Long-Term Water Quality Trends Observed at
Wisconsin’s Ambient Monitoring Sites on the
Upper Mississippi River
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INTRODUCTION

One of the most frequent questions asked by the general public, legislators, resource agencies,
environmental interests and the regulated community has been, “Is the Mississippi River water
quality improving or getting worse?” At first, this might seem like an easy question to answer,
especially if major point and non-point source pollution efforts have been implemented and the
impacted stream is small. However, when dealing with the Mississippi River mainstem, the
answer is less obvious due to its large size and potential pollution inputs from its huge
watershed. In addition, changes in ¢limatic variables (temperature, flow, and precipitation) and
human-induced biases (time and method of sampling or analytical changes) may confound
water quality trend analyses. Finally, the existence of a sufficiently long and consistent water
quality monitoring program is necessary to answer this question.

During the last two decades, the Wisconsin Department of Natural Resources (WDNR)
conducted monthly water quality monitoring at three sites along the Mississippi River from Red
Wing, Minnesota (Lock and Dam 3) to Lynxville, Wisconsin (Lock and Dam 9). Earlier records
from the early 1960s do exist for one station (Lock and Dam 11 at Dubuque, 1A), but this site
was discontinued in the mid-1970s. Additional sites have been sampled during the last two
decades but these records were generally limited to ten years. This river reach has also been
monitored by the Minnesota Pollution Control Agency (MPCA) and a summary of both MPCA’s
and WDNR's monitoring efforts has been previously described (Sullivan, 1989). MPCA’s
monitoring effort was reduced in the mid-1990s. More recently, the U.S. Geological Survey's
Long Term Resource Monitoring Program has been conducting a comprehensive water quality
monitoring program on the Upper Mississippi River, but this record is limited to ten years or less.
The Metropolitan Council Environmental Services has an extensive water quality monitoring
program that extends back to the mid-1970s, but their Mississippi River monitoring is primarily
restricted to the Twin Cities Metropolitan Area and an electronic copy of their data was not
readily available.

The Department’s ambient water quality monitoring program on the Mississippi began in the late
1970s. Water samples have been analyzed at the State Laboratory of Hygiene since program
inception. This has assured laboratory method continuity and consistency and greatly facilitated
data analysis. Data have been stored in U.S. EPA’s Storage and Retrieval System (STORET)
and have been accessible via dial-up or network connections. In 1999, the STORET database
could no longer be used to store data due to computer coding problems dealing with the year
1999 and 2000. Since that time, a new system has been developed by EPA and will likely be
used by the Department. As a result of this database transition, it was appropriate to re-
evaluate Wisconsin’s long-term monitoring results in 1999, while the old STORET system was
still accessible.

The primary purpose of this evaluation was to assess seasonal and yearly variation in
Mississippi River water quality monitoring data and to identify significant long-term trends. This
assessment will be used to help guide the Department’s future monitoring strategies for the river
and to provide water quality information to the public and other resource agencies that are
interested in Mississippi River water quality trends.



METHODS

Wisconsin DNR's long-term (1977-98) water quality data for the Mississippi River main channel
was obtained from the STORET computer data base. Long-term trend analyses were restricted
to stations with the longest period of record. These included the following three stations: Lock &
Dam 3 near Red Wing, MN, Lock & Dam 4 at Alma, WI and Lock & Dam 9 near Lynxville, WI

(Figure 1).

Field sampling for dissolved oxygen, water temperature and pH followed standardized
procedures (WDNR, 1983). Water chemistry analysis was performed at the Wisconsin State
Laboratory of Hygiene (WSLH), Madison, WI, following Standard Methods and/or EPA approved
methods (WSLH, 1992). A summary of test methods and quality assurance information has
been previously described (Sullivan, 1993). There were instrumentation and minor method
changes over the 21-year period, but none of these charges were believed to introduce
significant bias into the laboratory results described in this report (George Bowman, WSLH,
personal communications. Sampling was conducted at monthly intervals over the 21-year
period typically between mid-morning and mid-afternoon.

Field or laboratory measured parameters included: water temperature, conductivity, chloride,
dissolved oxygen (DO), pH (field and lab), ammonia+ammonium nitrogen (NHXx), nitrite+nitrate
nitrogen (NOXx), total phosphorus (TP), dissolved ortho-phosphorus, total suspended solids
(TSS), dissolved silica (Si), total chlorophyll a, and fecal coliform bacteria. Organic nitrogen was
measured prior to March 1981 or calculated from the difference between total Kjeldahl nitrogen
and NHx after this period. TKN data are not presented in this report but are available in the raw
data set. Calculated parameters included DO saturation, un-ionized ammonia nitrogen (UNH3),
inorganic nitrogen (NHx+NOx), total nitrogen (TN = organic nitrogen + NHx + NOx), percent of
TN present as inorganic nitrogen, percent of TP present as ortho-phosphorus and the TN/TP
ratio. Total P and dissolved ortho-phosphorus were reported as P. Similarly, all forms of
nitrogen were reported as N. Dissolved Si was reported as Si0,.

Estimates of DO saturation were based on an assumed station (field) pressure of 760 mm at the
time of sampling. This slightly underestimated actual DO saturation since station pressure
readings are typically between 740 and 755 mm. Un-ionized ammonia nitrogen was calculated
using ambient temperature and field pH. Loading estimates (flux) were derived for specific
parameters by using the concentration measurements and river flows on the day of water quality
sampling. Loading estimates (flux) were derived for specific parameters by using the
concentration measurements and river flows recorded by the U.S. Corps of Engineers at the
respective Lock and Dam monitoring site at the time of water quality sampling.

Data were transferred from STORET into Lotus 123™ spreadsheet software for initial data
evaluation. Missing or questionable values were verified against hard copy laboratory records.
Corrected values were re-entered into the STORET database. Values reported as less than
detection were set equal to the detection limit for statistical calculations and for plotting.

Statistical analyses and plots were prepared using WQHYDRO version 2030 (WQHYDRO,
1997a). A Kruskall-Wallis test was used to test for the presence of seasonality and was
automatically computed when plotting monthly box plots (Appendix A). Trend analysis was
performed using a Seasonal Kendall test with (SKWC) and without (SKWOC) correction for
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serial correlation (Hirsch et al. 1982 and Hirsch and Slack 1984). Testing for serial correlation
was performed using a Spearman rank correlation of deseasonalized data. If significant serial
correlation was found, the SKWC trend analysis results were used. The need to check for serial
correlation was only necessary when SKWOC trend test was significant, but SKWC was not.
Water quality variables that showed significant correlation (Spearman rank) to river flow were
flow-adjusted using regression analysis and then the residuals were tested for trends as
described above. In addition, variables that were potentially influenced by sampling time (i.e.
temperature, dissolved oxygen, dissolved oxygen saturation, and pH) were also time-adjusted
using a sinusoidal regression correction when the sampling time exhibited a significant temporal
trend for that station.

Trend analysis was performed on monthly data spanning at least 15 years. A significance level
(alpha) of 0.05 for a non-directional test (i.e. increasing or decreasing trend) was the criterion
used to establish significant trends or correlations. For Seasonal Kendall tend analysis in
WQHYDRO, this was denoted as 2P<0.05.

RESULTS and DISSCUSSION
Seasonal Changes in Water Quality

All water quality and physical parameters evaluated in this report showed significant seasonal
(monthly) fluctuations (Appendix A). This response is typical for water quality data and is
generally attributable to seasonal changes in solar radiation and hydrologic factors. Further, the
annual cycle of terrestrial and aquatic plant production can also exert an influence on the quality
and quantity of runoff or affect instream water quality conditions. Seasonality presents a
potential problem for trend detection unless specifically addressed in the trend analysis
procedure.

Parameters that showed the most pronounced seasonal variation included water temperature,
river flow, DO, dissolved Si, total chlorophyll a, TSS and the percent of TP in the ortho-
phosphorus fraction. Seasonal changes in water temperature provided a classic cyclical pattern
with minimums in January and maximums in July or August.

River flow exhibited a more variable seasonal pattern with maximums typically following
snowmelt runoff and spring rains (April-May) followed by a gradual decline to minimum flows
during mid-winter (January-February). Increased precipitation and runoff in combination with
headwater reservoir releases may result in a slight increase in flows during late fall.

Seasonal DO concentrations generally showed a seasonal pattern that was the inverse of water
temperature since the solubility of DO increases as temperature decreases. As a result, DO
levels were highest in winter and lowest in summer.

Total suspended solid concentrations followed a seasonal pattern similar to temperature and
river flow. Lowest TSS levels were found during periods of ice cover when river and tributary
flows were low and internal sources of TSS (sediment resuspension and phytoplankton) were
not important. Highest TSS concentrations were usually found during periods of spring or
summer runoff.



Total chlorophyll a, an index to phytoplankton biomass, exhibited highest levels during May and
lowest levels during mid-winter. Chlorophyll data were only available for Lock and Dam 3 and 9
and for a shorter time period (1988-98). Spring phytoplankton blooms (most likely diatoms)
contributed to reductions in dissolved ortho-P, Si and NHx due to nutrient assimilation.
Dissolved oxygen saturation was typically highest in May and likely corresponded to increased
phytoplankton photosynthetic activity.

Many of the other water quality parameters assessed in this report were influenced by
temperature (i.e. biological, physical or chemical processes) and/or river flow (i.e. dilution,
resuspension, mixing) and thus, also showed significant seasonal changes. The only parameter
that did not exhibit significant seasonality was the sample collection time. This was expected
since sampling time was generally confined to a relatively narrow window of time. Sampling
time was influenced by human-induced bias attributable to travel time changes associated with
the home station and field schedule of the person responsible for sampling.

Annual Changes in Water Quality

Water quality conditions in the Upper Mississippi River mainstem normally exhibited moderate to
large variation from year-to-year. These fluctuations in quality were most likely related to
changes in timing, amount and distribution of precipitation and land use activities in the basins
receiving the precipitation. Changes in precipitation are generally reflected in the river’s flow or
discharge. Substantial rainfall over a basin with agricultural land use results in increased non-
point source pollutant contributions such as fecal coliform bacteria, nutrients and suspended
solids. In contrast, during periods of low river flow, industrial and point source inputs,
groundwater inflow and internal processes (i.e. sediment resuspension, nutrient cycling and
algae or aquatic macrophyte growth) may played a larger role in influencing mainstem water
quality conditions. More recently, the introduction of zebra mussels to the Mississippi River has
presented a another biological agent that has the potential to influence riverine water quality
conditions during some years in reaches with heavy infestations (Sullivan and Endris, 1998).

A graphical summary of annual changes in water quality conditions was evaluated by preparing
box plots of monthly monitoring data collected in each year (Appendix A). The yearly
information has been presented alongside the seasonal (monthly) box plots to facilitate
comparisons between these two temporal scales.

Annual box plots of river flow on sampling days at Lock and Dam 3, 4 and 9 showed distinct
periods of low flow in 1977, 80, 87, 88, 89, and to a lesser extent 1990. High flows were obvious
in 1986 and 93. The magnitude of the low or high flow periods differed somewhat between the
three monitoring stations due different tributary flow contributions. The impact of a tributary’s
flow or pollutant contribution on a downstream monitoring site decreased as the distance and
drainage area contribution increased. This was not only true of tributary-induced water quality
changes in the mainstem of the river, but also applied to major point source discharges to the
Mississippi such as the Metropolitan Wastewater Treatment Plant at St. Paul, MN.

An estimate of major tributary and headwater flow contributions to the Mississippi River was
developed by preparing an annual average flow budget for the U.S. Geological Survey’s gaging
station at Mc Gregor, |A for the 21-year monitoring period (Figure 2). The major tributaries
influencing the study area include the Minnesota, St. Croix, Chippewa and Black Rivers and
generally accounted for 40 to 55 percent of the flow as measured at the Mc Gregor gage. Upper
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Mississippi River headwater flows (Anoka, MN gage) and many smaller tributary inflows from
Minnesota and Wisconsin comprised the remainder. Smaller tributaries (combined) showed
large year-to-year flow contribution that varied from about 20 to 40 percent of the total flow. The
Minnesota River exhibited the greatest temporal change in flow contribution and ranged from
about 5 percent during low flow (1988) to 25 percent during high flow (1993) years. In general,
these changes in flow contribution were likely important factors influencing temporal and spatial
water quality conditions in the Mississippi River study reach. '

Water quality parameters exhibiting the largest annual changes included conductivity, Cl, pH, N
(all measured forms), TN/TP ratio, and percent ortho-P. This annual variation was likely
influenced by the quality and quantity of surface water runoff and instream processes that
changed or altered the river’s water quality as the water flowed downstream. For example,
during periods of low flow, the hydraulic retention time of the navigation pools increased and
promoted the growth of phytoplankton (i.e. increased chlorophyll a) due to reduced flushing.
Reduced river flow is normally associated with reduced tributary loadings of TSS and nutrients.
Lower TSS concentrations may result in improved light penetration and may further enhance
phytoplankton or periphyton development or promote increased submersed aquatic macrophyte
growth in the shallow riverine pools or channel border habitats. The autochthonous production
of organic matter by algae or macrophytes lowers dissolved nitrogen concentrations as a result
of nutrient assimilation. In contrast, dissolved ortho-P may increase during summer low flows
as a result of releases from anoxic sediments, especially in Lake Pepin, a natural riverine lake
located in Pool 4. The combination of reduced tributary nitrogen inputs, nitrogen assimilation by
aquatic plants and sediment P release resulted in lower TN/TP ratios during low flow years.

The impacts of point source discharges to the Mississippi River were more noticeable during low
flow conditions when the river provided less water to dilute these wasteloads. Point source
impacts were more apparent in the upper study area below the Twin Cities Metropolitan Area
where the wasteloads were relatively high and the river flow was less. Annual box plots of some
water quality data have indicated improved conditions associated with point source pollution
abatement in the Twin Cities Area. This was most apparent with total and un-ionized ammonia
nitrogen, a potentially toxic form of inorganic nitrogen, and DO saturation. Mainstem point
source discharges between Lock and Dam 3 and 9 are relatively small, and tributary inflows
provide more flow to dilute these wasteloads. As a result, the impacts of point source
discharges in this latter reach are more difficult to quantify.

High river flows greatly diminished the influence of internal factors such as algae or submersed
aquatic macrophyte growth, sediment releases or point source discharge impacts on the river's
water quality. Instead, the water quality of the river at a particular site is largely influenced by
the quality of runoff water from major tributaries above that location. For example, the
monitoring site at Lock and Dam 3 was greatly influenced by the Minnesota River during high
flow periods. This watershed is heavily influenced by agricultural landuse and contributes to
high nutrient and TSS loadings to the upper study area (Stark, 1996 and Kroening, 1998). The
impact of the Minnesota River on water quality measured at Lock and Dam 4 was substantially
less due to greater flow contributions from other tributaries and solids settling and nutrient
cycling in Lake Pepin.



Significant Water Quality Trends

Annual box plots provide an indication of year-to-year changes and some visual impression of
long-term trends. However, additional analyses are required to establish if the observed
temporal changes in water quality are statistically significant. The seasonal Kendall test is a
widely accepted method for establishing the significance of monotonic trend (gradual change
over many years) in long-term water quality records. The trend slope (i.e. change in
concentration or unit value per year) presented as part of the seasonal Kendall test is an
estimated value based on a median slope derived from of all the pairs of data within a particular
season (WQHYDRO, 1997b).

A summary of the trend analysis of long-term water quality data collected at Lock and Dam 3, 4
and 9 is presented in Tables 1 to 3. Trend results using SKWOC were not presented since all
parameters showed significant serial correlation. A graphical illustration of parameters showing
significant long-term trends for the three stations is present in Appendix (B). River flow was also
included for comparative purposes even though flow trends were not significant. A graphical
summary of all significant trends is presented in Figure 3 where the estimated trend slope was
expressed as a percentage of the parameter's median concentration or unit value (Tables 1-3).
This allowed for a better comparison between monitoring stations and parameters. In the trend
discussions provided below, the percentage change per year in a parameter's concentration or
unit value is based in reference to the median value.

Fecal coliform bacteria provide an index to bacteria contamination in surface waters. High fecal
coliform levels are usually associated with animal waste runoff and untreated domestic
wastewater. However, stormwater runoff from urban areas may also contain elevated fecal
coliform levels from domestic pets. Long-term fecal coliform records were only available for
Lock and Dam 3 and 4. A significant decreasing trend was noted for both stations, 7.9% and
3.1% per year, respectively (Figure 3). Flow-adjustment was necessary for the trend analysis of
data collected at Lock and Dam 3 (Table 1). The reduction of fecal coliform bacteria was likely
associated with improved municipal wastewater treatment and a reduction of untreated
domestic wastewater discharges due to the elimination of combined sanitary and storm sewers
in the Twin Cities Metropolitan area between 1986 and 1995 (Cities of Minneapolis, et al. 1996).
Elevated fecal coliform counts still occur, and these are most likely associated with animal waste
runoff during high flow periods or during winter months when municipal wastewater effluent
disinfection is not required.

Conductivity, an indirect measurement of total dissolved solids, exhibited significant increasing
trends at all three monitoring stations with the average flow-adjusted trend ranging from 0.8 to
1.6% per year (Figure 3). These trends reflected an estimated 75 to 100 uS/cm increase in
conductivity between 1977 and 1998. Lock and Dam 4 appeared to exhibit a greater increasing
trend than that observed for Lock and Dam 3 or 9. It is not known if this larger trend is
significant or what factors are contributing to this difference. A potential factor could include
greater dissolved solid inputs from the Chippewa or Buffalo Rivers which enter the Mississippi a
few miles above Lock and Dam 4, but this needs further evaluation.

The conductivity trends were supported by the chloride results, which also exhibited significant
increasing trends (2.2 to 2.8% per year) over a somewhat shorter monitoring period (1982-98).
Chloride is one of the major ions found in freshwater. Potential sources of chloride include road
salt and fertilizer (potassium chloride) runoff, municipal and industrial discharges, animal waste



Table 1. Summary of flow correlation and trend analysis for Wisconsin’s ambient water quality monitoring

station at Lock and Dam 3 above Red Wing, Minnesota.
Seasonal Kendall test with correction for serial correlation (SKWC).

Trend analysis was performed on monthly data using the
The term "2*P" represents the

probability of a Type I error for a two-sided hypothesis test (i.e. probability that the observed trend is
due to random sampling variability).

Flow-Adj.

Param. vs Flow SKWC SKWC Estimated Parm. % Change
Parameter Correlation Trend Trend Trend Slope Hedian per Year

Spearman’s rho 2%p 2%p unit/yr Value from Median
Time of Collection hr - 0.031 + - -9.54 1120 -0.9
HWater Temperature C 0.195 * 0.196 0.030 +3 0.05 10.7 0.5
Flow cfs - 0.244 - - 16100 -
Conductivity uS/cm 825C 0.193 * 0.007 + 0.005 + 3.95 485 0.8
Chloride mg/L -0.562 * 0.004 + <0.001 + 0.46 19 2.4
Dissolved Oxygen mg/L -0.066 0.013 + 0.008 +# 0.05 10.2 0.5
DO Saturation % 0.159 * 0.002 + <0.001 +a 0.43 89 0.5
pH field s.u. 0.112 0.712 0.984 # - 8.0 -
Ammonia+Ammonium-N mg/L -0.284 * <0,001 + <0.001 + -0.013 0.16 -8.1
Un-ionized Ammonia-N mg/L -0.297 <0.001 + 0.001 + -0.0002 0.0028 -7.1
Nitrite+Nitrate-N mg/L 0.544 * 0.007 + 0.020 + 0.04 1.6 2.5
Inorganic Mitrogen mg/L 0.461 * 0.230 0.276 - 1.9 -
Organic Nitrogen mg/L 0.361 * 0.123 0.104 % 1.0 =
Total Nitrogen mg/L 0.525 * 0.448 0.506 - 2.8 =
% Inorganic Nitrogen 0.235 * 0.095 0.141 = 68 =
Dissolved Ortho-P mg/L -0.281 * 0.382 0.100 = 0.093 *
Total Phosphorus mg/L 0.025 0.465 - - 0.180 -
% Ortho-Phosphorus -0.404 * 0.098 0.026 + 0.49 50.4 1.0
Ratio TN/TP 0.459 * 0.454 0.872 - 16.8 -
Total Suspended Solids mg/L 0.599 * 0.119 0.696 - 27 -
Fecal Col. Bact. #/100 mL 0.142 * 0.350 0.048 + -3.17 40 -7.9

* gignificant flow correlation for a non-directional test (alpha=0.05)

+ Significant trend for a non-directional test (alpha=0.05)

# Hour-adjusted only.
@ Flow and Hour-adjusted.



Table 2. Summary of flow correlation and tremd analysis for Wisconsin’s ambient water quality monitoring
station at Lock and Dam 4 at Alma, Wisconsin. Trend analysis was performed on monthly data using the
Seasonal Kendall test with correction for serial correlation (SKWC). The term "2*P" represents probability
of a Type I error for a two-sided hypothesis test (i.e. probability that the observed trend is due to random

sampling variability).

Flow-Adj.
Param. vs Flow SKWC SKWC Estimated Parm. % Change
Parameter Correlation Trend Trend Trend Slope Hedian per Year
Spearman’s rho 2*p 2*p unit/yr Value from Median
Time of Collection hr - 0.247 - - 1308 -
Water Temperature C 0.237 0.628 0.311 - 9.0 -
Flow cfs - 0.254 - - 26540 &
Conductivity uS/cm a25C -0.501 * 0.007 + <0.001 + 5.05 320 1.6
Chloride mg/L -0.763 * 0.014 + <0.001 + 0.31 1 2.8
Dissolved Oxygen ma/L -0.083 0.003 + - 0.06 10.0 0.6
DO Saturation % 0.144 * <0.001 + <0.001 + 0.58 88.8 0.7
pH field s.u. -0.201 * 0.668 0.320 - 7.7 -
Ammonia+Ammonium-N mg/L -0.208 * <0.001 + 0.017 + -0.0019 0.05 -3.8
Un-ionized Ammonia-N mg/L -0.310 * 0.521 0.762 - 0.007 -
NitritetNitrate-N mg/L 0.029 0.006 + - 0.02 1.0 2.0
Inorganic Nitrogen mg/L -0.054 0.031 + - 0.01 1.2 0.8
Organic Nitrogen mg/L 0.180 * 0.153 0.330 - 0.8 .-
Total Mitrogen mg/L 0.001 0.123 = - 1.9 -
% Inorganic Mitrogen -0.143 * 0.004 + 0.017 + 0.35 59.4 0.6
Dissolved Ortho-P mg/L -0.338 * 0.325 0.021 + 0.0005 0.060 0.8
Total Phosphorus mg/L 0.013 0.590 = - 0.129 -
% Ortho-Phosphorus -0.547 * 0.355 0.100 = 49.0 -
Ratio TH/TP -0.027 0.394 - - 14.8 -
Total Suspended Solids mg/L 0.529 * 0.014 + 0.078 - 12 =
Fecal Col. Bact. #/100 mL 0.105 0.042 + & -2.14 70 -3.1

* Significant flow correlation for a non-directional test (alpha=0.05)
+ Significant trend for a non-directional test (alpha=0.05) '
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Table 3. Sumary of flow correlation and trend analysis for Wisconsin’s ambient water quality monitoring
station at Lock and Dam 9 below Lynxville, Wisconsin. Trend analysis was performed on monthly data using
the Seasonal Kendall test with correction for serial correlation (SKWC). The term "2*P" represents the
probability of a Type I error for a two-sided hypothesis test (i.e. probability that the observed trend is
due to random sampling variability).

Flow-Adj.
: Param. vs Flow SKHC SKWC Estimated Parm. % Change
Parameter Correlation Trend Trend Trend Slope Median per Year
Spearman’s rho 2%p 2*p unit/yr Value from Median
Time of Collection hr - 0.011 + - -4.99 1135 -0.4
Water Temperature C 0.210 * 0.156 0.088 @ - 10.2 -
Flow cfs - 0.280 = - 32550 -
Conductivity uS/cm @25C -0.134 * 0.003 + 0.004 + 3.60 384 0.9
Chloride mg/L -0.425 * <0.001 + <0.001 + 0.31 14 2.2
Dissolved Oxygen mg/L -0.141 * 0.868 0.843 @ “ 10.9 =
DO Saturation % 0.052 0.400 = = 91.0 -
pH field s.u. 0.138 * 0.911 0.332 2 - 7.8 -
Ammonia+Ammonium-N mg/L -0.006 0.812 - - . 0.05 =
Un-ionized Ammonia-N mg/L -0.008 0.557 - - 0.0008 -
NitritetMitrate-N mg/L 0.324 * 0.189 0.229 - 1.1 -
Inorganic Mitrogen mg/L 0.300 * 0.419 0.548 - 1.2 -
Organic Nitrogen mg/L 0.278 * 0.377 0.462 - 0.9 -
Total Nitrogen mg/L 0.394 * 0.542 0.822 - 2.1 -
% Inorganic Nitrogen 0.094 0.288 - - 58.6 -
Dissolved Ortho-P mg/L -0.066 0.542 - C 0.064 %
Total Phosphorus mg/L 0.254 * 0.092 0.064 - 0.160 -
% Ortho-Phosphorus -0.250 * 0.198 0.287 - 42.6 -
Ratio TH/TP 0.050 0.165 - - 14.2 -
Total Suspended Solids mg/L 0.486 * 0.661 0.287 - 26 =

* Significant flow correlation for a non-directional test (alpha=0.05)
+ Significant trend for a non-directional test (alpha=0.05)
a Flow and Hour-adjusted.
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runoff, and discharges of chloride-bearing groundwater. Chloride concentrations like
conductivity were inversely correlated to river flow and thus required flow-adjustment for trend
analysis. The chloride trends for the three stations yielded an estimated increase of 6 mg/L over
the 16 years this parameter was measured. Although chloride levels are showing large
increasing trends, median concentrations at the three monitoring sites ranged from 11 to 19
mg/L and are more than 20-fold less than Wisconsin's chronic water quality standard. Previous
water quality trend results have indicated increasing chloride concentrations on a national scale
and have been generally attributed to increasing use of road salt (Smith et al. 1987). However,
the factors contributing the observed trend in this study have not been determined and the
importance of other source inputs has not been evaluated.

Flow-adjusted NHx nitrogen trends exhibited an 8.1 and 3.8% per year decrease at Lock and
Dam 3 and 4, respectively, over the 21-year monitoring period (Figure 3). Major sources of NHx
nitrogen are typically associated with point source wastewater discharges. The decreasing
trends observed at the two upstream monitoring stations likely reflected reduced inputs from the
municipal wastewater treatment plants in the Twin Cities Metropolitan area. Kroening and
Andrews (1997) also reported significant decreasing trends in total ammonia nitrogen
concentrations at many surface water sites in the Mississippi River and tributaries ahove Lake
Pepin for the 1984-93 time period. They attributed the decline to reduced inputs from
wastewater treatment plants as a result of increased use of the nitrification process (ammonia
removal).

Un-ionized ammonia, the form that is toxic to aquatic life, exhibited significant decreasing
concentrations at Lock and Dam 3. The UNH3 trend averaged -7.1% per year and yielded an
estimated reduction of 0.004 mg/L between 1977 and 1998. The fraction of NHx present as
UNH3 increases with higher pH and water temperature. It is unlikely that pH influenced the
decreasing trend observed at Lock and Dam 3 since a temporal trend in pH was not established.
Water temperatures did show a small increasing trend slope at this site (0.05 °C/year, Table 1),
but this would have contributed to a small increase in the UNH3 fraction. Therefore, the
decreasing UNH3 trend observed at Lock and Dam 3 was attributed to reduced NHx
concentrations.

Nitrite+Nitrate nitrogen usually represents the greatest fraction of total nitrogen in the river. This
form of nitrogen has gained national attention due to its recent association with the Guif of
Mexico hypoxia problem. Concentrations of NOx increased significantly at Lock and Dam 3 and
4 over the study period. The average trend for the two sites was 2.25% per year and yielded an
estimated concentration increase of approximately 0.8 and 0.4 mg/L at Lock and Dam 3 and 4,
respectively, over the study period. Nitrite+Nitrate nitrogen was significantly correlated with river
flow at Lock and Dam 3 but not at Lock and Dam 4.

Estimates of NOx flux (mass loading) also indicated a significant increasing trend at Lock and
Dam 3 and 4 and yielded a trend slope of 4500 and 5000 Lb/d/yr, respectively (Table 4).
Sources of NOx include fertilizer and manure runoff from agricultural watersheds, especially the
Minnesota River basin, and point source discharge inputs, particularly municipal wastewater
discharges from the Twin Cities Metropolitan area. Discharge of NOx-contaminated
groundwater may be an additional source. Nitrification of municipal wastewater to abate UNH3
problems in surface water was likely an important factor influencing long-term NOx
concentrations and fluxes observed at Lock and Dam 3 and 4. A similar response was absent
for Lock and Dam 9 which was less impacted by NOx wasteloads originating from major point
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Table 4. Trend analysis of inorganic nitrogen flux (all forms) determined at Wisconsin's
ambient monitoring stations on the Mississippi River. Trend analysis was performed on
monthly data using the Seasonal Kendall test with correction for serial correlation (SKWC).
The term “2*P” represents the probability of a Type | error for a two-sided hypothesis test
(i.e. probability that the trend is due to random sampling variability).

SKWC Estimated
Site and Parameter Trend Trend Slope
2*P Ibs/dfyr
Lock & Dam 3 - Red Wing, MN
Ammonia+Ammonium-N lbs/d <0.001 * -1052
Un-ionized Ammonia-N lbs/d 0.001 * -14
Nitrite+Nitrate-N Ibs/d 0.041* 4478
Inorganic Nitrogen Ibs/d 0.171 3096
Lock & Dam 4 - Alma, WI
Ammonia+Ammonium-N Ibs/d 0.089 -124
Un-ionized Ammonia-N Ibs/d 0.827 -0.30
Nitrite+Nitrate-N lbs/d 0.038 * 5022
Inorganic Nitrogen Ibs/d 0.061 4424
Lock & Dam 9 - Lyxville, WI
Ammonia+Ammonium-N lbs/d 0.829 28.5
Un-ionized Ammonia-N lbs/d 0.767 0.63
Nitrite+Nitrate-N Ibs/d 0.213 3779
Inorganic Nitrogen Ibs/d 0.306 3106

* Significant trend for a non-directional test (alpha=0.05)
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source inputs.

Inorganic nitrogen concentrations only showed an increasing trend (0.8% per year) at Lock and
Dam 4 (Figure 3) and resulted in an estimated increase of 0.2 mg/L over the monitoring period.
The absence of a significant increasing trend of inorganic nitrogen at Lock and Dam 3 was likely
offset by the significant decline in NHx nitrogen observed at this monitoring location. An
inorganic nitrogen trend at Lock and Dam 9 was not expected since the two components of
inorganic N, NHx and NOXx, failed to exhibit significant trends at this site. Estimates of Inorganic
nitrogen flux calculated for the three monitoring stations indicated increased loading over the
monitoring period, but these trends were not statistically significant (Table 4).

The percentage of TN present as inorganic nitrogen exhibited a small increasing trend at Lock
and Dam 4 (0.6 % per year), but not at the other two monitoring stations. This trend was
consistent with the NOx and inorganic nitrogen results described above. The amount of TN
found in the inorganic form showed substantial changes longitudinally, seasonally, and yearly
(Appendix A). Inorganic nitrogen inputs, nutrient assimilation by algae and submersed aquatic
macrophytes, and denitrification are likely important factors influencing spatial and temporal
patterns.

Phosphorus is an important plant nutrient and is often the most critical nutrient influencing
eutrophication in freshwater environments. Major phosphorus sources include runoff from
agricultural watersheds and point source discharges. The two most important sources affecting
phosphorus concentrations in the upper study area (above Lake Pepin) include the Minnesota
River and the Metropolitan Wastewater Treatment Plant in St. Paul (Metropolitan Waste Control
Commission, 1993).

No significant trends in TP concentrations were noted for the three monitoring sites. Dissolved
ortho-P exhibited a small increasing trend (0.8 % per year) at Lock and Dam 4. This yielded an
estimated concentration increase of 0.01 mg/l over the study period. This trend may have been
influenced by sediment releases from Lake Pepin or from increased inputs from the Chippewa
or Buffalo Rivers.

The percentage of TP present as dissolved ortho-P increased 1% per year at Lock and Dam 3.
The median percentage of dissolved ortho-P was 50.4% at Lock and Dam 3 and the observed
trend represented a 10% increase over the monitoring period. Although the fraction of dissolved
P increased at this site, the concentration of dissolved ortho-P did not show an increasing trend.
The reason for this response has not been determined. It may be related to changes in the
characteristics of runoff or wastewater discharges or reduced utilization of available P by riverine
algae. Lowest concentrations of dissolved ortho-P are typically found during May (Appendix A)
when phytoplankton concentrations are normally elevated. The highest percentage of dissolved
ortho-P was generally found during summer low flow conditions when point source inputs and
internal flux (sediment release) were important.

Dissolved oxygen is an important water quality variable influencing fish and aquatic life habitat.
Atmospheric re-aeration and aquatic plant photosynthesis represent the major source inputs.
Dissolved oxygen concentrations can show substantial diurnal and seasonal fluctuations as a
result of photosynthetic processes and changes in water temperature. Dissolved oxygen
concentrations exhibited a small increasing trend at Lock and Dam 3 and 4, 0.3 and 0.6 percent
per year, respectively. These trends resulted in an approximate DO increase of 0.6 and 1.3
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mg/L during the study period. This improvement in DO, especially at Lock and Dam 3, was likely
attributable to reductions in organic wasteloads from municipal and industrial point source

- discharges from the Twin Cities Metropolitan Area. The reason for the larger increasing trend at
Lock and Dam 4 has not been determined. Potential factors could include reduced
deoxgenation in the bottom waters of Lake Pepin, increased photosynthetic activity or changes
in tributary DO contributions.

Dissolved oxygen saturation provides another way to evaluate DO trends and accounts for
temperature-induced effects on DO concentration. The calculation of DO saturation presented
here was based on an assumed station pressure of 760 mm since actual pressure levels were
not recorded on the sampling days. As a result, the trend analyses presented for DO saturation
assumed there were no long-term changes in atmospheric pressure at the monitoring sites.

Trends in DO saturation paralleled changes in DO concentration observed at Lock and Dam 3
and 4. The estimated DO saturation increase at these two sites was 9 and 12%, respectively,
over the 21-year period. The fact that the DO saturation trends supported the DO concentration
trends, and the absence of a significant DO trend at Lock and Dam 9, suggests that temperature
and pressure-induced effects were not likely important.

Water temperature exhibited an increasing trend at Lock and Dam 3 (0.5% per year, Figure 3).
This resulted in an approximate increase of 1 °C over the monitoring period. The lack of similar
temperature trends at Lock and Dam 4 and 9 suggests this trend may not be related to climatic
changes. Cooling water discharge from a nearby nuclear power plant influenced the monitoring
site at Lock and Dam 3. It is suspected this facility may have contributed to the temperature
increase observed at this sampling station, but this was not specifically evaluated.

The time of sample collection changed significantly over the course of the 21-year monitoring
period at Lock and Dam 3 and 9. Water samples were collected approximately two to three
hours earlier in the day during the late 1990s than in the late 1970s and early 1980s. This
change was not intentional but was an artifact of the sampling program. In the last ten years,
field staff responsible for sampling were located closer to the monitoring sites and arrived earlier
in the day. This bias was an important consideration for variables showing large diurnal
variation (DO, temperature, and pH). :

SUMMARY and CONCLUSIONS

Water quality conditions in the Mississippi River can exhibit substantial seasonal and annual
fluctuations associated with changing climatic conditions. Seasonal and annual changes in
temperature and precipitation are two of the most important climatic variables that may induce
temporal water quality variation in the river. The amount of precipitation is reflected by river flow
which is a key factor influencing hydrodynamic (mixing, retention time, re-suspension, transport
etc.) and biological (primary production) processes in a riverine system.

Tributary inflows and land use within their watersheds were important factors influencing water
quality in the mainstem of the river. Runoff from basins with predominantly agricultural land use
was likely a major factor influencing mainstem water quality. Point source wastewater
discharges influenced mainstem water quality, but these impacts were more apparent at sites
closer to the Twin Cities Metropolitan Area where river flow was less. Water quality in the river
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was also influenced by Lake Pepin and the navigational pools, which affect physical, chemical
and biological processes. In particular, the hydraulic retention time and its negative relationship
with river flow were important physical factors influencing longitudinal and temporal water quality
changes.

Long-term water quality trends were evaluated by using statistical software that accounted for
seasonality, time of sampling and river flow. Trend analysis was performed on approximately
two decades of water quality monitoring conducted at three stations on the Mississippi River by
the Department extending from Red Wing, MN (Lock and Dam 3) to Lynxville, WI (Lock and
Dam 9).

Significant decreasing trends were noted for fecal coliform bacteria, un-ionzied ammonia
nitrogen and total ammonia+ammonium nitrogen in the upper study area. Dissolved oxygen
concentration and dissolved oxygen saturation exhibited small increasing trends over the same
period. Municipal point source pollution abatement activities, particular in the Twin Cities
Metropolitan Area, were important management activities influencing these positive
improvements in water quality.

Nitrite+nitrate nitrogen concentrations and flux increased significantly at Lock and Dam 3 and 4
and were probably influenced by increased nitrification associated with advanced municipal
wastewater treatment. However, when all forms of inorganic nitrogen were considered (NOx +
NHx), only a small increasing trend in concentration (0.2 mg/L over 21 years) was observed for
Lock and Dam 4. Estimates of inorganic nitrogen flux at the three monitoring sites did not
indicate significant trends.

Conductivity levels and chloride concentrations increased significantly at all three stations.
These were the only parameters exhibiting significant trends at Lock and Dam 9, the southern
most monitoring station. Past monitoring in the nation streams by USGS had generally
attributed greater chloride concentrations to increased road salt use. However, one can't
discount other potential, sources including, municipal and industrial wastewater discharges,
inflows of contaminated groundwater, and runoff of animal wastes and chloride containing
fertilizers. These increases in conductivity and chloride do not pose a water quality problem at
this time but do provide an indication of human-induced impacts on the river's water quality.

In summary, water quality conditions have shown improvements in the Mississippi River over
the last two decades and can largely be attributed to point source pollution abatement activities.
A vigilant and consistent monitoring program was needed to establish these trends. Greater
nonpoint source pollutant control in the river's watersheds will be necessary in order achieve
significant improvements in the river's water quality conditions in the future.
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Appendix A

Monthly and Year Box Plots

(22) -- No. of data values
0 -- Maximum value
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Example figure of box plot used in this report.
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Ammon {a+Ammonium=N mg/L
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Un-Ionfzed Ammonia=N mg/L
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Total Organfc Nitrogen mg/L
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Total Mitrogen = Lock & Dam 3
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Dissolved Ortho-Phosphorus = Lock & Dam 3 Dissolved Ortho-Phogqhorus - Lock & Dam 3
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