Rice | | | | | | Muck | | | | | 0 | + | | | 219 | 45.94238 | | 95 Scattering Rice | | | | | | | | | | | 0 | 220 | 45.94184 | -89.183365 | 96 Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 220 | 12 | Muck | Pole | | | | 0 | 221 | 45.9413 | | 97 Scattering Rice | | | | | 13 | | | DEEP | | | | | | | | | | | | | + | - | | | | | | | | | | | - | | | 222 | 45.94076
45.94022 | -89.183381
-89.183389 | 0 Scattering Rice
0 Scattering Rice | | | BTB & TWH | | 0 | | | DEEP
DEEP | + | | | 224 | 45.93968 | | 0 Scattering Rice | | | BTB & TWH | | 0 | | | DEEP | 225 | 45.93914 | | 149 Scattering Rice | | | | | 11 | | | DEEP | \dashv | | | 226 | 45.9386 | | 152 Scattering Rice | | | | | 8 | Sand | Pole | | | | 1 | | | | | | | | | 1 | + | - | | | | | | | | | | | + | = | | 227 | 45.93806
45.93752 | | 157 Scattering Rice 161 Scattering Rice | | | | | 8 | Sand | Pole | | | | 0 | + | | | 229 | 45.93698 | | 166 Scattering Rice | | | | | 7 | Muck | Pole | | | | 0 | 230 | 45.945614 | | 106 Scattering Rice | | | | | 4 | Muck | Pole | | | | 1 | | | | | | | | | | | | | | | | 1 | | 1 | | | | \dashv | | | 231 | 45.945074 | | 105 Scattering Rice | | | | | 3 | Sand | | | | | 1 2 | 1 | + | _ | | 232 | 45.944535
45.943995 | | 104 Scattering Rice
103 Scattering Rice | | | | | 6 | Muck | Pole | | | | 0 | | | | | | 1 | | | | | | 1 | | | | 2 | | | | | 1 | | | | 234 | | | 102 Scattering Rice | | | | | | Muck | Pole | | | | 0 | 235 | | | 101 Scattering Rice | | | | | 10 | | | | | | 0 | | | | | | | | | | + | - | | | | | | | | | | | _ | _ | | 236
237 | 45.942375 | | 100 Scattering Rice
99 Scattering Rice | | | | | | | | | | | 0 | | | | | | | | | | + | | | | | | | | | | | | + | _ | | 238 | 45.941295 | | 98 Scattering Rice | | | | | | | Pole | | | | 0 | 239 | 45.940755 | -89.182607 | 0 Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 0 | 0 | | | DEEP | \perp | | | 240 | | | 144 Scattering Rice | | | | | 11 | | | DEEP | | | | | | | | | | | | | + | - | | | | | | | | | | | - | _ | | 241 | | | 148 Scattering Rice
150 Scattering Rice | | | | | 10 | Sand | Pole | DEEP | | | 2 | | 2 | | | | | | | 1 | | | | | 1 | | | | | | | | + | \exists | | 243 | | | 151 Scattering Rice | | | | | | | | | | | 2 | | | | | | | | | | | | | | 2 | 1 | | 1 | | | | | | | | 244 | 45.938055 | | 158 Scattering Rice | | | | | 6 | Sand | Pole | | | | 1 | | | | | | | | 1 | | | | | | | | | | | | | | \dashv | | | 245 | 45.937515 | | 160 Scattering Rice
167 Scattering Rice | | | | | | Sand | Pole | | | | 0 | | | | | | | | | | + | | | | | | | | | | | | + | | | 246
247 | 45.936975
45.945609 | | 107 Scattering Rice | | | BTB & TWH | | 4 | Muck | Pole | | | | 3 | | 1 | | | | 1 | | | | t
| | | | | 1 | 2 | | 1 | | | | + | | | 248 | 45.945069 | | 108 Scattering Rice | | | | | 4 | Muck | Pole | | | | 2 | | 1 | | | | | | | 2 | | | | | | | | | 1 | | | | 1 | | | 249 | 45.944529 | | 109 Scattering Rice | | | | | 5 | | Pole | | | | 2 | | _ | | | | | | | 1 | + | - | | | | | | | | | | 2 | + | = | | 250
251 | 45.943989 | | 116 Scattering Rice 117 Scattering Rice | | | | | | Muck | Pole | | | | 0 | + | _ | | 252 | | | 125 Scattering Rice | | | | | | Muck | | | | | 0 | 253 | | | 126 Scattering Rice | | | | | | Muck | Pole | | | | 0 | 254 | | | 135 Scattering Rice | | | | | | Muck | Pole | | \dashv | - | 0 | | - | | | | 4 | - | - | + | + | - | | | | | | | | | + | - | + | | | 255
256 | | | 136 Scattering Rice 143 Scattering Rice | | | | | | | | DEEP
DEEP | + | | | | | | | - | | + | 1 | + | \dagger | + | | | | | | | | | + | 1 | + | - | | 257 | | | 145 Scattering Rice | | | | | | | Pole | DELF | | | 0 | 258 | 45.939669 | -89.181849 | 147 Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 258 | 6 | Sand | Pole | | _ | _ | 3 | | _[| | | [| _[| | 4 | - - | 1 | | | | 1 | 1 | | 1 | | | \parallel | 2 | \bot | | | 259 | | | 159 Scattering Rice 111 Scattering Rice | | | | | | | Pole | 2004 | + | | 1 | | \dashv | | | - | | | 1 | + | + | + | | | | 1 | | | | | + | 1 | + | \exists | | 260
261 | | | 111 Scattering Rice
110 Scattering Rice | | | | | | Muck | Pole | DOCK | \dashv | | 1 | 1 | 1 | | | 1 | | 1 | 1 | \dagger | t | \dagger | | | | | | | | | \dashv | 1 | + | | | 262 | | | 115 Scattering Rice | | | | | | Muck | | | | | 0 | 263 | | | 118 Scattering Rice | | | | | | Muck | | | \dashv | | 0 | | 4 | | | - | 4 | + | 1 | + | + | - | | | | \vdash | | | | | \dashv | 1 | \dashv | | | 264
265 | | | 124 Scattering Rice
127 Scattering Rice | | | | | | | | | + | - | 0 | | \dashv | | | - | - | + | + | + | + | + | | | | | | | | | \dashv | + | + | | | 266 | | | 134 Scattering Rice | | | | | | | | | | | 0 | 267 | | | 137 Scattering Rice | | | | | | | | | _ | | 0 | | | | | | _[| | 4 | | 1 | | | | | | | | | | | 4 | $\perp \! \! \! \! \! \! \! \! \! \! \perp \! \! \! \! \! \! \! \!$ | | | 268 | | | 142 Scattering Rice | | | | | | | | | \dashv | | 0 | | 4 | | | - | 4 | + | 1 | + | + | - | | | | \vdash | | | | | \dashv | 1 | \dashv | | | 269
270 | | | 146 Scattering Rice 112 Scattering Rice | | | | | | Sand | | | + | | 3 | + | \dashv | | | + | 1 | + | 2 | + | + | + | | | | 1 | 1 | | | | + | 3 | + | | | 271 | | | 114 Scattering Rice | | | | | | Muck | | | | | 1 | | | | | | | | 1 | | | | Ľ | | | 1 | | | | | | | | | | 272 | | -89.180245 | 119 Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 272 | 6 | Muck | Pole | | | | 0 | -[| _[| 4 | | _[| | _ | | - | 1 | 1 | | | | | | | | _ | _ | | $oldsymbol{oldsymbol{\sqcup}}$ | | | 273 | 45.942898 | | 123 Scattering Rice | | | | | | | | | - | - | 0 | \dashv | - | | | \dashv | - | + | 1 | + | + | + | | | | - | | | | | + | 1 | + | - | | 274
275 | | | 128 Scattering Rice 133 Scattering Rice | | | | | 9 | Muck | Pole | | \dashv | | 0 | | 1 | | | | 1 | | 1 | + | \dagger | T | | | | | | | | | + | 1 | + | | | 276 | | | 138 Scattering Rice | | | | | | Muck | | | | | 0 | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fuliness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Lemna trisulca | Megalodonta beckii | Myriophyllum sibincum | Najas flexilis
Nitelia sp. | Nuphar variegata | Nymphaea odorata | Pontederia cordata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton spirillins | Potamogeton zosteriformis | Sparga ni um androcla dum | Utricularia vulgaris | Vallisneria americana | Filamentous algae | Riccia sp.
Utricularia minor | |--------------|----------------------------|-----------------------------|-----|-----------------|--------|----------|------------|--------------|------------|----------|------------|----------|-------|----------|---------------------|-----------------------|------------------------|-------------------|--------------------|----------------|--------------------|-----------------------|-------------------------------|------------------|------------------|--------------------|-------------------------|-----------------------|----------------------|--------------------------|------------------------|---------------------------|---------------------------|----------------------|-----------------------|-------------------|---------------------------------| | 277 | 45.940738 | -89.180285 | 141 | Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 277 | 6 | Sand | Pole | | | | 2 | | | | | | | | 1 | | | | | | | | 1 | 1 | | | 1 | | | | 278 | 45.943972 | -89.179463 | 113 | Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 278 | 4 | Sand | Pole | | | | 2 | | 1 | | | | | | | | | | | | | | | | | | 2 | | | | 279 | 45 943432 | -89 179471 | 120 | Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 279 | 5 | Muck | Pole | | | | 3 | 3 | | | | 280 | 45.942892 | | | Scattering Rice | | | | | | | | | | | 0 | 281 | | | | Scattering Rice | | | | | | Muck | | | | | 0 | 282 | | | | | | | | | | | | | | | 0 | | | | | | | | | | | | | | | | T | | | | | | | | | | | | Scattering Rice | | | | | | | | | | | 0 | | | _ | | | | 1 | | + | | | | | | | + | + | | | | | - | | 283 | 45.941272 | -89.179503 | 139 | Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 283 | 7 | Sand | Pole | | | | 1 | | | | | | _ | 4 | | | 1 | | | | | | _ | 1 | _ | | | | | | 284 | 45.942887 | -89.178705 | 121 | Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 284 | 5 | Muck | Pole | | | | 2 | | 1 | | | | | | | | | | | | | | Щ | | | | 2 | | | | 285 | 45.942347 | -89.178713 | 130 | Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 285 | 5 | Muck | Pole | | | | 0 | 286 | 45.941807 | -89.178721 | 131 | Scattering Rice | Vilas | 8/2/2012 | BTB & TWH | 286 | 6 | Muck | Pole | | | | 0 | | T | | | T | | T | | | | | | | | T | | | | | | | | | 287 | 45.941267 | | | Scattering Rice | | | | | | | | | | | 3 | V | 1 | | | | | 1 | | | | | | | | | | | | | 2 | | | | | l Degrees) | nal Degrees) | | | | | | | | | | | | | sse | icatum | emersum | i.s | ia | iricum | | | plifolius | hydrus | sillus | hardsonii | pinsii | rillus | ictifolius | seyi | steriformis | cana | | |--------------|----------------------------|-----------------------------|----|------------|--------|----------|------------|--------------|------------|----------|------------|----------|-------|----------|---------------------|-----------------------|------------------------|-------------------|--------------------|------------------------|----------------|-------------|-------------------------|-----------------------|----------------------|--------------------------|----------------------|-----------------------|---------------------------|-------------------|---------------------------|-----------------------|--------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsi | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vasey | Potamogeton zosteriformis | Vallisneria americana | Aquatic moss | | 1 | 45.941440 | -89.227881 | 45 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 1 | 12 | Sand | Pole | | | | 0 | 2 | 45.940900 | -89.227888 | 38 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 2 | 12 | Sand | Pole | | | | 0 | 3 | 45.940360 | -89.227896 | 37 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 3 | 2 | Sand | Pole | | | | 2 | | | 1 | | | 1 | | | | | | | 1 | | | | 1 | | | 4 | 45.941974 | -89.227099 | 46 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 4 | 8 | Sand | Pole | | | | 0 | 5 | 45.941434 | -89.227107 | 44 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 5 | 13 | Muck | Pole | | | | 0 | 6 | 45.940894 | -89.227114 | 39 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 6 | 13 | Muck | Pole | | | | 0 | 7 | 45.940354 | -89.227122 | 36 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 7 | 9 | Sand | Pole | | | | 1 | | | | | | | | | | 1 | | | 1 | | | | | | | 8 | 45.939814 | -89.227129 | 35 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 8 | 1 | Sand | Pole | | | | 1 | | | | | | 1 | | | | | | | | | | | | | | 9 | 45.942509 | -89.226318 | 52 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 9 | 2 | Sand | Pole | | | | 3 | | | | | | 2 | | 1 | 1 | | | | | | | | | | | 10 | 45.941969 | -89.226325 | 47 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 10 | 13 | Muck | Pole | | | | 0 | 11 | 45.941429 | -89.226333 | 43 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 11 | 13 | | | DEEP | 12 |
45.940889 | -89.226340 | 40 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 12 | 13 | | | DEEP | 13 | 45.940349 | -89.226348 | 33 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 13 | 13 | Muck | Pole | | | | 0 | 14 | 45.939809 | -89.226355 | 34 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 14 | 8 | Sand | Pole | | | | 2 | | | | | | 1 | | | | | | | 1 | | | | | | | 15 | 45.943044 | -89.225536 | 53 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 15 | 1 | Sand | Pole | | | | 2 | | | | | | 1 | | 1 | | | | | | | | | 1 | | | 16 | 45.942504 | -89.225544 | 51 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 16 | 8 | Sand | Pole | | | | 3 | | | | | | 1 | | | | 2 | | | 1 | | 1 | | | | | 17 | 45.941964 | -89.225551 | 48 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 17 | 13 | | | DEEP | 18 | 45.941424 | -89.225559 | 42 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 18 | 13 | | | DEEP | 19 | 45.940884 | -89.225566 | 41 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 19 | 13 | | | DEEP | 20 | 45.940344 | -89.225574 | 32 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 20 | 13 | Muck | Pole | | | | 0 | 21 | 45.939804 | -89.225581 | 25 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 21 | 13 | Muck | Pole | | | | 0 | 22 | 45.939264 | -89.225589 | 24 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 22 | 6 | Muck | Pole | | | | 1 | | | | | | | | | | | | | | | 1 | _ | 4 | _ | | 23 | 45.947898 | -89.224694 | 51 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 23 | 6 | Sand | Pole | | | | 1 | | | | | | 1 | | | | | | | | | 2 | _ | 1 | _ | | 24 | 45.947358 | -89.224702 | 52 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 24 | 3 | Sand | Pole | | | | 3 | | | | | | 3 | | 1 | | | | | | | | 1 | 1 | | | 25 | 45.946818 | -89.224710 | 56 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 25 | 6 | Sand | Pole | | | | 2 | | | | | | 1 | | | | 1 | | | | | | | 2 | 4 | | 26 | 45.946278 | -89.224717 | 57 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 26 | 7 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | _ | 4 | _ | | 27 | 45.945738 | -89.224725 | 60 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 27 | 6 | Sand | Pole | | | | 2 | | | | | | 1 | | | | | | | 2 | | | | 1 | \dashv | | 28 | 45.945198 | -89.224732 | 61 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 28 | 7 | Sand | Pole | | | | 2 | | | | | | 2 | | | | | | | 2 | | | _ | 4 | 4 | | 29 | 45.944658 | -89.224740 | 63 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 29 | 8 | Sand | Pole | | | | 1 | | | | | | | | | | 1 | | | | | | _ | 4 | 4 | | 30 | 45.944118 | -89.224747 | 60 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 30 | 2 | Sand | Pole | | | | 2 | | | | | | 2 | 1 | | | | | | | | | _ | 1 | _ | | 31 | 45.943039 | -89.224762 | 54 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 31 | 8 | Sand | Pole | | | | 1 | | | | | | 1 | | | | 1 | | | | | | _ | _ | \dashv | | 32 | 45.942499 | -89.224770 | 50 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 32 | | | | DEEP | | | | Н | _ | _ | - | | - | | | | - | | | | _ | 1 | 1 | \dashv | \dashv | | 33 | 45.941959 | -89.224777 | | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 33 | 14 | | | DEEP | | | | H | - | - | - | _ | | _ | | | | _ | _ | | - | \dashv | - | \dashv | - | | 34 | 45.941419 | -89.224785 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | H | _ | _ | _ | _ | - | _ | | | - | _ | _ | | _ | 1 | - | \dashv | \dashv | | 35 | 45.940879 | -89.224792 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | Н | _ | _ | - | | - | | | | - | | | | _ | 1 | 1 | \dashv | \dashv | | 36 | 45.940339 | -89.224800 | | | | | EJH & CRS | 36 | 13 | | | DEEP | | H | | \vdash | - | - | - | - | - | - | | \exists | - | - | - | - | - | \dashv | - | \dashv | 4 | | 37 | 45.939799 | -89.224807 | | | | | | 37 | | Muck | | | | H | 0 | \vdash | - | - | - | - | - | - | | \exists | - | - | - | - | - | \dashv | - | \dashv | 4 | | 38 | 45.939259 | -89.224815 | | | | | EJH & CRS | 38 | 7 | Sand | | | | H | 1 | \vdash | | | | | - | | | | 1 | | | | 1 | 1 | \dashv | \dashv | 1 | | 39 | | -89.223920 | | | | | | | | Sand | Pole | | | | 0 | H | | - | | | | | | | | | | | | - | | \dashv | \dashv | | 40 | 45.947353 | -89.223928 | | | | | DAC & EEC | | 0 | | | DEEP | | | | H | | - | | | | | | | | | | | | | | \dashv | \dashv | | 41 | 45.946813 | -89.223935 | | | | 8/2/2012 | DAC & EEC | | 0 | | | DEEP | | | | H | - | | - | | | | | | | | | | - | \dashv | - | \dashv | - | | 42 | 45.946273 | -89.223943 | | | | | DAC & EEC | | 0 | | | DEEP | | | | H | - | - | - | | | | | | | | | | - | \dashv | 1 | \dashv | - | | 43 | 45.945733 | -89.223951 | | | | | | | 0 | | | DEEP | | | | | | \dashv | | | _ | | | | | | | _ | | 1 | 1 | \dashv | \dashv | | 44 | 45.945193 | -89.223958 | | | | | | | 0 | | | DEEP | | H | | H | - | | - | | | | | | - | | | | - | 1 | 1 | \dashv | + | | 45 | 45.944653 | -89.223966 | | | | | DAC & EEC | | 0 | | | DEEP | | | | H | - | | - | | | | | | - | | | | - | \dashv | 1 | \dashv | + | | 46 | 45.944113 | -89.223973 | 59 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 46 | 8 | Sand | Pole | | | | 2 | Ш | | | | | | | | | 2 | | | | | [| | | \Box | | | Degrees) | al Degrees) | | | | | | | | | | | | | SS | catum | mersum | S | ia | iricum | | | olifolius | ydrus | illus | ardsonii | pinsii | illus | ctifolius | eyi | teriformis | ana | | |--------------|----------------------------|-----------------------------|----|------------|--------|----------|------------|--------------|------------|----------|------------|----------|-------|----------|---------------------|-----------------------|------------------------|-------------------|--------------------|------------------------|----------------|-------------|-------------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|-----------------------|--------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Q | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | Aquatic moss | | 47 | 45.943573 | -89.223981 | 57 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 47 | 6 | Sand | Pole | | | | 3 | | | | | | 1 | | | | 3 | | | | | 1 | | | | | 48 | 45.943033 | -89.223988 | 55 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 48 | 15 | | | DEEP | 49 | 45.942493 | -89.223996 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 50 | 45.941953 | -89.224003 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 51 | 45.941413 | -89.224011 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 52 | 45.940873 | -89.224018 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 53 | 45.940333 | -89.224026 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 54 | 45.939793 | -89.224033 | 27 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 54 | 13 | | | DEEP | 55 | 45.939253 | -89.224041 | 22 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 55 | 7 | Sand | Pole | | | | 0 | 56 | 45.947888 | -89.223146 | 49 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 56 | 8 | Sand | Pole | | | | 2 | | | | | | | | | | | | | 2 | | | | 2 | | | 57 | 45.947348 | -89.223154 | 54 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 57 | 0 | | | DEEP | 58 | 45.946808 | -89.223161 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 59 | 45.946268 | -89.223169 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 60 | 45.945728 | -89.223177 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 61 | 45.945188 | -89.223184 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 62 | 45.944648 | -89.223192 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 63 | 45.944108 | -89.223199 | 58 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 63 | 15 | | | DEEP | 64 | 45.943568 | -89.223207 | 56 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 64 | 14 | | | DEEP | 65 | 45.943028 | -89.223214 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 66 | 45.942488 | -89.223222 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 67 | 45.941948 | -89.223229 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 68 | 45.941408 | -89.223237 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 69 | 45.940868 | -89.223244 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 70 | 45.940328 | -89.223252 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 71 | 45.939788 | -89.223259 | 28 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 71 | 13 | | | DEEP | 72 |
45.939248 | -89.223267 | 21 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 72 | 7 | Rock | Pole | | | | 0 | 73 | 45.947883 | -89.222372 | 48 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 73 | 8 | Sand | Pole | | | | 2 | | | | | | | 1 | | | | | | 2 | | | | | | | 74 | 45.947343 | -89.222380 | 43 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 74 | 11 | Sand | Pole | | | | 0 | 75 | 45.946803 | -89.222387 | 42 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 75 | 0 | | | DEEP | 76 | 45.946263 | -89.222395 | | | | 8/2/2012 | DAC & EEC | 76 | 0 | | | DEEP | 77 | 45.945723 | -89.222402 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 78 | 45.945183 | -89.222410 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 79 | 45.944643 | -89.222418 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 80 | 45.944103 | -89.222425 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 81 | 45.943563 | -89.222433 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 82 | 45.943023 | -89.222440 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 83 | 45.942483 | -89.222448 | | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | T | | | | 84 | 45.941943 | -89.222455 | | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | T | T | | | 85 | 45.941403 | -89.222463 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | T | | | | 86 | 45.940863 | -89.222470 | | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | T | | | | 87 | 45.940323 | -89.222478 | | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | 1 | | | | 88 | 45.939783 | -89.222486 | | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 88 | 13 | | | DEEP | | | | | | | | | | | | | | | | | | | T | | \exists | | 89 | 45.939243 | -89.222493 | | | | | EJH & CRS | 89 | | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | 寸 | 1 | | | 90 | 45.947877 | -89.221598 | | | | | DAC & EEC | | 7 | Sand | | | | | 2 | | | | | | 2 | | | | | | | 1 | | | T | | | | 91 | 45.947337 | -89.221606 | | | | 8/2/2012 | DAC & EEC | 91 | 10 | Sand | | | | | 0 | | | | | | _ | | | | | | | | | | 寸 | \exists | \exists | | 92 | 45.946797 | -89.221613 | | | | | | | 9 | Sand | | | | | 1 | П | | | | | | | | | 1 | | | | | | T | \exists | | | 92 | +0.340/9/ | ~U3.ZZ 1013 | +1 | Ouel Lake | viias | 01212012 | DAG & EEC | 92 | y | oand | role | | | | - | ш | | | ! | | | | | | - | | | | | | | | | | | Degrees) | al Degrees) | | | | | | | | | | | | | SS | catum | mersum | s | ia | iricum | | | olifolius | ydrus | illus | ardsonii | binsii | illus | ctifolius | eyi | teriformis | ana | | |--------------|----------------------------|-----------------------------|----|------------|--------|----------|------------|--------------|------------|----------|------------|----------|-------|----------|---------------------|-----------------------|------------------------|-------------------|--------------------|------------------------|----------------|-------------|-------------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|-----------------------|--------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | aı | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | Aquatic moss | | 93 | 45.946257 | -89.221621 | 36 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 93 | 13 | Sand | Pole | | | | 0 | 94 | 45.945717 | -89.221628 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 95 | 45.945177 | -89.221636 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 96 | 45.944637 | -89.221644 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 97 | 45.944097 | -89.221651 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 98 | 45.943557 | -89.221659 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 99 | 45.943017 | -89.221666 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 100 | 45.942477 | -89.221674 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 101 | 45.941938 | -89.221681 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 102 | 45.941398 | -89.221689 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 103 | 45.940858 | -89.221696 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 104 | 45.940318 | -89.221704 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 105 | 45.939778 | -89.221712 | 30 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 105 | 13 | | | DEEP | 106 | 45.939238 | -89.221719 | 19 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 106 | | Sand | Pole | | | | 0 | 107 | 45.947872 | -89.220824 | 46 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 107 | 5 | Sand | | | | | 1 | | | | | | | | | | | | | | | | | 1 | | | 108 | 45.947332 | -89.220832 | 45 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 108 | | Sand | Pole | | | | 3 | 2 | | | 1 | 2 | | | | | 1 | | | | | | 1 | | | | 109 | 45.946792 | -89.220839 | 40 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 109 | 5 | Sand | Pole | | | | 2 | | | | Ė | | 1 | | | | | | | | | | Ť | 2 | | | 110 | 45.946252 | -89.220847 | 38 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 110 | | Sand | Pole | | | | 1 | | | | | | 1 | | | | | | | | | | | Ī | | | 111 | 45.945712 | -89.220854 | 35 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 111 | 0 | Curia | 1 0.0 | DEEP | | | | | | | | | İ | | | | | | | | | | 1 | T | | | 112 | 45.945172 | -89.220862 | 0 | Ottor Lake | VIIGS | 18991230 | DAO G ELO | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | T | T | _ | | 113 | 45.944632 | -89.220870 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | 寸 | \exists | | | | 45.944092 | -89.220877 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | 7 | \exists | ٦ | | 114 | 45.943552 | -89.220885 | 0 | | | 18991230 | | | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 7 | 十 | 7 | _ | | 115 | | | | | | | | 0 | 寸 | 7 | _ | | 116 | 45.943012 | -89.220892 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 7 | 1 | 1 | _ | | 117 | 45.942472 | -89.220900 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 7 | _ | + | _ | | 118 | 45.941932 | -89.220907 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | _ | = | _ | | 119 | 45.941392 | -89.220915 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | _ | | _ | | | 45.940852 | | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | + | - | | | 121 | | -89.220930 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | _ | + | + | _ | | 122 | | -89.220938 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | _ | _ | _ | | | 123 | | -89.220945 | | | | 8/2/2012 | | | | | | DEEP | | | | | | | | | | | | | | | | | | \dashv | + | - | _ | | 124 | | -89.220953 | | Otter Lake | | 8/2/2012 | EJH & CRS | | | Sand | | | | | 1 | | | | | | | | | | | | | 1 | | \dashv | + | - | | | 125 | | -89.220073 | | | | 8/2/2012 | DAC & EEC | | | Sand | Pole | | | | 2 | H | | | - | | 1 | - | 1 | H | 1 | | | | | \dashv | 1 | 1 | - | | 126 | 45.945707 | -89.220080 | 34 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 126 | 11 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | + | - | _ | | 127 | 45.945167 | -89.220088 | 31 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 127 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | _ | - | _ | | 128 | 45.944627 | -89.220095 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | Н | | | | | | | | | | | | | | \dashv | \dashv | + | | | 129 | 45.944087 | -89.220103 | 28 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 129 | 0 | | | DEEP | | | | H | | | _ | | _ | _ | _ | | | | | - | | \dashv | - | \dashv | _ | | 130 | 45.943547 | -89.220111 | 26 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 180 | 0 | | | DEEP | | | | H | Н | - | _ | | _ | _ | _ | Н | Н | | | | _ | \dashv | \dashv | 4 | _ | | 131 | 45.943007 | -89.220118 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | Н | | | | | | | | | | | | | | \dashv | 4 | 4 | _ | | 132 | 45.942467 | -89.220126 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | \vdash | | - | | | | | | | | | | | _ | \dashv | \dashv | 4 | _ | | 133 | 45.941927 | -89.220133 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | H | | _ | | | | | | | | | | _ | | \dashv | 4 | \dashv | | | 134 | 45.941387 | -89.220141 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | Ш | | | | | | | | | | | | | _ | \dashv | \dashv | _ | _ | | 135 | 45.940847 | -89.220148 | 0 | | | 18991230 | | 0
 0 | | | DEEP | | | | | | _ | _ | | _ | | | | | | | | | \dashv | 4 | 4 | _ | | 136 | 45.940307 | -89.220156 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | Ш | Щ | | | | | | | Щ | Щ | | | | | \perp | _ | | | | 137 | 45.939767 | -89.220164 | 14 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 137 | 14 | | | DEEP | | | | Ш | | | | | | | | | | | | | | \perp | _ļ | | | | 138 | 45.939227 | -89.220171 | 15 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 138 | 13 | | | DEEP | Degrees) | al Degrees) | | | | | | | | | | | | | s | atum | nersum | | | ricum | | | lifolius | ydrus | Ins | ardsonii | insii | llus | tifolius | yi | eriformis | ana | | |--------------|----------------------------|----------------------------|----|------------|--------|----------|------------|--------------|------------|----------|------------|----------|-------|----------|---------------------|-----------------------|------------------------|-------------------|--------------------|------------------------|----------------|-------------|-------------------------|-----------------------|----------------------|--------------------------|----------------------|-----------------------|---------------------------|--------------------|---------------------------|-----------------------|--------------| | Point Number | -atitude (Decimal Degrees) | ongitude (Decimal Degrees) | Q | -ake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsi | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | Aquatic moss | | 139 | 45.938687 | -89.220179 | 16 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 139 | 0 | Sand | Pole | 0 | Z | Z | _ | 2 | 0 | ш | I | 2 | 1 | Z | _ | _ | п. | _ | | | | Δ. | - | > | ٩ | | 140 | 45.945702 | -89.219306 | 33 | Otter Lake | | 8/2/2012 | DAC & EEC | 140 | | Sand | | | | | 2 | | | | | | Ė | | | | | | | 1 | | | T | 2 | _ | | 141 | 45.945162 | -89.219314 | 32 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 141 | 9 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | T | Ť | | | 142 | 45.944622 | -89.219321 | 29 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 142 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | T | | _ | | 143 | 45.944082 | -89.219329 | 27 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 143 | 13 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | T | | _ | | 144 | 45.943542 | -89.219337 | 25 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 144 | 8 | Sand | | | | | 1 | | 1 | 1 | | | 1 | | | | | | | | | | П | | | | 145 | 45.943002 | -89.219344 | 24 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 145 | 0 | | | DEEP | 146 | 45.942462 | -89.219352 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 147 | 45.941922 | -89.219359 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 148 | 45.941382 | -89.219367 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 149 | 45.940842 | -89.219375 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | ightharpoonup | | | | 150 | 45.940302 | -89.219382 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | Ш | | | | | | | | | | | | | | | ightharpoonup | \rfloor | | | 151 | 45.939762 | -89.219390 | 13 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 151 | 14 | | | DEEP | | | | | | | | | | | | | | | | | | | _ | _ | | | 152 | 45.939222 | -89.219397 | 12 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 152 | 7 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | _ | _ | | | 153 | 45.944616 | -89.218547 | 30 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 153 | 6 | Sand | Pole | | | | 3 | | 1 | | | 2 | | | | | 1 | | | | | | \perp | 2 | | | 154 | 45.944076 | -89.218555 | 21 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 154 | 7 | Sand | Pole | | | | 3 | | | | | 1 | | | | | 1 | | | 1 | | 1 | \perp | 1 | | | 155 | 45.943536 | -89.218563 | 22 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 155 | 6 | Sand | Pole | | | | 2 | | | | | | | | | | 1 | 2 | | | | | 4 | 2 | | | 156 | 45.942996 | -89.218570 | 23 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 156 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | 4 | _ | _ | | 157 | 45.942456 | -89.218578 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | 4 | _ | | | 158 | 45.941916 | -89.218585 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | 4 | 4 | _ | | 159 | 45.941376 | -89.218593 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | 4 | \dashv | _ | | 160 | 45.940836 | -89.218601 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | 4 | \dashv | _ | | 161 | 45.940296 | -89.218608 | 10 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 161 | 14 | | | DEEP | | | | | | | | | | | | | | | | | | | 4 | \dashv | _ | | 162 | 45.939756 | -89.218616 | 11 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 162 | 3 | Rock | Pole | | | | 0 | | | | _ | | | | _ | | | | | | | | 4 | \dashv | _ | | 163 | 45.944071 | -89.217781 | 20 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 163 | 6 | Sand | Pole | | | | 1 | | | | | | | | | | | | | | | | \dashv | 1 | _ | | 164 | 45.943531 | -89.217789 | 19 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 164 | 6 | Sand | Pole | | | | 2 | | | | | | 1 | 1 | 1 | | 1 | | | 2 | | | \dashv | ᆉ | _ | | 165 | 45.942991 | -89.217796 | 18 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 165 | | | | DEEP | | | | | | | | | | | | | | | | | | | \dashv | ᆉ | _ | | 166 | 45.942451 | -89.217804 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | \dashv | + | | | | 45.941911 | -89.217811 | | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | \dashv | \dashv | - | | | 45.941371 | -89.217819 | | | | | | | | | | DEEP | | | | | | | | | | | | | | | | | | | \dashv | \dashv | _ | | | 45.940831 | -89.217827 | | | | 8/2/2012 | EJH & CRS | 169 | | | | DEEP | | | | | | | | | | | | | | | | | | | \dashv | 7 | | | | 45.940291
45.944606 | -89.217834 | | Otter Lake | | | EJH & CRS | | | | | | | | 0 | H | | \dashv | | | | | | | | | | | | \dashv | \dashv | 7 | \dashv | | | | -89.216999
-89.217007 | | | | | DAC & EEC | | | Muck | | | | | 2 | H | 4 | | | | | | | | | | | | | 4 | \dashv | 2 | ٦ | | | 45.944066
45.943526 | -89.217007
-89.217015 | | | | | DAC & EEC | | | Sand | | | | | 3 | H | 1 | | | | | | | | 2 | | | | | 2 | \dashv | 1 | ٦ | | | 45.943526 | -89.217015 | | Otter Lake | | | DAC & EEC | 174 | | Janu | , ole | DEEP | | | J | H | | | | | | | | | ۷ | | | | | ۷ | 寸 | \forall | ٦ | | | 45.942986 | -89.217022 | | Out Lake | viidS | 18991230 | DAO & EEU | 0 | 0 | | | DEEP | | | | | | 1 | | | | | | | | | | | | \dashv | \dashv | \exists | ٦ | | | 45.941906 | -89.217037 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | \forall | \forall | ٦ | | | 45.941366 | -89.217045 | | Otter Lake | Vilas | | EJH & CRS | | | | | DEEP | | | | | | | | | | | | | | | | | | 7 | \dashv | \exists | \exists | | | 45.940826 | -89.217053 | | Otter Lake | | | EJH & CRS | | | Muck | Pole | | | | 1 | | | | | | | | | | 1 | | | | | | T | T | \exists | | | 45.944600 | -89.216225 | | | | 8/2/2012 | DAC & EEC | | | Sand | | | | | 2 | | | | | | | | | | | | | | | | T | 2 | | | | 45.944060 | -89.216233 | | | | | | | | Sand | | | | | 0 | | | | | | | | | | | | | | | | | I | | | | 45.943520 | -89.216241 | | | | | DAC & EEC | | | Sand | | | | | 2 | | | | | | | | | | 2 | | 1 | | | | | I | | | | 45.942980 | -89.216248 | | Otter Lake | | | | | | | | DEEP | 183 | 45.942440 | -89.216256 | 3 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 183 | 0 | | | DEEP | 184 | 45.941900 | -89.216263 | 2 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 184 | 15 | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | Aquatic moss | |--------------|----------------------------|-----------------------------|----|------------|--------|----------|------------|--------------|------------|----------|------------|----------|-------|----------|---------------------|-----------------------|------------------------|-------------------|--------------------|------------------------|----------------|-------------|-------------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|-----------------------|--------------| | 185 | 45.941361 | -89.216271 | 3 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 185 | 8 | Muck | Pole | | | | 3 | 1 | 1 | 1 | | | | | | | 3 | | | | | | | 1 | | | 186 | 45.940821 | -89.216279 | 7 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 186 | 1 | Sand | Pole | | | | 2 | | 1 | 1 | | | 2 | | 1 | | 1 | | | | | 1 | | 1 | | | 187 |
45.944055 | -89.215459 | 11 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 187 | 7 | Sand | Pole | | | | 3 | | | | | 1 | | | | | 2 | | | | | 1 | | 3 | | | 188 | 45.943515 | -89.215467 | 9 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 188 | 12 | Sand | Pole | | | | 0 | 189 | 45.942975 | -89.215474 | 5 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 189 | 12 | Sand | Pole | | | | 0 | 190 | 45.942435 | -89.215482 | 2 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 190 | 10 | Sand | Pole | | | | 0 | 191 | 45.941895 | -89.215489 | 1 | Otter Lake | Vilas | 8/2/2012 | EJH & CRS | 191 | 3 | Sand | Pole | | | | 2 | | 1 | | | | 1 | | 1 | | 1 | | | | | | | 1 | | | 192 | 45.943510 | -89.214693 | 8 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 192 | 7 | Sand | Pole | | | | 3 | | | | | 2 | | | | | | | 1 | | | | | 3 | | | 193 | 45.942970 | -89.214700 | 6 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 193 | 7 | Sand | Pole | | | | 3 | | 2 | 1 | | 1 | | | | | 1 | | | | | 1 | | | | | 194 | 45.942430 | -89.214708 | 1 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 194 | 4 | Sand | Pole | | | | 2 | | | | | | | | | | | 1 | | | | 1 | | 1 | | | 195 | 45.942964 | -89.213926 | 7 | Otter Lake | Vilas | 8/2/2012 | DAC & EEC | 195 | 1 | Sand | Pole | | | | 1 | | | | | | 1 | | | | | | | | | | | | | | nber | -atitude (Decimal Degrees) | -ongitude (Decimal Degrees) | | 92 | | | 3 | nber | | | 0 | s | | | Total Rake Fullness | Ceratophyllum demersum | Elodea canadensis | Myriophyllum sibiricum | dlis | | ariegata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton friesii | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Sparganium eurycarpum | Vallisneria americana | ous algae | |--------------|----------------------------|-----------------------------|----|------------------------|--------|----------|------------|-------------|------------|----------|------------|----------|-------|----------|---------------------|------------------------|-------------------|------------------------|----------------|-------------|------------------|-------------------------|-----------------------|----------------------|---------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|-----------------------|-----------------------|-------------------| | Point Number | Latitude (| Longitud | Q | Lake Name | County | Date | Field Crew | Point Numbe | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rak | Ceratoph | Elodea ca | Myriophy | Najas flexilis | Nitella sp. | Nuphar variegata | Potamog Spargani | Vallisneri | Filamentous algae | | 1 | 45.947208 | -89.231790 | 84 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 1 | 7 | Sand | Pole | | | | 1 | | 1 | 2 | 45.946938 | -89.231794 | 85 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 2 | 9 | Sand | Pole | | | | 0 | 3 | 45.947205 | -89.231403 | 83 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 3 | 9 | Sand | Pole | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | | | 4 | 45.946935 | -89.231407 | 86 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 4 | 9 | Sand | Pole | | | | 1 | | | | | | | | | | | | | | | | 1 | 1 | | | | | 5 | 45.947473 | -89.231012 | 82 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 5 | 6 | Sand | Pole | | | | 3 | | | | | | | | | | | | | 1 | | | | | | 3 | | | 6 | 45.947203 | -89.231016 | 88 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 6 | 9 | Sand | Pole | | | | 0 | 7 | 45.946933 | -89.231020 | 87 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 7 | 6 | Sand | Pole | | | | 3 | | | | 1 | | | 1 | | 2 | | | | | | | | 1 | | 1 | | | 8 | 45.949360 | -89.230599 | 63 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 8 | 5 | Sand | Pole | | | | 2 | | | 1 | | | | _ | _ | | | _ | | 1 | | | | | 4 | 1 | | | 9 | 45.949090 | -89.230603 | 68 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 9 | 6 | Sand | Pole | | | | 3 | | | | 1 | | | _ | _ | | | _ | | | 2 | | | | 4 | 2 | | | 10 | 45.948820 | -89.230606 | 69 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 10 | 6 | Sand | Pole | | | | 3 | | 1 | | 1 | | | | _ | - | | | | | 3 | | 1 | | 4 | 1 | | | 11 | 45.948550 | -89.230610 | 72 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 11 | 6 | Sand | Pole | | | | 3 | | 1 | | | 1 | | 1 | _ | | | _ | | 1 | | | | 1 | 4 | 2 | _ | | 12 | 45.947470 | -89.230625 | 81 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 12 | 7 | Sand | Pole | | | | 2 | | | | | | | _ | - | - | _ | 1 | | | 1 | | 1 | | _ | | | | 13 | 45.947200 | -89.230629 | 89 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 13 | 10 | Sand | Pole | | | | 1 | | | | 1 | 1 | | | - | | | | | | | | | | _ | | | | 14 | 45.950437 | -89.230197 | 57 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 14 | 3 | Sand | Pole | | | | 3 | | | | 1 | | | | - | | | | | 3 | 1 | | | | _ | 1 | | | 15 | 45.950167 | -89.230201 | 58 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 15 | 3 | Sand | Pole | | | | 1 | | | | | | 1 | _ | _ | | _ | _ | | | | | | | + | 1 | | | 16 | 45.949897 | -89.230204 | 59 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 16 | 5 | Sand | Pole | | | | 2 | | | | 1 | | | _ | + | - | - | _ | | | | | | | \dashv | 2 | | | 17 | 45.949627 | -89.230208 | 62 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 17 | 7 | Sand | Pole | | | | 3 | | | | | | | | 1 | + | _ | | | | 2 | | | | - | 1 | _ | | 18 | 45.949357 | -89.230212 | 64 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 18 | 10 | Sand | Pole | | | | 0 | | | | | | | _ | + | + | - | _ | | | - | | | | \dashv | \dashv | | | 19 | 45.949087 | -89.230216 | 67 | Lynx Lake | | 8/2/2012 | BTB & TWH | 19 | 10 | Sand | Pole | | | | 0 | | | | | | | _ | + | + | - | _ | | | - | | | | \dashv | \dashv | | | 20 | 45.948817 | -89.230219 | 70 | | | 8/2/2012 | BTB & TWH | 20 | 14 | | | DEEP | | | | | | | | | | _ | 1 | | | _ | | | | | | | _ | | _ | | 21 | 45.948547 | -89.230223 | 71 | Lynx Lake | | 8/2/2012 | BTB & TWH | 21 | 15 | | | DEEP | | | | | | | | | | _ | 1 | | | | | | | | | | _ | \dashv | | | 22 | 45.948277 | -89.230227 | 73 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 22 | 9 | Sand | Pole | | | | 2 | | | | 1 | | | 1 | | 1 | | 1 | | | 1 | | 1 | 1 | 7 | 2 | _ | | 23 | 45.948007 | -89.230231 | 76 | | | 8/2/2012 | BTB & TWH | 23 | 6 | Sand | | | | | 3 | | | | 1 | | | | | | | 1 | | | 3 | | | _ | 1 | | | | 25 | 45.947737
45.947467 | -89.230234
-89.230238 | 77 | Lynx Lake
Lynx Lake | | 8/2/2012 | BTB & TWH | 24 | 11 | Sand | Pole | | | | 1 | | 1 | | | | | | | | | 1 | | | 3 | | | | 1 | | | | 26 | 45.947197 | -89.230242 | 90 | | | 8/2/2012 | BTB & TWH | 26 | 9 | Sand | Pole | | | | 0 | | Ė | | | | | | | | | İ | | | | | | | | | | | 27 | 45.950435 | -89.229810 | 56 | Lynx Lake | | 8/2/2012 | BTB & TWH | 27 | 5 | Muck | Pole | | | | 3 | | 2 | 1 | | | | 1 | | | | | | | | | | | ٦ | 1 | | | 28 | 45.950165 | -89.229814 | | Lynx Lake | | | BTB & TWH | | | Muck | | | | | 2 | 2 | 1 | | | | | | | | | | | | | | | 1 | | | | | 29 | | -89.229817 | | Lynx Lake | | | BTB & TWH | | 8 | Sand | Pole | | | | 3 | 1 | 2 | | | | | | | | 1 | | | | | | | 1 | | | | | 30 | | -89.229821 | | Lynx Lake | | | BTB & TWH | | 12 | Sand | | | | | 0 | 31 | 45.949355 | -89.229825 | | Lynx Lake | | 8/2/2012 | BTB & TWH | 31 | 15 | | | DEEP | 32 | 45.949085 | -89.229829 | 66 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 32 | 16 | | | DEEP | 33 | 45.948815 | -89.229832 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | Ī | | | | | | | | | | | | | | 34 | 45.948545 | -89.229836 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 35 | 45.948275 | -89.229840 | 74 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 35 | 21 | | | DEEP | 36 | 45.948005 | -89.229844 | 75 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 36 | 20 | | | DEEP | | | | | | | | | | | _ | 1 | | | | | | | | | | Щ | | | 37 | 45.947735 | -89.229847 | 78 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 37 | 15 | | | DEEP | | | | | | | | | | | _ | 1 | | | | | | | | | | Щ | | | 38 | 45.947465 | -89.229851 | 80 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 38 | 14 | | | DEEP | | | | | | | Щ | | | | _ | 1 | | | | | | | | | $ \bot $ | _ | | | 39 | 45.947195 | -89.229855 | 91 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 39 | 8 | Sand | Pole | | | | 3 | | | | 2 | 1 | | | _ | 1 | | 1 | | | 1 | | | | $ \bot $ | _ | | | 40 | 45.950162 | -89.229427 | 54 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 40 | 3 | Sand | Pole | | | | 2 | 1 | | | Щ | | | 1 | _ | 1 | _ | _ | | 1 | 1 | | | 1 | _ | 2 | | | 41 | 45.949892 | -89.229430 | 53 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 41 | 8 | Sand | Pole | | | | 1 | | | | 1 | _ | _ | _ | 4 | 4 | _ | _ | | | | | 1 | | 4 | \dashv | _ | | 42 | 45.949622 | -89.229434 | 52 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 42 | 14 | | | DEEP | | | _ | | | _ | \sqcup | | | | 4 | - | _ | | | | | | | | 4 | \dashv | = | | 43 | 45.949352 | -89.229438 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | 4 | - | 4 | | | | | | | | 4 | \exists | \dashv | | 44 | 45.949082 | -89.229442 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | \sqcup | _ | _ | _ | 4 | 4 | 4 | _ | | | _ | | _ | | 4 | ᅴ | 4 | | 45 | 45.948812 | -89.229445 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | _ | | | _ | \vdash | | | - | \dashv | + | _ | - | _ | _ | _ | | | _ | \dashv | \dashv | \dashv | | 46 | 45.948542 | -89.229449 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | |
 | | | | | | | | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Ω | ake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fuliness | Ceratophyllum demersum | Elodea canadensis | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nuphar variegata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton friesii | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Sparganium eurycarpum | Vallisneria americana | Filamentous algae | |--------------|----------------------------|-----------------------------|-----|-----------|--------|----------|-------------|--------------|------------|----------|------------|----------|-------|----------|---------------------|------------------------|-------------------|------------------------|----------------|-------------|------------------|-------------------------|-----------------------|----------------------|---------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|-----------------------|-----------------------|-------------------| | 47 | 45.948272 | -89.229453 | 0 | | 0 | 18991230 | ш | 0 | 0 | S | Ь | DEEP | z | z | _ | ٥ | Ш | 2 | z | z | z | <u>-</u> | _ | _ | _ | Ь | _ | Δ. | Δ. | Δ. | Ь | _ | S | >_ | ш | | 48 | 45.948002 | -89.229457 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | T | T | - | | 49 | 45.947732 | -89.229460 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | T | T | 1 | | 50 | 45.947462 | -89.229464 | 92 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 50 | | Sand | Polo | DELI | | | 1 | | | | | | | | | | | 1 | | | | | | | T | T | 1 | | 51 | 45.950159 | -89.229040 | 49 | Lynx Lake | | 8/2/2012 | BTB & TWH | 51 | 6 | Sand | Pole | | | | 3 | | | | | | | | | | | _ | | 2 | | | | | T | 2 | | | 52 | 45.949889 | -89.229043 | 50 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 52 | 10 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | T | _ | 1 | | 53 | 45.949619 | -89.229047 | 51 | Lynx Lake | | 8/2/2012 | BTB & TWH | 53 | | Curio | 7 010 | DEEP | T | T | | | 54 | 45.949349 | -89.229051 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | T | | | | 55 | 45.949079 | -89.229055 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | T | | | | 56 | 45.948809 | -89.229058 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 57 | 45.948539 | -89.229062 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 58 | 45.948269 | -89.229066 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 59 | 45.947999 | -89.229070 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 60 | 45.947729 | -89.229073 | 94 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 60 | 0 | | | DEEP | 61 | 45.947459 | -89.229077 | 93 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 61 | 9 | Sand | Pole | | | | 3 | | | | 1 | 1 | | | | | | 3 | | | 1 | | | | | | | | 62 | 45.950157 | -89.228653 | 48 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 62 | 3 | Sand | Pole | | | | 1 | | | | 1 | | | 1 | | | | | | | | | | | | 1 | | | 63 | 45.949887 | -89.228656 | 47 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 63 | 10 | Sand | Pole | | | | 1 | | | | | | | | | | | | | | | | 1 | | | | | | 64 | 45.949617 | -89.228660 | 46 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 64 | 16 | | | DEEP | 65 | 45.949347 | -89.228664 | 45 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 65 | 17 | | | DEEP | 66 | 45.949077 | -89.228668 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 67 | 45.948807 | -89.228671 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | _ | | | 68 | 45.948537 | -89.228675 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 4 | | | 69 | 45.948267 | -89.228679 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 4 | 4 | _ | | 70 | 45.947997 | -89.228683 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 4 | 4 | _ | | 71 | 45.947727 | -89.228686 | 95 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 71 | 0 | | | DEEP | | | | | | | | | | _ | | | | | | | | | | | 4 | 4 | | | 72 | 45.947457 | -89.228690 | 96 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 72 | 6 | Sand | Pole | | | | 2 | | | | 2 | | | | _ | | | 1 | | | | | 1 | | 4 | 4 | 4 | | 73 | 45.949884 | -89.228269 | 42 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 73 | 7 | Sand | Pole | | | | 3 | 1 | | | 1 | | | _ | | | | | | | 3 | | | 1 | 4 | 4 | 4 | | 74 | 45.949614 | -89.228273 | 43 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 74 | 10 | Sand | Pole | | | | 1 | | | | | | | _ | _ | | _ | | | | | | | | 4 | 1 | _ | | 75 | 45.949344 | -89.228277 | 44 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 75 | 14 | | | DEEP | | | | | | | | | | _ | _ | | _ | | | | | | | | 4 | 4 | _ | | 76 | 45.949074 | -89.228280 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | _ | _ | | | | | | | | | | \dashv | \dashv | _ | | 77 | 45.948804 | -89.228284 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | _ | _ | | | | | | | | | | \dashv | \dashv | _ | | 78 | 45.948534 | -89.228288 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | _ | | | _ | | | | | | | | \dashv | \dashv | 4 | | 79 | 45.948264 | -89.228292 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | H | H | H | H | H | Н | \dashv | \dashv | - | - | \dashv | \dashv | + | - | \exists | - | - | - | - | \dashv | \dashv | \dashv | \dashv | | 80 | 45.947994 | -89.228295 | 0 | | | 18991230 | | 0 | | | | DEEP | | | | | | Н | \dashv | \dashv | | 1 | + | \dashv | + | - | | | | | - | + | \dashv | \dashv | \dashv | | 81 | 45.947724 | | 98 | | | | BTB & TWH | | 0 | | | DEEP | | | | | | H | | \dashv | | | - | - | | | | | | | | | \dashv | \dashv | \dashv | | 82 | 45.947454 | -89.228303 | 97 | Lynx Lake | | | BTB & TWH | | | Sand | | | | | 2 | | | H | 1 | \dashv | | | - | - | | | | | 2 | | 1 | | \dashv | \dashv | \dashv | | 83 | 45.949882 | -89.227882 | 41 | Lynx Lake | | | BTB & TWH | | | Sand | | | | | 3 | | | 1 | 1 | + | - | | \dashv | \dashv | + | - | | 1 | 1 | | - | 1 | \dashv | 2 | \dashv | | 84 | 45.949612 | -89.227886 | 40 | Lynx Lake | | 8/2/2012 | BTB & TWH | | | Sand | | | | | 0 | | | H | \dashv | 1 | | 1 | ┥ | \dashv | | - | | | | | - | + | \dashv | \dashv | \dashv | | 85 | 45.949342 | -89.227890 | | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | | | Sand | Pole | | | | 0 | | | H | \dashv | 1 | | 1 | ┥ | \dashv | | - | | | | | - | + | \dashv | \dashv | \dashv | | 86 | 45.949072 | -89.227893 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | H | H | H | H | H | H | | \dashv | | 1 | 1 | 1 | _ | | | | | | | | + | + | \dashv | | 87 | 45.948802 | -89.227897 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | H | H | H | H | H | H | | \dashv | | 1 | 1 | 1 | _ | | | | | | | 1 | + | + | \dashv | | 88 | 45.948532 | -89.227901 | 0 | | | 18991230 | | 0 | | | | DEEP | | | | | | H | | 1 | - | 1 | \dashv | + | + | | | | | | | \dashv | \dashv | + | \dashv | | 89 | 45.948262 | -89.227905 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | H | | 1 | | | 1 | \dashv | | | | | | | | \dashv | \dashv | \dashv | \dashv | | 90 | 45.947992 | -89.227908 | 0 | 1 1. 1 | \c. | 18991230 | DTD A TOTAL | 0 | | | | DEEP | | | | | | H | H | | | | + | \dashv | | | | | | | | | \dashv | \forall | \dashv | | 91 | 45.947722 | -89.227912 | 99 | | | | BTB & TWH | | 7 | 0 | D-' | DEEP | | | , | | 4 | H | | | 1 | 1 | 1 | + | | _ | | | _ | | 4 | \dashv | \forall | \forall | \dashv | | 92 | 45.947452 | -89.227916 | 100 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 92 | 7 | Sand | Pole | | | | 3 | | 1 | Ш | 1 | | | | | | | 3 | | | 1 | | 1 | | | | | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Ceratophyllum demersum | Elodea canadensis | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nuphar variegata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton triesii | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Sparganium eurycarpum | Vallisneria americana | Filamentous algae | |--------------|----------------------------|-----------------------------|-----|-----------|--------|----------|------------|--------------|------------|----------|------------|----------|-------|----------|---------------------|------------------------|-------------------|------------------------|----------------|-------------|------------------|-------------------------|-----------------------|----------------------|---------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|-----------------------|-----------------------|-------------------| | 93 | 45.949879 | -89.227495 | 36 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 93 | 6 | Sand | Pole | | | | 3 | | | | | | | | | | | | | | | | | | _ | 3 | _ | | 94 | 45.949609 | -89.227499 |
37 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 94 | 9 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | _ | 4 | _ | | 95 | 45.949339 | -89.227503 | 38 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 95 | 15 | | | DEEP | | | | | | | | | | | _ | | _ | _ | | | | | | | _ | 4 | _ | | 96 | 45.949069 | -89.227506 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | _ | 4 | _ | | 97 | 45.948799 | -89.227510 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | _ | 4 | _ | | 98 | 45.948529 | -89.227514 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | _ | | _ | | | | | | | | | 4 | _ | | 99 | 45.948259 | -89.227518 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | _ | | _ | | | | | | | | | 4 | _ | | 100 | 45.947989 | -89.227521 | 103 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 100 | 0 | | | DEEP | | | | | | | | | | | _ | | _ | | | | | | | | | 4 | _ | | 101 | 45.947719 | -89.227525 | 102 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 101 | 11 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | _ | | | 102 | 45.947449 | -89.227529 | 101 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 102 | 3 | Sand | Pole | | | | 2 | | | | 1 | | | | | | _ | | | | | | | 1 | | 1 | | | 103 | 45.949876 | -89.227108 | 35 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 103 | 2 | Sand | Pole | | | | 2 | | | | 1 | | | | | | _ | | | | 1 | | | | 1 | 1 | | | 104 | 45.949606 | -89.227112 | 34 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 104 | 7 | Sand | Pole | | | | 2 | | | | 1 | | | | | 1 | | | | | 2 | | | | | _ | | | 105 | 45.949336 | -89.227116 | 33 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 105 | 9 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | _ | 1 | | 106 | 45.949066 | -89.227119 | 32 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 106 | 15 | | | DEEP | _ | | | 107 | 45.948796 | -89.227123 | 31 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 107 | 18 | | | DEEP | _ | | | 108 | 45.948526 | -89.227127 | 30 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 108 | 19 | | | DEEP | _ | | | 109 | 45.948256 | -89.227131 | 29 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 109 | 14 | | | DEEP | _ | | | 110 | 45.947986 | -89.227134 | 28 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 110 | 10 | Sand | Pole | | | | 2 | | | | | | | | | | | 2 | | | | | | 1 | | _ | | | 111 | 45.947716 | -89.227138 | 27 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 111 | 7 | Sand | Pole | | | | 2 | | | 2 | 1 | | | | | | | 1 | | | 1 | | 1 | | | 1 | | | 112 | 45.949604 | -89.226725 | 20 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 112 | 6 | Sand | Pole | | | | 3 | | | 1 | | | | | | | | | | | | | | | | 3 | | | 113 | 45.949334 | -89.226729 | 21 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 113 | 7 | Sand | Pole | | | | 3 | | | | 1 | | | | | | | | | | 3 | | | | | | | | 114 | 45.949064 | -89.226732 | 22 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 114 | 7 | Sand | Pole | | | | 3 | 1 | 1 | | | | | | | | | 1 | | | 2 | | | 1 | | 1 | | | 115 | 45.948794 | -89.226736 | 23 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 115 | 8 | Sand | Pole | | | | 1 | | | | | | | | | | | 1 | | | | | | | | | 1 | | 116 | 45.948524 | -89.226740 | 24 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 116 | 8 | Sand | Pole | | | | 3 | | | | | | | | | | | 3 | | | 1 | | | | | | 1 | | 117 | 45.948254 | -89.226744 | 25 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 117 | 7 | Sand | Pole | | | | 3 | | | | 1 | 1 | | | | | | 2 | 1 | | 1 | | 1 | | | | | | 118 | 45.947984 | -89.226747 | 26 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 118 | 7 | Sand | Pole | | | | 2 | | | | | | | | | | | 1 | | | 1 | 1 | | 1 | | 2 | | | 119 | 45.949331 | -89.226342 | 19 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 119 | 7 | Sand | Pole | | | | 2 | | | | 1 | | | | | | | | | | 1 | | | | | 2 | | | 120 | 45.949061 | -89.226345 | 18 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 120 | 7 | Sand | Pole | | | | 3 | | | | 1 | | | | | | | | | | 2 | | | 1 | | _ | | | 121 | 45.948791 | -89.226349 | 17 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 121 | 8 | Sand | Pole | | | | 3 | | | | 1 | | | | | | | 3 | | 1 | | | | | | _ | | | 122 | 45.948521 | -89.226353 | 16 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 122 | 8 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | _ | 1 | | 123 | 45.948251 | -89.226357 | 15 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 123 | 6 | Sand | Pole | | | | 3 | | | | 2 | 1 | | _ | _ | | _ | 1 | _ | | 1 | | 1 | | _ | 1 | | | 124 | 45.947981 | -89.226360 | 14 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 124 | 2 | Sand | Pole | | | | 1 | | | Ц | | _ | | _ | 1 | \downarrow | _ | 1 | _ | | | | | | | \downarrow | | | 125 | 45.949058 | -89.225958 | 9 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 125 | 7 | Sand | Pole | | | | 3 | | | | 1 | _ | | _ | _ | | _ | 1 | _ | | 3 | | | 1 | _ | _ | | | 126 | 45.948788 | -89.225962 | 10 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 126 | 8 | Sand | Pole | | | | 1 | | | Ш | 1 | _ | | _ | _ | _ | _ | 1 | _ | | | | 1 | | | \downarrow | 1 | | 127 | 45.948519 | -89.225966 | 11 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 127 | 8 | Sand | Pole | | | | 1 | | | | | | | | _ | | | 1 | | | | | | | | | 1 | | 128 | 45.948249 | -89.225970 | 12 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 128 | 6 | Sand | Pole | | | | 2 | | | | 2 | _ | | | _ | | | _ | _ | | | | | | | 1 | | | 129 | 45.947979 | -89.225973 | 13 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 129 | 3 | Sand | Pole | | | | 3 | | | | 3 | | | 1 | 1 | | | 1 | | | | | | | | 1 | | | 130 | 45.948786 | -89.225575 | 8 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 130 | 6 | Sand | Pole | | | | 3 | | | | | 1 | | | _ | | | 1 | | | | | | | | 3 | | | 131 | 45.948516 | -89.225579 | 7 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 131 | 9 | Sand | Pole | | | | 0 | | | Ш | | _ | | _ | _ | 1 | | | _ | | | | | | | 1 | | | 132 | 45.948246 | -89.225582 | 6 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 132 | 7 | Sand | Pole | | | | 2 | | | | 2 | 1 | | | _ | 1 | | | 1 | | | | | | | 1 | | | 133 | 45.947976 | -89.225586 | 5 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 133 | 2 | Sand | Pole | | | | 2 | | | Ш | 2 | _ | | _ | _ | 1 | | 1 | _ | | | | | | | 1 | | | 134 | 45.948513 | -89.225192 | 2 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 134 | 9 | Sand | Pole | | | | 0 | 135 | 45.948243 | -89.225195 | 3 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 135 | 7 | Sand | Pole | | | | 2 | | | | 2 | 1 | | | _ | | | _ | _ | | 1 | | 1 | | | 1 | | | 136 | 45.947973 | -89.225199 | 4 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 136 | 3 | Sand | Pole | | | | 2 | | | | 2 | | | | | | | 1 | | | | | | | | | | | 137 | 45.948241 | -89.224808 | 1 | Lynx Lake | Vilas | 8/2/2012 | BTB & TWH | 137 | 9 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | \perp | | Appendix E | | (see | grees) | | | | | | | | | | | | | | _ | Ę | - | | | | | | ins | | | onii | | | | rmis | | |--------------|----------------------------|----------------------------|-----|-----------|--------|----------|------------|--------------|------------|----------|------------|----------|----------|----------|---------------------|-----------------------|------------------------|------------------------|----------------|-------------|------------------|------------------|--------------------|-----------------------|----------------------|----------------------|--------------------------|-----------------------|-----------------------|--------------------|---------------------------|-----------------------| | Point Number | Latitide (Decimal Degrees) | ongitude (Decimal Degrees) | O O | -ake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Myriophyllum sibiricum | Naias flexilis | Nitella sp. | Nuphar variegata | Nymphaea odorata | Pontederia cordata | Potamogeton amplifoli | Potamogeton foliosus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | | 1 | 45.946148 | -89.240609 | 167 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 1 | 0 | 0, | _ | DOCK | _ | _ | _ | _ | | _ | _ | | _ | _ | _ | _ | _ | | | _ | _ | _ | _ | 1 | | 2 | 45.944348 | -89.240634 | 166 | | Vilas | | BTB & CRS | 2 | 1 | Sand | Pole | Book | | | 0 | | | | | | | | | | | | | | | T | T | _ | | 3 | 45.942998 | -89.240652 | 168 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 3 | 4 | Sand | | | | | 3 | | | | 1 | | | | | | | 2 | | | | 1 | 1 | 1 | | 4 | 45.942548 | -89.240658 | 1 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 4 | 9 | Sand | | | | | 0 | | | | | | | | | | | | | | | | | | | 5 | 45.947493 | -89.239946 | 152 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 5 | 5 | Sand | | | | | 0 | | | | | | | | | | | | | | | | | | | 6 | 45.947043 | -89.239952 | 153 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 6 | 7 | Sand | Pole | | | | 1 | | | | | | | | | | | 1 | | | | 1 | 1 | | | 7 | 45.946593 | -89.239958 | 154 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 7 | 8 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 8 | 45.946143 | -89.239964 | 155 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 8 | 9 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 9 | 45.945693 | -89.239970 | 156 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 9 | 7 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 10 | 45.945243 | -89.239976 | 157 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 10 | 7 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 11 | 45.944793 | -89.239983 | 158 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 11 | 9 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 12 | 45.944343 |
-89.239989 | 165 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 12 | 9 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 13 | 45.943893 | -89.239995 | 164 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 13 | 9 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 14 | 45.943443 | -89.240001 | 163 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 14 | 7 | Sand | Pole | | | | 2 | | | | | | | | | | | 2 | | | | | 1 | | | 15 | 45.942993 | -89.240007 | 3 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 15 | 9 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 16 | 45.942543 | -89.240013 | 2 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 16 | 10 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 17 | 45.947939 | -89.239295 | 151 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 17 | 5 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 18 | 45.947489 | -89.239301 | 150 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 18 | 8 | Muck | Pole | | | | 1 | | | | | | | | | | | 1 | | | | | | 1 | | 19 | 45.947039 | -89.239307 | 149 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 19 | 9 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 20 | 45.946589 | -89.239313 | 148 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 20 | 9 | Muck | Pole | | | | 1 | | | | | | | | | | | | | | | | 1 | | | 21 | 45.946139 | -89.239319 | 147 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 21 | 9 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 22 | 45.945689 | -89.239325 | 146 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 22 | 10 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 23 | 45.945239 | -89.239331 | 145 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 23 | 11 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 24 | 45.944789 | -89.239338 | 159 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 24 | 11 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 25 | 45.944339 | -89.239344 | 160 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 25 | 11 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | _ | | | | 26 | 45.943889 | -89.239350 | 161 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 26 | 12 | Muck | Pole | | | | 0 | | _ | | | _ | | | | | | | | | | 4 | | _ | | 27 | 45.943439 | -89.239356 | 162 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 27 | 12 | Muck | Pole | | | | 0 | | | | <u> </u> | | | | | | | | | | | 4 | 4 | _ | | 28 | 45.942989 | -89.239362 | 4 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 28 | 0 | | | DEEP | | _ | | | | | | - | | | | | | | | | | _ | _ | _ | | 29 | 45.942539 | -89.239368 | 5 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 29 | 9 | Sand | Pole | | | | 0 | | | | <u> </u> | | | | | | | | | | | 4 | 4 | _ | | 30 | 45.948835 | -89.238637 | 136 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 30 | 0 | | | DOCK | | _ | | | _ | | | - | | | | | | | | | | 4 | _ | _ | | 31 | 45.948385 | -89.238643 | 137 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 31 | 5 | Sand | Pole | | H | _ | 0 | | - | | _ | - | | | | | | | | | | 4 | 4 | _ | | 32 | 45.947935 | -89.238649 | 138 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 32 | 8 | Sand | Pole | | _ | | 2 | | - | | + | - | | | | | | 2 | | | | 4 | 4 | _ | | 33 | 45.947485 | -89.238656 | 139 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 33 | 9 | Muck | Pole | | _ | | 0 | | - | | + | - | | | | | | | | | | 4 | 4 | _ | | 34 | 45.947035 | -89.238662 | 140 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 34 | 10 | Muck | Pole | | | _ | 0 | | | | - | - | | | | | | | | | | 4 | \dashv | _ | | 35 | 45.946585 | -89.238668 | 141 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 35 | 10 | Muck | Pole | | \dashv | - | 0 | _ | + | + | + | + | | | | | | | Н | _ | _ | \dashv | \dashv | \dashv | | 36 | 45.946135 | -89.238674 | 142 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 36 | 10 | Muck | Pole | | | _ | 0 | | + | | - | _ | | | | | | | | | | + | 4 | _ | | 37 | 45.945685 | -89.238680 | 143 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 37 | 11 | Muck | Pole | | \vdash | \dashv | 0 | + | + | + | + | - | \vdash | _ | _ | | | | \vdash | | - | \dashv | \dashv | \dashv | | 38 | 45.945235 | -89.238686 | 144 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 38 | 11 | Muck | Pole | | \vdash | \dashv | 0 | _ | + | + | + | + | L | | | | \vdash | H | H | _ | | + | \dashv | \dashv | | 39 | 45.944785 | -89.238693 | 11 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 39 | 12 | Muck | Pole | | \vdash | \dashv | 0 | + | + | + | + | - | 3 | 1 | 1 | | | | \vdash | | - | \dashv | \dashv | \dashv | | 40 | 45.944335 | -89.238699 | 10 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | | | | | | \vdash | \dashv | 0 | _ | + | + | + | + | L | | | | \vdash | H | H | _ | | + | \dashv | \dashv | | 41 | 45.943885 | -89.238705 | 9 | Duck Lake | | | | | | Muck | | | \vdash | \dashv | 0 | _ | + | + | + | + | _ | _ | _ | | \vdash | | H | _ | | + | \dashv | \dashv | | 42 | | | 8 | | | | BTB & CRS | | | | | | \vdash | \dashv | 0 | \dashv | + | + | + | - | - | - | - | | | | \vdash | | _ | \dashv | \dashv | \dashv | | 43 | | -89.238717 | 7 | Duck Lake | | | BTB & CRS | | | | | | \vdash | \dashv | 0 | | + | + | + | + | | | | | | | H | | | \dashv | \dashv | \dashv | | | 45.942535 | | 6 | Duck Lake | | | BTB & CRS | 44 | | Sand | | | \vdash | \dashv | 0 | \dashv | + | + | + | - | | - | - | | | | \vdash | | _ | \dashv | \dashv | \dashv | | | 45.948830 | | | Duck Lake | | | BTB & CRS | | | Sand | | | \vdash | \dashv | 2 | _ | + | + | + | - | - | _ | _ | | | H | H | | | + | \dashv | 2 | | 46 | 45.948380 | -89.237998 | 134 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 46 | 6 | Muck | Pole | | | | 1 | 1 | | | | | | | | | | | | | | | | 1 | | Point Number | Latitide (Decimal Degrees) | ongitude (Decimal Degrees) | ID | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fuliness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Myriophyllum sibiricum | Najas flexilis | iliella sp. | Nupnar variegata | | | rotalliogeton amplifolius | Potamogeton rollosus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | |--------------|----------------------------|----------------------------|-----|-----------|--------|----------|------------|--------------|------------|----------|------------|----------|-------|----------|---------------------|-----------------------|------------------------|-------------------|------------------------|----------------|-------------|------------------|---|---|---------------------------|----------------------|----------------------|--------------------------|-----------------------|-----------------------|--------------------|---------------------------|-----------------------| | 47 | 45.947930 | -89.238004 | 133 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 47 | 9 | Muck | Pole | 0 | _ | _ | 0 | _ | 0 | ш | _ | | 1 | | ľ | 1 | | 1 | | | _ | | - | | _ | | | | | | | | | | | | | | | | | 0 | | | | | | | | | | | ı | | | | | \dashv | 寸 | 7 | | 48 | 45.947480 | -89.238011 | 132 | Duck Lake | | 8/3/2012 | BTB & CRS | 48 | 10 | Muck | Pole | | | | 0 | | | | | | | | | | | ı | | | | | \dashv | 寸 | - | | 49 | 45.947030 | -89.238017 | 131 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 49 | 9 | Muck | Pole | | | | | | | | | | | | T | | | | | | | | \dashv | _ | - | | 50 | 45.946580 | -89.238023 | 130 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 50 | 10 | Muck | Pole | | | | 1 | | | | | | | | T | | | | | | | | \dashv | 1 | - | | 51 | 45.946130 | -89.238029 | 129 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 51 | 11 | Muck | Pole | | | | 0 | | | | | | | | ł | | 1 | | | | | | \dashv | \dashv | \exists | | 52 | 45.945680 | -89.238035 | 128 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 52 | 12 | Muck | Pole | | | | 0 | | | | | | | | | | + | | | | | | \dashv | + | - | | 53 | 45.945230 | -89.238041 | 127 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 53 | 12 | Muck | Pole | | | | 0 | | | | | | | | ł | | 1 | | | | | | \dashv | \dashv | - | | 54 | 45.944780 | -89.238048 | 12 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 54 | 12 | Muck | Pole | | | | 0 | | | | | | t | | | T | t | t | | | | | \forall | _ | - | | 55 | 45.944330 | -89.238054 | 13 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 55 | 12 | Muck | Pole | | | | 0 | | | | | | | | | | + | | | | | | \dashv | + | - | | 56 | 45.943880 | -89.238060 | 14 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 56 | 12 | Muck | Pole | | | | 0 | | | | | | | | ł | + | 1 | | | | | | \dashv | \dashv | - | | 57 | 45.943430 | -89.238066 | 15 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 57 | 12 | Muck | Pole | | | | 0 | | | | | | | | ł | + | 1 | | | | | | \dashv | \dashv | \dashv | | 58 | 45.942981 | -89.238072 | 16 | Duck Lake | | 8/3/2012 | BTB & CRS | 58 | 12 | Muck | Pole | | | | 0 | | | | | | | | | | - | | | | | | + | - | \dashv | | 59 | 45.942531 | -89.238078 | 17 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 59 | 9 | Muck | Pole | | | | 0 | | | | | | | | | | - | | | | | | + | - | - | | 60 | 45.942081 | -89.238085 | 18 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 60 | 2 | Sand | Pole | | | | 2 | | | | | + | | + | + | - | 1 | - | | | | 1 | \dashv | 1 | 1 | | 61 | 45.948826 | -89.237347 | 116 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 61 | 7 | Sand | Pole | | | | 1 | | | | | | | | | | - | | | | | | + | - | 1 | | 62 | 45.948376 | -89.237353 | 117 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 62 | 9 | Sand | Pole | | | | 0 | | | | | | | | | | - | | | | | | + | - | \dashv | | 63 | 45.947926 | -89.237359 | 118 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 63 | 10 | Sand | Pole | | | | 0 | | | | | + | | + | + | - | - | - | | | | | \dashv | + | \dashv | | 64 | 45.947476 | -89.237366 | 119 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 64 | 10 | Muck |
Pole | | | | 0 | | | | | | - | | | | - | | | | | | \dashv | \dashv | - | | 65 | 45.947026 | -89.237372 | 120 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 65 | 11 | Muck | Pole | | | | 0 | | - | - | - | | + | | + | | + | + | - | | | | \dashv | 1 | _ | | 66 | 45.946576 | -89.237378 | 121 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 66 | 11 | Muck | Pole | | | | 0 | | - | - | - | | + | | + | | + | + | - | | | | \dashv | \dashv | _ | | 67 | 45.946126 | -89.237384 | 122 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 67 | 12 | Muck | Pole | | | | 0 | | | | | | - | - | - | + | - | - | | | | | 4 | \dashv | _ | | 68 | 45.945676 | -89.237390 | 123 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 68 | 12 | Muck | Pole | | | | 0 | | | | | | - | - | - | + | - | - | | | | | 4 | \dashv | _ | | 69 | 45.945226 | -89.237396 | 124 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 69 | 0 | | | DEEP | | | | | - | - | - | | + | | + | | + | + | - | | | | \dashv | \dashv | _ | | 70 | 45.944776 | -89.237403 | 25 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 70 | 13 | Muck | Pole | | | | 0 | | | - | - | - | + | | + | - | + | + | - | | | | \dashv | \dashv | _ | | 71 | 45.944326 | -89.237409 | 24 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 71 | 12 | Muck | Pole | | | | 0 | | | - | - | - | + | | + | - | + | + | - | | | | \dashv | \dashv | _ | | 72 | 45.943876 | -89.237415 | 23 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 72 | 12 | Muck | Pole | | | | 0 | | | | | + | - | + | - | - | - | - | | | | | \dashv | \dashv | - | | 73 | 45.943426 | -89.237421 | 22 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 73 | 11 | Muck | Pole | | | | 0 | | | - | - | - | + | | + | - | + | + | - | | | | \dashv | \dashv | _ | | 74 | 45.942976 | -89.237427 | 21 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 74 | 11 | Muck | Pole | | | | 0 | | | - | - | - | + | | + | - | + | + | - | | | | \dashv | \dashv | _ | | 75 | 45.942526 | -89.237433 | 20 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 75 | 10 | Muck | Pole | | | | 0 | | | | | + | - | + | - | - | - | - | | | | | \dashv | \dashv | _ | | 76 | 45.942076 | -89.237440 | 19 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 76 | 4 | Sand | Pole | | | | 3 | | | - | - | | + | | - | | + | - | - | | 1 | | \dashv | 1 | 3 | | 77 | 45.948822 | -89.236702 | 115 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 77 | 9 | Sand | Pole | | | | 0 | | | - | - | | + | | - | | + | - | - | | | | \dashv | \dashv | _ | | 78 | 45.948372 | -89.236708 | 114 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 78 | 9 | Muck | Pole | | | _ | 0 | | \dashv | + | + | + | + | + | + | + | + | 4 | + | - | \dashv | 4 | \dashv | \dashv | 4 | | 79 | 45.947922 | -89.236714 | 113 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 79 | 10 | Muck | Pole | | | - | 0 | | | \dashv | \dashv | + | + | + | + | + | + | - | \dashv | \dashv | 4 | 4 | \dashv | \dashv | \dashv | | 80 | 45.947472 | -89.236720 | 112 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 80 | 11 | Muck | Pole | | | | 0 | | _ | | | | | | - | | - | | | | | | 4 | 4 | _ | | 81 | 45.947022 | -89.236727 | 111 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 81 | 11 | Muck | Pole | | | _ | 0 | | \dashv | 4 | 4 | + | + | + | - | + | \downarrow | - | 4 | 4 | \dashv | 4 | \dashv | \dashv | 4 | | 82 | 45.946572 | -89.236733 | 110 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 82 | 11 | Muck | Pole | | | _ | 0 | | | 4 | 4 | + | - | + | + | 1 | - | 4 | 4 | _ | _ | _ | 4 | 4 | _ | | 83 | 45.946122 | -89.236739 | 109 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 83 | 0 | | | DEEP | | _ | | | 4 | 4 | 4 | 4 | - | \perp | - | _ | \downarrow | | 4 | _ | \downarrow | _ | \dashv | 4 | _ | | 84 | 45.945672 | -89.236745 | 126 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 84 | 0 | | | DEEP | | | | | 4 | 4 | 4 | \downarrow | - | \perp | 1 | _ | \downarrow | | 4 | _ | \downarrow | _ | \dashv | 4 | _ | | 85 | 45.945222 | -89.236751 | 125 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 85 | 0 | | | DEEP | | _ | | | | _ | _ | _ | 1 | _ | 1 | 1 | \downarrow | 1 | _ | _ | _ | _ | 4 | \dashv | _ | | 86 | 45.944772 | -89.236757 | 26 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 86 | 0 | | | DEEP | | | | | | 4 | 4 | \downarrow | _ | 4 | 1 | _ | _ | 4 | 4 | _ | _ | | \dashv | 4 | _ | | 87 | 45.944322 | -89.236764 | 27 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 87 | 12 | Muck | Pole | | | _ | 0 | | | _ | _ | _ | 1 | _ | 1 | 1 | \downarrow | 1 | _ | _ | _ | _ | 4 | \dashv | _ | | 88 | 45.943872 | -89.236770 | 28 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 88 | 11 | Muck | Pole | | | _ | 0 | | | _ | _ | \downarrow | 1 | _ | 1 | _ | \downarrow | 1 | _ | | _ | _ | \dashv | \dashv | _ | | 89 | 45.943422 | -89.236776 | 29 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 89 | 11 | Muck | Pole | | | | 0 | | | _ | _ | 1 | 1 | \perp | 1 | 1 | \downarrow | _ | _ | \rfloor | | | ightharpoonup | Ц | _ | | 90 | 45.942972 | -89.236782 | 30 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 90 | 10 | Muck | Pole | | | | 1 | | | _ | _ | 1 | _ | | | _ | \perp | | _ | | _ | | $oldsymbol{\perp}$ | | | | 91 | 45.942522 | -89.236788 | 31 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 91 | 9 | Sand | Pole | | | | 2 | | | | | | 1 | | | | | 1 | | | | | 1 | | | | 92 | 45.942072 | -89.236795 | 32 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 92 | 3 | Sand | Pole | | | | 2 | | 1 | | 1 | | | | | | | | | | 1 | | | | 2 | | mber | Latitide (Decimal Degrees) | ongitude (Decimal Degrees) | | æ | | | * | mber | _ | | Φ | ts | | | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Myriophyllum sibiricum | Kilis | | Nuphar variegata | Nymphaea odorata | Pontederia cordata | Potamogeton amplifolius | Potamogeton foliosus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | |--------------|----------------------------|----------------------------|-----|---------------------|--------|----------|------------|-------------|------------|----------|-----------|----------|-------|----------|---------------------|-----------------------|------------------------|-------------------|------------------------|----------------|-------------|------------------|------------------|--------------------|-------------------------|----------------------|----------------------|--------------------------|-----------------------|-----------------------|--------------------|---------------------------|-----------------------| | Point Number | atitide (| ongitud | | ake Name | County | Date | Field Crew | Point Numbe | Depth (ft) | Sediment | Pole;Rope | Comments | Notes | Nuisance | otal Rak | yriophy | eratoph | lodea ca | yriophy | Najas flexilis | Nitella sp. | uphar v | yıııpııde | onteder | otamog allisneri | | 93 | <u>ت</u>
45.948817 | -89.236057 | 102 | _ | Vilas | 8/3/2012 | BTB & CRS | 93 | 3 | Sand | Pole | Ö | Ž | z | 3 | Σ | ن | Ш | Σ | z | z | z 2 | Z | | 2 | ď | 1 | ď | 1 | <u>a</u> | 1 | ď | >
1 | | 94 | 45.948367 | -89.236063 | | Duck Lake | Vilas | 8/3/2012 | | 94 | 9 | | Pole | | | | 0 | | | | | Ť | | | | 1 | _ | | <u> </u> | | <u>'</u> | | İ | 7 | | | 95 | 45.947917 | -89.236069 | 104 | | Vilas | 8/3/2012 | BTB & CRS | 95 | 10 | Muck | Pole | | | | 0 | | | | | | | | | T | Ī | | | | | | | T | | | 96 | 45.947467 | -89.236075 | 105 | | Vilas | 8/3/2012 | BTB & CRS | 96 | 11 | Muck | Pole | | | | 0 | 97 | 45.947017 | -89.236082 | 106 | | Vilas | 8/3/2012 | BTB & CRS | 97 | 12 | Muck | Pole | | | | 0 | 98 | 45.946567 | -89.236088 | 107 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 98 | 12 | Muck | Pole | | | | 0 | 99 | 45.946117 | -89.236094 | 108 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 99 | 0 | | | DEEP | 100 | 45.945667 | -89.236100 | 67 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 100 | 0 | | | DEEP | 101 | 45.945217 | -89.236106 | 66 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 101 | 0 | | | DEEP | | | | | | | | | | | | 4 | _ | | | | | | | _ | | | 102 | 45.944768 | -89.236112 | 38 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 102 | 12 | Muck | Pole | | | _ | 0 | | | | | | | _ | _ | 4 | _ | | | | | | _ | 4 | | | 103 | 45.944318 | -89.236119 | 37 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 103 | 11 | Muck | Pole | | | | 0 | | | | | | _ | - | _ | _ | _ | | | | | _ | _ | _ | | | 104 | 45.943868 | -89.236125 | 36 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 104 | 11 | Muck | Pole | | | | 0 | | | | | | _ | - | 4 | _ | _ | | | | | _ | + | - | | | 105 | 45.943418 | -89.236131 | 35 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 105 | 10 | Muck | Pole | | | | 0 | | | | | | + | - | - | _ | _ | | | | | _ | _ | + | _ | | 106 | 45.942968 | -89.236137 | 34 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 106 | 10 | Muck | Pole | | | | 0 | | | | | | | - | - | - | _ | | | | | _ | _ | + | \dashv | | 107 | 45.942518 | -89.236143 | 33 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 107 | 8 | Sand | Pole | | | | 2 | | | | | | | - | | - | - | | 2 | | | 1 | 1 | \dashv | 1 | | 108 | 45.948363 | -89.235418 | 101 | | Vilas | 8/3/2012 | BTB & CRS | 108 | 3 | Sand | Pole | | | | 3 | | | | | 2 | 1 | \dashv | | + | 1 | | | | | _ | + | \dashv | 2 | | 109 | 45.947913 | -89.235424 | | Duck Lake | Vilas | 8/3/2012 | | 109 | 10 | | Pole | | | | 0 | | | | | | | 1 | 1 | | 1 | | | | | 1 | + | _ | | | 110 | 45.947463
45.947013 | -89.235430
-89.235437 | 99 | Duck Lake Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 110 | 11 | Muck | Pole | | | | 0 | | | | | | | | | | 1 | | | | | 十 | 寸 | _ | _ | | 112 | 45.946563 | -89.235443 | 97 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 111 | 12 | Muck | Pole | | | | 0 | | | | | | | 1 | | | | | | | | | 1 | _ | _ | | 113 | 45.946113 |
-89.235449 | 96 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 113 | 0 | wadit | 1 010 | DEEP | | | Ĭ | | | | | | | | | | | | | | | | | T | | | 114 | 45.945663 | -89.235455 | 68 | | Vilas | 8/3/2012 | | 114 | 0 | | | DEEP | 115 | 45.945213 | -89.235461 | 65 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 115 | 13 | Muck | Pole | | | | 0 | 116 | 45.944763 | -89.235467 | 39 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 116 | 12 | Muck | Pole | | | | 0 | 117 | 45.944313 | -89.235474 | 40 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 117 | 11 | Muck | Pole | | | | 0 | 118 | 45.943863 | -89.235480 | 41 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 118 | 10 | Muck | Pole | | | | 0 | 119 | 45.943413 | -89.235486 | 42 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 119 | 10 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | _ | | | 120 | 45.942963 | -89.235492 | 43 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 120 | 7 | Sand | Pole | | | _ | 2 | ٧ | 1 | | 1 | | | _ | _ | 4 | _ | | 1 | | | 1 | _ | 4 | 2 | | 121 | 45.942513 | -89.235498 | 44 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 121 | 3 | Sand | Pole | | | | 2 | | | | | 2 | | _ | 4 | _ | _ | | | | | _ | _ | 1 | | | 122 | 45.947909 | -89.234779 | 91 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 122 | 7 | Sand | Pole | | | | 1 | | | | | | _ | _ | | - | _ | | | | | _ | 1 | 4 | | | 123 | 45.947459 | -89.234785 | 92 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 123 | 11 | Muck | Pole | | | | 0 | | | | | | | _ | - | | _ | | | | | _ | _ | _ | _ | | 124 | 45.947009 | -89.234791 | | | | | BTB & CRS | | | | | | | | 0 | | | | | | | - | - | - | _ | | | | | _ | _ | \dashv | _ | | 125 | 45.946559 | -89.234798 | 94 | | | | BTB & CRS | | | Muck | Pole | | | | 0 | | | | | | | _ | 1 | | - | | | | | _ | _ | \dashv | _ | | 126 | 45.946109 | -89.234804 | | Duck Lake | | 8/3/2012 | | | | | | DEEP | | - | | | | _ | | 1 | 1 | \dashv | + | \dagger | + | \dashv | 1 | | 1 | \dashv | \dashv | \dashv | \exists | | 127 | 45.945659 | -89.234810 | | Duck Lake | | | BTB & CRS | | | M | Deli | DEEP | | | ^ | | H | | | | † | \dashv | + | + | 1 | 1 | 1 | | 1 | + | + | \dashv | \exists | | 128 | 45.945209
45.944759 | -89.234816
-89.234822 | | Duck Lake | Vilas | | BTB & CRS | | | | | | | | 0 | | H | | | | 1 | \dagger | † | 1 | 1 | 1 | | | | \dashv | \dashv | \dashv | \exists | | 130 | 45.944759 | -89.234829 | | Duck Lake | Vilas | | BTB & CRS | | | | | | | | 0 | | | | | 1 | T | \dagger | 1 | 1 | 1 | \dashv | | | | \dashv | 寸 | \dashv | \exists | | 131 | 45.943859 | -89.234835 | 47 | | | | | | | | Pole | | | | 0 | | | | | | 1 | \dagger | 1 | 1 | 1 | 7 | | | | \exists | 寸 | \exists | | | 132 | 45.943409 | -89.234841 | | Duck Lake | | | BTB & CRS | | 9 | Sand | | | | | 0 | | | | | | İ | 1 | 1 | 1 | T | 1 | | | | \exists | T | \exists | | | 133 | 45.942959 | -89.234847 | | Duck Lake | Vilas | | BTB & CRS | | 3 | Sand | Pole | | | | 2 | | | | | | | | | | 2 | | | | | J | _ | | 1 | | 134 | 45.947904 | -89.234134 | | | | | BTB & CRS | | 7 | Sand | Pole | | | | 3 | | | | | | | 1 | I | 1 | 1 | 1 | | 1 | | 3 | | 1 | | | 135 | 45.947454 | -89.234140 | 86 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 135 | 11 | Muck | Pole | | | | 0 | | | | | | | | | | | Ī | | | | Ţ | $oxed{J}$ | | | | 136 | 45.947004 | -89.234146 | 85 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 136 | 0 | | | DEEP | | | | | | | | | | \downarrow | | _ | | | _ | | _ | | | | | | 137 | 45.946554 | -89.234153 | 78 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 137 | 0 | | | DEEP | | | | | Ц | | | _ | _ | \downarrow | _ | 4 | _ | 4 | _ | _ | _ | _ | _ | _ | _ | | 138 | 45.946105 | -89.234159 | 77 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 138 | 0 | | | DEEP | \Box | | mber | -atitide (Decimal Degrees) | ongitude (Decimal Degrees) | | e e | | | Me | ımber | () | = | 90 | ıts | | 0 | Total Rake Fuliness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Myriophyllum sibiricum | xilis | p. | Nupriar variegata | Pontederia cordata | Potamogeton amplifolius | Potamogeton foliosus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | |--------------|----------------------------|----------------------------|----|-----------|--------|----------|------------|-------------|------------|----------|------------|-----------|-------|----------|---------------------|-----------------------|------------------------|-------------------|------------------------|----------------|-------------|-------------------|--------------------|-------------------------|----------------------|----------------------|--------------------------|-----------------------|-----------------------|--------------------|---------------------------|-----------------------| | Point Number | Latitide | Longitue | Ω | Lake Name | County | Date | Field Crew | Point Numbe | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Ra | Myrioph | Ceratop | Elodea c | Myrioph | Najas flexilis | Nitelia sp. | Nupriar | Pontede | Potamo | Potamog | Potamo | Potamo | Potamo | Potamo | Potamo | Potamo | Vallisne | | 139 | 45.945655 | -89.234165 | 70 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 139 | 12 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 140 | 45.945205 | -89.234171 | 63 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 140 | 11 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 141 | 45.944755 | -89.234177 | 50 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 141 | 11 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 142 | 45.944305 | -89.234184 | 51 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 142 | 10 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 143 | 45.943855 | -89.234190 | 52 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 143 | 9 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 144 | 45.943405 | -89.234196 | 53 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 144 | 5 | Sand | Pole | | | | 3 | | | | | | | | | | | | | 2 | | | 1 | 2 | | 145 | 45.947900 | -89.233489 | 89 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 145 | 0 | | | DOCK | 146 | 45.947450 | -89.233495 | 87 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 146 | 11 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 147 | 45.947000 | -89.233501 | 84 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 147 | 11 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 148 | 45.946550 | -89.233508 | 79 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 148 | 8 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 149 | 45.946100 | -89.233514 | 76 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 149 | 0 | | | DEEP | 150 | 45.945650 | -89.233520 | 71 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 150 | 11 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 151 | 45.945200 | -89.233526 | 62 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 151 | 11 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 152 | 45.944750 | -89.233532 | 56 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 152 | 10 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 153 | 45.944300 | -89.233539 | 55 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 153 | 10 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 154 | 45.943850 | -89.233545 | 54 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 154 | 7 | Sand | Pole | | | | 2 | | | | | 2 | | | | | | | | | 1 | | 1 | | | 155 | 45.947446 | -89.232850 | 88 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 155 | 0 | | | SWIM AREA | 156 | 45.946996 | -89.232856 | 83 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 156 | 7 | Sand | Pole | | | | 3 | | | | | 1 | 1 | | | | 1 | 2 | | | 2 | 1 | | 1 | | 157 | 45.946546 | -89.232863 | 80 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 157 | 8 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 158 | 45.946096 | -89.232869 | 75 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 158 | 10 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 159 | 45.945646 | -89.232875 | 72 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 159 | 11 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 160 | 45.945196 | -89.232881 | 61 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 160 | 10 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 161 | 45.944746 | -89.232887 | 57 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 161 | 9 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | | 162 | 45.944296 | -89.232894 | 58 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 162 | 6 | Sand | Pole | | | | 2 | | | | | | | | | | | | | | | | 1 | 2 | | 163 | 45.946991 | -89.232211 | 82 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 163 | 7 | Sand | Pole | | | | 3 | | | | | 1 | | | | | 1 | 1 | | | 2 | 1 | | | | 164 | 45.946542 | -89.232217 | 81 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 164 | 7 | Sand | Pole | | | | 3 | | | 1 | | | 1 | | | | | | | | 1 | | 1 | 2 | | 165 | 45.946092 | -89.232224 | 74 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 165 | 7 | Sand | Pole | | | | 2 | | 1 | | | 1 | | | | | | 2 | | 1 | 1 | 1 | 1 | | | 166 | 45.945642 | -89.232230 | 73 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 166 | 7 | Sand | Pole | | | | 1 | 1 | | | | | | | | | | 1 | | | | 1 | | | | 167 | 45.945192 | -89.232236 | 60 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 167 | 8 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | Ш | | | | | 168 | 45.944742 | -89.232242 | 59 | Duck Lake | Vilas | 8/3/2012 | BTB & CRS | 168 | 2 | Sand | Pole | | | | 3 | | 1 | | | | | | | 2 | | 1 | | 1
| | | 1 | 1 | | Point Number | Latitude (Decimal Degrees) | Longtude (Decimal Degrees) | | Lake Name | County | 2 | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nuphar variegata | Ny mphaea odorata | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Vallsneria americana | Filamentous algae | |--------------|----------------------------|------------------------------|-----|------------------------------|--------|----------------------|------------------------|--------------|------------|----------|------------|-------------------------|-------|----------|---------------------|-----------------------|------------------------|-------------------|------------------------|----------------|-------------|------------------|-------------------|-----------------------|----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|----------------------|-------------------| | | | | ₽ | rał | 8 | Date | 9 | | | Sec | Po | | No | N | Tot | ź | Ce | 읍 | ź | Na. | ž | ž | ≩ | Po | - Po | Po | Po | Po | S. | Po | 9 | - Po | Va | Ë | | 2 | 45.94246229
45.94245843 | -89.24131922
-89.24073872 | 0 | Yellow Birch | Vilas | 8/3/2012
8/3/2012 | BTB & CRS | 2 | 9 | Sand | Pole | TERRESTRIAL | | | 0 | | | | | | | | | | | | | | | | | + | + | 7 | | 3 | 45.94205730 | -89.24132474 | 4 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 3 | 0 | Janu | roic | DOCK | | | - | | | | | | | | | | | | | | | | | T | 1 | ٦ | | 4 | 45.94205345 | -89.24074425 | 3 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 4 | 9 | Sand | Pole | | | | 0 | 5 | 45.94204959 | -89.24016375 | 2 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 5 | 6 | Sand | Pole | | | | 0 | 6 | 45.94165232 | -89.24133027 | 5 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 6 | 0 | | | TERRESTRIAL | _ | _ | _ | | 7 | 45.94164846 | -89.24074978 | 6 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 7 | 8 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | 4 | _ | 4 | | 8 | 45.94164460 | -89.24016928 | 7 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 8 | 0 | | | TERRESTRIAL | + | - | \dashv | | 9 | 45.94124348 | -89.24075530 | 8 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 9 | 7 | Sand | Pole | | | | 0 | | | | | | | | - | | | | | | | | | + | + | + | | 10 | 45.94123962 | -89.24017482 | 9 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 10 | 6 | Sand | Pole | | | | 2 | | | | 1 | 1 | | | | 1 | | 2 | | | 1 | | 1 | - | 1 | \dashv | | 11 | 45.94123576
45.94123189 | -89.23959433
-89.23901384 | 116 | Yellow Birch
Yellow Birch | Vilas | 8/6/2012
8/3/2012 | DAC & CRS
BTB & CRS | 11 | 5 | Sand | Pole | | | | 3 | | | | 1 | 1 | | | | 1 | | | | | 1 | | 1 | + | 3 | 1 | | 13 | 45.94122803 | -89.23843336 | | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 13 | 0 | | | TERRESTRIAL | | | _ | | | | | | | | | | | | | | | | | | |] | | 14 | 45.94083849 | -89.24076083 | 115 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 14 | 0 | | | TERRESTRIAL | | | | | | | | | J | J | I | Ţ | | | | | | | | J | | _] | | 15 | 45.94083464 | -89.24018035 | 10 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 15 | 7 | Sand | Pole | | | | 0 | | | | | | _ | | _ | | | | | | | | | 4 | 4 | 4 | | 16 | 45.94083077 | -89.23959987 | 13 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 16 | 6 | Sand | Pole | | | | 1 | | | | | | - | 4 | | 4 | | | | | | | 1 | \dashv | 4 | 4 | | 17 | 45.94082691 | -89.23901938 | 14 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 17 | 0 | | - | DEEP | | | | | | | | | - | | + | + | | | | | _ | | _ | + | + | \dashv | | 18 | 45.94082304 | -89.23843890 | 17 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 18 | 0 | | | DEEP | - | + | \dashv | | 20 | 45.94081917
45.94081530 | -89.23785842
-89.23727794 | 18 | Yellow Birch | Vilas | 8/3/2012
8/3/2012 | BTB & CRS | 19 | 0 | Sand | Pole | DOCK | | | 1 | | | | | | | | | | 1 | | | | | | | \pm | + | \dashv | | 21 | 45.94042965 | -89.23727794 | 11 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 20 | 7 | Sand | Pole | DOCK | | | 0 | | | | | | | | | | | | | | | | | + | + | 1 | | 22 | 45.94042579 | -89.23960540 | 12 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 22 | 7 | Sand | Pole | | | | 1 | | | | | | | | | | | | | | | | 1 | | | | | 23 | 45.94042193 | -89.23902492 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 24 | 45.94041806 | -89.23844445 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | _ | _ | _ | | 25 | 45.94041419 | -89.23786397 | 19 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 25 | 0 | | | DEEP | _ | | _ | | 26 | 45.94041032 | -89.23728349 | 20 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 26 | 0 | | | DEEP | + | _ | - | | 27 | 45.94040644 | -89.23670301 | | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 27 | 6 | Sand | Pole | | | | 3 | 1 | | | | 2 | 1 | | | | 1 | | | | 2 | | 1 | - | 1 | \dashv | | 28 | 45.94040256
45.94039868 | -89.23612253
-89.23554205 | 23 | Yellow Birch | Vilas | 8/3/2012
8/3/2012 | BTB & CRS | 28 | 0 | | | TERRESTRIAL TERRESTRIAL | - | _ | + | | 30 | 45.94002853 | -89.24077189 | 114 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 30 | 0 | | | TERRESTRIAL | T | | T | | 31 | 45.94002467 | -89.24019141 | 113 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 31 | 3 | Sand | Pole | | | | 1 | | | | | 1 | | | | | | | | | | | | | 1 | | | 32 | 45.94002081 | -89.23961094 | 112 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 32 | 7 | Sand | Pole | | | | 1 | | | | | 1 | | | | | | 1 | | | | | | | | | | 33 | 45.94001694 | -89.23903046 | 111 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 33 | 7 | Sand | Pole | | | | 1 | | | | | 1 | | | | | 1 | | | | | | | 1 | | _ | | 34 | 45.94001308 | -89.23844999 | 110 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 34 | 22 | | | DEEP | + | _ | 4 | | 35 | 45.94000921 | -89.23786952 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | + | - | \dashv | | 36 | 45.94000533 | -89.23728904
-89.23670857 | | Voller: P' | VIII. | 18991230 | DTD 0 COC | 0 | 0 | c · | D | DEEP | | | ^ | | | | | | \dashv | | | \dashv | | | | | | | | + | + | \dashv | | 37 | 45.94000146
45.93999758 | -89.23670857
-89.23612809 | | Yellow Birch
Yellow Birch | Vilas | 8/3/2012
8/3/2012 | BTB & CRS | 37 | | | | | | | 3 | | | | | 1 | \exists | | 1 | + | 3 | | | | | | | 1 | \dagger | 7 | | 39 | 45.93999370 | -89.23554762 | | | Vilas | 8/3/2012 | BTB & CRS | 39 | | | | | | | 1 | | | | | - | 1 | 1 | 1 | | 1 | | | | | | | T | 1 | T | | 40 | 45.93998981 | -89.23496715 | | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 40 | | | | | | | 2 | | | | | 1 | | | | 1 | | | | | | 1 | | | 1 | | | 41 | 45.93961968 | -89.24019695 | 106 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 41 | 2 | Sand | Pole | | | | 1 | | | | | 1 | | | _[| | | | | | | | | _ | 1 | 1 | | 42 | 45.93961582 | -89.23961648 | 107 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 42 | 5 | Sand | Pole | | | | 2 | | | | | | _ | _ | _ | - | | | | | 1 | | | 4 | 2 | 4 | | 43 | 45.93961196 | -89.23903600 | | | Vilas | 8/6/2012 | DAC & CRS | 43 | 7 | Sand | Pole | | | | 1 | | | | | | - | | - | \dashv | | | | | 1 | | 1 | 1 | + | \dashv | | 44 | 45.93960809 | -89.23845553 | | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 44 | 0 | | | DEEP | | | | | | | | | \dashv | - | - | - | | | | | | | | + | + | \dashv | | 45 | 45.93960422 | -89.23787506 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | \dashv | 1 | 1 | + | | | | | | | | + | + | \dashv | | 46 | 45.93960035
45.93959647 | -89.23729459
-89.23671412 | | Yellow Birch | Vilas | 18991230
8/3/2012 | BTB & CRS | 47 | 0 | | | DEEP | | | | | | | | | \dashv | | | \dashv | | | | | | | | + | + | \dashv | | 48 | 45.93959259 | -89.23613366 | 26 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 48 | 0 | | | DEEP | | | | | | | | | | _ | | | | | | | | | | | | | | 49 | 45.93958871 | -89.23555319 | | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | | | | DEEP | | | • | | | | | | | | | | | | | | | | | | | J | | 50 | 45.93958483 | -89.23497272 | 32 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 50 | 8 | Sand | Pole | | | | 3 | | | | | | | | 1 | | 3 | 1 | | | | | 1 | _ | 4 | _ | | 51 | 45.93958094 | -89.23439225 | 33 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 51 | 6 | Sand | Pole | | | | 3 | | 1 | 1 | | | 1 | - | _ | _ | 1 | | | | 1 | | 1 | 1 | \perp | 4 | | 52 | 45.93957705 | -89.23381178 | | | Vilas | 8/3/2012 | BTB & CRS | | | Sand | | | | | 2 | V | | | | 2 | \dashv | | + | - | | | | | | | 1 | + | + | \dashv | | 53 | 45.93921470 | -89.24020248 | | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | 4 | Sand | | | | | 3 | | | | | | \dashv | 1 | \dashv | \dashv | | 1 | | 2 | - | | 1 | 2 | 2 | \dashv | | 54 | 45.93921084 | -89.23962201 | 104 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 54 | 6 | Sand | Pole | | | | 1 | <u> </u> | | | | 1 | | | | | | | | | | | 1 | | | | | | Latitude (Decimal Degrees) | Longtude (Decimal Degrees) | | | | | | | | | | | | | | atum | mersum | | icum | | | | в | ydrus | sus | llus | ardsonii | oinsii | llus | tifolius | iķi | Potamogeton zosteriformis | ına | |
|--------------|----------------------------|------------------------------|-----|------------------------------|--------|----------------------|------------|-------------|------------|----------|------------|-------------|-------|----------|---------------------|-----------------------|------------------------|-------------------|------------------------|----------------|-------------|------------------|------------------|-----------------------|----------------------|----------------------|--------------------------|--|-----------------------|---------------------------|--------------------|---------------------------|-----------------------|-------------------| | per | Decimal [| (Decima | | o. | | | _ | per | | | 41 | 4 | | | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Myriophyllum sibiricum | ls. | | riegata | Nymphaea odorata | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | ton zoste | Vallisneria americana | Filamentous algae | | Point Number | titude ([| ngitude | | ake Name | County | Date | Field Crew | Point Numbe | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | otal Rake | yriophy | ratophy | odea car | yriophy | Najas flexilis | Nitella sp. | Nuphar variegata | mphae | tamoge | atamoge | atamoge | atamoge | tamoge | agomet | agomet | agowate | tamoge | Ilisneria | amento | | 55 | 45.93920697 | -89.23904155 | 103 | _ | Vilas | 8/6/2012 | DAC & CRS | 55 | 8 | Sand | Pole | 8 : | ž | ž | 1 | Ź | ల | Ek | Ż | ž | Ž | ź | ź | PG | Po | 1 | Po | - 8 | Po | 2 | PG | - 2 | Ν | Ē | | 56 | 45.93920311 | -89.23846108 | 102 | | Vilas | 8/6/2012 | DAC & CRS | | | Sand | | | | | 0 | | | | | | | | | | | _ | | | | | | | | | | 57 | 45.93919924 | -89.23788061 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 58 | 45.93919536 | -89.23730015 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | \vdash | | | _ | _ | _ | \dashv | | 59 | 45.93919149 | -89.23671968 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | + | + | - | \dashv | | 60 | 45.93918761
45.93918373 | -89.23613922
-89.23555875 | 39 | Yellow Birch | Vilas | 18991230
8/3/2012 | BTB & CRS | 61 | 0 | | | DEEP | + | | \exists | | 62 | 45.93917984 | -89.23497829 | 38 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 62 | | Muck | Pole | DEEF | | | 0 | 63 | 45.93917596 | -89.23439782 | 37 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 63 | | Sand | | | | | 0 | 64 | 45.93917207 | -89.23381736 | 36 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 64 | 8 | Sand | Pole | | | | 0 | | | | | | | | | | | | | \vdash | | | _ | _ | _ | _ | | 65 | 45.93916817 | -89.23323689 | 35 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 65 | 3 | Sand | Pole | | | | 2 | | | | | 1 | | | | | | | 1 | \vdash | | | _ | 4 | 1 | 4 | | 66 | 45.93880971 | -89.24020801 | 98 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 66 | 3 | Sand | | | | | 2 | | | | | 1 | | | | | | 2 | | Н | | | \dashv | + | + | \dashv | | 67 | 45.93880585
45.93880199 | -89.23962755
-89.23904709 | 99 | Yellow Birch
Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 68 | 7 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | - | | - | | 68 | 45.93879812 | -89.23846662 | 101 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 69 | 0 | Sanu | role | DEEP | | | 0 | | | | | | | | | | | | | | | | | | | T | | 70 | 45.93879425 | -89.23788616 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 71 | 45.93879038 | -89.23730570 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | Ш | | | | _ | | | | 72 | 45.93878651 | -89.23672524 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | \vdash | | | _ | _ | _ | _ | | 73 | 45.93878263 | -89.23614478 | 40 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 73 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | _ | _ | _ | - | | 74 | 45.93877875 | -89.23556432 | 41 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 74 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | - | + | _ | \dashv | | 75 | 45.93877486
45.93877097 | -89.23498386
-89.23440340 | 42 | Yellow Birch
Yellow Birch | Vilas | 8/3/2012
8/3/2012 | BTB & CRS | 75
76 | 6 | Sand | | | | | 1 | | 0 | 3 | | 1 | | | | | 1 | 1 | | | | | | + | | \exists | | 77 | 45.93876708 | -89.23382293 | 44 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 77 | | Muck | | | | | 0 | | | | | | | | | | 1 | | | | | | | | | T | | 78 | 45.93876319 | -89.23324247 | 45 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 78 | 7 | Sand | | | | | 1 | | | | | | | | | | | | | | | | 1 | | | | | 79 | 45.93875929 | -89.23266201 | 46 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 79 | 0 | | | TERRESTRIAL | | | | | | | | | | | | | | | | — | | | | _ | | | | 80 | 45.93840473 | -89.24021354 | 97 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 80 | 0 | | | DOCK | | | | | | | | | | | | | | | | | | | | _ | | | | 81 | 45.93840087 | -89.23963308 | 96 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | 7 | Rock | | | | | 0 | | | | | | | | | | | | | П | | | - | + | _ | \dashv | | 82 | 45.93839701
45.93839314 | -89.23905263
-89.23847217 | 95 | Yellow Birch
Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | Muck | Pole | DEEP | | | 0 | | | | | | | | | | | | | | | | | + | | \exists | | 84 | 45.93838927 | -89.23789171 | 0 | reliow bil cit | VIIdS | 18991230 | DAC & CR3 | 0 | 0 | | | DEEP | T | | 85 | 45.93838540 | -89.23731125 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 86 | 45.93838152 | -89.23673080 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | \vdash | | | | 4 | | _ | | 87 | 45.93837764 | -89.23615034 | 53 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 87 | 0 | | | DEEP | | | | | | | | | | | | | | | | \vdash | | | 4 | 4 | _ | 4 | | 88 | 45.93837376 | -89.23556988 | | | Vilas | 8/3/2012 | BTB & CRS | | | | | | | | 0 | | | | | | | | | | | | | | | | + | \dashv | + | \dashv | | 89 | 45.93836988
45.93836599 | -89.23498943
-89.23440897 | | Yellow Birch
Yellow Birch | | | BTB & CRS | | | | | | | | 2 | | 1 | | | 1 | | | | | | 1 | | | | | 1 | + | | \dashv | | 90 | 45.93836210 | -89.23382851 | 49 | Yellow Birch | Vilas | 8/3/2012
8/3/2012 | BTB & CRS | 90 | | Sand | | | | | 1 | | 1 | 1 | | | | | | | | 1 | | | | | 1 | 1 | 7 | T | | 92 | 45.93835821 | -89.23324806 | 48 | | | 8/3/2012 | BTB & CRS | | | Muck | | | | | 0 | 93 | 45.93835431 | -89.23266760 | 47 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 93 | 4 | Sand | Pole | | | | 1 | | | | | | | | | | | | | \sqsubseteq | | | 1 | \bot | | _ | | 94 | 45.93799589 | -89.23963862 | 91 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 94 | 6 | Rock | Pole | | 4 | | 0 | | | | | | | | - | _ | | | | \vdash | | | \dashv | 4 | _ | 4 | | 95 | 45.93799202 | -89.23905817 | | | | | DAC & CRS | | | Muck | Pole | | | | 0 | | | | | | | | | | | | | \Box | | | \dashv | \dashv | _ | \dashv | | 96 | 45.93798816 | -89.23847771 | | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | | | DEEP | | | | | | | | | | | - | | | | | | | | \dashv | \dashv | 1 | \dashv | | 97 | 45.93798429
45.93798041 | -89.23789726
-89.23731681 | 0 | | | 18991230
18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | \dashv | | | \dashv | \dashv | + | \dashv | | 99 | 45.93797654 | -89.23673635 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 100 | 45.93797266 | -89.23615590 | 54 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 100 | 0 | | | DEEP | | | | | | | | | | | | | | | | \Box | | | | \bot | | _] | | 101 | 45.93796878 | -89.23557545 | 55 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 101 | 0 | | | DEEP | | | | | | | | | | | | | | | | \vdash | | | \downarrow | \dashv | _ | 4 | | 102 | | -89.23499500 | 56 | | Vilas | 8/3/2012 | BTB & CRS | | | Sand | | | 4 | | 1 | | | | | | | | \dashv | | | | | \vdash | | | 1 | \dashv | + | \dashv | | 103 | | -89.23441454 | 57 | | Vilas | 8/3/2012 | BTB & CRS | | | | | | | | 0 | | | | | | | | - | | | | | \dashv | | | \dashv | \dashv | \dashv | \dashv | | 104 | | -89.23383409
-89.23325364 | 58 | Yellow Birch
Yellow Birch | Vilas | 8/3/2012
8/3/2012 | BTB & CRS | | | Muck | | | 1 | | 0 | | | | | | | | | | 1 | | | 1 | | | \dashv | 1 | 1 | \dashv | | 106 | | -89.23267319 | 60 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | | Sand | | | | | 1 | | | | | | | | | | | | | Ť | 1 | | 7 | Ť | 1 | \exists | | 107 | | -89.23209273 | 61 | | Vilas | 8/3/2012 | BTB & CRS | | | | | DOCK | | | | | | | | | | | | | | | | П | | | | | | J | | 108 | 45.93759090 | -89.23964415 | 90 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 108 | 7 | Sand | Pole | | | | 0 | | | | | | | | | | | | | Ш | | | | \perp | | \Box | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | OI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fuliness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nuphar variegata | Ny mphaea odorata | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | Filamentous algae | |--------------
----------------------------|------------------------------|----------|------------------------------|--------|----------------------|-------------|--------------|------------|----------|------------|-------------|-------|----------|---------------------|-----------------------|------------------------|-------------------|------------------------|----------------|-------------|------------------|-------------------|-----------------------|----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|-----------------------|-------------------| | 109 | 45.93758704 | -89.23906371 | 89 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 109 | 13 | | | DEEP | 110 | 45.93758317 | -89.23848326 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 111 | 45.93757930 | -89.23790281 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \perp | | | 112 | 45.93757543 | -89.23732236 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 113 | 45.93757155 | -89.23674191 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | _ | _ | | 114 | 45.93756768 | -89.23616146 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 4 | 4 | _ | | 115 | 45.93756379 | -89.23558101 | 67 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 115 | 0 | | | DEEP | 4 | 4 | 4 | | 116 | 45.93755991 | -89.23500056 | 66 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 116 | 8 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | _ | \perp | | | 117 | 45.93755602 | -89.23442012 | 65 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 117 | | Sand | Pole | | | | 2 | V | | | | 1 | | | | | 2 | | | | | | 1 | + | + | - | | 118 | 45.93755213 | -89.23383967 | 64 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | | | | DOCK | - | + | - | | 119 | 45.93754824 | -89.23325922 | 63 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 119 | 6 | Sand | Pole | | | | 0 | V | | | | | | | | | | | | | | | | \dashv | + | - | | 120 | 45.93754434
45.93718978 | -89.23267877
-89.24023014 | 62
86 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | 5 | Sand | Pole | | | | 1 | | | | | 1 | | | | | | | | | | | | 1 | \dashv | - | | 121 | 45.93718592 | -89.23964969 | 87 | Yellow Birch
Yellow Birch | Vilas | 8/6/2012
8/6/2012 | DAC & CRS | 122 | | Sand | Pole | | | | 0 | | | | | 1 | | | | | | | | | | | | 1 | \forall | 7 | | 123 | 45.93718205 | -89.23906925 | 88 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | 0 | IVIUCK | roic | DEEP | | | Ü | | | | | | | | | | | | | | | | | T | T | 7 | | 124 | 45.93717819 | -89.23848880 | 0 | Tellow bil ell | V 1103 | 18991230 | Drie d Cito | 0 | 0 | | | DEEP | T | T | | | 125 | 45.93717432 | -89.23790836 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 126 | 45.93717044 | -89.23732791 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 127 | 45.93716657 | -89.23674747 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 128 | 45.93716269 | -89.23616702 | 68 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 128 | 0 | | | DEEP | 129 | 45.93715881 | -89.23558658 | 69 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 129 | 0 | | | DEEP | \downarrow | | | 130 | 45.93715493 | -89.23500613 | 70 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 130 | 2 | Rock | Pole | | | | 0 | | | | | | | | | | | | | | | | | 4 | 4 | | | 131 | 45.93678479 | -89.24023567 | 85 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 131 | 5 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | _ | _ | | | 132 | 45.93678093 | -89.23965523 | 84 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 132 | 13 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | _ | _ | - | | 133 | 45.93677707 | -89.23907478 | 83 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 133 | 0 | | | DEEP | 4 | 4 | - | | 134 | 45.93677320 | -89.23849434 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | - | + | - | | 135 | 45.93676933 | -89.23791390 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | + | - | | 136 | 45.93676546 | -89.23733346 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | + | \dagger | - | | 137 | 45.93676159
45.93675771 | -89.23675302
-89.23617258 | 73 | Yellow Birch | Vilas | 18991230
8/3/2012 | BTB & CRS | 138 | 0 | | | DEEP | 1 | \forall | 7 | | 139 | 45.93675383 | -89.23559214 | 72 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 139 | | Sand | Pole | SEC. | | | 0 | | | | | | | | | | | | | | | | | T | T | | | 140 | 45.93674994 | -89.23501170 | 71 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | | Rock | Pole | | | | 0 | | | | | | | | | | | | | | | | | T | T | | | 141 | 45.93637981 | -89.24024120 | 81 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 141 | 11 | Sand | Pole | | | | 0 | 142 | 45.93637595 | -89.23966076 | 82 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 142 | 0 | | | DEEP | 143 | 45.93637208 | -89.23908032 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 144 | 45.93636822 | -89.23849989 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \downarrow | | | 145 | 45.93636435 | -89.23791945 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 4 | 4 | | | 146 | 45.93636048 | -89.23733902 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 4 | 4 | 4 | | 147 | 45.93635660 | -89.23675858 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | _ | | | | | | | | | | \dashv | \dashv | - | | 148 | 45.93635272 | -89.23617814 | | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | | | | DEEP | + | + | - | | | 45.93634884 | -89.23559771 | | | Vilas | | BTB & CRS | | | | | | | | 2 | | | | | | | \dashv | | | | 2 | | | 1 | | 1 | + | + | \dashv | | 150 | 45.93634496 | -89.23501727 | | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | | Sand | Pole | DO2" | | | 1 | | | | | 1 | | 1 | | | | | | | 1 | | | \dashv | + | \dashv | | 151 | 45.93633718
45.93633329 | -89.23385640
-89.23327597 | | Yellow Birch
Yellow Birch | Vilas | 8/3/2012
8/3/2012 | BTB & CRS | | | | | DOCK | | | | | | | | | 1 | + | | | | | | | | | | \dashv | \dashv | \dashv | | 152 | 45.93533329 | -89.23327597
-89.24256846 | 65 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | | | DOCK | | | | | | | | | 1 | + | | | | | | | | | | \dagger | \dashv | 7 | | 154 | 45.93597868 | -89.24082716 | | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | | | TERRESTRIAL | \top | T | 7 | | 155 | 45.93597482 | -89.24024673 | | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | Sand | Pole | | | | 0 | | | | | | ı | | | | | | | | | | | T | T | 7 | | 156 | 45.93597096 | -89.23966630 | | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 156 | | | | DEEP | 157 | 45.93596710 | -89.23908586 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 1 | | 158 | 45.93596323 | -89.23850543 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \rfloor | | | 159 | 45.93595936 | -89.23792500 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | _ | \perp | ╛ | | 160 | 45.93595549 | -89.23734457 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | _ | | | | | | | | | | 4 | \dashv | _ | | 161 | 45.93595162 | -89.23676414 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | _ | _ | | | | | | | | | | \downarrow | \downarrow | 4 | | 162 | 45.93594774 | -89.23618370 | 85 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 162 | 0 | | | DEEP | \perp | \perp | | | Latitude (Decimal Degrees) | Longtude (Decimal Degrees) | | | | | | | | | | | | | s | catum | mersum | | ricum | | | | es. | ydrus | snsc | llus | ardsonii | binsii | illus | tifolius | iye | Potamogeton zosteriformis | ana | | |--------------|----------------------------|------------------------------|----------|------------------------------|--------|----------------------|------------|-------------|------------|----------|------------|-------------|-------|----------|---------------------|-----------------------|------------------------|-------------------|------------------------|----------------|-------------|------------------|------------------|-----------------------|----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|-----------------------|-------------------| | nper | Decimal | e (Decima | | 16 | | | > | nber | _ | | 9 | Ω | | | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Myriophyllum sibiricum | ilis | | Nuphar variegata | Nymphaea odorata | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | eton zost | Vallisneria americana | Filamentous algae | | Point Number | atitude (| ongitude | О | ake Name | County | Date | Field Crew | Point Numbe | Depth (ft) |
Sediment | Pole; Rope | Comments | Notes | Nuisance | otal Rak | fyriophy | eratoph | lodea ca | fyriophy | Najas flexilis | Nitella sp. | luphar v. | ymphae | otamog | otamog | otamog | otamoge | otamog | otamog | otamog | otamoge | otamog | allisneri | ilamento | | 163 | | -89.23560327 | 84 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | | Sand | Pole | 5 | z | z | 0 | 2 | ٥ | ш | 2 | z | z | z | z | ď | ď. | ď. | ď | ď | ď | ď. | ď. | <u>a</u> | > | ш | | 164 | | -89.23502284 | 83 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | | Sand | | | | | 3 | 2 | | | | 1 | | | | | 1 | | | | 2 | | 1 | 1 | | | | 165 | 45.93593609 | -89.23444241 | 82 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 165 | 7 | Sand | Pole | | | | 3 | | | | | 1 | | | | | 3 | | | | | | 1 | 4 | 4 | _ | | 166 | 45.93593220 | -89.23386198 | 81 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | | | | DEEP | \dashv | \dashv | _ | | 167 | | -89.23328155 | 80 | | Vilas | 8/3/2012 | BTB & CRS | | | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | + | \dashv | - | | 168 | | -89.23270112
-89.24257397 | 79
64 | Yellow Birch
Yellow Birch | Vilas | 8/3/2012
8/6/2012 | DAC & CRS | | | Muck | Pole | TERRESTRIAL | | | 2 | | | | | | | | | | | | | | | | | \dashv | 2 | + | | 170 | | -89.24199354 | 63 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | Ť | | | 171 | | -89.24083269 | 76 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | 2 | Rock | | | | | 0 | 172 | 45.93556984 | -89.24025226 | 77 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 172 | 13 | | | DEEP | 4 | 4 | 4 | | 173 | 45.93556598 | -89.23967183 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | \dashv | _ | | 174 | | -89.23909140 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | \dashv | _ | | 175 | | -89.23851097 | 0 | | | 18991230
18991230 | | 0 | 0 | | | DEEP | \dashv | + | - | | 176 | | -89.23793055
-89.23735012 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | \exists | - | | 178 | | -89.23676969 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 179 | 45.93554276 | -89.23618926 | 86 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 179 | 0 | | | DEEP | 180 | 45.93553887 | -89.23560884 | 87 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 180 | 0 | | | DEEP | 4 | 4 | _ | | 181 | 45.93553499 | -89.23502841 | 88 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 181 | 0 | | | DEEP | \dashv | 4 | \dashv | | 182 | | -89.23444798 | 89 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | 0 | | | DEEP | \dashv | \dashv | \dashv | | 183 | | -89.23386756 | 90 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | | | | DEEP | \dashv | _ | _ | | 184 | | -89.23328713
-89.23270670 | 91 | Yellow Birch
Yellow Birch | Vilas | 8/3/2012
8/3/2012 | BTB & CRS | | | Sand | Pole | DEEP | | | 2 | | | | | | | | | | 1 | | | | | | | \dashv | 1 | \exists | | 186 | | -89.24199906 | 62 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | Muck | | | | | 0 | 187 | 45.93517257 | -89.24141864 | 75 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 187 | 7 | Rock | Pole | | | | 0 | | | | | | | | | | | | | | | | | | \perp | | | 188 | 45.93516871 | -89.24083821 | 74 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 188 | 9 | Rock | Pole | | | | 0 | | | | | | | | | | | | | | | | | 4 | 4 | _ | | 189 | 45.93516486 | -89.24025779 | 73 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 189 | 13 | | | DEEP | \dashv | \dashv | \dashv | | 190 | | -89.23967737 | 72 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | | | DEEP | + | + | \dashv | | 191 | | -89.23909694
-89.23851652 | 71 | Yellow Birch | Vilas | 8/6/2012
18991230 | DAC & CRS | 0 | 0 | | | DEEP | \dashv | \dashv | | | 193 | | -89.23793609 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \top | T | \exists | | 194 | 45.93514552 | -89.23735567 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 195 | 45.93514165 | -89.23677525 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 4 | 4 | | | 196 | 45.93513777 | -89.23619482 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | 4 | \dashv | | 197 | | -89.23561440 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | \dashv | \dashv | | 198 | | -89.23503398
-89.23445356 | 0 | | | 18991230
18991230 | | 0 | 0 | | | DEEP | \dashv | \dashv | \dashv | | 200 | | -89.23387313 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \dagger | \dagger | \exists | | 201 | | -89.23329271 | 94 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | | | | DEEP | 202 | 45.93511444 | -89.23271229 | 93 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 202 | 9 | Sand | Pole | | | | 0 | 203 | 45.93477143 | -89.24200458 | 61 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 203 | 6 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | 4 | 4 | _ | | 204 | 45.93476758 | -89.24142416 | 66 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 204 | 10 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | \dashv | \dashv | \dashv | | 205 | | -89.24084374 | 67 | | Vilas | 8/6/2012 | DAC & CRS | | | | | | | | 0 | | | | | | | | | | | | | | | | | \dashv | \dashv | \dashv | | 206 | | -89.24026332 | 68 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | | | | | | 0 | | | | | | | | | | | | | | | | | + | + | \dashv | | 207 | | -89.23968290
-89.23910248 | 69
70 | Yellow Birch
Yellow Birch | Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | | IVIUCK | POIE | DEEP | | | U | | | | | | | | | | | | | | | | | \forall | \dashv | \exists | | 209 | | -89.23852206 | 0 | 51101 | | 18991230 | 5 2. 013 | 0 | 0 | | | DEEP | 210 | 45.93474441 | -89.23794164 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | ightharpoons | Ţ | _ | | 211 | 45.93474054 | -89.23736122 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | 4 | \dashv | | 212 | | -89.23678080 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | \dashv | \dashv | | 213 | | -89.23620038 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | + | \dashv | \dashv | | 214 | | -89.23561997
-89.23503955 | 0 | | | 18991230
18991230 | | 0 | 0 | | | DEEP | + | \dashv | \dashv | | | 45.93472502 | | | | | 18991230 | | 0 | | | | DEEP | \forall | \forall | \exists | | | | | | | • | 1 | | | | | | | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Q | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nuphar variegata | Ny mphaea odorata | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | Filamentous algae | |--------------|----------------------------|------------------------------|-----|------------------------------|--------|----------------------|------------------------|--------------|------------|----------|------------|-------------|-------|----------|---------------------|-----------------------|------------------------|-------------------|------------------------|----------------|-------------|------------------|-------------------|-----------------------|----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|-----------------------|-------------------| | 217 | 45.93471725 | -89.23387871 | 0 | | 0 | 18991230 | ш | 0 | 0 | S | _ | DEEP | | 2 | _ | 2 | 0 | ш | 2 | 2 | 2 | 2 | 2 | ۵. | ۵. | Δ. | _ | _ | Ь | ۵ | ۵. | _ | > | - | | 218 | 45.93471335 | -89.23329829 | 95 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | 0 | | | DEEP | T | | 7 | | 219 | 45.93470946 | -89.23271787 | 96 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | 0 | | | DEEP | T | | | | 220 | 45.93470556 | -89.23213746 | 97 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 220 | 5 | Sand | Pole | | | | 1 | | | | | 1 | | | | | | | | | | | | | | | | 221 | 45.93470166 | -89.23155704 | 98 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 221 | 0 | | | TERRESTRIAL | 222 | 45.93436645 | -89.24201010 | 60 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 222 | 0 | | | DOCK | _ | | | 223 | 45.93436260 | -89.24142968 | 59 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 223 | 7 | Sand | Pole | | | | 0
| | | | | | | | | | | | | | | | | 4 | 4 | 4 | | 224 | 45.93435874 | -89.24084927 | 58 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 224 | 13 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | 4 | _ | _ | | 225 | 45.93435489 | -89.24026885 | 56 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 225 | 0 | | | DEEP | + | + | - | | 226 | | -89.23968844 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | + | + | + | | 227 | 45.93434716
45.93434330 | -89.23910802 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | + | + | | 228 | 45.93434330 | -89.23852760
-89.23794719 | 0 | | | 18991230
18991230 | | 0 | 0 | | | DEEP | \forall | + | + | | 230 | 45.93433556 | -89.23736677 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | T | T | | | 231 | 45.93433168 | -89.23678636 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 232 | | -89.23620594 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 233 | 45.93432392 | -89.23562553 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 234 | 45.93432004 | -89.23504512 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 4 | _ | | | 235 | 45.93431615 | -89.23446470 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | _ | | | 236 | 45.93431226 | -89.23388429 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | _ | 4 | | 237 | 45.93430837 | -89.23330387 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 4 | _ | _ | | 238 | 45.93430447 | -89.23272346 | 101 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 238 | 0 | | | DEEP | \dashv | + | _ | | 239 | 45.93430057 | -89.23214304 | 100 | | Vilas | 8/3/2012 | BTB & CRS | | | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | - | + | - | | 240 | | -89.23156263 | 99 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | | | | TERRESTRIAL | \dashv | + | - | | 241 | 45.93395761 | -89.24143520 | 53 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | 13 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | + | + | - | | 242 | 45.93395376
45.93394990 | -89.24085479
-89.24027438 | 54 | Yellow Birch
Yellow Birch | Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 0 | Muck | Pole | DEEP | | | 0 | | | | | | | | | | | | | | | | | \forall | + | + | | 244 | | -89.23969397 | 0 | TCHOW DIFCH | viido | 18991230 | Drie d Cito | 0 | 0 | | | DEEP | T | T | 7 | | 245 | | -89.23911356 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 246 | 45.93393831 | -89.23853315 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 247 | 45.93393444 | -89.23795274 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 248 | 45.93393057 | -89.23737233 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | _ | | | 249 | 45.93392670 | -89.23679192 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | _ | | | 250 | 45.93392282 | -89.23621150 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | \dashv | - | | | 45.93391894 | -89.23563109 | | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | + | + | | 252 | | -89.23505068 | | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | \pm | + | | 253 | | -89.23447027
-89.23388986 | | | Vilas | 8/3/2012
8/3/2012 | BTB & CRS
BTB & CRS | 253 | | Cand | Dolo | DEEP | | | 0 | | | | | | | | | | | | | | | | | \neg | - | - | | 255 | 45.93390728 | -89.23330945 | | | Vilas | 8/3/2012 | BTB & CRS | | | | | | | | 0 | | | | | | | | | | | | | | | | | \forall | T | _ | | 256 | | -89.23272904 | | | Vilas | 8/3/2012 | BTB & CRS | | | Junu | i oic | DEEP | T | T | ٦ | | | 45.93389559 | -89.23214863 | 103 | | Vilas | | | | | Sand | Pole | | | | 0 | 258 | 45.93389169 | -89.23156822 | 104 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 258 | 3 | Sand | Pole | | | | 0 | 259 | 45.93355263 | -89.24144073 | 52 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 259 | 2 | Sand | Pole | | | | 1 | | | | | 1 | | | | | | | | | 1 | | | | \downarrow | | | 260 | 45.93354877 | -89.24086032 | 51 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 260 | 12 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | _ | | | 261 | 45.93354492 | -89.24027991 | 57 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 261 | 0 | | | DEEP | \dashv | 4 | 4 | | 262 | 45.93354106 | -89.23969950 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | - | | | | | \dashv | + | \dashv | | 263 | | -89.23911910 | | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | + | \dashv | | 264 | | -89.23853869 | | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | + | + | | 265 | | -89.23795828 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | + | \dashv | | 266 | | -89.23737788 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | + | + | \dashv | | 267 | | -89.23679747
-89.23621706 | 0 | | | 18991230
18991230 | | 0 | 0 | | | DEEP | + | + | \dashv | | | 45.93351783 | -89.23563666 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \forall | \forall | \exists | | | 45.93351007 | -89.23505625 | | Yellow Birch | Vilas | | BTB & CRS | | | | | DEEP | T | T | 7 | | | | | | | | | | | | | | | | | | • | • | | | | | | | | | • | • | | | | | | | | | Point Number | Latitude (Decimal Degrees) | Longtude (Decimal Degrees) | | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nuphar variegata | Ny mphaea odorata | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | Filamentous algae | |--------------|----------------------------|------------------------------|-----|--------------|----------|----------------------|------------|--------------|------------|----------|------------|-------------|-------|----------|---------------------|-----------------------|------------------------|-------------------|------------------------|----------------|-------------|------------------|-------------------|-----------------------|----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|-----------------------|-------------------| | | | | 0 | | | | | | | | | 8 | ž | ž | | Σ | Ö | ā | Σ | ž | ž | ž | Ź | ۵. | Ã. | Ã. | Ä | <u>م</u> | 2 | PC | <u>8</u> | - | > | Œ | | 271 | | -89.23447585 | | | Vilas | | BTB & CRS | | | Sand | | | | | 1 | | 1 | | | | | | | | | | | \dashv | | | - | \dashv | \dashv | \dashv | | 272 | 45.93350229
45.93349451 | -89.23389544
-89.23273463 | | | Vilas | 8/3/2012 | BTB & CRS | | | Rock | | | | | | | 1 | | | | | | | | | | | \exists | | | 7 | \forall | \dagger | 7 | | 273 | 45.93349451 | | | | Vilas | 8/3/2012 | | | 6 | Sand | | | | | 0 | | | | | | | | | | | | | 7 | | | 7 | \dashv | \dashv | 7 | | 274 | 45.93348671 | -89.23215422
-89.23157382 | 105 | Yellow Birch | Vilas | 8/3/2012
8/3/2012 | BTB & CRS | | 7 | Sand | | | | | 0 | | | | | | | | | | | | | T | | | 7 | \dagger | \forall | \exists | | 276 | 45.93348280 | -89.23157382
-89.23099341 | 0 | Yellow Birch | VIIdS | 18991230 | BIB & CKS | 276 | 0 | Sand | Pole | TERRESTRIAL | | | U | | | | | | | | | | | | | | | | _ | \forall | \forall | \exists | | 277 | 45.93314764 | -89.24144625 | 48 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | 7 | Rock | Pole | TEMESTIMAE | | | 0 | | | | | | | | | | | | | T | | | | \exists | T | | | 278 | 45.93314379 | -89.24086584 | 49 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | Muck | | | | | 0 | | | | | | | | | | | | | T | | | 7 | 1 | T | T | | 279 | 45.93313993 | -89.24028544 | 50 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | 0 | Muck | 1 OIC | DEEP | | | | | | | | | | | | | | | | T | | | T | T | T | T | | 280 | 45.93313607 | -89.23970504 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 281 | 45.93313221 | -89.23912464 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | T | | | 282 | 45.93312834 | -89.23854423 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 283 | | -89.23796383 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 1 | | 284 | 45.93312060 | -89.23738343 | 0 | | | 18991230 | | 0 | 0 | _ | | DEEP | $oxed{I}$ | | | 285 | | -89.23680303 | 0 | | | 18991230 | | 0 | 0 | _ | | DEEP | $oxed{I}$ | | | 286 | 45.93311285 | -89.23622262 | 116 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 286 | 0 | | | DEEP | \Box | | | 287 |
45.93310897 | -89.23564222 | 115 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 287 | 9 | Rock | Pole | | | | 0 | | | | | | | | | | | | | | | | | \perp | \perp | | | 288 | 45.93310509 | -89.23506182 | 114 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 288 | 7 | Rock | Pole | | | | 0 | | | | | | | | | | | | | | | | | | \perp | | | 289 | 45.93274651 | -89.24203217 | 47 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 289 | 4 | Sand | Pole | | | | 0 | 290 | 45.93274266 | -89.24145177 | 46 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 290 | 12 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | _ | _ | | | 291 | 45.93273881 | -89.24087137 | 44 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 291 | 12 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | _ | _ | | | 292 | 45.93273495 | -89.24029097 | 45 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 292 | 13 | | | DEEP | | | | | | | | | | | | | | | | \perp | | | _ | 4 | \dashv | | | 293 | 45.93273109 | -89.23971057 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | _ | \dashv | \dashv | | | 294 | 45.93272723 | -89.23913017 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | 4 | | | 4 | 4 | 4 | 4 | | 295 | 45.93272336 | -89.23854978 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | 4 | | | _ | \dashv | \dashv | _ | | 296 | 45.93271949 | -89.23796938 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | 4 | | | _ | \dashv | \dashv | _ | | 297 | 45.93271562 | -89.23738898 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | \dashv | | | + | \dashv | \dashv | - | | 298 | 45.93271174 | -89.23680858 | 118 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 296 | 0 | | | DEEP | | | | | | | | | | | | | | | | \dashv | | | _ | \dashv | \dashv | _ | | 299 | 45.93270787 | -89.23622818 | 117 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | | Rock | Pole | | | | 0 | | | | | | | | | | | | | \dashv | | | _ | \dashv | \dashv | - | | 300 | 45.93234537 | -89.24261808 | 40 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | Muck | Pole | | | | 3 | | 1 | 1 | | | | | | | | | | 3 | | | _ | \dashv | \dashv | - | | 301 | 45.93234153 | -89.24203768 | 41 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 301 | 7 | Rock | Pole | | | | 0 | | | | | | | | | | | | | \dashv | | | + | + | + | + | | 302 | 45.93233768 | -89.24145729 | | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | Muck | Pole | | | | 0 | | | | | | | | | | | | | \dashv | | | - | + | + | - | | 303 | 45.93233382 | -89.24087690 | | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | 13 | | | DEEP | | | | | | | | | | | | | | | | \dashv | | | + | + | + | + | | 304 | | -89.24029650 | | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | \exists | | | - | + | \forall | - | | 305 | | -89.23971611
-89.23913571 | | | | 18991230
18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | \dashv | 1 | | \exists | \dashv | \dashv | \dashv | | 306 | | -89.23913571
-89.23855532 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | \dashv | | | \exists | \dagger | \dashv | \dashv | | | 45.93231451 | -89.23797492 | | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | \exists | | | \exists | \forall | \forall | \exists | | 309 | | -89.23739453 | | Yellow Birch | Vilas | | BTB & CRS | | | | | DEEP | | | | | | | | | | | | | | | | \exists | 1 | | 7 | \forall | \exists | 7 | | | 45.93230676 | -89.23681414 | | | Vilas | 8/3/2012 | BTB & CRS | | | Sand | Pole | | | | 0 | | | | | | | | | | | | | T | | | \exists | \top | T | 7 | | 311 | 45.93194039 | -89.24262359 | | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | Muck | | | | | 1 | | 1 | | | | | | | | | | | 1 | | | | | 1 | | | 312 | 45.93193269 | -89.24146281 | | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | Sand | | | | | 2 | | 1 | | | | | | | | 1 | | | | 1 | | | | 1 | | | 313 | 45.93192884 | -89.24088242 | | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | | | | | | 0 | | | | | | | | | | | | | | | | | | \Box | [| | 314 | 45.93192498 | -89.24030203 | 36 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 314 | 13 | | | DEEP | 315 | 45.93192112 | -89.23972164 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \perp | \perp | | | 316 | 45.93191726 | -89.23914125 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | \exists | | | \perp | \perp | \downarrow | _ | | 317 | 45.93191339 | -89.23856086 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | _ | | | \dashv | \dashv | 4 | \perp | | 318 | 45.93190952 | -89.23798047 | 122 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 318 | 0 | | | DEEP | | | | | | | | | | | | | | | | _ | _ | | 4 | 4 | 4 | 4 | | 319 | 45.93190565 | -89.23740008 | 121 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 319 | 7 | Rock | Pole | | | | 0 | | | | | | | | | | | | | _ | _ | | 4 | 4 | 4 | 4 | | 320 | 45.93152771 | -89.24146833 | 33 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 320 | 1 | Rock | Pole | | 4 | | | | | | | 1 | | | | | | | | _ | 1 | | \dashv | 4 | 4 | 4 | | 321 | 45.93152385 | -89.24088795 | 34 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 321 | 10 | Sand | Pole | | 4 | | 0 | | | | | | | | | | | | | 4 | _ | | \dashv | \dashv | 4 | 4 | | 322 | 45.93151999 | -89.24030756 | 35 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 322 | 13 | | | DEEP | | | | | | | | | | | | | | | | 4 | \dashv | | \dashv | \dashv | \dashv | 4 | | 323 | 45.93151613 | -89.23972717 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | | | | | | | | | | | | | | | | \dashv | - | | \dashv | \dashv | \dashv | 4 | | 324 | 45.93151227 | -89.23914679 | 0 | | <u> </u> | 18991230 | | 0 | 0 | | <u> </u> | DEEP | | | | <u> </u> | | | | | | | | | | | | | | | Ц | | | _ | | Point Number | Lattude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nuphar variegata | Nymphaea odorata | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | Filamentous algae | |--------------|----------------------------|------------------------------|-----------|------------------------------|--------|----------------------|------------|--------------|------------|----------|------------|----------------|-------|----------|---------------------|-----------------------|------------------------|-------------------|------------------------|----------------|-------------|------------------|------------------|-----------------------|----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|-----------------------|-------------------| | 325 | 45.93150841 | -89.23856640 | 124 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 325 | 0 | | | DEEP | 326 | 45.93150454 | -89.23798602 | 123 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 326 | 6 | Rock | Pole | | | | 0 | | | | | | | | | | | | | | | | | 4 | _ | _ | | 327 | 45.93112272 | -89.24147385 | 32 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 327 | 4 | Sand | Pole | | | | 1 | | | | | | | | | | | 1 | | | 1 | | | \dashv | 4 | _ | | 328 | 45.93111887 | -89.24089347 | 31 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 328 | | | | DEEP | 4 | 4 | _ | | 329 | 45.93111501 | -89.24031309 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | + | \dashv | | 330 | 45.93111115 | -89.23973271 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | \dashv | + | \dashv | | 331 | 45.93110729 | -89.23915233 | | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 331 | 0 | Cd | D-I- | DEEP | | | 0 | | | | | | | | | | | | | | | | | \neg | + | + | | 332 | 45.93110342
45.93071774 | -89.23857195
-89.24147937 | 125
29 | Yellow Birch
Yellow Birch | Vilas | 8/3/2012
8/6/2012 | DAC & CRS | | 9 | Sand | Pole | | | | 1 | | | | | | | | | | | | | | | | | 1 | 1 | 7 | | 334 | 45.93071388 | -89.24089900 | | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 334 | 13 | Juliu | 1 OIC | DEEP | T | Ī | 7 | | 335 | 45.93071003 | -89.24031862 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | П | | 336 | 45.93070617 | -89.23973824 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | 337 | 45.93070230 | -89.23915786 | 128 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 337 | 0 | | | DEEP | 338 | 45.93069844 | -89.23857749 | 127 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 338 | 0 | | | TERRESTRIAL | 339 | 45.93031275 | -89.24148490 | 28 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 339 | 5 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | 4 | 4 | 4 | | 340 | 45.93030890 | -89.24090452 | 27 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 340 | 13 | | | DEEP | _ | _ | _ | | 341 | 45.93030504 | -89.24032415 | 26 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 341 | 13 | | | DEEP | 4 | 4 | _ | | 342 | 45.93030118 | -89.23974378 | 0 | | | 18991230 | | 0 | 0 | |
| DEEP | \dashv | + | \dashv | | 343 | 45.93029732 | -89.23916340 | | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 343 | 0 | | | DEEP | \dashv | + | \dashv | | 344 | 45.93029345 | -89.23858303 | 130 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | 6 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | \dashv | \dashv | - | | 345 | 45.92990391
45.92990006 | -89.24091005
-89.24032968 | 23 | Yellow Birch
Yellow Birch | Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | | Rock | Pole | | | | 0 | | | | | | | | | | | | | | | | | \dashv | \dashv | 1 | | 347 | 45.92989620 | -89.23974931 | 25 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | 0 | IVIUCK | role | DEEP | | | U | | | | | | | | | | | | | | | | | \forall | T | Т | | 348 | 45.92989233 | -89.23916894 | | | Vilas | 8/3/2012 | BTB & CRS | | | | | DEEP | T | T | | | 349 | 45.92988847 | -89.23858857 | 131 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 349 | | Rock | Pole | | | | 0 | 350 | 45.92949893 | -89.24091557 | 22 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 350 | 7 | Sand | Pole | | | | 0 | 351 | 45.92949507 | -89.24033521 | 134 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 351 | 0 | | | DEEP | 4 | 4 | _ | | 352 | 45.92949121 | -89.23975484 | 133 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 352 | 9 | Sand | Pole | | | | 0 | 353 | 45.92909394 | -89.24092110 | 21 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 353 | 7 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | _ | _ | _ | | 354 | 45.92909009 | -89.24034074 | 135 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 354 | 0 | | | DEEP | 4 | 4 | _ | | 355 | 45.92908623 | -89.23976037 | 136 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 355 | 7 | Sand | Pole | | | | 3 | v | | | 1 | 1 | | | | | | 3 | | | 1 | | 1 | 4 | 1 | _ | | 356 | 45.92869281 | -89.24150698 | 19 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | \dashv | + | \dashv | | 357 | 45.92868896 | -89.24092662 | 20 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 357 | 0 | | | DEEP | \dashv | + | \dashv | | 358 | 45.92868510 | -89.24034626 | | | Vilas | 8/3/2012 | BTB & CRS | | | | | DEEP | | | _ | | | | | | | | | | | | | | | | | \dashv | \dashv | \dashv | | 360 | 45.92868124
45.92828783 | -89.23976591
-89.24151250 | | | Vilas | 8/3/2012
8/6/2012 | DAC & CRS | | | | | | | | 1 | | 1 | | | | | | | | | | | | | | | \dashv | T | \exists | | 361 | 45.92828397 | -89.24093215 | 17 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | 0 | NUCK | role | DEEP | | | 1 | | 1 | | | | | | | | | | | | | | | \forall | T | Т | | 362 | 45.92828012 | -89.24035179 | 0 | | | 18991230 | | 0 | 0 | | | DEEP | T | T | | | 363 | 45.92827626 | -89.23977144 | 139 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 363 | 0 | | | DEEP | 364 | 45.92827239 | -89.23919109 | 140 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 364 | 10 | Sand | Pole | | | | 0 | 365 | 45.92826853 | -89.23861074 | 141 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 365 | 6 | Sand | Pole | | | | 3 | | 2 | | 3 | | | 4 | | | | | | 1 | | | 1 | 4 | 4 | _ | | 366 | 45.92826466 | -89.23803039 | 142 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 366 | 0 | | | DOCK | | | | | | | | | | 4 | 4 | | | | | | | | | \dashv | 4 | 4 | | 367 | 45.92826079 | -89.23745003 | 143 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 367 | 0 | | | TERRESTRIAL | | | | | | | | | | 4 | _ | | _ | | | | | | | \dashv | \dashv | 4 | | 368 | 45.92788284 | -89.24151802 | 15 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | Sand | Pole | | | | 0 | | | | | | \dashv | \dashv | - | | | | | | | | | + | + | 4 | | 369 | 45.92787899 | -89.24093767 | 16 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | | | | | DEEP | | | | | | | | | - | + | + | | | | | | | | | + | + | \dashv | | 370 | 45.92787513 | -89.24035732 | | | Vilas | 8/3/2012 | BTB & CRS | | | | | DEEP | | | | | - | | | | 1 | + | \dashv | | | | | | | | | + | + | \dashv | | 371 | 45.92787127 | -89.23977697 | | | Vilas | 8/3/2012 | BTB & CRS | | | | | | | | 0 | | | | | | | \dashv | \dashv | | | | | | | | | + | \dashv | \dashv | | 372 | 45.92786741 | -89.23919663 | | | Vilas | 8/3/2012 | BTB & CRS | | | Muck | | | | | 0 | | | | | | | \dashv | \dashv | | | | | | | | | \dashv | \dashv | \dashv | | 373 | 45.92786354
45.92785968 | -89.23861628
-89.23803593 | | Yellow Birch
Yellow Birch | Vilas | 8/3/2012
8/3/2012 | BTB & CRS | | | Muck | Pole | | | | 0 | | | | | | | 1 | 1 | | | | | | | | | \dagger | \dashv | 7 | | 374 | 45.92785968
45.92785580 | -89.23803593
-89.23745558 | | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | | | Muck | Pole | | | | 2 | | | | | 1 | | 1 | 1 | | 1 | | | | | | 1 | \dashv | 1 | \dashv | | 376 | 45.92785580 | -89.24210388 | 0 | - CHOW DITE! | viids | 18991230 | 5.5 & Ch3 | 376 | | Janiu | . ore | NO INFORMATION | | | _ | | | | | _ | 1 | \dagger | | | _ | | | | | | | \forall | _ | ٦ | | 377 | 45.92747786 | -89.24152354 | 0 | | | 18991230 | | 377 | | | | NO INFORMATION | | | | | | | | | 1 | 1 | | | | | | | | | | \top | T | ٦ | | | 45.92747400 | -89.24094319 | 0 | | | 18991230 | | 378 | | | | NO INFORMATION | _ | _ | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Ol | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fuliness | Myriophyllum spicatum | Ceratophyllum demersum | Elodea canadensis | Myriophyllum sibiricum | Najas flexilis | Nitella sp. | Nuphar variegata | Ny mphaea odorata | Potamogeton epinyarus | Potamogeton foliosus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | Filamentous algae | |--------------|----------------------------|-----------------------------|-----|--------------|--------|----------|------------|--------------|------------|----------|------------|-----------------------|-------|----------|---------------------|-----------------------|------------------------|-------------------|------------------------|----------------|-------------|------------------|-------------------|-----------------------|----------------------|----------------------|--------------------------|-----------------------|---------------------------|--------------------|---------------------------|-----------------------|-------------------| | 379 | 45.92747015 | -89.24036285 | 150 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 379 | 0 | | | DEEP | 380 | 45.92746629 | -89.23978251 | 151 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 380 | 12 | Muck | Pole | | | | 0 | 381 | 45.92746242 | -89.23920216 | 152 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 381 | 12 | Muck | Pole | | | | 0 | 382 | 45.92745856 | -89.23862182 | 153 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 382 | 10 | Muck | Pole | | | | 1 | | 1 | | | | | | | | | | | | | | | | | | 383 | 45.92745469 | -89.23804148 | 154 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 383 | 9 | Muck | Pole | | | | 0 | 384 | 45.92745082 | -89.23746113 | 155 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 384 | 5 | Muck | Pole | | | | 3 | | 2 | | 2 | | | | | | | | 1 | | | 1 | 1 | | | | 385 | 45.92744695 | -89.23688079 | 156 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 385 | 3 | Muck | Pole | | | | 3 | | | | 1 | | | | | | | | 3 | | | | | | | | 386 | 45.92707672 | -89.24210940 | 167 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 386 | 9 | Sand | Pole | | | | 0 | 387 | 45.92707287 | -89.24152906 | 166 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 387 | 10 | Sand | Pole | | | | 0 | 388 | 45.92706902 | -89.24094872 | 165 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 388 | 10 | Sand | Pole | | | | 0 | 389 | 45.92706516 | -89.24036838 | 164 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 389 | 8 | Sand | Pole | | | | 0 | 390 | 45.92706130 | -89.23978804 | 163 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 390 | 9 | Sand | Pole | | | | 0 | 391 | 45.92705744 | -89.23920770 | 162 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 391 | 9 | Sand | Pole | | | | 0 | 392 | 45.92705357 | -89.23862736 | 161 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 392 | 9 | Muck | Pole | | | | 0 | 0 | | | | | | | | | | | | | | | | | | | 393 | 45.92704971 | -89.23804702 | 160 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 393 | 8 | Muck | Pole | | | | 0 | 394 | 45.92704583 | -89.23746668 | 159 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 394 | 5 | Muck | Pole | | | | 3 | | 1 | | 1 | | | | | | | | 2 | | | 1 | 1 | | | | 395 | 45.92704196 | -89.23688634 | 157 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 395 | 3 | Muck | Pole | | | | 3 | | 1 | 1 | 1 | | | | | | | | 3 | | | | | 1 | | | 396 | 45.92703808 | -89.23630600 | 158 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 396 | 0 | | | NONNAVIGABLE (PLANTS) | | | | | | | | | | | | | | | | | | |
| | | | 397 | 45.92666789 | -89.24153458 | 168 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 397 | 11 | Sand | Pole | | | | 0 | 398 | 45.92666403 | -89.24095424 | 169 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 398 | 3 | Rock | Pole | | | | 1 | | | | | | | | | | | | | | | 1 | | | | | 399 | 45.92666018 | -89.24037391 | 170 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 399 | 0 | | | TERRESTRIAL | 400 | 45.92665632 | -89.23979357 | 171 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 400 | 8 | Muck | Pole | | | | 1 | | | 1 | | | | | | | | 1 | 1 | | | | 1 | | | | 401 | 45.92665245 | -89.23921324 | 172 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 401 | 7 | Muck | Pole | | | | 2 | | 1 | | | | | | 1 | | 1 | | | | | 1 | 1 | | | | 402 | 45.92664859 | -89.23863290 | 173 | Yellow Birch | Vilas | 8/3/2012 | BTB & CRS | 402 | 7 | Muck | Pole | | | | 0 | 403 | 45.92664472 | -89.23805257 | 1 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 403 | 5 | Sand | Pole | | | | 2 | 1 | 1 | | 1 | | | | | | | | 1 | | | 1 | 1 | | | | 404 | 45.92664085 | -89.23747223 | 2 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 404 | 3 | Muck | Pole | | | | 3 | | | | | | | | | | | | 2 | | | | 1 | 3 | | | 405 | 45.92663698 | -89.23689190 | 3 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 405 | 2 | Muck | Pole | | | | 3 | | | 1 | | | | | | | | | 2 | | | | 1 | | | | 406 | 45.92625133 | -89.23979910 | 9 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 406 | 4 | Sand | Pole | | | | 3 | | | | | | | | 1 | | | | 3 | : | | | | | | | 407 | 45.92624747 | -89.23921877 | 8 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 407 | 5 | Sand | Pole | | | | 3 | | | 2 | | | | | | | | | 3 | : | | 1 | | 2 | | | 408 | 45.92624360 | -89.23863844 | 7 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 408 | 5 | Sand | Pole | | | | 3 | | 1 | 1 | | | | | | | 1 | | 1 | | | | | 3 | | | 409 | 45.92623974 | -89.23805811 | 6 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 409 | 4 | Muck | Pole | | | | 3 | | | 1 | | | | | | | | | 3 | | | | 1 | | | | 410 | 45.92623587 | -89.23747778 | 5 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 410 | 3 | Sand | Pole | | | | 3 | | | | | | | 1 | | | | | 3 | | | 1 | 1 | 1 | | | 411 | 45.92623199 | -89.23689745 | 4 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 411 | 0 | | | TERRESTRIAL | 412 | 45.92584635 | -89.23980464 | 10 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 412 | 0 | | | TERRESTRIAL | 413 | 45.92584248 | -89.23922431 | 11 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 413 | 3 | Rock | Pole | | | | 1 | | | | | | | | | | | | 1 | | | | | | | | 414 | 45.92583862 | -89.23864398 | 12 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 414 | 3 | Sand | Pole | | | | 3 | | | | | | | | | | | | 2 | | | | | 2 | | | 415 | 45.92583475 | -89.23806366 | 13 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 415 | 3 | Muck | Pole | | | | 3 | | | | | | | | | | | | 3 | | | | 1 | 2 | | | 416 | 45.92583088 | -89.23748333 | 14 | Yellow Birch | Vilas | 8/6/2012 | DAC & CRS | 416 | 0 | | | DOCK | Point Number | Tritude (Decimal Degree) | 66
Longit ude (Decimal Degree) | 226 | Lake Name | County | 9 50 G
G
8/6/2012 | Pied Oew | Point Number | 2 Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | O Total Rake Fullness | Resenia schreberi | Cera tophyllum demersum | Eleocharis palustris | Elodea canadensis | Equise tum fluvia tile | Heteranthera dubia
Lemna turionifera | Megalodonta beckii | Myriophyllum sibirioum | Najas flexilis
Nitella sp. | Nuphar variegata | Nymphaea odorata
Pontederia cordata | Potamogeton amplifolius | Potamog eton e pihydrus
Potamog eton foliosus | Potamog eton natans | Potamogeton praelongus | Potamogeton richardsoniii | Potamogeton robbinsii | Potamogeton spirillus | Potamog eton vaseyi | Potamog eton zost eriformis
Sag ittaria latifolia | Schoen oplectus tabernaemontani | Sparg anium emers um | Spanganium fluctuans | Spirodela polymiza Typha spp. | Utricularia vulgaris | Vallis neria americana | Zizania sp. | Aquatic moss
Freshwater soonse | Filamentous algae | |--------------|--------------------------|-----------------------------------|------------|--------------------------|----------------|-------------------------|-----------|--------------|--------------|--------------|--------------|--|-------|----------|-----------------------|-------------------|-------------------------|----------------------|-------------------|------------------------|---|--------------------|------------------------|-------------------------------|------------------|--|-------------------------|--|---------------------|------------------------|---------------------------|-----------------------|-----------------------|---------------------|--|---------------------------------|----------------------|----------------------|-------------------------------|----------------------|------------------------|-------------|-----------------------------------|-------------------| | 2 | 45.903167 | -89.319320 | 225 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 2 | 0 | | | DEEP | - | | | | + | | H | + | + | _ | | 4 | 45.903163
45.903159 | -89.318675
-89.318031 | 224 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | 4 | 0 | | | DEEP | I | | | # | I | | | 5 | 45.902709
45.902705 | -89.318036
-89.317392 | 222 | Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | 5 | 8 | Rock | Pole | DEEP | | | 0 | + | | | + | + | + | | 7 | 45.902701 | -89.316747 | 220 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | Rock | Pole | OLU . | | | 0 | Į | | | 1 | Į | \blacksquare | | 9 | 45.902698
45.902694 | -89.316102
-89.315458 | 219
218 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 0 | | | DEEP | | | + | + | + | Н | + | + | + | | 10 | 45.902690 | -89.314813 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 10 | 0 | | | DEEP | Į | | | 4 | ļ | I | | 12 | 45.902686
45.902682 | -89.314169
-89.313524 | 216
215 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | 11 | 7 | Rock | Pole | DEEP | | | 0 | İ | | | | 1 | | | 13 | 45.902232 | -89.313530 | 214 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 13 | 5 | Muck | Pole | | | + | 0 | | - | | | - | | | | + | | | | | | | - | | | | | | | | + | | H | + | + | + | | 15 | 45.902678
45.902228 | -89.312880
-89.312885 | 213 | Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 7 | Muck | Pole | | | _ | 0 | I | | | # | 1 | | | 16
17 | 45.902674
45.902224 | -89.312235
-89.312241 | 228
212 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | Muck
Muck | Pole
Pole | | | | 0 | | | | | | | | | | | | | | | | 1 | | | | | | | | + | | | + | + | + | | 18 | 45.902671 | -89.311591 | 210 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 18 | 6 | Muck | Pole | | 1 | | 2 2 | 2 | I | | П | | 1 | | П | | П | | | | H | | | | | 1 | 1 | | | Ţ | Ŧ | I | П | 4 | Ŧ | A | | 19 | 45.902221
45.902667 | -89.311596
-89.310946 | 211 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 4 | Muck | Pole | DEEP | 1 | 1 | 2 1 | , | 1 | | 1 | | | L | | | | | | | | | L | 1 | | 1 | | | | | # | | | 1 | ‡ | \Box | | 21 | 45.902217
45.902213 | -89.310952
-89.310307 | 208 | Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | 21 | 7 | Muck
Muck | Pole
Pole | | + | | 0 | + | + | | | + | + | H | H | + | H | + | H | | H | \vdash | - | | | 1 | + | H | 1 | | + | - | H | + | + | H | | 23 | 45.901763 | -89.310313 | 206 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 9 | Muck | Pole | | 1 | _ | 0 | | ļ | | | 1 | | L | | 1 | | | | | | | L | | | | | | | 1 | # | | П | # | # | Ħ | | 24 | 45.902659
45.902209 | -89.309657
-89.309663 | 205 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 5 | Muck | Pole | DEEP | | | 0 | + | + | Н | + | + | + | | 26 | 45.902655 | -89.309012 | 202 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 6 | Muck | Pole | | | | 0 | Ŧ | | | _ | 4 | | | 27 | 45.902205
45.903101 | -89.309018
-89.308362 | 203 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 10
6 | Sand
Muck | Pole
Pole | | | | 0 | İ | | | 1 | 1 | | | 29 | 45.902651
45.903097 | -89.308368
-89.307718 | 200 | Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | 29 | 0 | | | DEEP | | | | | | | | | | | | + | | | | | | | | | | | | | | | + | | H | + | + | \forall | | 31 | 45.902647 | -89.307723 | 199 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 31 | 9 | Muck | Pole | DEEF | | | 0 | | | | | | | | | 1 | | | | | | | L | | | | | | | | Į | | | # | Į | | | 32 | 45.903093
45.903089 | -89.307073
-89.306429 | 197
196 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 9 | Rock | Pole | DEEP | | | 0 | t | | | + | + | + | | 34 | 45.903085 | -89.305784 | 195 | Watersmeet |
Vilas | 8/6/2012 | TWH & EJG | | 10 | Rock | Pole | | | | 0 | Ŧ | | | _ | 4 | | | 35 | 45.904432
45.903982 | -89.305123
-89.305128 | 191
192 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 9 | Sand | Pole | | | | 0 | I | | | 1 | 1 | | | 37 | 45.903532
45.903082 | -89.305134
-89.305139 | 193 | Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | 37 | 6 | Sand | Pole | | | | 0 | + | | H | + | + | + | | 39 | 45.905778 | -89.304461 | 190 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 39 | 6 | Muck | Pole | | | | 1 | | | | 1 | | | | | | | 1 | | | | | | | | | | | | | Ŧ | | H | 4 | ļ | I | | 40 | 45.905328
45.904878 | -89.304467
-89.304472 | 189
188 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 10 | Sand
Muck | Pole
Pole | | | | 0 | İ | | | 1 | 1 | | | 42 | 45.904428
45.919723 | -89.304478
-89.303642 | 187 | Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 9 | Sand | Pole | SHALLOW | | | 0 | + | | | + | + | \blacksquare | | 44 | 45.919723 | -89.303800
-89.303800 | 181 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | L | | | | | | | | 1 | | | # | I | | | 45
46 | | | | Watersmeet
Watersmeet | | | TWH & EJG | | 10
0 | Rock | Pole | DEEP | | | 0 | + | | | + | + | + | | 47 | 45.905774 | -89.303817 | 184 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 47 | | Muck | Pole | | | _ | 0 | Į | | | 4 | I | I | | 48 | | | | Watersmeet
Watersmeet | | 8/6/2012
8/6/2012 | | | | Muck
Muck | Pole
Pole | | 1 | _ | 0
3 \ | , | 1 | | | | | L | | | | | | | | | L | | | | | | 1 | | # | | 3 | 1 | ‡ | \Box | | 50
51 | | | | Watersmeet
Watersmeet | | | | | 0 | | | SHALLOW | - | + | + | | + | | H | - | + | | | - | H | - | H | + | H | | - | H | | | + | \vdash | - | | + | - | H | + | + | H | | 52 | 45.919719 | -89.302997 | | Watersmeet | | 8/6/2012 | TWH & EJG | 52 | 0 | | | SHALLOW | 1 | 1 | 1 | 1 | ļ | | | 4 | | L | | 1 | | | | | | | L | | | | ļ | | 1 | 1 | # | | | 寸 | # | Ħ | | 53
54 | 45.919269
45.908020 | -89.303003
-89.303144 | | | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 0 | Muck | Pole | SHALLOW | | | 0 | + | | | + | + | + | | 55 | 45.907570 | -89.303150 | 179 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 55 | 9 | Muck | Pole | | | | 0 | Ŧ | | \Box | 4 | | \blacksquare | | 56
57 | 45.907120
45.906670 | | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | Muck
Muck | Pole
Pole | | | | 0 | İ | | | | 1 | | | 58
59 | | | | Watersmeet
Watersmeet | | | TWH & EJG | | | Muck
Muck | Pole
Pole | | + | + | 0 | + | - | | | 1 | | H | | + | | + | H | | Н | | - | | | - | + | | - | \parallel | + | - | | + | + | H | | 60 | | | | | | | TWH & EJG | | 0 | MUCK | rue | NONNAVIGABLE (PLANTS) | | | | | | | 1 | | | | | 1 | | | | | | | L | | | | | | | | Į | | İ | # | Į | | | 62 | 45.904870
45.919265 | -89.303183
-89.302358 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) SHALLOW | 1 | \pm | $\frac{1}{2}$ | \pm | t | L | | | \pm | L | | 1 | Н | Ⅎ | | | H | H | t | | | | t | H | | | \pm | ŀ | H | + | \pm | \forall | | 63 | 45.918816 | -89.302364 | 318 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 63 | 0 | _ | | SHALLOW | | - | J | | F | | H | - | - | | H | - | H | | | | H | | H | | | Ī | | H | I | f | # | 1 | H | 4 | \perp | \dashv | | 65 | 45.908016
45.907566 | -89.302499
-89.302505 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | Sand
Muck | Pole
Pole | | 1 | | 0 | t | | | | | | | | 1 | | | | | L | | L | | | | ļ | | 1 | | # | | Ħ | 1 | # | \parallel | | 66
67 | | | | | | 8/6/2012
8/6/2012 | TWH & EJG | | | Muck
Muck | Pole
Pole | | + | + | 2 | + | 1 | | 1 | \dashv | + | | H | 1 | 1 | 1 | H | + | H | | + | | | 1 | 2 | H | - | + | + | - | \vdash | + | + | \forall | | 68 | 45.906216 | -89.302522 | 170 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 68 | 5 | Muck | Pole | | | | 2 | 1 | 1 | | 2 | 1 | 1 | | | 1 | | | | | | | | | | | 1 | | | 1 | Ŧ | | П | # | 1 | \blacksquare | | 69
70 | 45.905766
45.905316 | | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 3 | Muck | Pole | NONNAVIGABLE (PLANTS) | 1 | \pm | 3 : | 1 2 | 1 | L | 1 | | \pm | L | | 1 | H | Ⅎ | | | H | H | t | 1 | | 1 | t | H | | | \pm | ŀ | H | + | \pm | \forall | | 71 | 45.918812 | -89.301719 | 317 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 71 | 0 | | | SHALLOW | 7 | Ŧ | Ŧ | l | | | | 4 | | | H | + | | | | | H | | | | | 1 | | Н | | 1 | Ŧ | | H | 4 | + | H | | 72 | 45.918362
45.917912 | -89.301725
-89.301731 | 315
313 | Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | 72
73 | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | 1 | 1 | t | t | | | | | | | 1 | | | | | | | t | | | | İ | | | | 1 | | Ц | ⇉ | İ | \Box | 2012 Ontern, LLC | Point Number | Latitude (Decimal Degree) | Longitude (Decimal Degree) | 01 | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Mynopriyilum spicatum
Brasenia schreberi | Ceratophyllum demersum | Eleocharis palustris | Elodea canadensis | Equisetum fluviatile | Heteramhera dubia
Lemna turionifera | Megalodonta beckii | Myriophyllum sibir icum
Naiae floville | Nitella sp. | Nuphar variegata | Nymphaea odorata
Pontederia cordata | Potamog eton amplifolius | Potamog eton e pihydrus | Potamogeton Tallosus
Potamogeton natans | Potamogeton praelongus | Pota mog eton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton vaseyi | Potamog eton zost eriformis | Sagitta ria la tifolia | Schoenoplectus tabernaemontani | Sparganium emersum | Spang anium fluctuans | Spirodela polyrhiza | Utricularia vulkaris | Vallis neria ame ricana | Zizania sp. | Aquatic moss | Freshwater sponge | Filamentous algae | |--------------|---------------------------|----------------------------|------------|--------------------------|----------------|----------------------|------------|--------------|------------|----------|--------------|--|-------|----------|---------------------|---|------------------------|----------------------|-------------------|----------------------|--|--------------------|---|-------------|------------------|--|--------------------------|-------------------------|--|------------------------|------------------------|--------------------------|-----------------------|--------------------|-----------------------------|------------------------|--------------------------------|--------------------|-----------------------|---------------------|----------------------|-------------------------|-------------|--------------|-------------------|-------------------| | 74 | 45.917462 | -89.301736 | 309 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 74 | 0 | | | NONNAVIGABLE (PLANTS) | | | | + | | | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | + | - | | 75 | 45.908912
45.908012 | -89.301843
-89.301855 | 141 | Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | 75
76 | 10 | Muck | Pole | NONNAVIGABLE (PLANTS) | | | 0 | 77 | 45.907562 | -89.301860 | | Watersmeet | Vilas | 8/6/2012 | | | | Muck | Pole | | | | 0 | - | | | | | | | | | | | | | | | | 4 | | | | | | | | | + | | | | _ | _ | | 78
79 | 45.907112
45.906662 | -89.301866
-89.301872 | 165
159 | Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | Muck | Pole | | | | 2 | 1 | | | 2 | | | | | | | | | | | | 1 | 1 | | 1 | | | | | | | | | | | 1 | | | 80 | 45.906212 | -89.301877 | 158 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 5 | Muck | Pole | | | | 2 | | | | 1 | | | | | - | \Box | | | | | | | | | 1 | | | | | | | | | | | + | 4 | | 81 | 45.905762
45.918808 | -89.301883
-89.301074 | 157
316 | Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | 81 | 0 | Muck | Pole | NONNAVIGABLE (PLANTS) | | | 3 | | | | | | | 1 | | | | | | | | | | 1 | 3 | | | | | | | | | | | 1 | + | 1 | | 83 | 45.918358 | -89.301080 | 314 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 2 | Muck | Pole | , , | | | 1 | | 1 | | 1 | | | | | | | 1 | 1 | | | | | | 1 | | | | | | | | | | | | 4 | 1 | | 84 | 45.917908
45.917458 | -89.301086
-89.301091 | 312
308 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | - | Muck | Pole | NONNAVIGABLE (PLANTS) | | 1 | 3 | | 1 | | 1 | + | | | | + | | | 1 | | | | | + | 1 | + | | | | | | | 1 | | | | + | + | | 86 | 45.917458 | -89.301091
-89.301097 | 305 | Watersmeet | Vilas | 8/6/2012 | | | 0 | | | NONNAVIGABLE (PLANTS) | 1 | | | 87 | 45.909808 | -89.301187 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | | | NONNAVIGABLE (PLANTS) | | | | | | | | | | | | - | \Box | + | 4 | | 88 | 45.909358
45.908908 | -89.301193
-89.301199 | 139
140 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 0 | | |
NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | \dagger | 1 | | 90 | 45.908458 | -89.301204 | 142 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 90 | 0 | | | NONNAVIGABLE (PLANTS) | | 1 | I | F | F | | 7 | Ţ | | | | | | 1 | | 1 | F | | П | 4 | I | | | | | 7 | 1 | I | F | | Ц | 7 | 1 | 1 | | 91 | 45.908008
45.907558 | -89.301210
-89.301216 | 162
161 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 9 | Muck | Pole
Pole | | | - | 0 | + | | H | + | + | - | H | | - | H | + | H | + | - | + | H | + | + | H | + | \vdash | | + | 1 | + | + | + | H | + | + | \dashv | | 93 | 45.907108 | -89.301221 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | Muck | Pole | | | | 1 1 | , | 1 | | 1 | 1 | t | | | | | | П | | | | П | 1 | 1 | L | | | | 1 | | 1 | | | | 1 | # | 1 | | 94 | 45.906658
45.906208 | -89.301227
-89.301233 | 154
155 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | Muck | Pole
Pole | | | \dashv | 2 | + | 1 | H | 1 | + | + | H | \vdash | 1 | H | 1 | 4 | + | + | - | 2 | + | 1 | 1 | + | H | H | + | + | + | + | - | Н | 1 | + | + | | 95 | 45.906208
45.905758 | -89.301233
-89.301238 | 155 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | Muck | Pole | | | | 3 | 1 | 1 | | 4 | 1 | | 1 | | l | | | 1 | | l | | | 1 | 2 | 1 | 1 | | | 1 | | 1 | | | | | # | 1 | | 97 | 45.917904 | -89.300441 | 311 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | | | NONNAVIGABLE (PLANTS) | | - | + | + | | Н | \dashv | + | + | Н | \vdash | | Н | + | Н | + | | | H | + | + | + | - | | Н | \dashv | \parallel | + | - | | Н | 4 | + | \dashv | | 98 | 45.917454
45.917004 | -89.300447
-89.300452 | 307 | Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | 98 | 4 | Muck | Pole
Pole | | | | 3 | t | 1 | | 1 | 1 | l | | | t | | 1 | Ħ | 1 | t | L | H | ┪ | 3 | İ | L | t | | | ┪ | İ | 1 | L | | | # | | | 100 | 45.910254 | -89.300537 | 137 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 100 | 0 | | | NONNAVIGABLE (PLANTS) | | 4 | | | | | | - | 4 | 4 | | 101 | 45.909804
45.909354 | -89.300543
-89.300548 | 136
134 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | 1 | | | | | | | | | | | | 1 | + | 1 | | 103 | 45.908904 | -89.300554 | 133 | Watersmeet | Vilas | 8/6/2012 | | | 0 | | | NONNAVIGABLE (PLANTS) | 1 | | | 104 | 45.908004
45.907554 | -89.300565 | 149 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 7 | Muck | Pole | | | + | 1 | | _ | | | + | | | | - | | | H | | | | 1 | + | | + | | | | | | | | | | | + | 4 | | 105 | 45.907554 | -89.300571
-89.300577 | 151 | Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | Muck | Pole | | | | 0 | I | | | 107 | 45.906654 | -89.300582 | 152 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 107 | 5 | Muck | Pole | | | 4 | 2 1 | V 1 | 1 | | 1 | - | | | | - | | | | | | | | 1 | | . 1 | | | | | - | | | 1 | | | + | + | | 109 | 45.906204
45.917900 | -89.300588
-89.299796 | 153
310 | Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | 108 | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | 1 | | | 110 | 45.917450 | -89.299802 | | Watersmeet | Vilas | 8/6/2012 | | | | | | NONNAVIGABLE (PLANTS) | | | | | | | | | | | | | | | H | | | | | 4 | | | | | | | | | | | | | 4 | 4 | | 111 | 45.917000
45.916550 | -89.299808
-89.299813 | 302 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | Muck | Pole | | | | 3 | | 1 | | 2 | | | | | | | | | | | | | 1 | 2 | | | | | | | | | | | 1 | + | 1 | | 113 | 45.909800 | -89.299898 | 135 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | | | NONNAVIGABLE (PLANTS) | I | 1 | | 114 | 45.909350
45.908900 | -89.299904
-89.299910 | 132
130 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | + | | | | | | | | | | | | - | + | - | | 116 | 45.908450 | -89.299915 | 128 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 116 | 0 | | | NONNAVIGABLE (PLANTS) | I | | | 117 | 45.908000 | -89.299921 | 148 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | Sand | Pole | | | | 1 | | | | | | | | | - | 1 | + | 4 | | 118 | 45.907550
45.907100 | -89.299926
-89.299932 | 147
146 | Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | Muck | Pole | | | | 0 | \dagger | 1 | | 120 | 45.906650 | -89.299938 | 145 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 120 | 5 | Muck | Pole | | | 4 | 3 | 1 | 1 | | 1 | - | | | | | | | | | | | | | | | 1 | | | | | | | 3 | | | 4 | 4 | | 121 | 45.917446
45.916996 | -89.299157
-89.299163 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | | | | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | 1 | | | | | | | | | | + | | | | | | | H | + | | | | | | | | | | | H | | + | + | | 123 | 45.916546 | -89.299169 | | | Vilas | 8/6/2012 | TWH & EJG | | 5 | Muck | Pole | | | | 2 | ļ | 1 | | 2 | 1 | ļ | | | 1 | | | | 1 | ļ | | 1 | 1 | 1 | | 1 | | | 4 | | | ļ | | | 4 | 1 | 1 | | 124 | 45.909346
45.908896 | -89.299259
-89.299265 | 131 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | + | + | + | H | | \dashv | + | + | H | \vdash | H | H | + | H | + | + | - | Н | + | + | + | + | - | | \dashv | + | + | + | - | Н | 1 | + | + | | 126 | 45.908446 | -89.299265 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | | | NONNAVIGABLE (PLANTS) | | | 1 | | | | 1 | 1 | t | | | | | | П | | | | П | 1 | 1 | L | | | | 1 | | 1 | | | | 1 | # | 1 | | 127 | 45.907996 | | | Watersmeet
Watersmeet | | | TWH & EJG | | | Merri | . سو | NONNAVIGABLE (PLANTS) | | - | 0 | + | | H | + | + | + | H | | + | H | + | H | + | + | - | H | + | + | + | - | \vdash | | + | + | + | + | - | Н | 1 | + | \dashv | | 128 | 45.907546
45.907096 | -89.299282
-89.299288 | | | Vilas
Vilas | 8/6/2012 | TWH & EJG | | | MUCK | role | DEEP | | | J | 1 | | | 1 | 1 | | | | | | | П | 1 | | | П | 1 | 1 | t | | | | 1 | | 1 | | | | 1 | 1 | 1 | | 130 | 45.906646 | -89.299293 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | Sand | Pole | | | 4 | 0 | + | | H | + | + | + | Н | | | H | + | H | + | | - | Н | + | + | + | - | | H | + | + | + | + | - | H | 4 | + | 4 | | 131 | 45.916542
45.916092 | -89.298524
-89.298530 | 297
296 | Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 3 | Muck | Pole
Pole | | | | 3 | t | 1 | | 1 | 1 | t | | | L | | 1 | | | l | L | | 1 | 3 | İ | L | L | | | | İ | 1 | 1 | | | = | _ | | 133 | 45.908892 | -89.298620 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 133 | | | | NONNAVIGABLE (PLANTS) | | - | Ţ | F | F | | J | \bot | | | H | | П | | П | $-\Gamma$ | | | П | J | I | | L | | | J | $oxed{I}$ | I | | | | 4 | Ţ | 4 | | 134 | 45.908442
45.907992 | -89.298626
-89.298632 | | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | 1 | + | + | H | H | \dashv | + | \vdash | H | | | H | + | H | + | | - | H | \dashv | + | + | - | | H | \dashv | 1 | + | + | - | Н | \dashv | + | \dashv | | 136 | 45.907542 | -89.298637 | | Watersmeet | Vilas | | TWH & EJG | | 6 | | Pole | (Linear) | | 1 | 1 | 1 | | | 1 | 1 | | | | L | | | П | 1 | ļ | | 1 | 1 | 1 | ļ | | L | | 1 | 1 | 1 | ļ | | | | # | 1 | | 137 | 45.907092
45.906642 | -89.298643
-89.298649 | | Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | Muck | | | | - | 0 | - | | Н | + | + | + | Н | | | Н | + | Н | + | | - | H | + | + | - | - | | H | + | - | + | - | - | Н | 4 | + | \dashv | | 138 | 45.906642
45.916538 | -89.298649
-89.297879 | 118
299 | Watersmeet
Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | Muck | rale | NONNAVIGABLE (PLANTS) | | | J | | | | | | | | | | | | | | | | | 1 | t | | | | | | | t | | | | | # | 1 | | 140 | 45.916088 | -89.297885 | | Watersmeet | Vilas | 8/6/2012 | | | | Muck | Pole | | | 4 | 3 | 1 | 2 | Ц | 1 | # | | Ц | | | H | + | H | - - | | L | Н | 4 | 3 | F | F | L | Н | 4 | - | + | 1 | L | H | 4 | 4 | 4 | | 141 | 45.915638
45.915188 | -89.297891
-89.297896 | 326
325 | Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 5 | Muck | Pole
Pole | | | | 3 | \dagger | 1 | | 2 | \dagger | + | H | | + | H | + | H | \dagger | + | 1 | H | \dagger | 1 : | 1 | \dagger | \vdash | | + | 1 | | \dagger | 1 | \forall | | + | 1 | | 143 | 45.914738 | -89.297902 | 327 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 143 | 4 | Muck | Pole | | | 4 | 3 | Ţ | 1 | | 7 | 7 | | П | | | П | 1 | П | 1 | | L | П | 7 | 3 | I | L | L | | 7 | 1 | 1 | I | L | H | 7 | 1 | J | | 144 | 45.914288
45.913838 | -89.297908
-89.297913 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | Muck | Pole
Pole | | | 1 | 3 | 1 | 2 | | 1 | + | + | H | | 1 | 1 | + | H | + | + | | H | \dashv | 2 | + | | $\frac{1}{1}$ | | \dashv | + | + | + | | H | 1 | + | + | | 146 | 45.913388 | | | | Vilas | | | | | Muck | | | | | 3 | 1 | 1 | | 2 | | | | | | 1 | 1 | | | | | | 1 | 1 | | | | | | | | 1 | | | | I | | 2012 Ontern, LLC | Point Number | atitude (Decimal Degree) | ongitude (Decimal Degree) | Q | Lake Name | County | Date | Field Orew | Point Number | Depth (ft) | sediment | Pole; Rope | connents | lotes | Nuisance | Total Rake Fullness | Arabenja schreberi |
cera tophyllum demers um | leocharis palustris | lodea canadens is | Equise tum fluvia tile | Het eranther a dubia
Lemna turionifera | Aegalodonta beckii | Myriophyllum sibir icum
Nalas flexilis | opas revins
Vitella sp. | Nuphar variegata | Nymphaea odorata
Pontederia cordata | ota mog eton amplifolius | ota mog eton e pihydrus | otamog eton natans | otamogeton praelongus | otamogeton pusillus | otamogeton richardsonii | otamog eton r obbinsii | oramogeton yasavi | otamogeton zosteriformis | agittaria latifolia | Schoen oplectus tabernae montani | panganlum emersum | parganium fluctuans | pir odela polyrhiza | ypna spp.
Utricularia vulgaris | Vallsneria americana | izania sp. | Aquatic moss | reshwater sponge | ilamentous algae | |--------------|--------------------------|---------------------------|------------|--------------------------|----------------|----------------------|------------|--------------|------------|----------|--------------|-----------------------|-------|----------|---------------------|--------------------|--------------------------|---------------------|-------------------|------------------------|---|--------------------|---|----------------------------|------------------|--|--------------------------|-------------------------|--------------------|-----------------------|---------------------|-------------------------|------------------------|-------------------|--------------------------|---------------------|----------------------------------|-------------------|---------------------|---------------------|-----------------------------------|----------------------|------------|--------------|------------------|------------------| | 147 | 45.908438 | -89.297981 | 124 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | 8 | | NONNAVIGABLE (PLANTS) | - | 2 | | | Ĭ | u | a . | u u | | - | | | ۷ | 2 4 | | | | - | | | | | | | S | S | S | s . | | _ | N | a. | ľ | | | 148 | 45.907988
45.907538 | -89.297987
-89.297993 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | | Pole | | | | 2 | | 1 | | | + | | | | | | 1 | | | + | | | | 1 | | H | | | | | | + | | H | | + | + | | 150 | 45.907088 | -89.297998 | | | Vilas | | | | 6 | Muci | Pole | | | | 0 | | Ĺ | 1 | 1 | | 151 | 45.906638
45.906188 | -89.298004
-89.298010 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | Muci | Pole
Pole | | | | 0 | | | | 1 | + | | | | | | | H | | | | | | | | - | + | | | | + | | | H | | + | - | | 153 | 45.916084 | -89.297240 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | | Tuc | NONNAVIGABLE (PLANTS) | 1 | | | 154 | 45.915634 | -89.297246 | 293 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 1 | Sand | Pole | | | | 2 | | | | 1 | | | | | | | | H | | | | | 1 | 1 | | - | | | | | | | 1 | Н | | + | 4 | | 156 | 45.915184
45.914734 | -89.297252
-89.297257 | 292 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | Muci | Pole | | | | 2 | | 1 | | 1 | | | | | | | | | | | | 2 | | 1 | | | | | | | | | 2 | | | 1 | _ | | 157 | 45.914284 | -89.297263 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | | Pole | | | | 1 | | 1 | | | 4 | | | | | | | | | | | | | | | - | | | | | | | | \vdash | | + | _ | | 158 | 45.913834
45.913384 | -89.297269
-89.297274 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | | | | Muci | Pole Pole | | | | 3 | | 1 | | 1 | | | | | | | | | | | | | | 2 | | 1 | | | | | | | | | | 1 | | | 160 | 45.907084 | | | | Vilas | | TWH & EJG | | | | | | | | 1 | | | | | 4 | | | | | | | | | | | | | | 1 | | | | | | | | | \vdash | | 4 | _ | | 161 | 45.906634
45.906184 | -89.297359
-89.297365 | 111 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | | Pole
Pole | | | _ | 0 | t | H | | | _ | | H | _ | l | | _ | H | | ╁ | 1 | | | _ | _ | l | l | | _ | _ | † | † | H | | _ | † | 1 | | 163 | 45.913830 | -89.296624 | 289 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 163 | 6 | Muck | Pole | | | | 1 1 | , | 1 | | | 4 | | | 1 | ı | | | | 1 | 1 | | | | 1 | 1 | | | | | | 1 | 1 | | П | 1 | 7 | 7 | | 164 | 45.913380
45.912930 | -89.296630
-89.296635 | 284
271 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 5 | Muci | Pole
Pole | | + | | 2 | + | 2 | | 2 | \dashv | + | | + | + | | + | H | + | + | $\frac{1}{1}$ | | - | + | + | - | 1 | | - | + | + | 1 | $\frac{1}{1}$ | H | 1 | + | + | | 166 | 45.907080 | -89.296709 | 106 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 166 | 3 | Muck | Pole | | | | 2 | 1 | 1 | | 1 | 1 | | | 1 | | | | П | 1 | ļ | | | 1 | 1 | 1 | L | | | | 1 | 1 | ľ | 1 | П | 1 | # | 1 | | 167 | 45.906630
45.906180 | -89.296715
-89.296721 | | | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | Muci | Pole Pole | | - | | 0 | + | - | | 1 | + | + | H | + | + | | + | H | + | + | | | - | + | + | + | | | | + | + | + | - | H | \dashv | + | + | | 168 | 45.906180
45.905730 | -89.296721
-89.296726 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | | | | | | 0 | 1 | L | | | 1 | t | | 1 | | | t | | | 1 | L | | | 1 | t | t | | | | 1 | 1 | 1 | | | | # | 1 | | 170 | 45.913376 | -89.295985 | 283 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | Muck | Pole | | | | 2 | | 1 | | 1 | | | | 1 | 1 1 | | | H | | | | | | | | 1 | | | | | | | | Н | | + | 4 | | 171 | 45.912926
45.912476 | -89.295991
-89.295996 | 272
270 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 1 | Rock | Pole | | | | 1 | | 1 | | 1 | 1 | | | 1 | ı | | | | | | | | | | 1 | | | | | | | | | | | 1 | | | 173 | 45.907076 | -89.296065 | 105 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | Muci | Pole | | | | 3 | | 1 | | | 4 | | | | | 1 | 1 | H | | | | | | | | - | | | | | | | | \vdash | 2 | 4 | _ | | 174 | 45.906626
45.906176 | -89.296070
-89.296076 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | | Pole | | | | 0 | | 1 | | 1 | 1 | | | | | | | | | | | 1 | | | | 1 | | | | | | | | H | | \dagger | - | | 176 | 45.905726 | -89.296082 | | Watersmeet | Vilas | 8/6/2012 | | | 11 | | Pole | | | | 0 | 1 | | | 177 | 45.913372
45.912922 | -89.295340
-89.295346 | 282
273 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | Muck | Pole | | | | 1 | | | | | \dashv | | | 1 | 1 | | | | | | | 1 | | | | H | | | | | | 1 | | H | | + | - | | 179 | 45.912472 | -89.295352 | 269 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | | Pole | | | | 2 | | 1 | | | | | | 2 | 1 | | | | | | | Ĺ | | | ı | | | | | | | | 1 | | | 1 | | | 180 | 45.912022
45.911572 | -89.295357
-89.295363 | 260
259 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 5 | Muci | Pole | | | | 2 , | , | 2 | | 1 | | | | | 1 | | | H | | | | | | 1 | | 1 | _ | | | | | | 1 | H | | + | - | | 182 | 45.906622 | -89.295426 | 99 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | Muci | Pole | | | | 0 | | Ĺ | | | | | | | | | | | | | | | | | ĺ | | | | | | | | | | | 1 |] | | 183 | 45.906172
45.905722 | -89.295431
-89.295437 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | | | | Muck | Pole | | | | 0 | | | | | + | | | + | | | | H | | | | | | | | | | | | | | | | \vdash | - | + | = | | 184 | 45.905722 | | | | Vilas | | DAC & CRS | | | | Pole | | | | 0 | I | | | 186 | 45.913368 | -89.294696 | 281 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | | Pole | | | | 2 | | | | | 4 | | | 1 | ı | | | H | - | + | | | 1 | | | - | | | | | | + | | \vdash | - | + | 4 | | 188 | 45.912918
45.912468 | -89.294701
-89.294707 | 268 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | | Pole | | | | 1 | | | | 1 | 1 | | | 189 | 45.912018 | -89.294713 | 261 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 6 | Muci | Pole | | | | 1 | | | | | 4 | | | 1 | 1 | | | H | | | | | | | | - | | | | 1 | | | | \vdash | - | 4 | - | | 190 | 45.911568
45.911118 | -89.294718
-89.294724 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | | Pole Pole | | | | 0 | | | | 1 | 1 | | | | 1 | | | | | | | | | | | 1 | | | | t | 1 | | | H | | \dagger | 1 | | | | | | Watersmeet | | | | | | Muci | | | | | 0 | Ŧ |] | | 193 | | | | Watersmeet
Watersmeet | | | | | | Muci | | | | | 0 | | | | | 1 | H | 1 | $^+$ | - | | 195 | 45.906168 | -89.294787 | 94 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 195 | 7 | Muci | Pole | | | | 0 | l | L | | | 1 | | | 1 | | | | | | ļ | | | | | | L | | | | | 1 | ļ | | П | 4 | 7 | 7 | | 196 | 45.905718
45.923714 | -89.294792
-89.293920 | 95
169 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 10 | Muci | Pole | | + | 1 | 0 | | 1 | | H | \dashv | | H | + | | Н | + | H | 1 | + | - | Н | 1 | | + | t | | H | 1 | 1 | + | + | | 1 | 1 | + | \dashv | | 198 | 45.923714 | -89.293925 | 164 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | 198 | 1 | | Pole | | | 1 | 3 | 1 | 2 | | | 1 | 1 | | 1 | | | | 2 | | ļ | | | 1 | 1 | | 1 | | | | 1 | 1 | ļ | | 2 | 1 | # | 1 | | 199 | 45.922814
45.922364 | | | Watersmeet
Watersmeet | | | DAC & CRS | | | Muci | | | + | + | 3 | - | 1 | | 1 | + | - | | 1 | + | | 1 | H | - | + | - | H | - | 2 | + | + | + | H | 1 | + | + | + | 2 | 2 | 1 | + | + | | 200 | 45.922364 | | | Watersmeet | | | | | | | | | | 1 | 1 | ļ | | | | 1 | | | | | | | | 1 | 1 | | | 1 | 1 | | 1 | L | | 1 | 1 | 1
| 1 | 1 | | | 1 | 1 | | 202 | 45.921464 | | | Watersmeet | | | | | | | | | + | - | 0 | + | - | - | H | + | - | | + | - | | + | Н | - | + | - | H | - | - | + | - | - | | - | + | + | + | - | H | 1 | + | 4 | | 203 | 45.913364
45.912914 | | | Watersmeet
Watersmeet | | | TWH & EJG | | | Muci | | | | | 0 | | 1 | | | 1 | | | | | | | | | | t | | | | | L | | | | | \dagger | | | | | 1 | | | 205 | 45.912464 | -89.294062 | | | Vilas | 8/6/2012 | TWH & EJG | | 6 | | Pole | | - | -[| 1 | 1 | L | | 1 | \downarrow | | Ц | 1 | Ļ | | + | igert | | + | | | | - | | F | | | | - | + | + | 1 | H | 4 | 4 | 4 | | 206 | 45.912014
45.911564 | | | Watersmeet
Watersmeet | Vilas
Vilas | | TWH & EJG | | | | | | _ | _ | 0 | t | L | L | | _ | 1 | | | t | | \pm | Ħ | | t | t | H | _ | 1 | t | ļ | t | | _ | ╛ | + | t | t | | | † | | | | 45.911114 | -89.294079 | 252 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 208 | 6 | Muci | | | 7 | 1 | 1 | F | F | | H | 4 | | Ц | 1 | 1 | | \perp | H | 1 | F | | | 1 | 1 | F | F | | | | 1 | 1 | F | | H | 7 | 4 | 1 | | 209 | | | | Watersmeet
Watersmeet | | | | | | Muci | Pole
Pole | | | 1 | 1 : | ı | | | | \dashv | + | | + | + | | + | H | + | \dagger | \perp | H | 1 | t | \dagger | l | | | - | + | + | \dagger | \mathbf{l} | H | 1 | + | \forall | | 211 | | | | Watersmeet | | | TWH & EJG | | 6 | Muci | | | | | 0 | | | | | 1 | | | 1 | | | | | | | L | | | | | L | | | | | 1 | | | П | | # | 1 | | 212 | 45.909314
45.908864 | | | Watersmeet
Watersmeet | Vilas | | TWH & EJG | | | Muci | | | + | - | 0 | - | | - | H | + | | H | + | - | Н | 1 | H | - | + | + | | - | - | + | + | | | - | \parallel | + | + | - | Н | + | + | - | | 214 | 45.907064 | -89.294108
-89.294131 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 214 | 6 | Muci | | | | | 0 | ļ | | | | 1 | | | | | | | | 1 | 1 | | | 1 | 1 | | İ | L | | 1 | 1 | 1 | 1 | | | | 1 | 1 | | 215 | | | | Watersmeet
Watersmeet | | | TWH & EJG | | | | | | + | _ | 0 | + | - | | \exists | + | + | | + | - | Н | + | H | + | + | + | H | 1 | 1 | + | + | - | H | 1 | + | + | + | - | Н | 1 | + | + | | | | | | Watersmeet | | | | | | | | | | _ | 0 | 1 | L | | | 1 | t | | 1 | | | t | | | 1 | L | | | 1 | t | t | | | | 1 | 1 | 1 | | | | # | 1 | | 218 | | | | | Vilas | | DAC & CRS | | | | | | - | - | 3 | | | | | + | - | Н | + | - | Н | + | H | + | 3 | - | Н | - | | - | - | | H | - | + | + | - | - | H | 4 | + | + | | 219 | 45.923710 | -89.293275 | 168 | Watersmeet | vilas | 8/b/2012 | DAC & CRS | 219 | 5 | Sand | Pole | | | _1_ | 0 | | | 1 | ш | | | ш | | | ш | | ш | | | 1- | ш | L | | | | | ш | 1 | _1 | | | | ш | | _ | ┙ | | Point Number | atitude (Decimal Degree) | ongitude (Decinal Degree) | | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | onments | Not es | Nuisance | Total Rake Fullness | Myriophyllum spicatum | erasenasene Den | leocharis palustris | lodea canadensis | Equisetum fluviatile | Het eramher a dubia
cemna turionifera | Aegalodonta beckii | Myriophyllum sibir icum | Vajas flexilis
Vitella sp. | Nuphar variegata | Vymphaea odorata
Pontederia cordata | otamogeton amplifolius | otamogeton epihydrus | otamog eton natans | ota mag eton praelangus | Potamogeton pusillus | otamogeton rchhinsii | ota mog eton spirillus | Potamog eton va se yi | ota mog eton zost erifor mis | agittaria latifolia | schoenoplectus tabernaemontani | spanganium emersum
spanganium fluctuans | pir odela polyrhiza | ipha spp. | tricularia vulgaris | Vallisneria americana
Zizania en | Aquatic moss | reshwater sponge | lamentous algae | |--------------|--------------------------|---------------------------|------------|--------------------------|----------------|----------------------|------------|--------------|------------|--------------|--------------|--|--------------|----------|---------------------|-----------------------|-----------------|---------------------|------------------|----------------------|--|--------------------|-------------------------|-------------------------------|------------------|--|------------------------|----------------------|--------------------|-------------------------|----------------------|----------------------|------------------------|-----------------------|------------------------------|---------------------|--------------------------------|--|---------------------|-----------|---------------------|-------------------------------------|--------------|------------------|-----------------| | 220 | 45.923260 | -89.293281 | 165 | Natersmeet | Vilas | 8/6/2012 | DAC & CRS | 220 | 9Q 4 | Muck | Pole | 8 | N | ž | 1 | 2 6 | 5 5 | 1 1 1 | EB | E | žS | Σ | Σ | žŽ | ž | źď | Pc | y a | , v | Pc | A C | y g | , a | Pc | Pc | 8 | × | 8 8 | Š | ۶ | 1 | V VS | , A | 8 | æ | | 22: | 45.922810
45.922360 | -89.293286
-89.293292 | 161
157 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 2 | Muck | Pole | | | | 3 | 1 | 2 | | 1 | | | | | | | 1 | | | | | | | | | 1 | | | | | | 1 | | + | Ŧ | H | | 223 | 45.921910 | -89.293292
-89.293298 | | | Vilas | | | | | Muck | Pole | | | | 0 | | İ | | | | | | | | | | | | | | | ľ | | | 2 | | | | | | | | I | İ | | | 224 | 45.921460 | -89.293303 | 150 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | 3 | Muck | Pole | | | | 2 | 1 | | - | 1 | | | | | | | | | | | | | 1: | 1 | | | | _ | | | | 1 | | + | + | H | | 225 | 45.921010
45.920560 | -89.293309
-89.293315 | 148
141 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 3 | Muck | Pole
Pole | | | | 2 | 1 | | | | | | | | 1 | 1 | | | | | | | 1 | | | | | | | | | 1 | 1 | | İ | | | 22 | 45.913360 | -89.293406 | 279 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 227 | 5 | Muck | Pole | | | | 1 | | - | - | | | | | | | | | | 1 | | | - | - | | | | | + | | | | | - | + | Ŧ | | | 228 | 45.912910
45.912460 | -89.293412
-89.293418 | 276
266 | Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | 228 | 7 | Muck
Muck | Pole
Pole | | | | 1 | | 1 | | 1 | | | | | 1 | | | | | | | | | | | 1 | | | | | | | | ╧ | İ | | | 230 | 45.912010 | -89.293423 | 263 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 6 | Muck | Pole | | | | 0 | _ | \downarrow | Н | | 232 | 45.911560
45.911110 | -89.293429
-89.293435 | 256
253 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | | | 9 | Muck
Muck | Pole
Pole | | | | 0 | t | t | t | | | | | | | | | | | | | 1 | | l | | | | 1 | | | | 1 | | + | t | H | | 233 | 45.910660 | -89.293440 | | | Vilas | | TWH & EJG | | | Muck | Pole | | | | 2 | | 1 | _ | | | | | | | | | | | | | | 2 | | | | | _ | | | | | | Ŧ | ļ | | | 234 | 45.910210
45.909760 | -89.293446
-89.293452 | 246
242 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | Muck
Muck | Pole
Pole | | | | 0 | + | \dagger | \dagger | H | | | H | \vdash | + | H | \vdash | H | | | Н | + | 1 | | H | | 1 | \dagger | | | H | \dashv | + | + | + | H | | 236 | 45.909310 | -89.293458 | 239 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 236 | 7 | Muck | Pole | | | 1 | 1 | 1 | | | 1 | | | | | 1 | | | П | 1 | L | | 1 | 1 | L | | | 1 | 1 | l | L | | 1 | 1 | Į | Į | П | | 237 | 45.908860
45.908410 | -89.293463
-89.293469 | 236
233 | Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 9 | Muck | Pole
Pole | | | + | 0 | + | + | + | Н | | + | H | H | + | H | + | H | + | | H | + | + | + | H | - | 1 | + | \vdash | H | H | + | + | + | + | Н | | 239 | 45.907960 | -89.293469
-89.293475 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 239 | 8 | Muck | Pole | | | | 0 | 1 | ļ | ļ | L | | | L | | 1 | | | | | L | | 1 | 1 | L | | | 1 | 1 | | | | 1 | 1 | Į | Į | П | | 240 | 45.907510
45.907060 | -89.293480
-89.293486 | | | Vilas | | TWH & EJG | | 6 | Rock | Pole
Pole | | | - | 0 | + | + | + | H | 4 | + | | | + | H | + | H | + | | | + | + | + | H | | - | + | + | | H | \dashv | + | + | + | H | | 242 | 45.906610 | -89.293492 | 86 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | Muck | Pole | | | | 0 | I | İ | | | 243 | 45.906160 | -89.293498
-89.293503 | 92
97 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 7 | Muck
Muck | Pole
Pole | | | - | 0 | + | + | + | H | | | | \vdash | + | H | | H | | - | | + | + | - | H | | - | + | + | | Н | \dashv | + | + | + | H | | 245 | 45.905710
45.924606 | -89.293503
-89.292619 | 97
173 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | DAC & CRS | 244 | 3 | Muck
Muck | Pole | | | | 1 | 1 | | | | | | | 1 | 1 | İ | | | 246 | 45.924156 | -89.292624 | | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | 0 | | | NONNAVIGABLE (PLANTS) | Rice | | 4 | | - | - | | | | | | | | | | | | | - | - | | | | | - | | | | | - | + | Ŧ | | | 248 | 45.923706
45.923256 | -89.292630
-89.292636 | 167
166 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | | Muck
Muck | Pole
Pole | | | | 0 | | | | | | | | | | | | | 1 | | | | | | | | | | | | | 1 | | ╧ | İ | | | 249 | 45.922806 | -89.292641 | 160 | Watersmeet | Vilas | 8/6/2012 | | | 5 | Sand | Pole | | | | 1 | | 1 | ļ | Ŧ | | | 250 | 45.922356
45.921906 | -89.292647
-89.292653 | 158
153 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 2 | Muck
Muck | Pole
Pole | | | | 3 | t | 1 | t | 1 | | | | | | | 1 | 2 | | | | + | t | t | | | | + | | | | | 1 | - | t | Н | | 252 | 45.921456 | -89.292659 | 151 | | Vilas | 8/6/2012 | DAC & CRS | | 2 | Muck | Pole | | | | 3 | 2 | | | | | | | | | 1 | | | | | | | 2 | | | | | 1 | 1 | | | | 1 | I | Į | | | 253 |
45.921006
45.920556 | -89.292664
-89.292670 | 147 | Watersmeet | Vilas | 8/6/2012
8/6/2012 | DAC & CRS | 253
254 | 3 | Muck
Muck | Pole
Pole | | | | 1 | 1 | 1 | | 1 | | | | | \parallel | | | | | | | | 1 | | | 1 | | | | | | | 1 | + | t | Ħ | | 255 | 45.920106 | -89.292676 | 140 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | 3 | Sand | Pole | | | | 0 | 1 | | | | | | I | Į | | | 250 | 45.913806
45.913356 | -89.292756
-89.292762 | 329
278 | Watersmeet
Watersmeet | Vilas | | | | 4 | Sand
Muck | Pole
Pole | | | | 0 | t | t | t | | | | | | 1 | | | H | | | | + | t | t | | | | + | | | | 1 | 1 | + | t | Н | | 258 | 45.912906 | -89.292767 | | | Vilas | 8/6/2012 | TWH & EJG | 258 | 5 | Muck | Pole | | | | 0 | I | ļ | | | 259 | 45.912456
45.912006 | -89.292773
-89.292779 | 265
264 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | | Muck
Muck | Pole
Pole | | | | 0 | | + | + | | | | | | 1 | | | | | | | | + | | | | | + | | | | | + | + | + | H | | 26: | 45.911556 | -89.292784 | 255 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | Muck | Pole | | | | 1 | | I | | | | | | | 1 | | | | | | | 1 | | | | | | | | | | | | I | I | | | 262 | 45.911106
45.910656 | -89.292790
-89.292796 | 254
248 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | 262 | 6 | Muck
Muck | Pole
Pole | | | | 0 | + | ł | + | | | | | | + | | | H | | | | + | | | | | | + | | | | | 1 | + | H | H | | 264 | 45.910206 | -89.292802 | 247 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 7 | Muck | Pole | | | | 0 | | I | İ | | | | | | | | | | | | | | | | | | | 1 | | | | | | I | I | | | 265 | 45.909756
45.909306 | | | Watersmeet
Watersmeet | | | TWH & EJG | | | Muck
Muck | Pole
Pole | | | | 0 | - | ١. | + | | | | | | + | | | H | | - | | | | | | _ | | + | | | | | | + | ╁ | H | | 26 | 45.908856 | | | Watersmeet | | | TWH & EJG | | | Muck | Pole | | | | 0 | | 1 | İ | | | 268 | 45.908406 | | | | Vilas | | | | | Muck
Muck | Pole | | | \dashv | 0 | + | + | + | Н | - | + | | H | + | Н | \vdash | H | + | | Н | + | + | | Н | | - | + | + | | H | \dashv | + | + | + | H | | 269 | 45.907956
45.907506 | -89.292830
-89.292836 | 231 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | 269 | 7 | Muck | Pole
Pole | | | | 0 | ļ | | İ | | | | | | | | | | | | | 1 | 1 | | | | 1 | 1 | l | | | 1 | 1 | İ | t | | | 27: | 45.907056 | -89.292842 | | | Vilas | | TWH & EJG | | 6 | Sand | Pole | | | \dashv | 0 | + | + | + | H | | \parallel | L | | + | H | \vdash | H | - | - | Н | + | + | + | H | | - | + | + | L | Н | \dashv | + | + | + | \forall | | 273 | 45.906606
45.906156 | -89.292847
-89.292853 | | Watersmeet
Watersmeet | | | TWH & EJG | | | Muck
Muck | Pole
Pole | | | | 0 | l | t | İ | | | | | | | H | | H | | | | 1 | 1 | | | | | 1 | | | | | 1 | I | İ | Ħ | | 274 | 45.925052 | | | Watersmeet | | | | | 0 | | | NONNAVIGABLE (PLANTS) | Rice | - | 1 | - | - | - | H | | + | | H | | H | \vdash | H | + | | Н | + | + | | Н | | - | + | | | H | \dashv | + | + | + | H | | 279 | 45.924602
45.924152 | -89.291974
-89.291980 | | Watersmeet
Watersmeet | | | | | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | Rice
Rice | | | 1 | t | t | | | | L | | t | | | | | L | | 1 | t | t | | | 1 | 1 | İ | L | | | t | # | t | Ħ | | 27 | 45.922352 | -89.292002 | 159 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | | Sand | Pole | | | -{ | 1 | + | ļ | Ļ | | | | L | | + | H | | \sqcup | 1 | | | + | \downarrow | 1 | | | -[| \downarrow | - | | | \dashv | \downarrow | + | Ŧ | H | | 278 | 45.921452
45.921002 | -89.292014
-89.292020 | 152
146 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 3 | Sand
Muck | Pole
Pole | | | | 3 | 1 | t | t | Ħ | | | L | | 1 | | | Ħ | | t | | | 1 | t | H | | | J | + | L | | _ | 3 | \pm | t | Ħ | | 280 | 45.920552 | -89.292025 | 143 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | 280 | | Muck | Pole | · | | 1 | 1 | Ŧ | F | F | | | 1 | F | | 1 | | | | | | | 1 | Ŧ | | | | 1 | 1 | | | | 7 | Ŧ | Ŧ | F | Ħ | | 28: | 45.920102
45.919652 | | | Watersmeet
Watersmeet | | | DAC & CRS | | 3 | Sand
Muck | Pole
Pole | | | 1 | 0 | \dagger | 1 | t | H | 1 | | | | + | H | | H | | | | \dagger | \dagger | t | H | | 1 | + | + | | H | \dashv | 2 | + | t | H | | 283 | 45.914252 | -89.292105 | 99 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | 283 | 4 | Sand | Pole | | | | 0 | ļ | ļ | | | | | | | ļ | | | П | | | | 1 | 1 | L | Ц | | 1 | 1 | ļ | | | 1 | 1 | Į | Į | П | | 284 | 45.913802
45.913352 | -89.292111
-89.292117 | | Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | | Sand
Muck | Pole
Pole | | | - | 0 | + | + | + | Н | | + | H | H | + | H | \vdash | H | + | | Н | + | + | + | H | - | 1 | + | + | H | H | + | + | + | + | H | | 28 | 45.912902 | -89.292117
-89.292123 | | | Vilas | | | | | Sand | Pole | | | | 0 | 1 | | İ | | | | | | 1 | | | | ļ | L | | 1 | 1 | L | | | 1 | 1 | İ | | | 1 | 1 | I | Į | П | | 287 | 45.912452
45.912002 | -89.292128
-89.292134 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 5 | Sand
Sand | Pole
Pole | | H | \dashv | 0 | + | + | ╁ | Н | | + | H | H | + | H | + | H | + | - | Н | + | + | 1 | Н | | 1 | + | + | L | H | + | 1 | + | + | H | | 289 | 45.912002
45.911552 | -89.292134
-89.292140 | | | | | | | | Muck | Pole | | | | 0 | 1 | ļ | Ĺ | Ħ | | | | | t | | | Ħ | 1 | | | 1 | 1 | İ | | | | 1 | | | | 1 | 1 | Į | ţ | П | | 290 | 45.911102
45.910652 | -89.292145
-89.292151 | | Watersmeet
Watersmeet | | | | | | Muck
Muck | Pole
Pole | | | \dashv | 0 | + | + | + | Н | - | + | | H | + | Н | \vdash | H | + | | Н | + | + | | Н | | - | + | + | | H | \dashv | 1 | + | + | H | | 292 | 45.910052 | | | Watersmeet | | | | | | Muck | | | | | 0 | 1 | İ | İ | | | | | | | | | | | Ĺ | | 1 | 1 | t | | | 1 | 1 | | L | | | | İ | İ | | | Point Number | atitude (Decimal Degree) | ongitude (Decinal Degree) | 0 | Lake Name | County | Date | Field Orew | Point Number | Depth (ft) | sediment | Pole; Rope | onments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | eratophyllum demersum | leocharis palustris | lode a canadens is | Equise tum fluvia tile | Het eranther a dubia
cenna turionifera | degalodonta beddii | Ayriophyllum sibirioum | lajas flexilis
Itelia sp. | Nuphar variegata | Yymphaea odorata
Pontederia cordata | rota mog eton amplifolius | otamog eton epihydrus | otamog eton natans | otamog eton prae longus | otamog eton pusillus | oramogeton robbinsii | otamog eton spirillus | otamog eton va seyi | otamogeton zosteriformis
ne ittaria latifolia | schoenoplectus tabernaemontani | panganum emersum | parganium fluctuans | pir odela polyrhiza | ypha spp.
tricularia vulgaris | Vallsneria americana | izania sp. | Aquatic moss | reshwater sponge | ilamentous algae | |--------------|--------------------------|---------------------------|-----------|--------------------------|----------------|----------------------|------------------------|--------------|------------|----------|--------------|-----------------------|-------|----------|---------------------|-----------------------|-----------------------|---------------------|--------------------|------------------------|---|--------------------|------------------------|------------------------------|------------------|--|---------------------------|-----------------------|--------------------|-------------------------|----------------------|----------------------|-----------------------|---------------------|--|--------------------------------|------------------|---------------------|---------------------|----------------------------------|----------------------|------------|--------------|------------------|------------------| | 293 | 45.909752 | -89.292163 | 56 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | 8 | Muck | Pole | 0 | z | z | 0 | 2 6 | 5 0 | B | 3 | ü | I 3 | 2 | 2 | zz | z | Zá | ď | a. a | ā | á | ď (| ۵۵ | ď | ď | ā 0 | 3 35 | Š | S | 8 1 | - 5 | > | Z | ₹ | <u>a</u> . | Ē | | 294 | 45.909302
45.908852 | -89.292168
-89.292174 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 5 | Muck | Pole | | | | 2 | | 1 | | 1 | | | | | | | | | 1 | | | | 1 | | | | | | | | | 1 | | | - | _ | | 295 | 45.908852
45.908402 | -89.292174
-89.292180 | | | Vilas | 8/6/2012 | | | | | Pole | | | | 1 | | | | 1 | | | | | 1 | | | | | | | 1 | | | 1 | | | | | | | | | | I | | | 297 | 45.907952 | -89.292186 | 5 | Watersmeet | Vilas | 8/6/2012 | | | 6 | Sand | Pole | | | | 0 | | - | | | - | | | | | | | | - | | | + | | | | | - | | | - | | | | - | + | - | | 298 | 45.907502
45.907052 | -89.292191
-89.292197 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | | | Pole | | | | 0 | 300 | 45.906602 | -89.292203 | 88 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 300 | 6 | Muck | Pole | | | | 0 | - | - | | | 4 | | | | | | | | _ | - | | - | - | | | | | | | | - | | | 4 | _ | _ | | 301 | 45.906152
45.925498 | -89.292208
-89.291318 | 90
179 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG
DAC & CRS | 301 | 8 | Muck | Pole | NONNAVIGABLE (PLANTS) | Rice | | 0 | t | t | | | 1 | | | | | | | | | | | t | t | | | | l | | H | | | | | 1 | + | 1 | | 303 | 45.925048 | -89.291323 | | | Vilas | 8/6/2012 | DAC & CRS | | | Muck | | | | | 3 | | - | | | | | | | | | 1 | | - | - | | | | | | 1 | | | | | 1 | | 2 | | _ | _ | | 304 |
45.924598
45.924148 | -89.291329
-89.291335 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | | | 0 | Muck | Pole | NONNAVIGABLE (PLANTS) | Rice | | 3 | t | t | | 2 | 1 | 1 | | | | 1 | | | | | | t | t | | | 1 | l | | H | | 1 1 | | 1 | 1 | + | 1 | | 306 | 45.920998 | -89.291375 | 145 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | 306 | | | | | | | 0 | Ţ | | | 307 | 45.920548
45.920098 | -89.291381
-89.291386 | 144 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 3 | | Pole | | | | 0 | | | | | | | | | | | | | + | | | | | | | 3 | | | | | | | | | + | - | | 309 | 45.919648 | -89.291392 | 135 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | 309 | 3 | Sand | Pole | | | 1 | 0 | 1 | | | | 1 | 1 | | | | | | П | 1 | L | | 1 | l | L | | 1 | L | | | | ļ | L | | 1 | # |] | | 310 | 45.919198
45.914248 | -89.291398
-89.291461 | 133
98 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 4 | | Pole | | | - | 1 | + | + | | , | + | + | H | H | | H | \vdash | H | + | | H | + | + | \vdash | H | + | + | H | H | + | + | 1 | H | + | + | + | | 312 | 45.913798 | -89.291461
-89.291466 | | | Vilas | 8/6/2012 | DAC & CRS | | | | Pole | | | 1 | 2 | 1 | ļ | | Ì | 1 | 1 | L | | 1 | | | | 1 | L | | 1 | 1 | L | | | L | | | | ļ | 2 | | 1 | # | 1 | | 313 | 45.913348
45.912898 | -89.291472
-89.291478 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | | Sand | Pole
Pole | | | | 3 | + | 1 | | 1 | \dashv | + | - | | - | | \vdash | H | + | | | + | 1 | - | | 1 | + | | \dashv | + | + | 3 | H | \dashv | + | + | | 314 | 45.912898
45.912448 | -89.291478
-89.291484 | | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | | | Pole | | | | 0 | | ļ | | 4 | | | | | | | | П | | | | ľ | | | | 1 | | | | | | | | | 1 | 1 | | 316 | 45.911998 | -89.291489
-89.291495 | 77 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | 4 | Sand | Pole | | | - | 3 | + | + | | 1 | - | + | | H | | \vdash | \vdash | Н | - | | Н | - 1 | 2 | - | H | + | | \vdash | H | + | + | 3 | H | - | + | _ | | 317 | 45.911548
45.911098 | -89.291495
-89.291501 | 74
68 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 5 | Muck | Pole | | | | 1 | | 1 | | | | | | | | | | | | | | | | 1 | 1 | | | | | | | 1 | | | | 1 | | 319 | 45.910648 | -89.291507 | 65 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | 5 | Sand | Pole | | | | 1 | | - | | | | | | | 1 | | | | | | | 1 | | 1 | | | | | | | | | | | + | _ | | 320 | 45.910198
45.909748 | -89.291512
-89.291518 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | | | Pole | | | | 0 | 322 | 45.909298 | -89.291524 | | Watersmeet | Vilas | 8/6/2012 | | | | Muck | Pole | | | | 3 | | | | 3 | | | | | | | | | | | | 1 | | | | | | | | | | | | | 4 | _ | | 323 | 45.908848
45.908398 | -89.291529
-89.291535 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | | Muck | Pole | | | | 1 | t | t | | 1 | | | | | | | | \Box | | | | + | | 1 | | | t | | H | | 1 | | | | + | - | | 325 | 45.907948 | -89.291541 | | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | | Muck | Pole | | | | 1 | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | Į | _ | | 326 | 45.907498
45.907048 | -89.291547
-89.291552 | 80 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 8 | Sand | Pole
Pole | | | | 0 | | | | 1 | + | = | | 328 | 45.906598 | -89.291558 | 89 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | | Pole | | | | 0 | Į | _ | | 329 | | -89.290673
-89.290678 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | | | | Muck | Pole | | | | 3 | t | 2 | | 1 | | | | | | | | 1 | | | | + | | | | 2 | t | | H | | 1 | | 1 | | + | - | | 331 | 45.924594 | -89.290684 | | | Vilas | 8/6/2012 | DAC & CRS | 331 | 7 | | Pole | | | | 0 | Į | _ | | 332 | 45.920094
45.919644 | -89.290742
-89.290747 | 137 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | | | Pole | | | | 0 | | + | + | = | | 334 | 45.919194 | -89.290753 | 132 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | | Sand | Pole | | | | 0 | # | | | 335 | 45.918744
45.918294 | -89.290759
-89.290764 | 338 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 5 | Muck | Pole | | | | 0 | v | | | 1 | + | - | | 337 | 45.917844 | -89.290770 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | | Pole | | | | 0 | 45.917394
45.916944 | | | Watersmeet
Watersmeet | | | | | | Muck | | | | | 0 | | + | | | - | | | | | | | | | | | + | | <u> </u> | | | + | | | + | + | 2 | | - | + | - | | | | | | Watersmeet | | | | | | | | | | | 0 | v | 2 | | | 1 | | | 341 | | | | Watersmeet | | 8/6/2012
8/6/2012 | TWH & EJG | | | Muck | | | | 1 | 0 | + | ╁ | | | \dashv | + | - | H | | H | \vdash | Н | + | - | | + | + | H | H | + | + | H | H | + | + | ŀ | H | \dashv | + | + | | 343 | | -89.290805
-89.290810 | 331 | | Vilas | 8/6/2012 | TWH & EJG | | 7 | | Pole | | | 1 | 0 | 1 | İ | | | | | | | | | | | 1 | L | | 1 | | | | | L | | | | İ | L | | | # | | | 344 | | | | Watersmeet
Watersmeet | | 8/6/2012 | DAC & CRS | | | | Pole | | | - | 0 | + | + | | Н | - | + | | H | | \vdash | \vdash | Н | - | | Н | + | + | - | H | + | | \vdash | H | + | + | - | H | - | + | \dashv | | 345 | | | | Watersmeet | | | | | | Sand | | | | | 0 | 1 | İ | | | 1 | 1 | L | | | | | | 1 | | | 1 | | | | | | | | | | L | | 1 | # | 1 | | 347 | | | | Watersmeet | | | | | | | | | | - | 0 | + | ╁ | | | 4 | + | - | Н | | | H | H | + | - | | + | + | - | | + | + | | H | \downarrow | + | L | | 4 | + | + | | | 45.912444
45.911994 | | | Watersmeet
Watersmeet | | | | | | Muck | | | | | 0 | | İ | | | | | | | | | | Ħ | | | | 1 | t | | | | | | | | t | | | | \pm | | | 350 | | -89.290850 | | Watersmeet | | 8/6/2012 | | | | | | | | 1 | 1 | + | + | | 1 | 4 | + | | H | 1 | H | | H | + | | 1 | + | + | - | H | + | - | H | H | + | + | ŀ | H | - | + | - | | 351 | 45.911094
45.910644 | -89.290856
-89.290862 | | | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 5 | | Pole | | | | 2 | 1 | 1 | | | | t | | | 1 2 | | | | 1 | | | 2 | | | | | | | | | | | | | # | 1 | | 353 | 45.910194 | -89.290868 | 59 | Watersmeet | Vilas | 8/6/2012 | | | | | | | | _[| 0 | + | Ļ | | | | \perp | L | | | | | H | + | | | + | - | 1 | | | 1 | | | | + | L | | | \downarrow | - | | 354 | | | | Watersmeet
Watersmeet | | | | | | Muck | Pole | | | _ | 0 | t | İ | L | | ╛ | 1 | L | | 1 | Ħ | | Ħ | 1 | t | | J | t | t | | | t | Ħ | Ħ | | İ | t | | ╛ | # | | | 356 | 45.908844 | -89.290885 | 13 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | 356 | 1 | Sand | | | | | 3 | ļ | I | 1 | 1 | 7 | Ţ | | | | | | П | 1 | | | 1 | Ţ | | | 1 | 1 | 1 | | 1 | ļ | 1 | | 7 | Ŧ | 1 | | 357
358 | 45.908394
45.907944 | -89.290891
-89.290896 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | | | | | | - | 1 | + | 1 | | | - | + | | \vdash | | | \vdash | H | 1 | 1 | | + | 1 | $\frac{1}{1}$ | 1 | + | + | | H | + | + | H | | - | + | 1 | | 359 | | | 2 | Watersmeet | | 8/6/2012 | DAC & CRS | 359 | 5 | Sand | | | | 1 | 0 | 1 | | | | 1 | 1 | | | 1 | | | П | 1 | L | | 1 | ļ | L | | 1 | L | | | | 1 | L | | 1 | # | 7 | | 360
361 | 45.907044
45.906594 | -89.290908
-89.290914 | | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 6 | | | | | - | 0 | + | + | | 1 | + | + | H | H | | H | | H | + | | Н | + | ١, | - | H | + | + | H | H | + | + | H | H | + | + | 1 | | 362 | 45.925490 | -89.290028 | 184 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | 362 | 3 | Sand | Pole | | | | 1 | 1 | 1 | | Ì | | 1 | | | | | | | 1 | | | 1 | 1 | | | 1 | | | | 1 | ļ | | 1 | | # | 1 | | 363 | 45.925040
45.919190 | | | Watersmeet
Watersmeet | | | DAC & CRS | | | Muck | | | | 1 | 2 | + | + | | H | + | + | - | H | + | 1 | 1 1 | H | + | H | H | + | 1 | - | H | 1 | + | H | H | + | 1 | 1 | 2 | + | + | + | | 365 | 45.918740 | | | Watersmeet | | | | | | Muck | | | | | 1 | 1 | I | | 1 | | | | | | Ė | | | | | | | Ĺ | | | 1 | | | | | Ť | 1 | | 1 | I | | | Point Number | atitude (Decimal Degree) | ongitude (Decimal Degree) | 0 | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | onnients | Notes | Nuisance | l otal Kake Fulliness | Brasenia schreberi | Ceratophyllum demersum | leocharis palustris | lodea canaders is | equise tum fluvia tile | Het eranther a dubla
Lemna turionifera | Aegalodonta beckii | Myriophyllum sibirioum | Najas tiexins
Nitella sp. | Nuphar variegata | Vymphaea odorata
Pontederia cordata | otamogeton amplifolius | otamogeton epihydrus | otamogeton foliosus | otamogeton praelongus | Potamog eton pusillus | Potamogeton richardsonii | otamog eton r obbins iii | Potamog eton vaseyi | otamog eton zost erifor mis | agittaria latifolia | Schoenoplectus tabernaemontani | Sparganium emersum | pir odela polymiza | ypha spp. | tricularia vulgaris | Vallisneria americana | izania sp. | Aquetic mass
Freshwater sponge | ilamentous algae | |--------------|--------------------------|---------------------------|------------|--------------------------|----------------|----------------------|------------------------|--------------|------------|--------------|--------------|------------------------|--------------|----------
-----------------------|--------------------|------------------------|---------------------|-------------------|------------------------|---|--------------------|------------------------|------------------------------|------------------|--|------------------------|----------------------|---------------------|-----------------------|-----------------------|--------------------------|--------------------------|---------------------|-----------------------------|---------------------|--------------------------------|--------------------|--------------------|-----------|---------------------|-----------------------|------------|-----------------------------------|------------------| | | 5.918290 | -89.290120 | 129 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | 366 | 3 | Sand | o.
Pole | 0 | z | 2 1 | 1 | 2 8 | 0 | 3 | 3 | ш : | I 3 | 2 | 2 : | 2 2 | z | 2 4 | Ь | Ь | ۵. ۵ | | ۵ | 1 | 4 | | 4 | S | a | or 0 | s or | - | 0 | 1 | 2 4 | | Œ | | | 5.917840
5.917390 | -89.290125
-89.290131 | 128 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | 367 | 3 | Sand | Pole | | | | 1 | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | 1 | | + | H | | | | -89.290137 | | | | 8/6/2012 | | | 4 | Muck | Pole | | | | 1 | | | | | | | | | 1 | | | | | | | | 1 | | | | | | | | | | 1 | | I | | | | 5.916490
5.916040 | -89.290143
-89.290148 | 125
124 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | | Sand | Pole
Pole | | | | 2 | 2 | | + | H | | | 5.915590 | -89.290154 | 123 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | | Muck | Pole | | | | 0 | Ì | | I | | | | 5.915140 | -89.290160 | 122 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | 5 | Sand | Pole | | | | 2 | | | | 1 | | | | | 2 | + | H | | | 5.914690
5.914240 | -89.290166
-89.290171 | 121
96 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | 374 | 4 | Sand | Pole | | | | 0 | -89.290177 | 93 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | | Sand | Pole | | | | 1 | | | | | | | | | | | | | | | | | 1 | | | | | | | - | | | | | + | H | | | 5.913340
5.911990 | -89.290183
-89.290200 | 86
79 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | | Sand | Pole
Pole | | | | 1 | 1 | | İ | | | | | -89.290206 | | | | 8/6/2012 | DAC & CRS | | | Muck | Pole | | | - | 1 | | | | 1 | | | | | 1 | | | 1 | | | | 1 | | 1 | | 1 | | | | | | | | | \downarrow | Н | | | 5.911090
5.910640 | -89.290212
-89.290217 | 70
63 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 5 | Muck | Pole
Pole | | | | 0 | | 1 | | 1 | | + | | | | | | | | | | 1 | | | | | | | | | | | | | t | Ħ | | 382 45 | 5.910190 | -89.290223 | 60 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | 382 | 2 | Sand | Pole | | | | 1 | - | | | 1 | | \bot | | | | | | H | | 1 | ļ | H | | | | | | | | | | | 1 | 1 | Ŧ | \blacksquare | | | 5.909740
5.909290 | -89.290229
-89.290234 | 53
17 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 5 | Muck | Pole
Pole | | \dashv | 1 | 0 | + | H | | 1 | 1 | + | | + | 1 | H | | 1 | H | | + | 1 | 1 | + | | | H | 1 | | | | H | 1 | + | + | \forall | | | 5.908840 | -89.290240 | 18 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | 385 | 3 | Muck | Pole | | 1 | _ | 3 | 2 | 1 | | 1 | 1 | 1 | | | 1 | | 1 | | | 1 | ļ | Ц | 1 | 1 | 1 1 | 1 | | 1 | | L | | | 1 | 1 | Į | П | | | | -89.290257
-89.290263 | | | | 8/6/2012
8/6/2012 | DAC & CRS | | | Muck | Pole
Pole | | + | | 1
D | + | | | H | + | + | | + | + | | \vdash | H | H | + | + | H | - | + | + | 1 | | - | | 1 | | H | + | + | 1 | \forall | | | 5.906590 | -89.290263
-89.290269 | 36 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | Muck | Pole | | | | 0 | | | | | | 1 | | | | | | | | | | | | | | | | | 1 | | | | | 1 | İ | Ħ | | | 5.925936 | -89.289377
-89.289383 | 188
187 | Watersmeet | Vilas
Vilas | 8/6/2012 | DAC & CRS | | | Muck | Pole | | + | + | 3 | + | 2 | - | H | - | + | | + | \perp | H | | 1 | H | - | + | H | - | 1 | ı | | 1 | - | | - | | 1 | - | 1 | + | \dashv | | | 5.925486
5.925036 | -89.289383
-89.289389 | 187 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | DAC & CRS | 390 | 3 | Muck | Pole | | | | 2 | | 1 | | 1 | | | | | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | | 5.924586 | -89.289395 | 185 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | 3 | Muck | Pole | | | - | 0 | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | + | \vdash | | | 5.919186
5.918736 | -89.289464
-89.289469 | 110
111 | | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | | Sand | Pole
Pole | | | | 3 : | | 3 | | | | | | | | 1 | 1 | | | | | | | | | 1 | | | | | | | 2 | | İ | | | 395 45 | 5.918286 | -89.289475 | 112 | Watersmeet | Vilas | 8/6/2012 | | | 4 | Muck | Pole | | | | 1 | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | - | ļ | | | | 5.917836
5.917386 | -89.289481
-89.289487 | 113 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | | Muck | Pole
Pole | | | | 2 | t | | | | | | | | | | | | | | | | | + | | 1 | | | | | | | 2 | | + | H | | | 5.916936 | -89.289492 | 115 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | 3 | Muck | Pole | | | | 2 | | 1 | 2 | | Į | | | | 5.916486
5.916036 | -89.289498
-89.289504 | 116
117 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | 399
400 | 3 | Muck | Pole
Pole | | | | 3 : | L | | | | | | | | | | | | | | | | 2 | + | | | | | | | | | 3 | | + | H | | | 5.915586 | -89.289509 | 118 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | 401 | 3 | Sand | Pole | | | | 1 | | 1 | | 1 | Į | | | | 5.915136
5.914686 | -89.289515
-89.289521 | 119
120 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | | | 3 | Muck | Pole | | | + | 0 | + | | | | | + | | | | | H | | | | | | 2 | + | | | | | | | | | 2 | | + | H | | | 5.914236 | -89.289527 | | | | 8/6/2012 | DAC & CRS | | 4 | Muck | Pole | | | Į, | 0 | | | | | | | | | | | | | | | | | Ì | | | | | | | | | | _ | | I | | | | 5.913786
5.911086 | -89.289532
-89.289567 | 94
71 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | | Sand | Pole | NONNAVIGABLE (PLANTS) | + | + | + | | 1 | | | | + | | | 1 | | | | | | | | | + | | 1 | | | | | | | | | ÷ | H | | | 5.910636 | -89.289573 | 62 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | | Sand | Pole | NORMAVIGABLE (FORM 13) | | | 1 | | | | 1 | | T | | | 1 | | | | | | | 1 | | | 1 1 | | | | | | | | 1 | | İ | | | | 5.910186
5.909736 | -89.289578
-89.289584 | 61
52 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | 408 | 1 | Sand | Pole
Pole | | | | 2 | | | | | | | | | | 1 | | | | | | | | | | | | | 1 | | | | 1 | | + | H | | | 5.909286 | -89.289584
-89.289590 | 20 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | | Sand | Pole | | | - 1 | 2 | | | | 1 | | | | | 1 | | | | | | | 1 | | | 1 | 1 | | | | | | | 2 | | İ | | | | | | | Watersmeet | | | | | | Sand | | | + | - | 0 | | | | | | + | | | | | | | | | | | | - | | | | | | - | | | | + | ╄ | \vdash | | | | | | Watersmeet
Watersmeet | | | | | | Muck
Muck | | | | | 1 | | | | 1 | İ | | | 414 45 | 5.906136 | -89.289630 | 35 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 414 | 6 | Sand | | 1 | \downarrow | 4 | 0 | + | | | | - | + | | | 1 | | | | | - - | + | | | + | - | | | | | | | H | | + | Ŧ | \dashv | | | 5.905236
5.926382 | -89.289642
-89.288727 | 34
194 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG
DAC & CRS | | 0 | Muck | Pole | NONNAVIGABLE (PLANTS) | 1 | | U | l | | | | | t | | | | | | | | | | | | 1 | | | | | | | | | | 1 | İ | | | | | | | | | 8/6/2012 | DAC & CRS | | | Muck | Pale | - | \downarrow | 4 | 2 | + | L | | | -[| + | | \perp | + | | | | | | + | \sqcup | _[| 2 | + | | | _[| | | | H | | + | Ŧ | \dashv | | | | | | Watersmeet
Watersmeet | | | | | | Sand | Pole | NONNAVIGABLE (PLANTS) | _ | ١, | 0 | t | L | L | | ╛ | \pm | L | _ | t | Ħ | | Ħ | Ħ | | t | H | _ | J | t | L | H | _ | | t | L | H | | ľ | t | Ħ | | 420 45 | 5.918732 | -89.288825 | 109 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | 420 | 1 | Sand | Pole | | 7 | 1 | 1 | F | 1 | | H | 1 | 1 | | 1 | | | H | | Ц | 1 | F | Н | | 4 | | | | | - | 1 | | | 1 | Ŧ | Ŧ | H | | | 5.918282
5.917832 | | | Watersmeet
Watersmeet | | 8/6/2012
8/6/2012 | | | | Sand
Sand | Pole
Pole | | + | + | 1 | \dagger | 1 | | 1 | 1 | + | | \dashv | 1 | | H | H | H | \dagger | + | H | 1 | \dagger | 1 | | | 1 | \dagger | ŀ | | | 1 | \dagger | + | H | | 423 45 | 5.917382 | -89.288842 | 106 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | 423 | 3 | Sand | Pole | | 7 | Ţ | 3 | Ŧ | 1 | | 2 | 1 | Ŧ | | 1 | I | П | | П | H | 1 | F | П | 1 | 1 | I | | П | | Ŧ | | | П | 3 | Ŧ | Ŧ | П | | | 5.916932
5.916482 | -89.288848
-89.288853 | 105
104 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 3 | Sand
Sand | Pole
Pole | | \dashv | | 0 | + | H | | H | 1 | + | | + | | H | | H | H | | + | H | 1 | + | | | H | 1 | | | | H | 1 | + | + | \forall | | | | | | | | 8/6/2012 | | | 3 | Muck | Pole | | 1 | ľ | 1 | ļ | | | | 1 | 1 | | | l | | | | | 1 | | Ц | 1 | 1 | ļ | 1 | | 1 | 1 | L | | | 1 | 1 | Į | П | | | | | | Watersmeet
Watersmeet | | | DAC & CRS | | | Muck | Pole
Pole | | + | | 0 | + | 1 | - | 1 |
1 | + | | + | + | H | | Н | H | + | + | H | - | + | | | H | - | + | | | H | 1 | + | + | Н | | | | | | Watersmeet | | | DAC & CRS | | | Rock | | | 1 | Ţ, | 0 | t | Ĺ | | | 1 | | | 1 | İ | | | | | 1 | Ţ | | 1 | 1 | ļ | | | 1 | 1 | | | | 1 | 1 | Į | П | | | | -89.288939
-89.288945 | | Watersmeet
Watersmeet | | 8/6/2012
8/6/2012 | DAC & CRS | | | Sand | | | + | + | 2 | 1 | | - | 1 | - | + | | + | 1 | 1 | 1 | H | | + | + | H | - | + | | | H | - | + | - | | H | | + | + | \dashv | | | | -89.288945
-89.288951 | | | | 8/6/2012 | | | | | Pole
Pole | | 1 | | 0 | t | | | | | | | | | | | | 1 | | t | | | 1 | 1 | | | | | | | | 3 | 1 | İ | Ħ | | | 5.905682 | -89.288991 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 5 | Muck | Pole | | - | _ | 0 | | | | | - | + | | _ | | Н | \vdash | H | Н | \perp | - | Н | - | + | | | H | - | + | | | H | - | + | + | H | | | | -89.288997
-89.289003 | | | | | TWH & EJG | | | Muck | | | 1 | _ | 0 | l | | | | | t | | | | | | | | | | | | 1 | | | | | | | | | | | İ | | | | | | | Watersmeet | | | | | | Muck | | 1 | \downarrow | _ | 2 | + | 1 | | 2 | - | 1 | | | 1 | | 1 | | | - - | + | | | + | - | | | | | | | 1 | | + | Ŧ | \dashv | | 437 45 | | -89.288088 | | | | | DAC & CRS | | | Muck | | | 1 | + | 0 | t | | | H | + | + | H | + | | H | + | + | | + | t | H | _ | $^{+}$ | + | - | H | 1 | + | \dagger | t | H | 1 | 2 | + | Н | | oint Number | .atitude (Decimal Degree) | ongitude (Decimal Degree) | Q | ake Name | County | Date | Held Orew | Joint Number | Depth (ft) | Sediment | Pole; Rope | Control its | Notes | Nuisance | otal Kake Fullness | Arasenia schreberi | Cera toohyllum demers um | leocharis palustris | :lode a canadens is | Equise tum fluvia tile | Het era nther a dubia
cenna turionifera | Megalodonta beddii | Myriophyllum sibiricum | Vajas flexilis
Vitella sp. | Nuphar variegata | Vymphaea odorata
Pontederia cordata | ota mog eton amplifolius | Octamogeton epihydrus | otamog eton natans | | otamogeton pusillus
otamoseton richardsonii | otamog eton robbinsii | otamageton spirillus | otamog eton va seyi | otamageton zost erifor mis | sagittaria latifolia | schoenopiectus tabernaemontani | spanganum emersum
spanganum fluctuans | spir od ela polyrhiza | rypha spp. | | /allkneria americana | Izania sp.
Aquatic moss | reshwater sponge | Flamentous algae | |-------------|---------------------------|---------------------------|-----------|--------------------------|----------------|----------------------|------------------------|--------------|------------|--------------|--------------|--|-------|-----------|--------------------|--------------------|--------------------------|---------------------|---------------------|------------------------|--|--------------------|------------------------|-------------------------------|------------------|--|--------------------------|-----------------------|--------------------|---|--|-----------------------|----------------------|---------------------|----------------------------|----------------------|--------------------------------|--|-----------------------|------------|----|----------------------|----------------------------|------------------|------------------| | 439 | 45.909728 | -89.288295 | 50 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | 439 | 2 | Sand | Pole | | | | 2 | 1 | Ĭ | | | | | | | | Ĺ | 1 | | | | | | Ī | Ĺ | | | | | | | | | | Ŧ | Ĕ | | | 440 | 45.909278
45.908828 | -89.288301
-89.288306 | 24 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | 440 | 7 | Muck
Muck | Pole
Pole | | | | 0 | | | | | | | | | | | | H | | | | | t | | | 1 | + | | | | | | t | t | H | H | | 442 | 45.904778 | -89.288358 | | Watersmeet | Vilas | 8/6/2012 | | | 6 | Muck | Pole | | | | 1 | | 1 | 1 | Į | | | 444 | 45.904328
45.927274 | -89.288364
-89.287426 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG
DAC & CRS | | 6 | Muck | Pole | NONNAVIGABLE (PLANTS) | | | 0 | | | | | | | | | | | | | | + | | | | | | | + | + | | | | | + | + | + | H | | 445 | 45.926824 | -89.287431 | | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | 2 | Muck | Pole | , , | | | 2 | | | | | | | | | | | | 1 | | | | | | | | 1 | | | | | | | | ļ | ļ | | | 446 | 45.926374
45.925924 | -89.287437
-89.287443 | 198 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | 446 | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | Rice | + | + | H | | 448 | 45.925924 | -89.287443
-89.287627 | 48 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | 448 | 8 | Sand | Pole | NUNNAVIGABLE (PLANTS) | | | 0 | I | İ | | | 449 | 45.911074 | -89.287633 | 49 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | 8 | Sand | Pole | | | T | 0 | | | | | | | | | + | | | | | - | | | - | | | | + | + | | | | | + | + | ╄ | | | 450 | 45.910174
45.909724 | -89.287644
-89.287650 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 7 | Muck
Sand | Pole | | | | 0 | İ | | | | 452 | 45.909274 | -89.287656 | | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | | Muck | Pole | | | | 0 | + | Ļ | H | | 453 | 45.904324
45.927270 | -89.287719
-89.286781 | 28 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG
DAC & CRS | | 5 | Muck | Pole | NONNAVIGABLE (PLANTS) | | ľ | 0 | | 1 | | | | | | | t | | | | | | | | | | | | | | | | | | | + | + | H | | 455 | 45.926820 | -89.286787 | 204 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | 0 | | | NONNAVIGABLE (PLANTS) | ļ | ļ | | | 456 | 45.926370
45.925920 | -89.286792
-89.286798 | 201 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | 456
457 | 6 | Sand | Pole | NONNAVIGABLE (PLANTS) | Rice | 1 | 0 | + | + | H | H | \dashv | + | H | H | + | H | + | H | + | | H | + | + | \vdash | H | 1 | + | + | + | H | H | - | + | + | + | Н | | 458 | 45.912420 | -89.286971 | | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | 8 | Sand | Pole | | | | 0 | | | | | 1 | | | | 1 | | | | ļ | L | | 1 | İ | | | 1 | 1 | 1 | | | | 1 | # | 1 | Į | П | | 459 | 45.911970 | -89.286977
-89.286983 | | Watersmeet
Watersmeet | | 8/6/2012
8/6/2012 | DAC & CRS | | 8 | Sand | Pole
Pole | | - | + | 1 | + | 1. | | H | \dashv | | | \vdash | + | H | | H | + | - | H | + | 1 | - | H | - | + | + | + | | | - | + | + | + | Н | | 460 | 45.911520
45.911070 | -89.286983
-89.286988 | 33 | Watersmeet | Vilas
Vilas | 8/6/2012 | DAC & CRS | | | Muck | Pole | | | Ī, | 0 | | 1 | İ | ╘ | | | 462 | 45.910620 | -89.286994 | 29 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | 6 | Muck | Pole | | | | 1 | | | | 1 | | | | | | | | | 1 | | | | | | | | 4 | | | | | | 1 | ¥ | \downarrow | Н | | 463 | 45.910170
45.904770 | -89.287000
-89.287069 | 28 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | DAC & CRS | 463
464 | 7 | Muck
Muck | Pole
Pole | | | 1 | 0 | | | | | | | | | \parallel | | | | | | | | | | | | \dagger | | | | | | | + | t | Ħ | | 465 | 45.904320 | -89.287075 | 2 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 465 | 4 | Muck | Pole | | | | 0 | ļ | ļ | | | 466 | 45.927266
45.926816 | -89.286136
-89.286142 | 206 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | | | | | | | | | | | | | | H | | + | | | + | | | | + | + | | | | | + | + | - | Н | | 468 | 45.926366 | -89.286142
-89.286148 | | Watersmeet | Vilas | 8/6/2012 | | | 3 | Sand | Pole | NUNNAVIGABLE (PLANTS) | | Ī, | 0 | I | İ | | | 469 | 45.912866 | -89.286321 | | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | | Muck | Pole | | | + | 1 | | 1 | | 1 | | | | | - | | | | | | | | | | | | + | | | | | | | + | ╄ | H | | 470 | 45.912416
45.911066 | -89.286326
-89.286344 | 36 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 9 | Sand | Pole | NONNAVIGABLE (PLANTS) | | ľ | 0 | t | t | | | 472 | 45.910616 | -89.286349 | 30 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | 472 | 3 | Muck | Pole | | | - | 2 | | | | | | | | | \parallel | | | | | - | | | 2 | | | | - | + | | | | | - | + | ╄ | | | 473 | 45.904766
45.904316 | -89.286424
-89.286430 | 1 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | 473 | 7 | Muck
Muck | Pole | | | | 1 | | 1 | | | | | | | | | | H | | | | | | | | | | | | | | | ١ | , | + | П | | 475 | 45.927712 | -89.285485 | 208 | Watersmeet | Vilas | 8/6/2012 | | | 0 | | | NONNAVIGABLE (PLANTS) | 1 | | | | | | Ŧ | Į | | | 476 | 45.927262
45.926812 | -89.285491
-89.285497 | 209 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | | | | | | | | | | | + | | | | | | | | | | | | + | | | | | | | + | + | H | | 478 | 45.926362 | -89.285503 | 203 | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | | | | DOCK | | | I | I | I | | | 479 | 45.912862
45.905212 | -89.285676
-89.285774 | 38 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 7 | Sand | Pole
Pole | | | | 0 | | | | | | | | | + |
 | H | | - | | | + | | | | + | + | + | | | | + | + | ╁ | H | | 481 | 45.905212 | -89.285774 | 3 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 481 | 4 | Muck | Pole | | | ľ | 2 | | 1 | 2 | | İ | İ | | | 482 | 45.927708 | -89.284841 | | | Vilas | 8/6/2012 | DAC & CRS | | | Sand | Pole | | | | 0 | | | | | | | | | | | | H | | - | | | | | | | | + | - | | | | | + | Ŧ | H | | 483 | 45.927258
45.912858 | -89.284846
-89.285031 | 212
39 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | 483
484 | 0 | Sand | Pole | NONNAVIGABLE (PLANTS) | | 1 | D | | | | | | | | | | | | H | | | | | | | | | | | | | | | | + | + | П | | 485 | 45.905208 | -89.285129 | | | Vilas | 8/6/2012 | TWH & EJG | 485 | 5 | Muck | Pole | | | | 0 | _ | | | | | - | Ŧ | ļ | | | 486 | 45.927704
45.927254 | -89.284196
-89.284201 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 3 | Muck | Pole | NONNAVIGABLE (PLANTS) | | - 1 | 2 | | | | | 1 | | | | | | 1 | | | + | | | | | | | + | - | 1 | | | | + | + | + | H | | 488 | 45.912854 | -89.284387 | | | Vilas | 8/6/2012 | DAC & CRS | | | Sand | Pole | | | 1 | 1 | | 1 | | | | | L | | 1 | | | | | | | ļ | | | | | 1 | 1 | | | | | 1 | # | Į | | | 489 | 45.904754
45.927700 | -89.284491
-89.283551 | 8
215 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | 489 | 4 | Muck
Sar | Pole | | + | 1 | 1 | + | 1 | H | Н | \dashv | + | H | H | + | H | 1 | H | + | l | Н | + | + | - | H | 1 | + | + | + | 1 | H | 1 | + | + | + | H | | 491 | 45.912850 | -89.283742 | | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | 8 | Sand | Pole | | | ľ | 0 | | L | | | | 1 | L | | | | | П | | | П | | L | | | | 1 | 1 | | | | | 1 | # | Į | П | | 492 | 45.904750 | -89.283846
-89.283097 | | Watersmeet
Watersmeet | | | TWH & EJG | | 5 | Muck | Pole | | - | + | 0 | + | + | | H | \dashv | + | | H | + | | + | H | + | + | Н | + | + | \vdash | Н | - | + | + | + | | | - | + | + | + | Н | | 493 | 45.912846
45.904746 | -89.283097
-89.283202 | | | Vilas
Vilas | 8/6/2012 | DAC & CRS | | | Sand
Muck | Pole | | | ľ | 1 | | L | | | | | | | | | | П | 1 | | П | | t | | | | 1 | 1 | 1 | | | | 1 | 1 | İ | Ħ | | 495 | 45.912842 | -89.282453 | | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | | Sand | Pole | | | + | 0 | + | - | | H | - | + | L | H | + | | \vdash | H | + | - | Н | + | + | - | H | - | + | + | + | L | H | | + | + | + | H | | 496 | 45.904742
45.904292 | -89.282557
-89.282563 | 11 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | 496 | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | 1 | 1 | l | t | L | | | ┇ | L | | t | | | | | L | | 1 | İ | L | | | 1 | 1 | l | L | | | 1 | 1 | t | Ħ | | 498 | 45.913288 | -89.281802 | | Watersmeet | Vilas | 8/6/2012 | DAC & CRS | 498 | 7 | Sand | Pole | | | Ţ | 0 | | F | F | H | 1 | | L | H | | | | \square | | | Н | Ţ | | L | H | J | Ŧ | Ţ | | | | I | Ţ | Ŧ | Ļ | H | | 499 | 45.912838
45.905188 | -89.281808
-89.281907 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | DAC & CRS | | 0 | Muck | Pole | DOCK | | + | 1 | + | t | H | Н | 1 | | H | H | + | | \vdash | H | + | | H | | + | | H | 1 | + | \dagger | + | | H | 1 | - | 1 | + | H | | 501 | 45.904738 | | | Watersmeet | Vilas | | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) | | 1 | 1 | ļ | | | | 1 | | | | 1 | | | П | 1 | L | | 1 | ļ | L | | 1 | 1 | ļ | ļ | L | | 1 | Ţ | ‡ | Į | П | | 502 | 45.904288 | -89.281918
-89.281152 | | Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 6 | Sand | Pole | NONNAVIGABLE (PLANTS) | - | + | 0 | - | + | | Н | - | + | | H | | | \vdash | H | + | | H | + | - | | H | | + | + | - | | H | - | + | + | + | Н | | 503 | 45.913734
45.913284 | -89.281152
-89.281158 | | Watersmeet
Watersmeet | Vilas | 8/6/2012 | DAC & CRS | | | Sand | Pole | | | ľ | 0 | 1 | | | | | \dagger | İ | İ | Ħ | | 505 | 45.905634 | -89.281256 | | Watersmeet | Vilas | 8/6/2012 | | | | Muck | Pole | | | - - | 2 | 1 | 1 | | H | 4 | + | L | Ш | 1 | 1 | $oxed{-}$ | H | + | | Н | 1 | F | L | H | -[| 4 | 4 | + | 1 | Ц | -[| 4 | 2 | Ŧ | \mathbb{H} | | 506 | 45.905184
45.904734 | -89.281262
-89.281268 | 14 | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 5 | Muck | Pole | NONNAVIGABLE (PLANTS) | 1 | 1 | 1 | + | 1 | | | 1 | + | | | 1 | | 1 | H | | + | | \dagger | H | \vdash | | - | + | \dagger | + | | H | 1 | - 1 | t | t | H | | 508 | 45.905630 | -89.280612 | 47 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 508 | 0 | | | NONNAVIGABLE (PLANTS) | | Ţ | Ţ | I | I | | | 7 | Ŧ | | | I | | | П | Ŧ | | П | I | I | L | | 1 | 1 | Ţ | I | | | | Ŧ | Ŧ | F | П | | 509 | 45.905180
45.904730 | -89.280617
-89.280623 | | Watersmeet
Watersmeet | Vilas
Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | \dagger | \dagger | + | t | H | Н | 1 | | H | H | + | | \vdash | H | + | | H | | + | | H | 1 | + | \dagger | + | | H | 1 | + | + | + | H | | 511 | 45.906076 | | | | | | TWH & EJG | | | Muck | Pole | | | Ī | 1 | Ī | Ι | | | | T | | | 1 1 | | | П | | Ι | | I | I | | | | T | I | I | 1 | | 1 | | ı | | | | Point Number | Latitude (Decimal Degree) | Longitude (Decinal Degree) | QI | Lake Name | County | Date | Field Grew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes
Nuisance | Total Rake Fullness | Myriophyllum spicatum | Brasenia schre beri | Ceratophyllum demersum | Elodea canadensis | Equise tum fluvia tile | Het eranther a dubia | Lemna turionifera | Megalodonta beckii | Myriophyllum sibirioum | Najas flexilis
Nitolia sp. | Nuphar variegata | Nymphaea odorata | Pontederia cordata | Potamog eton amplifolius | Potamog eton epihydrus | Potamogeton rains us
Potamogeton natans | Potamog eton prae longus | Potamog eton pusillus | Potamog eton richards on ii | Pota mog eton r obbins ii | Potamog eton spirillus | Potamog eton vase yi | Potamogeton zostemorms | Sagritta na latriolia | Schoelighectus tabellioelloitalli | Sparganium flucturar | Spirodela polymiza | Typha sap. | Utricularia vulgaris | Vallisneria americana | Zizania sp. | Aquatic moss | Freshwater sponge | Filamentous algae | |--------------|---------------------------|----------------------------|----------|--------------------------|--------|----------------------|------------|--------------|------------|----------|------------|--|-------------------|---------------------|-----------------------|---------------------|------------------------|-------------------|------------------------|----------------------|-------------------|--------------------|------------------------|-------------------------------|------------------|------------------|--------------------|--------------------------|------------------------|--|--------------------------|-----------------------|-----------------------------|---------------------------|------------------------|----------------------|------------------------|-----------------------|-----------------------------------|----------------------|--------------------|------------|----------------------|-----------------------|-------------|--------------|-------------------|-------------------| | 512 | 45.905626 | -89.279967 | 48 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 512 | 0 | | | NONNAVIGABLE (PLANTS) | 1 | 1 | Ļ | | | | | Ľ | Ш | | | 513 | 45.905176 | -89.279973 | 49 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 513 | 0 | | | NONNAVIGABLE (PLANTS) | 1 | 1 | | 1 | 1 | ļ | | | | | Ľ | Ш | Ш | | 514 | 45.906072 | -89.279317 | 50 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 514 | 0 | | | NONNAVIGABLE (PLANTS) | | | | | | | | | | _ | | | | | | | | 1 | | | | | | 1 | 1 | | | | 4 | | | | | Ľ | Ш | Ш | | 515 | 45.905622 | -89.279323 | 17 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 515 | 3 | Muck | Pole | | | 1 | | 1 | | | | | | 4 | | 1 | 1 | | | | | | | | | | | 4 | 4 | | - | - | 1 | | | | | Н | Ш | Н | | 516 | 45.905172 | -89.279328 | 51 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 516 | 0 | | | NONNAVIGABLE (PLANTS) | | | _ | 4 | # | + | | H | | 4 | 4 | | - | - | - | | | | + | | | _ | 4 | + | + | + | + | + | + | + | - | | - | ۳ | Н | Н | | 517 | 45.907418 | -89.278655 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) | | | | - | + | - | | Н | | + | + | | | | H | | + | + | + | | | | + | + | + | + | + | + | + | + | | | = | H | Н | Н | | 518 | 45.906968 | -89.278660 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) | | | | | - | | | | | - | - | | | - | | | | + | - | | | | - | + | + | - | + | + | + | + | - | | | H | Н | H | | 519 | 45.906518 | -89.278666 | 59 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) | | | - | + | + | + | + | Н | | + | + | | ╁ | - | - | | + | + | ╁ | | | - | + | + | + | + | + | + | + | + | - | | \dashv | ۲ | Н | Н | | 520 | 45.906068 | -89.278672 | 18 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 6 | Muck | Pole | | | 0 | | + | + | | | H | - | + | + | | - | | H | | + | t | + | | | | + | + | + | + | + | + | + | + | | | H | H | H | H | | 521 | 45.905618 | -89.278678 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) | | | - | + | + | + | + | H | | \dashv | + | | + | - | - | | + | + | ╁ | | | - | + | + | + | + | + | + | ╁ | + | - | | _ | H | H | Н | | 522 | 45.905168 | -89.278684 | 52 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) | | | | + | + | + | | H | | + | + | | ۲ | | H | H | + | | + | | | | + | + | + | + | + | + | + | + | | | H | H | H | H
 | 523 | 45.906964
45.906514 | -89.278016
-89.278022 | 62
19 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 2 | | Pole | NONNAVIGABLE (PLANTS) | | | - | + | + | + | | H | | + | 1 | | | - | <u> </u> | | | t | + | | | - | 1 | † | † | + | + | + | + | + | ١. | | | H | H | H | | 524 | 45.906064 | -89.278022
-89.278028 | 19 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | Muck | Pole | NONNAVIGABLE (PLANTS) | | 3 | | + | 3 | t | T | Н | | 1 | T | | t | | r | | 1 | | t | | | | T | Ť | Ť | Ť | t | t | t | T | 1 | | T | Г | H | Ħ | | 526 | 45.905014 | -89.278028
-89.278033 | 55 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) | | | | + | Ť | t | T | Н | | 1 | T | | t | | r | | 1 | | t | | | | T | Ť | Ť | Ť | t | t | t | T | | | T | Г | H | Ħ | | 527 | 45.905164 | -89.278039 | 54 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) | | | | T | Ť | t | t | Ħ | | 1 | 1 | | t | | | | | T | t | | | | 1 | Ť | Ť | T | t | t | t | t | | | T | Г | П | Ħ | | 528 | 45.906960 | -89.277371 | 63 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) | | | | T | Ť | T | T | Ħ | | T | | | T | | | | | | t | | | | | T | T | T | Ť | Ť | Ť | T | | | T | Г | П | | | 529 | 45.906510 | -89.277377 | 65 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) | T | T | | İ | İ | T | | | | | Г | П | | | 530 | 45.906060 | -89.277383 | 20 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 5 | Muck | Pole | | | 1 | | | | | | | | | | | 1 | | | | | | | | | | | | | | İ | İ | T | | | | | Г | | | | 531 | 45.905610 | -89.277389 | 57 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 531 | 0 | | | NONNAVIGABLE (PLANTS) | 532 | 45.906955 | -89.276727 | 64 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 532 | 0 | | | NONNAVIGABLE (PLANTS) | 533 | 45.906505 | -89.276733 | 66 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 533 | 0 | | | NONNAVIGABLE (PLANTS) | ╧ | | | | | L, | Ш | | | 534 | 45.906055 | -89.276738 | 21 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 534 | 5 | Muck | Pole | | | 2 | | | | | | | | | | | 1 | | | | | | | | | | | | | | 1 | 1 | 1 | 1 | 1 | | 2 | Ľ | Ш | Ш | | 535 | 45.905605 | -89.276744 | 58 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 535 | 0 | | | NONNAVIGABLE (PLANTS) | 1 | 1 | | 1 | 1 | ļ | | | | | Ľ | Ш | Ш | | 536 | 45.906501 | -89.276088 | 67 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 536 | 0 | | | NONNAVIGABLE (PLANTS) | | | | 4 | 4 | - | | | | 4 | _ | | - | | | | | | - | | | | _ | 4 | 4 | - | 4 | 4 | 4 | - | | | - | Ľ | ш | Щ | | 537 | 45.906051 | -89.276094 | 22 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 537 | 6 | Muck | Pole | | | 0 | | 4 | 4 | + | - | Н | | 4 | 4 | | - | | | | _ | + | + | | | | 4 | 4 | 4 | + | + | + | + | + | | | \dashv | 닏 | Ш | Н | | 538 | 45.906497 | -89.275443 | 68 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 538 | 0 | | | NONNAVIGABLE (PLANTS) | | | _ | 4 | # | + | | H | | 4 | 4 | | - | - | - | | | | + | | | _ | 4 | + | + | + | + | + | + | + | - | | - | ۳ | Н | Н | | 539 | 45.906047 | -89.275449 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 5 | Muck | Pole | | | 0 | | - | + | - | | Н | | + | + | | | | H | | _ | + | + | | | | + | + | + | + | + | + | + | + | | | = | H | Н | Н | | 540 | 45.905597 | -89.275455 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) | | | - | + | + | + | + | Н | | + | + | | ╁ | - | - | | + | + | ╁ | | | - | + | + | + | + | + | + | + | + | - | | \dashv | ۲ | Н | Н | | 541 | 45.906043 | -89.274805 | 69 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) | | | | + | + | + | + | H | | + | + | | | | | | + | | + | | | | + | + | + | + | + | + | + | + | | | \exists | H | Н | H | | 542 | 45.905593 | -89.274810 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) | | | - | + | + | + | + | H | | \dashv | + | | + | - | - | | + | + | ╁ | | | - | + | + | + | + | + | + | ╁ | + | - | | _ | H | H | Н | | 543 | 45.906039 | -89.274160 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | | | | NONNAVIGABLE (PLANTS) | | | | + | + | + | | H | | + | + | | ۲ | | H | H | + | | + | | | | + | + | + | + | + | + | + | + | | | H | H | H | H | | 544 | 45.905589
45.906035 | -89.274166
-89.273515 | 24 | Watersmeet
Watersmeet | Vilas | 8/6/2012
8/6/2012 | TWH & EJG | | 6 | Muck | Pole | | | 0 | - | + | $^{+}$ | + | | H | | + | 1 | | | - | <u> </u> | | | t | + | | | - | 1 | † | † | + | $^{+}$ | $^{+}$ | + | + | - | | | H | H | H | | 545 | 45.906035
45.905585 | -89.273515
-89.273521 | 73 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 3 | MUCK | role | NONNAVIGABLE (PLANTS) | | 1 | 7 | \dagger | \dagger | t | t | H | 7 | + | † | t | t | H | H | H | 1 | t | t | | Н | 7 | † | † | † | t | t | t | t | \dagger | H | F | _ | Г | П | H | | 546 | 45.905585 | -89.273521
-89.272877 | 74 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | | 1 | t | t | t | t | Ħ | | 1 | 1 | + | | t | t | H | 1 | t | t | H | | 1 | 1 | t | t | t | t | t | \dagger | t | t | | T | r | П | H | | 548 | 45.905581 | -89.272232 | | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 5 | Murk | Pole | NO MANUABLE (PLANTS) | | 0 | t | 1 | Ť | t | | Ħ | \exists | 1 | T | t | | t | Ħ | Ħ | 1 | T | t | | | t | T | Ť | Ť | t | t | t | t | t | t | Ħ | Ħ | П | П | Ħ | | 549 | 45.905127 | -89.272238 | 75 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 549 | 0 | | | NONNAVIGABLE (PLANTS) | | | | T | Ť | T | T | П | | T | T | | | l | | | 1 | T | | | П | | T | Ť | Ť | T | Ť | Ť | T | | l | | T | Г | П | П | | 550 | 45.906023 | -89.271582 | 77 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) | | | T | 1 | 1 | T | T | П | | T | T | | T | | | | T | T | T | | | T | T | Ť | Ť | T | | | T | T | | Г | ٦ | Г | П | | | 551 | 45.905573 | -89.271588 | 76 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | | 0 | | | NONNAVIGABLE (PLANTS) | | | T | 1 | 1 | T | T | П | | T | T | | T | | | | T | T | T | | | T | T | Ť | Ť | T | | | T | T | | Г | ٦ | Г | П | | | 552 | 45.906919 | -89.270925 | 79 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 552 | 0 | | | NONNAVIGABLE (PLANTS) | T | T | | İ | İ | T | | | | | П | П | П | | 553 | 45.906469 | -89.270931 | 78 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 553 | 0 | | | NONNAVIGABLE (PLANTS) | | | | | | | L | | | | | | | | | | | l | | | | | | | | | | | I | l | | | | | | | | 554 | 45.906019 | -89.270937 | 27 | Watersmeet | Vilas | 8/6/2012 | TWH & EJG | 554 | 5 | Muck | Pole | | | 0 | Ī | T | | | | Π | | T | T | | | | | | T | | | | | Ī | T | | | | ſ | ſ | | | | | | ٦ | ٦٦ | 17 | ## **APPENDIX F** 2017 Aquatic Plant Survey Data | March Marc | П | s) | (soo. | E | | | | | | | = | | | nis | | r. acaule | T | П | |---|--------------|----------------------------|---------------|----------|----------------|--------|-----------|------------|--------------|------------|----------|--------------|--------------------|-------|----------|---------------------|-----------------------|--------------------|-----------|-------------------------|-----------------------|-------------------|-----------|-----------|--------------|------------------|------------------|--------------------|--------------------------|-----------------------|-------------------------|-----------------------|--------------------|--------------------------|--------------------------|---|----------------------
-----------------------| | March Marc | Point Number | Latitude (Decimal Degrees) | ngitude | a | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fuliness | Myriophyllum spicatum | Brasenia schreberi | domore | Ceratophyllum echinatur | Eleocharis acicularis | Elodea canadensis | | | Nitella spp. | Nuphar variegata | Nymphaea odorata | Pontederia cordata | Potamogeton ampilitolius | Potamogeton epihydrus | Potamogeton richardsoni | Potamogeton robbinsii | Potamogeton vaseyi | Potamogeton z osteriforn | Sagittaria sp. (rosette) | Sparganium emersum va
Sparganium fluctuans | Utricularia vulgaris | Vallisneria americana | | A. CARRES C | 1 | 45.898212 | | | Cranberry Lake | Vilas | 8/14/2017 | LJS & JBS | 1 | | | Pole | SAMPLED | | | 0 | Į | I | | | Marches Marc | 3 | | | | | | | | 3 | 7 | Sand | Pole | | | | 3 | | H | + | t | | 3 | 1 | 2 | - | | 1 | | | | | | | | | + | t | 1 | | A. SHEEP CHANGE A. COMMAND AND AND AND AND AND AND AND AND AND | 4 | | | | | | | | 4 | 4 | Rock | Pole | | | | 0 | I | I | | | 1.4 HOURS 1.5 MOVE | 5 | | | | | | | | 5 | 6 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | | | | \blacksquare | | + | + | Н | | A. MARCIN A. MONEY A. M. MARCIN A. M. | 7 | | | | | | | | 7 | 7 | Sand | Pole | | | | 0 | | | | | | | | | Ī | | | | | | | | | | | 1 | İ | | | Mathematical Math | | | | | | | | | 8 | | Sand | Pole | | | | | | H | | - | | | - | + | + | | | | | | | | | | | + | ł | H | | 1. 1. 1. | | | | | | | | | Ť | | Rock | Pole | | | | Ť | + | | Ħ | | 13. A. MARCINE . MATTER ST. C. | 11 | 45.897478 | | | | | | | | | Sand | Pole | SAMPLED | | | 0 | ļ | \square | | 1. 1. 1. 1. 1. 1. 1. 1. | | | | | | | | | | | Muck | Pole | + | + | H | | March Marc | | | | | | | | | | 5 | Sand | Pole | | | | 1 | I | I | 1 | | 1. March | | | | | | | | | | 5 | Sand | Pole | | | ŀ | 2 | | | | + | | | | | - | | - | | 1 | | _ | | | H | _ | + | + | 2 | | M. A. MARTINE A. MARTINE LINEAR SILE S. P. R. B. B. B. SARRETON S. B. B. B. B. B. SARRETON S. B. B. B. B. B. B. B. SARRETON S. B. | | | | | | | | | | 4 | Sand | Pole
Pole | | | ŀ | 0 | | H | _ | | 2 | | | 1 | ľ | | | _ | t | | H | t | t | H | | $^{+}$ | t | H | | 24 100000 25 25 25 25 25 25 25 | | | -89.174973 2 | | | | 8/14/2017 | LJS & JBS | | 7 | Rock | Pole | | | | | | П | 1 | I | | | 7 | 1 | I | | 1 | | 1 | | \Box | 1 | I | П | 7 | Ŧ | Ŧ | Р | | 14 15 15 15 15 15 15 15 | | | 00.114000 1 | | | | | | 19 | 6 | Rock | Pole | | | - | | | H | + | + | - | H | + | + | + | Н | + | 1 | + | - | \dashv | | - | Н | \dashv | + | + | H | | A. Serier C. S | | | | | | | | | 21 | 6 | Sand | Pole | | | L | Ť | | | | t | | | | 1 | t | | | | t | | | 1 | T | | | # | t | 2 | | Section Section Property Color Section | | | | | | | | | 22 | 13 | Sand | Pole | | | - | 0 | | | + | + | | | \dashv | + | - | | - | - | + | - | \parallel | - | - | \parallel | \dashv | + | + | \vdash | | A SAME A STORM A STORM A STORM A SAME | | | | | | | | | 23 | 10 | Sand | Pole | | | - | Ť | | \exists | + | | | Н | \dashv | + | + | Н | | 1 | + | 1 | | | | Н | | + | + | H | | 24 - 68505 4 - 61750 7 10 Content Lab - | | | | | - | | | | 25 | 12 | Muck | Pole | | | | 0 | | | | T | | | 1 | 1 | T | | | 1 | ļ | | | 1 | l | | | # | I | Ħ | | 3 645000 3 017500 10 Communication National Section 1 1 May 10 1 1 May 10 1 1 May 10 1 1 May 10 | | | | | | | | | 26 | 12 | Muck | Pole | | | | 0 | | | - | + | | | | - | | | | | | | | | | | | + | + | Н | | 20 | | | | | | | | | 27 | 13 | Muck | Pole | | | | 0 | | | | + | | | | | | H | | | | | Ħ | | | H | | + | \dagger | H | | 1. 1. 1. 1. 1. 1. 1. 1. | | | | | | | | | 29 | 12 | Muck | Pole | | | | 0 | I | Į | | | 2 | | | | | | | | | | - | Sand | Pole | | | | | | H | + | + | | | | + | - | | + | | | | | | | | | + | ╁ | - | | 24 | | | | | | | | | | 5 | | Pole | 3 | | | | 1 | İ | | | 8 6 500000 98 17979 12 Contemp. Lab Viss 8 14007 LIS 8,95 35 7 Seed Prop. SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | 33 | 6 | Sand | Pole | | | | | | | | | | | | | - | | | | | | | | | | | + | + | H | | 98 45 500000 - 49 173000 - 49 Contemy Law - Value - 8 140077 - Lis A. 85 - 38 - 18 - MAN-PLED | | | | | | | | | 1 | 5 | Sand | Pole | | | | Ť | | H | | t | | | 1 | | t | | | | | | H | | | | | + | + | H | | 30 4 550910 30 17000 72 Combeny Labe Viss N14007 US 8 30 13 Max Pac SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | Muck | Pole | I | I | | | 98 6.567463 46.71407 82 Combeny Lists Vists B142071 U.S. 8.65 10 15 Mod. Pols SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | 37 | | Muck | Pole | | | ŀ | | | | | + | | | | | - | | - | | | | _ | | | H | _ | + | + | \vdash | | 6. 65.56576. 48.176072 89 Comberny Lake Viss. 8142017 Li S. 8.85 4.0 14 Most. Prof. 5AMPLED 0. 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | 38 | | Muck | Pole | | | | | | Ħ | | T | | | | | | | 1 | | | | | | | П | | + | t | h | | 42 45.585033 49.174004 103 Careberry Lake Viss 8140077 LJS 8.885 42 13 Mac Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 45.896743 | | | | | | | 40 | 14 | Muck | Pole | SAMPLED | | | 0 | ļ | \square | | 43 46.89453 -86.174600 107 Cranberry Lake Viss 8142017 LIS 8.895 43 12 More Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | Muck | Pole | | | | 0 | | | | + | | | | + | t | | | | | | | | | | | + | + | H | | 48 45.98143 -89.174090 121 Cramberry Labe Vilas 914/2017 LIS 8.JBS 46 12 Mack Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | Muck | Pole | Orum EED | | | 0 | I | İ | | | 46 45.892422 -89.174091 149 Cramberry Lake Vilas 8142017 U.S 8.J8S 45 11 Sand Pole SAMPLED 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 | - | | | | | | | | | | | + | + | H | | 45 45 591705 49 172910 13 Cramberry Lake Vilas 8 1442017 U.S & JBS 49 18 61 Rock Pole SAMPLED 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | | | Ť | | | | | | | | | H | | | | | | | | | | | + | t | H | | 49 45 901775 - 89 172921 16 Cramberry Lake Vilas 814/2017 LIS & JBS 50 14 Muck Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | 2 | Sand | Pole | | | | 1 | | | | | 1 | | | | | | | | | | | | | | | Į | Į | 1 | | 50 45 901055 -89 172942 43 Cranberry Lake Vilas 814/2017 LIS & JBS 50 14 Muck Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | Rock | Pole | | | | | | | | | | | | | | | | | 1 | | | | | | | + | + | 2 | | 52 45.898955 -89.172954 65 Cranberry Lake Vilas 81/4/2017 LIS & JBS 52 14 Muck Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | Sand | Pole | | | | 0 | İ | | | \$\frac{4}{5} \frac{4}{5} \frac{8}{8} \frac{8}{6} \frac{1}{2} \frac{1}{6} \frac{1}{2} \frac | 51 | 45.900335 | | | | | | LJS & JBS | 51 | 14 | Muck | Pole | | | | 0 | ļ | | | 54 45.898175 -89.172976 83 Cranberry Lake Vilas 81/4/2017 LIS & JBS 55 14 Muck Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | 14 | Muck | Pole | | | - | 0 | | H | + | + | - | H | + | + | + | Н | + | 1 | + | - | \dashv | | + | H | \dashv | + | + | H | | 56 45.896735 -89.172996 88 Cranberry Lake Vilas 81/4/2017 LIS & JBS 55 14 Muck Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | 14 | Muck | Pole | | | L | 0 | | | | | | | | | t | | | | | | | | | | | 1 | İ | Ħ | | 57 45.896015 -89.173007 95 Cramberry Lake Vilas 81442017 LIS 8 JBS 57 13 Muck Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | Muck | Pole | | | | 0 | | \sqcup | 4 | L | | Н | 4 | + | 1 | H | 4 | -[| ŀ | | \sqcup | - | | H | - | + | Ŧ | $oldsymbol{\sqcup}$ | | 58 45.993295 -89.173017 102 Cramberry Lake Vilas 81/4/2017 LIS 8.JBS 59 13 Muck Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | \vdash | 0 | | H | + | + | | | \dashv | \dagger | \dagger | H | + | 1 | + | | H | t | t | H | \dashv | + | + | H | | 60 45.893855 -89.173039 116 Cranberry Lake Vilas 8/14/2017 LIS & JBS 60 13 Muck Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 | | | 1 | 1 | 1 | | | 1 | | | | 1 | Į | Ħ | | 61 45.893135 -89.173049 122 Cranberry Lake Vilas 8/14/2017 LJS & JBS 61 13 Muck Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | \vdash | | | H | + | + | | H | + | + | + | Н | - | + | + | - | H | + | + | H | \dashv | + | + | H | | 62 45.892415 -89.173050 148 Cranberry Lake Vilas 81/4/2017 LIS & JBS 62 9 Sand Pole SAMPLED 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | | L | | L | | 1 | t | L | | | 1 | t | | | 1 | İ | L | | 1 | t | | | 1 | 1 | Ħ | | 64 45.890975 -89.173081 173 Cramberry Lake Vilas 8/14/2017 LIS & JBS 64 0 NONNAVIGABLE (PLANTS) 65 45.902487 -89.171879 12 Cramberry Lake Vilas 8/14/2017 LIS & JBS 65 8 Sand Pole SAMPLED 0 66 45.901767 -89.171990 17 Cramberry Lake Vilas 8/14/2017 LIS & JBS 66 14 Muck Pole SAMPLED 0 67 45.901048 -89.171901 35 Cramberry Lake Vilas 8/14/2017 LIS & JBS 67 14 Muck Pole SAMPLED 0 68 45.901767 -89.171990 35 Cramberry Lake Vilas 8/14/2017 LIS & JBS 67 14 Muck Pole SAMPLED 0 69 45.901048 -89.171901 35 Cramberry Lake Vilas 8/14/2017 LIS & JBS 67 14 Muck Pole SAMPLED 0 69 45.901048 -89.171901 35 Cramberry Lake Vilas 8/14/2017 LIS & JBS 67 14 Muck Pole SAMPLED 0 69 45.901048 -89.171901 35 Cramberry Lake Vilas 8/14/2017 LIS & JBS 67 14 Muck Pole SAMPLED 0 60 45.901048 -89.171901 35
Cramberry Lake Vilas 8/14/2017 LIS & JBS 67 14 Muck Pole SAMPLED 0 60 45.901048 -89.171901 35 Cramberry Lake Vilas 8/14/2017 LIS & JBS 67 14 Muck Pole SAMPLED 0 61 45.901048 -89.171901 35 Cramberry Lake Vilas 8/14/2017 LIS & JBS 67 14 Muck Pole SAMPLED 0 62 45.901048 -89.171901 35 Cramberry Lake Vilas 8/14/2017 LIS & JBS 67 14 Muck Pole SAMPLED 0 | 62 | 45.892415 | -89.173060 14 | 48 | Cranberry Lake | Vilas | 8/14/2017 | LJS & JBS | 62 | 9 | | | SAMPLED | | F | | | Н | - | F | F | Ц | \dashv | - | F | Ц | - | Ţ | F | | H | F | 1 | Н | - | Ŧ | Ŧ | ĮĪ | | 65 45 902487 -89.171879 12 Cranberry Lake Vilas 8/14/2017 LIS & JBS 65 8 Sand Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | Sand | Pole | | | - | 2 | | H | + | | | H | + | 2 | + | H | + | + | + | | H | + | + | H | \dashv | + | + | 1 | | 67 45.901048 -89.171901 35 Cramberry Lake Vilas 8/14/2017 LJS & JBS 67 14 Muck Pole SAMPLED 0 | | | | | | | | | | | Sand | Pole | | | L | 0 | | | | | | | | 1 | L | | | | | | | | | | | 1 | İ | Ħ | | | | | | | | | | | | | | | | | - | T | | H | + | + | | Н | \dashv | + | + | Н | 4 | - | + | - | \dashv | - | + | Н | \dashv | + | + | \vdash | | ,,, | 68 | 45.901048
45.900328 | | | | | | | | | | | SAMPLED
SAMPLED | | t | | | H | \dagger | t | | H | \dagger | \dagger | t | H | 1 | 1 | t | + | H | | | H | + | + | \dagger | H | | | | (S) | ε | | | | | | | | | | | acaule | | | |--------------|----------------------------|-----------------------------|----------|-------------------------------|----------------|------------------------|------------|--------------|------------|--------------|--------------|--------------------|-------|----------|---------------------|-----------------------|--------------------|------------------------|-------------------------|-----------------------|-------------------|--------------------|--|-------------|------------------|--|-------------------------|-------------------------|-----------------------|---|-----------------------|--------------------|---------------------------|-------------------------|----------------------|---| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fuliness | Myriophyllum spicatum | Brasenia schreberi | Geratophyllum demensum | Ceratophyllum echinatum | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Myriophyllum heterophyllum
Naias flexills | Niteliaspp. | Nuphar varlegata | Nympnaea odorata
Pontederia cordata | Potamogeton amplifolius | Potamogeton berchtoldii | Potamogeton epihydrus | Potamogeton richardsonii
Potamogeton robbinsii | Potamogeton spirillus | Potamogeton vaseyi | Potamogeton zosteriformis | Sparganium emersum var. | Sparganium fluctuans | Utricularia vulgaris
Vallisneria americana | | 69 | 45.899608 | -89.171922 | 56 | Cranberry Lake | Vilas | | | 69 | 14 | Muck | Pole | SAMPLED | | | 0 | \blacksquare | | 70 | 45.898888
45.898168 | -89.171933
-89.171943 | | Cranberry Lake | | 8/14/2017 | | 70 | 14 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | 72
73 | 45.897448
45.896728 | -89.171954
-89.171965 | 84 | Cranberry Lake | | | | 72
73 | 14 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | H | _ | | 74 | 45.896008 | -89.171975 | | Cranberry Lake | Vilas | | | 74 | 13 | Muck | Pole | SAMPLED | | | 0 | 75
76 | 45.895288
45.894568 | -89.171986
-89.171997 | | Cranberry Lake | | | | 75
76 | 13 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | H | + | | 77 | 45.893848 | -89.172008 | | Cranberry Lake | | | | 77 | 13 | Muck | Pole | SAMPLED | | | 0 | 78
79 | 45.893128
45.892408 | -89.172018
-89.172029 | | Cranberry Lake Cranberry Lake | | | | | 16
14 | Muck | Pole | DEEP | | | 0 | H | + | | 80 | 45.891688 | -89.172040 | | Cranberry Lake | | | | | 6 | Sand | Pole | SAMPLED | | | 0 | Ц | | | 81 | 45.890968
45.890248 | -89.172050
-89.172061 | | Cranberry Lake Cranberry Lake | | | | 81
82 | 5 | Sand | Pole
Pole | SAMPLED
SAMPLED | | | 2 | Н | 2 | | 83 | 45.908960 | -89.170751 | 188 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | | 7 | Sand | Pole | SAMPLED | | | 1 | 1 | | 84 | 45.908240
45.907520 | -89.170762
-89.170773 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | | 84 | 12 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | H | | | | | | | | | | | H | + | | 86 | 45.906800 | -89.170784 | 202 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 86 | 7 | Rock | Pole | SAMPLED | | | 0 | | 1 | | - | | | | 1 | H | | 1 | | | | | | | | | H | \blacksquare | | 87
88 | 45.906080
45.905360 | -89.170794
-89.170805 | 203 | Cranberry Lake Cranberry Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | | 87
88 | 6 | Sand
Sand | Pole
Pole | SAMPLED
SAMPLED | | t | 2 | | \bot | ļ | t | L | H | | 1 | H | | t | 1 | L | | 1 | | _ | | t | H | 2 | | 89 | 45.903920 | -89.170826 | 212 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 89 | 12 | Muck | Pole | SAMPLED | | | 0 | П | | | 90 | 45.903200
45.902480 | -89.170837
-89.170848 | 213 | Cranberry Lake | Vilas
Vilas | 8/14/2017 | BTB & NLS | 90 | 13 | Muck | Pole | SAMPLED
DEEP | | | 0 | | | | | | | | | H | | | | | | | | | | t | H | + | | 92 | 45.901760 | -89.170859 | 18 | Cranberry Lake | Vilas | 8/14/2017 | LJS & JBS | 92 | 14 | Muck | Pole | SAMPLED | | | 0 | H | | | 93 | 45.901040
45.900320 | -89.170869
-89.170880 | 34
45 | Cranberry Lake | Vilas
Vilas | 8/14/2017 | LJS & JBS | 93 | 14 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | H | _ | | 95 | 45.899600 | -89.170891 | | | | | | 95 | 13 | Muck | Pole | SAMPLED | | | 0 | H | | | 96
97 | 45.898880
45.898160 | -89.170901
-89.170912 | | Cranberry Lake | | | LJS & JBS | 96 | 9 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | H | | | | | | | | | | t | H | + | | 98 | 45.897440 | -89.170923 | 85 | Cranberry Lake | Vilas | 8/14/2017 | LJS & JBS | 98 | 1 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | 1 | | | | | | | | | | | | H | 1 | | 100 | 45.896720
45.896000 | -89.170934
-89.170944 | | | | | | 99 | 11 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | | | | 1 | | | 2 | | | | | | | | | | | | | 1 | | 101 | 45.895280 | -89.170955 | | Cranberry Lake | | | | 101 | | Muck | Pole | SAMPLED | | | 0 | Н | - | | 102 | 45.894560
45.893840 | -89.170966
-89.170976 | | Cranberry Lake | | | | | 13 | Muck | Pole | SAMPLED
SAMPLED | | | 2 | 2 | | 104 | 45.893120 | -89.170987 | | Cranberry Lake | | 8/14/2017 | | | 14 | Muck | Pole | SAMPLED | | | 0 | Н | - | | 105 | 45.892400
45.891681 | -89.170998
-89.171009 | | Cranberry Lake | Vilas
Vilas | 8/14/2017 | | 105 | 14 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | 107 | 45.890961 | -89.171019 | | Cranberry Lake | | | | | | Muck | Pole | SAMPLED | | | 0 | H | - | | 108 | 45.890241
45.889521 | | | Cranberry Lake | | | | | | Muck | Pole | SAMPLED
SAMPLED | | | 0 | 110 | 45.888801
45.909672 | | | Cranberry Lake | | 8/14/2017 | | 110 | | Sand | Pole | SAMPLED
SAMPLED | | | 3 | | | 3 | 3 | | | | | | | | | | | 1 | | | | | H | - | | 112 | 45.908952 | -89.169709 | | Cranberry Lake | | | BTB & NLS | | | Rock | Pole | SAMPLED | | | 0 | 113 | 45.908232
45.907512 | -89.169731
-89.169741 | | Cranberry Lake | | | BTB & NLS | | | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | - | | | | | \vdash | | | | | | | | | | | H | | | 115 | 45.906792 | -89.169752 | | Cranberry Lake | | | BTB & NLS | | | Muck | Pole | SAMPLED | | | 0 | 116 | 45.906072
45.905352 | -89.169763
-89.169774 | | Cranberry Lake | | | | | 13 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | + | | + | | | | + | | | - | | - | | | | | | | H | + | | 118 | 45.904632 | -89.169774 | 209 | Cranberry Lake | | 8/14/2017 | | 118 | 14 | , would | , uid | DEEP | | L | J | | 1 | ļ | | | | | 1 | | | 1 | İ | | | 1 | | | 1 | ļ | П | \parallel | | 119 | 45.903912
45.903192 | -89.169795
-89.169806 | | Cranberry Lake | | | BTB & NLS | | | | | DEEP | | | | | + | + | - | | H | - | + | + | \vdash | + | + | - | H | + | H | | + | + | H | + | | 121 | 45.902472 | -89.169817 | 10 | Cranberry Lake | Vilas | | | | 15 | Muck | Pole | SAMPLED | | | 0 | | 1 | 1 | | | | | | | | ļ | L | | | ļ | | | | ŀ | Ħ | \blacksquare | | 122 | 45.901753
45.901033 | -89.169827
-89.169838 | | Cranberry Lake | | | | | | Muck | Pole | SAMPLED
SAMPLED | | H | 0 | | + | + | + | | H | \dashv | + | H | \vdash | + | H | - | H | + | H | 1 | + | + | \forall | + | | 124 | 45.900313 | -89.169849 | 46 | Cranberry Lake | Vilas | 8/14/2017 | LJS & JBS | 124 | 14 | Muck | Pole | SAMPLED | | | 0 | | 1 | 1 | | | | 4 | 1 | H | | 1 | L | | | ļ | H | 1 | 1 | ļ | Ħ | \blacksquare | | 125
126 | 45.899593
45.898873 |
-89.169860
-89.169870 | | Cranberry Lake Cranberry Lake | | 8/14/2017
8/14/2017 | | | | Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | | + | | + | | H | 1 | + | | | + | + | | \vdash | + | | 1 | + | + | H | + | | 127 | 45.895993 | -89.169913 | 98 | Cranberry Lake | Vilas | 8/14/2017 | LJS & JBS | 127 | 2 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | 1 | | | | | | | l | | | 1 | l | H | 1 | | 128 | 45.895273
45.894553 | -89.169924
-89.169935 | | Cranberry Lake | | 8/14/2017
8/14/2017 | | | | Sand | Pole
Pole | SAMPLED
SAMPLED | | L | 2 | | _ | | 1 | L | | | _ | L | | | ľ | L | H | 1 | | | _ | ŀ | H | 2 | | 130 | 45.893833 | -89.169945 | 113 | Cranberry Lake | Vilas | 8/14/2017 | LJS & JBS | 130 | 8 | Sand | Pole | SAMPLED | | | 0 | | 1 | I | I | | | 4 | 1 | Н | | Ŧ | F | | П | Ŧ | | | 1 | l | H | \blacksquare | | 131 | 45.893113
45.892393 | -89.169956
-89.169967 | | Cranberry Lake Cranberry Lake | | 8/14/2017
8/14/2017 | | | | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | t | 0 | | \bot | ļ | t | L | H | | 1 | H | | t | t | L | | t | | _ | | t | H | \pm | | 133 | 45.891673 | -89.169978 | 155 | Cranberry Lake | Vilas | 8/14/2017 | LJS & JBS | 133 | 14 | Muck | Pole | SAMPLED | | F | 0 | | - | | - | | | 1 | F | | H | F | F | | H | F | H | 1 | Ŧ | | H | \dashv | | 134 | 45.890953
45.890233 | | | Cranberry Lake | | 8/14/2017
8/14/2017 | | | | Muck
Muck | Pole | SAMPLED
SAMPLED | | | 0 | \pm | | 136 | 45.889513 | -89.170010 | 192 | Cranberry Lake | Vilas | 8/14/2017 | LJS & JBS | 136 | 14 | Muck | Pole | SAMPLED | | | 0 | | | | | | Ш | | | | | L | | | Ш | | Ш | | | | Ш | | | П | | | | | | | | | | | | | | | Τ | | | T | T | | | T | T | T | | T | | T | | T | Τ | Τ | П | 9 | 2 | Г | | |--------------|----------------------------|-----------------------------|------------|----------------------------------|--------|------------------------|------------|--------------|------------|--------------|------------|--------------------|------------------------|----------|---------------------|-----------------------|--------------------|---------------|-----------|-----------------------|-------------------|--------------------|--|--------------|------------------|------------------|--------------------|-------------------------|-----------------------|--------------------------|-----------------------|--------------------|----------------------------|--------------------------|----------------------|----------------------|-----------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Brasenia schreberi | Bidens beckii | echinat | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Myriophyllum heterophyllum
Naias flexilis | Nitella spp. | Nuphar variegata | Nymphaea odorata | Pontederia cordata | Potamogeton berchtoldii | Potamogeton epihydrus | Potamogeton richardsonii | Potamogeton spirillus | Potamogeton vaseyi | Potamogeton z osteriformis | Sagittaria sp. (rosette) | Sparganium fluctuans | Utricularia vulgaris | Vallisneria americana | | 137 | 45.888793
45.888073 | | | Cranberry Lake
Cranberry Lake | | | LJS & JBS | 137 | 13 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | H | + | + | Н | | | 139 | 45.886633 | | 215 | | | | LJS & JBS | 138 | 0 | Sand | Pole | SHALLOW | | | U | 140 | 45.910385 | | | Cranberry Lake | | | | | 5 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | H | + | - | ₽ | | | 141 | 45.909665
45.908945 | | | Cranberry Lake | | | | | 11 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | + | + | ٣ | | | 143 | 45.908225 | | | Cranberry Lake | | | | | 13 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | I | Ī | | | | 144 | 45.907505 | | | Cranberry Lake | | | | | 14 | | | DEEP | | | | | | | | | | | | | | - | | | | | - | | | + | + | H | | | 145 | 45.906785
45.906065 | | | Cranberry Lake | | | | | 14 | | | DEEP | + | + | H | _ | | 147 | 45.905345 | | | Cranberry Lake | | | | | 15 | | | DEEP | 1 | I | | | | 148 | 45.904625 | | | Cranberry Lake | | 8/14/2017 | BTB & NLS | | 0 | | | DEEP | H | + | + | Н | | | 149 | 45.903905
45.903185 | | | Cranberry Lake | | | | 149 | 0 | | | DEEP | \top | + | Ħ | _ | | 151 | 45.902465 | | | Cranberry Lake | | 8/14/2017 | LJS & JBS | | 14 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | 1 | Ţ | | | | 152 | 45.901745 | | | Cranberry Lake | | | | | 14 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | Н | + | + | ٣ | _ | | 153
154 | 45.901025
45.900305 | | | Cranberry Lake | | | | | 14 | Muck
Muck | Pole | SAMPLED
SAMPLED | | | 0 | | H | \dagger | \dagger | | | 1 | \dagger | H | H | \dagger | | \dagger | H | \dagger | \dagger | t | \dag | + | + | H | | | 155 | 45.899585 | | 53 | Cranberry Lake | Vilas | 8/14/2017 | | 155 | 13 | Rock | Pole | SAMPLED | | | 0 | | | 1 | I | | | 1 | Ţ | | | Ţ | Ţ | Ţ | | 1 | I | | П | Į | I | | Д | | 156 | 45.898865 | | | Cranberry Lake | | | | 156 | 3 | Sand | Pole | SAMPLED | | | 1 | | H | + | | | | | 1 | | | + | | | | | + | | H | + | + | H | 1 | | 157 | 45.894545
45.893825 | | 228 | Cranberry Lake | | 8/14/2017
8/15/2017 | LJS & JBS | 157 | 13 | Muck | Pole | SHALLOW | | | 0 | | | | | | | | | | | | | | | | | | | 1 | 1 | T | _ | | 159 | 45.893105 | | 126 | | | 8/14/2017 | LJS & JBS | 159 | 14 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | 1 | Ţ | | | | 160 | 45.892385 | | 144 | | Vilas | | LJS & JBS | 160 | 14 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | H | + | + | Н | _ | | 161 | 45.891666
45.890946 | | 156
169 | Cranberry Lake | | | LJS & JBS | 161 | 15 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | П | \top | \dagger | Ħ | _ | | 163 | 45.890226 | -89.168968 | 177 | Cranberry Lake | Vilas | 8/14/2017 | LJS & JBS | 163 | 15 | Muck | Pole | SAMPLED | | | 0 | ļ | | | | 164 | 45.889506 | | | Cranberry Lake | | | | 164 | 15 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | H | + | + | Н | _ | | 165
166 | 45.888786
45.888066 | | | Cranberry Lake | | | LJS & JBS | 166 | 9 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | 1 | 1 | T | | | 167 | 45.887346 | -89.169011 | 216 | Cranberry Lake | Vilas | 8/14/2017 | LJS & JBS | 167 | 4 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | 1 | | | - | | | | | - | | Н | 4 | + | H | | | 168 | 45.886626
45.911097 | | | Cranberry Lake | | | | | 3 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | + | | | | | + | 1 | H | + | + | Н | 2 | | 169 | 45.910377 | | | Cranberry Lake | | | | | 14 | ROCK | POIE | DEEP | | | U | | | | | | | | | | | | | | | | | | | I | | I | | | 171 | 45.909657 | -89.167647 | 185 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 171 | 14 | | | DEEP | | | | | | | | | | | | | | - | | | | | - | | Н | 4 | + | H | | | 172 | 45.908937
45.908217 | | | Cranberry Lake | | | | | 14 | | | DEEP | + | + | H | | | 174 | 45.907497 | | | Cranberry Lake | | | | 174 | 0 | | | DEEP | I | I | I | | | 175 | 45.906777 | | | Cranberry Lake | | | | 175 | 0 | | | DEEP | H | + | - | 닏 | | | 176 | 45.906057
45.905337 | | | Cranberry Lake | | | | 176 | 0 | | | DEEP | + | + | ٣ | _ | | 178 | 45.904617 | | 0 | | Vilas | | | 178 | 0 | | | DEEP | I | I | | | | 179 | 45.903897 | | 0 | | | | | 179 | 0 | | | DEEP | | | | | | | - | | | | | | | | | - | | | | | H | + | + | H | | | 180 | 45.903177
45.902457 | | 0 | Cranberry Lake | | 8/14/2017 | I IS & IRS | 180 | 14 | Muck | Pole | DEEP | | | 0 | | | | | | | | | | | | | | | | | | H | + | + | H | _ | | 182 | 45.901738 | | | Cranberry Lake | | | LJS & JBS | | | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | I | I | | | | 183 | 45.901018 | | | Cranberry Lake | | | | | 13 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | _ | | | | | | | | | | H | + | + | 닏 | _ | | 184 | 45.900298
45.899578 | | | Cranberry Lake | | | | 184 | 8 | Sand | Pole | SAMPLED
SAMPLED | was shallow near shore | | 2 | | | | | 1 | | | 2 | | | | | | | | | | | + | + | ٣ | | | 186 | 45.893818 | | | Cranberry Lake | | | | 186 | 13 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | 1 | I | | | | | 45.893098 | | | Cranberry Lake | | | | | | | | SAMPLED | | | 0 | | | | | | | | _ | | | | | | | | | | H | + | + | 닏 | _ | | 188 | 45.892378
45.891658 | | | Cranberry Lake
Cranberry Lake | | | | 188
189 | | Muck
Muck | | SAMPLED
SAMPLED | | | 0 | | H | + | + | | | \dagger | \dagger | | | + | t | \dagger | H | \dagger | \dagger | | $\dag \dag$ | + | + | ٢ | _ | | 190 | 45.890938 | | | Cranberry Lake | | | | | | Muck | | SAMPLED | | | 0 | | | 1 | | | | 1 | | | | 1 | | ļ | | 1 | | | П | 1 | Ţ | F | | | 191 | 45.890218 | | | Cranberry Lake | | | | 191 | | Muck | | SAMPLED | | | 0 | | H | + | - | | | + | + | \vdash | H | + | - | - | Н | + | + | - | ${oldsymbol{ert}}$ | + | + | H | _ | | 192 | 45.889498
45.888778 | | | Cranberry Lake
Cranberry Lake | | | | | | Muck
Muck | | SAMPLED
SAMPLED | | | 0 | | H | \dagger | 1 | | | \dagger | \dagger | - | | \dagger | t | \dagger | H |
\dagger | \dagger | | H | + | \dagger | H | | | 194 | 45.888058 | | | Cranberry Lake | | | LJS & JBS | | | Sand | | SAMPLED | | | 0 | | | 1 | | | | 1 | 1 | | | 1 | 1 | ļ | | 1 | | | П | 1 | Į | F | | | | 45.887338 | | | Cranberry Lake | | | | | | Sand | | SAMPLED | | | 0 | | \mathbb{H} | + | + | | | + | + | | H | + | - | - | Н | + | + | - | ${f H}$ | + | + | H | | | | 45.886618
45.911809 | | | Cranberry Lake | | | | | | Sand
Rock | | SAMPLED
SAMPLED | | | 0 | | H | \dagger | \dagger | | | \dagger | \dagger | H | H | \dagger | | \dagger | H | \dagger | \dagger | t | \dagger | + | + | H | 1 | | | | | | Cranberry Lake | | | | | | | | DEEP | | | | | | | | | | | | | | 1 | | 1 | | | | | Ц | Į | Į | Γ | | | | | | | Cranberry Lake | | *********** | BTB & NLS | | 0 | | | DEEP | | F | - | | H | + | + | | H | + | + | ŀ | H | + | + | + | Н | + | + | + | ${\color{black} +}$ | + | + | H | | | | | | | Cranberry Lake | | | | 200 | 0 | | | DEEP | | L | L | | | 1 | L | L | | | 1 | İ | | \pm | 1 | t | | 1 | t | L | Ħ | 1 | \pm | Ħ | | | 202 | 45.908210 | -89.166637 | 0 | Cranberry Lake | Vilas | | | 202 | 0 | | | DEEP | | | F | | Ц | 1 | | | | 7 | Ŧ | F | Ц | 1 | 1 | F | П | 1 | F | F | П | Ŧ | Ļ | Ľ | | | | | | | Cranberry Lake | | | | 203 | 0 | | | DEEP | | | <u> </u> | | H | + | - | | | \dashv | + | H | | + | + | + | H | + | + | | ${\mathbb H}$ | + | + | H | \dashv | | 204 | 45.906770 | -89.166658 | 0 | Cranberry Lake | Vilas | l | 1 | 204 | 0 | | | DEEP | l | | | | | | | 1 | | | | | ш | | | | ш | I_ | | 1 | ш | ㅗ | | ш | Т | caule | Т | T | |--------------|----------------------------|-----------------------------|------------|-------------------------------|--------|---|------------|--------------|------------|--------------|------------|--------------------|-------|----------|---------------------|-----------------------|--------------------|---------------|-------------------------|-----------------------|-------------------|--------------------|----------------|--------------|------------------|------------------|-------------------------|-------------------------|-----------------------|---|-----------------------|--------------------|--|-----------|----------------------|---| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Q | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Brasenia schreberi | Bidens beckil | Ceratophyllum echinatum | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Najas flexilis | Nitelia spp. | Nuphar variegata | Nymphaea odorata | Potamodeton amplifolius | Potamogeton berchtoldii | Potamogeton epihydrus | Potamogeton richardsonii
Potamogeton robbinsii | Potamogeton spirillus | Potamogeton vaseyi | Potamogeton z osteriformis
Sagittaria sp. (rosette) | var. | Sparganium fluctuans | Utricularia vulgaris
Vallisneria americana | | 205 | 45.906050 | -89.166669 | | Cranberry Lake | Vilas | | | 205 | 0 | | | DEEP | - | \vdash | 4 | - | | 206 | 45.905330
45.904610 | -89.166680
-89.166691 | 0
217 | Cranberry Lake | Vilas | *************************************** | BTB & NLS | 206 | 0 | | | DEEP
DEEP | Ш | | | | 208 | 45.903890 | | 215 | | | | BTB & NLS | 208 | 0 | | | DEEP | I | П | I | I | | 209
210 | 45.903170
45.902450 | -89.166712
-89.166723 | 216
7 | | | | | 209
210 | 0
15 | B. d sale. | Dala | DEEP | | | 0 | | | | | | | | | | | | | | | | | | + | Н | - | + | | 211 | 45.902450 | -89.166734 | | Cranberry Lake | | | | 211 | | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | Ħ | 1 | 1 | | 212 | 45.901010 | -89.166744 | | Cranberry Lake | | | | 212 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | - | | | - | - | | | + | | | - | Н | 4 | \perp | | 213 | 45.90029
45.89381 | -89.166755 | | Cranberry Lake | | | LJS & JBS | | 6
14 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | | + | | | - | H | + | 1 | | 215 | 45.89309 | | | Cranberry Lake | | | | | 15 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | I | I | | I | | 216 | 45.89237 | | | Cranberry Lake | | | LJS & JBS | 216 | 15 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | - | | | | | | | | | - | Н | _ | + | | 217 | 45.891651
45.890931 | | | Cranberry Lake | | | LJS & JBS | 217 | 16 | | | DEEP | | | | | | | | | | | | | H | | t | | | \dagger | H | | + | H | + | + | | 219 | 45.890211 | | | Cranberry Lake | | | | | 16 | | | DEEP | П | 1 | | | 220 | 45.889491 | | | Cranberry Lake | | | LJS & JBS | | 16 | | | DEEP | | | | | | | | | | | | | | | _ | | | | \vdash | | + | H | 4 | - | | 221 | 45.888771
45.888051 | | | Cranberry Lake | | | LJS & JBS | | 15 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | | \dagger | | | + | H | + | + | | 223 | 45.887331 | -89.166949 | 218 | | Vilas | 8/14/2017 | LJS & JBS | 223 | 14 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | П | | | | 224 | 45.886611 | | | Cranberry Lake | | | LJS & JBS | 224 | 6 | Rock | Pole | SAMPLED | | | 0 | | | | | | | | | - | | | | | | | | | - | Н | _ | + | | 225 | 45.912522
45.911802 | -89.165541
-89.165551 | 175 | | Vilas | 8/14/2017
8/14/2017 | BTB & NLS | 225 | 12 | Sand | Pole | SAMPLED
DEEP | | | 0 | | | | | | | | | | H | | t | | | \dagger | H | | + | H | + | + | | 227 | 45.911082 | | 179 | | | | BTB & NLS | 227 | 14 | | | DEEP | П | | Ţ | | 228 | 45.910362 | -89.165573 | 0 | Cranberry Lake | Vilas | | | 228 | 0 | | | DEEP | | | | | | | | | | | + | | | - | + | | | + | H | | + | \dashv | _ | + | | 229 | 45.909642
45.908922 | -89.165584
-89.165595 | 0 | Cranberry Lake | Vilas | | | 229 | 0 | | | DEEP | | | | | | | | | | | | | | | | t | | t | | | + | Ħ | + | + | | 231 | 45.908202 | -89.165605 | 0 | Cranberry Lake | Vilas | | | 231 | 0 | | | DEEP | Ţ | П | 1 | Ţ | | 232 | 45.907482 | -89.165616 | 0 | | | | | 232 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | \vdash | | + | Н | _ | + | | 233 | 45.906762
45.906042 | -89.165627
-89.165638 | 0 | Cranberry Lake | Vilas | | | 233 | 0 | | | DEEP | | | | | | | | | | | | | | | | t | | t | | | + | Ħ | + | + | | 235 | 45.905322 | -89.165649 | 0 | | | | | 235 | 0 | | | DEEP | I | П | I | I | | 236 | 45.904602 | -89.165659 | 82 | | | | | | 14 | | | DEEP | | | - | | | | | | | | + | | | | + | - | | + | H | | + | H | + | + | | 237 | 45.903882
45.903162 | -89.16567
-89.165681 | | Cranberry Lake | | | | | | Muck
Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | 1 | | 1 | | | 239 | 45.902442 | -89.165692 | 6 | Cranberry Lake | Vilas | 8/14/2017 | LJS & JBS | 239 | 14 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | Ţ | Ш | 1 | Ţ | | 240 | 45.901722
45.901003 | | 23 | | | | | | 13 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | + | | | + | Н | + | + | | 241 | 45.901003 | -89.165713
-89.165724 | 50 | Cranberry Lake | | 8/14/2017
8/14/2017 | LJS & JBS | 241 | 9 | Sand | Pole | SAMPLED
SAMPLED | | | 2 | | | | | | | | | | | | | | | 1 | | | | | 1 | 2 | | 243 | 45.893803 | -89.165821 | 232 | Cranberry Lake | Vilas | 8/15/2017 | LJS & JBS | 243 | 13 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | 4 | Щ | 4 | 4 | | 244 | 45.893083
45.892363 | | | Cranberry Lake | | | | | | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | + | | | | + | | | | H | | + | Н | + | + | | 246 | 45.892363 | | | Cranberry Lake | | | | | 17 | Muck | Pole | DEEP | | | U | | | | | | | | | | | | | | | | | | I | Ħ | 1 | Ī | | 247 | 45.890923 | | 166 | Cranberry Lake | Vilas | 8/14/2017 | LJS & JBS | 247 | 16 | | | DEEP | | | | | | | | | | | | - | | | - | | | - | | | _ | Н | _ | \perp | | 248
249 | 45.890203
45.889483 | -89.165875 | 0 | Cranberry Lake Cranberry Lake | | 0/44/2047 | I IC & IDC | 248 | 0 | | | DEEP
DEEP | | | | | | | | | | | | | | | | | | + | | | - | H | + | + | | 250 | 45.888763 | | | Cranberry Lake | | | | | 16 | | | DEEP | I | | | T | | 251 | 45.888043 | | | Cranberry Lake | | | LJS & JBS | | 14 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | - | | | - | + | | | + | H | | | \dashv | 4 | + | | 252
253 | 45.887323
45.886603 | | 219
223 | Cranberry Lake | | | LJS & JBS | | 14 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | + | | | + | + | | + | | | + | H | + | + | | 254 | 45.913234 | | | Cranberry Lake | | | BTB & NLS | | 13 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | I | | | T | | 255 | 45.912514 | | | Cranberry Lake | | | | | 14 | | | DEEP | | | | | | | | | | | - | | | - | + | | | + | H | | | \dashv | 4 | + | | 256
257 | 45.911794
45.911074 | -89.16452
-89.164531 | | Cranberry Lake | | 8/14/2017 | BTB & NLS | 256 | 0 | | | DEEP | | | | | | | | | | | | | H | | | | | + | | | + | H | + | + | | 258 | 45.910355 | -89.164542 | 0 | | | | | 258 | 0 | | | DEEP | | | | | İ | | | | İ | 1 | T | | | 1 | 1 | L | | Ţ | | | Ţ | П | I | I | | 259 | 45.909635 | -89.164552 | 0 | Cranberry Lake | | | | 259 | 0 | | | DEEP | | - | | | 4 | + | - | H | 4 | 1 | + | \vdash | Н | + | 1 | - | H | + | H | 4 | - | \dashv | 4 | + | | 260
261 | 45.908915
45.908195 | -89.164563
-89.164574 | 0 | | | | | 260
261 | 0 | | | DEEP | | H | H | | 1 | + | t | H | 1 | 1
 + | t | H | + | \dagger | ŀ | H | + | H | + | + | + | + | + | | 262 | 45.907475 | -89.164585 | | Cranberry Lake | | | | 262 | 0 | | | DEEP | | | | | 1 | İ | | | 1 | 1 | İ | L | | 1 | ļ | L | | 1 | | 1 | 1 | Д | # | 1 | | 263 | 45.906755 | -89.164596 | | Cranberry Lake | | | | 263 | 0 | | | DEEP | | - | | | - | + | - | Н | - | - | + | - | Н | + | + | - | H | + | H | \dashv | + | \dashv | + | + | | 264
265 | 45.906035
45.905315 | | | Cranberry Lake | | 8/14/2017 | BTB & NLS | 264
265 | 14 | | | DEEP | | + | | H | 1 | \dagger | + | H | 1 | + | + | | H | \dagger | + | H | H | \dagger | H | + | + | \forall | + | + | | 266 | 45.904595 | | | Cranberry Lake | | | | | 14 | | | DEEP | | | | | | 1 | | | | | 1 | | | 1 | ļ | | | | | 1 | Ţ | П | 1 | I | | 267 | 45.903875 | -89.164639 | | Cranberry Lake | | | | | | Muck | | SAMPLED | | - | 0 | | - | + | - | Н | - | - | + | + | Н | + | + | - | H | + | H | + | + | \dashv | + | + | | 268
269 | 45.903155
45.902435 | -89.16465
-89.16466 | | Cranberry Lake | | | | | | | | SAMPLED
SAMPLED | | - | 0 | | 1 | + | | H | 1 | 1 | + | | H | + | \dagger | | H | + | H | \dashv | + | \forall | + | + | | | 45.901715 | | | Cranberry Lake | | | | | | Sand | | SAMPLED | | | 0 | | 1 | İ | | | 1 | 1 | İ | | | 1 | | L | | 1 | | 1 | 1 | П | # | 1 | | 271 | 45.900995 | | | Cranberry Lake | | | | | | Sand | | SAMPLED | | - | 0 | | - | + | - | Н | - | - | + | + | Н | + | + | - | H | + | H | + | + | \dashv | + | + | | 272 | 45.900275 | -89.164693 | 51 | Cranberry Lake | Vilas | 8/14/2017 | LJS & JBS | 272 | 5 | Sand | Pole | SAMPLED | | 1 | 3 | | | | | Ш | | | | 1 | Ш | _ | | 1_ | Ц | 1 | Ш | _1 | | Ш | _ | 3 | | 1 | | | T | | | | | | | | | | | T | | | | | | | | Т | | | T | Т | Τ | | Т | | П | | T | aln | П | Т | |--------------|----------------------------|------------------------------|----|----------------------------------|--------|-----------|------------|--------------|------------|--------------|------------|--------------------|-------|-----------|---------------------|-----------------------|--------------------|---|---------|-----------------------|-------------------|--------------------|----------------|--------------|------------------|--|-------------------------|-------------------------|-----------------------|---|-----------------------|--------------------|---|------------------------------|----------------------|---| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | 2 | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Brasenia schreberi | Bidens beckii
Ceratonhullum demersum | echinat | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Najas flexilis | Nitella spp. | Nuphar variegata | Nymphaea odorata
Pontederia cordata | Potamogeton amplifolius | Potamogeton berchtoldii | Potamogeton epihydrus | Potamogeton richardsonii
Potamogeton robbinsii | Potamogeton spirillus | Potamogeton vaseyi | Potamogeton zosteriformis
Sagittaria sp. (rosette) | Sparganium emersum var. acau | Sparganium fluctuans | Utricularia vulgaris
Vallisneria americana | | | 45.893795 | | | | Vilas | | LJS & JBS | 273 | 14 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | + | + | + | | = | + | | | - | | H | - | | | 45.893075
45.892355 | | | Cranberry Lake | | | LJS & JBS | 274 | 15 | Muck | Pole | SAMPLED
DEEP | | + | 0 | | | | | | | | | | | | | H | | | H | | | H | H | + | | | 45.891635 | | | Cranberry Lake | Vilas | 0.14/2011 | 200 0 000 | 276 | 0 | | | DEEP | | | | | | | | | | | | | | | | | I | | | | | | | I | | | 45.890915 | | | Cranberry Lake | Vilas | 8/14/2017 | LJS & JBS | 277 | 16 | | | DEEP | | | | | | | | | | + | | | | - | + | | | \perp | | | | | H | _ | | | 45.890196 | | | Cranberry Lake Cranberry Lake | Vilas | 8/14/2017 | LJS & JBS | 278 | 17 | | | DEEP | | | | | | | | | | + | | | + | + | | | - | + | | | | | H | + | | | 45.889476
45.888756 | | | Cranberry Lake | | | | | 16 | | | DEEP | | T | | | | | | | | | | | | T | | H | \forall | t | | | | h | Ħ | + | | | 45.888036 | | | Cranberry Lake | | | | | 14 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | \blacksquare | | | | | | П | I | | | 45.887316 | | | Cranberry Lake | | | LJS & JBS | | 13 | Muck | Pole | SAMPLED | | + | 0 | | | | | | | + | | | | + | + | | \perp | + | | | | | H | + | | | 45.913947
45.913227 | | | Cranberry Lake
Cranberry Lake | | | | | 6 | Sand | Pole | SAMPLED
DEEP | | + | 1 | | | | | | | | | | | | | | + | | H | | | | H | 1 | | | 45.912507 | | | Cranberry Lake | | | | 285 | 14 | | | DEEP | | | | | | | | | | | | | | | | | I | | | | | | П | | | 286 | 45.911787 | -89.163489 | | Cranberry Lake | Vilas | | | 286 | 0 | | | DEEP | | _ | | | | | | | | | | | | | | | _ | | Ш | | | | Ц | _ | | | 45.911067 | | Т | | Vilas | | | 287 | 0 | | | DEEP | | | | | | | | | | + | | | - | - | | | + | + | H | | | | Н | + | | | 45.910347
45.909627 | | | | Vilas | | | 288 | 0 | | | DEEP | | | | | | | | | | | | | | T | | | | t | H | | | | Ħ | $^{+}$ | | | 45.908907 | | | | Vilas | | | 290 | 0 | | | DEEP | 45.908187 | -89.163543 | т | Cranberry Lake | Vilas | | | 291 | 0 | | | DEEP | | + | | | - | - | | | - | - | | | 4 | + | - | | \dashv | - | | - | + | | \vdash | + | | | 45.907467 | | | Cranberry Lake | Vilas | | | 292 | 0 | | | DEEP | | + | | | | | | | | + | | | - | + | + | H | + | + | | | + | | H | + | | | 45.906747
45.906027 | -89.163564 9
-89.163575 9 | Т | Cranberry Lake | Vilas | | BTB & NLS | 293 | 14 | | | DEEP
DEEP | | \dagger | | | \dagger | ╁ | | Ħ | 1 | t | \dagger | | + | \dagger | t | H | \dagger | t | H | 1 | \dagger | Ħ | Ħ | + | | | 45.905307 | | | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 295 | 14 | | | DEEP | | | | | | | | | | | | | | | | | I | | | | | | | I | | 296 | 45.904587 | -89.163597 8 | 0 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 296 | 14 | | | DEEP | | _ | | | | | | | | | | | | | | | _ | | | | | | Н | _ | | | 45.903867 | | | | Vilas | | BTB & NLS | 297 | 14 | Muck | Pole | SAMPLED | | | 0 | | | | | | | + | | | + | + | | H | _ | + | | | + | | H | + | | | 45.903147
45.902427 | -89.163618 5
-89.163629 4 | | Cranberry Lake | | | BTB & NLS | 298 | 15 | Rock | Pole | DEEP
SAMPLED | | t | 0 | | | | | | | T | | | | | | | \forall | t | | | | | Ħ | + | | | 45.901707 | | | Cranberry Lake | | | LJS & JBS | 300 | 13 | Muck | Pole | SAMPLED | | | 0 | 301 | 45.900987 | -89.163651 2 | 7 | Cranberry Lake | Vilas | 8/14/2017 | LJS & JBS | 301 | 13 | Muck | Pole | SAMPLED | | _ | 0 | | | | | | | | | | | | | | \downarrow | | | | | | Ц | 4 | | | 45.894508 | | | Cranberry Lake | | | LJS & JBS | | 5 | Sand | Pole | SAMPLED | | - | 2 | | | | | | | + | | | | | | H | + | 1 | \perp | | | | H | 2 | | | 45.893788
45.893068 | | | Cranberry Lake | | | LJS & JBS | | 14 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | T | | | | t | H | | | | Ħ | $^{+}$ | | | 45.892348 | | | Cranberry Lake | | | | | 16 | muuk | , oic | DEEP | | | Ĭ | 306 | 45.891628 | -89.163791 |) | Cranberry Lake | Vilas | | | 306 | 0 | | | DEEP | | | | | | | | | | _ | | | | | - | | | | | | | | Н | _ | | | 45.890908 | | | Cranberry Lake | Vilas | | | 307 | 0 | | | DEEP | | + | | | | | | | | + | | | - | + | + | H | + | + | | | + | | H | + | | | 45.890188
45.889468 | | | Cranberry Lake
Cranberry Lake | | 8/14/2017 | LJS & JBS | 308 | 17 | | | DEEP | | | | | | | | | | | | | | T | | | | t | H | | | | Ħ | $^{+}$ | | | 45.888748 | | | Cranberry Lake | Vilas | | LJS & JBS | 310 | 15 | Muck | Pole | SAMPLED | | | 0 | 45.888028 | | | Cranberry Lake | | | | | | Muck | Pole | SAMPLED | | | 0 | | | | | | | + | | | | - | + | | | \perp | | | | | H | _ | | | 45.887308
45.913939 | | | Cranberry Lake | | | | | 12 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | + | | | + | + | | | - | + | | | | | H | + | | | 45.913939 | | | Cranberry Lake | | | BTB & NLS | | 0 | Sanu | POIE | DEEP | | | | | | | | | | | | | | | | | 1 | | | | | | | 1 | | 315 | 45.912499 | -89.162446 |) | Cranberry Lake | Vilas | | | 315 | 0 | | | DEEP | Ш | 4 | | | 45.911779 | -89.162457 | | | | | | 316 | 0 | | | DEEP | | | | | | | | | | + | | | - | + | + | | + | + | | | \perp | | H | + | | | 45.911059
45.910339 | | | Cranberry Lake | | | | 317 | 0 | | | DEEP | | + | | | | | | | 1 | \dagger | | | 1 | $^{+}$ | t | H | $^{+}$ | t | H | | | | H | + | | | 45.909619 | | | Cranberry Lake | | 8/14/2017 | BTB & NLS | | 15 | | | DEEP | 320 | 45.908899 | -89.1625 10 | 08 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 320 | 15 | | | DEEP | | _ | | | | | | | | | | | | | | | \downarrow | | | | | | Ц | 4 | | | 45.90818 | | | Cranberry Lake | | | | | 14 | | | DEEP | | + | | | | | | | | + | | | | | + | | + | + | | | | | H | + | | | 45.90746
45.90674 | | | Cranberry Lake | | | BTB & NLS | | 14 | | | DEEP | | | | | | | | | | | | | | T | | | | t | H | | | | Ħ | $^{+}$ | | | 45.90602 | | | Cranberry Lake | | | | | 14 | | | DEEP | | l | | | 1 | | | | | | | | 1 | | I | | I | | | | | | П | # | | 325 | 45.9053 | | | Cranberry Lake | | | | | | Muck | Pole | SAMPLED | | ╁ | 0 | Н | \dashv | + | | Н | - | - | - | | \dashv | + | + | | + | + | Н | | + | H | H | + | | | 45.90458 | | | Cranberry Lake | | | | | | Muck | Pole | SAMPLED | | + | 0 | H | \dashv | + | | H | 1 | + | | | + | + | + | H | + | - | Н | - | + | H
| \forall | + | | | 45.90386
45.90314 | | | Cranberry Lake | | | | | | Muck | Pole | SAMPLED
SAMPLED | | t | 1 | П | 1 | \dagger | | H | 1 | t | | | + | \dagger | t | Ħ | \dagger | t | H | 1 | \dagger | Ħ | П | 1 | | | 45.90242 | | | Cranberry Lake | | | | | | Sand | | SAMPLED | | I | 0 | | I | 1 | | | I | Ţ | | | I | Ţ | I | | I | | П | | I | П | П | I | | | 45.9017 | | | Cranberry Lake | | | | | | Sand | | SAMPLED | | + | 0 | Н | \downarrow | \perp | | | - | - | \perp | | 4 | + | + | | + | + | | - | + | | \vdash | + | | | 45.8945 | | | Cranberry Lake | | | | | | Muck | | SAMPLED | | + | 0 | H | \dashv | + | | H | + | ł | + | H | \dashv | + | + | H | + | + | H | - | + | + | H | + | | | 45.89378
45.89306 | | | Cranberry Lake
Cranberry Lake | | | | | | Muck
Muck | | SAMPLED
SAMPLED | | j | 0 | | _ | | | Ħ | | | | | | | t | | † | _ | Ħ | | | Ħ | П | _ | | | 45.89234 | | | Cranberry Lake | | | | | 16 | | | DEEP | | | | | | | | | | | | | | | | | I | | | | | | П | I | | | 45.89162 | | | Cranberry Lake | | | | 335 | 0 | | | DEEP | | + | | Н | \dashv | + | | | - | - | + | | + | + | + | H | + | + | H | - | + | Н | H | + | | | 45.8909
45.89018 | | | Cranberry Lake | | | | 336
337 | | | | DEEP | | + | H | H | \dashv | + | | H | + | ł | + | H | \dashv | + | + | H | + | + | H | - | + | + | H | + | | | 45.88946 | | | Cranberry Lake | | | LJS & JBS | | | | | DEEP | | | L | | | | | | | | | L | | ┪ | İ | Ħ | Ħ | 1 | | | | | | # | | | 45.888741 | | | Cranberry Lake | | | | | | Muck | Pole | SAMPLED | | | 0 | | Ţ | | | Ц | Ţ | Ţ | | | 1 | Ţ | | Ц | J | | | I | I | | Ц | Ţ | | 339 | - 1 | | | | | | | | | Muck | | SAMPLED | | | | . 1 | - 1 | - 1 | 1 | . 1 | - 1 | - 1 | -1 | 1 | - 1 | - 1 | | | | | | | | | | | | | | | T | П | anle | Т | Т | |--------------|----------------------------|--------------------------------|------|----------------------------------|----------------|------------------------|------------------------|--------------|------------|--------------|------------|--------------------|-------|----------|---------------------|-----------------------|--------------------|---------------|---------|-----------------------|-------------------|--------------------|----------------|--------------|------------------|------------------|--------------------|-------------------------|-----------------------|--------------------------|-----------------------|-----------------------|----------------------------|--------------------------|-----------------------------|--|-----------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | 2 | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fuliness | Myriophyllum spicatum | Brasenia schreberi | Bidens beckii | echinat | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Najas flexilis | Nitella spp. | Nuphar variegata | Nymphaea odorata | Pontederia cordata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton z osteriformis | Sagittaria sp. (rosette) | Sparganium emersum var. aca | Sparganium fluctuans
Utricularia vulgaris | Vallisneria americana | | 341 | 45.887301
45.916092 | | Т | | | | LJS & JBS
BTB & NLS | 341 | 3 | Sand | Pole | SAMPLED
SAMPLED | | ł | 1 | | | 1 | - | - | | + | | - | | - | - | + | | | | + | + | H | + | + | 1 | | 342 | 45.916092 | | Т | Cranberry Lake | | | BTB & NLS | 343 | 5 | Sand | Pole | SAMPLED | | | 2 | | | | | | | | | | | | | | | | 1 | | | | 1 | İ | 2 | | 344 | 45.914652 | | | Cranberry Lake | | | BTB & NLS | | 14 | | | DEEP | | - | | | | | - | | | + | - | | | | | + | | | | + | | H | + | + | + | | 345
346 | 45.913932
45.913212 | | | Cranberry Lake | | | BTB & NLS | 345 | 14 | | | DEEP
DEEP | | | | | | | | | | \dagger | | | | | | | | | | | | H | + | + | + | | 347 | 45.912492 | | | Cranberry Lake | | 0.14/2011 | DID WILLO | 347 | 0 | | | DEEP | 1 | I | | | 348 | 45.911772 | | | Cranberry Lake | | | | 348 | 0 | | | DEEP | | - | | | | | - | | | - | + | | | | | + | | | | + | | H | + | + | + | | 349
350 | 45.911052
45.910332 | -89.161437 0
-89.161447 11 | | Cranberry Lake | | 8/14/2017 | BTB & NLS | 349
350 | 0 | | | DEEP | | T | | | | | | | | 1 | | l | | | | | | | | | T | Ħ | \dagger | t | + | | 351 | 45.909612 | -89.161458 11 | Т | | | | | | 15 | | | DEEP | П | Į | Į | I | | 352 | 45.908892 | -89.161469 10 | Т | | | | | | 14 | Sand | Pole | SAMPLED | | + | 0 | | | | | | | + | + | | | | | + | | | | + | | Н | + | + | + | | 353
354 | 45.908172
45.907452 | -89.16148 10
-89.161491 10 | | | | | BTB & NLS | | 14 | Muck | Pole | DEEP | | | 0 | | | | | | | | | | | | | | | | | | | Ħ | T | T | Ħ | | 355 | 45.906732 | -89.161502 96 | 6 | Cranberry Lake | Vilas | | | 355 | 13 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | Ш | 4 | Ţ | Ш | | 356 | 45.906012 | | | Cranberry Lake | | | | | 13 | Muck | Pole | SAMPLED | | | 0 | | | | | | | + | | | | | | | | | | | | Н | + | + | + | | 357
358 | 45.905292
45.904572 | | | Cranberry Lake | | | BTB & NLS
BTB & NLS | | 13 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | Ť | | | | | | | | | | | T | П | \dagger | \dagger | \top | | 359 | 45.903852 | -89.161545 61 | 1 1 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 359 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | Ц | 4 | Ţ | lacksquare | | 360 | 45.903132
45.902412 | | Т | Cranberry Lake | | 8/14/2017
8/14/2017 | | | 6 | Sand | Pole | SAMPLED
SAMPLED | | | 2 | | | + | | | | + | | | | | | | | | 2 | | | Н | + | + | + | | 361
362 | 45.902412 | -89.161567 21
-89.161578 23 | Т | Cranberry Lake | Vilas
Vilas | 8/14/2017 | BTB & NLS | 362 | 5 | Muck | Pole | SAMPLED | | | 0 | | | ľ | | | 1 | | | | | | | | | | 1 | | | | 1 | İ | -2 | | 363 | 45.900972 | -89.161588 23 | 35 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 363 | 3 | Muck | Pole | SAMPLED | | - | 2 | | | 1 | | | 1 | 1 | | | | | | _ | | | | _ | | Н | 4 | 4 | 2 | | 364 | 45.900252 | -89.161599 24 | | Cranberry Lake | Vilas | 8/15/2017 | BTB & NLS | 364 | 4 | Muck | Pole | SAMPLED | | + | 0 | | H | | - | | | + | | | | | | | | | | | | H | + | + | + | | 365
366 | 45.899532
45.898812 | -89.16161 25
-89.161621 25 | | Cranberry Lake
Cranberry Lake | | 8/15/2017
8/15/2017 | BTB & NLS | 366 | 6 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | | | 1 | | | | I | I | T | | 367 | 45.898092 | | | Cranberry Lake | | | BTB & NLS | 367 | 5 | Muck | Pole | SAMPLED | | - | 2 | | | | | | | 1 | | | | | | _ | | | | _ | | Н | 4 | 4 | 2 | | 368
369 | 45.897373
45.896653 | -89.161643 26
-89.161653 25 | | Cranberry Lake | | 8/15/2017
8/15/2017 | BTB & NLS | 368 | 6 | Sand | Pole | SAMPLED
SAMPLED | | | 1 | | | | | | | + | | | | | | | | | 1 | | | H | + | + | 1 | | 370 | 45.895933 | | | Cranberry Lake | | | LJS & JBS | | 6 | Sand | Pole | SAMPLED | | | 3 | I | 3 | | 371 | 45.895213 | -89.161675 24 | | | | | LJS & JBS | | 12 | Muck | Pole | SAMPLED | | - | 0 | | | | - | _ | | - | | | | _ | | - | | | | - | - | H | + | + | \perp | | 372
373 | 45.894493
45.893773 | -89.161686 24
-89.161697 23 | | Cranberry Lake | | | LJS & JBS | | 13 | Muck | Pole | SAMPLED
SAMPLED | | + | 0 | | H | | | | | + | | | | | | | | H | | | | Н | + | + | + | | 374 | 45.893053 | -89.161708 13 | | | | | | | 15 | Muck | Pole | SAMPLED | | | 0 | I | I | | | 375 | 45.892333 | -89.161718 13 | Т | | | | | | 16 | | | DEEP | | - | | | | | - | _ | | - | | | | _ | | - | | | | - | - | H | + | + | \perp | | 376 | 45.891613
45.890893 | -89.161729 16
-89.16174 16 | | Cranberry Lake
Cranberry Lake | | | | | 16
20 | | | DEEP | H | + | + | + | | 378 | 45.890173 | | | Cranberry Lake | | | LJS & JBS | 378 | 17 | | | DEEP | 1 | I | | | 379 | 45.889453 | | | Cranberry Lake | | | | | | Muck | Pole | SAMPLED | | | 0 | | | | | | | + | | - | | | | | | | | | - | Н | + | + | Ш | | 380 | 45.888733
45.888013 | -89.161773 20
-89.161783 20 | | | | | | | 14
7 | Muck | Pole | SAMPLED
SAMPLED | | t | 0 | | H | | | | | | | | | | | | | H | | | | H | \dagger | $^{+}$ | + | | 382 | 45.916804 | | | Cranberry Lake | | | | | 7 | Rock | Pole | SAMPLED | | | 1 | 1 | I | 1 | | 383 | 45.916084 | -89.160329 15 | | | | | | | | Muck | Pole | SAMPLED | | + | 0 | | | | | 4 | | + | | | | 4 | | + | | | | + | | H | + | + | + | | 384 | 45.915364
45.914644 | -89.16034 16
-89.160351 16 | | Cranberry Lake | | | | | 14 | | | DEEP
DEEP | | | | | | | | | | | | | | | | | t | | | | | H | \dagger | \dagger | H | | 386 | 45.913924 | | | Cranberry Lake | | | | 386 | 0 | | | DEEP | 1 | I | | | 387 | 45.913204 | | Т | Cranberry Lake | | | | 387 | 0 | | | DEEP | | | | | | | | | | + | | | | | | | | | | | | Н | + | + | + | | 388 | 45.912484
45.911764 | | | Cranberry Lake | | | BTB & NLS
BTB & NLS | | 15
15 | | | DEEP | | | | | | | | | | | | | | | | | t | | | | | H | \dagger | \dagger | H | | 390 | 45.911044 | -89.160405 11 | 14 | Cranberry Lake | Vilas | | | | 15 | | | DEEP | П | Į | Į | I | | 391 | 45.910324 | -89.160416 11 | Т | | | | | | 14 | | | DEEP | | | | | | | | | | + | | | | | | | | | | | | Н | + | + | + | | 392 | 45.909604
45.908884 | -89.160427 11
-89.160438 10 | Т | | | | | | 7 | Sand | | SAMPLED
SAMPLED | | İ | 0 | L | | | T | | _ | † |
1 | Ė | | | | 1 | L | | _ | 1 | İ | Ħ | \pm | t | 1 | | 394 | 45.908164 | -89.160449 10 | | | | | | | 13 | Muck | Pole | SAMPLED | | | 0 | | I | 1 | | | 1 | 1 | | | | | J | Ţ | | | J | Ţ | | Ц | 4 | Į | \perp | | 395 | 45.907444 | | Т | Cranberry Lake | | | | | | Muck | Pole | SAMPLED | | + | 0 | | - | + | - | | + | + | + | \vdash | | | \dashv | + | - | | \dashv | + | + | Н | + | + | + | | 396
397 | 45.906724
45.906005 | | | Cranberry Lake Cranberry Lake | | | | | 13 | Muck
Muck | | SAMPLED
SAMPLED | | İ | 0 | L | | | L | | | T | t | İ | | | | 1 | l | | _ | 1 | İ | Ħ | \pm | t | T | | 398 | 45.905285 | -89.160492 87 | 7 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 398 | 12 | Muck | Pole | SAMPLED | | Ĺ | 0 | | П | 1 | | | 1 | Ţ | | | | | 1 | Ţ | | Ц | 1 | Ţ | | Ц | 4 | Ŧ | ₽ | | 399 | 45.904565 | | | Cranberry Lake | | | | | | Muck
Muck | | SAMPLED
SAMPLED | | + | 0 | | 1 | + | + | H | 1 | + | + | ╁ | H | H | \dashv | + | H | Н | \dashv | + | + | H | + | + | + | | 400 | 45.903845
45.903125 | -89.160514 62
-89.160525 51 | | | | | | | | Muck | | SAMPLED
SAMPLED | | t | 0 | L | | 1 | L | | 1 | 1 | t | L | | | | İ | L | | | İ | t | Ħ | 士 | # | T | | 402 | 45.902405 | | | | | | | | 9 | Muck | | SAMPLED | | | 0 | | H | 1 | | Ц | 1 | 1 | F | F | | Ц | 1 | Ŧ | F | | 7 | Ŧ | F | Ц | 4 | Ŧ | ₽ | | 403
404 | 45.901685
45.900965 | | | Cranberry Lake | | | | | 5 | Sand
Muck | Pole | SAMPLED
SAMPLED | | + | 0 | | H | + | + | H | 1 | + | + | H | H | H | \dashv | + | H | | \dashv | + | + | \forall | + | + | + | | 404 | 45.900965
45.900245 | | | | | | | | | Muck | | SAMPLED
SAMPLED | | İ | 0 | | | | | | 1 | 1 | t | | | | | 1 | | | | 1 | | Ħ | 1 | 1 | Ħ | | 406 | 45.899525 | -89.160579 25 | | | | | | | 80 | Muck | | SAMPLED | | 1 | 0 | | | - | _ | \sqcup | -[| 4 | + | L | Н | \sqcup | 4 | + | L | H | 4 | + | \perp | Н | + | + | \perp | | 407
408 | 45.898805
45.898085 | | | Cranberry Lake | | | | | | Muck
Muck | | SAMPLED
SAMPLED | | + | 0 | | H | + | + | H | 1 | + | + | H | H | H | \dashv | + | H | H | \dashv | + | + | H | + | + | + | | 408 | 45.898085 | -89.160601 26 | 26 I | cranperry Lake | Vilas | 8/15/2017 | BIR & NFS | 408 | 9 | muck | role | SAMPLED | 1 | | 10 | _ | ш | | 1 | | | | | 1 | ш | Ш | | | 1 | ш | _1_ | | 1_ | ш | | | | | | (S | (sog | E H | | | | | | | _ | | | is | ali mana | | | | |--------------|----------------------------|----------------------------|------------|-------------------------------|----------------|------------------------|-----------------|-------------|------------|----------|------------|--------------------|----------|----------|---------------------|-----------------------|-----------------|------------------------|-------------------------|-----------------------|-------------------|----------------------------|----------------|--------------|------------------|--------------------|-------------------------|--|-------------------------|-----------------------|--------------------|--------------------------|-----------|---|----------------------|-----------------------| | mber | .atitude (Decimal Degrees) | ongitude (Decimal Degrees) | | эц | | | w | mber | 0 | _ | be | žĮ. | | | Total Rake Fuliness | Myriophyllum spicatum | senia schreberi | Ceratophyllum demersum | Ceratophyllum echinatum | Eleocharis acicularis | Elodea canadensis | Myriophyllum heterophyllum | xilis | Vitelia spp. | Nymphaea odorata | Pontederia cordata | Potamogeton amplifolius | Potamogeton berchtoldii
Potamogeton epihydrus | Potamogeton richardsoni | Potamogeton robbinsii | Potamodeton vasevi | Potamogeton z osteriforn | | Sparganium emersum var.
Sparganium fluctuans | Jtricularia vulgaris | Vallisneria americana | | Point Number | Latitude | Longituc | ٥ | Lake Name | County | Date | Field Crew | Point Numbe | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Ra | Myrioph | Brasenia schi | Ceratop | Ceratop | Eleocha | Elodea | Myrioph | Najas flexilis | Nitella spp. | Nympha | Pontede | Potamo | Potamog
Potamog | Potamog | Potamog | Potamor | Potamog | Sagittari | Spargan | Utricula | Vallisner | | 409 | 45.897365 | -89.160611
-89.160622 | | Cranberry Lake | Vilas | | | 409 | 10 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | + | | | | | | | + | Н | Н | | 410 | 45.896645
45.895925 | -89.160622
-89.160633 | 254
251 | Cranberry Lake | Vilas
Vilas | | | 411 | 11 | Muck | Pole | SAMPLED | | | 0 | 412 | 45.895205
45.894485 | -89.160644
-89.160655 | | Cranberry Lake | Vilas
Vilas | | | 412 | 12 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | + | | H | | - | | | | H | + | | | - | + | | | + | H | П | | 414 | 45.893765 | -89.160666 | | Cranberry Lake | Vilas | | | 414 | 13 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | 1 | | | | | | | I | | | | 415 | 45.893045
45.892325 | -89.160676
-89.160687 | | Cranberry Lake | | | | 415
416 | 14 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | + | | | | | | | + | \dashv | П | | 417 | 45.891605 | -89.160698 | | Cranberry Lake | | | | 417 | 15 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | I | | d | | 418 | 45.890885
45.890165 | -89.160709
-89.16072 | | Cranberry Lake Cranberry Lake | | | | | | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | Н | + | | | | | | | - | H | Н | | 420 | 45.889445 | -89.160731 | | Cranberry Lake | | | | | | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | 1 | | | | | | | | П | H | | 421 | 45.888725
45.917516 | -89.160742
-89.159276 | | Cranberry Lake Cranberry Lake | | | | 421 | 13 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | | 1 | | | | | | | | | | | | | | | | - | + | 1 | | 423 | 45.916796 | -89.159287 | | Cranberry Lake | | | | | 13 | Muck | Pole | SAMPLED | | | 0 | | | Ľ | | | | | | | | | 1 | | | | | | | | П | Ä | | 424 | 45.916076
45.915356 | -89.159298
-89.159309 | | Cranberry Lake Cranberry Lake | Vilas
Vilas | | BTB & NLS | 424 | 12 | Muck | Pole | SAMPLED
DEEP | | | 0 | | | | | | | | | | | | + | | | + | | | | + | H | Н | | 426 | 45.914636 | -89.159319 | | Cranberry Lake | Vilas | 0.1412011 | D I D Q I I L D | 426 | | | | DEEP | | | | | | | | | | | | | | | 1 | | | | | | | | П | H | | 427 | 45.913916
45.913197 | -89.15933
-89.159341 | 122 | Cranberry Lake | Vilas
Vilas | 8/14/2017 | BTB & NLS | 427
428 | 14 | | | DEEP
DEEP | | | | 1 | + | + | H | H | + | + | H | + | + | H | + | + | | + | + | H | \forall | + | H | Н | | 429 | 45.912477 | -89.159352 | | Cranberry Lake | Vilas | 8/14/2017 | | 429 | 14 | | | DEEP | I | | d | | 430 | 45.911757
45.911037 | -89.159363
-89.159374 | 116
115 | Cranberry Lake Cranberry Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | BTB & NLS | 430 | 11 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | | | | H | | | 1 | | | | + | | | 1 | | | | + | \forall | | | 432 | 45.907437 | -89.159428 | 99 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 432 | 2 | Sand | Pole | SAMPLED | | | 2 | | | İ | | | | | 2 | | | | 1 | | | | 1 | | | İ | | Ĺ | | 433 | 45.906717
45.905997 | -89.159439
-89.15945 | 98
89 | Cranberry Lake Cranberry Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | BTB & NLS | 433 | 5 | Sand | Pole | SAMPLED
SAMPLED | | | 2 | | | | | | | | | | | | 1 | | | | | | | + | + | 2 | | 435 | 45.905277 | -89.159461 | | Cranberry Lake | | | | 435 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | 1 | | | | | | | I | | İ | | 436 | 45.904557
45.903837 | -89.159472
-89.159482 | 76
63 | Cranberry Lake | Vilas | | | 436 | 12 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | + | | | | | | | + | + | П | | 438 | 45.903637 | -89.159493 | | Cranberry Lake | Vilas
Vilas | | | 438 | 7 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | I | | I | | 439 | 45.902397
45.901677 | -89.159504
-89.159515 | | Cranberry Lake | Vilas
Vilas | | BTB & NLS | | 6 | Sand | Pole | SAMPLED
SAMPLED | | | 1 | | | | | | | | | | | | 1 | | | | | | | + | + | П | | 441 | 45.901677 | -89.159515
-89.159526 | | Cranberry Lake | | | BTB & NLS | | 5 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | | 1 | | | 1 | | | | | | ╛ | | 442 | 45.900237
45.899517 | -89.159537 | | Cranberry Lake | Vilas
Vilas | | BTB & NLS | | 5 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | + | | | | | | | + | \dashv | | | 444 | 45.898797 | -89.159559 | | Cranberry Lake | Vilas | | BTB & NLS | | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | I | | İ | | 445 | 45.898077
45.897357 | -89.159569
-89.15958 | 265
270 | Cranberry Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | BTB & NLS | 445 | 10 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | + | | | | | | | + | + | П | | 446 | 45.896637 | -89.15958
-89.159591 | | Cranberry Lake | | | | 447 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | I | | I | | 448 | 45.895917
45.895197 | | | Cranberry Lake | | | | | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | + | | | | | | | + | + | | | 450 | 45.895197 | | | Cranberry Lake | | 8/15/2017 | | 450 | | Sand | Pole | SAMPLED
SAMPLED | | | 3 | | | 2 | | | | | | | | | 1 | | | 1 | | | | I | | 3 | | 451 | 45.893758
45.892318 | -89.159635
-89.159656 | | Cranberry Lake | | | | | | Sand | Pole | SAMPLED | | | 3 | | | + | | H | | - | 3 | | | H | 1 | | | - | + | | | + | H | 1 | | 452
453 | 45.892318
45.891598 | -89.159656
-89.159667 | | Cranberry Lake Cranberry Lake | | 8/14/2017
8/14/2017 | | | | Sand | Pole | SAMPLED
SAMPLED | | | 1 | | | | | | | | 1 | | | | | | | 1 | | | | |
 1 | | 454 | 45.890158
45.889438 | -89.159689
-89.1597 | | Cranberry Lake | | 8/14/2017 | | | | Sand | Pole | SAMPLED | | | 1 | | | | | | - | | | | | | 1 | | | | | | | + | + | H | | 455 | 45.889438 | -89.1597
-89.159711 | | Cranberry Lake | Vilas
Vilas | | LJS & JBS | 455
456 | | Sand | Pole | SAMPLED
SAMPLED | | | 0 | ╛ | | 457 | 45.917509 | -89.158244 | | Cranberry Lake | | | BTB & NLS | | 12 | Muck | Pole | SAMPLED | | | 0 | | | - | | | | | | | | | | | | | - | | | + | H | Н | | 458 | 45.916789
45.916069 | -89.158255
-89.158266 | | Cranberry Lake | | 8/14/2017 | BTB & NLS | 458
459 | 13 | Muck | Pole | SAMPLED
DEEP | | | 0 | | | İ | | | | | | | | | | | | | İ | | | \pm | Н | ╛ | | 460 | 45.915349 | -89.158277 | | Cranberry Lake | | | BTB & NLS | | | | | DEEP | | | | | - - | | | | | 1 | | | 1 | | + | + | | \parallel | + | | | + | H | Н | | 461 | 45.914629
45.913909 | -89.158288
-89.158299 | | Cranberry Lake | | | BTB & NLS | 461
462 | 14 | | | DEEP
DEEP | | L | | | | t | | | 1 | t | | İ | t | | | t | | | t | L | | t | Ħ | | | 463 | 45.913189 | -89.15831 | 120 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 463 | 7 | Sand | Pole | SAMPLED | | F | 2 | - | - | F | H | H | Ŧ | - | H | Ŧ | I | $oxed{\parallel}$ | -[| - | H | - | F | L | H | Ŧ | Ц | 2 | | 464 | 45.905269
45.904549 | -89.158429
-89.15844 | | Cranberry Lake | | | BTB & NLS | | | Sand | Pole | SAMPLED
SAMPLED | | L | 0 | | | t | | | 1 | İ | | l | t | | | t | | 1 | 1 | L | | t | Ħ | 1 | | 466 | 45.903829 | -89.158451 | 64 | Cranberry Lake | Vilas | | BTB & NLS | | | Muck | | SAMPLED | | | 0 | | - - | | | | | - | | | | Н | + | + | | \parallel | + | | | + | Н | Н | | 467 | 45.903109
45.90239 | | | Cranberry Lake | | | BTB & NLS | | | Muck | Pole | SAMPLED
SAMPLED | | L | 2 | | \perp | İ | | | 1 | t | | t | t | | 1 | l | | 1 | İ | t | ╽ | t | Ħ | 2 | | 469 | 45.90167 | -89.158484 | 231 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 469 | 4 | Sand | Pole | SAMPLED | | F | 0 | 1 | - | F | | H | Ŧ | - | H | F | F | H | 1 | + | H | \dashv | Ŧ | L | H | F | Ц | H | | 470 | 45.90095
45.90023 | -89.158495
-89.158506 | | Cranberry Lake | | | BTB & NLS | 470
471 | 5 | Sand | Pole | SAMPLED
SAMPLED | | L | 1 | | \pm | t | H | | 1 | t | | t | t | | 1 | 1 | | 1 | t | t | Ħ | t | Ħ | | | 472 | 45.89951 | | 250 | Cranberry Lake | Vilas | 8/15/2017 | BTB & NLS | | | Sand | | SAMPLED | | | 0 | | - | F | | | 1 | 1 | | - | 1 | \sqcup | 4 | \perp | | 4 | + | F | H | F | Ц | Н | | 473 | 45.89879
45.89807 | | | Cranberry Lake | | | | | | Sand | Pole | SAMPLED
SAMPLED | | L | 0 | | \pm | t | | | 1 | t | | t | t | | 1 | t | | 1 | t | t | ╽ | t | Ħ | | | 475 | 45.89735 | -89.158549 | 271 | Cranberry Lake | Vilas | 8/15/2017 | BTB & NLS | 475 | 11 | Muck | Pole | SAMPLED | | | 0 | | - | | H | Ц | - | 1 | H | - | 1 | H | \dashv | \bot | | - | ļ | F | H | F | Ц | H | | 476 | 45.89663 | -89.15856 | 256 | Cranberry Lake | Vilas | 8/15/2017 | LJS & JBS | 476 | 12 | Muck | Pole | SAMPLED | <u> </u> | 1 | 0 | | | | Ш | Ш | | | | | | Ш | | | Ш | | | | | | Ш | | | Part | _ | | | | | | | | | | | dise | Cause | | | |--|--------------|----------------------------|--------------|----|----------------|--------|-----------|------------|--------------|------------|----------|------------|--------------------|-------|-----------|---------------------|-----------------------|--------------------|-----------|-------------------------|-----------------------|-------------------|--------------------|--|--------------|------------------|------------------|--------------------|---|-----------------------|--------------------------|-----------------------|--------------------|----------------------------|--------------------------|----------------------|---|-----------| | Series Antique Control and Series (1.4 a. 20 a. 2) | Point Number | Latitude (Decimal Degrees) | ngitude | Q | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Brasenia schreberi | n demers | Ceratophyllum echinatum | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Myriophyllum neterophyllun
Naias flexilis | Nitella spp. | Nuphar variegata | Nymphaea odorata | Pontederia cordata | Potamogeton amplifolius Potamogeton berchtoldii | Potamogeton epihydrus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton vaseyi | Potamogeton z osteriformis | Sagittaria sp. (rosette) | Sparganium fluctuans | | | | Column C | | | | | | | | | 477
478 | 7 | Sand | Pole | | | | 0 | + | | 1 | | Marche M | | | | | | | | | 479 | 0 | Ţ | | | | March Marc | | | | | | | | | | | Muck | Pole | | | | 2 | | 1 | 2 | 2 | | 1 | | + | | | 1 | | | | | 1 1 | | H | + | + | Н | 1 | | 84 A. P. M. S. C. P. | | | | | | | | | | 11 | Muck | Pole | | | | 0 | I | | Ĺ | | ## AMERING MOTOR COMMON NO. 10. SENTING OF 18 AMERING 19 10 19 10 19 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10 | | | | | | | | | | | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | | | | Н | _ | + | H | = | | Matter M | | | | | | | | | | 14 | Section Sect | | | | | | | | | | | | | DEEP | _ | | | | Martine Mart | | | | | | | | | | | Sand | Pole | | | | 1 2 | | | | | | 1 | | | | | | | 1 | | | | | | | + | Н | 1 2 | | 2 | | | | | | | | | 489 | 5 | Sand | Pole | | | | 0 | Į | | | | 8. 6 (1900) | | | | | | | | | | 5 |
Muck | Pole | | | | 1 | | | 1 | | | | | + | - | | | | | | _ | | | | _ | + | \vdash | = | | 18. A 1980 M. | | | | | | | | | | 4 | Muck | Pole | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | + | H | 2 | | March Marc | 493 | 45.901662 | -89.157453 2 | 30 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 493 | 4 | Sand | Pole | SAMPLED | | F | 1 | Ц | Į | F | F | L | | $oxed{I}$ | Ŧ | F | П | \bot | Ţ | 1 | Н | H | f | F | H | 4 | ╀_ | H | إ | | 48 - 1 | | | | | | | | | 494 | 4 | Sand | Pole | | | + | | H | 1 | + | + | - | | + | + | + | H | + | + | \vdash | \vdash | \forall | + | + | H | + | + | Н | \exists | | March Marc | | | | | | | | | 496 | 5 | Muck | Pole | | | | | | 1 | İ | İ | | | | 1 | L | | | 1 | | | | İ | | | 1 | I | | | | 15 15 15 15 15 15 15 15 | | | | | | | | | 497 | 5 | Sand | Pole | | | | 2 | | | | | | | | | | | | | | | | | | | _ | + | | 2 | | 1 | | | | | | | | | 498 | 9 | Muck | Pole | | | | 0 | | | | | | | | | | H | | | | | Ħ | | | Н | + | + | H | | | 24 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | | | | | | | | | 500 | 6 | Sand | Pole | | | | 1 | L | | 1 | | A. STATE | | | | 48 | | | | | 501 | 1 | Sand | Pole | | | | 1 | | | | | | | | 1 | - | | | | | | _ | | | | _ | + | \vdash | 1 | | March Marc | | | | | | | | | 502 | 0 | | | | | | | | | | | | | 1 | + | t | | | t | | | | | t | | 1 | + | H | ٦ | | 20 | | | | | | | | | 504 | 3 | Muck | Pole | | | | 2 | | | 1 | | | | | 1 | | | | | 1 | | | | | | | I | | 2 | | Secretary Secr | | | | | | | | | | 5 | Sand | Pole | | | | 2 | | | | | | | | | + | 1 | | | | | | | | | | + | | 2 | | Dec 1980 Sept 1980 Sept 1990 Control plane Vive Property Sept 1990 | | | | | | | | | | | Muck | Pole | | | | | | | | | | | | | T | | | | | | | | | | | + | | | | 10 10 10 10 10 10 10 10 | | 45.916054 | -89.156203 1 | 30 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 508 | 11 | Sand | Pole | SAMPLED | | | 0 | Ţ | | | | 101 4 5000000 40 10000000 70 Comment Law Value 1 1400000 Value 1 140000 1 | | | | | | | | | | 8 | Sand | Pole | + | H | _ | | 15 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | | | | | | | 5 | Sand | Pole | | | | Ť | 3 | | 15 6 50000 | 512 | 45.904534 | -89.156378 7 | 71 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 512 | 5 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | _ | | | | - | | | | | | | _ | + | | | | 50 6.500270 40.50411 20 Cemberry Lake Value 9142077 918 A.M.S. 510 4 Seed Pole SAMPLED 2 1 1 1 1 1 1 1 1 1 | | | | | | | | | 513 | 5 | Muck | Pole | | | | | | | | | | | | | | | | | | 2 | | | | H | | + | H | _ | | \$10 6.500004 -0.0 156402 200 Comberny Labe Visin 0.150070 3TB A.N.S. 918 4 Anal. Pole SAMPLED 2 2 1 1 1 1 1 1 1 1 | | | | | | | | | 515 | 4 | Sand | Pole | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | I | | | | 15 8 5000214 40 150443 247 Careberry Lake Visia 8 1500077 8TB 8 NR. 5 519 3 Score Pale SAMPLED 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | 4 | Sand | Pole | | | | 2 | | | | | | | | | | | | | | | | 1 | | Н | _ | + | H | 2 | | \$60 4.8.686775 69.158648 256 Camberry Lake Vise 8150071 8TB & N.S. 502 6 Musck Pee SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | 4 | Sand | Pole | | | | 2 | | | | | | | | | | | | | 1 | | | 1 | | H | | + | | 2 | | \$21 45.980056 | 519 | 45.899494 | -89.156454 2 | 48 | Cranberry Lake | Vilas | 8/15/2017 | BTB & NLS | 519 | 3 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | 1 | | | | | 1 | | | | | | | Ţ | | 1 | | \$2 45.897335 -89.155487 272 Caneberry Lake Visa 8-152017 STB & NLS 522 6 Mucl Pole SAMPLED 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | Sand | | | | | 2 | | | | | | | | + | + | | | - | 1 | | + | | | | _ | + | \vdash | 2 | | \$24 45.921800 -89.155084 150 Cramberry Lake Viss 814/2017 8TB & NLS 524 0 NONNAVIGABLE (PLANTS) \$25 45.918026 -89.155120 144 Camberry Lake Viss 814/2017 8TB & NLS 525 6 Muck Pole SAMPLED \$2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | | | Ť | | | 1 | | | | | | | | | | | | | | | | | | | 2 | | 55 45 918920 -89 155139 141 Cramberry Lake Vilas 8/14/2017 BTB A NLS 522 6 Muck Pole SAMPLED 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 523 | 45.896615 | | | | | 8/15/2017 | | | 0 | | | TERRESTRIAL | | | | | | | | | | | | - | | | | | | | | - | | | - | | | | 558 45 918208 -89 155130 141 Cramberry Lake Vilas 814/2017 8TB & NLS 527 10 Muck Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | Muck | Polo | | | | 2 | | | | | | | | + | t | | | | | | | | | H | | + | | 2 | | 528 45.916766 -89.155181 134 Cramberry Lake Vilas 81/4/2017 BTB & NLS 528 10 Muck Pole SAMPLED 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | 526 | | Muck | Pole | | | | 0 | İ | | Ĺ | | 59 4 5905247 - 89.155336 69 Cranberry Lake Vilas 81/4/2017 BTB & NLS 529 4 Sand Pole SAMPLED 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | Muck | Pole | | | | 0 | | | | | | | | + | - | | | - | | | | | - | | - | - | | = | | 50 45 904527 -89 155347 68 Cranberry Lake Vilas 8142017 BTB & NLS 530 4 Sand Pole SAMPLED 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | 10 | | | | | T | 0 | | | | | | | | + | t | | 1 | | | | H | 1 | | H | | + | H | 1 | | 532 45 903087 -89.155388 46 Cranberry Lake Vilas 8142017 BTB & NLS 532 5 Muck Pole SAMPLED 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | 4 | | | | | | 1 | I | | 1 | | 53 45 902367 -89 155379 224 Cranberry Lake Vilas 8/14/2017 BTB & NLS 533 4 Muck Pole SAMPLED 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | | + | 1 | | - | - | - | | 1 | \dashv | + | + | Н | \dashv | + | 1 | | \dashv | + | + | H | + | + | H | 1 | | 534 4 5901647 -89.15539 228 Cranberry Lake Vilas 8/14/2017 BTB & NLS 534 4 Sand Pole SAMPLED 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | | t | 1 | H | 1 | \dagger | t | H | | \dagger | \dagger | 1 | H | + | + | t | H | H | \dagger | t | H | \dagger | + | H | | | 586 45.888767 -89.155434 260 Cranberry Lake Vilas 8/15/2017 BTB & NLS 536 3 Sand Pole SAMPLED 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 45.901647 | -89.15539 2 | 28 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 534 | 4 | | | SAMPLED | - | I | 2 | | 1 | Ţ | | | | 7 | Ţ | I | | Ţ | 1 | 2 | | | Ţ | I | П | Ţ | Ţ | Д | 1 | | 537 45.898047 -89.155445 261 Cranberry Lake Vilas 8/15/2017 BTB & NLS 537 3 Sand Pole SAMPLED 2 2 2 1 1 1 1 1 1 1 1 538 45.918918 -89.154096 143 Cranberry Lake Vilas 8/14/2017 BTB & NLS 538 4 Sand Pole SAMPLED 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | C- ' | n . | | | + | | | | | - | | | \dashv | + | - | | \dashv | | | \vdash | | | + | H | + | + | Н | \exists | | 538 4 5.918918 -89.154096 143 Cranberry Lake Vilas 8/14/2017 BTB & NLS 538 4 Sand Pole SAMPLED 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | | t | 2 | | | \dagger | t | 2 | | | 1 | t | | | 1 | 1 | | | 1 | t | H | 1 | T | Ħ | 1 | | 540 45 917478 -89 154118 135 Cramberry Lake Vilas 8/14/2017 BTB & NLS 540 5 Sand Pole SAMPLED 2 2 541 45 903079 -89 154337 45 Cramberry Lake Vilas 8/14/2017 BTB & NLS 541 4 Muck Pole SAMPLED 0 0 542 45 902399 -89 154348 25 Cramberry Lake Vilas 8/14/2017 BTB & NLS 542 4 Sand Pole SAMPLED 1 1 543 45 901639 -89 154358 27 Cramberry Lake Vilas 8/14/2017 BTB & NLS 543 3 Sand Pole SAMPLED 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 538 | 45.918918 | -89.154096 1 | 43 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 538 | 4 | | | SAMPLED | | I | 1 | | Į | | Ī | F | | \dashv | F | F | П | - | -[| ļ | | H | F | - | H | - | 朾 | otin oti | 1 | | 541 45 903079 -89.154337 45 Cranberry Lake Vilas 8/14/2017 BTB & NLS 541 4 Muck Pole SAMPLED 0 0 542 45 902359 -89.154348 225 Cranberry Lake Vilas 8/14/2017 BTB & NLS 542 4 Sand Pole SAMPLED 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | | + | 2 | | | | + | | | + | + | + | | + | 1 | 1 | \vdash | | \parallel | + | H | + | + | H | 2 | | 543 45,901639 -89.154359 227 Cramberry Lake Vilas 8/14/2017 BTB & NLS 543 3 Sand Pole SAMPLED 2 1 1 1 1 1 1 | | | | | | | | | | | | | | | | 0 | | | 1 | | | | | 1 | L | | | 1 | | | | 1 | | Ц | | T | | | | | | | | | | | | | | | | | | | + | 1 | | - | - | - | | Н | \dashv | + | + | Н | \dashv | + | + | | \dashv | 1 | + | H | + | + | H | \exists | | | 543 | 45.901639
45.903791 | | | | | | | | | | | SAMPLED
SAMPLED | | \dagger | | H | 1 | 1 | | | | \dagger | 1 | t | | + | + | + | | H | 1 | + | 1 | + | 1 2 | H | ٦ | | Г | | | | | | | | | | | | | | П | T | | | T | | T | T | | | | 1 | Τ | | | Τ | П | 1 | Т | П | 흑 | Т | П | |--------------|----------------------------|-----------------------------|-----|----------------|----------------|------------------------|------------------------|--------------|------------|----------|------------|---|-------|----------|---------------------|---|---------------|------------------------|-------------------------|-----------------------|---|----------------------------|----------------|--------------|--------------------------------------|--------------------|-------------------------|---|--------------------------|-----------------------|-----------------------|--------------------|--------------------------|------------------------------|----------------------|-----------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | OI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fuliness | Myriophyllum spicatum
Brasonia schrohori | Bidens beckii | Ceratophyllum demersum | Ceratophyllum echinatum | Eleocharis acicularis | Elodea
canadensis
Heteranthera dubia | Myriophyllum heterophyllum | Najas flexilis | Nitella spp. | Nuphar variegata
Nymphaea odorata | Pontederia cordata | Potamogeton amplifolius | Potamogeton berchtoldii Potamogeton epihydrus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton vaseyi | Sagittaria sp. (rosette) | Sparganium emersum var. acau | Sparganium fluctuans | Vallisneria americana | | 545 | 45.903071 | -89.153306 | 44 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 545 | 4 | Muck | Pole | SAMPLED | | | 1 | v | | | | | | | | | | | | 1 | | 1 | | | | | _ | | | 546 | 45.902351 | -89.153317 | 226 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 546 | 3 | Muck | Pole | SAMPLED | | | 2 | | | | | | _ | | 1 | | | | | | | 1 | 4 | | | 4 | 1 | | | 547 | 45.904504 | -89.152253 | 42 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 547 | 3 | Muck | Pole | SAMPLED | | | 2 | 1 | | 1 | | 4 | 2 | | | | _ | | | | | Н | | | | | 1 | \bot | | 548 | 45.903784 | -89.152264 | 41 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 548 | 3 | Muck | Pole | SAMPLED | | | 1 | | | | | | 1 | | 1 | 1 | _ | | | | | | | | | _ | + | | | 549 | 45.903064 | -89.152275 | | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 549 | 3 | Sand | Pole | SAMPLED | | | 2 | | | - | | | | | 1 | | _ | | | | | Н | 2 | 1 | 1 | _ | + | + | | 550 | 45.905936 | -89.151199 | | Cranberry Lake | | 8/14/2017 | BTB & NLS | 550 | 0 | | | NONNAVIGABLE (PLANTS) | | | | | | | | | | | | | _ | | | | | | - | | | _ | + | + | | 551 | 45.905216 | -89.15121 | 36 | | | 8/14/2017 | | | | Muck | Pole | SAMPLED | | | 3 | 1 | | 1 | | | 1 | 2 | | | 1 | | | | | | - | | | _ | 1 | 1 | | 552 | 45.904496 | -89.151221 | | Cranberry Lake | | 8/14/2017 | | | 4 | Muck | Pole | SAMPLED | | | 1 | + | | - | H | + | - | - | | - | - | - | | | | | + | 1 | | _ | + | ++ | | 553 | 45.903776 | -89.151232 | | Cranberry Lake | | 8/14/2017 | | | 3 | Muck | Pole | SAMPLED | | H | 2 | 1 | - | 1 | H | + | 1 | - | H | - | + | + | H | 2 | + | H | + | + | + | + | + | + | | 554 | 45.906648 | -89.150157 | 35 | Cranberry Lake | | 8/14/2017 | BTB & NLS | 554 | 0 | | | NONNAVIGABLE (PLANTS) | | H | _ | + | + | + | H | + | \pm | - | H | - | + | + | Н | 1 | + | H | + | + | H | + | + | + | | 555 | 45.905928
45.905208 | -89.150168
-89.150179 | 34 | Cranberry Lake | Vilas | 8/14/2017
8/14/2017 | BTB & NLS
BTB & NLS | 555 | 7 | Muck | Pole | SAMPLED
SAMPLED | | H | 2 | 2 | 4 | 1 | H | + | 1 | - | H | + | \dagger | H | H | 1 | 1 | H | + | $^{+}$ | Ħ | + | + | + | | 557 | 45.905208 | -89.150179 | 32 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 557 | , | Muck | Pole | SAMPLED | | | 1 | T | | 1 | | | | | | | + | | | | | H | T | | | \exists | \dagger | Ħ | | 558 | | -89.149115 | | Cranberry Lake | Vilas | | | 558 | 4 | Sand | Pole | SAMPLED | | | 1 | T | | | | T | | | | | | | | | | | T | | | 7 | 1 | TT | | 559 | | -89.149126 | | Cranberry Lake | | | BTB & NLS | | 3 | Muck | Pole | SAMPLED | | | 2 | T | | 1 | | Ť | 1 | | | | | | 2 | | | 1 | T | | | 7 | Ť | | | 560 | 45.905921 | -89.149137 | | Cranberry Lake | | 8/14/2017 | | 560 | 3 | Muck | Pole | SAMPLED | | | 3 | T | | ľ | 2 | T | 1 | | | | | | Ĩ | | 1 | m | T | | | T | Τ. | | | 561 | 45.905201 | -89.149148 | | Cranberry Lake | | | BTB & NLS | 561 | 4 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | İ | | | | | | П | \Box | | 562 | 45.908073 | -89.148073 | | Cranberry Lake | | 8/14/2017 | | 562 | 2 | Muck | Pole | SAMPLED | | | 3 | | 1 | | | | 1 | | | | | | | | | 3 | | | | | | | | 563 | 45.907353 | -89.148084 | 25 | Cranberry Lake | | 8/14/2017 | BTB & NLS | 563 | 2 | Muck | Pole | SAMPLED | | | 2 | 1 | | 1 | | | 2 | | | | | | | | | | | | | | 1 | П | | 564 | 45.906633 | -89.148095 | 24 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 564 | 3 | Muck | Pole | SAMPLED | | | 1 | V | | | | | 1 | | | 1 | | | | | | 1 | | | | | | | | 565 | 45.905913 | -89.148106 | 30 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 565 | 2 | Sand | Pole | SAMPLED | | | 2 | v | | 1 | | | 1 | | | | | | | | | | | | | | | 2 | | 566 | 45.908065 | -89.147041 | 21 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 566 | 2 | Muck | Pole | SAMPLED | | | 2 | v | 1 | | | | 1 | | | | 1 | 1 | 1 | | | 1 | | | | | 1 | | | 567 | 45.907345 | -89.147052 | 22 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 567 | 2 | Muck | Pole | SAMPLED | | | 3 | 3 | | | | | 1 | | | | | | | | | Ш | | | | ┙ | | | | 568 | 45.906625 | -89.147063 | 23 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 568 | 2 | Muck | Pole | SAMPLED | | | 2 | 1 | 1 1 | | | | 2 | | | | 1 | 1 | | | | | | | | | 4 | | | 569 | 45.908057 | -89.14601 | 20 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 569 | 2 | Muck | Pole | SAMPLED | | | 2 | V | 1 | | | | | 1 | | 1 | 1 | | | | | | | | | 1 | 1 | | | 570 | 45.907337 | -89.146021 | 19 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 570 | 3 | Sand | Pole | SAMPLED | | | 3 | | 1 | 1 | | | 2 1 | 1 | | | | | | | | 1 | 1 | | | 4 | 4 | | | 571 | 45.906617 | -89.146032 | 18 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 571 | 3 | Sand | Pole | SAMPLED | | | 2 | | | - | | _ | 2 | | 1 | 1 | _ | | | 1 | | Н | 1 | 1 | | | 4 | 1 | | 572 | 45.905898 | -89.146043 | 14 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 572 | 3 | Sand | Pole | SAMPLED | | | 2 | 1 | 1 | | | + | + | | | | _ | - | | | - | | 1 | | | \perp | 2 | + | | 573 | 45.90661 | -89.145001 | 17 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 573 | 3 | Muck | Pole | SAMPLED | | | 2 | + | | | | _ | 1 | | | | + | - | Н | | - | 2 | \perp | + | | + | + | | | 574 | 45.90589 | -89.145012 | 15 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 574 | 3 | Muck | Pole | SAMPLED | | | 3 | 1 1 | 1 1 | 1 | H | - | 3 | | | | - | - | | | | | + | | | \equiv | + | + | | 575 | 45.90517 | -89.145023 | 13 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 575 | 5 | Muck | Pole | SAMPLED | | | 2 | | | 1 | | | 1 | | | | _ | | | | | | - | | | _ | + | 2 | | 576 | 45.90445 | -89.145034 | 12 | Cranberry Lake | Vilas | 8/14/2017 | | 576 | 4 | Muck | Pole | SAMPLED | | | 3 | + | 1 | 3 | | + | + | 1 | | | 1 | | Н | | | 1 | + | + | - | + | + | 1 | | 577 | | -89.143969 | | Cranberry Lake | | 8/14/2017 | | | 0 | | | NONNAVIGABLE (PLANTS) | | H | + | + | | - | H | + | + | - | - | | + | - | H | | + | H | + | + | + | + | + | + | | 578 | 45.905882 | -89.14398 | 8 | Cranberry Lake | | 8/14/2017 | | | 3 | Sand | Pole | SAMPLED | | H | 2 | + | + | - | H | + | 1 | 1 | H | + | + | + | H | + | + | H | + | + | H | + | 1 | + | | 579 | 45.905162 | -89.143991 | 9 | Cranberry Lake | Vilas | | BTB & NLS | 579 | 3 | Muck | Pole | SAMPLED | | H | 2 | V | + | 1 | H | + | 1 | 1 | H | + | 1 | + | Н | 1 | + | 2 | + | + | H | + | + | + | | 580 | 45.906594
45.905874 | -89.142938
-89.142949 | | Cranberry Lake | | 8/14/2017
8/14/2017 | | 580 | 3 | Muck | D. 1 | SHALLOW | | H | 1 | +. | | _ | H | + | | - | H | | + | H | H | + | $^{+}$ | | $^{+}$ | + | Ħ | + | \pm | $^{+}$ | | 581 | 45.905874
45.905154 | -89.142949
-89.14296 | 10 | Cranberry Lake | Vilas
Vilas | 8/14/2017 | BTB & NLS | 581 | 3 | wuck | role | NONNAVIGABLE (PLANTS) | | H | 2 | 1 | | 2 | H | 1 | + | | H | 1 | + | | H | - | + | 1 | + | | H | \dashv | + | + | | 582 | 45.905154 | -89.14296
-89.142971 | 10 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 582 | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | Ħ | T | 1 | | t | Ħ | | Ť | | t | 1 | T | T | П | | t | H | T | | Ħ | T | \dagger | \forall | | 584 | 45.906587 | -89.141907 | 5 | Cranberry Lake | Vilas | 8/14/2017 | BTB & NLS | 584 | 0 | | | SHALLOW | | Ħ | T | T | | r | H | 1 | Ť | | r | | Ť | t | H | | T | Ħ | T | T | Ħ | T | T | T | | 585 | 45.905867 | -89.141918 | 3 | Cranberry Lake | Vilas | 8/14/2017 | | 585 | 2 | Muck | Pole | SAMPLED | | Ħ | 1 | T | | l | Ħ | T | 1 | | | | T | | | T | | Ħ | T | T | П | T | T | Ħ | | 586 | | -89.141929 | 1 | Cranberry Lake | | 8/14/2017 | | - | 3 | Muck | Pole | SAMPLED | | Π | 3 | Ť | 1 | 1 | П | T. | 3 | | | T | T | | | | 1 | П | T | | | T | T | 1 | | 587 | 45.906579 | -89.140875 | 4 | Cranberry Lake | | | | 587 | 0 | | | SHALLOW | | Π | T | T | Ť | Ė | П | Ť | T | | | T | | | | | Ť | П | T | | | T | T | Ħ | | 588 | 45.905139 | -89.140898 | | Cranberry Lake | | | BTB & NLS | 588 | 0 | | | NONNAVIGABLE (PLANTS) | | | I | Ι | Ι | | | 1 | I | | | | I | | | | | | I | Ι | | J | Ι | | | | | | _ | | | | | | | | | | | | - | | | • | | | | | • | - | - | • | • | | • | | • | - | • | | | | | Point Number | Lattude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Bidens beckii | Ceratophyllum demersum | Ceratophyllum echinatum | Chara spp. | Eleocharis acicularis | Elodea canadensis | Isoetes spp. | Myriophyllum sibiricum | Najas flexilis
Numbar varienata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton gramineus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton zosteriformis | Sparganium angustifolium | Sparganium fluctuans | Vallisneria americana | Filamentous algae | |--------------|---------------------------|-----------------------------|-----|------------------------------|----------------|------------------------|------------|--------------|------------|--------------|--------------|------------------------------|----------|----------|---------------------|-----------------------|---------------|------------------------|-------------------------|------------|-----------------------|-------------------|--------------|------------------------|------------------------------------|-------------------------|-----------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------
---------------------------|--------------------------|----------------------|-----------------------|-------------------| | 1 | 45.895796 | -89.216537 | 131 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 1 | 5 | Muck | Pole | SAMPLED | | | 2 | | | | | | | 1 | | | | 1 | | | | | | | 1 | \Box | \Box | 1 |] | | 2 | 45.895076 | | | | Vilas | 8/14/2017 | JMB & AMS | | 12 | | Pole | SAMPLED | | | 0 | | | | | - | | | | | | | | | | | | | | \dashv | \dashv | \dashv | + | | 3 4 | 45.894356
45.895789 | | | | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 10 | Muck
Muck | Pole | SAMPLED
SAMPLED | | | 3 | | | | 1 | | | 2 | | | | | | | | | 1 | | | \dashv | \dashv | 7 | 1 | | 5 | 45.895069 | | | | Vilas | 8/14/2017 | JMB & AMS | | 12 | Muck | Pole | SAMPLED | | | 0 | I | | | 6 | 45.894349 | | 127 | | Vilas | 8/14/2017 | JMB & AMS | 6 | 14 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | 4 | 4 | \dashv | \dashv | | 7 | 45.893629
45.896502 | | 128 | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017 | JMB & AMS | 7 | 8 | Muck | Pole | SAMPLED NONNAVIGABLE (PLANTS | | | 0 | | | | | | | | | | | | | | | | | | | + | + | + | \dashv | | 9 | 45.895782 | | | Catfish Lake | Vilas | | | 9 | 0 | | | NONNAVIGABLE (PLANTS | 10 | 45.895062 | -89.214485 | 124 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 10 | 7 | Muck | Pole | SAMPLED | | | 1 | | | | | | | | | | | | | | | | | | | Ш | Ш | 1 | _ | | - 11 | 45.894342 | | | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 11 | 14 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | - | + | | | | | | | | + | + | + | + | | 12 | 45.893622
45.892902 | | | | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 14 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | \forall | \forall | \forall | \exists | | 14 | 45.901535 | -89.213363 | 85 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 14 | 5 | Muck | Pole | SAMPLED | | | 3 | | | | | | | | | | | | | | | | 3 | | | | | 1 | | | 15 | 45.900815 | -89.213373 | 86 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 5 | Muck | Pole | SAMPLED | | | 3 | | | | | | | | | | | | | | | | 1 | | | _ | _ | 3 | 4 | | 16 | 45.896495 | -89.213434 | 0 | Catfish Lake | Vilas | | | 16 | 0 | | | NONNAVIGABLE (PLANTS | + | + | + | - | | 17 | 45.895775
45.895055 | -89.213444
-89.213454 | 116 | Catfish Lake
Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 17 | 7 | Muck | Pole | NONNAVIGABLE (PLANTS | | | 0 | v | | | | | | | | | | | | | | | | | | \exists | \exists | \forall | 7 | | 19 | 45.894335 | -89.213464 | 117 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 19 | 15 | Muck | Pole | SAMPLED | | | 0 | I | | | 20 | 45.893615 | -89.213474 | 118 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 20 | 15 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | _ | _ | 4 | 4 | | 21 | 45.892895
45.892175 | -89.213485
-89.213495 | | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017 | JMB & AMS | 21 | 14 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | ., | | 2 | | - | | | | | | | | | | | | | | + | + | _ | - | | 23 | 45.892175 | | | Catrish Lake | Vilas | 8/14/2017 | JMB & AMS | | 7 | Sand | Pole | SAMPLED | | | 1 | v | | 2 | | | | | | | | | | | | | | | | \exists | \exists | 1 | 7 | | 24 | 45.901528 | -89.212331 | 83 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 24 | 9 | Sand | Pole | SAMPLED | | | 0 | 1 | | | 25 | 45.900808 | -89.212341 | 82 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 9 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | - | - | | | | | | | | \dashv | \dashv | \dashv | 4 | | 26
27 | 45.900088
45.899368 | -89.212352
-89.212362 | 81 | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 9 | Muck
Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | + | + | + | - | | 28 | 45.895048 | | 115 | | Vilas | 8/14/2017 | JMB & AMS | | 3 | Muck | Pole | SAMPLED | | | 1 | | | Ė | | | | | | | 1 | 1 | | | | | | | | Ϊ | | 1 | | | 29 | 45.894328 | -89.212433 | 114 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 29 | 15 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | 4 | 4 | 4 | _ | | 30 | 45.893608 | | | | Vilas | 8/14/2017 | JMB & AMS | | 16 | | | DEEP | | | | | | | | | | | | | - | - | | | | | | | | \dashv | \dashv | \dashv | 4 | | 31 | 45.892888
45.892168 | | | | Vilas | 8/14/2017 | JMB & AMS | | 18 | Muck | Pole | DEEP | | | 0 | | | | | | | | | | | | | | | | | | | + | + | \dashv | - | | 33 | 45.891448 | | | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 33 | 14 | Muck | Pole | SAMPLED | | | 0 | 34 | 45.902240 | | | | Vilas | 8/14/2017 | | | 9 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | 4 | 4 | \dashv | \dashv | | 35
36 | 45.901520
45.900801 | -89.211300
-89.211310 | | Catfish Lake
Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 35
36 | 10 | | Pole | SAMPLED
SAMPLED | | | 0 | | | | | - | | | | | | | | | | | | | | + | + | - | \dashv | | 36 | 45.900801 | -89.211310
-89.211320 | | Catfish Lake Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 9 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | T | T | \exists | 1 | | 38 | 45.899361 | -89.211331 | 79 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 38 | 5 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | 1 | | | | | 1 | | | \Box | \Box | 1 | _ | | 39 | 45.897201 | -89.211361 | 67 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 39 | 1 | Sand | Pole | SAMPLED | | | 1 | | | | | | | 1 | | | 1 | | | | | | | | | + | + | \dashv | 4 | | 40 | 45.895041
45.894321 | -89.211392
-89.211402 | | Catfish Lake
Catfish Lake | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | 40 | 15 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | 1 | | | | | | | | | \dashv | \dashv | + | \dashv | | 42 | 45.893601 | -89.211412 | 112 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 42 | 16 | muox | 1 000 | DEEP | 43 | 45.892881 | -89.211422 | 0 | Catfish Lake | Vilas | | | 43 | 0 | | | DEEP | 4 | 4 | 4 | _ | | 44 | 45.892161 | -89.211433 | | | Vilas | 8/14/2017 | JMB & AMS | 44 | 16 | | | DEEP | | | | | | | | | | | | | + | | | | | | | | | \dashv | \dashv | \dashv | - | | 45
46 | 45.891441
45.890721 | -89.211443
-89.211453 | 136 | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017 | JMB & AMS | 45
46 | 15 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | 1 | | 1 | H | 1 | | | | | t | \dagger | | | | | | | H | \forall | \forall | + | \dashv | | 47 | 45.902233 | | | Catfish Lake | Vilas | 8/14/2017 | | | 6 | Muck | Pole | SAMPLED | | | 1 | | | Ė | | | | | | | | | | | | | | | | 1 | 1 | 1 | J | | 48 | 45.901513 | | | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 12 | Muck | Rope | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | 4 | 4 | \dashv | _ | | 49
50 | 45.900793
45.900073 | -89.210279
-89.210289 | | Catfish Lake
Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 11 | | Pole
Pole | SAMPLED
SAMPLED | | - | 0 | | | | H | + | | | | - | - | + | | | | | | | | + | + | + | \dashv | | 50 | 45.899353 | | | Catrish Lake | Vilas | 8/14/2017 | JMB & AMS | | 5 | Muck | Pole | SAMPLED | | L | 1 | | | | | | | | | | | İ | L | | | | | | | | | 1 | | | 52 | 45.898633 | | | Catfish Lake | Vilas | 8/14/2017 | | | 3 | Rock | Pole | SAMPLED | | | 1 | | | | | Ţ | | | | 1 | 1 | | | | | | | | | 4 | 4 | 1 | _] | | 53 | 45.897914 | | | Catfish Lake | Vilas | 8/14/2017 | | | 7 | Muck | Pole | SAMPLED | - | | 3 | V | - | - | | \dashv | | | | | | + | - | | | | | | | \dashv | \dashv | 3 | \dashv | | 54 | 45.897194
45.895034 | | | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017 | JMB & AMS | | 3 | Muck | Pole | SAMPLED
SAMPLED | | | 3 | | <u> </u> | | 1 | 1 | | | | | 1 1 | 1 | \vdash | | | | | | | \dashv | \dashv | 3 | \dashv | | 56 | 45.895034 | | | | Vilas | 8/14/2017 | JMB & AMS | | 16 | NOUK | rupe | DEEP | | | | | | | | | | | | | 1 | L | | | | | | | | | | | | | 57 | 45.893594 | -89.210381 | 0 | Catfish Lake | Vilas | | | 57 | 0 | | | DEEP | | | | | | | | _ | | | | | | 1 | | | | | | | | 4 | 4 | 4 | 4 | | 58 | 45.892874 | | | Catfish Lake | Vilas | | | 58 | 0 | | | DEEP | | | | | | | \vdash | \dashv | - | | | | + | + | - | | | | | | | + | + | \dashv | \dashv | | 59
60 | 45.892154
45.891434 | -89.210401
-89.210412 | | | Vilas
Vilas | | JMB & AMS | | 17 | Muck | Pole | DEEP | | | 0 | | | | H | 1 | | | | | | \dagger | | | | | | | H | \dashv | \dashv | + | \dashv | | 61 | 45.890714 | | | | Vilas | 8/14/2017 | | | 10 | | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | ⇉ | ⇉ | | | | 62 | 45.902226 | | | | Vilas | 8/14/2017 | | | 6 | Muck | Pole | SAMPLED | | | 1 | | | 1 | | _ | | | | | | + | - | | | | | | | 4 | 4 | 1 | 4 | | 63 | 45.901506 | | | Catfish Lake | Vilas | 8/14/2017 | | | 14 | | Pole | SAMPLED | | | 0 | | | | \vdash | \dashv | - | | | | + | + | - | | | | | | | + | + | \dashv | \dashv | | 64 | 45.900786
45.900066 | -89.209248
-89.209258 | 60 | Catfish Lake Catfish Lake | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 10 | Sand | Pole | SAMPLED
SAMPLED | H | | 0 | | | | H | 1 | | | 1 | | | \dagger | | | | | | | | \dashv | \dashv | + | \dashv | | 66 | 45.899346 | -89.209268 | 62 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 6 | Muck | Pole | SAMPLED | | | 2 | | | | | | | | | | | | | | | | | | | ⇉ | ⇉ | 2 | 1 | | 67 | 45.898626 | -89.209278 | 63 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 67 | 13 | Muck | Pole | SAMPLED | |
| 0 | | | | | _ | | | | | \perp | + | - | | | | | | | 4 | 4 | \dashv | \dashv | | 68 | 45.897906 | -89.209289 | 64 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 68 | 15 | Muck | Pole | SAMPLED | - | | 0 | | | | Н | 4 | - | | - | - | + | + | - | | | | | | \dashv | + | + | \dashv | \dashv | | 69 | 45.897186 | -89.209299 | 65 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 69 | 13 | Muck | Pole | SAMPLED | <u> </u> | 1 | 0 | <u> </u> | Ь | <u> </u> | ш | 1 | | | | | | | 1 | ш | | | | | | | | | | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Bidens beckii | Ceratophyllum demersum | Ceratophyllum echinatum | Chara spp. | Eleocharis acicularis | Elodea canadensis | Isoetes spp. | Myriophyllum sibiricum | Najas flexilis | Nuprar variegata | Potamogeton epihydrus | Potamogeton gramineus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton zosteriformis | Sparganium angustifolium | Sparganium fluctuans | Vallisneria americana | Filamentous algae | |--------------|----------------------------|-----------------------------|----------|------------------------------|----------------|------------------------|------------|--------------|------------|--------------|------------|--------------------|----------|----------|---------------------|-----------------------|---------------|------------------------|-------------------------|------------|-----------------------|-------------------|--------------|------------------------|----------------|------------------|-----------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------------|----------------------|--|-------------------| | 70 | 45.896466 | -89.209309 | 218 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 70 | 7 | Muck | Pole | SAMPLED | | | 1 | | | | | | | | | | | | | | | | | | 1 | | | 4 | | | 71 | 45.895746 | | | | Vilas | 8/14/2017 | JMB & AMS | | 4 | Muck | Pole | SAMPLED | | | 1 | | | | | - | | | | - | | 1 | | - | | | | | | 4 | 4 | + | 4 | | 72 | 45.895026
45.894307 | | | Catfish Lake Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 72 | 16 | | | DEEP | | | | | | | | 1 | | | | 1 | | + | | | | | | | | + | + | + | 1 | | 74 | 45.893587 | | | Catfish Lake | Vilas | | | 74 | 0 | | | DEEP | 75 | 45.892867 | -89.209360 | 0 | Catfish Lake | Vilas | | | 75 | 0 | | | DEEP | 4 | | | 76 | 45.892147 | | | Catfish Lake | Vilas | | | 76 | 0 | | | DEEP | | | | | _ | | | - | | | | - | | | | - | | | | | | | | + | - | | 77 | 45.891427 | | | | Vilas | 8/14/2017 | JMB & AMS | | 16 | | Pole | DEEP | | | 0 | | | | | | | | | | | | | | | | | | | - | - | + | + | | 78
79 | 45.890707
45.902219 | | | | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 6 | Sand | | SAMPLED
SAMPLED | | | 1 | | | 1 | | T | | 1 | | T | | | | T | | | 1 | | 1 | 1 | 1 | 1 | 1 | | 80 | 45.901499 | | | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 13 | Muck | Pole | SAMPLED | | | 0 | I | | | 81 | 45.900779 | -89.208217 | 55 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 81 | 15 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | _ | _ | 4 | _ | | 82 | 45.900059 | -89.208227 | 54 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 16 | | | DEEP | + | - | | 83
84 | 45.899339
45.898619 | -89.208237
-89.208247 | 87
88 | Catfish Lake Catfish Lake | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | 83 | 17 | | | DEEP
DEEP | | | | | | | | 1 | | | | 1 | | + | | | | | | | | + | + | + | 1 | | 85 | 45.897899 | -89.208258 | 89 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 85 | 17 | | | DEEP | I | | | 86 | 45.897179 | -89.208268 | 90 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 86 | 18 | | | DEEP | 4 | | | 87 | 45.896459 | -89.208278 | 102 | | Vilas | 8/14/2017 | JMB & AMS | 87 | 21 | | | DEEP | | | | - | - | | - | 4 | - | | - | 4 | - | + | | | - | | | | | - | - | + | 4 | | 88 | 45.895739 | -89.208288 | 105 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 88 | 16 | | | DEEP | | - | | \dashv | 1 | | \dashv | \dashv | \dashv | 1 | \dashv | \dashv | - | + | + | + | | | | | | \dashv | \dashv | + | \dashv | | 89
90 | 45.895019
45.894299 | -89.208298
-89.208309 | 0 | Catfish Lake Catfish Lake | Vilas | | | 90 | 0 | | | DEEP | | | | \dashv | 1 | | 1 | 1 | \dagger | | \dashv | 1 | \dagger | \dagger | t | T | | | | | | \dashv | \dashv | \dagger | ٦ | | 91 | 45.893579 | -89.208319 | 0 | Catrish Lake | Vilas | | | 91 | 0 | | | DEEP | I | 1 | | 92 | 45.892859 | -89.208329 | 0 | Catfish Lake | Vilas | | | 92 | 0 | | | DEEP | 4 | _ | | 93 | 45.892139 | -89.208339 | 159 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 16 | | | DEEP | | | | | _ | | | - | | | | - | | | | - | | | | | | | | + | - | | 94
95 | 45.891419
45.890700 | -89.208350
-89.208360 | 143 | Catfish Lake Catfish Lake | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 15
7 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | - | - | _ | + | | 96 | 45.889260 | -89.208380 | | Catrish Lake | Vilas | 8/14/2017 | JMB & AMS | | 2 | Muck | Pole | SAMPLED | | | 3 | | | | 1 | | | | | | | 1 | | | | | 1 | | | | | 1 | 1 | | 97 | 45.904372 | -89.207134 | | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 8 | Sand | Pole | SAMPLED | | | 0 | I | | | 98 | 45.903652 | -89.207144 | 49 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 98 | 13 | Muck | Pole | SAMPLED | | | 0 | 4 | _ | | 99 | 45.902932 | | | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 5 | Muck | Pole | SAMPLED | | | 1 | | | | | | | | | | 1 | | | | | | | | | | | 1 | - | | 100 | 45.902212
45.901492 | | | Catfish Lake Catfish Lake | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 11 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | 1 | + | | | 1 | | + | | t | | | | | | + | + | + | + | | 102 | 45.900772 | -89.207185 | | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 102 | 16 | | | DEEP | 103 | 45.900052 | -89.207196 | 0 | Catfish Lake | Vilas | | | 103 | 0 | | | DEEP | 4 | | | 104 | 45.899332 | | | Catfish Lake | Vilas | | | 104 | 0 | | | DEEP | + | - | | 105 | 45.898612
45.897892 | -89.207216
-89.207226 | 0 | Catfish Lake | Vilas | | | 105 | 0 | | | DEEP | | | | | | | | 1 | | | | 1 | | + | | 1 | | | | | | + | + | + | 1 | | 107 | 45.897172 | -89.207237 | 91 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 20 | | | DEEP | I | | | 108 | 45.896452 | -89.207247 | 101 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 108 | 23 | | | DEEP | 4 | | | 109 | 45.895732 | -89.207257 | | | Vilas | 8/14/2017 | JMB & AMS | 109 | 16 | | | DEEP | + | 4 | | 110 | 45.895012 | -89.207267 | 182 | | Vilas | 8/14/2017 | JMB & AMS | 110 | 17 | | | DEEP | - | - | + | + | | 111 | 45.894292
45.893572 | -89.207278
-89.207288 | 0 | Catfish Lake Catfish Lake | Vilas | | | 111 | 0 | | | DEEP | T | ٦ | | 113 | 45.892852 | -89.207298 | | | Vilas | 8/14/2017 | JMB & AMS | | 16 | | | DEEP | I | | | 114 | 45.892132 | -89.207308 | 157 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 114 | 16 | | | DEEP | | | | | | | | | | | | | | | | | - | | | | | | | 4 | 4 | | 115 | 45.891412 | | | Catfish Lake | Vilas | 8/14/2017 | | | 14 | | | SAMPLED | | | 0 | | | | | - | | | | - | | + | | + | | | | | | \dashv | \dashv | + | - | | 116 | 45.890692
45.889972 | | | Catfish Lake Catfish Lake | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 5 | Muck
Muck | Pole | SAMPLED
SAMPLED | | | 1 | \dashv | 1 | | \dashv | \dashv | + | 1 | \dashv | \dashv | 1 | 1 | | | | | | | | + | + | 1 | \forall | | 118 | 45.889252 | -89.207349 | | | Vilas | 8/14/2017 | JMB & AMS | | 4 | Muck | Pole | SAMPLED | | | 1 | | | | | | | 1 | | | | | | | 1 | | 1 | | | | | 1 | | | 119 | 45.905085 | | 47 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 9 | Sand | Pole | SAMPLED | | | 0 | 4 | _ | | - | 4 | 4 | 4 | 4 | 4 | - | \perp | | 1 | | | | | | 4 | 4 | 4 | 4 | | 120 | 45.904365 | | | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 13 | Muck | Pole | SAMPLED | | | 0 | \dashv | | | \dashv | + | + | 1 | \dashv | + | + | + | + | + | \vdash | | | | H | + | + | + | \dashv | | 121 | 45.903645
45.902925 | | | Catfish Lake
Catfish Lake | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 13 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | + | 1 | 1 | + | \dashv | + | 1 | + | \dashv | + | + | + | T | \vdash | | | | \vdash | \dashv | \dashv | + | \forall | | 123 | 45.902925 | | | | Vilas | 8/14/2017 | | | 4 | Muck | | SAMPLED | | | 1 | 1 | | | | | | | | | | 1 | L | L | | | | | | | | 1 | | | 124 | 45.901485 | | | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 13 | | Pole | SAMPLED | | | 0 | Ţ | Į | J | Ţ | Ţ | \Box | I | Ţ | Ţ | \Box | | Ī | L | | | | | | II. | II. |
$\!$ | 4 | | 125 | 45.900765 | | | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 16 | | | DEEP | | - | | - | | | - | 4 | - | | - | 4 | - | + | | - | - | | | _ | | - | - | + | 4 | | 126 | 45.900045 | | | Catfish Lake | Vilas | | | 126 | 0 | | | DEEP | | <u> </u> | | \dashv | 1 | | \dashv | \dashv | \dashv | 1 | \dashv | \dashv | - | + | + | + | | | | | | \dashv | \dashv | + | \dashv | | 127 | 45.899325
45.898605 | | | Catfish Lake Catfish Lake | Vilas | | | 127 | 0 | | | DEEP | | | H | \dashv | | | \dashv | 1 | \top | 1 | \dashv | 1 | \dagger | \dagger | | T | T | | | | | 1 | 1 | \dagger | 7 | | 129 | | -89.206195 | | Catfish Lake | Vilas | | | 129 | 0 | | | DEEP | コ | | | 130 | 45.897165 | | | Catfish Lake | Vilas | 8/14/2017 | | | 20 | | | DEEP | | | | 4 | _ | | \dashv | 4 | 4 | 4 | 4 | 4 | - | + | 1 | - | | | | | | 4 | 4 | \dashv | 4 | | 131 | 45.896445 | | | | Vilas | 8/14/2017 | | | 9 | | | SAMPLED | \vdash | - | 0 | \dashv | _ | | \dashv | + | + | - | \dashv | + | + | + | | - | - | | | - | \vdash | + | + | + | \dashv | | 132 | 45.895725
45.895005 | | | Catfish Lake
Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 11 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | \dashv | 1 | | \dashv | + | + | 1 | \dashv | + | 1 | + | + | t | | | | 1 | H | \dashv | \dashv | 1 | \dashv | | 134 | 45.894285 | -89.206246 | | | Vilas | 8/14/2017 | JMB & AMS | | 16 | _wild | . Jaid | DEEP | | | Ĭ | | | | | ╛ | | | | ╛ | 1 | I | I | L | | | | | | | | | | | 135 | 45.893565 | -89.206257 | 155 | | Vilas | 8/14/2017 | JMB & AMS | | 16 | | | DEEP | | L | Щ | Ţ | Ţ | | Ţ | Ţ | \bot | J | Ţ | Ţ | \prod | \bot | L | L | | | | | П | II. | II. | 4 | 4 | | 136 | 45.892845 | -89.206267 | 154 | | Vilas | 8/14/2017 | JMB & AMS | | 9 | Rock | Pole | SAMPLED | | | 0 | \dashv | _ | | \dashv | + | + | 1 | \dashv | 4 | \dashv | + | 1 | 1 | - | | | | | \dashv | \dashv | + | \dashv | | 137 | 45.892125 | -89.206277
-89.206288 | 153 | | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | 137 | 7 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | \dashv | 1 | | 1 | \dashv | + | 1 | \dashv | \dashv | + | + | | | - | | 1 | | 1 | \dashv | \dashv | + | \dashv | | 138 | 45.891405 | -89.206288 | 152 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 138 | 8 | Muck | Rope | SAMPLED | ı | 1 | U | | | ! | | | | | | | I_ | | | | 1 | | | ı | | !_ | !_ | | | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Bidens beckii | Ceratophyllum demersum | Ceratophyllum echinatum | Chara spp. | Eleocharis acicularis | Elodea canadensis | Isoetes spp. | mynopnyllum sipiricum | Najas flexilis
Nuphar variegata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton gramineus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton zosteriformis | Sparganium angustifolium | Sparganium fluctuans | Vallisneria americana | Filamentous algae | |--------------|----------------------------|-----------------------------|-----------|------------------------------|--------|------------------------|------------|--------------|------------|--------------|------------|------------------------|----------|----------|---------------------|-----------------------|---------------|------------------------|-------------------------|------------|-----------------------|-------------------|--------------|-----------------------|------------------------------------|-------------------------|-----------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------------|----------------------|-----------------------|-------------------| | 139 | 45.890685 | -89.206298 | 151 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 139 | 8 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | - | \perp | | | | | | | | | | | 4 | _ | | 140 | 45.889965 | | | | Vilas | 8/14/2017 | JMB & AMS | | 7 | Muck | Pole | SAMPLED | | | 1 | | | | | | | | | + | | + | | | | | | | | | | 1 | - | | 141 | 45.889245
45.905797 | | 149
36 | Catfish Lake
Catfish Lake | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 6 | Muck | Pole | SAMPLED
SAMPLED | | | 2 | 1 | | | 1 | | | 1 | | | | T | | | 1 | | 1 | | | | | 1 | - | | 143 | 45.905077 | | 35 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 13 | Muck | Pole | SAMPLED | | | 0 | 144 | 45.904358 | -89.205072 | 34 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 144 | 13 | Muck | Pole | SAMPLED | | | 0 | 4 | | | 145 | 45.903638 | | | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 14 | Muck | Pole | SAMPLED | | | 0 | - | | | - | | - | | | + | + | - | | | | | | | | | | \dashv | _ | | 146 | 45.902918 | -89.205092 | 32 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 146 | 16 | | | DEEP | | | 0 | + | - | | 147 | 45.902198
45.901478 | | | Catfish Lake | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 11 | Muck | Rope | SAMPLED
DEEP | | | 0 | | | | | | | | | | | T | | | | | | | | | | 7 | - | | 149 | 45.900758 | -89.205123 | 0 | Catfish Lake | Vilas | | | 149 | 0 | | | DEEP | 150 | 45.900038 | -89.205133 | 0 | Catfish Lake | Vilas | | | 150 | 0 | | | DEEP | | | | | | | | | | | | | _ | | | | | | | | | | | 4 | _ | | 151 | 45.899318 | -89.205143 | 0 | Catfish Lake | Vilas | | | 151 | 0 | | | DEEP | \dashv | _ | | 152
153 | 45.898598
45.897878 | -89.205154
-89.205164 | 0 | Catfish Lake Catfish Lake | Vilas | | | 152 | 0 | | | DEEP | + | \dashv | | 154 | 45.897158 | -89.205174 | 93 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 19 | | | DEEP | 155 | 45.896438 | -89.205185 | 0 | Catfish Lake | Vilas | | | 155 | 0 | | | DEEP | 4 | | | 156 | 45.895718 | -89.205195 | 98 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 156 | 0 | | | SHALLOW | | | | | | | | | | | | | | - | | | | | | | | | | 4 | 4 | | 157 | 45.894998 | -89.205205 | 183 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 157 | 7 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | | | | 1 | | | | | | | 1 | \dashv | | 158
159 | 45.894278
45.893558 | -89.205215
-89.205226 | 179 | Catfish Lake
Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 158 | 10 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | 7 | 1 | | 160 | 45.892838 | -89.205236 | 171 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 3 | Rock | Pole | SAMPLED | | | 1 | | | | | | | | | | 1 | | | | | | | | | | | | | | 161 | 45.892118 | -89.205246 | 163 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 161 | 5 | Sand | Pole | SAMPLED | | | 1 | 1 | 4 | | 162 | 45.891398 | -89.205256 | 162 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 9 | Muck | Pole | SAMPLED | | | 0 | - | | | - | | - | | | + | + | - | | | | | | | | | | \dashv | - | | 163
164 | 45.890678
45.889958 | -89.205267
-89.205277 | 161 | Catfish Lake
Catfish Lake | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 8 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | + | \dashv | | 165 | 45.905790 | | 37 | Catrish Lake | Vilas | 8/14/2017 | JMB & AMS | | 6 | Muck | Pole | SAMPLED | | | 1 | | | | | | | 1 | | | | | | | | | | | | | | 1 | 1 | | 166 | 45.905070 | | | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 11 | Muck | Pole | SAMPLED | | | 0 | Ì | | | 167 | 45.904350 | -89.204040 | 39 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 167 | 13 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | _ | | | | | | | | | | | 4 | 4 | | 168 | 45.903630 | | 29 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 10 | Sand | Pole | SAMPLED | | | 0 | - | | | - | | - | | | + | + | - | | | | | | | | | | \dashv | - | | 169 | 45.902910
45.902190 | | 30
217 | Catfish Lake | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | 169 | 16 | | | DEEP | | | | | | | | | | | | + | | t | | | | | | | | | | + | \exists | | 171 | 45.901470 | | 0 | Catfish Lake | Vilas | 0/14/2017 | JMID & AMS | 171 | 0 | | | DEEP | 172 | 45.900750 | -89.204092 | 0 | Catfish Lake | Vilas | | | 172 | 0 | | | DEEP | _ | | | 173 | 45.900031 | | 0 | Catfish Lake | Vilas | | | 173 | 0 | | | DEEP | \dashv | _ | | 174 | 45.899311
45.898591 | -89.204112
-89.204123 | 0 | Catfish Lake Catfish Lake | Vilas | | | 174 | 0 | | | DEEP | - | - | | 175 | 45.898591 | -89.204123
-89.204133 | | | Vilas | 8/14/2017 | JMB & AMS | | 20 | | | DEEP | \exists | 1 | | 177 | 45.897151 | -89.204143 | 94 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 177 | 8 | Muck | Rope | SAMPLED | | | 0 | 178 | 45.896431 | -89.204153 | 96 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 178 | 5 | Muck | Pole | SAMPLED | | | 1 | | | | | | | | | | | 1 | | | | | | | | | | 1 | 4 | | 179 | 45.895711 | -89.204164 | 97 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 179 | 13 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | + | | + | | | | | | | | | |
\dashv | - | | 180 | 45.894991
45.894271 | -89.204174
-89.204184 | 184 | Catfish Lake
Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 180 | 15 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | t | | | | | | | | | | + | 1 | | 182 | 45.893551 | -89.204195 | | | Vilas | 8/14/2017 | JMB & AMS | | 8 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | 1 | | | | | | | | | | | | 1 | | | 183 | 45.892831 | -89.204205 | 170 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 183 | 5 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | 1 | | | | | | | 1 | | | | 4 | 4 | | 184 | 45.892111 | | | Catfish Lake | Vilas | 8/14/2017 | | | 9 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | - | | | | | | | | | | | _ | \dashv | 4 | | 185
186 | 45.891391
45.890671 | | | Catfish Lake
Catfish Lake | Vilas | ************ | | | 5 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | \dashv | 1 | | \dashv | \dashv | 1 | \dashv | - | + | + | | | | | | , | | | | + | + | \dashv | | 186 | 45.8906/1 | -89.204236
-89.202999 | 26 | Catfish Lake | Vilas | | JMB & AMS | | 1 | Muck | Pole | SAMPLED | Ī | | 1 | | | | | | | | | | 1 | T | | | | | 1 | 1 | | | | 1 | 1 | | 188 | 45.904343 | -89.203009 | 27 | Catfish Lake | Vilas | *********** | JMB & AMS | | 6 | Muck | Pole | SAMPLED | | | 0 | 1 | | | 1 | 1 | 1 | 1 | 1 | Ţ | | | | | | | | | | | | | _] | | 189 | 45.903623 | | 28 | Catfish Lake | Vilas | *********** | JMB & AMS | | 16 | | | DEEP | | | | - | 4 | | - | | + | - | - | + | + | - | | | | | | | | | | \dashv | 4 | | 190 | 45.902903 | | | Catfish Lake | Vilas | | | 190 | 0 | | | DEEP | | | | + | - | | + | \dashv | + | + | + | + | | + | - | | | | | | | | - | + | \dashv | | 191 | 45.902183
45.901463 | | | Catfish Lake
Catfish Lake | Vilas | | | 191 | 0 | | | DEEP | | | | \dashv | | | \dashv | 1 | \top | + | t | \dagger | \top | T | | | | | | | | | 1 | \dagger | \forall | | 193 | 45.900743 | | 0 | Catfish Lake | Vilas | | | 193 | 0 | | | DEEP | I | | | 194 | 45.900023 | -89.203071 | 0 | Catfish Lake | Vilas | | | 194 | 0 | | | DEEP | | | | 4 | 4 | | 4 | | 4 | 4 | | 4 | | - | | | | | | | | | | 4 | 4 | | 195 | | -89.203081 | | Catfish Lake | Vilas | | | 195 | 0 | | | DEEP | | | | \dashv | - | | \dashv | \dashv | + | + | + | + | + | + | | | | | | | | - | - | + | + | | 196
197 | | -89.203091
-89.203102 | | Catfish Lake
Catfish Lake | Vilas | ********** | JMB & AMS | 196 | 23 | | | DEEP | | | | \dashv | 1 | | \dashv | | 1 | + | l | \dagger | + | T | | | | | | | | | | + | \dashv | | 198 | | -89.203112 | | | Vilas | | JMB & AMS | | | Muck | Pole | SAMPLED | | | 0 | | | | | | | | 1 | | | | | | | | | | | | | | | | 199 | 45.896423 | -89.203122 | 189 | Catfish Lake | Vilas | ********** | JMB & AMS | 199 | 9 | Muck | Pole | SAMPLED | | | 0 | | _[| | | 4 | 4 | 4 | | 4 | \perp | | L | | | _ | _] | | | | 4 | \downarrow | 4 | | 200 | 45.895703 | | | | Vilas | | JMB & AMS | | | Muck | Pole | SAMPLED | | | 0 | - | 4 | | - | - | + | 4 | - | + | + | | | | | | | | | | _ | \dashv | \dashv | | 201 | 45.894984
45.894264 | | | | Vilas | | JMB & AMS | | 7 | Car 4 | Pole | TERRESTRIAL
SAMPLED | | | 1 | \dashv | 1 | 4 | \dashv | \dashv | \dashv | + | + | + | + | + | | | | | | | | | + | \dashv | \dashv | | 202 | 45.894264
45.893544 | | | | Vilas | *********** | | | 7 | Sand
Muck | | SAMPLED
SAMPLED | | | 1 | \dashv | 1 | 1 | \dashv | | 1 | 1 | 1 | 1 | \top | T | | | | | | | | | | $^{+}$ | 7 | | 204 | 45.892824 | -89.203174 | 169 | | Vilas | ********** | | | 10 | | Pole | SAMPLED | | | 0 | \Box | 1 | | 205 | 45.892104 | -89.203184 | 165 | Catfish Lake | Vilas | *********** | JMB & AMS | 205 | 7 | Sand | Pole | SAMPLED | | | 2 | 4 | 4 | | 4 | | 4 | 4 | | 4 | | - | | | | | | | | | | 2 | 4 | | 206 | 45.903616 | -89.201988 | 25 | Catfish Lake | Vilas | *********** | JMB & AMS | 206 | 11 | Muck | Pole | SAMPLED | | | 0 | \dashv | \dashv | | \dashv | | + | + | - | + | 1 | - | | | | | | | | | | \dashv | \dashv | | 207 | 45.902896 | -89.201998 | 24 | Catfish Lake | Vilas | ######## | JMB & AMS | 207 | 16 | | Щ. | DEEP | <u> </u> | ш | | | [| | | | | | | _ _ | | 1 | 1 | Щ. | ш | | | | | | | | | | Point Number | Lattude (Decimal Degrees) | Longitude (Decimal Degrees) | ID | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Bidens beckii | Ceratophyllum demersum | Ceratophyllum echinatum | Chara spp. | Eleocharis acicularis | Elodea canadensis | Isoetes spp. | Mynopriynum sibincum | Nimbar varionata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton gramineus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton zosteriformis | Sparganium angustifolium | Sparganium fluctuans | Vallisneria americana | Filamentous algae | |--------------|---------------------------|-----------------------------|-----|------------------------------|----------------|------------------------|-------------|--------------|------------|--------------|--------------|--------------------|-------|----------|---------------------|-----------------------|---------------|------------------------|-------------------------|------------|-----------------------|-------------------|--------------|----------------------|------------------|-------------------------|-----------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------------|----------------------|-----------------------|-------------------| | 208 | 45.902176
45.901456 | -89.202009
-89.202019 | 0 | Catfish Lake
Catfish Lake | Vilas | | | 208 | 0 | | | DEEP
DEEP | | | | | | | | + | | + | | | _ | | | | | | | | | + | + | - | - | | 210 | 45.900736 | -89.202019 | 0 | Catfish Lake | Vilas | | | 210 | 0 | | | DEEP | 211 | 45.900016 | -89.202040 | 0 | Catfish Lake | Vilas | | | 211 | 0 | | | DEEP | | | | | | | | | | | | | _ | | | | | | | | | _ | _ | _ | _ | | 212 | 45.899296
45.898576 | -89.202050
-89.20206 | 0 | Catfish Lake
Catfish Lake | Vilas
Vilas | | | 212 | 0 | | | DEEP
DEEP | | | | | | | | | | + | | | | | | | | | | | | + | | - | - | | 214 | 45.897856 | -89.202071 | 197 | Catrish Lake | Vilas | 8/14/2017 | JMB & AMS | 214 | 18 | | | DEEP | 215 | 45.897136 | -89.202081 | 194 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 215 | 14 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | _ | | | | | | | | | _ | _ | _ | _ | | 216
217 | 45.896416
45.895696 | | | Catfish Lake
Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 15 | Muck
Rock | Pole
Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | + | \dashv | - | - | | 218 | 45.894976 | | | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 7 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | I | | | | | 219 | 45.894256 | | | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 2 | Muck | Pole | SAMPLED | | | 1 | | | | | | | | | | | | | | | | | | | _ | _ | 1 | _ | | 220 | 45.893536
45.892816 | | | Catfish Lake | Vilas
Vilas | 8/14/2017 | JMB & AMS | | 2 | Sand | Pole | SAMPLED
SAMPLED | | | 1 | | | | | | 1 | 1 | | + | 1 | | | | | | | | | \dashv | + | 1 | - | | 222 | 45.903609 | | | Catfish Lake | Vilas | 8/14/2017 | | | 7 | Sand | Pole | SAMPLED | | | 1 | 1 | | | 223 | 45.902889 | | | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 16 | | | DEEP | | | | | | | | _ | | | | _ | - | - | | | | | | | | \perp | _ | _ | _ | | 224 | 45.902169
45.901449 | | | Catfish Lake
Catfish Lake | Vilas | | | 224 | 0 | | | DEEP | | | | | | | | _ | | + | | | | | | | | | | | | \dashv | \dashv | | - | | 226 | 45.900729 | | | Catfish Lake | Vilas | | | 226 | 0 | | | DEEP | I | | | | | 227 | 45.900009 | | | Catfish Lake | Vilas | | | 227 | 0 | | | DEEP | | | | - | + | _ | - | | - | + | - | + | + | + | | | | | | | \vdash | + | + | \dashv | \dashv | | 228
229 | 45.899289
45.898569 | | | Catfish Lake | Vilas
Vilas | 8/14/2017 | JMB & AMS | 228 | 24 | | | DEEP | | | | 1 | + | | 1 | 1 | 1 | + | 1 | \dagger | + | + | | | | | | | H | \dashv | + | \dashv | + | | 230 | 45.897849 | | | | Vilas | 8/14/2017 | JMB & AMS | 230 | 8 | Sand | Rope | SAMPLED | | | 0 | 1 | | | | 231 | 45.897129 | | | | Vilas | 8/14/2017 | JMB & AMS | | 14 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | _ | _ | | _ | | 232 | 45.896409
45.902882 | | 191 | Catfish Lake | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | 232 | 7 | Rock | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | $^{+}$ | + | 1 | = | | 234 | 45.902162 | -89.199946 | 20 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 234 | 17 | | | DEEP | 235 | 45.901442 | | 0 | Catfish Lake | Vilas | | | 235 | 0 | | | DEEP | | | | | | | | - | | + | | | | | | | | | | | | \dashv | + | _ | _ | | 236 | 45.900722
45.900002 | -89.199967
-89.199977 | 0 | Catfish Lake | Vilas
Vilas | | | 236 | 0 | | | DEEP | | | | | | | | _ | | + | | | | | | | | | | | | \dashv | \dashv | | - | | 238 | 45.899282 | -89.199988 | 0 | Catfish Lake | Vilas | | | 238 | 0 | | | DEEP | 1 | | | | 239 | 45.898562 | -89.199998 | 200 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 24 | | | DEEP | | | | | | | | - | | + | | + | | | | | | | | | | + | + | \dashv | - | | 240 | 45.897842
45.897122 | -89.200008
-89.200019
| 192 | Catfish Lake Catfish Lake | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | 240 | 8 | Rock | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | 1 | | | 1 | | | | | | | 1 | | T | 7 | _ | = | | 242 | 45.902874 | | 18 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 242 | 10 | Sand | Pole | SAMPLED | | | 0 | 4 | 4 | | | 243 | 45.902154 | | | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 243 | 18 | | | DEEP | | | | | | | | | | + | | | | | | | | | | | | + | \dashv | + | - | | 244
245 | 45.901434
45.900714 | -89.198925
-89.198936 | | Catfish Lake | Vilas
Vilas | | | 244 | 0 | | | DEEP | 246 | 45.899994 | -89.198946 | 0 | Catfish Lake | Vilas | | | 246 | 0 | | | DEEP | 4 | 4 | | | 247 | 45.899274 | | | Catfish Lake | Vilas
Vilas | | | 247 | 0 | | | DEEP | | | | | | | | | | + | | | | | | | | | | | | + | \dashv | + | - | | 248 | 45.898555
45.897835 | -89.198967
-89.198977 | | Catfish Lake | | 8/14/2017 | JMB & AMS | | | | | DEEP | \exists | | | | 250 | 45.902867 | | | | | 8/14/2017 | | | 7 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | 1 | | | | | | | | 4 | 4 | 4 | | | 251 | | -89.197884
-89.197894 | | Catfish Lake
Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 251
252 | 18 | | | DEEP | - | - | _ | - | | 252
253 | | -89.197894
-89.197904 | | Catrish Lake | Vilas
Vilas | | | 252 | 0 | | | DEEP | 254 | 45.899987 | -89.197915 | 0 | Catfish Lake | Vilas | | | 254 | 0 | | | DEEP | | | | I | ightharpoons | 1 | | J | | _[| | 1 | | | | | | | | | | 4 | \dashv | \dashv | 4 | | 255
256 | 45.899267
45.898547 | -89.197925
-89.197936 | | Catfish Lake
Catfish Lake | Vilas
Vilas | | | 255
256 | 0 | | | DEEP | | | | + | + | | + | 1 | - | + | - | + | + | + | - | | | | | | | \dashv | \dashv | \dashv | - | | 256 | 45.898547 | | | | Vilas | 8/14/2017 | JMB & AMS | | 22 | | | DEEP | | | | | | | | | | 1 | | | | | | | | | | | | 1 | \exists | | | | 258 | 45.897107 | | | Catfish Lake | Vilas | 8/14/2017 | | | 8 | Muck | | SAMPLED | | | 0 | | \dashv | | - | - | - | + | - | + | + | + | | | | | | | | \dashv | \dashv | 4 | \dashv | | 259
260 | 45.90286
45.90214 | -89.196842
-89.196852 | | Catfish Lake
Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | | | 10 | Muck | Pole | SAMPLED
DEEP | | | 0 | + | + | | + | 1 | + | + | + | + | + | + | | | | | | | | + | + | \dashv | \dashv | | 261 | 45.90142 | -89.196863 | | Catrish Lake | Vilas | W 1-1/2017 | JANUA AMIC | 261 | 0 | | | DEEP | | | | | 1 | | | | | 1 | | 1 | 1 | | | | | | | | | I | 1 | ╛ | | | 262 | 45.9007 | -89.196873 | 0 | Catfish Lake | Vilas | | | 262 | 0 | | | DEEP | | | | | 4 | | | | - | 4 | - | + | + | + | | | | | | | | 4 | 4 | 4 | 4 | | 263
264 | 45.89998
45.89926 | -89.196884
-89.196894 | 0 | Catfish Lake | Vilas
Vilas | | | 263
264 | 0 | | | DEEP | | | | | + | | 1 | | 1 | + | 1 | + | + | + | | | | | | | | \dashv | + | \dashv | \dashv | | 265 | 45.89926 | -89.196894
-89.196904 | 0 | Catrish Lake | Vilas | | | 265 | 0 | | | DEEP | | | | | | | | | | 1 | | t | | | | | | | | | | I | \exists | ╛ | | | 266 | 45.89782 | -89.196915 | 0 | Catfish Lake | Vilas | | | 266 | 0 | | | DEEP | | | | | 4 | | | | - | 4 | - | + | + | + | | | | | | | | 4 | 4 | 4 | \dashv | | 267
268 | 45.8971
45.902133 | -89.196925
-89.195821 | | Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 17 | Rock | Pole | DEEP
SAMPLED | | | 0 | \dashv | + | | 1 | 1 | 1 | + | 1 | + | + | + | | | | | | | \vdash | + | + | \dashv | \dashv | | 269 | 45.902133 | | | Catrish Lake | Vilas | 8/14/2017 | JMB & AMS | | 16 | NOUK | rune | DEEP | | | J | | | | | 1 | | 1 | | | | | | | | | | | | 1 | | ╛ | | | 270 | 45.900693 | | | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 16 | | | DEEP | | | | | 4 | | | | - | 4 | - | + | + | + | | | | | | | | 4 | 4 | 4 | 4 | | 271
272 | 45.899973
45.899253 | | | Catfish Lake | Vilas
Vilas | 8/14/2017 | JMB & AMS | 271 | 19 | | | DEEP | | | | | + | | 1 | | 1 | + | 1 | + | + | + | | | | | | | | \dashv | + | \dashv | \dashv | | 272 | 45.898533 | | | Catrish Lake | Vilas | | | 273 | 0 | | | DEEP | | | | | | | | | | 1 | | 1 | | | | | | | | | | \exists | 1 | | | | 274 | 45.897813 | | | Catfish Lake | Vilas | | | 274 | 0 | | | DEEP | | | | + | + | _ | - | | - | + | - | + | + | + | | | | | | | | + | + | 4 | \dashv | | 275
276 | 45.897093
45.896373 | -89.195894
-89.195904 | | | Vilas | 8/14/2017 | JMB & AMS | | 18 | Rock | Pole | DEEP
SAMPLED | | | 0 | 1 | + | | | 1 | | \dagger | | + | | + | | | | | | | H | \dashv | + | \dashv | \dashv | | 2/0 | 1 40.0803/3 | 100.180804 | 200 | Causel Lake | vildS | 0/19/201/ | AMID & WINS | 2/0 | | NUCK | r-ole | OMMPLEU | _ | - | U | | | | | | | | | | | | | 1 | | | | | | | | | | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Q | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myrlophyllum spicatum
Bidens beckii | Ceratophyllum demersum | Ceratophyllum echinatum | Chara spp. | Eleocharis acicularis | Elodea canadensis | Isoetes spp. | Myriophyllum sibiricum | Najas flexilis | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton gramineus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton zosteriformis | Sparganium angustifolium | Sparganium fluctuans | Vallisneria americana
Filamentous algae | ridiidinose agav | |--------------|----------------------------|-----------------------------|----------|------------------------------|--------|------------------------|------------|--------------|------------|--------------|--------------|--------------------|-------|----------|---------------------|--|------------------------|-------------------------|------------|-----------------------|-------------------|--------------|------------------------|----------------|-------------------------|-----------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------------|----------------------|--|------------------| | 277 | 45.900685 | -89.194811 | 11 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 277 | 3 | Muck | Pole | SAMPLED | | | 1 | | _ | | | 1 | | | | | | | | | | | | | | | 1 | 4 | | 278 | 45.899965 | -89.194821 | 8 | Catfish Lake | Vilas | 8/14/2017 | | | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | + | + | + | + | - | | 279
280 | 45.899246
45.898526 | | 7 | Catfish Lake
Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 279 | 17 | | | DEEP | 1 | \dagger | \dagger | + | - | | 281 | 45.897806 | -89.194852 | 0 | Catfish Lake | Vilas | | | 281 | 0 | | | DEEP | 282 | 45.897086 | -89.194863 | 0 | Catfish Lake | Vilas | | | 282 | 0 | | | DEEP | _ | | | 4 | | | 283 | 45.896366 | -89.194873 | 208 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 16 | | | DEEP | - | | | + | - | | 284 | 45.895646 | -89.194884 | 209 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 284 | 7 | Sand | Pole
Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | + | + | _ | 1 | | 285
286 | 45.894926
45.899238 | | 6 | Catfish Lake
Catfish Lake | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 6 | Sand | Pole | SAMPLED
SAMPLED | | | 1 | | 1 | | | 1 | | 1 | | | | | | | | | | 1 | T | T | 1 | 1 | | 287 | 45.898518 | -89.193811 | 5 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 287 | 18 | | | DEEP | 1 | | 288 | 45.897798 | -89.193821 | 0 | Catfish Lake | Vilas | | | 288 | 0 | | | DEEP | | | | | _ | | | | | | | | | | | | | | | _ | | | 4 | | | 289 | 45.897078 | -89.193832 | 0 | Catfish Lake | Vilas | | | 289 | 0 | | | DEEP | | | | | - | | | | | | | | | | | | | | | | | | + | 4 | | 290
291 | 45.896358
45.895638 | -89.193842
-89.193852 | 0 | Catfish Lake Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 290 | 16 | | | DEEP | + | \dagger | \dagger | + | 1 | | 292 | 45.894918 | -89.193863 | 212 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 8 | Sand | Pole | SAMPLED | | | 0 | 1 | 1 | | 293 | 45.894198 | -89.193873 | 211 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 293 | 8 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | _ | | | 4 | | | 294 | 45.898511 | -89.19278 | 1 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 294 | 6 | Sand | Pole | SAMPLED | | | 1 | - | + | - | | | | - | | - | 1 | | | | | - | | - | + | + | 1 | 4 | | 295 | 45.897791 | -89.19279
-89.1928 | 2 | Catfish Lake | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | 295
296 | 16 | | | DEEP | | | | + | + | + | | H | | | - | + | + | \vdash | | | | | | \dashv | + | + | + | 1 | | 296
297 | 45.897071
45.896351 | -89.1928
-89.192811 | 4 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 18 | | | DEEP | | | | | İ | 1 | | | | | | | 1 | L | | | | | | | _ | _ | _ | 1 | | 298 | 45.895631 | -89.192821 | 214 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 16 | | | DEEP | | | | 1 | Ţ | | | | | | | 1 | | | | | | | | | 1 | 1 | Į | 1 | | 299 | 45.894911 | -89.192832 | 215 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | 299 | 15 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | 4 | _ | _ | + | 4 | |
300 | 45.894191 | -89.192842 | 216 | Catfish Lake | Vilas | 8/14/2017 | JMB & AMS | | 7 | Sand | Pole | SAMPLED | | | 0 | + | 4 | | 301 | 45.899944
45.899224 | -89.191728
-89.191738 | 63
32 | Catfish Lake
Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 301 | 7 | Rock | Pole | SAMPLED
SAMPLED | | | 0 | | t | | | | | | | | | | | | | | | | + | + | + | 1 | | 303 | 45.898504 | -89.191748 | 1 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 14 | Muck | Pole | SAMPLED | -14-1 | 17 | 0 | 304 | 45.897784 | -89.191759 | 2 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 304 | 6 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | | 1 | | | | | _ | | | 1 | | | 305 | 45.897064 | -89.191769 | 3 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 19 | | | DEEP | - | | | + | 4 | | 306 | 45.896344 | -89.19178 | 20 | Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 306 | 18 | Mondo | Dele | DEEP | | | 0 | | | | | | | | | | | | | | | | | + | - | - | + | 1 | | 307 | 45.895624
45.894904 | -89.19179
-89.191801 | | Catfish Lake Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 15 | Muck
Muck | Pole | SAMPLED
SAMPLED | | | 0 | \dagger | 1 | | 309 | 45.894184 | -89.191811 | 23 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 309 | 7 | Rock | Pole | SAMPLED | | | 0 | \blacksquare |] | | 310 | 45.893464 | | | Catfish Lake | Vilas | 8/14/2017 | | | 5 | Sand | Pole | SAMPLED | | | 1 | | - | | | | | | | | | | | | | 1 | | | | | + | 4 | | 311 | 45.903536
45.900656 | -89.190644
-89.190686 | | Catfish Lake
Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 311 | 12 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | 1 | | 1 | | | | | | | + | + | 2 | 1 | | 312 | 45.899936 | -89.190686
-89.190696 | | Catrish Lake | Vilas | 8/14/2017 | EJH & CJF | 312 | 12 | Muck | Pole | SAMPLED | | | 0 | 1 | | 314 | 45.899216 | -89.190707 | 33 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 314 | 11 | Sand | Pole | SAMPLED | | | 0 | I |] | | 315 | 45.898496 | -89.190717 | 6 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 315 | 15 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | 4 | - | - | + | 4 | | 316 | 45.897776 | -89.190728 | 5 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 316 | 16 | | | DEEP | | | | | + | | | | | | | | | - | | | | | | + | \dashv | \dashv | + | 1 | | 317
318 | 45.897056
45.896336 | -89.190738
-89.190749 | 19 | Catfish Lake Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 317 | 17 | | | DEEP | | | | | t | | | | | | | | | | | | | | | | + | + | + | 1 | | 319 | 45.895617 | -89.190759 | 31 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 319 | 15 | Muck | Pole | SAMPLED | | | 0 | 320 | 45.894897 | -89.19077 | 27 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 320 | 15 | Muck | Pole | SAMPLED | | | 0 | | _ | | | | | | | | | | | | | | | | | | 4 | | | 321 | 45.894177 | -89.19078 | 26 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 321 | 13 | Sand | Pole | SAMPLED | | | 0 | | - | | | | | | | | | | | | | | | | | | + | 4 | | 322 | 45.893457
45.905689 | | | Catfish Lake
Catfish Lake | Vilas | 8/14/2017
8/14/2017 | | | 6 | Sand | Pole | SAMPLED
SAMPLED | | | 1 2 | | + | | | | | | | 1 | + | | | | | | | | + | + | 1 | 1 | | 323 | 45.904969 | | | Catrish Lake | Vilas | 8/14/2017 | | | 13 | | | SAMPLED | | | 0 | | İ | | | | | | | ╧ | ľ | | | | | | | ₫ | 1 | 1 | Ì | 1 | | 325 | 45.904249 | -89.189602 | 89 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 325 | 13 | Muck | Pole | SAMPLED | | | 0 | | Ļ | | | | | | _Ţ | \bot | | | | | | | J | -[| \bot | \bot | _[| | | 326 | 45.903529 | -89.189613 | 85 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 13 | | Pole | SAMPLED | | | 0 | + | + | + | | Н | _ | | \dashv | + | + | - | | | | | | + | + | + | + | $\frac{1}{2}$ | | 327 | 45.902809
45.901369 | -89.189623
-89.189644 | 83
76 | Catfish Lake Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 10 | | Pole | SAMPLED
SAMPLED | | | 0 | + | + | + | | H | | | - | + | + | \vdash | | | | | | \dashv | + | + | + | + | | 328
329 | 45.901369
45.900649 | | | Catrish Lake | Vilas | 8/14/2017 | | | 12 | | | SAMPLED | | | 0 | | 1 | L | | | | | | | İ | L | | | | | | | | | \exists | | | 330 | 45.899929 | | | Catfish Lake | Vilas | 8/14/2017 | | | | Muck | | SAMPLED | | | 0 | | | | | | | | | 1 | | | | | | | | \exists | 1 | 1 | 1 |] | | 331 | 45.899209 | | | Catfish Lake | Vilas | 8/14/2017 | | | 14 | | Pole | SAMPLED | | | 0 | | + | - | <u> </u> | | | - | | + | - | - | | | | - | | \dashv | + | + | + | 4 | | 332 | 45.898489 | | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 15 | | | SAMPLED | | | 0 | + | + | + | - | | | | - | + | + | - | | | | | | \dashv | + | + | + | + | | 333 | 45.897769
45.897049 | | | Catfish Lake Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 333 | 15 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | \dagger | \dagger | + | | H | | | 1 | \dagger | \dagger | t | | | | | | 1 | \dagger | \dagger | + | 1 | | 335 | 45.896329 | | | | Vilas | 8/14/2017 | | | | Muck | | SAMPLED | | | 0 | T | I | | | | | | \Box | | | | | | | | | | 1 | 1 | Ţ | 1 | | 336 | | -89.189728 | | | Vilas | 8/14/2017 | | | | Muck | Pole | SAMPLED | | | 0 | | - | - | | | | | _ | \perp | - | | | H | | | | - | + | + | + | 4 | | 337 | 45.894889 | | | Catfish Lake | Vilas | 8/14/2017 | | 337 | | Sand | | SAMPLED | | | 0 | + | + | + | | | | | | + | + | - | | | | | | \dashv | + | + | + | + | | 338 | 45.910721
45.907121 | -89.188477
-89.188529 | | | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 9 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | 1 | \dagger | \dagger | | | | | 1 | + | + | 1 | | | | | | \dashv | + | + | 1 | 1 | | 340 | 45.906401 | -89.18854 | 96 | Catrish Lake | Vilas | 8/14/2017 | EJH & CJF | 340 | 14 | Muck | Pole | SAMPLED | | | 0 | | Ţ | | | | | | | | | | | | | | | | | | I | 1 | | 341 | 45.905681 | -89.18855 | 94 | Catfish Lake | Vilas | 8/14/2017 | | | 13 | Muck | Pole | SAMPLED | | | 0 | | Ļ | | | | | | _Ţ | \bot | | | | | | | J | -[| \bot | \bot | _[| 1 | | 342 | 45.904961 | -89.188561 | 91 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 342 | 13 | Muck | Pole | SAMPLED | | | 0 | + | + | + | | Н | _ | | \dashv | + | + | - | | | | | | + | + | + | + | $\frac{1}{2}$ | | 343 | 45.904242 | -89.188571 | 88 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 343 | 13 | Muck | Pole | SAMPLED | | | 0 | + | + | - | - | | | | = | + | - | - | | | | | | \dashv | \dashv | \dashv | + | + | | 344 | 45.903522
45.902802 | -89.188582
-89.188592 | 86 | Catfish Lake Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 344 | 13 | Muck | Pole | SAMPLED
DEEP | | | U | \top | t | | | | | | | \dagger | \dagger | | | | | | | 1 | \dagger | \dagger | \dagger | 1 | | | | 00002 | | | | | 001 | | | - | | an install | _ | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | ID | Lake Name | County | Date | Field Crow | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fuliness | Myriophyllum spicatum | Bidens beckii | Ceratophyllum demersum | Ceratophyllum echinatum | Chara spp. | Eleocharis acicularis | Elodea canadensis | Isoetes spp. | Myriophyllum sibiricum | Najas flexilis | Nuphar variegata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton gramineus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton zosteriformis | Sparganium angustifolium | Sparganium fluctuans | Vallisneria americana | Filamentous algae | |--------------|----------------------------|-----------------------------|-----------|------------------------------|----------------|------------------------|------------|--------------|------------|--------------|--------------|--------------------|-------|----------|---------------------|-----------------------|---------------|------------------------|-------------------------|------------|-----------------------|-------------------|--------------|------------------------|----------------|------------------|-------------------------|-----------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------------|----------------------|-----------------------|-------------------| | 346 | 45.902082 | -89.188602 | 77 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 6 | Rock | Pole | SAMPLED | | | 1 | + | 1 | 4 | | 347 | 45.901362
45.900642 | | | Catfish Lake Catfish Lake | Vilas | 8/14/2017
8/14/2017 | | | 14 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | 349 | 45.899922 | | 60 | Catfish Lake | Vilas | 8/14/2017 | | | 13 | Muck | Pole | SAMPLED | | | 0 | 4 | | _ | | 350
351 | 45.899202
45.898482 | | 35
8 | Catfish Lake
Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 13 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | + | \dashv | + | | 352 | 45.897762 | | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 7 | Sand | Pole | SAMPLED | | | 0 | I | | | | 353 | 45.897042 | -89.188676 | 14 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 14 | Muck | Pole | SAMPLED | | | 0 | _ | 4 | 4 | | 354
355 |
45.896322
45.895602 | | | Catfish Lake
Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 14 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | + | 7 | \dashv | | 356 | 45.912874 | | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 5 | Sand | Pole | SAMPLED | | | 2 | | | | | | | | | | | | | | | | | | 1 | | | | 2 | | | 357 | 45.912154 | | | | Vilas | 8/14/2017 | EJH & CJF | | 11 | Sand | Pole | SAMPLED | | | 0 | + | _ | 4 | | 358
359 | 45.911434
45.910714 | -89.187435
-89.187445 | 126 | Catfish Lake
Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 13 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | - | 7 | 7 | | 360 | 45.909994 | -89.187456 | 115 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 13 | Muck | Pole | SAMPLED | | | 0 | \Box | | _ | | 361 | 45.909274 | -89.187466 | 108 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 13 | Muck | Pole | SAMPLED | | | 0 | \dashv | _ | 4 | | 362
363 | 45.908554
45.907834 | -89.187477
-89.187487 | 107 | Catfish Lake
Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 362 | 16 | | | DEEP | 7 | 7 | 7 | | 364 | 45.907114 | -89.187498 | 100 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 14 | Muck | Pole | SAMPLED | | | 0 | _ | | 365 | 45.906394 | -89.187508 | 97 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 365 | 15 | Muck | Pole | SAMPLED | | | 0 | \dashv | + | - | | 366
367 | 45.905674
45.904954 | -89.187519
-89.187529 | 93
92 | Catfish Lake Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 13 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | 368 | 45.904234 | -89.18754 | 87 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 368 | 14 | Muck | Pole | SAMPLED | | | 0 | 4 | | _ | | 369
370 | 45.903514
45.902794 | -89.18755
-89.187561 | 314 | Catfish Lake | Vilas | 8/15/2017 | EJH & CJF | | 15
24 | Muck | Pole | SAMPLED | | | 0 | \dashv | + | - | | 370 | 45.902794 | -89.187561
-89.187571 | 315
78 | Catrish Lake | Vilas | 8/15/2017
8/14/2017 | EJH & CJF | | 17 | | | DEEP | 372 | 45.901354 | -89.187582 | 74 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 372 | 14 | Muck | Pole | SAMPLED | | | 0 | 4 | | _ | | 373
374 | 45.900634
45.899914 | | 67
59 | Catfish Lake
Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 13 | | Pole | SAMPLED
SAMPLED | | | 0 | \dashv | + | - | | 375 | 45.899194 | | | Catrish Lake | Vilas | 8/14/2017 | EJH & CJF | | 14 | | Pole | SAMPLED | | | 0 | I | | | | 376 | 45.898474 | | 9 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 14 | Muck | Pole | SAMPLED | | | 0 | _ | 4 | 4 | | 377
378 | 45.897754
45.897035 | -89.187634
-89.187645 | 10 | Catfish Lake
Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 13 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | - | \dashv | + | | 379 | 45.896315 | | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 6 | Rock | Pole | SAMPLED | | | 0 | 380 | 45.912866 | | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 16 | | | DEEP | _ | 4 | 4 | | 381 | 45.912146
45.911427 | | | Catfish Lake Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 13 | | Pole | SAMPLED
SAMPLED | | | 0 | - | \exists | - | | 383 | 45.910707 | | | | Vilas | 8/14/2017 | EJH & CJF | | 13 | | Pole | SAMPLED | | | 0 | 1 | | _ | | 384 | 45.909987 | -89.186424 | 114 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 13 | Muck | Pole | SAMPLED | | | 0 | _ | 4 | - | | 385
386 | 45.909267
45.908547 | -89.186435
-89.186445 | 109 | Catfish Lake
Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 13 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | + | 7 | 7 | | 387 | 45.907827 | -89.186456 | 103 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 387 | 13 | Muck | Pole | SAMPLED | | | 0 | _ | | 388 | 45.907107 | -89.186466 | 99 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 388 | 13 | Muck | Pole | SAMPLED | | | 0 | + | \dashv | 4 | | 389 | 45.906387
45.905667 | -89.186477
-89.186487 | 98
301 | Catfish Lake Catfish Lake | Vilas | 8/14/2017
8/15/2017 | EJH & CJF | | 14 | Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | 391 | 45.904947 | -89.186498 | 308 | Catfish Lake | Vilas | 8/15/2017 | EJH & CJF | 391 | 14 | Muck | Pole | SAMPLED | | | 0 | _ | | 392
393 | 45.904227
45.903507 | | | Catfish Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | EJH & CJF | | 14 | | Pole
Pole | SAMPLED
SAMPLED | | | 0 | | | - | H | | | | | | | | | | | | | | | | | + | \dashv | \dashv | | 393 | 45.903507 | | 316 | Catrish Lake | Vilas | 8/15/2017 | EJH & CJF | | 4 | Sand | Pole | SAMPLED | | | 0 | I | | ╛ | | 395 | 45.902067 | | 79 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 9 | Sand | Pole | SAMPLED | | | 0 | - | 4 | 4 | 4 | | 396
397 | 45.901347
45.900627 | | 73
68 | Catfish Lake Catfish Lake | Vilas | 8/14/2017
8/14/2017 | | | 13 | Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | 1 | + | \dashv | \dashv | | 397 | 45.899907 | | | Catrish Lake | Vilas | 8/14/2017 | | | 13 | | | SAMPLED | | | 0 | 1 | | ╛ | | 399 | 45.899187 | | 37 | Catfish Lake | Vilas | 8/14/2017 | | | 7 | Rock | Pole | SAMPLED | | | 0 | - | + | \dashv | 4 | | 400 | 45.898467
45.897747 | | | Catfish Lake
Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 12 | | Pole
Pole | SAMPLED
SAMPLED | | | 0 | | | | H | | | | | | | | | | | | | | | | 1 | + | + | \dashv | | 402 | 45.897027 | | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | | Rock | Pole | SAMPLED | | | 0 | 1 | | I | | 403 | 45.896307 | | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 2 | Sand | Pole | SAMPLED | | | 2 | | | | | | | | | | 2 | | | | | | | | | - | - | + | 1 | \dashv | | 404 | | -89.185351
-89.185361 | | | Vilas | 8/14/2017 | | | | Muck | | SAMPLED
SAMPLED | | | 0 | | | | | | | | | + | | | | | | | | | | | + | + | + | \dashv | | 406 | 45.911419 | | | | Vilas | 8/14/2017 | | | | | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | 1 | | 1 | \rfloor | 1 | | 407 | 45.910699 | | | | Vilas | 8/14/2017 | | | 14 | | | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | - | - | + | \dashv | \dashv | | 408 | 45.909979
45.909259 | -89.185393
-89.185403 | | Catfish Lake
Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 13 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | - | | | | | | | | | | | | | | | | | | | \dashv | + | ٦ | | 410 | 45.908539 | | | | Vilas | 8/14/2017 | EJH & CJF | | 14 | | Pole | SAMPLED | | | 0 | 1 | I | 1 | | 411 | 45.907819 | | | Catfish Lake | Vilas | 8/14/2017 | | | 14 | | Pole | SAMPLED | | | 0 | | | - | H | | | | | | | | | | | | | | | | | + | \dashv | \dashv | | 412 | 45.907099
45.906379 | -89.185435
-89.185446 | 300 | Catfish Lake
Catfish Lake | Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 412 | 14 | Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | _ | 1 | | 414 | 45.905659 | -89.185456 | 302 | Catfish Lake | Vilas | 8/15/2017 | EJH & CJF | 414 | 14 | Muck | Pole | SAMPLED | | | 0 | \perp | \Box | ╝ | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Bidens beckii | Ceratophyllum demersum | Ceratophyllum echinatum | Chara spp. | Eleocharis acicularis | Elodea canadensis | Isoetes spp. | Myriophyllum sibiricum | Najas flexilis | Potamoceton amplifolius | Potamogeton epihydrus | Potamogeton gramineus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton zosteriformis | Sparganium angustifolium | Sparganium fluctuans | Vallisneria americana | Filamentous algae | |--------------|----------------------------|-----------------------------|-----------|------------------------------|--------|------------------------|------------|--------------|------------|----------|--------------|--------------------|-------|----------|---------------------|-----------------------|---------------|------------------------|-------------------------|------------|-------------------------|-------------------|--------------|------------------------|----------------|-------------------------|-----------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------------|-------------------------
-----------------------|-------------------| | 415 | 45.904939 | -89.185467 | 307 | Catfish Lake | Vilas | 8/15/2017 | EJH & CJF | 415 | 14 | Muck | Pole | SAMPLED | | | 0 | _ | 4 | | 416
417 | 45.90422
45.90206 | -89.185477
-89.185509 | 310
80 | Catfish Lake Catfish Lake | Vilas | 8/15/2017
8/14/2017 | | | 15 | | Pole
Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | + | | | | | | | | | | | + | + | | 417 | 45.90206 | -89.185519 | | Catrish Lake | Vilas | 8/14/2017 | EJH & CJF | | 13 | | Pole | SAMPLED | | | 0 | 7 | 1 | | 419 | 45.90062 | -89.18553 | 69 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 419 | 13 | Muck | Pole | SAMPLED | | | 0 | 1 | | | 420 | 45.8999 | -89.18554 | 57 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 420 | 14 | | Pole | SAMPLED | | | 0 | | | | | | | | | | - | | | | | | | | | | | 4 | 4 | | 421 | 45.89918
45.89846 | -89.185551
-89.185561 | 38
45 | Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 421 | 14 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | + | 1 | | 423 | 45.89774 | -89.185572 | 52 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 423 | 7 | Sand | Pole | SAMPLED | | | 0 | 424 | 45.89702 | -89.185582 | 51 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 424 | 7 | Sand | Pole | SAMPLED | | | 0 | 4 | 4 | | 425 | 45.8963 | -89.185593 | 50 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 425 | 3 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | 1 | | | | | | | | | | 1 | 4 | | 426
427 | 45.912852
45.912132 | -89.184319
-89.18433 | 133 | Catfish Lake
Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 426
427 | 13 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | + | 1 | | 428 | 45.911412 | -89.18434 | 123 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 428 | 13 | Muck | Pole | SAMPLED | | | 0 | 1 | | 429 | 45.910692 | -89.184351 | 120 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 14 | Muck | Pole | SAMPLED | | | 0 | 4 | 4 | | 430 | 45.909972
45.909252 | -89.184362
-89.184372 | 112 | Catfish Lake Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 430 | 14 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | + | - | | 432 | 45.909232 | -89.184383 | 285 | Catfish Lake | Vilas | 8/15/2017 | EJH & CJF | 432 | 14 | Muck | Pole | SAMPLED | -15- | 17 | 0 | 433 | 45.907812 | -89.184393 | 293 | Catfish Lake | Vilas | 8/15/2017 | EJH & CJF | 433 | 14 | Muck | Pole | SAMPLED | | | 0 | | | | H | \exists | $oldsymbol{\mathbb{I}}$ | Į | | I | Ţ | F | | L | L | | | | | I | $oldsymbol{\mathbb{I}}$ | J | 4 | | 434 | 45.907092 | -89.184404 | 295 | Catfish Lake | Vilas | 8/15/2017 | EJH & CJF | 434 | 14 | Muck | Pole | SAMPLED | | - | 0 | | - | | \vdash | - | + | - | - | - | + | + | | | | | | | | - | + | + | \dashv | | 435 | 45.906372
45.905652 | -89.184414
-89.184425 | | Catfish Lake Catfish Lake | Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 435 | 14 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | + | - | | 437 | 45.904932 | -89.184435 | | Catfish Lake | Vilas | 8/15/2017 | EJH & CJF | 437 | 13 | Muck | Pole | SAMPLED | | | 0 | 438 | 45.904212 | -89.184446 | 311 | Catfish Lake | Vilas | 8/15/2017 | EJH & CJF | 438 | 14 | Muck | Pole | SAMPLED | | | 0 | _ | | | 439 | 45.902052 | -89.184478 | 81 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 439 | 12 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | - | | | | | | | | | | | 4 | 4 | | 440 | 45.901332
45.900612 | -89.184488
-89.184499 | 71 | Catfish Lake Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 440 | 13 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | + | 1 | | 442 | 45.899892 | -89.184509 | 53 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 11 | | Pole | SAMPLED | | | 0 | 443 | 45.899172 | -89.18452 | 39 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 443 | 8 | Rock | Pole | SAMPLED | | | 0 | 4 | 4 | | 444 | 45.898452 | -89.18453 | 44 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 444 | 2 | Rock | Pole | SAMPLED | | | 1 | | | | | | | | | | + | | | | | | | | | | | 1 | 4 | | 445
446 | 45.912844
45.912124 | -89.183288
-89.183298 | 136 | | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 445 | 6 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | 2 | 1 | | 447 | 45.911404 | -89.183309 | 122 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 447 | 14 | Muck | Pole | SAMPLED | | | 0 | 1 | | 448 | 45.910684 | | 121 | | Vilas | 8/14/2017 | | | 14 | | Pole | SAMPLED | | | 0 | + | 4 | | 449
450 | 45.909965
45.909245 | -89.18333
-89.183341 | 279 | Catfish Lake
Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 449 | 15 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | + | | | | | | | | | | + | 1 | | 451 | 45.909245 | -89.183351 | 286 | | Vilas | 8/15/2017 | EJH & CJF | 451 | 15 | | Pole | SAMPLED | | | 0 | 452 | 45.907805 | -89.183362 | 292 | Catfish Lake | Vilas | 8/15/2017 | EJH & CJF | 452 | 16 | | | DEEP | 4 | 4 | | 453 | 45.907085 | -89.183372 | 296 | Catfish Lake | Vilas | 8/15/2017 | EJH & CJF | 453 | 16 | | | DEEP | | | | | | | | | | | | | + | | | | | | | | | | | + | 4 | | 454
455 | 45.906365
45.905645 | -89.183383
-89.183394 | 304 | Catfish Lake
Catfish Lake | Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 454
455 | 9 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | + | 1 | | 456 | 45.904925 | -89.183404 | 305 | Catfish Lake | Vilas | 8/15/2017 | EJH & CJF | 456 | 10 | Sand | Pole | SAMPLED | | | 0 | 457 | 45.904205 | -89.183415 | 312 | Catfish Lake | Vilas | 8/15/2017 | EJH & CJF | 457 | 5 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | 1 | | | | | | | | | | _ | 4 | | 458 | 45.899885 | -89.183478 | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 458 | 10 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | + | | | | | | | | | | | + | + | | 459
460 | 45.899165
45.898445 | -89.183489
-89.183499 | 40 | Catfish Lake Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 459 | 5 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | 1 | 1 | | 461 | 45.912837 | -89.182256 | 137 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 461 | 5 | Sand | Pole | SAMPLED | | | 2 | | | | | | | 1 | | | | 1 | | | | | 1 | | | | | 1 | | | 462 | 45.912117 | | | Catfish Lake | Vilas | 8/14/2017 | | | 16 | | | DEEP | | | | | | | \vdash | | - | - | | - | + | + | 1 | | | | | | | - | - | + | \dashv | | 463
464 | 45.911397
45.910677 | -89.182278
-89.182288 | 139 | Catfish Lake
Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 16 | Muck | Pole | DEEP
SAMPLED | | <u> </u> | 0 | | - | | | = | + | 1 | | 1 | + | + | 1 | | | | | | | + | + | + | \dashv | | 465 | 45.909957 | -89.182299 | 278 | Catrish Lake | Vilas | 8/14/2017 | EJH & CJF | | 16 | nulufi | | DEEP | | | - | | | | | | | | | 1 | | | | | | | | | | | | | 1 | | 466 | 45.909237 | | 281 | Catfish Lake | Vilas | 8/14/2017 | | | | Muck | Pole | SAMPLED | | | 0 | | 4 | | | _ | 4 | _ | | - | - - | - | | | | | | | | | 4 | 4 | 4 | | 467 | 45.908517 | | 287 | | Vilas | 8/15/2017 | | | 16 | | | DEEP | | | | | | | | | - | 1 | - | - | + | + | - | | | | | | | + | - | + | \dashv | | 468
469 | 45.907797
45.907077 | | | | Vilas | 8/15/2017
8/15/2017 | | | 6 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | | | | 1 | + | 1 | 1 | 1 | \dagger | \dagger | t | | | | | | | 1 | + | + | \exists | | 470 | 45.900598 | | | Catrish Lake | Vilas | 8/14/2017 | | | 0 | _0.10 | | DOCK | | | - | | | | | | | | | 1 | | | | | | | | | | | | | 1 | | 471 | 45.899878 | | | | Vilas | 8/14/2017 | | | 6 | Sand | Pole | SAMPLED | | | 0 | | | | | | 4 | 4 | | _ | + | - | - | | | | | | | - | 4 | 4 | 4 | | 472 | 45.899158 | | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 472 | 6 | Sand | Pole | SAMPLED | | - | 1 | | | | | | | | | - | + | - | | | | | | | | | | 1 | \dashv | | 473
474 | 45.898438
45.91355 | | | | Vilas | 8/14/2017
8/14/2017 | | | 0 | | | SAMPLED
SAMPLED | | İ | 3 | | | | | | | _ | | | 3 | | | | | _1 | | | | | | 1 | 1 | | 475 | 45.91283 | -89.181225 | | | Vilas | 8/14/2017 | | 475 | 9 | | Pole | SAMPLED | | | 0 | | | | | 1 | 1 | 1 | \exists | | Ţ | Ţ | | | | | | | | T | 1 | 1 | J | | 476 | 45.91211 | -89.181236 | | | Vilas | 8/14/2017 | EJH & CJF | 476 | 16 | | | DEEP | | | | | 4 | | \vdash | 4 | 4 | - | - | | + | + | - | | | | | | | 4 | 4 | 4 | 4 | | 477
478 | 45.91139 | -89.181246
-89.181257 | 142 | | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 477 | 14 | | | SAMPLED
SAMPLED | | | 0 | - | | | \vdash | - | \dashv | - | 1 | 1 | + | + | 1 | | | | | | | + | \dashv | + | \dashv | | 478 | 45.91067
45.90995 | -89.181257
-89.181267 | | | Vilas | 8/14/2017 | | | 15 | | Pole | SAMPLED | | | 0 | | | | | | | | | _ | | | | | | | | | | | | _ | 1 | | 480 | 45.90923 | -89.181278 | 282 | | Vilas | 8/14/2017 | EJH & CJF | 480 | 15 | | Pole | SAMPLED | | | 0 | | | | | 1 | 1 | 1 | \exists | | Ţ | Ţ | | | | | | | | T | 1 | 1 | J | | 481 | 45.90851 | -89.181289 | 288 | Catfish Lake | Vilas | 8/15/2017 | EJH & CJF | 481 | 15 |
Sand | Pole | SAMPLED | | | 0 | - | | | \vdash | | - | - | | - | + | + | 1 | | | | | | | - | - | + | \dashv | | 482
483 | 45.90779
45.917862 | -89.181299
-89.180119 | 290 | | Vilas | 8/15/2017
8/14/2017 | EJH & CJF | 482 | 3 | Sand | Pole | DOCK
SAMPLED | | | 2 | - | | | \vdash | | - | | - | 1 | 1 | + | 1 | | | | | | | 1 | - | 1 | \dashv | | 483 | 45.91/862 | -89.180119 | 203 | Catrish Lake | vilas | 8/14/2017 | LIH & CJF | 483 | 3 | Sand | Pole | SAMPLED | _ | · | 2 | | ! | | | | | | | 1 | 1 | | | 1 | 1 | | | | | | | | | | Point Number | -atitude (Decimal Degrees) | ongitude (Decimal Degrees) | Q | ake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Bidens beckii | Ceratophyllum demersum | Ceratophyllum echinatum | Chara spp. | Eleocharis acicularis | Elodea canadensis | soetes spp. | Myriophyllum sibiricum | Najas flexilis | Nuphar variegata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton gramineus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton zosteriformis | Sparganium angustifolium | Sparganium fluctuans | Vallisneria americana
Filamentous algae | |--------------|----------------------------|----------------------------|------------|------------------------------|----------------|------------------------|------------|--------------|------------|--------------|--------------|--------------------|-------|----------|---------------------|-----------------------|---------------|------------------------|-------------------------|------------|-----------------------|-------------------|-------------|------------------------|----------------|------------------|-------------------------|-----------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------------|----------------------|--| | 484 | 45.917142 | -89.18013 | 190 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 484 | 6 | Sand | Pole | SAMPLED | | | 1 | Ī | | | Ŭ | | | | | | | | | | | | | | _ | | | | 0 | | 485
486 | 45.916422
45.914262 | -89.180141
-89.180172 | 189 | | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 7 | Sand | Pole | SAMPLED
SAMPLED | | | 2 | | | | | | | 1 | | | | | | | | | | 1 | | | + | + | 2 | | 487 | 45.913542 | -89.180183 | 147 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 487 | 14 | Muck | Pole | SAMPLED | | | 0 | 4 | 4 | \blacksquare | | 488
489 | 45.912822
45.912102 | -89.180194
-89.180204 | 148 | Catfish Lake
Catfish Lake | Vilas
Vilas | 8/14/2017 | EJH & CJF | 488 | 14 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | + | \dashv | + | | 490 | 45.911382 | -89.180215 | 150 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 490 | 14 | Sand | Pole | SAMPLED | | | 0 | 4 | _ | | | 491
492 | 45.910662
45.909942 | -89.180225
-89.180236 | 274
276 | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 491
492 | 15 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | + | \dashv | + | | 493 | 45.909222 | -89.180247 | 283 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 13 | Sand | Pole | SAMPLED | | | 0 | 4 | _ | | | 494
495 | 45.908502
45.919294 | -89.180257
-89.179067 | 289 | Catfish Lake Catfish Lake | Vilas
Vilas | 8/15/2017
8/14/2017 | EJH & CJF | 494 | 7 | Sand | Pole | DOCK
SAMPLED | | | 0 | + | \dashv | + | | 496 | 45.918575 | -89.179077 | 204 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 496 | 3 | Sand | Pole | SAMPLED | | | 2 | | | | | | | | | | 1 | | 1 | | | | | | 1 | | | 4 | 1 | | 497
498 | 45.917855
45.917135 | -89.179088
-89.179098 | 202
191 | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 12 | Muck
Muck | Pole | SAMPLED
SAMPLED | | | 0 | + | \dashv | + | | 499 | 45.916415 | | | | Vilas | 8/14/2017 | | | 8 | Sand | Pole | SAMPLED | | | 0 | 1 | | | 500
501 | 45.914975
45.914255 | | | | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 6 | Sand | Pole
Pole | SAMPLED
SAMPLED | | | 0 | V | | | | | | | | | | | | | | | | | | | + | \dashv | + | | 502 | 45.913535 | | | | Vilas | 8/14/2017 | EJH & CJF | | 13 | | Pole | SAMPLED | | | 0 | I | | | 503 | 45.912815 | -89.179162 | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 13 | Muck | Pole | SAMPLED | | | 0 | _ | \dashv | + | | 504 | 45.912095
45.911375 | | | | Vilas
Vilas | 8/14/2017
8/14/2017 | | | 15
9 | Muck
Rock | Pole | SAMPLED
SAMPLED | | | 0 | 1 | | | 506 | 45.910655 | | | | Vilas | 8/14/2017 | | | 14 | | Pole | SAMPLED | | | 0 | 4 | 4 | \perp | | 507 | 45.909935
45.909215 | -89.179205
-89.179215 | | Catfish Lake
Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 7 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | + | + | + | | 509 | 45.919287 | | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 9 | Sand | Pole | SAMPLED | | | 0 | 1 | 1 | | | 510
511 | 45.918567
45.917847 | -89.178046
-89.178056 | 207 | Catfish Lake
Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 11 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | + | + | Н | | 512 | 45.917127 | -89.178067 | 192 | | Vilas | 8/14/2017 | EJH & CJF | | 10 | Sand | Pole | SAMPLED | | | 0 | I | | | 513 | 45.916407 | -89.178078 | 187 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 513 | 7 | Sand | Pole | SAMPLED | | | 1 | 1 | | 1 | | | | | | | | | | | | | | | | | _ | \dashv | 1 | | 514
515 | 45.915687
45.914967 | -89.178088
-89.178099 | 185 | Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 514
515 | 8 | Sand | Pole | SHALLOW
SAMPLED | | | 0 | 1 | | | 516 | 45.914247 | -89.178109 | 158 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 516 | 14 | Muck | Pole | SAMPLED | | | 0 | _ | 4 | \blacksquare | | 517
518 | 45.913527
45.912807 | -89.17812
-89.178131 | 159 | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 13 | Muck
Muck | Pole | SAMPLED
SAMPLED | | | 0 | 519 | 45.912087 | | 161 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 14 | Muck | Pole | SAMPLED | | | 0 | 4 | 4 | \perp | | 520
521 | 45.911367
45.910648 | | 272
271 | Catfish Lake Catfish Lake | Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 7 | Rock | Pole | SAMPLED
SAMPLED | | | 0 | + | + | + | | 522 | 45.909928 | -89.178173 | 270 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 8 | Sand | Pole | SAMPLED | | | 0 | 1 | 1 | | | 523
524 | 45.91928
45.91856 | -89.177004
-89.177014 | | Catfish Lake
Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | | | 9 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | + | \dashv | + | | 525 | 45.91784 | | | | | | EJH & CJF | | 3 | | | SAMPLED | | | 3 | | | | | 2 | | 1 | | | 1 | | | | | | | | | | | Ⅱ | 1 | | 526 | 45.91712 | -89.177035 | | | Vilas | 8/14/2017 | | | 12 | | Pole | SAMPLED | | | 0 | + | \dashv | _ | | 527
528 | 45.9164
45.91568 | -89.177046
-89.177057 | | | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 3 | Sand | Pole | SAMPLED
SAMPLED | | | 2 | | | | | | 1 | 1 | 1 | | 1 | | | | | | | | | | | \Box | 2 | | 529 | 45.91496 | | | | Vilas | 8/14/2017 | | | 9 | Sand | | SAMPLED | | | 0 | _ | \dashv | \blacksquare | | 530
531 | 45.91424
45.91352 | -89.177078
-89.177089 | | | Vilas
Vilas | 8/14/2017
8/14/2017 | | | | Muck
Muck | | SAMPLED
SAMPLED | | | 0 | 532 | 45.9128 | -89.177099 | | | Vilas | 8/14/2017 | | | 14 | | Pole | SAMPLED | | | 0 | _ | _ | _ | | 533 | 45.91208
45.91136 | -89.17711
-89.177121 | 162
267 | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017 | EJH & CJF | | 11 | Rock | Pole | SAMPLED
SAMPLED | | | 0 | + | + | + | | 535 | 45.91064 | -89.177131 | 268 | | Vilas | 8/14/2017 | EJH & CJF | | 9 | Sand | Pole | SAMPLED | | | 0 | 1 | \Box | | | 536
537 | 45.90992
45.919272 | -89.177142
-89.175972 | 269
210 | Catfish Lake
Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | | | 2 | Sand | Pole | SAMPLED
SAMPLED | | | 1 | | | | | | | | | | 1 | | | | | | | | | 1 | + | \dashv | 3 | | 538 | 45.918552 | | 211 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 538 | 5 | Sand | Pole | SAMPLED | | | 1 | | | | | | | 1 | | | | | | | | | | | | | | Ⅱ | 1 | | 539 | 45.917832 | | 199 | | Vilas | 8/14/2017 | EJH & CJF | 539 | 3 | Sand | Pole | SAMPLED | | | 0 | + | \dashv | + | | 540
541 | 45.917112
45.916392 | -89.176004
-89.176015 | 194 | Catfish Lake
Catfish Lake | Vilas
Vilas |
8/14/2017
8/14/2017 | EJH & CJF | 540 | 14 | Muck | Pole | SAMPLED
SAMPLED | | | 1 | L | | | | | | | | | 1 | | | | | | | | | | \exists | # | 1 | | 542 | 45.915672 | | 180 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 6 | Sand | Pole | SAMPLED | | | 2 | | 1 | | | 1 | | | | | | | 1 | | | | | | | | + | \dashv | 1 | | 543
544 | 45.914952
45.914232 | -89.176036
-89.176047 | 175 | Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 14 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | L | \exists | | | 545 | 45.913513 | -89.176057 | 167 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 545 | 15 | | Pole | SAMPLED | | | 0 | | 1 | | | | | | | | | | | | | | | | | | 4 | 4 | 4 | | 546
547 | 45.912793
45.912073 | -89.176068
-89.176079 | 164 | Catfish Lake
Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 7 | Rock
Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | | | | \vdash | | | | | | | | | | | | | | | | + | + | + | | 548 | 45.911353 | | | Catfish Lake | Vilas | 8/14/2017 | | | 12 | | | SAMPLED | | | 0 | 1 | 4 | \blacksquare | | 549
550 | 45.910633
45.909913 | | 265
264 | | Vilas
Vilas | 8/14/2017
8/14/2017 | | | 11 | | Pole
Pole | SAMPLED
SAMPLED | | | 0 | H | + | | | | | | | | 1 | | | | | | 1 | | | | + | + | + | | 551 | 45.919265 | | 213 | | Vilas | 8/14/2017 | EJH & CJF | | 3 | Sand | Pole | SAMPLED | | | 1 | | | | | | | 1 | | | 1 | | | | | | | | | 1 | 1 | 1 | 口 | | 552 | 45.918545 | -89.174951 | 212 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 552 | 4 | Sand | Pole | SAMPLED | | | 1 | | | | | | | 1 | | | 1 | | 1 | | | | | | | | | | 1 | | Point Number | Lattude (Decimal Degrees) | Positing (Decimal Degrees) -89.174962 | <u>Q</u> | Lake Name | County | 9 pg Q | File Id C rew | Point Number | 10 Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | O Total Rake Fullness | Myriophyllum spicatum | Bidens beckii | Ceratophyllum demersum | Ceratophyllum echinatum | Chara spp. | Eleocharis acicularis | Elodea canadensis | Isoetes spp. | Myriophyllum sibiricum | Najas flexilis | Nuphar variegata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton gramineus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton zosteriformis | Sparganium angustifolium | Sparganium fluctuans | Vallisneria americana | Filamentous algae | |--------------|---------------------------|---------------------------------------|------------|------------------------------|----------------|------------------------|---------------|--------------|---------------|--------------|--------------|--------------------|-------|----------|-----------------------|-----------------------|---------------|------------------------|-------------------------|------------|-----------------------|-------------------|--------------|------------------------|----------------|------------------|-------------------------|-----------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------------|----------------------|-----------------------|-------------------| | 554
555 | 45.917105
45.916385 | -89.174972
-89.174983 | 195 | Catfish Lake | Vilas
Vilas | 8/14/2017 | EJH & CJF | 554 | 13 | Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | 4 | = | | 556 | 45.915665 | -89.174994 | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 14 | Muck | Pole | SAMPLED | | | 0 | 4 | | | 557
558 | 45.914945
45.914225 | -89.175004
-89.175015 | | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 14 | Muck
Sand | Pole
Pole | SAMPLED
SAMPLED | | | 0 | + | - | | 559 | 45.913505 | -89.175026 | 168 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 559 | 12 | Muck | Pole | SAMPLED | | | 0 | \exists | = | | 560
561 | 45.912785
45.912065 | -89.175036
-89.175047 | | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 560
561 | 12 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | 562 | 45.911345 | | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 12 | Muck | Pole | SAMPLED | | | 0 | \dashv | 4 | | 563
564 | 45.910625
45.918537 | -89.175068
-89.17392 | | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017 | EJH & CJF | 563
564 | 5 | Sand | Pole | SAMPLED
SAMPLED | | | 3 | | 1 | | | | | 1 | | | 1 | | 1 | | | | | 1 | | 1 | | | 2 | | | 565
566 | 45.917817
45.917097 | -89.17393
-89.173941 | | | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 565
566 | 12 | Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | + | - | | 567 | 45.916377 | -89.173952 | 184 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 567 | 13 | Muck | Pole | SAMPLED | | | 0 | 4 | _ | | 568
569 | 45.915658
45.914938 | -89.173962
-89.173973 | | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 568
569 | 13 | Muck
Sand | Pole | SAMPLED
SAMPLED | | | 0 | 570 | 45.914218 | -89.173984 | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 11 | Sand | Pole | SAMPLED | | | 0 | \dashv | _ | | 571
572 | 45.913498
45.912778 | -89.173994
-89.174005 | 169
249 | Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 571
572 | 13 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | _ | | | 573
574 | 45.912058
45.911338 | -89.174016
-89.174026 | 259 | Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 573
574 | 12 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | \dashv | _ | | 575 | 45.910618 | -89.174037 | 257 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 575 | 0 | MUCK | Pole | DOCK | | | U | 1 | | | 576
577 | 45.91853
45.91781 | -89.172888
-89.172899 | | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 10 | Sand
Sand | Pole
Pole | SAMPLED
SAMPLED | | | 0 | + | _ | | 578 | 45.91709 | -89.172909 | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 13 | Muck | Pole | SAMPLED | | | 0 | \exists | _ | | 579
580 | 45.91637
45.91565 | -89.17292
-89.172931 | 228
229 | Catfish Lake
Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 13 | Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | + | - | | 581 | 45.91493 | -89.172941 | 238 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 581 | 8 | Sand | Pole | SAMPLED | | | 1 | 1 | | | 582
583 | 45.91421
45.91349 | -89.172952
-89.172963 | 239 | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 12 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | + | - | | 584 | 45.91277 | -89.172974 | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 584 | 10 | Sand | Pole | SAMPLED | | | 0 | _ | | | 585
586 | 45.91205
45.91133 | -89.172984
-89.172995 | | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 7 | Muck
Sand | Pole
Pole | SAMPLED
SAMPLED | | | 0 | 1 | | | 587 | 45.918522 | | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 1 | Sand | Pole | SAMPLED | | | 0 | 4 | | | 588
589 | 45.917802
45.917082 | -89.171867
-89.171878 | | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017 | EJH & CJF | 588
589 | 9 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | 590 | 45.916363 | | | | Vilas | 8/14/2017 | | | 12 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | _ | _ | | 591
592 | 45.915643
45.914923 | -89.171899
-89.17191 | | Catfish Lake
Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 591
592 | 10 | Sand | Pole
Pole | SAMPLED | | | 0 | 593
594 | 45.914203
45.913483 | -89.171921
-89.171931 | | Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 593
594 | 11 | Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | + | _ | | 595 | 45.912763 | -89.171942 | | | Vilas | 8/14/2017 | EJH & CJF | | 11 | Muck | Pole | SAMPLED | | | 0 | I | | | 596
597 | 45.912043
45.917795 | -89.171953
-89.170836 | | | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | | 7 | Rock | Pole
Pole | SAMPLED
SAMPLED | | | 1 2 | | | | | | 1 | | | | | | | | | | | | | | | | 1 | - | | 598 | 45.917075 | -89.170846 | 222 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | | 5 | Sand | Pole | SAMPLED | | | 3 | | | | | 1 | | 1 | | 1 | | | | | | | | 1 | | | | | 2 | _ | | 599
600 | 45.916355
45.915635 | -89.170857
-89.170868 | | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 599
600 | 7 | Sand
Sand | Pole
Pole | SAMPLED
SAMPLED | | | 3 | 1 | - | | 601 | 45.914915 | | |
Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 601 | 10 | Muck | Pole | SAMPLED | | | 0 | 4 | | | 602 | 45.914195
45.913475 | -89.170889
-89.1709 | 241
246 | Catfish Lake Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | EJH & CJF | 602 | 10 | Sand
Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | \exists | | | 604 | 45.912755 | -89.170911 | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 604 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | Ī | - | -[| \dashv | 1 | 1 | - | | | | $-\mathbb{I}$ | Ī | \dashv | 4 | | 605 | 45.917068
45.916348 | | | Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | | | 3 | Sand
Sand | Pole
Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | 1 | | | | | | | | | | | | | | | 1 | | | 607 | 45.915628 | | | Catfish Lake | Vilas | 8/14/2017 | | | 7 | Sand | Pole | SAMPLED | | | 3 | | | | | | | | | | | | -{ | - | | | | | | | | | 3 | 4 | | 608 | 45.914908
45.914188 | | | Catfish Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | | | 9 | Sand
Sand | | SAMPLED
SAMPLED | | | 0 | 1 | | | 610 | 45.913468 | | | | Vilas | 8/14/2017 | | | | Sand | | SAMPLED | | | 0 | | | | | | | | | | | | \dashv | - | | | | | | | | | _ | \dashv | | 611 | 45.912748
45.91634 | -89.169879
-89.168794 | | | Vilas
Vilas | 8/14/2017
8/14/2017 | | | 5 | Sand | | SAMPLED
SAMPLED | | | 2 | | | | | | | | | | | | | | | | | 1 | | | | | 2 | | | 613 | 45.91562 | -89.168805 | | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 613 | 6 | Muck | Pole | SAMPLED | | | 3 | | | | | | | 1 | | | | | - | | | | | | | | | - | 3 | \dashv | | 614 | 45.9149
45.91418 | -89.168816
-89.168826 | | | Vilas
Vilas | 8/14/2017
8/14/2017 | | | 7 | Sand
Sand | | SAMPLED
SAMPLED | | | 2 | 1 | | | | | | 1 | | | | | | | | | | | | | | | 2 | | | 616 | 45.91346 | -89.168837 | 244 | Catfish Lake | Vilas | 8/14/2017 | EJH & CJF | 616 | 4 | Sand | Pole | SAMPLED | | <u></u> | 2 | Ш | | | | | | | | | | | | | | | | 1 | | | | | 2 | ╛ | | 1 | Point Number | atitude (Decimal Degrees) | -ongitude (Decimal Degrees) | Q | ako ramo | Sounty | Date | Field Grow | Point Number | Depth (ft) | Sediment | Pole; Rope | 20mments | Notes | Nuisance | Total Rake Fullness | Ceratophyllum demersum | Ceratophyllum echinatum | Eleocharis acicularis | Elodea canadensis | Isoetes spp. | Myriophyllum heterophyllum | Myriophyllum sibiricum | Mylas floville | Naias auadal upensis | Nup har variogata | Nymp hae a odorata | Pontederia condata | Potamogeto n amplifolius | Potamogeton gramineus | Potamogeton nesillus | Potamogeton rich ardsonii | Potamogeton robbins ii | Potamogeto n spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton z osteriform is | Sparganium fluctuans
Utricularia vulgaris | Vallisneria americana | Aquatic moss | ilamentous algae | |--|--------------|---------------------------|-----------------------------|--------------------------|----------|--------|-----------|------------|--------------|------------|--------------|--------------|----------|-------|----------|---------------------|------------------------|-------------------------|-----------------------|-------------------|--------------|----------------------------|------------------------|----------------|----------------------|-------------------|--------------------|--------------------|--------------------------|-----------------------|----------------------|---------------------------|------------------------|------------------------|---------------------------|--------------------|-----------------------------|--|-----------------------|--------------|------------------| | 1 | 1 | | | 233 Voyage | | | 8/15/2017 | JMB & AMS | 1 | 3 | | | | | | 1 | | | Ī | | | | | Ţ. | 1 | | | | | 1 | Ţ | Ī | Ī | | | | | Ï | 1 | Ì | Ē | | 1 | | | | | | | | | 3 | 3 | | Pole | | | | 2 | | | | 1 | | | | | | | | | | | | | | | | | | 1 | 2 | 1 | | | 1. | | | | 230 Voyage | | | | | 4 | 5 | Sand | Pole | | | | 1 | + | 1 | + | H | | 1. | | 45.923714 | -89.196401 | 228 Voyage | eur Lake | Vilas | 8/15/2017 | JMB & AMS | Ť | 6 | Sand | Pole | | | | 1 | Į | 1 | ļ | Д | | 1 | | | | 227 Voyage
226 Voyage | | | | | 7 8 | 7 | Sand
Sand | Pole
Pole | + | + | + | H | | 1 | | 45.922355 | -89.195131 | | eur Lake | Vilas | 8/15/2017 | JMB & AMS | | 7 | | | SAMPLED | | | - | I | I | H | | No. Control | | | | | | | | | | 6 | Rock | Pole | | | | 2 | | | | | | | | | | | | | | 1 | | | | | | | İ | 1 | 2 | t | | | No. | | | | 222 Voyage | | | | | | 4 | Sand | Pole | | | | 0 | | | | | | | | + | | | 1 | | | | + | | | | | | | 2 | + | + | H | | 1. | | | | | | | | | | 8 | Muck | Pole | | | | 0 | | | | | | | | I | | | | | | | I | | | | | | | Ī | 1 | ļ | П | | 1 | | | | 219 Voyage
220 Voyage | | | | | | 7 | Muck
Muck | Pole
Pole | + | _ | + | H | | March Marc | 17 | 45.920551 | -89.194512 | | eur Lake | Vilas | 8/15/2017 | JMB & AMS | 17 | 4 | | | SAMPLED | | | 0 | I | I | 1 | | 5. A SASSE AL SASSE PLAN PROPERTY REPORT OF THE REPORT OF THE PROPERTY REPO | | | | | | | | | | 7 | Muck
Muck | Pole | | | | 0 | t | 1 | İ | | | 24 1,500 | | | | 214 Voyage | | | | | 20 | 7 | Muck | Pole | | | | 0 | | | | | | | | | | - | | | | | | | | | | | | + | _ | - | H | | 1. | | | | 213 Voyage
208 Voyage | | | | | 21 | 5 | Muck
Muck | Pole | | | | 0 | | | | | | | | | | | | | | | ľ | | | | | | | 1 | 1 | İ | | | 25 4 50000 6 10720 10 10 10000 10 10000 10 10000 10 10 10 | | | | | | | | | | 4 | Sand | Pole | | | | 1 | + | 1 | + | H | | 25 | | | | 210 Voyage
211 Voyage | | | | | | 6 | Sand | Pole | | | | 0 | I | İ | İ | 1 | | 20 650000 48 10000 10 100000 10 100000 10 10 10000 10 1 | | | | | | | | | | 0 | 04 | Bette | + | _ | + | H | | Science Scie | | | | | | | | | | 6 | Muck | Pole | | | | 0 | I |
| İ | | | 30 64,0000 M 1900 20 Nopport | | | | 205 Voyage | | | | | 29 | 4 | Muck | Pole | | | | 1 | + | 1 | + | H | | 30 | | | | 202 Voyage
203 Voyage | | | | | | 7 | Muck | Pole | | | | 3 | I | 3 | İ | | | March Marc | | | | 204 Voyage | | | | | | 4 | Muck | Pole | | | | 1 | + | + | - | | | - | | | + | - | | | | 1 | | | | | | | 1 | 1 | 1 | ╁ | H | | 50 45,52772 48 150011 180 Vigograf Late Vision 150007 28 4 5400 29 1 1 1 1 1 1 1 1 1 | | | | 200 Voyage | | | | | | 7 | Muck | Pole | | | | 1 | I | 1 | İ | | | 30 46,00000 30 Vegepar Lab. Veg. 815007 30 5 Am Page SARRED 5 | | | | | | | | | | 8 | Sand | Pole | | | | 0 | - | | | | | | | | | - | | | | | | | | | | | | + | + | + | H | | 50 | | | | 197 Voyage | | | | | | 9 | Sand | Pole | | | | 0 | I | Ι | ļ | П | | GO 48 503000 de 1905C 191 Vouger Lee. Vous 9150CT ARE ARM 50 2 MAS ANS SAMPED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 196 Voyage | | | | | | 9 | Muck | Pole
Pole | | | | - | 1 | + | 3 | + | H | | 42 45 52796 49 18907 194 Vygger Line V Vise 515077 ARE AMS 47 50 Mos. Pap. SAMPED 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | 191 Voyage | | | 8/15/2017 | JMB & AMS | | 9 | Muck | Pole | | | | 0 | I | | ļ | П | | 43 45 522714 50 180973 150 Vysogenet Late. Villa. 8150077 ABS & AMS. 43 5 0 Mark. Prof. 5AMPLED. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | Muck
Muck | Pole
Pole | | | | | | + | + | | | | | | | | | | | + | | | | | | | + | + | ╁ | t | H | | 45 45 92114 49 18900 195 Vangeer Lake Viss 8150077 ARS AMS AMS 95 10 Max Pice SAMPLED 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 43 | | | 194 Voyage | | | | | 43 | 9 | Muck | Pole | | | | 0 | I | Į | П | | 47 45,02216 49 19021 190 Voyageur Late Vista 915/077 JAB S AMS 47 11 Mode Pote SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | 3 | Muck
Muck | Pole
Pole | | | | 2 | | | | 1 | | | | | 1 | 1 | | | | | | | | | | | | 1 | 1 | l | Ħ | | 49 45 522716 49 195221 185 Voyageur Late Viss 8152077 AMB & AMS 49 10 Mock Pate 50 45 522216 49 195328 186 Voyageur Late Viss 8152077 AMB & AMS 50 13 Musc Pate 51 45 522360 49 195850 181 Voyageur Late Viss 8152077 AMB & AMS 50 11 Musc Pate 52 45 522210 49 195970 12 Voyageur Late Viss 8152077 AMB & AMS 50 12 Musc Pate 53 45 522710 49 195970 12 Voyageur Late Viss 8152077 AMB & AMS 50 13 Musc Pate 54 45 522210 49 195970 12 Voyageur Late Viss 8152077 AMB & AMS 50 13 Musc Pate 55 45 522210 49 195970 12 Voyageur Late Viss 8152077 AMB & AMS 50 13 Musc Pate 56 45 522250 49 19590 170 Voyageur Late Viss 8152077 AMB & AMS 50 13 Musc Pate 57 45 52240 49 195970 170 Voyageur Late Viss 8152077 AMB & AMS 50 10 Musc Pate 58 45 522250 49 19590 170 Voyageur Late Viss 8152077 AMB & AMS 50 10 Musc Pate 59 45 522250 49 19590 170 Voyageur Late Viss 8152077 AMB & AMS 50 10 Musc Pate 50 45 522250 49 19590 170 Voyageur Late Viss 8152077 AMB & AMS 50 10 Musc Pate 50 45 522250 49 19590 170 Voyageur Late Viss 8152077 AMB & AMS 50 10 Musc Pate 50 45 522250 49 19590 170 Voyageur Late Viss 8152077 AMB & AMS 50 10 Musc Pate 50 45 522250 49 19570 170 Voyageur Late Viss 8152077 AMB & AMS 50 10 Musc Pate 50 45 522250 49 19570 170 Voyageur Late Viss 8152077 AMB & AMS 50 10 Musc Pate 50 45 522250 49 19570 170 Voyageur Late Viss 8152077 AMB & AMS 50 10 Musc Pate 50 45 522250 49 19570 170 Voyageur Late Viss 8152077 AMB & AMS 50 10 Musc Pate 50 45 522250 49 19570 170 Voyageur Late Viss 8152077 AMB & AMS 50 10 Musc Pate 50 45 522250 49 19570 170 Voyageur Late Viss 8152077 AMB & AMS 50 10 Musc Pate 50 45 522450 49 19570 170 Voyageur Late Viss 8152077 AMB & AMS 50 10 Musc Pate 50 45 522450 49 19570 170 Voyageur Late Viss 8152077 AMB & AMS 50 10 Musc Pate 50 45 522450 49 19570 170 Voyageur Late Viss 8152077 AMB & AMS 50 10 Musc Pate 50 45 522450 49 19570 170 Voyageur Late Viss 8152077 AMB & AMS 50 10 Musc Pate 50 45 522450 49 19570 170 Voyageur Late Viss 8152077 AMB & AMS 50 10 Musc Pate 50 45 522450 49 19570 170 Voyageur Late Viss 8155077 AMB & AMS 50 10 | | | | | | | | | | | Muck | Pole | | | | 0 | | | | | | | | | | - | | | | | | | | | | | | + | - | ╄ | Н | | S0 45 524500 40 188601 181 Voyager Lake Vilse 8152017 JAB & AMS 50 3 Muck Pole SAMPLED 0 0 0 0 0 0 0 0 0 | | | | 100 1010 | | | | | | | Muck
Muck | Pole
Pole | | | | 0 | t | | İ | | | \$1 46.923660 46.186653 181 Voyageur Lake Vilas 6152017 JAMB & AMS 51 14 Muse Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | 1 | | | | | | | | | | - | | | | | | | | | | | | + | 1 | - | H | | \$\ \frac{5}{5} 45,02760 | | | | | | | | | | | | | | | | 0 | | 1 | | 1 | | | 1 | 1 | | | | | | | 1 | | 2 | | | | 1 | 1 | İ | İ | | | 54 45 924105 49 189072 190 Vyageur Lake Vilss 9152017 JMB & AMS 54 8 Ros Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | 11 | | | | | | 0 | + | + | + | | | $\parallel \parallel$ | | + | + | | | | - | + | + | - | | | \dashv | + | + | + | + | + | H | | 56 45.522305 48.188022 176 Voyagent Lake Vilsa 8152017 JMB & AMS 56 8 Murk Rope SAMPLED 0 0 0 0 0 0 0 0 0 | | | | | | | | | | 8 | | Pole | | | | 0 | 1 | 1 | L | | | | | 1 | t | | | | | 1 | 1 | t | | | | 1 | 1 | I | 12 | ļ | Ц | | 57 4502410 49.187361 175 Voyageur Lake Vilse 8152017 JMB & AMS 57 13 Muck Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | - | + | + | + | | | \mathbb{H} | + | + | + | | | | \dashv | + | + | | | | + | + | + | + | + | + | H | | 59 45 52200 -89 187380 177 Voyageur Liske Vilsa 8152017 JMB & AMS 59 4 Murk Pole SAMPLED 1 1 1 1 1 1 1 1 1 | | | -89.187367 | 175 Voyage | eur Lake | Vilas | 8/15/2017 | JMB & AMS | 57 | 13 | Muck | | SAMPLED | | | 0 | 1 | 1 | | | | | 1 | ļ | ļ | | | | | 1 | ļ | I | | | 1 | 1 | 1 | Ŧ | Į | Į | Ø | | 60 45524546 -89.186729 177 Voyageur Lake Vilsa 8152017 JMB & AMS 60 6 Murk Pole SAMPLED 1 1 | | | | | | | | | | | | | | | | 0 | + | + | 1 | | | \dashv | + | + | + | | | | - | + | + | + | | | \dashv | + | + | + | + | + | H | | 62 45 52046 | 60 | 45.924546 | -89.186716 | 174 Voyage | eur Lake | Vilas | 8/15/2017 | JMB & AMS | 60 | 6 | Muck | Pole | SAMPLED | | | 1 | 1 | | | | | | | 1 | - | | | | | 1 | 1 | | | | 1 | 1 | 1 | Ŧ | 1 | ļ | I | | 63 4 55/2316 -88 180736 171 Voyageur Lake Vilsa 815/2017 JMB 8 AMS 63 2 Musk Pole SAMPLED 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | Muck
Muck | Pole
Pole | | | | 0 | _ | + | | F | | H | + | t | t | ŀ | | | _ | _ | t | | H | | _ | \pm | + | \pm | t | + | H | | 65 45.92499 48.18006 104 Voyageur Lake Vilas 8/15/2017 JMB & AMS 65 0 Muck Pole SAMPLED 1 1 1 1 1 1 1 1 1 | 63 | 45.923196 | -89.186736 | 171 Voyage | eur Lake | Vilas | 8/15/2017 | JMB & AMS | 63 | 2 | | | SAMPLED | | | 1 | 7 | Ŧ | I | | | | 1 | Ŧ | Ŧ | | | | 7 | Ŧ | Ŧ | I | | | 1 | 1 | 7 | 1 | 1 | F | Ā | | 66 45 924541 -89 180071 165 Voyageur Liske Vilse 8152017 JMB 8 AMS 66 9 Murk Pole SAMPLED 0 0 67 45 924001 -89 180078 166 Voyageur Liske Vilse 8152017 JMB 8 AMS 67 12 Murk Pole SAMPLED 0 0 68 45 923641 -89 180084 168 Voyageur Liske Vilse 8152017 JMB 8 AMS 68 13 Murk Pole SAMPLED 0 0 69 45 923191 -89 180001 187 Voyageur Liske Vilse 8152017 JMB 8 AMS 69 4 Murk Pole SAMPLED 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | - | | | | | | | 1 | | t | | | | 1 | t | t | | 1 | | | 1 | t | | | | | | 1 | 1 | 1 | t | | | 68 45 923641 -89 180048 166 Voyageur Lake Vilas 8152017 JMB 8 JMS 69 13 Musk Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 66 | 45.924541 | -89.186071 | 165 Voyage | eur Lake | Vilas | 8/15/2017 | JMB & AMS | 66 | | Muck | | SAMPLED | | | | - | - | - | | | H | F | + | | | | | - | - | + | | H | | - | - | - | + | F | F | H | | | | | | | | | | | | | | | | | | - | | 1 | | | | | 1 | \dagger | t | | | | | 1 | \dagger | | | | | | 1 | # | 1 | t | | | /U 45-92-5437 -69-18-5413 162 Voyageur Lake Vilas 8/15/2017 JMB & AMS 70 4 Muck Pole SAMPLED 1 1 1 1 | | | | 12/22 | | | | | | 4 | Muck | Pole | | | | 1 | + | + | | | | \dashv | + | + | + | | | | 1 | + | + | - | | 1 | \dashv | + | + | + | 1 | + | \forall | | 71 45924997 -89.185420 161 Voyageur Lake Vilas 815/2017 JMB & AMS 71 7 Musk Pole SAMPLED 0 0 | | | | | | | | | | 7 | Muck | Pole | | | | 0 | 1 | 1 | | | | | 1 | 1 | | | | | | 1 | 1 | | | | | 1 | 1 | # | +1 | # | ₫ | | 72 45524537 -89.185426 150 Voyageur Lake Vilsa 8152017 JMB 8 AMS 72 9 Murk Pole SAMPLED 0 0 73 45524087 -89.185433 159 Voyageur Lake Vilsa 8152017 JMB 8 AMS 73 10 Murk Pole SAMPLED 0 0 | | | | 100 1010 | | | | | | | | Pole | | | | 0 | + | + | + | - | | | + | + | + | + | | | | + | + | + | | H | + | + | + | + | + | + | Н | | 75
76
77
78
79
80
81 | 45.923637
45.923737
45.922737
45.922737
45.925432
45.924532
45.924682 | -89.185440
-89.185446
-89.185453 | | Lake | Sounty | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | omments | Notes | Nuisance
Total Bake Eullegen | Otal Rake Fullifiess | Ceratophyllum demersum | Chara spp. | Eleocharis acicularis | Elodea canadensis | Isoetes spp. | Myriophyllum heterophyllun | Myriophyllum verticillatum | Najas flexilis | Najas guadalupensis | Nuphar variegata | Nymphaea odorata | Potamogeto n amplifolius | Potamogeton gramineus | Potamogeton natans | Potamogeton pusillus | Potamogeto n rich ardsonii | Potamogeto n robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeto n vaseyi Potamogeto n z osteriformis | Sparganium fluctuans | Utricularia vulgaris | Vallisneria americana | quanc moss
illamentous algae | |--|---|--|--------------
--------------------------------|----------------|------------------------|------------|--------------|------------|--------------|--------------|---|----------|---------------------------------|----------------------|------------------------|------------|-----------------------|-------------------|--------------|----------------------------|----------------------------|----------------|---------------------|------------------|------------------|--------------------------|-----------------------|--------------------|----------------------|----------------------------|------------------------|-----------------------|---------------------------|---|----------------------|----------------------|-----------------------|---------------------------------| | 76
77
78
79
80
81 | 45.922737
45.925432
45.924982
45.924532
45.924082 | -89.185453 | | Voyageur Lake | Vilas | | | 74 | 12 | Muck | Pole | SAMPLED | _ | _ | | , | | | Ш | 2 | | | _ | _ | _ | 2 . | | | | | | | | | | 0) | _ | | Ī | | 78
79
80
81
82 | 45.924982
45.924532
45.924082 | | | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 75
76 | 10 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | - 1 | 1 | | | | | | | | 1 | | | | | | | | | | | | 1 | | | 1 | | | 79
80
81
82 | 45.924532
45.924082 | -89.184768 | 148 \ | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 77 | 4 | Muck | Pole | SAMPLED | | - | 0 | | | | 1 | | | | | | | | | | + | | | | | | | | | + | 1 | | 81
82 | | -89.184775
-89.184782 | | Voyageur Lake
Voyageur Lake | Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 78 | 8 | Muck | Pole | SAMPLED
SAMPLED | 1 | | | 82 | 45.923632 | -89.184788
-89.184795 | 151 \ | Voyageur Lake | Vilas
Vilas | 8/15/2017 | JMB & AMS | 80 | 7 | Muck | Pole | SAMPLED
SAMPLED | | - | - | + | | 83 | 45.923182 | -89.184801 | | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 82 | 12 | Muck | Pole | SAMPLED | 1 | I | | 84 | 45.922732
45.922282 | -89.184808
-89.184815 | | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/15/2017 | JMB & AMS | 83 | 10 | Muck
Muck | Pole
Rope | SAMPLED
SAMPLED | | | 2 | | | | | | 1 | | | | | | | | | | | | | | | | | 2 | | | | 45.925427 | -89.184124 | 147 \ | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 85 | 2 | Muck | Pole | SAMPLED | | | 1 | | | | | | | | | | | | 1 | | | | | | | | | 1 | | | \blacksquare | | | 45.924977
45.924527 | -89.184130
-89.184137 | 146 \ | Voyageur Lake
Voyageur Lake | Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 86 | 2 | Muck | Pole | SAMPLED
SAMPLED | | | 1 | | | | | | | 1 | | | | | | | | | | | | | | 1 | | 1 | | | 88 | 45.924077
45.923627 | -89.184143
-89.184150 | 144 \ | Voyageur Lake | Vilas
Vilas | 8/15/2017 | JMB & AMS | 88
89 | 5 | Muck | Pole | SAMPLED
SAMPLED | | | 1 | | | | | | | | | | | | | ł | + | | | | | | | | | 1 | + | | | 45.923177 | -89.184157 | | Voyageur Lake | Vilas | | JMB & AMS | 90 | 12 | Muck | Pole | SAMPLED | | | 0 | 1 | I | | 91
92 | 45.922727
45.922277 | -89.184163
-89.184170 | | Voyageur Lake | Vilas
Vilas | 8/15/2017 | JMB & AMS | 91
92 | 10 | Muck
Muck | Pole | SAMPLED
SAMPLED | | | 0 | + | + | ŀ | H | | | + | H | l | | | + | J | | ŀ | H | Н | _ | _ | + | - | | _ | + | | 93 | 45.921828 | -89.184176 | 139 \ | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 93 | 3 | Muck | Pole | SAMPLED | | Ţ | 1 | ļ | l | | | | 1 | l | 1 | | | | | ļ | | L | | | | | | | | 1 | Ħ | | 94
95 | 45.927673
45.927223 | -89.183446
-89.183452 | 74 \ | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 94
95 | 0 | | | TERRESTRIAL TERRESTRIAL | | 1 | 1 | 1 | t | | | | 1 | t | | t | | | t | t | | L | | | | 1 | İ | L | | 1 | Ħ | | | 45.924073 | -89.183499 | | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 96 | 4 | Sand | Pole | SAMPLED | | | 1 | | 1 | 1 | | 1 | | | | | | | - | | | | | | | | 1 | | | 1 | \blacksquare | | 97 | 45.923623
45.923173 | -89.183505
-89.183512 | 134 \ | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 97
98 | 10 | Muck
Muck | Pole | SAMPLED
SAMPLED | | | 0 | 1 | Ħ | | | 45.922723 | -89.183518 | | Voyageur Lake | Vilas | | JMB & AMS | 99 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | - | | | | | | | | | | 4 | + | | | 45.922273
45.921823 | -89.183525
-89.183532 | | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 100 | 9 | Muck
Muck | Pole | SAMPLED
SAMPLED | | | 1 | | | | | | | | 1 | | | | | | | | | | | 1 | | | | 1 | | | | 45.928118 | -89.182794 | 78 \ | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 102 | 0 | | | TERRESTRIAL | | | | | | - | | | | | - | | | | - | | | | | | | | | | | _ | + | | | 45.927668
45.927218 | -89.182801
-89.182808 | 75 \
72 \ | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 103 | 0 | | | TERRESTRIAL TERRESTRIAL | \pm | | | | 45.926768 | -89.182814 | | Voyageur Lake | Vilas | 8/14/2017 | | 105 | 0 | | | NONNAVIGABLE (PLANTS) | | | - | | | | | | | | | | | | | + | - | | | | | + | | | | + | + | | 106 | 45.925418
45.924968 | -89.182834
-89.182841 | | Voyageur Lake
Voyageur Lake | Vilas | | JMB & AMS | 106 | 3 | Muck | Pole | SAMPLED
SAMPLED | | | 1 | 1 | | | | | | | 1 | | | 1 | | | | | | 1 | | | | 1 | | 1 | | | | 45.924518
45.924068 | -89.182847
-89.182854 | | Voyageur Lake | Vilas
Vilas | 8/15/2017 | JMB & AMS | 108 | 3 | Muck
Sand | Pole | SAMPLED
SAMPLED | | - | 1 | - | | - | | | | | 1 | | | | + | | + | | | | | + | | | | 1 | + | | | 45.923618 | -89.182860 | 128 \ | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 110 | 10 | Muck | Pole | SAMPLED | | | 0 | 1 | I | | | 45.923168
45.922718 | -89.182867
-89.182874 | 127 \ | Voyageur Lake | Vilas
Vilas | 8/15/2017 | JMB & AMS | 111 | 10 | Muck | Pole | SAMPLED
SAMPLED | | - | 0 | | | | | | | | | | | | | ł | + | | | | | | | | | + | + | | | 45.922268 | -89.182880 | | Voyageur Lake | Vilas | 8/15/2017 | | 113 | 6 | Muck | Pole | SAMPLED | | | 2 | 2 | 1 | | | 45.921818
45.929013 | -89.182887
-89.182136 | | Voyageur Lake
Voyageur Lake | Vilas
Vilas | | JMB & AMS | 114 | 1 0 | Muck | Pole | SAMPLED
TERRESTRIAL | | | 0 | + | | | | | | | | | | | | t | t | | | | | | | | | + | + | | 116 | 45.928563 | -89.182143 | 79 \ | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 116 | 0 | | | TERRESTRIAL | 4 | I | | | 45.928113
45.927663 | -89.182150
-89.182156 | | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/15/2017 | JMB & AMS | 117 | 0 | | | TERRESTRIAL TERRESTRIAL | 45.927213 | | | | | | JMB & AMS | 119 | 0 | | | TERRESTRIAL | | | | | | | | | | | | | | | | - | + | | | | | + | | | | + | $^{+}$ | | | 45.926763
45.926313 | -89.182169
-89.182176 | | Voyageur Lake
Voyageur Lake | Vilas
Vilas | | JMB & AMS | 120 | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | 45.925863 | -89.182183 | | Voyageur Lake | Vilas | | JMB & AMS | 122 | 0 | | | NONNAVIGABLE (PLANTS) | | | | | | - | | | | | - | | | | - | | | | | | | | | | | _ | + | | | 45.925413
45.924964 | -89.182189
-89.182196 | | Voyageur Lake
Voyageur Lake | Vilas | | JMB & AMS | 123 | | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 1 | 2 | | | | | | 1 | 1 | | t | 1 | 1 | t | t | | L | | 2 | | 1 | | t | | 1 | 1 | | | 45.924514
45.924064 | -89.182202
-89.182209 | | Voyageur Lake | Vilas
Vilas | 8/14/2017 | | 125 | 9 | Rock | Pole | SAMPLED
SAMPLED | - | - | 1 | + | + | - | H | | - | 1 | \vdash | | | + | + | + | | 1 | - | H | + | + | + | | - | + | + | | | 45.924064
45.923614 | -89.182209
-89.182216 | | Voyageur Lake | Vilas | 8/14/2017 | JMB & AMS | 126 | 10 | Muck
Muck | Pole | SAMPLED
SAMPLED | | | 0 | 1 | t | L | | | 1 | l | L | L | | | t | t | L | L | | | | 1 | | L | | 1 | \parallel | | | 45.923164
45.922714 | -89.182222
-89.182229 | | Voyageur Lake | Vilas
Vilas | | JMB & AMS | 128 | 9 | Sand | Pole | SAMPLED
SAMPLED | \dashv | - | Ť | + | + | | | | + | + | | \vdash | | | + | + | | | | | | + | + | - | | + | + | | | | -89.182236 | 53 \ | Voyageur Lake | Vilas | 8/14/2017 | JMB & AMS | 130 | | Muck | Pole | SAMPLED | | ľ | 1 | 1 | ļ | L | | | 1 | ļ | İ | İ | | | ļ | ļ | | L | | | 1 | 1 | ļ | | 1 | 1 | \blacksquare | | 131 | 45.929009
45.927209 | -89.181492
-89.181518 | | Voyageur Lake
Voyageur Lake | Vilas
Vilas | | JMB & AMS | 131 | 0 | | | TERRESTRIAL TERRESTRIAL | - | + | + | + | + | | | | + | + | | - | | + | + | + | | | | | \dashv | + | + | | - | + | + | | 133 | 45.926759 | -89.181525 | 66 \ | Voyageur Lake | Vilas | 8/14/2017 | JMB & AMS | 133 | 0 | | | NONNAVIGABLE (PLANTS) | | 1 | | 1 | ļ | | | | 1 | ļ | | | | | - | ļ | | | | | | 1 | | | | 7 | Ħ | | | 45.926309
45.925859 | -89.181531
-89.181538 | | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/14/2017 | JMB & AMS | 134 | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | \pm | | \pm | ŀ | L | | | _ | l | Ė | t | | | t | 1 | 1 | L | L | | | 1 | l | t | | _ | ± 1 | | 136 | 45.925409 | -89.181544 | 41 \ | Voyageur Lake | Vilas | 8/14/2017 | JMB & AMS | 136 | 4 | Muck | Pole | SAMPLED | 4 | 1 | 1 | Ŧ | F | F | H | | 1 | I | F | F | 1 | 1 | F | | | | F | | 4 | I | -
 | 1 | Ŧ | H | | | 45.924959
45.924509 | -89.181551
-89.181558 | | Voyageur Lake
Voyageur Lake | Vilas
Vilas | | JMB & AMS | 137 | 5 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | 1 | | | | | | t | L | | | | | t | | | | 1 | | | | | | 1 | \pm | | | 45.924059 | -89.181564 | | Voyageur Lake | Vilas | | JMB & AMS | 139 | 7 | Muck | Pole | SAMPLED | - | | 1 | + | + | - | | | + | + | - | - | | + | + | + | | - | | | \dashv | + | + | - | - | 1 | + | | | 45.923609
45.923159 | -89.181571
-89.181578 | | Voyageur Lake
Voyageur Lake | Vilas
Vilas | | JMB & AMS | 140 | 7 | Muck
Muck | Pole | SAMPLED
SAMPLED | | | | 1 | L | | | | 1 | l | | | | | | t | | L | | | | 1 | l | | | 1 | \sharp | | | 45.922709
45.922259 | -89.181584
-89.181591 | | Voyageur Lake | Vilas
Vilas | 8/14/2017 | JMB & AMS | 142 | 8 | Muck | Pole | SAMPLED
SAMPLED | + | + | | + | + | - | H | | + | + | \vdash | H | H | + | + | + | - | L | | | \dashv | + | + | H | + | + | + | | | 45.922259
45.929454 | -89.181591
-89.180840 | | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 144 | 0 | acX | . ole | TERRESTRIAL | | 1 | 1 | 1 | İ | | | | 1 | | I | I | | | T | ļ | | L | | | | 1 | | I | | # | Ħ | | | 45.929004
45.927204 | -89.180847
-89.180873 | | Voyageur Lake | Vilas
Vilas | 8/15/2017 | JMB & AMS | 145 | 0 | | | TERRESTRIAL TERRESTRIAL | | | ╁ | + | + | ŀ | H | | | + | H | l | | | + | J | | ŀ | H | Н | _ | _ | + | - | | _ | + | | Point Number | atitude (Decimal Degrees) | ongitude (Decimal Degrees) | 0 | ake Name | County | Date | Field Grew | Point Number | Depth (ft) | Sediment | Pole; Rope | 20m ments | Notes | Nuisance | Total Rake Fuliness | Ceratophyllum demersum | Charasan | Eleocharis acicularis | Elodea canadensis | Isoetes spp. | Myriophyllum heterophyllum | Myriophyllum sibiricum | Nynophyllum Verticiliatum
Najas flexilis | Najas guadalupensis | Nup har variegata | Nymp hae a odorata | Pontederia cordata | Potamogeto n amplifolius | Potamogeto n gramineus | Potamogeton natans | Potamogeto n pusillus Potamogeto n rich ardsonii | Potamogeto n robbins ii | Potamogeton spirillus | Potamogeton strictfolius | Potamogeto n vaseyi | Potamogeto n z osteriform is | Sparganium fluctuans | Uncularia vuigaris | Vallisheria americana
Aquatic moss | Filamentous algae | |--------------|---------------------------|----------------------------|-----------|--------------------------------|----------------|------------------------|------------|--------------|------------|--------------|--------------|---|-------|----------|---------------------|------------------------|-----------|-----------------------|-------------------|--------------|----------------------------|------------------------|---|---------------------|-------------------|--------------------|--------------------|--------------------------|------------------------|--------------------|--|-------------------------|--|--------------------------|---------------------|------------------------------|----------------------|--------------------|---------------------------------------|-------------------| | 147 | 45.926754 | -89.180880 | 65 | Voyageur Lake | Vilas | 8/14/2017 | | 147 | 0 | 0) | | NONNAVIGABLE (PLANTS) | _ | _ | | , , | , , | | | _ | _ | - | | _ | _ | _ | | | _ | | | | Ĺ | | | | | | | İ | | 148 | 45.925404
45.924954 | -89.180900
-89.180906 | 60
28 | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/14/2017 | JMB & AMS | 148 | 0 | Muck | Pole | NONNAVIGABLE (PLANTS) SAMPLED | | | 1 | | | | | | | | 1 | | | | | | | | | | 1 | | | _ | _ | + | 1 | Н | | 150 | 45.924504 | -89.180913 | 29 | Voyageur Lake | Vilas | 8/14/2017 | JMB & AMS | 150 | 5 | Muck | Pole | SAMPLED | | | 2 | | | | | | | | | | | | | 1 | | 4 | | | L | | | 4 | 1 | 1 | 1 | | | 151 | 45.924054
45.923604 | -89.180920
-89.180926 | 30 | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/14/2017 | JMB & AMS | 151 | 6 | Muck
Sand | Pole
Pole | SAMPLED
SAMPLED | | - 1 | 0 | | | | | | | | | | | | | | | | | | + | | | \dashv | + | + | - | H | | 153 | 45.923154 | -89.180933 | 32 | Voyageur Lake | Vilas | 8/14/2017 | JMB & AMS | 153 | 4 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | L | | | 4 | 4 | - | | L | | 154
155 | 45.922704
45.930349 | -89.180939
-89.180182 | 33
84 | Voyageur Lake
Voyageur Lake | Vilas
Vilas | | JMB & AMS | 154 | 0 | Muck | Pole | SAMPLED
TERRESTRIAL | | | 1 | | | | | | | | | 1 | | | | 1 | | | | | | | | | _ | | - | | | 156 | 45.929899 | -89.180189 | 85 | Voyageur Lake | Vilas | 8/15/2017 | | 156 | 0 | | | TERRESTRIAL | | | + | | | | | | | | | | | | | | | 4 | | | \vdash | | | - | _ | + | ╁ | H | | 157 | 45.928549
45.928100 | -89.180208
-89.180215 | 86 | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 157 | 0 | | | TERRESTRIAL TERRESTRIAL | 1 | | | | 159 | 45.927650
45.925400 | -89.180222
-89.180255 | 88
58 | Voyageur Lake | Vilas
Vilas | 8/15/2017
8/14/2017 | JMB & AMS | 159 | 0 | | | TERRESTRIAL | | | + | | | + | | | | | | | | | | | - | + | | | \vdash | | | | + | - | + | H | | 161 | 45.925400 | -89.180262
-89.180262 | 27 | Voyageur Lake
Voyageur Lake | Vilas | 8/14/2017 | JMB & AMS | 161 | 4 | Muck | Pole | NONNAVIGABLE (PLANTS) SAMPLED | | | 3 | 2 | | | | | | | | | 1 | | | | | 1 | | 1 | | | | | | İ | 1 | | | 162 | 45.924500
45.924050 | -89.180268
-89.180275 | 26
25 | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/14/2017 | JMB & AMS | 162 | 4 | Muck | Pole | SAMPLED
SAMPLED | | | 1 | | | + | | | | | | | | | | | - | + | | | | | \exists | - | + | + | 1 | \vdash | | 164 | 45.923600 | -89.180281 | 24 | Voyageur Lake | Vilas | 8/14/2017 | JMB & AMS | 164 | 7 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | İ | | | | | | | | | | | | 1 | # | Ï | Ì | | | 165 | 45.923150
45.922700 | -89.180288
-89.180295 | 23 | Voyageur Lake | Vilas | 8/14/2017
8/14/2017 | JMB & AMS | 165 | 5 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | - | - | | | | | | | | - | H | | \dashv | + | + | | Н | | 167 | 45.930345 | -89.179537 | 89 | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 167 | 0 | .much | , old | TERRESTRIAL | | 1 | 1 | | | | | | 1 | | ľ | ļ | L | | | 1 | | 1 | 1 | L | I | | # | # | # | ļ | Ŧ | П | | 168 | 45.929895
45.928995 | -89.179544
-89.179557 | 90 | Voyageur Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 168 | 0 | | | TERRESTRIAL TERRESTRIAL | | | + | | | | | | | | | | | | | | | + | $\frac{1}{1}$ | | | | | \dashv | + | + | + | H | | 170 | 45.928545 | -89.179564 | 92 | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 170 | 0 | | | TERRESTRIAL | L | | | 4 | 1 | Į | 1 | | | 171 | 45.928095
45.927645 | -89.179570
-89.179577 | 93
94 | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/15/2017 | JMB & AMS | 171 | 0 | | | TERRESTRIAL TERRESTRIAL | | | + | | | | | | | | | | | | | | | + | $\frac{1}{1}$ | | | | | \dashv | + | + | + | H | | 173 | 45.926295 | -89.179597 | 95 | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 173 | 0 | | | TERRESTRIAL | L | | | 4 | 1 | Į | 1 | | | 174 | 45.925845
45.925395 | -89.179603
-89.179610 | 57
56 | Voyageur Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | JMB & AMS | 174 | 0 | | | NONNAVIGABLE (PLANTS) | + | | | - | - | + | + | Н | | 176 | 45.924945 | -89.179617 | 18 | Voyageur Lake | Vilas | 8/14/2017 | JMB & AMS | 176 | 3 | Muck | Pole | SAMPLED | | | 3 | | | | | | | | | | | | | | | | | 2 | L | | | _ | 4 | 1 | | | | 177 | 45.924495
45.924045 | -89.179623
-89.179630 | 17 | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | JMB & AMS | 177 | 4 | Muck
Muck | Pole | SAMPLED
SAMPLED | | | 2 | | 1 | | 1 | | | | 1 | | | 1 | | | 1 | | 1 | | + | | | - | - | 1 : | 2 | Н | | 179 | 45.923595 | -89.179637 | 20 | Voyageur Lake | Vilas | 8/14/2017 | JMB & AMS | 179 | 6 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | L | | | _ | 4 | 1 | | | | 180 | 45.923145
45.922695 | -89.179643
-89.179650 | 12 | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/14/2017 | JMB & AMS | 180 | 12 | Muck
Muck | Pole | SAMPLED
SAMPLED | H | | 1 |
| 1 | | | | 1 | | | | | | | 1 | | | \vdash | H | \exists | + | + | + | 1 | H | | 182 | 45.922245 | -89.179657 | 11 | Voyageur Lake | Vilas | 8/14/2017 | JMB & AMS | 182 | 3 | Muck | Pole | SAMPLED | | | 2 | | | | | | | | 2 | | | | | | | | 1 | | L | | | _ | 1 | Ι. | 1 | I | | 183 | 45.921795
45.921345 | -89.179663
-89.179670 | 7 | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/14/2017 | JMB & AMS | 183 | 5 | Muck | Pole
Pole | SAMPLED
SAMPLED | | | 1 | | | | | | | | | | | | | | | | | | + | | | \dashv | + | + | 1 | H | | 185 | 45.920895 | -89.179676 | 4 | Voyageur Lake | Vilas | 8/14/2017 | | 185 | 7 | Muck | Pole | SAMPLED | | | 1 | | | | | | | | | | | | | | | | | | L | | | 4 | 4 | 1 | 1 | L | | 186
187 | 45.920445
45.919995 | -89.179683
-89.179690 | 1 | Voyageur Lake
Voyageur Lake | Vilas | 8/14/2017 | JMB & AMS | | 7 | Rock | Pole
Pole | SAMPLED
SAMPLED | | | 0 | _ | 1 | | | | 188 | 45.919545 | -89.179696 | 169 | | Vilas | 8/15/2017 | | | 8 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | ┢ | | | _ | + | + | _ | H | | 189
190 | 45.929890
45.929440 | -89.178899
-89.178906 | 96 | Voyageur Lake
Voyageur Lake | Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 189 | 0 | | | TERRESTRIAL
TERRESTRIAL | 1 | | | | | 191 | 45.928990 | -89.178912 | 98 | | Vilas | 8/15/2017 | | 191 | 0 | | | TERRESTRIAL | | | + | | | | | | | | | | | | | | | + | | | ₩ | | | _ | _ | + | + | H | | 192
193 | 45.928540
45.928090 | | | Voyageur Lake
Voyageur Lake | | | JMB & AMS | | 0 | | | TERRESTRIAL TERRESTRIAL | | | 1 | | | | | | | | | | | | | | | 1 | | | | | | | | İ | 1 | | | 194 | 45.927640
45.926290 | | | Voyageur Lake
Voyageur Lake | | | JMB & AMS | | 0 | | | TERRESTRIAL TERRESTRIAL | | | | + | | | | | | | | + | - | | | | | | - | | ┢ | \vdash | \dashv | + | + | + | | H | | 195
196 | 45.925840 | | | | | | JMB & AMS | | 0 | | | TERRESTRIAL | | | 1 | | | | | | | | | | | | | | | 1 | | | | | | # | 1 | I | 1 | | | 197 | 45.925390
45.924940 | -89.178965
-89.178972 | 55
54 | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | | + | | | + | | | | | | | | | | | | + | | | ╁ | | | \dashv | + | + | + | H | | 198 | 45.924490 | -89.178979 | 45 | Voyageur Lake | Vilas | 8/14/2017 | JMB & AMS | 199 | 0 | | | NONNAVIGABLE (PLANTS) | | | 1 | 1 | 1 | | | | | 1 | 1 | ļ | | | | | 1 | 1 | 1 | | L | Ħ | | 1 | # | ‡ | ‡ | Ħ | | 200 | 45.924040
45.923590 | | 16
15 | Voyageur Lake
Voyageur Lake | Vilas
Vilas | | JMB & AMS | | 3 | Muck | Pole
Pole | SAMPLED
SAMPLED | | | 1 | + | | - | 1 | | | | 1 | + | 1 | | | | | \dashv | + | 1 | 1 | \vdash | | 1 | + | 1 . | 1 | Н | | 202 | 45.923141 | -89.178998 | 14 | Voyageur Lake | Vilas | 8/14/2017 | JMB & AMS | 202 | 0 | | | SHALLOW | | | | 1 | ļ | | | | 1 | 1 | ľ | T | | | | 1 | 1 | 1 | 1 | | Ė | | # | # | # | # | Ŧ | Ħ | | 203 | 45.922691
45.922241 | | | Voyageur Lake
Voyageur Lake | | | JMB & AMS | | | Muck | Pole
Pole | SAMPLED
SAMPLED | H | _ | 0 | + | + | + | | | 1 | + | + | + | - | | | 1 | \dashv | + | + | H | H | H | \dashv | + | + | + | + | H | | 205 | 45.921791 | -89.179018 | | Voyageur Lake | Vilas | 8/14/2017 | JMB & AMS | 205 | 7 | Muck | Pole | SAMPLED | | 1 | 1 | 1 | ļ | | | | 1 | 1 | ļ | T | | | | 1 | 1 | 1 | 1 | | F | | # | # | # | ‡ | 1 | П | | 206 | 45.921341
45.920891 | -89.179025
-89.179032 | 5 | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/14/2017
8/14/2017 | JMB & AMS | | 6 | Rock | Pole
Pole | SAMPLED
SAMPLED | H | 1 | 2 | + | + | + | | | 1 | + | + | + | - | | | 1 | \dashv | + | + | H | H | H | \dashv | + | + | + | 2 | H | | 208 | 45.920491 | -89.179032
-89.179038 | 3 | | Vilas | 8/14/2017 | | | 0 | Julid | , ore | DOCK | | | | ļ | ļ | | | | | 1 | 1 | ļ | | | | | | 1 | 1 | | I | | | 1 | # | # | # | П | | 209 | 45.919991
45.926736 | | | Voyageur Lake
Voyageur Lake | Vilas | | JMB & AMS | | 3 | Rock | Pole | SAMPLED
TERRESTRIAL | | 1 | 1 | + | + | + | | | 1 | + | + | + | \vdash | | | 1 | 1 | + | + | H | H | H | \dashv | + | + | + | - | H | | 211 | 45.926286 | -89.178307 | 105 | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 211 | 0 | | | TERRESTRIAL | | | 1 | 1 | l | | | | | | ļ | ļ | | | | | | 1 | 1 | | I | П | | # | # | # | Ŧ | П | | 212 | 45.925836
45.925386 | | | Voyageur Lake
Voyageur Lake | Vilas
Vilas | | JMB & AMS | | 0 | | | TERRESTRIAL TERRESTRIAL | | | + | + | \dagger | 1 | Н | | | + | + | \dagger | H | | | | 1 | + | + | | H | H | | \dashv | + | + | + | H | | 214 | 45.924936 | -89.178327 | | Voyageur Lake | Vilas | 8/14/2017 | JMB & AMS | | 0 | | | NONNAVIGABLE (PLANTS) | | | 1 | 1 | | | | | | | ļ | ļ | | | | | | 1 | 1 | | L | H | \exists | 4 | 7 | # | Ŧ | \blacksquare | | 215
216 | 45.924486
45.927181 | -89.178334
-89.177649 | 46
108 | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/14/2017 | JMB & AMS | 215 | 0 | | | NONNAVIGABLE (PLANTS) TERRESTRIAL | | _ | _ | | | 1 | | | | | ŀ | } | | | | | | _† | t | 1 | H | | | _ | _ | \dagger | \pm | Ħ | | 217 | 45.926731 | -89.177656 | 109 | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 217 | 0 | | | TERRESTRIAL | | 1 | 7 | Ŧ | I | \blacksquare | | | 1 | 1 | Ŧ | F | F | | | 1 | | 7 | Ŧ | | F | H | \exists | 4 | Ŧ | Ŧ | Ŧ | H | | 218 | 45.926281
45.925831 | -89.177662 | 110 | Voyageur Lake
Voyageur Lake | Vilas
Vilas | 8/15/2017 | JMB & AMS | 218 | 0 | | | TERRESTRIAL TERRESTRIAL | | 1 | 1 | | l | t | | | | | İ | t | L | | | | | 1 | 1 | L | $oldsymbol{ol}}}}}}}}}}}}}}}}$ | | | 1 | \pm | \pm | 1 | H | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | ness | Ceratophyllum demersum | Ceratophyllum echinatum | Chara spp. | Elodea canadensis | Isoetes spp. | Myriophyllum heterophyllum | Myriophyllum sibiricum | Myrlophyllum verticiliatum | Najas flexilis | Najas guadal upen si s | Nup har variegata
Numbhasa odorata | Pontederia cordata | Potamogeto n amplifolius | Potamogeton gramineus | Potam ogeto n natans | Potamogeton pusillus | ε | mogeton | Potamogeton strictifolius | nogeton vaseyi | Potamogeton zosteriformis | Utricularia vulgaris | Vallisneria americana | Aquatic moss | Filamentous algae | |--------------|----------------------------|-----------------------------|-----|---------------|--------|-----------|------------|--------------|------------|----------|------------|-----------------------|-------|----------|------|------------------------|-------------------------|------------|-------------------|--------------|----------------------------|------------------------|----------------------------|----------------|------------------------|---------------------------------------|--------------------|--------------------------|-----------------------|----------------------|----------------------|---|---------|---------------------------|----------------|---------------------------|----------------------|-----------------------|--------------|-------------------| | 220 | 45.925381 | -89.177676 | 112 | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 220 | 0 | | | TERRESTRIAL | 221 | 45.924931 | -89.177682 | 113 | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 221 | 0 | | | TERRESTRIAL | 222 | 45.924481 | -89.177689 | 47 | Voyageur Lake | Vilas | 8/14/2017 | JMB & AMS | 222 | 0 | | | NONNAVIGABLE (PLANTS) | П | | | 223 | 45.927176 | -89.177004 | 114 | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 223 | 0 | | | TERRESTRIAL | П | | | 224 | 45.926726 | -89.177011 | 115 | Voyageur Lake | Vilas | 8/15/2017 | JMB & AMS | 224 | 0 | | | TERRESTRIAL | 225 | 45.926276 | | | Voyageur Lake | | | JMB & AMS | | | | | TERRESTRIAL | П | | | 226 | 45.925826 | | | Voyageur Lake | | | JMB & AMS | | | | | TERRESTRIAL | П | | | 227 | 45 925376 | | | Voyageur Lake | | | JMB & AMS | | | | | TERRESTRIAL | П | | | 228 | |
| | Voyageur Lake | | | JMB & AMS | | | | | TERRESTRIAL | П | | | 229 | 45.926722 | | | Voyageur Lake | | | JMB & AMS | | 0 | | | TERRESTRIAL | T | | | | | İ | П | | | 230 | 45.926272 | | | Voyageur Lake | Vilas | | JMB & AMS | | 0 | | | TERRESTRIAL | T | | | | | | П | | | 231 | 45.925822 | | | Voyageur Lake | | | JMB & AMS | | 0 | | | TERRESTRIAL | T | | | | | | П | | | 232 | | | | Voyageur Lake | | | | | 0 | | | TERRESTRIAL | İ | П | ī | | Point Number | Pattnde (Decimal Degrees) 45.935336 | Congitude (Decimal Degrees) | 122 | Eagle Lake | County | 9 G
8/15/2017 | EJH & CJF | Point Number | Depth (ft) | Sediment | Pole; Rope | g g g g g g g g g g g g g g g g g g g | hotos | Nuisance | Total Rake Fullness | Bidens beckli | Ceratophyllum demersum | Chara spp. | Eleocharis acicularis | Elodea canadensis
Heteranthera dubia | Iso etes spp. | Myriophyllum sibiricum | Najas flexilis | Nuphar variegata | Nymphaea odorata | Potamogeton amplifolius | 000000000000000000000000000000000000000 | Potamogeton pusitius | Potamogeton robbinsii | Potamogeton spiriflus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Sagitaria sp. (rosette) | | Vallisneria americana | |--------------|-------------------------------------|-----------------------------|------------|--------------------------|----------------|------------------------|-----------|--------------|------------|--------------|--------------|---------------------------------------|-------|----------|---------------------|---------------|------------------------|------------|-----------------------|---|---------------|------------------------|----------------|------------------|------------------|-------------------------|---|----------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|-------------------------|---|--| | 2 | 45.934706 | -89.221754 | 121 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 2 | 8 | Rock | Pole | SAMPLED | | | 0 | Į | I | | 3 | 45.934076
45.933446 | -89.221763
-89.221771 | 120 | Eagle Lake
Eagle Lake | Vilas
Vilas | | EJH & CJF | 3 | 14 | Sand | Pole | DEEP
SAMPLED | | | 0 | + | + | | 5 | 45.935960 | -89.220833 | 123 | Eagle Lake | Vilas | | EJH & CJF | | 8 | Sand | Pole | SAMPLED | | | 0 | ļ | \blacksquare | | 7 | 45.935330
45.934700 | -89.220842
-89.220851 | 124 | Eagle Lake
Eagle Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 7 | 14 | | | DEEP | _ | + | | 8 | 45.934070 | -89.220860 | 117 | Eagle Lake | Vilas | 8/15/2017 | | 8 | 14 | | | DEEP | ļ | \blacksquare | | 9 | 45.933440
45.935954 | -89.220869
-89.219930 | 118 | Eagle Lake
Eagle Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 10 | 7 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | İ | + | | 11 | 45.935324 | -89.219939 | 127 | Eagle Lake | Vilas | 8/15/2017 | | 11 | 17 | | | DEEP | | | | | | | | | | | | | | + | | | | | | | | | + | + | | 12 | 45.934694
45.934064 | -89.219948
-89.219957 | 126
116 | Eagle Lake
Eagle Lake | Vilas
Vilas | | EJH & CJF | | 17 | | | DEEP | İ | + | | 14 | 45.933434 | -89.219966 | 115 | Eagle Lake | Vilas | | EJH & CJF | | 12 | | | DEEP | | | | | | | | | | | | | | + | | | | | | | | | + | + | | 15 | 45.932804
45.932174 | -89.219975
-89.219983 | 108 | Eagle Lake | Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 15 | 7 | Sand | Pole | SAMPLED
SAMPLED | | | 2 | | | | | | | | 2 | | | | | | | | | | | | İ | 1 | | 17 | 45.935948 | -89.219027 | 129 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 17 | 6 | Rock | Pole | SAMPLED | | | 0 | | | _ | | | | | | | | - | | _ | | | | | | | + | + | | 18 | 45.935318
45.934688 | -89.219036
-89.219045 | 130 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 18 | 16 | | | DEEP | | | | | | | | | | | | | | | | | t | | | | | | t | Н | | 20 | 45.934058 | -89.219054 | 111 | Eagle Lake | Vilas | | EJH & CJF | | 17 | | | DEEP | | | | | | | | | | | | | | 7 | 1 | 1 | I | | | | | | Ŧ | \blacksquare | | 21 | 45.933428
45.932798 | -89.219063
-89.219072 | 110 | Eagle Lake Eagle Lake | Vilas
Vilas | | EJH & CJF | 21 | 9 | Rock | Pole | SAMPLED
DEEP | | | 0 | + | + | | 23 | 45.932168 | -89.219081 | 106 | Eagle Lake | Vilas | | EJH & CJF | | 13 | | | DEEP | Į | | | 24
25 | 45.931538
45.935942 | -89.219089
-89.218125 | 99 | Eagle Lake
Eagle Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 24
25 | 3 | Sand | Pole | SAMPLED
SAMPLED | | | 2 | | | 1 | | | | | 1 | | | 1 | | | - | | | | | | + | 1 | | 26 | 45.935312 | -89.218133 | 131 | Eagle Lake | Vilas | | EJH & CJF | 26 | 16 | Salu | rule | DEEP | | | | | | | | | | | | | | | | | ľ | | | | | | I | I | | 27 | 45.934682 | -89.218142
-89.218151 | 0 | Eagle Lake | Vilas | | EJH & CJF | 27 | 0 | | | DEEP | | | | | | | | | | | | | | - | | | | | | | | | + | + | | 28 | 45.934052
45.933422 | -89.218151
-89.218160 | 112 | Eagle Lake | Vilas
Vilas | | EJH & CJF | | 17 | | | DEEP | \top | | 30 | 45.932792 | -89.218169 | | Eagle Lake | Vilas | | EJH & CJF | | 16 | | | DEEP | | | | | | | | | | | | | - | | | _ | | | | | | | + | + | | 31 | 45.932162
45.931532 | -89.218178
-89.218187 | 105 | Eagle Lake
Eagle Lake | Vilas
Vilas | 8/15/2017 | EJH & CJF | | 16
7 | Sand | Pole | DEEP | | | 1 | | 1 | | | | | 1 | | | | | | | | | | | | | 1 | + | | 33 | 45.930902 | -89.218195 | 98 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 33 | 2 | Sand | Pole | SAMPLED | | | 2 | | | _ | 1 | | 1 | | 1 | 1 | | _ | | - | - | | | | | | ╪ | \perp | | 34
35 | 45.935935
45.935305 | -89.217222
-89.217231 | 133 | Eagle Lake
Eagle Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 34 | 18 | Sand | Pole | SAMPLED
DEEP | | | 1 | | | | | 1 | | | 1 | | | | | | t | | | | | | t | 1 | | 36 | 45.934675 | -89.217239 | 0 | Eagle Lake | Vilas | | | 36 | 0 | | | DEEP | Ŧ | \blacksquare | | 37 | 45.934045
45.933415 | -89.217248
-89.217257 | 0 | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 37 | 0 | | | DEEP | + | + | | 39 | 45.932786 | -89.217266 | 0 | Eagle Lake | Vilas | | | 39 | 0 | | | DEEP | Į | \blacksquare | | 40 | 45.932156
45.931526 | -89.217275
-89.217284 | 104 | Eagle Lake
Eagle Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 40 | 14 | Sand | Pole | DEEP
SAMPLED | | | 0 | | | | | | | | | | | + | | | | | | | | | + | + | | 42 | 45.930896 | -89.217293 | 97 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 42 | 7 | Sand | Pole | SAMPLED | | | 0 | I | \blacksquare | | 43 | 45.930266
45.935299 | -89.217301
-89.216328 | 92 | Eagle Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 43 | 6 | Sand | Pole | SAMPLED
DEEP | | | | | | 1 | | | | | 1 | | | + | | | | - | | | | | + | 1_ | | | | | 136 | Eagle Lake | | | | | | | | DEEP | I | I | | 46 | 45.934039 | | | | Vilas | | | 46 | 0 | | | DEEP | | | | | | | + | | | | | | _ | | | + | | | | | | | + | + | | 47 | | -89.216354
-89.216363 | | | Vilas
Vilas | | | 48 | | | | DEEP | I | | | 49 | 45.932149 | -89.216372 | 103 | Eagle Lake | Vilas | | EJH & CJF | | | | | DEEP | | | | | | | + | + | + | H | | | \dashv | + | - | + | + | - | | H | | + | + | + | | 50 | 45.931519
45.930889 | -89.216381
-89.216390 | 102
96 | Eagle Lake | Vilas
Vilas | | EJH & CJF | | | | | DEEP | | | | | | | | | t | | | | | | | 1 | t | | | | | t | İ | | | 52 | 45.930259 | -89.216399 | | Eagle Lake | Vilas | | EJH & CJF | | | | Pole | SAMPLED | | | 0 | | | | - | | + | | | | - | | - | + | + | | | | + | | + | + | | 53
54 | 45.929629
45.928999 | -89.216408
-89.216416 | | Eagle Lake
Eagle Lake | Vilas
Vilas | | EJH & CJF | | | | Pole
Pole | SAMPLED
SAMPLED | | | 1 | | | | | | 1 | L | | | | | | ╣, | \pm | 1 | | 1 | | | † | 1 | | 55 | 45.928370 | -89.216425 | 85 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 55 | 2 | Sand | Pole | SAMPLED | | | 1 | | | 1 | 1 | 1 | | | 1 | 1 | 7 | Ŧ | 1 | Ţ | I | | | П | 1 | - | Ŧ | 1 | | 56
57 | 45.927740
45.935923 | -89.216434
-89.215416 | | Eagle Lake
Eagle Lake | Vilas
Vilas | | EJH & CJF | | | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | | 3 | 1 | 1 | | + | 1 | + | 1 | | 1 | 1 | + | 1 | 1 | 2 | | | | 1 | | 1 | + | | 58 | 45.935293 | -89.215425 | | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 58 | 5 | Rock | Pole | SAMPLED | | | 0 | | | | | | | | | | | 1 | 1 | 1 | ľ | | | | | | Į | \blacksquare | | 59
60 | 45.934663
45.934033 | -89.215434
-89.215443 | 138 | Eagle Lake
Eagle Lake | Vilas
Vilas | 8/15/2017 | EJH & CJF | 59
60 | 20 | | | DEEP | | | | | | 1 | + | + | + | | | - | \dashv | + | - | + | + | - | | | \dashv | | + | + | | 61 | 45.933403 | -89.215451 | 0 | Eagle Lake | Vilas | | | 61 | | | | DEEP | | | | | | | | | | | | | | | 1 | 1 | | | | | | | ļ | I | | 62 | 45.932773
45.932143 | -89.215460
-89.215469 | | Eagle Lake | Vilas
Vilas | | | 62 | | | |
DEEP | | | Н | | | - | + | + | + | | | - | \dashv | + | + | + | + | H | | H | + | + | + | \forall | | 63 | 45.931513 | | | Eagle Lake | Vilas | | | 64 | | | | DEEP | | | | | | | 1 | 1 | | | | | | 1 | | | 1 | | | | | | ļ | \blacksquare | | 65 | 45.930883 | | | Eagle Lake | Vilas | | EJH & CJF | | | | | DEEP | | | Н | | | - | | + | - | | | - | | + | - | + | + | - | | H | + | + | + | \mathbb{H} | | 66 | 45.930253
45.929623 | -89.215496
-89.215505 | | Eagle Lake | Vilas
Vilas | | EJH & CJF | 66 | 16 | | | DEEP | | | | | | | | | t | | | | | | | 1 | t | | | | | t | İ | | | 68 | 45.928993 | -89.215514 | 87 | Eagle Lake | Vilas | | EJH & CJF | | 10 | Sand | Pole | SAMPLED | | | 0 | | | - | | - | - | | | | | + | \downarrow | + | + | - | | | + | | + | + | | 69
70 | 45.928363
45.927733 | -89.215523
-89.215531 | | Eagle Lake | Vilas
Vilas | | EJH & CJF | | 3 | Sand | Pole | SAMPLED
SAMPLED | | | 3 | _1 | 3 | | | 1 | t | L | | | _ | 1 | | ď | 1 | t | | | 1 | j | t | 2 | | 71 | 45.935287 | -89.214522 | 140 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 71 | 12 | | | DEEP | | | | | | I | Ţ | | | | | \exists | Ţ | Ţ | ļ | $oxed{\Gamma}$ | F | I | | П | Ţ | | Ŧ | $\!$ | | 72 | 45.934657 | -89.214531 | 139 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 72 | 12 | | | DEEP | | | Ш | | | | | | | | | | | | | _ | | | Ш | | | | | ш | | The content woman | | (8) | (see | | | | | | | | | | | | | | | F | | | | | | | | | | | - | | | | sie | | r. acaule | T | | |--|-------------|-------------------------|------------------------|-----|------------|----------------|-----------|-----------|-------------|-----------|---------|-----------|----------|-----------------|---------|--------------------|--------------|-----------------------|-----------|----------------------|------------------|-------------------|-----------------------|---------------|-----------------|-----------------|----------------------|---------------------|-----------------------|----------------------|----------------------|--------------------------|---|-------------------------|----------------------|---------------------|----------------------| | Section Control | oint Number | atitude (Decimal Degree | ongitude (Decimal Degr | | ake Name | ounty | ate | ield Grew | oint Number | epth (ft) | ediment | ole; Rope | om ments | otes | uisance | otal Rake Fullness | idens beckli | eratophyllum demersui | hara spp. | leocharis acicularis | Iodea canadensis | eteranthera dubia | yrlophyllum sibiricum | ajas flexilis | uphar variegata | ymphaea odorata | otamogeton gramineus | otamogeton pusillus | otamogeton richardson | otamogeton robbinsii | otamogeton spirillus | otamogeton strictifolius | otamogeton vaseyi
otamogeton zosteriforn | agittaria sp. (rosette) | parganium emersum va | tricularia vulgaris | allisneria americana | | . Matter Calendar Cal | | 45.934027 | -89.214540 | 0 | | 0 | ۵ | L | _ | 0 | s | • | DEEP | z | z | ۲ | 8 | S | Ü | ш | ш | I = | 2 | z | z | 2 0 | | • | | ٠. | _ | _ | | S | S | _ | >_ | | | | | | 0 | | | | | | 0 | | | | | | | | | | | | | | | | | - | | | | | | | | | - | _ | | . Martine Martine 1 | | | | 0 | | | | | | 0 | 1 | | | | 0 | | | | | | 0 | | | | | | | | | | | | | - | | | | + | | | | | | | | | + | 4 | | March Marc | | | | 0 | 89 | 4 | 4 | | Martin M | | | | 88 | | | | | | 11 | Sand | | | | | 0 | | 1 | | | | | | | | | + | | | | | 1 | | | | - | 1 | | Alley B. Walley 20 - Species 20 | | | | 151 | | | | | | 7 | Sand | | | | | 1 | | Ì | | | | | | | | | | | | | | İ | | | | | 1 | | | | | | 146 | | | | | | 4 | Sand | Pole | | | | 3 | | _ | | | 1 | | - | 1 | | | + | | | | 1 | 1 | | | | - | 4 | | 1. | | | | 0 | | | 8/15/2017 | EJH & CJF | 0 | | | | | | 0 | | | | | | | | _ | | | | | - | | | | - | | | | | | | | | _ | 4 | | March Marc | | | | 0 | | | | | | 0 | | | | | | | | | | | | | | | | | + | | | | | | | | | + | 1 | | March Marc | | | | 0 | | | | | | 0 | 1 | | March Marc | | | | 0 | | | 9/45/004- | EIL CO. | | 0 | | | | | | | \dashv | | \dashv | \dashv | - | + | | | | | - | - | | \vdash | \dashv | | | | \vdash | + | \dashv | | March Marc | | | | 76 | | | | | | 17 | 1 | | | | 78 | | | | | | 15 | | | | | | | | | | | | | | | | | + | | | | - | | | | | _ | 4 | | March Marc | | | | | | | | | | 6 | Sand | Pole | | | | 2 | | 1 | | | | | | | | | $^{+}$ | | | | | 1 | | | | - | 1 | | 1 | | | | 155 | Eagle Lake | | | EJH & CJF | | 5 | Sand | Pole | | | | 2 | 1 | | 1 | | | | 154 | | | | | | 8 | Sand | | | | | 0 | _ | 4 | | 0 | | | | 150 | | | | | | 11 | Sand | | | | | 0 | | | | | | | | Ľ | | | | | | | | 1 | | | | | | | | | | | 147 | | | | | | 11 | Rock | Pole | | | | | | | | | | | - | | | | - | | | | | | | | | _ | 4 | | March M. 1977 2 Septime No. 10 1 10 10 10 10 10 10 | | | | 142 | | | | | | 12 | Rock | Pole | | | | 0 | _ | 7 | | March Marc | | 45.934014 | | 0 | | Vilas | | | 104 | 0 | | | DEEP | 1 | _ | | 100 | | | | 0 | | | | | | 0 | | | | | | | | | | | | | + | | | | | | | | 1 | | | | | + | - | | 100 65,0006 62,0779 7 Equipment Value 95,0007 EMACE 100 1 5 5 5 5 5 5 5 5 5 | 101 65 0000 65 0000 7 | | | | 0 | | | | | | m | | | | | | | | _ | | | | | - | | | | + | | | | | | | | | - | 4 | | 101 45.0000 92.0001 71 Eage Lase Vas 905.007 EMA CF 102 7 Seef Pes SAMPAID 1 1 No. | | | | 75 | | | | | | | Sand | Pole | | | | 0 | 151 65 5555 M 50 7210 71 Eage Late Vers 975 507 EM A CF 13 0 S N TENDETTINA 154 65 5555 M 50 7210 71 SERVICE VERS 100 FEBRUAR VIR. 1000 71 EM A CF 13 0 S N TENDETTINA 154 65 5555 M 50 7210 71 ST SERVICE VERS 1000 71 EM A CF 13 0 S N TENDETTINA 154 65 5550 M 50 7210 71 ST SERVICE VERS 1000 71 EM A CF 13 0 S N TENDETTINA 154 65 5550 M 50 7210 71 ST SERVICE VERS 1000 71 EM A CF 13 0 S N TENDETTINA 155 65 5550 M 50 7210 71 ST SERVICE VERS 1000 71 EM A CF 13 0 S N TENDETTINA 156 65 5550 M 50 7210 71 ST SERVICE VERS 1000 71 EM A CF 13 0 S N TENDETTINA 157 65 5550 M 50 7210 S N TENDETTINA 158 65 5550 M 50 7210 S N TENDETTINA 159 65 5550 M 50 7210 S N TENDETTINA 150 65 5550 M 50 7210 S N
TENDETTINA 150 65 5550 M 50 7210 S N TENDETTINA 150 65 5550 M 50 7210 S N TENDETTINA 150 65 5550 M 50 7210 S N TENDETTINA 150 65 5550 M 50 7210 S N TENDETTINA 150 65 5550 M 50 7210 S N TENDETTINA 150 65 5550 M 50 7210 S N TENDETTINA 150 65 5550 M 50 7210 S N TENDETTINA 150 6 | | | | | | | | | | 8 | Sand | Pole | | | | 0 | | _ | | | | | - | | | | - | | | | | | | | | _ | 4 | | 114 | | | | | | | | | | | Sand | Pole | | | | 1 | | | | | | | | | | | t | | | | | | | | | - | 1 | | 100 653778 652717 150 Englishe Vone 915077 ENI ACCF 10 17 7 Roc Page SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 156 | | | | | | 4 | Sand | Pole | | | | 2 | 2 | | 117 6.532718 6921177 150 Eagle-Law Visio S150017 EAR A.C.F. 117 7 Rock Past | | | | 157 | | | | | | | Sand | Pole | | | | 0 | _ | 4 | | 100 45,00006 40,211004 140 Explainate Visis 0150077 EAR A.C.II 100 12 DEEP 122 45,00006 40,211001 140 Explainate Visis 0150077 EAR A.C.II 100 12 DEEP 123 45,00006 40,211001 05 Explainate Visis 1 DEEP 124 45,00006 40,211001 05 Explainate Visis 1 DEEP 125 45,00006 40,211001 05 Explainate Visis 1 DEEP 126 45,00006 40,211001 05 Explainate Visis 1 DEEP 127 45,00006 40,211001 05 Explainate Visis 1 DEEP 128 45,00006 40,211001 05 Explainate Visis 1 DEEP 129 45,00006 40,211001 05 Explainate Visis 1 DEEP 120 121 45,00006 40,211001 05 Explainate Visis 1 DEEP 122 45,00006 40,211001 05 Explainate Visis 1 DEEP 123 45,00006 40,211001 05 Explainate Visis 1 DEEP 124 45,00006 40,211001 05 Explainate Visis 1 DEEP 125 45,00006 40,211001 05 Explainate Visis 1 DEEP 126 45,00006 40,211001 05 Explainate Visis 1 DEEP 127 45,00006 40,211001 05 Explainate Visis 1 DEEP 128 45,00006 40,211001 05 Explainate Visis 1 DEEP 129 45,00006 40,211001 05 Explainate Visis 1 DEEP 120 45,00006 40,211001 05 Explainate Visis 1 DEEP 120 45,00006 40,211001 05 Explainate Visis 1 DEEP 120 45,00006 40,211001 05 Explainate Visis 1 DEEP 129 45,00006 40,211001 05 Explainate Visis 1 DEEP 129 45,00006 40,211001 05 Explainate Visis 1 DEEP 120 45,00006 40,211001 05 Explainate Visis 1 DEEP 120 45,00006 40,211001 05 Explainate Visis 1 DEEP 120 45,00006 40,211001 05 Explainate Visis 1 DEEP 120 45,00006 40,211001 05 Explainate Visis 1 DEEP 120 45,00006 40,211001 05 Explainate Visis 1 D | | | | 159 | | | | | 117 | 7 | Rock | Pole | | | | 0 | 120 45.55066 46.21193 V5 Eagle Lake Ville 5100077 EPH CUF 127 12 | - | | | | - | | | | | | | | | _ | 4 | | 121 45.93403 49.211801 0 Eagle Lale Vise 152.07 EAH & CUP 121 12 0 DEEP 122 45.93507 49.211801 0 Eagle Lale Vise 152.07 EAH & CUP 122 0 DEEP 123 45.93507 49.21180 0 Eagle Lale Vise 152.07 EAH & CUP 123 0 DEEP 124 45.93507 49.21180 0 Eagle Lale Vise 152.07 EAH & CUP 125 0 DEEP 125 45.93518 49.211807 0 Eagle Lale Vise 152.07 EAH & CUP 125 0 DEEP 126 45.93518 49.211807 0 Eagle Lale Vise 152.07 EAH & CUP 125 0 DEEP 127 45.93508 49.211807 0 Eagle Lale Vise 152.07 EAH & CUP 127 16 DEEP 128 45.93508 49.211807 0 Eagle Lale Vise 152.07 EAH & CUP 127 16 DEEP 129 45.93508 49.211807 0 Eagle Lale Vise 152.07 EAH & CUP 127 16 DEEP 120 45.93508 49.211807 0 Eagle Lale Vise 152.07 EAH & CUP 127 16 DEEP 120 45.93508 49.211807 0 Eagle Lale Vise 152.07 EAH & CUP 127 16 DEEP 120 45.93508 49.211807 0 Eagle Lale Vise 152.07 EAH & CUP 127 16 DEEP 120 45.93508 49.211807 0 Eagle Lale Vise 152.07 EAH & CUP 127 16 DEEP 120 45.93508 49.211807 0 Eagle Lale Vise 155.077 EAH & CUP 127 16 DEEP 120 45.93508 49.211807 0 Eagle Lale Vise 155.077 EAH & CUP 127 16 DEEP 120 45.93508 49.211807 0 Eagle Lale Vise 155.077 EAH & CUP 127 16 DEEP 120 45.93508 49.211807 0 Eagle Lale Vise 155.077 EAH & CUP 127 16 DEEP 121 45.93508 49.211807 0 Eagle Lale Vise 155.077 EAH & CUP 127 16 DEEP 122 45.93508 49.211807 0 Eagle Lale Vise 155.077 EAH & CUP 127 16 DEEP 123 45.93508 49.211807 0 Eagle Lale Vise 155.077 EAH & CUP 127 16 DEEP 124 45.93508 49.211807 0 Eagle Lale Vise 155.077 EAH & CUP 127 17 18 DEEP 125 45.93508 49.211807 0 Eagle Lale Vise 155.077 EAH & CUP 127 17 18 DEEP 126 45.93508 49.211807 0 Eagle Lale Vise 155.077 EAH & CUP 127 18 DEEP 127 45.93508 49.21180 0 Eagle Lale Vise 155.077 EAH & CUP 127 18 DEEP 128 45.93508 49.21180 0 Eagle Lale Vise 155.077 EAH & CUP 127 18 DEEP 129 45.93508 49.21180 0 Eagle Lale Vise 155.077 EAH & CUP 127 18 DEEP 129 45.93508 49.21180 0 Eagle Lale Vise 155.077 EAH & CUP 127 18 DEEP 120 45.93508 49.21180 0 Eagle Lale Vise 155.077 EAH & CUP 127 18 DEEP 129 45.93508 49.21180 0 Eagle Lale Vise 155.077 | + | | | | | | | | | + | 1 | | 123 45 53373 49 211840 0 Eagle Lake Viss I 124 0 DEEP 124 45 532748 49 211840 0 Eagle Lake Viss I 124 0 DEEP 125 45 532148 49 211850 0 Eagle Lake Viss I 125 0 DEEP 126 45 53148 49 211850 0 Eagle Lake Viss I 125 0 DEEP 127 45 530858 49 211876 6 Eagle Lake Viss I 125 0 DEEP 128 45 53148 49 211850 0 Eagle Lake Viss I 125 0 DEEP 129 45 530858 49 211850 0 Eagle Lake Viss I 125 0 DEEP 129 45 530858 49 211850 0 Eagle Lake Viss I 125 0 DEEP 129 45 530858 49 211850 0 Eagle Lake Viss I 125 0 DEEP 129 45 530858 49 211850 0 Eagle Lake Viss I 125 0 DEEP 129 45 530858 49 211850 0 Eagle Lake Viss I 125 0 DEEP 129 45 530858 49 211850 0 Eagle Lake Viss I 125 0 DEEP 120 45 530858 49 211850 0 Eagle L | 121 | 45.934638 | -89.211822 | | Eagle Lake | Vilas | | | 121 | 12 | | | DEEP | | | | 4 | | 4 | 4 | | 1 | | | | | | | | | 1 | 1 | I | | | 4 | 4 | | 126 45 932748 -89 21188 0 | | | | 0 | | | | | | | | | | | | | + | - | + | + | - | + | | | | - | + | - | | \vdash | \dashv | + | + | - | H | + | \dashv | | 126 45 931488 480 211807 0 Engle Lake Vilse 126 0 DEEP 2 D | | | | 0 | L | | | | | | | | 1 | ╛ | | 127 45 500856 49 211876 64 Eagle Like Vilas 8152017 EJH & CJF 127 16 DEEP 128 45 502026 49 211885 63 Eagle Like Vilas 8152017 EJH & CJF 128 8 Sand Pole SAMPLED 129 45 200856 49 211804 62 Eagle Like Vilas 8152017 EJH & CJF 129 11 Sand Pole SAMPLED 130 45 200856 49 211903 61 Eagle Like Vilas 8152017 EJH & CJF 130 10 Sand Pole SAMPLED 131 45 200836 49 211901 60 Eagle Like Vilas 8152017 EJH & CJF 131 0 Rock Pole SAMPLED 132 45 20770 49 211902 57 Eagle Like Vilas 8152017 EJH & CJF 132 0 Rock Pole SAMPLED 133 45 207707 49 211902 56 Eagle Like Vilas 8152017 EJH & CJF 132 0 Rock Pole SAMPLED 134 45 200449 49 211903 65 Eagle Like Vilas 8152017 EJH & CJF 133 18 Rock Pole SAMPLED 135 45 207707 49 211902 56 Eagle Like Vilas 8152017 EJH & CJF 132 0 Rock Pole SAMPLED 136 45 207808 49 211905 56 Eagle Like Vilas 8152017 EJH & CJF 133 18 Rock Pole SAMPLED 137 45 200449 49 211908 55 Eagle Like Vilas 8152017 EJH & CJF 133 18 Rock Pole SAMPLED 138 45 207809 49 211908 55 Eagle Like Vilas 8152017 EJH & CJF 135 7 Sand Pole SAMPLED 139 45 207809 49 211908 51 Eagle Like Vilas 8152017 EJH & CJF 135 7 Sand Pole SAMPLED 140 45 207809 49 211908 51 Eagle Like Vilas 8152017 EJH & CJF 135 7 Sand Pole SAMPLED 150 45 207809 49 211905 51 Eagle Like Vilas 8152017 EJH & CJF 135 7 Sand Pole SAMPLED 150 45 207809 49 211905 51 Eagle Like Vilas 8152017 EJH & CJF 135 7 Rand Pole SAMPLED 150 45 207809 49 211905 51 Eagle Like Vilas 8152017 EJH & CJF 135 7 Rand Pole SAMPLED 150 45 207809 49 211905 51 Eagle Like Vilas 8152017 EJH & CJF 135 7 Rand Pole SAMPLED 150 45 207809 49 211905 51 Eagle Like Vilas 8152017 EJH & CJF 136 7 Rand Pole SAMPLED 150 45 207809 49 211905 51 Eagle Like Vilas 8152017 EJH & CJF 136 7 Rand Pole SAMPLED 150 45 207809 49 211905 51 Eagle Like Vilas 8152017 EJH & CJF 140 7 Rand Pole SAMPLED 150 45 207809 49 211905 51 Eagle Like Vilas 8152017 EJH & CJF 140 7 Rand Pole SAMPLED 150 45 207809 49 211905 51 Eagle Like Vilas 8152017 EJH & CJF 140 7 Rand Pole SAMPLED 150 45 207809 49 211905 51 Eagle Like Vilas 8152017 E | | | | 0 | | | | | | m | | | | | | | - | | - | - | - | | - | | | - | + | + | | \vdash | \dashv | + | + | | Н | + | \dashv | | 128 4 5 5 5 0 228 4 6 2 1 1 1 8 1 5 2 Eagle Like Vilas 8 1 5 2 0 1 7 EJH & CJF 128 8 Sand Pole SAMPLED 2 | | | | 64 | | | 8/15/2017 | EJH & CJF | | | | | | | | | | | | | | ⇟ | L | | | | t | L | L | | | | t | L | d | 1 | ٥ | | 130 45 026966 48 0211900 61 Eagle Like Vilas 8150017 EJH & CJF 130 10 Sand Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 128 | 45.930228 | -89.211885 | | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 128 | 8 | Sand | | SAMPLED | | | 2 | 4 | | 4 | 4 | Ţ | | | | | Ŧ | F | L | 2 | H | 4 | Ţ | F | L | H | 4 | 4 | | 131 45 92838 49 211911 60 Eagle Like Vilas 8152017 EJH & CJF 132 0 Rock Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | |
\dashv | | \dashv | \dashv | 1 | + | H | | | | + | \vdash | H | H | \dashv | + | + | - | Н | + | \dashv | | 133 45 927079 49 211929 56 Eagle Like Vilas 8152017 EJH & CJF 134 8 Sand Pole SAMPLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | L | | | 1 | 1 | ļ | | | 1 | ٦ | | 134 45 090440 -49 211938 53 Eagle Lake Vilas 8152017 EJH & CJF 134 8 Sand Pole SAMPLED 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | 57 | | | | | | | | | | | | | \dashv | | \dashv | \dashv | - | + | | | | | - | - | | \vdash | \dashv | | + | - | H | + | \dashv | | 136 45.05169 48.211956 51 Eagle Like Vilsa 8150017 EJH & CJF 136 2 Sand Pole SAMPLED 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | 53 | | | | | | | | | | | | 0 | | | | | | | | | | | | L | | | | | | | | \downarrow | ╛ | | 137 45.924559 48.211955 50 Eagle Lake Vilas 8152017 EJH & CJF 137 0 NONAVIGABLE (PLANTS) Shallow as well 0 0 138 45.93642 48.210557 83 Eagle Lake Vilas 8152017 JAB & AMS 138 10 Muck Pole SAMPLED 0 0 145.837782 48.210876 184 Eagle Lake Vilas 8152017 JAB & AMS 138 10 Muck Pole SAMPLED 0 0 145.837782 48.210876 184 Eagle Lake Vilas 8152017 JAB & AMS 139 0 DEEP 0 140 45.837782 48.210876 184 Eagle Lake Vilas 8152017 EJH & CJF 140 7 Rock Pole SAMPLED 0 0 141 45.837152 49.21083 180 Eagle Lake Vilas 8152017 EJH & CJF 141 12 DEEP 144 5.93552 49.21083 180 Eagle Lake Vilas 8152017 EJH & CJF 141 12 DEEP 145.038 185 185 185 185 185 185 185 185 185 18 | | | | 52 | | | | | | | Sand | | | | | 1 | 4 | _ | 4 | 4 | 1 | - | | | | | F | F | | | 4 | 4 | - | | H | 4 | 1 | | 138 45.93042 48.210857 83 Eagle Lake Vilas 8152017 JMB & AMS 138 10 Muck Pole SAMPLED 0 0 1 139 45.93412 48.210857 84 Eagle Lake Vilas 8152017 JMB & AMS 139 0 DEEP 0 1 140 45.837782 48.210875 102 Eagle Lake Vilas 8152017 EJH & CJF 140 7 Rock Pole SAMPLED 0 0 1 141 45.837782 48.210875 102 Eagle Lake Vilas 8152017 EJH & CJF 141 12 DEEP 1 142 45.93582 49.21083 160 Eagle Lake Vilas 8152017 EJH & CJF 141 12 DEEP 1 143 45.93582 49.21083 160 Eagle Lake Vilas 8152017 EJH & CJF 142 18 DEEP 1 143 45.93582 49.21083 160 Eagle Lake Vilas 8152017 EJH & CJF 142 18 DEEP 1 143 45.93582 49.21083 160 Eagle Lake Vilas 8152017 EJH & CJF 142 18 DEEP 1 143 45.93582 49.21083 160 Eagle Lake Vilas 8152017 EJH & CJF 142 18 DEEP 1 143 45.93582 49.21083 160 Eagle Lake Vilas 8152017 EJH & CJF 143 0 DEEP 1 143 45.93582 49.21083 160 Eagle Lake Vilas 8152017 EJH & CJF 142 18 DEEP 1 143 45.93582 49.21083 160 Eagle Lake Vilas 8152017 EJH & CJF 143 0 DEEP 1 143 45.93582 49.21083 160 Eagle Lake Vilas 8152017 EJH & CJF 143 0 DEEP 1 143 45.93582 49.21083 160 Eagle Lake Vilas 8152017 EJH & CJF 143 0 DEEP 1 143 45.93582 49.21083 160 Eagle Lake Vilas 8152017 EJH & CJF 143 0 DEEP 1 143 45.93582 49.21083 160 Eagle Lake Vilas 8152017 EJH & CJF 143 0 DEEP 1 143 45.93582 49.21083 160 Eagle Lake Vilas 8152017 EJH & CJF 143 0 DEEP 1 143 45.93582 49.21083 160 Eagle Lake Vilas 8152017 EJH & CJF 143 0 DEEP 1 143 45.93582 49.21083 160 Eagle Lake Vilas 8152017 EJH & CJF 143 0 DEEP 1 143 45.93582 49.21083 160 Eagle Lake Vilas 8152017 EJH & CJF 143 0 DEEP 1 143 45.93582 49.21083 160 Eagle Lake Vilas 8152017 EJH & CJF 143 0 DEEP 1 14 | | | | | | | | | | | Sand | Pole | | Shallow as well | | 2 | + | 1 | 1 | + | 1 | 1 | | 1 | H | + | + | H | 1 | H | \dashv | + | + | 1 | H | + | \dashv | | 140 45 937782 - 49 210875 162 Eagle Lake Vilas 8152017 EJH & CJF 140 7 Rook Pole SAMPLED 0 141 45 937192 - 49 210884 161 Eagle Lake Vilas 8152017 EJH & CJF 141 12 DEEP 142 45 93652 - 49 210893 160 Eagle Lake Vilas 8152017 EJH & CJF 142 18 DEEP 143 45 935892 - 49 210902 0 Eagle Lake Vilas 8152017 EJH & CJF 142 18 DEEP | | | | | | | 8/15/2017 | JMB & AMS | 138 | 10 | Muck | Pole | | | | 0 | | | | | | | | | | | | | | | 1 | | | | | 1 | \exists | | 141 45 937152 -89 210894 161 Eagle Lake Vitas 8152017 EJH & CJF 141 12 DEEP 142 45 93852 -89 210893 160 Eagle Lake Vitas 8152017 EJH & CJF 142 18 DEEP 143 45 938582 -89 210902 0 Eagle Lake Vitas 143 0 DEEP | | | | | | | | | | | B | D-1 | | | | | \dashv | | \dashv | \dashv | - | + | | | | | - | - | | \vdash | \dashv | + | + | | \vdash | + | \dashv | | 143 45.93582 -49.210902 0 Eagle Lake Vilas 143 0 DEEP | | | | 161 | | | | | | | rock | role | | | | U | # | | | | | | | 160 | | | 8/15/2017 | EJH & CJF | | | | | | | | | - | - | - | - | | + | | | | | - | - | | Н | + | + | - | | Н | + | 4 | | | 143 | | | 0 | Eagle Lake | Vilas
Vilas | | | | | | | DEEP | | | | | | | | | | | l | | | | l | l | | _ | _ | | | | \dagger | _ | | | | (6 | | | | | | | | | | | | | | | | | | l | | | | | | | | | | | | | | acaule | | |--------------|----------------------------|-----------------------------|----------|--------------------------|----------------|------------------------|------------|--------------|------------|----------|------------|--------------------|-------|----------|---------------------|---------------|------------------------|------------|--|---------------------|---------------|------------------------|----------------|------------------|---|-----------------------|----------------------|--------------------------|-----------------------|-------------------------|------------------------|---------------------------|--------------------------|-------------------------|----------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | Aunoo | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Bidens beckli | Ceratophyllum demersum | Chara spp. | Eleocharis acicularis
Eledea canadensis | Heteran thera dubia | Iso etes spp. | Myriophyllum sibiricum | Najas flexilis | Nuphar variegata | Nymphaea odorata
Potamogeton amplifolius | Potamogeton gramineus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potentiogenin spiriting | Potamogeton serctionus | Potamogeton zosteriformis | Sagittaria sp. (rosette) | Sparganium emersum var. | Vallsneria americana | | 145 | 45.934632 | -89.210919 | 0 | Eagle Lake | Vilas | | | 145 | 0 | | | DEEP | | | | | - | - | | - | | | | | | | | | | | - | | | - | - | | 146 | 45.934002
45.933372 | -89.210928
-89.210937 | 0 | Eagle Lake | Vilas | | | 146 | 0 | | | DEEP | t | | 148 | 45.932742
45.932112 | -89.210946
-89.210955 | 0 | Eagle Lake | Vilas
Vilas | | | 148 | 0 | | | DEEP | | | | | - | | | | | | | + | | | | | | | + | | | + | + | | 150 | 45.931482 | -89.210964 | 0 | Eagle Lake | Vilas | | | 150 | 0 | | | DEEP | | | 4 | | | | | | | | | 4 | | | | | | | | | | 1 | 1 | | 151 | 45.930852
45.930222 | -89.210973
-89.210982 | 65
66 | Eagle Lake
Eagle Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 151 | 15 | | | DEEP | 153 | 45.929592 | -89.210991 | 67 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 153 | | | | DEEP | | | 4 | | | | | | | | | 4 | | | | | | | | | | _ | - | | 154 | 45.928962
45.928332 | -89.211000
-89.211009 | 68
59 | Eagle Lake
Eagle Lake | Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 154 | 15 | | | DEEP | 156 | 45.927702 | -89.211018 | 58 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 156 | 18 | | | DEEP | | - | + | | | | | | | | | - | | | | | | | | | | + | + | | 157 | 45.927072
45.926442 | -89.211027
-89.211035 | 55 | Eagle Lake | Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 157 | 17 | | | DEEP | | | | | | | | | | | | 1 | | | | | | | | | | | | | 159 | 45.925812
45.925182 | -89.211044
-89.211053 | 47
48 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 159 | 13 | 04 | D.I. | DEEP | | - | | | | | | | | | | + | | | | | | | + | | | _ | + | | 161 | 45.924552 | -89.211062 | 49 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 161 | 1 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | 1 | | | | | | | | | | # | 1 | | 162
163 | 45.939665
45.939036 | -89.209945
-89.209954 | 82
81 | Eagle Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 162 | 0 | | | SWIM AREA DEEP | | | + | | | | | | | | | + | | | | | | + | + | | | + | + | | 164 | 45.938406 | -89.209963 | 0 | Eagle Lake | Vilas | | | 164 | 0 | | | DEEP | _ | 1 | | 165
166 | 45.937776
45.937146 | -89.209972
-89.209981 | 0 | Eagle Lake Eagle Lake | Vilas | | | 165 | 0 | | | DEEP | | | 1 | | | | | | | | | 1 | | | | | | | | | | + | + | | 167 | 45.936516 | -89.209990 | 0 | Eagle Lake | Vilas | | | 167 | 0 | | | DEEP | | | 4 | | | | | | | | | | | | | | | | | | | 1 | 1 | | 168 | 45.935886
45.935256 | -89.209999
-89.210008 | 0 | Eagle Lake
Eagle Lake | Vilas | | | 168 | 0 | | | DEEP | + | + | | 170 | 45.934626 | -89.210016 | 0 | Eagle Lake | Vilas | | | 170 | 0 | | | DEEP | | | | | | | | - | | | | _ | | | | | | - | - | | | | \blacksquare | | 171 | 45.933996
45.933366 | -89.210025
-89.210034 | 0 | Eagle Lake | Vilas
Vilas | | | 171 | 0 | | | DEEP | 1 | ╘ | | 173 | 45.932736 | -89.210043 | 0 | Eagle Lake | Vilas | | | 173 | 0 | | | DEEP | | | | | | | | | | | | - | | | | | | | | | | _ | - | | 174
175 | 45.932106
45.931476 | -89.210052
-89.210061 | 0 | Eagle Lake | Vilas | | | 174 | 0 | | | DEEP | | | | | | | | | | | | 1 | | | | | | | | | | | t | | 176 | 45.930846
45.930216 | -89.210070
-89.210079 | 0 | Eagle Lake | Vilas | | | 176 | 0 | | | DEEP | | | + | | | | | | | | | \dashv | | | | | | | + | | | - | + | | 178 | 45.929586 | -89.210079 | 69 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 178 | 13 | | | DEEP | | | 1 | | | | | | | | | 1 | | | | | | | ļ | | | # | T | | 179 | 45.928956
45.928326 | -89.210097
-89.210106 | 0 | Eagle
Lake
Eagle Lake | Vilas
Vilas | | | 179 | 0 | | | DEEP | | | | | | - | | - | | | | - | | | | | | | + | | | + | + | | 181 | 45.927696 | -89.210115 | 0 | Eagle Lake | Vilas | | | 181 | 0 | | | DEEP | # | I | | 182
183 | 45.927066
45.926436 | -89.210124
-89.210133 | 0 | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 182 | 0 | | | DEEP | | | + | | | | | | | | | + | | | | | | | + | | | + | + | | 184 | 45.925806 | -89.210142 | 46 | Eagle Lake | Vilas | 8/15/2017 | | 184 | | | | DEEP | | | 4 | | | | | | | | | | | | | | | | | | | 1 | 1 | | 185
186 | 45.925176
45.924546 | -89.210151
-89.210160 | 44 | Eagle Lake
Eagle Lake | Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 185
186 | | Sand | Pole | SAMPLED
DOCK | | | 0 | | | | | | | | | 1 | | | | | | | | | | + | + | | 187 | 45.939659 | -89.209042 | 79 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | | | Muck | Pole | SAMPLED | | 4 | 0 | | | | | | | | | 4 | | | | | | + | + | | | + | + | | 188
189 | 45.939029
45.938399 | -89.209051
-89.209060 | 0 | Eagle Lake
Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 188 | 14 | | | DEEP | 1 | ╘ | | 190 | 45.937769 | -89.209069 | 0 | Eagle Lake | Vilas | | | 190 | 0 | | | DEEP | | - | + | | | | | | | | | - | | | | | | | | | | + | + | | 191 | 45.937139
45.936509 | -89.209078
-89.209087 | 0 | Eagle Lake
Eagle Lake | Vilas | | | 191
192 | | | | DEEP | 1 | | | 193
194 | | -89.209096
-89.209105 | 0 | Eagle Lake
Eagle Lake | Vilas | | | 193 | 0 | | | DEEP | | 1 | + | - | + | + | - | + | | | | + | + | - | | | - | + | + | - | | + | + | | 195 | 45.934619 | -89.209114 | 0 | Eagle Lake | Vilas | | | 195 | 0 | | | DEEP | | 4 | 1 | 1 | 1 | 1 | 1 | ļ | | | | 1 | 1 | | | | 1 | 1 | 1 | | | # | # | | 196
197 | 45.933990
45.933360 | -89.209123
-89.209132 | 0 | Eagle Lake
Eagle Lake | Vilas | | | 196
197 | 0 | | | DEEP | | \dashv | + | 1 | + | + | + | + | + | | \dashv | + | + | - | | | + | + | + | - | | + | + | | 198 | 45.932730 | -89.209141 | 0 | Eagle Lake | Vilas | | | 198 | 0 | | | DEEP | | | 1 | 1 | 1 | | | L | | | | 1 | 1 | | | | | ļ | 1 | | | # | # | | 199
200 | 45.932100
45.931470 | | 0 | Eagle Lake
Eagle Lake | Vilas | | | 199 | | | | DEEP | | | _ | _ | _ | _ | + | t | ŀ | | | _ | _ | ŀ | | | _ | | t | | | + | + | | 201 | 45.930840 | -89.209167 | 0 | Eagle Lake | Vilas | | | 201 | 0 | | | DEEP | | | 4 | | 1 | | | ŀ | | | | | | | | | | | ļ | | | # | Ŧ | | 202 | | -89.209176
-89.209185 | 70 | Eagle Lake
Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 202 | 13 | | | DEEP | | | 1 | | | | 1 | t | L | | | 1 | \perp | | | | 1 | 1 | t | t | | \pm | 士 | | 204 | 45.928950 | -89.209194 | 0 | Eagle Lake | Vilas | | | 204 | 0 | | | DEEP | | 4 | | - | | - | - | L | | | | \downarrow | + | | | | - - | + | + | - | | + | \perp | | 205 | 45.928320
45.927690 | | 0 | Eagle Lake
Eagle Lake | Vilas | | | 205 | 0 | | | DEEP | | 1 | 1 | | 1 | | | L | | | | 1 | 1 | | | | | 1 | 1 | | | # | T | | 207 | 45.927060 | -89.209221
-89.209230 | 0 | Eagle Lake | Vilas | | | 207 | | | | DEEP | | - | + | + | + | + | + | + | + | | + | + | \parallel | | | | + | + | + | - | | + | + | | 208 | 45.926430
45.925800 | -89.209230
-89.209239 | 42 | Eagle Lake
Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | | | | | DEEP | | 1 | 1 | 1 | 1 | | l | ļ | | | | 1 | | | | | | 1 | 1 | | | # | 1 | | 210
211 | 45.925170
45.939653 | -89.209248
-89.208139 | 43
78 | Eagle Lake
Eagle Lake | Vilas | | EJH & CJF | | | Sand | Pole | SAMPLED
SAMPLED | | \dashv | 2 | + | + | + | + | + | + | | + | + | + | | | 2 | + | + | + | - | | + | + | | 211 | | -89.208139
-89.208148 | | Eagle Lake | Vilas | | JMB & AMS | | | .v.utK | . ort | DEEP | | 1 | - | 1 | 1 | | | ļ | | | | 1 | 1 | 1 | | | | ļ | 1 | | | # | Ë | | 213 | 45.938393
45.937763 | -89.208157
-89.208166 | 0 | Eagle Lake | Vilas | | | 213 | 0 | | | DEEP | | 1 | + | 1 | 1 | + | - | + | + | | | + | + | | | | | + | + | | | + | + | | 215 | 45.937133 | -89.208175 | 0 | Eagle Lake | Vilas | | | 215 | 0 | | | DEEP | | | 1 | | | 1 | | | | | | 1 | | | | | 1 | | 1 | | | 7 | Ŧ | | 216 | 45.936503 | -89.208184 | 0 | Eagle Lake | Vilas | l | l | 216 | 0 | | | DEEP | | | | | | | | | | Ш | | | | <u> </u> | | Ш | | | | | Ш | acanle | | П | |--------------|----------------------------|-----------------------------|----------|--------------------------|----------------|------------------------|------------|--------------|------------|--------------|------------|--------------------|-------|----------|---------------------|---------------|------------------------|------------|-----------------------|-------------------|--------------------|------------------------|----------------|-------------------|------------------|-------------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|--------------------------|--------|----------------------|-----------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lако Nато | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Bidens beckli | Ceratophyllum demersum | Chara spp. | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Myriophyllum sibiricum | Najas flexilis | Nuph ar variegata | Nymphaea odorata | Potamogeton amplifolius | Potamogeton gramineus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Sagittaria sp. (rosette) | var. | Utricularia vulgaris | Vallisneria americana | | 217 | 45.935873 | -89.208193 | 0 | Eagle Lake | Vilas | | | 217 | | | | DEEP | | | | | | | | | - | | | | | | | | | | | | | | | - | H | | 218 | 45.935243
45.934613 | -89.208202
-89.208211 | 0 | Eagle Lake | Vilas
Vilas | | | 218 | | | | DEEP | 220 | 45.933983
45.933353 | -89.20822
-89.208229 | 0 | Eagle Lake | Vilas
Vilas | | | 220 | 0 | | | DEEP | 222 | 45.932723 | -89.208238 | 0 | Eagle Lake | Vilas | | | 222 | | | | DEEP | 223 | 45.932093
45.931463 | -89.208247
-89.208256 | 0 | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 223 | | | | DEEP | H | | 225 | 45.930833 | -89.208265 | 0 | Eagle Lake | Vilas | | | 225 | 0 | | | DEEP | 226
227 | 45.930203
45.929573 | -89.208274
-89.208282 | 0 | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 226 | | | | DEEP | H | | 228 | 45.928943 | -89.208291 | 0 | Eagle Lake | Vilas | | | 228 | 0 | | | DEEP | 229 | 45.928314
45.927684 | -89.2083
-89.208309 | 0 | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 229 | 0 | | | DEEP | H | | 231 | 45.927054 | -89.208318 | 0 | Eagle Lake | Vilas | | | 231 | | | | DEEP | 232 | 45.926424
45.925794 | -89.208327
-89.208336 | 41 | Eagle Lake Eagle Lake | Vilas
Vilas | 8/15/2017 | EJH & CJF | 232 | 14 | | | DEEP | H | | 234 | 45.925164 | -89.208345 | 40 | Eagle Lake | Vilas | 8/15/2017 | | | 7 | Sand | Pole | SAMPLED | | | 1 | | | | | | - | | | | | | | | | | | 4 | | | | _ | 1 | | 235 | 45.939647
45.939017 | -89.207236
-89.207245 | 75
76 | Eagle Lake Eagle Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | JMB & AMS | | 15 | Sand | Pole | SAMPLED
DEEP | | | 0 | 237 | 45.938387 | -89.207254 | 0 | Eagle Lake | Vilas | | | 237 | 0 | | | DEEP | 238 | 45.937757
45.937127 | -89.207263
-89.207272 | 0 | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 238 | 0 | | | DEEP | H | | 240 | 45.936497 | -89.207281 | 0 | Eagle Lake | Vilas | | | 240 | | | | DEEP | 241 | 45.935867
45.935237 | -89.20729
-89.207299 | 0 | Eagle Lake | Vilas
Vilas | | | 241 | | | | DEEP | | | | | | | | | 1 | t | t | | | | | | | | | | | | | | | | 243 | 45.934607 | -89.207308 | 0 | Eagle Lake | Vilas | | | 243 | | | | DEEP | 244 | 45.933977
45.933347 | -89.207317
-89.207326 | 0 | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 244 | | | | DEEP | | | | | | | | | 1 | t | t | | | | | | | | | | | | | | | | 246 | 45.932717 | -89.207335 | 0 | Eagle Lake | Vilas | | | 246 | 0 | | | DEEP | 247 | 45.932087
45.931457 | -89.207344
-89.207353 | 0 | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 247 | | | | DEEP | 249 | 45.930827 | -89.207362 | 0 | Eagle Lake | Vilas | | | 249 | | | | DEEP | | | | | | | | | _ | - | | | | | | | | | | 4 | | | _ | | | | 250
251 | 45.930197
45.929567 | -89.207371
-89.20738 | 0 | Eagle Lake | Vilas
Vilas | | | 250
251 | | | | DEEP | 252 | 45.928937 | -89.207389 | 0 | Eagle Lake | Vilas | | | 252 | | | | DEEP | | | | | | | | | - | | | | | | | | | | | 4 | | | | _ | H | | 253
254 | 45.928307
45.927677 | -89.207398
-89.207407 | 35 | Eagle Lake | Vilas
Vilas | 8/15/2017 | EJH & CJF | 253
254 | 21 | | | DEEP | | |
| 255 | 45.927047 | -89.207416 | 36 | Eagle Lake | Vilas | | EJH & CJF | | | | | DEEP | | | | | | | | | - | | | | | | | | | | | 4 | | | | _ | H | | 256
257 | 45.926417
45.925787 | -89.207425
-89.207434 | 37 | Eagle Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | EJH & CJF | | | Sand | Pole | DEEP | | | 0 | 258 | 45.925157 | -89.207443 | 39 | Eagle Lake | Vilas | 8/15/2017 | | | 5 | Sand | Pole | SAMPLED | | | 3 | | | | | | _ | - | | | | | | | | | | 4 | | | _ | | 3 | | 259
260 | 45.93964
45.93901 | -89.206333
-89.206342 | 74 | Eagle Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | | | | Sand | Pole | SAMPLED
DEEP | | | 1 | | | | | | | | | | | 1 | | | | | | | | | | | 1 | | 261 | | -89.206351 | | | | | | 261 | | | | DEEP | _ | | | | | | | 262
263 | 45.937751
45.937121 | -89.20636
-89.206369 | 0 | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 262
263 | | | | DEEP | 264 | 45.936491 | -89.206378 | 0 | Eagle Lake | Vilas | | | 264 | | | | DEEP | | | | | | | | | _ | - | | | | | | | | | | 4 | | | _ | | | | 265
266 | 45.935861
45.935231 | -89.206387
-89.206396 | 0 | Eagle Lake | Vilas
Vilas | | | 265
266 | | | | DEEP | | | | | | | | | | | t | | | | | | | | | | | | | Ė | | | 267 | 45.934601 | -89.206405 | 0 | Eagle Lake | Vilas | | | 267 | | | | DEEP | | | | | - | \dashv | 4 | 1 | + | + | + | - | | | | | | | - | 4 | + | + | | L | H | | 268
269 | 45.933971
45.933341 | -89.206414
-89.206423 | 0 | Eagle Lake | Vilas
Vilas | | | 268
269 | | | | DEEP | | | | | | | | | \dagger | 1 | t | | | | | | | | | | | | | t | | | 270 | 45.932711 | -89.206432 | 0 | Eagle Lake | Vilas | | | 270 | | | | DEEP | | | | | -[| | | | + | - | | | | | | | | | -[| | + | | | | Н | | 271 | 45.932081
45.931451 | -89.206441
-89.20645 | 0 | Eagle Lake | Vilas
Vilas | | | 271 | | | | DEEP | | | | | | | | | 1 | t | t | | L | L | | | | | | 1 | 1 | t | L | Ė | H | | 273 | 45.930821 | -89.206459 | 0 | Eagle Lake | Vilas | | | 273 | | | | DEEP | | | | | -[| - | | -[| + | + | H | | | | | | | | -[| - | + | | | | Н | | 274 | 45.930191
45.929561 | -89.206468
-89.206477 | | Eagle Lake | Vilas
Vilas | | | 274 | | | | DEEP | 1 | | | t | H | | 276 | 45.928931 | -89.206486 | | Eagle Lake | Vilas | | | | 0 | | | DEEP | | | Н | | - | - | -[| -[| + | + | H | | | | | | | | - | | + | 1 | | L | Н | | 277 | 45.928301
45.927671 | -89.206495
-89.206504 | 34 | Eagle Lake | Vilas
Vilas | 8/15/2017 | EJH & CJF | 277 | | | | DEEP | | | | | | | | | 1 | t | t | | L | L | | | | | | 1 | 1 | t | L | t | H | | 279 | 45.927041 | -89.206513 | 33 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 279 | 11 | Sand | Pole | SAMPLED | | | 0 | 1 | - | - | - | J | 4 | ļ | F | l | | F | | | | -[| - | Į | 1 | F | F | Ļ | H | | 280
281 | 45.926411
45.925781 | -89.206522
-89.206531 | 32 | Eagle Lake | Vilas
Vilas | | EJH & CJF | | | Sand | Pole | DEEP
SAMPLED | | | 0 | | | | | _ | \pm | \pm | t | L | | H | | | | | | | $\frac{1}{2}$ | t | L | H | Ħ | | 282 | 45.925151 | -89.20654 | 30 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 282 | 2 | Rock | Pole | SAMPLED | | | 1 | | 1 | 4 | 1 | | 4 | 4 | 1 | | | | | | | | 1 | 1 | Ŧ | | | | 1 | | 283
284 | 45.940264
45.939634 | -89.205421
-89.20543 | | Eagle Lake | Vilas
Vilas | | JMB & AMS | | | Muck
Muck | Pole | SAMPLED
SAMPLED | | | 1 0 | | | | | | \pm | t | İ | L | | L | | | | | | | 1 | t | L | L | 1 | | 285 | 45.939004 | -89.205439 | | Eagle Lake | Vilas | | JMB & AMS | 285 | 19 | | | DEEP | | | | 4 | 1 | Ţ | J | J | 4 | Ŧ | F | l | | L | | | H | 4 | 1 | Ŧ | Ŧ | F | F | F | H | | 286
287 | 45.938374
45.937744 | -89.205448
-89.205457 | 0 | Eagle Lake Eagle Lake | Vilas
Vilas | | L | 286 | | | L | DEEP | | | | | | | | | _ | | ľ | | | l | | | | | | | + | 1 | İ | İ | H | | 288 | 45.937114 | | 0 | Eagle Lake | Vilas | | | 288 | | | | DEEP | | | | | | | Ī | | $\perp \Gamma$ | | | | | | | | | Ī | | \Box | | | | L | | | | (\$0 | rees) | | | | | | | | | | | | | | | ε | | | | | | | | | s | | | = | | | | sin | | ar. acaule | | 1 | |---------------|---------------------------|----------------------------|----------|-----------------------|----------------|------------------------|-----------|-------------|------------|--------------|--------------|--------------------|-----|----------|---------------------|---------------|------------------------|------------|-----------------------|-------------------|--------------------|---|----------------|-------------------|------------------|-------------------------|-----------------------|---------------------|--------------------------|-----------------------|----------------------|--|---------------------------|--------------------------|-------------------------|---|---------------| | o oint Number | atitude (Decimal Degrees) | ongitude (Decimal Degrees) | | ake Name | Auno | Date | leld Crew | oint Number | Depth (ft) | Sediment | ole; Rope | omments | tes | Nuisance | Total Rake Fullness | Bidens beckli | Ceratophyllum demersum | Chara spp. | Eleocharis acicularis | Elodea canadensis | Heteranthera dubia | Iso etes spp.
Myriophyllum sibiricum | Najas flexilis | Nuph ar variegata | Nymphaea odorata | Potamogeton amplifolius | Potamogeton gramineus | otamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | rotamogeton spiritus | Potamogeron strictionus | Potamogeton zosteriformis | Sagittaria sp. (rosette) | Sparganium emersum var. | Utricularia vuigaris
Vallisneria americana | | | 289 | 45.936484 | نـ | 0 | Eagle Lake | Vilas | ã | ı | 289 | 0 | Š | ď | DEEP | ž | ž | T | B | ŏ | ö | 13 | 亩 | ž. | 8 8 | ž | ž | ź | Pc | Pe | Pc | ď | ă ă | | ž | | 2S | š : | 5 5 | - | | 290 | 45.935854 | -89.205484 | 0 | Eagle Lake | Vilas | | | 290 | 0 | | | DEEP | + | 4 | | 291 | 45.935224
45.934594 | -89.205493
-89.205502 | 0 | Eagle Lake | Vilas
Vilas | | | 291 | 0 | | | DEEP | \perp | 1 | | 293 | 45.933964
45.933334 | -89.205511
-89.20552 | 0 | Eagle Lake | Vilas
Vilas | | | 293
294 | 0 | | | DEEP | | | | | | | | | | | + | | | | | | | | | + | | | | + | 4 | | 294
295 | 45.932705 | -89.20552
-89.205529 | 0 | Eagle Lake | Vilas | | | 295 | 0 | | | DEEP | I | 1 | | 296 | 45.932075 | -89.205538 | 0 | Eagle Lake | Vilas | | | 296 | 0 | | | DEEP | | | | | | | | | | | + | | | | | | | | | + | | | | + | 4 | | 297
298 | 45.931445
45.930815 | -89.205547
-89.205556 | 0 | Eagle Lake | Vilas
Vilas | | | 297
298 | 0 | | | DEEP | İ | | | | | 1 | | 299
300 | 45.930185
45.929555 | -89.205565
-89.205574 | 0 | Eagle Lake | Vilas
Vilas | | | 299
300 | 0 | | | DEEP | | | | | | | | | | | + | | | | | | | | | + | | | | + | 4 | | 301 | 45.928925 | -89.205583 | 0 | Eagle Lake | Vilas | | | 301 | 0 | | | DEEP | \pm | 1 | | 302 | 45.928295
45.927665 | -89.205592
-89.205601 | 0
25 | Eagle Lake | Vilas
Vilas | 8/15/2017 | EJH & CJF | 302 | 0 22 | | | DEEP | + | 1 | | 304 | 45.927035 | -89.20561 | 26 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 304 | 9 | Sand | Pole | SAMPLED | | | 0 | \pm | 1 | | 305 | 45.926405 | -89.205619 | 27 | Eagle Lake | Vilas
Vilas | 8/15/2017 | EJH & CJF | 305 | 10 | Sand | Pole | SAMPLED | | | 0 | + | 1 | | 306 | 45.925775
45.925145 | -89.205628
-89.205637 | 28 | Eagle Lake | Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 306 | 2 | Sand | Pole | SAMPLED
SAMPLED | | | 1 | | | | | | | 1 | | | | 1 | | | | | | | | | | \pm | 1 | | 308 | 45.940258 | -89.204518 | 68 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 308 | 6 | Muck | Pole | SAMPLED | | | 1 | | | | | | | | + | | | | | | | | | + | | | | 1 | 4 | | 309
310 | 45.939628
45.938998 | -89.204527
-89.204536 | 0 | Eagle Lake | Vilas
Vilas | 8/15/2017 | JMB & AMS | 309 | 0 | | | DEEP | I | 1 | | 311 | 45.938368
45.937738 |
-89.204545
-89.204554 | 0 | Eagle Lake | Vilas
Vilas | | | 311 | 0 | | | DEEP | + | - | | 312
313 | 45.937738 | | 0 | Eagle Lake | Vilas | | | 313 | 0 | | | DEEP | 1 | | 314 | 45.936478 | | 0 | Eagle Lake | Vilas | | | 314 | 0 | | | DEEP | + | - | | 315 | 45.935848
45.935218 | -89.204581
-89.20459 | 0 | Eagle Lake | Vilas
Vilas | | | 315 | 0 | | | DEEP | 1 | | 317 | 45.934588 | -89.204599 | 0 | Eagle Lake | Vilas | | | 317 | 0 | | | DEEP | + | 4 | | 318
319 | 45.933958
45.933328 | -89.204608
-89.204617 | 0 | Eagle Lake | Vilas
Vilas | | | 318 | 0 | | | DEEP | 320 | 45.932698 | -89.204626 | 0 | Eagle Lake | Vilas | | | 320 | 0 | | | DEEP | | | | | | | | | | | - | | | | | | | | - | - | | | | - | - | | 321
322 | 45.932068
45.931438 | -89.204635
-89.204644 | 0 | Eagle Lake | Vilas
Vilas | | | 321 | 0 | | | DEEP | 323 | 45.930808 | | 0 | Eagle Lake | Vilas | | | 323 | 0 | | | DEEP | + | - | | 324
325 | 45.930178
45.929548 | -89.204662
-89.204671 | 0 | Eagle Lake | Vilas
Vilas | | | 324
325 | 0 | | | DEEP | 1 | | 326 | 45.928918 | -89.20468 | 0 | Eagle Lake | Vilas | | | 326
327 | 0 | | | DEEP | - | - | | 327
328 | 45.928288
45.927658 | -89.204689
-89.204698 | 24 | Eagle Lake | Vilas
Vilas | 8/15/2017 | EJH & CJF | 327 | 22 | | | DEEP | 1 | | 329 | 45.927028 | | 23 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | | 11 | Sand | Pole | SAMPLED | | | 0 | + | - | | 330 | 45.926399
45.925769 | -89.204716
-89.204725 | 22 | Eagle Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 330 | 6 | Sand | Pole | SAMPLED
SAMPLED | | | 2 | | | | | | | | 1 | | | 1 | | | | | | | | | | 2 | 1 | | 332 | 45.925139 | | 20 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 332 | 2 | Rock | Pole | SAMPLED | | | 1 | | | | | | | 1 | 1 | | | | | | | | | | | 1 | | + | 4 | | 333 | 45.940252
45.939622 | -89.203615
-89.203624 | 66 | Eagle Lake | | | JMB & AMS | | 18 | Muck | Pole | SAMPLED
DEEP | | | 2 | 2 | 1 | | 335 | 45.938992 | -89.203633 | 0 | Eagle Lake | Vilas | | | 335 | 0 | | | DEEP | + | 4 | | 336
337 | | -89.203642
-89.203651 | 0 | Eagle Lake | Vilas
Vilas | | | 336 | 0 | | | DEEP | 士 | 1 | | 338 | | -89.20366 | 0 | Eagle Lake | Vilas | | | 338 | | | | DEEP | | | | | | | - | - | | - | + | | | | | | - | | - | + | + | | | + | 4 | | 339
340 | | -89.203669
-89.203678 | 0 | Eagle Lake | Vilas
Vilas | | | 339 | | | | DEEP | | | | | | | | | | | | | | | | | | | l | 1 | | | | 士 | 1 | | 341 | | -89.203687 | 0 | Eagle Lake | Vilas | | | 341 | 0 | | | DEEP | | | | | 4 | | - | - | + | + | + | | | | - | | - | + | ╁ | + | + | | + | + | $\frac{1}{2}$ | | 342
343 | 45.934582
45.933952 | -89.203696
-89.203705 | 0 | Eagle Lake | Vilas
Vilas | | | 342 | 0 | | | DEEP | | | | | | | | 1 | | t | t | t | | | | | 1 | | ļ | t | t | | | 士 | 1 | | 344 | 45.933322 | | 0 | Eagle Lake | Vilas | | | 344 | 0 | | | DEEP | | | | | | | - | - | _ | | - | | | | | | - | | | + | - | | _ | + | 4 | | 345
346 | | -89.203723
-89.203733 | 0 | Eagle Lake | Vilas
Vilas | | | 345
346 | 0 | | | DEEP | 士 | 1 | | 347 | | -89.203742 | 0 | Eagle Lake | Vilas | | | 347 | | | | DEEP | | | | | | | 1 | - | | + | + | | | | | | - | + | \perp | + | + | Н | | + | 4 | | 348
349 | 45.930802
45.930172 | -89.203751
-89.20376 | 0 | Eagle Lake | Vilas
Vilas | | | 348 | 0 | | | DEEP | \dagger | | | | \pm | 1 | | 350 | 45.929542 | | 0 | Eagle Lake | Vilas | | | 350 | 0 | | | DEEP | | | | | | | 1 | - | | + | + | | | | | | - | + | | + | + | H | | + | 4 | | 351
352 | 45.928912
45.928282 | | 0 | Eagle Lake | Vilas
Vilas | | | 351
352 | 0 | | | DEEP | \dagger | | | | \pm | 1 | | 353 | 45.927652 | -89.203796 | 0 | Eagle Lake | Vilas | | | 353 | | | | DEEP | | | П | 4 | | 4 | J | 4 | Ŧ | F | ╀ | F | | | - | 4 | 4 | Ţ | | $oldsymbol{ol{ol{ol}}}}}}}}}}}}}}}}$ | + | П | Ŧ | + | - | | 354
355 | 45.927022
45.926392 | -89.203805
-89.203814 | 16
15 | Eagle Lake | | | EJH & CJF | | | Sand | Pole | DEEP
SAMPLED | | | 0 | | | | _ | | _ | | | 1 | | | | | | | _ | † | _ | | _ | + | 1 | | 356 | 45.925762 | -89.203823 | 13 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 356 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | 7 | 7 | 1 | I | I | | | | | | 7 | 1 | | Ŧ | I | | 1 | Ŧ | Į | | 357
358 | 45.925132
45.924502 | -89.203832
-89.203841 | 18 | Eagle Lake Eagle Lake | Vilas
Vilas | | EJH & CJF | | 2 | Sand
Sand | Pole
Pole | SAMPLED
SAMPLED | | | 2 | | | | _ | | | + | 2 | L | | 1 | | | | | ┪ | 1 | \pm | | | 1 | 1 | | 359 | 45.940245 | -89.202712 | 64 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 359 | | Muck | Pole | SAMPLED | | | 2 | | 1 | | 1 | 4 | 1 | I | F | | | | 1 | | 1 | 1 | I | Ţ | | | 1 | 2 | 1 | | 360 | 45.939615 | -89.202721 | 65 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 360 | 18 | | | DEEP | 1 | | Ш | | | | | | | | | | | Ш | | | | | | | | ш | | ㅗ | L | | 363 46.537725 364 45.53705 365 45.53705 366 45.53565 367 45.53566 368 45.53546 370 45.53566 371 45.53566 372 45.53566 373 45.53566 374 45.53566 375 45.53566 376 45.53566 377 45.53566 378 45.53766 380 45.535766 380 45.53566 381 45.525766 383 45.525766 384 45.525786 385 45.525786 386 45.525786 386 45.525786 387 45.53586 | 5 -89.202739 5 -89.202748 5 -89.202765 5 -89.202765 5 -89.202766 6 -89.202766 6 -89.202794 6 -89.20283 6 -89.20283 6 -89.20283 6 -89.20283 6 -89.202848 6 -89.202848 6 -89.202857 | 45
44
0
0 | Eagle Lake | Vilas Vilas Vilas Vilas Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 361
362 | 0 | | | DEEP | | Nuisance | Total Rake Fullness | Bidens becki | Ceratophyllum demersum | Chara spp. | Elodea canadensis | Heteranthera dubia | Iso etes spp. | Myriophyllum sibiricum | Najas flexilis | Numbrae odorata | Potamogeton amplifolius | Potamogeton gramineus | Potamogeton pusillus | Potamogeton richardsonli | Potamogeton robbinsii
Potamogeton spirillus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Sagitaria sp. (rosette) | Utricularia vulgaris | Vallisneria americana | |--|--|--------------------------|---|-------------------------------|------------------------|------------------------|-------------------|----------|--------------|--------------|-------------------------------|---------------------------|----------|---------------------|--------------|------------------------|------------|-------------------|--------------------|---------------|------------------------|----------------|-----------------|-------------------------|-----------------------|----------------------|--------------------------|--|---------------------------|--------------------|---------------------------|-------------------------|----------------------|-----------------------| | 364 45,93705 365 45,93465 366 45,93585 367 45,93585 367 45,93266 370 45,93266 371 45,93266 372 45,93266 373 45,93147 374 45,93266 375 45,92666 376 45,92676 376
45,92676 377 45,92676 378 45,92766 378 45,92766 378 45,92766 380 45,92766 381 45,92686 382 45,92766 383 45,92766 386 45,92766 386 45,92766 386 45,92766 386 45,92766 386 45,92766 386 45,92766 386 45,92766 386 45,92766 386 45,92766 387 45,92766 388 45,92766 388 45,92766 388 45,92766 388 45,92766 388 45,92766 388 45,92766 388 45,92766 388 45,92766 | 5 -89.202757
5 -89.202766
5 -89.202766
6 -89.202785
6 -89.202794
6 -89.20283
6 -89.20281
8 -89.20283
6 -89.20283
6 -89.202848
6 -89.202848
6 -89.202848
6 -89.202848
6 -89.202848 | 50
45
44
0
0 | Eagle Lake Eagle Lake Eagle Lake Eagle Lake | Vilas
Vilas | | JMB & AMS | | U | | | DEEP | I | | | 365 45,93465 366 45,935356 367 45,935306 368 45,934576 369 45,93346 370 46,933316 371 45,932066 372 45,932066 373 45,93266 374 45,932066 375 45,93266 376 45,93266 377 45,92666 378 45,926766 380 45,92766 380 45,92766 381 45,92686 382 45,92686 383 45,92766 383 45,92766 384 45,92866 385 45,92766 386 45,92866 387 45,92866 388 45,92866 388 45,92866 388 45,92866 388 45,92866 388 45,92866 388 45,92866 388 45,92866 388 45,92866 388 45,92866 388 45,92866 388 45,92866 | 5 -89.202766
5 -89.202776
6 -89.202785
6 -89.202785
6 -89.20283
6 -89.202821
6 -89.20282
6 -89.20283
6 -89.20283
6 -89.202848
6 -89.202846
6 -89.202857 | 45
44
0
0 | Eagle Lake Eagle Lake | Vilas | | JMB & AMS | 363
364 | 23
25 | | | DEEP | | | | | | | | | | | | + | | | | | | | | | | + | - | | 367 45.95205
368 45.934576
369 45.93346
370 45.933316
371 45.932056
372 45.932056
373 45.932056
374 45.932056
376 45.93256
377 45.93556
376 45.92556
377 45.92556
378 45.92556
378 45.92556
380 45.92716
381 45.92716
382 45.92556
383 45.925126
384 45.925126
385 45.925126
386 45.925126
387 45.93866
387 45.93866
387 45.93866
388 45.93866
388 45.93867
388 45.93867
389 45.9387719 | 6 -89.202785 6 -89.202794 6 -89.202803 6 -89.202812 6 -89.202821 6 -89.20283 6 -89.202848 6 -89.202848 | 0 | Eagle Lake | | 8/15/2017 | JMB & AMS | 365 | 26 | | | DEEP | I | | | 368 45.934576 369 45.93346 370 45.933316 371 45.93286 372 45.932376 373 45.93246 374 45.93276 375 45.93276 376 45.93276 377 45.92696 377 45.92696 378 45.92764 380 45.92764 381 45.92386 382 45.92576 383 45.92576 384 45.92576 385 45.92366 386 45.92366 387 45.93866 387 45.93866 388 45.93866 388 45.93866 388 45.93866 388 45.93866 | 6 -89.202794
6 -89.202803
6 -89.202812
6 -89.202821
6 -89.20283
6 -89.202839
6 -89.202848
6 -89.202848 | 0 | | Vilas
Vilas | 8/15/2017 | JMB & AMS | 366
367 | 25 | | | DEEP | - | | | 370 45.933316 371 45.932686 372 45.932066 373 45.932066 373 45.932066 376 45.930766 377 45.930766 377 45.930766 378 45.926576 380 45.927646 380 45.927646 381 45.926386 382 45.925386 383 45.925386 384 45.925386 385 45.925386 386 45.925386 386 45.93876 387 45.938876 388 45.938876 388 45.938876 388 45.938876 388 45.938876 388 45.938876 388 45.938876 388 45.938876 388 45.938876 388 45.938876 388 45.938876 388 45.938876 388 45.938876 | 6 -89.202812
6 -89.202821
6 -89.20283
6 -89.202839
6 -89.202848
6 -89.202848 | 0 | | Vilas | | | 368 | 0 | | | DEEP | I | | | 371 45.932686 372 45.932696 373 45.9314276 374 45.93276 375 45.93214276 376 45.932966 377 45.932966 378 45.932764 380 45.932764 381 45.932764 381 45.932764 382 45.932764 383 45.932764 384 45.932766 385 45.932766 386 45.932766 387 45.932766 388 45.932766 388 45.932766 389 45.932766 380 45.932766 380 45.932766 380 45.932766 380 45.932766 380 45.932766 380 45.932766 380 45.932766 380 45.932766 380 45.932766 380 45.932766 | 6 -89.202821
6 -89.20283
6 -89.202839
6 -89.202848
6 -89.202848 | | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 369
370 | 0 | | | DEEP | - | | | 373 45.931428
374 45.930796
375 45.930166
276 45.920536
377 45.92906
378 45.92276
379 45.92276
380 45.92276
381 45.92766
381 45.92766
383 45.92716
384 45.92466
385 45.92766
386 45.92866
386 45.92866
387 45.93866
388 45.93876
388 45.93876
388 45.9387719 | 6 -89.202839
6 -89.202848
6 -89.202857 | 0 | Eagle Lake | Vilas | | | 371 | 0 | | | DEEP | I | | | 374 45 930796 375 45 930796 376 45 930596 377 45 926906 378 45 926906 378 45 926906 380 45 927916 381 45 927386 382 45 927386 383 45 927386 384 45 925386 385 45 92386 386 45 92386 387 45 93890 388 45 938979 | 6 -89.202848
6 -89.202857 | 0 | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 372
373 | 0 | | | DEEP | - | | | 376 45 929536
377 45 929908
378 45 928908
379 45 927646
380 45 927766
380 45 927766
381 45 926386
382 45 925786
383 45 925786
384 45 925496
385 45 92586
386 45 92586
386 45 93886
387 45 93887
388 45 93897
388 45 93897
388 45 93897
388 45 93897
388 45 93897 | | | Eagle Lake | Vilas | | | 374 | 0 | | | DEEP | I | | | 377 45.929906
378 45.929278
379 45.92764
380 45.927915
381 45.923786
382 45.925796
383 45.925796
384 45.925796
385 45.925796
386 45.925996
387 45.93999
388 45.93897
389 45.93879 | | 0 | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 375
376 | 0 | | | DEEP | - | | | 379 45.927646
380 45.927015
381 45.926386
382 45.925786
383 45.925126
384 45.925126
385 45.926239
386 45.94690
387 45.93690
388 45.946239
389 45.946239
389 45.936340
389 45.936374 | 89.202875 | 0 | Eagle Lake | Vilas | | | 377 | 0 | | | DEEP | I | | | 380 45.927015
381 45.925386
382 45.925786
383 45.925126
384 45.924486
385 45.92690
386 45.938909
388 45.938909
388 45.938909
389 45.938919
389 45.938919 | | 0 | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 378
379 | 0 | | | DEEP | | | | | | | | | | | | + | | | | | | | | | | + | - | | 382 45.925756 383 45.925126 384 45.925126 385 45.923866 386 45.923866 387 45.938600 388 45.938979 389 45.938349 390 45.937719 | | 0 | Eagle Lake | Vilas | | | 380 | 0 | | | DEEP | I | | | 383 45.925126
384 45.924496
385 45.923866
386 45.94239
387 45.939600
388 45.938970
389 45.938979
390 45.937719 | | 17 | Eagle Lake
Eagle Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 381 | 18 | | | DEEP | | | | | | | | | | | | + | | | | | | | | | | + | - | | 385 45.923866
386 45.940239
387 45.939609
388 45.938979
389 45.938349
390 45.937719 | | 12 | Eagle Lake | Vilas | 8/15/2017 | | 383 | 13 | | | DEEP | I | | | 386 45.940239
387 45.939609
388 45.938979
389 45.938349
390 45.937719 | | 11 | Eagle Lake
Eagle Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 384
385 | 6 | Sand | Pole | SAMPLED NONNAVIGABLE (PLANTS) | non nav plants and stumps | | 2 | | | | | | | | | | | | | | | - | | | | + | 2 | | 388 45.938979
389 45.938349
390 45.937719 | | 63 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 386 | 7 | Muck | Pole | SAMPLED | non nav pranta ana arampa | | 1 | | | | | | | | | | | | | | | | | | | I | 1 | | 389 45.938349
390 45.937719 | | 59 | Eagle Lake
Eagle Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 387 | 17
20 | | | DEEP | | | | | | | | | | | | | | | | | | - | | | | + | + | | | | | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | | 22 | | | DEEP | I | | | | | | Eagle Lake
Eagle Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 390
391 | 9 | Sand
Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | + | | | | | | | | | | | | + | | | | | | + | - | | | | | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 392 | 9 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | I | | | | | 43 | Eagle Lake
Eagle Lake | Vilas
Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 393
394 | 10 | Muck | Pole | SAMPLED
DEEP | | | 0 | + | | | | | | | | | | | | + | | | | | | + | - | | | | 39 | Eagle Lake | Vilas | | JMB & AMS | 395 | 20 | | | DEEP | I | | | 396 45.933939
397 45.933309 | | 0 | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 396
397 | 0 | | | DEEP | | | | + | | | | | | | | | | | | + | | | | | | + | - | | | | | Eagle Lake | Vilas | | | 398 | 0 | | | DEEP | İ | | | | | | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 399
400 | 0 | | | DEEP | - | - | | | | | Eagle Lake | Vilas | | | 401 | 0 | | | DEEP | İ | | | 402 45.930159
403 45.929529 | | 0 | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 402 | 0 | | | DEEP | - | - | | | | 0 | Eagle Lake | Vilas | | | 404 | 0 | | | DEEP | I | П | | | | | Eagle Lake | | | | 405 | 0 | | | DEEP | | | | - | | | | | | | | | | | | | | | | | | - | - | | | | | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 406 | 0 | | | DEEP | Eagle Lake | Vilas | | | 408 | 0 | | | DEEP | | | | + | | | | | | | | | | | | | - | | | | | - | \vdash | | | | 7 | Eagle Lake
Eagle Lake | | | EJH & CJF | 409 | 17 | | | DEEP | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | 8 | Eagle Lake | Vilas | | EJH & CJF | 411 | 4 | Sand | Pole | SAMPLED | | | 2 | _ | - | | | - | | | 1 | | 1 | | | _ | \perp | | | | | - | 1 | | | | | Eagle Lake
Eagle Lake | | | EJH & CJF
JMB &
AMS | 412 | | Sand
Muck | Pole
Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | + | - | | 414 45.939603 | 3 -89.200915 | 60 | Eagle Lake | Vilas | | JMB & AMS | | | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | I | | | | | | Eagle Lake
Eagle Lake | | | JMB & AMS | | | Sand | Pole | DEEP | | | 2 | | | | | | | | | | 1 | | | | | | | | | + | 2 | | | | | Eagle Lake | Vilas | | JMB & AMS | 417 | | Muck | Pole | SAMPLED | | | 3 | | | | | | | | | | 1 | | | | | | | | | I | 2 | | | | 48 | Eagle Lake
Eagle Lake | Vilas
Vilas | | JMB & AMS | 418 | 0 4 | Musel | Pole | SAMPLED | | | 2 | - | | | | 1 | | | 2 | | | | | 1 | | | | | | + | 1 | | | | 1 | Eagle Lake | | | JMB & AMS | 420 | | Muck | Pole | SAMPLED | | | 2 | | | | | | | | 1 | | 1 | | | | 1 | | | | 1 | I | 2 | | | 3 -89.200979
3 -89.200988 | | Eagle Lake
Eagle Lake | | | JMB & AMS | 421 | | | Pole
Pole | SAMPLED
SAMPLED | | L | 1 0 | 1 | + | + | - | - | | | + | + | + | | | + | + | - | | | + | + | 1 | | | 3 -89.200988
3 -89.200997 | | Eagle Lake
Eagle Lake | Vilas | | JMB & AMS | | | wruck | role | DEEP | | | U | | | | | | | | | | | | | | 1 | | | | | t | | | | | | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 424
425 | 24 | | | DEEP | | - | H | 1 | \parallel | + | | | | | + | - | + | | Н | - | + | - | | Н | + | + | \dashv | | | 3 -89.201015 | | Eagle Lake
Eagle Lake | Vilas
Vilas | | | 425 | 0 | | | DEEP | | | | 1 | | 1 | | | | | | 1 | | | | | | | | | | t | Ħ | | | 3 -89.201024 | 0 | Eagle Lake | 15 | 1 | 1 | | | | | i . | i . | l l | 1 | | - 1 | - 1 | -1 | 1 | 1 | | | - 1 | - 1 | 1 | | | | 1 | 1 | | - 1 | - 1 | 1 1 | | | 3 -89.201033 | | l | Vilas | | | 427 | 0 | | | DEEP | | | H | + | + | + | + | | | H | \dashv | + | + | | | + | + | - | - | | + | + | + | | 430 45.929523 | 3 -89.201033
3 -89.201042 | 0 | Eagle Lake | Vilas
Vilas
Vilas | | | 427
428
429 | 0 | | | DEEP
DEEP
DEEP | İ | | | 431 45.928893
432 45.928263 | 3 -89.201033
3 -89.201042
3 -89.201051
3 -89.20106 | 0 | | Vilas | | | 428 | 0 | | | DEEP | + | | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lako Namo | County | Date | Field Grew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Bidens beckli | Ceratophyllum demersum | Chara spp. | Eleocharis acicularis | Heteranthera dubia | Iso etes spp. | Myriophyllum sibiricum | Najas flexilis | Nuph ar variegata | Nymph aea odorata | Potamogeton amplifolius | Potamogeton grammeus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spiriflus | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Sagittaria sp. (rosette)
Sparganium emersum var. acaule | | Vallisneria americana | |--------------|----------------------------|-----------------------------|------|------------|--------|-----------|------------|--------------|------------|----------|------------|--------------------|-----------|----------|---------------------|---------------|------------------------|------------|-----------------------|--------------------|---------------|------------------------|----------------|-------------------|-------------------|-------------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------------|--------------------|---------------------------|--|---------|-----------------------| | 433 | 45.927633 | -89.20108 | 7 0 | Eagle Lake | Vilas | | | 433 | 0 | | | DEEP | 434 | 45.927003 | -89.20109 | 3 0 | Eagle Lake | Vilas | | | 434 | 0 | | | DEEP | Щ | | 435 | 45.926373 | -89.20110 | 5 5 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 435 | 20 | | | DEEP | \bot | Ш | | 436 | 45.925743 | -89.20111 | 4 4 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 436 | 19 | | | DEEP | \perp | Ш | | 437 | 45.925113 | -89.20112 | 4 5 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 437 | 9 | Sand | Pole | SAMPLED | | | 0 | _ | Ш | | 438 | 45.924483 | -89.20113 | 3 4 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 438 | 2 | Rock | Pole | SAMPLED | | | 1 | | | | 1 | | | | 1 | | | 1 | | 1 | | | | | | _ | + | Ш | | 439 | 45.939596 | -89.20001 | 3 61 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 439 | 1 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | 4 | | 1 | | | | | | _ | + | Ш | | 440 | 45.938966 | -89.20002 | 2 58 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 440 | 5 | Muck | Pole | SAMPLED | | | 1 | | | | | | | 1 | | | | 4 | | 1 | | | | | | _ | + | 1 | | 441 | 45.934557 | -89.20008 | 5 37 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 441 | 1 | Sand | Pole | SAMPLED | | | 0 | | | | | | | - | | | | 4 | | | - | | | | | _ | 4 | Ш | | 442 | 45.933927 | -89.20009 | 4 36 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 442 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | - | | | | 4 | | | - | | | | | _ | 4 | Ш | | 443 | 45.933297 | -89.20010 | 3 33 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 443 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | - | | | | 4 | | | - | | | | | _ | 4 | Ш | | 444 | 45.932667 | -89.20011 | 2 30 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 444 | 13 | | | DEEP | | | | | | | _ | | _ | | | | | 4 | | | | | | | | _ | 4 | ш | | 445 | 45.932037 | -89.20012 | 1 29 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 445 | 22 | | | DEEP | | | | | | | _ | - | + | - | | | | 4 | | + | - | | | | _ | _ | + | _ | | 446 | 45.931407 | -89.20013 | 26 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 446 | 18 | | | DEEP | | | | | | | - | | + | - | | | | + | | - | | | | | _ | _ | + | + | | 447 | 45.930777 | -89.20013 | 25 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 447 | 14 | | | DEEP | | | | | | | - | | + | - | | | | + | | - | | | | | _ | _ | + | + | | 448 | 45.930147 | -89.20014 | 3 22 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 448 | 13 | | | DEEP | | | | | | - | | - | | - | | | | + | | | - | | | | | _ | 4 | Н | | 449 | 45.929517 | -89.20015 | 7 21 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 449 | 12 | | | DEEP | | | | | | - | | - | | - | | | | + | | | - | | | | | _ | 4 | \blacksquare | | 450 | 45.928887 | -89.20016 | 3 18 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 450 | 17 | | | DEEP | | | | | | | + | | + | | | | | + | | | | | | | _ | _ | + | + | | 451 | 45.928257 | -89.20017 | 3 17 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 451 | 21 | | | DEEP | | | | | | | - | | + | | | | | + | | + | | | | | _ | _ | + | + | | 452 | 45.927627 | -89.20018 | 5 12 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 452 | 21 | | | DEEP | | | | | | | + | | + | | | | | + | | | | | | | _ | _ | + | + | | 453 | 45.926997 | -89.20019 | 1 11 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 453 | 23 | | | DEEP | | | | | | | - | | + | | | | | + | | + | | | | | _ | _ | + | + | | 454 | 45.926367 | -89.20020 | 3 6 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 454 | 23 | | | DEEP | | | | | | | + | | + | | | | | + | | | | | | | _ | _ | + | \vdash | | 455 | 45.925737 | -89.20021 | 2 3 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 455 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | + | | + | | | | | + | | | | | | | _ | _ | + | \vdash | | 456 | 45.925107 | | | Eagle Lake | Vilas | 8/15/2017 | | 456 | 6 | Sand | Pole | SAMPLED | | | 2 | | | | - | | + | | | | | 1 | | + | | | | | - | _ | + | 1 | | 457 | 45.924477 | -89.20023 | 3 | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 457 | 2 | Sand | Pole | SAMPLED | | | 1 | | | | 1 | | | | 1 | 1 | | + | | + | | | | | | _ | + | 1 | | 458 | 45.93329 | -89.1992 | 32 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 458 | 1 | Sand | Pole | SAMPLED | | | 0 | + | - | | + | | + | | | | _ | + | - | - | | | | | + | + | + | + | | 459 | 45.93266 | -89.19920 | 31 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 459 | 1 | Sand | Pole | SAMPLED | | | 1 | | | | 1 | | 1 | | 1 | | | + | | + | | | | | | _ | + | 1 | | 460 | 45.93203 | -89.19921 | | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 460 | 6 | Muck | Pole | SAMPLED | | | 1 | + | - | | + | | + | | | | _ | + | - | - | | | | | + | + | + | 1 | | 461 | 45.9314 | -89.19922 | | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 461 | 7 | Muck | Pole | SAMPLED | | | 1 | + | - | | + | | + | | | | _ | + | | - | | | | | + | + | + | 1 | | 462 | 45.93077 | | | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 462 | 3 | Muck | Pole | SAMPLED | | | 1 | | | + | + | + | + | \vdash | 1 | H | | + | + | + | + | - | | + | - | + | + | 1 | | 463 | | | | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 463 | 4 | Muck | Pole | SAMPLED | | | 2 | H | | | | - | + | \vdash | - | H | | 1 | - | + | - | + | | + | - | + | + | 1 | | 464 | 45.929511 | | | Eagle Lake | Vilas | 8/15/2017 | | 464 | 6 | Sand | Pole | SAMPLED | | | 1 | H | | - | + | + | + | ╁ | H | H | _ | + | + | + | ╁ | - | | + | + | + | + | 1 | | 465 | 45.928881 | | | Eagle Lake | Vilas | 8/15/2017 | | 465 | 7 | Sand | Pole | SAMPLED | | | 1 | H | - | + | | - | + | \vdash | - | H | | + | - | + | + | + | H | + | - | + | + | 1 | | 466 | 45.928251 | -89.19927 | | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 466 | 7 | Muck | Pole | SAMPLED | | | 1 | H | | - | + | + | + | ╁ | H | H | _ | + | + | 1 | ╁ | - | | + | + | + | + | 1 | | 467 | 45.927621 | | 2 13 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 467 | 7 | Muck | Pole | SAMPLED | | | 3 | H | | - | + | + | + | ╁ | H | H | _ | 1 | + | + | ╁ | - | | + | + | + | + | 3 | | 468 | 45.926991 | -89.19929 | 1 10 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 468 | 7 | Muck | Pole | SAMPLED | | | 1 | H | + | + | | + | + | + | H | H | + | + | + | + | + | + | | + | + | + | + | 1 | | 469 |
45.926361 | -89.1993 | 7 | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 469 | 6 | Muck | Pole | SAMPLED | | | 1 | | | + | + | 1 | + | \vdash | | H | | 1 | | + | | 1 | | + | - | + | + | 1 | | 470 | | -89.19930 | | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 470 | 5 | Sand | Pole | SAMPLED | | | 1 | | | + | + | | + | \vdash | | H | | + | | + | | 1 | | + | - | + | + | 1 | | 471 | 45.925101 | | | Eagle Lake | Vilas | 8/15/2017 | EJH & CJF | 471 | 4 | Sand | Pole | SAMPLED | 8/15/2017 | | 2 | H | + | + | + | + | + | t | 1 | H | \dashv | + | + | 1 | t | | | 7 | + | + | + | 2 | | 472 | | | | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 472 | 1 | Sand | Pole | SAMPLED | | | 0 | H | | + | + | + | + | t | H | H | | \dagger | + | t | t | | | 7 | 1 | + | + | H | | 473 | 45.927614 | | | Eagle Lake | Vilas | 8/15/2017 | | 473 | 3 | Muck | Pole | SAMPLED | | | U | H | + | + | + | + | + | t | H | H | _ | \dagger | + | t | t | | H | 7 | 1 | + | + | H | | 474 | 45.926984 | | | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 474 | 3 | Muck | Pole | SAMPLED | | | 1 | H | | | + | † | | H | | H | 1 | \dagger | t | $^{+}$ | | 1 | | 1 | + | + | + | 1 | | 475 | 45.926354
45.925724 | -89.19839
-89.19840 | | Eagle Lake | Vilas | 8/15/2017 | JMB & AMS | 475 | 1 | Sand | Pole | SAMPLED
SAMPLED | | | 1 | H | + | + | + | + | + | t | H | H | _ | \dagger | + | t | t | | H | 7 | 1 | + | + | +1 | | | agrees) | Degrees) | | | | | | | | | | | | | | m | | demersum | | | | mı | llatum | | | | 8 | olius | lrus | dsonii | isi | iformis | m var. acaule | S | | 8 | |--------------|----------------------------|-----------------------------|-----|--|--------|------------------------|-------------|--------------|------------|----------|------------|-----------------------|-------|----------|---------------------|-----------------------|---------------|------------------------|------------|-------------------|--------------------|------------------------|--|------------------|------------------|--------------------|---------------------|-------------------------|-----------------------|--|-----------------------|---------------------------|--------------------------|---|---|---------------------------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | ake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Bidens beckii | Ceratophyllum demersum | Chara spp. | Elodea canadensis | Heteranthera dubia | Myriophyllum sibiricum | Myriophyllum verticillatum
Naise flovilis | Nuphar variegata | Nymphaea odorata | Pontederia cordata | Potamogeton alpinus | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus
Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton zosteriformis | Spargani um emersum var. | Sparganium fluctuans
Spirodela polyrhiza | opriodera porgrinza
Utricularia vulgaris | Vallisneria americana
Aquatic moss | | 1 | 45.939790 | -89.198876 | 1 | Scattering Rice Lake | | | | 1 | 7 | Sand | | SAMPLED | | Ĺ | 0 | _ | | | , 0 | | _ | _ | | _ | _ | _ | _ | | | Ī | Ė | _ | | , 0. | | Í | | 2 | 45.939250 | -89.198884 | 2 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 2 | 7 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 4 | 4 | _ | | 4 | 4 | _ | | | 3 | 45.940324 | -89.198094 | 1 | Scattering Rice Lake | | | LJS & JBS | 3 | 8 | Muck | Pole | SAMPLED | | | 0 | | | + | | | | | | | | | | + | + | + | ┾ | \vdash | + | + | + | \vdash | | 5 | 45.939784
45.939244 | -89.198102
-89.198110 | 3 | Scattering Rice Lake
Scattering Rice Lake | | 8/15/2017 | BTB & NLS | 5 | 9 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | 1 | + | \dagger | \vdash | H | + | \dagger | + | + | | 6 | 45.940859 | -89.197312 | 2 | Scattering Rice Lake | | 8/15/2017 | LJS & JBS | 6 | 6 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | I | | | | I | | | | 7 | 45.940319 | -89.197320 | 3 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 7 | 9 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | ļ | | | | | Ţ | Ţ | Ш | | 8 | 45.939779 | -89.197328 | 5 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 8 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | _ | + | + | ┢ | | _ | + | _ | - | | 9 | 45.939239 | -89.197336 | 6 | Scattering Rice Lake | | 8/15/2017 | BTB & NLS | 9 | 3 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | + | + | + | - | | + | + | + | + | | 10 | 45.940854
45.940314 | -89.196538
-89.196546 | 4 | Scattering Rice Lake
Scattering Rice Lake | | 8/15/2017
8/15/2017 | LJS & JBS | 10 | 10 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | 1 | | | 1 | | | | \dagger | \dagger | T | H | \dagger | \dagger | + | | | 12 | 45.939774 | -89.196554 | 8 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 12 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | I | | | | 13 | 45.939234 | -89.196562 | 7 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 13 | 5 | Sand | Pole | SAMPLED | | | 2 | | | | | | | | | | | | | _ | 4 | 4 | _ | \vdash | 4 | 4 | | 2 | | 14 | 45.940308 | -89.195772 | 6 | Scattering Rice Lake | | | | 14 | | Muck | Pole | SAMPLED | | | 0 | H | | + | - | | $ \cdot $ | | + | - | | | \dashv | - | + | + | \vdash | Н | + | + | + | + | | 15 | 45.939768
45.939228 | -89.195780
-89.195788 | 9 | Scattering Rice Lake Scattering Rice Lake | | | BTB & NLS | 15 | 11 | Sand | Pole | DEEP | | | 0 | | | | | | | | | | | | | 1 | + | + | \vdash | H | + | \dagger | + | + | | 17 | 45.940303 | -89.194998 | 7 | Scattering Rice Lake | | | | 17 | | | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | I | | | | I | I | | | 18 | 45.939763 | -89.195006 | 11 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 18 | 12 | | | DEEP | | | | | | | | | | | | | | | | | _ | \perp | L | | | \perp | | Ш | | 19 | 45.939223 | -89.195014 | 12 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 19 | 11 | | | DEEP | | | | | | _ | | | | _ | | | | | | 4 | + | + | _ | | _ | + | - | \vdash | | 20 | 45.938683 | -89.195022 | 13 | Scattering Rice Lake | | | | 20 | | Sand | | SAMPLED | | | 1 | | | + | | | | | | | | | | - | + | + | _ | | + | + | - | 1 | | 21 | 45.940297
45.939757 | -89.194224 | 8 | Scattering Rice Lake | | 8/15/2017 | LJS & JBS | 21 | 0 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | + | + | - | | + | + | + | ++ | | 22 | 45.939757 | -89.194232
-89.194240 | 15 | Scattering Rice Lake
Scattering Rice Lake | | 8/15/2017 | BTB & NLS | 22 | | | | DEEP | | | | | | | | | | | | | | | | | 1 | \dagger | | | \top | \top | + | \top | | 24 | 45.938677 | -89.194248 | 14 | | | | BTB & NLS | 24 | | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | I | | | | | I | | | | 25 | 45.940832 | -89.193443 | 10 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 25 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | 4 | 4 | + | L | | 4 | 4 | Ŧ | Ш | | 26 | 45.940292 | -89.193450 | 9 | Scattering Rice Lake | | 8/15/2017 | LJS & JBS | 26 | | | | DEEP | | | | | | | | | | | | | | | | - | + | + | \vdash | H | + | + | - | - | | 27 | 45.939752
45.939212 | -89.193458
-89.193466 | 17 | Scattering Rice Lake Scattering Rice Lake | | 0/45/0047 | BTB & NLS | 27 | 0 | | | DEEP | | | | | | | | | | | | | | | | | + | + | - | H | + | + | + | + | | 29 | 45.939212 | -89.193474 | 16 | Scattering Rice Lake | | | BTB & NLS | 29 | 12 | | | DEEP | | | | | | | | | | | | | | | | | 1 | \dagger | | | \top | \top | + | \top | | 30 | 45.938132 | -89.193482 | 18 | | | | BTB & NLS | 30 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | I | | | | | I | | | | 31 | 45.941366 | -89.192661 | 12 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 31 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 4 | _ | L | | | 4 | ┸ | Н | | 32 | 45.940826 | -89.192669 | 11 | Scattering Rice Lake | | 8/15/2017 | LJS & JBS | 32 | 12 | | | DEEP | | | | | | _ | | | | | | | | | | \dashv | + | + | ₩ | \vdash | + | + | + | \vdash | | 33 | 45.940286
45.939746 | -89.192676 | 0 | Scattering Rice Lake | | | | 33 | 0 | | | DEEP | | | | | | | | | | | | | | | | + | + | + | - | | + | + | + | + | | 34 | 45.939746 | -89.192684
-89.192692 | 0 | Scattering Rice Lake Scattering Rice Lake | | | | 34 | | | | DEEP | | | | | | | | | | | | | | | | | Ť | T | T | Ħ | + | T | + | Ħ | | 36 | | -89.192700 | | Scattering Rice Lake | | 8/15/2017 | BTB & NLS | | | | | DEEP | 37 | 45.938126 | -89.192708 | 20 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 37 | 12 | | | DEEP | | | | | | | | | | | | | | | | | 4 | 4 | | | \downarrow | 1 | 1 | Ш | | 38 | | | | Scattering Rice Lake | | | | | | | | SAMPLED | | | 0 | H | | + | + | | H | | + | - | | | - | 4 | + | + | ⊦ | H | + | + | + | + | | 39 | 45.941901
45.941361 | | | Scattering Rice Lake | | | | 39
40 | | Sand | Pole | SAMPLED
DEEP | | | 0 | | | + | + | | H | | + | | | | | 1 | + | + | - | H | + | + | + | + | | 41 | 45.941361 | -89.191887
-89.191895 | | Scattering Rice Lake
Scattering Rice Lake | | 0/10/2017 | LJO & JBS | 41 | | | | DEEP | | | | | | \dagger | | | | 1 | \dagger | | | | | l | \dagger | \dagger | <u> </u> | | \dagger | \dagger | + | \forall | | 42 | 45.940281 | -89.191902 | | Scattering Rice Lake | | | | 42 | | | | DEEP | | | | | | | | | | | | | | | | | Ţ | I | L | | ightharpoonup | I | | П | | 43 | 45.939741 | -89.191910 | 0 | Scattering Rice Lake | Vilas | | | 43 | 0 | | | DEEP | | | | Ц | | + | - | _ | Ш | | - | | | | - | 1 | \downarrow
 4 | Ļ | Ц | \downarrow | + | + | \bot | | 44 | 45.939201 | -89.191918 | | Scattering Rice Lake | | | | 44 | | | | DEEP | | | | | - | + | - | | | - | + | - | L | | \dashv | 1 | + | + | \vdash | \vdash | + | + | + | + | | 45 | 45.938661 | -89.191926
-89.191934 | | | | 0/45/004- | DTD 0 *** - | 45 | | | | DEEP | | | | | | + | + | | H | | + | | | | | 1 | + | + | - | H | + | + | + | + | | 46 | 45.938121
45.937581 | | 22 | Scattering Rice Lake
Scattering Rice Lake | | | | | | Muck | Pole | DEEP | | | 0 | H | | \dagger | t | r | | | \dagger | t | | | 1 | 1 | \dagger | \dagger | t | Ħ | \dagger | \dagger | + | + | | 48 | 45.937041 | | | Scattering Rice Lake | | | | | | Sand | | SAMPLED | | | 0 | | | | | | | | | | | | | İ | 1 | I | | | | I | I | П | | 49 | 45.934881 | -89.191981 | 112 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 49 | 3 | Muck | Pole | SAMPLED | | | 1 | | | 1 | + | | Ц | | - | | | | 4 | 1 | 4 | 4 | 1 | \sqcup | \downarrow | + | + | \bot | | 50 | 45.933261 | | | Scattering Rice Lake | | | | | | Muck | Pole | SAMPLED | | | 2 | H | | + | - | | | | 2 | | 1 | | - | | + | + | \vdash | \vdash | + | + | - | + | | 51 | | | | Scattering Rice Lake | | | | | | | | NONNAVIGABLE (PLANTS) | | | | | | + | + | | | 1 | + | + | | | - | + | + | + | - | H | + | + | + | + | | 52 | 45.941895
45.941355 | | | Scattering Rice Lake
Scattering Rice Lake | | | | | 12 | | | DEEP | | | | H | | \dagger | t | H | H | | \dagger | t | F | | 1 | + | \dagger | + | H | H | + | \dagger | + | + | | 54 | 45.940815 | -89.1911121 | | Scattering Rice Lake | | 20.2017 | | 54 | | | | DEEP | | L | | | | I | | | | | | I | L | | | 1 | 1 | I | I | | | I | I | П | | 55 | 45.940275 | -89.191129 | | Scattering Rice Lake | | | | 55 | 0 | | | DEEP | | | | | | | | | | | | | L | | _[| | 4 | \perp | L | \bigsqcup | 4 | # | Ļ | \coprod | | 56 | 45.939735 | -89.191136 | 0 | Scattering Rice Lake | Vilas | | | 56 | | | | DEEP | | | | H | | + | - | | $ \cdot $ | | + | | | | - | - | + | 4 | \vdash | \vdash | \perp | + | _ | + | | 57 | 45.939195 | -89.191144 | | Scattering Rice Lake | | | | 57 | | | | DEEP | | | | | - | + | | | | - | + | + | | Н | \dashv | + | + | + | ╁ | \vdash | + | + | + | + | | 58 | 45.938655 | -89.191152 | 0 | Scattering Rice Lake | Vilas | | | 58 | 0 | | | DEEP | | | | | | | | | Ш | | | | | Ш | | | 丄 | 丄 | L | Ш | \perp | 丄 | \perp | L | | mber | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | | o e | | | 3 | mber | | | ed. | 2 | | | Total Rake Fullness | Myriophyllum spicatum | eckii | Ceratophyllum demersum
Ceratophyllum echinatum | p. | Elodea canadensis | Heteranthera dubia | Myriophyllum sibiricum | Maias flexilis | ariegata | Nymphaea odorata | Pontederia cordata | Potamogeton alpinus | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusinus | Potamogeton robbinsii | Potamogeton zosteriformis | Sparganium emersum var. acaule | Sparganium fluctuans | Spirodela polyrhiza | Utricularia vulgaris
Vallisneria americana | noss | |-------------|----------------------------|-----------------------------|----------|--|--------|------------------------|------------|-------------|------------|--------------|------------|--------------------------------|-------|----------|---------------------|-----------------------|---------------|---|------------|-------------------|--------------------|------------------------|---------------------------------|------------------|------------------|--------------------|---------------------|-------------------------|-----------------------|---------------------|-----------------------|---------------------------|--------------------------------|--|---------------------|---|----------------| | Point Numbe | Latitude | Longitud | QI | Lake Name | County | Date | Field Crew | Point Numbe | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rak | Myriophy | Bidens beckii | Ceratoph | Chara spp. | Elodea ca | Heterant | Myriophy | Myriopriyitur
Naias flexilis | Nuphar variegata | Nymphae | Ponteder | Potamog | Potamog | Potamog | Potamog | Potamog | Potamog | Spargani | Spargani | Spirodeic | Vallisner | Aquatic moss | | 59 | 45.938115 | -89.191160 | 29 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 59 | 12 | | | DEEP | H | Į | I | \blacksquare | | 60 | 45.937575 | -89.191168 | 28 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 60 | | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | Н | \dashv | + | + | + | | 61 | 45.937035
45.936495 | -89.191176
-89.191183 | 27 | Scattering Rice Lake
Scattering Rice Lake | Vilas | 8/15/2017
8/15/2017 | BTB & NLS | 62 | 7 | Sand | | SAMPLED
SAMPLED | | | 0 | 1 | | | | | | | | | | | | | | | | | Ħ | † | $^+$ | $^+$ | + | | 63 | | -89.191207 | 113 | | | 8/15/2017 | BTB & NLS | 63 | 0 | muon | 1 010 | NONNAVIGABLE (PLANTS) | | | Ü | | | | | | | | | | | | | | | | | | | I | I | I | П | | 64 | 45.934336 | -89.191215 | 114 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 64 | 2 | Muck | Pole | SAMPLED | | | 1 | | | | | | | | | | 1 | | | | | | | | Ш | \vdash | 1 | 1 | Ш | | 65 | 45.933796 | -89.191223 | 115 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 65 | 3 | Muck | | SAMPLED | | | 1 | + | | | | | | | | | 1 | 1 | | | - | + | | | H | | + | + | 1 | | 66 | 45.933256
45.932716 | -89.191231
-89.191238 | 116 | Scattering Rice Lake
Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 66 | 0 | Muck | Pole | SAMPLED NONNAVIGABLE (PLANTS) | | | 1 | | | | | | | | 1 | | 1 | | | | | | | | Ħ | T | 1 | + | + | | 68 | 45.942430 | -89.190323 | 17 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | I | I | I | П | | 69 | 45.941890 | -89.190331 | 18 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 69 | 13 | | | DEEP | H | \vdash | + | _ | $^{+1}$ | | 70 | | -89.190339 | 0 | Scattering Rice Lake | Vilas | | | 70 | 0 | | | DEEP | | | | + | | | | | | | | | | | | | | + | | | Н | \dashv | + | + | H | | 71 | 45.940810
45.940270 | -89.190347
-89.190355 | 0 | Scattering Rice Lake
Scattering Rice Lake | Vilas | | | 71
72 | 0 | | | DEEP | | | | 1 | \dagger | | | | 1 | \dagger | \dagger | | | | | \dagger | \dagger | | | | H | \dashv | \dagger | \dagger | \forall | | 73 | 45.939730 | -89.190362 | 0 | Scattering Rice Lake | Vilas | | | 73 | 0 | | | DEEP | I | I | | | 74 | 45.939190 | -89.190370 | 0 | Scattering Rice Lake | Vilas | | | 74 | 0 | | | DEEP | | | | 4 | - | - | | | - | + | + | | | | | 4 | \downarrow | - | | | Ш | \dashv | \downarrow | + | \mathbb{H} | | 75 | 45.938650 | -89.190378 | 32 | Scattering Rice Lake | | 8/15/2017 | | 75 | 0 | | | DEEP | | | | | + | | | | | + | - | | | | | - | + | | | | H | \dashv | + | + | + | | 76 | 45.938110
45.937570 | -89.190386
-89.190394 | 30 | Scattering Rice Lake
Scattering Rice Lake | Vilas | 8/15/2017
8/15/2017 | BTB & NLS | 76
77 | 11 | Sand | Pole | DEEP | | | 2 | | | | | | | | | | | | | | | | | | Ħ | \dashv | + | 2 | , 🕂 | | 78 | 45.937030 | -89.190402 | 26 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 78 | 4 | Muck | | SAMPLED | | | 1 | | | | | | | | | | | | | 1 | | | | | | | | | П | | 79 | 45.933790 | -89.190449 | 50 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 79 | 0 | | | NONNAVIGABLE (PLANTS) | | | | 4 | | | | | | | | | | | | | | | | | Ш | \vdash | 4 | _ | Ш | | 80 | 45.933250 | -89.190457 | 49 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 80 | 0 | | | NONNAVIGABLE (PLANTS) | | | | + | | | | | | | | | | | | | | | | | Н | \vdash | - | _ | + | | 81 | 45.932710
45.942964 | -89.190465
-89.189541 | 48
21 | Scattering Rice Lake
Scattering Rice Lake | Vilas | 8/15/2017
8/15/2017 | BTB & NLS | 81 | 0 | Muck | Dolo | NONNAVIGABLE (PLANTS) SAMPLED | | | 0 | 1 | | | H | | | | | | | | | | | | | | H | \dashv | + | + | + | | 83 | 45.942424 | -89.189549 | 20 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 83 | 11 | WILLER | FUIE | DEEP | | | U | T | | | | | | | | | | | | | | | | | П | | † | T | \Box | | 84 | 45.941884 | -89.189557 | 19 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 84 | 14 | | | DEEP | $oldsymbol{oldsymbol{oldsymbol{eta}}}$ | Ţ | l | Ш | | 85 | 45.941344 | -89.189565 | 0 | Scattering Rice Lake | Vilas | | | 85 | 0 | | | DEEP | Н | \vdash | _ | + | \blacksquare | | 86 | | -89.189573 | 0 | Scattering Rice Lake | Vilas | | | 86 | 0 | | | DEEP | | | | + | | | | | | | | | | | | | | + | | | H | \vdash | + | + | +1 | | 87 | | -89.189581
-89.189588 | 0 | Scattering Rice Lake
Scattering Rice Lake | Vilas | | | 88 | 0 | | | DEEP | | | | | | | T | | | | | | | | | | | | | | Ħ | T | \dagger | \dagger | П | | 89 | 45.939184 | -89.189596 | 61 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 89 | 0 | | | DEEP | I | I | I | | | 90 | 45.938644 | -89.189604 | 33 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 90 | 12 | | | DEEP | H | \vdash | + | _ | $^{+1}$ | | 91 | 45.937025 | -89.189628 | 67 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 91 | 3 | Muck | Pole | SAMPLED | | | 1 | | - | 1 | | | | | | | 1 | | | | + | | | | Н | \dashv | + | 1 | + | | 92 | | -89.189683
-89.188759 | 47
22 | Scattering Rice Lake
Scattering Rice Lake | | 8/15/2017
8/15/2017 | BTB & NLS | 92
93 | 8 | Muck | Pole | NONNAVIGABLE (PLANTS) SAMPLED
| | | 0 | 1 | | | | | | | | | | | | | | | | | Ħ | 1 | \top | + | +1 | | 94 | 45.942959 | -89.188767 | 23 | | | | | | | | | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | П | | | | | 95 | 45.942419 | -89.188775 | 24 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 95 | 11 | | | DEEP | | | | 4 | | | | | | | | | | | | | | | | | Щ | \vdash | _ | _ | \blacksquare | | 96 | | -89.188783 | 0 | Scattering Rice Lake | | | | 96 | | | | DEEP | | | | + | | | | | | | | | | | | | | + | | | Н | \dashv | + | + | H | | 97 | 45.941339
45.940799 | -89.188791
-89.188799 | 0 | Scattering Rice Lake Scattering Rice Lake | | | | 97 | 0 | | | DEEP | | | | 1 | | | | | | \dagger | | | | | + | 1 | \dagger | | | | H | T | \dagger | \dagger | \dagger | | 99 | | -89.188807 | 0 | Scattering Rice Lake | | | | 99 | 0 | | | DEEP | | | | 1 | | | | | | | | | | | | | | | | | П | 丁 | 1 | Į | \blacksquare | | 100 | 45.939719 | -89.188815 | 0 | Scattering Rice Lake | Vilas | | | 100 | 0 | | | DEEP | Ш | \vdash | _ | _ | Ш | | 101 | | -89.188822 | 60 | Scattering Rice Lake | | | | | | _ | _ | DEEP | | H | | + | + | + | + | 1 | + | + | + | H | | | \dashv | \dashv | + | + | H | | H | \dashv | + | + | H | | 102 | | -89.188830
-89.188854 | 34
66 | Scattering Rice Lake
Scattering Rice Lake | | | BTB & NLS | | | | | SAMPLED
SAMPLED | | | 0 | 1 | \dagger | + | \Box | | 1 | \dagger | \dagger | | | | + | \dagger | + | | | | H | \dashv | + | + | +1 | | 104 | | -89.188862 | 109 | | | 8/15/2017 | | | 5 | Muck | | SAMPLED | | | 2 | | | 1 | | | | | | | 1 | | | 1 | | | | 1 | | □
□ | 1 | I | П | | 105 | 45.935939 | -89.188870 | 110 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 105 | 4 | Muck | Pole | SAMPLED | | | 3 | - | _ | - | | | | 4 | - | | | | | 4 | - | | 3 | | Ш | \dashv | + | \downarrow | \perp | | 106 | | -89.188878 | 111 | Scattering Rice Lake | Vilas | 8/15/2017 | | | 1 | Muck | | SAMPLED | | | 3 | + | | 3 | | | - | + | + | | | | - | + | + | 1 | | | Н | \dashv | + | + | \mathbb{H} | | 107 | | -89.188909
-89.187985 | 46
28 | Scattering Rice Lake Scattering Rice Lake | | | BTB & NLS | | | Muck
Sand | | SAMPLED
SAMPLED | | H | 0 | + | \dagger | 1 | 1 | 1 | + | + | 2 | t | 1 | | \dashv | 1 | 1 | + | t | 1 | 1 | + | + | + | 1 | | 108 | | -89.187985
-89.187993 | 28 | Scattering Rice Lake | | | | | | | | SAMPLED | | | 0 | | | l | | | _ | J | 1 | İ | | | | _ | \rfloor | 1 | l | | Ħ | 力 | 1 | İ | \parallel | | 110 | | -89.188001 | 25 | Scattering Rice Lake | | 8/15/2017 | | | | | | SAMPLED | | | 0 | 1 | 1 | Ţ | | | | Ţ | Ţ | | | | | 1 | 1 | Ţ | | | | J | Ţ | Į | П | | 111 | 45.941873 | -89.188009 | 26 | | | 8/15/2017 | LJS & JBS | | | | | DEEP | | | | + | + | - | | - | 1 | + | + | - | | | - | \dashv | + | + | 1 | | otan | \dashv | + | + | \mathbb{H} | | 112 | | -89.188017 | 0 | | | | | 112 | 0 | | | DEEP | | | | \dashv | + | + | + | 1 | + | + | + | - | | | | + | + | + | 1 | | \forall | \dashv | + | + | + | | 113 | 45.940793
45.940253 | -89.188025
-89.188033 | 0 | Scattering Rice Lake
Scattering Rice Lake | | | | 113 | | | | DEEP | | | | 1 | | | Ħ | 1 | 1 | \dagger | T | t | | | 1 | 1 | \dagger | t | t | | Ħ | \top | † | t | \dagger | | 115 | | -89.188041 | 0 | Scattering Rice Lake | | | | 115 | | | | DEEP | | | | 1 | | | | | | 1 | | | | | | | 1 | | | | | 丰 | Ţ | Į | \prod | | 116 | 45.939173 | -89.188048 | 59 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 116 | 0 | | | DEEP | | | | | | | | | | | _ | | | | | | | | | | Ш | Ш | \perp | \perp | Ш | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | | ake Namo | County | Φ. | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | 89 | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Bidens beckii | Ceratophyllum demersum | Chara spp. | Elodea canadensis | Heteranthera dubia | Myriophyllum sibiricum | Myriophyllum verticillatum
Naias floxilis | Nuphar variegata | Nymphaea odorata | Pontederia cordata | Potamogeton alpinus | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton zosteriformis | Sparganium emersum var. acaule | Sparganium fluctuans | Spirodela polyrniza
Utricularia vulgaris | Vallisneria americana | Aquatic moss | |--------------|----------------------------|-----------------------------|----------|--|--------|------------------------|------------|--------------|------------|----------|------------|--------------------|-------|----------|---------------------|-----------------------|---------------|------------------------|------------|-------------------|--------------------|------------------------|--|------------------|------------------|--------------------|---------------------|-------------------------|-----------------------|--------------------------|-----------------------|---------------------------|--------------------------------|----------------------|---|-----------------------|--------------| | 117 | | -89.188056 | <u>o</u> | - | | 8/15/2017 | | 117 | | Sec | Pol | DEEP | Notes | N | Tot | Ā | B (| 5 5 | Ç | Elo | Het | M. | M N | N | Ŋ | Por | Pot | Po l | Pot 6 | Po | Pot | Pot | Sp | Spa | ; 5 | Val | Aqı | | 118 | | -89.188064 | 35 | Scattering Rice Lake
Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 118 | 6 | Sand | Pole | SAMPLED | | | 0 | İ | | | 119 | 45.937553 | -89.188072 | 37 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 119 | 7 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | 4 | _ | \perp | Ш | | 120 | | -89.188080 | 38 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 120 | 8 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | + | + | - | + | | 121 | | -89.188088
-89.188096 | 39
40 | Scattering Rice Lake
Scattering Rice Lake | Vilas | 8/15/2017
8/15/2017 | BTB & NLS | 121 | 6 | Muck | | SAMPLED
SAMPLED | | | 2 | v | | | | | | | | | | | | 2 | | | | | | + | + | + | + | | 123 | | -89.188127 | 44 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 123 | 2 | Muck | | SAMPLED | | | 2 | • | | 1 | | | | | 1 | | 1 | | 1 | _ | | | | 1 | | | 1 | | | | 124 | 45.933234 | -89.188135 | 45 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 124 | 2 | Muck | Pole | SAMPLED | | | 1 | | | 1 | | 1 | | | | 1 | 1 | | | | | | | | | \downarrow | 1 | _ | \perp | | 125 | | -89.187211 | 29 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 125 | | Sand | Pole | SAMPLED | | | 0 | | | + | | | | | | | | | | | | | | | | + | + | + | + | | 126 | | -89.187219
-89.187227 | 30 | Scattering Rice Lake
Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 126 | 9 | Sand | | SAMPLED
SAMPLED | | | 0 | | | + | | | | | | | | | | | | | | | | + | + | + | + | | 128 | | -89.187235 | 32 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 128 | 12 | WILLER | FOIE | DEEP | | | U | | | | | | | | | | | | | | | | | | | \top | T | T | Ħ | | 129 | 45.941328 | -89.187243 | 0 | Scattering Rice Lake | Vilas | | | 129 | 0 | | | DEEP | ightharpoonup | l | | П | | 130 | 45.940788 | -89.187251 | 0 | Scattering Rice Lake | Vilas | | | 130 | 0 | | | DEEP | | | | | | _ | | | | | | | | | | | | | | | | + | + | + | + | | 131 | | -89.187259
-89.187267 | 0 | Scattering Rice Lake | Vilas | | | 131 | 0 | | | DEEP | + | + | + | Н | | 132 | | -89.187267
-89.187275 | 0 | Scattering Rice Lake
Scattering Rice Lake | Vilas | | | 132 | 0 | | | DEEP | \dagger | \dagger | \dagger | П | | 134 | | -89.187282 | 58 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 134 | 0 | | | DEEP | I | I | | | 135 | 45.938088 | -89.187290 | 57 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 135 | 12 | | | DEEP | 4 | _ | _ | \perp | | 136 | | -89.187298 | 56 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 136 | | | | DEEP | | | | | | + | | | | | | | | | | | | | | | | + | + | + | Н | | 137 | | -89.187306
-89.187314 | 55
54 | Scattering Rice Lake
Scattering Rice Lake | Vilas | 8/15/2017
8/15/2017 | BTB & NLS | 137 | 9 | | | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | + | + | + | Н | | 139 | | -89.187322 | 53 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 139 | 9 | Muck | Pole | SAMPLED | | | 0 | 140 | 45.935388 | -89.187330 | 41 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 140 | 8 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | 4 | _ | \perp | Ш | | 141 | 45.934848 | -89.187338 | 42 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 141 | 7 | Muck | Pole | SAMPLED | | | 0 | | | + | | | | | | | | | | | _ | - | | | | + | + | + | + | | 142 | | -89.187346
-89.186429 | 43
37 | Scattering Rice Lake
Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 142 | 6 | Muck | | SAMPLED
SAMPLED | | | 0 | | 1 | 1 | | 1 | | | | | 1 | | | | | 1 | 1 | | | + | + | 1 | + | | 144 | | -89.186437 | 36 | Scattering Rice Lake | Vilas | | LJS & JBS | 144 | 6 | | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | T | | | | | + | T | T | Ħ | | 145 | 45.942942 | -89.186445 | 35 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 145 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | \downarrow | ╧ | \perp | Ш | | 146 | 45.942402 | -89.186453 | 34 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 146 | 11 | Muck | Pole | SAMPLED | | | 0 | | | + | | | | | | | | | | | | | | |
 + | + | + | + | | 147 | | -89.186461 | 33 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 147 | 12 | | | DEEP | | | | | | | - | | | | | | | | | | | | | | | + | + | - | + | | 148 | | -89.186469
-89.186477 | 0 | Scattering Rice Lake
Scattering Rice Lake | Vilas | | | 148 | 0 | | | DEEP | + | + | \dagger | Ħ | | 150 | | -89.186485 | 0 | Scattering Rice Lake | Vilas | | | 150 | 0 | | | DEEP | 151 | 45.939702 | -89.186493 | 0 | Scattering Rice Lake | Vilas | | | 151 | 0 | | | DEEP | 4 | _ | _ | \perp | | | 45.939162 | -89.186501 | 0 | Scattering Rice Lake | | | | 152 | | | | DEEP | | | | | | + | | | | | | | | | | | | | | | | + | + | + | Н | | 153 | | -89.186508
-89.186516 | 0 | Scattering Rice Lake Scattering Rice Lake | | | | 153 | | | | DEEP | + | + | + | + | | 155 | | -89.186524 | 62 | Scattering Rice Lake | | 8/15/2017 | BTB & NLS | | | | | DEEP | 156 | 45.937003 | -89.186532 | 63 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 156 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | \downarrow | _ | _ | \perp | | 157 | | -89.186540 | 64 | Scattering Rice Lake | | | BTB & NLS | | | | | SAMPLED | | | 0 | - | 1 | + | | | | \dashv | + | - | H | | 4 | 1 | + | + | H | | 4 | + | + | + | \mathbb{H} | | 158 | | -89.186548 | 65 | Scattering Rice Lake | | | BTB & NLS | | | | | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | + | + | + | Н | | 159 | | -89.186556
-89.186564 | 52 | Scattering Rice Lake Scattering Rice Lake | | | BTB & NLS | | | | | SAMPLED
SAMPLED | | | 2 | | | | | | | | | | | | | | | | | | | + | + | 2 | \forall | | 161 | | -89.185648 | 38 | Scattering Rice Lake | | | | | | | | SAMPLED | | | 2 | | | 1 | | 2 | | | | | | | | | | | | | | 1 | Į | Į | П | | 162 | 45.944017 | -89.185655 | 39 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 162 | 6 | Sand | Pole | SAMPLED | | | 0 | | | - | | | | 4 | + | | | | 4 | | + | | | | 4 | + | + | - | \mathbb{H} | | 163 | | -89.185663 | 40 | Scattering Rice Lake | | | | | | | | SAMPLED | | | 0 | | | | - | | | | | | | | | | + | | | | | + | + | + | + | | 164 | | -89.185671
-89.185679 | 41 | Scattering Rice Lake
Scattering Rice Lake | | 8/15/2017
8/15/2017 | | | 9 | Sand | | SAMPLED
SAMPLED | | H | 0 | 1 | | \dagger | t | H | | + | \dagger | t | H | | 1 | | \dagger | t | H | | | + | + | \dagger | H | | 166 | | -89.185687 | 43 | Scattering Rice Lake | | | | 166 | | , mack | . 316 | DEEP | | | , | | | | | | | | | | | | | | | L | | | | I | I | I | | | 167 | 45.941317 | -89.185695 | 0 | Scattering Rice Lake | | | | 167 | 0 | | | DEEP | | | | Ī | Į | \downarrow | | | | Ţ | 1 | L | | | - | Į | Ţ | | | | Į | 4 | ļ | Ļ | ЦÌ | | 168 | | -89.185703 | 0 | Scattering Rice Lake | | | | 168 | | | | DEEP | | H | | 1 | 1 | + | | | | + | + | - | H | | + | 1 | + | + | H | | 4 | + | + | + | \mathbb{H} | | 169 | 45.940237 | -89.185711
-89.185719 | 0 | Scattering Rice Lake | | | | 169
170 | 0 | | | DEEP | | | | - | | + | | | | + | + | - | | | \dashv | | + | | | | \dashv | + | + | + | H | | | 45.939697 | -89.185719
-89.185727 | 0 | Scattering Rice Lake
Scattering Rice Lake | | | | 170 | | | | DEEP | L | | | _ | | | İ | | | _† | _ | | | | _† | | _ | | | | | T | t | <u> </u> | П | | 172 | | -89.185735 | 0 | Scattering Rice Lake | | | | 172 | 0 | | | DEEP | | | | J | 1 | | | | | 1 | Ţ | | | | 1 | 1 | Ţ | | | | | \perp | Ţ | | Ц | | 173 | | -89.185742 | 82 | Scattering Rice Lake | | | | | | | | DEEP | | | | | - | + | - | | | 4 | + | - | | | 4 | - | + | - | | | 4 | + | + | + | H | | 174 | 45.937537 | -89.185750 | 72 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 174 | 11 | | <u> </u> | DEEP | l | Ш | | | | | 1 | Ш | | | | | | | | | | | | | | | 丄 | | Ш | | | Degrees) | il Degrees) | | | | | | | | | | | | | s | atum | | nersum | | | в | ricum | icillatum | | | | snı | lifolius | ydrus | ilus | insii | eriformis | sum var. acaule | ans | 8 8 | ana | | |--------------|----------------------------|-----------------------------|----------|--|--------|------------------------|------------|--------------|------------|----------|------------|--------------------|--------|----------|---------------------|-----------------------|---------------|------------------------|------------|-------------------|--------------------|------------------------|--|------------------|------------------|--------------------|---------------------|-------------------------|-----------------------|----------------------|-----------------------|---------------------------|-------------------------|----------------------|---|-----------------------|--------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Q | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Bidens beckii | Ceratophyllum demersum | Chara spp. | Elodea canadensis | Heteranthera dubia | Myriophyllum sibiricum | Myriophyllum verticillatum
Najas flexilis | Nuphar variegata | Nymphaea odorata | Pontederia cordata | Potamogeton alpinus | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus | Potamogeton robbinsii | Potamogeton zosteriformis | Sparganium emersum var. | Sparganium fluctuans | Spirodela polyrniza
Utricularia vulgaris | Vallisneria americana | Aquatic moss | | 175 | 45.936997 | -89.185758 | 71 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 175 | 10 | Muck | Pole | SAMPLED | | | 0 | _ | Ļ | | | 176 | 45.936457 | -89.185766 | 70 | Scattering Rice Lake | | | | | | Muck | | SAMPLED | | | 0 | | | + | | | | | | | | | | | + | - | - | | | + | + | ╁ | H | | 177 | 45.935917
45.935377 | -89.185774
-89.185782 | 69 | Scattering Rice Lake
Scattering Rice Lake | | | | | | Muck | Pole | SAMPLED
SAMPLED | | | 0 | + | | Ħ | | 179 | 45.944551 | -89.184874 | 49 | Scattering Rice Lake | | 8/15/2017 | | | | Muck | | SAMPLED | | | 0 | I | | | | 180 | 45.944011 | -89.184881 | 48 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 180 | 6 | Muck | Pole | SAMPLED | | | 0 | 181 | 45.943471 | -89.184889 | 47 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 181 | 7 | Muck | Pole | SAMPLED | | | 0 | | | _ | | | | _ | | - | | | | | | | | _ | | 4 | _ | ╄ | H | | 182 | 45.942931 | -89.184897 | 46 | Scattering Rice Lake | | 8/15/2017 | | | | Muck | | SAMPLED | | | 0 | _ | + | Н | | 183 | 45.942391
45.941851 | -89.184905
-89.184913 | 45 | Scattering Rice Lake Scattering Rice Lake | | 8/15/2017 | | 183 | | Muck | Pole | SAMPLED
DEEP | | | 0 | _ | | Н | | 185 | 45.941311 | -89.184921 | 0 | Scattering Rice Lake | Vilas | 0/13/2017 | 230 W 3B0 | 185 | | | | DEEP | 186 | 45.940771 | -89.184929 | 0 | Scattering Rice Lake | Vilas | | | 186 | 0 | | | DEEP | 187 | 45.940231 | -89.184937 | 0 | Scattering Rice Lake | Vilas | | | 187 | 0 | | | DEEP | | | | Н | - | + | | | | | + | | | | - | | - | - | | | Ш | - | + | + | \sqcup | | 188 | 45.939691 | -89.184945 | 0 | Scattering Rice Lake | Vilas | | | 188 | | | | DEEP | | - | | Н | + | + | - | | Н | | + | - | H | | 1 | 1 | + | + | + | | Н | + | + | H | H | | 189 | 45.939151
45.938611 | -89.184953
-89.184961 | 0 | Scattering Rice Lake Scattering Rice Lake | Vilas | | | 189 | | | | DEEP | | H | | H | 1 | \dagger | | | | 1 | + | | | | 1 | 1 | \dagger | \dagger | + | | | + | + | + | H | | 191 | 45.938071 | -89.184969 | 73 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | | | | | DEEP | T | | П | | 192 | 45.937531 | -89.184976 | 74 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 192 | 10 | Mucl | Pole | SAMPLED | | | 0 | I | | | | 193 | 45.936991 | -89.184984 | 75 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 193 | 10 | Muck | Pole | SAMPLED | | | 0 | _ | L | | | 194 | 45.936452 | -89.184992 | 76 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 194 | 8 | Mucl | Pole | SAMPLED | | _ | 0 | | | + | - | | | - | | - | | | | | | | | - | | \perp | + | + | H | | 195 | 45.935912 | -89.185000 | 77 | Scattering Rice Lake | Vilas | 8/15/2017 | | 195 | | Sand | | SAMPLED | | | 1 | | | 1 | - | 1 | | | | | | | | | | 1 | + | | | 1 | + | 2 | H | | 196 | 45.945086
45.944546 | -89.184092
-89.184100 | 50 | Scattering Rice Lake Scattering Rice Lake | Vilas | 8/15/2017
8/15/2017 | LJS & JBS | 196
197 | | Muck | | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | 1 | | | | | 1 | _ | + | Ħ | | 198 | 45.944006 | -89.184107 | 52 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 198 | | Muck | | SAMPLED | | | 0 | I | | 199 | 45.943466 | -89.184115 | 53 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 199 | 7 | Mucl | Pole | SAMPLED | | | 0 | Ļ | Ш | | 200 | 45.942926 | -89.184123 | 54 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 200 | 8 | Muck | Pole | SAMPLED | | | 0 | | | - | - | | | _ | | - | | | | | | | | - | | _ | + | ╄ | H | | 201 | 45.942386 | -89.184131 | 55 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | | 11 | Muck | Pole | SAMPLED | | | 0 | |
 | | | | | | | | | | | | | | | | | _ | + | Н | | 202 | 45.941846
45.941306 | -89.184139
-89.184147 | 56 | Scattering Rice Lake Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 202 | | | | DEEP | _ | | Н | | 204 | 45.940766 | -89.184155 | 0 | Scattering Rice Lake | Vilas | | | 204 | | | | DEEP | T | T | П | | 205 | 45.940226 | -89.184163 | 0 | Scattering Rice Lake | Vilas | | | 205 | 0 | | | DEEP | 206 | 45.939686 | -89.184171 | 0 | Scattering Rice Lake | Vilas | | | 206 | 0 | | | DEEP | | | | | | - | - | | | | | - | | | | | | | | | | _ | _ | ╄ | Н | | 207 | 45.939146 | -89.184179 | 95 | Scattering Rice Lake | Vilas | 8/15/2017 | | 207 | | | | DEEP | - | + | + | H | | 208 | 45.938606
45.938066 | -89.184187
-89.184195 | 83 | Scattering Rice Lake Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 208 | | Sand | Pole | DEEP | | | 0 | + | + | Ħ | | | 45.937526 | | | Scattering Rice Lake | | | | | | | | SAMPLED | | | 0 | T | | П | | 211 | 45.936986 | -89.184210 | 79 | Scattering Rice Lake | | | BTB & NLS | | | | Pole | SAMPLED | | | 0 | I | | | | 212 | 45.936446 | -89.184218 | 78 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 212 | 7 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | | 4 | _ | Ļ | Ш | | 213 | 45.94562 | -89.18331 | | Scattering Rice Lake | | | LJS & JBS | | | | | | | | 2 | | - 2 | 2 | | | | | | | | | | | | | 1 | 1 | | \dashv | + | ╄ | Н | | 214 | 45.94508
45.94454 | -89.183318
-89.183326 | 58
59 | Scattering Rice Lake
Scattering Rice Lake | | | LJS & JBS | | | | Pole | SAMPLED
SAMPLED | | | 0 | + | 1 | H | | 216 | 45.944 | -89.183333 | | Scattering Rice Lake | | | LJS & JBS | | | | | SAMPLED | | | 0 | + | Ť | Ħ | | 217 | 45.94346 | -89.183341 | 61 | Scattering Rice Lake | | 8/15/2017 | | | | | Pole | | | | 0 | | | I | | | | | Ţ | | | | | | Ţ | I | I | | | 1 | I | L | П | | 218 | 45.94292 | -89.183349 | 62 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 218 | 9 | Muck | Pole | SAMPLED | | | 0 | Ц | - | \downarrow | | | Ц | | \downarrow | | L | | | 4 | \downarrow | 1 | 1 | | | 1 | + | \downarrow | \sqcup | | 219 | 45.94238 | -89.183357 | 63 | Scattering Rice Lake | | | LJS & JBS | | | Muck | Pole | SAMPLED | | | 0 | Н | - | + | - | | | - | + | - | - | | - | - | + | + | + | - | | + | + | + | \dashv | | 220 | 45.94184
45.9413 | -89.183365
-89.183373 | 64 | | | 8/15/2017 | LJS & JBS | 220 | | | | DEEP | | H | | Н | | + | | | | - | + | | | | 1 | | | + | + | | \Box | 1 | + | + | \forall | | 221 | 45.9413
45.94076 | -89.183373
-89.183381 | 0 | Scattering Rice Lake
Scattering Rice Lake | | | | 221 | | | | DEEP | | | | | | t | | | | 1 | \dagger | l | | | 1 | 1 | 1 | \dagger | T | | | 1 | \dagger | t | Ħ | | 223 | 45.94022 | -89.183389 | 0 | Scattering Rice Lake | | | | 223 | | | | DEEP | | | | | | | | | | | | | | | 1 | | | | | | | İ | ightharpoonup | I | П | | 224 | 45.93968 | -89.183397 | 96 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 224 | 13 | | | DEEP | | | | Ц | | 1 | | | | | _ | | | | | | 4 | 1 | | | | 1 | \downarrow | \downarrow | Ш | | 225 | 45.93914 | -89.183405 | | | | | BTB & NLS | | | | | DEEP | | _ | | Н | - | + | - | | | - | + | | | | - | - | + | + | - | | | - | + | \downarrow | \dashv | | 226 | 45.9386 | -89.183413 | | Scattering Rice Lake | | | | | | | | | | | 0 | Н | - | + | - | | H | - | + | + | | | 1 | - | + | + | - | - | | + | + | + | H | | 227 | 45.93806
45.93752 | -89.183421
-89.183429 | 85 | Scattering Rice Lake
Scattering Rice Lake | | | BTB & NLS | | | | | SAMPLED
SAMPLED | | | 0 | H | 1 | \dagger | t | | H | | \dagger | t | H | H | 1 | 1 | \dagger | \dagger | t | t | H | + | + | t | H | | 229 | 45.93752 | -89.183436 | | Scattering Rice Lake | | | BTB & NLS | | | | Pole | SAMPLED | | L | 0 | | | İ | İ | | | | | İ | L | | | | | Ī | İ | ľ | | ╛ | Ī | T | П | | 230 | 45.945614 | -89.182536 | 72 | Scattering Rice Lake | | | | | | | | | | | 3 | | | 1 | | 1 | | | \perp | | | | | | 1 | I | 1 | 3 | | I | | L | Ц | | 231 | 45.945074 | -89.182544 | 71 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 231 | 0 | | | OTHER | Stumps | | | Н | - | + | | | Н | | \perp | | | | _ | _ | + | + | - | | | - | + | + | \sqcup | | 232 | 45.944535 | -89.182552 | 70 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 232 | 3 | Sano | Pole | SAMPLED | | L | 2 | Ш | | | 1_ | <u> </u> | Ш | | | 1_ | <u> </u> | Ш | l | | | | 1 | | Ш | | 丄 | 2 | Ш | | ber | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | | _ | | | | ber | | | | _ | | | Total Rake Fullness | Myriophyllum spicatum | Bidens beckii
Ceratophyllum demersum | Ceratophyllum echinatum | | Elodea canadensis | Myriophyllum sibiricum | Myriophyllum verticillatum | IIs | regata | Nymphaea ouorata
Pontederia cordata | Potamogeton alpinus | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusinus | Potamogeton robbinsii | Potamogeton zosteriformis | Sparganium emersum var. acaule | Sparganium fluctuans | opriodera porgrinza
Utricularia vulgaris | Vallisneria americana | ssc | |-------------|----------------------------|-----------------------------|-----------|--|--------|------------------------|------------|-------------|------------|----------|------------|--------------------|-------|----------|---------------------|-----------------------|---|-------------------------|------------|-------------------|------------------------|----------------------------|----------------|------------------|--|---------------------|-------------------------|-----------------------|---------------------|-----------------------|---------------------------|--------------------------------|----------------------|---|-----------------------|--------------| | Point Numbe | iitude (C | ngitude | | Lake Name | County | te | Field Crew | Point Numbe | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | tal Rake | riophyll | Bidens beckli
Ceratophyllur | ratophy | Chara spp. | Elodea canadensis | riophyll | riophyll | Najas flexilis | Nuphar variegata | ntederia | tamoget | tamoget | tamoget | tamoget | tamoget | tamoget | arganiu | arganiu | icularia | Ilisneria | Aquatic moss | | | | | <u>Q</u> | _ | | Date | | | | | | | ž | N | | Ϋ́ | S S | 3 8 | చ | <u> </u> | Š | ΜĀ | s. S | 2 2 | Po P | 2 | Pol | 2 2 | 0 0 | - A | P _O | Sp | g g | <u> </u> | ۸al | Αd | | 233 | 45.943995
45.943455 | -89.182559
-89.182567 | 69 | Scattering Rice Lake
Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 233 | 8 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | 1 | | | H | | | | | | | | | + | | | | H | + | + | Ħ | П | | 235 | 45.942915 | -89.182575 | 67 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 235 | 9 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | \top | | | T | П | T | T | П | Ħ | | 236 | | -89.182583 | 66 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 236 | 10 | Muck | Pole | SAMPLED | | | 0 | 237 | 45.941835 | -89.182591 | 65 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 237 | 13 | | | DEEP | | | | | | | | | | | | | | | | | | | L | | | | Ш | | | 238 | 45.941295 | -89.182599 | 85 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 238 | 12 | | | DEEP | | | | 4 | | | | | | | | | | | | \dashv | | | ┺ | | \downarrow | \bot | Ш | | | 239 | 45.940755 | -89.182607 | 84 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 239 | 12 | | | DEEP | | | | \dashv | | | | | | | | | | - | | + | - | | ╄ | | + | + | Н | Н | | 240 | | -89.182615 | 0 | Scattering Rice Lake | Vilas | | | 240 | 0 | | | DEEP | | | | | | | | _ | | | | | | | | _ | | - | \vdash | Н | + | + | Н | Н | | 241 | | -89.182623 | 97 | Scattering Rice Lake | Vilas | | BTB & NLS | | 11 | | | DEEP | | | | + | | | H | + | | | - | | | + | | + | + | + | \vdash | H | + | + | H | Н | | 242 | | -89.182631 | 93 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 242 | 6 | Muck | Pole | SAMPLED | | | 0 | 1 | | + | | | | | | | | | | + | ١. | 1 | + | | + | + | H | H | | 243 | | -89.182639
-89.182647 | 92 | Scattering Rice Lake
Scattering Rice Lake | Vilas | 8/15/2017
8/15/2017 | BTB & NLS | 244 | 7 | Sand | | SAMPLED
SAMPLED | | | 0 | | 1 1 | | | | | | | | | | | $^{+}$ | 1 | 1 | | П | + | + | H | П | | 245 | | -89.182655 | 89 | Scattering Rice Lake | Vilas | 8/15/2017 | | 245 | 6 | Sand | | SAMPLED | | | 2 | | 1 | | | T | | | | | | | | T | 1 | | | П | 1 | T | 2 | П | | 246 | | -89.182663 | 88 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 246 | 5 | Sand | | SAMPLED | | | 2 | | | 2 | | 1 | | | | | | | | | | | | | | | | 1 | | 247 | 45.945609 | -89.181762 | 73 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 247 | 2 | Muck | Pole | SAMPLED | | | 3 | | 1 1 | | | 1 | | | | | | | | | 3 | 1 | 1 | | | | Ш | | | 248 | 45.945069 | -89.18177 | 74 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 248 | 3 | Muck | Pole | SAMPLED | | | 3 | | 3 | 3 | | _ | | | | | | | 1 | 4 | | _ | 1 | Ш | \downarrow | 4 | Ш | | | 249 | 45.944529 | -89.181777 | 75 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 249 | 5 | Muck | Pole | SAMPLED | | | 0 | 4 | | | Н | 4 | | | | | | | | \perp | - | - | ┡ | H | \downarrow | ╄ | H | Н | | 250 | 45.943989 | -89.181785 | 76 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 250 | 6 | Muck | Pole | SAMPLED | | | 0 | + | | | H | - | | |
- | + | | - | | + | + | - | ┾ | H | + | + | H | Н | | 251 | 45.943449 | -89.181793 | 77 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | | 8 | Muck | | SAMPLED | | | 0 | - | | | | - | | | | + | | - | | + | + | | ╁ | H | + | + | H | H | | 252 | 45.942909 | -89.181801 | 78 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 252 | 9 | Muck | | SAMPLED | | | 0 | | | | | - | | | | 1 | | | | + | | | | Н | + | + | H | Н | | 253 | | -89.181809
-89.181817 | 79
80 | Scattering Rice Lake
Scattering Rice Lake | Vilas | 8/15/2017
8/15/2017 | LJS & JBS | 253
254 | 10 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | $^{+}$ | | | + | | + | + | Ħ | H | | 254 | 45.941289 | -89.181825 | 81 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 255 | 11 | Muck | Pole | SAMPLED | | | 0 | T | | | | | | | | | | T | | \top | | | T | | + | + | П | Ħ | | 256 | 45.940749 | -89.181833 | 82 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 256 | 11 | Muck | | SAMPLED | | | 0 | 257 | 45.940209 | -89.181841 | 83 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 257 | 11 | | | DEEP | 258 | 45.939669 | -89.181849 | 98 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 258 | 7 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | | | \perp | | 1 | L | | \downarrow | _ | 1 | | | 259 | 45.938049 | -89.181873 | 90 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 259 | 2 | Sand | Pole | SAMPLED | | | 1 | _ | | | | | | | 1 | | | | | \perp | | | ╄ | | 4 | _ | Ш | Ш | | 260 | 45.945063 | -89.180996 | 86 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 260 | 2 | Sand | Pole | SAMPLED | | | 3 | + | 3 | 3 | H | 2 | | | 1 | + | | - | | + | 1 | 1 | 1 | H | + | + | 1 | Н | | 261 | 45.944523 | -89.181003 | 87 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 261 | 5 | Muck | Pole | SAMPLED | | | 0 | - | | | | - | | | | + | | - | | + | + | | ╁ | H | + | + | H | H | | 262 | 45.943983 | -89.181011 | 89 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 262 | 6 | Muck | | SAMPLED | | | 0 | | | | | - | | | | 1 | | | | + | | 1 | | Н | + | + | H | Н | | 263 | 45.943443
45.942904 | -89.181019
-89.181027 | 90 | Scattering Rice Lake
Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 263
264 | 8 | Muck | | SAMPLED
SAMPLED | | | 0 | 1 | | | | | | | | | | | | + | + | | + | | + | + | Ħ | H | | 265 | | -89.181035 | 92 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 265 | 11 | Muck | Pole | SAMPLED | | | 0 | T | | | | | | | | | | T | | \top | | | + | П | \top | \top | Ħ | | | 266 | | -89.181043 | 93 | Scattering Rice Lake | Vilas | | | | 10 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | П | | | П | | | 267 | 45.941284 | -89.181051 | 94 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 267 | 10 | Muck | Pole | SAMPLED | | | 0 | 268 | 45.940744 | -89.181059 | 95 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 268 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | L | | \perp | | Ш | | | 269 | 45.940204 | -89.181067 | 96 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 269 | 6 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | 4 | | | L | | \downarrow | _ | Ш | | | 270 | 45.944518 | -89.180229 | 88 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 270 | 4 | Muck | Pole | SAMPLED | | | 3 | 4 | 3 | 3 | | | 1 | | | + | | - | 1 | \perp | 1 | | 1 | \vdash | + | + | 1 | Н | | 271 | 45.943978 | -89.180237 | 103 | Scattering Rice Lake | Vilas | 8/15/2017 | LJS & JBS | 271 | 4 | Muck | Pole | SAMPLED | | | 2 | + | 1 | _ | H | - | | | - | + | | - | 2 | + | 1 | - | 1 | H | + | + | H | Н | | 272 | 45.943438 | -89.180245 | | | | | | | | | | SAMPLED | | | 0 | + | | | H | + | | | - | + | | | | + | | + | ┢ | H | + | + | H | Н | | 273 | | -89.180253 | 101 | Scattering Rice Lake | | 8/15/2017 | | | | | | SAMPLED | | | 0 | + | | | | | | | | + | | | | + | | | + | H | - | + | H | H | | 274 | | -89.180261
-89.180269 | 100
99 | Scattering Rice Lake
Scattering Rice Lake | | | | | | | | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | + | | | | Н | + | + | Ħ | Н | | 275 | 45.941278 | -89.180277 | 98 | Scattering Rice Lake | | 8/15/2017 | | | | | | SAMPLED | | | 0 | 1 | | | | | | | | | | | | \top | | | t | Ħ | + | \top | Ħ | Ħ | | 277 | | -89.180285 | 97 | Scattering Rice Lake | Vilas | | | | | | | SAMPLED | | | 3 | T | | | | | | | | | | Ī | | \top | | | T | | + | + | 3 | Ħ | | 278 | | -89.179463 | 103 | | Vilas | 8/15/2017 | | | | | | SAMPLED | | | 1 | | 1 | L | 1 | 1 | | | | | l | | | I | | | | | | | | | | 279 | | -89.179471 | 104 | | | | BTB & NLS | | | Muck | | SAMPLED | | | 1 | 1 | 1 | | П | 1 | | | | I | | | | I | 1 | | 1 | | \perp | | Ц | Ц | | 280 | | -89.179479 | 105 | | | 8/15/2017 | BTB & NLS | 280 | | | | SAMPLED | | | 1 | | | | Ш | | | | | - - | | | | ot | 1 | | L | Ц | \perp | 퇶 | ot | Ц | | 281 | 45.942352 | -89.179487 | 106 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 281 | 7 | Muck | Pole | SAMPLED | | | 0 | 4 | 1 | - | \sqcup | 4 | - | | 4 | | - | 1 | | 4 | 1 | 1 | 1 | \sqcup | \downarrow | \downarrow | Ш | Ц | | 282 | | -89.179495 | 107 | Scattering Rice Lake | Vilas | 8/15/2017 | BTB & NLS | 282 | 8 | Muck | Pole | SAMPLED | | | 0 | + | - | 1 | \sqcup | + | | | - | - | | - | H | + | + | + | \perp | \vdash | + | + | \sqcup | Н | | 283 | | | 108 | | | | BTB & NLS | | | Muck | Pole | SAMPLED | | | 0 | + | + | + | + | + | + | | + | + | + | + | | + | + | + | ╀ | \vdash | + | + | H | Н | | 284 | | -89.178705 | 102 | | Vilas | 8/15/2017 | | | 4 | Muck | | SAMPLED | | | 2 | V | 1 | | H | + | 1 | H | + | + | - | + | H | + | + | | 1 | Н | + | + | 2 | Н | | 285 | | | | | | | BTB & NLS | | | | | SAMPLED
SAMPLED | | | 2 | V | 1 | + | H | 1 | + | | \dashv | 1 | + | \dagger | | + | 1 | + | + | H | + | + | 2 | H | | 286 | 45.941807
45.941267 | -89.178721
-89.178729 | | Scattering Rice Lake
Scattering Rice Lake | | 8/15/2017 | | | | Muck | | SAMPLED
SAMPLED | | | 3 | V | 4 | t | H | \dagger | | | \dashv | t | | t | H | \dagger | + | t | 1 | H | \dagger | \dagger | 1 | H | | 201 | 40.841207 | -03.1/0/29 | 29 | Controlling Price Lake | VIIIS | o/10/201/ | DID & NLS | 201 | 4 | IVIUCK | I FOIE | SAWPLEU | 1 | | J | v | 1 | | | | | 1 | | | | 1 | | | 1 | | <u> </u> | | | | | ш | | Part | | ial Degrees) | imal Degrees) | | | | | | | | | | | | | ess | demersum | | sis | ibiricum | | mplifolius | pihydrus | nsillus | chardsonii | obbinsii | pirillus | aseyi | ricana | |--|-------------|-----------------|---------------|----|------------|--------|-----------|------------|-------------|------------|----------|-----------|----------|-------|----------|-----------------|---------------|------------|----------------|----------------|----------------|--------------|--------------|--------------|---------------|---------------|--------------|--------------|-----------------| | The School | oint Number | -atitude (Decim | ongitude (Dec | ٥ | ake Name | Sounty | Jate | Field Crew | oint Number | Depth (ft) | Sediment | ole; Rope | Comments | Votes | Nuisance | Fotal Rake Full | Seratophyllum | Chara spp. | ∃lodea canader | Myriophyllum s | Vajas flexilis | otamogeton a | otamogeton e | otamogeton p | otamogeton ri | otamogeton re | otamogeton s | otamogeton v | /allisneria ame | | 1 | | | | | | | | | 1 | | | | | | | | | | | | | | | _ | | | | | | | 4 4,000 4,000 5,000
5,000 5,00 | 2 | 45.940900 | -89.227888 | 53 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 2 | 12 | | | DEEP | | | | | | | | | | | | | | | _ | | | \$ 684104 692711 57 OBELSEN VOS STORT LEASEN SE | 3 | 45.940360 | -89.227896 | 52 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 3 | 3 | Sand | Pole | SAMPLED | | | 2 | | | | | | | | | | | | \dashv | | | 6 | 4 | 45.941974 | -89.227099 | 55 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 4 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | _ | | | To | \dashv | _ | | Section Sect | | | | | | | | | | | C | Dele | | | | | 4 | | | | | | | | | | | \dashv | | | 9 4 64909 | | | | | | | | | | | | | | | | 1 | | | | | 1 | | | | | | | T | | | 11 | 17 | 10 | 45.941969 | -89.226325 | 59 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 10 | 12 | | | DEEP | | | | | | | | | | | | | | | | | | 19 | 11 | 45.941429 | -89.226333 | 58 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 11 | 12 | | | DEEP | | | | | | | | | | | | | | | \perp | | | 1 | 12 | 45.940889 | -89.226340 | 0 | Otter Lake | Vilas | | | 12 | 0 | | | DEEP | | | | | | | | | | | | | | | _ | | | 15 | 13 | 45.940349 | -89.226348 | 49 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 13 | 13 | | | DEEP | | | | | | | | | | | | | | | _ | | | 10 | 14 | 45.939809 | -89.226355 | 48 | | Vilas | 8/15/2017 | LJS & JBS | 14 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | \dashv | | | 17 | | | | | | | | | | 1 | | | | | | 1 | | | | | 1 | | | | | | | \dashv | | | 19. 45 M4504 48225550 0 Office Lake Visio 19. 10 0 O CEE LAKE VISIO 19. 10 O O CEE LAKE VISIO 19. 10 O O CEE LAKE VISIO 19. 10 O O O CEE LAKE VISIO 19. 10 O O O O CEE LAKE VISIO 19. 10 O O O O CEE LAKE VISIO 19. 10 O O O O O CEE LAKE VISIO 19. 10 O O O O O O O O O O O O O O O O O O | | | | | | | | | | | Sand | Pole | | | | 0 | | | | | | | | | | | | \dashv | | | 19 | | | | | | | 6/15/2017 | LJS & JBS | 20 45.940504 99.225071 0 Orec Lake Vise 8155077 LIS A,885 27 13 1 | 22 45.09/204 -06.22556 47 Other Lake View 9152017 CTB & N.S. 23 5 Seed Pose SAMPLED 0 0 1 1 1 1 1 2 2 2 4 5 SAMPLED 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 23 45 817898 88 224894 34 Offer Links Viss 8152017 815 8.NS 23 5 Swo Pos SAMPLED 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 21 | 45.939804 | -89.225581 | 46 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 21 | 13 | | | DEEP | | | | | | | | | | | | | | | | | | 24 45 94795 48 224702 35 Oter Lake Vise 8150077 8TB ANS 24 1 Sand Pole SAMPLED 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 22 | 45.939264 | -89.225589 | 47 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 22 | 5 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | \perp | | | 25 45946918 49 224710 30 CRIVILLAN VIEW BYSCOTT STB ANS 25 3 Sand Proc SAMPLED 2 2 2 1 1 1 1 1 1 1 1 1 2 2 3 454578 49 224715 43 CRIVILLAN VIEW BYSCOTT BYS ANS 2 2 8 Sand Proc SAMPLED 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 23 | 45.947898 | -89.224694 | 34 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 23 | 5 | Sand | Pole | SAMPLED | | | 2 | | | | | 1 | | | | 1 | | | 4 | 2 | | 26 | 24 | 45.947358 | -89.224702 | 35 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 24 | 1 | Sand | Pole | SAMPLED | | | 1 | | | | | 1 | | | | 1 | | | \dashv | 1 | | 27 46 945736 95 224725 43 OBIO LINIO VISIS 9152017 BTS & NLS 27 8 Sand Pole SAMPLED 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 25 | 45.946818 | -89.224710 | 39 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 25 | 3 | Sand | Pole | SAMPLED | | | | | | | | 2 | | | | 1 | | 1 | \dashv | 1 | | 28 | \dashv | _ | | 29 45 944555 -99 224740 47 Offer Lisbe Viss 8152017 BTB & N.S. 29 8 Sand Pole SAMPLED 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | \dashv | 2 | | 30 45 944118 | | | | | | | | | | | | | | | | 1 | | | | 1 | | | | | | | | T | _ | | 31 45 943039 -89 224770 0 Otter Lake Vilas 8/15/2017 BTB & NLS 31 10 Sand Pole SAMPLED 0 0 DEEP | | | | | | | | | | | | | | | | 2 | | | | | 1 | | | | | | 1 | | 2 | | 33 45941959 -88 224777 0 Otter Lake Vilas | 31 | 45.943039 | | 54 | | Vilas | | BTB & NLS | 31 | 10 | Sand | Pole | | | | 0 | | | | | | | | | | | | | | | 34 45,941419 -89,224785 0 Otter Lake Vilas | 32 | 45.942499 | -89.224770 | 0 | Otter Lake | Vilas | | | 32 | 0 | | | DEEP | | | | | | | | | | | | | | | \perp | | | 35 45,940879 -89,224800 0 Otter Lake Vilas 35 0 DEEP | 33 | 45.941959 | -89.224777 | 0 | Otter Lake | Vilas | | | 33 | 0 | | | DEEP | | | | | | | | | | | | | | | _ | | | 36 | 34 | 45.941419 | -89.224785 | 0 | Otter Lake | Vilas | | | 34 | 0 | | | DEEP | | | | | | | | | | | | | | | \dashv | | | 37 45.939799 -89.224807 45 Otter Lake Vilas 8/15/2017 LJS & JBS 37 13 DEEP 38 45.939259 -89.224815 44 Otter Lake Vilas 8/15/2017 LJS & JBS 38 8 Sand Pole SAMPLED 0 0 39 45.947893 -89.223920 33 Otter Lake Vilas 8/15/2017 BTB & NLS 39 10 Sand Pole SAMPLED 0 0 40 45.947353 -89.223925 36 Otter Lake Vilas 8/15/2017 BTB & NLS 40 14 DEEP 41 45.946813 -89.223935 38 Otter Lake Vilas 8/15/2017 BTB & NLS 41 14 DEEP 42 45.946273 -89.223943 41 Otter Lake Vilas 8/15/2017 BTB & NLS 42 14 DEEP 43 45.945733 -89.223951 42 Otter Lake Vilas 8/15/2017 BTB & NLS 43 14 DEEP 44 45.945193 -89.223956 45 Otter Lake Vilas 8/15/2017 BTB & NLS 44 14 DEEP 45 45.944653 -89.223966 46 Otter Lake Vilas 8/15/2017 BTB & NLS 45 14 DEEP 46 45.944113 -89.223973 49 Otter Lake Vilas 8/15/2017 BTB & NLS 45 14 DEEP 47 45.943573 -89.223981 53 Otter Lake Vilas 8/15/2017 BTB & NLS 46 12 DEEP 48 49.94353 -89.223986 53 Otter Lake Vilas 8/15/2017 BTB & NLS 46 12 DEEP 49 45.943673 -89.223981 50 Otter Lake Vilas 8/15/2017 BTB & NLS 46 12 DEEP 49 45.943673 -89.223981 50 Otter Lake Vilas 8/15/2017 BTB & NLS 48 0 DEEP 50 45.941953 -89.223981 50 Otter Lake Vilas 8/15/2017 BTB & NLS 48 0 DEEP 51 45.941953 -89.223981 50 Otter Lake Vilas 8/15/2017 BTB & NLS 49 0 DEEP 51 45.941953 -89.223981 0 Otter Lake Vilas 8/15/2017 BTB & NLS 49 0 DEEP 51 45.941953 -89.224003 0 Otter Lake Vilas 8/15/2017 BTB & NLS 49 0 DEEP 51 45.941953 -89.224018 0 Otter Lake Vilas 8/15/2017 BTB & NLS 49 0 DEEP 52 45.940873 -89.224018 0 Otter Lake Vilas 50 0 DEEP | 35 | 45.940879 | | 0 | Otter Lake | Vilas | | | 35 | 0 | | | DEEP | | | | | | | | | | | | | | | _ | | | 38 | 1 | \dashv | _ | | 39 45,947893 -89,223920 33 Otter Lake Vilas 8/15/2017 BTB & NLS 39 10 Sand Pole SAMPLED 0 0 | | | | | | | | | | | c · | D-1 | | | | | | | | | | | | | | | 1 | \dashv | | | 40 45.947353 89.223928 36 Otter Lake Vilas 8/15/2017 BTB & NLS 40 14 DEEP 41 45.946813 89.223935 38 Otter Lake Vilas 8/15/2017 BTB & NLS 41 14 DEEP 42 45.946273 89.223943 41 Otter Lake Vilas 8/15/2017 BTB & NLS 42 14 DEEP 43 45.946273 89.223951 42 Otter Lake Vilas 8/15/2017 BTB & NLS 43 14 DEEP 44 45.945193 89.223958 45 Otter Lake Vilas 8/15/2017 BTB & NLS 44 14 DEEP 45 45.944653 89.223966 46 Otter Lake Vilas 8/15/2017 BTB & NLS 45 14 DEEP 46 45.944113 89.223973 49 Otter Lake Vilas 8/15/2017 BTB & NLS 46 12 DEEP 47 45.943573 89.223981 50 Otter Lake Vilas 8/15/2017 BTB & NLS 47 8 Sand Pole SAMPLED 48 45.943033 89.223988 53 Otter Lake Vilas 8/15/2017 BTB & NLS 48 0 DEEP 49 45.942493 89.223996 0 Otter Lake Vilas 8/15/2017 BTB & NLS 48 0 DEEP 50 45.944983 89.223996 0 Otter Lake Vilas 8/15/2017 BTB & NLS 48 0 DEEP 51 45.941953 89.224003 0 Otter Lake Vilas 50 0 DEEP 52 45.940873 89.224011 0 Otter Lake Vilas 51 0 DEEP | \dashv | _ | | 41 | | | | | | | | | | | Janu | i Jie | | | | U | | | | | | | | | | | | \exists | | | 42 45.946273 -89.223943 41 Otter Lake Vilas 8/15/2017 BTB & NLS 42 14 DEEP 43 45.945733 -89.223951 42 Otter Lake Vilas 8/15/2017 BTB & NLS 43 14 DEEP 44 45.945193 -89.223958 45 Otter Lake Vilas 8/15/2017 BTB & NLS 44 14 DEEP 45 45.944653 -89.223966 46 Otter Lake Vilas 8/15/2017 BTB & NLS 45 14 DEEP 46 45.944113 -89.223973 49 Otter Lake Vilas 8/15/2017 BTB & NLS 46 12 DEEP 47 45.943573 -89.223981 50 Otter Lake Vilas 8/15/2017 BTB & NLS 47 8
Sand Pole SAMPLED 48 45.943033 -89.223988 53 Otter Lake Vilas 8/15/2017 BTB & NLS 48 0 DEEP 49 45.94393 -89.223996 0 Otter Lake Vilas 8/15/2017 BTB & NLS 48 0 DEEP 50 45.941953 -89.224013 0 Otter Lake Vilas 50 0 DEEP 51 45.941973 -89.224011 0 Otter Lake Vilas 51 0 DEEP 52 45.940873 -89.224018 0 Otter Lake Vilas 55 0 DEEP | T | | | 43 | 45 45,944653 -89,223966 46 Otter Lake Vilas 8/15/2017 BTB & NLS 45 14 DEEP 46 45,944113 -89,223973 49 Otter Lake Vilas 8/15/2017 BTB & NLS 46 12 DEEP 47 45,943573 -89,223981 50 Otter Lake Vilas 8/15/2017 BTB & NLS 47 8 Sand Pole SAMPLED 48 45,943033 -89,223988 53 Otter Lake Vilas 8/15/2017 BTB & NLS 48 0 DEEP 49 45,942493 -89,223996 0 Otter Lake Vilas 8/15/2017 BTB & NLS 48 0 DEEP 50 45,941953 -89,224003 0 Otter Lake Vilas 50 0 DEEP 51 45,941413 -89,224011 0 Otter Lake Vilas 51 0 DEEP 52 45,940873 -89,224018 0 Otter Lake Vilas 52 0 DEEP | 43 | 45.945733 | -89.223951 | 42 | Otter Lake | Vilas | 8/15/2017 | | 43 | 14 | | | DEEP | | | | | | | | | | | | | | | | | | 46 45.944113 -89.223973 49 Otter Lake Vilas 8/15/2017 BTB & NLS 46 12 DEEP 47 45.943573 -89.223981 50 Otter Lake Vilas 8/15/2017 BTB & NLS 47 8 Sand Pole SAMPLED 0 48 45.943033 -89.223988 53 Otter Lake Vilas 8/15/2017 BTB & NLS 48 0 DEEP 49 45.942493 -89.223996 0 Otter Lake Vilas 49 0 DEEP 50 45.941953 -89.224003 0 Otter Lake Vilas 50 0 DEEP 51 45.941413 -89.224011 0 Otter Lake Vilas 51 0 DEEP 52 45.940873 -89.224018 0 Otter Lake Vilas 52 0 DEEP | 44 | 45.945193 | -89.223958 | 45 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 44 | 14 | | | DEEP | | | | | | | | | | | | | | | \dashv | | | 47 45.943573 -89.223981 50 Otter Lake Vilas 8/15/2017 BTB & NLS 47 8 Sand Pole SAMPLED 0 | 45 | 45.944653 | -89.223966 | 46 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 45 | 14 | | | DEEP | | | | | | | | | | | | | | - | 4 | | | 48 | 46 | 45.944113 | -89.223973 | 49 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 46 | 12 | | | DEEP | | | | | | | | | | | | | | | 4 | | | 49 45.942493 -89.223996 0 Otter Lake Vilas 49 0 DEEP 50 45.941953 -89.224003 0 Otter Lake Vilas 50 0 DEEP 51 45.941413 -89.224011 0 Otter Lake Vilas 51 0 DEEP 52 45.940873 -89.224018 0 Otter Lake Vilas 52 0 DEEP | 47 | | -89.223981 | 50 | Otter Lake | | 8/15/2017 | BTB & NLS | 47 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | \dashv | \dashv | | | 50 45.941953 -89.224003 0 Otter Lake Vilas 50 0 DEEP 51 45.941813 -89.224011 0 Otter Lake Vilas 51 0 DEEP 52 45.940873 -89.224018 0 Otter Lake Vilas 52 0 DEEP 52 DEEP | | | | | | | 8/15/2017 | BTB & NLS | | | | | | | | | | | | | | | | | | | - | \dashv | | | 51 45.941413 -89.224011 0 Otter Lake Vilas 51 0 DEEP 52 45.940873 -89.224018 0 Otter Lake Vilas 52 0 DEEP | \dashv | | | 52 45.940873 -89.224018 0 Otter Lake Vilas 52 0 DEEP | \dashv | 1 | \dashv | | | 53 45.940333 -89.224026 0 Otter Lake Vilas 53 0 DEEP | ┪ | | | | al Degrees) | mal Degrees) | | | | | | | | | | | | | ess | lemersum | | sis | biricum | | nplifolius | ihydrus | sillus | hardsonii | bbinsii | irillus | seyi | icana | |--------------|----------------------------|-----------------------------|----|-----------------------|--------|-----------|------------------------|--------------|------------|----------|------------|--------------------|-------|----------|---------------------|------------------------|------------|-------------------|------------------------|----------------|-------------------------|-----------------------|----------------------|--------------------------|----------------------|-----------------------|-------------------|-----------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Q | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Ceratophyllum demersum | Chara spp. | Elodea canadensis | Myriophyllum sibiricum | Najas flexilis | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsi | Potamogeton spirillus | Potamogeton vasey | Vallisneria americana | | 54 | 45.939793 | -89.224033 | 42 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 54 | 13 | | | DEEP | | | | | | | | | | | | | | | | | | 55 | 45.939253 | -89.224041 | 43 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 55 | 7 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | _ | | 56 | 45.947888 | -89.223146 | 32 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 56 | 8 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | 1 | | | | | | 57 | 45.947348 | -89.223154 | 37 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 57 | 0 | | | DEEP | | | | | | | | | | | | | | | - | _ | | 58 | 45.946808 | -89.223161 | 0 | Otter Lake | Vilas | | | 58 | 0 | | | DEEP | | | | | | | | | | | | | | | - | _ | | 59
60 | 45.946268
45.945728 | -89.223169
-89.223177 | 0 | Otter Lake Otter Lake | Vilas | | | 59
60 | 0 | | | DEEP | | | | | | | | | | | | | | | | \exists | | 61 | 45.945188 | -89.223184 | 0 | Otter Lake | Vilas | | | 61 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 62 | 45.944648 | -89.223192 | 0 | Otter Lake | Vilas | | | 62 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 63 | 45.944108 | -89.223199 | 51 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 63 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 64 | 45.943568 | -89.223207 | 52 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 64 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 65 | 45.943028 | -89.223214 | 56 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 65 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 66 | 45.942488 | -89.223222 | 0 | Otter Lake | Vilas | | | 66 | 0 | | | DEEP | | | | | | | | | | | | | | | _ | | | 67 | 45.941948 | -89.223229 | 0 | Otter Lake | Vilas | | | 67 | 0 | | | DEEP | | | | | | | | | | | | | | | _ | | | 68 | 45.941408 | -89.223237 | 0 | Otter Lake | Vilas | | | 68 | 0 | | | DEEP | | | | | | | | | | | | | | | - | _ | | 69 | 45.940868 | -89.223244 | 0 | Otter Lake | Vilas | | | 69 | 0 | | | DEEP | | | | | | | | | | | | | | | - | _ | | 70 | 45.940328 | -89.223252 | 0 | Otter Lake | Vilas | 0/45/0047 | 1 10 4 100 | 70 | 0 | | | DEEP | | | | | | | | | | | | | | | = | _ | | 71 | 45.939788 | -89.223259 | 41 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 71 | 14 | Darek | Dele | DEEP | | | _ | | | | | | | | | | | | _ | _ | | 72 | 45.939248
45.947883 | -89.223267
-89.222372 | 31 | Otter Lake Otter Lake | Vilas | 8/15/2017 | LJS & JBS
BTB & NLS | 73 | 8 | Rock | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | 1 | | 74 | 45.947343 | -89.222380 | 30 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 74 | 11 | Garia | 1 010 | DEEP | | | Ċ | | | | | | | | | | | | | Ė | | 75 | 45.946803 | -89.222387 | 22 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 75 | 15 | | | DEEP | | | | | | | | | | | | | | | | | | 76 | 45.946263 | -89.222395 | 24 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 76 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 77 | 45.945723 | -89.222402 | 0 | Otter Lake | Vilas | | | 77 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 78 | 45.945183 | -89.222410 | 0 | Otter Lake | Vilas | | | 78 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 79 | 45.944643 | -89.222418 | 0 | Otter Lake | Vilas | | | 79 | 0 | | | DEEP | | | | | | | | | | | | | | | | _ | | 80 | 45.944103 | -89.222425 | 0 | Otter Lake | Vilas | | | 80 | 0 | | | DEEP | | | | | | | | | | | | | | | _ | | | 81 | 45.943563 | -89.222433 | 0 | Otter Lake | Vilas | | | 81 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 82 | 45.943023 | -89.222440 | 0 | Otter Lake | Vilas | | | 82 | 0 | | | DEEP | | | | | | | | | | | | | | | - | _ | | 83 | 45.942483 | -89.222448 | 0 | Otter Lake | Vilas | | | 83 | 0 | | | DEEP | | | | | | | | | | | | | | | | _ | | 84 | 45.941943 | -89.222455 | 0 | Otter Lake | Vilas | | | 84 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 85
86 | 45.941403 | -89.222463 | 0 | Otter Lake | Vilas | | | 85
86 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 87 | 45.940323 | -89.222470
-89.222478 | 0 | Otter Lake | Vilas | | | 87 | 0 | | | DEEP | | | | | | | | | | | | | | | | _ | | 88 | 45.939783 | -89.222486 | 38 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 88 | 14 | | | DEEP | | | | | | | | | | | | | | | | | | 89 | 45.939243 | -89.222493 | | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 89 | 7 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 90 | 45.947877 | -89.221598 | 28 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 90 | 10 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 91 | 45.947337 | -89.221606 | 29 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 91 | 11 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 92 | 45.946797 | -89.221613 | 23 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 92 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | \dashv | | | 93 | 45.946257 | -89.221621 | 20 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 99 | 12 | | | DEEP | | | | | | | | | | | | | | _ | - | | | 94 | 45.945717 | -89.221628 | 21 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 94 | 0 | | | DEEP | | | | | | | | | | | | | | | \dashv | | | 95 | 45.945177 | -89.221636 | 0 | Otter Lake | Vilas | | | 95 | 0 | | | DEEP | | | | | | | | | | | | | | - | \dashv | - | | 96 | 45.944637 | -89.221644 | 0 | Otter Lake | Vilas | | | 96 | 0 | | | DEEP | | | | | | | | | | | | | | - | \dashv | | | 97 | 45.944097 | | 0 | Otter Lake | Vilas | | | 97 | 0 | | | DEEP | | | | | | | | | | | | | | | \dashv | | | 98 | 45.943557
45.943017 | | 0 | Otter Lake Otter Lake | Vilas | | | 98 | 0 | | | DEEP | | | | | | | | | | | | | |
 + | | | 100 | 45.943017 | -89.221666
-89.221674 | 0 | Otter Lake | Vilas | | | 100 | 0 | | | DEEP | | | | | | | | | | | | | | | \dashv | | | 101 | 45.941938 | -89.221681 | 0 | Otter Lake | Vilas | | | 101 | 0 | | | DEEP | | | | | | | | | | | | | | | \exists | | | 102 | 45.941398 | -89.221689 | 0 | Otter Lake | Vilas | | | 102 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 103 | 45.940858 | | 0 | Otter Lake | Vilas | | | 103 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 104 | 45.940318 | -89.221704 | 0 | Otter Lake | Vilas | | | 104 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 105 | 45.939778 | -89.221712 | 37 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 105 | 14 | | | DEEP | | | | | | | | | | | | | | | | | | 106 | 45.939238 | -89.221719 | 36 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 106 | 10 | Sand | Pole | SAMPLED | | <u> </u> | 0 | Ш | | | | | | | | | | | \perp | | | | Degrees) | nal Degrees) | | | | | | | | | | | | | SS | mersum | | is | iricum | | plifolius | hydrus | sillus | nardsonii | ibinsii | rillus | eyi | cana | |--------------|----------------------------|-----------------------------|----|--------------------------|--------|------------------------|------------------------|--------------|------------|----------|------------|-----------------|-------|----------|---------------------|------------------------|------------|-------------------|------------------------|----------------|-------------------------|-----------------------|----------------------|--------------------------|----------------------|-----------------------|--------------------|-----------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Ceratophyllum demersum | Chara spp. | Elodea canadensis | Myriophyllum sibiricum | Najas flexilis | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsi | Potamogeton spirillus | Potamogeton vaseyi | Vallisneria americana | | 107 | 45.947872 | -89.220824 | 27 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 107 | 4 | Sand | Pole | SAMPLED | | | 2 | 1 | | | | | | | | | | | | 2 | | 108 | 45.947332 | -89.220832 | 26 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 108 | 6 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 109 | 45.946792 | -89.220839 | 25 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 109 | 5 | Sand | Pole | SAMPLED | | | 1 | | 1 | | | | 1 | | | 1 | | | | | | 110 | 45.946252 | -89.220847 | 18 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 110 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | _ | | 111 | 45.945712 | -89.220854 | 19 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 111 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 112 | 45.945172 | -89.220862 | 0 | Otter Lake | Vilas | | | 112 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 113 | 45.944632
45.944092 | -89.220870
-89.220877 | 0 | Otter Lake
Otter Lake | Vilas | | | 113 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 115 | 45.943552 | -89.220885 | 0 | Otter Lake | Vilas | | | 115 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 116 | 45.943012 | -89.220892 | 0 | Otter Lake | Vilas | | | 116 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 117 | 45.942472 | -89.220900 | 0 | Otter Lake | Vilas | | | 117 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 118 | 45.941932 | -89.220907 | 0 | Otter Lake | Vilas | | | 118 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 119 | 45.941392 | -89.220915 | 0 | Otter Lake | Vilas | | | 119 | 0 | | | DEEP | | | | | | | | | | | | | | | | _ | | 120 | 45.940852 | -89.220922 | 0 | Otter Lake | Vilas | | | 120 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 121 | 45.940312 | -89.220930 | 0 | Otter Lake | Vilas | | | 121 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 122 | 45.939772 | -89.220938 | 0 | Otter Lake | Vilas | | | 122 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 123 | 45.939232 | -89.220945 | 35 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 123 | 13 | | | DEEP | | | | | | | | | | | | | | | | | | 124 | 45.938692 | -89.220953 | 34 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 124 | 0 | | | TERRESTRIAL | | | | | | | | | | | | | | | | _ | | 125 | 45.946247 | -89.220073 | 17 | Otter Lake
Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 125 | 11 | Sand | Pole | SAMPLED
DEEP | | | 2 | | | | 1 | | 1 | | | | | | | 1 | | 127 | 45.945707
45.945167 | -89.220080
-89.220088 | 14 | Otter Lake | Vilas | 8/15/2017
8/15/2017 | BTB & NLS | 126 | 16 | | | DEEP | | | | | | | | | | | | | | | | | | 128 | 45.944627 | -89.220095 | 10 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 128 | 17 | | | DEEP | | | | | | | | | | | | | | | | | | 129 | 45.944087 | -89.220103 | 9 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 129 | 23 | | | DEEP | | | | | | | | | | | | | | | | | | 130 | 45.943547 | -89.220111 | 8 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 130 | 30 | | | DEEP | | | | | | | | | | | | | | | | | | 131 | 45.943007 | -89.220118 | 0 | Otter Lake | Vilas | | | 131 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 132 | 45.942467 | -89.220126 | 0 | Otter Lake | Vilas | | | 132 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 133 | 45.941927 | -89.220133 | 0 | Otter Lake | Vilas | | | 133 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 134 | 45.941387 | -89.220141 | 0 | Otter Lake | Vilas | | | 134 | 0 | | | DEEP | | | | | | | | | | | | | | | | _ | | 135 | 45.940847 | -89.220148 | 0 | Otter Lake | Vilas | | | 135 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 136 | 45.940307 | -89.220156 | 0 | Otter Lake | Vilas | | | 136 | 0 | | | DEEP | | | | | | | | | | | | | | | | _ | | 137 | 45.939767 | -89.220164 | 0 | Otter Lake | Vilas | | | 137 | 0 | | | DEEP | | | | | | | | | | | | | | | | _ | | 138 | 45.939227 | -89.220171 | 32 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 138 | 14 | | | DEEP | | | | | | | | | | | | | | | | _ | | 139 | 45.945702 | -89.220179
-89.219306 | 16 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS
BTB & NLS | 139 | 3 | Sand | Pole | SAMPLED | | | 2 | | | | | | 1 | 1 | 1 | | | | 1 | 2 | | 141 | 45.945162 | -89.219314 | 13 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 141 | 11 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | Ċ | | | 142 | 45.944622 | -89.219321 | 11 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 142 | 14 | | | DEEP | | | | | | | | | | | | | | | | | | 143 | 45.944082 | -89.219329 | 8 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 143 | 11 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 144 | 45.943542 | -89.219337 | 7 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 144 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 145 | 45.943002 | -89.219344 | 9 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 145 | 25 | | | DEEP | | | | | | | | | | | | | | | | _ | | 146 | 45.942462 | -89.219352 | 0 | Otter Lake | Vilas | | | 146 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 147 | 45.941922 | -89.219359 | 0 | Otter Lake | Vilas | | | 147 | 0 | | | DEEP | | | | | | | | | | | | | | | | _ | | 148 | 45.941382 | -89.219367 | 0 | Otter Lake | Vilas | | | 148 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 149 | 45.940842 | | 0 | Otter Lake | Vilas | | | 149 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 150 | 45.940302 | | 0 | Otter Lake | Vilas | 045/22 | 1 10 6 :54 | 150 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 151 | 45.939762
45.939222 | -89.219390
-89.219397 | 30 | Otter Lake Otter Lake | Vilas | 8/15/2017
8/15/2017 | LJS & JBS | 151 | 7 | Sand | Pole | DEEP | | | 0 | | | | | | | | | | | | | \neg | | 152 | 45.939222 | -89.219397
-89.218547 | 12 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 153 | 5 | Sand | Pole | SAMPLED | | | 2 | | | | | | 1 | | | 1 | | | | 2 | | 154 | 45.944076 | -89.218555 | 7 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 154 | 7 | Sand | Pole | SAMPLED | | | 2 | | | | | | | | | · | | | | 2 | | 155 | 45.943536 | -89.218563 | 6 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 155 | 7 | Sand | Pole | SAMPLED | | | 3 | | | | | | | | 2 | | | | | 3 | | 156 | 45.942996 | | 10 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 156 | 25 | | | DEEP | | | | | | | | | | | | | | | | | | 157 | 45.942456 | -89.218578 | 0 | Otter Lake | Vilas | | | 157 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 158 | 45.941916 | -89.218585 | 0 | Otter Lake | Vilas | | | 158 | 0 | | | DEEP | | | | | | | | | | | | | | | | _ | | 159 | 45.941376 | -89.218593 | 0 | Otter Lake | Vilas | | | 159 | 0 | | | DEEP | 1 | ı — | | | | | - 1 | | | | | | | | | | Т | - 1 | _ | |--------------|----------------------------|-----------------------------|-------|------------|--------|-----------|------------|--------------|------------|----------|------------|-------------|-------|----------|---------------------|------------------------|------------|-------------------|------------------------|----------------|-------------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|--------------------|-----------------------| | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | OI OI | Lаке Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Ceratophyllum demersum | Chara spp. | Elodea canadensis | Myriophyllum sibiricum | Najas flexilis | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton vaseyi | Vallisneria americana | | 160 | 45.940836 | -89.218601 | 0 | Otter Lake | Vilas | | | 160 | 0 | | | DEEP | | | | | | | | | | | | | | | | | |
161 | 45.940296 | -89.218608 | 28 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 161 | 12 | | | DEEP | | | | | | | | | | | | | | | | | | 162 | 45.939756 | -89.218616 | 29 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 162 | 6 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | | | 1 | | 163 | 45.944071 | -89.217781 | 6 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 163 | 6 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 164 | 45.943531 | -89.217789 | 5 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 164 | 6 | Sand | Pole | SAMPLED | | | 3 | | | | | | | | | | | | | 3 | | 165 | 45.942991 | -89.217796 | 11 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 165 | 20 | | | DEEP | | | | | | | | | | | | | | | | | | 166 | 45.942451 | -89.217804 | 0 | Otter Lake | Vilas | | | 166 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 167 | 45.941911 | -89.217811 | 0 | Otter Lake | Vilas | | | 167 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 168 | 45.941371 | -89.217819 | 0 | Otter Lake | Vilas | | | 168 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 169 | 45.940831 | -89.217827 | 26 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 169 | 15 | | | DEEP | | | | | | | | | | | | | | | | | | 170 | 45.940291 | -89.217834 | 27 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 170 | 7 | Rock | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 171 | 45.944606 | -89.216999 | 4 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 171 | 4 | Sand | Pole | SAMPLED | | | 2 | | | 2 | | | 1 | | | | 1 | | | 1 | | 172 | 45.944066 | -89.217007 | 5 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 172 | 7 | Sand | Pole | SAMPLED | | | 2 | | | | | | | | | | | | | 2 | | 173 | 45.943526 | -89.217015 | 4 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 173 | 7 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 174 | 45.942986 | -89.217022 | 12 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 174 | 19 | | | DEEP | | | | | | | | | | | | | | | | | | 175 | 45.942446 | -89.217030 | 0 | Otter Lake | Vilas | | | 175 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 176 | 45.941906 | -89.217037 | 0 | Otter Lake | Vilas | | | 176 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | 177 | 45.941366 | -89.217045 | 23 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 177 | 17 | | | DEEP | | | | | | | | | | | | | | | | | | 178 | 45.940826 | -89.217053 | 24 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 178 | 8 | Rock | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 179 | 45.944600 | -89.216225 | 3 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 179 | 6 | Muck | Pole | SAMPLED | | | 2 | | | | | | | | | | | | | 2 | | 180 | 45.944060 | -89.216233 | 2 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 180 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 181 | 45.943520 | -89.216241 | 3 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 181 | 7 | Sand | Pole | SAMPLED | | | 1 | | | 1 | | | | | | | | | | | | 182 | 45.942980 | -89.216248 | 13 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 182 | 15 | | | DEEP | | | | | | | | | | | | | | | | | | 183 | 45.942440 | -89.216256 | 19 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 183 | 16 | | | DEEP | | | | | | | | | | | | | | | | | | 184 | 45.941900 | -89.216263 | 20 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 184 | 14 | | | DEEP | | | | | | | | | | | | | | | | | | 185 | 45.941361 | -89.216271 | 22 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 185 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 186 | 45.940821 | -89.216279 | 25 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 186 | 1 | Sand | Pole | SAMPLED | | | 1 | | | | | 1 | | | | | | | | 1 | | | 45.944055 | -89.215459 | 1 | Otter Lake | Vilas | 8/15/2017 | BTB & NLS | 187 | 7 | Muck | | SAMPLED | | | 2 | | | | | | | | | | | | | 2 | | 188 | 45.943515 | -89.215467 | 2 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 188 | 13 | | | DEEP | | | | | | | | | | | | | | | | | | 189 | 45.942975 | -89.215474 | 14 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 189 | 13 | | | DEEP | | | | | | | | | | | | | | | | | | 190 | 45.942435 | -89.215482 | 18 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 190 | 10 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | T | | | | | 45.941895 | -89.215489 | 21 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 191 | 7 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | | | 1 | | | 45.943510 | -89.214693 | 1 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 192 | 6 | Sand | Pole | SAMPLED | | | 3 | | | 1 | | | | | | | | | | 3 | | | 45.942970 | -89.214700 | 15 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 193 | 7 | Sand | Pole | SAMPLED | | | 1 | 1 | | | 1 | | | | | | | | | 1 | | | 45.942430 | -89.214708 | 17 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 193 | 3 | Sand | Pole | SAMPLED | | | 2 | 1 | | 1 | | 1 | 1 | | | 2 | 1 | | | 1 | | | 45.942964 | -89.213926 | 16 | Otter Lake | Vilas | 8/15/2017 | LJS & JBS | 195 | 0 | | | TERRESTRIAL | | | | | | | | | | | | | | | | | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Q | Lako Namo | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Ceratophyllum demersum | Ceratophyllum echinatum | Elodea canadensis | Myriophyllum sibiricum | Najas flexilis | Potamogeton amplifolius | Potamogeton berchtoldii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | Freshwater sponge | |--------------|----------------------------|-----------------------------|-----|-----------|--------|------------------------|-------------|--------------|------------|----------|------------|--------------------|-------|----------|---------------------|------------------------|-------------------------|-------------------|------------------------|----------------|-------------------------|-------------------------|-----------------------|-----------------------|--------------------|---------------------------|-----------------------|-------------------| | 2 | 45.947208
45.946938 | -89.231790
-89.231794 | 103 | | Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 2 | 9 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | + | 1 | | 3 | 45.947205 | -89.231403 | 102 | | Vilas | 8/15/2017 | JMB & AMS | 3 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | + | 1 | | 4 | 45.946935 | -89.231407 | 99 | | Vilas | 8/15/2017 | JMB & AMS | 4 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 5 | 45.947473 | -89.231012 | 101 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 5 | 4 | Sand | Pole | SAMPLED | | | 2 | | | | | 1 | 1 | 1 | | | | | 1 | | | 6 | 45.947203 | -89.231016 | 100 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 6 | 10 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | _ | _ | | 7 | 45.946933 | -89.231020 | 98 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 7 | 7 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | _ | 4 | | 8 | 45.949360 | -89.230599 | 87 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 8 | 3 | Muck | Pole | SAMPLED | | | 1 | | | | | | | | | | | | 1 | 4 | | 9 | 45.949090 | -89.230603 | | | Vilas | 8/15/2017 | JMB & AMS | 9 | 4 | Muck | Pole | SAMPLED | | | 1 | | | | | 1 | | | | | | | 1 | \dashv | | 10 | 45.948820 | -89.230606 | 94 | | Vilas | 8/15/2017 | JMB & AMS | 10 | 5 | Sand | Pole | SAMPLED | | | 2 | | 1 | | | 1 | | | | | | | 1 | - | | 11 | 45.948550
45.947470 | -89.230610
-89.230625 | 93 | | Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 11 | 7 | Sand | Pole | SAMPLED
SAMPLED | | | 3 | | | | | 1 | 1 | | | | | 1 | 3 | 1 | | 13 | 45.947200 | -89.230629 | 97 | | Vilas | 8/15/2017 | JMB & AMS | 13 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 14 | 45.950437 | -89.230197 | 69 | | Vilas | 8/15/2017 | JMB & AMS | 14 | 4 | Muck | Pole | SAMPLED | | | 1 | | | | | | | | | | | | 1 | | | 15 | 45.950167 | -89.230201 | 86 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 15 | 3 | Muck | Pole | SAMPLED | | | 2 | 1 | | | | | | | | | | | 2 | | | 16 | 45.949897 | -89.230204 | 85 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 16 | 4 | Muck | Pole | SAMPLED | | | 2 | 1 | | 1 | 1 | | | | 1 | | | 1 | 1 | | | 17 | 45.949627 | -89.230208 | 84 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 17 | 7 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | | 1 | _ | | 18 | 45.949357 | -89.230212 | 83 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 18 | 10 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | 4 | | 19 | 45.949087 | -89.230216 | 82 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 19 | 14 | | | DEEP | | | | | | | | | | | | | | | | 4 | | 20 | 45.948817 | -89.230219 | 81 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 20 | 14 | | | DEEP | | | | | | | | | | | | | | | | 4 | | 21 | 45.948547 | -89.230223 | 80 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 21 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | - | + | | 22 | 45.948277 | -89.230227 | 79 | | Vilas | 8/15/2017 | JMB & AMS | 22 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | - | \dashv | | 23 | 45.948007 | -89.230231 | 78 | | Vilas | 8/15/2017 | JMB & AMS | | 7 | Sand | Pole | SAMPLED | | | 2 | | | | | | 1 | | | | | | 1 | \exists | | 24 | 45.947737
45.947467 | -89.230234 | 77 | | Vilas | 8/15/2017 | JMB & AMS | 24 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | 3 | 1 | | 26 | 45.947197 | -89.230238
-89.230242 | 75 | | Vilas | 8/15/2017 | JMB & AMS | 26 | 10 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | | 27 | 45.950435 | -89.229810 | 68 | | Vilas | 8/15/2017 | JMB & AMS | 27 | 5 | Sand | Pole | SAMPLED | | | 3 | 1 | | | | | | | | | | | 1 | | | 28 | 45.950165 | -89.229814 | 70 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 28 | 6 | Sand | Pole | SAMPLED | | | 1 | | 1 | 1 | | | | 1 | | | | | | | | 29 | 45.949895 | -89.229817 | 71 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 29 | 8 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | |
 | | | | | 30 | 45.949625 | -89.229821 | 72 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 30 | 14 | | | DEEP | | | | | | | | | | | | | | | | | | 31 | 45.949355 | -89.229825 | 88 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 31 | 16 | | | DEEP | | | | | | | | | | | | | | | _ | 4 | | 32 | 45.949085 | -89.229829 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 32 | 0 | | | | | | | | | | | | | | | | | | | 4 | | 33 | 45.948815 | -89.229832 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 33 | 0 | | | | | | | | | | | | | | | | | | | - | | 34 | | -89.229836 | | | Vilas | | JMB & AMS | | 23 | | | DEEP | | | | | | | | | | | | | | | - | \dashv | | 35 | 45.948275 | | | | Vilas | 8/15/2017 | JMB & AMS | | 20 | | | DEEP | | | | | | | | | | | | | | | | \dashv | | 36 | 45.948005
45.947735 | | 91 | | Vilas | 8/15/2017 | JMB & AMS | | 15 | | | DEEP | | | | | | | | | | | | | | | | 7 | | 37 | 45.947465 | -89.229847
-89.229851 | 73 | | Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 37 | 17 | | | DEEP | | | | | | | | | | | | | | | | - | | 39 | 45.947195 | | | | Vilas | 8/15/2017 | JMB & AMS | | 7 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | 1 | ٦ | | 40 | 45.950162 | | | | Vilas | | JMB & AMS | | 2 | Sand | Pole | SAMPLED | | | 2 | | | | | 1 | 1 | | | | 1 | | 1 | | | 41 | 45.949892 | | | | Vilas | 8/15/2017 | | | 8 | Sand | | SAMPLED | | | 0 | | | | | | | | | | | | | | | 42 | 45.949622 | -89.229434 | 65 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 42 | 15 | | | DEEP | | | | | | | | | | | | | | | | | | 43 | 45.949352 | -89.229438 | 64 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 43 | 15 | | | DEEP | | | | | | | | | | | | | | | 4 | \perp | | 44 | 45.949082 | -89.229442 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 44 | 0 | | | | | | | | | | | | | | | | | _ | 4 | 4 | | 45 | 45.948812 | -89.229445 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 45 | 0 | | | | | | | | | | | | | | | | | - | \dashv | \dashv | | 46 | 45.948542 | -89.229449 | 0 | Lynx Lake | Vilas | 8/15/2017 | | | 0 | | | | | | | | | | | | | | | | | | \dashv | \dashv | | 47 | 45.948272 | | 0 | | Vilas | | | | 0 | | | | | | | | | | | | | | | | | | + | \dashv | | 48 | 45.948002 | | 0 | | Vilas | 8/15/2017 | JMB & AMS | | 0 | | | | | | | | | | | | | | | | | | + | \dashv | | 49 | 45.947732 | -89.229460 | 0 | | Vilas | 8/15/2017 | JMB & AMS | 49 | 0 | | | | | | | | | | | | | | | | | | + | \dashv | | 50 | 45.947462 | -89.229464 | 63 | | Vilas | 8/15/2017 | JMB & AMS | 50 | 15 | e | D-1 | DEEP | | | 1 | | | | | | | | | | | | 1 | \dashv | | 51
52 | 45.950159
45.949889 | -89.229040
-89.229043 | 58 | | Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 51
52 | 12 | Sand | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | 1 | \dashv | | 53 | 45.949889
45.949619 | | | | Vilas | | JMB & AMS | | 16 | IVIUCK | rule | DEEP | | | U | | | | | | | | | | | | \forall | \exists | | 53 | 45.949619 | -09.229047 | ıυÜ | Lynx Lake | viias | 0/15/201/ | JIVID & AMS | 53 | 16 | l | | DEEP | 1 | | | | Ь | | | Ь | 1 | | | | | | | | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | <u>Q</u> | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Ceratophyllum demersum | Ceratophyllum echinatum | Elodea canadensis | Myriophyllum sibiricum | Najas flexilis | Potamogeton amplifolius | Potamogeton berchtoldii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | Freshwater sponge | |--------------|----------------------------|-----------------------------|----------|------------------------|--------|------------------------|------------|--------------|------------|----------|------------|--------------------|-------|----------|---------------------|------------------------|-------------------------|-------------------|------------------------|----------------|-------------------------|-------------------------|-----------------------|-----------------------|--------------------|---------------------------|-----------------------|-------------------| | 54
55 | 45.949349
45.949079 | -89.229051
-89.229055 | 0 | Lynx Lake
Lynx Lake | Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 54
55 | 0 | | | | | | | | | | | | | | | | | | | - | | 56 | 45.948809 | -89.229058 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 56 | 0 | | | | | | | | | | | | | | | | | | 1 | - | | 57 | 45.948539 | -89.229062 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 57 | 0 | 58 | 45.948269 | -89.229066 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 58 | 0 | 59 | 45.947999 | -89.229070 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 59 | 0 | | | | | | | | | | | | | | | | | | \dashv | _ | | 60 | 45.947729 | -89.229073 | 61 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 60 | 16 | | | DEEP | | | | | | | | | | | | | | | \dashv | - | | 61 | 45.947459
45.950157 | -89.229077
-89.228653 | 62
57 | | Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 61 | 2 | Sand | Pole | SAMPLED
SAMPLED | | | 1 | | | | | 1 | | | | | | | 1 | | | 63 | 45.949887 | -89.228656 | 56 | | Vilas | 8/15/2017 | JMB & AMS | 63 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | İ | | | 64 | 45.949617 | -89.228660 | 55 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 64 | 17 | | | DEEP | | | | | | | | | | | | | | | | | | 65 | 45.949347 | -89.228664 | 54 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 65 | 17 | | | DEEP | | | | | | | | | | | | | | | _ | 4 | | 66 | 45.949077 | -89.228668 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 66 | 0 | | | | | | | | | | | | | | | | | | \dashv | _ | | 67 | 45.948807 | -89.228671 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 67 | 0 | | | | | | | | | | | | | | | | | | \dashv | - | | 68
69 | 45.948537
45.948267 | -89.228675
-89.228679 | 0 | Lynx Lake
Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 68 | 0 | 70 | 45.947997 | -89.228683 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 70 | 0 | 71 | 45.947727 | -89.228686 | 53 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 71 | 13 | | | DEEP | | | | | | | | | | | | | | | | | | 72 | 45.947457 | -89.228690 | 52 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 72 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | _ | | | 73 | 45.949884 | -89.228269 | 47 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 73 | 7 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | 1 | | | | 4 | _ | | 74 | 45.949614 | -89.228273 | 48 | | Vilas | 8/15/2017 | JMB & AMS | 74 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | \dashv | _ | | 75 | 45.949344 | -89.228277 | 49 | | Vilas | 8/15/2017 | JMB & AMS | 75 | 14 | | | DEEP | | | | | | | | | | | | | | | | _ | | 76
77 | 45.949074
45.948804 | -89.228280
-89.228284 | 0 | Lynx Lake
Lynx Lake | Vilas | 8/15/2017
8/15/2017 | JMB & AMS | 76 | 0 | 78 | 45.948534 | -89.228288 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 78 | 0 | 79 | 45.948264 | -89.228292 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 79 | 0 | 80 | 45.947994 | -89.228295 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 80 | 0 | | | | | | | | | | | | | | | | | | _ | 4 | | 81 | 45.947724 | -89.228299 | 50 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 81 | 14 | | | DEEP | | | | | | | | | | | | | | | \dashv | _ | | 82 | 45.947454 | -89.228303 | 51 | | Vilas | 8/15/2017 | JMB & AMS | 82 | 8 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | | 1 | - | | 83
84 | 45.949882
45.949612 | -89.227882
-89.227886 | 46 | Lynx Lake
Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 83 | 9 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | 1 | | | | 1 | 1 | | 1 | | | 85 | 45.949342 | -89.227890 | 44 | | Vilas | 8/15/2017 | JMB & AMS | 85 | 15 | Curio | 1 0.0 | DEEP | | | | | | | | | | | | | | | | | | 86 | 45.949072 | -89.227893 | 0 | | Vilas | 8/15/2017 | JMB & AMS | 86 | 0 | 87 | 45.948802 | -89.227897 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 87 | 0 | | | | | | | | | | | | | | | | | | 4 | _ | | 88 | 45.948532 | -89.227901 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 88 | 0 | | | | | | | | | | | | | | | | | | \dashv | _ | | 89 | 45.948262 | -89.227905 | 0 | | Vilas | 8/15/2017 | JMB & AMS | | 0 | | | | | | | | | | | | | | | | | | + | _ | | 90 | 45.947992
45.947722 | -89.227908
-89.227912 | 43 | Lynx Lake
Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 90 | 15 | | | DEEP | | | | | | | | | | | | | | | T | | | 92 | 45.947722 | -89.227916 | | | Vilas | 8/15/2017 | JMB & AMS | | | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 93 | | -89.227495 | | | Vilas | | JMB & AMS | | 7 | Muck | Pole | SAMPLED | | | 3 | | | | | | | | | | | | 3 | _] | | 94 | 45.949609 | -89.227499 | 36 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 94 | 9 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 95 | 45.949339 | -89.227503 | 37 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 95 | 20 | | | DEEP | | | | | | | | | | | | | | | \dashv | 4 | | 96 | 45.949069 | -89.227506 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | | 0 | | | | | | | | | | | | | | | | | | \dashv | \dashv | | 97 | 45.948799
45.948529 | -89.227510 | 0 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 97 | 0 | | | | | | | | | | | | | | | | | | \dashv | - | | 98 | 45.948529
45.948259 | -89.227514
-89.227518 | 0 | Lynx Lake
Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 98 | 0 | | | | | | | | | | | | | | | | | | \exists | \exists | | 100 | | -89.227521 | 40 | | Vilas | | JMB & AMS | | 14 | | | DEEP | | | | | | | | | | | | | | | ╛ | | | 101 | 45.947719 | | 39 | | Vilas |
8/15/2017 | JMB & AMS | | | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | \Box | | | 102 | 45.947449 | -89.227529 | 41 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 102 | 3 | Muck | Pole | SAMPLED | | | 1 | | | | | 1 | | | | | | | 1 | 4 | | 103 | 45.949876 | | 34 | | Vilas | 8/15/2017 | JMB & AMS | 103 | 1 | Sand | Pole | SAMPLED | | | 1 | | | | | 2 | | | | | | | 1 | \dashv | | 104 | 45.949606 | -89.227112 | | | Vilas | 8/15/2017 | JMB & AMS | | 8 | Muck | Pole | SAMPLED | | - | 1 | | | | | | | | | | | | 1 | \dashv | | 105 | 45.949336 | -89.227116 | | | Vilas | 8/15/2017 | JMB & AMS | | 9 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | \dashv | + | | 106 | 45.949066 | -89.227119 | 32 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 106 | 14 | Ь | | DEEP | | Ь— | Ь— | | Ь— | | | Ь | | Ь— | | | | | | _ | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lаке Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Ceratophyllum demersum | Ceratophyllum echinatum | Elodea canadensis | Myriophyllum sibiricum | Najas flexilis | Potamogeton amplifolius | Potamogeton berchtoldii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | Freshwater sponge | |--------------|----------------------------|-----------------------------|----|-----------|--------|-----------|------------|--------------|------------|----------|------------|----------|-------|----------|---------------------|------------------------|-------------------------|-------------------|------------------------|----------------|-------------------------|-------------------------|-----------------------|-----------------------|--------------------|---------------------------|-----------------------|-------------------| | 107 | 45.948796 | -89.227123 | 38 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 107 | 20 | | | DEEP | | | | | | | | | | | | | | | | | | 108 | 45.948526 | -89.227127 | 30 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 108 | 18 | | | DEEP | | | | | | | | | | | | | | | | | | 109 | 45.948256 | -89.227131 | 29 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 109 | 15 | | | DEEP | | | | | | | | | | | | | | | | Ш | | 110 | 45.947986 | -89.227134 | 28 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 110 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | Ш | | 111 | 45.947716 | -89.227138 | 27 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 111 | 7 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | | 1 | | | 112 | 45.949604 | -89.226725 | 20 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 112 | 6 | Muck | Pole | SAMPLED | | | 3 | | | | | | | | | | | | 3 | | | 113 | 45.949334 | -89.226729 | 21 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 113 | 7 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 114 | 45.949064 | -89.226732 | 22 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 114 | 8 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 115 | 45.948794 | -89.226736 | 23 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 115 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 116 | 45.948524 | -89.226740 | 24 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 116 | 8 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 117 | 45.948254 | -89.226744 | 25 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 117 | 7 | Muck | Pole | SAMPLED | | | 1 | | | | | 1 | | | | | | | 1 | | | 118 | 45.947984 | -89.226747 | 26 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 118 | 4 | Muck | Pole | SAMPLED | | | 1 | | | | | | | | | | | 1 | 1 | | | 119 | 45.949331 | -89.226342 | 19 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 119 | 7 | Muck | Pole | SAMPLED | | | 3 | | | | | | | | | | | | 3 | | | 120 | 45.949061 | -89.226345 | 18 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 120 | 7 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 121 | 45.948791 | -89.226349 | 17 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 121 | 8 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | | 1 | | | 122 | 45.948521 | -89.226353 | 16 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 122 | 8 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 123 | 45.948251 | -89.226357 | 15 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 123 | 7 | Muck | Pole | SAMPLED | | | 1 | | | | | | | | | | | | 1 | | | 124 | 45.947981 | -89.226360 | 14 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 124 | 2 | Muck | Pole | SAMPLED | | | 1 | | | | | 1 | | | | | | | 1 | | | 125 | 45.949058 | -89.225958 | 9 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 125 | 7 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 126 | 45.948788 | -89.225962 | 10 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 126 | 8 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 127 | 45.948519 | -89.225966 | 11 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 127 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 128 | 45.948249 | -89.225970 | 12 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 128 | 6 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | | 1 | | | 129 | 45.947979 | -89.225973 | 13 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 129 | 3 | Muck | Pole | SAMPLED | | | 2 | | | | | 2 | | | | | | | 1 | | | 130 | 45.948786 | -89.225575 | 8 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 130 | 5 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 131 | 45.948516 | -89.225579 | 7 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 131 | 9 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 132 | 45.948246 | -89.225582 | 6 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 132 | 7 | Muck | Pole | SAMPLED | | | 1 | | | | | | | | | | | П | 1 | Π | | 133 | 45.947976 | -89.225586 | 5 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 133 | 2 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 134 | 45.948513 | -89.225192 | 2 | Lynx Lake | Vilas | 8/15/2017 | | 134 | 9 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | | 135 | 45.948243 | -89.225195 | 3 | Lynx Lake | Vilas | 8/15/2017 | | 135 | 7 | Muck | Pole | SAMPLED | | | 1 | | | | | | | | | | | П | 1 | Π | | 136 | 45.947973 | -89.225199 | 4 | Lynx Lake | Vilas | 8/15/2017 | JMB & AMS | 136 | 4 | Muck | Pole | SAMPLED | | | 1 | | | | | 1 | | | | 1 | | | 1 | | | 137 | 45.948241 | -89.224808 | 1 | Lynx Lake | Vilas | | JMB & AMS | 137 | 9 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | 1 Point Number | Catitude (Decimal Degrees) | Longitude (Decimal Degrees) | <u>♀</u> | e E e g
e g
e g
e g
e g
e g
e g
e g
e g
e g | County | 2 gg | Field Crew | Point Number | O Depth (ft) | Sediment | Pole; Rope | OOCK specific contracts to the contract of | Notes | Nuisance | Total Rake Fullness | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Myriophyllum sibiricum | Najas flexilis | Potamogeton amplifolius | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisn eri a americana | |----------------|----------------------------|-----------------------------|-----------|--|--------|------------------------|------------|--------------|--------------|----------|------------|--|-------|----------|---------------------|------------------------|-------------------|--------------------|------------------------|----------------|-------------------------|--------------------------|-----------------------|---------------------------|--------------------|---------------------------|-------------------------| | 2 | 45.944348 | -89.240634 | 125 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 2 | 0 | | | TERRESTRIAL | | | | | | | | | | | | | | | | | 3 | 45.942998 | -89.240652 | 147 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 3
| 2 | Sand | Pole | SAMPLED | | | 3 | | 1 | 1 | | 2 | 1 | 1 | | | | | 1 | | 4 | 45.942548 | -89.240658 | 165 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 4 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | _ | | 5 | 45.947493 | -89.239946 | 12 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 5 | 5 | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | | 1 | | 6 | 45.947043 | -89.239952 | 46 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 6 | 7 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | _ | _ | | 7 | 45.946593 | -89.239958 | 47 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 7 | 9 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | - | - | | 8 | 45.946143 | -89.239964 | 72 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 8 | 8 | Sand | | SAMPLED | | | 1 | | | | | | | | | | | | 1 | | 9 | 45.945693 | -89.239970 | 74 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 9 | 8 | Sand | | SAMPLED | | | 0 | | | | | | | | | | | | \exists | | 10 | 45.945243
45.944793 | -89.239976
-89.239983 | 100 | Duck Lake | Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 10 | 9 | Sand | | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | - | \exists | | 12 | 45.944343 | -89.239989 | 124 | Duck Lake Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 12 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | ٦ | | 13 | 45.943893 | -89.239995 | 126 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 13 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | ٦ | | 14 | 45.943443 | -89.240001 | 146 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 14 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 15 | 45.942993 | -89.240007 | 148 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 15 | 10 | Sand | | SAMPLED | | | 0 | | | | | | | | | | | | | | 16 | 45.942543 | -89.240013 | 164 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 16 | 10 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 17 | 45.947939 | -89.239295 | 13 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 17 | 5 | Sand | Pole | SAMPLED | | | 1 | | | | | | 1 | | | | | | 1 | | 18 | 45.947489 | -89.239301 | 11 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 18 | 9 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 19 | 45.947039 | -89.239307 | 45 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 19 | 9 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 20 | 45.946589 | -89.239313 | 48 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 20 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | _ | | | 21 | 45.946139 | -89.239319 | 71 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 21 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | 4 | | 22 | 45.945689 | -89.239325 | 75 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 22 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | _ | | 23 | 45.945239 | -89.239331 | 98 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 23 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | _ | _ | | 24 | 45.944789 | -89.239338 | 101 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 24 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | - | \dashv | | 25 | 45.944339 | -89.239344 | 123 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 25 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | - | \exists | | 26
27 | 45.943889
45.943439 | -89.239350
-89.239356 | 127 | Duck Lake | Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 26 | 12 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | _ | | | 28 | 45.943439 | -89.239362 | 149 | Duck Lake Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 27 | 14 | Muck | Pole | DEEP | | | U | | | | | | | | | | | _ | \neg | | 29 | 45.942539 | -89.239368 | 163 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 29 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 30 | 45.948835 | -89.238637 | 29 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 30 | 0 | | | DOCK | | | | | | | | | | | | | | | | | 31 | 45.948385 | -89.238643 | 28 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 31 | 6 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 32 | 45.947935 | -89.238649 | 14 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 32 | 9 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 33 | 45.947485 | -89.238656 | 10 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 33 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 34 | 45.947035 | -89.238662 | 44 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 34 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 35 | 45.946585 | -89.238668 | 49 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 35 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | _ | | | 36 | 45.946135 | -89.238674 | 70 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 36 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | _ | | 37 | 45.945685 | -89.238680 | 76 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 37 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | _ | _ | | 38 | 45.945235 | -89.238686 | 97 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 38 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | _ | | 39 | 45.944785 | -89.238693 | 102 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 39 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | _ | _ | | 40 | 45.944335 | -89.238699 | 122 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 40 | 12 | | | SAMPLED | | | 0 | | | | | | | | | | | - | - | | 41 | 45.943885 | -89.238705 | 128 | Duck Lake | Vilas | 8/15/2017 | | 41 | 12 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | \dashv | _ | | 42 | 45.943435 | -89.238711 | 144 | Duck Lake | Vilas | 8/15/2017 | | 42 | 12 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | - | | | 43 | 45.942985 | -89.238717 | 150 | Duck Lake | Vilas | 8/15/2017 | | 43 | 15 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | \dashv | \dashv | | 44 | 45.942535
45.948830 | -89.238723
-89.237992 | 162
30 | Duck Lake Duck Lake | Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 44 | 9 | Sand | Pole | SAMPLED | | | 3 | | 2 | | | | | | | | | 1 | 1 | | 45
46 | 45.948830
45.948380 | -89.237992
-89.237998 | 27 | Duck Lake Duck Lake | Vilas | 8/15/2017 | | 46 | 7 | Muck | | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | - | + | | 47 | 45.947930 | -89.238004 | 15 | Duck Lake | Vilas | | EJH & CJF | 47 | 9 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | ٦ | | 48 | 45.947480 | -89.238011 | 9 | Duck Lake | Vilas | 8/15/2017 | | 48 | 10 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | \exists | \exists | | 49 | 45.947030 | -89.238017 | 43 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 49 | 11 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | 50 | 45.946580 | -89.238023 | 50 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 50 | 11 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | 51 | 45.946130 | -89.238029 | 69 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 51 | 11 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | 52 | 45.945680 | -89.238035 | 77 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 52 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 53 | 45.945230 | -89.238041 | 96 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 53 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Q | Lake Namo | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Myriophyllum sibiricum | Najas flexilis | Potamogeton amplifolius | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | |--------------|----------------------------|-----------------------------|----------|---------------------|--------|------------------------|------------|--------------|------------|----------|------------|--------------------|-------|----------|---------------------|------------------------|-------------------|--------------------|------------------------|----------------|-------------------------|--------------------------|-----------------------|---------------------------|--------------------|---------------------------|-----------------------| | 54 | 45.944780 | -89.238048 | 103 | | Vilas | 8/15/2017 | EJH & CJF | 54 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | - | | 55
56 | 45.944330
45.943880 | -89.238054
-89.238060 | 121 | Duck Lake Duck Lake | Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 55
56 | 12 | Muck | | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | 57 | 45.943430 | -89.238066 | 143 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 57 | 12 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | 58 | 45.942981 | -89.238072 | 151 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 58 | 12 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | 59 | 45.942531 | -89.238078 | 161 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 59 | 10 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 60 | 45.942081 | -89.238085 | 166 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 60 | 3 | Sand | Pole | SAMPLED | | | 2 | | | | | | 1 | | | | 1 | | 1 | | 61 | 45.948826 | -89.237347 | 31 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 61 | 7 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 62 | 45.948376 | -89.237353 | 26 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 62 | 9 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 63 | 45.947926 | -89.237359 | 16 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 63 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 64 | 45.947476 | -89.237366 | 8 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 64 | 11 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | 65 | 45.947026 | -89.237372
-89.237378 | 42 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 65 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | _ | | 66 |
45.946576
45.946126 | -89.237378 | 51
68 | Duck Lake Duck Lake | Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 66 | 12 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | 68 | 45.945676 | -89.237390 | 78 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 68 | 12 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | 69 | 45.945226 | -89.237396 | 95 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 69 | 13 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | 70 | 45.944776 | -89.237403 | 104 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 70 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 71 | 45.944326 | -89.237409 | 120 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 71 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 72 | 45.943876 | -89.237415 | 130 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 72 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 73 | 45.943426 | -89.237421 | 142 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 73 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 74 | 45.942976 | -89.237427 | 152 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 74 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 75 | 45.942526 | -89.237433 | 160 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 75 | 10 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 76 | 45.942076 | -89.237440 | 167 | | Vilas | 8/15/2017 | | 76 | 6 | Sand | | SAMPLED | | | 1 | | 1 | | | | | | | | | | 11 | | 77 | 45.948822 | -89.236702
-89.236708 | 32
25 | Duck Lake | Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 77 | 8 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | _ | | 78
79 | 45.948372
45.947922 | -89.236714 | 17 | Duck Lake Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 78
79 | 10 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | _ | | 80 | 45.947472 | -89.236720 | 7 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 80 | 11 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | 81 | 45.947022 | -89.236727 | 41 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 81 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 82 | 45.946572 | -89.236733 | 52 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 82 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 83 | 45.946122 | -89.236739 | 67 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 83 | 13 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 84 | 45.945672 | -89.236745 | 79 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 84 | 13 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 85 | 45.945222 | -89.236751 | 94 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 85 | 13 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 86 | 45.944772 | -89.236757 | | | Vilas | | EJH & CJF | | | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | 87 | 45.944322
45.943872 | | 119 | Duck Lake Duck Lake | Vilas | 8/15/2017
8/15/2017 | | 87 | 12 | Muck | | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | | | | 89 | 45.943422 | -89.236776 | 141 | Duck Lake | Vilas | 8/15/2017 | | 89 | 11 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | _ | | 90 | 45.942972 | -89.236782 | 153 | Duck Lake | Vilas | 8/15/2017 | | 90 | 11 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | 91 | 45.942522 | -89.236788 | 159 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 91 | 10 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 92 | 45.942072 | -89.236795 | 168 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 92 | 5 | Muck | Pole | SAMPLED | | | 3 | 1 | | | | | 1 | | | | | | 2 | | 93 | 45.948817 | -89.236057 | 33 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 93 | 3 | Sand | Pole | SAMPLED | | | 3 | | | | | 2 | 1 | | | 1 | | | 1 | | 94 | 45.948367 | -89.236063 | 24 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 94 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 95 | 45.947917 | -89.236069 | 18 | Duck Lake | Vilas | 8/15/2017 | | 95 | 11 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | 96 | 45.947467 | -89.236075 | 6 | Duck Lake | Vilas | 8/15/2017 | | 96 | 11 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | _ | | 97 | 45.947017 | -89.236082 | 40 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 97 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | _ | | 98 | 45.946567
45.946117 | -89.236088
-89.236094 | 53
66 | Duck Lake Duck Lake | Vilas | 8/15/2017
8/15/2017 | | 98 | 13 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | 100 | 45.945667 | -89.236100 | 80 | | Vilas | 8/15/2017 | | 100 | 14 | Noun | . ole | DEEP | | | | | | | | | | | | | | | | | 101 | 45.945217 | -89.236106 | 93 | Duck Lake | Vilas | 8/15/2017 | | 101 | 13 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 102 | 45.944768 | -89.236112 | 106 | | Vilas | 8/15/2017 | EJH & CJF | 102 | 13 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | 103 | 45.944318 | -89.236119 | 118 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 103 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 104 | 45.943868 | -89.236125 | 132 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 104 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 105 | 45.943418 | -89.236131 | 140 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 105 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 106 | 45.942968 | -89.236137 | 154 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 106 | 10 | Muck | Pole | SAMPLED | | <u> </u> | 0 | <u> </u> | | L | | | <u> </u> | Ш | | | | | | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Q | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Myriophyllum sibiricum | Najas flexilis | Potamogeton amplifolius | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | |--------------|----------------------------|-----------------------------|----------|---------------------|--------|------------------------|------------|--------------|------------|----------|------------|--------------------|-----------|----------|---------------------|------------------------|-------------------|--------------------|------------------------|----------------|-------------------------|--------------------------|-----------------------|---------------------------|--------------------|---------------------------|-----------------------| | 107 | 45.942518 | -89.236143 | 158 | | Vilas | 8/15/2017 | EJH & CJF | 107 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | _ | _ | | 108 | 45.948363 | -89.235418 | 23 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 108 | 6 | Sand | Pole | SAMPLED | | | 3 | | | | | 1 | | | | | | + | 3 | | 109 | 45.947913 | -89.235424 | 19 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 109 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | - | \dashv | | 110 | 45.947463
45.947013 | -89.235430
-89.235437 | 39 | Duck Lake Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 110 | 11 | Muck | Pole | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | + | | | 112 | 45.946563 | -89.235443 | 54 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 112 | 13 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 113 | 45.946113 | -89.235449 | 65 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 113 | 14 | | | DEEP | | | | | | | | | | | | | | | | | 114 | 45.945663 | -89.235455 | 81 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 114 | 14 | | | DEEP | | | | | | | | | | | | | | | | | 115 | 45.945213 | -89.235461 | 92 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 115 | 13 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 116 | 45.944763 | -89.235467 | 107 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 116 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | _ | | | 117 | 45.944313 | -89.235474 | 117 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 117 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | 4 | | | 118 | 45.943863 | -89.235480 | 133 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 118 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | _ | _ | | 119 | 45.943413 | -89.235486 | 139 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 119 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | _ | 4 | | 120 | 45.942963 | -89.235492 | 155 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 120 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | \dashv | \dashv | | 121 | 45.942513 | -89.235498 | 157 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 121 | 0 | | | DOCK | | | | | | | | | | | | | | + | \dashv | | 122 | 45.947909 | -89.234779 | 20 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 122 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | - | \dashv | | 123 | 45.947459 | -89.234785 | 4 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 123 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | - | \exists | | 124 | 45.947009 | -89.234791 | 38
55 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 124 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | ٦ | | 126 | 45.946559
45.946109 | -89.234798
-89.234804 | 64 | Duck Lake Duck Lake | Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 125 | 14 | | | DEEP | | | | | | | | | | | | | | | ٦ | | 127 | 45.945659 | -89.234810 | 82 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 127 | 13 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 128 | 45.945209 | -89.234816 | 91 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 128 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 129 | 45.944759 | -89.234822 | 108 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 129 | 12 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 130 | 45.944309 | -89.234829 | 116 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 130 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | |
| 131 | 45.943859 | -89.234835 | 134 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 131 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | 4 | | | 132 | 45.943409 | -89.234841 | 138 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 132 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | _ | 4 | | 133 | 45.942959 | -89.234847 | 156 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 133 | 4 | Sand | Pole | SAMPLED | | | 2 | | 1 | | | | 1 | | | | | \dashv | 2 | | 134 | 45.947904 | -89.234134 | 21 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 134 | 7 | Sand | Pole | SAMPLED | | | 2 | | | | | | | | | | | + | 2 | | 135 | 45.947454 | -89.234140 | 3 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 135 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | + | \dashv | | 136 | 45.947004 | -89.234146 | 37 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 136 | 13 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | + | \exists | | 137 | 45.946554
45.946105 | -89.234153
-89.234159 | 56
63 | Duck Lake Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 137 | 16 | | | DEEP | | | | | | | | | | | | | | + | 7 | | 139 | | -89.234165 | | Duck Lake | Vilas | | EJH & CJF | | | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 140 | 45.945205 | -89.234171 | | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 140 | 12 | Muck | | SAMPLED | | | 0 | | | | | | | | | | | | | | 141 | 45.944755 | -89.234177 | 109 | | Vilas | 8/15/2017 | EJH & CJF | 141 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 142 | 45.944305 | -89.234184 | 115 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 142 | 11 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 143 | 45.943855 | -89.234190 | 135 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 143 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | _ | | | 144 | 45.943405 | -89.234196 | 137 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 144 | 6 | Sand | Pole | SAMPLED | | | 3 | | | | | | | | | | | 4 | 3 | | 145 | 45.947900 | -89.233489 | 22 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 145 | 3 | Sand | Pole | SAMPLED | | | 3 | | 1 | | | 1 | | | | | | _ | 1 | | 146 | 45.947450 | -89.233495 | 2 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 146 | 11 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | _ | 4 | | 147 | 45.947000 | -89.233501 | 36 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 147 | 12 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | \dashv | _ | | 148 | 45.946550 | -89.233508 | 57 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 148 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | \dashv | - | | 149 | 45.946100 | -89.233514 | 62 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 149 | 15 | | | DEEP | | | | | | | | | | | | | | - | \exists | | 150 | 45.945650
45.945200 | -89.233520
-89.233526 | 84 | Duck Lake | Vilas | 8/15/2017
8/15/2017 | EJH & CJF | 150 | 12 | Muck | | SAMPLED
SAMPLED | | | 0 | | | | | | | | | | | \dashv | \dashv | | 151 | 45.945200
45.944750 | -89.233526
-89.233532 | 110 | Duck Lake Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 151 | 11 | Muck | | SAMPLED | | | 0 | | | | | | | | | | 1 | \dashv | ٦ | | 153 | 45.944300 | -89.233539 | 114 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 153 | 10 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | 1 | \exists | ٦ | | 154 | 45.943850 | -89.233545 | 136 | | Vilas | 8/15/2017 | EJH & CJF | 154 | 7 | Muck | | SAMPLED | | | 3 | | | | | | | | | | | | 3 | | 155 | 45.947446 | -89.232850 | 1 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 155 | 0 | | | SWIM AREA | 8/15/2017 | | | | | | | | | | | | | | | | 156 | 45.946996 | -89.232856 | 35 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 156 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | \perp | _ | | 157 | 45.946546 | -89.232863 | 58 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 157 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | \dashv | _ | | 158 | 45.946096 | -89.232869 | 61 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 158 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | 4 | 4 | | 159 | 45.945646 | -89.232875 | 85 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 159 | 12 | Muck | Pole | SAMPLED | | L | 0 | | | | | | | L | | | | | _ | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Ω | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Myriophyllum sibiricum | Najas flexilis | Potamogeton amplifolius | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton strictifolius | Potamogeton vaseyi | Potamogeton zosteriformis | Vallisneria americana | |--------------|----------------------------|-----------------------------|-----|------------------|--------|-----------|------------|--------------|------------|----------|------------|----------|-------|----------|---------------------|------------------------|-------------------|--------------------|------------------------|----------------|-------------------------|--------------------------|-----------------------|---------------------------|--------------------|---------------------------|-----------------------| | 160 | 45.945196 | -89.232881 | 88 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 160 | 10 | Muck | Pole | SAMPLED | | | 0 | | | | | | | | | | | | 1 | | 161 | 45.944746 | -89.232887 | 111 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 161 | 10 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 162 | 45.944296 | -89.232894 | 113 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 162 | 7 | Sand | Pole | SAMPLED | | | 2 | | | | | | | | | | | | 2 | | 163 | 45.946991 | -89.232211 | 34 | Duck Lake | Vilas | 8/15/2017 | | 163 | 9 | Sand | | SAMPLED | | | 0 | | | | | | | | | | | | | | | 45.946542 | -89.232217 | 59 | | Vilas | 8/15/2017 | | | 7 | Sand | | | | | 2 | | | | | | | | | | | | 2 | | 164 | | | | Duck Lake | | | | 164 | _ | | | SAMPLED | | | | | | | | | | | | | | | | | 165 | 45.946092 | -89.232224 | 60 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 165 | / | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 166 | 45.945642 | -89.232230 | 86 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 166 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 167 | 45.945192 | -89.232236 | 87 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 167 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 168 | 45.944742 | -89.232242 | 112 | Duck Lake | Vilas | 8/15/2017 | EJH & CJF | 168 | 5 | Sand | Pole | SAMPLED | | | 2 | | | | 1 | 1 | 1 | | 1 | 1 | | | 1 | | 2 45 9429057 49 2413125 5 Perior Birch Lake Visis 8/192017 LUS 8 JBS 2 9 Sund Pole SAMPLED 2 1 4 45 942057 49 2413125 5 Perior Birch Lake Visis 8/192017 LUS 8 JBS 5 5 Sand Pole SAMPLED 2 1 5 45 942050 49 240194 4 Velow Birch Lake Visis 9/192017 LUS 8 JBS 5 6 Sand Pole SAMPLED 1 1 6 45 941962 49 241330 5 Velow Birch Lake Visis 9/192017 LUS 8 JBS 6 6 Sand Pole SAMPLED 1 1 7 45 941962 49 241330 5 Velow Birch Lake Visis 9/192017 LUS 8 JBS 6 6 Sand Pole SAMPLED 0 0 8 45 941965 49 240195 5 Velow Birch Lake Visis 9/192017 LUS 8 JBS 7 Sand Pole SAMPLED 0 0 9 45 941943 49 240195 10 Velow Birch Lake Visis 9/192017 LUS 8 JBS 7 Sand Pole SAMPLED 0 0 10 45 941943 49 240195 10 Velow Birch Lake Visis 9/192017 LUS 8 JBS 7 Sand Pole SAMPLED 0 0 11 45 941240 49 240195 10 Velow Birch Lake Visis 9/192017 LUS 8 JBS 7 Sand Pole SAMPLED 0 0 12 45 941240 49 240195 10 Velow Birch Lake Visis 9/192017 LUS 8 JBS 7 Sand Pole SAMPLED 0 0 13 45 941240 49 240195 10 Velow Birch Lake Visis 9/192017 LUS 8 JBS 7 Sand Pole SAMPLED 0 3 14 45 94123 49 292014 11 Velow Birch Lake Visis 9/192017 LUS 8 JBS 7 Sand Pole SAMPLED 0 3 15 45 941230 49 230014 12 Velow Birch Lake Visis 9/192017 LUS 8 JBS 7 Sand Pole SAMPLED 3 3 14 45 941230 49 230015 13 Velow Birch Lake Visis 9/192017 LUS 8 JBS 7 Sand Pole SAMPLED 0 3 15 45 940830 49 230016 15 Velow Birch Lake Visis 9/192017 LUS 8 JBS 7 Sand Pole SAMPLED 0 3 16 45 940830 49 230016 13 Velow Birch Lake Visis 9/192017 LUS 8 JBS 7 TS 9 Rod Pole SAMPLED 0 0 17 44 95 940831 49 230016 13 Velow Birch Lake Visis 9/192017 LUS 8 JBS 7 TS 9 Rod Pole SAMPLED 0 0 18 45 940830 49 230016 13 Velow Birch Lake Visis 9/192017 LUS 8 JBS 7 TS 9 Rod Pole SAMPLED 0 0 19 45 940831 49 220300 15 Velow Birch Lake Visis 9/192017 LUS 8 JBS 7 TS 9 Rod Pole SAMPLED 0 0 19 45 940831 49 220300 15 Velow Birch Lake Visis 9/192017 LUS 8 JBS 7 TS 9 Rod Pole SAMPLED 0 0 19 45 940830 49 220300 15 Velow Birch Lake Visis 9/192017 LUS 8 JBS 7 TS 9 Rod Pole SAMPLED 0 0 19 45 940830 49 220300 15 Velow Birch Lake Visis 9/192017 LUS 8 JBS 7 TS 9 Rod Pole SA | 1 1 3 3 3 3 3 3 3 |
--|-------------------| | 4 45 942053 | 3 3 | | \$\frac{5}{6}\$ 45.940500\$\$ -89.2401944\$\$ 3\$ Velow Birch Late \$\frac{1}{2}\$ 8152017\$\$ LIS \$4.985\$\$ 5\$ \$5.8md \$Pote \$\$AAMPLED\$\$\$ 1\$\$ \$7.45.9419464\$\$ -89.240750\$\$ 7\$ Velow Birch Late \$\frac{1}{2}\$ 8152017\$\$ LIS \$4.985\$\$ 7\$ 9\$ \$8md \$Pote \$\$AAMPLED\$\$\$ 0\$\$ \$7.45.941946\$\$ -89.240750\$\$ 9\$ Velow Birch Late \$\frac{1}{2}\$ 8152017\$\$ LIS \$4.985\$\$ 0\$ 0\$ | 3 | | 6 | 3 | | 7 | 3 | | 8 45 941645 | 3 | | 9 45941243 -89.240755 9 Yellow Birch Lake Vilas 8/152017 LIS 8.JBS 9 8 Rock Pole SAMPLED 0 0 1 1 45.941236 -89.230594 11 Yellow Birch Lake Vilas 8/152017 LIS 8.JBS 10 8 Sand Pole SAMPLED 3 3 1 1 45.941236 -89.230594 11 Yellow Birch Lake Vilas 8/152017 LIS 8.JBS 11 5 Sand Pole SAMPLED 3 3 1 1 45.941232 -89.23014 12 Yellow Birch Lake Vilas 8/152017 LIS 8.JBS 11 5 Sand Pole SAMPLED 3 3 1 1 4 5.941232 -89.23014 12 Yellow Birch Lake Vilas 8/152017 LIS 8.JBS 11 5 Sand Pole SAMPLED 3 3 1 1 4 5.941232 -89.23014 12 Yellow Birch Lake Vilas 8/152017 LIS 8.JBS 11 5 Sand Pole SAMPLED 3 1 TERRESTRIAL 1 4 5.940833 -89.241980 15 Yellow Birch Lake Vilas 8/152017 LIS 8.JBS 14 2 Sand Pole SAMPLED 0 1 TERRESTRIAL 1 1 4 5.940835 -89.241980 15 Yellow Birch Lake Vilas 8/152017 LIS 8.JBS 14 2 Sand Pole SAMPLED 0 1 TEMPORARY OBSTACLE TEMPO | 3 | | 11 | 3 | | 12 | | | 13 | | | 14 | 1 3 | | 15 | | | 16 | 1 | | 17 | | | 18 | | | 19 | | | 20 45.940815 | | | 22 45.940426 -89.239605 19 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 22 8 Sand Pole SAMPLED 0 | | | 23 45.940422 -89.239025 18 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 23 7 Sand Pole SAMPLED 0 0 | | | 24 45,940418 -89,238444 5 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 24 0 DEEP DEEP 25 45,940414 -89,237864 3 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 25 15 DEEP 26 45,940410 -89,237283 4 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 26 12 DEEP 27 45,940406 -89,236703 8 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 27 6 Sand Pole SAMPLED 1 28 45,940403 -89,236723 9 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 28 0 TERRESTRIAL 29 45,940399 -89,235542 17 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 29 0 TERRESTRIAL 30 45,940029 -89,240772 23 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 31 2 Sand Pole SAMPLED 3 3 3 31 <td></td> | | | 25 45.940414 -89.237864 3 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 25 15 DEEP 26 45.940410 -89.237283 4 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 26 12 DEEP 27 45.940406 -89.236703 8 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 27 6 Sand Pole SAMPLED 1 28 45.940403 -89.236123 9 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 28 0 TERRESTRIAL 29 45.940399 -89.235542 17 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 29 0 TERRESTRIAL 30 45.940029 -89.240772 23 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 30 0 TERRESTRIAL 31 45.940025 -89.240191 22 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 31 2 Sand Pole SAMPLED 0 32 45.940021 -89.2396 | | | 26 45.940410 -89.237283 4 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 26 12 DEEP DEEP 27 45.940406 -89.236703 8 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 27 6 Sand Pole SAMPLED 1 28 45.940403 -89.236123 9 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 28 0 TERRESTRIAL 1 29 45.940399 -89.235542 17 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 29 0 TERRESTRIAL 30 45.940029 -89.240772 23 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 30 0 TERRESTRIAL 31 45.940025 -89.240191 22 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 31 2 Samp Pole SAMPLED 3 3 3 32 45.940021 -89.239611 21 Yellow Bir | +++ | | 27 45.940406 -89.236703 8 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 27 6 Sand Pole SAMPLED 1 28 45.940403 -89.236123 9 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 28 0 TERRESTRIAL 29 45.940399 -89.235542 17 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 29 0 TERRESTRIAL 30 45.940029 -89.240772 23 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 30 0 TERRESTRIAL 31 45.940025 -89.240191 22 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 31 2 Sand Pole SAMPLED 3 3 3 32 45.940021 -89.239611 21 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 32 7 Sand Pole SAMPLED 0 33 45.940017 -89.239030 20 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 33 8 Sand Pole </td <td></td> | | | 28 45,940403 -89,236123 9 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 28 0 TERRESTRIAL 29 45,940399 -89,235542 17 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 29 0 TERRESTRIAL 30 45,940029 -89,240772 23 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 30 0 TERRESTRIAL 31 45,940025 -89,240191 22 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 31 2 Sand Pole SAMPLED 3 3 3 3 3 3 3 3 3 3 3 3 45,940017 -89,239031 20 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 32 7 Sand Pole SAMPLED 0 0 5 | | | 29 45.940399 -89.235542 17 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 29 0 TERRESTRIAL 30 45.940029 -89.240772 23 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 30 0 TERRESTRIAL 31 45.940025 -89.240191 22 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 31 2 Sand Pole SAMPLED 3 3 3 3 3 3 3 3 45.940017 -89.239611 21 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 32 7 Sand Pole SAMPLED 0 0 3 3 3 3 3 3 3 45.940017 -89.239030 20 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 33 8 Sand Pole SAMPLED 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 1 1 | | 30 45,940029 -89,240772 23 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 30 0 TERRESTRIAL 31 45,940025 -89,240191 22 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 31 2 Sand Pole SAMPLED 3 3 3 3 3 3 3 3 3 | | | 31 45.940025 -89.240191 22 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 31 2 Sand Pole SAMPLED 3 3 32 45.940021 -89.239611 21 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 32 7 Sand Pole SAMPLED 0 33 45.940017 -89.239030 20 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 33 8 Sand Pole SAMPLED 0 | | | 33 45.940017 -89.239030 20 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 33 8 Sand Pole SAMPLED 0 | 2 | | | | | 34 45.940013 -89.238450 0 Yellow Birch Lake Vilas 34 0 DEEP | | | | +++ | | 35 45.940009 -89.237870 0 Yellow Birch Lake Vilas 35 0 DEEP | | | 36 45.940005 -89.237289 12 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 36 0 DEEP | | | 37 45.940001 -89.236709 10 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 37 12 DEEP 38 45.939998 -89.236128 11 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 38 9 Rock Pole SAMPLED 0 | | | 39 45.939994 -89.235548 16 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 39 9 Rock Pole SAMPLED 0 | | | 40 45.939990 -89.234967 18 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 40 3 Sand Pole SAMPLED 2 1 1 2 1 | 2 | | 41 45.939620 -89.240197 24 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 41 3 Sand Pole SAMPLED 1 1 1 1 | 1 | | 42 45.939616 -89.239616 25 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 42 5 Sand Pole SAMPLED 2 | 2 | | 43 45.939612 -89.239036 26 Yellow Birch Lake Vilas 8/15/2017 LJS & JBS 43 7 Sand Pole SAMPLED 0 | | | 44 45.939608 -89.238456 0 Yellow Birch Lake Vilas 44 0 DEEP | +++ | | 45 45.939604 -89.237875 0 Yellow Birch Lake Vilas 45 0 DEEP | +++ | | 46 45.939600 -89.237295 0 Yellow Birch Lake Vilas 46 0 DEEP | +++ | | 47 45.939596 -89.236714 14 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 47 0 DEEP | | | 48 45.939593 -89.236134 13 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 48 15 DEEP 49 45.939589 -89.235553 15 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 49 13 DEEP | | | 49 45.939589 -89.235553 15 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 49 13 DEEP 50 45.939585 -89.234973 19 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 50 9 Rock Pole SAMPLED 0 | | | 50 43.535503 45.234392 20 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 51 7 Sand Pole SAMPLED 0 | +-+- | | 52 45.939577 -89.233812 21 Yellow Birch Lake Vilas 8/15/2017 BTB & NLS 52 1 Sand Pole SAMPLED 2 1 1 | | | 53 45.939215 -89.240202 29 Yellow Birch Lake Vilas 8/15/2017 LJS &
JBS 53 4 Sand Pole SAMPLED 2 | 2 | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Namo | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance
Total Dako Eullage | Myriophyllim spicatum | Bidens beckii | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Naias flexilis | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton pusillus | Potamogeton robbinsii | Potamogeton vaseyi | Potamogeton zosteriformis | Sparganium fluctuans | Vallisneria americana | |--------------|----------------------------|-----------------------------|----|-------------------------------------|--------|-----------|------------|--------------|------------|----------|------------|-------------|-------|--------------------------------|-----------------------|---------------|------------------------|-------------------|--------------------|----------------|-------------------------|-----------------------|----------------------|----------------------|-----------------------|--------------------|---------------------------|----------------------|-----------------------| | 54 | 45.939211 | -89.239622 | 28 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 54 | 5 | Sand | Pole | SAMPLED | | 1 | T | | | | | | | | | | | | | \vdash | 1_ | | 55 | 45.939207 | -89.239042 | 27 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 55 | 9 | Sand | Pole | SAMPLED | | (|) | | - | | | | | | | | | | | ╁ | H | | 56 | 45.939203 | -89.238461 | 0 | Yellow Birch Lake | Vilas | | | 56 | 0 | | | DEEP | | | + | | | | | | | | | | | | | H | | | 57 | 45.939199 | -89.237881 | 0 | Yellow Birch Lake | Vilas | | | 57 | 0 | | | DEEP | | | | | | | | | | | | | | | | H | П | | 58
59 | 45.939195
45.939191 | -89.237300
-89.236720 | 0 | Yellow Birch Lake Yellow Birch Lake | Vilas | | | 58 | 0 | | | DEEP | | | | | | | | | | | | | | | | T | | | 60 | 45.939188 | -89.236139 | 0 | Yellow Birch Lake | Vilas | | | 60 | 0 | | | DEEP | | | | | | | | | | | | | | | | T | | | 61 | 45.939184 | -89.235559 | 26 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 61 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | 62 | 45.939180 | -89.234978 | 25 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 62 | 13 | | | DEEP | | | | | | | | | | | | | | | | | | | 63 | 45.939176 | -89.234398 | 24 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 63 | 10 | Sand | Pole | SAMPLED | | (|) | | | | | | | | | | | | | | | | 64 | 45.939172 | -89.233817 | 23 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 64 | 9 | Sand | Pole | SAMPLED | | (|) | | | | | | | | | | | | | Ļ | | | 65 | 45.939168 | -89.233237 | 22 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 65 | 1 | Sand | Pole | SAMPLED | | 2 | 2 | | | | | 2 | | | | | | | | 1 | 1 | | 66 | 45.938810 | -89.240208 | 30 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 66 | 6 | Sand | Pole | SAMPLED | | (|) | - | | | | | | | | | | | | - | \vdash | | 67 | 45.938806 | -89.239628 | 31 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 67 | 9 | Sand | Pole | SAMPLED | | (|) | | | | | | | | | | | | | ┝ | \vdash | | 68 | 45.938802 | -89.239047 | 32 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 68 | 12 | Sand | Pole | SAMPLED | | (|) | | | | | | | | | | | | | \vdash | H | | 69 | 45.938798 | -89.238467 | 0 | Yellow Birch Lake | Vilas | | | 69 | 0 | | | DEEP | | | + | | | | | | | | | | | | | \vdash | | | 70 | 45.938794 | -89.237886 | 0 | Yellow Birch Lake | Vilas | | | 70 | 0 | | | DEEP | | | + | | | | | | | | | | | | | H | | | 71 | 45.938790
45.938787 | -89.237306
-89.236725 | 0 | Yellow Birch Lake Yellow Birch Lake | Vilas | | | 71 | 0 | | | DEEP | | | | | | | | | | | | | | | | T | | | 73 | 45.938783 | -89.236145 | 62 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 73 | 0 | | | DEEP | | | | | | | | | | | | | | | | T | П | | 74 | 45.938779 | -89.235564 | 27 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 74 | 12 | | | DEEP | | | | | | | | | | | | | | | | T | | | 75 | 45.938775 | -89.234984 | 28 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 75 | 8 | Rock | Pole | SAMPLED | | (|) | | | | | | | | | | | | | | | | 76 | 45.938771 | -89.234403 | 29 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 76 | 7 | Sand | Pole | SAMPLED | | (|) | | | | | | | | | | | | | | | | 77 | 45.938767 | -89.233823 | 30 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 77 | 10 | Muck | Pole | SAMPLED | | (|) | | | | | | | | | | | | | | | | 78 | 45.938763 | -89.233242 | 31 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 78 | 8 | Sand | Pole | SAMPLED | | (|) | | | | | | | | | | | | | Ļ | | | 79 | 45.938759 | -89.232662 | 32 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 79 | 0 | | | TERRESTRIAL | | | | - | | | | | | | | | | | | | <u> </u> | | 80 | 45.938405 | -89.240214 | 35 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 80 | 2 | Sand | Pole | SAMPLED | | 3 | 3 | | | | | 2 | | | | | | 1 | | - | 3 | | 81 | 45.938401 | -89.239633 | 34 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 81 | 7 | Rock | Pole | SAMPLED | | (|) | | | | | | | | | | | | | \vdash | \vdash | | 82 | 45.938397 | -89.239053 | 33 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 82 | 14 | | | DEEP | | | | | - | | | | | | | | | | | ╁ | \vdash | | 83 | 45.938393 | -89.238472 | 0 | Yellow Birch Lake | Vilas | | | 83 | 0 | | | DEEP | | | | | | | | | | | | | | | | H | | | 84 | 45.938389
45.938385 | -89.237892
-89.237311 | 0 | Yellow Birch Lake Yellow Birch Lake | Vilas | | | 84 | 0 | | | DEEP | | | | | | | | | | | | | | | | H | П | | 86 | 45.938382 | -89.236731 | 0 | Yellow Birch Lake | | | | 86 | | | | DEEP | | | | | | | | | | | | | | | | T | П | | 87 | 45.938378 | -89.236150 | 39 | Yellow Birch Lake | | 8/15/2017 | BTB & NLS | 87 | 15 | | | DEEP | | | | | | | | | | | | | | | | | | | 88 | 45.938374 | -89.235570 | 38 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 88 | 11 | Sand | Pole | SAMPLED | | (|) | | | | | | | | | | | | | | | | 89 | 45.938370 | -89.234989 | 37 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 89 | 8 | Sand | Pole | SAMPLED | | (|) | | | | | | | | | | | | | | | | 90 | 45.938366 | -89.234409 | 36 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 90 | 7 | Sand | Pole | SAMPLED | | 2 | 2 1 | | 2 | 1 | | | | | | | 1 | | | L | | | 91 | 45.938362 | -89.233829 | 35 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 91 | 9 | Muck | Pole | SAMPLED | | (|) | | | | | | | | | | | | | Ļ | Ш | | 92 | 45.938358 | -89.233248 | 34 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 92 | 9 | Muck | Pole | SAMPLED | | (|) | - | | | | | | | | | | | | - | H | | 93 | 45.938354 | -89.232668 | 33 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 93 | 5 | Sand | Pole | SAMPLED | | - 2 | 2 \ | | - | | | | | | | | | | | ┢ | 2 | | 94 | 45.937996 | -89.239639 | 36 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 94 | 6 | Sand | Pole | SAMPLED | | (|) | | | | | | | | | | | | | ┝ | \vdash | | 95 | 45.937992 | -89.239058 | 37 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 95 | 30 | | | DEEP | | | | | - | | | | | | | | | | | ╁ | \vdash | | 96 | 45.937988 | -89.238478 | 0 | Yellow Birch Lake | | | | 96 | 0 | | | DEEP | | | \dagger | \dagger | | | + | + | | | | | | + | | \vdash | Н | | 97 | 45.937984 | -89.237897 | 0 | Yellow Birch Lake | | | | 97 | 0 | | | DEEP | H | | t | \dagger | T | | | 1 | H | | | | | + | - | T | П | | 98 | 45.937980
45.937977 | -89.237317
-89.236736 | 0 | Yellow Birch Lake Yellow Birch Lake | Vilas | | | 98 | 0 | | | DEEP | | | t | | 1 | | | T | | | | 1 | | | | | П | | 100 | 45.937977 | -89.236156 | 40 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 100 | | | | DEEP | | | T | T | | | | | | | | Ì | | T | | | П | | 101 | 45.937969 | -89.235575 | 41 | Yellow Birch Lake | Vilas | | BTB & NLS | | | | | DEEP | | | İ | | L | | | | | | | | | | | | | | 102 | 45.937965 | -89.234995 | 42 | Yellow Birch Lake | Vilas | | | | | Sand | Pole | | | (|) | | | | | | | | | | | | | L | | | 103 | 45.937961 | -89.234415 | 43 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 103 | 9 | Sand | Pole | SAMPLED | | (|) | | | | | | | | | | | | | L | Ш | | 104 | 45.937957 | -89.233834 | 44 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 104 | 9 | Muck | Pole | SAMPLED | | (|) | 1 | | | | 1 | | | | | | | | \perp | Ц | | 105 | 45.937953 | -89.233254 | 45 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 105 | 8 | Muck | Pole | SAMPLED | | (|) | - | 1 | | | - | | | | | | | | \perp | \blacksquare | | 106 | 45.937949 | -89.232673 | 46 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 106 | 6 | Sand | Pole | SAMPLED | Ш | (|) | _ | | Ш | | _ | _ | Ш | | | | | _ | | Ш | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Q | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance
Total Rake Fullness | Myriophyllum spicatum | Bidens beckii | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia Myriophyllum sibiricum | Najas flexilis | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton pusillus | Potamogeton robbinsii | Potamogeton vaseyi | Potamogeton zosteriformis | Sparganium fluctuans | Val lisn eria americana | |--------------|----------------------------|-----------------------------|----|-------------------------------------|--------|------------------------|------------|--------------|------------|----------|------------|--------------------|-------|---------------------------------|-----------------------|---------------|------------------------|-------------------|---|----------------|-------------------------|-----------------------|----------------------|----------------------
-----------------------|--------------------|---------------------------|----------------------|-------------------------| | 107 | 45.937945 | -89.232093 | 47 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 107 | | | | TERRESTRIAL | | | | | | | | | | | | | | | H | H | | | 108 | 45.937591
45.937587 | -89.239644 | 39 | Yellow Birch Lake | Vilas | 8/15/2017
8/15/2017 | LJS & JBS | 108 | | Rock | Pole | SAMPLED | | C | | | | | | | | | | | | | | H | | | 110 | 45.937583 | -89.239064
-89.238483 | 38 | Yellow Birch Lake Yellow Birch Lake | Vilas | 6/15/2017 | LJS & JBS | 110 | 14 | | | DEEP | | | | | | | | | | | | | | | | | | | 111 | 45.937579 | -89.237903 | 0 | Yellow Birch Lake | Vilas | | | 111 | 0 | | | DEEP | | | | | | | | | | | | | | | | П | | | 112 | 45.937575 | -89.237322 | 0 | Yellow Birch Lake | | | | 112 | | | | DEEP | | | | | | | | | | | | | | | | | | | 113 | 45.937572 | -89.236742 | 0 | Yellow Birch Lake | Vilas | | | 113 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | 114 | 45.937568 | -89.236161 | 0 | Yellow Birch Lake | Vilas | | | 114 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | 115 | 45.937564 | -89.235581 | 53 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 115 | 13 | | | DEEP | | | | | | | | | | | | | | | | Ш | | | 116 | 45.937560 | -89.235001 | 52 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 116 | 10 | Sand | Pole | SAMPLED | | C | | | | | | | | | | | | | | Ц | | | 117 | 45.937556 | -89.234420 | 51 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 117 | 5 | Sand | Pole | SAMPLED | | | | | | | | | | | | | | | <u> </u> | Н | | | 118 | 45.937552 | -89.233840 | 50 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 118 | 1 | Rock | Pole | SAMPLED | | 1 | - | | | | | 1 | | | | | | | - | Н | | | 119 | 45.937548 | -89.233259 | 49 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 119 | | Sand | Pole | SAMPLED | | (| | | | | | | | | | | | | - | Н | - | | 120 | 45.937544 | -89.232679 | 48 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 120 | | Sand | Pole | SAMPLED | | | 1 | | | | | | | | | | | | | H | | | 121 | 45.937190 | -89.240230 | 40 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 121 | 0 | | | TERRESTRIAL | | | | | | | | | | | | | | | | H | | | 122 | 45.937186
45.937182 | -89.239650
-89.239069 | 41 | Yellow Birch Lake Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 122 | | | | DEEP | | | T | | | | | | | | | | | | | H | | | 124 | 45.937178 | -89.238489 | 0 | Yellow Birch Lake | Vilas | | | 124 | | | | DEEP | | | | | | | | | | | | | | | | | | | 125 | 45.937174 | -89.237908 | 0 | Yellow Birch Lake | Vilas | | | 125 | | | | DEEP | | | | | | | | | | | | | | | | П | | | 126 | 45.937170 | -89.237328 | 0 | Yellow Birch Lake | Vilas | | | 126 | | | | DEEP | | | | | | | | | | | | | | | | | | | 127 | 45.937167 | -89.236747 | 0 | Yellow Birch Lake | Vilas | | | 127 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | 128 | 45.937163 | -89.236167 | 0 | Yellow Birch Lake | Vilas | | | 128 | 0 | | | DEEP | | | | | | | | | | | | | | | | | | | 129 | 45.937159 | -89.235587 | 54 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 129 | 13 | | | DEEP | | | | | | | | | | | | | | | | Ш | | | 130 | 45.937155 | -89.235006 | 55 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 130 | 3 | Sand | Pole | SAMPLED | | 2 | ! | | | | | 1 | | | | | | | | Ш | 2 | | 131 | 45.936785 | -89.240236 | 43 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 131 | 3 | Rock | Pole | SAMPLED | | | | | | | | | | | | | | | <u> </u> | Н | | | 132 | 45.936781 | -89.239655 | 42 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 132 | 14 | | | DEEP | | | + | | | | | | | | | | | | - | Н | - | | 133 | 45.936777 | -89.239075 | 0 | Yellow Birch Lake | Vilas | | | 133 | 0 | | | DEEP | | | + | | | | | | | | | | | | - | Н | - | | 134 | 45.936773 | -89.238494 | 0 | Yellow Birch Lake | Vilas | | | 134 | 0 | | | DEEP | | | | | | | | | | | | | | | | H | | | 135 | 45.936769 | -89.237914 | 0 | Yellow Birch Lake | Vilas | | | 135 | 0 | | | DEEP | | | t | | | | | | | | | | | | H | H | | | 136 | 45.936765
45.936762 | -89.237333
-89.236753 | 0 | Yellow Birch Lake Yellow Birch Lake | Vilas | | | 136 | | | | DEEP | | | T | | | | | | | | | | | | | П | | | 138 | 45.936758 | -89.236173 | 60 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 138 | | | | DEEP | | | | | | | | | | | | | | | | | | | 139 | 45.936754 | -89.235592 | | Yellow Birch Lake | | | | | | | | DEEP | | | | | | | | | | | | | | | | | | | 140 | 45.936750 | -89.235012 | 56 | Yellow Birch Lake | | 8/15/2017 | | 140 | | | | TERRESTRIAL | | | | | | | | | | | | | | | | | | | 141 | 45.936380 | -89.240241 | 44 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 141 | 15 | | | DEEP | | | | | | | | | | | | | | | | | | | 142 | 45.936376 | -89.239661 | 0 | Yellow Birch Lake | Vilas | | | 142 | 0 | | | DEEP | | | | | | | | | | | | | | | | Ш | | | 143 | 45.936372 | -89.239080 | 0 | Yellow Birch Lake | Vilas | | | 143 | 0 | | | DEEP | | | - | | | | | | | | | | | | | Ш | 4 | | 144 | 45.936368 | -89.238500 | 0 | Yellow Birch Lake | Vilas | | | 144 | 0 | | | DEEP | | | - | - | | | | | | | | | | | | Щ | | | 145 | 45.936364 | -89.237919 | 0 | Yellow Birch Lake | Vilas | | | 145 | 0 | | | DEEP | | | - | | | | | | | | | | | | - | Н | | | 146 | 45.936360 | -89.237339 | 0 | Yellow Birch Lake | Vilas | | | 146 | | | | DEEP | | | | | | | | | | | | | | | H | H | | | 147 | 45.936357 | -89.236759 | 0 | Yellow Birch Lake | Vilas | | | 147 | 0 | | | DEEP | | | | | | | | | | | | | | | | H | | | 148 | 45.936353 | -89.236178 | 61 | Yellow Birch Lake | Vilas | 8/15/2017 | | 148 | | | | DEEP | | 1. | | | | | | | | | | | | | | H | | | 149 | 45.936349
45.936345 | -89.235598
-89.235017 | 58 | Yellow Birch Lake Yellow Birch Lake | Vilas | 8/15/2017
8/15/2017 | BTB & NLS | 150 | | Sand | | SAMPLED
SAMPLED | | | | | | | | | | | + | 1 | + | | | П | | | 151 | 45.936337 | -89.233856 | 67 | Yellow Birch Lake | | | BTB & NLS | 151 | | Jaild | , ole | TERRESTRIAL | | 1 | | | | | | | | | 1 | 1 | \dagger | | П | П | | | 152 | 45.936333 | -89.233276 | 69 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 152 | | Sand | Pole | SAMPLED | | 2 | | l | | | | 2 | | _1 | | 1 | | | | П | _1 | | 153 | 45.935990 | -89.242568 | 55 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 153 | | | | TERRESTRIAL | | | | | | | | | | | | | | | | | | | 154 | 45.935979 | -89.240827 | 46 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 154 | | | | TERRESTRIAL | | | | | | | | | | | Ţ | Ţ | | | | | | | 155 | 45.935975 | -89.240247 | 45 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 155 | 14 | | | DEEP | | | | | | | | | | | | | | | | Ш | | | 156 | 45.935971 | -89.239666 | 0 | Yellow Birch Lake | Vilas | | | 156 | 0 | | | DEEP | | - | | | | | | | | | _ | | | | | Ш | _ | | 157 | 45.935967 | -89.239086 | 0 | Yellow Birch Lake | Vilas | | | 157 | 0 | | | DEEP | | - | - | | | | - | | | | - | - | - | | igspace | Щ | _ | | 158 | 45.935963 | -89.238505 | 0 | Yellow Birch Lake | Vilas | | | 158 | 0 | | | DEEP | | - | - | | | | - | | | | | - | - | | | Н | | | 159 | 45.935959 | -89.237925 | 0 | Yellow Birch Lake | Vilas | | | 159 | 0 | | <u> </u> | DEEP | Ш | \perp | _ | _ | | | | | | | | | \perp | _ | Ш | Ш | \perp | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Q | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance
Total Rake Fullness | Myriophyllum spicatum | Bidens beckii | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Naias flexilis | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton pusillus | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton zosteriformis | Sparganium fluctuans | Vallisneria americana | |--------------|----------------------------|-----------------------------|----|-------------------------------------|--------|------------------------|------------|--------------|------------|----------|------------|-------------|-------|---------------------------------|-----------------------|---------------|------------------------|-------------------|--------------------|----------------|-------------------------|-----------------------|----------------------|----------------------|-----------------------|-----------------------|---------------------------|----------------------|-----------------------| | 160 | 45.935955 | -89.237345 | 0 | Yellow Birch Lake | Vilas | | | 160 | | | | DEEP | | | | | | | | | | | | | | | | + | + | | 161 | 45.935952 | -89.236764 | 0 | Yellow Birch Lake | Vilas | | | 161 | 0 | | | DEEP | | | | | | | | | | | | | | | | + | + | | 162 | 45.935948 | -89.236184
-89.235603 | 86 | Yellow Birch Lake | Vilas | 8/15/2017
8/15/2017 | BTB & NLS | 162 | 12 | | | DEEP | | | | | | | | | | | | | | | | t | + | | 163 | 45.935944
45.935940 | -89.235023 | 63 | Yellow Birch Lake Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 164 | | Sand | Pole | DEEP | | | | | | | | | | | | | | | | t | П | | 165 | 45.935936 | -89.234442 | 65 | Yellow Birch Lake | | 8/15/2017 | BTB & NLS | | | Rock | | SAMPLED | | | | | | | | | | | | | | | | T | П | | 166 | 45.935932 | -89.233862 | 66 | Yellow Birch Lake | Vilas | 8/15/2017 | | 166 | | Sand | | SAMPLED | | | | | | | | | | | | | | | | T | П | | 167 | 45.935928 | -89.233282 | 68 | Yellow Birch Lake | Vilas | 8/15/2017 | | 167 | 12 | | | DEEP | | | | | | | | | | | | | | | | | | | 168 | 45.935924 | -89.232701 | 70 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 168 | 0 | | | TERRESTRIAL | | | | | | | | | | | | | | | | | | | 169 | 45.935585 | -89.242574 | 54 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 169 | 5 | Sand | Pole | SAMPLED | | 3 | 3 | | | | | | | | | | | | | | 3 | | 170 | 45.935581 | -89.241994 | 53 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 170 | 7 | Sand | Pole | SAMPLED | | c |) | | | | | | | | |
| | | | \perp | | | 171 | 45.935574 | -89.240833 | 47 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 171 | 3 | Sand | Pole | SAMPLED | | 3 | 3 | | | | | | | | | | | | | \downarrow | 3 | | 172 | 45.935570 | -89.240252 | 48 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 172 | 26 | | | DEEP | | | | | | | | | | | | | | | | 1 | Ш | | 173 | 45.935566 | -89.239672 | 0 | Yellow Birch Lake | Vilas | | | 173 | 0 | | | DEEP | | | | | | | | | | | | | | | _ | \bot | \blacksquare | | 174 | 45.935562 | -89.239091 | 0 | Yellow Birch Lake | Vilas | | | 174 | 0 | | | DEEP | | | - | | | | | | - | | | | | _ | | + | Н | | 175 | 45.935558 | -89.238511 | 0 | Yellow Birch Lake | Vilas | | | 175 | 0 | | | DEEP | | | - | | | | | - | - | | | | | | - | + | + | | 176 | 45.935554 | -89.237931 | 0 | Yellow Birch Lake | Vilas | | | 176 | 0 | | | DEEP | | | | | | | | | | | | | | | | + | + | | 177 | 45.935551 | -89.237350 | 0 | Yellow Birch Lake | Vilas | | | 177 | | | | DEEP | | | | | | | | | | | | | | | | + | + | | 178 | 45.935547 | -89.236770 | 0 | Yellow Birch Lake | Vilas | | | 178 | | | | DEEP | | | | | | | | | + | | | | | + | | ╁ | + | | 179 | 45.935543 | -89.236189 | 0 | Yellow Birch Lake | Vilas | | | 179 | | | | DEEP | | | | | | | | | | | | | | | | + | + | | 180 | 45.935539 | -89.235609 | 84 | Yellow Birch Lake | Vilas | 8/15/2017 | | 180 | | | | DEEP | | | | | | | | | | | | | | | | t | Н | | 181 | 45.935535
45.935531 | -89.235028
-89.234448 | 82 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 181 | 0 | | | DEEP | | | | | | | | | | | | | | | | t | + | | 182 | 45.935537 | -89.233868 | 73 | Yellow Birch Lake Yellow Birch Lake | Vilas | 8/15/2017
8/15/2017 | BTB & NLS | 183 | | | | DEEP | | | | | | | | | | | | | | | | t | П | | 184 | 45.935523 | -89.233287 | 71 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 184 | 14 | | | DEEP | | | | | | | | | | | | | | | | T | П | | 185 | 45.935519 | -89.232707 | 74 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 185 | | Rock | Pole | SAMPLED | | c |) | | | | | | | | | | | | | T | П | | 186 | 45.935176 | -89.241999 | 52 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 186 | 8 | Sand | Pole | SAMPLED | | c |) | | | | | | | | | | | | | | | | 187 | 45.935173 | -89.241419 | 51 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 187 | 8 | Rock | Pole | SAMPLED | | c |) | | | | | | | | | | | | | | | | 188 | 45.935169 | -89.240838 | 50 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 188 | 9 | Rock | Pole | SAMPLED | | c |) | | | | | | | | | | | | | L | | | 189 | 45.935165 | -89.240258 | 49 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 189 | 15 | | | DEEP | | | | | | | | | | | | | | | | 1 | Ш | | 190 | 45.935161 | -89.239677 | 0 | Yellow Birch Lake | Vilas | | | 190 | 0 | | | DEEP | | | | | | | | | | | | | | | | \bot | \perp | | 191 | 45.935157 | -89.239097 | 0 | Yellow Birch Lake | Vilas | | | 191 | 0 | | | DEEP | | | | | | | | | - | | | | | _ | | + | \perp | | 192 | 45.935153 | -89.238517 | 0 | Yellow Birch Lake | Vilas | | | 192 | 0 | | | DEEP | | | | | | | | | | | | | | | | + | Н | | 193 | 45.935149 | -89.237936 | 0 | Yellow Birch Lake | Vilas | | | 193 | 0 | | | DEEP | | | | | | | | | | | | | | | | + | + | | 194 | 45.935146 | -89.237356 | 0 | Yellow Birch Lake | Vilas | | | 194 | | | | DEEP | | | | | | | | | | | | | | + | | + | Н | | 195 | 45.935142 | -89.236775 | 0 | Yellow Birch Lake | Vilas | | | 195 | | | | DEEP | | | | | | | | | | | | | | | | + | Н | | 196 | 45.935138 | -89.236195 | 0 | Yellow Birch Lake | | | | 196 | | | | DEEP | | | | | | | | | | | | | | | | t | Н | | 197 | 45.935134
45.935130 | -89.235614
-89.235034 | 0 | Yellow Birch Lake Yellow Birch Lake | Vilas | | | 197 | | | | DEEP | | | | | | | | | | | | | | | | t | Н | | 199 | 45.935126 | -89.234454 | 0 | Yellow Birch Lake | Vilas | | | 199 | | | | DEEP | | | | | | | | | | | | | | | | T | П | | 200 | 45.935122 | -89.233873 | 0 | Yellow Birch Lake | Vilas | | | 200 | | | | DEEP | | | | | | | | | | | | | | | | T | П | | 201 | 45.935118 | -89.233293 | 76 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | | | | | DEEP | | | | | | | | | | | | | | | | T | П | | 202 | 45.935114 | -89.232712 | 75 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | | | Rock | Pole | SAMPLED | | c |) | | | | | | | | | | | | | | П | | 203 | 45.934771 | -89.242005 | 56 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 203 | 7 | Sand | | SAMPLED | | c |) | | | | | | | | | | | | | | | | 204 | 45.934768 | -89.241424 | 57 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 204 | 11 | Sand | Pole | SAMPLED | | c |) | | | | | | | | | | | | | L | Ш | | 205 | 45.934764 | -89.240844 | 58 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 205 | 14 | | | DEEP | | | | | | | | | | | | Ш | | | | L | Ш | | 206 | 45.934760 | -89.240263 | 0 | Yellow Birch Lake | Vilas | | | 206 | 0 | | | DEEP | | | | | | | | | | | | | | 1 | _ | 1 | $\perp \downarrow$ | | 207 | 45.934756 | -89.239683 | 0 | Yellow Birch Lake | Vilas | | | 207 | 0 | | | DEEP | | | | | | | _ | _ | | | | | | | _ | 1 | Ш | | 208 | 45.934752 | -89.239102 | 0 | Yellow Birch Lake | Vilas | | | 208 | 0 | | | DEEP | | 1 | | | | | 1 | | | | | Ц | | 1 | _ | 1 | $\perp \mid$ | | 209 | 45.934748 | -89.238522 | 0 | Yellow Birch Lake | Vilas | | | 209 | 0 | | | DEEP | | \perp | - | | - | | \perp | - | - | | | | 4 | + | + | + | + | | 210 | 45.934744 | -89.237942 | 0 | Yellow Birch Lake | Vilas | | | 210 | 0 | | | DEEP | | - | - | - | | | \perp | + | - | | | | | \perp | + | + | + | | 211 | 45.934741 | -89.237361 | 0 | Yellow Birch Lake | Vilas | | | 211 | 0 | | | DEEP | | + | + | - | 1 | | \perp | - | 1 | | | | - | + | + | + | + | | 212 | 45.934737 | -89.236781 | 0 | Yellow Birch Lake | Vilas | | L | 212 | 0 | <u> </u> | <u> </u> | DEEP | Ш | | _ | _ | | Ш | L | | | _ | <u> </u> | Ш | | _ | | _ | Ш | | 214 4
215 4
216 4
217 4 | 45.93473279 | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Bidens beckii | Ceratophyllum demersum | Heteranthera dubia | Myriophyllum sibiricum | Najas flexilis | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton pusillus | Potamogeton spirillus | Potamogeton vaseyi | Potamogeton zosteriformis | Sparganium fluctuans | Vallisneria americana | |----------------------------------|----------------------------|------------------------------|-----|-------------------------------------|--------|-----------|------------|--------------|------------|----------|------------|--------------------|-------|----------|---------------------|-----------------------|---------------|------------------------|--------------------|------------------------|----------------|-------------------------|-----------------------|----------------------|----------------------|-----------------------|--------------------|---------------------------|----------------------|-----------------------| | 215 4
216 4
217 4 | | -89.23620038 | 0 | Yellow Birch Lake | Vilas | | | 213 | 0 | | | DEEP | | | | | | | | | | | | | | | | _ | + | \dashv | | 216 4 | 45.93472891 | -89.23561997 | 0 | Yellow Birch Lake | Vilas | | | 214 | 0 | | | DEEP | | | | | + | | | | | | | | | | | + | + | - | | 217 4 | 45.93472502 | -89.23503955 | 0 | Yellow Birch Lake | Vilas | | | 215 | 0 | | | DEEP | | | | 1 | | | | t | | | | | | | | + | + | \dashv | | | 45.93472114 | -89.23445913
-89.23387871 | 0 | Yellow Birch Lake | Vilas | | | 216 | 0 | | | DEEP | | | | | | | | | | | | | | | | _ | 1 | 7 | | 2.0 | 45.93471725
45.93471335 | -89.23329829 | 77 | Yellow Birch Lake Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | | 14 | | | DEEP | | | | | | | | | | | | | | | | 7 | | ٦ | | 219 4 | 45.93470946 | -89.23271787 | 78 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | | 13 | | | DEEP | | | | | | | | | | | | | | | | T | T | ٦ | | | 45.93470556 | -89.23213746 | 79 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | | 7 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | 221 4 | 45.93470166 | -89.23155704 | 80 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 221 | 0 | | | TERRESTRIAL | 222 4 | 45.93436645 | -89.2420101 | 61 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 222 | 0 | | | DOCK | | | | | | | | | | | | | | | | | _ | | | 223 | 45.9343626 | -89.24142968 | 60 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 223 | 7 | Rock | Pole | SAMPLED | | | 0 | 4 | | | | | | | | | | | | _ | 4 | 4 | | 224 4 | 45.93435874 | -89.24084927 | 59 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 224 | 15 | | | DEEP | | | | | | | | | | | | | | | | _ | 4 | _ | | 225 4 | 45.93435489 | -89.24026885 | 0 | Yellow Birch Lake | Vilas | | | 225 | 0 | | | DEEP | | | | | | | | | | | | | | | | _ | _ | 4 | | 226 4 | 45.93435103 | -89.23968844 | 0 | Yellow Birch Lake | Vilas | | | 226 | 0 | | | DEEP | | | | - | | | | - | | | | | | | | _ | + | 4 | | | 45.93434716 | -89.23910802 | 0 | Yellow Birch Lake | Vilas | | | 227 | 0 | | | DEEP | | | | | | | | | | | | | | | | _ | + | \dashv | | | 45.9343433 | -89.2385276 | 0 | Yellow Birch Lake | Vilas | | | 228 | 0 | | | DEEP | | | | | | | | - | | | | | | | | + | | \dashv | | | 45.93433943 | -89.23794719 | 0 | Yellow Birch Lake | Vilas | | | 229 | 0 | | | DEEP | | | | 1 | + | | | | | | | | | | | - | + | \dashv | | | 45.93433556
45.93433168 | -89.23736677
-89.23678636 | 0 | Yellow Birch Lake | Vilas | | | 230 | 0 | | | DEEP | | | | | | | | | | | | | | | | _ | 1 | 7 | | | 45.9343278 | -89.23620594 | 0 | Yellow Birch Lake Yellow Birch Lake | Vilas | | | 232 | 0 | | | DEEP | | | | | | | | | | | | | | | | 7 | | ٦ | | | 45.93432392 | -89.23562553 | 0 | Yellow Birch Lake | Vilas | | | 233 | 0 | | | DEEP | | | | | | | | | | | | | | | | T | T | ٦ | | | 45.93432004 |
-89.23504512 | 0 | Yellow Birch Lake | Vilas | | | 234 | 0 | | | DEEP | | | | | | | | | | | | | | | | T | | ٦ | | | 45.93431615 | -89.2344647 | 0 | Yellow Birch Lake | Vilas | | | 235 | 0 | | | DEEP | 45.93431226 | -89.23388429 | 0 | Yellow Birch Lake | Vilas | | | 236 | 0 | | | DEEP | 237 4 | 45.93430837 | -89.23330387 | 95 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 237 | 0 | | | DEEP | | | | | | | | | | | | | | | | | _ | | | 238 4 | 45.93430447 | -89.23272346 | 90 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 238 | 0 | | | DEEP | | | | | | | | | | | | | | | | | _ | _ | | 239 4 | 45.93430057 | -89.23214304 | 83 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 239 | 9 | Sand | Pole | SAMPLED | | | 0 | _ | _ | | | | | | | | | | | _ | 4 | 4 | | 240 4 | 45.93429667 | -89.23156263 | 81 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 240 | 0 | | | TERRESTRIAL | | | | | | | | | | | | | | | | _ | _ | 4 | | 241 4 | 45.93395761 | -89.2414352 | 62 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 241 | 7 | Sand | Pole | SAMPLED | | | 0 | - | | | | - | | | | | | | | _ | + | 4 | | | 45.93395376 | -89.24085479 | 63 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 242 | 15 | | | DEEP | | | | - | | | | | | | | | | | | + | + | \dashv | | | 45.9339499 | -89.24027438 | 0 | Yellow Birch Lake | Vilas | | | 243 | 0 | | | DEEP | | | | | | | | - | | | | | | | | + | | \dashv | | | 45.93394604 | -89.23969397 | 0 | Yellow Birch Lake | Vilas | | | 244 | 0 | | | DEEP | | | | 1 | + | | | | | | | | | | | - | + | \dashv | | | 45.93394218
45.93393831 | -89.23911356
-89.23853315 | 0 | Yellow Birch Lake Yellow Birch Lake | Vilas | | | 245 | | | | DEEP | | | | | | | | | | | | | | | | _ | 1 | 7 | | | 45.93393444 | -89.23795274 | 0 | Yellow Birch Lake | Vilas | | | 247 | 0 | | | DEEP | | | | | | | | | | | | | | | | 7 | | ٦ | | | 45.93393057 | -89.23737233 | 0 | Yellow Birch Lake | Vilas | | | 248 | 0 | | | DEEP | | | | | | | | | | | | | | | | T | T | ٦ | | | 45.9339267 | -89.23679192 | 0 | Yellow Birch Lake | Vilas | | | 249 | 0 | | | DEEP | 250 4 | 45.93392282 | -89.2362115 | 0 | Yellow Birch Lake | Vilas | | | 250 | 0 | | | DEEP | 251 4 | 45.93391894 | -89.23563109 | 0 | Yellow Birch Lake | Vilas | | | 251 | 0 | | | DEEP | 252 4 | 45.93391505 | -89.23505068 | 100 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 252 | 0 | | | DEEP | | | | | 1 | | | | | | | | | | | \downarrow | 4 | 4 | | 253 4 | 45.93391117 | -89.23447027 | 99 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 253 | 0 | | | DEEP | | | | | 4 | _ | 1 | - | | | | | | - | | \downarrow | 4 | 4 | | 254 4 | 45.93390728 | -89.23388986 | 96 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 254 | 11 | | | DEEP | | | | 4 | | | | | | | | | | | | _ | 4 | 4 | | 255 4 | 45.93390338 | -89.23330945 | 94 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 255 | 13 | | | DEEP | | | - | - | + | - | + | - | | | - | | + | - | | \dashv | + | 4 | | 256 4 | 45.93389949 | -89.23272904 | 93 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 256 | 0 | | | TEMPORARY OBSTACLE | | | | \dashv | + | \perp | + | 1 | | | | - | + | + | \vdash | + | + | \dashv | | | 45.93389559 | -89.23214863 | 85 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | | | | | | | | 0 | | + | + | | - | | | | | + | | \vdash | + | + | \dashv | | | 45.93389169 | -89.23156822 | 87 | Yellow Birch Lake | | 8/15/2017 | BTB & NLS | | | Sand | | | H | | 0 | + | + | + | + | 1 | H | | 1 | - | + | + | \vdash | + | + | \dashv | | | 45.93355263 | -89.24144073 | 65 | Yellow Birch Lake | | 8/15/2017 | LJS & JBS | | | Sand | Pole | SAMPLED | | 1 | 3 | + | + | + | + | | 3 | | 1 | 1 | + | | \vdash | 1 | + | 2 | | | 45.93354877 | -89.24086032 | 64 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | | 13 | | | DEEP | H | | | \dashv | + | | + | 1 | | | | 1 | | + | $ \cdot $ | \dashv | + | \dashv | | | 45.93354492
45.93354106 | -89.24027991
-89.2396995 | 0 | Yellow Birch Lake Yellow Birch Lake | Vilas | | | 261 | 0 | | | DEEP | | | 1 | | + | + | 1 | t | | | 1 | 1 | \dagger | | H | + | \dagger | \dashv | | | 45.93354106 | -89.2396995
-89.2391191 | 0 | Yellow Birch Lake | Vilas | | | 262 | 0 | | | DEEP | | | 1 | | 1 | | | T | | | | | | \dagger | | \dagger | \dagger | \dashv | | | 45.93353719 | -89.23853869 | 0 | Yellow Birch Lake | Vilas | | | 264 | 0 | | | DEEP | | | 1 | | 1 | | t | T | | | 1 | | T | | | 1 | \top | ٦ | | | 45.93352946 | -89.23795828 | 0 | Yellow Birch Lake | | | | 265 | | | | DEEP | | İ | İ | İ | 1 | T | t | | | | | ı | T | | | \top | \top | ٦ | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Q | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance | Total Rake Fullness | Myriophyllum spicatum | Bidens beckii | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Major florilis | Potamodeton amplifoline | Potamodeton enibydrus | Potamodeton foliosus | Potamogeton pusillus | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton vaseyi | Potamogeton zosteriformis | Sparganium fluctuans | Vallisneria americana | |--------------|----------------------------|------------------------------|-----|-------------------------------------|--------|------------------------|------------|--------------|------------|----------|------------|--------------------|-------|----------|---------------------|-----------------------|---------------|------------------------|-------------------|--------------------|----------------|-------------------------|-----------------------|----------------------|----------------------|-----------------------|-----------------------|--------------------|---------------------------|----------------------|-----------------------| | 266 | 45.93352559 | -89.23737788 | 0 | Yellow Birch Lake | Vilas | | | 266 | 0 | | | DEEP | | | | | | | | - | | + | - | | | | | _ | + | + | - | | 267 | 45.93352171 | -89.23679747 | 0 | Yellow Birch Lake | Vilas | | | 267 | 0 | | | DEEP | | | | | | | | + | | | | | | | | _ | + | + | - | | 268 | 45.93351783 | -89.23621706 | 124 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 268 | 0 | | | DEEP | | | | | | | | † | | + | | | | | | | $^+$ | + | - | | 269 | 45.93351395
45.93351007 | -89.23563666
-89.23505625 | 103 | Yellow Birch Lake Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | | 15 | | | DEEP | | | | | | | | | | | | | | | | | 7 | \top | 7 | | 271 | 45.93350618 | -89.23447585 | 98 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | T | T | | | 272 | 45.93350229 | -89.23389544 | 97 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | | 4 | Rock | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | 273 | 45.93349451 | -89.23273463 | 92 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 273 | 7 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | 274 | 45.93349061 | -89.23215422 | 91 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 274 | 9 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | 275 | 45.93348671 | -89.23157382 | 89 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 275 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | _ | | | | 276 | 45.9334828 | -89.23099341 | 88 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 276 | 0 | | | TERRESTRIAL | | | | | | | | | | | | | | | | | _ | _ | _ | | 277 | 45.93314764 | -89.24144625 | 66 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 277 | 8 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | 4 | _ | _ | | 278 | 45.93314379 | -89.24086584 | 67 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 278 | 14 | | | DEEP | | | | | | | | - | | | | | | | | _ | + | + | _ | | 279 | 45.93313993 | -89.24028544 | 0 | Yellow Birch Lake | Vilas | | | 279 | 0 | | | DEEP | | | | | | | | | | | | | | | | _ | + | + | _ | | 280 | 45.93313607 | -89.23970504 | 0 | Yellow Birch Lake | Vilas | | | 280 | | | | DEEP | | | | | | | | + | | | | | | | | | + | | = | | 281 | 45.93313221 | -89.23912464 | 0 | Yellow Birch Lake | Vilas | | | 281 | 0 | | | DEEP | | | | | | | | 1 | | | | | | | | _ | + | + | - | | 282 | 45.93312834
45.93312447 | -89.23854423
-89.23796383 | 0 | Yellow Birch Lake Yellow Birch Lake | Vilas | | | 282 | 0 | | | DEEP | | | | | | | | | | | | | | | | | \dagger | $^{+}$ | - | | 284 | 45.93312447 | -89.23738343 | 0 | Yellow Birch Lake | Vilas | | | 284 | 0 | | | DEEP | | | | | | | | | | | | | | | | | \forall | | | | 285 | 45.93311673 | -89.23680303 | 108 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 285 | 0 | | | DEEP | | | | | | | | | | | | | | | | | 1 | T | | | 286 | 45.93311285 | -89.23622262 | 105 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 286 | 23 | | | DEEP | 287 | 45.93310897 | -89.23564222 | 104 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | | 10 | Rock | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | 288 | 45.93310509 | -89.23506182 | 102 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 288 | 7 | Sand | Pole | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | 289 | 45.93274651 | -89.24203217 | 70 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 289 | 4 | Sand | Pole | SAMPLED | | | 1 | | | | 1 | | | | | | | | | | | | | | 290 | 45.93274266 | -89.24145177 | 69 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 290 | 13 | | | DEEP | | | | | | | | | | | | | | | | | _ | | | | 291 | 45.93273881 | -89.24087137 | 68 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | 291 | 15 | | | DEEP | | | | | | | | 4 | | - | | | | | | | 4 | 4 | _ | | 292 | 45.93273495 | -89.24029097 | 0 |
Yellow Birch Lake | Vilas | | | 292 | 0 | | | DEEP | | | | | | | | | | | | | | | | | _ | 4 | _ | | 293 | 45.93273109 | -89.23971057 | 0 | Yellow Birch Lake | Vilas | | | 293 | 0 | | | DEEP | | | | | | | | - | | + | | | | | | _ | + | + | _ | | 294 | 45.93272723 | -89.23913017 | 0 | Yellow Birch Lake | Vilas | | | 294 | 0 | | | DEEP | | | | | | | | + | | + | + | | | | | \dashv | + | + | - | | 295 | 45.93272336 | -89.23854978 | 0 | Yellow Birch Lake | Vilas | | | 295 | 0 | | | DEEP | | | | | | | | + | | | | | | | | _ | + | + | - | | 296 | 45.93271949 | -89.23796938 | 119 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | | 0 | | | DEEP | | | | | | | | | | + | | | | | | _ | + | + | - | | 297 | 45.93271562 | -89.23738898 | 112 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | | 0 | | | DEEP | | | | | | | | | | | | | | | | | \dagger | $^{+}$ | - | | 298 | 45.93271174
45.93270787 | | 107 | Yellow Birch Lake Yellow Birch Lake | | 8/15/2017 | BTB & NLS | | | | Pole | DEEP
SAMPLED | | | 0 | | | | | | | | | | | | | | 1 | 1 | - | | 300 | 45.93234537 | -89.24261808 | 72 | Yellow Birch Lake | Vilas | | LJS & JBS | | | | | | | | 3 | | 1 | 1 | 1 | | | | | | | 3 | 1 | | 1 | T | | | 301 | 45.93234153 | -89.24203768 | 71 | Yellow Birch Lake | Vilas | | LJS & JBS | | 7 | | | SAMPLED | | | 0 | | | | | | | | | | | | | | | | | | 302 | 45.93233768 | -89.24145729 | 74 | Yellow Birch Lake | Vilas | 8/15/2017 | LJS & JBS | | 13 | | | DEEP | 303 | 45.93233382 | -89.2408769 | 0 | Yellow Birch Lake | Vilas | | | 303 | 0 | | | DEEP | 304 | 45.93232996 | -89.2402965 | 0 | Yellow Birch Lake | Vilas | | | 304 | 0 | | | DEEP | | | | | | | | 4 | | | | | | | | \dashv | \downarrow | 4 | _ | | 305 | 45.9323261 | -89.23971611 | 0 | Yellow Birch Lake | Vilas | | | 305 | 0 | | | DEEP | | | | | | | | 4 | 1 | \downarrow | - | - | | | | \dashv | 4 | 4 | 4 | | 306 | 45.93232224 | -89.23913571 | 0 | Yellow Birch Lake | Vilas | | | 306 | 0 | | | DEEP | | | | | | | | | | | | | | | | | _ | 4 | _ | | 307 | 45.93231837 | -89.23855532 | 0 | Yellow Birch Lake | Vilas | | | 307 | 0 | | | DEEP | | | | | | | | + | | + | + | - | - | | | \dashv | + | + | \dashv | | 308 | 45.93231451 | -89.23797492 | 118 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 308 | 0 | | | DEEP | | | | | | | | + | - | + | - | | + | | | \dashv | + | + | \dashv | | 309 | 45.93231063 | -89.23739453 | 110 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | | | | | DEEP | | | - | - | | - | | + | + | + | + | + | | | | \dashv | + | + | \dashv | | 310 | 45.93230676 | -89.23681414 | 109 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | | | Sand | | | | | 0 | | | | | \dashv | + | + | + | - | - | | | \dashv | + | + | \exists | | 311 | | -89.24262359 | 73 | Yellow Birch Lake | | 8/15/2017 | LJS & JBS | | | Muck | | | H | | 3 | | | | 1 | \dashv | 1 1 | + | \dagger | † | | 2 | | \dashv | \dagger | + | 3 | | 312 | 45.93193269
45.93192884 | -89.24146281
-89.24088242 | 131 | Yellow Birch Lake Yellow Birch Lake | Vilas | 8/15/2017
8/15/2017 | BTB & NLS | | | Sand | | SAMPLED
SAMPLED | | | 0 | | | | | 1 | | t | + | | | | | \exists | \dagger | \dagger | ٦ | | 313 | 45.93192884
45.93192498 | -89.24088242
-89.24030203 | 132 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | | | Jand | rule | DEEP | | | U | | | | | T | t | t | \dagger | t | | | | \exists | \dagger | \dagger | \dashv | | 315 | 45.93192112 | -89.23972164 | 0 | Yellow Birch Lake | Vilas | 20,2017 | 2.3 4 1420 | 315 | | | | DEEP | | | | | | | | 1 | t | Ť | T | t | | | | | \top | \dagger | ٦ | | 316 | 45.93191726 | -89.23914125 | 0 | Yellow Birch Lake | Vilas | | | 316 | | | | DEEP | | | | | | | | | | | | j | | | | | T | T | 1 | | 317 | 45.93191339 | -89.23856086 | 116 | | Vilas | 8/15/2017 | BTB & NLS | | | | | DEEP | 318 | 45.93190952 | -89.23798047 | 113 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 318 | 13 | | | DEEP | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Q | Lake Name | County | Date | Field Crew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance
Total Rake Fullness | Myriophyllum spicatum | Bidens beckii | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Najas flexilis | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton pusillus | Potamogeton robbinsii | Potamogeton spirillus Potamogeton vaseyi | Potamogeton zosteriformis | Sparganium fluctuans | Val lisneria americana | |--------------|----------------------------|------------------------------|-----|-------------------------------------|--------|------------------------|------------|--------------|------------|-------------|------------|--------------------|----------|---------------------------------|-----------------------|---------------|------------------------|-------------------|--------------------|----------------|-------------------------|-----------------------|----------------------|----------------------|-----------------------|--|---------------------------|----------------------|------------------------| | 319 | 45.93190565 | -89.23740008 | 111 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 319 | | Sand | Pole | SAMPLED | | | | | | | | + | | | | | | | | H | Н | | 320 | 45.93152771 | -89.24146833 | 130 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 320 | 1 | Sand | Pole | SAMPLED | | 2 | 2 | T | | | | 2 | | | | | | 1 | | | 1 | | 321 | 45.93152385
45.93151999 | -89.24088795
-89.24030756 | 129 | Yellow Birch Lake Yellow Birch Lake | Vilas | 8/15/2017
8/15/2017 | BTB & NLS | 321 | 11 | | | DEEP | | | | | | | | | | | | | | | | | П | | 323 | 45.93151613 | -89.23972717 | 0 | Yellow Birch Lake | Vilas | 6/13/2017 | DID & NLO | 323 | 0 | | | DEEP | | | | | | | | | | | | | | | | П | | | 324 | 45.93151227 | -89.23914679 | 121 | Yellow Birch Lake | | 8/15/2017 | BTB & NLS | 324 | | | | DEEP | | | | | | | | | | | | | | | | | П | | 325 | 45.93150841 | -89.2385664 | 115 | | Vilas | 8/15/2017 | BTB & NLS | 325 | 13 | | | DEEP | | | | | | | | | | | | | | | | | | | 326 | 45.93150454 | -89.23798602 | 114 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 326 | 7 | Rock | Pole | SAMPLED | | c |) | | | | | | | | | | | | | | | | 327 | 45.93112272 | -89.24147385 | 127 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 327 | 2 | Sand | Pole | SAMPLED | | 1 | | | | | | 1 | | | | 1 | | | | | 1 | | 328 | 45.93111887 | -89.24089347 | 128 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 328 | 13 | | | DEEP | | | | | | | | | | | | | | | | | Ш | | 329 | 45.93111501 | -89.24031309 | 0 | Yellow Birch Lake | Vilas | | | 329 | 0 | | | DEEP | | | | - | | | | - | | | | | | | | | Ш | | 330 | 45.93111115 | -89.23973271 | 0 | Yellow Birch Lake | Vilas | | | 330 | 0 | | | DEEP | | | | | | | | | | | | | | | | Ш | Н | | 331 | 45.93110729 | -89.23915233 | 120 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 331 | 14 | | | DEEP | | | | | | | | | | | | | | | | Ш | Н | | 332 | 45.93110342 | -89.23857195 | 117 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 332 | 9 | Sand | Pole | SAMPLED | | C |) | | | | | - | | | | | | | | | Н | | 333 | 45.93071774 | -89.24147937 | 126 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 333 | 7 | Sand | Pole | SAMPLED | | C |) | - | | | | + | | | | | | | | H | Н | | 334 | 45.93071388 | -89.240899 | 125 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 334 | 14 | | | DEEP | | | | + | | | | | | | | | | | | H | Н | | 335 | 45.93071003 | -89.24031862 | 0 | Yellow Birch Lake | Vilas | | | 335 | 0 | | | DEEP | | | | | | | | | | | | | | | | | H | | 336 | 45.93070617 | -89.23973824 | 0 | Yellow Birch Lake | Vilas | | | 336 | | | | DEEP | | | | | | | | $^{+}$ | | | | | | | | | H | | 337 | 45.9307023 | -89.23915786 | 122 | Yellow Birch Lake | Vilas | | BTB & NLS | 337 | 13 | Daale | D-I- | DEEP | | | | | | | | t | | | | | | | | H | П | | 339 | 45.93069844
45.93031275 | -89.23857749
-89.2414849 | 123 | Yellow Birch Lake | Vilas | 8/15/2017
8/15/2017 | BTB & NLS | 338 | 6 | Rock | Pole | SAMPLED
SAMPLED | | | | | | | | T | | | | | | | | | П | | 340 | 45.9303089 | -89.24090452 | 136 | Yellow Birch Lake Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 340 | 14 | IVIUCK | FUIE | DEEP | | | | | | | | | | | | | | | | П | | | 341 | 45.93030504 | -89.24032415 | 0 | Yellow Birch Lake | Vilas | 0/13/2017 | BIB WINES | 341 | 0 | | | DEEP | | | | | | | | | | | | | | | | П | П | | 342 | 45.93030118 | -89.23974378 | 153 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 342 | 15 | | | DEEP | | | | | | | | | | | | | | | | П | | | 343 | 45.93029732 | -89.2391634 | 152 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 343 | 14 | | | DEEP | | | | | | | | | | | | | | | | | | | 344 | 45.93029345 | -89.23858303 | 151 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 344 | 0 | | | TERRESTRIAL | | | | | | | | | | | | | | | | | Ш | | 345 | 45.92990391 | -89.24091005 | 137 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 345 | 9 | Rock | Pole | SAMPLED | | c |) | | | | | | | | | | | | | | | | 346 | 45.92990006 | -89.24032968 | 138 | Yellow Birch Lake | Vilas | 8/15/2017 | BTB & NLS | 346 | 12 | | | DEEP | | | | | | | | | | | | | | | | | Ш | | 347 | 45.9298962 | -89.23974931 | 148 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 347 | 13 | | | DEEP | | | | - | | | | - | | | | | | | | | Ш | | 348 | 45.92989233 | -89.23916894 | 149 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 348 | 14 | | | DEEP | | | | - | | | | - | | | | | | | | | Н | | 349 | 45.92988847 | -89.23858857 | 150 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 349 | 6 | Sand | Pole | SAMPLED | | C |) | - | | | | + | | | | | | | | | Н
 | 350 | 45.92949893 | -89.24091557 | 176 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 350 | 8 | Rock | Pole | SAMPLED | | C |) | - | | | | + | | | | | | | | H | H | | 351 | 45.92949507 | -89.24033521 | 139 | Yellow Birch Lake | Vilas | | BTB & NLS | | | | | DEEP | | | | | | | | | | | | | | | | H | Н | | 352 | 45.92949121 | -89.23975484 | 147 | | | | JMB & AMS | | | Rock | | SAMPLED | | - 0 | | + | | | | | | | | | | | | Н | H | | 353 | 45.92909394
45.92909009 | -89.2409211
-89.24034074 | 175 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | | 7 | Sand | Pole | SAMPLED | | C |) | | | | | + | | | | | | | | | H | | 354 | 45.92908623 | -89.23976037 | 174 | Yellow Birch Lake Yellow Birch Lake | Vilas | 8/15/2017
8/15/2017 | JMB & AMS | | | Pook | Bolo | DEEP
SAMPLED | | | | | | | | t | | | | | | | | П | П | | 356 | 45.92869281 | -89.24150698 | 171 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | | | Rock | | SAMPLED | | | | | | | | | | | | | | | | П | | | 357 | 45.92868896 | -89.24092662 | 172 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | | | rtook | 1 010 | DEEP | | Ť | | | | | | | | | | | | | | П | П | | 358 | 45.9286851 | -89.24034626 | 173 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | | | | | DEEP | | | | | | | | | | | | | | | | | | | 359 | 45.92868124 | -89.23976591 | 145 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 359 | 10 | Muck | Pole | SAMPLED | | c |) | | | | | | | | | | | | | | | | 360 | 45.92828783 | -89.2415125 | 170 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 360 | 10 | Sand | Pole | SAMPLED | | c |) | | | | | | | | | | | | | | | | 361 | 45.92828397 | -89.24093215 | 169 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 361 | 18 | | | DEEP | | | | | | | | | | | | | | | | | Ш | | 362 | 45.92828012 | -89.24035179 | 168 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 362 | 17 | | | DEEP | Ш | | | | | Ш | _ | 1 | | | | | | | | Ш | Ц | | 363 | 45.92827626 | -89.23977144 | 140 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 363 | 14 | | | DEEP | | \perp | - | | | | \perp | 1 | - | | | | - | \perp | | Ш | H | | 364 | 45.92827239 | -89.23919109 | 141 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 364 | 9 | Sand | Pole | SAMPLED | | C |) | | | | - | - | - | | | | - | | | Ш | \forall | | 365 | 45.92826853 | -89.23861074 | 142 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 365 | 8 | Rock | Pole | SAMPLED | H | C | | | - | | + | - | - | | | | + | + | - | Н | H | | 366 | 45.92826466 | -89.23803039 | 143 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | | | Muck | Pole | SAMPLED | \vdash | 1 | + | 1 | | | + | + | | | | | + | + | | Н | 1 | | 367 | 45.92826079 | -89.23745003 | 144 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | | | | | TERRESTRIAL | \vdash | + | + | | - | | - | + | - | | | | + | | - | H | H | | 368 | 45.92788284 | -89.24151802 | 165 | Yellow Birch Lake | | | JMB & AMS | | | Muck | Pole | SAMPLED | H | C |) | H | - | H | + | + | - | | | - | + | + | - | H | H | | 369 | 45.92787899 | -89.24093767 | 166 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | | | | | DEEP | H | + | + | | 1 | | | + | - | | | 1 | | | 1 | Н | Н | | 370 | 45.92787513 | -89.24035732 | 167 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 370 | | | | DEEP | H | + | + | l | | | + | + | \vdash | | | 1 | + | | | H | Н | | 371 | 45.92787127 | -89.23977697 | 139 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 371 | 13 | | Ь— | DEEP | ш | | - | - | 1 | ш | _ | | 1 | ш | ш | | | | | ш | ш | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | QI | Lake Name | County | Date | Field Grew | Point Number | Depth (ft) | Sediment | Pole; Rope | Comments | Notes | Nuisance
Total Rake Fullness | Myriophyllum spicatum | Bidens beckii | Ceratophyllum demersum | Elodea canadensis | Heteranthera dubia | Myriophyllum sibiricum | Najas flexilis
Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton foliosus | Potamogeton pusillus | Potamogeton robbinsii | Potamogeton vaseyi | Potamogeton zosteriformis | Sparganium fluctuans | Vallisneria americana | |--------------|----------------------------|-----------------------------|-----|-------------------|--------|-----------|------------|--------------|------------|----------|------------|-----------------------|-------|---------------------------------|-----------------------|---------------|------------------------|-------------------|--------------------|------------------------|---|-----------------------|----------------------|----------------------|-----------------------|--------------------|---------------------------|----------------------|-----------------------| | 372 | 45.92786741 | -89.23919663 | 138 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 372 | 12 | Muck | Pole | SAMPLED | | С | | | | | | | | | | | | | | Ш | | | 373 | 45.92786354 | -89.23861628 | 137 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 373 | 11 | Muck | Pole | SAMPLED | | c | | | | | | | | | | | | | Н | Ш | | | 374 | 45.92785968 | -89.23803593 | 136 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 374 | 10 | Muck | Pole | SAMPLED | | C | | | | | | | | | | | | | Ш | Ш | _ | | 375 | 45.9278558 | -89.23745558 | 135 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 375 | 3 | Muck | Pole | SAMPLED | | 1 | | | | 1 | | | 1 | | | | | | Ш | Ш | 1 | | 376 | 45.92748171 | -89.24210388 | 164 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 376 | 7 | Muck | Pole | SAMPLED | | c | | | | | | | | | | | | | | Ш | _ | | 377 | 45.92747786 | -89.24152354 | 163 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 377 | 13 | | | DEEP | | | | | | | | | | | | | | | | Н | _ | | 378 | 45.927474 | -89.24094319 | 162 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 378 | 14 | | | DEEP | | | | | | | | | | | | | | | Н | Н | _ | | 379 | 45.92747015 | -89.24036285 | 161 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 379 | 14 | | | DEEP | | | - | | | | | | | | | | | | Н | Н | _ | | 380 | 45.92746629 | -89.23978251 | 129 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 380 | 13 | Muck | Pole | SAMPLED | | C | | | | | | | | | | | | | Н | Н | _ | | 381 | 45.92746242 | -89.23920216 | 130 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 381 | 12 | Muck | Pole | SAMPLED | | C | | | | | | | | | | | | | Н | Н | _ | | 382 | 45.92745856 | -89.23862182 | 131 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 382 | 11 | Muck | Pole | SAMPLED | | C | | | | | | | | | | | | | Н | Н | _ | | 383 | 45.92745469 | -89.23804148 | 132 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 383 | 10 | Muck | Pole | SAMPLED | | C | | | | | | | | | | | | | \vdash | Н | - | | 384 | 45.92745082 | -89.23746113 | 133 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 384 | 6 | Muck | Pole | SAMPLED | | 1 | | | | | | | | | | | | | Н | Н | 1 | | 385 | 45.92744695 | -89.23688079 | 134 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 385 | 3 | Muck | Pole | SAMPLED | | 1 | | | 1 | | | | | | | | | | Н | Н | 1 | | 386 | 45.92707672 | -89.2421094 | 157 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 386 | 9 | Muck | Pole | SAMPLED | | C | | | | | | | | | | | | | Н | Н | - | | 387 | 45.92707287 | -89.24152906 | 158 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 387 | 11 | Muck | Pole | SAMPLED | | C | | | | | | | | | | | | | Н | H | - | | 388 | 45.92706902 | -89.24094872 | 159 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 388 | 10 | Sand | Pole | SAMPLED | | C | | | | | | | | | | | | | Н | Н | _ | | 389 | 45.92706516 | -89.24036838 | 160 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 389 | 9 | Sand | Pole | SAMPLED | | C | | | | | | | | | | | | | Н | Н | _ | | 390 | 45.9270613 | -89.23978804 | 128 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 390 | 10 | Sand | Pole | SAMPLED | | C | | | | | | | | | | | | | Н | H | - | | 391 | 45.92705744 | -89.2392077 | 127 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 391 | 10 | Sand | Pole | SAMPLED | | C | | | | | | | | | | | | | Н | Н | _ | | 392 | 45.92705357 | -89.23862736 | 126 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 392 | 10 | Muck | Pole | SAMPLED | | C | | | | | | | | | | | | | Н | Н | - | | 393 | 45.92704971 | -89.23804702 | 125 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 393 | 9 | Sand | Pole | SAMPLED | | C | | | | | | | | | | | | | Н | H | - | | 394 | 45.92704583 | -89.23746668 | 124 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 394 | 6 | Muck | Pole | SAMPLED | | 3 | | | | 1 | | | | | | | 1 | | Н | Н | 3 | | 395 | 45.92704196 | -89.23688634 | 123 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 395 | 4 | Muck | Pole | SAMPLED | | 3 | | | 1 | | | | | | | | 1 | | 1 | Н | 2 | | 396 | 45.92703808 | -89.236306 | 122 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 396 | 0 | | | TERRESTRIAL | | | | | | | | | | | | | | | Н | Н | _ | | 397 | 45.92666789 | -89.24153458 | 156 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 397 | 9 | Muck | Pole | SAMPLED | | С | | | | | | | | | | | | | Н | Н | _ | | 398 | 45.92666403 | -89.24095424 | 155 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 398 | 4 | Rock | Pole | SAMPLED | | 1 | | | | | | | | | | | | | Н | Н | 1 | | 399 | 45.92666018 | -89.24037391 | 154 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 399 | 0 | | | TERRESTRIAL | | | | | | | | | | | | | | | Н | Н | _ | | 400 | 45.92665632 | -89.23979357 | 116 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 400 | 6 | Sand | Pole | SAMPLED | | 2 | | | | | | | | | | | 1 | | Н | Н | 2 | | 401 | 45.92665245 | -89.23921324 | 117 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 401 | 8 | Muck | Pole | SAMPLED | | C | | | | | | | | | | | | | Н | Н | _ | | 402 | 45.92664859 | -89.2386329 | 118 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 402 | 8 | Muck | Pole |
SAMPLED | | C | | | | | | | | | | | | | Н | Н | _ | | 403 | 45.92664472 | -89.23805257 | 119 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 403 | 5 | Muck | Pole | SAMPLED | | 3 | | | 1 | 1 | | | | | | | | | \vdash | Н | 2 | | 404 | 45.92664085 | -89.23747223 | 120 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 404 | 5 | Muck | Pole | SAMPLED | | 2 | | | | | | | | | | | 1 | | Н | Н | 1 | | 405 | 45.92663698 | -89.2368919 | 121 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 405 | 3 | Muck | Pole | SAMPLED | | 2 | | | 1 | | | | | | | | 1 | | Н | Н | _ | | 406 | 45.92625133 | -89.2397991 | 106 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 406 | 4 | Muck | Pole | SAMPLED | | 2 | | | | 1 | | | | | | | 1 | | Н | Н | _ | | 407 | 45.92624747 | -89.23921877 | 115 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 407 | 5 | Muck | Pole | SAMPLED | | 3 | | | | | | | | | | | | | Н | Н | 3 | | 408 | 45.9262436 | -89.23863844 | 114 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 408 | 5 | Muck | Pole | SAMPLED | | 1 | - | | 1 | | | | | | | | | | Н | Н | 1 | | 409 | 45.92623974 | -89.23805811 | 113 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 409 | 5 | Muck | Pole | SAMPLED | | 1 | | | 1 | | | | | | | | 1 | | 1 | Н | _ | | 410 | 45.92623587 | -89.23747778 | 111 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 410 | 3 | Muck | Pole | SAMPLED | | 2 | - | | | | | \dashv | + | - | | | 2 | - | \vdash | \vdash | \dashv | | 411 | 45.92623199 | -89.23689745 | 112 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 411 | 0 | | | TERRESTRIAL | | $\vdash \vdash$ | - | | | | 4 | 4 | + | - | | | \perp | | \sqcup | \vdash | 4 | | 412 | 45.92584635 | -89.23980464 | 105 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 412 | 0 | | | TERRESTRIAL | | | - | | | | | 4 | \perp | - | | | \perp | - | Ц | Н | 4 | | 413 | 45.92584248 | -89.23922431 | 107 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 413 | 4 | Muck | Pole | SAMPLED | | 1 | - | | | | | 4 | \perp | - | | 1 | \perp | - | Ц | Н | 1 | | 414 | 45.92583862 | -89.23864398 | 108 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 414 | 4 | Muck | Pole | SAMPLED | | C | + | - | | | | 4 | + | | - | | - | | \vdash | \vdash | 4 | | 415 | 45.92583475 | -89.23806366 | 109 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 415 | 4 | Muck | Pole | SAMPLED | | 3 | + | - | | | | 4 | + | | - | | 2 | | 1 | \vdash | 2 | | 416 | 45.92583088 | -89.23748333 | 110 | Yellow Birch Lake | Vilas | 8/15/2017 | JMB & AMS | 416 | 0 | | | NONNAVIGABLE (PLANTS) | | | | | | | | | | | | | | | Ш | Ш | Ш | | □ Point Number | Latitude (Decimal Degrees) | Congitude (Decimal Degrees) | <u>Q</u>
294 | QE SA C SA | County | <u>ම</u> සු | Field Grew | Point Number | Muck | Pole; Rope | g and a second of the o | Notes | Nulsance
Total Rake Fullness | Myriophyllum spicatum | Brasenia schreberi | | Ceratophyllum echinatum | Chara spp. | Eleocharis palustris | Elodes canadensis | Equisetum fluviatio Heteranthera dubia | Lemna minor | Lemna trisulca
Lemna turionifera | Myriophyllum sibiricum | Najas nexilis
Nitella sp.p. | Nuph ar variegata | Nymphaea odorata
Pontederia cordata | Potamogeton amplifolius | Potamogeton epihydrus Potamogeton natans | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton spirillus | Potamogeton vaseyi | Potamogeton zosteriformis
Ranunculus aquatilis | Sagitaria latifolia | Sparganium emersum var. acaule | Sparganium eurycarpum | Spirodela polyrhiza | Utricularia minor | Utricularia vulgaris
Vallisneria americana | Zizania spp. | Aquatic moss
Riccia spp. | tribular appro- | |----------------|----------------------------|-----------------------------|-----------------|--|----------------|---|------------------------|------------------|--------------|--------------|--|-------|---------------------------------|-----------------------|--------------------|-----|-------------------------|--------------|----------------------|-------------------|--|-------------|-------------------------------------|------------------------|--------------------------------|-------------------|--|-------------------------|--|----------------------|--------------------------|-----------------------|--------------------|---|---------------------|--------------------------------|-----------------------|---------------------|-------------------|---|--------------|-----------------------------|-----------------| | 2 | 45.903167
45.903163 | -89.319320
-89.318675 | 293 | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | LJS & JBS | 3 2 9 | Muck | Pole | SAMPLED
DEEP | | 0 | - | 1 | | | | | | | H | | | | | | | | | - | | | | | | - | | H | + | \vdash | H | - | | 4 | 45.903159 | -89.318031 | 291 | Watersmeet Lake | | 8/16/2017 | LJS & JBS | 3 4 1 | 5 | | DEEP | | ļ | | | | | | | | | H | | | | | | | | | | | | | | | | I | Ħ | Į | | Ħ | 1 | | 6 | 45.902709
45.902705 | -89.318036
-89.317392 | | Watersmeet Lake Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | Sand | Pole | SAMPLED
DEEP | | 0 | Ħ | | Ħ | | | | 7 | 45.902701
45.902698 | -89.316747
-89.316102 | 288
287 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 3 | | DEEP | | | | | | | | | | | | + | | | | | | | | | | | | | | | | H | + | H | \vdash | - | | 9 | 45.902694 | -89.315458 | 286 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 9 1 | 3 | | DEEP | | | | | | | | | | | H | | | | | | | | | | | | | | | | | П | Ŧ | | Ħ | 1 | | 10 | 45.902690
45.902686 | -89.314813
-89.314169 | 285 | Watersmeet Lake Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | LJS & JBS | 3 10 1
3 11 1 | 2 | | DEEP | Ħ | 1 | | T. | | | 12 | 45.902682
45.902232 | -89.313524
-89.313530 | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 3 | | DEEP | | | | + | | | | | | | | | H | | | | | | | | | | | | | - | | H | + | H | \vdash | 1 | | 14 | 45.902678 | -89.312880 | 280 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 5 14 9 | Sand | Pole | SAMPLED | | 0 | | | | | | | | | Н | | | | | | | | | | | | | | | | | П | Ŧ | | Ħ | 1 | | 15 | 45.902228
45.902674 | -89.312885
-89.312235 | 281 | Watersmeet Lake Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 3 15 7
3 16 6 | Muck | Pole | SAMPLED
SAMPLED | | 0 | Ħ | 1 | | İ | 1 | | 17 | 45.902224
45.902671 | -89.312241
-89.311591 | 278 | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | 3 17 1 | 5
Muck | Pole | DEEP | | 0 | | | | | | | | | | + | | | | | | | | | | | | | | | | H | + | H | \vdash | 1 | | 19 | 45.902221 | -89.311596 | 276 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 3 19 1 | 3 | | DEEP | | ľ | | | | | | | | | H | | H | | | | | | | | | | | | | | | H | Ŧ | ļ | | 1 | | 20 | 45.902667
45.902217 | -89.310946
-89.310952 | 275 | Watersmeet Lake Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | LJS & JBS | 3 20 0
3 21 1 | 3 | | NONNAVIGABLE (PLANTS) DEEP | Ц | 1 | | ф | 1 | | 22 | 45.902213
45.901763 | -89.310307
-89.310313 | | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | Muck | Pole | NONNAVIGABLE (PLANTS) SAMPLED | | 0 | H | + | H | \vdash | 4 | | 24 | 45.902659 | -89.309657 | 274 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 8 24 5 | Sand | Pole | SAMPLED
| | 0 | | 4 | | | | | | | | | П | | | | | | | | | | | | | | | Ħ | I | I | H | 1 | | 25
26 | 45.902209
45.902655 | -89.309663
-89.309012 | 273 | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | 3 25 9
3 26 6 | Sand
Muck | Pole
Pole | SAMPLED
SAMPLED | | 0 | 1 | | Ħ | t | | | | | 27 | 45.902205
45.903101 | -89.309018
-89.308362 | 272 | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | LJS & JBS | 3 27 1 | 4 Sand | Pole | DEEP | | 3 | | | | | | | | - | | + | | | | 3 | | | | | | 1 | | | | 1 | | H | 1 | H | \vdash | - | | 29 | 45.902651 | -89.308368 | 270 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 3 29 1 | 2 | | DEEP | | Ī | | 4 | | | | | | | | | П | | | | | | | | | | | | | | | Ħ | Ī | I | H | 1 | | 30 | 45.903097
45.902647 | -89.307718
-89.307723 | | Watersmeet Lake | Vilas
Vilas | 8/16/2017 | LJS & JBS | 31 (| 1 | | DEEP
NO INFORMATION | 1 | | Ħ | İ | | | | | 32 | 45.903093
45.903089 | -89.307073
-89.306429 | | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | 3 | | DEEP | H | + | H | \vdash | 4 | | 34 | 45.903085 | -89.305784 | 265 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 34 1 | 4 | | DEEP | | | | | | | | | | | Н | | | | | | | | | | | | | | | | | П | Ŧ | | Ħ | 1 | | 35
36 | 45.904432
45.903982 | -89.305123
-89.305128 | 261
262 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | 35 4 | Rock | Pole
Pole | SAMPLED
SAMPLED | | 0 | 1 | | Ħ | t | | | | | 37 | 45.903532
45.903082 | -89.305134
-89.305139 | | Watersmeet Lake | Vilas
Vilas | 8/16/2017 | LJS & JBS | | Sand | Pole | SAMPLED NONNAVIGABLE (PLANTS) | | 0 | | | | | | | | - | | + | | | | | | | | | | | | | | 1 | | H | + | H | \vdash | - | | 39 | 45.905778 | -89.304461 | 260 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 39 6 | Sand | Pole | SAMPLED | | 0 | | | | | | | | | H | | | | | | | | | | | | | | | | | П | Ŧ | | Ħ | 1 | | 41 | 45.905328
45.904878 | -89.304467
-89.304472 | 259
258 | Watersmeet Lake Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | Sand | Pole | SAMPLED
DEEP | | 0 | Ц | 1 | | ф | 1 | | 42 | 45.904428
45.919723 | -89.304478
-89.303642 | 257 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | 3 42 1
5 43 0 | 1 | | DEEP | | \parallel | | | | | | | | | H | + | | | | | | | | | | | | | | + | + | H | + | H | H | 1 | | 44 | 45.907124 | -89.303800 | 251 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | | | DEEP | П | Ŧ | Ц | H | 1 | | 46 | 45.906674
45.906224 | | | Watersmeet Lake | | | LJS & JBS | | | | DEEP | | | | | | | | | | l | | | | | | | | | | | | | | | | 1 | t | Ħ | İ | | | 1 | | 47 | 45.905774
45.905324 | | | Watersmeet Lake Watersmeet Lake | | | | | | | DEEP | | | | | | | | | | - | | + | | | | | | | | | | | | | | 1 | | H | + | H | \vdash | 1 | | 49 | 45.904874 | -89.303828 | 256 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 3 49 6 | Muck | Pole | SAMPLED | | 0 | | | | | | | | | H | | | | | | | | | | | | | | | | I | Ħ | Į | | Ħ | 1 | | 50 | 45.920619
45.920169 | -89.302986
-89.302992 | | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NLS | | | | SHALLOW | Ц | 1 | | Ц | 1 | | 52 | 45.919719
45.919269 | | | Watersmeet Lake | | 8/16/2017 | BTB & NLS | | | | SHALLOW | | | | | | | | | | - | | + | | | | | | | | | | | | | | 1 | | H | + | H | \vdash | 1 | | 54 | 45.908020 | -89.303144 | 0 | Watersmeet Lake | Vilas | | | 54 0 | | | NO INFORMATION | | | | 4 | | | | | | | | | П | | | | | | | | | | | | | | | Ħ | I | I | H | 1 | | 55
56 | 45.907570
45.907120 | | | Watersmeet Lake | | | | | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 0 | Ħ | 1 | | Щ | 1 | | 57 | 45.906670
45.906220 | | | Watersmeet Lake | | | LJS & JBS | | Muck | Pole | SAMPLED
SAMPLED | H | 0 | | \dashv | + | - | \parallel | | | + | H | + | H | + | | + | | + | | | 1 | | + | + | H | \dashv | + | H | + | H | + | $\frac{1}{2}$ | | 59 | 45.905770 | -89.303172 | 245 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 5 59 7 | Muck | Pole | SAMPLED | | 0 | H | 1 | 1 | | 1 | | П | | H | 1 | H | | | 1 | H | 1 | | | | H | 1 | | | 1 | | Ħ | Ŧ | Ħ | Ħ | 1 | | 60 | 45.905320
45.904870 | | | Watersmeet Lake | | 8/16/2017
8/16/2017 | LJS & JBS | | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | t | | 1 | t | t | | | | t | H | l | H | l | | \downarrow | | t | | | L | | t | t | | 1 | t | Ħ | 1 | | d | 1 | | 62
63 | 45.919265
45.918816 | | | Watersmeet Lake | | | | | Muck | Pole | SHALLOW
SAMPLED | H | 1 | | \dashv | + | - | \parallel | | | + | H | + | H | + | 1 | + | 1 | + | | | 1 | | + | + | H | \dashv | + | H | + | H | + | $\frac{1}{2}$ | | 64 | 45.908016 | -89.302499 | 237 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 64 7 | Sand | Pole | SAMPLED | | 0 | | | | | | | | ļ | H | | Н | | Ė | | | | | | | | | ļ | | 1 | | H | Ŧ | | Ŧ | 1 | | 65 | 45.907566
45.907116 | -89.302505
-89.302511 | | Watersmeet Lake | | | LJS & JBS | | Muck | Pole
Pole | SAMPLED
SAMPLED | | 3 | | 1 | 1 | | | L | | | H | | | | L | 3 | Ħ | t | L | | t | | t | l | | 1 | | Ц | # | Ħ | d | 1 | | 67
68 | 45.906666
45.906216 | -89.302516
-89.302522 | 240 | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | Muck | Pole
Pole | SAMPLED
SAMPLED | H | 3 | 1 | + | 1 . | - | \mathbb{H} | | 1 | | H | 1 | H | 1 | 3 | + | | + | | 1 | 1 2 | H | + | + | H | + | 1 | \forall | 1 | H | + | 1 | | 69 | 45.905766 | -89.302527 | 242 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 69 0 | | | NONNAVIGABLE (PLANTS) | | ļ | Ĺ | 4 | ľ | | H | | | | H | | H | ŀ | | ļ | | | | H | Ĺ | H | | ļ | | 4 | ļ | Ħ | Ŧ | I | Ŧ | 1 | | 70
71 | 45.905316
45.918812 | -89.302533
-89.301719 | | Watersmeet Lake Watersmeet Lake | | 8/16/2017
8/16/2017 | LJS & JBS
BTB & NLS | | Muck | Pole | NONNAVIGABLE (PLANTS) SAMPLED | Ц | 2 | | 1 | 1 | 1 | | L | 1 | | 1 | 1 | Ħ | 1 | | 1 | 1 | 1 | | H. | | | 1 | t | | 1 | 1 | Ц | 1 | ╘ | ф | 1 | | 72 | 45.918362 | -89.301725 | 111 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | S 72 3 | Muck | Pole | SAMPLED | | 1 | | | 1 | 1 | | L | | | Ш | | Ш | | L | 1 | Ш | | | L. | L | Ш | 1 | | Ш | | | Ц | \perp | Ш | டி | J | | Point Number | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Q | e g g g g g g g g g g g g g g g g g g g | County | 9 G
G
8/16/2017 | Field Grew | 2 23 Court Number | Sediment | Pole; Rope | g g g g g g g g g g g g g g g g g g g | Notes | Total Rake Fullness | Myriophyllum spicatum | Brasenia schreberi | Geratophyllum demersum | Ceratophyllum echinatum | Chara spp. | Eleocharis palustris | Elodea canadensis | Heteranthera dubia | Lemna minor
Lemna trisulca | Lemna turionifera | Myriophyllum sibiricum
Najas flexilis | Nitella sp.p. | Nuph ar variegata | Nymphaea odorata
Pontederia cordata | Potamogeton amplifolius | Potamogeton epihydrus Potamogeton natans | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton robbins ii | Potamogeton vaseyi | Potamogeton zosteriformis | Ranunculus aquatilis | Sparganium emersum var. acaule | Sparganium eurycarpum | Sparganium fluctuans | Optrodesia polymiza | Utricularia vulgaris | Vallisneria americana | Zizania spp. | Riccia spp. | |--------------|----------------------------|-----------------------------|------------|---|----------------|------------------------|------------|-------------------|---------------------------------------|--------------|--|-------|---------------------|-----------------------|--------------------|------------------------|-------------------------|------------|----------------------|-------------------|--------------------|-------------------------------|-------------------|--|---------------|-------------------|--|-------------------------|--|----------------------|--------------------------|------------------------|--------------------|---------------------------|----------------------|--------------------------------|-----------------------|----------------------|---------------------|----------------------|-----------------------|--------------|----------------| | 74
75 | 45.917462
45.908912 | -89.301736
-89.301843 | 105 | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NLS | S 74 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | | | | | | | | | | | | + | | | + | | | | | | | | + | - | | | | | - | + | H | | | 45.908012 | -89.301855 | 236 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | S 76 9 | Muck | Pole | SAMPLED | | 0 | I | | 1 | | | | | | | Į | Ħ | | 77 | 45.907562
45.907112 | -89.301860
-89.301866 | | Watersmeet Lake | Vilas
Vilas | 8/16/2017 | LJS & JBS | | Sand
Muck | Pole | SAMPLED
SAMPLED | | 3 | | | | | | | | | | | | | | 3 | | | | | | | | 1 | | | | | | | 1 | Ħ | | 79
80 | 45.906662
45.906212 | -89.301872
-89.301877 | | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | Muck | Pole | SAMPLED NONNAVIGABLE (PLANTS) | | 2 | 2 | | 1 | | | | 1 | | | H | + | | | | H | | | | | 1 | | + | | | | | | 1 | + | + | | 81 | 45.905762 | -89.301883 | 232 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | S 81 C | | | NONNAVIGABLE (PLANTS) | 4 |
 | | | | | Ŧ | Ħ | | 82 | 45.918808
45.918358 | -89.301074
-89.301080 | 109 | Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | S 82 0
S 83 3 | Muck | Pole | NONNAVIGABLE (PLANTS) SAMPLED | | 0 | 1 | | | | | | | 1 | Ħ | | 84 | 45.917908
45.917458 | -89.301086
-89.301091 | | Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | | Muck | Pole | SAMPLED
SAMPLED | | 3 | | | 3 | | | | | | | H | | | | 1 | H | | | | 1 | 1 | 1 | + | | | | + | | | + | + | | 86 | 45.917008 | -89.301097 | 103 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | S 86 1 | Muck | Pole | SAMPLED | | 2 | | | 1 | | | | | | 1 | | | | | 1 | | | | | 2 | | | 7 | | | | | | | Ŧ | # | | 88 | 45.909808
45.909358 | -89.301187
-89.301193 | 209 | Watersmeet Lake | Vilas
Vilas | 8/16/2017 | LJS & JBS | S 87 C | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | t | | # | | | | | | | # | \blacksquare | | 89
90 | 45.908908
45.908458 | -89.301199
-89.301204 | 207 | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | S 89 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | | | | | | | | | | | | | | | + | | | | | | | | + | | | | | | | + | H | | 91 | 45.908008 | -89.301210 | 224 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 5 91 7 | Muck | Pole | SAMPLED | | 0 | 4 | | | | | | | - | \blacksquare | | 92 | 45.907558
45.907108 | -89.301216
-89.301221 | 225 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | LJS & JBS | S 92 S
S 93 6 | Sand | Pole | SAMPLED
SAMPLED | | 0 | # | | | | | | 1 | I | 1 | | 94
95 | 45.906658
45.906208 | -89.301227
-89.301233 | | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 3 | 1 | | 1 | | | | 3 | | | | | | | 1 | | | | 1 | | | 1 | + | | | | + | 1 | | + | \forall | | 96 | 45.905758 | -89.301238 | 230 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | | | NONNAVIGABLE (PLANTS) | 4 | | | | | | | - | \blacksquare | | 98 | 45.917904
45.917454 | -89.300441
-89.300447 | 101 | Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | S 98 3 | Muck | Pole | SAMPLED
SAMPLED | | 1 | | | 1 | , | | | | | 1 | | | | | 1 | | | | | 2 | | 1 | # | | | ľ | 1 | | | # | Ħ | | 100 | 45.917004
45.910254 | -89.300452
-89.300537 | 102
216 | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NLS | | Muck | Pole | SAMPLED NONNAVIGABLE (PLANTS) | | 2 | | | 1 | | | | 1 | | 1 | | | | | | 2 | | | | | t | | 1 | | | | 1 | | | 1 | ┪ | | | 45.909804
45.909354 | -89.300543
-89.300548 | | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | + | | | | | | | + | + | | | 45.908904 | -89.300548
-89.300554 | | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | | | NONNAVIGABLE (PLANTS) | | | | | | | | | | | | | | | | T | | | | | | | | # | | | | | | | # | 1 | | | 45.908004
45.907554 | -89.300565
-89.300571 | 217 | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | Sand | Pole
Pole | SAMPLED
SAMPLED | | 0 | 1 | | | | | | | t | П | | 106 | 45.907104
45.906654 | -89.300577
-89.300582 | 222 | Watersmeet Lake | Vilas
Vilas | 8/16/2017 | LJS & JBS | | Sand | Pole | SAMPLED
SAMPLED | | 0 | 1 | | 3 | | | | | | | H | | | | 1 | H | | | | | | 1 | + | | | - | + | | | + | + | | 108 | 45.906204 | -89.300588 | 229 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | S 108 C | i i i i i i i i i i i i i i i i i i i | Total | NONNAVIGABLE (PLANTS) | I | | 1 | | | | | | | Į | Ŧ | | 110 | 45.917900
45.917450 | -89.299796
-89.299802 | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NL | | Muck | Pole | NONNAVIGABLE (PLANTS) SAMPLED | | 2 | | | 1 | | | | | | | | | | | 1 | | | | | 1 | | | 1 | | | | | | | - 2 | 2 | | | 45.917000
45.916550 | -89.299808
-89.299813 | | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NL | | Muck | Pole | SAMPLED
SAMPLED | | 1 | | | 1 | | | | | | | | | | | | | | | | 1 | | | + | | | | | | | + | + | | | 45.909800 | -89.299898 | 215 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | | | NONNAVIGABLE (PLANTS) | | | | | | | | | | | | | | | | - | | | | | | | | 1 | | | - | | | | Ŧ | \blacksquare | | 114 | 45.909350
45.908900 | -89.299904
-89.299910 | 211 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | LJS & JBS | S 114 0 | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | t | | # | | | | | | | # | \pm | | | 45.908450
45.908000 | -89.299915
-89.299921 | 201
195 | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | Sand | Pole | NONNAVIGABLE (PLANTS) SAMPLED | | 0 | + | | | | + | | | + | \forall | | 118 | 45.907550 | -89.299926 | 218 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 5 118 1 | Muck | Pole | SAMPLED | | 0 | 4 | | | | | | | - | \blacksquare | | | 45.907100
45.906650 | | | Watersmeet Lake | | | | | Sand | Pole | SAMPLED
SAMPLED | | 3 | 1 | | 1 | | | | 1 | | | | | | | | | | | | | 2 | | # | | | | | 1 | 3 | I | 1 | | | 45.917446
45.916996 | | | Watersmeet Lake | | | BTB & NL | | Muck | Pole | NONNAVIGABLE (PLANTS) SAMPLED | | 3 | | | 1 | | | | 1 | | | | | | | 1 | | | | | 2 | | | 1 | | | | | | | | \pm | | | 45.916546 | -89.299169 | | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | | Muck | Pole | SAMPLED | | 0 | | | | | | | | | | | + | | | | | | | | | | | + | | | | + | | - | + | Н | | | 45.909346
45.908896 | | | | Vilas
Vilas | 8/16/2017 | LJS & JBS | | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | # | | | | | | | # | Ħ | | | 45.908446
45.907996 | | | Watersmeet Lake | | | LJS & JBS | | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | 1 | | | | | | | | \pm | | 128 | 45.907546 | -89.299282 | 194 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 3 128 7 | Muck | Pole | SAMPLED | H | 0 | H | Ŧ | F | H | Ŧ | F | H | F | F | H | F | F | H | F | H | F | | H | | F | H | 7 | F | H | Ŧ | Ŧ | H | 1 | Ŧ | H | | | 45.907096
45.906646 | | 192 | Watersmeet Lake | | 8/16/2017 | LJS & JBS | | Sand | Pole | DEEP | | 0 | | | | | | | | | | | | | | 1 | | | | | 1 | ļ | | # | ļ | | 1 | ļ | | 1 | # | \sharp | | | 45.916542
45.916092 | -89.298524
-89.298530 | 92
93 | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NL: | | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | H | 3 | | | 1 | H | 1 | L | 1 | L | \pm | H | 1 | L | | $\frac{1}{2}$ | H | t | | | 3 | t | | 1 | l | H | $\frac{1}{2}$ | t | 1 | | \pm | \exists | | 133 | 45.908892
45.908442 | | | Watersmeet Lake | | 8/16/2017 | LJS & JBS | 3 133 0 | | | NONNAVIGABLE (PLANTS)
NONNAVIGABLE (PLANTS) | H | F | H | Ŧ | | H | f | F | H | F | + | H | F | F | H | Ŧ | H | F | | H | | F | H | 3 | F | H | + | Ŧ | H | 1 | Ŧ | H | | 135 | 45.907992 | -89.298632 | 196 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 3 135 0 | | | NONNAVIGABLE (PLANTS) | | | H | 1 | | H | 1 | F | | L | 1 | H | 1 | L | Ħ | 1 | H | 1 | | H | | | H | # | - | H | 1 | ‡ | | 1 | ‡ | \sharp | | | 45.907542
45.907092 | | | Watersmeet Lake | | 8/16/2017
8/16/2017 | LJS & JBS | | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | Н | 0 | | | | | | | | | | H | | | | + | H | | | | | | | \pm | | Н | | t | | 1 | \pm | \exists | | П | 45.906642
45.916538 | | 191 | Watersmeet Lake | | 8/16/2017
8/16/2017 | LJS & JBS | | 1 Sand | Pole | SAMPLED
SAMPLED | | 0 | | | 1 | | + | | | | + | | + | | H | | | | | | | 1 | | + | + | | + | + | H | 1 | + | \mathbb{H} | | 140 | 45.916088 | -89.297885 | 90 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | S 140 3 | Muck
Muck | Pole | SAMPLED | H | 3 | H | | 3 | Ľ | 1 | | 1 | | 1 | H | 1 | | H | | H | 1 | | H | 1 | | H | # | | Н | 1 | 1 | 1 | 1 | ‡ | \blacksquare | | | 45.915638
45.915188 | -89.297891
-89.297896 | | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NL | | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | H | 0 | | | | | 1 | | | | 1 | | 1 | | | \downarrow | | | | | | | | 1 | | Ц | | 1 | | 1 | # | \parallel | | | | | | Watersmeet Lake | | | | | Muck | Pole
Pole | SAMPLED
SAMPLED | H | 3 | H | + | 2 | + | | - | | | | H | + | | H | + | | \parallel | | | 1 | + | H | + | + | Н | + | + | Н | - | + | H | | Point Number | Latitude (Decimal Degrees) | 68-
C Congitude (Decimal Degrees) | <u>Q</u> | & B. Watersmeet Lake | County | 8/16/2017 | Pield Grew | | ω Depth (ft) | Sediment | Pole; Rope | SAMPLED | Notes | vuisance
Total Rake Fullness | Myriophyllum spicatum | Brasonia schreberi | Bidens beckil | Ceratophyllum echinatum | Chara spp. | Eleocharis acicularis | L Elodea canadensis | Equisetum fluviatio | Heteranthera dubia | Lemna trisulca | Lemna turionifera | Myriophyllum sibiricum
Naise flovilie | Nitella spp. | - Nuphar variegata | Nymphaea odorata
Pontederia cordata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pusillus | Potamogeton richardsonii | Potamogeton rob binsii | Potamogeton vaseyi | Potamogeton zosteriformis | Ranunculus aquatilis | Sparganium emersum var. acaule | Sparganium eurycarpum | Sparganium fluctuans | Utricularia minor | Utricularia vulgaris | Vanisneria americana
Zizania spp. | Aquatic moss | Riccia spp. | |--------------|----------------------------|--------------------------------------|-----------
------------------------------------|----------------|------------------------|----------------------|----------------|--------------|--------------|--------------|--|-------|---------------------------------|-----------------------|--------------------|---------------|-------------------------|------------|-----------------------|---------------------|---------------------|--------------------|----------------|-------------------|--|--------------|--------------------|--|-------------------------|-----------------------|----------------------|--------------------------|------------------------|--------------------|---------------------------|----------------------|--------------------------------|-----------------------|----------------------|-------------------|----------------------|--------------------------------------|----------------|-------------| | 146 | 45.913388
45.908438 | -89.297919
-89.297981 | 77
198 | Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | | 2 | Sand | Pole | SAMPLED NONNAVIGABLE (PLANTS) | | 2 | | 1 | | 1 1 | | | 1 | | - | | | | | | 1 | 1 | | | | 1 | | 1 | + | + | H | 1 | + | H | + | 1 | - | | 148 | 45.907988 | -89.297987 | | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | 0 | | | NONNAVIGABLE (PLANTS) | | | | | | | | | | | | F | | | | | - | | | | | | | | 7 | Ŧ | H | | Ŧ | H | 1 | H | 1 | | 150 | 45.907538
45.907088 | -89.297993
-89.297998 | | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | 6 | Muck
Muck | Pole | SAMPLED
SAMPLED | | 0 | | | j | 3 | | | 1 | | | L | | | | | | | | | | İ | | | I | İ | Ħ | | t | | İ | Ħ | 1 | | 151 | 45.906638
45.906188 | -89.298004
-89.298010 | 185 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 7 | Sand | Pole | SAMPLED
DEEP | | 0 | \pm | İ | | | t | | t | H | | | 153 | 45.916084
45.915634 | -89.297240
-89.297246 | 89 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | | 2 | Muck | Pole | SAMPLED
SAMPLED | | 1 | | | | | | - | | | 1 | + | | | | | | | | | - | 1 | | | + | + | H | 1 | + | | + | | - | | 155 | 45.915184 | -89.297252 | 85 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | | 4 | Muck | Pole | SAMPLED | | 0 | | | | | | | Ľ | | | | | | | | | | | | | 1 | | Ì | # | Į | I | | Į | İ | 1 | İ | | | 156 | 45.914734
45.914284 | -89.297257
-89.297263 | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NL | | 5 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 0 | | | | | | ł | | | | t | | | | | | | | | | | | | 1 | İ | | t | | | + | Ħ | 1 | | 158 | 45.913834
45.913384 | -89.297269
-89.297274 | 79
76 | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | BTB & NL | | 6 | Muck
Muck | Pole | SAMPLED
SAMPLED | | 0 | H | | | + | | | | | + | + | | | | | + | | | H | 1 | 2 | | | + | ÷ | H | | ╁ | 1 | + | + | + | | 160 | 45.907084 | -89.297354 | 181 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | S 160 | 5 | Sand | Pole | SAMPLED | | 2 | 1 | | | | | | | | | | | | | | | | | H | | | | | 7 | Ŧ | П | | Ŧ | ļ | 2 | H | 7 | | 161 | 45.906634
45.906184 | -89.297359
-89.297365 | 182 | Watersmeet Lake | Vilas
Vilas | 8/16/2017 | LJS & JBS | S 161
S 162 | 8 | Sand
Sand | Pole
Pole | SAMPLED
SAMPLED | | 0 | # | İ | | | t | Ħ | 1 | | | | 163 | 45.913830
45.913380 | -89.296624
-89.296630 | 80
75 | Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | S 163 | 5 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 0 | 1 | | | + | + | H | 1 | + | | + | + | 1 | | 165 | 45.912930 | -89.296635 | 55 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | | 4 | Muck | Pole | SAMPLED | | 3 | | | | 3 | | | 1 | | | H | | | | | | | | | | 1 | | | Ŧ | Ŧ | H | | Ŧ | 1 | I | H | - | | 166 | 45.907080
45.906630 | -89.296709
-89.296715 | | Watersmeet Lake Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | 6 | Muck
Muck | Pole | SAMPLED
SAMPLED | | 0 | | 3 | | | | | 1 | | | | | | | | | | | | | 1 | | 1 | # | İ | | 1 | İ | | 1 | | | | 168 | 45.906180
45.905730 | -89.296721
-89.296726 | 178 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 7 | Muck
Sand | Pole
Pole | SAMPLED | | 0 | \pm | İ | | | t | | t | H | | | 170 | 45.913376
45.912926 | -89.295985
-89.295991 | 74
56 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | S 170 | 6 | Muck | Pole | SAMPLED
SAMPLED | | 0 | | | | | | | | | + | | | | | | | | | | | | | | + | + | Н | | + | H | - | + | - | | 172 | 45.912476 | -89.295996 | 54 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | S 172 | 3 | Sand | Pole | SAMPLED | | 2 | | | | | | | | | | | | | | | | | | l | _ | | | 1 | 1 | Ŧ | | 1 | Ŧ | ļ | 2 | Ħ | 1 | | 173 | 45.907076
45.906626 | -89.296065
-89.296070 | 173 | Watersmeet Lake
Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 6 | Muck | Pole | NONNAVIGABLE (PLANTS) SAMPLED | | 0 | | | | | | | | | | | | | | | t | | | | | | | | 1 | İ | | t | İ | | 1 | | | | 175 | 45.906176
45.905726 | -89.296076
-89.296082 | 175 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | 7 | Sand | Pole | SAMPLED | | 0 | H | | | | | | | | | + | | | | | + | H | | | + | | - | | + | + | H | | + | | + | + | - | | 177 | 45.913372 | -89.295340 | 73 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | | 5 | Muck | Pole | SAMPLED | | 1 | | | | | | | | | | H | | | | | | | | | | | | 1 | Ŧ | Ŧ | H | | Ŧ | H | I | H | - | | 179 | 45.912922
45.912472 | -89.295346
-89.295352 | 53 | Watersmeet Lake Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | | 5 | Muck | Pole | SAMPLED
SAMPLED | | 0 | | | | | | | | | | ļ | | | | | | | | | | | | | # | Į | | | ļ | | ļ | Ħ | | | 180 | 45.912022
45.911572 | -89.295357
-89.295363 | 37 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NL
BTB & NL | | 5 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 0 | 1 | t | | | L | | t | | | | 182 | 45.906622
45.906172 | -89.295426
-89.295431 | 172 | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 5 | Sand | Pole | SAMPLED
SAMPLED | | 0 | H | | | | | | | | + | + | | | | | + | | | H | 1 | | | | + | ÷ | H | | ╁ | H | + | + | + | | 184 | 45.905722 | -89.295437 | 170 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | S 184 | 9 | Sand | Pole | SAMPLED | | 0 | | | | | | | | | | | | | | | | | | H | | | | | 7 | Ŧ | П | | Ŧ | H | I | H | 7 | | 185 | 45.923268
45.913368 | -89.294570
-89.294696 | 72 | Watersmeet Lake
Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | BTB & NL | | 2 | Muck
Sand | Pole | SAMPLED
SAMPLED | | 2 | | | 1 | | | | | | | | | 1 | | 1 | | | | | | 2 | | | # | İ | | | t | 1 | 1 | | | | 187 | 45.912918
45.912468 | -89.294701
-89.294707 | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NL | | 7 | Muck
Muck | Pole | SAMPLED | | 0 | + | | | + | + | H | 1 | + | | + | + | 1 | | | 45.912018
45.911568 | | | Watersmeet Lake Watersmeet Lake | | | | | | Muck | | SAMPLED | | 0 | - | Ŧ | H | | ļ | H | 1 | H | | | 190 | 45.911118 | | | Watersmeet Lake | | | | | | Muck | | SAMPLED
SAMPLED | | 0 | - | # | I | | 1 | İ | | İ | I | 1 | | 192
193 | 45.910668
45.910218 | | | Watersmeet Lake Watersmeet Lake | | 8/16/2017
8/16/2017 | | | 6 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 0 | \pm | İ | | | t | | t | \blacksquare | | | 194 | 45.906618
45.906168 | -89.294781
-89.294787 | | Watersmeet Lake Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 6 | Muck | Pole | SAMPLED
SAMPLED | | 0 | | | | | | | | | + | | | | | | | | | | | | | | + | + | Н | | + | H | - | + | + | | 196 | 45.905718 | -89.294792 | 169 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 196 | | Muck | Pole | SAMPLED | | 0 | # | Į | | | ļ | | I | Ħ |] | | 197 | 45.923714
45.923264 | | | Watersmeet Lake Watersmeet Lake | | | | | | | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | 1 | İ | | | | | 1 | | | | 199 | 45.922814
45.922364 | | | Watersmeet Lake Watersmeet Lake | | | | | П | Muck
Muck | | SAMPLED
SAMPLED | | 2 | | | | 1 | | | | | + | + | | | | | + | \blacksquare | | | | 2 | | | + | + | H | + | ╁ | H | 1 1 | $^{+}$ | 1 | | 201 | 45.921914 | -89.293942 | 193 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | S 201 | 3 | Muck | Pole | SAMPLED | 1 | 1 | Н | 1 | | | | 1 | | | 1 | L | | 1 | | | 1 | H | 1 | H | 1 | ļ | L | H | 7 | Ŧ | Ħ | 1 | Ŧ | Ħ | 1 | H | 7 | | 202 | 45.921464
45.913364 | -89.293948
-89.294051 | | Watersmeet Lake
Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NL | | 5 | Muck
Muck | Pole | SAMPLED
SAMPLED | 1 | 1 | v | 1 | ļ. | | | 1 | L | | 1 | t | | 1 | L | | t | | 1 | | 1 | 1 | L | 1 | # | 1 | Ħ | 1 | ‡ | Ħ | 1 | \parallel | 1 | | 204 | 45.912914
45.912464 | | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | | | Ť | Muck
Muck | Pole | SAMPLED
SAMPLED | 1 | 0 | H | 1 | 1 | + | H | + | H | H | + | + | H | 1 | + | H | + | \parallel | + | H | \dashv | + | + | H | + | + | H | + | + | H | + | H | + | | 206 | 45.912014 | -89.294068 | 39 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | S 206 | | Sand | | SAMPLED | | 0 | | 7 | 1 | | | Ŧ | | | 7 | H | | | | | Ŧ | H | 1 | H | 7 | Ŧ | | | 7 | Ŧ | H | 7 | F | H | Ŧ | H | 7 | | 207 | 45.911564
45.911114 |
-89.294079 | 20 | Watersmeet Lake
Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | S 208 | 6 | | Pole | SAMPLED
SAMPLED | | 0 | H | 1 | | ļ | H | | l | | 1 | L | | | ļ | H | + | H | 1 | H | 1 | 1 | L | H | # | # | Ħ | 1 | ŧ | Ħ | ‡ | Ħ | 1 | | 209 | 45.910664
45.910214 | -89.294085
-89.294091 | | Watersmeet Lake | | 8/16/2017
8/16/2017 | | | 7 | Muck
Sand | Pole
Pole | SAMPLED
SAMPLED | | 0 | H | | | \dagger | | | | | \dagger | | | | l | | | H | | | | \downarrow | t | H | \pm | \pm | Ħ | | † | Ħ | \pm | Н | 1 | | 211 | 45.909764
45.909314 | -89.294097
-89.294102 | | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 6 | Muck
Muck | Pole | SAMPLED
SAMPLED | - | 0 | | + | - | + | | + | \vdash | | + | + | | - | 1 | | + | $\ \cdot\ $ | + | \mathbb{H} | \dashv | + | \vdash | H | + | + | H | + | + | H | + | H | + | | 213 | 45.908864 | -89.294108 | 143 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | S 213 | 8 | Muck | Pole | SAMPLED | 1 | 0 | H | 1 | 1 | ļ | | ļ | F | | 1 | ļ | | 1 | L | | 1 | | 1 | H | 4 | 1 | Ļ | | # | Ŧ | Ħ | 1 | Ŧ | H | Ŧ | Ħ | 7 | | 214 | 45.907064
45.906614 | | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | LJS & JBS | | 7 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 0 | | 1 | | | | 1 | | | 1 | t | | l | | | 1 | H | | L | | t | L | | # | 1 | Ħ | 1 | ‡ | Ħ | 1 | \parallel | 1 | | 216 | 45.906164 | -89.294142 | 164 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | S 216 | 7 | Sand | Pole | SAMPLED | | 0 | Ш | | | | Ш | | L | Ш | | | Ш | | 1 | Ш | | Ш | | Ш | | 1 | L | Ш | \perp | L | Ш | | l. | Ш | _ | Ш | ⅃ | | Point Number | Cattrade (Decimal Degrees) | Congitude (Decimal Degrees) | 9 163 | Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q | Sea County | 9 e G
G
8/16/2017 | Field Grew | | 10 Depth (ft) | Sequent | Pole; Rope | standing of the th | Notes | O Total Rake Fullness | Myriophyllum spicatum | Brasonia schroberi | Geratophyllum demersum | Ceratophyllum echinatum | Chara spp. | Eleocharis palustris | Elodea canadensis | Equisetum fluviatile | Heteranthera dubia | Lemna trisulca | Lemna turionifera | Myriophyllum sibiricum
Naias flexilis | Nitella sp.p. | Nuphar variegata | Nymphaea odorata
Pontederia cordata | Potamogeton amplifolius | Potamogeton epihydrus | Potamogeton pasillus | Potamogeton richardsonii | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton vaseyi | Ranunculus aquatilis | Sagittaria latifolia | Sparganium emersum var. acaule | Sparganium eurycarpum | Spirodela polyrhiza | Utricularia minor | Utricularia vulgaris
Vallisnoria amoricana | Zizania sop. | Aquatic moss | Riccia spp. | |--------------|----------------------------|-----------------------------|------------|---------------------------------------|----------------|-------------------------|------------------------|----------------|---------------|---------|--------------|--|-------|-----------------------|-----------------------|--------------------|------------------------|-------------------------|------------|----------------------|-------------------|----------------------|--------------------|----------------|-------------------|--|---------------|------------------|--|-------------------------|-----------------------|----------------------|--------------------------|-----------------------|-----------------------|--------------------|----------------------|----------------------|--------------------------------|-----------------------|---------------------|-------------------|---|--------------|--------------|-------------| | 218 | 45.92416
45.92371 | -89.293269
-89.293275 | 210 | Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | | 3 1 | Muck I | Pole
Pole | SAMPLED
SAMPLED | | 2 | | | 1 | | | | | | | 1 | | | | | | | + | 2 | | | + | 1 | + | F | | + | + | \forall | | 1 | ₽ | | | 220 | 45.92326 | -89.293281 | 205 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | S 220 | 4 1 | Muck I | Pole | SAMPLED | | 1 | | | 1 | | | | | | | | | | | | | | | | | | | 1 | | F | | 1 | Ŧ | I | 1 | | Ŧ | H | | 221 | 45.92281
45.92236 | -89.293286
-89.293292 | 199 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | | 5 1 | Muck I | Pole | NONNAVIGABLE (PLANTS)
SAMPLED | | 0 | 1 | L | | 1 | 1 | | + | | T | Ī | | 223 | 45.92191
45.92146 | -89.293298
-89.293303 | 194 | Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | | 3 1 | Muck I | Pole
Pole | SAMPLED
SAMPLED | | 3 | | | 1 | | | | | | | | | | | | | 1 | | | 1 | 2 | | 2 | 2 | - | | + | + | H | | 1 | H | Н | | 225 | 45.92101 | -89.293309 | 185 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | S 225 | 3 1 | Muck I | Pole | SAMPLED | | 2 | | | 1 | 4 | | | | | | | | | | | | | | | 1 | 1 | | 1 | 1 | F | 1 | 7 | Ŧ | Ħ | | 1 | Ŧ | Ā | | 226 | 45.92056
45.91336 | -89.293315
-89.293406 | 70 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | | 5 1 | Muck i | Pole
Pole | SAMPLED
SAMPLED | | 0 | | | | | | | | | | L | | | | | l | | 1 | | | 1 | | | t | t | Ħ | 1 | t | | 1 | | Ħ | | | 228 | 45.91291
45.91246 | -89.293412
-89.293418 | | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | BTB & NL | | 6 1 | Muck I | Pole | SAMPLED | | 0 | | - | ł | | | | | | + | | | | | | | | + | | | | + | ł | + | F | | - | + | H | | | ₽ | П | | 230 | 45.91201 | -89.293423 | 40 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | S 230 | 7 1 | Muck I | Pole | SAMPLED | | 0 | Į | ļ | | 1 | Į | I | | | Ŧ | H | | 231 | 45.91156
45.91111 | -89.293429
-89.293435 | 21 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | S 231
S 232 | 8 1 | Muck I | Pole
Pole | SAMPLED
SAMPLED | | 0 | | | | | | | | | | | | | | | | | 1 | | | | | | 1 | L | | 1 | ‡ | | | 1 | ľ | | | 233 | 45.91066
45.91021 | -89.29344
-89.293446 | 16 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | S 233 | 7 1 | Muck I | Pole | SAMPLED
SAMPLED | | 0 | | | | | | | | | | | | | | | | | + | | | | | | + | Ł | H | + | + | H | _ | | ┦ | П | | 235 | 45.90976 | -89.293452 | 134 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 3 234 | 7 1 | Muck I | Pole | SAMPLED | | 0 | | | | | | | | | | | | | | | | | 1 | | | | | | Į | L | | # | Į | Ц | _ | | Į | Ā | | 236
237 | 45.90931
45.90886 | -89.293458
-89.293463 | 137 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 9 | Sand I | Pole
Pole | SAMPLED
SAMPLED | | 0 | | 1 | t | | | \downarrow | | | \downarrow | t | | \downarrow | | | l | | 1 | \downarrow | | | \downarrow | t | t | t | H | \pm | \pm | H | \pm | | \pm | | | 238 | 45.90841 | -89.293469 | | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | 9 1 | Muck I | Pole | SAMPLED | | 0 | | _ | - | | | | | | | | | | | | | | 4 | | | | | - | Ŧ | Ł | | + | + | H | | | ╀ | H | | 239 | 45.90796
45.90751 | -89.293475
-89.29348 | 150 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | LJS & JBS | | 7 | Sand I | Pole
Pole | SAMPLED
SAMPLED | | 0 | 1 | İ | | 1 | # | | # | | Ï | Ī | | 241 | 45.90706
45.90661 | -89.293486
-89.293492 | 159 | Watersmeet Lake | Vilas
Vilas | 8/16/2017 | LJS & JBS | | 7 | Sand I | Pole
Pole | SAMPLED
SAMPLED | | 0 | | | ł | H | | | | | 1 | | | | | | | | + | | | | 1 | ł | + | ┢ | H | + | + | H | + | | H | П | | 243 | 45.90616 | -89.293498 | 161 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 3 243 | 7 | Sand I | Pole | SAMPLED | | 0 | | | | | | | | | | ŀ | | | | | | | | | | | | | Ŧ | F | | 7 | Ŧ | H | | | ₽ | H | | 244 | 45.90571
45.924606 | -89.293503
-89.292619 | 162
212 | Watersmeet
Lake Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS
BTB & NLS | | 3 1 | Sand I | Pole
Pole | SAMPLED
SAMPLED | | 1 | | | | | | | | | | | | | | | | | 1 | | | | | | ‡ | t | | 1 | ‡ | Ħ | 1 | 1 | Ŧ | | | 246 | 45.924156
45.923706 | -89.292624
-89.29263 | 211 | Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | | 4 1 | Muck I | Pole | NONNAVIGABLE (PLANTS)
SAMPLED | | 2 | | | | | | | | | | | | | | | | | 1 | | 2 | | | | \dagger | ╁ | | + | + | H | - | 1 1 | H | П | | 248 | 45.923256 | -89.292636 | 206 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | | 3 1 | Muck I | Pole | SAMPLED | | 1 | Ŧ | F | | 1 | Ŧ | H | | 1 | Ŧ | F | | 249
250 | 45.922806
45.922356 | -89.292641
-89.292647 | 197 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | S 249
S 250 | 3 1 | Muck i | Pole
Pole | SAMPLED
SAMPLED | | 1 | | | | | | | | | | 1 | | | | 1 | l | | 1 | | | | | | t | t | Ħ | 1 | t | | 1 | 1 | t | | | 251
252 | 45.921906
45.921456 | -89.292653
-89.292659 | 195 | Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | | 6 1 | Muck I | Pole
Pole | SAMPLED
SAMPLED | | 0 | | | + | | | | | | | | | | | 1 | | | | | | | | + | + | - | 1 | + | + | H | | 1 | H | Н | | 253 | 45.921006 | -89.292664 | 186 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | S 253 | 4 1 | Muck I | Pole | SAMPLED | | 0 | v | Ŧ | F | | 1 | Ŧ | H | | | P | H | | 254 | 45.920556
45.920106 | -89.29267
-89.292676 | 183 | Watersmeet Lake Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | | 4 1 | Muck I | Pole | SAMPLED
SAMPLED | | 0 | V | | 1 | | | | | | | | | | | | | 1 | | | 1 | | | | İ | t | | 1 | İ | | | 1 | Ħ | | | 256 | 45.913806
45.913356 | -89.292756
-89.292762 | 120 | Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | | 3 : | Sand I | Pole
Pole | SAMPLED
SAMPLED | + | 2 | | + | | | | | | | | | | | | | | | - | | | | | 1 | + | ┢ | H | + | + | Н | 2 | 2 | H | d | | 258 | 45.912906 | -89.292767 | 61 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | | 5 1 | Muck I | Pole | SAMPLED | | 0 | Ŧ | F | | 1 | Ŧ | H | | | P | H | | 259
260 | 45.912456
45.912006 | -89.292773
-89.292779 | 49 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | S 259
S 260 | 5 1 | Muck I | Pole
Pole | SAMPLED
SAMPLED | | 0 | | | | | | | | | | | | | | | l | | 1 | | 1 | | | | t | t | Ħ | 1 | t | | 1 | | Ħ | | | 261 | 45.911556
45.911106 | | | Watersmeet Lake Watersmeet Lake | | 8/16/2017 | | | 5 1 | Muck I | Pole | SAMPLED
SAMPLED | | 1 | + | - | Н | + | + | Н | 1 | 1 | H | Н | | 263 | 45.910656 | | | Watersmeet Lake | | 8/16/2017 | | | 6 1 | Muck I | Pole | SAMPLED | | 0 | Į | F | I | 1 | ļ | I | 1 | | Į | Ā | | 264
265 | 45.910206
45.909756 | -89.292802
-89.292807 | | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NLS | | 10 | | Pole
Pole | SAMPLED
SAMPLED | | 0 | | 1 | t | | | \downarrow | | | \downarrow | t | | 1 | L | | l | | 1 | \downarrow | L | | \downarrow | t | t | t | Н | \pm | \pm | H | \pm | | Ħ | | | 266 | 45.909306
45.908856 | -89.292813
-89.292819 | | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | 7 1 | Muck I | Pole | SAMPLED | - | 0 | | + | + | | H | | F | H | + | + | H | + | | H | ŀ | | + | | | H | + | + | Ŧ | F | H | + | + | H | | - | \perp | Н | | 268 | 45.908856
45.908406 | -89.292824 | 145 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 268 | 6 | Muck I | Pole | SAMPLED
SAMPLED | | 0 | | 1 | 1 | İ | | | L | | | L | | 1 | | | | H | 1 | | | | | 1 | Į | þ | Ħ | # | ‡ | Ц | # | | Ħ | d | | 269
270 | 45.907956
45.907506 | -89.29283
-89.292836 | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | LJS & JBS | | 6 | Sand I | Pole
Pole | SAMPLED
SAMPLED | | 0 | Ī | L | | | \pm | | | | Ħ | | | 271 | 45.907056 | | | Watersmeet Lake | Vilas | 8/16/2017 | | | 6 | | Pole | SAMPLED | | 0 | Ŧ | L | | 4 | Ŧ | H | | | \prod | H | | 272 | 45.906606
45.906156 | -89.292847
-89.292853 | | | Vilas
Vilas | 8/16/2017 | LJS & JBS | | 7 1 | Sand I | Pole
Pole | SAMPLED
SAMPLED | | 0 | Ц | 1 | 1 | H | | | | Ц | 1 | t | Ц | 1 | | | | | 1 | | | | 1 | 1 | ‡ | t | Ħ | # | # | Ħ | # | | Ħ | d. | | 274
275 | 45.925052
45.924602 | -89.291968
-89.291974 | 213 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | | 3 1 | Muck I | Pole | SAMPLED NONNAVIGABLE (PLANTS) | + | 1 | | + | + | | H | + | | H | + | + | H | + | | H | + | | \dashv | + | | H | + | + | + | H | \forall | + | + | H | + | 1 | H | Н | | 276 | 45.924152 | -89.29198 | 216 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | S 276 | 2 1 | | Pole | SAMPLED | | 2 | | | ļ | | | | | | | | | ļ | | | ļ | | 1 | 2 | | | | 1 | 1 | F | H | 7 | Ŧ | Ħ | 1 | 1 | T | A | | 277 | 45.922352
45.921452 | -89.292002
-89.292014 | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | | 3 1 | Sand I | Pole
Pole | SAMPLED
SAMPLED | | 2 | | # | 1 | H | | | | | # | t | | t | | П | | | 1 | | | | # | 1 | ‡ | t | Ħ | # | 2 | Ħ | \pm | 1 | 1 1 | 1 | | 279
280 | 45.921002
45.920552 | | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | | | 6 1 | Muck I | Pole
Pole | SAMPLED
SAMPLED | + | 1 | | + | 1 | + | | + | \vdash | | + | + | | + | - | | + | | \dashv | + | - | H | + | + | + | Ł | H | + | + | H | + | ╬ | + | Н | | 281 | 45.920102 | -89.292025
-89.292031 | 178 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | S 281 | 3 1 | Muck I | Pole | SAMPLED | | 2 | v | 1 | 1 | H | H | ļ | L | | 1 | ļ | | ļ | 1 | | ļ | | 1 | ļ | 1 | Ħ | 1 | ļ | Ŧ | F | H | # | Ŧ | Ц | ‡ | 2 | Ħ | Ħ | | 282
283 | 45.919652
45.914252 | -89.292037
-89.292105 | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | | BTB & NL | | 5 1 | Muck I | Pale
Pale | SAMPLED
SAMPLED | | 0 | | 1 | 1 | | | t | L | Н | 1 | t | Н | t | L | | 1 | | | t | L | | 1 | 1 | t | L | H | \pm | 1 | H | 1 | t | H | | | 284 | 45.913802 | -89.292111 | 121 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | S 284 | 5 1 | Muck I | Pole | SAMPLED | - | 2 | v | \downarrow | + | | H | | F | H | + | ŀ | H | + | | H | ŀ | | + | | 1 | H | + | 1 | + | F | H | + | + | H | | 1 | \perp^{l} | Н | | 285 | 45.913352
45.912902 | -89.292117
-89.292123 | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | | 5 1 | | Pole
Pole | SAMPLED
SAMPLED | | 0 | | 1 | 1 | İ | | | L | | | L | | 1 | | | | H | 1 | | | | | 1 | Į | þ | Ħ | # | ‡ | Ц | # | | Ħ | d | | 287 | | | | Watersmeet Lake Watersmeet Lake | | | | | | Muck I | | SAMPLED | + | 0 | H | + | + | + | H | + | + | | + | - | H | | + | H | ł | - | 1 | + | + | H | + | + | + | ┾ | H | + | + | H | + | + | + | Н | | Point Number | Latitude (Decimal Degrees) 752-111552 | Longitude (Decimal Degrees) | Q | е в в в в в в в в в в в в в в в в в в в | Conuck | 9 8/16/2017 | Field Grow | Point Number Depth (ft) | Sediment | Pole; Rope | specific Control of Co | Notes | Nulsance
Total Rake Fullness | Myriophyllum spicatum | Brasenia schreberi | | Ceratophyllum echinatum | Chara spp. | Eleocharis palustris | Elodea canadensis | Equisetum fluviatile | Heteranthera dubia | Lemna trisulca | Lemna turionifera
Myriophyllum sibiricum | Najas flexilis | Nitella sp.p. | Nymphaea odorata | Pontederia cordata | Potamogeton ampirorius | Potamogeton natans | Potamogeton pusillus | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton vaseyi | Potamogeton zosteriformis | Sagitaria latfolia | Sparganium emersum var. acaule | Sparganium eurycarpum | Sparganium fluctuans
Spirodela polyrhiza | Utricularia minor | Utri cularia vulgaris | Vallisnoria amoricana | Zizania spp. | Riccia spp. | |--------------|---------------------------------------|-----------------------------|------------|---|----------------|------------------------|------------|--------------------------|--------------|--------------
--|-------|---------------------------------|-----------------------|--------------------|---|-------------------------|------------|----------------------|-------------------|----------------------|--------------------|----------------|---|----------------|---------------|------------------|--------------------|------------------------|--------------------|----------------------|-----------------------|-----------------------|--------------------|---------------------------|--------------------|--------------------------------|-----------------------|---|-------------------|-----------------------|-----------------------|--------------|----------------| | 290 | 45.911102
45.910652 | -89.292145
-89.292151 | 23 | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | BTB & NLS | 290 8 | Muck | Pole | SAMPLED
SAMPLED | | 1 | 1 | | | | | | | | | | | | | | + | | | | | | | 1 | | | | | | | | + | + | | - | 45.910202 | -89.292157 | 5 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | | Sand | Pole | SAMPLED | | 0 | | | | | | | | | | | ļ | | | l | | | | | | | | | | | | | | | | ļ | Ī | | 293 | 45.909752
45.909302 | -89.292163
-89.292168 | | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 293 8 | Sand | Pole | SAMPLED
SAMPLED | | 1 | | | | | | ļ | | | | | | | | | | | | | | | | 1 | | | | | | | | 1 | \blacksquare | | 295
296 | 45.908852
45.908402 | -89.292174
-89.29218 | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | 295 6
296 5 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 1 | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | 1 | | | 297 | 45.907952
45.907502 | -89.292186
-89.292191 | 147 | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | LJS & JBS | 297 6 | Muck | Pole | SAMPLED
SAMPLED | | 0 | | | | - | | | | | | | - | | | | + | | | | + | | | | | | | - | | | | + | + | | 299 | 45.907052 | -89.292197 | | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 299 11 | Muck | Pole | SAMPLED | | 0 | | | 1 | | | | L | | | | | | | | 1 | | | 1 | | | | | | | | | | | | 1 | I | | 300 | 45.906602
45.906152 | -89.292203
-89.292208 | | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 0 | 1 | İ | | 302
303 | 45.925498
45.925048 | -89.291318
-89.291323 | | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NLS | | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 2 | | | | 1 | | | | | 1 | | | | | | | 1 | | | 1 | | | 1 | | | | | | | | 1 | \pm | | 304 | 45.924598
45.924148 | -89.291329
-89.291335 | 214 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 304 2 | Muck | Pole | SAMPLED NONNAVIGABLE (PLANTS) | | 2 | | | - | | | | | | 1 | | | | | | | 2 | | | 1 | | | | | | | | | | | 1 | \blacksquare | | 306 | 45.920998 | -89.291375 | 188 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 306 5 | Muck | Pole | SAMPLED | | 0 | Ŧ | I | | 307 | 45.920548
45.920098 | -89.291381
-89.291386 | 181
179 | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NLS | 307 5 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 1 | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | 1 | t | ╽ | | 309 | 45.919648
45.919198 | -89.291392
-89.291398 | 175 | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | BTB & NLS | 309 4 | Muck | Pole | SAMPLED
SAMPLED | | 0 | | | ł | | | | | | | | + | | | | + | | | + | 1 | | | | + | | | | | | | + | + | | 311 | 45.914248 | -89.291461 | | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 311 6 | Muck | Pole | SAMPLED | | 0 | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | 1 | Ħ | | 312 | 45.913798
45.913348 | -89.291466
-89.291472 | | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NLS | 312 5 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 0 | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | t | ╽ | | 314
315 | 45.912898
45.912448 | -89.291478
-89.291484 | 63
47 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NLS | 314 5 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 0 | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | - | + | | | 45.911998
45.911548 | -89.291489
-89.291495 | | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | BTB & NLS | 316 5 | Muck | Pole | SAMPLED
SAMPLED | | 1 | | | - | 1 | | | | | | | | | | | | _ | | | | | | | | | | | | | | + | \blacksquare | | 318 | 45.911098 | -89.291495
-89.291501 | | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | | Muck | Pole | SAMPLED | | 0 | # | 1 | | 319
320 | 45.910648
45.910198 | -89.291507
-89.291512 | | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NLS | 319 6 | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 0 | 1 | Ħ | | 321 | 45.909748
45.909298 | -89.291518
-89.291524 | 92 | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | LJS & JBS | 321 9 | Sand | Pole | SAMPLED
SAMPLED | | 0 | | | | | | | | | | H | | | - | H | - | | | | | | | | | | | | | | 2 | + | + | | 323 | 45.908848 | -89.291529 | 89 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 323 6 | Muck | Pole | SAMPLED | | 0 | | | | | | | | | | H | 1 | H | | 324 | 45.908398
45.907948 | -89.291535
-89.291541 | | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 324 6
325 6 | Muck | Pole | SAMPLED
SAMPLED | | 0 | 1 | I | | 326
327 | 45.907498
45.907048 | -89.291547
-89.291552 | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | Sand
Sand | Pole
Pole | SAMPLED
SAMPLED | | 0 | \pm | | 328 | 45.906598
45.925494 | -89.291558
-89.290673 | | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | LJS & JBS | 328 11 | Muck | Pole | SAMPLED
SAMPLED | | 0 | | | + | | | | | | | | + | | + | | + | | | + | | | | | | | | | | | | + | + | | 330 | 45.925044 | -89.290678 | 220 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 330 2 | Muck | Pole | SAMPLED | | 2 | | | | 2 | | | | | 1 | 1 | I | | 331 | 45.924594
45.920094 | -89.290684
-89.290742 | 221
180 | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NLS | 331 8 | Muck
Sand | Pole
Pole | SAMPLED
SAMPLED | | 2 | | | | 1 | 2 | | Ħ | | | 45.919644
45.919194 | | | Watersmeet Lake | | | | | Muck | Pole | SAMPLED
SAMPLED | | 0 | | | | | | | | | | | + | | | | 1 | | | - | | | | | | | | | | | | + | + | | 335 | 45.918744 | -89.290759 | 169 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 335 8 | Muck | Pole | SAMPLED | | 0 | 1 | I | | | 45.918294
45.917844 | | | Watersmeet Lake | | | | | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 0 | 1 | | ľ | 1 | | | | | | | | | | | | 2 | | | | | | | | | | | | | 1 | t | ╽ | | 338 | 45.917394
45.916944 | -89.290776
-89.290782 | | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | | Muck | Pole | SAMPLED
SAMPLED | | 1 | | | - | 1 | | | | | | | + | | | | 1 | | | - | | | | | | | | | | | | + | + | | 340 | 45.916494 | -89.290787 | 146 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 340 4 | Sand | Pole | SAMPLED | | 0 | 1 | Ħ | | | 45.915594
45.915144 | | | Watersmeet Lake | | | BTB & NLS | | Muck
Muck | Pole
Pole |
SAMPLED
SAMPLED | | 1 | | | | 1 | | | | | | | | | | | 1 | | | | | | | | | | | 1 | | | | 1 | ╽ | | | 45.914694
45.914244 | | | Watersmeet Lake | | | | | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | H | 0 | H | 1 | + | + | \vdash | - | + | H | + | H | | H | + | | + | + | H | + | + | H | H | | + | | H | + | - | | - | + | Н | | 345 | 45.913794 | -89.290822 | 123 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 345 8 | Muck | Pole | SAMPLED | | 2 | 1 | | | 2 | H | ļ | L | H | 1 | H | | | 1 | H | 4 | - | | 4 | - | H | | | | | H | | | | | Ŧ | Ħ | | 346
347 | 45.913344
45.912894 | -89.290828
-89.290833 | 64 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | | Muck | Pole
Pole | SAMPLED
SAMPLED | | 1 | 1 | | | | | ļ | L | | | H | ļ | | # | L | 1 | | | 1 | 1 | | | | | | | | L | | 1 | # | Ħ | | | 45.912444
45.911994 | -89.290839
-89.290845 | | Watersmeet Lake | | | BTB & NLS | | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | H | 0 | H | | _ | | H | | ŀ | H | _ | \parallel | ╁ | H | + | | _ | | H | _ | | H | H | | - | | | | ŀ | | | + | H | | 350 | 45.911544 | -89.29085 | 29 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 350 6 | Muck | Pole | SAMPLED | | 0 | | | 1 | ŀ | | | L | | - | H | l | | - | | 1 | - | | 1 | | | H | | | | H | - | | H | | Ŧ | H | | | 45.911094
45.910644 | | | Watersmeet Lake Watersmeet Lake | | | | | Muck
Muck | Pole | SAMPLED
SAMPLED | | 0 | | | 1 | t | | ļ | L | | 1 | Ц | 1 | | 1 | L | 1 | 1 | | 1 | t | | | 1 | t | | | 1 | L | | | ‡ | Ħ | | | 45.910194
45.909744 | -89.290868
-89.290873 | | Watersmeet Lake | | 8/16/2017
8/16/2017 | BTB & NLS | | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 0 | | | 1 | t | H | ļ | L | | $\frac{1}{2}$ | Н | 1 | | \pm | H | | t | | | t | | Н | 1 | t | | Ы | \pm | L | | | \pm | Н | | 355 | 45.909294 | -89.290879
-89.290885 | | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 355 10 | Sand | Pole | SAMPLED | H | 0 | H | - | - | F | H | Į. | F | H | Ŧ | H | F | H | - | H | -[| ╀ | H | 1 | F | H | H | f | F | | H | + | F | H | _ | Ŧ | H | | | 45.908844
45.908394 | -89.290891 | 87 | | Vilas | 8/16/2017 | LJS & JBS | 357 6 | Sand | Pole | SAMPLED
SAMPLED | Ħ | 0 | | 1 | 1 | l | H | 3 | L | | 1 | H | | | 1 | | 1 | ļ | | 1 | | | | ļ | ļ | | | # | L | | 1 | ‡ | Ħ | | | 45.907944
45.907494 | -89.290896
-89.290902 | | Watersmeet Lake | | 8/16/2017
8/16/2017 | LJS & JBS | | Muck
Muck | Pole
Pole | SAMPLED
SAMPLED | | 0 | | | 1 | L | | t | | | 1 | Н | | | | | 1 | | | 1 | | | | | t | | | 1 | | | | 1 | Ħ | | 360 | 45.907044 | -89.290908 | 79 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 360 6 | Sand | Pole | SAMPLED | | 0 | Ш | | | | Ш | | | Ш | | Ш | | Ш | | | | | Ш | | | Ш | Ш | | | | Ш | | | | | 1 | Ш | | Point Number | ratitude (Decimal Degrees) 45.906594 | Congitude (Decimal Degrees) | ₽ 76 | E a version et Lake | Sea County | 9 G
G
8/16/2017 | Field Grew | Point Number | o Depth (ft) | Pole: Rope | sampleD | Notes | O Total Rake Fullness | Myriophyllum spicatum | Brasonia schroberi | Geratophyllum demersum | Ceratophyllum echinatum | Chara spp. | Eleocharis palustris | Elodea canadensis | Equisetum fluviatile | Lemna minor | Lemna trisulca | Lemna turionifera
Myriophyllum sibiricum | Najas flexilis | Nitella spp. | Nymphaea odorata | Pontederia cordata | Potamogeton amplifolius
Potamogeton epihydrus | Potamogeton natans | Potamogeton pusillus | Potamogeton robbinsii | Potamogeton spirillus | Potamogeton vaseyi | Potamogeton zostenrormis Ranunculus aquatilis | Sagittaria latifolia | Sparganium emersum var. acaule | Sparganium eurycarpum | Spirodela polyrhiza | Utricularia minor | Utricularia vulgaris
Vallisneria americana | Zizania spp. | Aquatic moss | Riccia spp. | |--------------|--------------------------------------|-----------------------------|------------|------------------------------------|----------------|------------------------|------------|--------------|--------------|------------|-----------------------------------|-------|-----------------------|-----------------------|--------------------|------------------------|-------------------------|------------|----------------------|-------------------|----------------------|-------------|----------------|---|----------------|--------------|------------------|--------------------|--|--------------------|----------------------|-----------------------|-----------------------|--------------------|---|----------------------|--------------------------------|-----------------------|---------------------|-------------------|---|--------------|--------------|-------------| | 362 | 45.92549
45.92504 | -89.290028
-89.290034 | 223 | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NLS | 362 | 3 M | ick Pole | SAMPLED
SAMPLED | | 3 | | | + | 3 | | | | | | | - | | | | | + | 1 | | 1 | | | 1 | 1 | 1 | + | + | H | + | 1 | | + | | 364 | 45.91919 | -89.290108 | 172 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | | 2 M | ick Pole | SAMPLED | | 2 | | | 1 | | | | | | 1 | H | | | | | | 2 | | | | | | Ŧ | Ė | Ì | 1 | 1 | | 1 | Ė | | 1 | | 365 | 45.91874
45.91829 | -89.290114
-89.29012 | 168 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NLS | 365 | 4 M | ick Pole | SAMPLED
SAMPLED | | 1 | | | 2 | 2 | | | | | | | | | 1 | | | 1 | | | | | | 1 | L | | 1 | l | | | | | | | 367 | 45.91784
45.91739 | -89.290125
-89.290131 | | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NLS | | 5 M | ick Pole | SAMPLED
SAMPLED | | 0 | | | + | | | | | | | | | | | | | + | | | | | | - | - | | + | + | | + | | | + | | 369 | 45.91694 | -89.290137 | 152 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 369 | 5 M | ick Pole | SAMPLED | | 1 | v | | | | | | | | | H | | | | | | | | 1 | | | | Ŧ | F | П | 7 | Ŧ | H | I | | | 7 | | 370 | 45.91649
45.91604 | -89.290143
-89.290148 | 147 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NLS | 370 | 8 M | ick Pole | SAMPLED
SAMPLED | | 2 | | | | L | | | | | | | l | | | | | | | | | | | t | t | | 1 | 2 | Ħ | 1 | | | | | 372 | 45.91559
45.91514 | -89.290154
-89.29016 | 140 | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | BTB & NLS | | 5 M | ick Pole | SAMPLED
SAMPLED | | 0 | | - | ł | - | | | | | | | | | | | | + | | | | | | + | F | H | - | + | | + | | | + | | 374 | 45.91469 | -89.290166 | | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 374 | 5 M | ick Pole | SAMPLED | | 2 | | | | | | | | | | H | | | | | | | | | 2 | | | Ŧ | ļ | I | 1 | I | | 1 | | | 1 | | 375 | 45.91424
45.91379 | -89.290171
-89.290177 | 127 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NLS | 375 | 5 M | ick Pole | SAMPLED
SAMPLED | | 2 | 1 | | 1 | | | | | | | | l | | | | | | | | | | | t | t | | # | İ | Ħ | 1 | | | | | 377 | 45.91334
45.91199 | -89.290183
-89.2902 | 65 | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | BTB & NLS | 377 | 5 Si | nd Pole | SAMPLED
SAMPLED | | 1 2 | | | 1 | + | | | | | | H | | 1 | | | | 1 | H | | 1 | | | 1 | ┢ | | + | t | H | 1 | | | + | | 379 | 45.91154 | -89.290206 | 28 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 379 | 4 M | ick Pole | SAMPLED | | 2 | 1 | | 1 | | | | | | | | 1 | | | | | | | | | | | Ŧ | F | | 1 | I | | 1 1 | | | 7 | | 380 | 45.91109
45.91064 | -89.290212
-89.290217 | 26
11 | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NLS | 380 | 6 M | ick Pole | SAMPLED
SAMPLED | Ц | 0 | 2 | # | 1 | | H | | | | | Ħ | | | | | П | 1 | Ц | | | | | # | t | Н | \pm | # | Ħ | # | | Ħ | 1 | | 382 | 45.91019
45.90974 | -89.290223
-89.290229 | | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | BTB & NLS | | 3 S | nd Pole | SAMPLED
SAMPLED | | 2 | | _ | 1 | - | | | 1 | | | | - | 1 | | | | 1 | | | 1 | 1 | | + | Ł | H | + | + | H | 1 | | | + | | 384 | 45.90929 | -89.290229
-89.290234 | 96 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 384 | 7 M | ick Pole | SAMPLED | | 1 | ‡ | Į | | # | Į | I | 1 | | | 1 | | 385 | 45.90884
45.90749 | -89.29024
-89.290257 | 95
82 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | 385 | 4 Si | nd Pole | SAMPLED
SAMPLED | | 3 | | | | | | | | | | | | | | 1 | | 1 | | | 1 | 3 | 1 | | L | | | İ | | 1 | | | | | 387 | 45.90704
45.90659 | -89.290263
-89.290269 | 80
75 | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | LJS & JBS | 387 | 6 S | nd Pole | SAMPLED
SAMPLED | | 0 | + | + | H | + | + | H | _ | | | + | | 389 | 45.925936 | -89.289377 | 232 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 389 | 0 | LK FUE | NONNAVIGABLE (PLANTS) | ļ | Į | | # | I | | 1 | | | 1 | | 390 | 45.925486
45.925036 | -89.289383
-89.289389 | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NLS | | 0
3 M | ick Pole | NONNAVIGABLE (PLANTS) SAMPLED | | 1 | | | 1 | | | | | | | 1 | | | 1 | | | | | | | | | 1 | L | | \pm | İ | | | 1 | | | | 392 | 45.924586
45.919186 | -89.289395
-89.289464 | 225 | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | BTB & NLS | | 0 | | NONNAVIGABLE (PLANTS) TERRESTRIAL | + | ╁ | H | + | + | H | _ | | | + | | 394 | 45.918736 | -89.289469 | 167 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 394 | 3 M | ick Pole | SAMPLED | | 3 | | | 3 | 3 | | | | | | | | | | | | | | | 1 | | | ļ | Į | | # | I | | 1 | | | 1 | | 395 | 45.918286
45.917836 | -89.289475
-89.289481 | 164 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NLS | 395 | 5 M | ick Pole | SAMPLED
SAMPLED | | 0 | 2
| | 1 | | | | | | | | | | 1 | | | | | | 1 | | | ╧ | L | | 1 | 1 | | | | | | | 397 | 45.917386
45.916936 | -89.289487
-89.289492 | | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | BTB & NLS | | 5 M | ick Pole | SAMPLED
SAMPLED | | 1 2 | v | | - | - | | | | | | | - | | | | | + | | - | 1 | | | 1 | Ł | H | + | + | H | - 1 | | | + | | 399 | 45.916486 | -89.289498 | | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 399 | 5 M | ick Pole | SAMPLED | | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | | Ŧ | F | H | 1 | I | H | 1 | | | 1 | | 400 | 45.916036
45.915586 | -89.289504
-89.289509 | 144 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NLS | | | ick Pole | SAMPLED
SAMPLED | | 2 | 1
V | | 1 | | | | | | 1 | | | | | | | | | | 1 | | | İ | L | | 1 | | | 2 | | | | | 402 | 45.915136
45.914686 | -89.289515
-89.289521 | 136 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 402 | 6 M | ick Pole | SAMPLED
SAMPLED | | 0 | 2 | - | ١. | - | | | | | | | | | | | | | | | | | | + | F | H | - | + | | ٠, | | | + | | 404 | 45.914236 | -89.289527 | 126 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 3 403 | 6 M | ick Pole | SAMPLED | | 1 | 1 | | ľ | | | | | | | | | | | | | Ï | | | | | | Į | L | | # | I | | Ϊ, | | | 1 | | 405 | 45.913786
45.911086 | | | Watersmeet Lake Watersmeet Lake | | | BTB & NLS | | 5 M | nd Pole | SAMPLED
SAMPLED | | 1 2 | 1 | 1 | 1 1 | | | | 1 | | 1 | | | | | 1 | 1 | | | | 1 | | | 1 | L | | 1 | | | 1 | | 1 | | | 407 | 45.910636 | | | Watersmeet Lake | | | BTB & NLS | | | nd Pole | SAMPLED | | 2 | | _ | 1 | - | | | 2 | | 1 | | | 1 | | | | 1 | | | 1 | | | + | Ł | H | + | \perp | | 1 | | | + | | 408 | 45.910186
45.909736 | -89.289578
-89.289584 | | Watersmeet Lake
Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | | | nd Pole | SAMPLED
SAMPLED | | 3 | 1 | 2 | 1 | | | | 1 | | 1 | | | 1 | | | | | | 1 | | 1 | 1 | + | t | | 1 | İ | | 1 2 | | | | | 410 | 45.909286
45.908836 | -89.28959
-89.289596 | | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 5 M | nd Pole | SAMPLED
SAMPLED | | 0 | + | ╁ | H | + | + | | - | | | + | | 412 | 45.907036 | -89.289619 | 81 | | Vilas | 8/16/2017 | LJS & JBS | 412 | 6 S | nd Pole | SAMPLED | | 0 | | _ | Ŧ | F | H | 1 | I | H | _ | | | 1 | | 414 | 45.906586
45.906136 | -89.289624
-89.28963 | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | | nd Pole | SAMPLED
SAMPLED | | 3 | | | | | | | | | | | | | | 3 | | | | | | | | # | İ | | 1 | 2 | | 1 | | | | | 415 | 45.905236
45.926382 | | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | | LJS & JBS | | 5 R | ck Pole | SAMPLED NONNAVIGABLE (PLANTS) | | 0 | Н | + | | | | | Н | | | H | | | - | | | | | | | H | - | + | ┢ | | + | + | H | + | | | - | | 417 | 45.925932 | -89.288733 | 233 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 417 | 0 | | NONNAVIGABLE (PLANTS) | | | | 1 | Ŧ | F | H | 1 | I | H | Į | | | 1 | | 418 | 45.925482
45.925032 | -89.288738
-89.288744 | 236
226 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NLS | | 0
5 M | ick Pole | NONNAVIGABLE (PLANTS) SAMPLED | Ц | 0 | | # | 1 | | H | | | | | Ħ | | | | | П | 1 | Ц | | | | | # | t | Н | \pm | # | Ħ | # | | Ħ | 1 | | 420 | 45.918732
45.918282 | -89.288825
-89.28883 | | Watersmeet Lake | Vilas
Vilas | | BTB & NLS | | 1 Si | nd Pole | SAMPLED
SAMPLED | H | 1 2 | 1 | + | - | 1 | H | + | H | + | + | H | + | | + | + | | + | H | 1 | 1 | | + | + | Ł | H | + | + | H | - | H | 1 2 | + | | 422 | 45.917832 | -89.288836 | 158 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | 422 | | nd Pole | SAMPLED | H | 1 | Ĥ | 1 | 1 | | H | | Н | | l | H | 1 | H | 1 | l | Н | ļ | Ц | | L | | 1 | ļ | F | П | # | Ŧ | Ħ | 1 | L | 1 | 7 | | 423
424 | 45.917382
45.916932 | | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | | BTB & NLS | | 5 S | nd Pole | SAMPLED
OTHER | | 2 | | | 2 | - | | | | | | Ħ | l | | | L | | t | | | | | | # | t | Ħ | # | t | Ħ | 1 | L | 1 | 1 | | 425
426 | 45.916482
45.916032 | -89.288853
-89.288859 | | Watersmeet Lake | Vilas
Vilas | | BTB & NLS | | | nd Pole | SAMPLED
SAMPLED | H | 2 | 1 | + | 2 | | 1 | | H | 1 | - | H | + | H | + | - | H | + | H | - | 1 | H | + | + | ł | H | + | + | H | +. | H | 1 | + | | 427 | 45.915582 | -89.288865 | 142 | Watersmeet Lake Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | | 4 M | ick Pole | SAMPLED | H | 2 | H | 1 | Ţ, | | H | | | 1 | | H | ļ | | | | | | H | 1 | | | | ‡ | F | H | 7 | 2 | H | Ŧ | L | Ħ | 1 | | 428 | 45.915132
45.914682 | -89.288871
-89.288876 | 135 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NLS | 428 | 4 M | nd Pole | SAMPLED
SAMPLED | | 2 | Н | 1 | 1 | t | Н | | 1 | | | Н | | 1 | | | | | | | 1 | | | † | t | Н | \pm | 1 | Н | 2 | L | Н | | | 430 | 45.909732
45.909282 | -89.288939
-89.288945 | | Watersmeet Lake Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | | nd Pole | SAMPLED
SAMPLED | H | 2 | | 2 | + | + | H | - | H | - | + | H | + | | 1 | 1 | | + | H | + | | H | + | + | H | H | + | + | \forall | + | - | H | + | | | | | | Watersmeet Lake | | | | | | nd Pole | SAMPLED | | 0 | П | | | | П | | | | | | | | | | | | | | | | | I | I | Ц | I | I | П | I | | П | | | Jagunt Number | Pattinde (Decimal Degrees) | Congitude (Decimal Degrees) | <u>Q</u> | Q E E E E E E E E E E E E E E E E E E E | County | 9 C
B/16/2017 | Field Crow | | Depth (#) | Pole: Rope | state the second of | Notes | O Total Rake Fullness | Myriophyllum spicatum | Bidens becki | Ceratophyllum demersum | Ceratophyllum echinatum | Chara spp. Eleocharis acicularis | El oochar is palu stris | Elodea can adensis
Equisetum fluviatile | Heteranthera dubia | Lemna minor | Lemna turionifera | Myriophyllum sibiricum | Najas flexilis
Nitelia spp. | Nuphar variegata | Nymphaea odorata
Pontederia cordata | Potamogeton amplifolius | Potamogeton epinydrus Potamogeton natans | Potamogeton pusillus | Potamogeton richardsonii Potamogeton robbinsii | Potamogeton spirillus | Potamogeton vaseyi | Potamogeton zosteriformis
Ranunculus aquatilis | Sagittaria latifolia | Sparganium emersum var. acaule | Sparganium eurycarpum
Sparganium fluctuans | Spirodela polyrhiza | Utricularia minor | Utricularia vuigaris
Vallisneria americana | Zizania spp. | Aquatic moss
Riccia spp. | | |---------------|----------------------------|-----------------------------|----------|---|----------------|------------------------|------------|----------------|-----------|------------|--|-------|-----------------------|-----------------------|--------------|------------------------|-------------------------|----------------------------------|-------------------------|--|--------------------|-------------|-------------------|------------------------|--------------------------------|------------------|--|-------------------------|--|----------------------|--|-----------------------|--------------------|---
---|--------------------------------|---|---------------------|-------------------|---|--------------|-----------------------------|--| | 434 | 45.905232
45.904782 | -89.288997
-89.289003 | 70
69 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 5 M | uck Pole | SAMPLED SAMPLED | | 0 | \pm | Н | H | \pm | | | 1 | | \pm | | | 436 | 45.926378 | -89.288082 | | | Vilas | 8/16/2017 | BTB & NL | | 2 M | uck Pole | SAMPLED | | 2 | | | 1 | 1 | | | 1 | | | | | | | 1 | | | | 2 | | | <u>_</u> | \blacksquare | | Ŧ | | Ŧ | + | | | | | 437 | 45.925928
45.925478 | -89.288088
-89.288093 | | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | | 3 M | uck Pole | SAMPLED SAMPLED | | 1 | | | | 1 | | | 1 | | | | | 1 | | | | 1 | | 1 | | 1 | t | Ħ | Д | ‡ | | 1 | 1 | Ħ | | | | 439 | 45.909728
45.909278 | -89.288295
-89.288301 | 104 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 0
8 S | and Pole | NONNAVIGABLE (PLANTS) SAMPLED | | 0 | | | | | | | | | | | H | | | | | | | | | 1 | + | H | H | + | | | + | H | + | | | 441 | 45.908828
45.904778 | -89.288306
-89.288358 | 106 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | 10 M | uck Pole | SAMPLED SAMPLED | | 0 | | | | | - | | | | | - | H | | L | | | | | | | | + | \dashv | H | + | | + | + | H | + | | | 443 | 45.904328 | -89.288364 | 67 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | 6 M | uck Pole | SAMPLED | | 0 | | | | | | | | | | | | | 3 | | | | | | | | Į | I | I | ‡ | | 1 | Į | I | \blacksquare | | | 444 | 45.927274
45.926824 | -89.287426
-89.287431 | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NL | | 0
2 M | uck Pole | NONNAVIGABLE (PLANTS) SAMPLED | | 3 | | | 1 | 3 | | | | | 1 | 1 | | | | | 1 | | | 1 | | | \pm | | Н | 1 | | | 1 | Ħ | \pm | | | 446 | 45.926374
45.925924 | -89.287437
-89.287443 | | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | BTB & NL | | 0 | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | | | - | | | | | | | | | | | | | | | | + | | + | + | + | H | + | - | _ | + | H | + | | | 448 | 45.925924 | -89.287627 | 116 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | 7 M | uck Pole | SAMPLED | | 0 | 1 | 1 | | Ħ | ‡ | | # | Į | Ħ | | | | 449 | 45.911074
45.910174 | -89.287633
-89.287644 | 115 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | 3 449
3 450 | 8 M | uck Pole | SAMPLED SAMPLED | | 0 | + | Ħ | Ц | 1 | | | + | | \pm | | | 451 | 45.909724 | -89.28765 | 108 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | 8 S | and Pole | SAMPLED | | 0 | | | | | - | | | | | - | H | | | | | | | | | | + | \dashv | H | + | | + | + | H | + | | | 453 | 45.909274
45.904324 | -89.287656
-89.287719 | 107 | Watersmeet Lake Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | s 452
s 453 | 9 R | and Pole | SAMPLED SAMPLED | | 0 | | | | | | | | | | | | | | | | ļ | | | | | 1 | Ħ | Д | ‡ | L | | Į | | I | | | 454
455 | 45.92727
45.92682 | -89.286781
-89.286787 | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | BTB & NL | | 0 | | NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) | | | | | | | | | | | | | H | | | | | | | | | 1 | + | H | H | + | | | + | H | + | | | 456 | 45.92637 | -89.286792 | | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | | 4 M | uck Pole | SAMPLED | | 0 | _ | H | H | Ŧ | | | - | H | \blacksquare | | | 458 | 45.92592
45.91242 | -89.286798
-89.286971 | 119 | Watersmeet Lake Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | | 5 M | uck Pole | SAMPLED SAMPLED | | 0 | 1 | Ħ | | ‡ | | 1 | 1 | | | | | 459
460 | 45.91197
45.91152 | -89.286977
-89.286983 | 118 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 8 S | and Pole | SAMPLED SAMPLED | | 0 | \pm | Н | H | \pm | | | 1 | | \pm | | | 461 | 45.91107 | -89.286988
-89.286994 | 114 | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 5 M | uck Pole | SAMPLED SAMPLED | | 3 | | - | | | | | | | | | 2 | | | | | | | + | | + | + | + | H | + | - | _ | 3 | H | + | | | 463 | 45.91062
45.91017 | -89.287 | 110 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | 7 M | uck Pole | SAMPLED | | 0 | Į | I | I | ‡ | | 1 | Į | I | \blacksquare | | | 464
465 | 45.90477
45.90432 | -89.287069
-89.287075 | 2 | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 5 S | and Pole | SAMPLED SAMPLED | | 0 | 1 | + | \forall | H | + | | | + | H | + | | | 466 | 45.927266
45.926816 | -89.286136
-89.286142 | 245 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | S 466 | 2 M | uck Pole | SAMPLED SAMPLED | | 1 | | | | | - | | 1 | | | - | H | | | | | | | | | | + | \dashv | H | 1 | | + | + | 1 | + | | | 468 | 45.926366 | -89.286148 | 240 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | | 3 M | uck Pole | SAMPLED | | 2 | | | | | | | | | 1 | | | | | | | 2 | | | | | 1 | I | I | ‡ | | 1 | Į | 1 | \blacksquare | | | 469
470 | 45.912866
45.912416 | -89.286321
-89.286326 | 121 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 8 M | uck Pole | SAMPLED SAMPLED | | 0 | + | Н | Ц | 1 | | | + | | \pm | | | 471 | 45.911066
45.910616 | -89.286344
-89.286349 | | Watersmeet Lake | Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 0 | uck Pole | NONNAVIGABLE (PLANTS) SAMPLED | + | H | H | + | | _ | + | H | + | | | 473 | 45.904766 | -89.286424 | 5 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | | and Pole | SAMPLED | | 0 | | | Ė | | | | | | | | | | | | П | | | | | | ļ | I | Ħ | # | L | # | Į | I | I | | | 474 | 45.904316
45.927712 | -89.28643
-89.285485 | 3
246 | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | S 474 | 1 M | uck Pole | SAMPLED SAMPLED | | 3 | | | | | | | | | | | | | | 1 | | | | | | t | \pm | Ħ | | 1 | | | \pm | 1 | \pm | | | 476 | 45.927262 | -89.285491 | 251 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | | 2 M | uck Pole | SAMPLED | | 3 | | 2 | | | | | 1 | | 1 | | | - | | 1 | | + | | 1 | | + | 1 | \dashv | H | + | - | _ | + | H | + | | | 477 | 45.926812
45.926362 | -89.285497
-89.285503 | | Watersmeet Lake Watersmeet Lake | | 8/16/2017 | | | 2 M | uck Pole | NONNAVIGABLE (PLANTS) SAMPLED | | 1 | | | | | | | | | 1 | | | | | | | ļ | | | | | 1 | Ħ | Д | ‡ | L | | Į | 1 | I | | | 479
480 | 45.912862
45.905212 | | | Watersmeet Lake Watersmeet Lake | | 8/16/2017
8/16/2017 | | | | and Pole | SAMPLED SAMPLED | | 0 | | | | | | | | | | | | | | | Н | + | | | | 1 | + | H | H | + | | | + | H | + | | | 481 | 45.904762 | -89.28578 | 6 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 3 481 | | and Pole | SAMPLED | | 1 | | Ŧ | | П | ļ | | 1 | | | Ŧ | | 1 | | 1 | П | Ŧ | | 1 | | 7 | Ŧ | A | H | Ŧ | F | 7 | Ŧ | H | H | | | 482 | 45.927708
45.927258 | -89.284841
-89.284846 | | Watersmeet Lake Watersmeet Lake | Vilas | 8/16/2017 | BTB & NL | | 4 M | uck Pole | NONNAVIGABLE (PLANTS) | | 0 | | | | H | 1 | Ц | 1 | L | | 1 | | | | | Ħ | 1 | | 1 | H | 1 | # | Ħ | Д | ‡ | | # | # | Ħ | \sharp | | | 484
485 | 45.912858
45.905208 | -89.285031
-89.285129 | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | | and Pole | SAMPLED SAMPLED | H | 0 | | | - | H | + | | + | \vdash | H | - | | + | | 2 | H
 + | | + | | \dashv | + | \forall | H | + | 1 | + | + | H | + | | | 486 | 45.927704 | -89.284196 | 248 | Watersmeet Lake | Vilas | 8/16/2017 | BTB & NLS | S 486 | 6 S | and Pole | SAMPLED | | 0 | H | I | | H | 1 | Н | 7 | L | | 1 | П | I | H | 7 | H | Ŧ | H | Ŧ | П | 1 | Ŧ | Ц | H | Ŧ | | Ŧ | Ŧ | Ħ | \exists | | | 487 | 45.927254
45.912854 | | | Watersmeet Lake
Watersmeet Lake | Vilas
Vilas | 8/16/2017 | BTB & NL | | | and Pole | NONNAVIGABLE (PLANTS) SAMPLED | | 0 | | \downarrow | L | H | 1 | | 1 | L | | 1 | | t | | | | 1 | | | | 1 | # | Ħ | d | ‡ | t | 1 | ‡ | Ħ | 剒 | | | 489
400 | 45.904754
45.9277 | -89.284491
-89.283551 | | Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 4 S | and Pole | SAMPLED SAMPLED | H | 3 | H | + | H | H | + | | + | H | H | + | H | + | | 3 | H | + | | + | | + | + | H | \forall | + | 1 | + | + | \dashv | + | | | 491 | 45.91285 | -89.283742 | 125 | Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | 3 491 | 8 S | and Pole | SAMPLED | | 0 | H | ļ | L | H | ļ | | 1 | L | | ļ | H | ļ | | | H | ļ | | | H | 1 | ļ | Ħ | Ħ | # | | # | Ŧ | Ħ | \sharp | | | 492
493 | 45.90475
45.912846 | -89.283846
-89.283097 | | Watersmeet Lake | Vilas
Vilas | | LJS & JBS | | 5 M | uck Pole | SAMPLED SAMPLED | | 0 | | l | | | t | | | L | | t | | | | 1 | | | | | | 1 | \pm | Ħ | Ц | \pm | | 1 | 1 | ╽ | \pm | | | 494 | 45.904746
45.912842 | | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | | | 3 S | and Pole | SAMPLED SAMPLED | H | 3 | H | 2 | - | H | + | \parallel | + | - | H | + | H | + | | 3 | Н | - | | | | + | + | Н | \dashv | + | - | + | + | H | + | | | 495 | 45.912842
45.904742 | -89.282453
-89.282557 | 12 | | Vilas | 8/16/2017 | LJS & JBS | 3 496 | 0 | -ru Pole | NONNAVIGABLE (PLANTS) | | 0 | H | 1 | L | | ‡ | H | 1 | L | | 1 | H | - | H | ļ | Ħ | 1 | H | 1 | H | 1 | ‡ | Ħ | Ħ | ‡ | | # | # | Ħ | 丰 | | | 497
498 | 45.904292
45.913288 | -89.282563
-89.281802 | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 0
7 S | and Pole | NONNAVIGABLE (PLANTS) SAMPLED | Н | 0 | | l | L | | t | | \pm | L | | l | | l | | t | H | † | | t | | 1 | \pm | H | | 1 | L | ┪ | \pm | H | \pm | | | 499 | 45.912838 | -89.281808 | | | Vilas | 8/16/2017 | LJS & JBS | | 0 | | TERRESTRIAL | | H | H | + | F | H | + | H | | F | H | + | H | Ŧ | | | H | + | H | ╬ | | + | + | otal ota | H | + | 1 | \dashv | + | H | + | | | 500 | 45.905188
45.904738 | -89.281907
-89.281912 | 15 | Watersmeet Lake Watersmeet Lake | Vilas | 8/16/2017 | LJS & JBS | | 3 M | uck Pole | SAMPLED NONNAVIGABLE (PLANTS) | | 3 | Ħ | | | | ļ | | | L | | 1 | H | | L | | Ħ | 1 | | 1 | H | 1 | ‡ | Ħ | Ħ | # | | # | # | 3 | # | | | 502 | 45.904288
45.913734 | | | Watersmeet Lake Watersmeet Lake | Vilas
Vilas | 8/16/2017
8/16/2017 | LJS & JBS | | 0
5 R | ock Pole | NONNAVIGABLE (PLANTS) SAMPLED | H | 0 | H | \pm | L | H | l | H | 1 | t | | \pm | H | | | | H | 1 | | ╁ | H | | \pm | Ħ | d | + | | _ | \pm | Ħ | \pm | | | 504 | | | | Watersmeet Lake | | | | | | | | Ш | 0 | Ш | | | ЦΤ | | Ш | | L | | | Ш | | | | LΙ | Ι | П | | | | L | Ш | Ц | \perp | ľ | \bot | Ţ | Ш | Ш | | Watersmeet Lake Aquatic Vegetation Point-Intercept Survey 562 45.908019 :89.270925 65 Waterument Lake Vilas 816/2017 LIS & JBS 582 0 563 45.906469 :89.270931 64 Waterument Lake Vilas 816/2017 LIS & JBS 353 0 564 45.90019 :89.270937 63 Waterument Lake Vilas 816/2017 LIS & JBS 354 0 ## **APPENDIX G** **WDNR Fisheries Studies**