

August 21, 2020

Mr. Dan Mossing, P.E. Emmons & Olivier Resources, Inc. 1919 University Avenue West, Suite 300 St. Paul, Minnesota 55104

RE: Contract Drilling Services
Stormwater Improvements
USH 63 / STH 48 at 3rd Avenue
Cumberland, Wisconsin
AET Project No. 31-20717

Dear Mr. Mossing:

We are pleased to present the results of our subsurface exploration program for your stormwater improvements project in the City of Cumberland, Wisconsin. These services were performed according to our proposal to you dated July 17, 2020.

We appreciate the opportunity to work with you on this phase of the project. Please contact us if you have questions about this report or require further assistance.

Sincerely,

American Engineering Testing, Inc.

Blake E. Snyder, P.E. Geotechnical Engineer

Halle Syste

Attachments: Boring Log Notes, Unified Soil Classification System, Figure 1 – Boring Locations, Subsurface Boring Logs, SBD-10793 Stormwater form

BORING LOG NOTES

DRI	LLING AND SAMPLING SYMBOLS		TEST SYMBOLS
Symbol	Definition Definition	Symbol	Definition
D II N.	Cinc of flool, injut and a	CONG.	One dimensional concellidation test
B, H, N: CA:	Size of flush-joint casing Crew Assistant (initials)	CONS: DEN:	One-dimensional consolidation test Dry density, pcf
CAS:	Pipe casing, number indicates nominal diameter in	DEN. DST:	Direct shear test
CAB.	inches	E:	Pressuremeter Modulus, tsf
CC:	Crew Chief (initials)	HYD:	Hydrometer analysis
COT:	Clean-out tube	LL:	Liquid Limit, %
DC:	Drive casing; number indicates diameter in inches	LP:	Pressuremeter Limit Pressure, tsf
DM:	Drilling mud or bentonite slurry	OC:	Organic Content, %
DR:	Driller (initials)	PERM:	Coefficient of permeability (K) test; F - Field;
DS:	Disturbed sample from auger flights		L - Laboratory
FA:	Flight auger; number indicates outside diameter in	PL:	Plastic Limit, %
	inches	q _p :	Pocket Penetrometer strength, tsf (approximate)
HA:	Hand auger; number indicates outside diameter	q_c :	Static cone bearing pressure, tsf
HSA:	Hollow stem auger; number indicates inside diameter	q _u :	Unconfined compressive strength, psf
	in inches	R:	Electrical Resistivity, ohm-cms
LG:	Field logger (initials)	RQD:	Rock Quality Designation of Rock Core, in percent
MC:	Column used to describe moisture condition of		(aggregate length of core pieces 4" or more in length
	samples and for the ground water level symbols		as a percent of total core run)
N (BPF):	Standard penetration resistance (N-value) in	SA:	Sieve analysis
	blows per foot (see notes)	TRX:	Triaxial compression test
NQ:	NQ wireline core barrel	VSR:	Vane shear strength, remolded (field), psf
PQ:	PQ wireline core barrel	VSU:	Vane shear strength, undisturbed (field), psf
RD:	Rotary drilling with fluid and roller or drag bit	WC:	Water content, as percent of dry weight
REC:	In split-spoon (see notes) and thin-walled tube	%-200:	Percent of material finer than #200 sieve
	sampling, the recovered length (in inches) of sample.		
	In rock coring, the length of core recovered (expressed	ST	ANDARD PENETRATION TEST NOTES
	as percent of the total core run). Zero indicates no		
	sample recovered.		lard penetration test consists of driving the sampler with
REV:	Revert drilling fluid		and hammer and counting the number of blows applied in
SS:	Standard split-spoon sampler (steel; 1" is inside		aree 6" increments of penetration. If the sampler is driven
	diameter; 2" outside diameter); unless indicated		18" (usually in highly resistant material), permitted in
~	otherwise		21586, the blows for each complete 6" increment and for
SU	Spin-up sample from hollow stem auger		ial increment is on the boring log. For partial increments,
TW:	Thin-walled tube; number indicates inside diameter in	the numb	er of blows is shown to the nearest 0.1' below the slash.
XX A CIT	inches	TD1 1	1 6 1 1 1 (DEC) 1
WASH:	Sample of material obtained by screening returning		th of sample recovered, as shown on the "REC" column,
	rotary drilling fluid or by which has collected inside		reater than the distance indicated in the N column. The
XXIII.	the borehole after "falling" through drilling fluid		is because the N-value is recorded below the initial 6"
WH:	Sampler advanced by static weight of drill rod and		ss partial penetration defined in ASTM: D1586 is
WD.	140-pound hammer		red) whereas the length of sample recovered is for the
WR:	Sampler advanced by static weight of drill rod	enure sar	npler drive (which may even extend more than 18").
94mm:	94 millimeter wireline core barrel		
<u>▼:</u>	Water level directly measured in boring		

appearance

Estimated water level based solely on sample

 ∇ :

UNIFIED SOIL CLASSIFICATION SYSTEM **ASTM Designations: D 2487, D2488**

AMERICAN ENGINEERING TESTING, INC.

				5	Soil Classification	
Criteria fo	r Assigning Group Syn	mbols and Group Na	nes Using Laboratory Tests ^A	Group Symbol	Group Name ^B	ABased on the (75-mm) sie
Coarse-Grained Soils More	Gravels More than 50% coarse	Clean Gravels Less than 5%	Cu≥4 and 1≤Cc≤3 ^E	GW	Well graded gravel ^F	BIf field sam boulders, or
han 50% etained on	fraction retained on No. 4 sieve	fines ^C	Cu<4 and/or 1>Cc>3 ^E	GP	Poorly graded gravel ^F	boulders, or ^C Gravels wit
No. 200 sieve		Gravels with Fines more	Fines classify as ML or MH	GM	Silty gravel ^{F.G.H}	symbols: GW-GM
		than 12% fines ^C	Fines classify as CL or CH	GC	Clayey gravel ^{F.G.H}	GW-GC v GP-GM p
	Sands 50% or more of coarse	Clean Sands Less than 5%	$Cu \ge 6$ and $1 \le Cc \le 3^E$	SW	Well-graded sand ^I	GP-GC p
	fraction passes No. 4 sieve	fines ^D	Cu<6 and/or 1>Cc>3 ^E	SP	Poorly-graded sand ^I	symbols: SW-SM v
		Sands with Fines more	Fines classify as ML or MH	SM	Silty sand ^{G.H.I}	SW-SC w SP-SM po
		than 12% fines D	Fines classify as CL or CH	SC	Clayey sand ^{G.H.I}	SP-SC po
Fine-Grained Soils 50% or more passes the No. 200	Silts and Clays Liquid limit less	inorganic	PI>7 and plots on or above "A" line ^J	CL	Lean clay ^{K.L.M}	
	than 50		PI<4 or plots below "A" line ^J	ML	Silt ^{K.L.M}	$^{\mathrm{E}}\mathrm{Cu} = \mathrm{D}_{60} / \mathrm{D}$
ieve		organic	Liquid limit–oven dried <0.75	OL	Organic clay ^{K.L.M.N}	FIf soil conta
see Plasticity Chart below)			Liquid limit – not dried		Organic silt ^{K.L.M.O}	sand" to grou
,	Silts and Clays Liquid limit 50	inorganic	PI plots on or above "A" line	СН	Fat clay ^{K.L.M}	symbol GC-
	or more		PI plots below "A" line	МН	Elastic silt ^{K.L.M}	fines" to gro If soil conta
		organic	Liquid limit—oven dried <0.75	ОН	Organic clay ^{K.L.M.P}	gravel" to gr JIf Atterberg
*****			Liquid limit – not dried	DIE	Organic silt ^{K.L.M.Q}	soil is a CL-
Highly organic oil			Primarily organic matter, dark in color, and organic in odor	PT	Peat ^R	add "with sa whichever is
-Screen Opening	SIEVE ANALYSIS (in.) Sieve Number 6 4 .10 20 .40 .60 .140 2	.00 .0 .0 .20	For classification of fine-grained soils and fine-grained fraction of coarse-grained soils. 50 - Equation of "A"-line Horizontal at PI = 4 to LL = 25.5. then PI = 0.73 (LL-20)	J.J. OH	s; jig	LIf soil conta predomin group nar MIf soil conta predomin to group r
ي ي			Equation of "U"-line	1 1		NP1>4 and n

PLASTICITY INDEX (PI)	For classification of fine-grained soils and line-grained fraction of coarse-grained soils. Founding of "A"-line Horizontal at Pl = 4 to LL = 25.5. then Pl = 0.73 (LL = 0.0). Equation of "U"-line Vertical at LL = 16 to Pl = 7. then Pl = 0.9 (LL = 0.0). MH or OH
	.40 10 16 20 30 40 50 60 70 80 90 100 110 LIQUID LIMIT (LL) Plasticity Chart

^A Based on the material passing the 3-in
(75-mm) sieve.
^B If field sample contained cobbles or
boulders, or both, add "with cobbles or
boulders, or both" to group name.

Notes

to 12% fines require dual

-graded gravel with silt graded gravel with clay y graded gravel with silt y graded gravel with clay 12% fines require dual

graded sand with silt graded sand with clay graded sand with silt graded sand with clay

 $(D_{30})^2$ Cc = $D_{10}\,x\,\,D_{60}$

≥15% sand, add "with ame.

as CL-ML, use dual or SC-SM.

nic, add "with organic ame.

15% gravel, add "with name.

its plot is hatched area,

silty clay. 15 to 29% plus No. 200 or "with gravel", dominant.

≥30% plus No. 200, y sand, add "sandy" to

>30% plus No. 200, y gravel, add "gravelly"

NPl>4 and plots on or above "A" line.

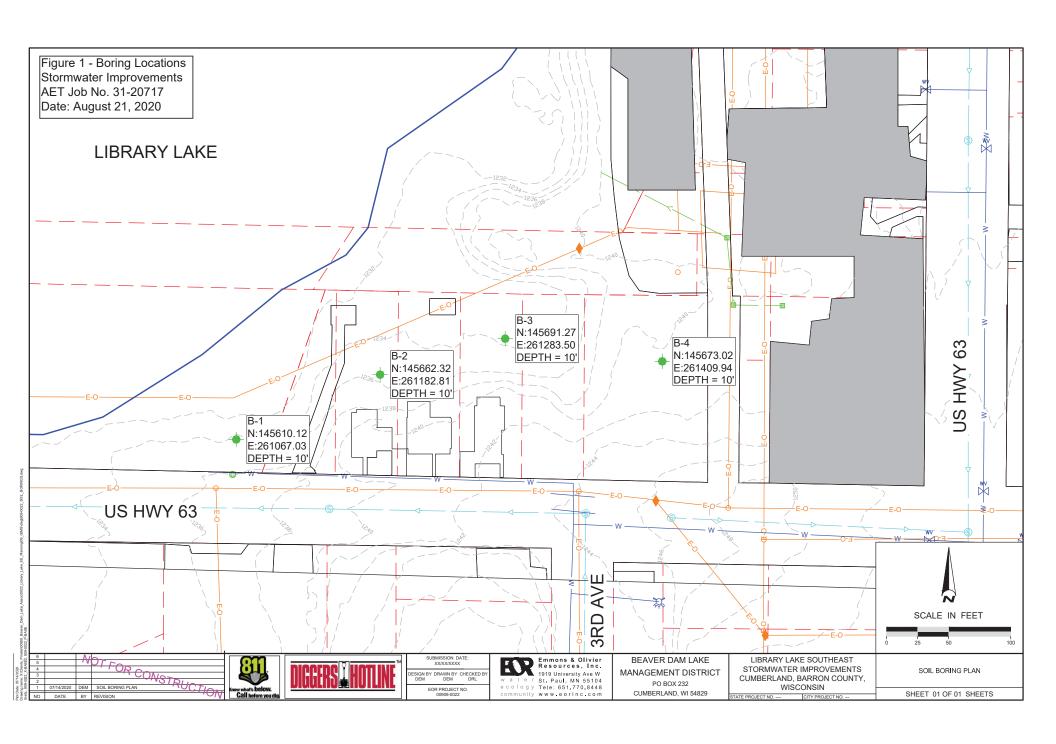
OPI<4 or plots below "A" line.
PPI plots on or above "A" line.
QPI plots below "A" line.

^RFiber Content description shown below.

ADDITIONAL TERMINOLOGY NOTES USED BY AET FOR SO	IL IDENTIFICATION AND DESCRIPTION

	Grain Size	Grave	l Percentages	Consistence	cy of Plastic Soils	Relative Densit	y of Non-Plastic Soils						
<u>Term</u>	Particle Size	Term	Percent	<u>Term</u>	N-Value, BPF	<u>Term</u>	N-Value, BPF						
Boulders Cobbles Gravel Sand Fines (silt & c	Over 12" 3" to 12" #4 sieve to 3" #200 to #4 sieve Pass #200 sieve	A Little Grav With Gravel Gravelly	el 3% - 14% 15% - 29% 30% - 50%	Very Soft Soft Firm Stiff Very Stiff Hard	less than 2 2 - 4 5 - 8 9 - 15 16 - 30 Greater than 30	Very Loose Loose Medium Dense Dense Very Dense	0 - 4 5 - 10 11 - 30 31 - 50 Greater than 50						
Mo	oisture/Frost Condition (MC Column)	Laye	ering Notes	Peat	Description	Organic Description (if no lab tests) Soils are described as <i>organic</i> , if soil is not peat							
D (Dry):	Absence of moisture, dusty, dry to touch.	Laminations:	Layers less than ½" thick of	Term	Fiber Content (Visual Estimate)	content to influence t	ve sufficient organic fines he Liquid Limit properties.						
M (Moist):	visible. Soil may still have a high water content (over "optimum").		differing material or color.	Fibric Peat:	Greater than 67% 33 – 67%	With roots: Judged	clusions to have sufficient quantity						
W (Wet/ Waterbearing)	Free water visible, intended to describe non-plastic soils. Waterbearing usually relates to sands and sand with silt.	Lenses:	Pockets or layers greater than ½" thick of differing	Sapric Peat:	Less than 33%	propert Trace roots: Small r	s to influence the soil ies. oots present, but not judged sufficient quantity to						
F (Frozen):	Soil frozen		material or color.			signific	antly affect soil properties.						

PERCENT, PASSING


PERCENT :

PARTICLE SIZE IN MILLIMETERS

 $C_u = \frac{D_{60}}{D_{10}} = \frac{.15}{0.075} = 200$

 $C_0 = \frac{(D_{30})^2}{D_{10} \times D_{60}} = \frac{2.5^2}{0.075 \times 15} = 5.6$

 $D_{10} = 0.075$ mm

AET JO	OB NO:	31-20717									RING N					-	
PROJE	CT:	Contract Drillin	ig - Storm	water Im	prove	men	ts; USH	63 / S	TH.	48	at 3rd	Avei	ıue; (Cumb	erlan	ıd, W	<u>I</u>
DEPTH	ELEV. FEET	SURFACE ELEVATI	ION:12	234.5	_	G	EOLOGY	N	MC	SA	AMPLE	REC) & LA	BORAT	TORY '	ΓES
IN FEET	FEET	MATERIAL						1	IVIC		ГҮРЕ	IN.	WC	qp	LL	PL	% -#
1 -		FILL, mixture of sorganics, dark bro		t with		FIL	L	3	M		SS	12					
2 —	1232.5	SILT with organic	s, verv dark	k brown.		FIN	E	1									
3 —		moist, very loose		· · · · · · · · · · · · · · · ·			LUVIUM	WH	М		SS	16					
4 —	1230.5									$/ \setminus$							
5 —	1229.5	SILT with sand ar brown with dark g very loose, with p \(OL\) SAND WITH SIL	gray mottling ossible lens	g, moist, es of peat			ARSE LUVIUM	4	М		SS	18					
6 —	1228.5	grained, grayish b loose (SP-SM) LEAN CLAY wit (CL)	rown, moist	t, very	ī	FIN		_		\\							
7 — 8 —		(EZ)						3	M/W		SS	16					
9 —								5	W	\bigvee	SS	18					
	1225.0	GAND MARKETON	Tr. C	1'			ADGE		''								
10 —	1224.5	SAND WITH SIL grained, gray, wat (SP-SM) End of boring at I	erbearing, le				ARSE LUVIUM			<u>/ \</u>							
DEP	TH: D	DRILLING METHOD			WAT	ER L	EVEL MEA	SURE	EMEN'	TS	1	I	I		NOTE:	REFF	R T
0-	8.0' 3	.25" HSA	DATE	TIME	SAMPI DEP	LED TH	CASING DEPTH	CAV DE	Æ-IN PTH	FL	DRILLIN UID LE	NG VEL	WATE LEVE		THE A		
			8/18/20	1753	10.	0	8.0	7	.9	L	None	;	7.6		SHEET		
Dozz.			8/18/20	1758	10.	0	8.0	7	.8		None	;	7.6		EXPLA		
BORIN COMP	IG LETED:	8/18/20												T	ERMIN		
DR: M	IH LG:	AT Rig: 67													TH	IS LO	j

03/2011

AET JO	OB NO:	31-20717					LC	OG OF	BOR	ING N	O	В	-2 (_]	p. 1 o	f 1)	
PROJE	ECT:	Contract Drillin	g - Storm	water Im	prover	ments; USH	63 / 8	STH	48 a	t 3rd	Avei	ıue; C	<u>umb</u>	erlan	d, W	<u>'I</u>
DEPTH IN	ELEV. FEET	SURFACE ELEVATI	.011.	235.8	_	GEOLOGY	N	MC	SAI	MPLE YPE	REC		& LA	BORA7		
IN FEET	FEET	MATERIAL I			[3/ 1 _N ·	TOPSOIL			1	IPE	IN.	WC	qp	LL	PL	%-#20
1 —	1234.8	SILT with sand an brown, moist (OL))		1/ 1/		5	M	\bigvee	SS	18					
-	1233.8	SILTY CLAY, bro	own, firm (CL-ML)		FINE ALLUVIUM		111	\bigvee	55	10					
2 —	1233.3	LEAN CLAY with yellowish brown n				COARGE			\prod							
3 —	-	SAND, fine to me moist, loose (SP)				COARSE ALLUVIUM	8	M	X	SS	20					
4 —	1231.8	SAND, fine to me	dium grain	ed a little					\square							
5 —	_	gravel, brown, mo loose (SP)	ist to water	bearing,			7	M	\bigvee	SS	14					
6 —	_							<u>_</u>								
7 —	_						7	W		SS	18					
8 —	1227.8															
		SAND, fine to me waterbearing, loos	dium grain se (SP)	ed, brown,					M							
9 —	_						5	W	X	SS	16					
10 —	1225.8	End of boring at 1	0.0 feet						H							
			I													
DEP	21H: [DRILLING METHOD	D. ATTE	TD C	1	ER LEVEL MEA	1		1	RILLIN	IG	WATE		NOTE:		
0-2	8.0' 3	2.25" HSA	DATE 9/19/20	TIME	SAMPI DEPT		-	/E-IN PTH	-	RILLIN JID LE	-			THE ATTACHED SHEETS FOR AN		
			8/18/20 8/18/20	1639 1644	10.0 10.0			3.2 7.5		None None		6.1		XPLA		
BORIN	NG PLETED:	8/18/20	0/10/20	1044	10.0	0.0	'	•.5	1	140116		0.0		ERMIN		
	TH LG:													TH	IS LO	G

03/2011

AET_CORP W-ELEV 31-20717 - CUMBERLAND SW.GPJ AET+CPT+WELL.GDT 8/21/20

AET JO	OB NO:	31-20717					LC	OG OF	ВО	RING N	О	В	-3 (_]	p. 1 o	f 1)	
PROJE	CT:	Contract Drillin	g - Storm	water Im	prover	nents; USH	63 / \$	STH 4	48	at 3rd	Avei	nue; (Cumb	<u>erlan</u>	d, W	<u> </u>
DEPTH IN	ELEV. FEET	SURFACE ELEVATI	ON:1	233.9	_	GEOLOGY	N	MC	SA	AMPLE ГҮРЕ	REC) & LA	BORAT	ORY '	TES'
IN FEET	FEET	MATERIAL I			1.7.		11	IVIC		TYPE	IN.	WC	qp	LL	PL	% -#
1 -	1232.4	SILT with organic possible fill (OL) LEAN CLAY, gar	y with brow	Vn		TOPSOIL FINE	2	М	\bigvee	SS	12					
3 —		mottling, soft to fi	rm, possibl	e fill (CL)		ALLUVIUM	5	М		SS	18					
4 — 5 —							3	M/W		SS	18					
6 — 7 —	1227.9	LEAN CLAY with brown mottling, st SAND WITH SIL grained, brown, w dense (SP-SM)	iff, possible T, fine to n	e fill (CL) nedium		COARSE ALLUVIUM	11	W		SS	16					
8 — 9 —		,					11	W	\bigvee	SS	18					
10 —	1223.9	End of boring at 1	0.0 feet						$/ \setminus$							
			T													
DEP	TH: D	PRILLING METHOD			1	ER LEVEL MEA	1							NOTE:	REFE	R T
0-	8.0' 3	.25" HSA	DATE	TIME	SAMPI DEPT	ED CASING H DEPTH	CAV	/E-IN PTH	FL	ORILLIN UID LE	NG VEL	WATE LEVE	R L	THE A	TTAC	HEI
0 -0	~•• <i>5</i>		8/18/20	1712	10.0			.6		None		6.6		SHEET	S FOF	≀ AN
			8/18/20	1717	10.0	8.0	7	'.9		None	;	5.0	E	EXPLA	NATIO)N C
BORIN COMP	IG LETED:	8/18/20	8/18/20	1722	10.0	8.0	7	'.1		None	:	4.9	T	ERMIN	IOLOC	ĵΥ (
		AT Rig: 67					1							TII	IS LO	

03/2011

AET JOB NO:	31-20717					LOG OF BORING NO. B-4 (p. 1 of 1)									
PROJECT:	Contract Drillin	g - Storm	water Imp	rover	nents; USF	I 63 / S	STH	48 a	t 3rd	Avei	ıue; (Cuml	oerlan	ıd, W	<u>I</u>
DEPTH IN FEET ELEV. FEET	SURFACE ELEVATI MATERIAL I	O11.	240.6	_	GEOLOGY	N	MC	SA! T	MPLE YPE	REC IN.	FIELD	0 & LA	BORAT		TESTS %-#200
1240.1	FILL, silty sand w grained, dark brow FILL, silty sand, fi a little gravel, brow	ith organics vn, moist (S	s, fine SM) tum grained	,	FILL	13	M		SS	18	WC	qp qp	LU	IL	70-11200
2 1238.6 3 -	FILL, sand with si grained, a little gra (SP-SM)	lt, fine to navel, brown	medium n, moist			13	M		SS	18					
4 1236.6	FILL, clayey sand gravel, gray with b (SC) SILTY CLAY with with slight gray mouth lenses of sand	h organics, ottling, soft	dark gray to stiff,		FINE ALLUVIUM	I 11	M		SS	14					
6 – <u>1234.1</u> 7 –	LEAN CLAY, gra	y with brow				4	M		SS	18					
8 – 9 –						5	M		SS	18					
10 1230.6 DEPTH: I	End of boring at 1	0.0 feet													
	DRILLING METHOD 3.25" HSA	DATE 8/18/20		SAMPI DEPT		G CAV	VE-IN PTH	D FLU	RILLIN VID LE	-	WATE	ER IL	NOTE:	TTAC	HED
BORING COMPLETED: DR: MH LG:	BORING COMPLETED: 8/18/20 DR: MH LG: AT Rig: 67		1605	10.0	8.0	9	0.9		None		None	I	SHEET EXPLA ERMIN TH	NATIO	ON OF GY ON

03/2011

AET_CORP W-ELEV 31-20717 - CUMBERLAND SW.GPJ AET+CPT+WELL.GDT 8/21/20

Wis. Dept. of Safety and Professional Services $\ \ SOIL\ EVALUATION\ \ -\ STORM$ Division of Safety and Buildings

in accordance with SPS 382.365 and 385, Wis. Adm. Code

Page	1	of	2
ayc		O.	

Attach cor	mnlete s	ite nlan on naner	not less than 8 1/2 x 11 inche	as in siza P	Plan must	County Barron							
include, bu	ut not lir	nited to: vertical a	and horizontal reference point , north arrow, and BM referen	(BM), direct	tion and	Parcel I.D.							
		Please	print all information.			Reviewed	by		Date				
Personal i	informatio	on you provide may	- be used for secondary purposes (F	Privacy Law,	s. 15.04 (1) (m)).				1				
Property Owi	ner				Property Location	n							
Emmons &	Olivier	Resources, Inc			Govt. Lot SE	1/4 NW 1	/4 S 07	T 35 N	N R 13 W E (or) W				
Property Owr		•			Lot # Block	# Subd. Nan	ne or CSM#						
	ersity Av	venue West; Su											
City		·	Code Phone Number	,		Village	Town	Neares					
St. Paul		MN 5	5104 ₍ 651 ₎ 770-8448		Cumberland			USHOS	3 / STH 48 at 3rd Av				
Drainage ar Optional: Test Site Su	_	or (check all the	sq. ft.		Hydraulic Application Test Method: Morphological Evaluation								
☐ Irrigatio			ention trench Trencl	h(es)									
│ │	ardan	Grasse	ed swale Reuse	,			Double-F	Ring Infiltr	ometer				
_							Other (sp	pecify)					
☐ Infiltrati	on tren	ch \square SDS (>	> 15' wide)										
B-1 Obs. # Boring													
								0/ D 1	Hydraulic App. Rate				
Horizon [Depth in.	Dominant Color Munsell	Redox Description Qu. Sz. Cont. Color	Texture	Structure Gr. Sz. Sh.	Consistence	Boundary	% Rock Frag.	Inches/Hr				
1 (0-24	7.5YR 3/2	(FILL)	s / sil	0, sg / 0, m	m, lo	a, w	<5	3.60 / 0.13				
	24-48	10YR 2/2		si	0, m	m, lo	g, w	<5	0.07				
	8-60	101R 2/2	C, 1-2, F, 10YR 4/1	sil	0, m	m, lo	-	<5	0.13				
	60-72	101R 2/2 10YR 4/2			<u> </u>	,	a, w	<5 <5	3.60				
				S	0, sg	m, lo	a, w						
	2-114	10YR 4/1		С	0, m	m, fr	a, w	<5 	0.07				
6 11	4-120	10YR 4/1		S	0, sg	m, lo		<5	3.60				
			GW at about 7.6'										
B-2 Obs.	#	Boring Pit Groui	nd surface elev.	ft	Depth to limiting	24 factor	in.						
								% Rock	Hydrualic App. Rate				
Horizon [Depth in.	Dominant Color Munsell	Redox Description Qu. Sz. Cont. Color	Texture	Structure Gr. Sz. Sh.	Consistence	Boundary	% ROCK Frag.	Inches/Hr				
1 (0-12	10YR 3/3		sil	0, m	m, fr	a, w	<5	0.13				
2 1	2-24	10YR 4/3		С	0, m	m, fr	g, w	<5	0.07				
3 2	24-30	10YR 4/3	C, 1-2, D, 10YR 4/6	С	0, m	m, fr	a, w	<5	0.07				
4 30	0-120	7.5YR 5/4		s	0, sg	m, lo		<5	3.60				
			GW at about 6.0'										
CST/PSS Na Blake E. S	•	,		Signature	Blake !	Sulli			PSS Number 323667				
Address			pewa Falls WI 54729			luation Conduc	cted	Tele	phone Number 5) 861-5045				

Property O	EOF	R, Inc.	Р	Parcel ID #				Page _	2 2 of
B-3 Obs. # Boring 1233.9 18									
			nd surface elev1					-	Hydraulic App. Rate
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.			Frag.	
1	0-18	10YR 3/3		si	0, m	m, lo	a, w	< 5	0.07
2	18-72	10YR 5/2	C, 1-2, P, 10YR 4/6	С	0, m	m, fr	g, w	<5	0.07
3	72-78	10YR 5/2	C, 1-2, F, 10YR 3/2	С	0, m	m, fr	a, w	<5	0.07
4	78-120	10YR 5/4		s	0, sg	m, lo		<5	3.60
			GW at about 4.9'						
B-4 Obs. # Boring 1240.6 Depth to limiting factor in. In. Depth to limiting factor In.									
				π.	Depth to limiting				Hydraulic App. Rate
Horizon	Depth in.	Dominant Color Munsell	Redox Description Qu. Sz. Cont. Color	Texture	Structure Gr. Sz. Sh.	Consistence	Boundary	% Rock Frag.	Inches/Hr
1	0-6	10YR 3/3	(FILL)	sl	0, sg	m, lo	a, w	<5	0.50
2	6-24	10YR 4/4	(FILL)	ls	0, sg	m, lo	a, w	~10	1.63
3	24-42	10YR 4/4	(FILL)	s	0, sg	m, lo	a, w	~10	3.60
4	42-48	10YR 3/2	M, 1-3, D, 10YR 3/6	scl	0, m	m, lo	a, w	~10	0.11
5	48-78	10YR 4/1	F, 1-2, F, 10YR 3/1	С	0, m	m, fr	a, w	<5	0.07
6	78-120	GLEY 1 3/1	M, 1-3, P, 10YR 5/6	С	0, m	m, fr		<5	0.07
			No GW Encountered						
				<u> </u>	<u> </u>	<u> </u>			
Test Results and/or Summary Comments									
The installation of monitoring wells for obtaining additional groundwater measurements was beyond our scope of services.									