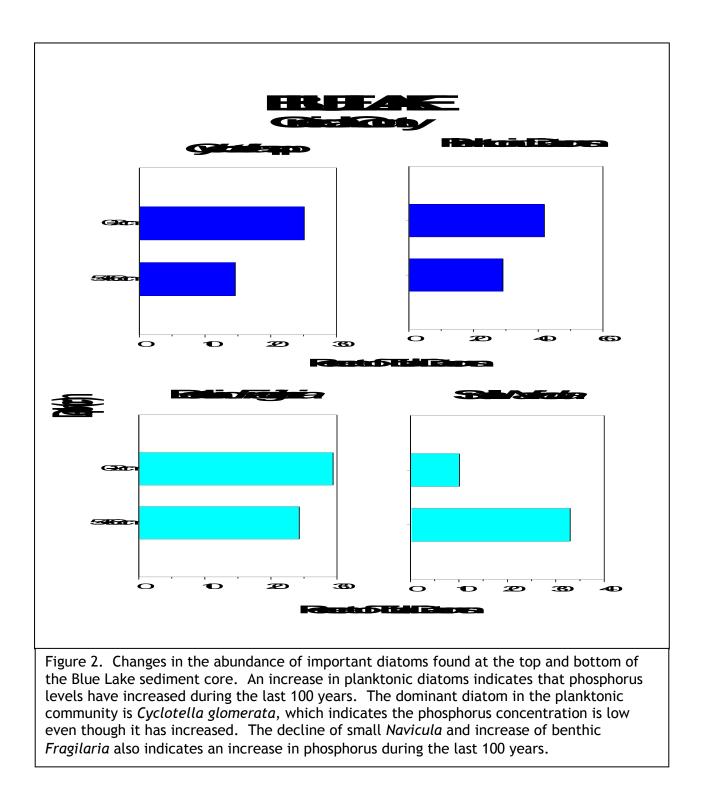

RESULTS OF SEDIMENT CORE TAKEN FROM BLUE LAKE, ONEIDA COUNTY, WISCONSIN


Paul Garrison, Wisconsin Department of Natural Resources November 2003

Aquatic organisms are good indicators of a lake's water quality because they are in direct contact with the water and are strongly affected by the chemical composition of their surroundings. Most indicator groups grow rapidly and are short lived so the community composition responds rapidly to changing environmental conditions. One of the most useful organisms for paleolimnological analysis are diatoms. These are a type of algae which possess siliceous cell walls, which enables them to be highly resistant to degradation and are usually abundant, diverse, and well-preserved in sediments. They are especially useful, as they are ecologically diverse. Diatom species have unique features as shown in Figure 1, which enable them to be readily identified. Certain taxa are usually found under nutrient poor conditions while others are more common under elevated nutrient levels. Some species float in the open water areas while others grow attached to objects such as aquatic plants or the lake bottom.

By determining changes in the diatom community it is possible to determine water quality changes that have occurred in the lake. The diatom community provides information about changes in nutrient and pH conditions as well as alterations in the aquatic plant community.

I have examined the diatoms from the cores taken on 10 July 2003 near the deep area of Blue Lake. The sediment core was collected from a water depth of 17 meters with a gravity corer. I examined sediment from the top of the core and a section deeper in the core. It is assumed that the upper sample represents present conditions while the deeper sample is indicative of water quality conditions at least 100 years ago.

In Blue Lake, historically the major component of the diatom community are those species that grow attached to plants or on the lake bottom (benthic *Fragilaria* and small *Navicula*)(Figure 2). The principal benthic *Fragilaria* was *Staurosira construens* var. *venter* and the most common small *Navicula* was *N. atomus* var. *permitis* (Figure 1). Historically planktonic diatoms (diatoms that float in the open water) made up about 30% of the diatom community. The principal

component of this community was *Cyclotella glomerata* (Figure 1). In recent sediments, planktonic diatoms have increased in importance and are nearly 50% of the diatom community. Also small *Navicula* have declined while benthic *Fragilaria* have increased. These changes indicate that there has been a small increase in phosphorus in the lake water. Many other studies have found that planktonic diatoms increase as a percentage of the total diatom community in response to increased phosphorus. Other studies have also found that small *Navicula* decline with increasing phosphorus levels and are replaced, in part by benthic *Fragilaria*, e.g., *S. construens* var. *venter*.

Many other sediment core studies in Wisconsin have found a significant increase in aquatic plants as a result of shoreline development. This does not appear to be the case in Blue Lake. Increases in the plant community appear to be localized and not on the scale of other northern Wisconsin lakes.

In summary, the diatom community indicates Blue Lake that nutrient levels in Blue Lake have increased during the last 100 years. The increase, while significant, is small, probably on the order of 2-4 μ g L⁻¹. While water clarity is still very good in Blue Lake it likely is not as good as historical levels. The increased nutrient levels are an indication that steps should be taken to reduce nutrient input from the watershed before algal blooms become a problem. It is much more difficult to restore a lake to good water quality than to prevent its degradation.

Table 1. Diatom Counts from the Blue Lake Sediment Core.BLUE LAKEBLUE LAKEOneida CountyOneida County

Core Top (0-2 cm)

Core Bottom (60-62 cm)

ΤΑΧΑ	Number	Prop	ΤΑΧΑ	Number	Prop
Achnanthidium levanderi	3	0.014	Achnanthidium levanderi	2	0.010
Achnanthidium minutissima	1	0.005	Achnanthidium sp.	2	0.010
Achnanthidium sp.	6	0.029	Asterionella formosa	12	0.058
Asterionella formosa	14	0.067	Aulacoseira ambigua	3	0.015
Aulacoseira ambigua	2	0.010	Cyclotella glomerata	20	0.097
Cyclotella bodanica var. lemanica	5	0.024	Cyclotella pseudostelligera	1	0.005
Cyclotella glomerata	42	0.202	Cyclotella stelligera	9	0.044
Cyclotella stelligera	5	0.024	Navicula atomus var. permitis	47	0.228
Fragilaria crotonensis	2	0.010	Navicula lanceolata	1	0.005
Fragilaria crotonensis var. oregona	6	0.029	Navicula perparva	7	0.034
Navicula atomus var. permitis	17	0.082	Navicula minima	1	0.005
Navicula pseudoventralis	2	0.010	Navicula seminuloides	8	0.039
Navicula minima	1	0.005	Navicula subtilissima	3	0.015
Navicula seminuloides	3	0.014	Navicula sp. (short)	5	0.024
Navicula subtilissima	1	0.005	Navicula sp.	6	0.029
Navicula (GV)	1	0.005	Nitzschia palea	3.5	0.017
Navicula sp.	1	0.005	Nitzschia sp.	0.5	0.002
Nitzschia palea	1	0.005	Pinnularia abaujensis	1	0.005
Nitzschia fonticola	1	0.005	Psammothidium subatomoides	1	0.005
Nitzschia gandersheimiensis	1	0.005	Pseudostaurosira brevistrata	6	0.029
Nitzschia gracilis	1	0.005	Sellaphora rectangularis	1	0.005
Nitzschia sp.	8.5	0.041	Stauroneis anceps f. gracilis	3	0.015
Pinnularia biceps	3	0.014	Stauroneis phoenicenteron f. gracilis	1	0.005
Pinnularia sp.	1	0.005	Staurosira construens var. venter	41	0.199
Sellaphora pupula	2	0.010	Staurosira elliptica	1	0.005
Sellaphora bacillum	4	0.019	Staurosirella pinnata	2	0.010
Staurosira construens	1	0.005	Synedra radians	2	0.010
Staurosira construens var. venter	56	0.270	Tabellaria flocculosa str. IIIp	12	0.058
Staurosira elliptica	3	0.014	Tabellaria flocculosa (central area)	1	0.005
Tabellaria flocculosa str. IIIp	7	0.034	Unknown (raphid)	3	0.015
Tabellaria floccolosa (central area)	2	0.010	TOTAL	206	1.000
Tabellaria flocculosa str. III	1	0.005			
Tabellaria flocculosa var. linearis	1	0.005	Chrysophyte scales		
Unknown	2	0.010	Chrysophyte cysts	20	
TOTAL	207.5	1.000	Pediastrum coenubia	2	
			Scenedesmus coenubia	4	
Chrysophyte scales	4		Tetraedron coenubia	1	
Chrysophyte cysts	35				
Pediastrum coenubia	1		Planktonic taxa		0.291
			Nonplanktonic taxa		0.694
Planktonic taxa		0.419			
Nonplanktonic taxa		0.571			