

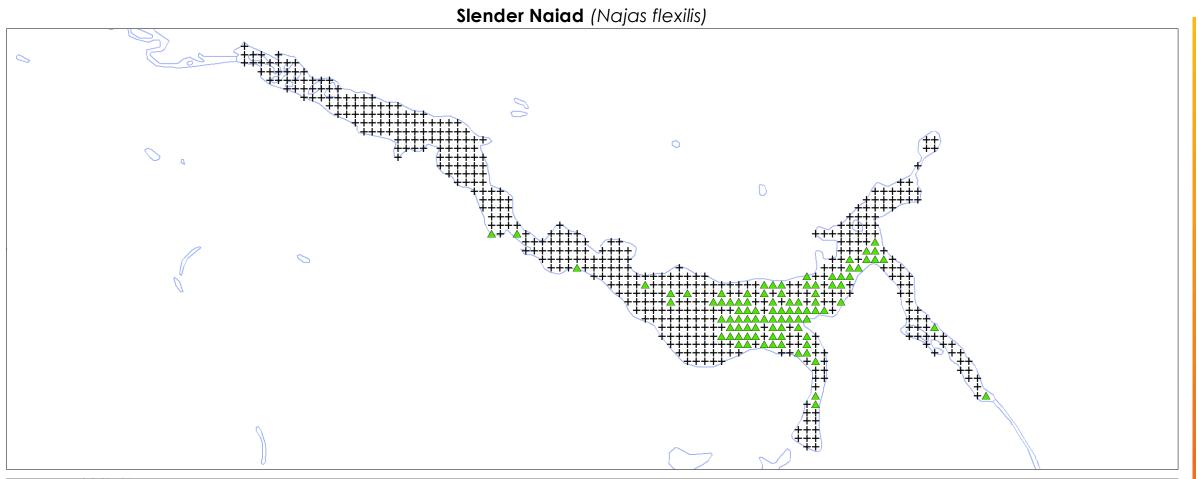
Figure No.

2014 PI Survey - Pigeon Lake Coontail and Chara

Pigeon Lake Protection & Rehabillitation District

Project Location Waupaca Co., WI

1:16,000 (At original document size of 11x17)


- + GPS Sample Points*
- ▲ Fullness Rating of 1
- ▲ Fullness Rating of 2
- ▲ Fullness Rating of 3

Fullness Rating	Coverage	Description		
1	Trial Indiana	Only few plants. There are not enough plants to entirely cover the length of the rake head in a single layer.		
2	MANAGE STATES	There are enough plants to cover the length of the rake head in a single layer, but not enough to fully cover the tines.		
3		The rake is completely covered and tines are not visible.		

- 1. Coordinate System: NAD 1983 StatePlane Wisconsin Central FIPS 4802
- Data Sources Include: Stantec and WDNR

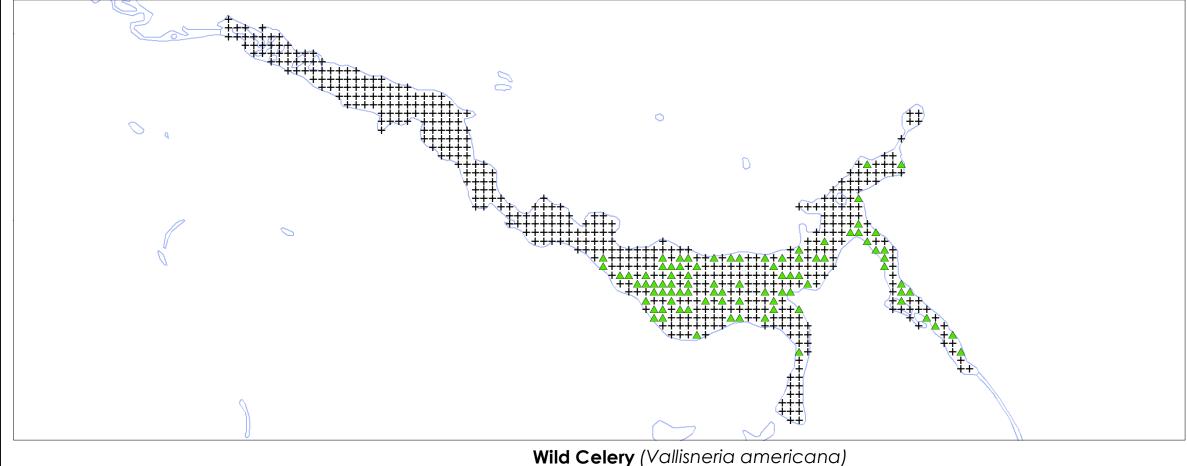


Figure N

2014 PI Survey - Pigeon Lake Slender Naiad and Wild Celery

Client/Proje

Pigeon Lake Protection & Rehabillitation District

Project Location Waupaca Co., WI

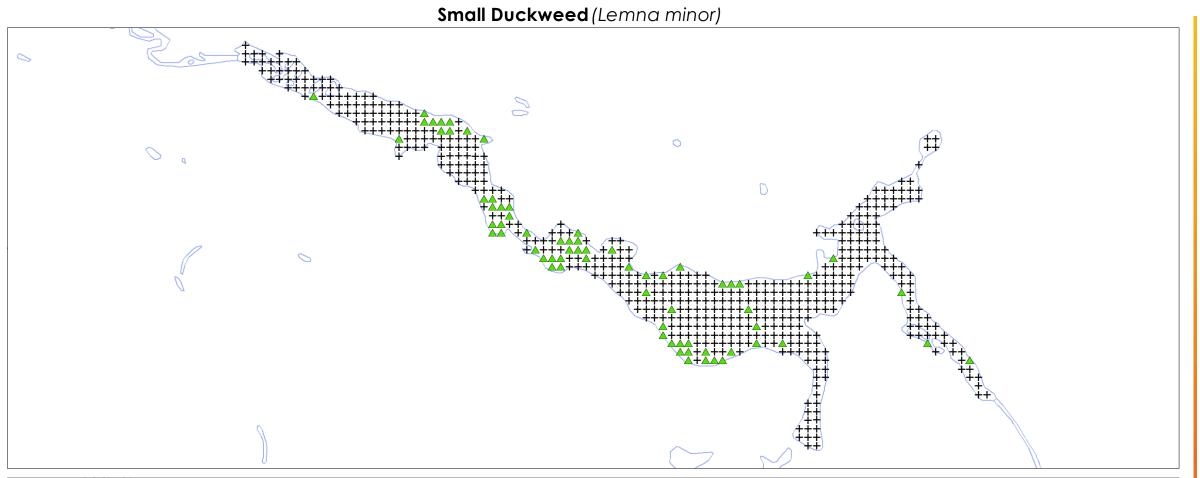
Prepared by KAS on 2014-09-03 Technical Review by AB on 2014-09-03 Independent Review by JS on 2015-02-06

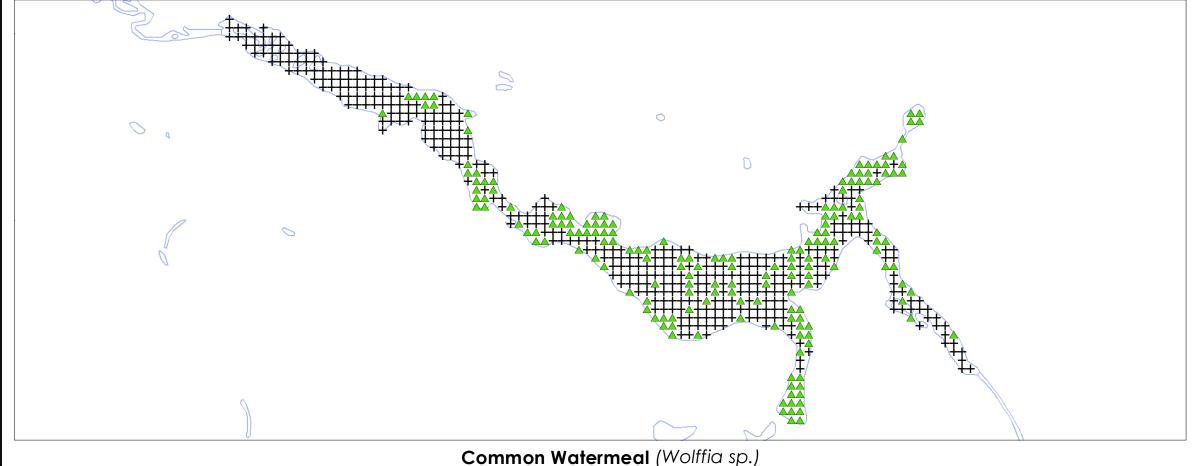
Legeno

+ GPS Sample Points*

▲ Fullness Rating of 1

Fullness Rating	Coverage	Description			
1	Trich Triming .	Only few plants. There are not enough plants to entirely cover the length of the rake head in a single layer.			
2	MANAGE STATE	There are enough plants to cover the length of the rake head in a single layer, but not enough to fully cover the tines.			
3		The rake is completely covered and tines are not visible.			


*Survey completed on 2014/07/08 by James Scharl & Tom Lamppa



Notes

- 1, Coordinate System: NAD 1983 StatePlane Wisconsin Central FIPS 4802 Feet
- 2. Data Sources Include: Stantec and WDNR

2014 Pl Survey - Pigeon Lake Small Duckweed and **Common Watermeal**

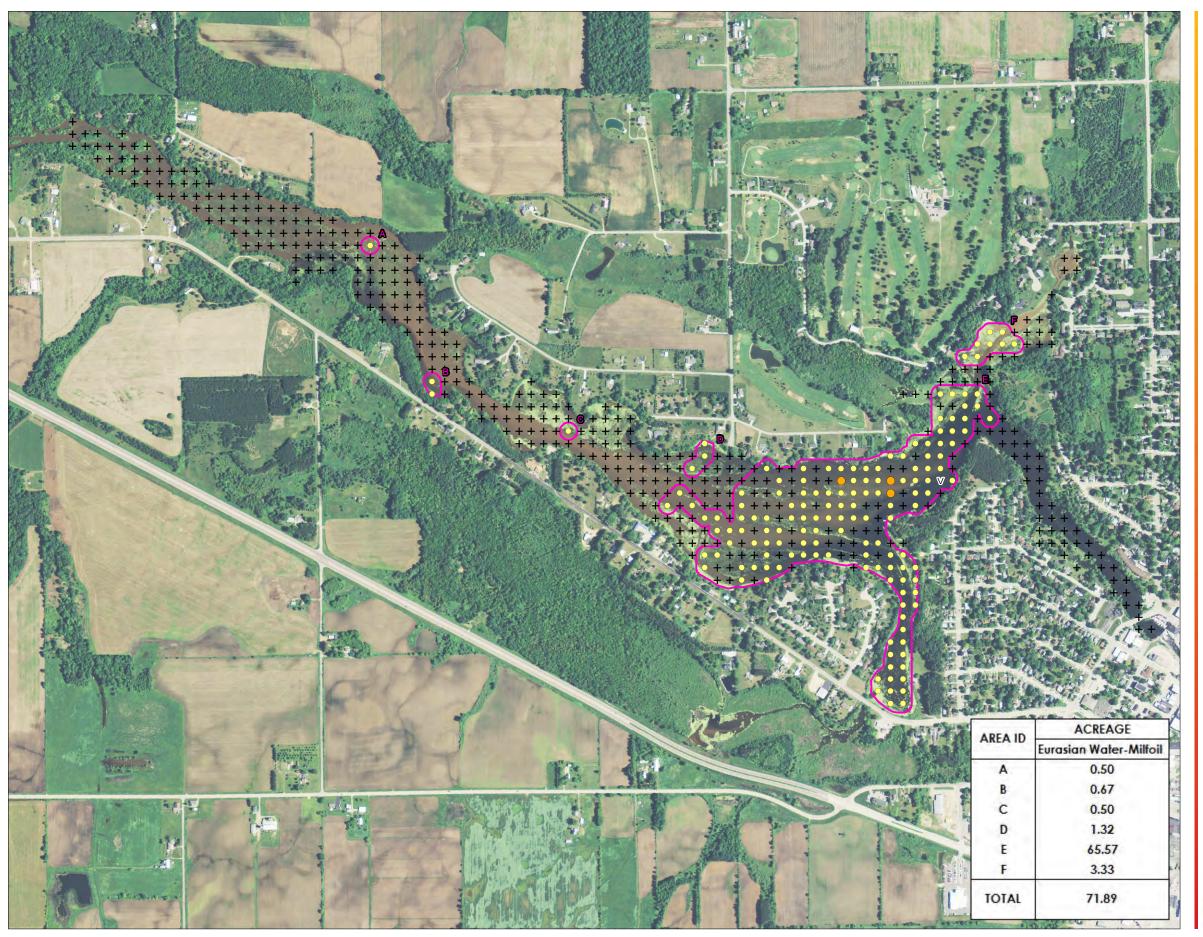
Pigeon Lake Protection & Rehabillitation District

Project Location Waupaca Co., WI

1:16,000 (At original document size of 11x17)

+ GPS Sample Points*

▲ Fullness Rating of 1


Fullness Rating	Coverage	Description			
1	THE PROPERTY OF	Only few plants. There are not enough plants to entirely cover the length of the rake head in a single layer.			
2	MANAGE STATES	There are enough plants to cover the length of the rake head in a single layer, but not enough to fully cover the tines.			
3		The rake is completely covered and tines are not visible.			

- 1. Coordinate System: NAD 1983 StatePlane Wisconsin Central FIPS 4802 Feet

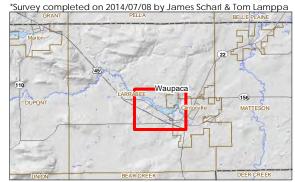
 2. Data Sources Include: Stantec and WDNR

2014 PI Survey - Pigeon Lake Eurasian Water-Milfoil

Pigeon Lake Protection & Rehabillitation District

Project Location
Waupaca Co., WI

193702713 Prepared by KS on 2014-09-11 Technical Review by AB on 2014-09-11 Independent Review by JS on 2015-02-05


1:11,000 (At original document size of 11x17)

<u>Legend</u>

- GPS Sample Points*
- Eurasian Water-Milfoil (Rake Fullness of 1 Only)
- Eurasian Water-Milfoil (Rake head is about half full)
- Eurasian Water-Milfoil (Visual)
 - Invasive Aquatic Plant Area

Fullness Rating	Coverage	Description		
1	Trist Intimital	Only few plants. There are not enough plants to entirely cover the length of the rake head in a single layer.		
2	MANAGAMAN.	There are enough plants to cover the length of the rake head in a single layer, but not enough to fully cover the tines.		
3	NAME OF THE OWNER, WHEN	The rake is completely covered and tines are not visible.		

- 1. Coordinate System: NAD 1983 StatePlane Wisconsin Central FIPS 4802 Feet
 2. Data Sources Include: Stantec
 3. Orthophotography: 2013 NAIP

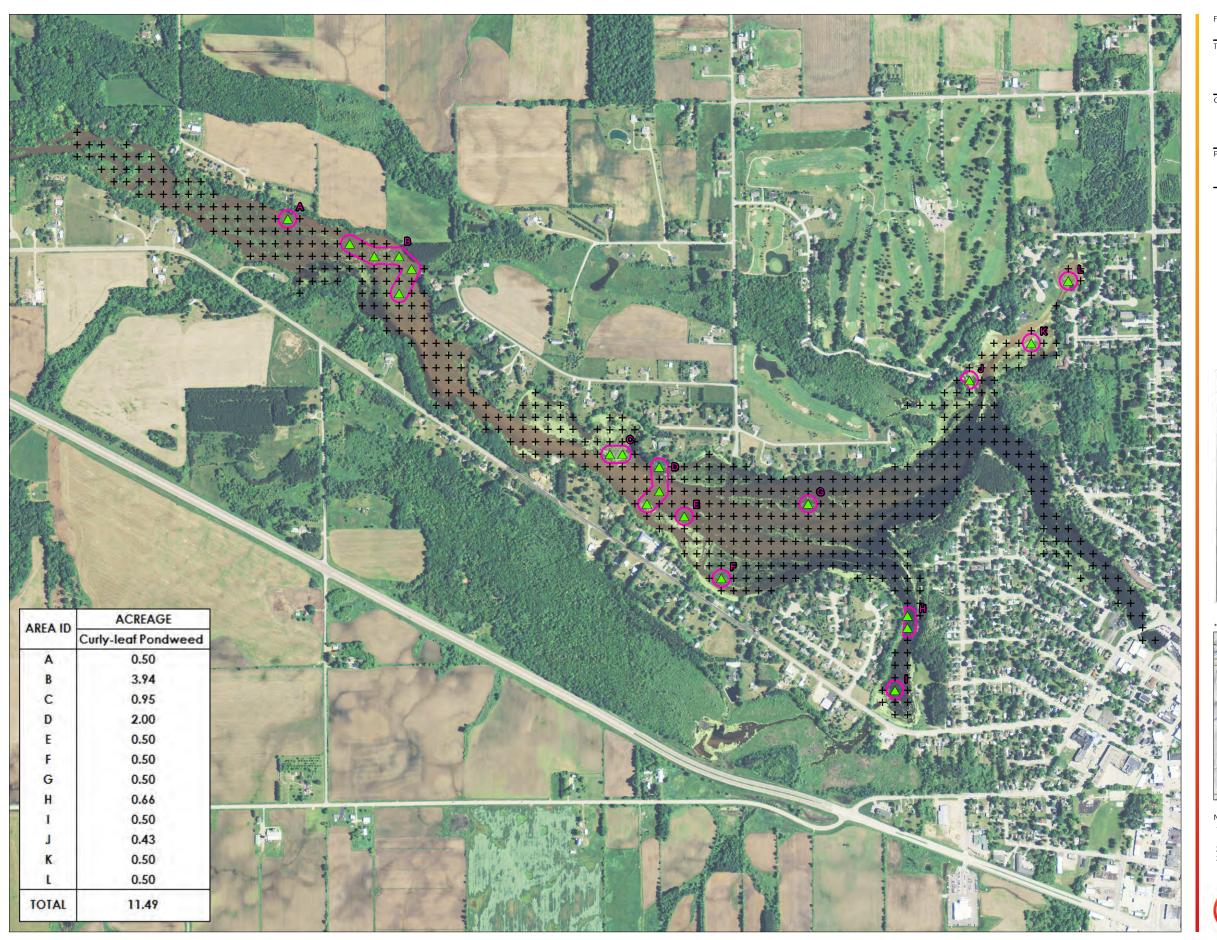


Figure No.

2014 Pl Survey - Pigeon Lake Curly-leaf Pondweed

Pigeon Lake Protection & Rehabillitation District

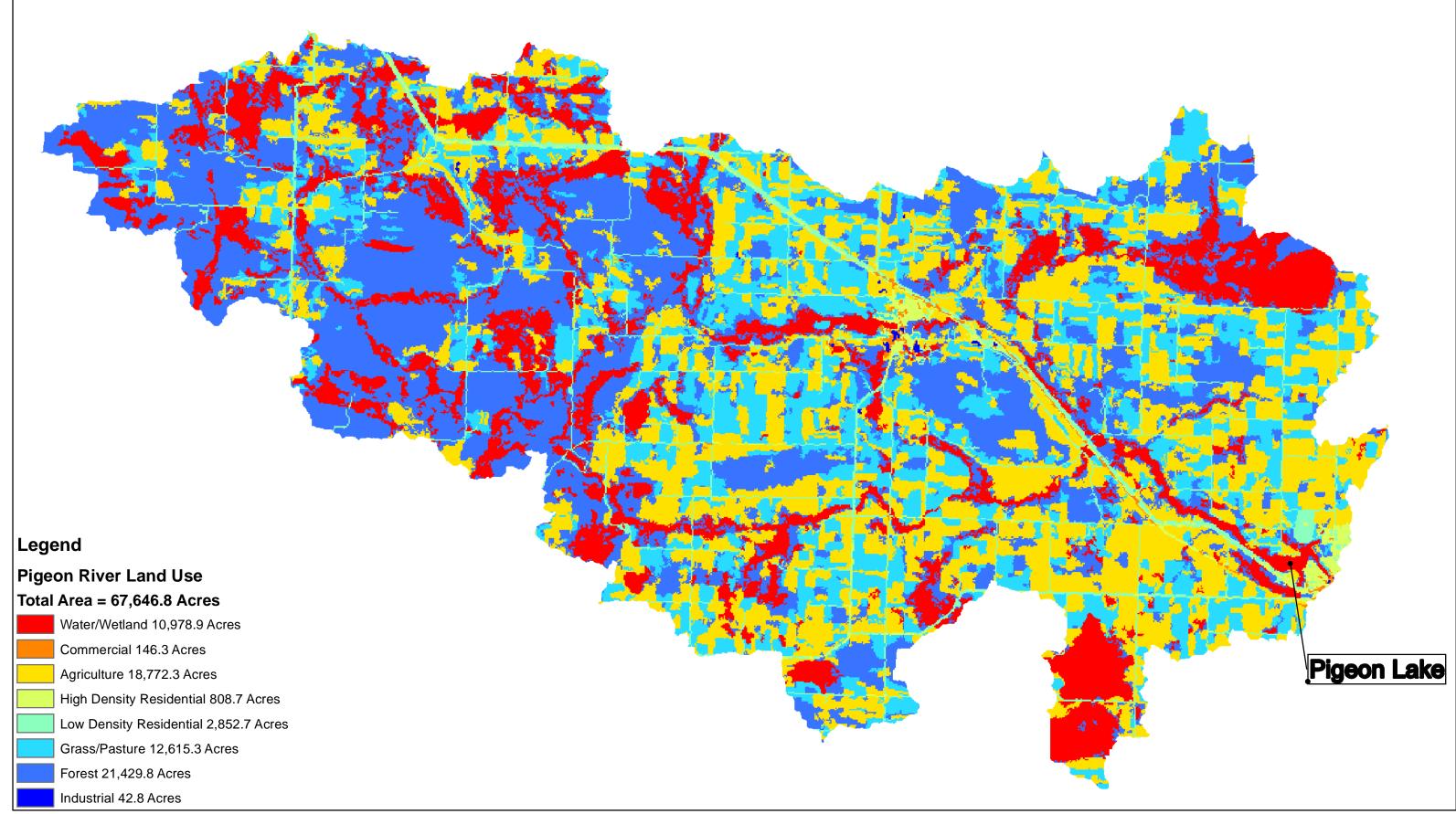
Project Location Waupaca Co., WI 193702713 Prepared by KS on 2014-09-11 Technical Review by AB on 2014-09-11 Independent Review by JS on 2015-02-05

1:11,000 (At original document size of 11x17)

<u>Legend</u>

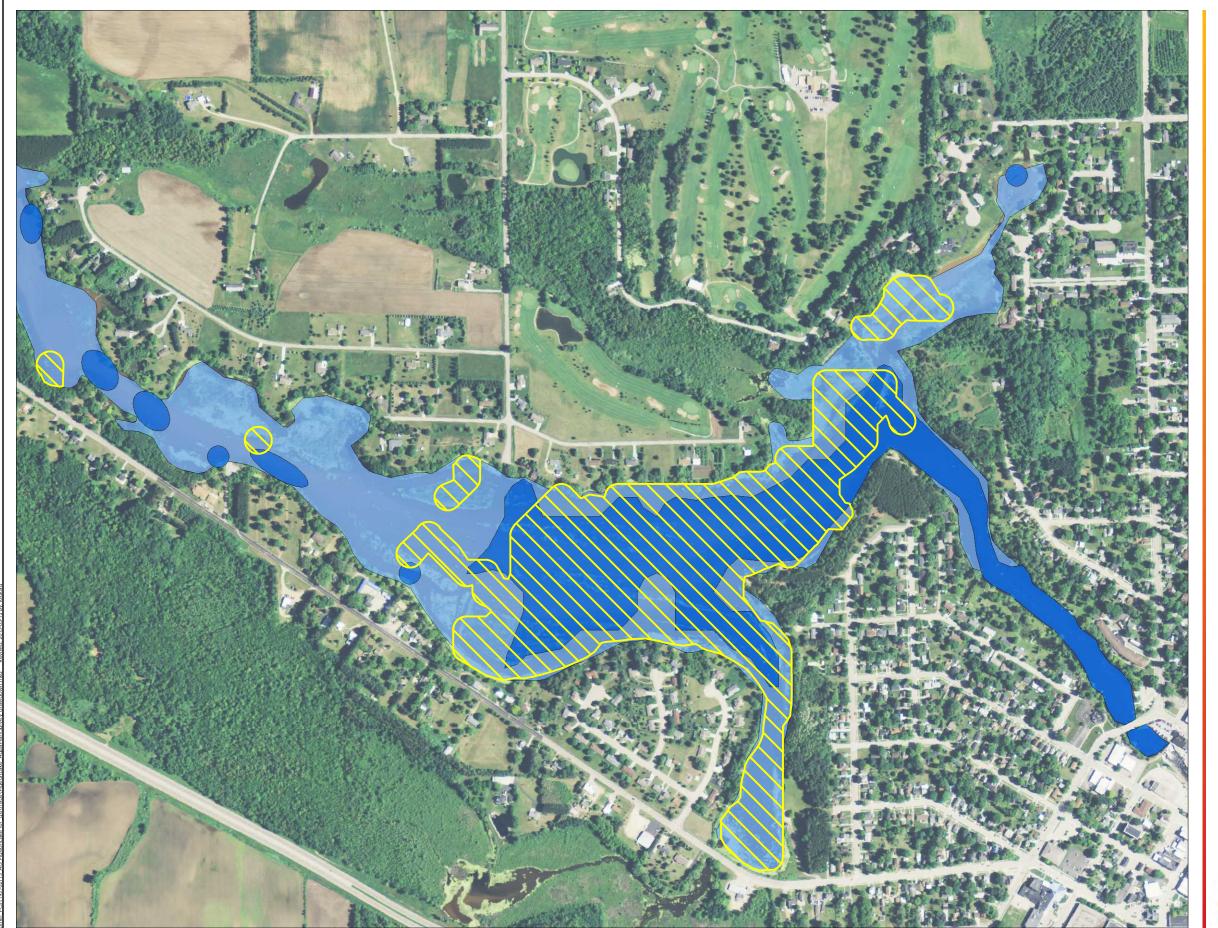
+ GPS Sample Points*

△ Curly-leaf Pondweed (Rake Fullness of 1 Only)



Fullness Coverage Description Rating Only few plants. There are not enough plants to entirely cover the length of the rake head in a single layer. There are enough plants to cover the length of the rake head in a single layer, but not enough to fully cover the tines. The rake is completely covered and tines are not visible.

- 1. Coordinate System: NAD 1983 StatePlane Wisconsin Central FIPS 4802 Feet
 2. Data Sources Include: Stantec
 3. Orthophotography: 2013 NAIP



PIGEON RIVER WATERSHED LAND USE MAP WAUPACA COUNTY, WI

DATE: 2014-03-13
Project Path: V:\1937\active\193702713\07_gis\mxds\Pigeon River.mxd

Pigeon Lake 2015 Drawdown Plan

Pigeon Lake Protection & Rehabillitation District

Project Location Waupaca Co., WI

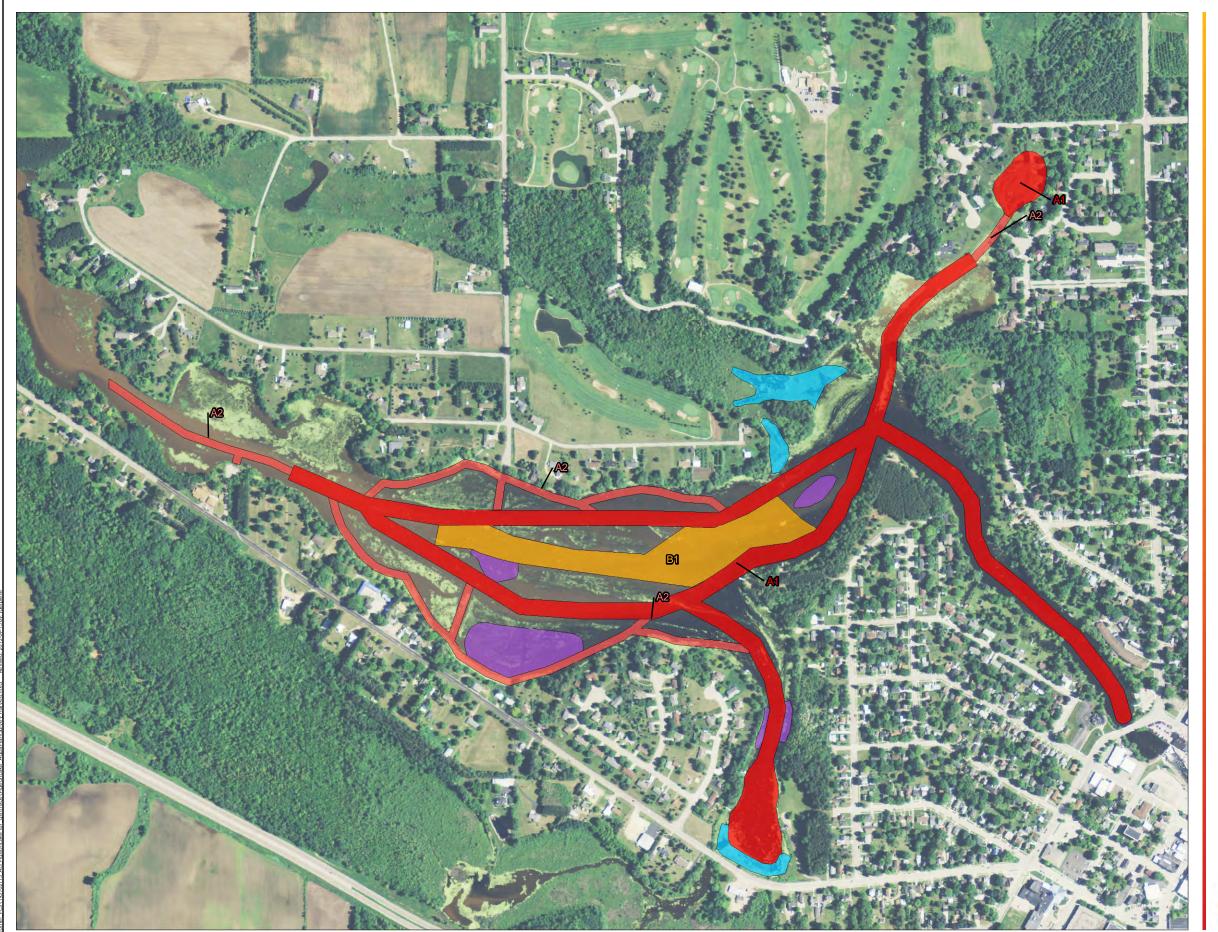
193702713 Prepared by KAS on 2015-03-13 Technical Review by BT on 2015-03-13 Independent Review by JS on 2015-03-13

1:7,200 (At original document size of 11x17)

<u>Legend</u>

Depth Less Than 4'

Eurasian Water-Milfoil


Drawdown Impact						
Depth Greater Than 4'	53.14 ac					
Depth Less Than 4'	120.09 ac					
AIS Impact						
Eurasian Water-Milfoil	35.54 ac					

*Portions upstream of map extents are river channel only; No anticipated drawdown effect

- Coordinate System: NAD 1983 StatePlane Wisconsin Central FIPS 4802 Feet
 Data Sources Include: Stantec, WDNR, and WisDOT
 Orthophotography: 2013 NAIP

Pigeon Lake 2015 Harvest Plan

Pigeon Lake Protection & Rehabillitation District

Project Location Waupaca Co., WI

193702713 Prepared by KAS on 2015-03-10 Technical Review by MP on 2015-03-10 Independent Review by MK on 2015-03-11

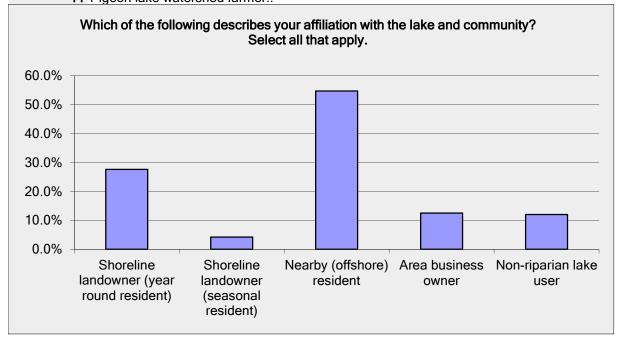
1:7,200 (At original document size of 11x17)

DRAFT

Instructions
ATIONAL ACCESS AREAS - 43,63 ac
Cut a lane 75' wide - must leave 12" of plant growth on the bottom
Cut a lane 50' wide - must leave 12" of plant growth on the bottom
MANAGEMENT AREAS - 10.78
Top cut 2' to control surface matting of AIS and promote native species growth - prior to May 31 only.

Floating Leaf Vegetation High Value Vegetation

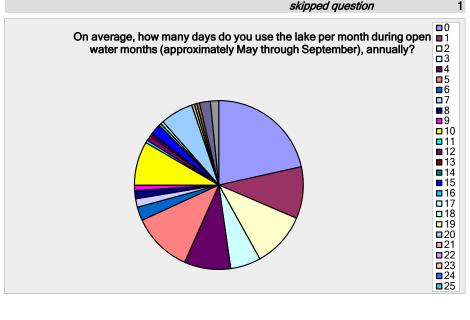
- Coordinate System: NAD 1983 StatePlane Wisconsin Central FIPS 4802 Feet
 Data Sources Include: Stantec, WDNR, and WisDOT
 Orthophotography: 2013 NAIP



Pigeon Lake Comprehensive Lake Management Plan Update

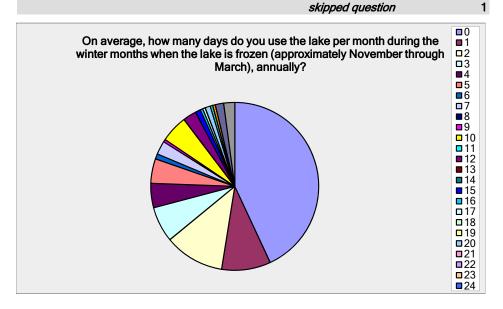
Which of the following describes your affiliation with the lake and community? Select all that apply.

Answer Options	Response Percent	Response Count
Shoreline landowner (year round resident)	27.6%	53
Shoreline landowner (seasonal resident)	4.2%	8
Nearby (offshore) resident	54.7%	105
Area business owner	12.5%	24
Non-riparian lake user	12.0%	23
Other (please specify)		11
aı	nswered question	192
	skipped question	0


Number	Other (please specify)
1	Area business executive
2	land-owner in drainage area
3	Live on Pigeon River upstream from lake
4	shoreline landowner - vacant lot
5	Own the property but are not there often
6	South branch of the pigeon
7	Surrounding Area Landowner
8	pay the tax for this lake
9	Landowner in the watershed area
10	Pigeon river runs past my property
	Pigeon lake watershed farmer

Question 2

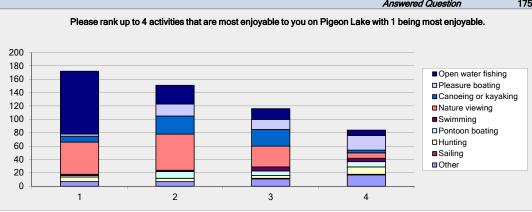
On average, how many days do you use the lake per month during open water months (approximately May through September), annually?


nswer Options	Response Percent	Response Count
0	21.5%	41
1	9.9%	19
2	10.5%	20
2 3	5.8%	11
4	8.9%	17
5	11.5%	22
6	2.6%	5
7	1.6%	3
8	1.6%	3
9	1.0%	2
10	8.4%	16
11	0.5%	1
12	1.0%	2
13	0.5%	1
14	0.0%	0
15	2.1%	4
16	0.5%	1
17	0.0%	0
18	0.0%	Ö
19	0.5%	1
20	6.3%	12
21	0.0%	0
22	0.0%	ő
23	0.5%	1
24	0.0%	Ö
25	0.5%	1
26	0.0%	0
27	0.0%	0
28	0.0%	0
29	0.5%	1
30	2.1%	4
31	1.6%	3
31	answered question	19
	skipped question	18

Question 3

On average, how many days do you use the lake per month during the winter months when the lake is frozen (approximately November through March), annually?

(approximately not online)	-ga,, aaa,	•
Answer Options	Response Percent	Response Count
0	42.9%	82
1	9.4%	18
2	11.5%	22
3	6.8%	13
4	4.7%	9
5	4.7%	9
6	1.0%	2
7	2.6%	5
8	0.0%	0
9	0.5%	1
10	5.2%	10
11	0.0%	0
12	2.6%	5
13	0.0%	0
14	0.0%	0
15	1.0%	2
16	0.5%	1
17	0.0%	0
18	0.5%	1
19	0.0%	0
20	1.0%	2
21	0.0%	0
22	0.0%	0
23	0.0%	0
24	0.0%	0
25	0.5%	1
26	0.0%	0
27	0.0%	0
28	0.5%	1
29	0.0%	0
30	1.6%	3
31	2.1%	4
	answered question	191
	skinned auestion	1



Question 4

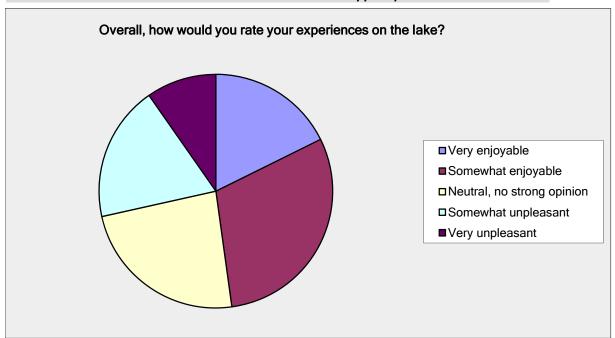
Please rank up to 4 activities that are most enjoyable to you on Pigeon Lake with 1 being most enjoyable.

Answer Options	Open water fishing	Pleasure boating	Canoeing or kayaking	Nature viewing	Swimming	Pontoon boating	Hunting	Sailing	Other	Response Count
1	94	3	9	48	2	2	7	0	7	172
2	28	18	27	54	2	10	5	0	7	151
3	16	15	25	31	6	7	4	1	11	116
4	8	22	4	8	5	8	11	1	17	84
Average Ranking	1.58	2.97	2.37	1.99	2.93	2.78	2.70	3.50	2.90	
								A	and Owner	175

Other (please specify) Number 1 ice fishing 2 Ice fishing 3 walking the trail 4 ice walking 5 ice fishing 6 Ice fishing 7 walking the nature trail along the lake 8 we are on the river and our activities also involvbe the lake 9 Ice Skating or Snow shoe hiking 10 Encouraging ducks and geese during migration 11 walking/hiking adjacent trails 12 none 13 you cant enjoy any of these activities on the pond...to weedy, shallow etc. 14 snowmobiling 15 Snowmobiling 16 Trapping 17 letting dog run 18 Sorry, I grew up on Lake Michigan Pigeon Lake is really a pond and not large enough for recreation. 19 ice fishing

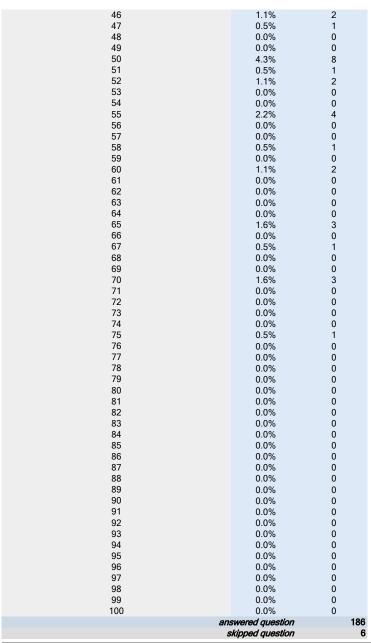
21 none
22 Do not use the lake
23 Ice fishing
24 Strictly business owner, do not use the lake
25 no activities
26 ICE FISHING
27 Ice fishing
28 Ice Fishing

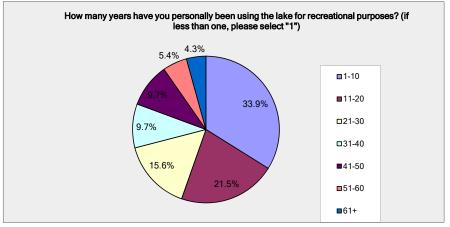
20 I do not use the pond at all


29 walking30 Showshoeing

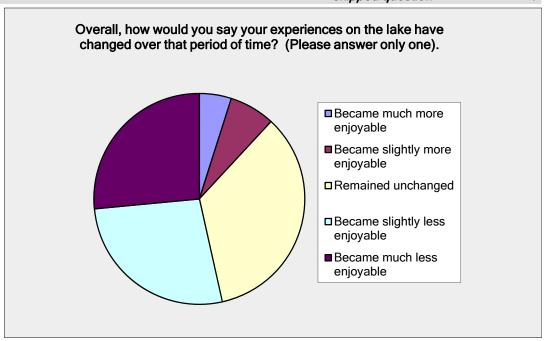
31 ice fishing/ walking on ice during winter

32 ice fishing 33 Jet ski

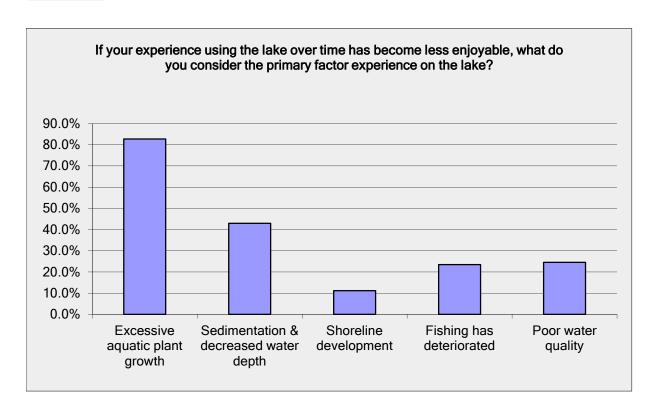

34 ice fishing


Overall, how would you rate your experiences on the lake?						
Answer Options	Response Percent	Response Count				
Very enjoyable	17.7%	33				
Somewhat enjoyable	30.1%	56				
Neutral, no strong opinion	23.7%	44				
Somewhat unpleasant	18.8%	35				
Very unpleasant	9.7%	18				
an	swered question	186				
	skipped question	6				

Question 6
How many years have you personally been using the lake for recreational purposes? (if less than one please select "1")

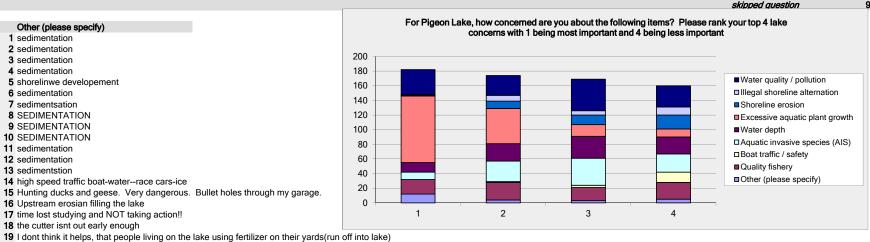

nswer Options	Response Percent	Response Count
1	16.1%	30
2	1.6%	3
3	2.7%	5
4	3.2%	6
5	1.6%	3
6	1.1%	2
7	1.1%	2
8	0.5%	1
9	0.5%	1
10	5.4%	10
11	0.5%	1
12	2.7%	5
13	1.6%	3
14	2.7%	5
15	5.4%	10
16	1.1%	2
17	1.1%	2
18	0.5%	1
19	0.5%	1
20	5.4%	10
21	0.0%	0
22	1.1%	2
23	0.0%	0
24	0.5%	1
25	5.9%	11
26	0.5%	1
27	0.0%	0
28	1.1%	2
29		2
30	1.1%	
	5.4%	10
31	1.1%	2
32	0.5%	1
33	0.5%	1
34	0.0%	0
35	2.7%	5
36	0.5%	1
37	0.0%	0
38	1.1%	2
39	0.5%	1
40	2.7%	5
41	0.0%	0
42	1.1%	2
43	1.1%	2
44	0.0%	0
45	1.6%	3

Overall, how would you say your experiences on the lake have changed over that period of time? (Please answer only one).


Answer Options	Response Percent	Response Count
Became much more enjoyable	4.9%	9
Became slightly more enjoyable	7.0%	13
Remained unchanged	34.6%	64
Became slightly less enjoyable	27.0%	50
Became much less enjoyable	26.5%	49
an	swered question	185
	skipped question	7

If your experience using the lake over time has become less enjoyable, what do you consider the primary factor experience on the lake?

Answer Options	Response Percent	Response Count
Excessive aquatic plant growth	82.7%	81
Sedimentation & decreased water depth	42.9%	42
Shoreline development	11.2%	11
Fishing has deteriorated	23.5%	23
Poor water quality	24.5%	24
Other (please specify)		8
ar	nswered question	98
	skipped question	94


Number	Other (please specify)
	1 weeds
	2 ice vehicle traffic
;	3 Loss of clean firm bottom for spawning beds.
	4 less water to fish because of the plants in the lake.!!!!
	5 all of the above
	6 putting rip rap along the point shore has ruined the fishing and trapping there
	7 More fishing dock's also for the disabled and elderly (Maybe like gaurd rails)
;	8 The green slime that floats on the top of the lakeI believe it may be duck weed????

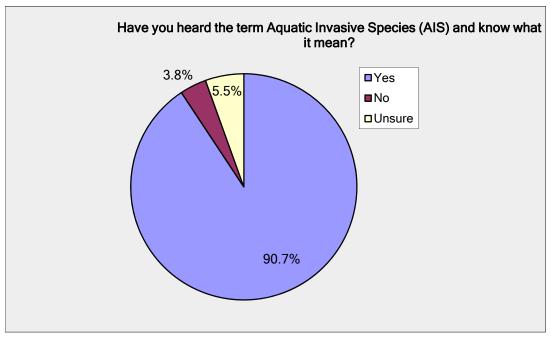
For Pigeon Lake, how concerned are you about the following items? Please rank your top 4 lake concerns with 1 being most important and 4 being less important

Answer Options	Water quality / pollution	Illegal shoreline alternation	Shoreline erosion	Excessive aquatic plant growth	Water depth	Aquatic invasive species (AIS)	Boat traffic / safety	Quality fishery	Other (please specify)	Response Count
1	34	1	1	91	13	10	0	20	12	182
2	27	8	10	48	24	28	1	24	4	174
3	43	6	13	16	30	37	3	18	3	169
4	29	11	19	11	23	25	14	23	5	160
AVERAGE RANK	1.85	2.46	2.07	1.59	2.00	2.06	2.22	1.78	2.42	
								an	swered question	183
									kinned avection	0

Number Other (please specify) 1 sedimentation 2 sedimentation 3 sedimentation 4 sedimentation 5 shorelinwe developement 6 sedimentation 7 sedimentsation **8** SEDIMENTATION 9 SEDIMENTATION **10** SEDIMENTATION 11 sedimentation 12 sedimentation 13 sedimentstion 14 high speed traffic boat-water--race cars-ice 15 Hunting ducks and geese. Very dangerous. Bullet holes through my garage. 16 Upstream erosian filling the lake 17 time lost studying and NOT taking action!! 18 the cutter isnt out early enough

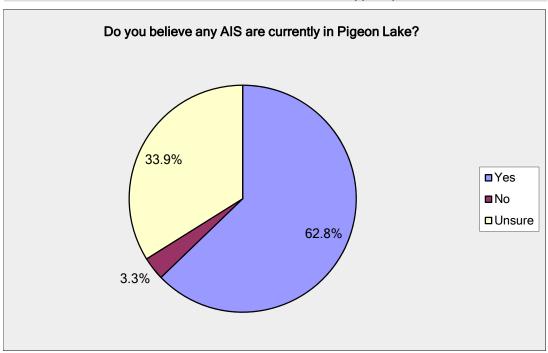
21 The shoreline should have been left alone, natural and undisturbed. PLD ruined the shoreline. 22 waste of money on a pond that does not need to exist 23 Draw down lake to help reduce sediment .increase depth of lake add rip rap to shore line.

24 Sediment

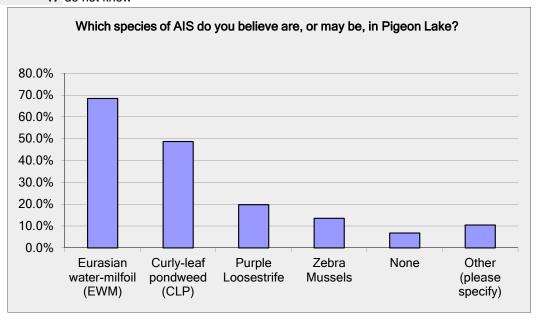

20 fishing

25 Open hunting area's

26 Loon shit (muck)

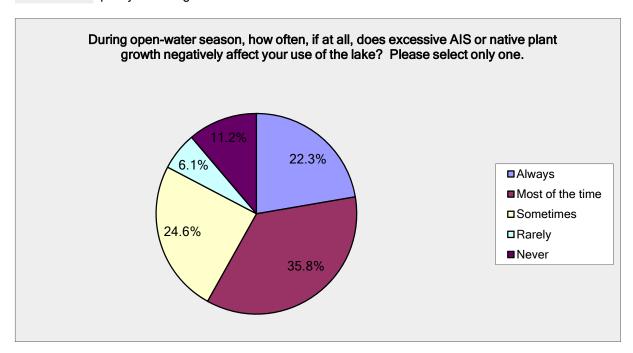

Aquatic Invasive Species (AIS) are non-native plants or animals that can out-compete their native counterparts and potentially cause a myriad of problems within the lake and/or ecosystem. Prior to this survey, have you heard the term Aquatic Invasive Species and did you know what it meant?

Answer Options	Response Percent	Response Count
Yes	90.7%	166
No	3.8%	7
Unsure	5.5%	10
an an	swered question	183
	skipped question	9


Question 11

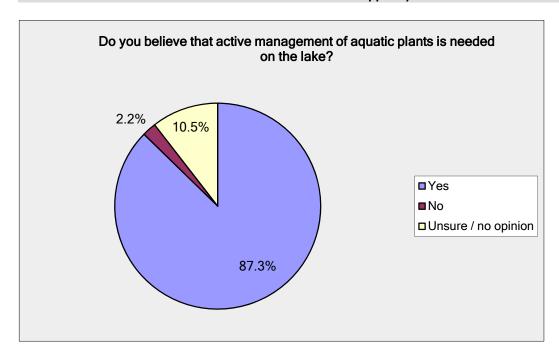
Do you believe any AIS are currently in Pigeon Lake?		
Answer Options	Response Percent	Response Count
Yes	62.8%	115
No	3.3%	6
Unsure	33.9%	62
ar	nswered question	183
	skipped question	9

Which species of AIS do you believe are, or may be, in Pigeon Lake?			
Answer Options	Response Percent	Response Count	
Eurasian water-milfoil (EWM)	68.5%	111	
Curly-leaf pondweed (CLP)	48.8%	79	
Purple Loosestrife	19.8%	32	
Zebra Mussels	13.6%	22	
None	6.8%	11	
Other (please specify)	10.5%	17	
	answered question	162	
	skipped question	30	


Number	Other (please specify)
1	do't know
2	unsure
	I must be one of the few residents that did not graduate with a degree in
3	Marine Science or Biology. I would just be guessing
_	blue-green algae
	Don't know
	I have no knowledge of any, but believe any are possible with some more
6	likely than others.
7	Don't know
8	I don't know.
9	I honestly don't know
10	don't know
11	Unsure
12	unsure
13	not sure what is in the pond
14	Not sure
15	No clue
16	unknown
17	do not know

During open-water season, how often, if at all, does excessive AIS or native plant growth negatively affect your use of the lake? Please select only one.

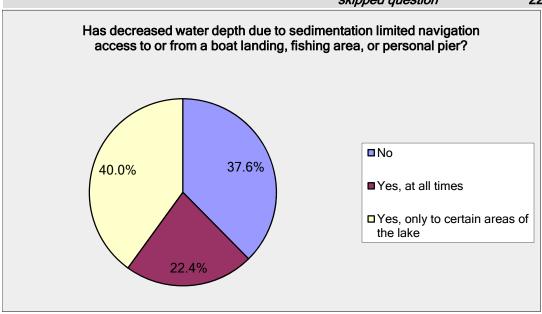
Answer Options	Response Percent	Response Count
Always	22.3%	40
Most of the time	35.8%	64
Sometimes	24.6%	44
Rarely	6.1%	11
Never	11.2%	20
Comments		9
	answered question	179
	skipped question	13


I have used the lake for 38 years for nature viewing and boating and have lived on the Pigeon River for 30 years. The plant growth is worse now than 30 years ago. It used to "green up" so we could not use our boat the first part of June. Now it is too weedy already the first part of May. It seems to be getting worse each year. We have to go to another body of water if we want to use our boat. 2 green algae/weeds on top of water makes fishing difficult from docks 3 WEfish the river and open water 4 Hard to fish with hook and line 5 The pond needs to be drained, dredged down 8-12 feet and refilled and re-stocked. 6 I don't use Pigeon Lake, a few times a year I will walk by Pigeon lake. 7 I do not use the pond 8 Boat landing full of floating weeds. 9 quality of fishing

Question 14

Do you believe that active management of	of aquatic plants is needed on the lake?
--	--

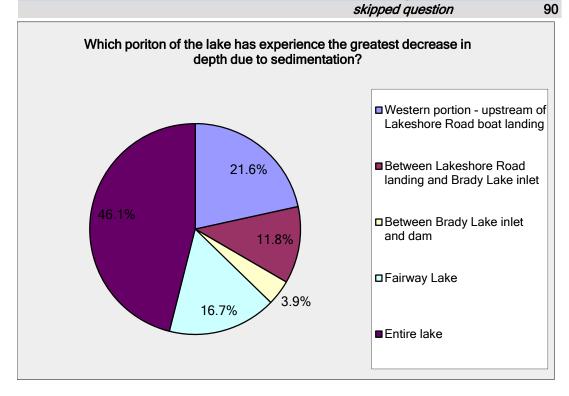
Answer Options	Response Percent	Response Count
Yes	87.3%	158
No	2.2%	4
Unsure / no opinion	10.5%	19
aı	nswered question	181
	skipped question	11


Question 15

Which of the following aquatic plant management options would you support? Please rank your top 4 preferences with 1 being the most preferred and 4 being the least preferred option.

Answer Options	Manual removal or hand pulling	Mechanical harvesting or cutting	Herbicide control	Hydraulic or mechanical dredging	Over winter water level drawdown	Continue to monitor the size of infestation through annual AIS surveys	No action; wait and see what happens over the long term	Not sure; would rely on a professional consulting firm	Not sure; would rely on the WDNR guidance	Response Count
1	6	60	22	41	8	4	2	14	11	168
2	21	34	29	27	17	8	3	12	13	164
3	17	22	23	29	11	11	5	15	13	146
4	10	7	13	14	16	7	3	17	20	107
AVERAGE RANK	2.57	1.80	2.31	2.14	2.67	2.70	2.69	2.60	2.74	
										Question Totals
									answered question	169
									skipped question	23

Has decreased water depth due to sedimentation limited navigation access to or from a boat landing, fishing area, or personal pier?


Answer Options	Response Percent	Response Count
No	37.6%	64
Yes, at all times	22.4%	38
Yes, only to certain areas of the lake	40.0%	68
	answered question	170
	skipped question	22

Question 17

Which poriton of the lake has experience the greatest decrease in depth due to sedimentation?

Answer Options	Response Percent	Response Count
Western portion - upstream of Lakeshore Road boat	21.6%	22
Between Lakeshore Road landing and Brady Lake inlet	11.8%	12
Between Brady Lake inlet and dam	3.9%	4
Fairway Lake	16.7%	17
Entire lake	46.1%	47
an.	swered question	102

Question 18
Which of the following sedimentation management/reduction options would you support? Please rank your top 4 preferences with 1 being the most preferred and 4 being the lesser preferred option

орион									
Answer Options	Focus on agricultural runoff / sedimentation	Dredging	Extended or over winter drawdown	Remove dam and return to natural river	Review and potentially alter how the dam is operated	No action: wait and see what happens over the long term	Not sure; would rely on a professional consulting firm	Not sure; would rely on WDNR guidance	Response Count
1	25	45	3	8	3	0	16	5	105
2	26	23	10	3	17	0	7	9	95
3	14	10	14	3	15	1	16	9	82
4	9	7	8	5	10	2	17	12	70
AVERAGE RANKING	2.09	1.75	2.77	2.26	2.71	3.67	2.61	2.80	
									Question Totals
								answered question	105
								skipped question	87

Question 19

Please rank up the importance of the following elements of the Comprehensive Lake Management Plan update with 1 being most important and 4 being less important.

Answer Options	Study and understand current aquatic plant problems	Protect native plant species	Reduce extent and density of existing AIS infestations	Identify ways to reduce sediment input (loads) into the lake	Explore ways to remove or reduce current sediments from the lake	Prevent the introduction of new AIS	Identify and explore new aquatic plant management strategies	Seek grant funding for management efforts	Review dam operational guidelines for water level management	Ability to obtain a large scale an/or harvesting permits	Other	Response Count
1	22	8	25	17	46	4	11	13	4	8	2	160
2	15	17	22	30	22	8	7	22	4	8	1	156
3	19	11	19	17	24	10	18	12	8	11	1	150
4	7	7	7	23	6	13	14	23	12	12	0	124
AVERAGE	2.17	2.40	2.11	2.53	1.90	2.91	2.70	2.64	3.00	2.69	1.75	6
										ans	wered question	161
										si	rinned auestion	31

Number	Other (please specify
--------	-----------------------------

- 1 identify, publicly shame, and resolve any chronic "bad actor" landowners upstream
- 2 you have studied the problem for 45 years now it is time for action
- 3 stop the politics and get some action going in a positive direction

5 Unless someone is an expert in this area, we should not abide by these comments. Opinions from those who are not experts are not going be the the best course of action to follow

6 Why not just drain the lake and quit wasting our money?

⁴ The pigeon lake is discusting to look at and smell. There is a geat recreational potential here and nothing is done to clean it up. I personally wouldn't let my dog swim in that lake. It is an eyesore in Clintonville and an embarrassment to the area. The DNR dam study that was done in the past clearly stated the dam is to be kept at 5.0 to the max of 5.2.. The dam is always above 5.2 and has been for years. Why put this survey out, no one listens to the public any way.

Any additional comments or concern	ns?	
Answer Options		Response Count
		60
	answered question	60
	skipped question	132
Manufacia Decisiones		

Number Response

- 1 will have more time to use lake, live in marion and know of your problems like marions
- 2 need to cut weeds deeper and need to remove sediments
- 3 sediment needs to be removed and weeds will alweays need to be harvested, we have learned from other lakes
- 4 hunting on the lake, spring and fall don't have weeds, it's beutiful
- 5 It is always difficult to make a lake from a pond. Too much runoff feeding the river from farm;and and no deep holes for water turnover
- 6 Don't drain the lake, where this was done on other lakes it didn't help
- 7 I WOULD LIKE TO THANK THIS COMMITTEE AND YOPUR CONTINUED STRIVING TO BEKNOWLEDGEABLE ABOUT THIS LAKE
- 8 MY NEIGHBOR HAS A HUGE TREE FALLEN DOWN CREATING BACKUP OF WEEDS WHAT CAN BE DONE ABOUT THAT?
- 9 Would like to see the lake become an attraction to both citizens and outsiders. Fishing, recreational boating, swimming.
- 10 I like what lola and weyauwega did. Deeper with reduced plants.
- 11 yes please put more portable potty in the park that stop the litter in park
- 12 talk is cheap we all know the flipside
- 13 Lake Needs help/clean up is needed

I am AGAINST making any permanent alterations to the dam or its operation. A winter or temporary drawdown could have benefits. Perhaps the experiences of the Marion Millpond up river could assist in future planning. I have lived on the river for 30 years, paid many taxes and seen many plans brought

- forward to manage the river, however the thick plants deny me the use of the river for recreational boating. On some summer days the plants are so thick that it seems you could walk across them to get to the other side of the river. The harvesting machine gives temporary relief. On a positive note, the shoreline plants, fish, birds and animals that inhabit the river seem to be healthy and thriving. It is my one reason for owning property here.
- 15 publicize the root causes, and responsible parties, for the Marion dam fiasco
- Excess nutrient load from, application of fertilizers, manure pits or excessive manure application to fields which ends up in the Marion or Clintonville pond.
- 17 Need to get rid of Green Slime on Pond
- 18 Please find a way to get rid of some of the plant life in the lake so people can be able to go out in a boat and fish, Thank You!!!
- 19 Bottom adacent to my property has been changing from sand to muck over the last 7 years. I've noticed that fish spawning activity is greatly reduced.
- 20 enjoying the lake with grandchildren, would like less "green slime" if possible
- 21 We need to save this Lake for future generations! Do what needs to be done to make this a nice recreational spot for everyone to enjoy! This would help our local economy if this lake was in decent shape.
- 22 no
- 23 Since when is it called Pigeon "Lake"? Thought it was the Pigeon "Pond".
- 24 we understand this is an old water system and we would like to enjoy it as much as we can!!!!

 There are many issues that many of us are not well enough educated on to pass judgement upon, so we
- 25 must trust in the stewardship and common sense of those who are educated enough to make decisions regarding the future health and well being of the Pigeon pond.
 - The aquatic plant growth in this body of water is out of control. However I would rather deal with the weeds
- than to have the body of water drained. Draining the water out does not work, take a look at the Marion pond, no fish & lots of weeds only a year or two after the lake was drained.

- **27** no
- do something to return the lake to an acceptable state for swimming, shoreline beaches,remove sedament
- Please don't drain the pond like Marion do, it will not work. The pond needs to be dredged out from 10 to 20 feet deep. That would make a nice pond.
- 30 Get the process going before there is no lake.
- 31 Was unable to answer several questions in this survey due to lack of knowledge should have been an option answer stating "do not know"
- 32 you have studied the problem fo,r 45 years now it is time for action
- 33 None
- 34 it has jurrasically improved the last year compared to the following for ais
- 35 control the boats ripping up the weeds
- 36 would be a shame to see this lake go to waste, had lots of good times fishing withmy dad on the pond
- 37 Do not drane the pond for the fish poplasn is grate
- 1 would strongly oppose a draw down of the lake. It has proven unsuccessful in area lakes and only harms all the living things that call it home.
- 39 Tell Scott Walker to get the money from his slush fund
- With a golf course upstream at Marion and one in Clintonville, both on the lake fronts...their fertilizer is feeding the weeds...in my opinion.
- Someting needs to be done with the current condition of this lake. It is unuseable most of the summer months and smells bad when it is hot. That in itself cannot be healthy. Thank You Once again the Pond is a eyesore and detriment to the community. We could have a wonderful lake with
- 42 sand swimming areas, but instead we have a green smelly slime hole. better to drain it and turn it into a river, at least it won't look so bad nor smell.
- **43** Purchase Canadian carp to eat the weeds (they are sterilized)
 - I think we should gather expert advice -- consulting firm and/or WDNR. I also think we should talk to the people who oversaw the management of the Marion pond. What are their thoughts on the results of the
- 44 draining? We should listen to the opinions of those who are familiar with the pond by living by it and/or using it, but we need to balance that with expert opinion. People who professionally manage ponds are the ones who will have the most important opinion.
- 45 remove the sediment and weeds, and control there reentery to the Lake
- You can't change the fact that an artificial lake will always confront the same problems sooner or later. Why not stop wasting my money on a body of water that is doomed from the outset?
- 48 mid summer you cant even fish anymore, too many weeds
- 49 Not sure...
- 50 1997 put in pier 4.5 feet deep today's depth is maybe 2inches
- 51 Limit weed cutting to main body. Not in no wake areas.
- **52** scheduled cutting by map layout
- Look for new methods and try new things to help control the AIS and not things that have been proven ineffective, Thanks for the survey!
- 54 I would like to see some emplasis given to the clean up on Fairway Lake
- 55 get rid of the green lake!
- 56 get rid og the sediment
- 57 I think the property values of homes on Pigeon will sart declining and the city tax base will suffer unless something is done to turn this into a usable lake again
- As someone who has been on the pond most falls hunting over the last 30 yrs, it is sad to see how bad it has gotten.
- 59 Get rid of the muck, weeds and dnr.
 - I think that last years water quality was a lot better then past years. Whatever the lake district did in the 2013 season worked. It could use a little more work but it is a great start. I personally don't think we should get rid
- 60 of all the invasive weeds completely, but find a wayto maintain them. I am very much against putting in a chemical to kills the weeds. If that is done it will kill everything in the lake and make enjoying the lake a huge disappointment. Thanks

	AF	PE	ND	IX	B
--	----	----	----	----	---

<u>Appendix B – Supporting Aquatic Plant Documentation</u>

The point intercept method was used to evaluate the existing emergent, submergent, floating-leaf and free-floating aquatic plants. If a species was not collected at a specific point, the space on the datasheet was left blank. For the survey, the data for each sample point was entered into the WDNR "Worksheets" (i.e., a data-processing spreadsheet) to calculate the following statistics:

Taxonomic richness (the total number of taxa detected)

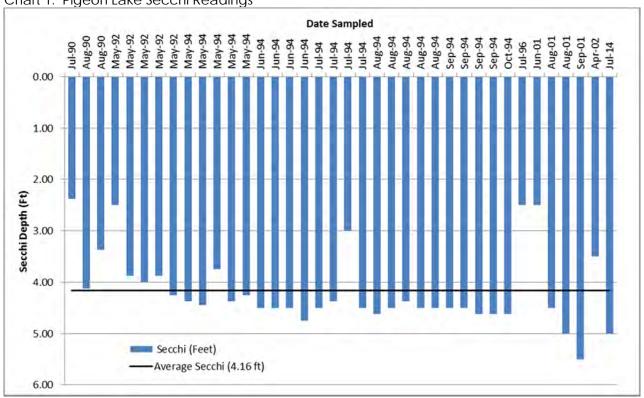
- Maximum depth of plant growth
- Community frequency of occurrence (number of intercept points where aquatic plants were detected divided by the number of intercept points shallower than the maximum depth of plant growth)
- Mean intercept point taxonomic richness (the average number of taxa per intercept point)
- Mean intercept point native taxonomic richness (the average number of <u>native</u> taxa per intercept point)
- Taxonomic frequency of occurrence within vegetated areas (the number of intercept points where a particular taxon (e.g., genus, species, etc.) was detected divided by the total number of intercept points where vegetation was present)
- Taxonomic frequency of occurrence at sites within the photic zone (the number of intercept points where a particular taxon (e.g., genus, species, etc.) was detected divided by the total number of intercept points which are equal to or shallower than the maximum depth of plant growth)
- **Relative taxonomic frequency of occurrence** (the number of intercept points where a particular taxon (e.g., genus, species, etc.) was detected divided by the sum of all species' occurrences)
- Mean density (the sum of the density values for a particular species divided by the number of sampling sites)
- **Simpson Diversity Index (SDI)** is an indicator of aquatic plant community diversity. SDI is calculated by taking one minus the sum of the relative frequencies squared for each species present. Based upon the index of community diversity, the closer the SDI is to one, the greater the diversity within the population.

Floristic Quality Index (FQI) (This method uses a predetermined <u>Coefficient of Conservatism</u> (C), that has been assigned to each native plant species in Wisconsin, based on that species' tolerance for disturbance. Non-native plants are not assigned conservatism coefficients. The aggregate conservatism of all the plants inhabiting a site determines its floristic quality. The mean C value for a given lake is the arithmetic mean of the coefficients of all native vascular plant species occurring on the entire site, without regard to dominance or frequency. The FQI value is the mean C times the square root of the total number of native species. This formula combines the conservatism of the species present with a measure of the species richness of the site.

Table 1: Taxa Detected During 2014 Aquatic Plant Survey, Pigeon Lake, Waupaca County, WI

Genus	Species	Common Name	Category
Ceratophyllum	demersum	Coontail	Submersed
Chara	sp.	Muskgrass	Submersed [algal]
Elodea	canadensis	Common waterweed	Submersed
Heteranthera	dubia	Water star-grass	Submersed
Lemna	minor	Small duckweed	Free-floating
Lemna	trisulca	Forked duckweed	Free-floating
Myriophyllum	spicatum	Eurasian water-milfoil	Submersed AIS
Najas	flexilis	Slender naiad	Submersed
Nuphar	variegata	Spatterdock	Floating-leaf
Nymphaea	odorata	White water lily	Floating-leaf
Potamogeton	crispus	Curly-leaf pondweed	Submersed AIS
Potamogeton	praelongus	White-stem pondweed	Submersed
Potamogeton	zosteriformis	Flat-stem pondweed	Submersed
Ranunculus	aquatilis	Stiff water crowfoot	Submersed
Sparganium	sp.	Bur-reed species	Emergent
Spirodela	polyrhiza	Large duckweed	Free-floating
Stuckenia	pectinata	Sago pondweed	Submersed
Vallisneria	americana	Wild celery	Submersed
Wolffia	columbiana	Common watermeal	Free-floating

Table 3: 2014 Aquatic Plant Taxa-Specific Statistics, Pigeon Lake, Waupaca County, WI


Common Name	Percent Frequency of Occurrence within vegetated areas	Percent Frequency of Occurrence at sites shallower than max depth of plants	Percent Relative Frequency of Occurrence	Number of Intercept Points Where Detected	Average Density
Coontail	74.63	71.60	24.67	300	1.17
Common watermeal	44.53	42.72	14.72	179	1.00
Muskgrass	43.28	41.53	14.31	174	1.05
Eurasian water-milfoil	38.31	36.75	12.66	154	1.02
Slender naiad	22.64	21.72	7.48	91	1.00
Wild celery	21.39	20.53	7.07	86	1.00
Small duckweed	16.92	16.23	5.59	68	1.00
Common waterweed	13.93	13.37	4.61	56	1.11
White-stem pondweed	7.21	6.92	2.38	29	1.00
Curly-leaf pondweed	4.98	4.77	1.64	20	1.00
Water star-grass	4.23	4.06	1.40	17	1.00
White water lily	3.98	3.82	1.32	16	1.00
Stiff water crowfoot	1.74	1.67	0.58	7	1.00
Flat-stem pondweed	1.49	1.43	0.49	6	1.00
Bur-reed species	1.24	1.19	0.41	5	1.00
Forked duckweed	1.00	0.95	0.33	4	1.00
Spatterdock	0.50	0.48	0.16	2	1.00
Large duckweed	0.25	0.24	0.08	1	1.00
Sago pondweed	0.25	0.24	0.08	1	1.00

<u>Appendix C – Supporting Water Quality Documentation</u>

Category	TSI	Lake Characteristics	Total P (ug/l)	Chlorophyll a (ug/l)	Water Clarity (feet)
Oligotrophic	1-40	Clear water; oxygen rich at all depths, except if close to mesotrophic border; then may have low or no oxygen; coldwater fish likely in deeper lakes.	< 12	<2.6	>13
Mesotrophic	41-50	Moderately clear; increasing probability of low to no oxygen in bottom waters.	12 to 24	2.6 to 7.3	13 to 6.5
Eutrophic	51-70	Decreased water clarity; probably no oxygen in bottom waters during summer; warm- water fisheries only; blue-green algae likely in summer in upper range; plants also excessive.	> 24	>7.3	<6.5
Pigeon Lake	58.2			19.4	4.16

Adopted from Carlson 1977, Lillie and Mason, 1983, and Shaw 1994 et al

<u>Appendix D – Supporting Watershed Documentation</u>

Watershed and land use evaluation is a necessary component of a management plan. The land use within the watershed is the primary sources of nutrient into the ecosystem. Slight changes in land use watershed can create major impacts on the receiving water body. For instance, if a large land area is disturbed runoff will have a greater sediment and nutrient load. The opposite can occur if major areas that were disturbed are now vegetated with trees or native plants. Land use within the watershed is from WISCLAND – WI DNR data.

Watershed evaluation includes a presentation of the data gathered as part of this project and modeling programs used to predict land use changes and watershed impacts. The Wisconsin Lake Modeling Suite (WiLMS), a screening level and water quality evaluation toll, was used to model the lake's watershed. Using this model, estimates of nutrient and sediment runoff from various land cover types was analyzed for potential impact to the lake. In conjunction with WiLMS, the Lake Eutrophication Analysis Procedure (LEAP) was used to model internal phosphorus loading and eutrophication indices of Pigeon Lake based on watershed land cover, creating a nutrient budget.

Table 7: Phosphorus input by land use type. Pigeon Lake, Waupaca County, WI

			Phosphorus Loading
Land Use	Acres	kg/year	Average kg / acre / year
Mixed Agricultural	18772.3	6078	0.32
Commercial / Industrial	42.8	26	0.61
Forest	21429.8	781	0.04
Pasture / Grassland	12615.3	1532	0.12
Lake Surface	162.7	20	0.12
High Density Residential	808.7	491	0.61
Rural Residential	2852.7	115	0.04
Wetlands	10816.2	438	0.04
Marion Wastewater Facility		703.2	
TOTAL	67500.5	10184.2	1.90

Table 8: Percent phosphorus loading by source. Pigeon Lake, Waupaca County, WI

Land Use	Acres	Percent of Watershed	Percent of Phosphorus Loading
Mixed Agricultural	18772.3	27.81%	59.68%
Commercial / Industrial	42.8	0.06%	0.26%
Forest	21429.8	31.75%	7.67%
Pasture / Grassland	12615.3	18.69%	15.04%
Lake Surface	162.7	0.24%	0.20%
High Density Residential	808.7	1.20%	4.82%
Rural Residential	2852.7	4.23%	1.13%
Wetlands	10816.2	16.02%	4.30%
Marion Wastewater			6.90%
Facility			5.7678
TOTAL	67500.5	100.00%	100.00%

Table 9: Marion Wastewater Treatment Facility Point-Source Discharge Data

Marion Wastewater Treatment Facility

Year	Avg. Flow (MGD)	Avg. TP Concentration (mg/L)
1999	0.246	
2000	0.222	
2001	0.235	
2002	0.26	
2003	0.306	1.75
2004	0.36	1.75
2005	0.294	1.75
2006	0.236	1.75
2007	0.226	2.2
2008	0.244	2.2
2009	0.217	2.2
2010	0.279	2.2
2011	0.312	2.2
2012	0.209	2.45
2013	0.225	1.25
AVERAGE	0.258	1.97

Date: 11/17/2014 Scenario: 3

Lake Id: Pigeon Lake Watershed Id: 0

Hydrologic and Morphometric Data

Tributary Drainage Area: 67337.8 acre

Total Unit Runoff: 10.50 in.

Annual Runoff Volume: 58920.6 acre-ft Lake Surface Area <As>: 162.7 acre Lake Volume <V>: 688.0 acre-ft

Lake Mean Depth <z>: 4.2 ft

Precipitation - Evaporation: 3.8 in.
Hydraulic Loading: 59261.1 acre-ft/year
Areal Water Load <qs>: 364.2 ft/year
Lake Flushing Rate : 86.14 1/year
Water Residence Time: 0.01 year

Observed spring overturn total phosphorus (SPO): 46.0 mg/m^3

Observed growing season mean phosphorus (GSM): 70.33 mg/m^3 % NPS Change: 0% PS Change: 0%

NON-POINT SOURCE DATA

MON-POINT BOOKCE	DAIA						
Land Use	Acre	Low Most Lil	kely High	Loading %	Low M	Most Likely	High
	(ac)	Loading	g (kg/ha-yea	ar)		Loa	ding (kg/year)
Row Crop AG 0	0.0	0.50	1.00	3.00	0.0	0	0
Mixed AG 10636	18772.3	0.30	0.80	1.40	59.7	2279	6078
Pasture/Grass 2553	12615.3	0.10	0.30	0.50	15.0	511	1532
HD Urban (1/8 Ac) 655	808.7	1.00	1.50	2.00	4.8	327	491
MD Urban (1/4 Ac) 0	0.0	0.30	0.50	0.80	0.0	0	0
Rural Res (>1 Ac) 289	2852.7	0.05	0.10	0.25	1.1	58	115
Wetlands 438	10816.2	0.10	0.10	0.10	4.3	438	438
Forest 1561	21429.8	0.05	0.09	0.18	7.7	434	781
Commercial / Indu 35	strial 42.	8 1.00	1.50	2.00	0.3	17	26
Lake Surface 66	162.7	0.10	0.30	1.00	0.2	7	20

POINT SOURCE DATA

P	Point Sources	s Water	Load	Low Most	Likely	High	Loading	%
		(m^3/z	year) (kg	/year) (kg/	/year)	(kg/year)		
Marion	Wasterwater	Facility	356471.1	445.6	703.	2 873	3.4 6	5.9

SEPTIC TANK DATA

Description		Low	Most Likely	High	Loading %
Septic Tank Output (kg/capita-year)		0.30	0.50	0.80	
# capita-years	0.0				
% Phosphorus Retained by Soil		98.0	90.0	80.0	
Septic Tank Loading (kg/year)		0.00	0.00	0.00	0.0

TOTALS DATA

Descripti	ion	Low	Most Likely	High	Loading %
Total Loa	ading (lb)	9955.0	22449.3	37708.7	100.0
Total Loa	ading (kg)	4515.6	10182.9	17104.5	100.0
Areal Loa	ading (lb/ac-year)	61.19	137.98	231.77	
Areal Loa	ading (mg/m^2-year)	6858.12	15465.63	25978.03	
Total PS	Loading (lb)	982.3	1550.3	1925.4	6.9
Total PS	Loading (kg)	445.6	703.2	873.4	6.9
Total NPS	S Loading (lb)	8958.1	20855.4	35638.1	93.1
Total NPS	S Loading (kg)	4063.4	9460.0	16165.3	93.1

LEAP - Lake Eutrophication Analysis Procedure

Lake Name: Pigeon Lake Ecoregion: North Central Hardwood Forests

Watershed Area:67337.8 AcresSurface Area:162.7 AcresMean Depth:4.2 ftTP Load:5263 kg/yrLake Outflow:35 AF/yrAvg TP Inflow:148 ug/L

Residence Time: 0.0 years

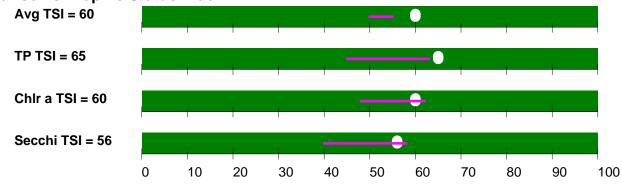
Areal Water Load: 53.84 m/yr P Retention Coef: 0.17

Variable	Observed	Predicted	Std Error	Residual	T-test
TP (ug/L)	68	123	25	-0.26	-2.28
Chlr a (ug/L)	19.4	74.0	34.0	-0.58	-2.52
Secchi (m)	1.3	0.6	0.2	0.32	2.04

Note: Residual = Log10(Observed/Predicted)

T-test for signifigant difference between observed & predicted

Chirophyll A Interval Frequencies (%)


ppb	Observed	Case A	Case B	Case C
10	87%	100%	100%	100%
20	38%	99%	99%	96%
30	13%	95%	94%	87%
60	0%	58%	57%	55%

Case A = within year variation considered

Case B = within year + year-to-year variation

Case C = Case B + Model Error

Carlson's Trophic Status Index

Option	Permit Needed	How it Works	Pros	Cons
No Management	No	No active plant management	Possible protects native species that can enhance water quality and provide habitat for aquatic fauna: No financial cost No system disturbance No harmful effects of chemicals Permit not required	May allow small populations of invasive plants to become larger and more difficult to control later • Requires intensive monitoring
Mechanical Control	Required under NR 109	Plants reduced by mechanical means	Flexible control	Must be repeated, often more than once per season, sometimes weekly
		Wide range of techniques from manual to mechanized	Can balance habitat and recreational needs	Can suspend sediments and increase highly turbidity and nutrient release
a. Handpulling/ Manual raking	Yes/No	Scuba divers or snorkelers remove plants are removed with a rake	Little to no damage done to lake or to native plant species	Very labor intensive and costly by hand or plants
		Works best in soft sediments	Can be highly selective	Needs to be carefully monitored
			Can be done by shoreline property owners within an area <30 ft wide or removing EWM or CLP	Roots, runners and even fragments of some without permits species (including EWM) will start new where selectively planted, so all of plant must be removed
			Can be very effective at removing problems particularly following early detection of an invasive specie	Small scale control only plants Can be very costly if subcontracted
b. Harvesting	Yes	Plants are "mowed" at depths of 2-5 ft., collected with a conveyor and off loaded onto shore	Immediate results	Not selective in species removed
		Harvest invasives only if invasive is already present	Good for CLP management if cut prior to turion	Fragments of EWM can re-root
		throughout the lake	production and is then cut to be kept in check through its growth cycle	Difficulty in finding disposal sites
			Usually minimal impact to the lake	Can remove some small fish and reptiles from lake
			Harvested lanes through dense weed beds can increase growth and forage ability of some fish	Initial cost of harvester expensive
			Can remove some nutrients from the lake	High transport, maintenance and operational costs
				Liability if owned
Biological Control	Yes	Living organisms (e.g. insects or fungi) eat or infect plants	Self sustaining organism will over winter resume eating its host the next year	Effectiveness will vary as control agent's population fluctuates
			Lowers density of problem plant to allow growth of natives	Provides moderate control - complete control unlikely
				Control response may be slow. Must have enough control agent to be effective

a. Weevils on EWM	Yes	Native weevil prefers EWM to other native water milfoil	Native to Wisconsin: Weevil cannot "escape" and become a problem	Excessive cost need to stock large numbers, even if some already present and are costly \$1.00/each
			Selective control of target species	Need good habitat for over wintering on shore (leaf litter) associated with undeveloped shorelines
			Longer term control with limited management	High Panfish populations decrease densities through predation
b. Pathogens	Yes	Fungal/bacterial/viral pathogen introduced to target species to induce mortality	May be species specific	Largely experimental; effectiveness and longevity unknown
			May provide long term control	Possible side effects not understood
			Few dangers to humans or animals	
c. Allelopathy	Yes	Aquatic plants release chemical compounds that inhibit other plants from growing	May provide long term, maintenance free control	Initial transplanting slow and labor intensive
			Spikerushes (<i>Eleocharis</i> spp.) appear to inhibit Eurasian watermill foil growth	Spikerushes native to Wisconsin and have not effectively limited EWM growth
				Wave action along shore makes it difficult to establish plants; plants will not grow in deep or turbid water
d. Restoration of native plants	Possibly, strongly recommend plan and	Diverse native plant community established to help repel invasive species	Native plants provide food and habitat for aquatic fauna	Initial transplanting slow and labor intensive
	consultation with DNR		Diverse native community more repellant to invasive species	Nuisance invasive plants may outcompete plantings
			Supplements removal techniques	Largely experimental; few well documented successful cases and very costly
Physical Control	Required under Ch. 30/NR 107	Plants are reduced by altering variables that affect growth, such as water depth or light levels		
a. Drawdown	Yes, may require Environmental Assessment	Lake water lowered; plants killed when sediment dries, compacts or freezes	Can be effective for EWM, especially when done over winter, provided drying and freezing occur. Sediment compaction is possible over winter.	Plants with large seed bank or propagules that survive drawdown may become more abundant upon refilling
		Must have a water level control or device or siphon	Summer drawdown can restore large portions of shoreline and shallow areas as well as provide sediment compaction	Species growing in deep water (e.g. EWM) that survive may increase, particularly if desired native species are reduced
		Season or duration of drawdown can change effects	Emergent plant species often rebound near shore providing fish and wildlife habitat, sediment stabilization and increased water quality	May impact attached wetlands and shallow wells near shore
			Successful for EWM	Not a good control measure for CLP

				Low cost if not a hydroelectric dam Restores natural water fluctuation important for all aquatic ecosystems	Can affect fish, particularly in shallow lakes if oxygen levels drop or if water levels are not restored before spring spawning Winter drawdown must start in early fall or will kill hibernating reptiles and amphibians Controversial
b	. Dredging	Yes	Plants are removed along with sediment	Increases water depth	Expensive
			Most effective when soft sediments overlay harder substrate	Removes nutrient rich sediments	Increases turbidity and releases nutrients
			For extremely impacted systems	Removes soft bottom sediments that may have high oxygen demand	Exposed sediments may be recolonized by invasive species
			Extensive planning and permitting required		Sediment testing is expensive
					Removes benthic organisms
					Dredged materials must be disposed if
					Severe impact on lake ecosystem
С	. Dyes	Yes	Colors water, reducing light and reducing plant and algal growth	Impairs plant growth without increasing turbidity	Appropriate for very slam water bodies
				Usually non-toxic, degrades naturally over a few weeks	Should not be used in pond or lake with outflow
					Impairs aesthetics
					Affects to microscopic organisms unknown
d	. Mechanical circulation (Solarbees)	Yes	Water is circulated and oxygenated	Reduces blue green algae	Method is experimental; no published studies have been done
			Oxygenation of water decreases ammonium- nitrogen, which is a preferred nutrient source of EWM, theoretically limiting EWM growth (has not been demonstrated scientifically)	May reduce levels of ammonium-nitrogen in the water and at the sediment interface, which could reduce EWM growth	Although EWM prefers ammonium-nitrogen to nitrate, it will uptake nitrate efficiently, so EWM growth may not be affected
			,	Oxygenated water may reduce phosphorus release from sediments if mixing is complete	Units are aesthetically unpleasing
				Reduces chance of fish kills by aerating water	Units could be a navigational hazard
е	. Non-point source nutrient control	No	Runoff of nutrients from the watershed are reduced (e.g. by controlling construction erosion or reducing fertilizer use)	Attempts to correct source of problem, not treat symptoms	Results can take years to be evident due to internal recycling of already resent lake nutrients
			e eademig fortuizer doo;	Could improve water clarity and reduce occurrences of algal blooms	Expensive

			Native plants may be able to compete invasive species better in low nutrient conditions	Requires landowner cooperation and regulation Improved water clarity may increase plant growth
Chemical Control	Required under NR 107	Granules or liquid chemicals kill plants or cease plant growth; some chemicals used primarily for algae	Some flexibility for different situations	Possible toxicity to aquatic animals or humans, especially applicators
		Results usually within 10 days of treatment, but repeat treatments usually needed	Some can be selective if applied correctly	May kill desirable plant species, e.g. native water milfoil or native pondweeds
			Can be used for restoration activities	Treatment set back requirements from potable water sources and/or drinking water use restrictions after application, usually based on concentration
				May cause severe drop in dissolved oxygen causing fish kill, depends on plant biomass killed, temperatures and lake size and shape
				Controversial
a. 2,4-D (DMA-4; Sculpin	Yes	Systemic ¹ herbicide selective to broadleaf ² plants that inhibit cell division in new tissue	Moderately to highly effective; especially on EWM	May cause oxygen depletion after plants die and decompose
		Applied as liquid or granules during early growth phase	Monocots, such as pondweeds (e.g. CLP) and many other native species not affected	Cannot be used in combination with copper herbicides (used for algae)
			Can be used in synergy with endotholl for early season CLP and EWM treatments	Toxic to fish
			Widely used aquatic herbicides	
b. Endothall (Aquathol)	Yes	Broad-spectrum ³ , contact ⁴ herbicide that inhibits protein synthesis	Especially effective on CLP and also effective on EWM	Kills many native pondweeks
		Applied as liquid or granules	May be effective in reducing reestablishment of CLP if reapplied several years in a row in early spring	Not as effective in dense plant beds
				Not to be used in water supplies
			Can be selective depending on concentration and seasonal timing	Toxic to aquatic fauna (to varying degrees)
			Can be combined with 2,4-D for early season CLP and EWM treatments, or with copper compounds	
c. Diquat (Reward)	Yes	Broad-spectrum, contact herbicide that disrupts cellular functioning	Mostly used for water-milfoil and duckweed	May impact non-target plants, especially native pondweeds, coontail, elodea, naiads
		Applied as liquid, can be combined with copper	Rapid action	Toxic to aquatic invertebrates
		treatment	Limited direct toxicity on fish and other animals	Needs to be reapplied several years in a row

					Ineffective in muddy or cold water (<50°F)
d	Fluridone (Sonar)	Yes	Broad-spectrum, systemic pigment bleaching herbicide that inhibits photosynthesis, some reduction in non target effects can be achieved by lowering dosage	Effective on EWM for 2 to 4+ years Applied at very low concentration typically on lake wide basis of less than 8 PPB Specific granular formulation release over extended periods of time 30 - 60 days eliminating peaks and lessening impacts to non targets (natives)	Affects some non-target plants, particularly native milfoils, coontails, elodea and naiads, even at low concentrations. These plants are important to combat invasive species Requires long contact time: 60-90 + days Requires residual monitoring
				Slow decomposition of plants may limit decreases in dissolved oxygen Low toxicity to aquatic animals	Demonstrated herbicide resistance in hydrilla subjected to repeat treatments Unknown effect of repeat whole lake treatments on lake ecology
е	Glyphosate (Rodeo)	Yes	Broad spectrum, systemic herbicide that disrupts enzyme formation and function	Effective on floating and emergent plants such as purple loosestrife	Effective control for 1-5 years
			Usually used for purple loosestrife stems or cattails	Selective if carefully applied to individual plants	Ineffective in muddy water
			Applied as liquid spray or painted on loosestrife stems	Non-toxic to most aquatic animals at recommended dosages	Cannot be used near potable water intakes No control of submerged plants
f.	Triclopyr (Renovate)	Yes	Systemic herbicide selective to broadleaf plants that disrupts enzyme function	Effective on many emergent and floating plants	Impacts may occur to some native plants at higher does (e.g. coontail)
			Applied as liquid spray or liquid	More effective on dicots, such as purple loosestrife; may be more effective than glyphosate	May be toxic to sensitive invertebrates at higher concentrations
				Results in 3-5 weeks Low toxicity to aquatic animals	Retreatment opportunities may be limited due to maximum seasonal rate (2.5 ppm)
				No recreational use restrictions following treatment	Sensitive to UV light; sunlight can break herbicide down prematurely
					Relatively new management option for aquatic plants (since 2003)
g	Copper compounds (Cutrine, Captain)	Yes	Broad-spectrum, systemic herbicide that prevents photosynthesis	Reduces algal growth and increases water clarity	Elemental copper accumulates and persists in sediments
			Used to control planktonic and filamentous algae	No recreational or agricultural restrictions on water use following treatment Herbicidal action on hydrilla, an invasive plant not yet present in Wisconsin	Short term results Small-scale control only, because algae are easily windblown

					Toxic to invertebrates, trout and other fish, depending on the hardness of the water
					Long-term effects of repeat treatments to benthic organism unknown
					Clear water may increase plant growth
h.	Lime slurry	Yes	Applications of lime temporarily raise water pH, which limits the availability of inorganic carbon to plants, preventing growth	Appears to be particularly effective against EWM and CLP	Relatively new technique, so effective dosage levels and exposure requirements are not yet known
				Prevents release of sediment phosphorus, which reduces algal growth	Short-term increase in turbidity due to suspended lime particles
				Increases growth of native plants beneficial as fish habitat	High pH detrimental to aquatic invertebrates
					May restrict growth of some native plants
i.	Alum (aluminum sulfate)	Yes	Remove phosphorus from water column and creates barrier on sediment to prevent internal	Most often used against algal problems	Most not eat fish for 30 days from treatment area
			loading of phosphorus	Lasts up to 5 years	
			Dosage must consider pH, hardness and water volume	Improves water clarity	Minimal effect on aquatic plants, or increased light penetration may increase aquatic plants
					Potential ecosystem toxicity issues for aquatic animals, including fish at some concentrations
j.	Phoslock	yes	Remove/sequesters phosphorus from water column and creates barrier on sediment to	Most often used against algal problems/blooms	Higher cost than Alum
			prevent internal loading of phosphorus	Improves water quality	
			Dosing based on water quality parameters and volumes	Lasts up to 5 years	
				Made from natural materials/carriers and tends to be more environmentally friendly than alum	
	INA Furnaciam water				

^{*}EWM - Eurasian water-milfoil

^{*}CLP - Curly-leaf pondweed

¹Systemic herbicide - Must be absorbed by the plant and moved to the site of action. Often slower-acting than contact herbicides.

²Broadleaf herbicide - Affects only dicots, one of two groups of plants. Aquatic dicots include waterlilies, bladderworts, watermilfoils, and coontails.

³Broad-spectrum herbicide - Affects both monocots and dicots.

⁴Contact herbicide - Unable to move within the plant; kills only plant tissue it contacts directly

Techniques for Aquatic Plant Control Not Allowed in Wisconsin

Option	How it Works	Pros	Cons
Biological Control			
a. Carp	Plants eaten by stocked carp	Effective at removing aquatic plants	Illegal to transport or stock carp in Wisconsin
		Involves species already present in Madison lakes	Carp cause resuspension of sediments, increased water temperature, lower dissolved oxygen levels and reduction of light penetration
			Widespread plant removal deteriorates habitat for other fish and aquatic organisms
			Complete alteration of fish assemblage possible
			Dislodging of plants such as EWM or CLP turions can lead to accelerated spreading of plants
b. Crayfish	Plants eaten by stocked crayfish	Reduces macrophyte biomass	Illegal to transport or stock crayfish in Wisconsin
			Control not selective and may decimate plant community
			Not successful in productive, soft-bottom lakes with many fish predators
			Complete alteration of fish assemblage possible
Mechanical Control			
a. Cutting (no removal)	Plants are "mowed" with underwater cutter	Creates open water areas rapidly	Root system remains for regrowth
(,		Works in water up to 25 ft	Fragments of vegetation can re-root and spread infestation throughout the lake
			Nutrient release can cause increased algae and bacteria and be a nuisance to riparian property owners
			Not selective in species removed small-scale control only
b. Rototilling	Sediment is tilled to uproot plant roots and stems	Decreases stem density, can affect entire plant	Creates turbidity
	Works in deep water (up to 17 ft)	Small scale control	Not selective in species removed
		May provide long-term control	Fragments of vegetation can re-root
			Complete elimination of fish habitat

Techniques for Aquatic Plant Control Not Allowed in Wisconsin

c. Hydroraking	Mechanical rake removes plants from lake Works in deep water (14 ft)	Creates open water areas rapidly	Releases nutrients Increased likelihood of invasive species recolonization Fragments of vegetation can re-root May impact lake fauna Creates turbidity Plants regrown quickly Requires plant disposal
Physical Control a. Fabrics/Bottom Barriers	Prevents light from getting to lake bottom	Reduces turbidity in soft substrate areas Useful for small areas	Eliminates all plants, including native plants important for a healthy lake ecosystem May inhibit spawning by some fish Need maintenance or will become covered in sediment and ineffective
			Gas accumulation under blankets can cause them to dislodge from the bottom Affects benthic invertebrates Anaerobic environment forms that can release excessive nutrients from sediment