SCS ENGINEERS

May 14, 2015
File No. 25211406.63

Ms. Kathy Sylvester
Wisconsin Department of Natural Resources
625 E. County Road Y, Suite 700
Oshkosh, WI 54901

Subject: \quad SCS Engineers Quarterly Status Report No. 20
SFR Site Monitoring Well \& Sampling Services
Former QuicFrez, 105 Oak Place, Fond du Lac, Wisconsin
WDNR Purchase Order \#NMC00001032
BRRTS \#02-20-118383
Dear Ms. Sylvester:
SCS Engineers (SCS) is providing the following Quarterly Status Report consistent with the WDNR's April 26, 2012, Request for Bid (RFB) for the above-referenced QuicFrez project. The following information is attached:

- Updated groundwater and surface water monitoring summary tables (Tables 1, 2, and 4)
- Updated water level maps (Figures 1 through 3)
- Laboratory analytical report (Attachment A)
- Sampling field notes (Attachment B)
- CD with electronic copies of tables and maps (Attachment C)
- $\quad \mathrm{CD}$ (2) with electronic copies of entire report (Attachment D)

QUARTERLY SAMPLING

We completed the quarterly sampling fieldwork on March 30, 2015. Work included the standard groundwater sampling and water table elevations. Our work was completed consistent with the monitoring plan with the exception of monitoring well MW12C. This well could not be sampled because the well was dry.

Please contact me at (608) 216-7329 if you have any questions regarding this status report.
Sincerely,

Robert Langdon
Project Manager
SCS ENGINEERS

Ms. Kathy Sylvester
May 14, 2015
Page 2

SS\REL\Imh\JBT

Enclosures: Table 1 - Historical Groundwater Analytical Results
Table 2 - Groundwater Field and Natural Attenuation Parameter Results
Table 4 - Historical Groundwater Elevations
Figure 1 - Water Table Elevations
Figure 2 - Medium Well Piezometric Elevations
Figure 3 - Deep Well Piezometric Elevations
Attachment A - Laboratory Analytical Report
Attachment B - Sampling Field Notes
Attachment C - CD with Electronic Copies of Tables and Maps
Attachment D - CD (2) with Electronic Copy of Entire Report

I:\4066\Reports\Quarterly Update_20_150514.doc

TABLES

1 Historical Groundwater Analytical Results
2 Groundwater Field and Natural Attenuation Parameter Results 4 Historical Groundwater Elevations

Well	Date	Chlorinated Volatile Organic Compounds (EPA 8260)--gg/L											Petroleum-related Volatile Organic Compounds (EPA 8260)--Hg/L													RCRA Metals-mg/L							
					$\begin{aligned} & \text { 은 } \\ & \text { 흔 } \\ & \text { 른 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 틍 } \\ & \text { 흥 } \\ & \text { 읃 } \end{aligned}$															$\begin{gathered} \stackrel{\text { O}}{\mathrm{I}} \\ \stackrel{\mathrm{\partial}}{\mathrm{i}} \\ \hline \end{gathered}$								®0		$\begin{array}{r} \text { 틀 } \\ \text { 亮 } \\ \hline \mathbf{0} \\ \hline \end{array}$	$\frac{\stackrel{\rightharpoonup}{2}}{\overline{0}}$
MW1/MW1R/	07/22/99	2,120	756	<15	42.4	<15	<14	<15	<15	<39	<15	<14	18.8	<15	<15	<45	59.4	24.4	<20	<80	<15	<40	177	62.3	801	--	--	--	\cdots	\cdots	\cdots	\cdots	
	12/12/01	19,000	8400	<230	$400+$	<330	<320	<390	<360	<350	<250	<560	<250	<160	<220	<510	<120	<150	<200	<680	<180	<220	<240	<260	<740	--							
	03/07702	${ }^{890}$	450	<5.5	${ }^{170}$	<10	<5	<6	<5.5	<12	<7.5	<10	37	<4	$14 \dagger$	$20 \dagger$	40	14	6.5 \dagger	190	$18 \dagger$	150	$\frac{160}{17}$		292	<1.3	0.081	<0.08	<0.7	<1.1	0.96	<1.0	1.0
	06/10/02	510	3300	51	1100	<10	<5	<6	<5.5	<3.5	<7.5	<10	100	<4	<5	<5.5	8.5†	<3.5	<6	<5	<7.5	7.5†	${ }^{17+}$	$6 \dagger$	47	2.6t	0.03	<0.08	$1+$	<0.66	<0.11	<1.0	0.9
	01/12104	1.4	980	19	450	<0.22	<0.69	<0.2	4.1	<2.4	<0.45	${ }^{0.42 \dagger}$	40	<0.31	<0.43	<0.22	3.6	1.2	<0.18	<0.26	0.74	40	${ }^{0.28+}$	<0.12	$2.11+$	<0.005	<0.4	<0.0005	<0.01	<0.0015	<0.0002	<0.01	<0.01
	- $03 / 1 / 15 / 04$	<13.5	1660	21	1000	<8	<22.5	<14.5	<19.5	<35	<35	<12.5	55	<15.5	<10.5	<19.5	<28	<9.5	<15	<30	<16	$49 \dagger$	<25.5	<33	<87	<0.005	<0.4	<0.0005	<0.01	0.0018	<0.0002	<0.01	<0.01
	11/03/06	<4.4	18 t	< 2.5	$17 \dagger$	<5.2	<6.1	<7.2	<3	<6.9	<5. 2	<5	<4.7	<6	<7.6	<11	<3.8	<9.9	<8.1	<22	<6.1	<5.9	<3.9	<12	<14.2	<0.0079	0.1	$0.001+$	<0.0023	<0.0024	<<0.00004<0	<0.0092	0.0025
	$12 / 14 / 06$	${ }^{8.5 \dagger}$	89	$0.98 \dagger$	39	<0.52	<0.61	<0.72	<0.3	<0.69	<0.52	<0.5	9.6	<0.6	<0.76	<1.1	2.99	<0.99	<0.81	<2.2	${ }^{0.66+}$	4.8	$5.4 \dagger$	$1.28 \dagger$	16.9	---	---	---	---	---	---	---	---
	02/13/37	${ }^{46}$	${ }^{139}$	${ }^{1.08 \dagger}$	${ }^{38}$	<0.46	<0.48	<0.45	<0.64	<0.69	<0.52	<0.5	23.5	<0.34	${ }^{20.36}$	<0.52	2.94	1.081	<0.35	8.2	$0.67{ }^{\text {P }}$	$5 \dagger$	${ }^{9.3+}$	1.96	${ }^{22}$	--	\cdots		\cdots	\cdots	-	---	---
	05/088/7	26.6	103	$1.18 \dagger$	34	<0.46	<0.48	<0.45	<0.64	<0.69	<0.52	<0.5	26.7	<0.34	<0.36	<0.52	3.12	1.31	<0.35	7.2	$1.02 \dagger$	4.2	9.6	2.12	21.6						---	---	
	11/02/07	${ }^{0.48 \dagger}$	30.5	<0.95	59	<0.46	$\underline{1.11 t}$	<0.45	<0.64	<0.69	<0.52	<0.5	37	<0.34	$1.03+$	0.81†	6.7	2.74	<0.35	$4.6 \dagger$	${ }^{2.53}$	+	12.74	2.66	30.7	--	--					--	--
	02/1408	$0.87{ }^{0}$	$\frac{38}{}$	<0.95	42	<0.46	<0.48	<0.45	<0.64	<0.69	<0.52	<0.5	64	<0.34	7.1	7.9	29.4	9.6	5.7	8.6	13.2	$31+$	78	20.7	93.1	--	--	--	--	--	--	---	--
	05/06/08	<0.47	$\underline{33}$	<0.61	${ }_{71}^{22}$	<0.3	<0.47	<0.41	<0.5	<0.99	<0.5	<0.39	30.4	<0.32			4.1	$1.22+$	<0.77		0.877	10.6t	14.8	${ }^{3.3}$	${ }^{28.8}$								
	09/10/08	${ }^{<0.47}$	$\frac{13.1}{1.1}$	<0.61	7.1	${ }^{20.3}$	-0.47	<0.41	<0.5	<0.99	<0.5	<0.39	${ }^{12.7}$	${ }^{<0.32}$	${ }^{<0.73}$	0.60t	2.2 2.75	${ }^{0.94+}$	<0.77	4.19	${ }^{0.82+}$	4.0	${ }^{8.2+}$	2.12	16.6		\cdots	--	\cdots	\cdots			
	01/19/99	<0.47	$\underline{23.6}$	<0.61	${ }^{14.8}$	- <0.3	- <0.47	<0.41	${ }_{\text {coin }}^{<0.5}$	-	${ }_{\text {coicle }}^{<0.42}$	<0.39 <0.41 <0	23 17.5	- <0.32	${ }_{<0}^{<0.73}$	< 0.55 <1.5 1.5	${ }_{2}^{2.32 \dagger}$	$0.8 \dagger$ $0.74 \dagger$	<0.77	${ }_{3.6 \dagger}^{3.3+}$	$0.76+$ $0.62+$	5.2 4.5	$7.5 \dagger$ 5.1	1.98	17.0 13.65	${ }_{0}$	0.073	$\stackrel{-1}{0.0005}$	\cdots	\cdots	---		---
	08/0609 05/26/10	${ }_{<0}^{<0.39}<$	${ }_{3.3}^{3.3}$	<0.61	${ }_{7}^{2.15}$	<0.80	${ }_{<0}^{<0.20}$	- <0.50	<0.50	<1.0	<0.50	<0.25	23	<0.20	<0.25	<0.20	2.0	0.55 Ja	${ }_{0} \times 243 \mathrm{Ja}$	${ }_{3.3} 3.15$	<0.50	5.4	7	$\stackrel{<}{2.5}$	17.05 16 16		0.073	-000	--	-.			
	08/25/10	0.22 Ja	4.3	<0.50	5.6	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	26	<0.20	0.35 Ja	0.45 Ja	3.3	1.0 Ja	0.38 Ja	4.8 Ja	0.90 Ja	6.1	8.6	2.0	18	---	---	---	---	---	---	---	---
	11/29/10	<0.20	3.0	<0.50	5.4	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	15	<0.20	<0.25	<0.20	1.2 Ja	0.34 Ja	0.26 Ja	1.6 Ja	<0.50	2.5	2.5	0.30 Ja	7.2	---	---	---	---	---	---	---	---
	03/01/11	<0.20	3.1	<0.50	5.5	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	13	<0.20	<0.25	<0.20	1.3 Jb	0.53 Jb	0.22 Jb	1.11 Jb	<0.50	2.4	3.4	0.71 Jb	7.6							--	
	05/16/11	<0.20	1.5 Jb	<0.50	5.0	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	7.9	<0.20	<0.25	<0.20	0.71 Jb	0.21 Jb	<0.20	1.17 Jb	<0.50	1.5 Jb	1.7 Jb	0.34 Jb	3.7	---	---			--		---	---
	08/30/11	<2.0	2.0	<2.0	4.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	12	<2.0	<2.0	<2.0	1.4 Jc	0.48 Jc	<2.0	2.4 Jc	<2.0	2.3	3.3	0.30 Jc	6.6	---	---	--	--	---	---	---	---
	11/08/11	<0.20	1.2 Jc	<0.50	3.2	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	11	<0.20	<0.25	<0.20	1.1 Jc	0.35 Jc	<0.20	1.7 Jc	<0.50	1.8 Jc	1.6 Jc	<0.20	5.0							\cdots	
	02/20/12	${ }^{<0.20}$	1.1. Jc	<0.50	1.75	<0.80	<0.20	<0.50	<0.50	<1.0	${ }^{<0.50}$	<0.25	5.1	<0.20	<0.25	<0.20	0.53 Jc	<0.20	<0.20	${ }^{0.74} 150$	<0.50	0.76 jc	0.29 Jc	<0.20	${ }^{1.5 \mathrm{Jc}}$							--	
	05/31/12	<0.19	0.77 Jc	<0.25	4.5	<0.26	<0.20	${ }^{<0.28}$	<0.31	${ }^{20.68}$	<0.17	<0.28	9.4	<0.14	<0.15	<0.13	1.0	0.40 Jc	<0.17	1.5	<0.13	1.2	<0.14	0.70 Jc	2.7	---	--	--	--	-		--	--
	08/27/12	<0.19	<0.12	<0.25	<0.10	<0.26	<0.20	<0.28*	<0.31	<0.68	<0.17	<0.28	4.9	<0.14	<0.15	<0.13	0.59	<0.14	<0.17	1.7	<0.13	0.96	<0.14	<0.18	2.2	---	---	---	---	---	---	---	---
	11/26/12	<0.19	1.7	<0.25	3.0	<0.26	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	11	<0.14	<0.15	<0.13	1.1	<0.14	<0.17	1.5	<0.13	1.1	<0.14	<0.18	2.2	--	-		-	-		--	
	02/28/13	<0.19	<0.12	<0.25	<0.10	<0.26	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	8.2	<0.14	<0.15	<0.13	0.89	<0.14	<0.17	1.7	<0.13	0.63	0.60 Jc	<0.18	2.0	---	---	---	---	---	---	---	---
	05/23/13	<0.19	<0.12	<0.25	0.52	<0.26	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	3.7	<0.14	<0.15	<0.13	0.61	<0.14	<0.17	<0.16	<0.13	0.39 Jc	<0.14	<0.18	0.56 Jc	--	---	---	---	--	---	---	---
	08/28/13	<0.19	1.4	<0.25	3.3	<0.26	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	12	<0.14	<0.15	<0.13	2.1	1.1	<0.17	3.6	0.88 Jc	1.0	<0.14	<0.18	2.4	--	--	--	--	--	---	--	--
	11/12/13	<0.19	3.0	<0.25	4.5	<0.26	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	16	<0.14	<0.15	<0.13	1.8	0.86 Jc	<0.17	2.3	0.72 jc	1.2	0.61 Jc	<0.18	2.9	---	--	---	---	---	--	---	---
	03/25/14					ple Dest	yed in	ipment										Sample De	Destroyed	in Shipme						\cdots	\cdots	-	--	\cdots	\cdots	\cdots	--
	05/29/14	<0.19	1.7	<0.25	2.2	<0.26	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	4.8	<0.14	<0.15	<0.13	0.71	0.33 Jc	<0.17	0.89 Jc	<0.13	0.35 Jc	<0.14	<0.18	0.88 Jc	--	\cdots	--	--	--	--	--	--
	08/28/14	<0.19	<0.12	<0.25	4.2	<0.26	<0.20	<0.28	<0.31	${ }^{20.68}$	<0.17	<0.28	6.4	<0.14	<0.15	<0.13*	0.96	<0.14	<0.17	<0.16	<0.13	0.29 Jc	<0.14	<0.18	0.38 Jc		--		---	\cdots	--	\cdots	--
	11/24/14 $03 / 30 / 5$	-	2.0 1.1	-	3.4	<0.26	<0.20	<0.28	<0.31	<0.68	$\begin{aligned} & 0.17 \\ & <0.17 \end{aligned}$	$\begin{aligned} & <0.28 \\ & <0.28 \end{aligned}$	$\begin{aligned} & 8.1 \\ & \begin{array}{l} 3.3 \end{array}, ~ \end{aligned}$	<0.14	<0.15	<0.13 <0	0.76 0.52	<0.14 <0.14	<0.17	<0.16 <0.16	<0.13 <0.13	0.40 Jc 0.31 Jc	<0.14	<0.18	${ }_{<0}^{<0.068}$	\cdots							
NR 140 Enforcement Standard NR 140 Preventive Action Limit		5	70	100	0.2	5	6	5	7	5	5	5	5	--	-	-	700	-	-	100	--	800	480	480	2,000	0.01	2	0.005	0.1	0.015	0.002	0.05	0.05
		0.5	7	20	0.02	0.5	0.6	0.5	0.7	0.5	0.5	0.5	0.5	-	--	-	140	--	\cdots	10	-	160	96	96	400	0.001	0.4	0.0005	0.01	0.0015	0.0002	0.01	0.01

$\dagger=$ Detected below the Limit of Quantitation
$\dagger=$ Detected below the Limitof
$-\cdots$ Not Tested / Not Required
$*=$ LCS or LCSD exceedst the control linits.
$\mathrm{Ja}=$ Results reported between the Method Detection Limit (MDL) and

$\mathrm{Jb}=$ Estimated value. Analyte detected at a level less than the Reporting (RL) and
greater than or equal tot the Method Detection Limitit MDL
greater than or equal to the Method Detection Limit (MDL)
The use of this data should be aware that this data is of lin
The use of this data should be aware that this data is of limited reliability.
a

Note: The following compound was detected in MW1RR during the February 14,2008 sampling event: Chloroethane $(0.76 \dagger \mu \mathrm{gh} / \mathrm{L})$
Note: The following compound was detecteded in MW1RR during the August 2009 sampling event: Benzyl Alcohol $(2.3$ g HgLL$)$).
Note: As of the December 2010 ch. NR 140 Wisconsin Administrative Code, eff. 1-1-11, the enforcement standards (ESS) and preventive action limits (PALs) have changed for Toluene and Xylenes
Note: The following compound was detected in MW1RR during the August 30,2011 sampling event: Chloromethane $(0.45 \mu \mathrm{~g} / \mathrm{L}, \mathrm{Jc})$.

$\dagger=$ Detected below the Limit of Quantitation
$=$ Detected $\left.\begin{array}{l}\text { elow } \\ =\text { Not Tested } / \text { Not Required }\end{array}\right]$

TABLE 1

Historical Groundwater Analytical Results
QuicFrez SFR Site－Fond du Lac，Wisconsin
SCS Engineers Project \＃25211406．63

				Chorinat	Volat	Organi	Compo	（EP	8260）－－1							etroleum	－related	Volatile	Organic	，	EPA	60）－Mg							，	tals－mg／			
Well	Date						$\begin{aligned} & \text { 틍 } \\ & \text { 으를 } \\ & \hline \text { 응 } \end{aligned}$															$\begin{gathered} \stackrel{0}{\mathrm{I}} \\ \stackrel{\mathrm{I}}{\stackrel{i}{\circ}} \\ \hline \end{gathered}$			$\begin{array}{r} \stackrel{.0}{\omega} \\ \stackrel{\rightharpoonup}{\grave{a}} \\ \hline \end{array}$	$\begin{array}{r} \text { 豪 } \\ \hline \end{array}$	$\begin{array}{r} \text { 喜 } \\ \text { 喈 } \\ \hline \end{array}$			－			$\stackrel{\stackrel{\rightharpoonup}{ \pm}}{\bar{\circ}}$
MW1A	07／22／99	1.36	4.33	<0.15	3.4	<0.15	0.181	<0.15	＜15	<0.39	<0.15	<0.14	0.315	<0.15	<0.15	＜45	0.644	<0.15	0.212	<0.8	<0.15	<0.4	0.854	0.239	1.81	－－－	－－－	－－－	－－－	－－－	－－－	－－－	
	12／12／101	$\frac{1.30}{120}$	$15 t$	<2.3	＜2．3	＜3．3	＜3．2	＜3．9	＜3．6	＜3．5	＜2．5	＜5．6	＜2．5	<1.6	＜2．2	＜5．1	＜1．2	＜<1.5	${ }_{<2}$	${ }_{<6.8}^{<6.8}$	－1．8	${ }_{<2.2}^{20.4}$	${ }_{\text {c }}$	${ }_{\text {c2．6 }}$	＜7．4	\cdots	\cdots		\cdots	\cdots	－－	－－	
	03／07／02	2300	25.0	＜5．5	＜8	＜10	＜5	<6	＜5．5	＜12	＜7．5	＜10	＜4	＜4	$8.5 \dagger$	8.5	＜4	4.5	＜6	78	＜7．5	7.5	87.0	19.0	＜17．5	－－－	－－－						－－－
	06／10／02	17	0.87	＜0．11	＜0．16	＜0．2	＜0．1	＜0．12	＜0．11	＜0．24	＜0．15	＜0．19	<0.08	＜0．08	＜0．1	＜0．11	＜0．08	＜0．07	＜0．12	${ }^{20.1}$	<0.15	1.0	＜0．11	＜0．08	＜0．34		\cdots	－－	\cdots	－－－	\cdots	－－	\cdots
	$01 / 121204$ 030404	4.1	7.5	0．49†	1	＜0．22	＜0．69	<0.2	＜0．44	＜2．4	＜0．45	＜0．41	＜0．17	＜0．31	＜0．43	＜0．22	＜0．16	＜0．11	＜0．18	＜0．26	＜0．19	＜0．15	＜0．14	＜0．12	＜0．46	＜0．005	<0.4	<0.0005	＜0．01	＜0．0015		＜0．01	＜0．01
	04／1504	3.1	6.8	0.93	$0.43+$	＜0．16	＜0．25	＜0．29	<0.39	<0.7	<0.7	<0.25	＜0．29	<0.31	＜0．21	－0．39	＜－7．56	＜0．19	－0．3	\bigcirc	<0.32	<0.57	<0.51	－0．66	＜1．74	\cdots	\cdots	－－－	\cdots			\cdots	
	11／03／06	$0.71{ }^{\text {0 }}$	$2.02 \dagger$	<0.95	0．39	＜0．52	<0.61	＜0．72	＜0．3	<0.69	<0.52	＜0．5	<0.47	＜0．6	<0.76	＜1．1	<0.38	<0.99	<0.81	＜2．2	<0.61	1．53 ${ }^{\text {P }}$	<0.39	＜1．2	＜1．42	＜0．0079	0.057	<0.0007	<0.0023	＜0．002	0.00004	80.0092	0.00
	12／15／06	0.77	$1.58 \dagger$	<0.95	$0.24 \dagger$	＜0．52	＜0．54	＜0．72	＜0．3	＜0．69	<0.52	＜0．5	0.6	<0.6	＜0．76	＜1．1	<0.38	＜0．99	＜0．81	＜2．2	<0.61	2.98	＜0．39	＜1．2	＜0．42	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	02／13077	$\frac{1.51}{}$	$1.93 \dagger$	<0.95	0．44 \dagger	＜0．46	＜0．48	＜0．45	＜0．64	＜0．69	<0.52	<0.5	$\frac{1.97}{10}$	＜0．34	＜0．36	＜0．52	＜0．38	＜0．48	<0.35	<1.8	<0.38	2.1	＜1．2	＜0．37		－－－	－－－	－－	－－－	－－－	－－－	－－－	
	05／08／07	${ }^{1.06 t}$	$1.57 \dagger$	<0.95	＜0．2	${ }^{20.46}$	${ }^{20.48}$	＜0．45	<0.64	<0.69	<0.52	<0.5	$\frac{1.6}{10}$	＜0．34	<0.36	<0.52	＜0．38	<0.48	＜0．35	＜1．8	＜0．38	4.9	＜1．2	${ }^{<0.37}$	＜0．99	\cdots	\cdots	－－	－－	\cdots	\cdots	－－	－－－
	${ }^{111 / 2207}$	$\frac{0.674}{}$	${ }^{<0.68}$	<0.95	$0.2 \dagger$	${ }^{0.46}$	1.81	＜0．45	＜0．64	<0.69	<0.52	<0.5	$\frac{1.18}{172}$	<0.34	＜0．36	<0.52	$0.46 \dagger$	<0.48	${ }^{<0.35}$	<1.8	<0.38	${ }^{1.38+}$	＜1．2	＜0．37	<0.99	\cdots	－－				－－	\cdots	
	02／14／08	$\underline{2.06}$	0．87¢	<0.95	＜0．2	＜0．46	<0.48	＜0．45	＜0．64	<0.69	<0.52	<0.5	$\frac{0.72 t}{0.7}$	＜0．34	<0.36	<0.52	<0.38	<0.48	${ }^{<0.35}$	${ }^{11.8}$	＜0．38	0．53 \dagger	＜1．2	＜0．37	<0.99	－－	－－	－－	\cdots	\cdots	\cdots	－－－	－－－
	$05 / 061 / 08$ 091108 0	－	－ 20.44	${ }_{<0}^{<0.61}$	＜0．2	－0．3	－<0.47	－0．41	＜0．5	＜0．99	＜0．5	－0．39	$\frac{0.76}{1.13}$	＜0．32		<0.55 <0.55 <0		－0．6			－0．54					－－－					\cdots		
	－09／10108	－${ }_{\text {168 }}^{<0.47}$	$\stackrel{12.6}{20.44}$	＜0．61	${ }_{\text {＜}}^{<0.2}$	－<0.3	${ }_{\text {cost }}^{\substack{\text {＜．47 } \\ 0.57}}$	＜0．41	－0．5	${ }_{0}^{<0.99}$	＜0．5	${ }_{<0.39}^{<0.39}$	$\frac{1.13}{0.44 \dagger}$	＜0．32	${ }_{<0.73}^{<0.73}$	${ }_{<0.55}^{<0.55}$	${ }_{<0}^{<0.35}$	－ $\begin{aligned} & <0.6 \\ & 00.6\end{aligned}$	${ }_{<0.77}^{<0.77}$	＜1．8 <1.8 18	${ }_{\text {＜}}^{<0.55}$		${ }_{<0}^{<0.51}$	${ }_{<}^{<0.23}$	${ }_{<}^{11.67}<1.67$	－－－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	－－
	08／06／09	＜0．39	<0.68	＜0．61	<0.2	＜0．43	<0.48	<0.43	<0.47	＜1．5	＜0．42	＜0．41	＜0．41	＜0．46	＜0．43	＜1．5	＜0．87	＜0．39	＜0．57	＜1．7	<0.33	<0.51	＜1．1	＜1．5	＜2．13	0.0051	0.0169	<0.0005	＜0．0012	0.000	． 00004	80.0009	
	05／26／10	＜0．20	<0.50	<0.50	＜0．20	＜0．80	<0.20	＜0．50	<0.50	＜1．0	＜0．50	＜0．25	＜0．20	＜0．20	＜0．25	＜0．20	＜0．50	＜0．20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	＜0．50	－－－	－－	－－－	－－－	－－	－－－	－－－	－－
	$08 / 25 / 10$ $11 / 29 / 10$	$\stackrel{-1}{<0.20}$	\bigcirc	$\stackrel{-0}{<0.50}$	－0．20	－0．80	$\stackrel{-1}{<0.20}$	\bigcirc	$\bigcirc 0.50$	＜1．0	<0.50	\bigcirc	－0．20	\bigcirc	－0．25	\bigcirc	$\stackrel{-0.50}{ }$	＜0．20	$\bigcirc 0.20$	<0.25	<0.50	<0.50	$\bigcirc 0.20$	<0.20	＜0．50	\cdots	\cdots	\cdots	\cdots	－－－	\cdots	－－－	
	03／01／11		＜0．50	－－0	－－20	＜0．80	＜0．20	＜0．50	＜0．60	＜－1．0	－0．50	－0．25	＜0．20	＜0．20	＜0．25	＜0．20		＜0．20			<0.50	＜0．60	＜0．20	＜0．20		\cdots							
	05／46／11	＜0．20	<0.50	<0.50	<0.20	<0.80	＜0．20	<0.50	<0.50	＜1．0	<0.50	＜0．25	<0.20	<0.20	<0.25	<0.20	<0.50	＜0．20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	＜0．50	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－
	$08 / 30111$ $11 / 08 / 11$	\bigcirc	<0.50	<0	－0．20	＜0．80	－0．20	\bigcirc	\bigcirc	$\stackrel{-1}{-1.0}$	<0.50	\bigcirc	${ }^{-21-J}$	＜0．20	－0．25	－0．20		\bigcirc				－0．50				－－－	\cdots	－	\cdots	－－	\cdots	\cdots	
	11／0811 $02 / 20 / 12$	$\stackrel{<0.20}{--}$	$\stackrel{<0.50}{--}$	$\stackrel{<0.50}{--}$	$\stackrel{<0.20}{--}$	$\stackrel{<0}{<0.80}$	$\stackrel{<0}{-20}$	$\stackrel{0.50}{-}$	$\stackrel{-0.50}{--}$	$\stackrel{1}{<1.0}$	$\stackrel{<0}{<0}$	$\stackrel{<0.25}{-}$	${ }^{0.21 ~ J c}$	$\stackrel{-0.20}{--}$	$\stackrel{-0.25}{--}$	$\stackrel{<0.20}{--}$	$\stackrel{+0.50}{--}$	$\stackrel{<0.20}{--}$	$\stackrel{<0.20}{--}$	$\stackrel{<0.25}{--}$	$\stackrel{<0.50}{--}$	$\stackrel{-0.50}{--}$	$\stackrel{-0.20}{--}$	$\stackrel{-0.20}{--}$	$\stackrel{<0.50}{--}$	\cdots							
	05／31／12	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	\cdots	\cdots	－－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	－	－	－	\cdots	\cdots	－－－	\cdots	－	－	－	\cdots	\cdots	\cdots	\cdots
	－	＜0．19	＜0．12	＜0．25	＜0．10	＜0．26	＜0．20	＜0．28	＜0．31	＜0．68	＜0．17	＜0．28	＜0．074	＜0．14	＜0．15	＜0．13	＜0．13	＜0．14	＜0．17	＜0．16	＜0．13	<0.11	<0.14	＜0．18	＜0．068	$\stackrel{-}{--}$	\cdots	\cdots	\cdots	\cdots	\cdots		
	02／28／13	，	，	\cdots			－－－				－－		－－－													－－－	－－－	－－－	\cdots	－－－	－－－	－－－	－－－
	05／23／13	\cdots	\cdots	－－－	－－－	－	－－－	－－－	－－－	－－－	－－－	\cdots	－－	－	\cdots	－	－－－	－	－－－	－	\cdots	－－－	\cdots	\cdots	\cdots	\cdots	\cdots						
	11／12／13	＜0．19	<0.12	<0.25	＜0．10	<0.26	＜0．20	<0.28	<0.31	<0.68	<0.17	<0.28	＜0．074	＜0．14	<0.15	<0.13	＜0．13	＜0．14	<0.17	<0.16	<0.13	<0.11	<0.14	＜0．18	＜0．068	－－－	－－	－－	－－	－－	－－	－－	\cdots
	03／25／14	－－	－	－			－							－－		－－	－－	－－					－－		－－－	－－	－－	－－	\cdots	\cdots	\cdots	\cdots	\cdots
	－08／298／14	\cdots	－－．		－－	－－	－－－	－－－	－－．	－－．	－－	\cdots	－	－－－	\cdots	－－－	－－	－－	－－	－	－－	－	－－－		－	－－－	\cdots						
	111／24／44 $03 / 30 / 15$	＜0．19	＜0．12	＜0．25	＜0．10	＜0．26	＜0．20	＜0．28	<0.31	＜0．68	<0.17	＜0．28	＜0．074	＜0．14	＜0．15	＜0．13	＜0．13	＜0．14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	<0.068	\cdots	\cdots	－－	\cdots	\cdots	－－－	－－－	\cdots
NR 140 Enforcement Standard NR 140 Preventive Action Limit		5	70	100	0.2	5	6	5	7	5	5	5	5	－－	－	－－	700	－	－	100	－	800	480	480	2，000	0.01	，	0.005	0.1	0.015	0.002	0.05	
		0.5	7	20	0.02	0.5	0.6	0.5	0.7	0.5	0.5	0.5	0.5	－－	－－	－－	140	－－	－－	10	－－	160	96	96	400	0.001	0.4	0.0005	0.01	0.0015	0.0002	0.01	0.01
$\dagger=$ Detected below the Limit of Quantitation －－＝Not Tested／Not Required							Note：The following compo Note：As of the December The previous standar						A during 200 PA	the Nov strative ；Xylen	vember Code， es 10,00	$\begin{aligned} & \text { r 2, } 2007 \\ & \text { eff. } 1-1-1 \end{aligned}$ $00 \mathrm{ES} / 1,$		g event： forceme	Bromo ent stand	chlorom ards（E	thane ($.72 \mu \mathrm{~g} / \mathrm{L}$ eventive), Dibror $\text { action } 1$	$\begin{aligned} & \text { mochor } \\ & \text { mimits (P) } \end{aligned}$	ometha ALs）ha	ne $0.89 \dagger$ ve chang	$\mu \mathrm{g} / \mathrm{L}$ ． ed for T	oluene	d Xylen				

$J \mathrm{~J}=$ Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value．

Well	Date																									宕							-
MW1A	07/22/99	---	---	---	---	---	---	---	---	---	---	---	---	---	\cdots	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--.	
	12/12/01	---	---	---	--	---	---	\cdots	---	---	---	--	--	---	---	--	---	---	\cdots	---	-	---	---	---	\cdots	---	---	---	---	---	---	---	---
	03107702	\cdots	---	--				--						--	-		---	--	\cdots	--	\cdots	--		\cdots	\cdots	---							
	061/1022 $01 / 12104$	<0.05	4	<1	<0.0.053	${ }_{<0}^{00.97}$	${ }_{\text {< }}^{\substack{\text { <0.024 } \\ \text { 1.4 }}}$	-1.2	<0.03	${ }_{<1.3}^{<0.022}$	${ }_{<1}^{<0.036}$	<0.96	<0.067	140	1.7		<1.2	<1.4	<1.2	84	-0.64	$\stackrel{-1.1}{ }$	${ }_{\text {<0.9 }}^{<0.053}$	<0.025	${ }_{\substack{<0.03 \\<1.7}}^{\text {coin }}$	-0.62	<0.095	<0.66	<-0.067	\bigcirc	\bigcirc	<1.1	${ }_{\substack{<0.13 \\<1.2}}$
	03/0404		\cdots	\cdots			\cdots		-																								
	04/15/04	--	<0.4	${ }_{<0.85}^{\text {< }}$	- <1.84	- <1.97	$\begin{aligned} & <1.4 \\ & <0.7 \end{aligned}$	${ }_{44}$	<1.74	${ }_{\text {coin }}^{<0.3}$	${ }^{<1.3}$	<0.96 <0.82	${ }^{<1.4}$	150	$\stackrel{1.7}{ }$	$\begin{aligned} & <1.4 \\ & <0.58 \end{aligned}$	$\begin{aligned} & <1.2 \\ & <0.96 \end{aligned}$	$\begin{gathered} \substack{<0.4 \\ <0.75} \end{gathered}$	$\begin{gathered} <1.2 \\ <0.54 \end{gathered}$	$\begin{aligned} & <0.84 \\ & <1.16 \end{aligned}$	$\begin{gathered} 1.8 \\ <0.62 \end{gathered}$	$\begin{gathered} 21.1 \\ <0.65 \end{gathered}$	$\begin{aligned} & <0.9 \\ & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & <0.95 \\ & <0.95 \end{aligned}$	$\begin{aligned} & <1.7 \\ & 0.7 \end{aligned}$	<0.62	$\begin{gathered} <1.4 \\ <0.92 \end{gathered}$	$\begin{aligned} & <0.66 \\ & <0.8 \end{aligned}$	-	-1.4	${ }^{<1.5}$	${ }_{<}^{<1.1}$	(<1.2 <0.56
	12/15/06	---	---	--.	---	---	---	---	---	--.	---	---	---	$\stackrel{3}{-\cdots}$	---	--.	---	---	---	---	---	---	---	---		---			---				
	02/13/07	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---
	- $05 / 1102078$	\cdots		\cdots		\cdots																											
	02/14/08	---	---	---	---	---	---	---	---	---	---	---	---	---	.--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	05/06/08	\cdots	--	\cdots	\cdots	\cdots	--	\cdots	--	\cdots	---																						
	01/19/09	---	\cdots	--.	---	---	---	---	---	---	---	---	---	---	---	\cdots	---	---	---	---	---	\cdots	\cdots	---	…	---	---	---	---	--.	---		
	08/06/09																																
	05/26/10	---	--	---	---	---	---	--	---	---	---	---	---	---	--	---	--	---	---	---	--	---	--	---	---	--	---	---	---	---	---		
	$08 / 25110$ $11 / 2910$	\cdots																															
	03/01/11	---	---	---	---	---	---	---	---	---	---	---	\cdots	---	--	--	---	---	--	---	---	---	---	---	---	---	---	---	---	---	--	---	---
	05/16/11	--	\cdots	--	--	--	--	--	--	--	--	--	--	--	--	--	\cdots	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	\cdots
	11/08/11	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	-.-	\cdots
	02/20/12	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	$05 / 31112$ $0827 / 12$	\cdots																															
	11/26/12	---	---	---	---	---	---	---	---	---	---	---	-	---	-..	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	\cdots		---
	021281/3	--	--	--	--	\cdots	--	--	--	--	\cdots	--	\cdots	--	--	--	--	\cdots	--	--	--	--	--	\cdots	--	--	--	\cdots	\cdots	--	-	\cdots	\cdots
	-05/23813	\cdots	--	\cdots																													
	11/12/1	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	<0.24	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	- 05129514	\cdots	--.	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots	--	\cdots	\ldots	\cdots	\cdots		--	\cdots	\cdots	\cdots	\cdots	-.	\cdots			-	\cdots	\cdots	\cdots	\cdots
	08/28	---	--	---	---	---	---	--	---	--	--	---	--	---	---	---	---	--	---	---	--	---	--	---	--	---	---	---	---	---	---	---	---
	11/24/14 $03 / 3 / 15$	\cdots	\cdots	\cdots					\cdots		\cdots			\cdots	\cdots	---	\cdots	\cdots	$\stackrel{<0.27}{-\ldots}$	\cdots	\cdots	\cdots		\cdots	---	\cdots		\cdots	\cdots	\cdots	\cdots		\cdots
NR 140 Enforcement Standard		1	-	-	-	-	3,000	-	--	0.2	0.2	\cdots	-	6	-	0.2	-	-	600	-	100	--	400	400	-	-	-	-	40	-	1	-	250
		0.1	-	\cdots	-	-	600	\cdots	--	0.02	0.02	--	--	0.6	--	0.02	--	--	60	--	20	--	80	80	-	--	-	-	8	,	0.1	\cdots	50

$t=$ Detected below the Limit of Quantitation

- =Not Tested / Not Required

$\dagger=$ Detected below the Limito of Quantitation
$\cdots-=$ Not Tested $/$ Not Required
Note: The following compound was detected in MW1B during the March 4, 2004 sampling event: Bromodichloromethane $(0.31 \mu \mathrm{~g} / \mathrm{L})$
Note: The following compounds were detected in MW1B during the August 2009 sampling event: Benzyl Alcohol (2.1 uge $/ \mathrm{L}$). Chioromethane $(1.01 \mathrm{H} \mu \mathrm{g} / \mathrm{L})$.

As of the December 2010 ch. NR 140 Wisconsin Administrative Code, eff. 1-1-11, the e

Well	Date														$\begin{aligned} & \text { o} \\ & \text { ow } \\ & \text { ed } \\ & \hline \end{aligned}$	$\begin{array}{r} \stackrel{0}{0.0} \\ \text { en } \\ \stackrel{\rightharpoonup}{5} \\ \hline \end{array}$										镸							-
мW1B	07/22/99 $12 / 1201$ 06/10/02 \qquad	Prior to Well Construction																															
	${ }_{3 / 4 / 20004 *}$	--	<0.4	<1	<0.84	<0.97	<1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	5.3t	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	<0.64	$1.9 \dagger$	<0.9	<0.95	<1.7	<0.62	<1.4	<0.66	<1.2	<1.4	<1.5	<1.1	<1.2
	04/15/04	---	<0.4	<1	<0.84	<0.97	<1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	5.74	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	$0.92 \dagger$	$1.6+$	<0.9	<0.95	<1.7	<0.62	<1.4	<0.66	<1.2	<1.4	<1.5	<1.1	
	$11 / 07706$	---	\cdots	<0.85	<1.03	<1.05	<0.7	<0.69	<0.74	<0.96	<0.79	<0.82	<0.69	1.74	\cdots	<0.58	<0.96	<0.75	<0.54	<1.16	<0.62	<0.65	<0.8	<0.95	<0.7	---	<0.92	<0.8	<0.85	<1.4	<0.92	<1.01	<0.56
	12/15106	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	\cdots	\cdots	--	--	--	--	--	--	--	--	--	\cdots	--	--	\cdots
	- 051081307	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	-.-.	\cdots	--.	\cdots	---	---	---	\cdots	-	--.	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots										
	11/0207	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	--	---	--	---	---	---	---	--	---	---
	02/14/08	--	--	--	---	--	---	---	--	\cdots	\cdots	--	---	--	--	--	--	--	\cdots	--	---	\cdots	\cdots	--	\cdots		\cdots	---		---	\cdots	\cdots	---
	09/10/08	---	---	---		\cdots	---	---	\cdots	---	---	--.	--.	---	--.	\cdots	\cdots	---	--.	---	\cdots	---	…	\cdots	\cdots	---	---	\cdots	---	--.	\cdots	\cdots	\cdots
	01/19/09	--	---	---	---	---	---	---	---	---	---	---	---	--	--	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	
	08/06/09	\cdots	--	<0.4	<0.24	<0.23	<0.35	<1.06	<1.01	<0.35	<0.31	<0.47	<0.52	0.71t	---	<0.32	<0.28	<0.3	<0.54	<0.28	<0.54	<0.24	<0.25	<0.39	<0.26	---	<0.55	<0.36	<0.34	<0.29	<0.82	<1.55	<0.33
	05/26/10	\cdots	\cdots	\cdots	\cdots	\cdots	$\stackrel{-}{--}$	\cdots	$\stackrel{-}{-}$	\cdots	\cdots																						
	11/29/10	---	---	---	---	--	---	---	---	--	---	--	---	---	--	---	--	---	--	---	---	--	---	---	---	\cdots	---	---	---	---	---	--	---
	03/01/11	\cdots	--	\cdots	\cdots	--	\cdots	\cdots	\cdots																								
	08/30/11	---	---	---	-.-	---	---	--.	---	---	---	---	---	---	-.-	---	---	---	-.-	---	---	---	---	---	---	---	---	--.	---	---	---	---	---
	11/08/11	---	--	---	--	--	--	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	02/20112	\cdots	--																														
	08/27/12	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	11/26/12	---	--	---	---	--	---	\cdots	--	---	---	--	---	--	---	--	---	--	---	--	--	--	--	---	---	---	---	---	---	---	---	---	---
	02128113 $05 / 23 / 13$	\cdots																															
	08/28/13	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	11/12/13	---	--	---	--	---	---	---	--	---	---	--	---	--	---	\cdots	--	---	---	--	--	--	---	--	--	---	---	---	---	--	---	--	---
	-05/29/14	---	---	--.	---	---	--.	\cdots	---	---	-..	…	---	---	‥-	\cdots																	
	08/28/14	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	--	---	--	---	---	--	---	--	---	---	---	---	---	---	---	---
	11/24/14 03/30/15	\cdots	\cdots	\cdots		\cdots		\cdots	---	\cdots	---	\cdots	\cdots	---	\cdots																		
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1		--		--	3,000			0.2	0.2	--	-	6	--						100	--		400		--	--			--	1		
		0.1	\cdots	\cdots	\cdots	\cdots	600	-	-	0.02	0.02	\cdots	\cdots	0.6	--	0.02	\cdots	-	60	\cdots	$\underline{2}$	--	80	80	-	-	-	-	8	-	0.1	-	50

$\dagger=$ Detected below the Limit of Quantitation
$--=$ Not Tested $/$ Not Required

$t=$ Detected below the Limit of Quantitatio
$=$ Not Tested
$t=$ LCS or LCSD exceeds the control limits.
$\mathrm{A}=01=$ Al compounds - high conceniration of non-larget analyte present.
P-HS = All compounds - sample container contained heads.
P-AS $=$ Al compounds - Sample container contained headspace.
$\mathrm{Ja}=$ Results reported betwen the Method Detection Limit (MOL) and Limit of Quantitation
(LOQ) are less certain than results at or above the L LOQ.
(Estimated value Analyte detected at a level less than the
$J \mathrm{C}=$ Result is less than the RL but greater than or equal to the RDporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
$J C=$ Resutis lisss than the RL but greater that
Note: As of the December 2010 ch. NR 140 Wisconsin Administrative Code, eff. 1-1-11, the e
The previous standards were Toluene 1,000 ES/200 PAL; Xylenes 10,000 ES/ $/ 1,000$ PAL.
Note: The following compound was detected in MW2 during the August 30,2011 sampling event: Chloromethane ($0.60 \mathrm{mg} / \mathrm{Jc}$).

W	Date																									言							-
мw2	07/22/99	---	---	---	\cdots	\cdots	\cdots	\cdots	--	---	\cdots	---	---	---	--	--	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
	12/12/01	---		---				---							---			---	---			--		---	--		---	---	---	\cdots	---	--.	---
	03107702	---	---	---	<0.053	<0.16	<0.024	---	<0.03	<0.022	<0.036	<0.087	<0.067	--	---	<0.022	--	---	---	---	-	---	<0.053	8.3	<0.03	---	200	300	130	---	---	8.1	<0.13
	06/10/02	\cdots			2.1	<0.16	<0.024	---	<0.03	<0.022	<0.036	<0.087	<0.067	\cdots	\cdots	<0.022	\cdots		12		\cdots	--1	<0.053	3.1	<0.03	0	30	2.4	0.71	\cdots	--	<0.036	<0.13
	01/11/04	<0.05	<0.4	<1	$\stackrel{2.5 \dagger}{ }$	<0.97	<1.4	${ }^{3.3+}$	$\stackrel{<}{1}$	$\stackrel{1.3}{ }$	<1.3	<0.96	${ }^{1.4}$	$\stackrel{26}{ }$	<1.7	<1.4	$1.6 \dagger$	<1.4	<1.2	<0.84	<0.64	<1.1	<0.9	3.7	<1.7	<0.62	$\stackrel{16}{16}$	7.7	${ }_{6} .3$	${ }^{2+}$	<1.5	7.1	<1.2
	04/14/04	---	<0.4	<1	$1.5 \dagger$	<0.97	<1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	76	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	<0.64	<1.1	<0.9	$1.7 \dagger$	<1.7	<0.62	12	7.3	$2.4 \dagger$	<1.4	<1.5	4.4	<1.2
	11/03/06	---	--	$2.2 \dagger$	<1.03	<1.05	<0.7	<0.69	<0.74	<0.96	<0.79	<0.82	<0.69	100	-	<0.58	<0.96	<0.75	<0.54	<1.16	<0.62	<0.65	<0.8	${ }^{1.3+}$	<0.7	---	5.3	${ }^{3.3}$	2.19	<1.4	<0.92	${ }^{2.3+}$	<0.56
	12/1406	---	---	-	0.78	0.13	0.19	---	$0.024+$	0.008	$0.011+$	<0.01	<0.009	-	---	$0.018 \dagger$	---	<0.009	--	--	---	---	0.058	1.0	<0.015	---	5.5	3.3	0.83	---	---	1.7	0.17
	$02 / 13107$ 050807	\cdots	\cdots	\cdots	3.8¢	-	${ }^{<0.65}$	\cdots	- 0.75	<0.75	${ }_{0}^{<0.7}$	<0.75	${ }_{<0}^{<1.15}$	$\stackrel{-}{--}$	\cdots	${ }_{0}^{<0.021+}$	\cdots	- <0.75	--.	\cdots	\cdots	\cdots	-0.75	5.1t	<0.7	\cdots	${ }_{6.1}^{34}$	${ }_{2}^{40}$	${ }_{0}^{6.83 \dagger}$	\cdots	\cdots	19.7 1.56	-
	11/01/07	\cdots	\cdots	\cdots	${ }_{1} 1.450$	0.281	${ }_{0.221}$	\cdots	$0.044 \uparrow$	<0.03	0.03t	<0.03	<0.046	---	\cdots	$\frac{0}{00.032}$	---	<0.03	\cdots	---	\cdots	\cdots	${ }_{0} 0.074 \dagger$	1.81	<0.028	---	${ }^{6.1} 1$	${ }_{14.5}$	${ }_{5.8+}$	\cdots	\cdots	${ }_{3} .5$	${ }_{0}^{0.123}$
	02/1408	---	---	---		---	---	---	---	---	-	---	---	---	---	---	--	---	---	---	---	---	--	--	---	---	-	---	--	---	---		---
	0506108 0911008	\cdots	---	\cdots	\cdots	\cdots	---	\cdots	\cdots	--	---	---	--	\cdots	\cdots	---	\cdots	---	--	---	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots							
	01/19/09	---	--	--	0.570	0.116	0.105	\cdots	$0.022+$	<0.016	$0.016+$	<0.02	<0.023	\cdots	\cdots	<0.02	---	<0.012	\cdots	--	\cdots	\cdots	${ }^{0.044+}$	0.730	<0.013	--	2.98	0.430	0.49	---	---	0.750	0.061
	08/06/09	---	---	<0.4	4.7	<0.23	0.51†	$2.8 \dagger$	<1.01	<0.35	<0.31	<0.47	<0.52	9.7	---	<0.32	<0.28	<0.3	<0.54	<0.28	<0.54	2.1	<0.25	5.4	<0.26	--	48	42	16	<0.29	<0.82	8.8	<0.33
	05/26/10	---	---	---	---	---	---	---	--.	--	---	---	---	---	\cdots		---	---	--	---	---	--	--	--	-	---	--	--	--	--	--	--	--
	08/25/10	\cdots	--	--	--	--	--	--	--	--	--	--	---	---	--	--	--	--	---	--	--	---	---	--	---	---	\cdots	\cdots	\cdots	---	\cdots		\cdots
	03/1/1/11	\cdots	\cdots	---	\cdots	---	$\stackrel{-}{-}$	---	-..	---	…	---	---	---	---	\cdots	---	\cdots	---	\cdots	---	\cdots	---	---	…	---	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	---
	05/16/1	---	---	---	---	---	---	---	\cdots	---	---	\cdots	--	--	--	--	---	---	\cdots	\cdots	---	---	---	\cdots	---	---	\cdots	---	\cdots	--	---	\cdots	---
	08/30/1	\cdots	.-.	\cdots	---	\cdots		---	\cdots	---	\cdots			---																			
	02120/1	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---		---	---	---	---	---	---	---	---	---	--		---		---
	05/31/12	---	--	---	---	---	--	--	---	--	---	---	---	--	--	--	---	---	---	\cdots	---	---	--	--	---	--	---	---	\cdots	\cdots	\cdots	---	---
	$081 / 2712$ $11 / 27 / 12$	\cdots		\cdots																													
	02/28/13	---	--	---	---	---	---	---	---	---	---	---	--	--	--	---	---	---	---	-	---	---	---	---	---	---	---	---	---	---	---		---
	05/23/13	--	---	---	---	---	---	---	---	---	---	---	---	---	--	--	--	---	---	--	---	---	--	---	---	---	---	---	---	---	---	---	---
	08/28/13	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	<0.27	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	1712/2/14	\cdots	$\stackrel{<0.27}{--7}$	\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	--	\cdots	\cdots																
	05/29/14	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	<0.27	---	---	---	---	--	---	---	---	---	---	---	---	---	---
	08828/14	\cdots	--	--	---	---	--	---	---	---	---	--	---	--	---	--	---	--	<0.27	--	---	\cdots	---	--	---	---	--	---	---	---	---	---	---
	-11/25/14	\cdots	--	\cdots	\cdots	<-2.27	\cdots																										
	03/30/15	---	---	---	---	---	--	--	--	--	---	--	---	---	--	---	---	---	<0.27	--	---	---	---	---	---	--	--	---	---	---	--	---	---
NR 140 Enforcement Standard		1	-	-	-	-	3,000	-	-	0.2	0.2	-	-	6	--	0.2	--	-	600	-	100	--	400	400	-	--	--	-	40	-	,	-	250
														0.6																			

$t=$ Detected below the Limit of Quantitation
$-=$ Not Tested / Not Required

Note: As of the December 2010 ch. NR 140 Wisconsin Administrative Code, efff: 1-1-111, the enforcement standards (ESS) and preventive action limits (PALs) have changed for Toluene and Xylenes.
The previous standards were Toluene $1,000 \mathrm{ESS} 200 \mathrm{PAL}$; Xylenes $10,000 \mathrm{ES} / 1,000 \mathrm{PAL}$.

TABLE 1
Historical Groundwater Analytical Results
QuicFrez SFR Site－Fond du Lac，Wisconsi
SCS Engineers Project \＃25211406．63

		Chlorinated Volatile Organic Compounds（EPA 8260）－－Mg／											Petroleum－related Volatile Organic Compounds（EPA 8260）－－Hg／L													A Metals－mg／							
Well	Date				$\begin{aligned} & .00 \\ & \frac{0}{6} \\ & \text { 흘 } \\ & \hline \end{aligned}$		$\begin{array}{r}\text { 틍 } \\ \text { 흉 } \\ \text { 든 } \\ \hline\end{array}$												$\stackrel{0}{0}$ $\frac{\partial}{3}$ $\frac{\partial}{2}$ $\frac{0}{2}$ $\frac{0}{2}$ $\frac{0}{2}$							$\begin{array}{r} \text { 亮 } \\ \text { 耪 } \\ \hline \end{array}$		$\begin{aligned} & \text { 唇 } \\ & \text { E⿳亠口冋口⿱口⿰口口寸 } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { 틀 } \\ \text { E응 } \\ \hline \end{array}$	\％	$\begin{array}{r} \frac{2}{2} \\ \text { eid } \\ \hline \end{array}$		$\stackrel{\text { \％}}{\stackrel{\text { ® }}{5}}$
MW4／MW4R	07／22／99$12121 / 201$030707	Prior to Well Construction											Prior to Well Construction													Prior to Well Construction							
		34，000	1900	＜22	770	＜40	<20	＜24	＜22	＜48	＜30	240	$18 \dagger$	＜16	＜20			＜14	${ }^{24}$	<20		＜16	＜22	<16	＜68		0.039	${ }^{0} 0.08$	$1.6+$	<1		<1.0	
	06／10／02	370，000	1400	100	1200	＜40	240	＜24	460	＜48	140	3，200	$32 \dagger$	<16	＜20	<22	$\frac{110}{110}$	＜14	＜24	<30	＜30	$50 \dagger$	＜22	＜16	${ }_{46+}$	$\frac{8.8}{8.3}$	0.221	0.3	88	10	$\stackrel{0.69}{<0.11}$	<1.0	2.7
	01／13／34 0	83，200	138，000	＜1750	1550 \dagger	<1100	＜3450	＜1000	＜2200	＜12000	＜2250	＜2050	＜850	＜1550	＜2150	＜1100	＜800	＜550	＜900	＜1300	＜950	＜750	＜700	<600	＜2300	＜0．005	$\stackrel{0.4}{ }$	＜0．0005	＜0．01	＜0．001	＜0．0002	＜0．01	＜0．01
	04／1504	26，000	19，600	＜440	$980 \dagger$	＜320	＜500	＜580	＜780	＜1400	＜1400	＜500	＜580	＜620	＜420	＜780	＜1120	＜380	＜600	＜1200	＜640	＜1140	＜1020	＜1320	＜3480	＜0．005	<0.4	＜0．0005	<0.01	<0.0015	＜0．0002	<0.01	<0.01
	11／0306	560，000	5200t	＜4，750	1350 \dagger	＜2600	＜3050	＜3600	＜1500	＜3450	＜2600	＜2，500	＜2350	＜3000	＜3800	＜5500	＜1900	＜4950	＜4050	＜11，000	＜3050	＜2950	＜1950	＜6000	<7100	＜0．079	0.16	＜0．0007	＜0．0023	＜0．0024	0.00004	0.0092	＜0．0025
	12／14／06	870，000	14，900	＜4，750	1750 \dagger	＜2600	＜3050	＜3600	＜1500	＜3450	<2600	$3400+$	＜2350	＜3000	＜3800	＜5500	＜1900	＜4950	＜4050	＜11，000	＜3050	＜2950	＜1950	＜6000	<7100	－－－		－－－	－－－	－－－	－－－	－－－	－－
	02／13／07	880,000	15，400	－4750	${ }^{2300}+$	＜2300	＜2400	＜2250	＜2300	<3450	＜2600	＜2500	＜2350	＜1700	＜1800	＜2600	＜1900	＜2400	＜1750	＜9000	＜1900	＜2300	＜6000	＜1850	＜4950	－－－	－－	－－－	－－－	－－－	－－	－－－	－－－
	05／08／07	${ }^{680,000}$	23，400	－4750	1600 \dagger	＜2300	＜2400	＜2250	＜3200	＜3450	＜2600	＜2500	＜2350	＜1700	＜1800	＜2600	＜1900	＜2400	＜1750	＜9000	＜1900	＜2300	＜6000	＜1850	＜4950		－－				\cdots	－－	－
	11／02／07	830，000	34，000	＜4750	$2500+$	<2300	<2400	＜2250	＜3200	<3450	<2600	<2500	<2350	＜1700	＜1800	<2600	＜1900	＜2400	＜1750	＜9000	＜1900	＜2300	＜6000	＜1850	＜4950								
	$02 / 1408$	680，000	83，000	＜4750	$1500+$	<2300	<2400	＜2250	＜3200	<3450	<2600	<2500	<2350	＜1700	＜1800	<2600	＜1900	＜2400	＜1750	＜9000	－1900	<2300	＜6000	＜1850	＜4950							－－	
	05／06／08	460，000	${ }^{82,000}$	－3050	${ }^{1250+}$	＜1500	－2350	＜2050	＜2500	＜4950	＜2500	＜1950	＜1200	＜1600	＜3650	＜2750	＜1750	＜3000	＜3850	＜9000	＜2700	＜1950	＜2550	＜1150	＜8350	－－	－－				－－－	\cdots	
	09／10／08	533，000	72，000	－3050	16500	＜1500	－2350	＜2050	<2500	<4950	<2500	＜1950	＜1200	＜1600	<3650	<2750	＜1750	＜3000	＜3850	－9000	＜2700	＜1950	＜2550	＜1150	＜8350	－－	－－－	－	－－－	－－－	\cdots	－	
	01／19／09	370，000	36，000	＜3050	＜1000	<1500	＜2350	＜2050	＜2500	＜4950	<2500	＜1950	＜1200	＜1600	＜3650	＜2750	＜1750	＜3000	－3850	<9000	＜2700	＜1950	＜2550	＜1150	＜8350	－－．	－－368		－－－	－－．			
	08／06／09	224，000	126，000	＜3050	＜1000	<2150	＜2400	＜2150	＜2350	＜7500	<2100	＜2050	＜2050	＜2300	＜2150	＜7500	＜4350	＜1950	＜2850	＜8500	＜1650	＜2550	＜5500	＜7500		0.0215	0.368	0.0005	0.001	． 000	． 0000		
	05／26110	${ }^{977,000}$	75,000 150,000	${ }_{<630}<8$	340 Ja 680 Ja	＜1300	${ }_{\substack{\text {＜} \\ \text {＜220 }}}$	${ }_{<800}^{<800}$	${ }_{<800}^{<830}$	＜1600	＜800	＜400	－	－320		${ }_{\substack{<320 \\<250}}^{\text {c }}$	${ }_{<}^{8800}$	＜ 250		${ }_{c}^{2000 ~ J a, ~}{ }^{310}$	＜800	${ }_{<}^{8800}<$	－	－ 250	${ }_{<800}^{<800}$	\cdots	\cdots	\cdots	\cdots	\cdots	－－	\cdots	\cdots
	11／29／10	110，000	160，000	＜1300	＜500	＜2000	＜500	＜1300	＜1300	＜2500	＜1300	＜630	＜500	＜500	＜630	＜500	＜1300	＜500	＜500	＜630	＜1300	＜1300	＜500	＜500	＜1300							－－	
	03／01／11	120，000	170，000	＜1000	＜400	＜1600	＜400	＜1000	＜1000	＜2000	＜1000	＜500	＜400	＜400	＜500	＜400	＜1000	＜400	＜400	＜500	＜1000	＜1000	＜400	＜400	＜1000		－－						
	05／16／11	85，000	170，000	＜1300	＜500	<2000	＜500	＜1300	＜1300	＜2500	＜1300	＜630	＜500	＜500	＜630	＜500	＜1300	＜500	＜500	＜630	＜1300	＜1300	＜500	＜500	＜1300	－－－	－－－	－－	－－	－－	－－－		－－－
	08／30／11	57，000	100，000	300 Jc	820 Jc	<1000	＜1000	＜1000	310 Jc	＜1000	＜1000	＜1000	＜1000	＜1000	＜1000	＜1000	＜1000	＜1000	＜1000	<500	＜1000	＜1000	＜1000	＜1000	＜1000	\cdots	\cdots		\cdots	\cdots	\cdots	\cdots	
	11／08／11 02／20／12	${ }^{50,000} 5$	150,000 110,000	<1000 <800	1800 Jc 560 Jc	＜1600	＜400	＜1000	＜1000	＜2000	＜1000	＜500	＜ 400	${ }_{<}^{<400}$	－500	${ }_{<0}^{<400}$	＜1000	＜400	${ }_{<}^{400}$	＜400	＜1000	＜1000	＜300	＜300	＜1000	\cdots	－－						
	05／31／12	89，000	180，000	350	3200	＜13	＜10	<14	790	＜34	80	150	20 Jc	＜7．0	＜7．5	＜6．5	23 Jc	＜7．0	＜8．5	＜8．0	＜6．5	25	＜7．0	＜9．0	19 Jc	－－	－－－	－－－	－－－	－－	－－－	－－－	－－
	08／27／12	150，000	380，000	600	3，300	＜26	＜20	＜28＊	1，000	＜68	87 Jc	140	＜7．4	＜14	＜15	＜13	＜13	＜14	<17	＜16	<13	＜11	＜14	＜18	＜6．8	－－－	－－－	\cdots	\cdots	\cdots	－－	－－－	－－
	11／26／12	49，000	160，000	320 Jc	2，000	${ }^{<130}$	＜100	＜140	${ }^{720}$	－340	＜85	＜140	－	＜70	－75	＜65	${ }^{665}$	＜70	＜85	－80	＜65	－55	－280	－990	＜34		\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	
	02／28／13	67，000	${ }^{130,000}$	＜50	1，600	－52	<40	＜56	${ }_{5}^{650}$	＜140	${ }^{334}$	120 Jc	＜15	－28	－30	＜26	－26	＜28	－34	${ }^{3} 32$	＜26	－22	－28	＜36	＜14	\cdots	\cdots	－	－－		\cdots	－－	
	05／23／13	79，000	140，000	＜130	2，300	＜130	＜100	＜140	530	－340	＜85	<140	${ }^{<37}$	＜70	＜75	<65	＜65	<70	－85	<80	${ }^{665}$	－55	＜70	<90	＜34	－－－	－－	－－	－－			－－	
	08／28／13	49，000	120，000	350	4，600	＜1．3	<1.0	15	660	＜3．4	44	100	14	＜0．70	<0.75	<0.65	20	＜0．70	<0.85	<0.80	<0.65	17	＜0．70	＜0．90	9.3	－－－	－－	－－	－－	\cdots	－－－	－－	－－
	11／12／13								＜310	＜680	＜170	＜280														\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	－－－	
	05／29／14								1，200	＜68	77 Jc	110														\cdots	\cdots	－－－	．－．	\cdots	\cdots	\cdots	
	08／28／14	88，000	210，000	470	6，400	＜13	<10	<14	940	＜34	79	130	c7．4 17	－14	＜7．5	＜6．5＊	19 Jc	＜7．0	＜17	<8.0	<6.5	24 Jc	＜7．0	＜9．0	＜3．4								
	11／24／14	41，000	120，000	270	3，800	＜52	<40	＜56	500	<140	＜34	＜56	＜15	$\begin{gathered} <28 \\ <7.0 \end{gathered}$	$\begin{aligned} & <30 \\ & >7.5 \end{aligned}$	$\begin{aligned} & <26 \\ & <6.5 \end{aligned}$	＜6．5	$\begin{gathered} <28 \\ <7.0 \end{gathered}$	<84 <8.5	＜32	<26		$\begin{gathered} <28 \\ >7.0 \end{gathered}$	$\begin{aligned} & <36 \\ & <9.0 \end{aligned}$	＜3．4	－－－	－－	－－－	－－		－－－	－－	
	03／30／15	22，000	54，000	150	1，000	<13	＜10	＜14	270	＜34	＜8．5	＜14								＜8．0	＜6．5	＜5．5					－－－			－－－－－－			
NR 140 Enforcement Standard NR 140 Preventive Action Limit		5	70	100	0.2	5	6	5	7	5	5	5	5	－	－	－	700	－	－	100	－	800	480	480	2，000	0.01	2	0.005	0.1	0.015	0.002	0.05	0.05
		0.5	7	$\underline{20}$	0.02	0.5	0.6	0.5	0.7	0.5	0.5	0.5	0.5	－	－	－	140	－－	－	10	－－	，	96	96	400	0.001	0.4	0.000	0.0	0.001	0．0	0.0	0.01

$\dagger=$ Detected below the Limit of Quantitation
$=$ Not Tested $/$ Not Required
＝Anayle was detected in the associated Method Blank．

a Results reported between the Method Detection Limit（MDL）and Note：As of the December 2010 ch．NR 140 Wisconsin Administrative Code，eff．1－1－11，the enforcement standards（ESS）and preventive action limits（PALS）have changed for Toluene and Xylenes．
$=$ Results reported between the Method Detection Limit（MDL）and
The previous standards were Toluene $1,000 \mathrm{ES} / 200$ PAL；xylenes $10,000 \mathrm{ES} / 1,000 \mathrm{PAL}$ ．
Note：The following compounds were detected in MW4R during the August 28,2013 sampling event：Chlorobenzene（ $2.8 \mathrm{Jc} \mu \mathrm{g} / \mathrm{L}$ ）．
＝Result is less than the R）are less certain than resulis at or above the LOQ．
n is an approximate value．

Well	Date																									宕				$\begin{aligned} & \text { 흥 } \\ & \text { 旁 } \\ & \text { 䯧 } \\ & \hline \end{aligned}$			－
mW4／MW4R	07／22／99	Prior to Well Construction																															
	－ $121 / 212010$	－－	－－－	－－－	<0.053	<0.16	2.4	－－	2.8	4.1	3.6	2.6	1.7	－－	－－	3.9	－－－	－－－	－－	－－－	\cdots	－－－	16	2.2	2.7	－－	2.1	3.2	3.5	－－－	－－		
	06／10／02	－－－		－		1.5	<0.02	－－－	5.5	3.7	3.3	3	3.4				－－－				－－－	－－－	22	${ }_{9}^{2.1}$		－－－	3.9	5.8	13				
	01／13／04	＜0．05	<0.4	$1.2 \dagger$	<0.84	<0.97	＜1．4	＜1．2	$2.1+$	$2.9+$	$2.8 \dagger$	$1.7 \dagger$	＜1．4	34	<1.7	$1.6 \dagger$	＜1．2	＜1．4	$1.4 \dagger$	$0.88 \dagger$	$0.7 \dagger$	<1.1	6.3	<0.95	＜1．7	<0.62	＜1．4	<0.66	＜1．2	＜1．4	<1.5	5.3	5.8
	03／0404	\cdots	$\stackrel{-}{<0.4}$	$\stackrel{-}{<}$	$\stackrel{-7}{<0.84}$	$\stackrel{-97}{<0.97}$	$\stackrel{-}{-1.4}$	$\stackrel{-1}{ }$	＜1	$\stackrel{-1}{<1.3}$	－1．3	$\stackrel{-9}{<0.96}$	$\stackrel{-1}{ } \times 1$	<1.9	＜1．7	$\stackrel{-1}{-1.4}$	＜1．2	$\stackrel{-1}{\text {＜1．4 }}$	2.97	<0.84		＜1．1		<0.95	$\stackrel{-7}{-1.7}$	<0.62	$\stackrel{-1}{-1.4}$	<0.66	－1．2				
	11／03／06	‥－	－0．4	${ }_{1.4 \dagger}$	$\stackrel{\text { coin }}{ }$	<1.05	＜0．7	${ }_{27}$	＜0．74	<0.96	＜0．79	＜0．82	＜0．69	8	$\stackrel{-}{-7}$	＜0．58	${ }_{<0}<0.96$	＜0．75	10	＜1．16	＜0．62	＜0．65	${ }_{<0.8}^{20.9}$	<0.95	＜0．7	2	${ }_{<0.92}$	${ }_{<0}$	${ }_{1.5+}^{2}$	$\begin{aligned} & <1.4 \\ & <1.4 \end{aligned}$	$\begin{aligned} & <1.5 \\ & <0.92 \end{aligned}$	$\begin{gathered} <1.1 \\ <1.01 \end{gathered}$	＜1．2
	12／14／06	－－－	\cdots	－	－－－	－－－	－－－		－－－		－	－－	－－－	－－－	－－－	－－－	－－－	－	－	－		－－－	－－－			－－－		－－－					
	02／13／07	－－－	－－	－－－	－－	－－	－－	－－	－－－	－－	－－	\cdots	－－－	－－	－－－	－－	－－－	－	－－	－－－	\cdots	－－－	\cdots	－－－	－－－	\cdots	－－－	－－		\cdots	－－－	－－－	
	05／0807 1110207	\cdots	－－	\cdots		－－	\cdots	－	\cdots																								
	02／1408	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	05／06／08	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－		－－－			－－－		－－－		－－	－－－	－－－	\cdots	－－－			－－－		－－						\cdots
	09／10／08	\cdots	－－－	－－－	－－	－－－	－－－	－－－	－－	－－－	－－－	\cdots	\cdots	－－	－－	－－	－－－	－－－	\cdots	\cdots	\cdots	－－－	－－	－－	－－－	－－－	－－－	－－	－－	－－－	－－－	\cdots	－－－－
	－ $\begin{aligned} & \text { 0171909 } \\ & 08 / 11 / 99\end{aligned}$	\cdots	\cdots	2.6	＜0．24	－0．23	－0．35	33	$\stackrel{-7}{<1.01}$	＜0．35	－0．31	－0．47	＜0．52	66	\cdots	－0．32	－0．28	－0．	\cdots	－0．28	$0.67+$	8.2	－0．25	＜0．39	－0．26	－－－	$\stackrel{-}{1.6 \dagger}$	2.5	2.48	－0．29	＜0．82	<1.55	<0.33
	05／26／10	－－－	－－	－－－	－－－	－－－	－－	－－	－－	－－－	－－	－－－	－－－	－－－	－－	－－	－－－	－－	－－－	－	－－	－－－	－－	－－	－－－	－－－		－－－					
	08／25／10	－－	－－	－－－	－－－	－－－	－－－	－－	－－－	－－	－－	－－	－－－	－－	－－	－－	－－	－－－	－－	－－－	－－	－－	－－－	－－	－－－	\cdots	\cdots	－	－－	－	－－	－－	\cdots
	$11 / 29110$ 0301111	\cdots	－－－	\cdots	\cdots	\cdots	\cdots	－－－	\cdots	\cdots	\cdots	\cdots	\cdots	－－－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	－－－												
	05／16／11	－－－	－－－	－．－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－．－	－．－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	08／30／11	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－		－－	－－－	－－－	－－－		－－－		－－－			－		－－－
	11／08／11	－－－	－－	－－	－－	－－	－－	－－	－－－	－－	－－	－－	－－－	－－	－－	－－	－－	－－	－－－	－－	－－	－－－	－－	－－	－－	\cdots	－－	－	－－－	－－	－－－	\cdots	\cdots
	－	…	\cdots	…	\cdots	\cdots	…	\cdots	\cdots	－－	…	\cdots	－－	\cdots	－－－	\cdots																	
	08／27／12	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－	－－－	－．－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	11／26／12	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－	－－－		－－－	\cdots	－－－
	－02128173	\cdots	\cdots	\cdots	－－	\cdots	－－	\cdots	－－	\cdots	\cdots	－	－－	－－	－－	－－	\cdots	\cdots			－	－－	－				\cdots	－		\cdots	\cdots	\cdots	\cdots
	08／28／13	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	7	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	11／21／13	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－	－－－	－－．	－－	－－－	＜270	－－－	－－－	－－－	－－－	－－	－－－		\cdots	－－－	－－－	－－－	－－－	－－－	－－－
	03／251／4	－－－	－－	－－	－－	－－	\cdots	－－	－－	－－	－－	\cdots	－－	－－	－－	－－	－－	－－	\cdots	\cdots	－－	－－	\cdots	\cdots	－－	\cdots	－－	－－－	－－	－－	－－	\cdots	\cdots
	－ $08 / 281 / 14$	－－－	\cdots	－－	－－－	${ }_{<}^{<27}$	\cdots	\cdots	\cdots	\cdots	－－	\cdots																					
	11／24／14	－－－		－－－		－－－		－．－	－－－	－－－	－－	－－－	－－－	－－	－－－	－－	－－－	－－－	＜54	－－－	－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
NR 140 Enforcement Standard		1	－	－	－	－	3，000	－	－	0.2	0.2	－	－－	6	\cdots	0.2	\cdots	－－	600	－	100	－	400	400	－	\cdots	－	－	40	－	1	－	
		0.1		\ldots	\ldots		600		－	0.02	0.02	－	－－	0.6	－	0.02	－		60		20	－－	80	80	－	－－		－	8		0.1		50

$t=$ Detected below the Limit of Quantitation
$t=$ Detected below the Limit of
$+-=$ Not Tested／Not Required

[^0]Historical Groundwater Analytical Results
QuicFrez SFR Site - Fond du Lac, Wisconsi
SCS Engineers Project \#25211406.63

$+=$ Detected below the Limit of Quantitation
Note: The following compound was detected in MW4B during the November 7, 2006 sampling event: Phenol ($0.57+$ Hg/L).
Note: As of the December 2010 ch. NR 140 Wisconsin Administrative Code, eff. $1-1-11$, the enforcement standards (ESS) and preventive action limits (PALs) have changed for Toluene and Xylenes

$t=$ Detected below the Limit of Quantitation
$t=$ Detected below the Limit of
$=-$ =Not Tested / Not Required

TABLE 1
Historical Groundwater Analytical Results
QuicFrez SFR Site - Fond du Lac, Wisconsi
SCS Engineers Project \#25211406.63

TABLE 1
Historical Groundwater Analytical Results
QuicFrez SFR Site－Fond du Lac，Wisconsi
SCS Engineers Project \＃25211406．63

		Chlorinated Volatile Organic Compounds（EPA 8260）－Mg／L											Petroleum－elated Volatile Organic Compounds（EPAA 8260）－－Mg／													RCRA Metals－mg／L							
Well	Date						틍 흥 등																		$\begin{array}{r} \stackrel{.0}{0} \\ \frac{\stackrel{\rightharpoonup}{2}}{\dot{x}} \\ \hline \end{array}$	$\begin{aligned} & \text { 亳 } \\ & \text { 䨤 } \end{aligned}$	$\begin{array}{r} \text { 喜 } \\ \text { 㕎 } \\ \hline \end{array}$			\％	$\begin{array}{r} \text { 言 } \\ \text { 高 } \\ \hline \end{array}$		$\stackrel{\stackrel{y}{7}}{\bar{\omega}}$
MW5／MW5R	07／22／99 12121201	Prior to Well Construction											Prior to Well Construction													Prior to Well Construction							
	03107／02	22，000	1400	＜22	＜32	<40	<20	＜24	<22	＜48	＜30	＜38	${ }^{52+}$	<16	＜20	<22	<16	<14	${ }^{24}$	<20	＜30	<16	＜22	<16	＜68	<1.3	$0.011+$	<0.08	$1.5 \dagger$	<1	2.9	＜1．0	1.0
	06／10102	49，000	${ }^{3500}$	$28+$	170	＜40	＜20	<24	<22		＜30	$70 \dagger$	60	＜16	＜20	<22	＜16	<14	<24	<20	＜30	＜16		＜16		2.15	0.044	＜0．08	$1.9 \dagger$	＜0．66	<0.11	＜1．0	
	01／12／04	20，200	19，200	＜175	＜55	＜110	＜345	＜100	<220	＜1200	＜225	＜205	＜85	＜155	＜215	＜110	＜80	＜55	<90	<130	<95	＜75	＜70	＜60	<230	＜0．005	<0.4	＜0．0005	＜0．01	＜0．0015	＜0．0002	＜0．01	＜0．01
	03／0404	33，700	16，800	＜110	＜105	<80	$\stackrel{-125}{-125}$	$\stackrel{-145}{-14}$	$\stackrel{-195}{ }$	＜350	\bigcirc	＜125	－145	$\stackrel{1}{-155}$	$\stackrel{-105}{-105}$	$\stackrel{-195}{-1}$	$\stackrel{-1}{<280}$	＜95	＜150	＜300	\bigcirc	＜285	$\stackrel{\text {＜255 }}{ }$	＜330	＜870	＜0．005	$\stackrel{-7}{0.4}$	<0.0005	\bigcirc	＜0．0015			<0.01
	11／03／06	34，000	<8500	<475	$85 \dagger$	＜260	＜305	＜360	＜150	＜345	＜260	＜250	＜235	＜300	＜380	＜550	＜190	＜495	＜405	＜1100	<305	<295	＜195	＜600	<7100	＜0．0079	0.24	＜0．0007	＜2．3	＜0．0024	0.00004	＜0．0092	0.0025
	12／14／06	8000	16，800	＜475	<85	＜260	＜305	＜360	＜150	＜345	＜260	＜250	＜235	＜300	＜380	＜550	＜190	＜495	＜405	＜1100	＜305	＜295	＜195	<600	＜7100		－－－						－
	02／13／07	30，300	25，700	<475	120	＜230	＜240	＜225	＜320	＜345	<260	＜250	＜235	＜170	＜180	＜260	＜190	<240	＜175	＜900	＜190	＜230	＜600	＜185	＜495	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	05／08807	25，500	32,000 4	206t	196	－92	＜96	－90	＜128	${ }_{<}^{<138}$	＜104	＜100	＜94	－68	＜72	＜104	－76	－96	＜70	＜360 －360	－76	－92	${ }^{2} 240$	－74	＜198	\cdots	\cdots				\cdots	－－－	
	11／0207	19，600	4，300	<190	${ }^{84 \dagger}$	<95	<96	<90	＜128	＜138	＜104	＜100	－94	${ }^{688}$	＜72	＜104	－76	－96	＜70	－360	－76	－92	－240	－74	＜198	\cdots	－－				－－	\cdots	\cdots
	02／1408	7，800	3，700	＜190	<40	<92	－96	＜90	＜128	＜138	＜104	＜100	＜94	＜68	＜72	＜104	＜76	＜96	＜70	＜360	＜76	＜92	<240	＜74	＜198							－－－	
	05／06／08	3，200	5，300	＜61	${ }^{24 \dagger}$	＜30	＜47	＜41	＜50	＜99	＜50	＜39	${ }^{26+}$	＜32	＜73	＜55	＜35	＜60	<77	<180	－54	＜39	＜51	<23	＜167	－－－	－－－	－－	－－	－－－	－－－	－－－	－－
	09／10108	6,800 5,300	4,900 3,700	$32 \dagger$ $80 \dagger$	${ }_{30}^{56}$	＜15	${ }_{\text {c }}^{233.5}$	${ }_{\text {－}}^{20.5}$	＜25	－49．5	${ }_{<}^{25}$	＜19．5	28t	－ 16	＜36．5 <36.5	<27.5 <275 15	${ }_{18}^{18+}$	－30	<38.5 <38.6	－<90	＜27	＜19．5	${ }_{<}^{<25.5}$	<11.5 <116	${ }_{\text {＜}}^{<83.5}$	－－－	\cdots	\cdots	－－－	\cdots	\cdots	\cdots	\cdots
	08／06／199	${ }^{5,160}$	1，760	＜30．5	${ }_{33}{ }^{\text {30．5t }}$	＜21．5	－24	＜21．5	${ }_{2}^{23.5}$	＜45	＜21	${ }_{<2}$	25．5	＜23	${ }_{<21.5}^{\text {＜2615 }}$	${ }_{<}^{2275}$	＜43．5	＜19．5		＜85	＜16．5	＜25．5	－55	＜75	＜106．5	0.0062	0.284	＜0．0005	0.0012	$2<0.0007$	． 00004	0.0009	
	05／26／10	5.6 Ja	1，100	11 Ja	550	<16	＜4．0	＜10	＜10	＜20	＜10	＜5．0	15 Ja	＜4．0	＜5．0	<4.0	<10	<4.0	<4.0	$26 \mathrm{Ja,B}$	＜10	10 Ja	＜4．0	<4.0	13 Ja		－－－						
	08／25／10	150	440	3.2 Ja	300	<4.0	<1.0	＜2．5	<2.5	＜5．0	＜2．5	＜1．3	12	<1.0	＜1．3	＜1．0	10	＜1．0	＜1．0	＜1．3	＜2．5	7.8 Ja	＜1．0	＜1．0	12	－－	－－	－－－	－－－	－－－	－－－	－－－	－－－
	11／29／10	${ }^{360}$	${ }^{790}$	4.8 Ja	500	－4．0	＜1．0	＜2．5	3．1 Ja	<5.0	＜2．5	<1.3	14	<1.0	＜1．3	<1.0	7.0 Ja	＜1．0	＜1．0	${ }^{3.2} \mathrm{Ja}$	<2.5	4.4 Ja	＜1．0	＜1．0	13	－－－							
	03／01／11	${ }^{61}$	${ }_{0}^{200}$	${ }^{<2.5}$	410	＜4．0	＜1．0	${ }^{22.5}$	${ }^{<2.5}$	＜5．0	${ }_{\text {ce }}^{22.5}$	－1．3	$9.5{ }^{9} \mathrm{Jb}$	＜1．0	${ }^{<1.3}$	${ }_{<1}^{<1.0}$	7.95	${ }^{<1.0}$	${ }^{<1.0}$	＜1．3	＜2．5	4.5 Jb	${ }_{6}^{6.6 ~ J b}$	＜1．0	17	\cdots	\cdots		\cdots	\cdots	\cdots	\cdots	
	05／16／11	＜0．20	${ }^{0.66 \mathrm{Jb}}$	0.80 Jb	20	${ }_{-20}^{20}$	－0．20	${ }_{0}^{20.50}$	c	＜1．0	＜2．50	＜0．25	${ }_{11}^{9.3}$	＜0．20	${ }_{0}^{0.63 \mathrm{Jbc}}$	1.3 Jb 0.46 Jc	15 12	${ }_{1}^{1.9 \mathrm{Jb}} 1$	${ }^{0.56 \mathrm{Jb}}$	${ }_{0.49 \mathrm{Jc}}^{2.5 \mathrm{Jb}}$	${ }_{1.7}^{3.0}$	8.0 6.9	18 6.3	${ }_{2}^{2.1}$	27 19	\cdots	－	\cdots	\cdots	…	－	－－	\cdots
	08／30／11 $11 / 108 / 11$	9.1 27	$\frac{25}{130}$	${ }_{0.63 \mathrm{Jc}}^{<2.0}$	${ }_{39}^{2.1}$	＜2．80	＜0．20	${ }_{<0}^{20.50}$	＜0．50	${ }_{<1.0}^{22.0}$	${ }_{<0.50}^{20.0}$	＜0．25	11	＜0．20	＜0．25	＜0．20	7.1	${ }_{0} .73 \mathrm{Jc}$	＜0．20	＜0．25	0.70 Jc	${ }_{3.2}^{6.9}$	2.5	${ }_{0}^{1.36 \mathrm{Jc}}$	12	\cdots	\cdots	\cdots	\cdots	\cdots		－－－	
	02／20／12	57	330	1.6 Jc	150	<0.80	<0.20	＜0．50	1.0 Jc	＜1．0	<0.50	＜0．25	4.7	<0.20	＜0．25	＜0．20	3.0	0.32 Jc	＜0．20	<0.25	＜0．50	<0.50	0.72 Jc	＜0．20	4.6 Jc		－－－					－－	－－－
	05／31／12	150	370	2.9	340	<0.26	<0.20	＜0．28	1.8	<0.68	<0.17	<0.28	8.7	＜0．14	＜0．15	<0.13	4.5	0.51 Jc	<0.17	<0.16	0.40 Jc	0.46 Jc	0.43 Jc	0.88 Jc	5.2		－				－	－－	
	08／27712	${ }^{62}$	300	0.94 Jc	5.1	${ }^{<0.26}$	＜0．20	${ }^{<0.28 *}$	0.70 Jc	<0.68	＜0．17	＜0．28	9.4	<0.14	<0.15	＜0．13	6.6	1.2	<0.17	＜0．16	0.945 c	1.1	${ }^{0.65 ~ J c ~}$	＜0．18	7.5		－－		－		－－	－－	
	11／26／12	45	300	1.2	88	＜0．26	<0.20	＜0．28	$\frac{1.1}{5}$	<0.68	<0.17	＜0．28	7.5	<0.14	<0.15	＜0．13	5.5	0.79 Jc	＜0．17	＜0．16	0.65 Jc	0.48 Jc	0.57 Jc	＜0．18	5.4	－－－	－－－	－－	－－－	－－－	－－	－－－	－－
	02／28／13 $0523 / 13$	4,500 280	10,000 750	$\frac{26}{4.4}$	350 290	－	＜4．0	${ }^{<5.6}$	${ }^{51}$	${ }_{<0}^{<14}$	${ }_{\substack{<3.4 \\<0.17}}^{\text {cin }}$	${ }^{<5.6}$	${ }_{6}^{6.2 \mathrm{Jc}}$	－2．8	${ }^{<3.0}$	${ }_{<0}^{20.6}$				＜0．16			${ }^{22.8}$		<1.4 1.6		\cdots	\cdots	\cdots	\cdots	\cdots		
	05／23／13	280 93	750 290		43	＜0．26	＜0．20	－0．28	$\frac{2.8}{1.2}$	<0.68 <0.68	＜－0．17	${ }_{c}^{<0.28}$	7．6	＜<0.14	${ }_{\text {＜}}^{<0.15}$	${ }_{<0.13}^{<0.13}$	${ }_{3.1}^{2.6}$	<0.14 <0.14	${ }_{<0}^{<0.17}$	＜0．16	＜0．13	${ }_{\substack{0.27 ~ J c}}^{<0.11}$	＜0．14	${ }_{<}^{<0.18}$	1.6 1.1	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	－－	\cdots
	11／12／13	110	100	＜0．25	6.2	＜0．26	<0.20	＜0．28	0.94 Jc	<0.68	<0.17	＜0．28	3.1	＜0．14	＜0．15	＜0．13	2.2	＜0．14	＜0．17	＜0．16	<0.13	＜0．11	＜0．14	＜0．18	0.88 Jc		－－		．－．	－－－	－－－	－．	
	03／25／4																	Sample D	estroyed	Shipme								－－		－－	－－		\cdots
	05／29／14	${ }^{110}$	${ }^{900}$	${ }^{9.3}$	710	＜0．52	<0.40	<0.56		${ }^{<1.4}$	＜0．34	＜0．56	8.9	＜0．28	＜0．30	${ }_{\text {coin }}^{\text {＜} 26}$	${ }_{3}^{3.7}$	＜0．28	＜0．34	＜0．32	＜0．26	0.54 Jc	＜0．28	＜0．36	2.1 1	\cdots	\cdots		\cdots	\cdots	\cdots	\cdots	
	08／28／14	42 300	1,200 430	${ }_{2.2}^{9.3}$	1,100 180	＜－0．26	${ }_{<0}^{<0.20}$	＜－2．28	$\frac{3.2}{2.5}$	<0.68 <0.68	＜0．17	$\xrightarrow{<0.28}$	7.4 8.0	＜0．14	＜0．15	$\underset{\substack{<0.13 * \\<0.13}}{ }$	3.1 1.7	＜0．14	${ }_{<0.17}^{<0.17}$	＜0．16	＜0．13	${ }_{0}^{0.38}$ Jc	＜0．14	＜0．18	1.9 1.1	－－－	\cdots	－－	\cdots	\cdots	\cdots	\cdots	\cdots
	03／30／15	120	920	10	670	＜0．26	＜0．20	＜0．28	$\underline{5.6}$	＜0．68	<0.17	＜0．28	7.9	<0.14	＜0．15	<0.13	2.3	0.49 Jc	<0.17	＜0．16	<0.13	0.67	＜0．14	＜0．18	1.9	－－	\cdots	－－－	\cdots	－－．	\cdots	\cdots	\cdots
NR 140 Enforcement Standard NR 140 Preventive Action Limit		5	70	100	0.2	5	6	5	7	5	5	5	5	－	－	－	700	－	－	100	－－	800	480	480	2，000	0.01 0.001	$\frac{2}{0.4}$	$\begin{array}{\|c\|} \hline 0.005 \\ \hline 0.0005 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0.1 \\ \hline 0.01 \\ \hline \end{array}$	0.015 0.002 0.0015 0.0002		0.05	0．05
		0.5	7	20	0.02	0.5	0.6	0.5	0.7	0.5	0.5	0.5	0.5	－－	－－	－－	140	－－	－－	10	－－	160	96	96	400								

$\mathrm{f}=$ Detected below the Limit of Quantiation
$=$ Not Tested
$+\cdots=$ Not Tested／Not Required
$\mathrm{B}=$ Analyte was detected in the associated Method Blank．
$=$ Results reopted between the Method Detection Limit（MDL）and
Limit of Quantitation（LOQ）are less certain than results at or above the LOQ．
$\mathrm{Jb}=$ Estimated value．Analye detected at a level less than the Reporting（R）and greater than or equal to the Method Detection Limit（MDL）．The use of this data should be aware that this data is of limited reliability．

Note：The following compound was detected in MW5R during the November 3， 2006 sampling event：Isophorone（ $2.0 \dagger \mathrm{\mu g} \mathrm{~L}$ ）

Note：The following compound was detected in MW5R during the August 30,2011 sampling event：Chloroethane（ $1.3 \mathrm{\mu g} / \mathrm{LL}, \mathrm{Jc}$ ）；and in MW5R during the November 8,2011 sampling event：Chloroethane（ $1.2 \mu \mathrm{~g} / \mathrm{L}$ ，Jc）．
Note：The following compound was detected in MW5R during the August 27,2012 sampling even：Choroethane $(5.0 \mathrm{\mu g} / \mathrm{L})$ ．

Well	Date														$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline 000 \\ \hline \end{array}$											言				$\begin{aligned} & \overline{0} \\ & \text { 흘 } \\ & \text { 旁 } \\ & \hline \end{aligned}$			-
MW5/MW5R	07/22/99	Prior to Well Construction																															
	12/12/01 030702																																
	06/10/02	---	---	---	<0.053	<0.16	<0.024	---	<0.03	<0.022	<0.036	<0.087	<0.067	---	--	<0.022	---	---	---	---	---	---	<0.053	<0.025	<0.03	---	<0.095	<0.096	<0.067	---	---	<0.036	<0.13
	01/1204	<0.05	<0.4	$1.8 \dagger$	<0.84	<0.97	<1.4	$2.7+$	<1	<1.3	<1.3	<0.96	<1.4	130	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	<0.64	<1.1	<0.9	<0.95	<1.7	$1.5 \dagger$	<1.4	<0.66	<1.2	<1.4	<1.5	<1.1	<1.2
	03/04/04	---	<0.4	<1	\bigcirc	--97	\cdots	-12	\bigcirc	<1.3	\cdots	$\stackrel{-1}{-0.96}$	\cdots	--9	-1.7	$-$	$\stackrel{1}{<1.2}$	--1	$\stackrel{-1}{1}$	-0.84	-0.64	--1			\cdots								
	04/1504 1110303	\cdots	$\stackrel{-1}{-}$	<0.85	${ }_{<}^{<0.04}$	${ }^{<1.05}$	${ }_{<0}^{<1.4}$	${ }_{<0.69}$	<0.74	$\stackrel{<}{<0.96}$	<0.79	<0.82	<0.69	$\stackrel{1}{2.9}$	$\stackrel{-}{-7}$	<0.58	${ }_{<0}$	<0.75	${ }_{<0.54}^{20.2}$	<1.16	<0.62	${ }_{<0.65}^{<1}$	$\begin{aligned} & <0.9 \\ & <0.8 \end{aligned}$	${ }_{<0.95}^{<0.95}$	- <0.7	$\stackrel{-62}{--}$	<-920	$\begin{gathered} 0.066 \\ <0.0 \end{gathered}$	-	$\begin{aligned} & 51.4 \\ & 1.4 \end{aligned}$	- ${ }_{\text {< }}^{1.95}$	$\begin{aligned} & <1.1 \\ & <1.01 \end{aligned}$	-
	12/14/06	--	---	\cdots	---	--	--	-	---	\cdots	--	-	---	\cdots	---	\cdots	---	--	---	--	\cdots	---	---	-	---	\cdots	--	---	---				
	202/1307	---	---	---	---	--	--	---	---	---	--	---	---	---	--	---	---	---	\cdots	---	---	---	---	\cdots	---	---	---	---	---	---	---		---
	05/0807 1110207	\cdots																															
	02/14/08	--	---	---	---	---	---	---	---	---	--	---	--	---	---	--	---	---	---	---	---	-	---	---	---	---	---	---	--	---	---	---	---
	05/06/08	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots	--	--	\cdots	---	\cdots	\cdots	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---		\cdots
	090808 $01 / 19 / 909$	\cdots	$\stackrel{-}{--}$	\cdots																													
	08/06/09	\cdots	\cdots	<0.4	<0.24	<0.23	<0.35	${ }^{1.2 \dagger}$	<1.01	<0.35	<0.31	<0.47	<0.52	0.8t	--	<0.32	<0.28	<0.3	<0.54	<0.28	<0.54	<0.24	<0.25	<0.39	<0.26	---	<0.55	<0.36	<0.34	<0.29	<0.82	<1.55	<0.33
	08/25/10	---	---	\cdots	---	---	---	--.	---	--.	\cdots	--.		--	\cdots	--.	\cdots	--.	---	\cdots	---	---	\cdots	---			\cdots						
	11/29/10	---	---	---	---	--	---	---	---	--	---	-	--	---	--	\cdots	---	--	--	\cdots	---	\cdots	\cdots	\cdots	---	---	---	---	-	---		---	---
	0301/11	---	---	---	--	--	--	--	---	-	--	-	--	---	--		-																\cdots
	08/30/11	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--.	---	---	---	---	.-.	---	---	---	---	---	-	-.-	\cdots	\cdots	\cdots
	11/08/11	---	--	---	---	---	---	---	---	--	---	--	---	---	--	---	---	-	-	--	---	\cdots	---	---	---	---		---	--	--	--	--	---
	02/20112	\cdots	--	\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots	--	\cdots	--	--	\cdots	--	\cdots	--	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots							
	08/27/12	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	-..	---
	11/26/12	---	---	---	---	---	---	---	---	---	---	---	--	---	--	---	--	-	\cdots	--	---	--	---	---	---	---	---	---	---	---	---	---	---
	02128/13	\cdots	--	\cdots	--	\cdots	--	\cdots	\cdots																								
	08/28/13	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	<0.27	--	---	--	---	---	---	---	---	---	---	---	---	---	---
	11/12/13	\cdots	--	--	--	---	--	\cdots	---	--	--	\cdots	--	--	--	--	--	--	<0.27	--	--	---	--	--	\cdots	--	---	--	---	---	\cdots	---	---
	033/25/4	\cdots	<0.54	\cdots																													
	08/28/14	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	--	<0.27	--	---	---	--	---	---	---	---	---	---	---	---	---	-
	03/30/15	\cdots	---	---	--.	---	--.	--.	---	…	---	…	--.	---	---	---	---	---	<0.27	--.	-..	---	\cdots	---	\cdots	\cdots	\cdots						---
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	--	,	,	-	3,000	-	--	0.2	0.2	-	--	6	--	0.2	-	-	600	-	100	-	400	400	-	--	-	-	40	-	I	-	250
		0.1	\because	\cdots	\cdots	\cdots	600	\because		0.02	0.02		\cdots	$\underline{0.6}$	\because	0.02	\because	--	60	--	20		80	80	-	--	,	--	8	--	0.1	-	50

$\dagger=$ Detected below the Limit of Quantitation

$=$ =Not Tested $/$ Not Required

$\dagger=$ Detected below the Limit of Quantitation
$\cdots--=$ Not Tested $/$ Not Required
$=$ LCS or LSSD exceeds the control limis
$=$ Analyte was dected in the assoun
$\mathrm{Ja}=$ Results reported between the Method Detection Limit (MDL) and
L Estimated value. Analyte deteccted ata a level less than the Reporting (RL) and greater than or equal to the Method Detection Limit (MDL). The use of this data should be aware that this data is of limited reliabill
the the but greater than or equal to the MDL and the concentration is an approximate value.

Note: The following compound was detected in MW5A during the March 25,2014 sampling event: Chloroethane ($0.61 \mathrm{gg} / \mathrm{L}, \mathrm{Jc}$).

Well	Date														$\begin{aligned} & \frac{0}{0} \\ & \stackrel{\ddot{Z}}{0} \\ & \frac{0}{0} \end{aligned}$		들 旁 旁									㕊							－
mw5A	07／22／99	Prior to Well Construction																															
	03107／02	－－－	－－－	－－	－－－	－－－	－－－	－－	－－	－－－	－－	－－－	－－－	－－	－－－	－－－	－－－	－－	－－	－－－	－－－	－－－	－－	－－	－－－	－－	\cdots	－－	－	\cdots			
	061010	－－－0	\cdots	\cdots	\cdots	\cdots	$\stackrel{-1}{4}$	\cdots	－		\cdots		514		\cdots	＜14	\cdots	$\stackrel{-1}{ }$	\bigcirc	－－84		<11	<09		\cdots	\cdots	\cdots	\cdots	\cdots	\cdots			\cdots
	03／0404	－0．	－	－－1．	－－－	－－．	－	－	－－1．	－．－3	－－－	－－．	－	$\stackrel{\text { ar }}{ }$	－－－	－－－	－－－	－－－	－．－	－－－	－－．	－－－	－．－	－－－	－－－	－－－	\cdots	－－－	－－－	－	－	$\stackrel{-1}{ }$	
	044／1504	－－－	<0.4	＜1	<0.84	<0.97	＜1．4	＜1．2	＜1	＜1．3	＜1．3	<0.96	＜1．4	＜1．9	＜1．7	＜1．4	＜1．2	＜1．4	＜1．2	＜0．84	0．69＋	＜1．1	<0.9	<0.95	<1.7	＜0．62	<1.4	<0.66	<1.2	＜1．4	＜1．5	<1.1	
	11／03／06	－－－	－－－	<0.85	＜1．03	＜1．05	<0.7	＜0．69	＜0．74	＜0．96	＜0．79	＜0．82	<0.69	1．3＋	－－	<0.58	＜0．96	＜0．75	<0.54	＜1．16	<0.62	＜0．65	<0.8	<0.95	<0.7	－－－	<0.92	<0.8	<0.85	<1.4	＜0．92	<1.01	<0.56
	12／15／06	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－	－－	－－	－－	－－	－－	－－	－－	－－－
	05／0807	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－．－	－－－
	11／02107	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	02／44／3	\cdots	－－	－－	\cdots	\cdots	－－	\cdots	－－	\cdots	\cdots	\cdots	－－－	\cdots	\cdots	－－－																	
	099／10／08	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	
	01／19／09																DRY－Not	Sampled															
	08806，09	－－	－－－	\cdots	－－－	－－	－－－	－－	－－	－－	－－	－－－	－－－	－－	－－－	\cdots		－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－				
	05126／10	\cdots	\cdots	\cdots	$\stackrel{-}{--}$	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	－－－	…	－－－	－－．	－－－	－．－	－－－	\ldots	…	…	－－－	－－－	－－．	…	…	－－－	…	．－．	…	\cdots	\ldots	\cdots
	08／25／10	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－	－－－	－－－	－－－	－－－	－－－	－－－		－－－	－－－	－－－	－－－
	11／29／10	\cdots	\cdots	\cdots	－－	－－	\cdots	－－	\cdots	－	\cdots	\cdots	\cdots	\cdots	－．．	\cdots	－－	\cdots	\cdots	\cdots	\cdots												
	03／01／11	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－	－－－
	33／01／11 Du		－－	－－	－－	\cdots	\cdots	－－－	－－	－－－	\cdots	－－－	－－	－－		－－	\cdots	－	\cdots	－	\cdots	\cdots	\cdots	－－	\cdots	－－－	－	－－					
	5516111		－－	－－	－－－		\cdots	\cdots	－－	－－－	－－	－－	\cdots	－－		－－	－－	－	\cdots	－－	－－	－－	－－	－－	－－	－－	－	－－－			\cdots		－－－
	08／30／11	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	11／08／11	－－－	\cdots	－－	－－	－－	\cdots	－－	－－	－－	－－	\cdots	－－	\cdots	－－	－－	－－－	－－	\cdots	－－	－－	－－	－－	－－	－－	－－	－－－	－－	－－	－－	\cdots	－－－	\cdots
	02／20／12	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－．．	\cdots
	05／31／12	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－
	$08 / 27 / 12$ $11 / 26 / 12$	\cdots	－－－	－－－	\cdots	－－	\cdots	\cdots	\cdots	－－	－－	\cdots	\cdots	－－	\cdots	\cdots	\cdots	\cdots															
	11／26／12 Du	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－．．	－－－
	02／28／13	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	05／23／13 $08 / 28 / 13$	\cdots	\cdots	\cdots	－－	\cdots	－0．	\cdots																									
	11／12／13	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	<0.27	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－
	03／25／14	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－		－－－	－－	－－	－－－	<0.27	－－	－－－	－－	－－－	－－－	－－－	－－－	－	－－－	－－－	－－－	－－－	－－－	－－－
	05／29	\cdots		\cdots	\cdots	\cdots	\cdots	＜0．27	\cdots																								
	11／24／14	－－－		－－－		－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	＜0．27	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	03／30／15	－－	－－－	－－－	－－－	－－－	－－	\cdots	－－	－－		－－	－－	－－	－－－	－－－	－－－	－－－	<0.27	－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－				
NR 140 Enforcement Standard NR 140 Preventive Action Limit		，	－	－	－	－	3,000	－－	－－	0.2	0.2	－－	－－		－	0.2	－	－－	600	－－	100	－－	400	400	－	－	－	－	40	－		－－	
		0.1				－－	600	－	－－	0.02	0.02		－	0.6	－	0.02	－－	－－	60	－－	$\underline{20}$	－	80	80					8		0.1		50

$t=$ Detected below the Limit of Quantitation

$t=$ Detected below the Limit of Quantitation
$t=$ Detected below the Limit of Quantitation
$\cdots=$ Not Tested $/$ Not Required
$*=$ LCO or LCSD exceeds the control limits
$B=$ Analyte was detected in the associated
$\mathrm{B}=$ Analyte was detected in the associated Method Blank.
Ja $=$ Results reported between the Method Detection
Limit of Quantitation (LOQ) are less certiain than resul (MDL) and
$\mathrm{Jb}=$ Estimated value. Analyte detecected at a a level less than the Reporting (RL) and greater than or equal to the Method Detection Limit (MDL). The use of this data should be aware that this data is of limited reliability
$\mathrm{JC}=$ Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Note: As of the December 2010 ch. NR 140 Wisconsin Administrative Code, eff. 1-1-11, the enforcement standards (ESs) and preventive action limits (PALs) have changed for Toluene and Xylenes
Note: The following compound was detected in MW5R during the August 30 , 2011 sampling event: Chloroethane ($1.3 \mu \mathrm{~g} / \mathrm{L}$, Jc); and in MW5R during the November 8,2011 sampling event: Chloroethane ($1.2 \mu \mathrm{~g} \mathrm{~L}$, Jc).

Well	Date															Semi-V 										镸						(e)	-
мw5B		Prior to Well Construction																															
	$03 / 0404$ $04 / 1504$																RY-Not	Sample															
	11/07/06	---	--	<0.85	<1.03	<1.05	<0.7	<0.69	<0.74	<0.96	<0.79	<0.82	<0.69	50	\cdots	<0	-0.96	<0.75	<0.54	<1.16	$0.69+$	<0.65	$<$	<0.95	<0.7	\cdots	<0.92	<0.8	<0.85	<1.4	<0.92	<1.01	<0
	12/15106 0211307	--	\cdots	--	\cdots	--	\cdots	\cdots	\cdots	\cdots		---	\cdots																				
	05/08/07	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	\cdots	---	---	---	---	---	---	---	---	---	---	---	---	--	---	
	11/0207	--	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	$02 / 1408$ $0506 / 188$	\cdots	---	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	----																							
	09/10/08	---	---	--	---	---	---	---	---	---	---	---	---	---	---	-	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---		
	01/19/99	--	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---
	0810669 $05 / 26 / 10$	\cdots	$\stackrel{-}{--}$	---	\cdots	\cdots	\cdots	\cdots	$\stackrel{-}{-}$	---	\cdots																						
	08/25/10	--	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	--	\cdots	--	-
	11/29/10	---	---	\cdots	---	\cdots	--	--	---	--	--	---	---	---	---	--	--	--	--	--	--	--	--	\cdots	---	---	--	\cdots	--	---	---	---	---
	05/16/11	---	---	---	---	---	---	.--	.-.	---	---	.--	--.	.--	---	--.	---	---	.--	---	---	---	---	.--	---	---	--.	---	---	---	--	---	---
	08/30/11	--	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	\cdots	---	---
	11/08/11	--	---	\cdots	--	--	\cdots	--	--	--	--	--	--	---	---	---	--	--	--	--	--	--	--	--	---	---	--	\cdots	--	--	\cdots	---	---
	05/31/12	\cdots	---	---	…	…	.-.	.-.	--.	.-.	…	.-.	--.	.-.	---	\cdots	---	…	--.	---	---	---	---	--.	\cdots	…	…	-.-	-.-	---	--	-..-	\cdots
	08/27/12	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	111/26122	--	---	\cdots	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	---	--	--	---	---	---	---	---	---
	05/23/13	---	.--	---	---	---	---	---	---	---	---	---	---	.--	---	.--	---	---	---	---	---	---	---	.-.	-..-	---	--.	---	---	.--	---	-..	\cdots
	08/28/13	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---
		\cdots	<0.27	\cdots	\cdots	\cdots	--	\cdots	\cdots	--	\cdots	---	\cdots	---	\cdots	\cdots	\cdots																
	05/29/14	---	---	--.	---	---	---	---	---	---	---	---	--.	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--.	\cdots
	08/28/14	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	11/24/14	--	--	--	--	--	---	--	--	---	--	--	--	--	--	--	--	--	<0.27	--	--	--	\cdots	--	---	--	--	--	--	--	---	--	---
	03/30/15	---	---	--	---	--	---	---	---	---	---	---	--	---	---	---	---	---		---	---	---	---	---	---	---	---	---	.--	.-.	---		
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	-	--	-	--	3,000	--	-	0.2	0.2	-	--	6	--	0.2	--	--	600	--	100	-	400	400	--	--	-	--	40	--	1	\cdots	
		0.1	--	\cdots	\cdots	\cdots	600	--	\cdots	0.02	0.02	\cdots	\cdots	0.6	\cdots	0.02	--	\cdots	60	\cdots	20	\cdots	80	80	\cdots	\cdots	\cdots	--	$\underline{8}$	--	0.1	\cdots	50

$t=D$ Detected below the Limit of Quantitation
--- =Not Tested / Not Required

TABLE 1
Historical Groundwater Analytical Results
QuicFrez SFR Site - Fond du Lac, Wisconsi
SCS Engineers Project \#25211406.63

				Chlor	Ied Volati	Iga	Compo	ds (EPA	260)--							roum	-realea	olatie	Organic	moun	(EPA	60)-Mg							CRAMe	tals-mg/			
Well	Date																								$\begin{array}{r} \ddot{0} \\ \frac{\stackrel{0}{0}}{\stackrel{\rightharpoonup}{x}} \\ \hline \end{array}$			$\begin{aligned} & \text { 튼 } \\ & \text { 틍 } \\ & \hline 0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \text { 틀 } \\ \text { 틍 } \\ \text { 흥 } \\ \hline \end{array}$	-	$\begin{array}{r} \text { 言 } \\ \text { idin } \\ \hline \end{array}$	¢	$\frac{\stackrel{0}{\bar{\circ}}}{\bar{\circ}}$
mW6	07/2299 12121201	Prior to Well Construction											Prior to Well Construction													Prior to Well Construction							
	0307102	${ }^{4.3}$	<0.11	<0.11	${ }^{<0.16}$	${ }^{23}$	7.7	${ }^{0.16}$	<0.11	<0.24	<0.15	<0.19	<0.08	<0.08	<0.1	<0.11	<0.08	<0.07	<0.12	<0.1	<0.15	<0.08	<0.11	<0.08	<0.34	<1.3	0.081	<0.08	5.7	<1	$\frac{1.7}{1.7}$	3.6	
	06/10/02	3.6	<0.11	<0.11	<0.16	16	4.3	<0.12	<0.11	<0.24	<0.15	<0.19	<0.08	<0.08	<0.1	<0.11	<0.08	<0.07	<0.12	<0.1	<0.15	<0.08	<0.11	<0.08	<0.34	<1.3	0.082	<0.08	5.6	<0.66	<0.11	$2.3+$	${ }^{0.58+}$
	$01 / 11 / 04$ 030404 0	$\frac{3.6}{-6}$	<0.25	<0.35	<0.11	$\underline{4.1}$	$\stackrel{2.7}{\square}$	$\stackrel{0.2}{ }$	<0.44	<2.4	<0.45	<0.36	<0.17	<0.31	<0.43	<0.22	<0.16	<0.11	<0.18	<0.26	<0.19	<0.15	<0.14	<0.12	<0.46	<0.005	$\stackrel{0.4}{ }$	<0.0005	<0.01	<0.0015	<0.0002	<0.01	<0.01
	04/14/04	3.3	<0.29	<0.22	<0.21	5.7	3.1	<0.29	<0.39	<0.7	<0.7	<0.25	<0.29	<0.31	<0.21	<0.39	<0.56	<0.19	<0.3	<0.6	<0.32	<0.57	<0.51	<0.66	<1.74	<0.005	<0.4	<0.0005	<0.01	<0.0015	<0.0002	<0.01	<0.01
	${ }^{11 / 02 / 06}$	2.99t	<0.68	<0.95	<0.17	1.94	2.52	<0.72	<0.3	<0.69	<0.52	<0.5	<0.47	<0.6	<0.76	<1.1	<0.38	<0.99	<0.81	<2.2	<0.61	<0.59	<0.39	<1.2	<1.42	<0.0079	0.09	<0.0007	<0.0023	<0.0024	0.00006	0.01†	<0.0025
	1214406 021307	\cdots	\cdots	\cdots	\cdots	--	\cdots	--	\cdots	--	\cdots	\cdots	$\stackrel{-}{-.}$	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	---	--	--	\cdots										
	05/08/07	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	--	---	--	---
	${ }^{1110207}$	28.	\cdots	<0.95	<0.2	$16+$	24	<0.45	<0.64	<0.69	<0.52	$\stackrel{-}{<0.5}$	--9	\bigcirc	\bigcirc	<0.52	<0.38	\cdots	035	48	038	5046	\cdots	-0.37	009	--		---	--	--	---	--	--
	05/06/108		$\underline{\square}$	<0.0	<0.2	+	$\underline{4}$	<0.45	0.04	<0. 0	---	-0.5	<0.4	<0.34	-0.36	<0. 52	-0.	0.48	-0.05	1.8	-	<0.46	---	<0.	<0.9	--		---	---	---	---	---	\cdots
	091/1008	--	\cdots	--	--	--	--	---	---	---	--	\cdots	--	---	---	--	--	---	--	\cdots	--	--	---	---	--	--	--	---	---	---	---	---	---
	-01/1/99	$\stackrel{-}{22.1}$	78	$1.14 \dagger$	2.2	6	1.98	<0.43	<0.47	<1.5	<0.42	<0.41	<0.41	<0.46	<0.43	<1.5	<0.87	<0.39	<0.57	<1.7	<0.33	<0.51	<1.1	$\stackrel{-}{-1.5}$	<2.13	\cdots	--	--	--	---	---	---	
	05/27/10	22	35	0.88 Ja	<0.20	4.8	6.1	<0.50	<0.50	<1.0	<0.50	<0.25	<0.20	<0.20	<0.25	<0.20	<0.50	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	<0.50	---	--	---	--	---	---		
	08/25/10	110	91	1.15 Ja	${ }^{<0.20}$	<0.80	1.9 Ja	<0.50	<0.50	<1.0	<0.50	<0.25	<0.20	<0.20	<0.25	<0.20	<0.50	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	<0.50	--		--		---	---	--	\cdots
	11/29/10	110	86	1.2 Ja	1.2 Ja	<0.80	0.38 Ja	<0.50	<0.50	<1.0	<0.50	<0.25	<0.20	<0.20	<0.25	<0.20	<0.50	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	<0.50	---		\cdots	\cdots	-.-	---	--	
	${ }^{03 / 01 / 11}$	49	$\frac{100}{}$	<0.50	1.80	1.9 Jb	1.9 Jb	<0.50	<0.50	<1.0	${ }^{<0.50}$	<0.25	<0.20	<0.20	-0.25	<0.20	<0.50	<0.20	<0.20	${ }^{<0.25}$	<0.50	<0.50	<0.20	<0.20	<0.50								
	05/16/11	37	$\stackrel{63}{ }$	<0.50	0.59 Jb	4.3	3.2	<0.50	<0.50	<1.0	<0.50	<0.25	<0.20	<0.20	<0.25	<0.20	<0.50	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	<0.50	-	--	---	---	\cdots	--	--	--
	08/30/11	17 20	$\frac{25}{83}$	${ }_{0.66 \mathrm{Jc}}^{<2.0}$	${ }_{0.5}^{0.34 \mathrm{Jc}}$	$\stackrel{2.1}{<0.80}$	${ }^{\frac{1.8}{\text { J }} \mathrm{Jc}}$	<2.00	<2.00	-	${ }_{<0}^{<2.0}$	${ }_{<0}^{22.05}$	-2.0	-2.20		-2.00	-2.0	-0.20		-5.0	-2.00	<0.50	-2.00	<2.0	<2.0	-		--	--	--	--	\cdots	
	02/20/12	${ }^{25}$	79	<0.50	0.84 Jc	1.7 Jc	1.4 Jc	<0.50	<0.50	<1.0	<0.50	<0.25	<0.20	<0.20	<0.25	<0.20	<0.50	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	<0.50	--		--	--	---	---	---	
	02120/12 Dup	${ }^{23}$	78	<0.50	1.1 Jc	1.8 Jc	1.4 Jc	<0.50	<0.50	<1.0	<0.50	<0.25	<0.20	<0.20	<0.25	<0.20	<0.50	<0.20	<0.20	${ }^{<0.25}$	<0.50	<0.50	<0.20	<0.20	<0.50							--	
	05/31/12	51	48	0.43 Jc	3.0	0.73 Jc	$\underline{2.3}$	<0.28	<0.31	<0.68	<0.17	<0.28	<0.074	<0.14	<0.15	<0.13	<0.13	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	<0.068	\cdots		---	---	\cdots		---	---
	-0827712	31	140	0.90 Jc	<0.10	<0.26	${ }^{<0.20}$	<0.28*	<0.31	-0.68	<0.17	<0.28	<0.074	<0.14	<0.15	<0.13	<0.13	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	<0.068								
		${ }_{41}^{19}$	$\frac{61}{30}$	<0.25	${ }_{0.49 \mathrm{Jc}}^{6 .}$	${ }^{0.97 .1}$	$\frac{0.93 \mathrm{c}}{1.7}$	<0.28	${ }_{<0.31}^{<0.31}$	<-6.68	<0.17	<0.28	<0.074	<0.14	<0.15	<0.13	<0.13	<0.14	<0.17	${ }_{<0}$	<0.13	${ }_{<0}^{<0.11}$	${ }_{<}^{<0.14}$	<0.18	${ }_{<0}^{<0.068}$	--		--	\cdots	\cdots	\cdots	\cdots	
	05/23/13	51	43	<0.25	0.69	3.2	3.4	<0.28	<0.31	<0.68	<0.17	<0.28	<0.074	<0.14	<0.15	<0.13	<0.13	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	<0.068	--		--	--	--	---	--	--
	08/28/13	${ }^{38}$	97	<0.25	<0.10	2.6	1.8	<0.28	<0.31	<0.68	<0.17	<0.28	<0.074	<0.14	<0.15	<0.13	<0.13	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	<0.068	--		--	--	--	--	--	--
	11/12/13	${ }_{21}^{23}$	$\frac{21}{17}$	<0.25	${ }^{2} .0$	$\frac{1.1}{18}$	${ }^{<0.20}$	<0.28	<0.31	<0.68	<0.17	<0.28	<0.074	<0.14	<0.15	<0.13	<0.13	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	<0.068						\cdots	\cdots	
		21 78	$\frac{17}{45}$	<0.25	${ }^{1.6}$	$\frac{1.8}{1.8}$	$\frac{1.1}{1.6}$	-0.28	${ }_{<0.31}^{<0.31}$	<0.68 <0.68	${ }_{<0}^{<0.17}$	${ }_{<0}^{<0.28}$	-	<0.14	${ }_{<0}^{<0.15}$	${ }_{<0.13}^{<0.13}$	${ }_{<0.13}^{<0.13}$	<0.14	${ }_{<0.17}^{0.17}$	${ }_{<0}^{<0.16}$	${ }_{<0.13}^{<0.13}$	<0.11	<0.14	<0.18	${ }_{\substack{<0.068 \\<0.068}}$	-		--.	\cdots	…	\cdots	\cdots	\cdots
	05/29/14	37	33	<0.25	0.53	3.1	2.9	<0.28	<0.31	<0.68	<0.17	<0.28	<0.074	<0.14	<0.15	<0.13	<0.13	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	<0.068	--		---	---	---	---	--	---
	08/28/14	18	45	<0.25	1.9	<0.26	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	<0.074	<0.14	<0.15	<0.13*	<0.13	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	<0.068					---	--	\cdots	--
	(1) $\begin{aligned} & 11 / 24 / 14 \\ & 03 / 30 / 15\end{aligned}$	$\begin{aligned} & 73 \\ & 47 \end{aligned}$	$\stackrel{69}{29}$	$054Jc 025$	$\begin{gathered} <0.10 \\ 0.52 \end{gathered}$	<0.26 $\begin{aligned} & 0.2 .2 \\ & 2.3 \end{aligned}$	$\begin{gathered} 0.20 \\ \hline 1.9 \end{gathered}$	$\begin{aligned} & <0.28 \\ & <0.28 \end{aligned}$	<0.31 <0.31	<0.68 <0.68	$\begin{aligned} & <0.17 \\ & <0.17 \end{aligned}$	$\begin{aligned} & <0.28 \\ & <0.28 \end{aligned}$	$\left\lvert\, \begin{aligned} & <0.074 \\ & <0.074 \end{aligned}\right.$	$\begin{aligned} & 0.14 \\ & <0.14 \\ & 00 \end{aligned}$	$\begin{aligned} & \substack{0.15 \\ <0.15} \end{aligned}$	$\begin{aligned} & <0.13 \\ & <0.13 \end{aligned}$	${ }_{\text {< }}^{\substack{0.13 \\<0.13}}$	$\begin{aligned} & <0.14 \\ & <0.14 \end{aligned}$	$\begin{aligned} & <0.17 \\ & <0.17 \end{aligned}$	$\begin{aligned} & <0.16 \\ & <0.16 \end{aligned}$	<0.13	${ }_{\substack{0.32 \mathrm{Jc} \\<0.11}}$	-	<0.18	${ }_{\text {coi. }}^{1.1}$	\cdots	\cdots	---	\cdots	\cdots	\cdots	\cdots	\cdots
NR 140 Entorcement Standard		5	70	100	0.2	5	6	5	7	5	5	5	5	--	--	--	700	--	-	100	--	800	480	480	2,000	0.01	2	0.005	0.1	0.015	0.002	0.05	
		0.5	7	20	0.02	0.5	0.6	0.5	0.7	0.5	0.5	0.5	0.5	\cdots	-	--	140	-	\cdots	10	\cdots	160	96	96	400	0.001	0.4	0.0005	0.01	0.0015	0.0002	0.01	${ }_{0}^{0.051}$

$\begin{aligned} & \tau=\text { Detected below the Limit of Quantiation } \\ &=\text { Not Tested }\end{aligned}$
$\cdots=$ Not Tested / Not Required

Quantitation (LOQ) are ess certain than results at or above the LOQ.
$\mathrm{Jb}=$ Estimated value. Analyte detected at a level less than the Reporting
and greater than or equal to the Method Detection Limit (MDLL.) The use of this data should be aware that this data is of limited reliability.

Well	Date																									彦							¢
mw6	07/22/99	Prior to Well Construction																															
	+12/1201																																
	06/10/02	\cdots	--	---	<0.053	<0.16	<0.024	--	<0.03	<0.022	<0.036	<0.087	<0.067	--	--	<0.022	--	\cdots	---	\cdots	--	--	<0.053	<0.025	<0.03	---	<0.095	<0.096	<0.067	\cdots	--	<0.036	<0.13
	01/11/1/4 030104	<0.05	<0.4	<1	<0.84	<0.97	<1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	<1.9	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	<0.64	<1.1	<0.9	<0.95	<1.7	<0.62	<1.4	<0.66	<1.2	<1.4	<1.5	<1.1	<1.2
	03/0404	\cdots	\bigcirc	<1	-0.84	-0.97	$\stackrel{-1}{<1}$	$\stackrel{1}{<1.2}$	<1	\bigcirc	\bigcirc	-0.96	$\stackrel{-1}{<1.4}$	<1.9	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	<0.64	$\stackrel{-1.1}{<-1}$	\bigcirc	-0.95	$\bigcirc 1.7$	<0.62	$\stackrel{-1.4}{ }$	<0.66	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	11/0203	---	--	<0.85	<1.03	<1.05	<0.7	<0.69	<0.74	<0.96	<0.79	<0.82	<0.69	8.4	--	<0.58	<0.96	<0.75	<0.54	<1.16	<0.62	<0.65	<0.8	<0.95	<0.7	---	<0.92	<0.8	<0.85	<1.4	<0.92	<1.01	<0.56
	12/14/63	---	---	---	---	---	--	---	---	-	-	---	-	---	---	---	-	---	---	---	-	---	--	-	---	--		---	---	--		---	
	02/13/07	\cdots	--	--	--	--	--	--	--	--	--	--	--	--	--	\cdots	--	--	---	\cdots	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots		\cdots	--			\cdots
	05/08077	\cdots	--	---	\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots	--	\cdots	--	\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots	\cdots
	02/14/08	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	.--	---	---	---	--.	---	---	\cdots	…	…	\cdots	---	\cdots	\cdots	\cdots	---	---
	05/06/08	--	--	--	--	---	--	--	---	--	---	--	--	--	\cdots	---	---	\cdots	--	--	---	---	--	--	\cdots	--	\cdots	--	\cdots	--	-	--	---
	09/10/08	\cdots	\cdots	--	\cdots	--.	\cdots	---	\cdots	\cdots	\cdots	\cdots	---	---	---	\cdots	\cdots	\cdots															
	08/0509	---	--	<0.4	<0.24	<0.23	<0.35	<1.06	<1.01	<0.35	<0.31	<0.47	<0.52	25	---	<0.32	<0.28	<0.3	<0.54	<0.28	<0.54	<0.24	<0.25	<0.39	<0.26	---	<0.55	<0.36	<0.34	<0.29	<0.82	<1.55	<0.33
	05/27710	\cdots	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	\cdots
	11/29/10	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	.--	---	---	---	\cdots	\cdots
	03/01/11	---	--	---	---	---	---	---	---	---	---	---	\cdots	\cdots	\cdots	---	---	---	---	\cdots	\cdots	---	---	\cdots	---	---	---	---	---	---	---	---	---
	05/16/11	--	--	\cdots	--	---	--	--	---	--	-			--		-		-														---	\cdots
	11/08/11	…	---	--.	---	---	---	---	---	---	---	---	---	---	---	\cdots	\cdots	---	--	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots		\cdots	---		--	\cdots	\ldots	\cdots
	02/20/12	---	--	---	---	---	--	--	---	---	---	--	--	--	--	---	--	--	\cdots	--	---	---	--	---	---	-	---	---	---	---	--	---	---
	02120/12 Dup	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--		\cdots			--		--							\cdots
	08/27/12	---	---	.-.	---	---	.-.	---	.-.	---	---	---	---	---	---	.--	---	---	-.-	.--	---	---	---	---	---	---	---	.-.	.-.	---	---	.-.	\cdots
	11/26/12	\cdots	--	---	---	---	---	--	---	---	--	--	--	---	\cdots	---	-	--	-	---	--	---	---	---	---	\cdots	---	---	---	---	--	---	---
	02/28/13 $05 / 23 / 13$	\cdots																															
	08/28/13	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	<0.27	--.	---	---	---	---	---	---	---	---	---	---	---	---	\cdots
	11/12/13	---	--	---	---	---	---	---	---	---	---	--	--	--	--	---	--	---	<0.27	--	--	---	--	---	--	---	---	--	---	---	\cdots	---	---
	11.1213 Dur	--	--	--	--	--	--	--	--	--	--	--	--	--	--	\cdots	--	--	<0.27	--	-	--	\cdots		--		--		--		\cdots	\cdots	\cdots
	05/29/14	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	...	…	\cdots	\cdots	\cdots	…	---	--.	…	…	---	<0.27	\cdots	\cdots	\cdots	--	\ldots	…	…	…	---	---	\cdots	\cdots	\cdots	\cdots
	08/28/14	--	--	---	\cdots	---	---	\cdots	--	--	---	--	--	--	\cdots	---	--	---	<0.27	--	--	---	--	--	---	\cdots	---	\cdots	---	--	--	---	---
	1724/14	\cdots	<-2.27	\cdots	\cdots	\cdots	\cdots	--	\cdots	--	\cdots	\cdots	\cdots		\cdots																		
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	-	-	.	-	3,000	-	-	0.2	0.2	-	-	6	-	0.2	-	--	600	-	100	-	400	400	-	-	-	-	40	-	1	-	250
		0.1	--	--	\cdots	\cdots	600	-	--	0.02	0.02	-	--	0.6	--	0.02	--	--	60	--	20	--	80	80	--	\cdots	-	--	8	\cdots	0.1	\cdots	50

$+=$ Detected below the Limit of Quantitation
$=$ =Not Tested / Not Required

TABLE 1
Historical Groundwater Analytical Results
QuicFrez SFR Site - Fond du Lac, Wisconsin
SCS Engineers Project \#25211406.63

$\dagger=$ Detected below the Limit of Quantitation
$\ldots-\mathrm{N}$, Not Tested $/$ Not Required
Note: The following compound was detected in MW6A during the August 2009 sampling event: Benzyl Alcohol ($1.4 \mathrm{Mg} / \mathrm{L})$
Note: The following compound was detected in MW6A during the August 2009 sampling event: Benzy Alcohol (15 pl)
Note: The following compo 2010 as 140 Wisin
As of the December 2010 ch. . 1 R 140 Wisconsin Administrative Code, efff $1-1-11$, the enforcement standards (.
Toluene and Xylenes. The previous standards were Toluene $1,000 \mathrm{ES} / 200 \mathrm{PAL}$; xylenes $10,000 \mathrm{ES} / 1,000 \mathrm{PAL}$.

$\dagger=$ Detected below the Limit of Quantitation

- =Not Tested $/$ Not Required

Historical Groundwater Analytical Results
QuicFrez SFR Site－Fond du Lac，Wisconsin
SCS Engineers Project \＃25211406．63

				Chlorin	d Volat	Ogani	mp	ds（EPA	260）－4							etroleum	－related	tile	Org	，	，	（0）－Mg							寿	tals－mgl			
Well	Date						$\begin{aligned} & \text { 틍 } \\ & \text { 을 } \\ & \text { 응 } \end{aligned}$																		$\begin{array}{r} \ddot{0} \\ \stackrel{.0}{\omega} \\ \stackrel{\rightharpoonup}{x} \\ \hline \end{array}$		$\begin{array}{r} \text { 喜 } \\ \text { 㕎 } \\ \hline \end{array}$	$\begin{aligned} & \text { 틀 } \\ & \text { E. } \\ & \text { eim } \\ & \hline \end{aligned}$		®			$\stackrel{\stackrel{\rightharpoonup}{7}}{\bar{\omega}}$
мW6B	07／22／99 1212101	Prior to Well Construction											Prior to Well Construction													Prior to Well Construction							
	0307102	$0.22 \dagger$	$\stackrel{2}{9}$	<0.11	${ }^{<0.16}$	<0.2	<0.1	${ }^{<0.12}$	<0.11	<0.24	<0.15	＜0．24	$0.16 \dagger$	<0.08	＜0．1	＜0．11	<0.08	<0.07	<0.12	<0.1	<0.15	$0.19 \dagger$	<0.11	<0.08	<0.34		－	－－	－	－－－		－	
	06／10／02	＜0．13		＜0．11	＜0．16	＜0．2	<0.1	＜0．12	＜0．11	＜0．24	＜0．15	＜0．19	＜0．08	<0.08	<0.1	＜0．11	<0.08	＜0．07	<0.12	<0.1	<0.15	＜0．08	<0.11	<0.08	<0.34			－－－	－	－－－		－	
	$01 / 11 / 04$ 030404	<0.1	＜0．25	＜0．35	＜0．11	＜0．22	＜0．69	＜0．2	＜0．44	＜2．4	＜0．45	$\stackrel{\text {＜0．41 }}{ }$	＜0．17	＜0．31	＜0．43	＜0．22	＜0．16	＜0．11	＜0．18	＜0．26	＜0．19	$\stackrel{1.5}{.-1}$	＜0．14	<0.12	<0.46	＜0．005	＜0．4	0.0006	＜0．01	0.0099	＜0．0002	＜0．01	<0.01
	04／14／04	<0.27	<0.29	＜0．22	<0.21	＜0．16	<0.25	<0.29	<0.39	<0.7	<0.7	＜0．25	＜0．29	<0.31	<0.21	<0.39	<0.56	<0.19	<0.3	＜0．6	<0.32	<0.57	<0.51	<0.66	＜1．74	＜0．005	<0.4	0.0005	<0.01	<0.0015	＜0．0002	<0.01	<0.01
	11／0206	＜0．44	<0.68	<0.95	＜0．17	＜0．52	＜0．61	＜0．72	＜0．3	＜0．69	＜0．52	<0.5	＜0．47	＜0．6	＜0．76	＜1．1	<0.38	<0.99	<0.81	＜2．2	<0.61	<0.59	<0.39	＜1．2	＜1．42	＜0．0079	0.047	＜0．0007	＜0．0023	<0.0024	0．00006t	$0.01+$	＜0．0025
	12／1406	－	－－	－	－－	－－－	－	－－－	－－－	－－－	－－－	－－－	－	－－－	－－－	－－－	－－－	－	－	－－－	－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	\cdots
	0211307 0510807	\cdots	\cdots	\cdots	\cdots	．－．	\cdots	\cdots		\cdots		\cdots	－－－	\cdots																			
	11／0207	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－	－－－	－－－	－－	－－	－－－	－－－	－－	－－	－－－	－－－	－－	－－	－－	－－－	－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	\cdots
	02／1408	＜0．44	<0.68	<0.95	<0.2	＜0．46	＜0	＜0．45	0.64	＜0．69	<0.52	<0.5	＜0．47	0.34	<0.36	<0.52	<0.38	<0.48	<0.35	<1.8	<0.38	0．74 \dagger	<1.2	<0.37	<0.99	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	05／06／08 $09 / 1008$	$\stackrel{-}{--}$	\cdots	－－－	－－－	－－－	－－－	－－－	…	－－－	－－－	\cdots	－－－	－－．	\cdots	$\stackrel{-}{--}$	\cdots	－－－	－－－	－－－	－－－	－－－	\cdots	－－．	\cdots								
	－09／10088	\cdots	\cdots	\cdots		－－－	\cdots	－－－	\cdots	－－－	\cdots	－－－	\cdots			－－																	
	08／05／09	＜0．39	<0.68	<0.61	＜0．2	＜0．43	＜0．48	＜0．43	＜0．47	＜ 1.5	＜0．42		＜0．41	＜0．46	＜0．43	＜1．5	＜0．87	＜0．39	＜0．57	<1.7	＜0．33	＜0．51	＜1．1	＜1．5	＜2．13	$0.0015 \dagger$	0.0227	＜0．0005	＜0．0012	<0.0007			
	05／27／10	＜0．20	<0.50	<0.50	<0.20	<0.80	<0.20	<0.50	<0.50	＜1．0	＜0．50	＜0．25	＜0．20	＜0．20	＜0．25	＜0．20	<0.50	<0.20	<0.20	＜0．25	<0.50	<0.50	<0.20	<0.20	<0.50	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	$08 / 25 / 10$ $11 / 29 / 10$	<0.20	\bigcirc	\bigcirc	$\bigcirc 0.20$	＜0．80	－0．20	\bigcirc	<0.50	<1.0	<0.50	<0.25	＜0．20	－0．20	－0．25	\bigcirc	＜0．50	－0．20	<0.20	<0.25	<0.50	$\bigcirc 0.50$	<0.20	－0．20	$\bigcirc 0.50$	\cdots							
	03／01／11	\cdots	\cdots	\cdots	－－	－－	－－－	－－－	\cdots	\cdots	－－－	\cdots	\cdots	－－－	－	\cdots	－0	\cdots	－－	\cdots	\cdots	\cdots	－20	－－－	\cdots	－－－	\cdots	\cdots	－－	－－	－－	\cdots	\cdots
	05／16／11	<0.20	＜0．50	＜0．50	＜0．20	＜0．80	＜0．20	＜0．50	＜0．50	<1.0	＜0．50	$\stackrel{\text {＜0．} 25}{-\ldots}$	＜0．20	＜0．20	＜0．25	＜0．20	＜0．50	<0.20	＜0．20	＜0．25	<0.50	＜0．50	＜0．20	＜0．20	<0.50	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	$\stackrel{-}{-}$	\cdots
	11／08／11	＜0．20	<0.50	<0.50	<0.20	<0.80	<0.20	＜0．50	<0.50	＜1．0	<0.50	＜0．25	＜0．20	<0.20	<0.25	＜0．20	<0.50	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	<0.50	\cdots							
	02／20／12	－－	－－	－－	－－	－－	－－－	－－－	－－－	－－		－－－	－－		－－－	－－	－－－	－－－	－－－	－－－	－－	－－－	－－－		\cdots	－－	\cdots	－－	－－	\cdots	\cdots	\cdots	\cdots
	08／27／12	\cdots	\cdots	\cdots	－－－	\cdots	－－－	－－－	－－－	－－－	－－－	－	－－．	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	
	11／26／12	＜0．19	<0.12	<0.25	<0.10	＜0．26	<0.20	<0.28	<0.31	＜0．68	＜0．17	＜0．28	＜0．074	＜0．14	＜0．15	＜0．13	<0.13	<0.14	＜0．17	＜0．16	<0.13	<0.11	<0.14	<0.18	＜0．068	－－	－－	－－	－－	－－－	－－－	－－－	－－－
	$02 / 28813$ $05 / 23 / 13$	\cdots	－－－	\cdots	\cdots	－－．	\cdots	\cdots	\cdots	\cdots	\cdots	－－－	\cdots	\cdots	－－．	－－－	－－－	\cdots	－－－	\cdots	－－－	\cdots	－－－	\cdots	\cdots	\cdots	\cdots	－－	\cdots	\cdots	\cdots	\cdots	\cdots
	08／28／13	－－－	－－．	－－	－－	－－－	－－	－－－	\cdots	－－－	－－－	\cdots	－－	－－－	－－	－－－	－－－	－－	－－	－－－	－	－－－	－－1		\cdots	\cdots	\cdots	\cdots	\cdots	－	\cdots	\cdots	\cdots
	${ }^{11 / 12113}$	＜0．19	<0.12	＜0．25	<0.10	＜0．26	<0.20	<0.28	<0.31	<0.68	<0.17	＜0．28	＜0．074	＜0．14	＜0．15	＜0．13	<0.13	<0.14	＜0．17	＜0．16	＜0．13	<0.11	<0.14	<0.18	＜0．068	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	05／29／14	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－．	－－－	－－－	－－－		－－－	－－－	－－－	－－－			－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	\cdots
	08／28／14	－－－	－－－	－－	－－	－－－	－－	－－－	－－	－－－	－－－	－－－	－－	－－－	－－	－－	－－	－－－	－－	－－－	－－－	－－－	－－	－－	－－	－－	－－	－－	－－	－－－	－－－	－－－	－－－
	11／24414 $03 / 30 / 15$	＜0．19	＜0．12	＜0．25	＜0．10	＜0．26	<0.20	<0.28	<0.31	＜0．68	<0.17	＜0．28	＜0．074	<0.14	＜0．15	＜0．13	＜0．13	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	＜0．068	－－．	\cdots						
NR 140 Enforcement Standard NR 140 Preventive Action Limit		5	70	100	0.2	5	6		7		5		5	－－	－	－－	700	－－	－	100	－	800	480	480	2，000	0.01	2	0.005	0.1	0.015	0.002	0.05	0.05
		0.5	7	20	0.02	0.5	0.6	0.5	0.7	0.5	0.5	0.5	0.5	－－	－－	－－	140	－－	－－	10	－	160	96	96	400	0.001	0.4	0.0005	0.01	0.0015	0.0002	0.01	0.01

$t=$ Detected below the Limit of Quantitation
$=$ Not Tested／Not Reequired
Note：As of the December 2010 ch．NR 140 Wisconsin Administrative Code，eff． $1-1-11$ ，the enforcement standards（ESs）and preventive action limits（PALs）have changed for
Toluene and Xylenes．The previous standards were Toluene $1,000 \mathrm{ES} / 200$ PAL；yylenes $10,000 \mathrm{ES} / 1,000 \mathrm{PAL}$ ．

$\dagger=$ Detected below the Limit of Quantitation
$-=$ Not Tested / Not Required

- =Not Tested / Not Required

TABLE 1
Historical Groundwater Analytical Results
QuicFrez SFR Site - Fond du Lac, Wisconsi
SCS Engineers Project \#25211406.63

$\dagger=$ Detected below the Limit of Quantitation
$\cdots=-$ Not tested $/$ Not Required

* $=$ LCS or LCSD exceeds the control lim
$B=$ Analyte was detected in the associated Method Blank.
$\mathrm{Ja}=$ Results reported between the Method Detection Limit (MDL) and
Lis of Quantiation (LOQ) are less certain than results at or above the LOQ.
Concentration is an approximate value.

Note: The following compound was detected in MW7 during the November 2, 2006 sampling event: Butyl Benzyl Phthalate $(0.78+\mathrm{mg} / \mathrm{L})$.

: As of the December 2010 ch. NR 140 Wisconsin Administrative Code, efffli-1-1-1, the entorcement standards (GESs) and preventive action limits (PALs) have changed
Aor
for Toluene and Xylenes. The previous standards were Toluene $1,000 \mathrm{ES} / 200 \mathrm{PAL}$; Xylenes $10,000 \mathrm{ES} / 1,000 \mathrm{PAL}$.

SCS Engineers Project \#25211406.63

$t=$ Detected below the Limit of Quantitation

		Chlorinated Volatile Organic Compounds（EPA 8260）－－Mg／L														un	ed	Volatile	Organic	Ompounc	（EPA 8	0－－rg				RCRA Metals－mglL							
Well	Date				$\begin{aligned} & \text { 은 } \\ & \text { 흔 } \\ & \text { 를 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 틍 } \\ & \text { 을 } \\ & \text { 응 } \end{aligned}$																		$\begin{array}{r} \ddot{0} \\ \stackrel{.}{\underline{0}} \\ \stackrel{\rightharpoonup}{x} \\ \hline \end{array}$	$\begin{aligned} & \text { 亳 } \\ & \text { 迸 } \\ & \hline \end{aligned}$			$\begin{array}{r} \text { 兴 } \\ \text { 흥 } \\ \hline \end{array}$	\％	$\begin{array}{r} \text { 言 } \\ \text { idine } \\ \hline \end{array}$	（e）	$\frac{\stackrel{y}{2}}{\bar{\circ}}$
	07／22999 1212101	Prior to Well Construction											Prior to Well Construction													Prior to Well Construction							
	0307102	2.6	<0.11	<0.11	<0.11	<0.11	<0.1	${ }^{<0.12}$	<0.11	<0.24	<0.15	<0.19	<0.08	＜0．08	＜0．1	＜0．11	<0.08	<0.07	<0.12	<0.1	<0.15	0.37	<0.11	${ }^{<0.08}$	${ }_{0}^{<0.34}$	\cdots	\cdots	－－－					
	$06 / 10102$ $01 / 12 / 104$	${ }_{\substack{0.31 \dagger \\<0.1}}$	＜0．11	＜$<$＜0．11	＜<0.16	＜0．22	－<0.1	－${ }_{\text {＜}}$	＜0．11	＜0．24	＜0．15	＜<0.19	$0.18 \dagger$ <0.17	＜0．08	－	＜0．11	＜0．08	＜0．11	－${ }^{<0.12}<0.18$	026	＜<0.15	2．2	＜0．11	＜0．08	＜<0.34	＜0．005	$\stackrel{-}{-0.4}$	$\stackrel{-0}{000005}$	$\stackrel{-0}{0}$	${ }_{0}$	＜0．0002	－0．01	$\stackrel{-7}{<0.01}$
	0310404					－－2				－2．4																							
	04／1／504	＜0．27	＜0．29	＜0．22	＜0．21	＜0．16	＜0．25	＜0．29	<0.39	${ }^{<0.7}$	${ }^{<0.7}$	＜0．25	＜0．29	<0.31	${ }_{0}^{0.21}$	＜0．39	＜0．56	＜0．19	${ }_{<0}^{00.3}$	＜0．6	＜0．32	<0.57	＜0．51	＜0．66	＜1．74	＜0．005	${ }_{0}^{00.4}$	＜0．0005	＜0．01	0.0096		＜0．01	＜0．01
	11／0206	＜0．44	<0.68	<0.95	＜0．17	＜0．52	<0.61	<0.72	＜0．3	＜0．69	<0.52	<0.5	＜0．47	＜0．6	＜0．76	＜1．1	<0.38	<0.99	<0.81	<2.2	<0.61	<0.59	<0.39	＜1．2	＜1．42	0.0088	0.046	＜0．0007	＜0．0023	＜0．0024	40．00006	＜0．0092	
	1214406 0211307	\cdots	\cdots	\cdots	\cdots	\cdots	－－－	\cdots	－－－	\cdots	－－－	\cdots	\cdots	\cdots	－－－	\cdots																	
	05／08／07	－－－	－－－	－－	－－	－－－	－－－	－－	－－	－－－	－－	－－－	－－	－－	－－	－－	－	－－	－－－	－	－－－	－－－	\cdots	－－	－－－	－	－－－	－－－	－－－	－－	－－	－－	－－－
	1110207 $02141 / 08$	$\stackrel{-}{-0.44}$	\bigcirc	$\stackrel{-7}{-0.95}$	$\stackrel{-}{-0.2}$	\bigcirc	－－7．	$\stackrel{--}{-0.45}$	－－7．64	－－6．69	$\stackrel{-1}{-0.52}$	$\stackrel{-}{-0.5}$	$\stackrel{--7}{-0.47}$	－0．34	－0．	\bigcirc	－－．	$\stackrel{--}{-0.48}$	＜0．35	$\stackrel{-1}{-1.8}$	\bigcirc	$1.45 \dagger$	$\stackrel{-1}{-1.2}$	$\stackrel{--7}{-0.37}$	$\stackrel{-}{<0.99}$	\cdots							
	05／06／08		－－－																			－－．		－－－	\cdots	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－
	09／10／08	－	\cdots	\cdots	\cdots	\cdots	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－	－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－			－－－
	01／19／99 08／06／09	$\stackrel{-7}{<0.39}$	\bigcirc		$\stackrel{-}{-0.2}$					$\stackrel{-}{<1.5}$		$\stackrel{-7}{<0.41}$			$\stackrel{-1-7}{-0.43}$		<0.87	<0.39	<0.57	<1.7	\bigcirc	<0.51	$\stackrel{-1}{\square}$	$\stackrel{-1}{-1.5}$	＜2．13	0.0258							
	05／26／10	13	1.7 Ja	<0.50	<0.20	<0.80	<0.20	<0.50	<0.50	＜1．0	＜0．50	<0.25	＜0．20	<0.20	<0.25	<0.20	<0.50	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	＜0．20	<0.50	－	－－	－－－	－－－	－－－	－－－		
	08／25／10					－－－	－－－		－－－					－－－		－						－－－	－－	－－－		－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	－11／2910	130	$\underline{37}$	$\stackrel{0.50}{-0}$	$\stackrel{0}{<0.20}$	＜0．80	＜0．20	＜0．50	＜0．50	$\stackrel{1}{<1.0}$		＜0．25		＜0．20	$\stackrel{0.25}{--2}$	＜0．20	＜0．50		＜0．20	＜0．25	＜0．50	＜0．50	＜0．20		＜0．50	－－－	\cdots						
	05／16／11	41	38	<0.50	＜0．20	＜0．80	<0.20	<0.50	<0.50	＜1．0	<0.50	<0.25	＜0．20	<0.20	＜0．25	<0.20	<0.50	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	<0.50	－－－	－－－	－－－	－－		－－	－－－	－－－
	08／30／11	$\stackrel{-7}{<0.20}$	<0.50	\bigcirc	$\stackrel{-7}{<0.20}$	<0.80	<0.20	<0.50	\bigcirc	<1.0	$\stackrel{-7}{<0.50}$	<0.25	\bigcirc	－0．20	$\stackrel{-7}{<0.25}$	$\stackrel{-}{<0.20}$	<0.50	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	＜0．20	<0.50	\cdots	－－－	－－－	－－－	\cdots	\cdots	\cdots	
	02／20／12	－－－	－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－		－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－	－－－	－－－	－－－	－－－	－－－	－－－	\cdots	
	05／31／12	－－－	－．．	－－	－－－	\cdots	\cdots	\cdots	\cdots	－－－	－－	－－－	－－－	－－	－－－	－－	－－－	－－－	－	－－－			－－	－－	－－	－－－	－－－	－－－	－－－		－－－	－－	\cdots
	11／26／12	<0.19	<0.12	<0.25	＜0．10	<0.26	<0.20	<0.28	<0.31	<0.68	＜0．17	<0.28	＜0．074	＜0．14	＜0．15	＜0．13	<0.13	<0.14	<0.17	＜0．16	<0.13	<0.11	<0.14	＜0．18	＜0．068	－－－	－－－	－－	－－－		－－－	－－－	\cdots
	02／28／13	－－	－－	－－	－－	－－	－－－	－－－	－－	－－	－－－	－－－	－－－	－－	－－－	－－	－－	－－－	－－	－－	－－－	\cdots	－－	－－	－－	－－－	\cdots	－－	－－	\cdots	\cdots	－	－－
	08／28／13	\cdots	\cdots	\cdots	－－－	\cdots	\cdots	－－－	－－－	－－．	－．－．	\cdots	－－．	－－－	－－－	－－－	－－－	－－－		－－－		\cdots		－－－	\cdots	\cdots	\cdots	\cdots	\cdots			\cdots	\cdots
	11／12／13	19	10	<0.25	＜0．10	<0.26	<0.20	<0.28	<0.31	＜0．68	＜0．17	＜0．28	＜0．074	＜0．14	＜0．15	<0.13	<0.13	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	＜0．18	＜0．068	－－－	－－－	\cdots	\cdots	．－．	－－－	\cdots	\cdots
	03／25／14	\cdots		\cdots	－－	\cdots	－	－－	－－	\cdots	－－	－－	\cdots	－－	\cdots	\cdots	－－－	－	－－	－－	－－	－－	－－	－－	－－－	－－－	－－	－－	－－	－－	－－－	－	
	08／28／14	－	－	\cdots		－－．	－－－	－		－－－	－－－	－－－	－－－	－－－	－－－																		
	11／24／14	48	27	＜0．25	＜0．10	＜0．26	<0.20	＜0．28	<0.31	＜0．68	＜0．17	＜0．28	＜0．074	＜0．14	＜0．15	＜0．13	＜0．13	＜0．14	＜0．17	＜0．16	＜0．13	＜0．11	＜0．14	＜0．18	0.50 Jc	－－	－－	－－－	－－－	－－－	－－－	－－－	－－
NR 140 Enforcement Standard NR 140 Preventive Action Limit																																	
		5	70	100	0.2	5	6	5	7	5	5	5	5	－－	－－	－	700	－－	－－	100	－－	800	480	480	2，000	0.01	2	0.005	0.1	0.015	0.002	0.05	0.05
		0.5	$\underline{7}$	20	0.02	0.5	0.6	0.5	0.7	0.5	0.5	0.5	0.5	\cdots			140			10		160	96	96	400	0.001	0.4	0.0005	0.01	0.0015	0.0002	0.01	0.01

$t=$ Detected below the Limit of Quantitation
$\cdots=$ Not Tested／Not Required
$\mathrm{F}=$ Nos oested Not Requirid
$\mathrm{B}=$ LCS LCSD exceeds the control limits．
$B=$ Analyte was detecected in the associated Method Blank．
Ja $=$ Results reported between the Method Dethection Liank．
Limit of Quantititation（LOQ）are less certain than
Limit of Quantitition（LOQ）are less ce
concentration is an approximate value．

Note：The following compound was detected in MW7A during the August 2009 sampling event：Benzyl Alcohol（ 1.8 gg／L）
Note：As of the December 2010 ch．NR 140 Wisconsin Administrative Code efft $1-1-11$ ，the enforcement standards（ESS）
Note：As of the December 2010 ch．NR 140 Wisconsin Administrative Code，eff．1－1－11，the enforcement standards（ESS）and preventive action limits（PALs）have changed ar

Well	Date		$\begin{aligned} & \text { O} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$												$\begin{aligned} & \frac{0}{0} \\ & \text { 皆 } \\ & \frac{0}{0} \end{aligned}$									－		旁				产		（	－
MW7A	07／22／99	Prior to Well Construction																															
	03／07／02	\cdots	\cdots	－－－	－－－	－－－	－－－	－－－	－－－	－－－	\cdots	－－－	－－－	－－－	－－－	－－－	－－－	－－		－－－		－－－			－－		－－						
	06／10002	\bigcirc	$\stackrel{-}{-0.4}$	4.4	$\stackrel{-7}{<0.84}$	$\stackrel{--97}{<0.97}$	\bigcirc	4.3	＜1	$\stackrel{-1}{<1.3}$	$\stackrel{-1}{\square 1.3}$	$\stackrel{-1}{<0.96}$	$\stackrel{-1}{<1.4}$	240	$\stackrel{-1}{-1.7}$	$\stackrel{-}{-1.4}$	$\stackrel{-1}{-1.2}$	$\stackrel{-1}{-1.4}$	－1．2	－0．84	－－7．	$\stackrel{-}{<1.1}$	－－7	$\stackrel{-}{<0.95}$	$\stackrel{-7}{-1.7}$	－0．62	$\stackrel{-1}{-1.4}$	$\stackrel{-7}{<0.66}$	$\stackrel{-1}{<1.2}$	$\stackrel{-1}{<1.4}$	$\stackrel{-1}{<-1.5}$	$\stackrel{-1}{-1.1}$	$\stackrel{-}{-1.2}$
	0330404			\cdots																													
	04／1／504 $11 / 0206$	\cdots	$\stackrel{-0.4}{-\ldots}$	－${ }_{1.2 \dagger}$	－<0.84	［ <0.97	（ $\begin{aligned} & <1.4 \\ & <0.7\end{aligned}$	$\begin{gathered} <1.2 \\ <0.69 \end{gathered}$	${ }_{<0}^{<1}$	$\begin{aligned} & <{ }_{c}^{<0.36} \end{aligned}$	$\begin{gathered} \text { < }<0.79 \\ \hline 0 \end{gathered}$	$\begin{gathered} <0.96 \\ <0.82 \\ <0 \end{gathered}$	$\begin{gathered} <1.4 \\ <0.69 \end{gathered}$	$\begin{aligned} & 13 \\ & 31 \end{aligned}$	＜1．7	$\begin{gathered} <1.4 \\ <0.58 \end{gathered}$	$\begin{aligned} & <1.2 \\ & <0.96 \end{aligned}$	$\begin{gathered} <1.4 \\ <0.75 \end{gathered}$	$\begin{aligned} & <{ }_{c}^{4.2} \\ & <0.54 \end{aligned}$	$\begin{gathered} <0.84 \\ <1.86 \\ <16 \end{gathered}$	$\begin{aligned} & 1.0 \dagger \\ & 1.5 \dagger \end{aligned}$	$\begin{gathered} <1.1 \\ <0.65 \end{gathered}$	$\begin{aligned} & <0.9 \\ & 00.8 \end{aligned}$	$\begin{gathered} <0.95 \\ <0.95 \\ <0 \end{gathered}$	$\begin{aligned} & <1.7 \\ & 0.7 \end{aligned}$	<0.62	$\begin{gathered} \substack{4.4 \\ <0.92} \end{gathered}$	$\begin{aligned} & 0.66 \\ & <0.66 \end{aligned}$	$\begin{gathered} <1.2 \\ <0.85 \end{gathered}$	$\begin{aligned} & 8.4 \\ & <1.4 \end{aligned}$	$\begin{gathered} <1.5 \\ <0.92 \end{gathered}$	${ }_{\text {＜}} \times 1.01$	－
	12／1406	－－－	－－－	\cdots	－－－	－－．	－－．	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－			
	02／13／07	－－－	－－－	－－－	－－－	－－－	．－	－－－	－－－	－－－	－	－	－	－－－	－－－	－－－	－	－－－	－	－	－－－	－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	05／0807 110207	\cdots	－－	\cdots	\cdots	\cdots	\cdots	\cdots	－－	－－	\cdots	－	－－．	\cdots	\cdots	\cdots	－．．	\cdots															
	02／14／08	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－
	05／06／08	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－		－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－
	09／101088 $011 / 9 / 9$	\cdots	\cdots	\cdots	\cdots	\cdots	－－	\cdots	－－－	\cdots	－－－	\cdots	－－－	\cdots	\cdots																		
	08／06／09	\cdots	\cdots	＜0．4	<0.24	＜0．23	＜0．35	＜1．06	<1.01	<0.35	<0.31	＜0．47	<0.52	4.7	－－－	<0.32	＜0．28	<0.3	<0.54	＜0．28	<0.54	＜0．24	＜0．25	<0.39	<0.26	\cdots	<0.55	<0.36	＜0．34	＜0．29	＜0．82	＜1．55	<0.3
	05／26／10	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	$08 / 251 / 10$ $11 / 29 / 10$	\cdots	－－	\cdots	－－－	－－－	－－－	\cdots	－－－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	－－－	－－－	－－－	－－－	－－－	\cdots	\cdots	\cdots	－－－	\cdots	\cdots	\cdots	－－－	\cdots	\cdots	\cdots	\cdots	－－－
	03／01／11	－－－	－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－	－－－	－－－
	$05 / 16 / 11$ $08 / 30 / 11$ 0	\cdots	\cdots	－	－	\cdots	\cdots	－	－	－－	\cdots	－－	\cdots	\cdots	－－	\cdots	\cdots	－－	\cdots	－－	－－－	－－	\cdots	\cdots	－－－	\cdots	\cdots	\cdots	－－	－－	\cdots	－－－	\cdots
	11／08／11	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－．－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	\cdots
	02／20／12	\cdots	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－
	－05／31／12	\cdots	－－－																														
	11／26／12	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	\cdots
	02128／13	\cdots	－－	－－	－－－	－－－	\cdots	－－－	－－－	－－	－－－	－－－	－－－	－－	－－－	－－	－－	\cdots	－－－	－－	－－－	－－	\cdots	－－－	－－	－－－	\cdots	－－	－－－	－－－	\cdots	－－－	－－－
	－08／28／13	\cdots																															
	11／12／11	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	＜0．27	－－．	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	03／25／14	－－－	－－	－－－	－－	－－－	－－－	\cdots	－－	－－－	\cdots	－－	－－	－－	\cdots	\cdots	－－	－－		－－	－－	\cdots	－－	\cdots						－－	\cdots	－－－	－－－
	－05／29／4	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	－－	－－	－－	\cdots	\cdots	－－	\cdots	\cdots	－－	\cdots	\cdots	－	\cdots		\cdots		\cdots							\cdots	\cdots	\cdots
	11／14／14	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－．．	－－－	－－－	＜0．27	－－	－－	－．－	－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－	－－－	－
	03／30／15	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－	－－－	－－－	－－－	－－－		－－－	－－	－－	－－	－－－	－－－	－－－	－－－	－－－		－－－			
NR 140 Enforcement Standard NR 140 Preventive Action Limit		，	－	－－	－	－	3，000	－－	－	0.2	0.2	－	－	6	－－	0.2	－	－	600	－	100	－	400	400	－－	－－	－	－－	40	－－			250
		0.1	－－	－－	－－	\cdots	600	－－	－－	0.02	0.02		－－	0.6	－－	0.02	－－		60		20		80	80					，		0.1		50

$=$ Detected below the Limit of Quantitation
＝Not Tested／Not Required

TABLE 1
Historical Groundwater Analytical Results
QuicFrez SFR Site - Fond du Lac, Wisconsi
SCS Engineers Project \#25211406.63

		Chlorinated Volatill Organic Compounds (EPA 8260)--Mg/L														eitroleun	ded	Volatile	Organic	oun	A	260)-Mg				RCRA Metals-mg/							
Well	Date				$\begin{aligned} & \text { 읗 } \\ & \text { 휸 } \\ & \frac{5}{5} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 틍 } \\ & \text { 응 } \\ & \text { 을 } \end{aligned}$																		$\begin{array}{r} \stackrel{.0}{\omega} \\ \frac{\stackrel{\rightharpoonup}{0}}{\underline{x}} \\ \hline \end{array}$					$\stackrel{\square}{\text { ® }}$	$\begin{array}{r} \text { 言 } \\ \text { 颜 } \\ \hline \end{array}$	¢	$\stackrel{\stackrel{y}{\square}}{\bar{\circ}}$
мw7в	07/22/99 1212101	Prior to Well Construction											Prior to Well Construction													Prior to Well Construction							
	- $12 / 121010$	8.7	<0.11	<0.11	<0.16	<0.2	<0.1	<0.12	<0.11	<0.24	<0.15	<0.19	0.56	<0.08	<0.1	<0.11	<0.08	<0.07	<0.12	<0.1	<0.15	0.54	<0.11	<0.08	<0.34								
	-06/10/02	$\underset{\substack{0.33+\\<0.1}}{ }$	<0.11	<0.11	<0.16	<0.22	<0.1	<0.15	<0.11	< $<$ <0.24	< <0.15	<0.19	0.28 $0.4 \dagger$	< <0.08	<0.43	<0.11	-	<-0.07	- $\begin{aligned} & <0.12 \\ & <0.18\end{aligned}$	${ }_{<0.26}^{<0.1}$	< <0.15	${ }_{2.7}^{0.23 \dagger}$	<0.11	<0.08	<0.34	<0.005	<0.4	<0.0005	$\stackrel{-0}{<0.01}$	0.0094	--.0002	$\stackrel{-0}{<0.01}$	$\stackrel{-}{<0.01}$
	03/04/04	S 1	20.	--.	---	--2	-0.09	-	-0.44				0.4	-	--1	-	--1.	-..									<0.4	<0.000	<0.01	0.0094			
	04/1504	<0.27	<0.29	<0.22	<0.21	<0.16	<0.25	<0.29	<0.39	<0.7	<0.7	<0.25	<0.29	<0.31	<0.21	<0.39	<0.56	<0.19	<0.3	<0.6	<0.32	<0.57	<0.51	<0.66	<1.74	<0.005	<0.4	<0.0005	<0.01	0.0094		<0.01	<0.01
	11/0206	<0.44	<0.68	<0.95	<0.17	<0.52	<0.61	<0.72	<0.3	<0.69	<0.52	<0.5	<0.47	<0.6	<0.76	<1.1	<0.38	<0.99	<0.81	<2.2	<0.61	<0.59	<0.39	<1.2	<1.42	<0.0079	0.036	<0.0007	<0.0023	<0.0024			
	12/1406 $02 / 13107$	\cdots	$\stackrel{-}{--}$	\cdots	\cdots	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots	$\stackrel{-}{--}$	\cdots	\cdots	\cdots	\cdots	\cdots	$\stackrel{-}{--}$	\cdots													
	-05/08/07	---	--.	---	---	---	---	---	---	---	-..	\cdots	---	---	---	--	---	--.	‥-	---	---	---	---	--.	---	\cdots	…	…	---	…	---	---	\cdots
	11/02/07	-	--.	-	---	-	---	-	---	\cdots	--.	-	---	-	--.	-	--.	---	--.	--	--.	\cdots	\cdots	---	---	-	\cdots	--	--	\cdots	--	\cdots	\cdots
	02/14/08	<0.44	<0.68	<0.95	<0.2	<0.46	<0.48	<0.45	<0.64	<0.69	<0.52	<0.5	<0.47	<0.34	<0.36	<0.52	<0.38	<0.48	<0.35	<1.8	<0.38	1.77	<1.2	<0.37	<0.99	---	---	---	---	---	---	---	
	05/06/08	---	\cdots	---	\cdots	---	---	---	---	---	---	\cdots	---	\cdots	\cdots	--	---	---	\cdots	---	---	\cdots	\cdots	\cdots	---	\cdots							
	01/19/09				--				---	---		---	---		---	---			--.	---	---	---	---	---	---	---			---				-
	08/06/109	${ }^{<0.39}$	<0.68	<0.61	<0.2	<0.43	<0.48	<0.43	<0.47	<1.5		<0.41										<0.51			<2.13	0.0007	0.0301	0.0005	<0.0012	<0.000		<0.000	
	$05 / 26610$ $08 / 25 / 10$	${ }^{0.21 ~ J a ~}$	<0.50	<0.50	<0.20	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	<0.20	<0.20	<0.25	$\stackrel{0}{<0.20}$	<0.50	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	<0.50	\cdots							
	11/29/10	<0.20	<0.50	<0.50	<0.20	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	<0.20	<0.20	<0.25	<0.20	<0.50	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	<0.50	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots	\cdots
	03001/11	<0.20	<0.50	<0.50	-0.20	-0.80	-0.20	\bigcirc	<0.50	-1.0	-0.50	-0.25	-0.20	-0.20	-0.25	$\stackrel{-7}{<0.20}$	\bigcirc	$\stackrel{-7}{<0.20}$	-0.20	<0.25	\bigcirc	<0.50	<0.20	$\stackrel{-7}{<0.20}$	<0.50	\cdots	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots
	08/30/11			---	---	--.	---	---			---	---	--.	---	--.	--.	.-.	---	--		--.			--7					--			--	
	11/08/11	<0.20	<0.50	<0.50	<0.20	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	<0.20	<0.20	<0.25	<0.20	<0.50	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	<0.50	---	--	--	--	---	--	---	---
	(02/20112	\cdots	--.	\cdots	\cdots	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	-.-	\cdots																
	08127/12	--	-	5	--	--	\cdots	--	\cdots	-	-17		-	---	\cdots	---	\cdots	---	\cdots	\cdots	--	---	---	--	---	\cdots							
	111/26/12	<0.19	<0.12	<0.25	<0.10	<0.26	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	<0.074	<0.14	<0.15	<0.13	<0.13	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	<0.068	---	\cdots	--	--	---	---	--	--
	05/23/13	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	-.	---	---	--	---	---	--	---	---	---	--		-	---	\cdots
	08/28/13				-	---		--					--	---	--	--.	--.		--.	---	--.			--.			---	---	---		--	---	--.
	11/12/13	<0.19	<0.12	<0.25	<0.10	<0.26	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	<0.074	<0.14	<0.15	<0.13	<0.13	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	<0.068	--	--	---	---	---	---	---	
	03/25/14	---	--	\cdots	\cdots	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	\cdots	--	\cdots	--	\cdots	\cdots	--	\cdots
	08/28/14												--				-												---		---	---	\cdots
	11/24/14	<0.19	<0.12	<0.25	<0.10	<0.26	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	<0.074	<0.14	<0.15	<0.13	<0.13	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	<0.068	\cdots			--		--	--	--
								-																									
NR 140 Enforcement Standard NR 140 Preventive Action Limit		5	70	100	0.2	5	6	5	7	5	5	5	5	-	-	I	700	--	-	100	-	800	480	480	2,000	0.01	2	0.005	0.1	0.015	0.002	0.05	0.05
		0.5	7	20	0.02	0.5	0.6	0.5	0.7	0.5	0.5	0.5	0.5	\cdots	\cdots	\cdots	140	\cdots	\cdots	10	\cdots	160	96	96	400	0.001	0.4	0.0005	0.01	0.0015	0.0002	0.01	0.01

$\begin{aligned} & \dagger=\text { Detected below the Limit of Quantiation } \\ &=\text { Not }\end{aligned}$
$-\quad=$ Not Tested / Not Required
inito of reported between the Method Detection Limit (MDL) and Limit of Quantitation (LOQ) are less certain than results at or above the LOQ.

[^1]

$\dagger=$ Detected below the Limit of Quantitation
$-=$ Not Tested / Not Required

- =Not Tested / Not Required

TABLE 1
Historical Groundwater Analytical Results
QuicFrez SFR Site - Fond du Lac, Wisconsin
SCS Engineers Project \#25211406.63

$t=$ Detected below the Limit of Quantitation
$\mathrm{Ja}=$ Results reported between the Method Detection Limit (MDL) and
Limit of Quantitation (LOQ) are less certain than results at
Limit of Cuantitation (LOOQ) are eess certain than results at or above the LOQ.
Len
$\mathrm{b}=$ Estimated value. Analyte detected at a level less than the Reporting Limit (RL)
and greater than or equal to the Method Detection Limit (MDL). The user
of this data should be avare that this data is of of imited reiliaility.
$\mathrm{Jc}=$ Result is less than the RL but reaeater than or equal to the MDL and

Note: The following
Note: The following compound was detected in MW8 during the August 2009 sampling event: Benzy Alcohol (1.1 Hg/L)
Note: The following compound was detected in MW8 during the November 201010 sampling event: Dichlorodifluoromethane ($0.53 \mathrm{Hg} / \mathrm{L}$, Ja)
Note: As of the December 2010 ch. NR 140 Wisconsin Administrative Code, eff. $1-1-11$, the entorcement standards (ESS) and preventive action limits (PALs) have changed for Toluene and Xylenes.

Note: The following compound was detected in MW d during the August 30,2011 sampling event: Chloromethane $(0.45 \mu \mathrm{~g} / \mathrm{L}, \mathrm{Jc})$

Well	Date											$\begin{aligned} & \stackrel{0}{6} \\ & \frac{0}{2} \\ & \frac{0}{2} \\ & \frac{2}{E} \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \hline \end{aligned}$				$\begin{aligned} & \stackrel{0}{0.0} \\ & \text { ed } \\ & \stackrel{\rightharpoonup}{5} \\ & \hline \end{aligned}$										产							-
mw8	07/22/99	Prior to Well Construction																															
	(1212/91		---	---	<0.053	<0.16	<0.024	--	<0.03	<0.022	20.036	<0.087	<0.067	--	---	<0.022	----	---	---	---	---	--	<0.053	<0.025	<0.03	---	<0.095	<0.096	<0.067				
	06/10/02	---	---	---	<0.053	<0.16	<0.024	---	<0.03	<0.022	<0.036	<0.087	<0.067	---	-	<0.022	---	---	---	---	---	---	<0.053	<0.025	<0.03	--	<0.095	<0.096	<0.067	---		<0.036	<0.13
	01/11/04	<0.05	<0.4	<1	<0.84	<0.97	<1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	<1.9	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	<0.64	<1.1	<0.9	<0.95	<1.7	<0.62	<1.4	<0.66	<1.2	<1.4	<1.5	<1.1	<1.2
	$03 / 04 / 404$ $04 / 4104$	\cdots	\bigcirc	<1	<0	<0.97	-1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	<1.9	<1.7	<1.4	<1.2	$\stackrel{-1}{21.4}$	\bigcirc	<0.84	<0.64	<1.1	<0.9	<0.95	<1.7	<0.62	<1.4	<0.66	<1.2	<1.4	<1.5	<1.1	
	11/03/06	---	\cdots	<0.85	<1.03	<1.05	<0.7	<0.69	<0.74	<0.96	<0.79	<0.82	<0.69	40	---	<0.58	<0.96	<0.75	<0.54	<1.16	$3.4 \dagger$	<0.65	<0.8	<0.95	<0.7	---	<0.92	<0.8	<0.85	<1.4	<0.92	<1.01	<0.56
	12/14/09	---	---	---	---	---	---	--	--	---	--	---	---	---	--	---	--	---	---	--	---	---	--	-	---	---	---	--				--	---
	02/131307	\cdots	--	--	\cdots	\cdots	\cdots	--	\cdots	--	\cdots	\cdots	---	\cdots	\cdots	\cdots	--	\cdots	\cdots	---	\cdots	--.		-	--	\cdots	\cdots						
	11/0207	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	--	---	---	---	--	---	---	\cdots
	02/14/08	\cdots	--	--	--	--	\cdots	\cdots	--	--	\cdots	--	-	--	---	\cdots	--	--		---	--	--	---		---		--	\cdots	--	---	--	--	\cdots
	-09/10/08	…	…	---	\cdots	---	---	---	---	---	--.	--.	---	\cdots	---	---	---	‥-	---	---	---	--	---	---	--	---	---	---	\cdots	---	---	…	\cdots
	01/19/09	---	---	--	---	---	--.	---	---	---	---	--.	---	---	--	--.	--	---	--	---	--	--	---	---	--	---	---	--	---	---		---	
	08/06/09	---	---	<0.4	<0.24	<0.23	<0.35	<1.06	<1.01	<0.35	<0.31	<0.47	<0.52	<0.6	--	<0.32	<0.28	<0.3	<0.54	<0.28	<0.54	$0.27 \dagger$	<0.25	<0.39	<0.26	---	<0.55	<0.36	<0.34	<0.29	<0.82	<1.55	<0.33
	05/26/10	---	---	---	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	---		--	
	-11/29/10	\cdots	\cdots	---	\cdots	-..	---	\cdots	---	---	\cdots	---	---	---	---	\cdots	---	---	---	\cdots	\cdots	---	\cdots	---	\cdots	---	\cdots	---	---	---	\cdots	\cdots	
	03/01/11	---	---	---	---	---	---	---	---	---	---	---	---	-	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
	05/16/1	---	--	---	--	--	--	-	---	--	--		-		-	---		-															\cdots
	08/30/11 ${ }^{\text {u }}$	\cdots	--.	---	‥-	---	---	---	\cdots	---	---	\cdots	---	‥-	---	---	---	---	---	---	\cdots	---	---	---	---	---	--.	---	---			\cdots	\cdots
	11/08/11	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	--	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	02/20/12	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	\cdots	---	---	---
	05/31/12	\cdots	--	--	--	--	--	--	--	\cdots	--	--	--	--	--	--	\cdots	--	---	--	--	--	--	--	--	\cdots	\cdots	--	--	--	--	--	\cdots
	-11/26/12	--.	…	.-.	.-.	---	---	--.	.-.	---	---	.-.	--.	.-.	.-.	.-.	---	---		.--	.-.	--.	.--	--.	--.	.-.	.-.	.-.		---		…	\cdots
	02/28/13	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	\cdots	---	---	---	---	---	---	---	---	---	---	--	--	---	---
	05/23/13	--	---	---	--	--	--	--	--	--	--	\cdots	--	--	--	--	--	--	---	--	---	--	--	--	--	--	--	--	---	--	--		
	11/12/13	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	<0.27	---	---	---	---	---	---	---	---	---	---	---	--.		\cdots
	03/25/14	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	--	---	---	---	---	---	---	--	---	---	---	---	---	---	---		
	05/29914 $08 / 28 / 14$	\cdots	--	\cdots	--	\cdots	--	--	--	\cdots	--	--	\cdots	--	\cdots	--	--	--	--	\cdots	--	\cdots	--	--	\cdots								
	11/24/14	---	---	---	---	---	---	---	--	---	---	-.-	---	---	---	-.-	--	---	<0.27	-.	---	---	---	---	---	---	-..	---	---	---	---	---	\cdots
	03/30/15	---	---	---	--	--	--	--	--	--	--	--	--	--	---	--	\cdots	--	---	--	--	--	--	--	---	--	--	---	--	---	---	--	
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	\cdots	-	--	-	3,000	-	-	0.2	0.2	-	,	6	--	0.2	-	,	600	-	100	\cdots	400	400	-	-	--	-	40	-	1	-	
		0.1	\cdots	\cdots	\cdots	\cdots	600	\cdots	\cdots	0.02	0.02	\cdots	\cdots	0.6	\cdots	0.02	\cdots	\cdots	60	\cdots	20	\cdots	80	80	--	--	\cdots	--	8	\cdots	0.1	--	50

ow the Limit of Quantitation
$=$ Detectea below the Limit of
$=$ =Not Tested $/$ Not Reaquired

				Chlorin	Volatil	Organic	mpo	(EPA8	8260							Petroleum	n-related	tile	Organic	Ompound	88	260)-MgI							CRA Me	tals-mg/			
Well	Date				$\begin{aligned} & \text { 은 } \\ & \text { 흔 } \\ & \text { 를 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 틍 } \\ & \text { 흥 } \\ & \hline \text { 2 } \\ & \hline \end{aligned}$																		$\begin{array}{r} \ddot{0} \\ \stackrel{.}{\underline{0}} \\ \stackrel{\rightharpoonup}{x} \\ \hline \end{array}$					®	$\begin{array}{r} \text { 言 } \\ \text { 颜 } \\ \hline \end{array}$	(e)	$\stackrel{\stackrel{\rightharpoonup}{2}}{\bar{\circ}}$
Mw8A	07/22/99 1212101	Prior to Well Construction											Prior to Well Construction													Prior to Well Construction							
	030107/02	3.1	$0.24+$	<0.11	<0.16	<0.2	<0.1	<0.12	<0.11	<0.24	<0.15	<0.19	<0.08	<0.08	<0.1	<0.11	<0.08	<0.07	<0.12	<0.1	<0.15	<0.08	<0.11	<0.08	<0.34						---	-	
	$06 / 10102$ $01 / 1104$	${ }_{0}^{0.28 \dagger}$ <0.1	<0.11	<0.11	<0.16	-	${ }_{0}^{<0.1}$	<0.12	<0.11	-	-	<0.19	-	< ${ }_{\text {< }}^{<0.08}$	${ }_{<0}^{<0.1}$	<0.11	< <0.08	< <0.07	-	<0.26	< $<$ <0.15	$0.13+$ <0.15	$\begin{aligned} & <0.11 \\ & <0.14 \end{aligned}$	<0.08	<0.34	-0.005	-0.4	$\stackrel{\square}{<0.0005}$	$\stackrel{-}{<0.01}$	<0.0015			
	$03 / 04104$																					--.				-0.		--.			-0.0.		$\stackrel{<0.01}{--1}$
	04/1/1/04	<0.27	<0.29	<0.22	<0.21	<0.16	<0.25	<0.29	<0.39	<0.7	<0.7	<0.25	<0.29	<0.31	<0.21	<0.39	<0.56	<0.19	<0.3	<0.6	<0.32	<0.57	<0.51	<0.66	<1.74	<0.005	<0.4	<0.0005		<0.0015	<0.0002		<0.01
	11/0306	<0.44	<0.68	<0.95	<0.17	<0.52	<0.61	<0.69	<0.3	<0.69	<0.52	<0.5	<0.47	<0.6	<0.76	<1.1	<0.38	<0.99	<0.81	<2.2	<0.61	<0.59	<0.39	<1.2	<1.42	<0.0079	0.021	<0.0007		0.003 \dagger	<0.00004		
	$12 / 14106$ $02 / 1307$	\cdots	\cdots	\cdots	\cdots	\cdots	$\stackrel{-}{--}$	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	---	\cdots	$\stackrel{-}{--}$	$\stackrel{-}{--}$	\cdots	\cdots										
	05/08/07	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	.-.	---	---	---	---	\cdots	‥-	\cdots	\cdots	\cdots	---	\cdots	…	\cdots	
	$11 / 02107$ 02141408	--.	\bigcirc	--9	-02	--7	---	--.	--.64	--9.	-0.	\bigcirc	\bigcirc	--3.	--7	\bigcirc	--38	\bigcirc	$\stackrel{-}{-035}$	\bigcirc	\cdots	35	\cdots	$\stackrel{-}{<037}$		\cdots							
	05/06/08	---	---	--	\cdots	--		--	\cdots	---	---	<0.5		---		--	---		--.	$\stackrel{-1.8}{--}$	<0.38	${ }^{3} 5$	<-.	<0.37	$\stackrel{-0.99}{--}$	\cdots	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots
	09110/08	---	---	.-.	--	---	---	---	---	---	---	---	--	---	--	--	---	---	---	---	---	-	--	--	--	---	---	---	--	---	---	---	--
	01/19/199 $088 / 06 / 09$	<0.39	$\stackrel{-1}{<0.68}$	\bigcirc	<0.2	-0.43	\bigcirc	--7.43	-0.47	$\stackrel{-1}{<-1.5}$	\bigcirc	$\stackrel{-}{<0.41}$	-0.41	\bigcirc	\bigcirc	$\stackrel{-}{<1.5}$	<0.87	<0.39	<0.57	<1.7	<0.33	$<$	$\stackrel{-1}{\square 1.1}$	$\stackrel{\square}{<1.5}$	<2.13	0.0046	0.0291	<0.0005	<0.0012				
	05/26/10	<0.20	<0.50	<0.50	<0.20	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	<0.20	<0.20	<0.25	<0.20	<0.50	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	<0.50	---							
	08/25/10 $11 / 29 / 10$	40	13	\bigcirc	$\stackrel{-1}{<0.20}$	<0.80	<0.20	<0.50	\bigcirc	-1.0	\bigcirc		-0.20	-0.20	$\stackrel{-7}{-0.25}$	\bigcirc	\bigcirc	\bigcirc	<0.20	$\stackrel{-7}{<0.25}$	<0.50	\bigcirc	-0.20			\cdots							
	03/01/1		$\underline{\square}$	-	-	\cdots	--	--.	---	\cdots	--7	-	-	---	--	---	--.	---	---	-2	---	---	---	---	0.50		--	---	---	---	---	---	---
	05516/1	19	$\underline{12}$	<0.50	<0.20	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	<0.20	<0.20	<0.25	<0.20	<0.50	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	<0.50	---	--	\cdots	---	\cdots	\cdots	\cdots	\cdots
	11/8/11 A.0	9.4	$\underline{20}$	<0.50	<0.20	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	<0.20	<0.20	<0.25	<0.20	<0.50	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	<0.50	-	---	--			--	---	
	02120/12	\cdots	\cdots	\cdots	\cdots	--	\cdots	--	--	--	--	\cdots	--	---	--	\cdots	--	--	--	--	--	--	--	--	--	--	\cdots	--	--	\cdots	\cdots	---	
	$088127 / 12$	-	---	---	--.	---	--.	---	---	---	--.	--.	--.	---	---	---	---	---	---	---	---	---	-	---									
	11/26/12	5.4	5.9	<0.25	<0.10	<0.26	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	<0.074	<0.14	<0.15	<0.13	<0.13	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	<0.068	\cdots	--	---			--	---	
	1/26/2012 0	5.8	6.1	<0.25	${ }^{<0.10}$	${ }^{<0.26}$	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	<0.074	<0.14	<0.15	<0.13	<0.13	-0.14	<0.17	${ }^{00.16}$	${ }^{<0.13}$	<0.11	<0.14	<0.18	<0.068	--	--	--	-	\cdots	---	--	
	02728113				Buried	nable	Col	t Sample										ried - Un	ble	ollect Sa						--	--	--	--	\cdots	--	\cdots	
	08/28/13	--	---		---	\cdots	---	---	---	-	\cdots		-	-	-		-	---	---	---	.--	-	---	-	\cdots								
	11/	14	6.7	<0.25	<0.10	<0.26	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	<0.074	<0.14	<0.15	<0.13	<0.13	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	<0.068	---	--	--	---		--	---	---
	03/25/3/4				Buried	Unable	Collec	Sample										red - Un	to	ollect Sa						--	--	--	--	--	--	--	
	08/28/14	-	---	---	---	---	---	---	.--	---	---	---	---	---	---	---	---	---	---	\cdots	--	---	---	---	---	-	-	---	---	---	---	---	\cdots
	11/24/4	\cdots	--	--	--	--	\cdots	---	---	\cdots	---	--	--	---	--	---	--	\cdots	--	--	---	--	---	---	\cdots	\cdots	---	-.-			---	---	
NR 140 Enforcement Standard NR 140 Preventive Action Limit																																	
		5	70	100	0.2	5	6	5	7	5	5	5	5	--	-	-	700	-	--	100	-	800	480	480	2,000	0.01	2	0.005	0.1	0.015	0.002	0.05	0.05
		0.5	7	20	0.02	0.5	0.6	0.5	0.7	0.5	0.5	0.5	0.5	\cdots			140	\cdots	\cdots	10	\cdots	160	96	96	400	0.001	0.4	0.0005	0.01	0.0015	0.0002	0.01	0.01

$t=$ Detected below the Limit of Quantitation
$-\quad=$ Not Tested $/$ Not Required
$\mathrm{A}-01=H i g h ~ c o n c e n t r a t i o n ~ o f ~$
n
Note: The following compounds were detected in MW8A during the August 2009 sampling event: Benzyl Alcohol ($1.3 \mu \mathrm{~g} / \mathrm{L}$), Diphenylamine ($1.4 \mu \mathrm{~g} / \mathrm{L}$.

$=$ Detected below the Limit of Quantitation
=Not Tested / Not Required

				Chlorina	Volatile	Organic	Compo	nds（EPA	8260）－－1							Petroleum	－relate	Volatie	Organic	，	（EP）	，							CRA Mea	alas－mg			
Well	Date				$\begin{aligned} & \text { 은 } \\ & \text { 흗 } \\ & \text { 른 } \end{aligned}$		$\begin{aligned} & \text { 틍 } \\ & \text { 흥 } \\ & \hline \text { 2 } \\ & \hline \end{aligned}$										$\begin{aligned} & \stackrel{\circ}{00} \\ & \text { 旁 } \\ & \text { 空 } \\ & \hline \end{aligned}$					$\begin{gathered} \stackrel{\circ}{\mathrm{I}} \\ \stackrel{\mathrm{\partial}}{\stackrel{\circ}{i}} \\ \hline \end{gathered}$				$\begin{aligned} & \text { 亳 } \\ & \text { 豪 } \end{aligned}$			$\begin{aligned} & \text { 틀 } \\ & \text { 흘 } \\ & \text { in } \\ & \hline \end{aligned}$	־\％		（e）	$\stackrel{\stackrel{y}{2}}{\bar{\circ}}$
мW8в	07／22／99	Prior to Well Construction											Prior to Well Construction													Prior to Well Construction							
	03／07／02	0.84	1	<0.11	<0.16	＜0．2	<0.1	<0.12	＜0．11	<0.24	<0.15	<0.19	0.34	<0.08	<0.1	＜0．11	<0.08	<0.07	＜0．12	<0.1	＜0．15	$0.19 \dagger$	＜0．11	<0.08	<0.34	－－－	－	\cdots	－	－－			
	06／10／02	＜0．13	0．12†	＜0．11	＜0．16	<0.2	＜0．1	＜0．15	＜0．11	＜0．24	＜0．15	＜0．19	<0.08	＜0．08	＜0．1	＜0．11	＜0．08	＜0．07	＜0．12	<0.1	＜0．15	$0.16 \dagger$	＜0．11	＜0．08	＜0．34		－－－	－－－	－－－	－－－		－－－	\cdots
	01／12／04	<0.1	<0.25	<0.35	<0.11	＜0．22	＜0．69	<0.2	＜0．44	＜2．4	＜0．45	＜0．41	＜0．17	＜0．31	＜0．43	＜0．22	＜0．16	＜0．11	＜0．18	＜0．26	<0.19	$\stackrel{2.4}{ }$	＜0．14	＜0．12	＜0．46	＜0．005	$\stackrel{-0.4}{+}$	＜0．0005	＜0．01	＜0．0015	＜0．0002	＜0．01	＜0．01
	04／14／104	<0.27	<0.29	<0.22	<0.21	＜0．16	<0.25	<0.29	<0.39	<0.7	<0.7	<0.25	＜0．29	<0.31	<0.21	<0.39	<0.56	<0.19	<0.3	<0.6	<0.32	<0.57	<0.51	<0.66	<1.74	＜0．005	<0.4	<0.0005	<0.01	<0.0015	＜0．0002		<0.01
	11／03／06	＜0．44	<0.68	<0.95	<0.17	＜0．52	<0.61	<0.69	＜0．3	<0.69	<0.52	＜0．5	＜0．47	＜0．6	<0.76	＜1．1	<0.38	<0.99	<0.81	<2.2	<0.61	<0.59	<0.39	＜1．2	＜1．42	＜0．0079	0.034	＜0．0007	＜0．0023	00．022	＜0．00004	＜0．0092	＜0．0025
	${ }^{12141406}$	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	$\stackrel{-}{-}$	－－	\cdots	－－	\cdots	\cdots	$\stackrel{-}{-}$	\cdots	－－	\cdots	－－	－－－														
	05／0807	－－－	－	－－－	－－－	\cdots	\cdots	\cdots	\cdots	－－－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	－－－	\cdots	\cdots	－－－	－－－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	－－－	\cdots	\cdots	\cdots	\cdots	\cdots
	$11 / 0207$	\cdots	68	95	2	\bigcirc	4	45	－－7	－－－9	\cdots	－		－ 3	3	\cdots	－－7	－－	\cdots	\cdots		\cdots	\cdots	\cdots	\cdots	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	（ $\begin{aligned} & \text { 02／4408 } \\ & 0506108\end{aligned}$	＜0．44	$\stackrel{-0.68}{ }$	${ }^{<0.95}$	$\stackrel{0}{0.2}$	＜0．46	$\stackrel{<0.48}{ }$	＜0．45	${ }^{<0.64}$	＜0．69	＜0．52	$\stackrel{0}{0.5}$	＜0．47	＜0．34	＜0．36	＜0．52	$\stackrel{\text {＜0．38 }}{ }$	＜0．48	＜0．35	＜1．8	${ }^{<0.38}$	0．56†	$\stackrel{1}{-1.2}$	$\stackrel{-0.37}{-.}$	$\stackrel{-0.99}{ }$	\cdots							
	09／10／08	－－－	－－－	－－	－－－	－－－	－	－－－	－－	－－－	－	－－－	－－－	－	－－－	－	－－－	－－－	－	－	－－－	－－－	－－	－－	\cdots	\cdots	－－	\cdots	\cdots				\cdots
	01／19／99				－－－	－－－	－－－	－－－	－－－	－－－				－－	－－	\cdots	－－	－－－	－－	－－7	－－3		－－	－－	－－	－－－	\cdots	－－7					
	08／06／09	＜0．39	＜0．68	<0.61	＜0．2	＜0．43	＜0．48	＜0．43	＜0．47	<1.5	＜0．42	＜0．41	<0.41	＜0．46	＜0．43	＜1．5	<0.87	＜0．39	<0.57	<1.7	＜0．33	＜0．51	＜1．1	＜1．5	＜2．13	0．0011t	0.0258	<0.0005	$0.0019 \dagger$	0.0074	＜0．00004	＜0．0009	
	－05／26／10	<0.20	<0.50	<0.50	<0.20	<0.80	＜0．20	＜0．50	＜0．50	＜1．0	＜0．50	＜0．25	＜0．20	＜0．20	＜0．25	<0.20	<0.50	＜0．20	＜0．20	＜0．25	＜0．50	<0.50	<0.20	＜0．20	＜0．50	－－－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	
	08／25／10	$\stackrel{-1}{ }$	\bigcirc	\bigcirc	\bigcirc	$\bigcirc 0.80$	\bigcirc	\bigcirc	<0.50	\bigcirc	$\bigcirc 0.50$	＜0．25	\bigcirc	\bigcirc	$\stackrel{-7}{<0.25}$	－0．20	<0.50	＜0．20	<0.70	－0．25	<0.50	$\bigcirc 0.50$	－0．20	－0．20	－0．50	\cdots							
	03／01／11		－－－		－	－	－－－	－－－	－－－	－－	－－	－－－		－－－	－－－	－－－			－－－	－			－－－	－－．	－－－	－－－	－－－	－－－	－－－				
	05／16／11	＜0．20	<0.50	<0.50	<0.20	＜0．80	＜0．20	＜0．50	＜0．50	<1.0	<0.50	＜0．25	<0.20	＜0．20	＜0．25	<0.20	＜0．50	＜0．20	<0.20	＜0．25	<0.50	＜0．50	＜0．20	＜0．20	<0.50	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－
		＜0．20	＜0．50	<0.50	＜0．20	＜0．80	＜0．20	＜0．50	＜0．50	＜1．0	＜0．50	＜0．25	＜0．20	＜0．20	＜0．25	＜0．20	＜0．50	＜0．20	＜0．20	＜0．25	＜0．50	＜0．50	＜0．20	＜0．20	＜0．50	－－	－－	－－	－－	－－			\cdots
	11／08／11	＜0．20	<0.50	<0.50	<0.20	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	<0.20	<0.20	<0.25	<0.20	<0.50	<0.20	<0.20	＜0．25	<0.50	<0.50	<0.20	<0.20	<0.50	－－	－－－	－－－	－－－	－－－			
	11／08／11 Dup	<0.20	<0.50	<0.50	＜0．20	＜0．80	＜0．20	＜0．50	＜0．50	＜1．0	＜0．50	＜0．25	＜0．20	＜0．20	＜0．25	<0.20	<0.50	＜0．20	<0.20	＜0．25	<0.50	<0.50	＜0．20	<0.20	<0.50		－－－	－	－－－		－－－	－－－	
	02120／12	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	\cdots	－－	－－	－－－
	088／27／12	－－－	\cdots	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－．	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－	－－－	－－－	－－－	－－－	－－－	\cdots	－－－
	11／26／12	<0.19	<0.12	<0.25	＜0．10	＜0．26	＜0．20	＜0．28	<0.31	<0.68	<0.17	＜0．28	＜0．074	＜0．14	<0.15	＜0．13	<0.13	＜0．14	<0.17	<0.16	<0.13	<0.11	＜0．14	＜0．18	＜0．068		\cdots	－－－			－－－		
	02／28／13				Buried	Unable	to Collect	Sample										－Un	able to	ollect Sa	ple					－－．	－－－	－－－	－－－		－－－	－－－	－－－
	$05 / 23 / 13$ $08 / 2813$	\cdots	\cdots	\cdots	\cdots	\cdots	－－－－	\cdots	－－－	\cdots	\cdots	\cdots	\cdots	－－－	－－－	－－－	－－－－	－－－	\cdots	\cdots	－－－	－－	－－	－－	\cdots	－－	\cdots	－－	－－	－－	\cdots	\cdots	\cdots
	－11／2／13	<0.19	<0.12	<0.25	<0.10	－0．26	－0．20	<0.28	<0.31	<0.68	＜0．17	<0.28	＜0．074	＜0．14	<0.15	＜0．13	<0.13	<0.14	<0.17	＜0．16	<0.13	＜0．11	<0.14	<0.18	＜0．068	－－－	－－	－－	－－－	－－－	\cdots	\cdots	
	03／25／14				Buried	Unable	to Collect	Sample										ried－Un	able to	ollect S	ple					－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－
	05／29914	－－	－－	－－	－	－－	－－	－－	－－	－－	－－	\cdots	－－	－－	－－	－－	－	－－	－－	－－－	－	－－	－－	－－	－－	－－	\cdots	－－	－－	－－	－－	－－	－－
	11／24／14	＜0．19	<0.12	<0.25	＜0．10	<0.26	<0.20	<0.28	＜0．31	<0.68	<0.17	＜0．28	＜0．074	＜0．14	＜0．15	＜0．13	<0.13	＜0．14	<0.17	＜0．16	<0.13	＜0．11	＜0．14	<0.18	＜0．068		\cdots	\cdots	－－－		－－－	－－－	\cdots
	03／30／15		－－－																							－－－	－－－						
NR 140 Enforcement Standard NR 140 Preventive Action Limit		5	70	100	0.2	5	6	5	7	5	5	5	5	－－	－	－－	700	－－	－－	100	－	800	480	480	2，000	0.01	2	0.005	0.1	0.015	0.002	0.05	0.05
		0.5	7	20	0.02	0.5	0.6	0.5	0.7	0.5	0.5	0.5	0.5	\cdots	\cdots	\cdots	140	\cdots	\cdots	10	\cdots	160	96	96	400	0.001	0.4	0.0005	0.01	0.0015	0.0002	0.01	${ }^{0.051}$
$\dagger=$ Detected below the Limit of Quantitation －－－＝Not Tested／Not Required A－01＝High concentration of non－target analyte present．																																	
Note：The following compound was detected in MW8B during the August 2009 sampling event：Benzyl Alcohol（ $1.55 \mu \mathrm{~g} / \mathrm{L})$ ． Toluene and Xylenes．The previous standards were Toluene 1，000 ES／200 PAL；Xylenes 10，000 ES／1，000 PAL．																																	

Well	Date															Semi-V 										言					[
мw8в	07/22/99	Prior to Well Construction																															
	03107/02	---	---	---		---	\cdots	--	---	--	\cdots	---	---	--	---	---	---	\cdots	\cdots	--	\cdots	---	--	--	---	---							
	06/10,02 $01 / 12104$	-0.05	\bigcirc	<1	$\underset{<0.84}{-\cdots}$	\bigcirc	$\stackrel{-7}{<1.4}$	$\stackrel{\square}{<1.2}$	$\stackrel{-1}{\square}$	$\stackrel{-1}{-1.3}$	<1.	-0.96	$\stackrel{-1}{-1.4}$	$\stackrel{-1}{-1.9}$	$\stackrel{-17}{ }$	$\stackrel{-1}{-1.4}$	$\stackrel{-1}{-1}$	$\stackrel{-1}{-1.4}$	$\stackrel{-1}{-1}$	--8.	-0.64	$\stackrel{-1}{-1.1}$	\bigcirc	--9	$\stackrel{-17}{ }$	--6.	$\stackrel{-1}{-1}$	$\stackrel{-7}{<0.66}$	\cdots	---	---	\cdots	-12
	03/0404	--	--	---	---	---	--	-	--1	---	---	---	---	-	---	---	---	---	--	---	---	---	---	---	--	--.	---	---	--1	-	-	$\stackrel{-}{+}$	
	04/14/04	---	<0.4	<1	<0.84	<0.97	-1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	< 1.9	<1.7	${ }^{1.4}$	<1.2	<1.4	<1.2	-0.84	-0.64	${ }_{<0}^{10.1}$	<0.9	<0.95	-1.7	<0.62	${ }^{1.4}$	<0.66	<1.2	${ }_{5}^{21.4}$	<1.5	<1.1	<1.2
	1110306 1214106	\cdots	\cdots	<0.85	<1.03	<1.05	<0.7	<0.69	<0.74	<0.96	<0.79	<0.82	<0.69	<0.69	\cdots	<0.58	<0.96	<0.75	<0.54	<1.16	<0.62	<0.65	<0.8	<0.95	<0.7	--	<0.92	<0.8	<0.85	<1.4	<0.92	<1.01	
	02/1307	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	\cdots	---	…	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
	05/08/07	---	--	---	--	---	--	\cdots	\cdots	---	--	---	---	--	---	---	--	---	---	---	---	---	--	--	---	---	\cdots	---	---	---	---	---	---
	02/14/08	\cdots	---	\cdots	---																												
	05/06/08	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	-.-	---	.--	---	---	.-.	---	---	--	---
	09/10/08	--	--	---	\cdots	--	--	-	--	--	--	--	--	--	\cdots	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---		---
	08066/99	\cdots	---	<0.4	<0.24	<0.23	<0.35	<1.06	<1.01	<0.35	<0.31	<0.47	<0.52	<0.6	---	<0.32	<0.28	<0.3	<0.54	<0.28	<0.54	<0.24	<0.25	<0.39	<0.26	---	<0.55	<0.36	<0.34	<0.29	<0.82	<1.55	<0.33
	05/26/10	\cdots	--	---	--	--	--	--	---	--	--	---	--	--	---	--	--	--	---	--	--	--	--	--	--	--	--	--	--	---	--	--	\cdots
	$08 / 25110$ $11 / 29 / 10$	\cdots	\cdots	\cdots	-..	---	---	---	---	---	---	---	---	---	---	---	---	--.	---	---	---	---	---	--	--.	--.	---	---	---	---	--.	--	\cdots
	03/01/11	---	---	---	---	---	---	---	---	---	---	---	--	---		-	---	-			-		---	---	--	--	---	---	---	---	---	---	---
	05/16/11	--	\cdots		--	---	--	---		--				---			---	---	---		---		\cdots		\cdots		\cdots		-	\cdots	\cdots	--	
	08/30/11	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	-..	---	---	---	$\stackrel{-}{--}$
	1108/11	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---		---		---	---	---								---
	(1108/11 Dup	\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots	--	\cdots	--	\cdots	---	--	-	\cdots	--	-	--	\cdots	\cdots	\cdots	\cdots	--	-	\cdots	---	\cdots	\cdots	\cdots	\cdots	\cdots
	05/31/12	---	--	---	---	--	---	--	---	---	---	---	--	---	---	---	--	--	---	--	---	---	--	--	---	---	---	---	---	---	\cdots	---	---
	08/27/12	---	--	--	--	--	--	--	--	--	--	\cdots	--	--	--	-	--	-		--			-		--					--		\cdots	---
	-02/28/13	---	\cdots	…	…	…	…	…	\ldots	\cdots	…	---	--	…	\cdots	---	\cdots	--			\cdots		\cdots	--	\cdots		\cdots	---	\cdots	\cdots	---	\cdots	\cdots
	05/23/13	---	---	---	---	---	---	--	---	---	---	---	--	---	--	---	--	---	---	---	---	---	---	\cdots	---	--	---	---	--	---	---	---	---
	08/28/13	--	--	---	---	---	--	---	---	---	---	---	---	--	---	--	--	--	---		---	---	--	---	---	---	---	--	---	--	---	--	---
	11/1213	\cdots	<0.27	\cdots	---	\cdots	\cdots	\cdots	\cdots	---	--	\cdots	\cdots	--	--	\cdots	\cdots																
	05/29/14	--	--	---	---	---	---	--	---	---	---	--	---	---	--	---	--	--	\cdots	--	--	--	---	--	---	\cdots	---	---	---	---	---	---	---
	08/28/14	---	--	---	--	--	\cdots	\cdots	--	--	---	--	---	--	---	--	--	--	\cdots		--	--	--	--	--	--	--		--	--	---	--	---
	03/30/15	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	…	\cdots
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	-	-	-	-	3,000	-	-	0.2	0.2	-	--		\cdots	0.2	-	-	600	--	100	-	400	400	-	-	-	-	40	-	1	-	
		0.1	--				600	--		0.02	0.02			0.6		0.02			60		20		80	80					8		0.1		50

TABLE 1
Historical Groundwater Analytical Results
QuicFrez SFR Site－Fond du Lac，Wisconsin
SCS Engineers Project \＃25211406．63

				Chlo	dVolatil	Organi	Compo	ds（EPA	，							位	兂	位	Organic		，								保	，			
Well	ate				$\begin{aligned} & \text { 은 } \\ & \text { 흥 } \\ & \text { 를 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 틈 } \\ & \text { 흘 } \\ & \text { 응 } \\ & \hline \end{aligned}$															$\begin{gathered} \stackrel{0}{\underline{\mathrm{I}}} \\ \stackrel{\mathrm{o}}{\underline{\circ}} \\ \hline \end{gathered}$			$\begin{array}{r} \ddot{0} \\ \stackrel{.}{\frac{0}{x}} \\ \hline \end{array}$	$\begin{aligned} & \text { 亳 } \\ & \text { 耪 } \end{aligned}$		$\begin{aligned} & \text { 唇 } \\ & \text { 㕔 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 튼 } \\ & \text { 틀 } \\ & \hline \end{aligned}$	\％	$\begin{array}{r} \frac{2}{2} \\ \frac{\stackrel{\rightharpoonup}{0}}{2} \\ \hline \end{array}$		$\stackrel{\text { \％}}{\bar{\circ}}$
mW9	07／22／99	or to Well Construction											Prior to Well Construction													Prior to Well Construction							
	0307702	1	1.2	<0.11	1	＜0．2	<0.1	＜0．12	＜0．11	＜0．24	<0.15	<0.19	1.4	$0.2 \dagger$	0.76	0.64	<0.08	0.81	＜0．12	2.6	<0.15	${ }^{0.4}$	<0.11	<0.08	<0.34	<2.6	0.28	＜0．08	3.1	＜1	2.3	<1.0	1.1
	06／10／02	1.2	2.1	＜0．11	1.3	＜0．2	<0.1	＜0．12	<0.11	＜0．24	<0.15	＜0．19	$\frac{1.5}{1.5}$	$0.15 \dagger$	0.7	0.51	＜0．08	0.55	＜0．12	2.5	<0.15	$0.28 \dagger$	＜0．11	＜0．08	<0.34	＜1．3	0.119	＜0．08	7.4	$0.77 \dagger$	＜0．11	＜1．0	1.3
	01／12／24 $03 / 0404$	1.2	3.9	<0.35	13	<0.22	＜0．69	＜0．2	＜0．44	＜2．4	＜0．45	＜0．41		<0.31	${ }^{0.59+}$	${ }^{0.31+}$	＜0．16	0.74	＜0．18	0．72 \dagger	＜0．19	$0.2 \dagger$	＜0．14	＜0．12	$0.27 \dagger$	＜0．005	<0.4	＜0．0005	＜0．01	＜0．0015	<0.0002	＜0．01	<0.01
	04／14／04	$0.68 \pm$	1.8	<0.22	3.5	＜0．16	<0.25	<0.29	<0.39	<0.7	<0.7	<0.25	0．75t	<0.31	$0.31+$	<0.39	<0.56	$0.32 \dagger$	<0.3	<0.6	<0.32	<0.57	<0.51	＜0．66	＜1．74	＜0．005	＜0．4	＜0．0005	<0.01	＜0．0015	＜0．0002	<0.01	<0.01
	11／03／06	3．3t	$\underline{34}$	<0.95	10.2	＜0．52	＜0．61	＜0．69	<0.3	＜0．69	＜0．52	<0.5	0	＜0．6	＜0．76	＜1．1	＜0．38	＜0．99	＜0．81	＜2．2	<0.61	<0.59	<0.39	＜1．2	＜1．42	＜0．0079	0.11	＜0．0007	＜0．0023	0.0064	0.00004	0.041	＜0．0025
	12／14／06		－	－－－	－－－	－－－		－－－		－－－	－－－	－	－－－	－－	－－－		－	－	－－－	－	－	－	－	－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－
	02／1307 0510807	－－－	－－－	\cdots	－－－	\cdots	－－－	－－－	－－－	－－－	\cdots	\cdots	\cdots	－－－	－－－	\cdots	－－－	－－－	－－－	\cdots	\cdots	\cdots	－－－	\cdots	－－－	\cdots	－－－	\cdots	－－－	\cdots	－－	－－－	－－－
	11102107	－－－	－－－	－－－	－－	－－	－－－		－－－	－－－	－－－			－－－		－－．											－－－	－－－	．－－	．－－	－－－	－－－	－－－
	02／1408	5	45	$1.18 \dagger$	61	<0.46	<0.48	＜0．45	<0.64	<0.69	<0.52	<0.5	2.08	<0.34	<0.36	<0.52	<0.38	<0.48	<0.35	<1.8	<0.38	$1.15+$	＜1．2	<0.37	<0.99		－－－		－－－		－－－	－－－	－－－
	05106／08	<0.47	$\frac{10.9}{19}$	＜0．61	9.1	<0.3	<0.47	＜0．41	＜0．5	＜0．99	＜0．5	<0.39	$\underline{0.53 t}$	＜0．32	<0.73	<0.55	＜0．35	＜0．6	<0.77	＜1．8	<0.54	1.51	<0.51	＜0．23	＜1．67	\cdots	－－－		\cdots		－－	－－	－－－
	－09／1008	＜0．47	$\underline{19.2}$	＜0．61	16.3	$\stackrel{<0.3}{-0}$	＜0．47	＜0．41	$\stackrel{+0.5}{ }$	$\stackrel{+0.99}{ }$	$\stackrel{0}{<0.5}$	＜0．39	$\underline{0.94}$	＜0．32	＜0．73	＜0．55	$\stackrel{\text {＜0．35 }}{ }$	＜0．6	＜0．77	$\stackrel{1.9}{+-1 .}$	＜0．54	$\stackrel{1.23}{-.-1}$	<0.51	$\stackrel{\text {＜0．23 }}{ }$	＜1．68	－－－	－－－	－－－	－－－	\cdots	\cdots	－－－	\cdots
	08106／09	<0.39	8.2	$0.66 \dagger$	9.9	<0.43	<0.48	<0.43	<0.47	<1.5	<0.42	<0.41	0．49＋	<0.46	＜0．43	＜1．5	<0.87	<0.39	<0.57	<1.7	<0.33	<0.51	<1.1	＜1．5	＜2．13	0.0006	0.094	<0.0005	0.0012	． 000	． 00004	． 000	
	05／26／10	0.36 Ja	0.88 Ja	＜0．50	0.8 Ja	<0.80	＜0．20	＜0．50	＜0．50	＜1．0	<0.50	<0.25	＜0．20	<0.20	＜0．25	<0.20	＜0．50	＜0．20	＜0．20	1.6 Ja，B	<0.50	＜0．50	0.25 Ja	＜0．20	<0.50	－－－							
	5／26／10 Dup	0.37 Ja	0.86 Ja	<0.50	0.87 Ja	<0.80	＜0．20	＜0．50	＜0．50	＜1．0	<0.50	＜0．25	＜0．20	＜0．20	＜0．25	＜0．20	＜0．50	＜0．20	<0.20	$1.5 \mathrm{Ja}, \mathrm{B}$	＜0．50	＜0．50	＜0．20	＜0．20	<0.50		－	－－－	－－－	－－－	－－－	－－－	－－－
	08／25／10	31	$\frac{14}{17}$	＜0．50	0.57 Ja	＜0．80	＜0．20	<0.50	<0.50	＜1．0	<0.50	＜0．25	＜0．20	<0.20	＜0．25	<0.20	＜0．50	＜0．20	＜0．20	＜0．25	<0.50	<0.50	<0.20	＜0．20	<0.50				－－	－－	－－		
	11／29／10 $0301 / 11$	${ }^{42}$	$\frac{17}{53}$	＜0．50	${ }_{0.42 \mathrm{Jb}}^{2.4}$	<0.80 <0.80	＜0．20	${ }_{<0}^{<0.50}<$	＜0．50	<1.0 <1.0	＜0．50	＜0．25	－ $\begin{gathered}<0.20 \\ <0.20\end{gathered}$	<0.20 <0.20	＜0．25	<0.20 <0.20	＜0．50	＜0．20	<0.20 <0.20	＜0．25	＜0．50	＜0．50	＜0．20	<0.20 <0.20	＜0．50	\cdots							
	$03 / 01 / 11$ $05 / 16 / 11$	$\begin{array}{r}28 \\ 4.3 \\ \hline\end{array}$	$\frac{53}{3.2}$	＜0．50	${ }_{\substack{0.42 ~ J b ~}}^{0.20}$	<0.80 <0.80 0	${ }_{<0}^{<0.20}$	${ }_{<0}^{<0.50}$	<0.50 <0.50	<1.0 <1.0	＜0．50	＜0．25	－ $\begin{aligned} & <0.20 \\ & <0.20\end{aligned}$	<0.20 <0.20	＜0．25	＜0．20	＜0．50	＜0．20	＜0．20	＜0．25	＜0．50	${ }_{<0}^{<0.50}$	＜0．20	＜0．20	＜0．50	－－－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	
	08／30／11	3.5	10	<2.0	2.6	＜2．0	＜2．0	＜2．0	＜2．0	＜2．0	＜2．0	＜2．0	＜2．0	＜2．0	＜2．0	＜2．0	＜2．0	＜2．0	＜2．0	＜5．0	＜2．0	＜2．0	＜2．0	＜2．0	＜2．0	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－
	11／08／11	3.6	6.9	＜0．50	＜0．20	＜0．80	<0.20	＜0．50	<0.50	<1.0	<0.50	＜0．25	＜0．20	＜0．20	＜0．25	＜0．20	＜0．50	＜0．20	＜0．20	＜0．25	<0.50	<0.50	<0.20	＜0．20	＜0．50						－－	－－－	
	$02 / 20 / 12$ $05 / 31 / 12$	9.6 <0.19	$\stackrel{29}{<0.12}$	＜0．50	＜0．20	＜0．80	－0．20	＜0．50	＜0．50	－	＜0．50	－0．25	＜0．20	＜0．20	＜0．25	＜0．20	＜0．50	－	${ }_{\text {coil }}^{<0.20}$	＜0．25	＜0．50	＜0．50	＜0．20	＜0．50	${ }_{c}^{<0.50}<$	－－	\cdots	\cdots	－－－	\cdots	\cdots	\cdots	\cdots
	05／31／12 D	29		<0.25	<0.10	＜0．26	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	＜0．074	＜0．14	＜0．15	<0.13	＜0．13	＜0．14	＜0．17	<0.16	<0.13	<0.11	<0.14	＜0．18	＜0．068	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	08／27／12	20	85	0.77 Jc	＜0．10	＜0．26	＜0．20	＜0．28＊	＜0．31	＜0．68	<0.17	<0.28	＜0．074	＜0．14	＜0．15	<0.13	＜0．13	＜0．14	＜0．17	＜0．16	＜0．13	＜0．11	＜0．14	＜0．18	＜0．068	－－－	－－－		－－－		－－	－－－	
	11／26／12	4.4	$\underline{7.3}$	<0.25	＜0．10	＜0．26	＜0．20	＜0．28	<0.31	＜0．68	<0.17	＜0．28	＜0．074	<0.14	＜0．15	<0.13	＜0．13	＜0．14	<0.17	＜0．16	<0.13	＜0．11	＜0．14	＜0．18	＜0．068		－－				－－	－－	
	00／288／3	41 42	31	＜0．25	$\frac{0.94}{0.98}$	－0．26	＜0．20	－ 0.288	＜0．31	（ ${ }_{\text {＜}}^{0.688}$	－0．17	－0．28	－	＜0．14	＜0．15	＜0．13	＜0．13	－	＜0．17	＜0．16	${ }_{<0}^{<0.13}$	<0.11 <0.11 <0	－0．14	＜0．18	${ }_{\text {＜}}^{<0.068}$	\cdots							
	－02128／13 uw	${ }^{42}$	$\frac{32}{15}$	＜0．25	$\frac{0.98}{20.10}$	－0．26	${ }_{<0}^{<0.20}$	${ }_{\substack{<0.28 \\<0.28}}^{\text {20，}}$	${ }_{<0.31}^{<0.31}$	${ }_{<0.68}^{20.68}$	${ }_{\text {＜}}^{<0.17}$	${ }_{<0.28}^{<0.28}$	－	＜0．14	＜0．15	${ }_{<0}^{<0.13}$	${ }_{<1}^{<0.13}$	${ }_{<1}^{<0.14}$	${ }_{<0.17}^{<0.17}$	${ }_{<0.16}^{00.16}$	${ }_{<0.13}^{20.13}$	＜0．11	＜0．14	＜0．18	${ }_{8}^{<0.068}$	\cdots	\cdots	\cdots	\cdots	\cdots			
	08／28／13	20	35	<0.25	1.8	＜0．26	<0.20	＜0．28	<0.31	＜0．68	<0.17	<0.28	＜0．074	＜0．14	＜0．15	<0.13	＜0．13	＜0．14	＜0．17	<0.16	＜0．13	<0.11	＜0．14	＜0．18	＜0．068		－－		－		－－	－－	
	11／12／13	11	14	<0.25	<0.10	＜0．26	<0.20	＜0．28	<0.31	＜0．68	＜0．17	<0.28	＜0．074	<0.14	＜0．15	<0.13	<0.13	＜0．14	＜0．17	＜0．16	＜0．13	<0.11	<0.14	＜0．18	＜0．068	－	\cdots		－－	－	\cdots	\cdots	
	03／25／14					ple Destro	oyed in	Sipment										Sample D	estroyed	in Shipme						－	\cdots		－－	\cdots	\cdots	\cdots	\cdots
		${ }_{26}^{26}$	$\frac{13}{22}$	＜0．25	＜0．10		${ }_{<0.20}^{<0.20}$	＜0．28	${ }_{<0}^{<0.31}$	${ }_{<0.68}^{20.68}$	${ }_{<0.17}^{20.17}$	${ }_{<0.28}^{<0.28}$	－	<0.14	＜0．15	${ }_{<0.13}^{<0.13}$	＜0．13	${ }_{<0}^{<0.14}$	${ }_{<0.17}^{<0.17}$	＜0．16	＜0．13	＜0．11	${ }_{<0}^{<0.14}$	＜0．18	${ }_{8}^{<0.068} \times 1$		\cdots		－－			\cdots	
	08／28／14	14	18	＜0．25	0.43 Jc	＜0．26	＜0．20	＜0．28	＜0．31	＜0．68	<0.17	＜0．28	＜0．074	＜0．14	＜0．15	＜0．13	＜0．13	＜0．14	＜0．17	＜0．16	<0.13	<0.11	＜0．14	＜0．18	＜0．068						－	－－	
	11／24／14	${ }^{41}$	$\stackrel{26}{ }$	＜0．25	0.57	＜0．26	＜0．20	＜0．28	＜0．31	＜0．68	<0.17	＜0．28	＜0．074	＜0．14	＜0．15	＜0．13	＜0．13	＜0．14	＜0．17	＜0．16	＜0．13	＜0．11	＜0．14	＜0．18	8.32 Jc	－－	－－	\cdots	－－	－－	－－	－－	\cdots
	03／30／15	${ }^{22}$	$\underline{13}$	＜0．25	＜0．10	＜0．26	＜0．20	＜0．28	＜0．31	＜0．68	<0.17	＜0．28	＜0．074	＜0．14	＜0．15	＜0．13	＜0．13	＜0．14	＜0．17	＜0．16	＜0．13	<0.11	＜0．14	＜0．18	＜0．068	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－
N ${ }^{\text {NR } 140 \text { Enforcement Standard }}$		5	70	100	0.2	5	6	5	7	5	5	5	5	－	－－	－－	700	－	\cdots	100	－	800	480	480	2，000	0.01	2	0.005	0.1	0.015	0.002	0.05	0.05
		0.5	7	20	0.02	0.5	0.6	0.5	0.7	0.5	0.5	0.5	0.5				140			10		160	96	96	400	0.001	0.4	0.0005	0.01	0.0015	0.0002	0.01	0.01

$t=$ Detected below the Limit of Quantitation
Note：The following compound was detected in MW9 during the April 14, ，2004 sampling event：Chlorobenzilate（ $0.45 \mathrm{mg} / \mathrm{L}$ ．
Note：The following compound was detected in MW9 during the February 14,2008 sampling event：Chloroethane $(1.03 \mathrm{H}$ ugl $)$
$t=$ The LCS or LCSD exceeds the control limits．

$=$ Analyte was detected in the associated Method Blank．
and Limit of Quantitation（LOQ）are less cerction than results at or above the LOO．
$\mathrm{Jb}=\mathrm{Estimated}$ value．Analyte detected at a l level less than the Reporting（ $R \mathrm{~L}$ ）and greater than
Le equal to the Method Deetection Limit（MDL）．The use of this data should be aware that this data is of limited reliability

\begin{tabular}{|c|}
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& Semi-Va \& latiles \& PA 82 \& --mg \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Well \& Date \& \& \& \& \& \& \& \& \& \& \& \& \& \& $$
\begin{aligned}
& \circ \stackrel{0}{0} \\
& \stackrel{\tilde{0}}{0} \\
& \stackrel{0}{0}
\end{aligned}
$$ \& \& \& \& \& \& \& \& \& \& \& 皆 \& \& \& \& \& \& \& -

\hline \multirow[t]{30}{*}{mw9} \& 071/22999 \& \multicolumn{32}{|c|}{Prior to Well Construction}

\hline \& 03107/02 \& -- \& -- \& -- \& 3.4 \& <0.16 \& <0.024 \& -- \& <0.03 \& <0.022 \& <0.036 \& <0.087 \& 20.067 \& --- \& - \& <0.022 \& --- \& --- \& --- \& -- \& -- \& -- \& <0.053 \& 0.025 \& <0.03 \& -- \& 2 \& <0.096 \& <0.067 \& -- \& -- \& <0.036 \&

\hline \& 06/10/02 \& \& -- \& - \& 2.5 \& <0.16 \& <0.024 \& --- \& <0.03 \& <0.022 \& <0.036 \& <0.087 \& <0.067 \& \& \& \& -- \& \& \& \& --- \& -- \& <0.053 \& <0.025 \& <0.03 \& --- \& 1.9 \& <0.096 \& <0.067 \& --- \& -- \& <0.036 \& <0.13

\hline \& $01 / 12104$
030404
0.0 \& <0.05 \& 3.4 \& ${ }^{1.7 \dagger}$ \& $2.4+$ \& <0.97 \& $\stackrel{1.4}{ }$ \& 3.2† \& <1 \& $\stackrel{1}{1.3}$ \& $\stackrel{1}{1.3}$ \& <0.96 \& $\stackrel{1.4}{--1}$ \& $\stackrel{44}{+}$ \& $\stackrel{1}{1.7}$ \& $\stackrel{1}{<1.4}$ \& $\stackrel{1.2}{ }$ \& $$
<1.4
$$ \& <1.2 \& <0.84 \& <0.64 \& <1.1 \& $\stackrel{0.9}{ }$ \& $\stackrel{2.3 \dagger}{ }{ }^{--1}$ \& $\stackrel{11.7}{ }$ \& <0.62 \& <1.4 \& <0.66 \& $\stackrel{<1.2}{ }$ \& $\stackrel{1.4}{+-1}$ \& $\stackrel{1.5}{\square}$ \& <1.1 \& $\stackrel{<1.2}{--2}$

\hline \& 04/1404 \& --- \& <0.4 \& <1 \& $1.6 \dagger$ \& <0.97 \& <1.4 \& <1.2 \& <1 \& <1.3 \& <1.3 \& <0.96 \& <1.4 \& 17 \& <1.7 \& <1.4 \& <1.2 \& <1.4 \& <1.2 \& <0.84 \& $2.5 \dagger$ \& <1.1 \& <0.9 \& <0.95 \& <1.7 \& <0.62 \& <1.4 \& <0.66 \& <1.2 \& <1.4 \& <1.5 \& <1.1 \& <1.2

\hline \& 11/03/06 \& --- \& -- \& <0.85 \& <1.03 \& <1.05 \& <0.7 \& 7.9 \& <0.74 \& <0.96 \& <0.79 \& <0.82 \& <0.69 \& 14 \& --- \& <0.58 \& <0.96 \& <0.75 \& <0.54 \& <1.16 \& <0.62 \& <0.65 \& <0.8 \& <0.95 \& <0.7 \& --- \& <0.92 \& <0.8 \& <0.85 \& <1.4 \& <0.92 \& <1.01 \& <0.56

\hline \& $12 / 1406$
$02 / 13107$ \& \cdots \& -- \& \cdots \& -- \& \cdots \& --- \& \cdots \& --- \& -- \& -- \& --- \& -- \& -- \& \cdots \& -- \& -- \& -- \& -- \& \cdots

\hline \& 05/08/07 \& -- \& -- \& --- \& --- \& --- \& --- \& --- \& \cdots \& --- \& --- \& --- \& --- \& -- \& --- \& \cdots \& -- \& --- \& -- \& --- \& --- \& \cdots \& \cdots \& --- \& --- \& --- \& \cdots \& \cdots \& \cdots \& \cdots \& \cdots \& \cdots \& ---

\hline \& $11 / 0207$
021407

0 \& \cdots \& \cdots \& -- \& --- \& \cdots \& -- \& -- \& \cdots \& -- \& \cdots \& \cdots \& \cdots \& --- \& \cdots \& \cdots \& \cdots \& $\stackrel{-}{-}$ \& -- \& \cdots \& -- \& --- \& \cdots \& -- \& \cdots \& ---

\hline \& 05/06/08 \& --. \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& -- \& --- \& -.. \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& ---

\hline \& 0\%/00 \& --- \& \& ---

\hline \& 01/19/99 \& \cdots \& -- \& \cdots \& - \& \cdots \& -- \& \cdots \& \cdots \& --- \& \cdots \& \cdots \& \cdots \& \cdots \& --. \& -- \& \cdots \& \cdots \& \cdots \& \& - \& \& \cdots

\hline \& 0806699 \& $\stackrel{-}{--}$ \& \cdots \& $\stackrel{-0.4}{--}$ \& <0.24 \& $\stackrel{\text { <-23 }}{ }$ \& $\stackrel{-0.35}{--}$ \& <1.06 \& <1.01 \& <0.35 \& $\stackrel{-3}{-}$ \& $\stackrel{\text { <0.47 }}{--}$ \& $\stackrel{\text { <- } 52}{--}$ \& $\stackrel{-0}{-6}$ \& \cdots \& <0.32 \& <0.28 \& $\stackrel{-0.3}{--}$ \& $\stackrel{\text { < }}{ }$ \& <0.28 \& <0.54 \& <0.24 \& <0.25 \& <0.39 \& $\stackrel{-0.26}{--}$ \& \cdots \& \& \& $\stackrel{-0.34}{--}$ \& <0.29 \& $\stackrel{\text { < }}{ }$ \& \&

\hline \& 05/26/10 Dup \& \cdots \& --- \& --- \& --- \& \cdots \& --- \& --- \& --- \& --- \& --- \& --- \& -- \& --- \& - \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& -- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& \& ---

\hline \& 08125/10 \& \cdots \& -- \& \cdots \& \& \cdots

\hline \& 03/01/11 \& --- \& -- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& -- \& --- \& -- \& --- \& --- \& --- \& --- \& --- \& --- \& \cdots \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& \& ---

\hline \& 05/16/11 \& \cdots \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& -- \& --- \& --- \& -- \& -- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& \& --- \& \& \& --- \& \& ---

\hline \& -11/08/11 \& \cdots \& --- \& \cdots \& - \& \cdots \& \cdots \& --- \& \cdots \& \cdots \& \cdots \& --- \& \cdots \& --. \& \cdots \& \& \& \& \cdots

\hline \& 02/20/12 \& --- \& -- \& -- \& --- \& --- \& --- \& -- \& --- \& --- \& --- \& --- \& -- \& -- \& -- \& --- \& -- \& --- \& -- \& --- \& --- \& \cdots \& --- \& --- \& --- \& --- \& --- \& --- \& -- \& --- \& --- \& \& ---

\hline \& 05/31/12 \& -- \& \cdots \& \cdots \& --- \& --- \& \cdots \& -- \& \cdots \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& \cdots \& -- \& -- \& --- \& -- \& -- \& -- \& \cdots \& \& \cdots \& \& \cdots \& \& \& ---

\hline \& 08/27/12 \& .-. \& \cdots \& … \& … \& --- \& … \& … \& --. \& … \& … \& … \& … \& \cdots \& … \& … \& … \& \cdots \& --. \& \ldots \& … \& … \& … \& … \& … \& … \& … \& … \& \cdots \& \cdots \& \cdots \& \& \cdots

\hline \& 11/26/12 \& --- \& --- \& -- \& --- \& \& ---

\hline \& 02728/13 \& --- \& \cdots \& -- \& --- \& \cdots \& \cdots \& --- \& -- \& --- \& -- \& -- \& \&

\hline \& 05/23/13 \& --- \& .-- \& \cdots

\hline \& 08/28/13 \& --- \& --- \& -- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& <0.27 \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& \& ---

\hline \& (1) | $11 / 1 / 2 / 3$ |
| :--- |
| $03 / 25 / 14$ | \& \cdots \& <0.27 \& \cdots \& \& \cdots

\hline \& 3/25/14 upp \& --- \& --- \& --- \& --- \& --. \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& -.- \& --- \& --- \& <0.27 \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --- \& --. \& --- \& .-.

\hline \& 05/29/44 \& \cdots \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& - \& -- \& <0.27 \& \& -- \& \& \& \& -- \& \& \& \& \& \& \& \& ---

\hline \& 11/24/14 \& --- \& -- \& --- \& -- \& --- \& --- \& -- \& --- \& --- \& --- \& --- \& --- \& --- \& -- \& --- \& -- \& --- \& <0.27 \& -- \& -- \& -- \& -- \& --- \& --- \& --- \& --- \& -- \& --- \& --- \& --- \& --- \& \cdots

\hline \& 03/30/15 \& -- \& --- \& --- \& --- \& --- \& \& -- \& --- \& -- \& \cdots \& -- \& -- \& -- \& --- \& --- \& -- \& -- \& <0.27 \& --- \& --- \& -- \& -- \& --- \& --- \& --- \& --- \& --- \& \& --- \& --- \& --- \& ---

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{NR 140 Enforcement Standard NR 140 Preventive Action Limit}} \& 1 \& -- \& -- \& -- \& -- \& 3,000 \& -- \& -- \& 0.2 \& 0.2 \& - \& - \& 6 \& -- \& 0.2 \& -- \& - \& 600 \& - \& 100 \& - \& 400 \& 400 \& - \& - \& - \& -- \& 40 \& -- \& 1 \& - \& 250

\hline \& \& 0.1 \& \& \& \& \& 600 \& \& \& 0.02 \& 0.02 \& \& \& 0.6 \& \& 0.02 \& \& \& 60 \& \& 20 \& \& \& \& \& \& \& \& 8 \& \& 0.1 \& \& 50

\hline
\end{tabular}

$t=$ Detected below the Limit of Quantitation
$=$ Detected below wne Limir od
$-=$ Not Tested $/$ Not Required

$t=$ Detected below the Limit of Quantitation
Note: The following compound was detected in MW10B during the August 2009 sampling event: Benzyl Alcohol ($2.5 \mathrm{mg} / \mathrm{L}$).
-- =-Not Tested / Not Required
he control limits.
Note: As of the December 2010 ch. NR 140 Wisconsin Administrative Code, eff. 1-1-11, the enforcement standards (ESS) and preventive action limits (PALs) have changed
$=$ The LCS or LCSD exceeds the control limits.
$B=$ Analyte was detected in the associated Method Blank.
$\mathrm{Ja}=$ Results reported between the Method Detection n imitit (MDL)
and Limit of Quantitation (LOQ) are less certain than results at
han results at or above the LOQ.
$\mathrm{Jb}=$ Estimated value. Analyte detected at a a level less than the Reporting (RL) and greater than
equal to the Method Detection Limit (MDL). The use of this data should be aware that this data is of limited reliability

Well	Date														$\begin{aligned} & \frac{0}{0} \\ & \stackrel{\pi}{0} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	Semi 										㕊							$\stackrel{\text { \% }}{\substack{\text { ¢ }}}$
mw10B	07/22/99	Prior to Well Construction																															
	1212/201																																
	${ }^{0310702}$	---		\cdots	-	\cdots																											
	001/12104	---	<0.4	<1	<0.84	<0.97	<1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	<1.9	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	64	<1.1	<0.9	95	<1.7	62	<1.4	<0.66	<1.2	<1.4	<1.5	<1.1	<1.2
	03/04/04	---	---	---	---	---	---	---	---	---	---	---	\cdots	--	---		---		---														
	04/13/04 1110306	\cdots	<0.4	<1	<0.84	- <1.97	<1.4	-	${ }_{<01}^{<074}$	- <1.3	-	-0.96	- <1.4	$\frac{2.75}{174}$	<1.7	- ${ }^{<1.4}$	11.2 <0.96	$\begin{aligned} & <1.4 \\ & =0.45 \end{aligned}$	-	-0.84	${ }_{0}^{0.9+}$	<1.1 <0.65	${ }_{<0}^{00.9}$	<0.95	[1.7	<0.62	- $\begin{array}{r}1.4 \\ <0.92\end{array}$	${ }_{\substack{0.66 \\<0.8}}^{\text {coid }}$	< <1.2	(1.4	-1.5	-1.1	- <1.2
	11214/4066	\cdots	\cdots		<1.03	<1.05					--.				\cdots								<0.8		<0.7	\cdots	<0.92	<0.8	<0.85	<1.4			
	02/13/07	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	-.-	---	.-.	---	---	---	---	---	\cdots	---	---	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
	05/08/07	--	--	---	---	---	--	--	---	---	---	--	---	---	---	---	---	---	---	---	--	---	--	---	---	---	---	---			--		---
	${ }^{11 / 020707}$	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	\cdots	--	--	--	--	\cdots	--	\cdots	--	--	---	--	--	--	\cdots
	021/4/08 050608	\cdots	$\stackrel{-}{-}$	\cdots	$\stackrel{-}{--}$	\cdots	\cdots	\cdots	\cdots																								
	09/10/08	--	--	--	--	--	---	--	---	--	-	--	\cdots	--	--	--	--	--	--	---	--	---	--	\cdots	---	--	---	---	--	--	--	---	---
	08/05/09	\cdots	\cdots	<0.4	<0.24	<0.23	<0.35	<1.06	<1.01	-0.35	<0.31	<0.47	<0.52	<0.6	---	<0.32	<0.28	<0.3	<0.54	$1.3 \dagger$	<0.54	<0.24	<0.25	<0.39	<0.26	---	<0.55	<0.36	<0.34	<0.29	<0.82	-1.55	<0.33
	05/27/10	--	--	--	---	---	--	--	--	--	--	--	--	---	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	\cdots
	08/2/510 $11 / 29 / 10$	\cdots	---	\cdots	\cdots	\cdots	\cdots	\cdots	-..	--.	---	\cdots	---	-.-	\cdots	---	\cdots	\cdots	\cdots	\cdots	-.	---											
	03/01/11	---	--	---	---	---	---	---	---	---	---	---		--		---	---	--			--		--	---				--	---	---	---	---	---
	05/16/11	--	--	\cdots	---	--	\cdots	--	\cdots	--	\cdots	--	--	--	--	\cdots	---	---	-	--	\cdots	---	\cdots	---	--	-	\cdots	-	---	-	\cdots	\cdots	
	08/30/11 $11 / 09 / 11$	\cdots	--	\cdots	\cdots	\cdots	\cdots	--	--	\cdots	--	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots													
	02/20/12	---	---	---	---	--.	---	---	--.	---	-.-	---	---	---	--.	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	\cdots
	05/31/12	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	${ }^{08127 / 12}$	\cdots	--	--	--	---	--	--	--	--	\cdots	\cdots	\cdots	--	\cdots	-		-															-
		\cdots	---	--	-	\cdots	\cdots	\cdots	\cdots	-	\cdots		\cdots	\cdots	\cdots	\cdots																	
	05/23/13	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	08/28/13	---	--	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
	11/21/13	\cdots	--	---	---	--	--	--	--	--	--	--	-	---	---	---	---	--	<0.27		-		-		--		--				\cdots	--	---
	05/29/14	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	\ldots	\cdots
	08/28/14	---	--	---	---	---	---	---	---	---	-	---	---	---	---	---	---	---	---						---				---	--	---	---	---
	11/25/14	--	\cdots	---	\cdots	---	--	--	--	--	--	--	---	--	--	--	--	--	<0.27	--		---			--						---		--
	03/30/15	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	<0.27	---	---	---	---	---	---	---	---	---	---	---	---	---	.--
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	--	-	--	--	3,000	--	-	0.2	0.2	-	--	6	--	0.2	\cdots	--	600	-	100	\cdots	400	400	--	--	--	-	40	-	1	\cdots	250
		0.1	\cdots	\cdots	\cdots	\cdots	600	\cdots	--	0.02	0.02	\cdots		0.6		0.02			60		20		80	80					8		0.1		50

$=$ Detected below the Limit of Quantitation
$=$ Not Tested / Not Required

				Chlorin	ed Volat	Organ	Compo	ds（EPA	8260）－－							etroleur	－related	Volatile	Organic	俍poun	（EPA 8	60）－Mg							RCRA Me	etals－mg			
Well	Date				$\begin{aligned} & \text { o흔 } \\ & \text { bi } \\ & \text { 를 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 틍 } \\ & \text { 으를 } \\ & \hline \end{aligned}$																		$\begin{array}{r} \stackrel{0}{0} \\ \frac{\stackrel{\rightharpoonup}{0}}{\stackrel{\rightharpoonup}{x}} \\ \hline \end{array}$	$\begin{array}{r} \text { 亮 } \\ \text { 首 } \\ \hline \end{array}$		$\begin{array}{r} \text { 틀 } \\ \text { 틈 } \\ \hline 0 . \\ \hline \end{array}$	$\begin{aligned} & \text { 틀 } \\ & \text { 흘 } \\ & \text {. } \end{aligned}$	\％			$\stackrel{\stackrel{y}{\overline{0}}}{\bar{\omega}}$
MW11A	07／22／99 12／12／01 03／07／02 06／10／02	Prior to Well Construction											Prior to Well Construction													Prior to Well Construction							
	0304104	${ }^{0.31}$	<0.25	${ }^{0} 0.35$	<0.11	<0.22	<0.69	＜0．2	<0.44	${ }^{2} 2.4$	＜0．45	<0.41	<0.17	<0.31	＜0．43	＜0．22	<0.16	<0.11	<0.18	<0.26	<0.19	<0.15	<0.14	<0.12	<0.46			－－－	－－	－－－		－－	
	04／13／304	＜0．27	<0.29	＜0．22	${ }_{\text {co．21 }}^{0.21}$	＜0．16	＜0．25	＜0．29	＜0．39	${ }^{20.7}$	＜0．7	＜0．25	<0.29	＜0．31	＜0．21	＜0．39	${ }^{00.56}$	＜0．19	${ }^{20.3}$	${ }^{00.6}$	＜0．32	<0.57	＜0．51	＜0．66	＜1．74	＜0．005	${ }^{00.4}$	＜0．0005	＜0．01	＜0．0015	＜0．0002	<0.01	＜0．01
	$11 / 1 / 2066$ 121406	$\stackrel{\text {＜}}{\sim}$	$\stackrel{-68}{ }$	＜0．95	$\stackrel{0}{0.18+}$	$\stackrel{\text {＜－}}{ }$	＜0．61	＜0．72	$\stackrel{-0.3}{ }$	＜0．69	＜0．52	$\stackrel{-0.5}{--}$	$\stackrel{\text {＜0．47 }}{ }$	$\stackrel{\text {＜0．6 }}{ }$	${ }^{<0.76}$	$\stackrel{1}{+1 .}$	${ }^{<0.38}$	＜0．99	＜0．81	$\stackrel{2}{-2}$		＜0．69	$\stackrel{-}{-39}$										
	0211307	－－－	－－－		－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	－－－	\cdots		
	$05 / 08107$ $11 / 0207$		\cdots	－－－		\cdots	－－－	\cdots	－－－	－－－	\cdots	\cdots	－－	\cdots	－－	－－－																	
	0214408	＜0．44	<0.68	<0.95	$0.24 \dagger$	＜0．46	<0.48	＜0．45	<0.64	<0.69	＜0．52	<0.5	<0.47	<0.34	＜0．36	＜0．52	＜0．38	<0.48	<0.35	<1.8	<0.38	<0.46	<1.2	<0.37	<0.99	\cdots	\cdots	\cdots	\cdots	\cdots	．－．	\cdots	\cdots
	05／06／08 $09 / 10108$	－－－	\cdots		\cdots	\cdots																											
	01／19199	－－－	\cdots	\cdots	\cdots	\cdots		\cdots		\cdots	\cdots	\cdots	－－－		\cdots		\cdots	\cdots	\cdots	－－	\cdots	\cdots	\cdots	\cdots	－－	\cdots							
	08／05／09	<0.39	＜0．68	<0.61	＜0．2	<0.43	＜0．48	＜0．43	<0.47	＜1．5	＜0．42	＜0．41	＜0．41	＜0．46	＜0．43	＜1．5	<0.87	＜0．39	＜0．57	<1.7	＜0．33	<0.51	＜1．1	＜1．5	＜2．13	0.0032	0.0124	＜0．000	＜0．012	＜0．0007	＜0．0002		
	05／27／10	＜0．20	＜0．50	＜0．50	－0．20	＜0．80	＜0．20	＜0．50	＜0．50	<1.0 <1.0	＜0．50	＜0．25	－0．20	＜0．20	＜0．25	＜0．20	＜0．50	－0．20	＜0．20	－	＜0．50	＜0．50	－<0.20	＜0．20	＜0．50								
	$\left.\right\|_{\text {05／27／10 up }} ^{08 / 25 / 10}$	$\stackrel{-20}{-}$	$\stackrel{0}{<-50}$	$\stackrel{0}{<0.50}$	$\stackrel{<0.20}{-}$	$\stackrel{0.80}{-}$	$\stackrel{0.20}{--}$	$\stackrel{0}{<0}$	$\stackrel{0}{<0.50}$	$\stackrel{1.0}{--}$	$\stackrel{\text {＜0．50 }}{-}$	$\stackrel{-25}{--}$	$\stackrel{-20}{ }$	$\stackrel{<0}{-20}$	$\stackrel{<0}{<0}$	$\stackrel{<}{<0.20}$	$\stackrel{<0.50}{ }$	$\stackrel{-20}{-}$	$\stackrel{-20}{--1}$	$\stackrel{-0.25}{-}$	$\stackrel{0}{<0}$	$\stackrel{0}{<-50}$	<0.20	$\stackrel{0}{<0}$	$\stackrel{-0.50}{--}$		\cdots	$\stackrel{-}{--}$	$\stackrel{--}{--}$	$\stackrel{-}{--}$	$\stackrel{-}{--}$	$\stackrel{-}{-}$	$\stackrel{-}{--}$
	11／30／10	＜0．20	＜0．50	＜0．50	＜0．20	＜0．80	＜0．20	＜0．50	＜0．50	＜1．0	＜0．50	＜0．25	＜0．20	<0.20	＜0．25	＜0．20	＜0．50	＜0．20	＜0．20	＜0．25	<0.50	<0.50	<0.20	<0.20	<0.50	－－－	－－－	－－－	－－－	－－－		－－	－－－
	05／16／11	<0.20	$\bigcirc 0.50$	$\bigcirc 0.50$	＜0．20	<0.80	＜0．20	<0.50	＜0．50	\bigcirc	＜0．50	＜0．25	＜0．20	－0．20	＜0．25	＜0．20	<0.50	＜0．20	＜0．20	＜0．25	$\bigcirc 0.50$	<0.50	＜0．20	＜0．20	＜0．50	\cdots	\cdots	\cdots	\cdots	\cdots			
	08／30／11 $11 / 09 / 11$	<0.20	\bigcirc	\bigcirc	\bigcirc	$\bigcirc 0.80$	\bigcirc	＜0．50	＜0．50	<1.0	<0.50	＜0．25	＜0．20	－0．20	<0.25	<0.20	<0.50	＜0．20	＜0．20	＜0．25	＜0．50	<0.50	<0.20	<0.20	＜0．50								
	02／20／12	－	－－－		－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－		－－－							
	05／31／12	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	\cdots	－－	－－－	－－－
	－ $11 / 27 / 12$	＜0．19	＜0．12	＜0．25	＜0．10	＜0．26	＜0．20	＜0．28	＜0．31	＜0．68	＜0．17	＜0．28	＜0．074	＜0．14	－－7	\bigcirc	＜0．13	－0．14	－0．17	－0．16	－0．13	<0.11	－0．14	<0.18	＜0．068	－－－	\cdots						
	02／288／13	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－．	－－－	－－．	，	，	．－．	－－－	－－－		－－－	－						
	05／23／13	－－－	－－	\cdots	\cdots	－－	－－	－－	\cdots	－－	\cdots	\cdots	－－－	－－	－－	－－	\cdots	－－	－－	－－	－－	－－	－－	－－	－－	－－－				－－			－－－
	11／13／13	＜0．19	＜0．12	＜0．25	<0.10	＜0．26	＜0．20	<0.28	＜0．31	<0.68	<0.17	<0.28	<0.074	<0.14	<0.15	＜0．13	＜0．13	＜0．14	＜0．17	＜0．16	＜0．13	＜0．11	＜0．14	＜0．18	＜0．068	\cdots	\cdots	－－	\cdots	\cdots			
	$03 / 25$ $05 / 29$	－－－	－－－	\cdots	\cdots	\cdots	－－－	\cdots	－－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	－－－	－－－	－－－	－－－	\cdots	\cdots	－－－	－－－	－－－	－－－	\cdots	－－－	－－	\cdots	\cdots	\cdots	－－	－－－
	－		－－	－－．	…	\cdots		\cdots		\cdots	\cdots	\cdots	－－．	\cdots	\cdots		－			－	－－－	－－－	－－－	－－－	－－－	\cdots							
	11／25／14 03／30／15	$\stackrel{\text {＜}}{0}$	＜0．12	$\stackrel{<0.25}{--}$	$\stackrel{0.10}{ }$	$\stackrel{<0.26}{ }$	＜0．20	＜0．28	${ }^{<0.31}$	＜0．68	$\stackrel{-1.17}{ }$	＜0．28	＜0．074	＜0．14	$\stackrel{-15}{ }$	$\stackrel{-1.13}{ }$	$\stackrel{-13}{ }$	＜0．14	$\stackrel{\text {＜0．17 }}{ }$	$\stackrel{0}{0.16}$	＜0．13	<0.11	＜0．14	＜0．18	＜0．068	\cdots							
NR 140 Enforcement Standard NR 140 Preventive Action Limit		5	70	100	0.2	5	6	5	7	5	5	5	5	－－	－－	－－	700	－	－	100	－－	800	480	480		0.01	2	0.005	0.1	0.015			
		0.5	$\underline{7}$	20	0.02	0.5	0.6	0.5	0.7	0.5	0.5	0.5	0.5	\cdots			140			10		160	${ }^{96}$	96	400	${ }^{0.001}$	0.4	0.0005	0.01	0.0015	0.0002	0.01	${ }^{0.01}$

$t=$ Detected below the Limit of Quantitation

Note：The following compound was detected in MW1 1 A during the August 2009 sampling event：Benzyl Alcohol（ $1.8 \mathrm{gg} / \mathrm{L})$ ．

tor Toluene and Xylenes．The previous standards were Toluene 1,000 ES／$/ 200$ PAL；Xylenes 10,000 ES $1,000 \mathrm{PAL}$ ．

Well	Date															$\begin{array}{r} 0.0 \\ \stackrel{0}{0.0} \\ \stackrel{\rightharpoonup}{5} \\ \hline \end{array}$										$\begin{array}{r} \text { 듬 } \\ \underline{\underline{\circ}} \\ \hline \end{array}$							-
MW11A	07/22/99 12142/01 06/10/02	Prior to Well Construction																															
	03104/04		<0.4	<1	<0.84	<0.97	<1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	$3.9 \dagger$	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	<0.64	<1.1	<0.9	<0.95	<1.7	<0.62	<1.4	<0.66	<1.2	<1.4	<1.5		
	$04 / 1 / 3 / 3$ $011 / 206$ 110	\cdots	00.4	<1	- <1.84	< <1.97	- 1.4	- $\begin{aligned} & \text { <1.22 } \\ & <0.69\end{aligned}$	<1	- ${ }_{\text {< }}^{1.3}$	- $\begin{gathered}1.3 \\ <0.79\end{gathered}$	< <0.96	- $\begin{gathered}\text { <1.4 } \\ <0.69\end{gathered}$	c1.9 62	<1.7	(${ }_{\text {coin }}^{1.4}$	<1.2.	<1.4	-	<0.84	- 20.64	<1.1 <0.65	-	<0.95	- $\begin{aligned} & \text { <1.7 } \\ & <0.7\end{aligned}$	<0.62	- $\begin{gathered}1.4 \\ <0.92\end{gathered}$	<0.66	(1.2	- 1.4	<1.5	- ${ }_{\text {< }}^{1.1 .1}$	coile
	12/14/06	---	---	---	---	---	--	---	--	---	---	---	---	--	--.	---	--	---	---	---	---	---	---	\cdots	\cdots	---	---	--	--	---		-..	<0.56
	02/13/07	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	--	---	---
	- $\begin{aligned} & 05 / 10807 \\ & 110207 \\ & 1\end{aligned}$	\cdots																															
	02/14/08	---	---	--.	---	---	---	\cdots	---	---	--	---	---	---	---	---	---	---	---	--	---	---	---	--	---	---	---	---	---	---	---	---	\cdots
	05/06/08	---	---	---	--	---	--	--	---	---	---	--	--.	--	---	--	---	\cdots	--	\cdots	--	\cdots	---	---	---	--	---	\cdots	---	---	---	\cdots	\cdots
	-091/108	\cdots	--.	---	\cdots	\cdots	\cdots	\cdots																									
	0805/09	--	--	<0.4	<0.24	<0.23	<0.35	<1.06	<1.01	<0.35	<0.31	<0.47	<0.52	$0.99+$	---	<0.32	<0.28	<0.3	<0.54	<0.28	<0.54	<0.24	<0.25	<0.39	<0.26	---	<0.55	<0.36	<0.34	<0.29	<0.82	<1.55	<0.33
	05/27/10	\cdots																															
	08/25/10	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	\cdots
	11/30/10	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	--	---	\cdots	---	---	---	---	---	---	---
	0301/11	\cdots	--	\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots	--	\cdots	\cdots	\cdots	\cdots	--	---	\cdots	---	\cdots	\cdots	--	\cdots	\cdots									
	05/13/11	\cdots	$\stackrel{-}{-}$	\cdots	\cdots																												
	1109/11	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	- 02120112	\cdots	---	\cdots																													
	08/27/12	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	11/27/12	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	\cdots
	05/23/13	---	---	---	---	---	---	---	--.	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--.	\cdots
	08/28/13	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--
	11/13/13 03 03514	\cdots	--	\cdots	--	\cdots	\cdots	\cdots	\cdots	--	--	<0.27	--	\cdots	--	\cdots	\cdots	--	\cdots	--	\cdots	--	\cdots	---	\cdots	\cdots							
	05/29/14	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	\ldots
	08/28/14	--	--	--	---	---	---	--	---	---	---	---	---	---	--	---	---	---	---	\cdots	---	---	--	--	---	---	---	---	---	---	---	---	---
	(1) $\begin{aligned} & 11 / 25 / 4 \\ & 03 / 30 / 15\end{aligned}$	\cdots	--	\cdots	\cdots	\cdots	--	\cdots	\cdots	--	--	<0.27		--	--	--	--	--			\cdots		\cdots	\cdots	---								
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	\cdots	\cdots	-	-	3,000	.	.	0.2	0.2	--	--	6	--	0.2	--	--	600	--	100	-	400	400	--	-	-	-	40	\cdots	1	-	250
		0.1	\cdots	\cdots	\cdots	--	600	-	--	0.02	0.02	\cdots	\cdots	0.6	-	0.02	\cdots	\cdots	60	\cdots	$\underline{20}$	\cdots	80	80	\cdots	\cdots	\cdots	\cdots	$\underline{8}$	\cdots	0.1	\cdots	$\underline{50}$

$t=$ Detected below the Limit of Quantitatio
$=$ Detected below wne Limir od
$-=$ Not Tested $/$ Not Required

$\dagger=$ Detected below the Limit of Quantitation
/ Not Required

[^2]

Well	Date															$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{c} \\ & \hline \end{aligned}$										䂴							-
mw11B		Prior to Well Construction																															
	O 030412404 0404																RYY-Not	Sampled															
	04/13/04 $11 / 10203$	\cdots	$\stackrel{0.4}{\square-}$	${ }_{<1}^{<0.85}$	<0.84	< <1.07	[1.4	- ${ }_{\text {< }}^{1.2}$	<1	${ }_{\text {coin }}^{<0.3}$	$\begin{gathered} <1.3 \\ <0.79 \end{gathered}$	$\begin{gathered} <0.96 \\ <0.82 \\ \hline 26 \end{gathered}$	$\begin{gathered} 81.4 \\ 80.49 \\ <0.4 \end{gathered}$	$\frac{3.14}{3.3}$	$\stackrel{1.7}{\square-}$	$\begin{gathered} <1.4 \\ <0.58 \end{gathered}$	${ }_{\text {coin }}^{<1.2}$	$\begin{gathered} 1.4 \\ <0.75 \end{gathered}$	$\begin{gathered} 81.2 \\ <0.5 \\ \hline 1 \end{gathered}$	$\begin{gathered} 1.5 t \\ <1.16 \\ \hline 16 \end{gathered}$	$1.9 \dagger$ <0.62	$\begin{gathered} <1.1 \\ <0.65 \end{gathered}$	$\begin{aligned} & <0.9 \\ & <0.9 \end{aligned}$	< <0.95	<1.7 <0.7	<0.62	$\begin{gathered} <1.4 \\ <0.92 \end{gathered}$	-	$\begin{gathered} 21.2 \\ <0.85 \end{gathered}$	- $\begin{aligned} & \text { <1.4 } \\ & <1.4\end{aligned}$	${ }_{\text {c }}^{11.5}$		-
	12/14/06	---	---		---	---		---	---		---	---	---	$\stackrel{-}{-}$	--	---	---	---	---	---	---	---	---		---	---			---				
	02/13/07	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	--	---	\cdots	---	---	---	---	---	---	---	--.	---
	$05 / 0807$	---	\cdots	---	--	---	--	---	--	\cdots	---	\cdots	\cdots	--	---	\cdots	---	---	---	---	\cdots	---	--	---	\cdots	---	\cdots	\cdots	\cdots	\cdots	\cdots	---	\cdots
	1110207 0214108	\cdots	---	\cdots	$\stackrel{-}{-}$	\cdots	\cdots	\cdots	\cdots	$\stackrel{-}{--}$	---																						
	05/06/08	---	--	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	09/10088 $01 / 19 / 99$	\cdots	\cdots	\cdots	\cdots	\cdots	-..	\cdots	$\stackrel{-}{-}$	----																							
	08/05/09	---	---	<0.4	<0.24	<0.23	<0.35	<1.06	<1.01	<0.35	<0.31	<0.47	<0.52	$0.76{ }^{\text {c }}$	--	<0.32	<0.28	<0.3	<0.54	<0.28	<0.54	<0.24	<0.25	<0.39	<0.26	---	<0.55	<0.36	<0.34	<0.29	<0.82	<1.55	${ }^{0} 0.33$
	05/27/10	--	---	---	---	---	---	---	---	---	---	---	---	\cdots	---	--	--	--	--	---	---	---	---	--	---	---	---	---	--	---	---	---	---
	-811/30/10	---	---	…	---	---	--.	---	---	\cdots	---	\cdots	\cdots	---	---	\ldots	---	\cdots	…	---	---	\ldots	---	--.	---	-	\cdots	\cdots	\cdots	\cdots	---	-..-	\cdots
	03/01/11	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	-	---	--	---	---	---	---	---	---	--	---	---	--	---	---	---	---
	05/16/11	--	--	---	--	---	--	--	--	--	---	---	---	---	--	--	--	--	--	--	--	---	--	---	--	---	--	--		--	---	---	---
	11/09/11	---	---	---	---	---	---	---	---	---	---	---	.--	---	---	---	---	---	---	---	---	.--	---	---	---	---	---	---	---	---	---	---	\cdots
	02/20/12	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	-	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	05/31/12	--	--	---	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots	--	\cdots	--	--	\cdots	\cdots	\cdots	--	\cdots												
	11/27/12	---	---	--.	---	---	---	---	---	---	-.-	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	\ldots
	02128/13	\cdots	--	--	---	---	---	--	---	---	---	--	\cdots	--	--	---	-	---	---	---	---	---	---	---	---	--	---	--	---	---	---	---	---
	05/23/13	\cdots	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots	--	--	\cdots	\cdots	\cdots	--	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots	--	\cdots	--	\cdots	\cdots	\cdots	\cdots	\cdots
	11/13/13	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	<0.27	---	--	---	---	---	---	---	---	---	---	---	---	---	---
	03/25/14	---	--	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---		---	---	---	--	---	--	---	\cdots	---	---	--	\cdots	--	---
	05/29/14	\cdots	--	--	--	--	--	--	--	--	-	--	--	--	--	\cdots	-	--	-	\cdots	-	--	-		--		--		\cdots	--	\cdots	\cdots	\cdots
	11/25/14	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	<0.27	--	---	---	---	---	---	---	---	---	---	---	---	---	\cdots
	03/30/15	--	---	---	--	--	---	---	---	--	---	---	---	--	---	--	--	---	---	---	---	---	--	---	---	--	---	---	---	---	---	--	
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	-	\cdots	,	\cdots	3,000	-	-	0.2	0.2	-	-	6	-	0.2	-	-	600	-	100	\cdots	400	400	-	,	\cdots	-	40	-	1	-	250
		0.1	\cdots	\cdots	-	\cdots	600	\cdots	\cdots	0.02	0.02			0.6					60										8		0.1		50

=Detected below the Limit of Quantitation

- =Not Tested / Not Required

\begin{tabular}{|c|}
\hline \& CRAM \& mals－mgl \& \& \& \\
\hline Well \& Date \& \& \& \& \& \& \[
\begin{array}{r}
\text { 틍 } \\
\text { 은 } \\
\text { 흥 } \\
\hline
\end{array}
\] \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \(\stackrel{\text { ® }}{\text { ¢ }}\) \& \& \& \[
\begin{array}{r}
\stackrel{0}{0} \\
\frac{\ddot{\omega}}{\underline{x}} \\
\hline
\end{array}
\] \& \& \[
\begin{array}{r}
\text { 喜 } \\
\text { 感 } \\
\hline
\end{array}
\] \& \& \[
\begin{array}{r}
\text { Eㅡㅡㄹ } \\
\text { 틀 } \\
\hline
\end{array}
\] \& ® \& 旁 \& \& \(\stackrel{\text { 边 }}{\substack{\text { ¢ }}}\) \\
\hline MW12C \& \[
\begin{aligned}
\& 07 / 22 / 99 \\
\& \text { 121/2101 } \\
\& \text { 201/70202 } \\
\& 06 / 101022
\end{aligned}
\] \& \& \& \& \& r to We \& Constru \& \& \& \& \& \& \& \& \& \& \& Prio \& Well \& struc \& \& \& \& \& \& \& \& \& to We \& Constru \& \& \& \\
\hline \& 03／04／04 \begin{tabular}{l}
041304 \\
\(11 / 02106\) \\
\hline
\end{tabular} 12／14006 \({ }^{0} 0510807\) \({ }^{11102027}\) \begin{tabular}{l}
05／06／08 \\
\hline 0
\end{tabular} 09／10／08 08／05／09 05／26／10 \(08825 / 10\)
\(11 / 30 / 10\) \(03 / 01 / 111\)
\(05 / 16 / 11\) 08／30／11 02／20／12 \(05 / 31 / 12\)
\(08 / 27 / 12\) 11／26／12 02128／23／3
\(05 / 23 / 13\) 08／28／13 \begin{tabular}{l}
11／131313 \\
\(03 / 25 / 14\) \\
\hline
\end{tabular} \(05 / 29914\)
\(08128 / 14\)
0 11／255／14
\(03 / 30 / 15\) 03／30／15 \& \(\cdots\) \& \(\cdots\)
\(\cdots\)
\(\cdots\)
\(\cdots\)
\(\cdots\)
\(\cdots\) \& \begin{tabular}{l}
\(\cdots\) \\
\(\cdots\) \\
\(\cdots\) \\
\hline
\end{tabular} \& \begin{tabular}{l}
\(\cdots\) \\
\(\cdots\) \\
\(\cdots\) \\
\\
\hline
\end{tabular} \& \& \& \[
\begin{gathered}
\text {--- } \\
\text {--- } \\
\hline-- \\
\hline--- \\
--- \\
--- \\
\hline--- \\
\hline--- \\
\hline--- \\
\hline--- \\
\hline-- \\
\hline--
\end{gathered}
\] \& \(\cdots\)
\(\cdots\)
\(\cdots\)
\(\cdots\)
\(\cdots\) \& \begin{tabular}{l}
\(\cdots\) \\
\(\cdots\) \\
-- \\
\hline- \\
\(\cdots\) \\
\hline-
\end{tabular} \& \begin{tabular}{l}
\(\cdots\) \\
\(\cdots\) \\
\(\cdots\) \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& \cdots- \\
\& \cdots \\
\& \hline \cdots \\
\& \cdots- \\
\& \cdots \\
\& \hline
\end{aligned}
\] \& \(\cdots\)
\(\cdots-\)
\(\cdots\)
\(\cdots\) \& \(\cdots\)
\(\cdots\)
\(\cdots\)

\cdots
\cdots
\cdots

\cdots
\cdots
\cdots
\cdots
\cdots \& \cdots
\cdots
\cdots
\cdots

\cdots \& | \cdots |
| :--- |
| \cdots | \& \[

$$
\begin{gathered}
\cdots \\
\cdots- \\
\cdots \\
\hline- \\
\hline
\end{gathered}
$$
\] \& \cdots

\cdots
\cdots
0
D
D
D
\cdots
\cdots
\cdots
\cdots

\cdots \& \& \& | l |
| :--- |
| \ldots |
| \cdots |
| |
| \cdots |
| \cdots |
| \cdots |
| \cdots | \& \cdots \& | \cdots |
| :--- |
| \cdots |
| |
| \cdots |
| \cdots |
| \cdots | \& \cdots \& \& | \cdots |
| :--- |
| \cdots |
| - | \& \& \cdots

\cdots
\cdots
\cdots
\cdots
\cdots
\cdots
\cdots
\cdots
\cdots
\cdots
\cdots
\cdots
\cdots
\cdots
\cdots
\cdots
\cdots
\cdots

\cdots \& \& \& \& \& | －－－ |
| :--- |
| －－－ |
| －－－ |
| －－－ |
| －－－ |
| －－－ |
| －－－ |
－－－

\hline \multicolumn{2}{|l|}{NR 140 Enforcement Standard NR 140 Preventive Action Limit} \& ${ }^{5}$ \& $\xrightarrow{70}$ \& $\xrightarrow{100}$ \& 0.2

0.02 \& \begin{tabular}{|c}
5

0.5

\hline

 \& $\stackrel{6}{0.6}$ \& $\stackrel{5}{0.5}$ \&

7

\hline 0

\hline 0

 \& $\stackrel{5}{0.5}$ \& $\stackrel{5}{0.5}$ \& ${ }^{5}$ \&

5

\hline 0.5

\hline

 \& \cdots \& \cdots \& \cdots \&

700

140

\hline

 \& \cdots \& \cdots \& $\stackrel{100}{10}$ \& \cdots \&

800

160

\hline

 \&

480

96

\hline
\end{tabular} \& 480

96 \& | 2,000 |
| :--- |
| 400 | \& 0.01 \& $\frac{2}{0.4}$ \& 0.005

0.0005 \& \begin{tabular}{l}
0.1

0.01

\hline

 \& 0．015 \& 0．002 \& ${ }_{0}^{0.05}$ \&

0.05

0.01

\hline
\end{tabular}

\hline
\end{tabular}

140 Preventive Action Lim

Note：As of the December 2010 ch．NR 140 Wisconsin Administrative Code，eff．1－1－11，the enforcement standards（ESs）and preventive action limits（PALs）have changed for Toluene and Xylenes
：As of the December 2010 ch．NR 140 Wisconsin Administrative Code，eff．1－1－11，the e
The previous standards were Toluene 1,000 ES／200 PAL；Xylenes 10,000 ESS $/ 1,000$ PAL．

- - Not Tested / Not Required

TABLE 1
Historical Groundwater Analytical Results
QuicFrez SFR Site - Fond du Lac, Wisconsi
SCS Engineers Project \#25211406.63

$t=$ Detected below the Limit of Quantitation
$+=$ Detected below The Limit or
$\cdots=$ Not Tested / Not Required
$=L$ CS or r LCSD exceeds the control limits.
$B=$ Analyte was detected in the
$B=$ Anallte was detected in the associated Method Blank.
Ja $=$ Results reported between the Method Detection
La $=$ Results reported between the Method Med Dethod Blank.
Limit of Quantitation (LOQ) are less certait
$\mathrm{Jb}=$ Estimated value. Analyte detected at at a level less than the Reporting (RL)
and greater than or equal lot the Memthod Detection Limit (MDL).
The use of this data should be aware that this data is of limited reliability.

Note: The following compounds were detected in MW13 during the May 23,2013 sampling event: 1,4 Dichlorobenzene ($11 \mathrm{\mu g} \mathrm{~L} \mathrm{Jc}$).

Result is less than the RL but greeter the or equal to the MDL and the concentration is an approximate value.

Well	Date		\qquad													$\begin{array}{r} \stackrel{0}{0} \\ \text { ow } \\ \stackrel{\rightharpoonup}{5} \\ \hline \end{array}$							\qquad			$\begin{array}{r} \text { 듬 } \\ \text { 畐 } \\ \hline \end{array}$							$\stackrel{\circ}{\text { \% }}$
MW13/MW13R	07/22/99 12/12/01 03/07/02 061002															Prior	to Well	Construc	ction														
	${ }_{0} 0314104^{*}$	--	<0.4	<1	<0.84	<0.97	<1.4	10	<1	<1.3	<1.3	<0.96	<1.4	<1.9	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	<0.64	<1.1	<0.9	<0.95	<1.7	<0.62	<1.4	$1.2 \dagger$	3.5	<1.4	<1.5	<1.1	
	04/14/04	---	<0.4	<1	<0.84	<0.97	<1.4	8.1	<1	<1.3	<1.3	<0.96	<1.4	<1.9	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	<0.64	<1.1	<0.9	<0.95	<1.7	<0.62	<1.4	$0.72 \dagger$	6.1	<1.4	<1.5	<1.1	<1.2
	$11 / 0306$ 121406 1	---	---	<0.85	${ }^{<1.03}$	<1.05	<0.7	51	<0.74	<0.96	<0.79	${ }^{<0.82}$	${ }^{00.69}$	$6+$	\cdots	${ }^{<0.58}$	<0.96	<0.75	<0.54	<1.16	<0.62	<0.65	-0.8	<0.95	${ }_{0}^{<0.7}$	--	-0.92	$0.87 \dagger$	2.57	<1.4	<0.92	<1.01	${ }^{<0.56}$
	${ }^{12} 14106$	---	---	--	0.25	0.10	${ }^{0.13}$	--	0.068	0.045	0.062	$0.025 t$	${ }^{0.028+}$	--	---	${ }^{0.075 t}$	--	${ }^{20.009}$	--	--	--	--	0.52	0.5	${ }^{0.022 \dagger}$	--	0.9	0.7	2.7	--	--	1.1	0.42
	02/13/07	--	\cdots	--	0.15	0.056	0.073	---	$0.027+$	<0.015	<0.014	<0.015	<0.023	--	--	<0.016	---	<0.015	---	---	---	---	0.261	0.301	<0.014	---	0.76	0.81†	2.53	---	---	0.69	0.168
	05/08/07	---	--	--	${ }^{0.296}$	0.106	0.111	---	${ }^{0.036+5}$	<0.015	0.018	<0.015	<0.023	--	--			<0.015	---	---	---	---	0.295	0.59	<0.014	--	1.2	0.99	3.4	---	---	1.1	0.209
	$11 / 0207$ 0214128 0	---	---	--	${ }^{0.314 \dagger}$	<0.16	<0.13	--	<0.15	<0.15	<0.14	<0.15	<0.23	---	--			00.15	---	---	---	---	$0.33+$	0.73	<0.14	--	2.18	2.21	7.6	--	---	1.22	
	05/06/08																Rry-Not	Sampled															
	- $09 / 1 / 1 / 08$	--	--	--	--	---	\cdots	--	--	---	---	---	\cdots	--	--					---	---	---	---	---	---	---	---	---	---	---	---	---	
	08/11/09	---	--	<0.4	<0.24	<0.23	<0.35	10	<1.01	<0.35	<0.31	<0.47	<0.52	0.60t	--	<0.32	$0.38{ }^{\text {¢ }}$	<0.3	<0.54	<0.28	0.57 \dagger	<0.24	<0.25	$0.49+$	<0.26	--	$1.6+$	1.2	6.0	<0.29	<0.82	<1.55	<0.33
	05/26/10	\cdots																															
	-88/25010	\cdots	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	\cdots
	11/30/10 Dup	---	---	---	---	---	-	---	--	-	---	---	-	-	---	--	---	---		---		---		---									---
	03/01/11	---	\cdots																														
	08/30/11	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	--	--	--	--	--	--	---	---	---	---	---	---	--	--	---	---	---
	11/09/11	---	\cdots	---	--	---	---	---	--	--	--	--	--	--	--	--	\cdots	--	--	--	--	--	--	\cdots	\cdots		---		---		--	--	\cdots
	05/31/12	---	---	---	---	…	---	‥-	---	--.	---	.-.	---	…	---	--.	--.	---	--.	.-.	--.	--.	…	--.	‥-	…	---	---	---	---	\cdots	\cdots	\cdots
	08/27/12	--	\cdots	\cdots	\cdots	\cdots	\cdots	---	---	\cdots	\cdots	\cdots	---	--	---	--	--	--	\cdots	--	\cdots	--	\cdots	\cdots	--	\cdots							
	80/27/12 Dup	---	---	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	\cdots	---
	02228/13	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	05/23/13	\cdots	--	\cdots	---	\cdots	---	\cdots	\cdots	\cdots	\cdots																						
	08/28/13	\cdots	<1.4	\cdots																													
	03/25/14	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	\cdots	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	03/25/14 Dup	---	---	--	--	--	--	---	---	\cdots	---	\cdots	---	--	--	---	\cdots	---	<5.4	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	08/28/14	\cdots	${ }_{<0}^{<2.27}$	\cdots																													
	11/25/14	---	--	---	---	---	---	---	---	---	---	---	---	---	---	--	--	---	<2.7	--	--	---	--	---	---	---	---	---	---	---	---	---	---
	03/30/15	--	---	--	--	--	---	--	---	---	--	---	---	---	---	---	--	---	<1.4	--	---	---	--	---	---	--	---	---	---	---	---	---	
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	\cdots	\cdots	\cdots	\cdots	3,000	\cdots	\cdots	0.2	0.2	\cdots	\cdots	6	\cdots	0.2	\cdots	\cdots	600	\cdots	100	\cdots	400	400	\cdots	\cdots	\cdots	-	40	\cdots	1	-	250
		0.1	\cdots	\cdots	\cdots		600	\cdots	\cdots	0.02	0.02	\because	\cdots	0.6	\cdots	0.02	-	\cdots	$\underline{6}$	\cdots	$\underline{2}$	\cdots	80	80	\cdots	\cdots	\cdots	\cdots	$\underline{8}$	\cdots	${ }^{0.1}$	\cdots	50

$t=$ Detected below the Limit of Quantitation
$--=$ Not Tested $/$ Not Required

$t=$ Detected below the Limit of Quantitation
$=$ Not Tested / Not Required
$-=$ Not Tested $/$ Not Required
$=$ LCS or LCSD exceeds the control limits.
$B=$ Analyte was detected in the associaited Method Blank.
Note: The following compounds were detected in MW14 during the August 2009 sampling
The previous standards were Toluene $1,000 \mathrm{ES} / 200 \mathrm{PAL}$; Xylenes $10,000 \mathrm{ES} / 1,000 \mathrm{PAL}$.
Note: The follows standards were Toluene 1,000 ESL200 PAL; Xylenes 10,000 EST 1,000 PAL.
$\mathrm{Ja}=$ Results reported between the Method Detection Limit (MDL) and Lim
of Quantitation (LOQ) are less certain than results at or above the LOC
$\mathrm{Jb}=$ Estimated value. Anallete detected at a a evel less than the Reporting Limit (RL) and greater
$J=$ Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Well	Date															$\begin{array}{r} \circ \\ \stackrel{0}{0} \\ \stackrel{\rightharpoonup}{5} \\ \hline \end{array}$														$\begin{aligned} & \text { 흔 } \\ & \text { 旁 } \\ & \text { 旁 } \\ & \hline \end{aligned}$			-
mw14	$\begin{aligned} & 07 / 22 / 99 \\ & \text { 121/2101 } \\ & 030702 \\ & 0661 / 10202 \end{aligned}$	Prior to Well Construction																															
	03/0404	\cdots	<0.4	<1	<0.84	<0.97	<1.4	<1.2	<1	<1.3	<1.3	<0.96	11.4	45	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	<0.64	<1.1	<0.9	<0.95	<1.7	<0.62	11.4	<0.66	<1.2	<1.4	<1.5	<1.1	<1.2
	04/14/04 110306	\cdots	<0.4	${ }_{<0}^{<1}$	<0.84		< ${ }_{\text {coin }}^{1.4}$	<1.2	${ }_{<0}^{<1}$	${ }_{<0}^{<1.3}$	${ }_{<0}^{<1.3}$	${ }_{<0}^{<0.96}$		${ }_{23}^{45}$	<1.7	<1.4	${ }_{\text {< }}^{11.2}$	<0.75	${ }_{\text {coin }}^{<1.2}$	< <1.84	$\xrightarrow{0.75+}$	${ }_{<0.65}^{<1.1}$	${ }_{\substack{<0.9 \\<0.8}}$	<0.95	${ }_{\text {c }}^{<1.7}$	<0.62			${ }_{\text {< }}$		${ }_{\text {< }} \times 1.92$		-
	1110306 $12 / 1506$	\cdots	---	-0.05	<0.016	<0.012	${ }_{0.27}$	-0.69	<0.012	<0.008	<0.009	<0.01	<0.009	$\stackrel{23}{--}$	\cdots	<0.011	-0.	<0.009	$\stackrel{1}{ }$	<...-	$\stackrel{-}{-}$	-0.65	<0.011	<0.015	<0.015	\cdots	<0.018	${ }_{<0.021}$	<0.028	<1.4	-0.92	<0.011	${ }^{<0.56}<0.01$
	02/13/07	---	---	---	$0.029+$	${ }^{0.024+}$	0.021 \dagger	--.	${ }^{0.028+}$	<0.015	<0.014	<0.015	<0.023	---	---	<0.016	--	<0.015	-.-	---	---	---	0.086	0.054	<0.014	--	0.207	0.17	0.36	---	---	0.194	0.094
	05/08/07	--	-		0.06	$0.024 \dagger$	0.043 \dagger	---	0.061	$0.019+$	$0.028+$	<0.015	<0.023	---	-	0.055	---	0.175	--	--	---	---	0.175	$0.054+$	<0.014	--	0.68	0.267	0.8	---	---	0.15	0.219
	11/01/07	\cdots	---	--	0.079	<0.016	<0.013	---	<0.015	<0.015	<0.014	<0.015	<0.023	---	---	<0.016	---	<0.015	---	--	---	--	<0.015	0.052	<0.014	---	<0.77	${ }^{0.284 \dagger}$	$0.92 \dagger$	\cdots	--	$0.024 \dagger$	<0.015
	02/14/08	---	---	--	1.079	<0.016	<0.013	---	<0.015	<0.015	<0.014	<0.015	<0.023	---	---	<0.017	--	<0.016	---	--	---	--	<0.016	1.052 \dagger	<0.015	--	<0.78	$0.284 \dagger$	0.92†	--	---	$1.024 \dagger$	<0.016
	05/06/08	--	--	--	-	---	--	--	---	---	---	---	---	--	---	---	--	---	--	--	---	--	---	---	---	---	---	\cdots	--	\cdots	--		----
	09140,08 $001 / 1909$	\cdots	\cdots	--.	0.03+	<0.015	<0.014	---	<0	<0.016	$\stackrel{-0.01}{<0.01}$	-0.02	<0.023	---	\cdots	<0.02	--.	<0.012	--.	---	--	--			<0.013	--	$\stackrel{-1}{0.243}$	$\stackrel{-103}{ }$	$\stackrel{-7}{0.82}$	---	---		
	08/05/09	---	---	$0.41+$	<0.24	<0.23	<0.35	$2.9 \dagger$	<1.01	<0.35	<0.31	<0.47	<0.52	48	---	<0.32	<0.28	<0.3	<0.54	<0.28	<0.54	<0.24	<0.25	<0.39	<0.26	---	<0.55	<0.36	$0.62 \dagger$	<0.29	<0.82	<1.55	<0.33
	05/27/10	---	---	---	---	---	--	---	---	--	---	---	---	---	--	---	--	---	--	--	--	--	---	--	---	---	---	---	--	---	--		---
	08/25/10 $11 / 30 / 10$	--	\cdots	\cdots	\cdots	--	\cdots	--	--	--	\cdots	--	--	\cdots	--	\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots						
	03/01/11	---	---	--	---	---	--	---	--	---	---	--	---	--	--	---	--	---	---	---	---	--	---	--	---	---	---	---	--	---	---	---	---
	05/17/11	--	--	---	--	--	--	--	\cdots	--	\cdots	\cdots	--	--	--	\cdots	--	--		--	--	---	\cdots	\cdots	--	--	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots
	08/30/11 $11 / 09 / 11$	\cdots																															
	02/20/12	---	---	--	---	---	---	--	---	---	---	---	--	---	--	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	05/31/12	--	--	---	---	--	---	--	--	--	---	---	--	---	\cdots	---	--	---	\cdots	---	--	---	--	--	--	---	--	--	---	\cdots	\cdots		\cdots
	-088727/12	\cdots	---	\cdots		\cdots																											
	02/28/13	---	---	---	---	---	---	---	--	---	--	--	--	--	---	---	---	---	---		---	---	---									---	---
	-05/23/13	\cdots	$\stackrel{-7.27}{<0.27}$		\cdots				\cdots			\cdots	\cdots	\cdots	\cdots	\cdots	\cdots																
	11/13/13	---	---	--	---	---	\cdots	---	---	---	---	---	---	--	---	---	---	---	<0.27	---	---	---	---	---	---	--	---	---	---	---	---	---	---
	03/25/14	--	--	--	\cdots	--	-	--	\cdots	--	--	\cdots	--	--	--		\cdots		---		\cdots									--	\cdots	--	---
	-08/28/14	---	\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots	\cdots	---	\cdots	\cdots	---	\cdots	${ }_{<0}^{20.27}$	---	\cdots	\cdots	\cdots		\cdots				\cdots	\cdots	\cdots	\cdots	\cdots
	11/25/14	--	---	---	---	---	---	---	---	---	\cdots	---	---	---	--	---	-	--	<0.27	--	--	---	---	--.	---	---	---	---	---	---	---	---	-
	03/30/15	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	<0.27	---	---	---	--	--	---	---	---	---	---	---	--	---	
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	\cdots	-	-	--	3,000	\cdots	-	0.2	0.2	-	\cdots	6	\cdots	0.2	\cdots	--	600	\cdots	100	\cdots	400	400	-	\cdots	\cdots	\cdots	40	--	1	-	250
		0.1	--	\cdots	\cdots	\cdots	600	-	--	0.02	0.02	\cdots	-	0.6	\cdots	0.02	\cdots	\cdots	60	--	20	--	80	80	--	--	--	--	8	-	0.1	--	50

$=$ Detected below the Limit of Quantitation

- =Not Tested / Not Required

Chlorinated Volatile Organic Compounds（EPA 8260）－－Mg／																										RCRA Metas ${ }^{\text {－mg }}$ L							
Well	Date						$\begin{array}{r} \text { 틈 } \\ \text { 은 } \\ \text { 응 } \\ \hline \end{array}$						$\begin{array}{r} \stackrel{\circ}{\stackrel{0}{0}} \\ \stackrel{\tilde{\omega}}{\infty} \\ \hline \end{array}$												$\begin{array}{r} \stackrel{.0}{\omega} \\ \frac{\stackrel{\omega}{x}}{\stackrel{\rightharpoonup}{x}} \\ \hline \end{array}$		$\begin{array}{r} \text { 喜 } \\ \text { 咼 } \\ \hline \end{array}$		$\begin{array}{r} \text { E} \\ \text { 拿 } \\ \hline \end{array}$	－			$\stackrel{\text { \％}}{\bar{\circ}}$
mW14A	$\begin{aligned} & 07 / 22299 \\ & 12 / 1 / 201 \\ & 03 / 07 / 02 \end{aligned}$	Prior to Well Construction											Prior to Well Construction													Prior to Well Construction							
	0314／04＊	0.96	<0.25	<0.35	0.45	<0.22	<0.69	20.2	<0.44	<2.4	<0.45	＜0．41	＜0．17	<0.31	<0.43	＜0．22	<0.16	<0.11	<0.18	<0.26	<0.19	<0.15	<0.14	＜0．12	<0.46								
	04／1404	${ }^{0.42 \dagger}$	<0.29	<0.22	＜0．21	＜0．16	＜0．25	＜0．29	＜0．39	<0.7	<0.7	<0.25	＜0．29	<0.31	<0.21	＜0．39	＜0．56	＜0．19	＜0．3	＜0．6	＜0．32	<0.57	＜0．51	＜0．66	＜1．74	＜0．005	＜0．4	＜0．0005	＜0．01	＜0．0015	＜0．0002	＜0．01	＜0．01
	11／03／06	＜0．44	<0.68	<0.95	＜0．17	<0.52	＜0．61	＜0．72	＜0．3	<0.69	<0.52	<0.5	＜0．47	<0.6	＜0．76	＜1．1	＜0．38	<0.99	<0.81	＜2．2	<0.61	<0.59	＜0．39	＜1．2	＜1．42	＜0．0079	0.016	＜0．0007	＜0．0023	＜0．0024	＜0．0000	0.0092	
	${ }^{\text {12／15／06 }}$	$\frac{1.265}{235}$	${ }^{<0.68}$	＜0．95	＜0．17	＜0．52	－0．61	＜0．72	${ }_{\text {－0．3 }}^{20.3}$	＜0．69	＜0．52	＜0．5	＜0．47	${ }^{<0.6}$	－0．76	＜1．1	<0.38	<0.99	<0.81	＜2．2	<0.61	＜0．59	<0.39	＜1．2	＜1．42	－－－	－－－	－－－	－－－	－－－	－－－		－－－
	02／13／07 0508107	$\underset{\sim}{2.35}$	3.2 <0.68	＜－0．95		＜0．46		＜0．45		＜0．69	－0．52	＜0．5	－<0.47	＜0．34			－＜0．38	－0．48	＜0．35	－＜1．8	＜0．38	＜0．46		＜0．37	＜0．99	－．－	－－－						
	$05 / 108 / 07$ $11 / 1107$	<0.44 $0.65 \pm$	－	＜－0．95	＜－2．2	＜<0.46	＜<0.48	＜0．45	＜${ }_{\text {＜}}^{\text {＜}} 0.64$	＜0．69	＜0．52	－<0.5	－	＜0．34	＜0．36	＜0．52	＜0．38	＜0．48	＜<0.35	－<1.8	<0.38 <0.38	＜0．46	－	＜0．37	＜0．99	－－－	－－	\cdots	\cdots	\cdots	\cdots	\cdots	
	$02 / 1408$		－－－	－－－			－－－		．										－－－					－	\cdots	－－－	－－－	－－－	－－－	－－－	－－－	－－－	
	05／06／08	－－－	－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－		－	－－－			－	－	－－－	－－－	－	－	－－	－－	－－－	\cdots	－－－	－－－
	09／11008 $011 / 1909$	<0.47	$0.67+$	<0.61	\bigcirc	$\stackrel{-}{-0.3}$	－0．47	－－7．	$\stackrel{-}{<0.5}$	－－－99	\bigcirc	<0.39					－0．		－－7	$\stackrel{-18}{-18}$	<0.54			－－		\cdots	\cdots	－－－	－－－	\cdots			
	01／19／09 0805／09	$\underset{\substack{<0.47 \\<0.39}}{ }$	$0.67 \dagger$ <0.68	＜－0．61	－	${ }_{\text {coin }}^{20.3}$	＜0．48	${ }_{\substack{<0.41 \\<0.43}}$	＜0．47	<0.99 <1.5	＜0．42	<0.39 <0.41 1	＜0．41	＜0．32	${ }_{<0.43}^{<0.73}$	<0.55 <1.5	${ }_{<0}^{<0.35}$	${ }_{\text {coin }}^{\text {＜0．69 }}$	${ }_{<0.57}^{<0.77}$	＜<1.8	${ }_{<0.33}^{<0.54}$	＜0．51	＜0．51	$\underset{\substack{<0.23 \\<1.5}}{\text { coid }}$	＜1．67	0.0125	0.0212	＜0．0005		0.000			
	05／27710	<0.20	<0.50	<0.50	<0.20	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	<0.20	＜0．20	<0.25	<0.20	＜0．50	<0.20	<0.20	＜0．25	<0.50	＜0．50	＜0．20	＜0．20	<0.50	－－	－－	－－－	－－－	－－	－－－	－－－	－－
	08／25／10 $11 / 3 / 10$	\bigcirc	$\bigcirc 0.50$	<0.50	<0.20	<0.80	<0.20	<0.50	＜0．50	<1.0	<0.50	<0.25	＜0．20	＜0．20	－0．25	\bigcirc	\bigcirc	\bigcirc	\bigcirc	<0.25	<0.50	＜0．50		－0．20				\cdots	\cdots	\cdots	\cdots	\cdots	
	03／01／11	－－－	－－－		－－－	－－－	－－－	－－－	－－－	－－	－－．			－－－	－－－	－－－	－．－	－－－	－－．		－－－	－－7	－－－	－			－－－						
	05／17／11	＜0．20	<0.50	<0.50	＜0．20	<0.80	<0.20	＜0．50	＜0．50	<1.0	＜0．50	＜0．25	＜0．20	＜0．20	＜0．25	<0.20	＜0．50	<0.20	<0.20	＜0．25	<0.50	<0.50	＜0．20	＜0．20	＜0．50	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－
	11／09／11	<0.20	<0.50	<0.50	<0.20	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	<0.20	<0.20	<0.25	<0.20	<0.50	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	<0.50		－－－			－－－	．－－	－－－	
	02／20／12	－－－	－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－	－－	－－－	－－	－－－	
	05／31／12	－－	－－	－－	\cdots	－－	\cdots	－－－	－－	－	－	－		－	－	\cdots		－	－		－	－	－	－	－	．－	－－						
	11／27／12	＜0．19	<0.12	<0.25	＜0．10	＜0．26	<0.20	＜0．28	<0.31	＜0．68	<0.17	<0.28	＜0．074	＜0．14	<0.15	＜0．13	＜0．13	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	＜0．068		\cdots	－－－			\cdots	－－－	
	02／28／13	－－	－－	－－－	－－	－－－	－－	－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	\cdots	－－－	－－－	－				
	$05 / 233113$ $08 / 28 / 13$	－－	－－－	\cdots	－－－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	－．．	－－－	\cdots	\cdots	\cdots	－－	－－	－－	\cdots	\cdots	\cdots	－－	－－	\cdots	\cdots	\cdots	－－				\cdots	\cdots
	111／13／13	＜0．19	＜0．12	<0.25	＜0．10	＜0．26	<0.20	＜0．28	<0.31	＜0．68	<0.17	<0.28	＜0．074	＜0．14	<0.15	<0.13	＜0．13	＜0．14	<0.17	＜0．16	<0.13	<0.11	＜0．14	＜0．18	＜0．068	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－
	03／25／14																											－－		－－	－－	－－	
	08／28／14		－－－	－－－	－－－	－	－－－	－－－	－－－																								\cdots
																											－－	－－	－－				－－－
NR 140 Entorcement Standard		5	70	100	0.2	5	6	5	7	5	5	5	5	－	－	－－	700	－－	－	100	－	800	480	480	2，000	0.01	2	0.005	0.1	0.015	0.002	0.05	
		0.5	7	20	0.02	0.5	0.6	0.5	0.7	0.5	0.5	0.5	$\underline{0.5}$	－－	－－	－－	140	－－	\ldots	10		160	96	96	400	0.001	0.4	0.0005	0.01	0.0015	0.0002	0.01	0.01

$t=$ Detected below the Limit of Quantitation
$-=$ Not Tested $/$ Not Required
$=$ LCS or LCSD exceeds
Note：The following compound was detected in MWW 14 A during the March 4,2004 sampling event：Bromodichloromethane（ $0.33 \mathrm{mg} / \mathrm{L}$ ）．
Note：The following compounds were detected in MW14A during the August 2009 sampling event：Benzyl Alcohol $(5.6 \mu \mathrm{~g} / \mathrm{L})$ ，Butyl Benzyl Phthalate $(0.38 \mathrm{Hg} \mathrm{L})$ ．
Note：As of the Dor
：As of the December 2010 ch．NR 140 Wisconsin Administrative Code，efif． $1-1-11$ ，the en
The previous standards were Toluene $1,000 \mathrm{ES} / 200 \mathrm{PAL}$ ；xylenes $10,000 \mathrm{ES} / 1,000 \mathrm{PAL}$ ．

Well	Date																									产						(\%)	-	
MW14A	$\begin{aligned} & 07 / 22 / 99 \\ & 12 / 12 / 01 \\ & 03 / 07 / 02 \\ & 06 / 10 / 02 \end{aligned}$	Prior to Well Construction																																
			<0.4	<1	<0.84	<0.97	<1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	$1.9+$	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	<0.64	<1.1	<0.9	<0.95	<1.7	<0.62	<1.4	00.66	<1.2	<1.4	<1.5	<1.1		
	04/14/04	---	<0.4	<1	<0.84	<0.97	<1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	<1.9	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	<0.64	<1.1	<0.9	<0.95	<1.7	<0.62	<1.4	<0.66	<1.2	<1.4	<1.5	<1.1	<1.2	
	11/03/06	---	--	<0.85	<1.03	<1.05	<0.7	<0.69	<0.74	<0.96	<0.79	<0.82	<0.69	11	--	<0.58	<0.96	<0.75	<0.54	<1.16	<0.62	<0.65	<0.8	<0.95	<0.7	---	<0.92	<0.8	<0.85	<1.4	<0.92	<1.01	<0.56	
	12/15/06	--	-	---	---	---	---	---	---	---	--	--	---	--	---		--	--	--	---	---	---	---			\cdots						--		
	0211307 050807	\cdots	--	\cdots	--	\cdots	--	---	\cdots	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots	\cdots	\cdots	---	----														
	11/01/07	---	---	--	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	
	02/1408	---	---	---	---	---	---	---	--	---	---	---	---	---	\cdots	--	---	--	---	---	---	---	---	---	---	---	---		---		---	---	---	
	-05/06/08	\cdots	-..	\cdots	\cdots	\cdots	\cdots	\cdots	…	\cdots	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots	----																
	01/19/09	--	---	---	--.	---	--.	--.	---	--.	--.	--.	---	---	---	---	--.	---	---	---	---	---	---	--.	---	---	--.	--.	--.	---	--.	--.		
	08/05/09	--	--	<0.4	<0.24	<0.23	<0.35	<1.06	<1.01	<0.35	<0.31	<0.47	<0.52	1.14	---	<0.32	<0.28	<0.3	<0.54	<0.28	0.78†	<0.24	<0.25	<0.39	<0.26	---	<0.55	<0.36	<0.34	<0.29	<0.82	<1.55	<0.33	
	08/25/10	--.	---	---	---	--.	---	---	--.	-..	--.	--.	---	\cdots	--.	--.	---	---	---	--.	\cdots	---	---	---	---	---	---	-..-	---	---	---	.-.	\cdots	
	11/30/10	--	---	---	---	---	---	---	--	\cdots	---	---	---	---	---	-	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
	${ }^{03 / 01111}$	\cdots	-	\cdots	--	\cdots	---	\cdots																										
	08/30/11	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	-..	\cdots	
	11/09/11	--	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	--	\cdots	\cdots	---	---	\cdots	---	---	---	--	---	---	---	---	---	---	
	(02120112	\cdots																																
	08/27/12	---	---	---	---	---	---	---	--	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	-.-	---	
	11/27/12	--	--	--	---	---	--	--	---	\cdots	\cdots	--	--	--	--	\cdots	--	--	--	--	--	\cdots	\cdots	--	--	---	--	---	---	---	\cdots	---	---	
	- 212781	\cdots	.-.	\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots																								
	08/28/13	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	
	11/13/13	--	\cdots	--	--	--	--	--	--	--	--	\cdots	--	--	--	\cdots	--	--	<0.27	--	--	\cdots	--	--	--	--	--	--	\cdots	--	--	---	\cdots	
	-05/29/14	---	---	--.	-.-.	.-.	---	…	--.	…	---	--.	---	---	-.-.	\cdots	---	---	\cdots	\cdots	\cdots	--.	-	\cdots	…	…	\cdots	…	…	…	…	---	\cdots	
	08/28/14	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	\cdots	--	---	---	---	---	---	---	---	---	---	---	---	---	---	
	11/25/14	\cdots	\cdots	\cdots	\cdots	\cdots	---	--	--	--	--	--	--	--	---	\cdots	--	--	<0.27	\cdots	\cdots	\cdots	--	\cdots	--		--		--	--	--	--	\cdots	
	NR 140 Enforcement StandardNR 140 Preventive Action Limit																																	
			$\begin{array}{\|l\|} \hline 1 \\ \hline 0.1 \\ \hline \end{array}$	\cdots	\cdots	--	\cdots	$\begin{array}{\|l\|} \hline 3,000 \\ \hline 600 \\ \hline \end{array}$	-	\cdots	$\begin{array}{\|l\|} \hline 0.2 \\ \hline 0.02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.2 \\ \hline 0.02 \\ \hline \end{array}$	-	\cdots	$\begin{aligned} & \hline 6 \\ & \hline 0.6 \\ & \hline \end{aligned}$	--	$\begin{array}{\|l\|} \hline 0.2 \\ \hline 0.02 \\ \hline \end{array}$	-	\cdots	$\begin{array}{\|c\|} \hline 600 \\ \hline 60 \\ \hline \end{array}$	-	100 20	--	400 80	400 80	\cdots	\cdots	-	\cdots	$\stackrel{40}{8}$	\cdots	1 0.1	\cdots	250 50

$=$ Detected below the Limit of Quantitation

- =Not Tested / Not Required

SCS Engineers Project \#25211406.63

		Chlorinated Volatile Organic Compounds (EPA 8260)--Mg/														um	ed	Volatile	rganic	und	(EPA 8	- $\mathrm{\mu g} / \mathrm{L}$				RCRA Metals-mgl							
Well	Date				$\begin{aligned} & \text { 읗 } \\ & \text { 흘 } \\ & \frac{0}{2} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 틍 } \\ & \text { 흥 } \\ & \text { 응 } \\ & \hline \end{aligned}$																		$\begin{array}{r} \ddot{0} \\ \stackrel{.0}{\stackrel{\omega}{x}} \\ \hline \end{array}$	$\begin{array}{r} \frac{0}{\bar{W}} \\ \text { 耪 } \\ \hline \end{array}$				-	$\begin{array}{r} \text { 言 } \\ \text { inion } \\ \hline \end{array}$		$\stackrel{\stackrel{\rightharpoonup}{2}}{\bar{j}}$
MW15	07/22/99 12/12/01 03/07/02 06/10/02	Prior to Well Construction											Prior to Well Construction													Prior to Well Construction							
	030404	122	$\frac{67}{36}$	${ }^{0.977}$	<0.11	$0.42 \dagger$	0.84t	<0.2	<0.44	<2.4	${ }^{<0.45}$	${ }^{0.58+}$	<0.17	<0.31	<0.43	<0.22	<0.16	<0.11	<0.18	${ }^{<0.26}$	<0.19	1.4	<0.14	<0.12	<0.46								
	04/13/04	65	36	0.94	<0.21	0.8	1.6	<0.29	<0.39	<0.7	<0.7	$0.29 \dagger$	<0.29	<0.31	<0.21	<0.39	<0.56	<0.19	<0.3	<0.6	<0.32	$0.65 \dagger$	<0.51	<0.66	<1.74	<0.005	<0.4	<0.0005	0.042	<0.0015	<0.0002	<0.01	<0.01
	${ }^{11 / 03 / 36}$	${ }^{13.8}$	0.84	${ }^{1.68 \dagger} \dagger$	1.98	<0.52	-0.61	-0.72	${ }^{0.33+}$	${ }^{<0.69}$	<0.52	<0.5	<0.47	<0.6	-0.76	<1.1	<0.38	-0.99	<0.81	<2.2	<0.61	${ }^{20.59}$	<0.39	<1.2		<0.0079				0.004t	<0.00004		
	12/1406 $02 / 13107$	-52	141 157	${ }_{1.94 \dagger}^{6}$	1.4 1.08	<0.52	<0.61	-	$\xrightarrow{0.61+}$	$\stackrel{6.8}{60.69}$	${ }^{<0.52}<$	-0.5	$\frac{1.14 t}{1.83}$	${ }_{\text {< }}$	- <0.76	<0.52	<0.38 <0.38 1	- <0.99	<0.81	<2.2	<0.61	$1.04 \dagger$ $1.06 t$	<0.39	${ }_{\text {< }} \times 1.37$	${ }^{0.74} 0$	---	---		---	----	---	--	\cdots
	05/08/07	5.9	203	6	88	<0.46	<0.48	$<$	<0.64	<0.69	<0.52	${ }_{<0.5}^{20.5}$	$\frac{163}{16.8}$	<0.34	<0.36	<0.52	20.1	$1.26+$	<0.35	<1.8	1.37	$22.6 \dagger$	11.5	2.37	53.1	.--	---				---	---	\cdots
	11/0107	320	900	$16.4 \dagger$	147	<4.6	<4.8	<4.5	<6.4	<6.9	<5.2	<5	17.3	<3.4	<3.6	<5.2	17.8	<4.8	<3.5	<18	<3.8	$18.4 \dagger$	<12	<3.7	25.9+	--	--	---	-	--	---	---	\cdots
	02/1408	760 85	1460 330	20.2†	${ }_{1}^{2960}$	${ }_{\text {- }}^{\substack{4.6 \\ 4 \\ 4}}$	-4.8	-4.5	<6.4	-66.9	- 5.2	${ }_{<}^{<5}$	36 S12	${ }^{<3.4}$		${ }^{<52.2}$	20.7	-4.8	c3.5 -385 7.	<18	${ }_{\substack{23.8 \\-27}}^{\text {cher }}$	-58	${ }_{-12+}^{125}$	${ }_{\text {- }}^{23.7}$	66.7	\cdots	\cdots				\cdots	\cdots	
	05/06/08	${ }^{85}$	${ }^{330}$	<30.5	164	<15	<23.5	<20.5	<25	<49.5	<25	<19.5	<12	<16	-36.5	<27.5	<17.5	<30	-38.5	-90	${ }_{-27}^{227}$	<19.5	<25.5	<11.5	-83.5	--	--				\cdots	---	
	09/10108 $01 / 19 / 199$	1290 360	1300 12400	$\frac{24}{115}$	97 129	<3	<4.7	<4.1	${ }^{7.5 \dagger}$ 12.7t	<9.9 <9.9	<5	-3.9	16.4 26.9	<3.2 <3.2 1	c7.3 <7.4	-55.6	14 $10.3+$	<6	ci <7.7 <7.7	<18 <18	$\begin{array}{r}<5.4 \\ <5.4 \\ \hline\end{array}$	40 31	7.89 $10.8 \dagger$	c2.3 $2.8 \dagger$	37.6 56 6.5	\cdots	---	\cdots	\cdots	\cdots	\cdots	\cdots	---
	08/05/09	${ }^{7.7 \dagger}$	450	<6.1	340	<4.3	<4.8	<4.3	<4.7	<15	<4.2	<4.1	18.3	<4.6	<4.3	<15	<8.7	<3.9	<5.7	<17	${ }_{<3.3}$	${ }^{14.7 \dagger}$	<11	<15	$7.7 \dagger$	0.0036	0.0848	<0.0005	<0.012	<0.0007	<0.0002	0.0009	-0.0103
	05/27/10	140	56	<1.0	22	<1.6	<0.40	<1.0	<1.0	<2.0	<1.0	<0.50	1.7 Ja	<0.40	<0.50	<0.40	1.7 Ja	<0.40	<0.40	0.8 Ja	<1.0	1.2 Ja	1.4 Ja	<0.40	5.5	---		---	---	--.	---	--	---
	08/25/10	140	87	1.2 Ja	11	<1.6	<0.40	<1.0	<1.0	<2.0	<1.0	<0.50	$\underline{2.9}$ Ja	<0.40	<0.50	<0.40	2.5 Ja	<0.40	<0.40	<0.50	<1.0	<1.0	1.2 Ja	<0.40	6.4	---	---	--	---	---	---	---	---
	11/30/10	110	68	1.0 Ja	9.1	<1.6	<0.40	<1.0	<1.0	<2.0	<1.0	<0.50	$\underline{3.0}$	<0.40	<0.50	<0.40	2.1 Ja	<0.40	<0.40	<0.50	<1.0	<1.0	1.4 Ja	0.44 Ja	2.1 Ja							---	
	03/01/11	21	100	<1.0	9.7	<1.6	<0.40	<1.0	<1.0	<2.0	<1.0	<0.50	<0.40	<0.40	<0.50	<0.40	<1.0	<0.40	<0.40	<0.50	<1.0	<1.0	<0.40	<0.40	<1.0	---	---	\cdots	--	--	--	---	---
	${ }^{05 / 17711}$	44	77	<0.50	11	<0.80	<0.20	<0.50	<0.50	<1.0		<0.25												<0.20									
		${ }_{2}^{45}$	72 3.0	c	${ }_{5}^{11} 5$	<0.80 <2.0 20	$\xrightarrow{<0.20}$	<0.50 <2.0 1	$\xrightarrow{<0.50}<$	-	c	<0.25 <2.0	$\frac{0.82 \mathrm{Jb}}{1.6 \mathrm{Jc}}$	<0.20	-0.25	<0.20 <2.0		<0.20	${ }_{\substack{<0.20 \\<2.0}}$	< ${ }_{\text {< }}^{\substack{\text { c. } 25}}$	< $<$ < 2.50	$\xrightarrow{<0.50}<$	0.35 Jb 0.40 Jc	${ }^{<0.20}$	${ }_{0}^{<0.50}$ Jc	\cdots	\cdots	\cdots	--	---	--	\cdots	--
	11/09/11	46	79	0.60 Jc	13	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	$\underline{2.3}$	<0.20	<0.25	<0.20	0.77 Jc	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	0.53 Jc	--	---				--	--	
	11/09/11 Dup	45	77	0.62 Jc	13	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	2.3	<0.20	<0.25	<0.20	0.75 Jc	<0.20	<0.20	<0.25	<0.50	<0.50	<0.20	<0.20	0.52 Jc	--	---	--	---	--	---	---	---
	02120/12	${ }^{25}$	70	${ }^{0.57 \mathrm{Jc}}$	${ }^{30}$	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	0.97 Jc	<0.20	-0.25	<0.20	$\stackrel{<0.50}{ }$	-0.20	-0.20	-0.25	-0.50	<0.50	-0.20	<0.20	${ }^{<0.50}$	\cdots	\cdots			\cdots	\cdots	---	
	- $05 / 3 / 1 / 12$	${ }_{8.6}^{68}$	$\frac{55}{260}$	${ }_{2.3}^{0.68 \mathrm{Jc}}$	14 65	<0.26	<0.20		${ }_{0}^{<0.64 .31}$		${ }_{\substack{<0.17}}^{20.17}$	${ }_{\text {coin }}^{\substack{0.28 \\<0.28}}$	2.5	<0.14	${ }_{<0}^{<0.15}$	${ }_{<0.13}^{<0.13}$	0.55	<0.14	${ }_{<0}^{<0.17}$	<0.16	<0.13	${ }_{0.25 \mathrm{Jc}}^{<0.11}$	<0.14	<0.18	${ }^{0.58 \mathrm{Jg}} 0$	---	\cdots		-	--	\cdots	\cdots	--
	11/27/12	1.1	23	<0.25	${ }^{23}$	<0.26	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	1.2	<0.14	<0.15	<0.13	0.23 Jc	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	<0.068	---	---				---	---	---
	11/27/12 Dup	0.96	${ }^{23}$	<0.25	27	<0.26	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	$\underline{1.3}$	<0.14	<0.15	<0.13	0.22 Jc	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	<0.068	---	--			---	--	---	--
	02/28/13	${ }_{13}^{93}$	92	0.74 Jc	11	<0.26	<0.20	<0.28	${ }^{<0.31}$	<0.68	${ }^{<0.17}$	<0.28	0.57	<0.14	<0.15	<0.13	<0.13	<0.14	<0.17	<0.16	${ }^{<0.13}$	<0.11	<0.14	<0.18	<0.068	--	--				--	-	
	05/23/13	13 260	$\frac{15}{310}$		3.6 25	<	<0.20	<0.28	${ }_{0.81 \mathrm{Jc}}^{<0.31}$		${ }_{\substack{<0.17}}^{<0.17}$	${ }_{\substack{<0.28 \\<0.28}}$	$\frac{0.74}{2.2}$	<0.14	<0.15	${ }_{<0.13}^{<0.13}$	${ }_{0}^{<0.13}$	<0.14	${ }_{<0.17}^{<0.17}$	<0.16	<0.13	${ }_{0}^{<0.111}$	<0.14	<0.18	${ }_{\substack{<0.068 \\ 1.0}}$	\cdots	\cdots	\cdots	--	\cdots	\cdots	\cdots	-.
	11/13/13	<0.19	9.0	<0.25	<0.10	<0.26	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	2.69	<0.14	<0.15	<0.13	<0.13	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	<0.068	\cdots	\cdots				\cdots	\cdots	\cdots
	03/25/14					des												Sample	estroye	Shipm							\cdots					--	-.
	05/29/14				3.7	<0.26	<0.20	<0.28		<0.68			0.66	<0.14	<0.15	<0.13	0.28 Jc	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	0.48 Jc		--						
	- $08 / 28 / 14$	43 35	$\frac{24}{16}$	<0.25	1.2 <0.10	<0.26	<0.20	(<0.28	$\begin{aligned} & <0.31 \\ & <0.31 \end{aligned}$	<0.68 <0.68	$\begin{aligned} & 0.17 \\ & <0.17 \end{aligned}$	<0.28 <0.28	$\left\lvert\, \begin{aligned} & 0.23 \mathrm{Jc} \\ & 0.46 \mathrm{Jc}\end{aligned}\right.$	<0.14	<0.15	<0.13	<0.13	<	${ }^{<0.17}<0.17$	< 0.16	<0.13	<0.11	<	<0.18	<0.068	---	\cdots						
	03/30/15	61	${ }_{3}$	<0.25	4.8	<0.26	<0.20	<0.28	<0.31	<0.68	<0.17	<0.28	${ }^{0.39 ~ J c ~}$	<0.14	<0.15	<0.13	<0.13	<0.14	<0.17	<0.16	<0.13	<0.11	<0.14	<0.18	<0.068	---	\cdots	---	\cdots	---	\cdots	---	\cdots
NR 140 Enforcement Standard NR 140 Preventive Action Limit		5	70	100	0.2	5	6	5	7	5		5	5	-	-	--	700	--	-	100	-	800	480	480	2,000	0.01	2	0.005	0.1	0.015		0.05	
		0.5	7	$\underline{20}$	0.02	0.5	0.6	0.5	0.7	0.5	0.5	0.5	0.5				140	--		10		160	$\underline{96}$	96	400	0.001	0.4	${ }^{0.0005}$	0.01	0.0015	0.0002	0.01	0.01

$t=$ Detected below the Limit of Quantitation
$---=$ Not Tested
$t=$ Detected below the Limimi of
$\cdots=$ Not Tested / Not Required
Quantitation
$\mathrm{Ja}=$ Results reported between the Method Detection Limit (MDL) and Limi
$\mathrm{Jb}=$ Estimated value. Analyte detected at a lane level less than the Reporting
and greater than or equal to the Method Deteciton Limit (MDL). The user of this data should be aware that this data is of limited reliability.
Is less than the RL but greater than or equal to the MDL and the concentration is an approximate value,
Note: The following compound was detected in MW15 during the August 2009 sampling event: Benzyl Alcohol (3.6 g/L).
Ite: As of the December 2010 ch. NR 140 Wisconsin Administrative Code, eff. $1-1-111$, the en
The previous standards were Toluene 1,000 ES/ 200 PAL ; Xylenes $10,000 \mathrm{ESS} 1,000 \mathrm{PAL}$.

Well	Date																									$\begin{array}{r} \text { 듬 } \\ \text { 总 } \\ \hline \end{array}$							-
мW15	07/22/99 12/12/01 06/10/02	Prior to Well Construction																															
	03104104	--	<0.4	<1	<0.84	<0.97	<1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	<1.9	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	<0.64	<1.1	<0.9	<0.95	<1.7	<0.62	<1.4	<0.66	<1.2	<1.4	<1.5	<1.1	
	04/13/04	--	<0.4	<1	<0.84	<0.97	<1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	<1.9	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	<0.64	<1.1	<0.9	<0.95	<1.7	<0.62	<1.4	<0.66	<1.2	<1.4	<1.5	<1.1	<1.2
	+110306	--	\cdots	<0.85	<1.03	<1.05	<0.7	<0.69	<0.74	<0.96	<0.79	<0.82	<0.69	4.7	\cdots	<0.58	<0.96	<0.75	<0.54	<1.16	<0.62	<0.65	<0.8	<0.95	<0.7	--	<0.92	<0.8	<0.85	<1.4	<0.92	<1.01	${ }^{<0.56}$
	${ }^{\text {a/2/13/07 }}$	\cdots	---	\cdots	---	\cdots	--.-																										
	0510807 1100107 1	\cdots	--	--	--	--	--	--	--	--	--	\cdots	\cdots																				
	02/1408	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	---	-.-	---	---	---	---	---	---	---
	05/06/08	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	--	---	---	---	---	---	---	--	---
	091/1008 $01 / 1909$	\cdots																															
	08/05/99	---	---	20.4	<0.24	<0.23	<0.35	<1.06	<1.01	<0.35	<0.31	<0.47	<0.52	<0.6	---	<0.32	<0.28	<0.3	<0.54	<0.28	<0.54	<0.24	<0.25	<0.39	<0.26	---	<0.55	<0.36	$0.44 \dagger$	<0.29	<0.82	<1.55	<0.33
	-05/27/10	\cdots	\cdots	\cdots	\cdots	---	\cdots	---	\cdots	\cdots	\cdots																						
	11/30/10	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--.	---	---	---	---	---	---	---	---	---	---	---	\cdots	---
	03/01/11	--	\cdots	---	---	--	---	--	---	--	\cdots	--	--	---	---	--	---	--	---	\cdots	\cdots	---	---	---	---	---		---	---	---	---	---	---
	05/17/11 Dup	---	---	---	---	\cdots	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	---	---	---	\cdots
	08/30/11	--	--	--	---	---	---	---	---	---	---	--	---	---	--	---	---	---	--	---	---	---	---	---	---	---	---	---	---	--	---	---	---
	- $\begin{aligned} & \text { 11/109/11 } \\ & 1109 / 11 \text { duo }\end{aligned}$	--	--	\cdots	--	\cdots	--	--	\cdots	--	--	--	\cdots	--	--	--	--	--	\cdots	--	--	--	--	--	--	--	\cdots						
	02/20/12	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	05/31/12	--	---	---	\cdots	---	---	---	--	---	---	\cdots	---	\cdots	--	---	---	--	---	---	---	---	---	---	---	---	---	\cdots	---	---	---	---	---
	-08/27/12	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	---	---	\cdots	\cdots	\cdots	---	\cdots	--	\cdots	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots	\cdots	\cdots	$\stackrel{-}{--}$	---	\cdots
	11/27/12 Dup	--	--	--	--	--	--	---	---	--	--	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	05/23/13	\cdots	---	\cdots	\cdots	\cdots	---	---	\cdots	\cdots	---	---	\cdots	$\stackrel{-}{-}$	$\stackrel{-}{-}$	\cdots																	
	08/28/13	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	<0.27	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	111/1/13	\cdots	--	--	--	--	\cdots	--	--	<0.27	--	--	--	--	\cdots	--	--	--	--	--	--	---	--	\cdots									
	05/29/14	---	\cdots	---	---	---	\cdots	<0.27	---	\cdots	\cdots	\cdots	---	\cdots	--	---	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots											
	08/28/14	\cdots	<	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	---	---	\cdots	\cdots	\cdots	\cdots	---	\cdots																
	03/30/15	--	---	--	---	---	---	---	---	--	---	--	--	--	---	--.	---	---	<0.27	--	---	--	---	--	---	--	---	---	---	---	---	---	
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	--	-	--	--	3,000	-	-	0.2	0.2	-	--	6	--	0.2	-	--	600	--		-	400	400	-	-	-	--	40	-	1	-	
		0.1	--	--	--	\cdots	600	--	--	0.02	0.02	--	-	0.6	-	0.02	--	--	60	--	$\underline{20}$	-	80	80	--	--	-	-	O	-	0.1	-	50

$\dagger=$ Detected below the Limit of Quantitation
$--=$ Not Tested / Not Required

$\begin{aligned} \dagger & =\text { Detected below the Limit of } \\ \cdots & =\text { Not Tested } / \text { Not Required }\end{aligned}$
Quantiation
$=$ LCS or LCSD exceeded the control linits.
$=$ Results reported between the Method D
of Quantitation (LOQ) are les
Analyte detected at a l evel less than the Reporting Limit (RL)
and greater than or equal to the Method Deteciton Limit (MDL). The user of this data should be aware that this data is of limited reliability.
$\mathrm{Jc}=$ Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

Well	Date																									$\begin{array}{r} \text { 悉 } \\ \text { 畐 } \\ \hline \end{array}$							-
MW15A	$\begin{aligned} & 07 / 22 / 99 \\ & 12 / 120101 \\ & 03 / 0702 \\ & 06 / 100102 \end{aligned}$	Prior to Well Construction																															
	03/0404		<0.4	<1	<0.84	<0.97	<1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	$2.0 \dagger$	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	<0.64	<1.1	<0.9	<0.95	<1.7	<0.62	<1.4	<0.66	<1.2	<1.4	<1.5	<1.1	<1.2
	04/13/04 $11 / 03 / 06$	\cdots	$\stackrel{0.4}{--}$	- ${ }_{\text {< }}^{\substack{\text { c. } \\ \hline}}$	- <2.84	${ }^{<0.97}$	- <1.4	- $\begin{gathered}<1.2 \\ <0.69\end{gathered}$	<1	- $\begin{gathered}<1.3 \\ <0.96\end{gathered}$	- $\begin{array}{r}<1.3 \\ <0.79\end{array}$	<0.92	- $\begin{gathered}\text { <1.4 } \\ \text { <0.69 }\end{gathered}$	$\frac{2.0 \dagger}{21}$	$\stackrel{1.7}{\square-}$	-	- $\begin{gathered}<1.2 \\ <0.96\end{gathered}$	- ${ }_{\text {coin }}^{1.4}$	-	< ${ }_{\text {< }}^{0.84}$	<0.64	${ }^{<1.1}$	<0.9	<0.95	${ }_{<}^{<1.7}$		- $\begin{aligned} & \text { <1.4 } \\ & <0.92\end{aligned}$	<0.66	- $\begin{gathered}<1.2 \\ <0.85\end{gathered}$	<1.4	- ${ }_{\text {< }} 1.5$	-	-<1.2 <0.56
	12/15/06	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	--	---	--	---				---
	02/13/07	--	---	---	--	--	--	--	--	--	--	--	--	--	\cdots	--	--	--	---	--	--	--	--	--	--	\cdots	--	\cdots	---	---	--	---	---
	-110107	\cdots	---	---	…	\cdots	\cdots	\cdots	-..	\cdots	…	…	…	\cdots	\cdots	\ldots	---	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	--	---	…	\cdots	--.	...	---	--.	---	\cdots
	02/14/08	---	---	---	---	---	---	---	---	---	---	---	---	---	--.	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	--	---	---
	05/06/08	--	--				---			--		---		---	\cdots	--					--												---
	0910/08 0.11909	\cdots	\cdots	\cdots	---	\cdots	---	\cdots	---	---	---	\cdots	\cdots	\cdots	---	---	---	---	---		\cdots												
	08/05/09	---	---	<0.4	<0.24	<0.23	<0.35	<1.06	<1.01	<0.35	<0.31	<0.47	<0.52	<0.6	---	<0.32	<0.28	<0.3	<0.54	<0.28	0.54 \dagger	<0.24	<0.25	<0.39	<0.26	---	<0.55	<0.36	<0.34	<0.29	<0.82	<1.55	<0.33
	05/27/10	--	--	--	--	\cdots	\cdots	\cdots	---	\cdots	--	\cdots	--	--	--	---	--	--	--	---	\cdots												
	11/30/10	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	-.	---
	03/01/11	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---
	05/17111	\cdots																															
	11/09/11	---	---	--	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---		---
	02/20/12	\cdots	--	---	--	---	---	---	---	---	---	---	--	---	--	--	--	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---
	-05/371/2	---	\cdots	---	\cdots	\cdots	\cdots	---																									
	11/27/12	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	--	---	---	---	---	---	--	---	---	---	---
	02/28/13	--	---	---	---	---	---	---	---	---	---	--	--	--	--	\cdots	--	--	-	---	--	---	--	--	---						\cdots	-	---
	-08/23/13	\cdots	\cdots	--	\cdots	--	\cdots	\cdots	--	--		\cdots	\cdots		--		\cdots		\cdots								\cdots						
	11/13/13	---	--	---	---	--	---	---	---	---	---	---	---	---	---	---	--	---	<0.27	---	-.-	--	---	---	---	-.-	---	---	---	---	---	---	---
	03/25/14	--	--	--	\cdots	---	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--			--		---	---	--	--
	08/28/14	---	---	---	---	---	--.	---	---	---	---	---	---	---	\cdots	.--	---	---	---	---	---	---	---		---		\cdots	-.	\cdots	--.	--.	---	\cdots
	11/25/14	\cdots	---	--	---	---	---	---	--	---	\cdots	---	\cdots	---	---	---	---	--	<0.27	--	---	--	--	--	---	--	---	--	---	---	---		---
	03/30/15	--	---	---	---	---	---	--	---	--	--	---	---	---	--	--	---	--	--	---	---	---	--	--	---	---	---	---	---	---	---	---	
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	--	-	-	-	3,000	-	-	0.2	0.2	--	--	6	\cdots	0.2	--	--	600	--	100	-	400	400	--	--	--	--	40	--	1	-	250
		0.1	\cdots	\cdots	\cdots	\cdots	600	\cdots	--	0.02	0.02	\cdots	\cdots	0.6	.-.	0.02	\cdots	-	60	--	$\underline{20}$	--	80	80	--	--	-	--	$\underline{8}$	\cdots	0.1	\cdots	$\underline{50}$

$\dagger=$ Detected below the Limit of Quantitation

$-=$ Not Tested / Not Required

TABLE 1
Historical Groundwater Analytical Results
QuicFrez SFR Site - Fond du Lac, Wisconsi
SCS Engineers Project \#25211406.63

$t=$ Detected below the Limit of

$-=$ Not Tested $/$ Not Required
of Quantitation
$I=$ Delected
$=$ Not Tested $/$ Not Required
A Analyte was detected in the associated Method Blank
$\mathrm{Ja}=$ Results reported between the Method Detection Limit (MDL) and Limi
of Quantitation (LOQ) are less certain than results at or above the Lo
$=$ =stimated value. Analyte detected at a l evevel less than the Reporting Limit (RL)
and greater than or equal to the Method Detection $\operatorname{Limint~(~(hDL).~The~user~of~this~data~should~be~aware~that~this~data~is~of~limited~reliability.~}$

Well	Date																							$\begin{array}{r} \stackrel{0}{\stackrel{\circ}{0}} \\ \text { 旁 } \\ \hline \end{array}$							O		-
MW16		Prior to Well Construction																															
	${ }_{0310404}$	--	${ }^{0.4}$	<1	<0.84	<0.97	<1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	<1.9	11.7	<1.4	<1.2	<1.4	<1.2	<0.84	$0.91+$	<1.1	<0.9	<0.95	<1.7	${ }^{<0.62}$	<1.4	<0.66	<1.2	<1.4	<1.5	<1.1	
	04/1404	---	<0.4	<1	${ }_{1}^{1.74}$	- ${ }^{<0.97}$	<1.4	<1.2	<1	${ }^{<1.3}$	<1.3	<0.96	<1.4	<1.9	<1.7	-1.4	<1.2	<1.4	-	${ }^{0.86 \dagger}$	4.6t	<1.1	<0.9	-0.95	<1.7	<0.62	-	<0.66	<1.2	- $\begin{aligned} & \text { <1.4 } \\ & <1.4\end{aligned}$	${ }^{1.5}$	<1.1	-1.2 <0.56
	$12 / 1406$			---	--.	---	---	-..	--.	---	--.	---	-0.	$\underline{-}$	-.-	-	-			--1	--.	--.	---	--.	---	---	--.	\cdots	---				
	02/13/07	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---
	$05 / 0807$	\cdots	--	---	---	---	---	---	---	--	\cdots	--	---	\cdots	--	\cdots	---	---	--	--	--	---	---	--	---	\cdots	---	---	--	\cdots	---	\cdots	\cdots
	1110207 0214108	\cdots	---	\cdots	\cdots	---	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots	\cdots																			
	05/06/08	---	---	---	---	--	---	---	---	---	---	---	--	---	---	---	--	---	---	---	---	---	---	--	--	---	---	---	---	---	---	---	---
	09/10/08	--	--	\cdots	---	-	\cdots	--	--	\cdots	\cdots	\cdots	\cdots	--	\cdots	---	---	\cdots	---	\cdots	\cdots	---	\cdots	\cdots		\cdots							
	08/06/09	--	--	<0.4	<0.24	<0.23	<0.35	<1.06	<1.01	<0.35	<0.31	<0.47	<0.52	<0.6	---	<0.32	<0.28	<0.3	<0.54	<0.28	<0.54	<0.24	<0.25	<0.39	<0.26	---	<0.55	<0.36	<0.34	<0.29	<0.82	<1.55	<0.33
	05/27710	$\stackrel{-}{-}$	\cdots	--	\cdots		\cdots																										
	11/30/10	---	--	---	---	--	---	---	---	---	---	---	---	---	--	--	---	--	---	---	---	---	---	---	---	---	---	---	---	---	-	-	---
	${ }^{03301 / 11}$	\cdots	--	\cdots	--	\cdots	\cdots	\cdots	--	\cdots	\cdots	--	\cdots	\cdots	---	\cdots																	
	08/30/11	---	---	---	---	---	---	---	---	---	--.	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	-.-		\cdots
	11/09/11	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---		---
	(02120112	\cdots	--	\cdots	\cdots																												
	08/27/12	--.	--	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	--.	---
	11/27/12	\cdots	--	---	---	---	---	--	---	---	--	--	--	---	--	---	---	--	---	---	---	---	--	---	---	--	--	---	\cdots	--	---	---	---
	-0228813	--.	\cdots	---	\cdots	\ldots	\cdots	-	\cdots	\cdots	\cdots	\cdots																					
	08/28/13	---	---	---	---	---	---	---	---	---	---	---	---	---	\cdots	---	---	---	<0.27	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	11/13/13	\cdots	--	\cdots	---	---	---	--	\cdots	\cdots		--	\cdots	--	\cdots	--	--	-	<0.27	\cdots	--	\cdots	--		\cdots					\cdots	---	---	--
	-03/25/14	…	\cdots		\cdots	<0.27	\cdots	---	\cdots	\cdots																							
	08/28/14	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	<0.27	--	---	---	---	---	---	---	---	---	---	---	---	--	---
	-11/25/14	\cdots	---	---	\cdots	\cdots	< <0.27	\cdots	---	---	\cdots																						
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	-	--	-	--	3,000	-	-	0.2	0.2	--	--	6	-	0.2	--	\cdots	600	-	100	-	400	400	-	--	-	-	40	-	1	-	
		0.1	-	--	--	\cdots	600	--	-	0.02	0.02	--	--	0.6	--	0.02	--	--	60	--	20	-	80	80	--	--	--	--			0.1	-	50

$\dagger=$ Detected below the Limit of Quantitation

$-=$ Not Tested / Not Required

				Chlorina	ed Volatil	Organi	Compo	ds（EP	8260）－－1							etroleun	－related	Volatile	Organic	Ompound	A8	260）－Mg							A M	als－mg／			
Well	Date				$\begin{aligned} & \frac{0}{6} \\ & \frac{0}{ㄷ} \\ & \frac{0}{2} \\ & \hline \end{aligned}$		틍 응 응															$\begin{gathered} \stackrel{.}{\underline{\omega}} \\ \stackrel{\rightharpoonup}{⿳ 亠 丷 口 阝} \\ \hline \end{gathered}$			$\begin{array}{r} \ddot{0} \\ \frac{\stackrel{\rightharpoonup}{5}}{\stackrel{\rightharpoonup}{x}} \\ \hline \end{array}$	亳 产			$\begin{aligned} & \text { 트를 } \\ & \text { 흗 } \\ & \hline \end{aligned}$	－	$\begin{array}{r} \frac{訁}{2} \\ \text { 言 } \\ \hline 2 \\ \hline \end{array}$		$\stackrel{\text { ¢ }}{\overline{\text { ® }}}$
MW16A	07／22／99 12／12／01 03／07／02 06／10／02	Prior to Well Construction											Prior to Well Construction													Prior to Well Construction							
	01712204 $03 / 04104$	＜0．1	<0.25	<0.35	<0.11	＜0．22	＜0．69	＜0．2	＜0．44	＜2．4	＜0．45	＜0．41	＜0．17			＜0．22		＜0．11	＜0．18	＜0．26	＜0．19	＜0．15	＜0．14	＜0．12	＜0．46		－－－		－－－	－－		\cdots	
	04／4104	－	－<0.29	（ <0.22	－<0.21	＜<0.16	－<0.25	＜0．29	－0．39	－ $\begin{array}{r}0.7 \\ <0.69\end{array}$	－	＜0．25	－<0.29	${ }_{\substack{<0.31 \\<0.6}}$	－	${ }_{\text {coil }}^{\substack{\text { c．} \\<1.1}}$	－0．56	＜0．19	－0．31	－	＜<0.32	－	－0．51	－	－<1.74	$\begin{aligned} & <0.005 \\ & <0.0079 \end{aligned}$	${ }^{\text {co．4 }}$	＜<0.0005	＜0．01	＜0．0015	<0.0002		
	＋170306												＜0．47															＜0．000					
	02／13／07	－－－	－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－			－－－
	05／08／07	－	\cdots	\cdots	－－	\cdots	－－	\cdots	－－	\cdots	\cdots	－－	－－	－－－	－－	－－	\cdots	－	\cdots														
	02／14／108	－0．44	<0.68	＜0．95	<0.2	－0．46	＜0．48	＜0．45	＜0．64	＜0．69	＜0．52	\bigcirc	＜0．47	＜0．34	＜0．36	－0．52	＜0．38	－0．48	－0．35	－1．8	<0	\bigcirc	<1.2	$\stackrel{-7}{-0.37}$	－－7．99	－－－	\cdots						
	05／06／08		－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－	－－	－	－－	－－	－－	－－－	－－	－－	－－－	－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－
	－091／1088	－－	－－－	－－－	\cdots	\cdots	\cdots	－－	－－－	\cdots	－－	－－	－－	－－－	－－－	－－－	－－－	\cdots	－－－	－－－	\cdots	\cdots	\cdots	\cdots	－－－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots		
	08／66／99	<0.39	<0.68	<0.61	<0.2	<0.43	<0.48	<0.43	<0.47	<1.5	<0.42	<0.41	<0.41	<0.46	<0.43	＜1．5	<0.87	<0.39	＜0．57	<1.7	<0.33	<0.51	＜1．1	＜1．5	＜2．13								
	05／27／10	<0.20	＜0．50	<0.50	<0.20	<0.80	＜0．20	＜0．50	＜0．50	<1.0	＜0．50	＜0．25	<0.20	＜0．20	＜0．25	<0.20	＜0．50	＜0．20	＜0．20	＜0．25	<0.50	＜0．50	＜0．20	＜0．20	<0.50	－－	－－	－－	－－	－－	\cdots	\cdots	
	05／27／10 Dup	＜0．20	<0.50	<0.50	<0.20	＜0．80	＜0．20	<0.50	＜0．50	<1.0	＜0．50	＜0．25	＜0．20	＜0．20	＜0．25	＜0．20	＜0．50	＜0．20	＜0．20	＜0．25	<0.50	<0.50	＜0．20	＜0．20	＜0．50	－－－	－	－－	－－－	－－－	－－	－－－	
	08／25／10 $11 / 30 / 10$	65	26	\bigcirc	2.3	－0．80	－0．20	$\bigcirc 0.50$	\bigcirc	<1.0	<0.50	<0.25	<0.20	\bigcirc	<0.25	\bigcirc	<0.50	\bigcirc	<0.20	<0.25	<0.50	<0.50	\bigcirc	<0.20	<0.50	－－－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	
	03／01／11		－－	－－－		－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－．	－－－	－－－	－－－	－－－	－－－	－－－	－－．	－－－	－－－	－	－－－	－－	－－－	－－	－－	－－－		
	05／17／11	60	47	<0.50	0.91 Jb	<0.80	<0.20	<0.50	<0.50	<1.0	<0.50	<0.25	0.21 Jb	<0.20	＜0．25	<0.20	<0.50	<0.20	<0.20	＜0．25	<0.50	<0.50	<0.20	＜0．20	<0.50	－－－	－－	－－－	－－－	－－－	－－	\cdots	\cdots
	11／09／11	<0.20	<0.50	<0.50	<0.20	<0.80	<0.20	<0.50	＜0．50	<1.0	<0.50	<0.25	<0.20	<0.20	<0.25	<0.20	<0.50	<0.20	<0.20	＜0．25	<0.50	<0.50	<0.20	<0.20	<0.50	－－	－－－	－－	－－－	\cdots	\cdots	\cdots	\cdots
	02120／12	－－－	－－	－－－	－－	－－－	－－	－－－	\cdots	\cdots	－－	－－－	－－－	\cdots	－	－－	－－－	\cdots	－－	－－－	－－－	－－－	－－	－－－	－－	\cdots	\cdots	－－	－－	－－			
	08／27／12	\cdots	\cdots	\cdots	－－－	－－－	－－－	－－－	－－－	\cdots	－－－	－	－－－	\cdots	\cdots	\cdots		－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	\cdots	\cdots	\cdots	\cdots	\cdots		
	11／27／12	＜0．19	5.1	<0.25	0.64	<0.26	<0.20	<0.28	＜0．31	＜0．68	＜0．17	<0.28	＜0．074	＜0．14	＜0．15	＜0．13	＜0．13	＜0．14	＜0．17	＜0．16	<0.13	<0.11	＜0．14	＜0．18	＜0．068	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	－	\cdots	－－	\cdots	－－－	\cdots	－－	\cdots	\cdots	\cdots	\cdots	－－－	\cdots		\cdots																		
	08／28／13		－			－	－－．							－－．		－－－		－－－															
	11／13／13	<0.19	<0.12	<0.25	＜0．10	＜0．26	＜0．20	<0.28			<0.17		＜0．074						＜0．17		＜0．13	＜0．11		＜0．18			－－－	－－－	－－－				
	11／13／13 dup	＜0．19	＜0．12	<0.25	＜0．10	＜0．26	＜0．20	<0.28	＜0．31	＜0．68	＜0．17	＜0．28	＜0．074	＜0．14	＜0．15	＜0．13	＜0．13	＜0．14	＜0．17	＜0．16	＜0．13	＜0．11	＜0．14	＜0．18	＜0．068	－－－	－－－	－－－	－－－	－－－	－－－	－－－	
	－05／29／14	－－－	－－－	\cdots	－－－	－－－	－－－	\cdots	－－－	\cdots	－－．	\cdots	－－．	\cdots	－－－	\cdots	－－－	－－－	．－．	\cdots	－－－	－－－	－－－	－－－	－－－	－	\cdots		\cdots	\cdots	\cdots	\cdots	\cdots
	08／28／14		－－	－－－	－－	－－	－－－		－－－	－－－				－－－	－－	－－－		－－－		－－－	－－－		－－－	－－－		－－－	－－－	－－	－－－	－－－	－－－	－－－	
	$11 / 25 / 14$ 03 $03 / 3 / 5$	＜0．19	＜0．12	<0.25	<0.10	<0.26	<0.20	<0.28	<0.31	<0.38	<0.17	<0.28	＜0．074	＜0．14	<0.15	＜0．13	＜0．13	＜0．14	＜0．17	＜0．16	＜0．13	＜0．11	＜0．14	＜0．18	＜0．068	－－	\cdots	－－	－－	－－	\cdots	－－	\cdots
NR 140 Enforcement Standard		5	70	100	0.2	5	6	5	7	5	5	5	5	\cdots	－	－	700	－	－	100	－	800	480	480		0.01	2	0.005	0.1	0.015		0.05	
		0.5	7	$\underline{2}$	$\stackrel{0}{0.02}$	0.5	0.6	0.5	0.7	0.5	0.5	0.5	0.5	－－	－－	－－	140	－－	－－	10	－－	160	96	96	400	0.001	0.4	0.0005	0.01	0.0015	0.0002	0.01	0.01

$t=$ Detected below the Limito of Quantitation
$\cdots=$ Not Tested $/$ Not Required
$B=$ Analy
$B=$ Analyte was detected in the associated Method Blank．
$=$ Estimated value．Analyte detected at a level less than the Reporting Limit（RL）
Note：The following compound was detected in MW16A during the August 2009 sampling event：Benzyl Alcohol（ $1.0 \mathrm{Hg} / \mathrm{L}$ ）
Note：As of the December 2010 ch．NR 140 Wisconsin Administrative Code，eff． $1-1-111$ ，the entiorcement standards（ESS）and preventive action limits（PALs）have changed for Toluene and Xylenes． The previous standards were Toluene $1,000 \mathrm{ES} / 200 \mathrm{PAL}$ ；Xylenes $10,000 \mathrm{ESS} 1,000 \mathrm{PAL}$ ．

Well	Date							$\begin{array}{r} \text { 뭄 } \\ .0 \\ .0 \\ \frac{0}{0} \\ \hline \mathbf{D} \\ \hline \end{array}$																		宕							$\stackrel{\text { O }}{\text { ¢ }}$
mW16A	07/22/99 12/12/01 03/07/02 06/10/02 06/10/02	Prior to Well Construction																															
	03/04/04	\cdots	<0.4	<1	<0.84	<0.97	<1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	5.24	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	<0.64	3.5	<0.9	<0.95	<1.7	<0.62	<1.4	<0.66	<1.2	<1.4	<1.5	<1.1	
	04/14/04	---	<0.4	<1	<0.84	<0.97	<1.4	<1.2		<1.3	<1.3	<0.96	<1.4	$4.6 \pm$	<1.7		<1.2		<1.2	<0.84	<0.64		<0.9	<0.95	<1.7	<0.62				<1.4		<1.1	
	1103/06	--	---	<0.85	<1.03	<1.05	<0.7	<0.69	<0.74	<0.96	<0.79	<0.82	<0.69	6.3	--	<0.58	<0.96	<0.75	<0.54	<1.16	<0.62	<0.65	<0.8	<0.95	<0.7	--	<0.92	<0.8	<0.85	<1.4	<0.92	<1.01	<0.56
	12/14/06	---	---	--	---	--	---	---	--	---	--	---	---	--	--	---	---	--	---	--	---	---	--	---	---	--	--	--	--	--	---	--	\cdots
	($\begin{aligned} & 021131307 \\ & 05 / 0807\end{aligned}$	--.	---	---	---	---	--	---	---	---	---	--	--	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	\cdots	---	--	---
	11/02/07	--	---	---	--	---	\cdots	--	--	--	---	\cdots	--	--	--	--	---	--	--	--	---	--	---	---	--	--	---	---	--	-	--	---	---
	02/1408	---	---	---	---	\cdots	-.	\cdots	---	---	---	\cdots	---	---	\cdots	\cdots	---	---	---	---	---	---	\cdots	---	--	---	\cdots	\cdots	--	---	\cdots	\cdots	\cdots
	05/0608	--	---	\cdots	\cdots	--	\cdots	--	\cdots	--	--	\cdots	---	--	--	--	--	--	--	--	--	--	\cdots	--	-	--	--	--	--	--	--	--	\cdots
	01/19/199	---	---	---	--.	---	---	---	---	---	---	---	---	---	---	---	---	\cdots	---	--.	---	---	---	-..	---	…	---	---	…	---	---	---	
	08/06/69	--	---	<0.4	<0.24	<0.23	<0.35	<1.06	<1.01	<0.35	<0.31	<0.47	<0.52	<0.6	---	<0.32	<0.28	<0.3	<0.54	<0.28	<0.54	<0.24	<0.25	<0.39	<0.26	---	<0.55	<0.36	<0.34	<0.29	<0.82	<1.55	<0.33
	05/27710	---	---	--	\cdots	--	\cdots	\cdots																									
	08/25/10	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	-.	---
	11/30/10	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	--	---	---	---	---	---
	- $0301 / 111$	\cdots	--	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots																								
	08/30/11	---	---	---	---	---	---	---	---	---	---	---	---	---	--	-.-	---	---	---	-.-	---	---	---	---	---	---	---	---	---	---	---	---	---
	11/09/11	--	--	--	--	--	--	\cdots	---	--	--	--	--	--	--	--	\cdots	--	---	--	--	--	--	---	--	---	\cdots	--	---	---	--	--	---
	022/31/12	\cdots																															
	08/27/12	---	---	---	--	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	--	---	--	---	---	\cdots	---						
	11/27712	---	---	--	---	--	\cdots	--	--	---	--	--	--	--	--	--	\cdots	--	--	--	--	--	---	--	--	--	\cdots	--	--	---	---	---	\cdots
	05/23/13	---	---	---	---	\cdots	\cdots	\cdots	\cdots	…	\cdots	--	\cdots	---	\cdots	--	---	--	---	\cdots	--.	\cdots	---	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
	08/28/13	\cdots	-0.27	\cdots																													
	11/13/13 Dup	---	--.	---	---	---	---	--.	---	---	---	---	---	---	--	---	---	---	<0.27	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	03/25/14	---	---	--	---	--	--	--	--	\cdots	--	--	--	--	--	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	-05/29/4	\cdots	---	\cdots																													
	11/25/14	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	<0.27	--	--	--	--	---	---	---	---	---	---	---	---	---	---
	03/30/15	--	--	--	--	--	---	---	---	---	--	---	---	--	--	---	--	---	---	--	--	--	--	---	---	--	---	--	---	---	---	---	
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	\cdots	\cdots	\cdots	\cdots	3,000	\cdots	\cdots	0.2	0.2	\cdots	\cdots	6	\cdots	0.2	\cdots	\cdots	600	\cdots	100	\cdots	400	400	\cdots	\cdots	\cdots	\cdots	40	\cdots	1	\cdots	250
		0.1	--	--	-	--	600	--	--	0.02	0.02	--	--	0.6	--	0.02	--	--	60	--	20	\cdots	80	80	--	--	--	--	$\underline{8}$	--	${ }_{0}^{0.1}$	\cdots	50

$\dagger=$ Detected below the Limit of Quantiation
$--=$ Not Tested $/$ Not Required

		Chlorinated Volatile Organic Compounds（EPA 8260）－－ug／L											｜e Organic Compounds（EPA 8260）－－Mg／													mgh							
Well	Date				$\begin{aligned} & \frac{0}{6} \\ & \text { 흔 } \\ & \frac{0}{2} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 틍 } \\ & \text { 흥 } \\ & \text { 흗 } \\ & \hline \end{aligned}$																					$\begin{aligned} & \text { 틀 } \\ & \text { E⿸厂⿱二⿺卜丿口 } \\ & \hline \end{aligned}$		®0	$\begin{array}{r} \text { 言 } \\ \text { 彦 } \\ \hline \end{array}$		$\stackrel{\stackrel{\rightharpoonup}{7}}{\stackrel{1}{6}}$
MW17	07／22／99 12／12／01 03／07／02 06／10／02	Prior to Well Construction											Prior to Well Construction													Prior to Well Construction							
	0304104	20	${ }^{2.1}$	<0.35	＜0．11	＜0．22	00.69	＜0．2	＜0．44	＜2．4	＜0．45	<0.41	<0.17	<0.31	＜0．43	＜0．22	＜0．16	<0.11	＜0．18	＜0．26	<0.19	$0.43 \dagger$	<0.14	<0.12	<0.46								
	04／13／34 1110306	${ }_{0}^{5.9} 0$	$0.48 \dagger$ <0.68	（ <0.22	＜<0.21	－	－0．25	－	－0．39	－ $\begin{aligned} & 0.7 \\ & <0.69\end{aligned}$	［0．7	－0．25	－	＜	－	${ }_{\text {coil }}^{\substack{0.39 \\<1.1}}$	－0．56	＜0．19	－0．3	＜0．6 <2.2 <2.2	－	2.3 <0.59	＜0．51	coibe	－1．74	－ 0.005	${ }^{<0.4}$	<0.0005	＜0．01	＜0．0015		＜0．01	${ }^{<0.01}$
	$12 / 1406$	\cdots					－－－	－－－	－－－			\cdots						－－－	－－－				－－－	－－2		－0．		＜－．	＜0．－	－－－			－023
	02／1307 050807	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	\cdots	－－－	－－－	－－－	－－－	\cdots	－－	\cdots	\cdots	\cdots	－－	－－－	－－	－－－	－－－	\cdots	\cdots	－－	\cdots	－－－	－－－			\cdots
	－ $11 / 02 / 107$	－－－	－－－	－－．	－－－	－－．	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	．－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	\cdots
	$02 / 1408$	＜0．44	<0.68	<0.95	＜0．2	＜0．46	＜0．48	＜0．45	<0.64	<0.69	＜0．52	<0.5	<0.47	＜0．34	<0.36	＜0．52	＜0．38	<0.48	<0.35	<1.8	<0.38	7.9	＜1．2	<0.37	<0.99	－－	－－	－－－	－－	－－		－－	－－－
	05／06／08 09／10，	\cdots	$\stackrel{-}{--}$	\cdots	\cdots	－－－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots																					
	01／19／09			－－－	－－	－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－	－－－	－－－	－－－	－－－		－－－					
	08／05／09	＜0．39	＜0．68	＜0．61	＜0．2	＜0．43	<0.48	＜0．43	＜0．47	<1.5	＜0．42	＜0．41	＜0．41	＜0．46	＜0．43	<1.5	<0.87	<0.39	<0.57	<1.7	<0.33	0．52†	＜1．1	＜1．5	＜2．13	0.0054	0.0927	＜0．0005	＜0．012	＜0．0007	<0.0002		
	－05／26／10	\cdots	－－－－	\cdots	－－－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots																						
	11／30／10	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	03／01／11	－－	－－	\cdots	\cdots	－－－	－－	－－－	－－	－－	－－	－－	\cdots	－－	\cdots	\cdots	－－	－－	－－－	\cdots	－－	－－	－－－	\cdots	－－	－－	－－	－－－	\cdots	－－－	－－	－－	\cdots
	08／30／11	－－．	－－．	…	－－－	．－．	－－－	－－－	－－．	\cdots	…	…	\cdots	－－．	\cdots	\cdots	－－．	\cdots	\cdots	－－－	－－－	…	\cdots	－－－	\cdots	－－－	－－－	－－－	－－．	－－．	…	…	\cdots
	11／09／11	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－
	02／20／12	\cdots	\cdots	\cdots	\cdots	－－	\cdots	\cdots	－－－	－－	－－	\cdots	\cdots	－－	－－－	\cdots	\cdots	\cdots	－－－	－－	－－－	\cdots	\cdots	－－	\cdots	\cdots	－－	－－	－－	－－	－－	－－	\cdots
	08／27／12	－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－．	－－．	－－－	－．．	－－	－－	－－－	－－－	－－．	－－－	－－－	－－－	．－－	－－－	－－－	－－－
	11／27／12	＜0．19	3.5	<0.25	0.29 Jc	＜0．26	＜0．20	＜0．28	<0.31	＜0．68	＜0．17	＜0．28	＜0．074	＜0．14	＜0．15	＜0．13	＜0．13	＜0．14	＜0．17	＜0．16	<0.13	＜0．11	＜0．14	＜0．18	＜0．068	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－
	0228813	－－－	－－				－	－							－－		－－		－－－	－－－				－－	\cdots	－－	－	\cdots	\cdots	－－－	\cdots	\cdots	－－
	08／28／13				－－－	－－	－－－	－－－	－	－－			－．－		－－－	－－．	－－－	－－－	－－－	－－－	－－	－－．	－－－	－－－	－－－	－－－		－－－			－－－	－－－	－－－
	11／13／13	2.6	＜0．12	＜0．25	＜0．10	＜0．26	＜0．20	＜0．28	<0.31	＜0．68	＜0．17	＜0．28	＜0．074	＜0．14	＜0．15	＜0．13	＜0．13	<0.14	＜0．17	＜0．16	＜0．13	＜0．11	＜0．14	＜0．18	＜0．068	－－	－－	\cdots	－－	－－	－－	－－－	－－－
	03／3	\cdots	－－	－－	\cdots	－－	\cdots	－－	－－	－－	\cdots	\cdots	－－	－－	－－	－－	－－	－	\cdots	\cdots	－	\cdots	\cdots	－		\cdots		\cdots				－－	\cdots
	08／28／14	－－－	－－－	－－－	－－．	－－	－－	－－－	－－－	－－	－－	－－	－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	11／25／14	6.4	3.5	＜0．25	<0.10	＜0．26	＜0．20	＜0．28	<0.31	<0.68	＜0．17	＜0．28	＜0．074	＜0．14	＜0．15	＜0．13	＜0．13	<0.14	<0.17	＜0．16	<0.13	＜0．11	＜0．14	＜0．18	＜0．068	\cdots		－－－	－－－	－－－	－－	－－－	－－
	03／30／15																									－－	－－－	－－－	－－－	－－－	－－－	－－	
NR 140 Enforcement Standard		5	70	100	0.2	5	6	5	7	5	5	5	5	－	－	－	700	－	－－	100	－	800	480	480	2，000	0.01	2	0.005	0.1	0.015	0.002	0.05	0.05
		0.5	$\underline{7}$	20	0.02	0.5	0.6	0.5	0.7	0.5	0.5	0.5	0.5	－－	－－	－	140	－	－	10	－－	160	96	96	400	0.001	0.4	0.0005	0.01	0.0015	0.0002	0.01	0.01

$\dagger=$ Detected below the Limit of Quantitation

$=$＝Not Tested／Not Required
Note：The following compound was detected in MW17 during the August 2009 sampling event：Benzyl Alcohol（ 1.8 gg／L）．
Note：As of the December 2010 ch．NR 140 Wisconsin Administrative Code，eft 1－1－11，the enforcement standards（ESs）
The previous standards were Toluene $1,000 \mathrm{ES} / 200 \mathrm{PAL}$ ；xylenes $10,000 \mathrm{ES} / 1,000 \mathrm{PAL}$ ．

$\dagger=$ Detected below the Limit of Quantitation
$-=$ Not Tested $/$ Not Required

				Chlorina	d volat	e Organ	Compo	nds（EPA	8260）－－4							etroleum	－related	Volatile	Organic	Compounds	（EPA 8	260）－Mg							RCRAMe	tals－mgh			
Well	Date				$\begin{aligned} & \text { 은 } \\ & \text { 흗 } \\ & \text { 를 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 틍 } \\ & \text { 흥 } \\ & \hline ⿳ 亠 口 \end{aligned}$										\qquad								$\begin{array}{r} \stackrel{\ddot{0}}{\stackrel{\rightharpoonup}{\omega}} \\ \stackrel{\rightharpoonup}{x} \\ \hline \end{array}$		$\begin{array}{r} \text { 㘊 } \\ \hline \end{array}$			－	$\begin{array}{r} \frac{2}{2} \\ \frac{20 i n}{20} \\ \hline \end{array}$	\％	$\stackrel{\stackrel{\circ}{\square}}{\bar{\circ}}$
мW18	$\begin{aligned} & 07 / 22 / 99 \\ & 12 / 12 / 01 \\ & 03 / 07 / 02 \\ & 06 / 10 / 02 \end{aligned}$	Prior to Well Construction											Prior to Well Construction													Prior to Well Construction							
	03／04／04	<0.1	${ }^{<0.25}$	<0.35	<0.11	＜0．22	<0.69	<0.2	<0.44	＜2．4	${ }^{<0.45}$	<0.41	<0.17	<0.31	${ }^{0.43}$	＜0．22	<0.16	<0.11	<0.18	<0.26	<0.19	${ }^{2.1}$	<0.14	<0.12	<0.46	，	－－	－－－	－－	－－	－－	－－－	
	04／13／304 $11 / 03 / 06$	＜	＜0．29	＜<0.22	＜0．21	－${ }_{\text {＜0．16 }}$	－	－	－0．39	－ $\begin{aligned} & 0.7 \\ & <0.69\end{aligned}$	${ }_{\substack{<0.7 \\<0.52}}$	$\begin{aligned} & c 0.25 \\ & 00.5 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & <0.29 \\ & <0.47 \\ & <0 . \end{aligned}$	$\begin{aligned} & \begin{array}{c} 0.31 \\ 00.6 \end{array} \\ & 00 \end{aligned}$	＜<0.21	$\begin{aligned} & <0.39 \\ & <1.1 \end{aligned}$	＜0．56	＜0．19	－	＜0．6	＜<0.32	$\stackrel{3.1}{\substack{30.59}}$	$\begin{aligned} & <0.51 \\ & <0.39 \end{aligned}$	coi．66	$\begin{gathered} \mathbf{c} 0.70 \\ <1.74 \end{gathered}$	－${ }_{\text {co．005 }}^{<0.0079}$	－ 0.0 .4	<0.0005 <0.0007	${ }^{<0.01}<0.0023$	＜0．0015	＜0．0002	<0.01 0.041	－0．01
	12／4／06	－－．	－－－	－－－		－－．	－－．	－－．	－－－	－－－	－－－										－．．	－－．				－－－							
	02／13／07	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	$05 / 0807$ $11 / 0207$	\cdots	－－	\cdots	$\stackrel{-}{--}$																												
	02／14／08	－－－	－－－	－－－	－－	\cdots	\cdots	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	\cdots
	05／06／08	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	09／10／08	\cdots	－－－	－－－	－－－	－－－	\cdots	\cdots																									
	08／05／09	＜0．39	<0.68	<0.61	<0.2	＜0．43	<0.48	＜0．43	＜0．47	<1.5	＜0．42	<0.41	＜0．41	＜0．46	<0.43	<1.5	<0.87	＜0．39	<0.57	<1.7	<0.33	<0.51	<1.1	＜1．5	＜2．13	0.0013	0.5229	0.9026	0.4505	＜0．0007	＜0．0002	＜0．0009	0.5839
	05／26／10	－－	－－	－－	－－	－－	－－	－－－	－－	－－	－－	－－	－－－	－－	－－	－－	－－	－－－		－－	－－		－－－			－－－		－－	－－－	－－－			－－－
	$08 / 25110$ $11 / 3 / 10$	\cdots																															
	03／01／11	－－	－－－	－－－	－－－	－－－	－－－	－－	－－	－－－	－－－	－－－	－－－	－－－	－－	－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	\cdots	\cdots	\cdots	－－	\cdots			\cdots	－－－	\cdots
	05／16／11	\cdots	\cdots	－－	\cdots	－－－	－－－	－	－－	－－	－－	\cdots	－－－	－－	－	－－	\cdots	－－	－－－	－－－	－－	\cdots	－－	－－－	－－	－－－	－－	－－	－－－	－－－	－－	－－－	\cdots
	11／09／11	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－	－－	－－－	－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－	－－－	－－－	－－－	－－－	－－－	－－－	\cdots
	02720／12	－－	－－	\cdots	\cdots	\cdots	－－－	－－	－－	\cdots	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－	－－	－－－	－－－	－－－	－－－	－－	－－－	－－－
	－05／31712	\cdots	\cdots	\cdots		\cdots	－－－	\cdots	\cdots	－－－	\cdots	\cdots	－－－	\cdots	\cdots	\cdots	－－－	\cdots	\cdots	－－－	－－－	\cdots	\cdots	－－－	\cdots	－－	\cdots	\cdots	\cdots	－－．	\cdots	\cdots	\cdots
	11／27／12					amaged	Not San											Damag	ged－No	Sampled						－－－	－－－	－－－	－－－	－－－	\cdots	－－－	\cdots
	02728／13					amaged	Not Sam	ppled										Damag	ged－No	Sampled						－－	－－	－－	－－	\cdots	－－	－－	－－－
	08／28／13	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－	－－	－－	－－－	－－－	－－－	－－	－－		－－－	－．．	－－－		－－－	－－－	－－－				
	11／13／13		－－－	\cdots		－－	－－	－－－	－－－	－－	－－	－－－	－－－	－－	－－－	－－－		－－－	－－－							－－	－－		－．－		\cdots	\cdots	
	05／29／14	Destroyed											Destroyed													Destroyed							
	11／25／44																																
 NR 140 Enforcement Standard NR 140 Preventive Action Limit																																	
		5 0.5	70	100 20	${ }_{0}^{0.2}$	$\stackrel{5}{0.5}$	${ }_{0}^{6}$	$\stackrel{5}{0.5}$	7 0.7	$\stackrel{5}{0.5}$	5 0.5	5 0.5	5 0.5	\cdots	\cdots	\cdots	700 140	\cdots	\cdots	100 10	\cdots	800 160	${ }^{480}$	480 96	2,000 400	${ }^{0.01}$	${ }_{0}^{2}$	0．005	${ }_{0}^{0.1}$	0.0015	0.002 0.0002	0.05 0.01	0.05 0.01

$t=$ Detected below the Limitiof Quantitation

- －Not Tested／Not Required
Note：The following compound was detected in MW18 only during the March 4， 2004 sampling event：Chlorobenzilate（ $0.46 \mathrm{mg} / \mathrm{L}$ ）．

Ths previous standards were Toluene 1,000 ESS 200 PAL；Xylenes 10,000 ESS 1,000 PAL．

$t=$ Detected below the Limit of Quantitation
$=$ Not Tested / Not Required

[^3]Historical Groundwater Analytical Results
QuicFrez SFR Site - Fond du Lac, Wisconsin
SCS Engineers Project \#25211406.63

$\dagger=$ Detected below the Limit of Quantitation
- Not Tested / Not Required

Note: The following compound was detected in Mw20 during the August 2009 sampling event: Benzyl Alcohol $(0.91+\mathrm{\mu g} / \mathrm{L})$.
As or the December 2010 ch. NR 140 Wisconsin Administrative Code, eff. $1-1-11$, the en
The previous standards were Toluene $1,000 \mathrm{ES} / 200 \mathrm{PAL}$; xylenes $10,000 \mathrm{ES} / 1,000 \mathrm{PAL}$

Well	Date																$\begin{array}{r} \text { 들 } \\ \text { 䯧 } \\ \text { 흥 } \\ \hline \end{array}$									砳							-
мw20	$\begin{aligned} & 07 / 22 / 99 \\ & 121 / 1201 \\ & 0307020 \\ & 06 / 10 / 02 \end{aligned}$	Prior to Well Construction																															
	03/0404	--	<0.4	<1	<0.84	<0.97	<1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	<1.9	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	<0.64	<1.1	<0.9	<0.95	<1.7	<0.62	<1.4	<0.66	<1.2	<1.4	<1.5	<1.1	
	04/31304	---	<0.4	${ }_{<0}^{<1}$	- <1.84	- <1.97	- $\begin{aligned} & <1.4 \\ & <0.7\end{aligned}$		<1	- ${ }_{\text {< }}^{1.3}$	- ${ }_{\text {< }}^{1.3}$	<0.96	-1.4	${ }_{41}^{22}$	<1.7	- ${ }_{\text {cli.4 }}$	-1.2	${ }_{\text {coin }}^{<1.4}$	$\begin{gathered} 1.2 \\ <0.54 \\ <0 \end{gathered}$	<0.84	-	- ${ }_{\text {< }}^{1.1}$	-	- <0.95	- <1.7	<0.62	- ${ }_{\text {<1.4 }}$	<0.66	-	-	${ }^{1.5}$	<1.1	${ }_{\text {coin }}^{\substack{1.2 \\<0.56}}$
	12/14/06	---	---	---	.-.	--.	---	-..-	---	--.	--.	---		---		--.	---		---			---											
	02/13/107	---	--	-	---	-	---	---	---	---	---	---	--	--	---	-	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	----
	05/08/07 110207	\cdots	--	---	\cdots	\cdots	\cdots	\cdots	---	\cdots	---																						
	02/14/08	--	---	---	--	---	\cdots	---	---	---	---	---	---	---	---	---	---	---	---	.-.	---	---	---	---	\cdots	--.	\cdots	\cdots	\ldots	\cdots	-.-	\cdots	---
	05/06/08	\cdots	--		---		-	--	---	---		---		\cdots	.-.	--					---	--	--		--		--	---		---	---	---	---
	09/10/08 $01 / 1909$	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	-..	\cdots	---	\cdots	---	\cdots	---	\cdots														
	08/05/09	--	\cdots	<0.4	<0.24	<0.23	<0.35	<1.06	<1.01	<0.35	<0.31	<0.47	<0.52	${ }_{1.1+}$	---	<0.32	<0.28	<0.3	<0.54	<0.28	<0.54	2.2	<0.25	<0.39	<0.26	---	<0.55	<0.36	<0.34	<0.29	<0.82	<1.55	<0.33
	05/26/10	\cdots	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	---	--	--	--	--	--	--	--	--		---
	-11/30/10	--.	---	---	---	---	---	---	---	---	---	---	---	\cdots	---	---	---	---	---	---	…	\cdots	---	--.	\cdots	---	\cdots	\cdots	---	\cdots	---		\cdots
	03/01/11	---	---	---	---	---	---	--	---	---	---	---	---	---	-	---	---	---	---	---	---	--	---	---	---	---	---	---	--	---	---	---	---
	05/16/11	---	--	---	--	---	---	--	---	--	--	--	-	---	--	--	-				--		--										---
	11/09/11	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	\cdots	---	---	\cdots	\cdots	\cdots	---	--	\cdots
	02/20/12	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	05/31/12	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots	---	--	\cdots	--	\cdots	\cdots	--	--	\cdots	--	\cdots	\cdots
	11/26/12	---	---	---	---	---	---	---	---	---	---	---	---	---	-.-	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---		.-.
	02/28/13	\cdots	--	--	---	---	\cdots	--	\cdots	\cdots	---	--	--	--	\cdots	---	--	---	---	---	---	--	---	---	---	---	--	---	--	---	---	---	---
	-05/23/13	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots	\cdots	---	\cdots	--	\cdots	\cdots	\cdots	---	\cdots							
	11/13/13	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	<0.27	---	---	---	---	---	---	--	---	---	---	---	---	---	---
	03/25/14	\cdots	--	--	\cdots	\cdots	\cdots	--	--	--	--	\cdots	--	--	\cdots	--	--	--	--	\cdots	--	--	--	\cdots	\cdots	--	\cdots	\cdots	\cdots	--	---	--	---
	-05/29/14	\cdots	--	\cdots																													
	11/25/14	---	---	--	---	---	---	--	---	---	---	--	---	--	--	---	--	---	<0.27	--	---	---	--	--	---	---	---	---	---	---	---	---	---
	03/30/15	--	--	--	--	--	---	---	---	--	--	--	--	---	---	--	--	--	---	--	--	---	\cdots	--	---	--	---	--	--	--	--	---	
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	-	-	-	-	3,000	-	-	0.2	0.2	-	-	6	-	0.2	-	-	600	-	100	--	400	400	-	-	-	-	40	-	1	-	250
		0.1	\cdots	\cdots	\cdots	\cdots	600	\cdots	\cdots	0.02	0.02		\cdots	0.6					60		20		80	80							0.1		50

$t=$ Detected below the Limit of Quantitation

$t=$ Detected below the Limit of C
-- Not Tested $/$ Not Required
= Nnalyested was detected in the
the associated Method Blank
Ja $=$ Results reported between the Method Detection Limk Limit (MDL) and Limit of Quantitatio
above the LOQ.
$\mathrm{Jb}=$ Estimated value. Analyte detected at a level less than the Reporting (RL) and greater than or equal to the Metho
Detececion Limitit (MDL). The use of this data should be aware that this data is of linimied reliability.
$\mathrm{Jc}=$ Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

Note: The foliowing compounds were detected in MW21 during the August 20099 samping event: Phenol ($4.4 \mathrm{Hg} / \mathrm{L}$), Benzyl $\mathrm{Alcohol}(4.8 \mathrm{gg} / \mathrm{L})$
Note: As of the December 2010 ch. NR 140 Wisconsin Administrative Code, eff. $1-1-11$, the en
The previous standards were Toluene 1,000 ESS/200 PAL; Xylenes 10,000 SEl 1,000 PAL.
The previous standards were Toluene $1,000 \mathrm{ES} / 200 \mathrm{PAL}$; Xylenes $10,000 \mathrm{ES} / 1,000 \mathrm{PAL}$.
Note: The following compound was detected in MW 21 during the August 27,2012 sampling event: Chloroethane $(2,000 \mathrm{\mu g} / \mathrm{L})$.

Well	Date		\qquad													$\stackrel{\circ}{\text { W. }}$ 条													\qquad	$\begin{aligned} & \text { 흫 } \\ & \text { 흘 } \\ & \text { 흘 } \\ & \text { 子 } \end{aligned}$			-
Mw21	07/22/99 12/12/01 03/07/02 01/12/04 03/04/04	Prior to Well Construction																															
	11/03/06	\cdots	---	4.6	<1.03	<1.05	<0.7	53	<0.74	<0.96	<0.79	<0.82	<0.69	3.6	--	<0.58	<0.96	<0.75	<0.54	<1.16	<0.62	<0.65	<0.8	<0.95	<0.7	---	<0.92	<0.8	${ }^{2.2 \dagger}$	<1.4	<0.92	<1.01	<0.56
	12/15/06	---	--	---	0.06		<0.013		${ }^{0.016+}$																								
	02/1307 050807 1007	--	---	--	$0.20 \dagger$ 0.142	${ }_{\text {cole }}^{\text {co.08 }}$	${ }_{0}^{<0.065}$	--	0.244 0.105	- 0.0075	0.32	${ }_{\text {a }}^{0.124+}$	${ }_{0.043 \dagger}^{0.16 \dagger}$	\cdots	\cdots	0.56 0.253	---	- <0.075	---	\cdots	\cdots	\cdots	0.87 0.35	${ }^{0.43}$	${ }_{0}^{0.0101 t}$	\cdots	1.89 0.85	$\stackrel{3}{3.02 \dagger} 1$	${ }^{5+}$	\cdots	\cdots	2.17 0.88 0	${ }^{0.62}$
	11/02107	---	---	--	0.097	<0.016	${ }^{0.026+}$	--	$0.023+$	<0	$<$	<0.015	<0.023	---	--	$0.02 \dagger$	---	<0.015	---	---	--	--	0.103	0.119	<0.014	--	0.53	${ }^{0.45 \dagger}$	${ }_{1.8 \dagger}^{2 .}$	--	--	0.223	0.084
	02/14/08	--	---	---	---	---	---	--	---	---	---	---	---	---	---		---		--	---	---	---	---	---	---	---	---	---			---		---
	05/06/08	\cdots	---	\cdots																													
	01/1909	\cdots	\cdots	--	0.066	<0.015	<0.014	---	<0.017	<0.016	$0.012 \dagger$	<0.02	<0.023	---	-	<0.02	---	<0.012	---	---	\cdots	---	$0.027 \dagger$	0.073	<0.013	---	0.430	0.400	1.51	---	---	0.084	0.023t
	08/05/09	---	---	<0.4	<0.24	<0.23	<0.35	<1.06	<1.01	<0.35	<0.31	<0.47	<0.52	<0.6	---	<0.32	<0.28	<0.3	<0.54	<0.28	<0.54	<0.24	<0.25	<0.39	<0.26	---	<0.55	$0.49 \dagger$	1.7	<0.29	<0.82	<1.55	<0.33
	05/26/10	---	--	--	--	--	--	--	--	--	--	--	--	--	--	\cdots	--	--	\cdots	--	--	---	--	--	\cdots	---	---	\cdots	\cdots	\cdots	---	\cdots	\cdots
	08/25/10 Dup	\cdots	---	\cdots	\cdots	\cdots	\cdots	\cdots	$\stackrel{-}{--}$																								
	11/3/10	--	--	---	---	---	---	---	---	---	---	\cdots	\cdots	--	\cdots	--	--	--	--	\cdots	--	---		\cdots	---	---	--	--	---			\cdots	\cdots
	$03 / 02 / 11$ dup	\cdots	---	\cdots	…	…	-..	…	…	…	…	…	\cdots	…	\cdots	\cdots	…	---	…	\cdots	…	---	…	…	\cdots	‥-	---	…	\cdots		\cdots	\cdots	\cdots
	05/7/11	--	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	08/30/11	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	\cdots
	11/09/11	--	--	--	--	--	--	\cdots	--	\cdots	--	--	--	---	--	--	--	--	\cdots	--	--	--	\cdots	--	---	---	--		\cdots		--		\cdots
	022/31/12	\cdots	---	---	…	---	-..	--.	--.	--.	--.	--.	---	\cdots	---	\cdots	---	---	-..	\cdots	--.	\cdots	\cdots	\cdots	\cdots	---	---	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
	08/27/12	---	---	--	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---
	11/27/12	\cdots	--	--	--	--	\cdots	---	---	\cdots	--	\cdots	--	---	--	--	--			---	---		\cdots			--		\cdots			--	---	\cdots
	05523/13	…	---	---	--.	---	---	--.	---	--.	---	---	.--	---	---	.-.	--	---	---	-.	--	\cdots	--	-.	\ldots	---	\ldots	-.	-	\ldots	\cdots	\cdots	\cdots
	05/23/13 Dup	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	08/28/13	--	\cdots	--	--	--	\cdots	--	--	--	\cdots	\cdots	--	---	--	--	\cdots	--	<2.7	--	--	--	--	--		--		\cdots	--	--	--	---	\cdots
	8/28/13 Dup	--	--	\cdots	\cdots	--	--	--	--	--	--	--	--	--	--	--	--	--	<2.7	--	--	--	--	--	--	---	--	--	--	--	--	\cdots	\cdots
	03/25/14	\cdots	---	\cdots	…	…	…	…	…	--.	…	-..	---	---	…	…	…	---	$\stackrel{-4}{ }$	\cdots	---	---	---	…	---	---	-..	…	---	…	\cdots	\ldots	\cdots
	05/29/14	--	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	<5.4	--	---	--	---	---	---	--	---	---	---	---	---	---	---
	08/28/14	---	\cdots	--	\cdots	--	--	--	\cdots	\cdots	\cdots	-	---	---	--	---	-	--	<0.27	--	--	--				---		--	---		\cdots	--	--
	03/30/15	---	---	---	---	---	---	---	---	---	---	---	---	.--	---	---	---	---	<1.4	---	---	---	---	---	---	---	---	---	---	---	-.-	-.-	\cdots
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	\cdots	-	\cdots	--		--	--		0.2	--	--	6	--		--	--	600	--		--	400	400	--		--			--	1		
		0.1	-	\cdots	--	--	600	,	-	0.02	0.02	,	,	0.6	-	0.02	--	-	60	--	$\underline{20}$	--	80	80	--	--	--	--	$\stackrel{8}{8}$	--	0.1	--	50

[^4]| | | | | Chlorinal | ted Volatile | e Organ | Compou | ds (EPP | 8260)-M | | | | | | | Petroleum | -related | Volatile | Organic | ompound | (EPA8 | 260)--Mg | | | | | | | AM | tals-mg/ | | | |
| :---: |
| Well | Date | | | | | | $\begin{array}{r} \text { 틈 } \\ \text { 을 } \\ \text { 듣 } \\ \hline \end{array}$ | | | | | | | | | | | 읓
 弟
 言
 흘
 $\underline{\underline{g}}$ | | | | | | | | | | | $\begin{array}{r} \text { 틀 } \\ \text { 틍 } \\ \hline \text { en } \end{array}$ | ® | | | $\stackrel{\square}{\overline{0}}$ |
| B5 | | Prior to Well Construction | | | | | | | | | | | Prior to Well Construction | | | | | | | | | | | | | Prior to Well Construction | | | | | | | |
| | 03/03/04 | 5.3 | <0.25 | <0.35 | <0.11 | 6.3 | $\frac{3.3}{}$ | <0.2 | <0.44 | <2.4 | <0.45 | <0.41 | <0.17 | <0.31 | <0.43 | <0.22 | <0.16 | <0.11 | <0.18 | <0.26 | <0.19 | <0.15 | <0.14 | <0.12 | <0.46 | | | | -- | | | | |
| | 04/1404 | 4.3 | $0.42 \dagger$ | <0.22 | <0.21 | 6.8 | $\frac{3.8}{3.8}$ | <0.29 | <0.39 | <0.7 | <0.7 | <0.25 | <0.29 | <0.31 | <0.21 | <0.39 | <0.56 | <0.19 | <0.3 | <0.6 | <0.32 | <0.57 | <0.51 | <0.66 | <1.74 | -- | --- | -- | -- | -- | | -- | |
| | $11 / 0206$
 1214106 | 4.4 | <0.68 | <0.95 | <0.17 | 4 | 3.2 | <0.72 | <0.3 | <0.69 | <0.52 | <0.5 | <0.47 | <0.6 | <0.76 | <1.1 | <0.38 | <0.99 | <0.81 | <2.2 | <0.61 | <0.59 | <0.39 | <1.2 | <1.42 | \cdots | |
| | - 2 2/13/07 | \cdots | \cdots | -- | \cdots | \cdots | \cdots | \cdots | -- | \cdots | \cdots | \cdots | --- | \cdots | --- | \cdots | \cdots | --- | \cdots | -- | \cdots | -- | \cdots | \cdots | \cdots | \cdots | \cdots | \cdots | --- | \cdots | | | \cdots |
| | 05/08/07 | --- | --- | -- | --- | --- | --- | --- | --- | --- | --- | -- | --- |
| | 021/4/08 | ${ }^{23}$ | 30.7 | <0.95 | <0.2 | $\underline{2.27}$ | 3.3 | <0.45 | -0.64 | <0.69 | <0.52 | <0.5 | <0.47 | <0.34 | -0.36 | <0.52 | <0.38 | -0.48 | -0.35 | <1.8 | <0.38 | -0.46 | <1.2 | <0.3 | \bigcirc | --- | -- | -- | -- | --- | --- | --- | \cdots |
| | -05/0608 | -.- | \cdots | \cdots | \cdots | --- | --- | \cdots | -- | \cdots | \cdots | \cdots | --- | \cdots | \cdots | \cdots | \cdots | \cdots | $\stackrel{-}{-}$ | \cdots | \cdots | --- | \cdots | \cdots | --- | --- | -- | -- | | \cdots | | --- | \cdots |
| | -09/10108 | \cdots | --- | --- | \cdots | --- | --- | --- | --- | --- | --- | --- | -.. | -.. | -- | --- | --- | --- | --- | --- | \cdots | \cdots | \cdots | --- | \cdots |
| | 08/05/09 | 10.9 | 59 | $1.3+$ | 1.3 | 5.1 | ${ }^{0.54 \dagger}$ | <0.43 | <0.47 | <1.5 | <0.42 | <0.41 | <0.41 | <0.46 | <0.43 | <1.5 | <0.87 | <0.39 | <0.57 | <1.7 | <0.33 | <0.51 | <1.1 | <1.5 | <2.13 | -- | \cdots | -- | --- | -- | | -- | --- |
| | 05/27/10 | 19 | 42 | 1.2 Ja | 0.44 Ja | <0.80 | 2.5 | <0.50 | <0.50 | <1.0 | <0.50 | <0.25 | <0.20 | <0.20 | <0.25 | <0.20 | <0.50 | <0.20 | <0.20 | <0.25 | <0.50 | <0.50 | <0.20 | <0.20 | <0.50 | --- | --- | --- | --- | --- | --- | -- | --- |
| | 08/25/10 | 72 | 59 | 1.3 Ja | 0.82 Ja | <0.80 | 0.63 Ja | <0.50 | <0.50 | <1.0 | <0.50 | <0.25 | <0.20 | <0.20 | <0.25 | <0.20 | <0.50 | <0.20 | <0.20 | <0.25 | <0.50 | <0.50 | <0.20 | <0.20 | <0.50 | -- | --- | --- | -- | --- | | --- | |
| | 11/30/10 | 15 | 36 | 1.4 Ja | 0.58 Ja | <0.80 | 0.20 Ja | <0.50 | <0.50 | <1.0 | <0.50 | <0.25 | <0.20 | <0.20 | <0.25 | <0.20 | <0.50 | <0.20 | <0.20 | <0.25 | <0.50 | <0.50 | <0.20 | <0.20 | <0.50 | -- | --- | --- | --- | --- | --- | --- | --- |
| | (03/02/11 | 83 21 | 200 18 | <0.50
 <0.50 | ${ }_{\text {¢ }}^{6.80}$ | ${ }_{\substack{<0.80 \\ 6.3}}^{\substack{\text { c }}}$ | $\frac{1.15}{3.9}$ | ${ }_{\text {< }}^{<0.50}$ | <0.50
 <0.50 | - | <0.50 | <0.25 | (0.49 Jo | <0.20 | <0.25 | ${ }_{\text {< }}^{\substack{\text { < } \\<0.20}}$ | ${ }_{<0}^{<0.50}$ | | ${ }_{<0.20}^{<0.20}$ | <0.25 | ${ }_{<0}^{<0.50}$ | ${ }_{<0}^{<0.50}$ | ${ }_{\text {coil }}^{\substack{0.20}}$ | ${ }_{<0}^{00.20}$ | ${ }_{\text {coic }}^{0.50}$ | \cdots | |
| | 08/30/11 | 17 | $\stackrel{3}{33}$ | 0.75 Jc | 0.26 Jc | <2.0 | ${ }^{0.43 \mathrm{Jc}}$ | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <5.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | --- | --- | --- | --- | --- | --- | --- | |
| | 11/09/11 | 32 | 49 | 1.1 Jc | 18 | <0.80 | 0.26 Jc | <0.50 | <0.50 | <1.0 | <0.50 | <0.25 | <0.20 | <0.20 | <0.25 | <0.20 | <0.50 | <0.20 | <0.20 | <0.25 | <0.50 | <0.50 | <0.20 | <0.20 | <0.50 | -- | --- | --- | | --- | | | |
| | 02/20/12 | 14 | 39 | <0.50 | 2.0 | <0.80 | 0.48 Jc | <0.50 | <0.50 | <1.0 | <0.50 | <0.25 | <0.20 | <0.20 | <0.25 | <0.20 | <0.50 | <0.20 | <0.20 | <0.25 | <0.50 | <0.50 | <0.20 | <0.20 | <0.50 | -- | --- | --- | --- | --- | --- | --- | --- |
| | 02/20/12 Dup | 29 | $\underline{60}$ | <0.50 | 4.3 | <0.80 | 0.71 Jc | <0.50 | <0.50 | <1.0 | <0.50 | <0.25 | <0.20 | <0.20 | <0.25 | <0.20 | <0.50 | <0.20 | <0.20 | <0.25 | <0.50 | <0.50 | <0.20 | <0.20 | <0.50 | -- | \cdots | \cdots | \cdots | \cdots | | | |
| | 08127/12 | \cdots |
| | $111 / 2612$ 0272813 | --- | \cdots | -- | -- | -- | --- | -- | -- | --- | \cdots | --- | --- | --- | --- | --- | --- | --- | --- | --- | - | | --- | - | --- | --- |
| | (02128133 | \cdots |
| | 08/28/13 | --- | --- | --- | --- | --- | --- | --- | --- | -- | --- | --- | --- | --- | -- | \cdots | --- | --- | --- | --- | --- | \cdots | --- | -- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| | 11/13/13 | | -- | -- | -- | -- | --- | | -- | \cdots | -- | -- | \cdots | -- | | -- | | | | | | | | | | | | | | | | | |
| | -05/29/14 | --- | --- | --- | --- | --- | --. | --- | --- | --- | --- | --- | \cdots | --- | --- | --- | --- | --- | --- | --- | --- | --- | … | --- | --- | -- | -- | --- | --- | --- | --- | \cdots | \cdots |
| | 08/28/14 | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | -- | \cdots | -- | --- | --- | --- | --- | --- | --- | -- | --- | --- | --- | --- | --- | --- | -- | -- | \cdots | --- | --- | --- |
| | (11/2/44 | \cdots | -- | \cdots | \cdots | \cdots | \cdots | |
| NR 140 Enforcement Standard | | 5 | 70 | 100 | 0.2 | 5 | 6 | 5 | 7 | 5 | 5 | 5 | 5 | -- | - | -- | 700 | -- | -- | 100 | - | 800 | 480 | 480 | 2,000 | 0.01 | 2 | 0.005 | 0.1 | 0.015 | 0.002 | 0.05 | 0.05 |
| | | ${ }^{\text {0 }}$ | $\underline{7}$ | $\underline{20}$ | $\stackrel{0.02}{0 .}$ | $\stackrel{5}{0.5}$ | $\stackrel{0}{0.6}$ | $\stackrel{5}{0.5}$ | $\stackrel{.}{0.7}$ | ${ }^{\text {¢ }}$ | $\stackrel{5}{0.5}$ | $\stackrel{5}{0.5}$ | $\stackrel{5}{0.5}$ | \cdots | \cdots | \cdots | 140 | -- | - | 10 | -- | ${ }^{160}$ | $\underline{9}$ | $\underline{96}$ | 2,000 | $\underline{0.001}$ | ${ }^{2} .4$ | 0 | ${ }^{0.01}$ | 0 | $\underline{0.0002}$ | ${ }^{0.01}$ | $\stackrel{0.01}{0.05}$ |
| $\dagger=$ Detected below the Limit of Quantitation | |
| |
| Limit of Quantitation (LOQ) are less certain than results at or above the LOQ. | |
| |
| $\mathrm{Jb}=$ Estimated value. Analyte detected at a level less than the Reporting (RL) and greater than or equal to the Method Detection Limit (MDL). The use of this data should be aware that this data is of limited reliability. | |
| $J C=$ Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. | |
| Note: The following compound
 Note: As of the December 2010 The previous standards we | | detect NR 140 | B51 d 00 ES/2 | ing the A PAL; Xy | ugust 25, lenes 10, lenes 10 | | mpling ev 1-11, the ,000 PAL | nt: Ch nforcen | rometh | $\begin{aligned} & \text { ne (0.82) } \\ & \text { lards } \\ & \text { (ES } \end{aligned}$ | $\begin{aligned} & \mathrm{gg} / \mathrm{L}, \mathrm{Ja}) \\ & \mathrm{s}) \text { and } \mathrm{p} \end{aligned}$ | ventive | ction li | mits (PA | ALs) hav | ve chang | ed for | oluene | and Xyle | | | | | | | | | | | | | | |

TABLE 1

Historical Groundwater Analytical Results
QuicFrez SFR Site - Fond du Lac, Wisconsin
SCS Engineers Project \#25211406.63

TABLE 1
Historical Groundwater Analytical Results
QuicFrez SFR Site－Fond du Lac，Wisconsi
SCS Engineers Project \＃25211406．63

				Chlorina	ed Volatil	Organic	Compo	ds（EP	260）－－							etroleum	－related	Volatile	Organic	Ompoun	（EPA 8	260）－4g							RAM	tals－mg			
Well	Date						$\begin{aligned} & \text { 틍 } \\ & \text { 응 } \\ & \hline \text { 응 } \end{aligned}$																			$\begin{array}{r} \text { 訔 } \\ \text { 導 } \end{array}$	$\begin{array}{r} \text { Eㅡㅡㄹ } \\ \text { 岗 } \\ \hline \end{array}$	$\begin{array}{r} \text { 틀 } \\ \text { E⿳⿸厂二一⿺卜丿口 } \\ \hline \end{array}$		®．	$\begin{array}{r} \text { 言 } \\ \text { 旁 } \\ \hline \end{array}$		$\stackrel{\stackrel{\rightharpoonup}{*}}{\bar{j}}$
B52	07／22／99 12／12／01 03／07／02 06／10／02	Prior to Well Construction											Prior to Well Construction													Prior to Well Construction							
	03／03／04	$\underline{2.9}$	<0.25	<0.35	＜0．11	9.2	3.2	<0.2	${ }^{<0.44}$	＜2．4	<0.45	＜0．41	＜0．17	＜0．31	＜0．43	＜0．22	＜0．16	<0.11	＜0．18	${ }^{<0.26}$	<0.19	<0.15	<0.14	<0.12	＜0．46	－	\cdots	－	－－	－－		\cdots	
	04／14／404	$\frac{29}{1.8}$	<0.29	＜0．22	＜0．21	5.5	$\frac{3.3}{1.3}$	＜0．29	<0.39	<0.7	＜0．7	＜0．25	＜0．29	＜0．31	＜0．21	<0.39	＜0．56	＜0．19	＜0．3	＜0．6	＜0．32	＜0．57	<0.51	＜0．66	＜1．74	－－－	－－－	－－	－－	\cdots		－－－	－－－
	$11 / 0206$ 121406 1	$\stackrel{1.63+}{ }$	＜0．68	<0.95	<0.17	$\underline{2.8}$	${ }^{1.45 \pm}$	＜0．72	＜0．3	<0.69	<0.52	<0.5	<0.47	＜0．6	＜0．76	＜1．1	＜0．38	<0.99	＜0．81	＜2．2	<0.61	<0.59	<0.39	<1.2	＜1．42	－－	\cdots	\cdots	\cdots	\cdots		\cdots	
	02／13／127	－－－－	\cdots	－－	－－－	\cdots	－－－	\cdots	－－	\cdots	－－	－－	－－	\cdots	－－－	－－－	－－－	\cdots	－－	\cdots	－－－	－－	\cdots			－－－							
	05／08807		－－	－－－	－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－	－－－	－－－	－－－	－－	－－	－－	－－－	－－－	－－－	－－－		－－－	－－－	－－－	－－－	－－－	－－－	－－－
	02／14／08	20．8 +	32	<0.95	1.86	7.6	6.1	＜0．45	<0	＜0．69	＜0．52	<0.5	＜0．47	＜0．34	＜0．36	＜0．52	＜0．38	＜0．48	＜0．35	<1.8	<0.38	＜0．46	<1.2	＜0．37	<0.99	－－	\cdots	－－－	\cdots	－－－	－－－	\cdots	－－－
	05／06／08	\cdots	\cdots	\cdots	\cdots	\cdots	－－－	\cdots	－－	\cdots	－－－	\cdots	－－－	－－－	－－．	－－－	－－－	－－－	－－－	－－	－－	－－	－－	\cdots	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－	－－－
	－09／10088	\cdots	\cdots	－－－	\cdots	\cdots	\cdots	－－－	\cdots	\cdots	－－－	\cdots	－－－	\cdots	－－－	－－－	－－	－－－	\cdots	－－－	－－－	\cdots	－－－	\cdots	－．－	－－－	－．．	\cdots		\cdots		\cdots	\cdots
	08／0509	10	37	$0.74 \dagger$	1.45	5.5	1.67	＜0．43	<0.47	＜1．5	<0.42	<0.41	<0.41	<0.46	＜0．43	＜1．5	<0.87	<0.39	<0.57	<1.7	<0.33	<0.51	＜1．1	＜1．5	＜2．13	－－－	－	－－－	－－－	－－－		－	－－－
	05／27710	10	$\frac{23}{41}$	0.64 Ja	0.46 Ja	－0．80	$\frac{1.65}{1.6}$	－0．50	＜0．50	＜1．0	＜0．50	－0．25	＜0．20	${ }^{<0.20}$	${ }^{<0.25}$	＜0．20	＜0．50	－0．20	＜0．20	${ }^{<0.25}$	＜0．50	＜0．50	＜0．20	＜0．20	＜0．50	－－－	\cdots	－－－				\cdots	\cdots
	08／25／10	62 18	$\frac{44}{13}$	${ }_{0}^{0.752 \mathrm{Ja}}$	${ }_{0}^{0.87 \mathrm{Ja}}$	＜0．80	${ }_{0}^{0.492 \mathrm{Ja}}$	＜0．50	<0.50 <0.50	<1.0 <1.0	${ }^{<0.50}$	＜0．25	＜0．20			＜0．20	${ }_{<0}^{<0.50}$	＜0．20	＜0．20	＜0．25	＜0．50		＜0．20	＜0．20	${ }_{<0}^{<0.50}<$	\cdots							
	11／30／10 upp	15	$\underline{9.3}$	<0.50	＜0．20	＜0．80	$\stackrel{1.15}{ }$	＜0．50	＜0．50	＜1．0	<0.50	<0.25	＜0．20	<0.20	＜0．25	＜0．20	＜0．50	＜0．20	＜0．20	＜0．25	<0.50	＜0．50	＜0．20	<0.20	＜0．50	－－－	\cdots	\cdots				\cdots	\cdots
	03／02／11	8.2	5.8	<0.50	＜0．20	1.4 Jb	1.8 Jb	＜0．50	＜0．50	＜1．0	＜0．50	＜0．25	＜0．20	<0.20	＜0．25	＜0．20	＜0．50	＜0．20	＜0．20	＜0．25	<0.50	＜0．50	＜0．20	＜0．20	＜0．50	－－－	－－－	－－－	－－－	－－－		－－	－－－
	05／17／11	6.5	4.8	<0.50	＜0．20	7.4	3.6	＜0．50	<0.50	<1.0	${ }^{20.50}$	－0．25	＜0．20	${ }_{0}^{0.20}$	${ }^{0} 0.25$	＜0．20	＜0．50	－0．20	${ }^{20.20}$	${ }^{<0.25}$	<0.50	<0.50	－0．20	＜0．20		－－	－－－	\cdots	\cdots			$\stackrel{-}{-}$	
	08／30／11	13 2.2 1	${ }^{0.58} \mathrm{~J} \mathrm{Jc}$	＜2．0	${ }_{\substack{0.31 \mathrm{Jc} \\<0.20}}^{\text {cos }}$	＜2．0	$\frac{0.95}{0.61 \mathrm{Jc}}$	－<2.0	${ }_{<0}^{<2.0}$	＜2．0 <1.0	＜2．50	${ }_{\text {coin }}^{22.0}$	－2．0	＜0．20	－2．00	${ }_{<0.20}^{<2.0}$	＜2．50	${ }_{\text {coicle }}^{\text {＜2．0 }}$			＜2．00	＜0．50	${ }_{\text {coin }}^{\text {＜2．0 }}$	${ }_{<0.20}^{<2.0}$	＜2．50	\cdots							
	02／20／12	$\frac{2}{15}$	$\underline{2}$	<0.50	0.91 Jc	0.94 Jc	1.4 Jc	<0.50	＜0．50	<1.0	<0.50	＜0．25	＜0．20	＜0．20	＜0．25	＜0．20	<0.50	<0.20	＜0．20	＜0．25	<0.50	＜0．50	<0.20	<0.20	<0.50	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－
	05／31／12	\cdots	\cdots	\cdots	－－	－	－	－－	\cdots	－	－	－	\cdots	－	－－	－	－－	－－－	－	\cdots	－－	－－	\cdots										
	11／26／12	－	\cdots	－－－	\cdots	－－－		\cdots	－－	－－－	－－－				－－－	\cdots																	
	02／28／13	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	008／28／13	\cdots	－－－	\cdots	－－－	…	\cdots	\cdots	\cdots	－－－	\cdots				\cdots	－－－	\cdots																
	11／13／3／	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－	－－－	－－	－－	－－－	－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－
	03／25／14 0512914	\cdots	－－	\cdots	\cdots	－－	－－	－－	－－	－－	－－	\cdots	－－	\cdots	\cdots	－－	\cdots	\cdots	－－	－－	\cdots	\cdots	\cdots	－－－	－－－								
	08／28／14	－－－	－－－	－－－	－－－	－－－	－－－	－－－	\cdots	－－－	－－－	－－－	－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	－ $11 / 2 / 2 / 4$	\cdots	\cdots	－－	－－－	－－－	－－－	\cdots	\cdots	－－－	\cdots	\cdots	－－	\cdots	－－	\cdots	－－	\cdots	\cdots		\cdots	\cdots	\cdots	－－	\cdots	\cdots	\cdots						
NR 140 Enforcement Standard NR 140 Preventive Action Limit		5	70	100	0.2	5	6	5	7	5	5	5	5	－－	－－	－－	700	－－	－－	100	－	800	480	480	2，000	0.01	2	0.005	0.1	0.015	0.002	0.05	0.05
		0.5	7	20	0.02	0.5	0.6	0.5	0.7	0.5	0.5	0.5	0.5	－－	－－	\cdots	140	－－	－－	10	\cdots	160	96	96	400	0.001	0.4	0.0005	0.01	0.0015	0.0002	0.01	0.01

$t=$ Detected below the Limit of Quantitation

$\mathrm{Ja}=$ Results reported betwee
Method Detection Limit（MDL）and
Limit of Quantitation（LOQ）are less certain than results at or above the LOQ． Note：The following compound was detected in $\mathrm{B52}$ during the Augus 30 ， 2011 sampling event：Chloromethane（ $0.62 \mathrm{gg} / \mathrm{L}, \mathrm{Jc})$
$b=$ Estimated value．Analye detected at a level less than the Repoing（RL）and greater than or equal to the Method
Detection Limit（MDL）．The use of this data should be aware that this data is of ilinited reliability．
Ic $=$ Result i less than the R L but greater than or equal to the MDL and the concentration is an approximate value．

Historical Groundwater Analytical Results
QuicFrez SFR Site - Fond du Lac, Wiscons
SCS Engineers Project \#25211406.63

Well	Date																$\begin{aligned} & \text { 1atiles } \\ & \hline \end{aligned}$									镸							
B52	07/22/99 12/12/01 03/07/02	Prior to Well Construction																															
	03104104	--	<0.4	<1	<0.84	<0.97	<1.4	<1.2	<1	<1.3	<1.3	<0.96	<1.4	<1.9	<1.7	<1.4	<1.2	<1.4	<1.2	<0.84	${ }^{1.4 \dagger}$	<1.1	<0.9	<0.95	<1.7	<0.62	<1.4	<0.66	<1.2	<1.4	<1.5	<1.1	
	04/1404 $11 / 0206$	\cdots	\cdots	\cdots	--	\cdots	$\stackrel{-}{--}$	\cdots	$\stackrel{-}{--}$	\cdots	$\stackrel{-}{-}$	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots																
	12/14/06	---	---	---	--	--	---	---	---	---	---	---	---	---	--	---	---	\cdots	\cdots	---	--	---	--	--	---	--	---	--	---	---	---	---	\cdots
	0211307 $05 / 08107$	\cdots	---	\cdots	\cdots	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots												
	11/02/07	---	---	---	---	---	--	---	---	---	---	---	---	---		---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	
	02/1408 050608	\cdots																															
	09/10/08	---	---	---	\cdots	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	01/1909 $08 / 05 / 09$	\cdots																															
	05/27/10	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	08/25/10 $11 / 30 / 10$	\cdots	\cdots	\cdots	\cdots	\cdots	-..	\cdots	$\stackrel{-}{--}$	\cdots	---	\cdots	\cdots	\cdots	$\stackrel{-}{--}$																		
	11/30/10 dup	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---
	03/22/11	--	--	---	--	--	---	--	---	---	---	---	---	---	---	--	---	--	---	--	---	---	--	--	---	---	---	---	---	---	---	---	---
	08/30/11	---	\cdots	---	---	---	\cdots	--	\cdots	---	\cdots																						
	-11/09/11	\cdots	---	\cdots	--	\cdots	---	---	---	---	---	---	---																				
	05/3/12	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	‥-	…	…	-..-	.-.	---	---	---	\cdots
	08/27/12	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	(1) $\begin{aligned} & \text { 1/26612 } \\ & 02 / 28 / 13\end{aligned}$	\cdots	---	\cdots	\cdots	\cdots	\cdots	---	\cdots	---	\cdots																						
	05/23/13	--	---	---	---	---	---	---	---	---	---	---	---	---	\cdots	---	---	--	---	---	---	---	---	---	---	---	---	---	\cdots	\cdots	\cdots	\cdots	\cdots
	08/28/13	\cdots	---	\cdots	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots																			
	03/25/14	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	$05 / 29 / 14$ $08 / 28 / 14$	\cdots	--	\cdots	\cdots	--	\cdots	\cdots	--	\cdots	---	\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots	\cdots											
	(11/25/14	---	\cdots	\cdots	---	\cdots	---	---	---	---	--	--	--	--		--	---	--	---	---	---	---	---		---	--	-.-	---	--	---	-.-	--	---
	03/30/15	---	---	---	---	---	--	---	---	---	\cdots	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	--	--	--	--	3,000	-	-	0.2	0.2	--	\cdots	6	--	0.2	--	--	600	--	100	--	400	400	-	-	--	\cdots	40	-	1	\cdots	250
		0.1	-	-	,	-	600	-	-	0.02	0.02	\cdots	\cdots	0.6	-	0.02	\cdots	\cdots	60	-	20	-	80	80	-	-	\cdots	\cdots	8	\cdots	0.1	\cdots	50

$t=$ Detected below the Limit of Quantitation
$t=$ Detected below the Limit of
$=$ =Not Tested $/$ Not Required

$\dagger=$ Detected below the Limit of Quantitation
$=$ Not Tested $/$ Not Required
(he Method Detection Limit (MDL) and Limit of Quantitation (LOQ) are less certain than results at or above the LOO
for Toluene and Xylenes.
The previous standards were Toluene $1,000 \mathrm{ES} / 200$ PAL; Xylenes $10,000 \mathrm{ES} / 1,000 \mathrm{PAL}$

Historical Groundwater Analytical Results
QuicFrez SFR Site - Fond du Lac, Wiscons
SCS Engineers Project \#25211406.63

Well	Date														$\begin{aligned} & \frac{0}{0} \\ & \stackrel{\text { un}}{0} \\ & \text { io } \end{aligned}$											亳							$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$
Basement Sump	07/22/99	---	---	---	---	---	---	---	---	---	---	---	---	---	---	\cdots	---	---	--.	---					---		---		---		---		
	121/12011	---	---	--	--	---	--	---	---	---	--	---	---	---	---	---	--	---	---	---	---	---		---	---	---	---	---	---	---	-	--	---
	$03107 / 02$ 0661002 0	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	$\stackrel{-}{--}$	\cdots	\cdots	\cdots	\cdots	$\stackrel{-}{--}$	\cdots	\cdots	\cdots	\cdots	---	\cdots	---	\cdots												
	01/12/104	---	\cdots	\cdots	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots	\cdots	\cdots	-..	\cdots	\cdots	\cdots	---	\cdots	---	\cdots							
	$03 / 10404$ $04 / 1 / 104$	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	---	---	\cdots	---	\cdots	---	\cdots	\cdots	---	\cdots	---	---	\cdots	---	\cdots	\cdots	---	\cdots								
	11102/06	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	\cdots	---	…	\cdots	---	\cdots	---	---	\cdots	---	\cdots	\cdots	\cdots	---	\cdots	---	---
	12/14/06	---	---	---	--	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	--	---
	0211307 050807 0	---	\cdots	\cdots	\cdots	\cdots	\cdots	$\stackrel{-}{--}$	$\stackrel{-}{-.}$	\cdots	\cdots	\cdots	$\stackrel{-}{--}$	\cdots	\cdots	\cdots	\cdots	$\stackrel{-}{--}$	\cdots	\cdots	\cdots	\cdots	$\stackrel{-}{--}$	$\stackrel{-}{--}$	\cdots								
	1102/07	---	--.	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	‥-
	02/14/08 050608	\cdots	---	---	---	\cdots	---	\cdots	\cdots	\cdots	\cdots	---	---	\cdots	\cdots	\cdots	\cdots	\cdots	---	\cdots	\cdots	\cdots	---	--	\cdots	--	---						
		\cdots																															
	$01 / 19199$ 080509	---	---	\cdots	---	---	\cdots	---	\cdots	\cdots	\cdots	\cdots	---	\cdots	\cdots	---	---	---	---	---	---	---	---	---	---	-	---	--	---	--	--	--	--
	08/05109	---	$\stackrel{-}{-.}$	\cdots	\cdots	\cdots	\cdots	$\stackrel{-}{--}$	\cdots	$\stackrel{-}{-.}$	\cdots	$\stackrel{-}{--}$	\cdots																				
	08/25/10	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	${ }^{11 / 30 / 10}$	---	---	---	--	---	---	---	---	--	\cdots	---	---	--	--	\cdots	\cdots	---	---	---	--	---	--	---	---	---	--	\cdots	---	---	---	--	---
	-0302011	---	\cdots	\cdots	\cdots	\cdots	\cdots	---	\cdots	---	\cdots	\cdots	\cdots	\cdots	---	\cdots																	
	08/30/11	---	\cdots	\cdots	\cdots	---	\cdots	---																									
	11/09/11 02/20/12	\cdots	\ldots	\cdots																													
	05/31/12	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---
	08/27712	\cdots	\ldots	\cdots	\cdots		\cdots		\cdots	\cdots	\cdots	\cdots	\cdots		\cdots																		
	02/28/13	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---
	05/23/13	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	$08 / 28813$ $11 / 13 / 13$	\cdots	$\stackrel{-}{-.-}$	\cdots	\cdots	\cdots	\cdots	\cdots	$\stackrel{-}{-.-}$	\cdots	\cdots	\cdots	$\stackrel{-}{--}$	\cdots	\cdots	\cdots	\cdots	\cdots	$\stackrel{-}{-.-}$	\cdots													
	03/25/4	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	$05 / 29914$ 0812814	---	\cdots	--	--	---	\cdots	--	\cdots	---	\cdots	\cdots	\cdots	--	--	--	---	--	--	---	--	--	\cdots	\cdots	--	---							
	11/25/14	---	---	---	---	---	---	---	---	---	---	---	---		---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	03/30/15	--	---	---	---	---	---	--	---	---	--	---	---	--	---	---	---	---	---	---	--	---	--	---	---	---	---	---	---	---	---	--	
NR 140 Enforcement Standard NR 140 Preventive Action Limit		1	--	--	\cdots	-	3,000	--	\cdots	0.2	0.2	--	-	6	-		--	\cdots	600	--	100	--	400	400	--	\cdots	--	\cdots	40	\cdots	1		250
		0.1	,	--	\cdots	--	600	\cdots	-	0.02	0.02	\cdots	\cdots	0.6	\cdots	0.02	,	--	60	--	20	-	80	80	--	,	--	--	8	-	0.1	--	50

$\dagger=$ Detected below the Limit of Quantitation
-- Not Tested $/$ Not Required
NOTES:
All data befor $5 / 26 / 2010$ supplied to SCS Engineers by the WDNF.
SCS Engineers will only ypdate and check data a ter $5 / 26 / 2010$.
Created by:
Last revision by:
be \qquad Date: Proter
Last revision by:
Checked by: \qquad Date: $\frac{416162015}{\text { Date: }} 4232(2015$

A-01- - High concentration of non-target analyte present.
$B=$ Analyte was detected in the associated Method Blank.
$\mathrm{Ba}=$ Compound was found in the bonaciated Math sample
$\mathrm{ET}=$ Matrix inereference in in
$J=$ Analyte detectitd at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated

$\mathrm{Jb}=$ Estimated value. Analyte detected at a level less than the Reporting Limit (RLL and greater than or equal tot the
$\mathrm{Jc}=$ Result tis less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

\begin{tabular}{|c|}
\hline \& \& \multicolumn{3}{|c|}{Major Chlorinated VOC's} \& \multicolumn{15}{|c|}{Natural Attenuation Analytic Parameters \(\quad\) Field Paramete} \& \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{Date} \& \multicolumn{3}{|l|}{Major Chlorinated VoC's} \& \multicolumn{9}{|c|}{Natural Attenuation Analytic Parameiers} \& \multicolumn{6}{|c|}{amele} \\
\hline Well \& Date \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline MW1A \& - \& \(\frac{1.36}{120}\) \& \begin{tabular}{l}
4.33 \\
\hline \(15+\) \\
\hline 1
\end{tabular} \& \(\begin{array}{r}3.4 \\ \\ \hline 23 \\ \hline 2\end{array}\) \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& MW2 \& 0722099
1211201 \& \(\stackrel{4.5}{20.36}\) \& \(\frac{19.7}{13}\) \& 7.28

21 \& \& \& \& \& \cdots \& \& \& \& \& \& \cdots \& -- \& \cdots \& -- \&

\hline \& ${ }_{\substack{\text { a } \\ \text { 03121201 } \\ 0302}}$ \& - $\begin{gathered}120 \\ 2,300\end{gathered}$ \& $\stackrel{15 t}{25.0}$ \& <2.3 \& \cdots \& \cdots \& \cdots \& \cdots \& -- \& -- \& \cdots \& -- \& -- \& \& $\stackrel{-78}{-78}$ \& 8.77 \& \& $\stackrel{-7}{4}$ \& ${ }_{735.54}$ \& \& (121201 \& - \& $\frac{13}{12}$ \& 21
16 \& \& \& \& \& \& \& \& \& \& -..38 \& -68 \& 7.76 \& 902 \& $\stackrel{-1}{45.2}$ \& $\stackrel{-77.56}{ }$

\hline \& 06611002 \& ${ }_{17}$ \& 0.87 \& <0.16 \& -- \& \& -- \& -- \& -- \& \& -- \& -- \& --- \& 0.29 \& 192 \& 7.27 \& 728 \& \& 739.42 \& \& 066/10,02 \& 13 \& $\underline{29}$ \& 8.6 \& \& -- \& \& \& \& \& \& \& \& 2.22 \& 200 \& 6.77 \& 1,351 \& 51.6 \& ${ }_{750.64}^{74.56}$

\hline \& 011/204 \& 4.1 \& 7.5 \& 1 \& --- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& --- \& \& \& \& \& \& 743.80 \& \& ${ }^{0} 01 / 11104$ \& 1.4 \& 8.3 \& 17 \& - \& -- \& \& \& --- \& \& --- \& -- \& -- \& 0.22 \& -50 \& 7.28 \& 706 \& 42.1 \& 748.95

\hline \& ${ }_{0}^{03 / 2304} 0$ \& 3.1 \& 6.8 \& ${ }_{0}$. \& $\stackrel{-}{34}$ \& 1.2 \& $\stackrel{\square}{<1}$ \& \cdots \& 3.17 \& $\stackrel{-15}{ }$ \& 88 \& \cdots \& 1.0 \& \& \& \& \& \& | 738.83 |
| :--- |
| 7419 | \& \& \& 2.2 \& 6.3 \& \cdots \& 530 \& $\stackrel{\square}{<1}$ \& <1 \& --- \& 10.1 \& <0.03 \& 578 \& 0.931 \& 4.5 \& ${ }_{0}^{0.10} 0$ \& ${ }_{-208.2}^{-212.7}$ \& ${ }_{8.12} 7.93$ \& ${ }^{2,510} 4$ \& 43.6

41.6 \& | 750.45 |
| :--- |
| 749.57 |

\hline \& 10/30006 \& ${ }^{\frac{3}{0.71+}}$ \& ${ }^{2.02+}$ \& ${ }_{0}^{0.39+}$ \& 600 \& <1 \& 11 \& 73.5 \& 9400 \& <0.03 \& 59.9 \& 0.048 \& ${ }^{0.064+}$ \& \& \& \& \& \& ${ }^{735.85}$ \& \& ${ }^{1013 / 3006}$ \& $\frac{2.9 t}{0.9}$ \& 8.5 \& 25.8 \& 2,100 \& 4.6 \& 11 \& 56.3 \& 15,000 \& <0.03 \& 363 \& 0.67 \& <0.032 \& 0.00 \& -148 \& 7.06 \& 2,350 \& 54.0 \& 748.83

\hline \& 12141306
021307 \& $\frac{0.77}{1.51}$ \& $1.58 \dagger$
$1.93 \dagger$
1.5 \& ${ }_{0}^{0.44 \dagger}$ \& \cdots \& -- \& \cdots \& \cdots \& \cdots \& \cdots \& 739.75

746.22 \& \& \begin{tabular}{l}
$12113 / 09$

$02 / 13 / 10$

\hline

 \& $\frac{1.46}{1.04 t}$ \& $\frac{7.2}{7.9}$ \&

18.2

16.8

\hline 18
\end{tabular} \& \cdots \& -- \& \cdots \& -- \& - $\begin{aligned} & -127 \\ & -150\end{aligned}$ \& ${ }_{7.8}^{6.82}$ \& 2,350

2,540 \& 52.1

41.9 \& | 749.22 |
| :--- |
| 788.62 |

\hline \& 05070707 \& $\frac{1}{1.06 t}$ \& ${ }_{1.57 \dagger}^{1.59}$ \& ${ }_{0}^{0.444}$ \& \cdots \& \& \cdots \& \& \& --- \& | 746.22 |
| :--- |
| 740.40 | \& \& - \& \& $\frac{7}{10.4}$ \& ${ }_{25.7}^{16.8}$ \& \cdots \& \cdots \& \& \& \& \& \& \cdots \& \cdots \& 0.42 \& -150

-141 \& ${ }_{6.78}^{7.3}$ \& 2,3600 \& 48.9 \& | 748.62 |
| :--- |
| 799.47 |

\hline \& ${ }^{1110107}$ \& $\frac{0.674}{}$ \& ${ }^{00.68}$ \& 0.22 \& \cdots \& \cdots \& \cdots \& \cdots \& \cdots \& \& \cdots \& \& \cdots \& \& \& \& \& \& 739.40 \& \& \& $\frac{0.85 t}{1.45}$ \& $\frac{25.5}{4 .}$ \& 138 \& \& -- \& \& \cdots \& \& \& \& \cdots \& \cdots \& 0.90 \& ${ }_{-117}^{-17}$ \& 6.02 \& 1,936 \& \& 748.65

\hline \& ($\begin{aligned} & 02121208 \\ & 05060108\end{aligned}$ \& $\underset{\sim}{20.06}$ \& 0.87¢ \& - \& \cdots \& \& \cdots \& \cdots \& \cdots \& \cdots \& | 740.72 |
| :--- |
| 737.50 | \& \& 02121208

0500608 \& $\stackrel{1.49}{1.73 t}$ \& $\frac{47}{26}$ \& 24.8
19.4
17 \& \cdots \& \cdots \& \cdots \& \cdots \& \cdots \& \& \cdots \& \cdots \& \cdots \& 1.15 \& ${ }_{-211.1}^{-228}$ \& ${ }_{7}^{7.07}$ \& 1,736
1,694
1, \& 45.3

48.5 \& | 749.05 |
| :--- |
| 749.52 |

\hline \& ${ }^{09109908}$ \& ${ }^{168}$ \& 12.6 \& <0.2 \& \& \& \& -- \& \& -- \& \& --- \& --- \& \& \& \& \& \& ${ }^{741.83}$ \& \& ${ }^{0910908}$ \& $\frac{0.96 t}{0.05}$ \& \& 66 \& - \& -- \& \& \cdots \& \& \& -- \& -- \& -- \& 0.29 \& -310.2 \& 7.03 \& 1,645 \& 59.7 \& 748.50

\hline \& - $\begin{aligned} & 01 / 191909 \\ & 0811109\end{aligned}$ \& - $\begin{gathered}<0.47 \\ <0.39\end{gathered}$ \& $2044
c2068$ \& <0.61 \& $\stackrel{-7}{89}$ \& $\stackrel{\text {-1.0才 }}{ }$ \& \cdots \& 2.9 \& $\stackrel{-17}{\square}$ \& <0.1 \& $\stackrel{\square}{42}$ \& - \& $\stackrel{.-9+}{0.09}$ \& \& -392 \& \& \& \& ${ }^{739.50} 7$ \& \& 01/19099

08060909 \& $\frac{1.32 t}{0.56 t}$ \& $\frac{22.4}{11.5}$ \& | 17 |
| :--- |
| <0.61 | \& 2380 \& <5 \& 16.3 \& ${ }^{3}$ \& 1.3 \& $\stackrel{-1}{<0.1}$ \& 61 \& ${ }_{0} . .517$ \& \& 0.6

0 \& ${ }_{\text {- }}^{\text {-433.7 }}$ \& ${ }_{7.26}^{6.8}$ \& 1401
1381 \& 48.9

57.8 \& | 748.75 |
| :--- |
| 788.10 |

\hline \& 05/26/10 \& ${ }_{\substack{20.20}}^{\text {<0.29 }}$ \& ${ }_{<0}^{0.50}$ \& <0.20 \& ${ }_{591}^{897}$ \& <10.0 \& -10.0 \& 2.9 \& 4.95 \& <0.1 \& ${ }_{9.1}^{42} \mathrm{Ja}$ \& Oosat \& ${ }_{0}^{0.091 ~ J a ~}$ \& ${ }_{5.83}^{0.18}$ \& -964 \& 1.49
7.9
7
7 \& 244 \& 76.1 \& 756.70 \& \& 080699
$051 / 2610$ \& 1.4.Jat P -HS \& \& \& ${ }_{2040}^{2380}$ \& ${ }_{51}$ \& <10.0 \& ${ }_{56}^{33}$ \& 6.75 \& \& 80 \& 0.57 \& ${ }_{0.91}^{2.52}$ Ja \& 0.5 \& -363.5 \& 8.45 \& 905 \& 54.32 \& 756.93

\hline \& - \& <0.20 \& <0.50 \& <0.20 \& 1,020 \& <14.0 \& <0.11 \& 2.0 \& 5.15 \& -- \& 9.0 \& -- \& 0.18 Ja \& 4.2 \& -83.1 \& ${ }_{7.81}^{7.81}$ \& ${ }_{310}^{725}$ \& \& 7444.05 \& \& -081259 \& \& ${ }_{54}^{17}$ \& ${ }_{15}^{32}$ \& 5,35 \& 34.4 \& \& \& 72.5 \& .-. \& 16 \& -- \& 0.97 Ja \& 2.0 \& ${ }_{-1935}^{-225}$ \& ${ }_{8.07}^{8.15}$ \& 725 \& 59.9 \& 748.55
747.96

\hline \& 03/01/ \& \& \& \& \& \& \& \& \& \& \& \& \& 3.5 \& -99.9 \& 7.75 \& \& 49.46 \& 748.21 \& \& ${ }^{03301}$ \& Blocked b \& by snow \& \& \& \& \& \& \& \& \& \& \& \& cked b \& chesth \& \& \&

\hline \& 05/16/11 \& <0.20 \& <0.50 \& <0.20 \& 20.4 \& 0.225 J \& 0.05 \& 3.1 \& 3.72 \& -- \& 55 \& -- \& ${ }^{0.329}$ \& 4.5 \& ${ }^{-80.8}$ \& 8.25 \& 325 \& \& 745.30 \& \& ${ }^{051 / 6 / 11}$ \& $\frac{1.2 \mathrm{Jb}}{1.1}$ \& $\frac{8.2}{34}$ \& \& 2,130 \& 45.6 \& 5.23 \& 94 \& 6.5 ET \& - \& 17 \& -- \& 0.982 \& ${ }^{0.5}$ \& ${ }^{-247.3}$ \& 7.33 \& 1040 \& 45.4 \& 749.46

\hline \& 083811

1108 \& <0.2 \& <0.50 \& <0.20 \& 942 \& 4.36 \& 0.50 \& 3.4 \& 4.27 \& -- \& 21 B \& -- \& 0.136 \& ${ }^{5} 5.5$ \& ${ }_{\text {-104.9 }}^{-53.7}$ \& ${ }^{8.5}$ \& ${ }_{2}^{500}$ \& ${ }^{64.04}$ \& | 744.12 |
| :--- |
| 74.55 | \& \& 08130

1108 \& $\frac{1.150}{1.1 \mathrm{Jc}}$ \& ${ }_{1.2}^{3.4}$ \& 18 \& 3,290 \& 11.4 \& 0.779 \& 69 B \& 22.4 t \& \& 45 B \& \& 1.07 \& 5.28
3.6 \& ${ }_{-212}^{-212}$ \& ${ }_{6.87}^{7.34}$ \& 378 \& 594.42 \& 778.52

\hline \& 02120/12 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& ${ }^{742.75}$ \& \& 0272011 \& $\underline{2.0}$ \& 0.64 JC \& 0.95 J \& \& -- \& --- \& -- \& -- \& \& \& \cdots \& \cdots \& 3.5 \& -128. \& 7.46 \& 1180 \& 43.70 \& 748.48

\hline \& ${ }_{0}^{05}$ \& \& -- \& \cdots \& \cdots \& -- \& \cdots \& - \& \& \& \cdots \& \cdots \& --- \& \& \cdots \& \cdots \& --. \& -.. \& | 743.54 |
| :--- |
| 742.87 | \& \& | 0531712 |
| :--- |
| $0827 / 12$ | \& $\frac{1.3}{71}$ \& $\frac{7.1}{210}$ \& <0.10

<0.20

<0 \& \& \cdots \& \& \cdots \& \& \& \& \cdots \& \cdots \& | 3.0 |
| :--- |
| 2.5 | \& ${ }_{\text {- }}^{\text {-121. }} 1$ \& ${ }_{7}^{7.53}$ \& ${ }_{920}^{890}$ \& | 53.42 |
| :--- |
| 54.86 | \& ${ }^{748.82} 7$

\hline \& 11/26/ \& <0.19 \& <0.1 \& <0.10 \& 1,500 \& <25 \& <26 \& 4.3 B \& 6.2 \& -- \& 8.6 \& -- \& 0.13 Jc \& 7.5 \& 73.9 \& 7.60 \& 221 \& 54.68 \& | 744.37 |
| :--- |
| 743 | \& \& 11126/1/ \& ${ }^{3.3}$ \& 4.2 \& <0.10 \& -- \& -- \& -- \& --- \& \cdots \& -- \& \& \cdots \& \cdots \& ${ }_{3.0}^{2.5}$ \& -101.1 \& 7.73 \& 800 \& 54.32 \& ${ }^{746.93}$

\hline \& 0 \& --- \& -- \& \& -.. \& -- \& \cdots \& \cdots \& -- \& \& \cdots \& \cdots \& \& -- \& \& --- \& \cdots \& --- \& 744.93
744.41 \& \& 0222
0512 \& \& - ${ }^{\text {ied }}$ \& \& \& \& \& \& \& \& \& \& \& 2.7 \& -133.7 \& 6.98 \& 800 \& 51.98 \&

\hline \& 08/28/13 \& \& \& -- \& --. \& -- \& \& --- \& \cdots \& - \& -- \& \cdots \& - \& - \& - \& --. \& \& \& 745.18 \& \& 0812813 \& 200 \& 190 \& 9.5 \& \& \& \& - \& -- \& -- \& \& -- \& -- \& 4.28 \& -144.3 \& 6.70 \& 1201 \& 61.52 \& 747.25

\hline \& 111 \& <0.19 \& <0.12 \& <0.10 \& 500 \& -75 \& <75 \& 4.1 \& ${ }^{4.8}$ \& \cdots \& 19 \& -- \& $\stackrel{0.20 \mathrm{Ba}}{-}$ \& $\stackrel{6.0}{\square}$ \& ${ }^{23.7}$ \& $\stackrel{7.70}{ }$ \& $\stackrel{300}{ }$ \& 53.60 \& 744.50
750.71 \& \& (11/3, ${ }_{0}^{11 / 25}$ \& \& $\stackrel{7.0}{ }$ \& 18 \& \cdots \& \cdots \& - \& \& \& \& \& \cdots \& \cdots \& 2.0 \& ${ }^{-113}$ \& \& 65 \& 53.24 \& 747.53

\hline \& - ${ }^{\text {05/29/14 }}$ \& -- \& -- \& \& -- \& --- \& --- \& -- \& -- \& -- \& \& -- \& \& \cdots \& -- \& --- \& -- \& \cdots \& ${ }^{746.60}$ \& \& 05129/14 \& \& , 16 \& ${ }_{22}$ \& -- \& -- \& \& \& \& \& -- \& \cdots \& \cdots \& 1.9 \& -137.7 \& 7.95 \& 1000 \& 5.78 \& 748.51

\hline \& +1 \& \bigcirc \& \bigcirc \& \bigcirc \& 250 \& 1.75 Jc \& <1.5 \& 4.6 \& $\stackrel{-}{4.5}$ \& -- \& 71 \& -- \& $\stackrel{0}{0.20}$ \& 3.14 \& \& 7.71 \& $\stackrel{-1}{525}$ \& 54.14 \& 745.46
74.50 \& \& 082881/4 \& 45
7.4 \& ${ }_{5}^{25}$ \& 13
<0.10 \& - \& -- \& - \& \cdots \& \cdots \& \cdots \& \cdots \& \cdots \& \cdots \& 1.1
1.48 \& -146.3 \& 7.10 \& ${ }_{\substack{890 \\ 1840}}$ \& 54.86
40.64 \& 747.80
747.93

\hline \& 03/ \& \& \& -- \& --- \& \& \& -- \& \& \& \& \& \& \& \& \& \& \& 749.15 \& \& $$
\left|\begin{array}{c}
11 / 25514+\text { pup } \\
03 / 30 / 15
\end{array}\right|
$$ \& 7.4

38 \& $$
\begin{aligned}
& 5.1 \\
& \hline 12 \\
& 12
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { colv } \\
& 0.63
\end{aligned}
$$

\] \& \cdots \& \cdots \& \& \& \& \& \& -- \& \cdots \& | 1.148 |
| :--- |
| 1.79 | \& - 146.3

-190.7 \& | 7.10 |
| :--- |
| 7.28 | \& \[

$$
\begin{aligned}
& 1040 \\
& \hline 18240 \\
& 2526
\end{aligned}
$$
\] \& 49.64

40.80 \& | 747.93 |
| :--- |
| 748.62 |

\hline mista \& \& 5 \& 70 \& 0.2 \& -- \& - \& - \& ${ }^{250}$ \& - \& ${ }^{10}$ \& ${ }^{250}$ \& 0.05 \& ${ }^{0.3}$ \& -- \& - \& - \& - \& - \& - \& \& amara \& 5 \& 70 \& 0.2 \& - \& - \& - \& ${ }^{250}$ \& - \& ${ }^{10}$ \& 250 \& 0.05 \& 0.3 \& \& - \& - \& \& \& -

\hline \& \& 0.5 \& \& 0.02 \& \& ment \& \& \& 20 \& $\stackrel{2}{<1}$ \& \& \& \& <1 \& <-100 \& 5-9 \& BG \& \& \& \& Ster \& \& \& \& \& \& \& \& \& $\stackrel{2}{<1}$ \& \& $\frac{0.055}{\text { BG }}$ \& $\frac{0.15}{3 B 6}$ \& \& c-100 \& 5 \& >BG \& 0.2 \&

\hline ot 1 \& Reauired \& Atenuation \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

A-01- - High concentration of non-target analyte present.
$B=$ Analyte was detected in the associated Method Blank.
$\mathrm{B}=$ Analytive was detectied in the associated Method
Ba = Compound was ound in the blank and sample.
$\mathrm{ET}=$ Mativine
$J=$ Analyt detected at a level less than the Reporting Limit (RL) and greater hian or equat to the Method Detecion Limit (MDL). Concentraions W .

Well	Date	Major Chorinated VOC's			Natural Attenuation Analytic Paramelers									Field Parameters								Major Chorinated VOC's			Natural Attenuation Analytic Parameiers									Id Parameters														
																				Well	Date			$\begin{aligned} & \text { 흠 } \\ & \text { o. } \\ & \text { 흔 } \\ & \text { 흐 } \\ & \text { 를 } \\ & \hline \end{aligned}$													\qquad											
мw3		2.48 1.9 0.376			\cdots									---\cdots						MW4A					Prior to Well Construction									Prior to Well Construction														
		Well Destroyed During BuildingDemolition			Well Destroyed During Building Demolition									Well Destroyed During Building Demolition																					-84	9.33												
						0661002	140,000	1100	${ }_{100+}^{200}$	\cdots	\cdots	\cdots	\cdots							\cdots	\cdots	\cdots			${ }_{1.46}^{2.46}$	99	7.43	525	48.5	731.48 734.46																		
						01/1304		8000	<220			--	--							--	--	-	-	---	0.24	-73	7.24	5,726	50.1	${ }_{7}^{735.35}$																		
						0310304 041504 0			$\stackrel{-20}{ }$	<1	$\stackrel{-}{\square}$	$\stackrel{-}{\square}$	\cdots							4.49	-0.03	59	\bigcirc	0.0		-192.2 -149.4	${ }_{8.11}^{8.85}$	1,990 4,126	49.5 49.9	733.47 73.82																		
						- 10 1/3006	${ }_{13,600}^{26}$	${ }_{5}^{6}, 000$	<340	5.5	${ }_{2.8 \dagger}^{2}$	5.9	97.8							29,000	${ }_{<0}$	0.6	${ }_{0} 0.02$	0.1	,	--.	$\stackrel{\text { ®.1. }}{ }$	\ldots	---	733.82 799.11																		
						${ }^{1211306}$	3,900 11900	7,500	${ }_{2}^{21.54}$	--	-	--	--							--	--	--	---	--	--	---	---	--	--	759.19 75785																		
						05/07/107		5,800 10200	${ }^{166}$ 14t	\cdots	\cdots	\cdots	\cdots							\cdots	---	757.85 752.83																										
						11/0107	4,900	2,500	$60+$	--	--	--								--	---	--	---	---	2.70	- 52	8.55	222	126.9	750.69																		
						0211208				--	--	---								--	\cdots	--	\cdots	---	2.95	-69	8.21	382	129.9	746.89 742.96																		
						-			${ }_{8.2}^{20}$	\cdots	\cdots	\cdots	---							\cdots	\cdots	\cdots	\cdots	\cdots	$\stackrel{2.40}{-}$	-198.4	${ }_{8}^{8.40}$	${ }_{245}^{304}$	127.8 133.5 1	${ }^{742.96}$																		
						-01/19999	${ }^{2,060}$	3,300	4.2ヶ	\cdots	\cdots	\cdots	\cdots							\cdots	\cdots	\cdots	\cdots	\cdots	1.76	-205.4	8.40	${ }_{242}$	1355.4	740.64																		
						- 0806096																																										
						$08 / 28 / 10$ $11 / 29 / 10$	Well Destroyed			Well Destroyed									Well Destroyed																													
						0301911																																										
						08/3/11																																										
						$11 / 0811$ 0220112 0																																										
						05/31/12																																										
						-11/26/12																																										
						0222813																																										
						11/12/13 0312514 0																																										
						05/29/4																																										
						0828814 $11 / 24 / 15$																																										
						03/30/15																																										
														\cdots							0.05		\cdots						Preventive Action Limit Requirements For Natural At														-		-			
		0.5	$\underline{ }$	0.02											-	-	125	\cdots	$\underline{2}$	125	0.025	0.15	-	,			,	\cdots			0.5	7	0.02			\cdots	${ }^{125}$	20	$\underline{2}$	${ }^{125}$	0.025	0.15	\cdots	-	\cdots	\cdots	\cdots	
Preventive Action Limit Requirements For Natural Attenuation														BG	asent	prosent	886	20	<1				<1	<-100	5-9	>BG	0.2											>20	<1	BG	${ }^{\text {BG }}$	BG	1	-100	5-9	BG	0.2	

A.01- High concentration of non-target analyte present.
$B=$ Analyte was detectede in the associated Method Bla
$\mathrm{Ba}=$ Compound was found in the blank and sampl
$J=$ Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated
certain than results at or above the LOO
$J \mathrm{~J}=$ Result i s less than the RL but greater than or equal to the MDL and the concentration is an approximate value

\begin{tabular}{|c|}
\hline \& \& \multicolumn{3}{|c|}{Major Chorinated VOC's} \& \multicolumn{15}{|c|}{Natural Attenuation Analytic Paramelers} \& \& \& \multicolumn{3}{|l|}{Major Chlorinated VOC's} \& \multicolumn{9}{|c|}{Natural Attenuation Analytic Parameiers} \& \multicolumn{6}{|c|}{Field Paramelers} \\
\hline Well \& Date \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& Well \& Date \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \multirow[t]{25}{*}{\({ }^{\text {MWW5 }}\)} \& \multirow[t]{2}{*}{07/22/99 121201 03/07/02} \& \multicolumn{3}{|l|}{Prior to Well Construction} \& \multicolumn{9}{|c|}{Prior to Well Construction} \& \multicolumn{6}{|c|}{Prior to Well Construction} \& mwsb \& \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l|l}
07/22/99 \& \\
\cline { 2 - 2 } \(12 / 2 / 01\) \& \\
\(03 / 07 / 02\) \& Prior to Well Construction \\
\(06 / 10 / 02\) \& \\
\(01 / 12 / 04\) \&
\end{tabular}}} \& \multicolumn{9}{|c|}{\multirow[b]{2}{*}{Prior to Well Construction}} \& \multicolumn{6}{|c|}{\multirow{3}{*}{Prior to Well Construction}} \\
\hline \& \& \begin{tabular}{l}
22,000 \\
49,000 \\
\hline 200
\end{tabular} \& \& \(\begin{array}{r}\text { [32 } \\ 170 \\ \hline 55\end{array}\) \& \(\cdots\) \& \(\cdots\) \& \(\cdots\) \& --- \& \(\stackrel{-}{--}\) \& --- \& --- \& \(\cdots\) \& \(\cdots\) \& (\(\begin{aligned} \& 10.7 \\ \& \\ \& 0.23\end{aligned}\) \& \({ }_{81}^{41}\) \& 8.36
7.11
7 \& \& \& 749.04
75.84
70.88
7 \& \\
\hline \& 01/1204
0310304 \& 20,200 \& 19,200 \& <55 \& \(\cdots\) \& \(\cdots\) \& -- \& \(\cdots\) \& \(\cdots\) \& \(\cdots\) \& --- \& \(\cdots\) \& -- \& [1.19 \& -70 \& 7.38
8.92 \& \& 49.8
46.4 \& \begin{tabular}{l}
750.28 \\
750.60 \\
\hline
\end{tabular} \& \& (\(\begin{aligned} \& 01 / 1204 \\ \& 030304 \\ \& 0304\end{aligned}\) \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& 0411504 \& 33,700 \& 16,800 \& \(<105\) \& 74 \& 7.4 \& 3.2 \& \(\cdots\) \& 9.21 \& \(<0.03\) \& 776 \& 0.069 \& 0.1 \& 1.57 \& -76.2 \& 8.17 \& 5,522 \& 46.5 \& 751.21 \& \& 0415504 \& 992 \& 239 \& \& \& \(<1\) \& \(<1\) \& \(\cdots\) \& 4.51 \& \(<0.02\) \& 123 \& \& 0.2 \& \({ }_{0}^{0.63}\) \& -174.2 \& \({ }_{8} 8.72\) \& 290 \& 50.0 \& 713.74 \\
\hline \& \(10 / 30\)
1213
1213 \& 34,000 \& \begin{tabular}{l}
8,500 \\
1,680 \\
\hline
\end{tabular} \& \(\begin{array}{r}85 \\ 85 \\ 8 \\ \hline\end{array}\) \& \({ }^{30}\) \& 6.5 \& \({ }_{58}\) \& 89.3 \& 10,000 \& \(<0.03\) \& 9.99 \& 0.54 \& \(<0.032\) \& 0.00 \& -73 \& 7.18 \& 1,830 \& 57.5 \& \({ }^{788.14}\) \& \& -10/30606 \& \({ }_{71} 100\) \& \({ }_{261}^{261}\) \& \& 5.1 \& 4.3 \& 18 \& 36.8 \& 38,000 \& \(<0.03\) \& 9.09 \& 0.2 \& 0.16 \& 0.00 \& -119 \& 7.46 \& 130 \& 51.8 \& 725.92 \\
\hline \& \begin{tabular}{l}
1221306 \\
0211307 \\
\hline 104
\end{tabular} \& 8,000
30,300 \& 16,800
25,700 \& \(\stackrel{885}{8120}\) \& \(\cdots\) \& -- \& -- \& -- \& \(\cdots\) \& \(\cdots\) \& \(\cdots\) \& -- \& \(\cdots\) \& \(\cdots\) \& -127 \& 7.04 \& \({ }_{1,240}^{17}\) \& \({ }^{78.6}\) \& \({ }^{751.36}\) \& \& (\begin{tabular}{|}
121213606 \\
0211307
\end{tabular} \& \({ }_{131}^{71}\) \& \({ }_{296}^{286}\) \& \({ }_{3.6+}^{3.6 \dagger}\) \& \(\cdots\) \& \(\cdots\) \& \(\cdots\) \& \(\cdots\) \& \(\cdots\) \& \& \(\cdots\) \& \(\cdots\) \& \(\cdots\) \& \& 28 \& 8.44 \& 1 \& 52.9 \& \({ }^{724.70} 7\) \\
\hline \& 0510707 \& 25,500 \& 32,000 \& 196 \& -- \& --- \& -- \& -- \& --- \& -- \& -- \& -- \& --- \& -- \& -269 \& 7.00 \& 1,540 \& 118.0 \& 751.75 \& \& 0510707 \& 106 \& 340 \& \({ }_{3.84}\) \& -- \& -- \& -- \& \(\cdots\) \& \& \& \(\cdots\) \& -- \& -- \& \({ }^{0.32}\) \& \({ }_{-}\) \& \({ }^{-14}\) \& -- \& 70.7 \& 732.59 \\
\hline \& l1/10107
02121208 \& li,800 \& 4,300
3,700 \& \begin{tabular}{l}
\(84+\) \\
\(<40\) \\
\hline
\end{tabular} \& \(\cdots\) \& --- \& 0.40
0.71 \& -144
-176 \& \({ }_{7.61}^{7.34}\) \& \({ }_{947}^{981}\) \& 110.6
99.6 \& \begin{tabular}{l}
750.58 \\
750.20 \\
\hline
\end{tabular} \& \& (\(\begin{aligned} \& \text { 11/10107 } \\ \& 0211208 \\ \& 0\end{aligned}\) \& 251
50 \& \({ }_{235}^{380}\) \& \({ }_{34}^{25}\) \& \(\cdots\) \& \(\cdots\) \& \(\cdots\) \& \(\cdots\) \& \(\cdots\) \& \(\cdots\) \& -- \& \(\cdots\) \& \(\cdots\) \& 0.73 \& -229.4 \& \(\stackrel{7}{7}\) \& 576 \& 81.4 \& \begin{tabular}{l}
723.49 \\
726.67 \\
\hline
\end{tabular} \\
\hline \& 0506608 \& 3,200 \& 5,300 \& \(24 \dagger\) \& --- \& --- \& -- \& -- \& -- \& -- \& -- \& -- \& --- \& 0.37 \& 19 \& 6.91 \& 528 \& 85.5 \& 751.28 \& \& 050668 \& 60 \& 257 \& 71 \& -- \& -- \& - \& -- \& -- \& -- \& -- \& -- \& -- \& \({ }^{0.81}\) \& -187.8 \& 8.01 \& 443 \& 86.8 \& 715.74 \\
\hline \& 090,0908
\(01 / 1909\) \& coicheo \begin{tabular}{c}
6,300 \\
\hline
\end{tabular} \& 4,9900
3,700 \& -56. \& \(\cdots\) \& O. \(\begin{aligned} \& 0.14 \\ \& 0.13\end{aligned}\) \& \({ }_{-388}{ }^{-194}\) \& \({ }_{7.71}^{7.51}\) \& \({ }_{929}^{979}\) \& 104.5
97.8 \& 751.20 \& \& (0909088 \& 100 \& 188
81 \& \({ }_{6.2}^{65}\) \& \(\cdots\) \& --- \& \({ }_{0}^{0.38}\) \& \({ }_{-247}^{-248}\) \& 7.86
7.37 \& 514
486 \& \({ }_{84.7}^{89.4}\) \& \begin{tabular}{l}
715.07 \\
73.10 \\
\hline
\end{tabular} \\
\hline \& 86/2009 \& \({ }_{\text {2,160 }}\) \& 1,760 \& <30.5 \& 1830 \& 57.4 \& 349 \& \({ }^{680}\) \& 6 \& \(<0.1\) \& 42 \& 0.209 \& \(0.14 \dagger\) \& 0.19 \& -156.8 \& 7.54 \& 2536 \& 98.1 \& 749.03 \& \& 0806609 \& \& \& \& \(\cdots\) \& \(\cdots\) \& \(\cdots\) \& \(\cdots\) \& -- \& \& - \& \& - \& 0.88 \& -123 \& 7.08 \& 529 \& \& \\
\hline \& 5126120 \& \({ }_{\substack{5.6 \mathrm{Jaa} \\ 150}}\) \& 1,100
440 \& 550
300 \& 1,970 \& \(\stackrel{373}{ }\) \& \({ }^{23.0 \mathrm{~J}}\) \& \({ }^{490}\) \& 5.09 \& \(\cdots\) \& \(\stackrel{37}{7}\) \& \(\cdots\) \& \({ }^{0.38 \mathrm{Ja}}\) \& 0.0
0.5 \& \({ }_{\text {- }}^{-176.7}\) \& \({ }_{8.31}^{8.84}\) \& \begin{tabular}{l}
1887 \\
1275 \\
\hline
\end{tabular} \& \begin{tabular}{l}
67.64 \\
60.44 \\
\hline
\end{tabular} \& \begin{tabular}{l}
760.27 \\
750.66 \\
\hline
\end{tabular} \& \& 051266100 \& \& \& \& \(\cdots\) \& --- \& \(\cdots\) \& .-. \& \(\cdots\) \& \(\cdots\) \& \(\cdots\) \& -- \& \(\cdots\) \& \& \& \& \& \& \begin{tabular}{l}
760.05 \\
73438 \\
\hline 185
\end{tabular} \\
\hline \& 11/29/10 \& 360 \& 790 \& 500 \& 3440 \& 349 \& 132 \& 580 \& 5.96 ET \& -- \& 23 \& -- \& 0.93 Ja \& 1.2 \& -131.7 \& 8.20 \& 995 \& 59.5 \& 749.78 \& \& 11/2910 \& \& ample \& \& -- \& -- \& -.- \& -.- \& --- \& \& -- \& -- \& --- \& \& Obs \& cted \& No S \& \& \begin{tabular}{l}
734.38 \\
\hline 75514 \\
7
\end{tabular} \\
\hline \& \({ }_{\substack{0 \\ 03 / 21011 \\ 0516 / 11}}\) \& \({ }_{\text {- } 61.20}\) \& \({ }_{0.660}^{200}\) \& 410
20 \& 5140 \& 567 \& 161 \& 410 \& 41.1 ET \& -- \& 2.9 Jb \& -- \& 14.1 N+A \& 2.0
0.0 \& \({ }_{-210.3}^{-150.3}\) \& 8.17 7 \& \begin{tabular}{l}
700 \\
1920 \\
\hline
\end{tabular} \& 52.34
54.86 \& \({ }^{751.29}\) \& \& \({ }^{0} 03011\) \& Kink \& No Sa \& \& \& \& \& \& \& \& \& \& \& \& Kinke \& d-No \& ample \& \& \begin{tabular}{l}
751.36 \\
751.34 \\
\hline
\end{tabular} \\
\hline \& 088/30/11 \& 9.1 \& 25 \& 2.1 \& \& - \& -- \& \& -- \& -- \& -- \& -- \& \& 3.6 \& -155.2 \& 7.43 \& 2154 \& 68.72 \& 750.77 \& \& 08/30/11 \& \& \& \& \& \& \& -- \& \& \& \& \& -- \& \& \& \& \& \& 751.21 \\
\hline \& 11/08/11 \& 27
57 \& \(\begin{array}{r}130 \\ 330 \\ \hline 30\end{array}\) \& 39
150
15 \& 6050 \& 1120 \& 90.1 \& \({ }^{620} \mathrm{~B}^{-1}\) \& 3.46 ET B \& \(\cdots\) \& 6.18 \& \(\cdots\) \& \({ }^{8.53}\) \& \({ }_{4}^{3.1}\) \& -99.6 \& 7.97 \& \begin{tabular}{|c}
1627 \\
170 \\
1 \\
1
\end{tabular} \& 48.02
5108 \& - 750.47 \& \& 1110811 \& 37 \& \& \& - \& -- \& - \& \(\cdots\) \& \& \& \& \& --- \& 30 \& --717 \& 8.05 \& --70 \& 51.8 \& 750.45
750.12
750 \\
\hline \& 05/31/12 \& 150 \& 330
370 \& \({ }_{340}^{150}\) \& \(\cdots\) \& \(\cdots\) \& --- \& -- \& --- \& --- \& -- \& -- \& \(\cdots\) \& \({ }_{2}^{4.5}\) \& \({ }_{\text {- }}^{\text {-14. }} 1\) \& 7.75 \& 1670 \& \({ }_{\text {56. }}^{56}\) \& \({ }^{7551.05}\) \& \& 05/31/12 \& \({ }^{37}\) \& \& \& \(\cdots\) \& -- \& -- \& -- \& -- \& \(\cdots\) \& - \& -- \& -- \& \& \& 8. \& \(\stackrel{-}{30}\) \& \& \begin{tabular}{l}
750.12 \\
751.24 \\
\hline
\end{tabular} \\
\hline \& 08127/ \& \({ }_{45}^{62}\) \& 300
300 \& \({ }_{8}^{5.1}\) \& 2.10 \& \(150 . \mathrm{Jc}\) \& -26 \& 620 B \& 4.5 \& \(\cdots\) \& 21 \& \(\cdots\) \& 7.5 \& 2.0
1.3 \& \({ }_{-164}^{\text {-171.1 }}\) \& \({ }_{7}^{7.50}\) \& \({ }_{2217}^{1310}\) \& 57.20
57.20 \& \begin{tabular}{l}
751.70 \\
751.07 \\
\hline
\end{tabular} \& \& 08127712
112612
1 \& \(\bigcirc\) \& 25 \& 5.6 \& 530 \& \(\bigcirc\) \& \(<26\) \& 22 \& 9.7 \& \(\cdots\) \& \(\ldots\) \& \(\cdots\) \& 051 \& 24 \& \(\cdots\) \& 783 \& 1070 \& 55 \& 751.08
750.91
7, \\
\hline \& 02281/13 \& 4,500 \& 10,000 \& \({ }_{350}\) \& \({ }^{\text {2, }}\) \& --. \& \(\stackrel{-}{-}\) \& - \& \(\stackrel{4.5}{-}\) \& \(\cdots\) \& \(\stackrel{21}{-1}\) \& \(\cdots\) \& \(\stackrel{7}{7}\) \& 5.2 \& -46.6 \& 7.52 \& 2,120 \& 48.20 \& 751.26 \& \& 02/28/13 \& \& \& \& -- \& \(\stackrel{-25}{-}\) \& \(\stackrel{\square}{-}\) \& \(\stackrel{-}{-}\) \& \& -- \& \(\underline{+140}\) \& \(\cdots\) \& \(\stackrel{0}{-}\) \& \(\stackrel{.}{2.4}\) \& \(\cdots\) \& 7.8 \& \(\cdots\) \& \& \begin{tabular}{l}
750.91 \\
751.28 \\
\hline
\end{tabular} \\
\hline \& 05 \& 280
93 \& 750

290 \& 290
43
48 \& \cdots \& 3.0
0.73 \& -96.6 \& 7.49 \& 1,550 \& 51.26
6206 \& 752.25
750.93
7 \& \& \& -- \& \cdots \& \& \cdots \& --- \& \cdots \& \& \cdots \& \cdots \& \& -- \& 752.08
75125
751

\hline \& -08128/3 \& ${ }_{110}$ \& ${ }_{100}^{290}$ \& ${ }_{6.2}^{43}$ \& ${ }_{90}$ \& 32 \& <1.5 \& 210 \& 4.2 \& \cdots \& 71 \& \cdots \& ${ }_{3.7 \mathrm{Ba}}$ \& ${ }_{2} 20$ \& -151.0 \& 7.91 \& ${ }_{\text {l }}^{1,790}$ \& 53.78 \& ${ }^{751.39}$ \& \& - \& ${ }_{4}$ \& $\underline{66}$ \& 9.8 \& 110 \& 34 Jc \& <15 \& 10 \& 3.7 \& \& 14 \& \& 0.36 Ba \& 3.3 \& -101 \& 7.90 \& 970 \& 55.58 \& | 751.25 |
| :--- |
| 751.28 |

\hline \& 03 \& Sample \& royed in \& ${ }_{710}$ \& \& \cdots \& \& \& \cdots \& \cdots \& -- \& -- \& --- \& 3.50
20 \& -101.3 \& ${ }_{8}^{8.02}$ \& 700 \& 39.02

5432 \& | 751.84 |
| :--- |
| 751.68 | \& \& 03/25 \& -- \& \cdots \& \& \cdots \& -- \& -- \& -- \& \& \& \& \& \& \& \& \& \& \& 751.55

\hline \& - \& ${ }_{42}$ \& 1,200 \& 1,100 \& -- \& \cdots \& $\stackrel{-}{-}$ \& \cdots \& \cdots \& -- \& \cdots \& \cdots \& -- \& ${ }_{\substack{2.20 \\ 3.1}}$ \& ${ }_{-131.3}^{-131.7}$ \& 8.98

8.30 \& $\xrightarrow{1,250}$| 1,170 |
| :--- | \& 54.32

55.04 \& \begin{tabular}{l}
751.68

751.42

\hline

 \& \& - \& \& - \& -- \& - \& \cdots \& \& \cdots \& - \& \& \& \cdots \& \& \& -- \& -- \& -- \& \cdots \&

751.33

751.15
\end{tabular}

\hline \& ${ }^{111 / 24 / 4}$ \& 300
120 \& 430
920 \& 180 \& 580 \& $\stackrel{99}{-9}$ \& ${ }^{60} \mathrm{Jc}$ \& 480 \& 4.4 \& -- \& 39 Ba \& -- \& 5.5 \& 3.71 \& -79.6 \& 6.67 \& 2,938 \& 52.52 \& ${ }^{751.45}$ \& \& 11/24/14 \& ${ }_{6}^{64}$ \& 52 \& 5.5 \& 300 \& 81 \& <15 \& 27 \& 7.0 \& -.- \& 150 Ba \& --- \& 0.22 \& 1.16 \& -249.5 \& 8.99 \& 665 \& 53.78 \& ${ }^{751.31}$

\hline \& 03/30/15 \& \& \& 670 \& \& \& \& \& \& -- \& \& \& \& \& -166.5 \& \& 1,652 \& 46.56 \& 75.76 \& \& $11 / 24 / 4$ Dup
$03 / 30 / 15$ \& 69 \& $\stackrel{54}{-}$ \& 5.6 \& \cdots \& \cdots \& \cdots \& \cdots \& \cdots \& \& \& \& \& 1.16 \& -249.5 \& 8.99 \& $\stackrel{665}{--}$ \& 53.78 \&

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Entorement Staratar}} \& 5 \& 70 \& 0.2 \& - \& - \& \cdots \& ${ }^{250}$ \& \cdots \& 10 \& 250 \& 0.05 \& 0.3 \& \cdots \& - \& \& \& \& \& \multicolumn{2}{|l|}{Enforement Standard} \& 5 \& 70 \& 0.2 \& - \& - \& \& 250 \& - \& 10 \& ${ }^{250}$ \& 0.05 \& 0.3 \& \& - \& - \& - \& \&

\hline \& \& 0.5 \& $\underline{7}$ \& 0.02 \& \& \& \& 125 \& \& $\underline{2}$ \& 125 \& 0.025 \& 0.15 \& \& T00 \& 5 \& 仡 \& 2 \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& 0.5 \& $\underline{7}$ \& 0.02 \& \& \& \& 125 \& \& ? \& 125 \& ${ }^{0.025}$ \& $\stackrel{0.15}{ }$ \& \& -100 \& 5 \& \cdots \& \cdots \&

\hline \multicolumn{2}{|l|}{Requiremens For Natura Ateruation} \& \& \& \& \& \& \& \& 仡 \& \& \& \& \& \& <-100 \& \& \& . 2 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& < \& <-100 \& 5-9 \& > ${ }^{\text {ch }}$ \& O. \&

\hline
\end{tabular}

$-=$ Not Tested Not Required $-=$ No Standard
$A-01-$ High concentration of non-target analyte present.

\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Well} \& \multirow[b]{2}{*}{Date} \& \multicolumn{3}{|l|}{Major Chorinated VOC's} \& \multicolumn{15}{|c|}{Natural Attenuation Analytic Paramelers \quad Fild Paramete} \& \& \& \multicolumn{3}{|l|}{Major Chorinated VOC's} \& \multicolumn{9}{|c|}{Natural Attenuation Analytic Parameiers} \& \multicolumn{6}{|c|}{mete}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& Well \& Date \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline MW5A \& 0722999
121201 \& \multicolumn{3}{|l|}{} \& \multicolumn{9}{|l|}{} \& \multicolumn{6}{|l|}{} \& NW6 \& \& \multicolumn{3}{|l|}{Prior to Well Construction} \& \multicolumn{9}{|l|}{} \& \multicolumn{6}{|l|}{}

\hline \& 0307102 \& \multicolumn{18}{|l|}{\multirow[t]{30}{*}{}} \& \& \& ${ }^{4.3}$ \& <0.11 \& ${ }^{0.16}$ \& \multicolumn{9}{|c|}{$\stackrel{\text { Prior to Well Construction }}{\cdots}$} \& \multicolumn{6}{|l|}{}

\hline \& 06/10,02 \& 0661002 \& $\frac{3.6}{3.6}$ \& <0.11 \& ${ }^{20.16}$ \& \& \& \& \& -- \& \& \& \& \& ${ }_{0}^{0.51}$ \& ${ }^{221}$ \& ${ }^{6.88}$ \& 1,119
1,309 \& \& 749.91

\hline \& 011/204 \& - \& 3.6 \& <0.25 \& <0.11 \& -- \& - \& - \& \cdots \& - \& - \& - \& - \& \cdots \& 1.1 .37 \& ${ }_{739} 9$ \& ${ }^{6.90}$ \& 1,309 \& ${ }^{50.3}$ \& 749.51
750.15

\hline \& -04/1504 \& ${ }^{0} 04141404$ \& 3.3 \& <0.29 \& <0.21 \& 5.1 \& < \& <1 \& \cdots \& 2.66 \& 2.29 \& 197 \& <0.05 \& 0.1 \& 2.40 \& -79.2 \& ${ }_{8.25}^{8.24}$ \& 4,162 \& ${ }_{45.3}^{4.6}$ \& 750.15
749.93

\hline \& 10/30006 \& 10/30006 \& $\stackrel{3}{2.99}$ \& <0.68 \& <0.17 \& 5.5 \& <1 \& <1 \& 5.29 \& 2.5 \& -2.03 \& 64.9 \& 0.027 \& 0.26 \& 0.00 \& -131 \& 7.23 \& ${ }_{854}$ \& 54.8 \& 749.54

\hline \& 12131306
0211307
1 \& $121 / 1309$
021313

0 \& \& \cdots \& \cdots \& -- \& \cdots \& \cdots \& \cdots \& \cdots \& \cdots \& -- \& \cdots \& \cdots \& \cdots \& \cdots \& \cdots \& --- \& --- \&

\hline \& 0507707 \& 0507/07 \& \& -- \& -- \& \& \cdots \& \& --- \& --- \& \& -- \& -- \& --- \& 0.26 \& -155 \& 6.79 \& 1,480 \& 47.8 \& 749.91
79.91

\hline \& $11101 / 07$ \& 11/01/17 \& \& \& \& \& \& \& \cdots \& -- \& \& \& --- \& -- \& 1.40 \& -35 \& 5.3 \& 1,393 \& 58.2 \& | 749.43 |
| :--- |
| 7955 |

\hline \& 0271208 \& 02112 \& 28.5 \& $\underline{39}$ \& <0.2 \& \cdots \& 0.98 \& -153 \& 6.97 \& 1,412 \& 48.9 \& | 744.55 |
| :--- |
| 7493 |

\hline \& ${ }^{09} 090908$ \& 09090/ \& -- \& -- \& --- \& -- \& -- \& -- \& --- \& -- \& -- \& -- \& -- \& -- \& 0.90 \& -300 \& 6.96 \& 1,542 \& 54.8 \& 749.93
79.49

\hline \& 01/1909 \& 01/19 \& \& -- \& --- \& -- \& \& -- \& -- \& --- \& \& --- \& \& \& \& \& \& \& \& 749.52

\hline \& 08066/9 \& 0805 \& ${ }_{22}^{22.1}$ \& ${ }^{78}$ \& ${ }^{1.14+}$ \& ${ }_{6}^{6.8}$ \& <1 \& <1 \& 27 \& 4.9 \& 3.75 \& 60 \& 0.0591 \& ${ }^{0.86}$ \& 0.2 \& -410 \& 7.28 \& 1,556 \& 51.3 \& | 749.74 |
| :--- |
| 790.67 |

\hline \& ${ }_{0} 0825110$ \& 0825 \& ${ }_{110}^{22}$ \& $\frac{35}{91}$ \& coick \& \& -10.0 \& -10.0 \& $\underline{100}$ \& 6.7 \& \& $\underline{190}$ \& \cdots \& \& 2.0 \& ${ }_{-67.4}$ \& 7.39 \& 850 \& 59.72 \& 760.67
749.02

\hline \& 8 825/10 0up \& 11/29/1 \& 110 \& ${ }^{86}$ \& 1.2 Ja \& 232 \& <14.0 \& <11.0 \& 110 \& 32.5 \& \& 140 \& \cdots \& 0.40 \& 3.0 \& 39.7 \& 7.50 \& 700 \& 61.7 \& 749.19

\hline \& (11/29910 \& - $0301 / 1$ \& 49

37 \& ${ }_{63}^{100}$ \& ${ }_{0}^{1.85 \mathrm{Jab}}$ \& 2.15 \& 0.251 Jb \& <0.0569 \& 250 \& 7.54 ET \& \& 140 \& \& 0.374 \& 3.0 \& ${ }_{-84.6}^{-57.3}$ \& 7.25 \& - \& 544.32 \& | 749.64 |
| :--- |
| 799.87 |

\hline \& 03/01/11 \& 088/30/11 \& 17 \& \& 0.34 Jc \& \& \& \& --- \& \& -- \& \& -- \& \& 2.64 \& -210 \& 7.48 \& 1,175 \& 60.8 \& 749.47

\hline \& - \& 11/0811
0212012 \& 20

25 \& ${ }_{79}^{83}$ \& ${ }_{0}^{6.84}$ \& 260 \& 0.541 \& 0.667 \& 54 B \& 4.38 ет ${ }^{\text {¢ }}$ \& -- \& ${ }^{66 \mathrm{~B}}$ \& \cdots \& $\underline{0.225}$ \& \begin{tabular}{l}
3.5

2.7

\hline

 \& ${ }^{-159.3}$ \& 7.05 \& ${ }_{4} 525$ \& ${ }^{46.22}$ \&

750.57

749.41

\hline
\end{tabular}

\hline \& 5/16/11 dup \& 02120112 Dup \& ${ }_{23}^{25}$ \& 78 \& 1.15 sc \& --- \& \& -- \& \& \& \& \& -- \& \& 2.7 \& -193.3 \& 7.40 \& 425 \& 46.76 \& 749.41

\hline \& 08/30/11 \& 05/31/12 \& 51 \& \& ${ }^{3.0}$ \& \& \& \& \& \& \& \& \& \& 2.0 \& -211.7 \& 7.74 \& 500 \& ${ }_{53}^{53.42}$ \& | 749.61 |
| :--- |
| 7994 |

\hline \& .1108/11 \& -08/77/12 \& 31
19 \& 140
61 \& ${ }_{6.4}^{0.10}$ \& 97 \& -0.49 \& <0.52 \& 46 \& 18 \& \& 55 \& \cdots \& 0.17 Jc \& 2.0
1.7 \& ${ }^{-181.1}$ \& 7.7.73 \& 600
810 \& 54.14

5.22 \& | 749.47 |
| :--- |
| 799.41 |

\hline \& 02200/12 \& 0228813 \& 41 \& 30 \& 0.49 Jc \& -- \& \& \& -- \& \cdots \& \& $\stackrel{-}{-}$ \& \cdots \& \& 4.1 \& -83.5 \& 7.21 \& 1,031 \& 47.66 \& 749.41
7954
7857

\hline \& 05/31/12 \& 05/23/13 \& 51 \& \& 0.69 \& -- \& \& \& -- \& \& \& \& \cdots \& --- \& 3.5 \& -97.7 \& 7.17 \& ${ }^{980}$ \& \&

\hline \& -08/7712 \& 08/28813
$11 / 12 / 13$ \& 38

23 \& $\begin{array}{r}97 \\ 21 \\ \hline 18\end{array}$ \& co. ${ }_{\text {coid }}$ \& 39 \& <7.5 \& <7.5 \& 42 \& 1.8 \& - \& 78 \& -- \& ${ }_{0} .72{ }^{\text {в }}$ в \& 1.46
2.7 \& -184.5
-135 \& ${ }_{7}^{6.95}$ \& 1,062
800 \& 58.82
53.96 \& 750.09
749.32

\hline \& 11/2 \& 11/12/13 Dup \& ${ }^{21}$ \& $\frac{17}{17}$ \& 1.6 \& \& \& \& -- \& \& -- \& \& -- \& --- \& 2.7 \& -135 \& 7.81 \& 800 \& 53.96 \& 749.32

\hline \& 022813 \& -332514 \& 78

37 \& $\stackrel{45}{33}$ \& | 0.92 |
| :--- |
| 0.53 | \& -- \& \cdots \& -- \& -- \& -- \& \cdots \& -- \& \cdots \& \cdots \& 4.1 \& ${ }_{\text {- }}^{\text {- } 13.7}$ \& \& \& 40.64

51.62 \& | 749.71 |
| :--- |
| 799.86 |

\hline \& 08 \& | 08828/14 |
| :--- |
| $11 / 2 / 14$ | \& ${ }_{73}^{18}$ \& $\frac{45}{69}$ \& 1.9 \& \cdots \& \cdots \& \cdots \& \cdots \& 2 \& -- \& \ldots \& -- \& \& ${ }^{3.3}$ \& -227 \& 8.39 \& 605 \& 53.42 \& | 749.96 |
| :--- |
| 749.56 |

\hline \& ${ }_{\text {l }}^{11 / 21213}$ \& \& ${ }_{47}$ \& \& ${ }_{0} 0.52$ \& \& \& \& \& \& \& \& \& \& ${ }_{9.35}$ \& $\stackrel{-193.7}{ }$ \& \& ${ }_{670}^{725}$ \& 557.29 \&

\hline \& 05/3 \&

\hline \& | 08881/4 |
| :--- |
| $111 / 24 / 14$ | \&

\hline \& 03/30/15 \&

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Etiocemen Standed}} \& 5 \& 70 \& 0.2 \& - \& - \& - \& 250 \& - \& 10 \& 250 \& 0.05 \& 0.3 \& - \& \& \& \& \& \& \multicolumn{2}{|l|}{Ennoremenen Standard} \& 5 \& \% \& 0.2 \& \& \& \& 250 \& \& \& \& 0.05 \& ${ }^{0.3}$ \& \& \& \& \& \&

\hline \& \& 0.5 \& 7 \& 0.02 \& \& \& \& 125 \& \& $\underline{2}$ \& 125 \& 0.025 \& 0.15 \& \& \& \& \& \& \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \& 7 \& 0.02 \& \& \& \& 25 \& \& $\underline{2}$ \& 25 \& 0.0. \& 0.15 \& \& \& \& \& \&

\hline \multicolumn{2}{|l|}{Bequiremens for Matur} \& \& \& \& >BG \& \& present \& \& >20 \& \& \& \& PBG \& <1 \& <-100 \& 5-9 \& >BG \& 0.2 \& \& \& \& \& \& \& $>$ BG \& prosent \& present \& \& $\rightarrow 20$ \& <1 \& <ba \& >BC \& $>$ PG \& < \& <-10 \& 5-9 \& >BG| \& 0.2 \&

\hline
\end{tabular}

$B=$ Analyte was detected in the associated Method
$B a=$ Compound was tound in the blank and sample.
ET- Matix initerference in sample is causing an endooint timeout.
$J=$ Analyt detected at a a level less than the Reporting L Litit
$J=$ Analyt detected at a level less than the Reporting L Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated
$b=$ Estimated value. Analyte detected ata ievel less than the R) and L Limit of Quantitation (L (LOQ) are less certain than results at or above the $L O Q$.

$\mathrm{B}=$ Analyte was detected in the associated Method Blank
$\mathrm{Ba}=$ Compound was found in the blank and sample.
$J=$ Analyt detected at a l level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimate
$\alpha=$ Resist reported beeween he Method Detection Limit (MDL) and Limit of Quantitation (LOO) are less certain than results at or above the LOQ.

A-01 - High concentration of non-target analyte present
$=$ Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Methoc Deetection Limit (MDL). Concentrations within this range are estimated

$-\mathrm{A}=$ Not Tested Not Required $-=$ No Standard $+=$
$\mathrm{A}-01=$ High concentration of non-target analyte present.

$01=$ High concentral of of non-target ana
$J=$ Analyte detecteded at a level less than the Reporting Limit R RL) and reater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated

		Major Chlorinated VOC's			Natural Atenuation Analytic Parameters \quad Field Parameiers																	Major Chlorinated Voc's			Natural Attenuaion Analyic Parameters									mela						
Well	Date																			Well	Date																			迷
mws					Prior to Well Construction									Prior to Well Construction						MwsB	$\begin{aligned} & 07 / 22 / 9 / 9 \\ & 1 / 1 / 2 / 1 \end{aligned}$	Prior to Well Construction			Prior to Well Construction									Prior to Well Construction						
					-									1.54	-7	7.65	777	46.9	${ }^{748.87}$			0.84	1	${ }^{00.16}$				-		--					0.07	-255	8.78	${ }^{787}$		
	06110102 $01 / 11 / 04$ 0	${ }_{0}^{0.44} 0$	4.6 .9 .5	${ }_{3.7}^{00.16}$	---	--	--	\cdots	\cdots	--	--	--	--	0	${ }_{-61}^{133}$				749.47 748.36		- $\begin{aligned} & 06 / 10102 \\ & 01 / 12104\end{aligned}$	20.13 00.1	0.124 00.25	${ }_{\text {< }} \times 0.116$				\cdots	---	--	--	\cdots				$\stackrel{195}{.}$				${ }_{7}^{713.55}$
	03103				--	-	--	--	\cdots	\cdots	\cdots	\cdots	\cdots	0.20	-190.8	7.79	2,400	48.1	${ }^{750.06}$		0303304				\cdots		\cdots	\cdots	\cdots	\cdots	\cdots	\cdots			4.00	12.1	8.26	2,300		${ }^{712.68}$
		$\underset{\substack{0.48 \dagger \\<0.44}}{ }$	$\stackrel{10}{10.9}$	3.4 2.4	85 40	${ }_{2.9 \dagger}{ }^{\text {¢ }}$	<1	$\stackrel{-}{44.7}$	7.70 9,300	${ }_{\substack{0.75 \\<0.03}}$	${ }_{647}^{583}$	${ }^{1.13} 0$	3.5 1.4	$\stackrel{0.23}{\square}$	-158.7	$\stackrel{8.20}{--}$	4,530	$\stackrel{45.8}{--8}$	749.03 748.50		04/1404 10301006	-	<0.29	${ }_{\substack{20.21 \\<0.17}}$	${ }_{9.1}$	<1	${ }_{1.5+}^{\text {¢ }}$	${ }_{23.5}$	11.3	${ }_{\text {coicle }}^{0.29}$	${ }_{257}^{557}$	${ }^{0.085}$ 0.12	${ }_{0}^{0.049}$		1.53 0.00	${ }_{-14}^{-36.9}$		${ }_{902}^{4,633}$	$\begin{aligned} & 50.4 \\ & 50.4 \end{aligned}$	713.32 777.06
	${ }^{121 / 13 / 06}$,		\cdots	--	\cdots	\cdots	\cdots					--.	---	---	---	--		12/13,			--			\cdots		\cdots	--		--					--	--		$\stackrel{74824}{ }$
	O2/				\cdots	\cdots		\cdots						1.60	\cdots	\cdots	\cdots	$\stackrel{-7}{65.1}$	748.31 748.95		0213 0507 007							--		-		\cdots			0.58		---			748.24 715.28
	${ }^{111 / 0107}$	---	---	---								\cdots		-		--	---		788.50		11/01/2		--				-				\cdots				0.40	202	5.61	998	51.2	${ }^{7615.56}$
	O211208 050608 05068	$\underline{0.67 t}$	$\underline{23.7}$	20.9	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots		---	\cdots	\cdots	---	\cdots	---	--.	748.64 74900			<0.44	${ }^{20.68}$	<0.2	--		-	-	\cdots	-	\cdots	--			0.83	-173.7	7.43	1,020		717.56 71513
	090908	\cdots	-	\cdots	---	\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots	\cdots	49.00		0990908	\cdots		\cdots			\cdots	-	\cdots	-	\cdots	\cdots	\cdots		0.18	-189.3	7.53	938	53.0	715.13 766.68 717
	01/19099 080609	$\stackrel{-1}{<0.39}$	$\stackrel{17.6}{17}$	$\stackrel{-1}{<0.61}$	${ }_{79} 7$	<1	${ }^{-6.68+}$		$\stackrel{\square}{22}$	<0.1	350	${ }_{0}^{0.661}$	$\stackrel{5}{5.51}$	\cdots	\cdots	\cdots	---	--.	748.54 747.83		O1/19619			<0.61	53.8	<1	<1	24	1.4	$0.01+$	250	0.0519			0.70	-127	8.73	829	52.1	717.90 716.53
	055/26/10	0.55 Ja	$\frac{17}{17}$	${ }_{2}^{20.9}$	${ }_{93}$	<10.0	<10.0	260	13.5	\cdots	180	---	11	0.07	-202.2	7.91	1,548	59.0	758.29		${ }_{0} 05 / 26$	<0.20	<0.50	<0.20	26	<10	<10	21	0.6611 J		340	---	31		0.92	-167.7	9.61	624		${ }^{716.53}$
	08/5/19		$\frac{34}{43}$	3.0						-		\cdots			-151.1				748.39		08725											\cdots				-75.4		${ }^{675}$		720.58
	111/29/101/		$\frac{43}{}$	3.2	267	<14.0	$\begin{aligned} & \text { < } \\ & \text { Bli.0 } \\ & \text { Blocke } \end{aligned}$	$\frac{180}{}$	$\text { thigh } 106$		$\frac{170}{}$	--		${ }_{\text {Bloce }}^{2.0}$	- -130 d by ${ }^{\text {c }}$	${ }_{\text {chest-hig }} 7.1$	${ }^{795}$		${ }^{747.47}$		-11/291	-		<0und 0.20	<15.0	<14.0	-11.0	${ }^{21}$	${ }^{0.6811 ~ J}$			--						${ }^{600}$		719.08
	05/16/11		21	1.9 jb	101	4.63	0.0934 Jb	2000	${ }_{3.32 \mathrm{ET}}$	--	200	--		1.5					788.99		05/1/11	<0.20	<0.50	<0.20	0.738	0.119 Jb	<0.0569	24	${ }^{1} .86$ ET	--	200	--	0.804		2.0					
	88/30/1	$\frac{2.7}{2.8}$	$\frac{17}{17}$	1.9 Jc 1.9 Jc d	\cdots	-.-	---	\cdots	---	\cdots	\cdots	\cdots	\cdots	1.15	-179.1	$\stackrel{7}{7.27}$	$\stackrel{5608}{ }$	56.48	747.77		5/16/11	<0.20	${ }^{20.50}$	<0.20	\cdots	---	---	--	--		\cdots	\cdots	\cdots		2.6	-197.3	7.51	810	62.06	718.81
	11/08/11	$\frac{28}{4.9}$	$\frac{17}{13}$	\bigcirc	73.1	0.184 Jc	0.0576 sc	560 в	6.47 Et	--	59 в	--	4.35	5.22	-58.2		774	45.32	749.14		11108/11	<0.20	<0.50	<0.20	2.37	0.222 Jc	<0.0569	27 B	0.598 J		200 B		1.24		5.24	-44.0				78.61
	0212012	9.9	40	0.75 Jc	--	---	---	--		--		--	--	6.0	-67.3	7.41	2680	46.04	777.42		${ }^{11 / 1 / 88 / 110 \mathrm{Lup}}$	<0.20	<0.50	<0.20	--	---	---	--	--	--	\cdots	\cdots	\cdots		5.24	-44.0	9.23	${ }^{235}$	44.96	718.61
	${ }_{0}^{085 / 27 / 12}$	\cdots	\cdots	---	--.	--	--		--	--		--			\cdots	\cdots	\cdots	\cdots	748.36 748.22		02012012	\cdots		\cdots								\cdots								719.22 79.51
	111		18	${ }^{20.10}$	260	<25	<26	1000 B	8.9	--	320 B	--	13	2.1	-141.9	6.76	3216	50.54	747.89		$08 / 27$ $\substack{1126}$ 1			\cdots	-	-	\bigcirc	33	\square	--	\cdots	---			\cdots	57	7		--	719.17 79.78
	05/2		a	--	---		--		-		--	--	-						750.16		0228813	${ }_{\text {curied }}$	cannot					${ }^{\text {Buried; }}$; canot								ried;	annot		
	08128				$\stackrel{-}{160}$	$\stackrel{-}{<15}$	$\stackrel{\square}{<15}$	540	- 30	--	$\stackrel{-30}{ }$	\cdots	${ }_{11}$ Ba	3.1					748.12 747.88		O5/23/1			---	\cdots	\cdots	\cdots	-		\cdots	\cdots	\cdots	--		\cdots	---	--		--	721.37 720.
	03		annotac					Buried;	cannot ac	cess						ried; can	nnot acc				-11/12		<0.12	<0.10	1.9 Jc	<1.5	<1.5		0.72 Jc	\cdots	$\stackrel{1}{130}$	\cdots	9.4 Ba		4.0	-27.3	7.30			719.24
		\cdots	\cdots		\cdots	5	5	20	\cdots	\cdots	10	\cdots	-	\cdots		\cdots		\cdots	748.85 750.11 79.14		03351 O5/29 0		canno	cess	-	---	---	Bur		--	\cdots	\cdots	--		--	---		---		0.95
	11/24/4/4 03/30/15				22														749.14 750.08		O828814 11/2414 033015	<0.19	<0.12	<0.10	${ }^{3.0} \mathrm{Jc}$	<1.5	<1.5	29	1.0	---	$\stackrel{\square}{130}$	\cdots	7.0		3.77	-59.9	7.2	1,220	53.06	73.51 719.48 70017
																					03/30/15																			
		${ }_{0}$	70	${ }^{0.2}$	\cdots	\cdots	\cdots	${ }^{250}$			$\frac{250}{\frac{255}{12 G}}$	$\frac{0.055}{>0.05}$	$\frac{.15}{\frac{0.15}{>B G}}$		<-100	$\frac{\square}{5-9}$	-		\cdots	niocremen Standard		${ }_{0}^{5}$	${ }_{7}^{7}$	0.2		\cdots	\cdots	${ }^{250}$	\cdots	2	125	0.025	0.3		\cdots		-			-
					$\stackrel{-}{\square B G}$		present	$\frac{125}{22869}$	$\xrightarrow{-20}$	$\stackrel{2}{<1}$				-				0.2									present	$\frac{288}{2 \times 8}$	${ }^{20}$	$\stackrel{2}{<1}$	<BG	> BG	, BG			左	59	>	0.2	

$J=$ Analyte detected ata level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
$\mathrm{Jb}=$ Estimated value. Analyte detected ata
Ievelless
$\mathrm{Jb}=$ =stimated value. Analyte detected at a a evelless than the Reporting Limit (RL) and greater than or equal to the
$\mathrm{Jc}=$ Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

$\cdots=$ Not Tested Not Required $\quad \cdots$ No Standard
A-01 - High concentration of non-target analyte preser

$a=$ Resulis reportea beetween the Method Detection Limit ((MDL) and Limit of Quantitation (LOQ) are less certain than results at or above the LOO
$J=$ Estimated value. Analyte detected at a level less than the Reporting Limit RLL and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliabily.

$=$ Not Tested Not Required $-=$ No Standard
$A-01-$ High concentration of non-target analyte presen

[^5]$B=$ Analyte was detected in the associated Methoo Blank. $E T$ - Matix interference in sample is causing an endpoint imeour.

A - High concentaion of

$==$ Not Tested N Not Required $m=$ No Standard

$\mathrm{Jb}=$ =stimated value. Analyte detetected at a level less
$\mathrm{M1}=$ The MS andor MSD were outside control linits

$-=$ Not Tested Not Required $-=$ No Standard
A A-01 - High concentration of non-target analyt epesen
$A=$ Analyte detected ata level less than the Reporting Limit (RL) and greater $B=$ Analy .
M1 = The MS andor MSD were outside control limits.

		Major Chorinated VOC's			Natural Attenuation Analytic Paramelers																	Major Chlorinated VoC's			Natural Attenuation Analyic Parameiers									Field Parameters														
Well	Date																			vell	ate																											
MW21		Prior to Well Construction			rior to Well Construction									Prior to Well Construction						${ }^{\text {B5 }}$		Prior to Well Construction			Prior to Well Construction									Prior to Well Construction														
					O3/30404																			--																								
	0441304 1030106	246,000	20,600											8.6			198	12,000	<0.03		147	0.46	<0.032		-139	${ }^{7.41}$	1,320	56.7	746.68	- $041 / 3 / 304$	${ }^{1.63}$	<0.68	<0.17	<1	<1	<1	--	\cdots	\cdots	\cdots	\cdots	--	0	-16	7.17	865	55.2	${ }_{749.75}$
	1213106	56,000	76,000	7,200	--	--	--	$\stackrel{-}{-}$	-	-	-	-	\cdots	--	-132	7.16	890	55.3	746.88		12/1306			\cdots	--	-	\cdots	--	--	--	--	--	--	\cdots	\cdots	\cdots	\cdots	--	--									
	0211307 05107107	cisi,000	174,000 160,000	${ }^{21,400} 2$	\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots	${ }_{-241}^{-177}$	7.78	1,920 1,430	60.5 66.7	747.03 746.73		(e) $\begin{aligned} & 02 / 13137 \\ & 0507107\end{aligned}$	\cdots	-..	\cdots		\cdots	--	1.94	88	7.15	1.160		${ }_{755.33}$															
	1100107	4,000	168,000	56,000	--	\cdots	0.68	-40	6.39	1,923		746.43		11/01/07	\cdots	…	\cdots	--	\cdots	--	1.40	238	4.85	948	57.8	749.59																						
	0211208	3,300 5	${ }_{5}^{77,000}$	21,800 26500	\cdots	0.89	${ }^{-123}$				${ }^{747.28}$		0271208	${ }^{20.8 \dagger}$	32	1.86		--	--	--	--	--	--	--	--	3.49	-1	7.10	${ }^{987}$	48.3	749.00 750.33																	
	05010608 0909098	5, $\begin{aligned} & 5,600 \\ & 9,600\end{aligned}$	51,000 54,000	${ }^{26,500} 10$	--	\cdots	${ }^{1.67}$ 0.57	-33 -168	${ }^{7} 7.01$	1,181 936 1		${ }^{747.13} 7$		(0506608	\cdots	\cdots	\cdots	--	--	--	--	---	--	--	\cdots	--	\bigcirc	--113.2	${ }_{6} 9.95$	$\stackrel{\text { 1,353 }}{ }$	54.6	750.33 749.52																
	01/1909	3,700	66,000	17,700	--	--	---	---	-		--			0.62	-311	7.18	1,297		746.93		01/1909	-			--	---		---	---	--	---							---										
	0805/09	970	16,800	-305	5000	5920	2180	150	16000	<0.5	47	0.0679	1.26	0.14	-134.0		1,457		${ }^{747.12}$		0810509	10	${ }^{37}$	${ }^{0.74 \dagger}$	72	-	100	\cdots	756	\cdots	\cdots	\cdots	\cdots	0.70	-440	7.52	${ }_{1}^{1,537}$	51.4	749.96									
	05/26/10	${ }^{73,000}$	100,000	4,900	2380	811	709	170	6.61	--	73	\cdots	5	0.75					${ }^{755.23}$		05/27710				72	<10.0	<10.0	110	7.56	--	140			0.50		${ }_{7}^{7.71}$												
	08/2510		51,000 58,000	8,500 8,800	\cdots	$\stackrel{0.5}{-}$	-124.1	7.39	$\stackrel{980}{-9}$		${ }^{747.25}$		08/2510	62 18	$\stackrel{44}{13}$		382	$\stackrel{-14.0}{ }$	<11.0	59	9.19	--	18	\cdots	2.3 Ja	1.0 0.0	-109.9	7.61 7.51	700 720	59.2	749.55 749.55																	
	11/30/10	70,000	92,000	3,700	2560	782	339	160	27.5		66	--	6.3	1.0	-139.3				746.59		11/30/10 up	15	9.3			,		-		--	--	--	--															
	0302111	${ }^{81,000}$	87,000	3,500		\cdots	--		\cdots		--	--		2.0	-117.4				747.36		03/02211	8.2	5.8	<0.20	575	--	--	--	-	--	\cdots	-		1.0	-151.4	7.40	770	48.7	749.85									
	302/11 Dup	82,000	89,000	3,500	--		--	\cdots			--	--									05/17/11	6.5	4.8	<0.20	5.75	<0.0615	<0.0569	290	6.43 E	--	150	--		1.0	-138.7	7.31	750	50.5										
	05/17/11	40,000 7,300	45,000 25000	1,900 3 3,900	2060	875	386	77	3.93 ET	--	${ }^{84}$	\cdots	6.6	1.0	${ }_{\text {- }}^{\text {-123.5 }}$		${ }_{1057}^{950}$		${ }_{4}^{747.18}$		(08/30/11	13 2.2	${ }^{0.58}$ J Jc	${ }_{\substack{0.31 \mathrm{jc} \\<0.20}}^{\text {ced }}$	37.6	<0.0615		23 B		-	40 B	\cdots		4.4 4.0	-273.6	${ }_{8.72}^{7.35}$	${ }_{562}^{1,145}$	58.8	749.65 752.14									
	-	84,000	${ }_{8}^{25,000}$	${ }_{5}^{3,000}$	2,040	1,030	843	150 B	4.46 етв	\cdots	62 B	\cdots	8.06	2.27	${ }_{-67.6}$	8.21	862	42.4	${ }_{748.36}$		02200112	$\frac{2.2}{15}$	24	${ }_{0} 0.91 \mathrm{Jc}$		\cdots	0.-.	$\stackrel{-}{-\cdots}$		--		\cdots		2.9	${ }^{-122.7}$	${ }_{7}^{8.75}$	${ }_{760} 5$	47.1										
	02212012	70,000	46,000	210 Jc		--	-			--		--			-53.7				746.62		05/3/12					--	--	\cdots	--	-		---																
	05/31/12	76,000	73,000 120,000	2,700	--	---	--	--	---	--	--	--	--	2.0	-100.7	7.7	${ }^{880}$	${ }_{563}^{54.9}$	747.21		$082 / 27 / 12$ $1127 / 12$ 1	--	--	\cdots	\cdots	--	--	--	--	--	--	--	\cdots	--	---	---	-	--	750.64 750.61									
	11/27/12	34,000	48,000	${ }^{3,500}$	3,700	1,800	870	130	6.7	\cdots	140	\cdots	8.5	1.3	${ }_{-181.7}^{-14.3}$	7.41	$\stackrel{1}{1,100}$	55.0	${ }_{746.25}$		0222813	-	\cdots	\cdots		\cdots	\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots	\cdots	---	---	${ }^{750.61}$									
	0228813	53,000	55,000	3,300		---	\cdots	\cdots	--	--	\cdots	---	--	1.7	-81.8	7.47		44.4	746.77		05/23/13	--	--	--		--	---	\cdots	--	--	--	--		--	--	--	--	---	\cdots									
	05/23/13	13,000 15,000	28,000 27,000	2,800 2,500	\cdots	$\stackrel{4.1}{-1}$	$\stackrel{-62.4}{--4}$				748.23		08/28/13	\cdots	\cdots	\cdots	-	\cdots	--	\cdots	\cdots	\cdots	\cdots	\cdots																								
	08828/13	${ }^{9,600}$	27.000	5,900	--	--	--	--	--	-	--	---	--	0.32	-81.5	6.52	1,180	63.3	747.13		03/25/14	--	--	---	--	--	--	--	--	--	--	--	--	--	\cdots	--	--	--	\cdots									
	边	6,100	${ }_{4,600}^{28,000}$	${ }_{31}^{6,000}$	\cdots	--	\cdots	…	\cdots	\cdots	-..-	.-.	\cdots	0.9	-173				746.24		08/28/14	--	\cdots	\cdots	--	…	…	…	…	--.	---	…	\cdots	\cdots	…	…	\cdots	\cdots	\cdots									
	- $03 / 251 / 4$	Water Water F	n- Not Sa	mpled		Water	(ozen in	Well at 5 Well 5 5 5 \%	5.7 Feet Beel	ow TOC											11/25/14				\cdots					\cdots		\cdots		\cdots		\cdots		-..-										
	05/29/14	24,000	16,000	630	---	--	--	---	---	-	\cdots	\cdots	--	-2.2	-131.7	8.19		51.98	${ }^{747.11}$																													
	28144	${ }_{\substack{23,00}}^{31,00}$	37,000 35.000	4,100 1,400	---	---	---		\cdots		--	---	--	${ }_{1.13}^{2.9}$	${ }_{-213.3}^{-120.7}$	8.28 7.39	${ }_{\substack{830 \\ 1,130}}^{1}$	53.96	746.93 746.78																													
	033/30/15	27,000	39,000	${ }_{4}^{4,400}$	--	--	\cdots	\cdots	--	-	\cdots	-	\cdots	1.10	-77.8	7.22		41.83	746.35																													
	3300/15 Dup	24,000	40,000	5,000	--	--	--	--	--						77.8			41.83	746.35																													
cement Sial		5	70	0.2	\cdots	\cdots	\cdots	250	-	10	250	0.05	0.3	-	\cdots	-	-	\cdots			Enioremen	Slandard				-	\cdots	-	250	-		250		0.3	-	-	-	-	-	-								
anive Actio		0.5	$\underline{7}$	0.02		-	-	125	20	$\underline{2}$	125	0.025	${ }^{0.15}$			5	-	-	\cdots	Preventive	Stion Limit	0.5	$\underline{7}$	0.02				${ }^{125}$		$\stackrel{2}{2}$	$\frac{125}{126}$	0.025	0.15	\cdots				2										
emens F	Natural Atenum				BG	esent	prosent	12286	>20	<1	<BG	$>B G$	$>$ >G	<1	<-100	$5-9$	>BG	0.2		Reauieme	For Nawre	ion			$>$ BG	posent			>20	<1	<BG	$>B G$	>BG	<1	<-100	5.9	>BG	0.2										

.
All data before $5 / 26 / 2010$ supplied to SCS Engineers by the WDN
2. SCS Engineers will only ypdate and check data a fter $5 / 26 / 2010$.

A-01- - High concentration of non-target analyte present.
$B=$ Analyte was detected in the associated Method Blank
Ba Compound was found in the blank and sample
ET- Matrix interference in sample is causing an endpoint timeout.
$J=$ Analyte detected at a level less than the Reporting Limit
$=$ Results reported between the Method Detection Limit (MDL) and greater than or equal to the Method Detection Limit (MDL). Concentraions winhin fis range are estimated
E Estimated value. Analyte detected at a level less than the Reporting Limit (R), and reater than ess certain han results a or or aove the LOQ

NOTES:
SCS Engineers will

```
Created b: 
```


	MW1	${ }_{\text {MW1R/ }}^{\text {MW1RR }}$	MW1A	MW1B	MW2	MW3	${ }_{\text {MW4R }}^{\text {MW/ }}$	MW4A	MW4B	MW4C	${ }_{\text {MW5 }}^{\text {MW5 }}$	MW5A	Mw5B	MW6	MW6A	MW	MW7	MW7A	uw78	MW8	MW8A	MW8B			Ww	W11	MW12C									uW18				${ }^{5} 51$	852
3/12011		799.67	778.21	733.65	(4)		745.69			${ }^{702.31}$	751.29	751.34	751.36	749.64	${ }^{738.27}$	728.17	750.63	742.04	${ }^{731.68}$	(4)						722.94	Dry	${ }^{744.08}$										749.81		749.89	${ }^{749.85}$
5 51612011		751.11	745.30	733.22	749.46		788.75			701.72	751.57		${ }^{751.34}$	749.87	${ }^{737.65}$	${ }^{22883}$	750.81		731.73	788.99	${ }^{739.16}$	719.33						746.46					${ }^{750.95}$		${ }^{753.27}$	${ }^{48,75}$		750.18	${ }^{747.18}$	${ }^{750.34}$	${ }^{750.25}$
${ }_{8}^{813020011}$		749,76	744.15	${ }^{727.09}$	${ }^{774755}$		749.950			704.21	${ }^{750,77}$	${ }^{751.29}$	25045	${ }^{749.47}$	${ }^{739.43}$	${ }^{728948}$	${ }^{749}$	420	${ }^{731}$		${ }^{770.28}$					${ }^{722242}$	$\frac{\mathrm{Dr}}{}$		749.65 75090	${ }^{740.40}$					7488			794.13 750.13 7		${ }^{749.84}$	${ }^{799.65}$
		年 749.923	${ }^{7442.55}$	${ }^{735.13}$	788.48		- ${ }^{7551.20}$			703.95	${ }^{750.47} 7$	${ }_{751.36}^{750 .}$	${ }^{750.45}$	709.41	${ }_{7}^{739.52}$	${ }^{72929}$	${ }^{7499.83}$	${ }^{742.24}$	${ }^{7331.46}$	747.42	${ }^{\text {338.93 }}$	${ }^{718.61}$	${ }^{7} 749981$	${ }^{7278.96}$	${ }^{7364.04}$	${ }_{723.48}$	${ }^{\text {Dry }}$	${ }_{7}^{7455.76}$	${ }^{750.90}$	${ }_{7}^{739.5}$	${ }_{\text {751.27 }}^{750}$	${ }^{411.67}$	${ }^{7749.46}$	${ }^{39,7}$	${ }^{750.65}$	${ }^{488.63}$		750.02 749.63	${ }^{746}$	749.04	${ }^{14}$
$5 / 31 / 2012$		750.18	743.54	${ }^{731.41}$	${ }^{748.82}$		${ }^{750.65}$			704.86	751.05	${ }^{751.37}$	751.24	749.61	${ }^{73888}$	729.10		742.15	${ }_{731.66}^{7}$	788.36	${ }^{3} 39.15$	${ }^{719.51}$	50.12	22.92	${ }^{736.27}$	${ }^{722.93}$	${ }^{708.17}$	${ }^{74786}$		740.01	750.15	741.17	${ }^{750.08}$	39,7	750.5	88.94		750.21	747.2	749.9	
272012		749.39	74287	${ }^{730.87}$	${ }^{747.03}$		${ }^{750,70}$			702.56	751.70	${ }^{751.19}$	${ }^{751.08}$	749.47	${ }^{738.72}$	729.04	788.95	${ }^{741.22}$	730.85	748.22	738.92	${ }^{719.17}$	74993	${ }^{722.42}$	${ }^{735.95}$	砣	${ }^{7} 70804$	747.96	${ }^{749.12}$	740.13	749.18	0.82	748.73	${ }^{39984}$	${ }^{7} 79.64$	748.60		99.70	746.8.	${ }^{49.64}$	
${ }^{11 / 26820012}$		749,79	${ }^{744.37}$	${ }^{727,35}$	746.93		${ }^{750.40}$			${ }_{6}^{698.23}$	${ }^{751.07}$	${ }_{\text {751.34 }}^{7}$	${ }^{7550.91}$	749.41 79045	739.18 7383	${ }^{7290.07}$	749.30 750	74234	${ }^{7331.15}$	74788	3395	719.78	${ }^{749.32}$	${ }^{730.67}$	${ }^{737700}$	${ }^{723.73}$	708.00	748.90	${ }^{7} 74.68$	${ }^{740.13}$	${ }^{750.30}$	${ }^{441,15}$	${ }^{749.19}$	${ }^{739976}$	${ }^{53,37}$	Damas		749.08	${ }_{\text {746677 }}^{746.25}$	49.56	
${ }^{\text {22882013 }} 5$		750.45 751.92	${ }_{7}^{744.93}$	${ }_{727}^{726.46}$	${ }^{748.73}$		750.51			- ${ }^{6999.16}$	${ }^{751.26}$	${ }_{752.13}^{751.34}$	${ }^{751.28}$	740.75	${ }^{738.73}$	${ }_{7288.78}$	${ }_{751.58}^{7502}$	${ }_{742.78}^{742.34}$	${ }^{731.66}$	${ }^{(54)}$	${ }_{74147}{ }^{(4)}$	${ }_{724}^{\text {(4) }}$ (${ }^{\text {a }}$	${ }_{\text {750.29 }}^{75172}$	${ }_{732.95}^{\text {(5) }}$	${ }_{7 \text { (6) }}{ }^{\text {(6) }}$	${ }_{722.64}^{(6)}$	$\frac{\mathrm{Dry}}{707}$	${ }^{749.60} 7$	${ }^{750.09}$	${ }^{739.91}$	${ }^{750.30} 7$	${ }^{741.24}$	${ }^{750.29}$	${ }^{7390.11}$	${ }^{(7)}$	${ }^{\text {Damaged }}$		$\frac{(7)}{(8)}$	${ }^{7468.77}$		
${ }^{812822013}$		749.53	745.18	727.67	747.25		750.20			705.56	750.93	751.36	751.25	750.09	739.21	728.92	749.53	741.95	${ }^{731.57}$	788.12	740.07	720.09	${ }^{799.48}$	730.99	734.16	721.52	Dry	748.84	749.90	740.71	749.82	${ }^{41.37}$	749.29	88.97	${ }^{(9)}$	(9)			${ }^{747.1}$	${ }^{(9)}$	
${ }^{11 / 1212013}$		748.76	744.50	727.65	${ }^{747.53}$		750.21			704.06	751.39	${ }^{751.38}$	751.28	749.32	739.03	729.12	749.20	${ }^{741.88}$	731.42	74788	${ }^{739.54}$	719.24	749.15	752.87	737.39	723.89	708.18	750.7	${ }^{749970}$	740.47	${ }^{7499.48}$	${ }^{41.27}$	788.97	${ }^{740.17}$	750.86	(10)		749.35	${ }^{746.24}$	${ }^{(10)}$	
		750.68		727.6			751.			700.19	751.84	751.63	${ }^{751.55}$	749.71	${ }^{737.73}$	${ }^{728.35}$	751.30	741.38	731.26	(4)	(4)	(4)	751.81		735.60	722.89		788.0	750.79	738.78	751.1	${ }^{40.37}$	751.9	39.5						${ }^{(12)}$	
51292014		751.17	746.60	${ }^{726.95}$	${ }^{748.52}$		751.14			702.26	751.68	751.46	${ }^{751.33}$	749.86	${ }^{738.08}$	728.13	750.70	741.59	${ }^{730.81}$	7488.8	744.33	${ }^{730.95}$	${ }^{750.88}$	${ }^{\text {(14) }}$	735.80	${ }^{722.19}$	Dry	750.0	750.5	739.76	750.75	${ }^{741.17}$	750.83	739.8	${ }^{15}$			(15)	${ }^{747.11}$		
81882014		779.16	${ }^{7454.46}$	$\frac{727.52}{72792}$	747.80		749.29			4,34	${ }^{751.42}$	${ }^{751.27}$	751.15	749.47	${ }^{7} 788.75$	${ }^{72822}$	${ }^{749.53}$	741.34	${ }^{730.93}$	750.11	745.29	${ }^{731.51}$	749.9	${ }^{500.17}$	${ }^{7388.00}$	${ }^{7232.92}$	Dry	${ }^{750.34}$	${ }^{749.58}$	740.48	${ }^{749.68}$	${ }^{4.14}$	749.44	740.02	${ }^{(116)}$			${ }^{(16)}$	${ }^{746.93}$	${ }^{(16)}$	
$\frac{1 / 20212014}{3 / 302015}$		$\frac{749.32}{79}$	${ }^{7} 749.15$	${ }^{727.96}$	748.62		$\frac{750.35}{751.38}$			$\frac{704.51}{70386}$	${ }^{751.45}$	${ }^{751.39}$	${ }_{\text {751.29 }}$	7499.49	${ }^{733,52}$	${ }^{7288.09}$	${ }^{745.21}$	${ }^{7411.89}$	${ }^{330.85}$	750.08	${ }^{740.32}$	${ }^{7190.48}$	${ }_{7}^{780.99}$	${ }^{225.85}$	$\xrightarrow{738.43}$	${ }_{723524}$	${ }^{\text {Do7. }}$	${ }^{751.56}$	${ }_{\text {759.10 }}$	${ }^{730.83}$	${ }^{7990.70}$	${ }^{740.42}$	${ }^{790.32}$	${ }^{700.39}$	${ }_{749.77}^{7482}$	\%		$\frac{749.20}{799.91}$	${ }_{7}^{746,785}$	${ }^{(17)}$	(18)

10. Wells MW 18 , 551 , and $B 52$ did not require water I evel meas
11. nuable to sample $M W 108$ on 3 I25/2014. Blocked by vehicle

16. Wells MW17, MW20, E51 and 852 did not require water level measurements for the 882820214 sampling event.

B51 and 152 did not reatie water level measurements for the 33012015 sampling event

FIGURES

1 Water Table Elevations
2 Medium Well Piezometric Elevations
3 Deep Well Piezometric Elevations

ATTACHMENT A

Laboratory Analytical Report

TestAmerica
 THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.
TestAmerica Chicago
2417 Bond Street
University Park, IL 60484
Tel: (708)534-5200
TestAmerica Job ID: 500-93974-1
Client Project/Site: Quic Frez SFR 25211806.62
For:
SCS Engineers
2830 Dairy Dr
Madison, Wisconsin 53718
Attn: Steve Smith

Authorized for release by: 4/10/2015 4:07:01 PM
Sandie Fredrick, Project Manager II (920)261-1660
sandie.fredrick@testamericainc.com

Review your project results through
TotalAccess

Have a Question?

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.
This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page 1
Table of Contents 2
Case Narrative 3
Detection Summary 4
Method Summary 8
Sample Summary 9
Client Sample Results 10
Definitions 36
QC Association 37
Surrogate Summary 38
QC Sample Results 39
Chronicle 48
Certification Summary 51
Chain of Custody 52
Receipt Checklists 54

Case Narrative

Job ID: 500-93974-1
Laboratory: TestAmerica Chicago

Narrative
Job Narrative

500-93974-1

Comments

No additional comments.

Receipt

The samples were received on 4/1/2015 10:05 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was $1.2^{\circ} \mathrm{C}$.

GC/MS VOA

Method(s) 8260B: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW13R (500-93974-17), MW16 (500-93974-14), MW21 (500-93974-15), MW21 Dup. (500-93974-16). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client Sample ID: Trip Blank

Lab Sample ID: 500-93974-1
No Detections.

Client Sample ID: MW1RR

Lab Sample ID: 500-93974-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	3.3		0.50	0.074	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene	1.1		1.0	0.12	ug/L	1		8260B	Total/NA
Ethylbenzene	0.52		0.50	0.13	ug/L	1		8260B	Total/NA
Toluene	0.31	J	0.50	0.11	ug/L	1		8260B	Total/NA

Client Sample ID: MW2

Lab Sample ID: 500-93974-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	12		1.0	0.12	ug/L	1		8260B	Total/NA
Trichloroethene	38		0.50	0.19	ug/L	1		8260B	Total/NA
Vinyl chloride	0.63		0.50	0.10	ug/L	1		8260B	Total/NA

Client Sample ID: MW4R
 Lab Sample ID: 500-93974-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	270		50	16	ug/L	50		8260B	Total/NA
trans-1,2-Dichloroethene	150		50	13	ug/L	50		8260B	Total/NA
Vinyl chloride	1000		25	5.0	ug/L	50		8260B	Total/NA
cis-1,2-Dichloroethene - DL	54000		2000	240	ug/L	2000		8260B	Total/NA
Trichloroethene - DL	22000		1000	380	ug/L	2000		8260B	Total/NA

Client Sample ID: MW4C

Lab Sample ID: 500-93974-5
No Detections.
Client Sample ID: MW5R Lab Sample ID: 500-93974-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	5.6		1.0	0.31	ug/L	1		8260B	Total/NA
Benzene	7.9		0.50	0.074	ug/L	1		8260B	Total/NA
Ethylbenzene	2.3		0.50	0.13	ug/L	1		8260B	Total/NA
Isopropylbenzene	0.49	J	1.0	0.14	ug/L	1		8260B	Total/NA
Toluene	0.67		0.50	0.11	ug/L	1		8260B	Total/NA
trans-1,2-Dichloroethene	10		1.0	0.25	ug/L	1		8260B	Total/NA
Trichloroethene	120		0.50	0.19	ug/L	1		8260B	Total/NA
Xylenes, Total	1.9		1.0	0.068	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene - DL	920		20	2.4	ug/L	20		8260B	Total/NA
Vinyl chloride - DL	670		10	2.0	ug/L	20		8260B	Total/NA

Client Sample ID: MW5A

Lab Sample ID: 500-93974-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2,4-Trimethylbenzene	20		1.0	0.14	ug/L	1		8260B	Total/NA
1,3,5-Trimethylbenzene	3.5		1.0	0.18	ug/L	1		8260B	Total/NA
Benzene	9.5		0.50	0.074	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene	91		1.0	0.12	ug/L	1		8260B	Total/NA
Ethylbenzene	26		0.50	0.13	ug/L	1		8260B	Total/NA

Client Sample ID: MW5A (Continued)

Lab Sample ID: 500-93974-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Isopropylbenzene	1.8		1.0	0.14	ug/L	1		8260B	Total/NA
N-Propylbenzene	3.6		1.0	0.13	ug/L	1		8260B	Total/NA
Toluene	6.2		0.50	0.11	ug/L	1		8260B	Total/NA
trans-1,2-Dichloroethene	1.4		1.0	0.25	ug/L	1		8260B	Total/NA
Trichloroethene	62		0.50	0.19	ug/L	1		8260B	Total/NA
Vinyl chloride	67		0.50	0.10	ug/L	1		8260B	Total/NA
Xylenes, Total	43		1.0	0.068	ug/L	1		8260B	Total/NA

Client Sample ID: MW6

Lab Sample ID: 500-93974-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Carbon tetrachloride	2.3		1.0	0.26	ug/L	1		8260B	Total/NA
Chloroform	1.9		1.0	0.20	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene	29		1.0	0.12	ug/L	1		8260B	Total/NA
Trichloroethene	47		0.50	0.19	ug/L	1		8260B	Total/NA
Vinyl chloride	0.52		0.50	0.10	ug/L	1		8260B	Total/NA

Client Sample ID: MW7
Lab Sample ID: 500-93974-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	22		1.0	0.12	ug/L	1		8260B	Total/NA
Trichloroethene	38		0.50	0.19	ug/L	1		8260B	Total/NA
Vinyl chloride	1.2		0.50	0.10	ug/L	1		8260B	Total/NA

Client Sample ID: MW7 Dup.

Lab Sample ID: 500-93974-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	16		1.0	0.12	ug/L	1		8260B	Total/NA
Trichloroethene	27		0.50	0.19	ug/L	1		8260B	Total/NA
Vinyl chloride	1.4		0.50	0.10	ug/L	1		8260B	Total/NA

Client Sample ID: MW9

Lab Sample ID: 500-93974-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	13		1.0	0.12	ug/L	1		8260B	Total/NA
Trichloroethene	22		0.50	0.19	ug/L	1		8260B	Total/NA

Client Sample ID: MW14
 Lab Sample ID: 500-93974-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	120		1.0	0.12	ug/L	1		8260B	Total/NA
trans-1,2-Dichloroethene	2.1		1.0	0.25	ug/L	1		8260B	Total/NA
Trichloroethene	110		0.50	0.19	ug/L	1		8260B	Total/NA
Vinyl chloride	3.2		0.50	0.10	ug/L	1		8260B	Total/NA

Client Sample ID: MW15
Lab Sample ID: 500-93974-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	0.39	J	0.50	0.074	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene	33		1.0	0.12	ug/L	1		8260B	Total/NA

This Detection Summary does not include radiochemical test results.

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	61		0.50	0.19	ug/L	1		8260B	Total/NA
Vinyl chloride	4.8		0.50	0.10	ug/L	1		8260B	Total/NA

Client Sample ID: MW16

Lab Sample ID: 500-93974-14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	9.4		1.0	0.12	ug/L	1		8260B	Total/NA
Trichloroethene	20		0.50	0.19	ug/L	1		8260B	Total/NA

Client Sample ID: MW21

Lab Sample ID: 500-93974-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	91		5.0	1.6	ug/L	5		8260B	Total/NA
1,2,4-Trimethylbenzene	7.9		5.0	0.70	ug/L	5		8260B	Total/NA
Benzene	140		2.5	0.37	ug/L	5		8260B	Total/NA
Chloroform	3.6	J	5.0	1.0	ug/L	5		8260B	Total/NA
Ethylbenzene	67		2.5	0.65	ug/L	5		8260B	Total/NA
Isopropylbenzene	3.1	J	5.0	0.70	ug/L	5		8260B	Total/NA
Tetrachloroethene	9.3		5.0	0.85	ug/L	5		8260B	Total/NA
Toluene	30		2.5	0.55	ug/L	5		8260B	Total/NA
trans-1,2-Dichloroethene	120		5.0	1.3	ug/L	5		8260B	Total/NA
Xylenes, Total	85		5.0	0.34	ug/L	5		8260B	Total/NA
cis-1,2-Dichloroethene - DL	39000		500	60	ug/L	500		8260B	Total/NA
Trichloroethene - DL	27000		250	95	ug/L	500		8260B	Total/NA
Vinyl chloride - DL	4400		250	50	ug/L	500		8260B	Total/NA

Client Sample ID: MW21 Dup.
Lab Sample ID: 500-93974-16

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,2-Trichloroethane	11		5.0	1.4	ug/L	5		8260B	Total/NA
1,1-Dichloroethene	90		5.0	1.6	ug/L	5		8260B	Total/NA
1,2,4-Trimethylbenzene	7.1		5.0	0.70	ug/L	5		8260B	Total/NA
Benzene	140		2.5	0.37	ug/L	5		8260B	Total/NA
Ethylbenzene	67		2.5	0.65	ug/L	5		8260B	Total/NA
Isopropylbenzene	3.4	J	5.0	0.70	ug/L	5		8260B	Total/NA
Tetrachloroethene	7.8		5.0	0.85	ug/L	5		8260B	Total/NA
Toluene	32		2.5	0.55	ug/L	5		8260B	Total/NA
trans-1,2-Dichloroethene	120		5.0	1.3	ug/L	5		8260B	Total/NA
Xylenes, Total	75		5.0	0.34	ug/L	5		8260B	Total/NA
cis-1,2-Dichloroethene - DL	40000		500	60	ug/L	500		8260B	Total/NA
Trichloroethene - DL	24000		250	95	ug/L	500		8260B	Total/NA
Vinyl chloride - DL	5000		250	50	ug/L	500		8260B	Total/NA

Client Sample ID: MW13R

Lab Sample ID: 500-93974-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	28		5.0	1.6	ug/L	5		8260B	Total/NA
Benzene	5.5		2.5	0.37	ug/L	5		8260B	Total/NA
Ethylbenzene	1.5	J	2.5	0.65	ug/L	5		8260B	Total/NA
Toluene	3.5		2.5	0.55	ug/L	5		8260B	Total/NA

[^6]
Client Sample ID: MW13R (Continued)

Lab Sample ID: 500-93974-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
trans-1,2-Dichloroethene	55		5.0	1.3	ug/L	5		8260B	Total/NA
Trichloroethene	350		2.5	0.95	ug/L	5		8260B	Total/NA
cis-1,2-Dichloroethene - DL	11000		500	60	ug/L	500		8260B	Total/NA
Vinyl chloride - DL	1200		250	50	ug/L	500		8260B	Total/NA

Method Summary

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:
TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-93974-1	Trip Blank	Water	03/30/15 08:00	04/01/15 10:05
500-93974-2	MW1RR	Water	03/30/15 10:00	04/01/15 10:05
500-93974-3	MW2	Water	03/30/15 14:45	04/01/15 10:05
500-93974-4	MW4R	Water	03/30/15 10:25	04/01/15 10:05
500-93974-5	MW4C	Water	03/30/15 10:45	04/01/15 10:05
500-93974-6	MW5R	Water	03/30/15 11:05	04/01/15 10:05
500-93974-7	MW5A	Water	03/30/15 11:30	04/01/15 10:05
500-93974-8	MW6	Water	03/30/15 11:50	04/01/15 10:05
500-93974-9	MW7	Water	03/30/15 12:10	04/01/15 10:05
500-93974-10	MW7 Dup.	Water	03/30/15 12:10	04/01/15 10:05
500-93974-11	MW9	Water	03/31/15 12:35	04/01/15 10:05
500-93974-12	MW14	Water	03/31/15 14:00	04/01/15 10:05
500-93974-13	MW15	Water	03/31/15 14:30	04/01/15 10:05
500-93974-14	MW16	Water	03/31/15 13:00	04/01/15 10:05
500-93974-15	MW21	Water	03/31/15 13:25	04/01/15 10:05
500-93974-16	MW21 Dup.	Water	03/31/15 13:25	04/01/15 10:05
500-93974-17	MW13R	Water	03/31/15 13:45	04/01/15 10:05

Date Received: 04/01/15 10:05

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.25		1.0	0.25	ug/L			04/08/15 10:31	1
1,1,1-Trichloroethane	<0.20		1.0	0.20	ug/L			04/08/15 10:31	1
1,1,2,2-Tetrachloroethane	<0.23		1.0	0.23	ug/L			04/08/15 10:31	1
1,1,2-Trichloroethane	<0.28		1.0	0.28	ug / L			04/08/15 10:31	1
1,1-Dichloroethane	<0.19		1.0	0.19	ug/L			04/08/15 10:31	1
1,1-Dichloroethene	<0.31		1.0	0.31	ug/L			04/08/15 10:31	1
1,1-Dichloropropene	<0.34		1.0	0.34	ug/L			04/08/15 10:31	1
1,2,3-Trichlorobenzene	<0.24		1.0	0.24	ug/L			04/08/15 10:31	1
1,2,3-Trichloropropane	<0.45		1.0	0.45	ug/L			04/08/15 10:31	1
1,2,4-Trichlorobenzene	<0.31		1.0	0.31	ug / L			04/08/15 10:31	1
1,2,4-Trimethylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 10:31	1
1,2-Dibromo-3-Chloropropane	<0.87		2.0	0.87	ug/L			04/08/15 10:31	1
1,2-Dibromoethane	<0.36		1.0	0.36	ug / L			04/08/15 10:31	1
1,2-Dichlorobenzene	<0.27		1.0	0.27	ug/L			04/08/15 10:31	1
1,2-Dichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 10:31	1
1,2-Dichloropropane	<0.20		1.0	0.20	ug / L			04/08/15 10:31	1
1,3,5-Trimethylbenzene	<0.18		1.0	0.18	ug/L			04/08/15 10:31	1
1,3-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 10:31	1
1,3-Dichloropropane	<0.13		1.0	0.13	ug/L			04/08/15 10:31	1
1,4-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 10:31	1
2,2-Dichloropropane	<0.32		1.0	0.32	ug/L			04/08/15 10:31	1
2-Chlorotoluene	<0.21		1.0	0.21	ug / L			04/08/15 10:31	1
4-Chlorotoluene	<0.20		1.0	0.20	ug/L			04/08/15 10:31	1
Benzene	<0.074		0.50	0.074	ug/L			04/08/15 10:31	1
Bromobenzene	<0.25		1.0	0.25	ug/L			04/08/15 10:31	1
Bromochloromethane	<0.40		1.0	0.40	ug/L			04/08/15 10:31	1
Bromodichloromethane	<0.17		1.0	0.17	ug/L			04/08/15 10:31	1
Bromoform	<0.28		1.0	0.28	ug / L			04/08/15 10:31	1
Bromomethane	<0.31		1.0	0.31	ug/L			04/08/15 10:31	1
Carbon tetrachloride	<0.26		1.0	0.26	ug/L			04/08/15 10:31	1
Chlorobenzene	<0.14		1.0	0.14	ug/L			04/08/15 10:31	1
Chloroethane	<0.34		1.0	0.34	ug/L			04/08/15 10:31	1
Chloroform	<0.20		1.0	0.20	ug/L			04/08/15 10:31	1
Chloromethane	<0.18		1.0	0.18	ug/L			04/08/15 10:31	1
cis-1,2-Dichloroethene	<0.12		1.0	0.12	ug/L			04/08/15 10:31	1
cis-1,3-Dichloropropene	<0.18		1.0	0.18	ug/L			04/08/15 10:31	1
Dibromochloromethane	<0.32		1.0	0.32	ug / L			04/08/15 10:31	1
Dibromomethane	<0.33		1.0	0.33	ug/L			04/08/15 10:31	1
Dichlorodifluoromethane	<0.20		1.0	0.20	ug/L			04/08/15 10:31	1
Ethylbenzene	<0.13		0.50	0.13	ug/L			04/08/15 10:31	1
Hexachlorobutadiene	<0.26		1.0	0.26	ug/L			04/08/15 10:31	1
Isopropyl ether	<0.15		1.0	0.15	ug/L			04/08/15 10:31	1
Isopropylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 10:31	1
Methyl tert-butyl ether	<0.24		1.0	0.24	ug/L			04/08/15 10:31	1
Methylene Chloride	<0.68		5.0	0.68	ug/L			04/08/15 10:31	1
Naphthalene	<0.16		1.0	0.16	ug / L			04/08/15 10:31	1
n-Butylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 10:31	1
N-Propylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 10:31	1
p-Isopropyltoluene	<0.17		1.0	0.17	ug / L			04/08/15 10:31	1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Date Received: 04/01/15 10:05

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.15		1.0	0.15	ug/L			04/08/15 10:31	1
Styrene	<0.10		1.0	0.10	ug/L			04/08/15 10:31	1
tert-Butylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 10:31	1
Tetrachloroethene	<0.17		1.0	0.17	ug/L			04/08/15 10:31	1
Toluene	<0.11		0.50	0.11	ug/L			04/08/15 10:31	1
trans-1,2-Dichloroethene	<0.25		1.0	0.25	ug/L			04/08/15 10:31	1
trans-1,3-Dichloropropene	<0.21		1.0	0.21	ug/L			04/08/15 10:31	1
Trichloroethene	<0.19		0.50	0.19	ug/L			04/08/15 10:31	1
Trichlorofluoromethane	<0.19		1.0	0.19	ug / L			04/08/15 10:31	1
Vinyl chloride	<0.10		0.50	0.10	ug/L			04/08/15 10:31	1
Xylenes, Total	<0.068		1.0	0.068	ug/L			04/08/15 10:31	1
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		75-125					04/08/15 10:31	1
4-Bromofluorobenzene (Surr)	94		75-120					04/08/15 10:31	1
Dibromofluoromethane	91		75-120					04/08/15 10:31	1
Toluene-d8 (Surr)	98		75-120					04/08/15 10:31	1

Client Sample ID: MW1RR
Lab Sample ID: 500-93974-2
Date Collected: 03/30/15 10:00
Matrix: Water
Date Received: 04/01/15 10:05

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.25		1.0	0.25	ug/L			04/08/15 11:57	1
1,1,1-Trichloroethane	<0.20		1.0	0.20	ug/L			04/08/15 11:57	1
1,1,2,2-Tetrachloroethane	<0.23		1.0	0.23	ug/L			04/08/15 11:57	1
1,1,2-Trichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 11:57	1
1,1-Dichloroethane	<0.19		1.0	0.19	ug/L			04/08/15 11:57	1
1,1-Dichloroethene	<0.31		1.0	0.31	ug/L			04/08/15 11:57	1
1,1-Dichloropropene	<0.34		1.0	0.34	ug/L			04/08/15 11:57	1
1,2,3-Trichlorobenzene	<0.24		1.0	0.24	ug/L			04/08/15 11:57	1
1,2,3-Trichloropropane	<0.45		1.0	0.45	ug/L			04/08/15 11:57	1
1,2,4-Trichlorobenzene	<0.31		1.0	0.31	ug/L			04/08/15 11:57	1
1,2,4-Trimethylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 11:57	1
1,2-Dibromo-3-Chloropropane	<0.87		2.0	0.87	ug/L			04/08/15 11:57	1
1,2-Dibromoethane	<0.36		1.0	0.36	ug/L			04/08/15 11:57	1
1,2-Dichlorobenzene	<0.27		1.0	0.27	ug/L			04/08/15 11:57	1
1,2-Dichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 11:57	1
1,2-Dichloropropane	<0.20		1.0	0.20	ug/L			04/08/15 11:57	1
1,3,5-Trimethylbenzene	<0.18		1.0	0.18	ug/L			04/08/15 11:57	1
1,3-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 11:57	1
1,3-Dichloropropane	<0.13		1.0	0.13	ug/L			04/08/15 11:57	1
1,4-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 11:57	1
2,2-Dichloropropane	<0.32		1.0	0.32	ug/L			04/08/15 11:57	1
2-Chlorotoluene	<0.21		1.0	0.21	ug / L			04/08/15 11:57	1
4-Chlorotoluene	<0.20		1.0	0.20	ug/L			04/08/15 11:57	1
Benzene	3.3		0.50	0.074	ug/L			04/08/15 11:57	1
Bromobenzene	<0.25		1.0	0.25	ug/L			04/08/15 11:57	1
Bromochloromethane	<0.40		1.0	0.40	ug/L			04/08/15 11:57	1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromodichloromethane	<0.17		1.0	0.17	ug/L			04/08/15 11:57	1
Bromoform	<0.28		1.0	0.28	ug/L			04/08/15 11:57	1
Bromomethane	<0.31		1.0	0.31	ug/L			04/08/15 11:57	1
Carbon tetrachloride	<0.26		1.0	0.26	ug/L			04/08/15 11:57	1
Chlorobenzene	<0.14		1.0	0.14	ug/L			04/08/15 11:57	1
Chloroethane	<0.34		1.0	0.34	ug/L			04/08/15 11:57	1
Chloroform	<0.20		1.0	0.20	ug/L			04/08/15 11:57	1
Chloromethane	<0.18		1.0	0.18	ug/L			04/08/15 11:57	1
cis-1,2-Dichloroethene	1.1		1.0	0.12	ug/L			04/08/15 11:57	1
cis-1,3-Dichloropropene	<0.18		1.0	0.18	ug/L			04/08/15 11:57	1
Dibromochloromethane	<0.32		1.0	0.32	ug/L			04/08/15 11:57	1
Dibromomethane	<0.33		1.0	0.33	ug/L			04/08/15 11:57	1
Dichlorodifluoromethane	<0.20		1.0	0.20	ug/L			04/08/15 11:57	1
Ethylbenzene	0.52		0.50	0.13	ug/L			04/08/15 11:57	1
Hexachlorobutadiene	<0.26		1.0	0.26	ug/L			04/08/15 11:57	1
Isopropyl ether	<0.15		1.0	0.15	ug/L			04/08/15 11:57	1
Isopropylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 11:57	1
Methyl tert-butyl ether	<0.24		1.0	0.24	ug/L			04/08/15 11:57	1
Methylene Chloride	<0.68		5.0	0.68	ug/L			04/08/15 11:57	1
Naphthalene	<0.16		1.0	0.16	ug/L			04/08/15 11:57	1
n-Butylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 11:57	1
N-Propylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 11:57	1
p-Isopropyltoluene	<0.17		1.0	0.17	ug/L			04/08/15 11:57	1
sec-Butylbenzene	<0.15		1.0	0.15	ug/L			04/08/15 11:57	1
Styrene	<0.10		1.0	0.10	ug/L			04/08/15 11:57	1
tert-Butylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 11:57	1
Tetrachloroethene	<0.17		1.0	0.17	ug/L			04/08/15 11:57	1
Toluene	0.31	J	0.50	0.11	ug/L			04/08/15 11:57	1
trans-1,2-Dichloroethene	<0.25		1.0	0.25	ug/L			04/08/15 11:57	1
trans-1,3-Dichloropropene	<0.21		1.0	0.21	ug/L			04/08/15 11:57	1
Trichloroethene	<0.19		0.50	0.19	ug/L			04/08/15 11:57	1
Trichlorofluoromethane	<0.19		1.0	0.19	ug/L			04/08/15 11:57	1
Vinyl chloride	<0.10		0.50	0.10	ug/L			04/08/15 11:57	1
Xylenes, Total	<0.068		1.0	0.068	ug/L			04/08/15 11:57	1
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		75-125					04/08/15 11:57	1
4-Bromofluorobenzene (Surr)	96		75-120					04/08/15 11:57	1
Dibromofluoromethane	92		75-120					04/08/15 11:57	1
Toluene-d8 (Surr)	100		75-120					04/08/15 11:57	1

Client Sample ID: MW2

Lab Sample ID: 500-93974-3
Date Collected: 03/30/15 14:45
Matrix: Water
Date Received: 04/01/15 10:05

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 12:25	1
1,1-Dichloroethane	<0.19		1.0	0.19	ug/L			04/08/15 12:25	1
1,1-Dichloroethene	<0.31		1.0	0.31	ug/L			04/08/15 12:25	1
1,1-Dichloropropene	<0.34		1.0	0.34	ug/L			04/08/15 12:25	1
1,2,3-Trichlorobenzene	<0.24		1.0	0.24	ug/L			04/08/15 12:25	1
1,2,3-Trichloropropane	<0.45		1.0	0.45	ug/L			04/08/15 12:25	1
1,2,4-Trichlorobenzene	<0.31		1.0	0.31	ug/L			04/08/15 12:25	1
1,2,4-Trimethylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 12:25	1
1,2-Dibromo-3-Chloropropane	<0.87		2.0	0.87	ug/L			04/08/15 12:25	1
1,2-Dibromoethane	<0.36		1.0	0.36	ug/L			04/08/15 12:25	1
1,2-Dichlorobenzene	<0.27		1.0	0.27	ug/L			04/08/15 12:25	1
1,2-Dichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 12:25	1
1,2-Dichloropropane	<0.20		1.0	0.20	ug/L			04/08/15 12:25	1
1,3,5-Trimethylbenzene	<0.18		1.0	0.18	ug/L			04/08/15 12:25	1
1,3-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 12:25	1
1,3-Dichloropropane	<0.13		1.0	0.13	ug/L			04/08/15 12:25	1
1,4-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 12:25	1
2,2-Dichloropropane	<0.32		1.0	0.32	ug/L			04/08/15 12:25	1
2-Chlorotoluene	<0.21		1.0	0.21	ug/L			04/08/15 12:25	1
4-Chlorotoluene	<0.20		1.0	0.20	ug/L			04/08/15 12:25	1
Benzene	<0.074		0.50	0.074	ug/L			04/08/15 12:25	1
Bromobenzene	<0.25		1.0	0.25	ug/L			04/08/15 12:25	1
Bromochloromethane	<0.40		1.0	0.40	ug/L			04/08/15 12:25	1
Bromodichloromethane	<0.17		1.0	0.17	ug/L			04/08/15 12:25	1
Bromoform	<0.28		1.0	0.28	ug/L			04/08/15 12:25	1
Bromomethane	<0.31		1.0	0.31	ug/L			04/08/15 12:25	1
Carbon tetrachloride	<0.26		1.0	0.26	ug/L			04/08/15 12:25	1
Chlorobenzene	<0.14		1.0	0.14	ug/L			04/08/15 12:25	1
Chloroethane	<0.34		1.0	0.34	ug/L			04/08/15 12:25	1
Chloroform	<0.20		1.0	0.20	ug/L			04/08/15 12:25	1
Chloromethane	<0.18		1.0	0.18	ug/L			04/08/15 12:25	1
cis-1,2-Dichloroethene	12		1.0	0.12	ug/L			04/08/15 12:25	1
cis-1,3-Dichloropropene	<0.18		1.0	0.18	ug/L			04/08/15 12:25	1
Dibromochloromethane	<0.32		1.0	0.32	ug/L			04/08/15 12:25	1
Dibromomethane	<0.33		1.0	0.33	ug/L			04/08/15 12:25	1
Dichlorodifluoromethane	<0.20		1.0	0.20	ug/L			04/08/15 12:25	1
Ethylbenzene	<0.13		0.50	0.13	ug/L			04/08/15 12:25	1
Hexachlorobutadiene	<0.26		1.0	0.26	ug/L			04/08/15 12:25	1
Isopropyl ether	<0.15		1.0	0.15	ug/L			04/08/15 12:25	1
Isopropylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 12:25	1
Methyl tert-butyl ether	<0.24		1.0	0.24	ug/L			04/08/15 12:25	1
Methylene Chloride	<0.68		5.0	0.68	ug/L			04/08/15 12:25	1
Naphthalene	<0.16		1.0	0.16	ug/L			04/08/15 12:25	1
n -Butylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 12:25	1
N-Propylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 12:25	1
p-Isopropyltoluene	<0.17		1.0	0.17	ug/L			04/08/15 12:25	1
sec-Butylbenzene	<0.15		1.0	0.15	ug/L			04/08/15 12:25	1
Styrene	<0.10		1.0	0.10	ug/L			04/08/15 12:25	1
tert-Butylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 12:25	1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<0.17		1.0	0.17	ug/L			04/08/15 12:25	1
Toluene	<0.11		0.50	0.11	ug/L			04/08/15 12:25	1
trans-1,2-Dichloroethene	<0.25		1.0	0.25	ug/L			04/08/15 12:25	1
trans-1,3-Dichloropropene	<0.21		1.0	0.21	ug/L			04/08/15 12:25	1
Trichloroethene	38		0.50	0.19	ug/L			04/08/15 12:25	1
Trichlorofluoromethane	<0.19		1.0	0.19	ug / L			04/08/15 12:25	1
Vinyl chloride	0.63		0.50	0.10	ug/L			04/08/15 12:25	1
Xylenes, Total	<0.068		1.0	0.068	ug / L			04/08/15 12:25	1
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		75-125					04/08/15 12:25	1
4-Bromofluorobenzene (Surr)	97		75-120					04/08/15 12:25	1
Dibromofluoromethane	98		75-120					04/08/15 12:25	1
Toluene-d8 (Surr)	95		75-120					04/08/15 12:25	1

Client Sample ID: MW4R
Lab Sample ID: 500-93974-4
Date Collected: 03/30/15 10:25
Matrix: Water
Date Received: 04/01/15 10:05

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<13		50	13	ug/L			04/08/15 12:54	50
1,1,1-Trichloroethane	<10		50	10	ug/L			04/08/15 12:54	50
1,1,2,2-Tetrachloroethane	<12		50	12	ug/L			04/08/15 12:54	50
1,1,2-Trichloroethane	<14		50	14	ug/L			04/08/15 12:54	50
1,1-Dichloroethane	<9.5		50	9.5	ug/L			04/08/15 12:54	50
1,1-Dichloroethene	270		50	16	ug/L			04/08/15 12:54	50
1,1-Dichloropropene	<17		50	17	ug/L			04/08/15 12:54	50
1,2,3-Trichlorobenzene	<12		50	12	ug/L			04/08/15 12:54	50
1,2,3-Trichloropropane	<23		50	23	ug/L			04/08/15 12:54	50
1,2,4-Trichlorobenzene	<16		50	16	ug/L			04/08/15 12:54	50
1,2,4-Trimethylbenzene	<7.0		50	7.0	ug/L			04/08/15 12:54	50
1,2-Dibromo-3-Chloropropane	<44		100	44	ug/L			04/08/15 12:54	50
1,2-Dibromoethane	<18		50	18	ug/L			04/08/15 12:54	50
1,2-Dichlorobenzene	<14		50	14	ug/L			04/08/15 12:54	50
1,2-Dichloroethane	<14		50	14	ug/L			04/08/15 12:54	50
1,2-Dichloropropane	<10		50	10	ug/L			04/08/15 12:54	50
1,3,5-Trimethylbenzene	<9.0		50	9.0	ug/L			04/08/15 12:54	50
1,3-Dichlorobenzene	<7.5		50	7.5	ug/L			04/08/15 12:54	50
1,3-Dichloropropane	<6.5		50	6.5	ug/L			04/08/15 12:54	50
1,4-Dichlorobenzene	<7.5		50	7.5	ug/L			04/08/15 12:54	50
2,2-Dichloropropane	<16		50	16	ug/L			04/08/15 12:54	50
2-Chlorotoluene	<11		50	11	ug/L			04/08/15 12:54	50
4-Chlorotoluene	<10		50	10	ug/L			04/08/15 12:54	50
Benzene	<3.7		25	3.7	ug/L			04/08/15 12:54	50
Bromobenzene	<13		50	13	ug/L			04/08/15 12:54	50
Bromochloromethane	<20		50	20	ug/L			04/08/15 12:54	50
Bromodichloromethane	<8.5		50	8.5	ug/L			04/08/15 12:54	50
Bromoform	<14		50	14	ug/L			04/08/15 12:54	50
Bromomethane	<16		50	16	ug/L			04/08/15 12:54	50

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	<13		50	13	ug/L			04/08/15 12:54	50
Chlorobenzene	<7.0		50	7.0	ug/L			04/08/15 12:54	50
Chloroethane	<17		50	17	ug/L			04/08/15 12:54	50
Chloroform	<10		50	10	ug/L			04/08/15 12:54	50
Chloromethane	<9.0		50	9.0	ug/L			04/08/15 12:54	50
cis-1,3-Dichloropropene	<9.0		50	9.0	ug/L			04/08/15 12:54	50
Dibromochloromethane	<16		50	16	ug/L			04/08/15 12:54	50
Dibromomethane	<17		50	17	ug/L			04/08/15 12:54	50
Dichlorodifluoromethane	<10		50	10	ug/L			04/08/15 12:54	50
Ethylbenzene	<6.5		25	6.5	ug/L			04/08/15 12:54	50
Hexachlorobutadiene	<13		50	13	ug/L			04/08/15 12:54	50
Isopropyl ether	<7.5		50	7.5	ug / L			04/08/15 12:54	50
Isopropylbenzene	<7.0		50	7.0	ug/L			04/08/15 12:54	50
Methyl tert-butyl ether	<12		50	12	ug/L			04/08/15 12:54	50
Methylene Chloride	<34		250	34	ug/L			04/08/15 12:54	50
Naphthalene	<8.0		50	8.0	ug/L			04/08/15 12:54	50
n -Butylbenzene	<6.5		50	6.5	ug/L			04/08/15 12:54	50
N-Propylbenzene	<6.5		50	6.5	ug/L			04/08/15 12:54	50
p-Isopropyltoluene	<8.5		50	8.5	ug / L			04/08/15 12:54	50
sec-Butylbenzene	<7.5		50	7.5	ug/L			04/08/15 12:54	50
Styrene	<5.0		50	5.0	ug/L			04/08/15 12:54	50
tert-Butylbenzene	<7.0		50	7.0	ug/L			04/08/15 12:54	50
Tetrachloroethene	<8.5		50	8.5	ug/L			04/08/15 12:54	50
Toluene	<5.5		25	5.5	ug/L			04/08/15 12:54	50
trans-1,2-Dichloroethene	150		50	13	ug / L			04/08/15 12:54	50
trans-1,3-Dichloropropene	<11		50	11	ug / L			04/08/15 12:54	50
Trichlorofluoromethane	<9.5		50	9.5	ug/L			04/08/15 12:54	50
Vinyl chloride	1000		25	5.0	ug/L			04/08/15 12:54	50
Xylenes, Total	<3.4		50	3.4	ug/L			04/08/15 12:54	50
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		75-125					04/08/15 12:54	50
4-Bromofluorobenzene (Surr)	93		75-120					04/08/15 12:54	50
Dibromofluoromethane	95		75-120					04/08/15 12:54	50
Toluene-d8 (Surr)	98		75-120					04/08/15 12:54	50

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	54000		2000	240	ug/L			04/09/15 11:40	2000
Trichloroethene	22000		1000	380	ug/L			04/09/15 11:40	2000
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		75-125					04/09/15 11:40	2000
4-Bromofluorobenzene (Surr)	94		75-120					04/09/15 11:40	2000
Dibromofluoromethane	94		75-120					04/09/15 11:40	2000
Toluene-d8 (Surr)	98		75-120					04/09/15 11:40	2000

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.25		1.0	0.25	ug/L			04/08/15 13:22	1
1,1,1-Trichloroethane	<0.20		1.0	0.20	ug/L			04/08/15 13:22	1
1,1,2,2-Tetrachloroethane	<0.23		1.0	0.23	ug/L			04/08/15 13:22	1
1,1,2-Trichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 13:22	1
1,1-Dichloroethane	<0.19		1.0	0.19	ug/L			04/08/15 13:22	1
1,1-Dichloroethene	<0.31		1.0	0.31	ug/L			04/08/15 13:22	1
1,1-Dichloropropene	<0.34		1.0	0.34	ug/L			04/08/15 13:22	1
1,2,3-Trichlorobenzene	<0.24		1.0	0.24	ug/L			04/08/15 13:22	1
1,2,3-Trichloropropane	<0.45		1.0	0.45	ug/L			04/08/15 13:22	1
1,2,4-Trichlorobenzene	<0.31		1.0	0.31	ug/L			04/08/15 13:22	1
1,2,4-Trimethylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 13:22	1
1,2-Dibromo-3-Chloropropane	<0.87		2.0	0.87	ug/L			04/08/15 13:22	1
1,2-Dibromoethane	<0.36		1.0	0.36	ug/L			04/08/15 13:22	1
1,2-Dichlorobenzene	<0.27		1.0	0.27	ug/L			04/08/15 13:22	1
1,2-Dichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 13:22	1
1,2-Dichloropropane	<0.20		1.0	0.20	ug/L			04/08/15 13:22	1
1,3,5-Trimethylbenzene	<0.18		1.0	0.18	ug/L			04/08/15 13:22	1
1,3-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 13:22	1
1,3-Dichloropropane	<0.13		1.0	0.13	ug/L			04/08/15 13:22	1
1,4-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 13:22	1
2,2-Dichloropropane	<0.32		1.0	0.32	ug/L			04/08/15 13:22	1
2-Chlorotoluene	<0.21		1.0	0.21	ug/L			04/08/15 13:22	1
4-Chlorotoluene	<0.20		1.0	0.20	ug/L			04/08/15 13:22	1
Benzene	<0.074		0.50	0.074	ug/L			04/08/15 13:22	1
Bromobenzene	<0.25		1.0	0.25	ug/L			04/08/15 13:22	1
Bromochloromethane	<0.40		1.0	0.40	ug/L			04/08/15 13:22	1
Bromodichloromethane	<0.17		1.0	0.17	ug/L			04/08/15 13:22	1
Bromoform	<0.28		1.0	0.28	ug/L			04/08/15 13:22	1
Bromomethane	<0.31		1.0	0.31	ug/L			04/08/15 13:22	1
Carbon tetrachloride	<0.26		1.0	0.26	ug/L			04/08/15 13:22	1
Chlorobenzene	<0.14		1.0	0.14	ug/L			04/08/15 13:22	1
Chloroethane	<0.34		1.0	0.34	ug/L			04/08/15 13:22	1
Chloroform	<0.20		1.0	0.20	ug/L			04/08/15 13:22	1
Chloromethane	<0.18		1.0	0.18	ug/L			04/08/15 13:22	1
cis-1,2-Dichloroethene	<0.12		1.0	0.12	ug/L			04/08/15 13:22	1
cis-1,3-Dichloropropene	<0.18		1.0	0.18	ug/L			04/08/15 13:22	1
Dibromochloromethane	<0.32		1.0	0.32	ug/L			04/08/15 13:22	1
Dibromomethane	<0.33		1.0	0.33	ug/L			04/08/15 13:22	1
Dichlorodifluoromethane	<0.20		1.0	0.20	ug/L			04/08/15 13:22	1
Ethylbenzene	<0.13		0.50	0.13	ug/L			04/08/15 13:22	1
Hexachlorobutadiene	<0.26		1.0	0.26	ug/L			04/08/15 13:22	1
Isopropyl ether	<0.15		1.0	0.15	ug/L			04/08/15 13:22	1
Isopropylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 13:22	1
Methyl tert-butyl ether	<0.24		1.0	0.24	ug/L			04/08/15 13:22	1
Methylene Chloride	<0.68		5.0	0.68	ug/L			04/08/15 13:22	1
Naphthalene	<0.16		1.0	0.16	ug / L			04/08/15 13:22	1
n -Butylbenzene	<0.13		1.0	0.13	ug / L			04/08/15 13:22	1
N-Propylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 13:22	1
p-Isopropyltoluene	<0.17		1.0	0.17	ug/L			04/08/15 13:22	1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.15		1.0	0.15	ug/L			04/08/15 13:22	1
Styrene	<0.10		1.0	0.10	ug/L			04/08/15 13:22	1
tert-Butylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 13:22	1
Tetrachloroethene	<0.17		1.0	0.17	ug/L			04/08/15 13:22	1
Toluene	<0.11		0.50	0.11	ug/L			04/08/15 13:22	1
trans-1,2-Dichloroethene	<0.25		1.0	0.25	ug/L			04/08/15 13:22	1
trans-1,3-Dichloropropene	<0.21		1.0	0.21	ug/L			04/08/15 13:22	1
Trichloroethene	<0.19		0.50	0.19	ug/L			04/08/15 13:22	1
Trichlorofluoromethane	<0.19		1.0	0.19	ug/L			04/08/15 13:22	1
Vinyl chloride	<0.10		0.50	0.10	ug/L			04/08/15 13:22	1
Xylenes, Total	<0.068		1.0	0.068	ug/L			04/08/15 13:22	1
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		75-125					04/08/15 13:22	1
4-Bromofluorobenzene (Surr)	97		75-120					04/08/15 13:22	1
Dibromofluoromethane	94		75-120					04/08/15 13:22	1
Toluene-d8 (Surr)	97		75-120					04/08/15 13:22	1

Client Sample ID: MW5R
Lab Sample ID: 500-93974-6
Date Collected: 03/30/15 11:05
Matrix: Water
Date Received: 04/01/15 10:05

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.25		1.0	0.25	ug/L			04/08/15 13:50	1
1,1,1-Trichloroethane	<0.20		1.0	0.20	ug/L			04/08/15 13:50	1
1,1,2,2-Tetrachloroethane	<0.23		1.0	0.23	ug/L			04/08/15 13:50	1
1,1,2-Trichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 13:50	1
1,1-Dichloroethane	<0.19		1.0	0.19	ug/L			04/08/15 13:50	1
1,1-Dichloroethene	5.6		1.0	0.31	ug/L			04/08/15 13:50	1
1,1-Dichloropropene	<0.34		1.0	0.34	ug/L			04/08/15 13:50	1
1,2,3-Trichlorobenzene	<0.24		1.0	0.24	ug/L			04/08/15 13:50	1
1,2,3-Trichloropropane	<0.45		1.0	0.45	ug/L			04/08/15 13:50	1
1,2,4-Trichlorobenzene	<0.31		1.0	0.31	ug/L			04/08/15 13:50	1
1,2,4-Trimethylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 13:50	1
1,2-Dibromo-3-Chloropropane	<0.87		2.0	0.87	ug/L			04/08/15 13:50	1
1,2-Dibromoethane	<0.36		1.0	0.36	ug/L			04/08/15 13:50	1
1,2-Dichlorobenzene	<0.27		1.0	0.27	ug/L			04/08/15 13:50	1
1,2-Dichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 13:50	1
1,2-Dichloropropane	<0.20		1.0	0.20	ug/L			04/08/15 13:50	1
1,3,5-Trimethylbenzene	<0.18		1.0	0.18	ug/L			04/08/15 13:50	1
1,3-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 13:50	1
1,3-Dichloropropane	<0.13		1.0	0.13	ug/L			04/08/15 13:50	1
1,4-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 13:50	1
2,2-Dichloropropane	<0.32		1.0	0.32	ug/L			04/08/15 13:50	1
2-Chlorotoluene	<0.21		1.0	0.21	ug/L			04/08/15 13:50	1
4-Chlorotoluene	<0.20		1.0	0.20	ug/L			04/08/15 13:50	1
Benzene	7.9		0.50	0.074	ug/L			04/08/15 13:50	1
Bromobenzene	<0.25		1.0	0.25	ug/L			04/08/15 13:50	1
Bromochloromethane	<0.40		1.0	0.40	ug/L			04/08/15 13:50	1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromodichloromethane	<0.17		1.0	0.17	ug/L			04/08/15 13:50	1
Bromoform	<0.28		1.0	0.28	ug/L			04/08/15 13:50	1
Bromomethane	<0.31		1.0	0.31	ug/L			04/08/15 13:50	1
Carbon tetrachloride	<0.26		1.0	0.26	ug/L			04/08/15 13:50	1
Chlorobenzene	<0.14		1.0	0.14	ug/L			04/08/15 13:50	1
Chloroethane	<0.34		1.0	0.34	ug/L			04/08/15 13:50	1
Chloroform	<0.20		1.0	0.20	ug/L			04/08/15 13:50	1
Chloromethane	<0.18		1.0	0.18	ug/L			04/08/15 13:50	1
cis-1,3-Dichloropropene	<0.18		1.0	0.18	ug/L			04/08/15 13:50	1
Dibromochloromethane	<0.32		1.0	0.32	ug/L			04/08/15 13:50	1
Dibromomethane	<0.33		1.0	0.33	ug/L			04/08/15 13:50	1
Dichlorodifluoromethane	<0.20		1.0	0.20	ug/L			04/08/15 13:50	1
Ethylbenzene	2.3		0.50	0.13	ug/L			04/08/15 13:50	1
Hexachlorobutadiene	<0.26		1.0	0.26	ug/L			04/08/15 13:50	1
Isopropyl ether	<0.15		1.0	0.15	ug/L			04/08/15 13:50	1
Isopropylbenzene	0.49	J	1.0	0.14	ug/L			04/08/15 13:50	1
Methyl tert-butyl ether	<0.24		1.0	0.24	ug/L			04/08/15 13:50	1
Methylene Chloride	<0.68		5.0	0.68	ug/L			04/08/15 13:50	1
Naphthalene	<0.16		1.0	0.16	ug/L			04/08/15 13:50	1
n-Butylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 13:50	1
N-Propylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 13:50	1
p-Isopropyltoluene	<0.17		1.0	0.17	ug/L			04/08/15 13:50	1
sec-Butylbenzene	<0.15		1.0	0.15	ug / L			04/08/15 13:50	1
Styrene	<0.10		1.0	0.10	ug/L			04/08/15 13:50	1
tert-Butylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 13:50	1
Tetrachloroethene	<0.17		1.0	0.17	ug/L			04/08/15 13:50	1
Toluene	0.67		0.50	0.11	ug/L			04/08/15 13:50	1
trans-1,2-Dichloroethene	10		1.0	0.25	ug/L			04/08/15 13:50	1
trans-1,3-Dichloropropene	<0.21		1.0	0.21	ug/L			04/08/15 13:50	1
Trichloroethene	120		0.50	0.19	ug/L			04/08/15 13:50	1
Trichlorofluoromethane	<0.19		1.0	0.19	ug/L			04/08/15 13:50	1
Xylenes, Total	1.9		1.0	0.068	ug/L			04/08/15 13:50	1
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		75-125					04/08/15 13:50	1
4-Bromofluorobenzene (Surr)	96		75-120					04/08/15 13:50	1
Dibromofluoromethane	97		75-120					04/08/15 13:50	1
Toluene-d8 (Surr)	98		75-120					04/08/15 13:50	1

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	920		20	2.4	ug/L			04/09/15 12:08	20
Vinyl chloride	670		10	2.0	ug/L			04/09/15 12:08	20

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		75-125		04/09/15 12:08	20
4-Bromofluorobenzene (Surr)	96		75-120		04/09/15 12:08	20
Dibromofluoromethane	95		75-120		04/09/15 12:08	20
Toluene-d8 (Surr)	97		75-120		04/09/15 12:08	20

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.25		1.0	0.25	ug/L			04/08/15 14:18	1
1,1,1-Trichloroethane	<0.20		1.0	0.20	ug/L			04/08/15 14:18	1
1,1,2,2-Tetrachloroethane	<0.23		1.0	0.23	ug/L			04/08/15 14:18	1
1,1,2-Trichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 14:18	1
1,1-Dichloroethane	<0.19		1.0	0.19	ug/L			04/08/15 14:18	1
1,1-Dichloroethene	<0.31		1.0	0.31	ug/L			04/08/15 14:18	1
1,1-Dichloropropene	<0.34		1.0	0.34	ug/L			04/08/15 14:18	1
1,2,3-Trichlorobenzene	<0.24		1.0	0.24	ug/L			04/08/15 14:18	1
1,2,3-Trichloropropane	<0.45		1.0	0.45	ug/L			04/08/15 14:18	1
1,2,4-Trichlorobenzene	<0.31		1.0	0.31	ug/L			04/08/15 14:18	1
1,2,4-Trimethylbenzene	20		1.0	0.14	ug/L			04/08/15 14:18	1
1,2-Dibromo-3-Chloropropane	<0.87		2.0	0.87	ug/L			04/08/15 14:18	1
1,2-Dibromoethane	<0.36		1.0	0.36	ug / L			04/08/15 14:18	1
1,2-Dichlorobenzene	<0.27		1.0	0.27	ug/L			04/08/15 14:18	1
1,2-Dichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 14:18	1
1,2-Dichloropropane	<0.20		1.0	0.20	ug/L			04/08/15 14:18	1
1,3,5-Trimethylbenzene	3.5		1.0	0.18	ug/L			04/08/15 14:18	1
1,3-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 14:18	1
1,3-Dichloropropane	<0.13		1.0	0.13	ug/L			04/08/15 14:18	1
1,4-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 14:18	1
2,2-Dichloropropane	<0.32		1.0	0.32	ug/L			04/08/15 14:18	1
2-Chlorotoluene	<0.21		1.0	0.21	ug/L			04/08/15 14:18	1
4-Chlorotoluene	<0.20		1.0	0.20	ug/L			04/08/15 14:18	1
Benzene	9.5		0.50	0.074	ug/L			04/08/15 14:18	1
Bromobenzene	<0.25		1.0	0.25	ug/L			04/08/15 14:18	1
Bromochloromethane	<0.40		1.0	0.40	ug/L			04/08/15 14:18	1
Bromodichloromethane	<0.17		1.0	0.17	ug/L			04/08/15 14:18	1
Bromoform	<0.28		1.0	0.28	ug/L			04/08/15 14:18	1
Bromomethane	<0.31		1.0	0.31	ug/L			04/08/15 14:18	1
Carbon tetrachloride	<0.26		1.0	0.26	ug/L			04/08/15 14:18	1
Chlorobenzene	<0.14		1.0	0.14	ug/L			04/08/15 14:18	1
Chloroethane	<0.34		1.0	0.34	ug/L			04/08/15 14:18	1
Chloroform	<0.20		1.0	0.20	ug/L			04/08/15 14:18	1
Chloromethane	<0.18		1.0	0.18	ug/L			04/08/15 14:18	1
cis-1,2-Dichloroethene	91		1.0	0.12	ug/L			04/08/15 14:18	1
cis-1,3-Dichloropropene	<0.18		1.0	0.18	ug/L			04/08/15 14:18	1
Dibromochloromethane	<0.32		1.0	0.32	ug/L			04/08/15 14:18	1
Dibromomethane	<0.33		1.0	0.33	ug/L			04/08/15 14:18	1
Dichlorodifluoromethane	<0.20		1.0	0.20	ug/L			04/08/15 14:18	1
Ethylbenzene	26		0.50	0.13	ug/L			04/08/15 14:18	1
Hexachlorobutadiene	<0.26		1.0	0.26	ug/L			04/08/15 14:18	1
Isopropyl ether	<0.15		1.0	0.15	ug/L			04/08/15 14:18	1
Isopropylbenzene	1.8		1.0	0.14	ug/L			04/08/15 14:18	1
Methyl tert-butyl ether	<0.24		1.0	0.24	ug/L			04/08/15 14:18	1
Methylene Chloride	<0.68		5.0	0.68	ug/L			04/08/15 14:18	1
Naphthalene	<0.16		1.0	0.16	ug/L			04/08/15 14:18	1
n -Butylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 14:18	1
N-Propylbenzene	3.6		1.0	0.13	ug/L			04/08/15 14:18	1
p-Isopropyltoluene	<0.17		1.0	0.17	ug/L			04/08/15 14:18	1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.15		1.0	0.15	ug/L			04/08/15 14:18	1
Styrene	<0.10		1.0	0.10	ug/L			04/08/15 14:18	1
tert-Butylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 14:18	1
Tetrachloroethene	<0.17		1.0	0.17	ug/L			04/08/15 14:18	1
Toluene	6.2		0.50	0.11	ug/L			04/08/15 14:18	1
trans-1,2-Dichloroethene	1.4		1.0	0.25	ug/L			04/08/15 14:18	1
trans-1,3-Dichloropropene	<0.21		1.0	0.21	ug/L			04/08/15 14:18	1
Trichloroethene	62		0.50	0.19	ug/L			04/08/15 14:18	1
Trichlorofluoromethane	<0.19		1.0	0.19	ug / L			04/08/15 14:18	1
Vinyl chloride	67		0.50	0.10	ug/L			04/08/15 14:18	1
Xylenes, Total	43		1.0	0.068	ug/L			04/08/15 14:18	1
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		75-125					04/08/15 14:18	1
4-Bromofluorobenzene (Surr)	95		75-120					04/08/15 14:18	1
Dibromofluoromethane	94		75-120					04/08/15 14:18	1
Toluene-d8 (Surr)	98		75-120					04/08/15 14:18	1

Client Sample ID: MW6
Date Collected: 03/30/15 11:50
Lab Sample ID: 500-93974-8
Date Received: 04/01/15 10:05

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.25		1.0	0.25	ug/L			04/08/15 14:47	1
1,1,1-Trichloroethane	<0.20		1.0	0.20	ug/L			04/08/15 14:47	1
1,1,2,2-Tetrachloroethane	<0.23		1.0	0.23	ug/L			04/08/15 14:47	1
1,1,2-Trichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 14:47	1
1,1-Dichloroethane	<0.19		1.0	0.19	ug/L			04/08/15 14:47	1
1,1-Dichloroethene	<0.31		1.0	0.31	ug/L			04/08/15 14:47	1
1,1-Dichloropropene	<0.34		1.0	0.34	ug/L			04/08/15 14:47	1
1,2,3-Trichlorobenzene	<0.24		1.0	0.24	ug/L			04/08/15 14:47	1
1,2,3-Trichloropropane	<0.45		1.0	0.45	ug/L			04/08/15 14:47	1
1,2,4-Trichlorobenzene	<0.31		1.0	0.31	ug/L			04/08/15 14:47	1
1,2,4-Trimethylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 14:47	1
1,2-Dibromo-3-Chloropropane	<0.87		2.0	0.87	ug/L			04/08/15 14:47	1
1,2-Dibromoethane	<0.36		1.0	0.36	ug/L			04/08/15 14:47	1
1,2-Dichlorobenzene	<0.27		1.0	0.27	ug/L			04/08/15 14:47	1
1,2-Dichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 14:47	1
1,2-Dichloropropane	<0.20		1.0	0.20	ug/L			04/08/15 14:47	1
1,3,5-Trimethylbenzene	<0.18		1.0	0.18	ug/L			04/08/15 14:47	1
1,3-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 14:47	1
1,3-Dichloropropane	<0.13		1.0	0.13	ug/L			04/08/15 14:47	1
1,4-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 14:47	1
2,2-Dichloropropane	<0.32		1.0	0.32	ug/L			04/08/15 14:47	1
2-Chlorotoluene	<0.21		1.0	0.21	ug/L			04/08/15 14:47	1
4-Chlorotoluene	<0.20		1.0	0.20	ug/L			04/08/15 14:47	1
Benzene	<0.074		0.50	0.074	ug/L			04/08/15 14:47	1
Bromobenzene	<0.25		1.0	0.25	ug/L			04/08/15 14:47	1
Bromochloromethane	<0.40		1.0	0.40	ug/L			04/08/15 14:47	1
								TestAmerica	hicago

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromodichloromethane	<0.17		1.0	0.17	ug/L			04/08/15 14:47	1
Bromoform	<0.28		1.0	0.28	ug/L			04/08/15 14:47	1
Bromomethane	<0.31		1.0	0.31	ug/L			04/08/15 14:47	1
Carbon tetrachloride	2.3		1.0	0.26	ug/L			04/08/15 14:47	1
Chlorobenzene	<0.14		1.0	0.14	ug/L			04/08/15 14:47	1
Chloroethane	<0.34		1.0	0.34	ug/L			04/08/15 14:47	1
Chloroform	1.9		1.0	0.20	ug/L			04/08/15 14:47	1
Chloromethane	<0.18		1.0	0.18	ug/L			04/08/15 14:47	1
cis-1,2-Dichloroethene	29		1.0	0.12	ug/L			04/08/15 14:47	1
cis-1,3-Dichloropropene	<0.18		1.0	0.18	ug/L			04/08/15 14:47	1
Dibromochloromethane	<0.32		1.0	0.32	ug / L			04/08/15 14:47	1
Dibromomethane	<0.33		1.0	0.33	ug/L			04/08/15 14:47	1
Dichlorodifluoromethane	<0.20		1.0	0.20	ug/L			04/08/15 14:47	1
Ethylbenzene	<0.13		0.50	0.13	ug/L			04/08/15 14:47	1
Hexachlorobutadiene	<0.26		1.0	0.26	ug/L			04/08/15 14:47	1
Isopropyl ether	<0.15		1.0	0.15	ug/L			04/08/15 14:47	1
Isopropylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 14:47	1
Methyl tert-butyl ether	<0.24		1.0	0.24	ug/L			04/08/15 14:47	1
Methylene Chloride	<0.68		5.0	0.68	ug/L			04/08/15 14:47	1
Naphthalene	<0.16		1.0	0.16	ug/L			04/08/15 14:47	1
n -Butylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 14:47	1
N -Propylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 14:47	1
p-Isopropyltoluene	<0.17		1.0	0.17	ug/L			04/08/15 14:47	1
sec-Butylbenzene	<0.15		1.0	0.15	ug/L			04/08/15 14:47	1
Styrene	<0.10		1.0	0.10	ug/L			04/08/15 14:47	1
tert-Butylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 14:47	1
Tetrachloroethene	<0.17		1.0	0.17	ug/L			04/08/15 14:47	1
Toluene	<0.11		0.50	0.11	ug/L			04/08/15 14:47	1
trans-1,2-Dichloroethene	<0.25		1.0	0.25	ug / L			04/08/15 14:47	1
trans-1,3-Dichloropropene	<0.21		1.0	0.21	ug/L			04/08/15 14:47	1
Trichloroethene	47		0.50	0.19	ug/L			04/08/15 14:47	1
Trichlorofluoromethane	<0.19		1.0	0.19	ug/L			04/08/15 14:47	1
Vinyl chloride	0.52		0.50	0.10	ug/L			04/08/15 14:47	1
Xylenes, Total	<0.068		1.0	0.068	ug/L			04/08/15 14:47	1
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		75-125					04/08/15 14:47	1
4-Bromofluorobenzene (Surr)	95		75-120					04/08/15 14:47	1
Dibromofluoromethane	96		75-120					04/08/15 14:47	1
Toluene-d8 (Surr)	98		75-120					04/08/15 14:47	1

Client Sample ID: MW7
Lab Sample ID: 500-93974-9
Date Collected: 03/30/15 12:10
Matrix: Water
Date Received: 04/01/15 10:05

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.25		1.0	0.25	ug/L			04/08/15 15:15	1
1,1,1-Trichloroethane	<0.20		1.0	0.20	ug/L			04/08/15 15:15	1
1,1,2,2-Tetrachloroethane	<0.23		1.0	0.23	ug/L			04/08/15 15:15	1
								TestAmerica	icago

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 15:15	1
1,1-Dichloroethane	<0.19		1.0	0.19	ug/L			04/08/15 15:15	1
1,1-Dichloroethene	<0.31		1.0	0.31	ug/L			04/08/15 15:15	1
1,1-Dichloropropene	<0.34		1.0	0.34	ug/L			04/08/15 15:15	1
1,2,3-Trichlorobenzene	<0.24		1.0	0.24	ug/L			04/08/15 15:15	1
1,2,3-Trichloropropane	<0.45		1.0	0.45	ug/L			04/08/15 15:15	1
1,2,4-Trichlorobenzene	<0.31		1.0	0.31	ug/L			04/08/15 15:15	1
1,2,4-Trimethylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 15:15	1
1,2-Dibromo-3-Chloropropane	<0.87		2.0	0.87	ug/L			04/08/15 15:15	1
1,2-Dibromoethane	<0.36		1.0	0.36	ug / L			04/08/15 15:15	1
1,2-Dichlorobenzene	<0.27		1.0	0.27	ug/L			04/08/15 15:15	1
1,2-Dichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 15:15	1
1,2-Dichloropropane	<0.20		1.0	0.20	ug/L			04/08/15 15:15	1
1,3,5-Trimethylbenzene	<0.18		1.0	0.18	ug/L			04/08/15 15:15	1
1,3-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 15:15	1
1,3-Dichloropropane	<0.13		1.0	0.13	ug/L			04/08/15 15:15	1
1,4-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 15:15	1
2,2-Dichloropropane	<0.32		1.0	0.32	ug/L			04/08/15 15:15	1
2-Chlorotoluene	<0.21		1.0	0.21	ug/L			04/08/15 15:15	1
4-Chlorotoluene	<0.20		1.0	0.20	ug/L			04/08/15 15:15	1
Benzene	<0.074		0.50	0.074	ug/L			04/08/15 15:15	1
Bromobenzene	<0.25		1.0	0.25	ug/L			04/08/15 15:15	1
Bromochloromethane	<0.40		1.0	0.40	ug/L			04/08/15 15:15	1
Bromodichloromethane	<0.17		1.0	0.17	ug/L			04/08/15 15:15	1
Bromoform	<0.28		1.0	0.28	ug/L			04/08/15 15:15	1
Bromomethane	<0.31		1.0	0.31	ug/L			04/08/15 15:15	1
Carbon tetrachloride	<0.26		1.0	0.26	ug/L			04/08/15 15:15	1
Chlorobenzene	<0.14		1.0	0.14	ug/L			04/08/15 15:15	1
Chloroethane	<0.34		1.0	0.34	ug/L			04/08/15 15:15	1
Chloroform	<0.20		1.0	0.20	ug/L			04/08/15 15:15	1
Chloromethane	<0.18		1.0	0.18	ug/L			04/08/15 15:15	1
cis-1,2-Dichloroethene	22		1.0	0.12	ug/L			04/08/15 15:15	1
cis-1,3-Dichloropropene	<0.18		1.0	0.18	ug/L			04/08/15 15:15	1
Dibromochloromethane	<0.32		1.0	0.32	ug/L			04/08/15 15:15	1
Dibromomethane	<0.33		1.0	0.33	ug/L			04/08/15 15:15	1
Dichlorodifluoromethane	<0.20		1.0	0.20	ug/L			04/08/15 15:15	1
Ethylbenzene	<0.13		0.50	0.13	ug / L			04/08/15 15:15	1
Hexachlorobutadiene	<0.26		1.0	0.26	ug/L			04/08/15 15:15	1
Isopropyl ether	<0.15		1.0	0.15	ug/L			04/08/15 15:15	1
Isopropylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 15:15	1
Methyl tert-butyl ether	<0.24		1.0	0.24	ug/L			04/08/15 15:15	1
Methylene Chloride	<0.68		5.0	0.68	ug/L			04/08/15 15:15	1
Naphthalene	<0.16		1.0	0.16	ug/L			04/08/15 15:15	1
n-Butylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 15:15	1
N-Propylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 15:15	1
p-Isopropyltoluene	<0.17		1.0	0.17	ug/L			04/08/15 15:15	1
sec-Butylbenzene	<0.15		1.0	0.15	ug/L			04/08/15 15:15	1
Styrene	<0.10		1.0	0.10	ug/L			04/08/15 15:15	1
tert-Butylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 15:15	1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<0.17		1.0	0.17	ug/L			04/08/15 15:15	1
Toluene	<0.11		0.50	0.11	ug/L			04/08/15 15:15	1
trans-1,2-Dichloroethene	<0.25		1.0	0.25	ug/L			04/08/15 15:15	1
trans-1,3-Dichloropropene	<0.21		1.0	0.21	ug/L			04/08/15 15:15	1
Trichloroethene	38		0.50	0.19	ug/L			04/08/15 15:15	1
Trichlorofluoromethane	<0.19		1.0	0.19	ug/L			04/08/15 15:15	1
Vinyl chloride	1.2		0.50	0.10	ug/L			04/08/15 15:15	1
Xylenes, Total	<0.068		1.0	0.068	ug/L			04/08/15 15:15	1

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		75-125		04/08/15 15:15	1
4-Bromofluorobenzene (Surr)	97		75-120		04/08/15 15:15	1
Dibromofluoromethane	95		75-120		04/08/15 15:15	1
Toluene-d8 (Surr)	98		75-120		04/08/15 15:15	1

Client Sample ID: MW7 Dup.
Lab Sample ID: 500-93974-10
Date Collected: 03/30/15 12:10
Matrix: Water
Date Received: 04/01/15 10:05

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.25		1.0	0.25	ug/L			04/08/15 15:43	1
1,1,1-Trichloroethane	<0.20		1.0	0.20	ug/L			04/08/15 15:43	1
1,1,2,2-Tetrachloroethane	<0.23		1.0	0.23	ug/L			04/08/15 15:43	1
1,1,2-Trichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 15:43	1
1,1-Dichloroethane	<0.19		1.0	0.19	ug/L			04/08/15 15:43	1
1,1-Dichloroethene	<0.31		1.0	0.31	ug/L			04/08/15 15:43	1
1,1-Dichloropropene	<0.34		1.0	0.34	ug/L			04/08/15 15:43	1
1,2,3-Trichlorobenzene	<0.24		1.0	0.24	ug/L			04/08/15 15:43	1
1,2,3-Trichloropropane	<0.45		1.0	0.45	ug/L			04/08/15 15:43	1
1,2,4-Trichlorobenzene	<0.31		1.0	0.31	ug/L			04/08/15 15:43	1
1,2,4-Trimethylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 15:43	1
1,2-Dibromo-3-Chloropropane	<0.87		2.0	0.87	ug/L			04/08/15 15:43	1
1,2-Dibromoethane	<0.36		1.0	0.36	ug/L			04/08/15 15:43	1
1,2-Dichlorobenzene	<0.27		1.0	0.27	ug/L			04/08/15 15:43	1
1,2-Dichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 15:43	1
1,2-Dichloropropane	<0.20		1.0	0.20	ug/L			04/08/15 15:43	1
1,3,5-Trimethylbenzene	<0.18		1.0	0.18	ug/L			04/08/15 15:43	1
1,3-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 15:43	1
1,3-Dichloropropane	<0.13		1.0	0.13	ug/L			04/08/15 15:43	1
1,4-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 15:43	1
2,2-Dichloropropane	<0.32		1.0	0.32	ug/L			04/08/15 15:43	1
2-Chlorotoluene	<0.21		1.0	0.21	ug/L			04/08/15 15:43	1
4-Chlorotoluene	<0.20		1.0	0.20	ug/L			04/08/15 15:43	1
Benzene	<0.074		0.50	0.074	ug/L			04/08/15 15:43	1
Bromobenzene	<0.25		1.0	0.25	ug/L			04/08/15 15:43	1
Bromochloromethane	<0.40		1.0	0.40	ug/L			04/08/15 15:43	1
Bromodichloromethane	<0.17		1.0	0.17	ug/L			04/08/15 15:43	1
Bromoform	<0.28		1.0	0.28	ug/L			04/08/15 15:43	1
Bromomethane	<0.31		1.0	0.31	ug/L			04/08/15 15:43	1

Client Sample ID: MW7 Dup.
Lab Sample ID: 500-93974-10
Date Collected: 03/30/15 12:10
Matrix: Water
Date Received: 04/01/15 10:05

Client Sample ID: MW9
Date Collected: 03/31/15 12:35
Lab Sample ID: 500-93974-11
Matrix: Water
Date Received: 04/01/15 10:05
Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.25		1.0	0.25	ug/L			04/08/15 16:10	1
1,1,1-Trichloroethane	<0.20		1.0	0.20	ug/L			04/08/15 16:10	1
1,1,2,2-Tetrachloroethane	<0.23		1.0	0.23	ug/L			04/08/15 16:10	1
1,1,2-Trichloroethane	<0.28		1.0	0.28	ug / L			04/08/15 16:10	1
1,1-Dichloroethane	<0.19		1.0	0.19	ug/L			04/08/15 16:10	1
1,1-Dichloroethene	<0.31		1.0	0.31	ug/L			04/08/15 16:10	1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloropropene	<0.34		1.0	0.34	ug/L			04/08/15 16:10	1
1,2,3-Trichlorobenzene	<0.24		1.0	0.24	ug/L			04/08/15 16:10	1
1,2,3-Trichloropropane	<0.45		1.0	0.45	ug/L			04/08/15 16:10	1
1,2,4-Trichlorobenzene	<0.31		1.0	0.31	ug/L			04/08/15 16:10	1
1,2,4-Trimethylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 16:10	1
1,2-Dibromo-3-Chloropropane	<0.87		2.0	0.87	ug/L			04/08/15 16:10	1
1,2-Dibromoethane	<0.36		1.0	0.36	ug/L			04/08/15 16:10	1
1,2-Dichlorobenzene	<0.27		1.0	0.27	ug/L			04/08/15 16:10	1
1,2-Dichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 16:10	1
1,2-Dichloropropane	<0.20		1.0	0.20	ug/L			04/08/15 16:10	1
1,3,5-Trimethylbenzene	<0.18		1.0	0.18	ug/L			04/08/15 16:10	1
1,3-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 16:10	1
1,3-Dichloropropane	<0.13		1.0	0.13	ug / L			04/08/15 16:10	1
1,4-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 16:10	1
2,2-Dichloropropane	<0.32		1.0	0.32	ug/L			04/08/15 16:10	1
2-Chlorotoluene	<0.21		1.0	0.21	ug/L			04/08/15 16:10	1
4-Chlorotoluene	<0.20		1.0	0.20	ug/L			04/08/15 16:10	1
Benzene	<0.074		0.50	0.074	ug/L			04/08/15 16:10	1
Bromobenzene	<0.25		1.0	0.25	ug/L			04/08/15 16:10	1
Bromochloromethane	<0.40		1.0	0.40	ug/L			04/08/15 16:10	1
Bromodichloromethane	<0.17		1.0	0.17	ug/L			04/08/15 16:10	1
Bromoform	<0.28		1.0	0.28	ug/L			04/08/15 16:10	1
Bromomethane	<0.31		1.0	0.31	ug/L			04/08/15 16:10	1
Carbon tetrachloride	<0.26		1.0	0.26	ug/L			04/08/15 16:10	1
Chlorobenzene	<0.14		1.0	0.14	ug/L			04/08/15 16:10	1
Chloroethane	<0.34		1.0	0.34	ug/L			04/08/15 16:10	1
Chloroform	<0.20		1.0	0.20	ug/L			04/08/15 16:10	1
Chloromethane	<0.18		1.0	0.18	ug/L			04/08/15 16:10	1
cis-1,2-Dichloroethene	13		1.0	0.12	ug/L			04/08/15 16:10	1
cis-1,3-Dichloropropene	<0.18		1.0	0.18	ug/L			04/08/15 16:10	1
Dibromochloromethane	<0.32		1.0	0.32	ug / L			04/08/15 16:10	1
Dibromomethane	<0.33		1.0	0.33	ug/L			04/08/15 16:10	1
Dichlorodifluoromethane	<0.20		1.0	0.20	ug/L			04/08/15 16:10	1
Ethylbenzene	<0.13		0.50	0.13	ug/L			04/08/15 16:10	1
Hexachlorobutadiene	<0.26		1.0	0.26	ug/L			04/08/15 16:10	1
Isopropyl ether	<0.15		1.0	0.15	ug/L			04/08/15 16:10	1
Isopropylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 16:10	1
Methyl tert-butyl ether	<0.24		1.0	0.24	ug/L			04/08/15 16:10	1
Methylene Chloride	<0.68		5.0	0.68	ug/L			04/08/15 16:10	1
Naphthalene	<0.16		1.0	0.16	ug/L			04/08/15 16:10	1
n-Butylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 16:10	1
N-Propylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 16:10	1
p-Isopropyltoluene	<0.17		1.0	0.17	ug/L			04/08/15 16:10	1
sec-Butylbenzene	<0.15		1.0	0.15	ug/L			04/08/15 16:10	1
Styrene	<0.10		1.0	0.10	ug/L			04/08/15 16:10	1
tert-Butylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 16:10	1
Tetrachloroethene	<0.17		1.0	0.17	ug/L			04/08/15 16:10	1
Toluene	<0.11		0.50	0.11	ug/L			04/08/15 16:10	1
trans-1,2-Dichloroethene	<0.25		1.0	0.25	ug/L			04/08/15 16:10	1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	<0.21		1.0	0.21	ug/L			04/08/15 16:10	1
Trichloroethene	22		0.50	0.19	ug/L			04/08/15 16:10	1
Trichlorofluoromethane	<0.19		1.0	0.19	ug/L			04/08/15 16:10	1
Vinyl chloride	<0.10		0.50	0.10	ug/L			04/08/15 16:10	1
Xylenes, Total	<0.068		1.0	0.068	ug/L			04/08/15 16:10	1
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		75-125					04/08/15 16:10	1
4-Bromofluorobenzene (Surr)	98		75-120					04/08/15 16:10	1
Dibromofluoromethane	93		75-120					04/08/15 16:10	1
Toluene-d8 (Surr)	100		75-120					04/08/15 16:10	1

Client Sample ID: MW14

Lab Sample ID: 500-93974-12
Date Collected: 03/31/15 14:00
Matrix: Water
Date Received: 04/01/15 10:05
Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.25		1.0	0.25	ug/L			04/08/15 16:38	1
1,1,1-Trichloroethane	<0.20		1.0	0.20	ug/L			04/08/15 16:38	1
1,1,2,2-Tetrachloroethane	<0.23		1.0	0.23	ug/L			04/08/15 16:38	1
1,1,2-Trichloroethane	<0.28		1.0	0.28	ug / L			04/08/15 16:38	1
1,1-Dichloroethane	<0.19		1.0	0.19	ug/L			04/08/15 16:38	1
1,1-Dichloroethene	<0.31		1.0	0.31	ug/L			04/08/15 16:38	1
1,1-Dichloropropene	<0.34		1.0	0.34	ug/L			04/08/15 16:38	1
1,2,3-Trichlorobenzene	<0.24		1.0	0.24	ug/L			04/08/15 16:38	1
1,2,3-Trichloropropane	<0.45		1.0	0.45	ug/L			04/08/15 16:38	1
1,2,4-Trichlorobenzene	<0.31		1.0	0.31	ug/L			04/08/15 16:38	1
1,2,4-Trimethylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 16:38	1
1,2-Dibromo-3-Chloropropane	<0.87		2.0	0.87	ug/L			04/08/15 16:38	1
1,2-Dibromoethane	<0.36		1.0	0.36	ug/L			04/08/15 16:38	1
1,2-Dichlorobenzene	<0.27		1.0	0.27	ug/L			04/08/15 16:38	1
1,2-Dichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 16:38	1
1,2-Dichloropropane	<0.20		1.0	0.20	ug/L			04/08/15 16:38	1
1,3,5-Trimethylbenzene	<0.18		1.0	0.18	ug/L			04/08/15 16:38	1
1,3-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 16:38	1
1,3-Dichloropropane	<0.13		1.0	0.13	ug / L			04/08/15 16:38	1
1,4-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 16:38	1
2,2-Dichloropropane	<0.32		1.0	0.32	ug/L			04/08/15 16:38	1
2-Chlorotoluene	<0.21		1.0	0.21	ug / L			04/08/15 16:38	1
4-Chlorotoluene	<0.20		1.0	0.20	ug/L			04/08/15 16:38	1
Benzene	<0.074		0.50	0.074	ug/L			04/08/15 16:38	1
Bromobenzene	<0.25		1.0	0.25	ug/L			04/08/15 16:38	1
Bromochloromethane	<0.40		1.0	0.40	ug/L			04/08/15 16:38	1
Bromodichloromethane	<0.17		1.0	0.17	ug/L			04/08/15 16:38	1
Bromoform	<0.28		1.0	0.28	ug/L			04/08/15 16:38	1
Bromomethane	<0.31		1.0	0.31	ug/L			04/08/15 16:38	1
Carbon tetrachloride	<0.26		1.0	0.26	ug/L			04/08/15 16:38	1
Chlorobenzene	<0.14		1.0	0.14	ug/L			04/08/15 16:38	1
Chloroethane	<0.34		1.0	0.34	ug/L			04/08/15 16:38	1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	<0.20		1.0	0.20	ug/L			04/08/15 16:38	1
Chloromethane	<0.18		1.0	0.18	ug/L			04/08/15 16:38	1
cis-1,2-Dichloroethene	120		1.0	0.12	ug/L			04/08/15 16:38	1
cis-1,3-Dichloropropene	<0.18		1.0	0.18	ug/L			04/08/15 16:38	1
Dibromochloromethane	<0.32		1.0	0.32	ug/L			04/08/15 16:38	1
Dibromomethane	<0.33		1.0	0.33	ug/L			04/08/15 16:38	1
Dichlorodifluoromethane	<0.20		1.0	0.20	ug/L			04/08/15 16:38	1
Ethylbenzene	<0.13		0.50	0.13	ug/L			04/08/15 16:38	1
Hexachlorobutadiene	<0.26		1.0	0.26	ug/L			04/08/15 16:38	1
Isopropyl ether	<0.15		1.0	0.15	ug/L			04/08/15 16:38	1
Isopropylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 16:38	1
Methyl tert-butyl ether	<0.24		1.0	0.24	ug / L			04/08/15 16:38	1
Methylene Chloride	<0.68		5.0	0.68	ug/L			04/08/15 16:38	1
Naphthalene	<0.16		1.0	0.16	ug/L			04/08/15 16:38	1
n-Butylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 16:38	1
N-Propylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 16:38	1
p-Isopropyltoluene	<0.17		1.0	0.17	ug/L			04/08/15 16:38	1
sec-Butylbenzene	<0.15		1.0	0.15	ug/L			04/08/15 16:38	1
Styrene	<0.10		1.0	0.10	ug/L			04/08/15 16:38	1
tert-Butylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 16:38	1
Tetrachloroethene	<0.17		1.0	0.17	ug/L			04/08/15 16:38	1
Toluene	<0.11		0.50	0.11	ug/L			04/08/15 16:38	1
trans-1,2-Dichloroethene	2.1		1.0	0.25	ug / L			04/08/15 16:38	1
trans-1,3-Dichloropropene	<0.21		1.0	0.21	ug/L			04/08/15 16:38	1
Trichloroethene	110		0.50	0.19	ug/L			04/08/15 16:38	1
Trichlorofluoromethane	<0.19		1.0	0.19	ug/L			04/08/15 16:38	1
Vinyl chloride	3.2		0.50	0.10	ug/L			04/08/15 16:38	1
Xylenes, Total	<0.068		1.0	0.068	ug/L			04/08/15 16:38	1
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		75-125					04/08/15 16:38	1
4-Bromofluorobenzene (Surr)	98		75-120					04/08/15 16:38	1
Dibromofluoromethane	95		75-120					04/08/15 16:38	1
Toluene-d8 (Surr)	98		75-120					04/08/15 16:38	1

Client Sample ID: MW15
Lab Sample ID: 500-93974-13
Date Collected: 03/31/15 14:30
Matrix: Water
Date Received: 04/01/15 10:05

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.25		1.0	0.25	ug/L			04/08/15 17:05	1
1,1,1-Trichloroethane	<0.20		1.0	0.20	ug/L			04/08/15 17:05	1
1,1,2,2-Tetrachloroethane	<0.23		1.0	0.23	ug/L			04/08/15 17:05	1
1,1,2-Trichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 17:05	1
1,1-Dichloroethane	<0.19		1.0	0.19	ug/L			04/08/15 17:05	1
1,1-Dichloroethene	<0.31		1.0	0.31	ug/L			04/08/15 17:05	1
1,1-Dichloropropene	<0.34		1.0	0.34	ug/L			04/08/15 17:05	1
1,2,3-Trichlorobenzene	<0.24		1.0	0.24	ug/L			04/08/15 17:05	1
1,2,3-Trichloropropane	<0.45		1.0	0.45	ug/L			04/08/15 17:05	1
								TestAmerica	icago

Client Sample ID: MW15
Lab Sample ID: 500-93974-13
Date Collected: 03/31/15 14:30
Matrix: Water
Date Received: 04/01/15 10:05
Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.31		1.0	0.31	ug/L			04/08/15 17:05	1
1,2,4-Trimethylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 17:05	1
1,2-Dibromo-3-Chloropropane	<0.87		2.0	0.87	ug/L			04/08/15 17:05	1
1,2-Dibromoethane	<0.36		1.0	0.36	ug/L			04/08/15 17:05	1
1,2-Dichlorobenzene	<0.27		1.0	0.27	ug/L			04/08/15 17:05	1
1,2-Dichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 17:05	1
1,2-Dichloropropane	<0.20		1.0	0.20	ug/L			04/08/15 17:05	1
1,3,5-Trimethylbenzene	<0.18		1.0	0.18	ug/L			04/08/15 17:05	1
1,3-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 17:05	1
1,3-Dichloropropane	<0.13		1.0	0.13	ug / L			04/08/15 17:05	1
1,4-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 17:05	1
2,2-Dichloropropane	<0.32		1.0	0.32	ug/L			04/08/15 17:05	1
2-Chlorotoluene	<0.21		1.0	0.21	ug / L			04/08/15 17:05	1
4-Chlorotoluene	<0.20		1.0	0.20	ug/L			04/08/15 17:05	1
Benzene	0.39	J	0.50	0.074	ug/L			04/08/15 17:05	1
Bromobenzene	<0.25		1.0	0.25	ug/L			04/08/15 17:05	1
Bromochloromethane	<0.40		1.0	0.40	ug/L			04/08/15 17:05	1
Bromodichloromethane	<0.17		1.0	0.17	ug/L			04/08/15 17:05	1
Bromoform	<0.28		1.0	0.28	ug/L			04/08/15 17:05	1
Bromomethane	<0.31		1.0	0.31	ug/L			04/08/15 17:05	1
Carbon tetrachloride	<0.26		1.0	0.26	ug/L			04/08/15 17:05	1
Chlorobenzene	<0.14		1.0	0.14	ug/L			04/08/15 17:05	1
Chloroethane	<0.34		1.0	0.34	ug/L			04/08/15 17:05	1
Chloroform	<0.20		1.0	0.20	ug/L			04/08/15 17:05	1
Chloromethane	<0.18		1.0	0.18	ug/L			04/08/15 17:05	1
cis-1,2-Dichloroethene	33		1.0	0.12	ug/L			04/08/15 17:05	1
cis-1,3-Dichloropropene	<0.18		1.0	0.18	ug/L			04/08/15 17:05	1
Dibromochloromethane	<0.32		1.0	0.32	ug/L			04/08/15 17:05	1
Dibromomethane	<0.33		1.0	0.33	ug/L			04/08/15 17:05	1
Dichlorodifluoromethane	<0.20		1.0	0.20	ug/L			04/08/15 17:05	1
Ethylbenzene	<0.13		0.50	0.13	ug / L			04/08/15 17:05	1
Hexachlorobutadiene	<0.26		1.0	0.26	ug/L			04/08/15 17:05	1
Isopropyl ether	<0.15		1.0	0.15	ug/L			04/08/15 17:05	1
Isopropylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 17:05	1
Methyl tert-butyl ether	<0.24		1.0	0.24	ug/L			04/08/15 17:05	1
Methylene Chloride	<0.68		5.0	0.68	ug/L			04/08/15 17:05	1
Naphthalene	<0.16		1.0	0.16	ug / L			04/08/15 17:05	1
n-Butylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 17:05	1
N-Propylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 17:05	1
p-Isopropyltoluene	<0.17		1.0	0.17	ug/L			04/08/15 17:05	1
sec-Butylbenzene	<0.15		1.0	0.15	ug/L			04/08/15 17:05	1
Styrene	<0.10		1.0	0.10	ug/L			04/08/15 17:05	1
tert-Butylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 17:05	1
Tetrachloroethene	<0.17		1.0	0.17	ug/L			04/08/15 17:05	1
Toluene	<0.11		0.50	0.11	ug/L			04/08/15 17:05	1
trans-1,2-Dichloroethene	<0.25		1.0	0.25	ug / L			04/08/15 17:05	1
trans-1,3-Dichloropropene	<0.21		1.0	0.21	ug/L			04/08/15 17:05	1
Trichloroethene	61		0.50	0.19	ug/L			04/08/15 17:05	1
Trichlorofluoromethane	<0.19		1.0	0.19	ug / L			04/08/15 17:05	1

Client Sample ID: MW15
Lab Sample ID: 500-93974-13
Date Collected: 03/31/15 14:30
Matrix: Water
Date Received: 04/01/15 10:05
Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	4.8		0.50	0.10	ug/L			04/08/15 17:05	1
Xylenes, Total	<0.068		1.0	0.068	ug/L			04/08/15 17:05	1
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		75-125					04/08/15 17:05	1
4-Bromofluorobenzene (Surr)	97		75-120					04/08/15 17:05	1
Dibromofluoromethane	93		75-120					04/08/15 17:05	1
Toluene-d8 (Surr)	98		75-120					04/08/15 17:05	1

Client Sample ID: MW16
Lab Sample ID: 500-93974-14
Date Collected: 03/31/15 13:00
Matrix: Water
Date Received: 04/01/15 10:05

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.25		1.0	0.25	ug/L			04/08/15 17:32	1
1,1,1-Trichloroethane	<0.20		1.0	0.20	ug/L			04/08/15 17:32	1
1,1,2,2-Tetrachloroethane	<0.23		1.0	0.23	ug/L			04/08/15 17:32	1
1,1,2-Trichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 17:32	1
1,1-Dichloroethane	<0.19		1.0	0.19	ug/L			04/08/15 17:32	1
1,1-Dichloroethene	<0.31		1.0	0.31	ug/L			04/08/15 17:32	1
1,1-Dichloropropene	<0.34		1.0	0.34	ug/L			04/08/15 17:32	1
1,2,3-Trichlorobenzene	<0.24		1.0	0.24	ug/L			04/08/15 17:32	1
1,2,3-Trichloropropane	<0.45		1.0	0.45	ug/L			04/08/15 17:32	1
1,2,4-Trichlorobenzene	<0.31		1.0	0.31	ug/L			04/08/15 17:32	1
1,2,4-Trimethylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 17:32	1
1,2-Dibromo-3-Chloropropane	<0.87		2.0	0.87	ug/L			04/08/15 17:32	1
1,2-Dibromoethane	<0.36		1.0	0.36	ug/L			04/08/15 17:32	1
1,2-Dichlorobenzene	<0.27		1.0	0.27	ug/L			04/08/15 17:32	1
1,2-Dichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 17:32	1
1,2-Dichloropropane	<0.20		1.0	0.20	ug/L			04/08/15 17:32	1
1,3,5-Trimethylbenzene	<0.18		1.0	0.18	ug/L			04/08/15 17:32	1
1,3-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 17:32	1
1,3-Dichloropropane	<0.13		1.0	0.13	ug / L			04/08/15 17:32	1
1,4-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 17:32	1
2,2-Dichloropropane	<0.32		1.0	0.32	ug/L			04/08/15 17:32	1
2-Chlorotoluene	<0.21		1.0	0.21	ug/L			04/08/15 17:32	1
4-Chlorotoluene	<0.20		1.0	0.20	ug/L			04/08/15 17:32	1
Benzene	<0.074		0.50	0.074	ug/L			04/08/15 17:32	1
Bromobenzene	<0.25		1.0	0.25	ug/L			04/08/15 17:32	1
Bromochloromethane	<0.40		1.0	0.40	ug/L			04/08/15 17:32	1
Bromodichloromethane	<0.17		1.0	0.17	ug/L			04/08/15 17:32	1
Bromoform	<0.28		1.0	0.28	ug/L			04/08/15 17:32	1
Bromomethane	<0.31		1.0	0.31	ug/L			04/08/15 17:32	1
Carbon tetrachloride	<0.26		1.0	0.26	ug/L			04/08/15 17:32	1
Chlorobenzene	<0.14		1.0	0.14	ug/L			04/08/15 17:32	1
Chloroethane	<0.34		1.0	0.34	ug/L			04/08/15 17:32	1
Chloroform	<0.20		1.0	0.20	ug/L			04/08/15 17:32	1
Chloromethane	<0.18		1.0	0.18	ug/L			04/08/15 17:32	1
cis-1,2-Dichloroethene	9.4		1.0	0.12	ug/L			04/08/15 17:32	1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	<0.18		1.0	0.18	ug/L			04/08/15 17:32	1
Dibromochloromethane	<0.32		1.0	0.32	ug/L			04/08/15 17:32	1
Dibromomethane	<0.33		1.0	0.33	ug/L			04/08/15 17:32	1
Dichlorodifluoromethane	<0.20		1.0	0.20	ug/L			04/08/15 17:32	1
Ethylbenzene	<0.13		0.50	0.13	ug/L			04/08/15 17:32	1
Hexachlorobutadiene	<0.26		1.0	0.26	ug/L			04/08/15 17:32	1
Isopropyl ether	<0.15		1.0	0.15	ug/L			04/08/15 17:32	1
Isopropylbenzene	<0.14		1.0	0.14	ug / L			04/08/15 17:32	1
Methyl tert-butyl ether	<0.24		1.0	0.24	ug/L			04/08/15 17:32	1
Methylene Chloride	<0.68		5.0	0.68	ug/L			04/08/15 17:32	1
Naphthalene	<0.16		1.0	0.16	ug/L			04/08/15 17:32	1
n -Butylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 17:32	1
N-Propylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 17:32	1
p-Isopropyltoluene	<0.17		1.0	0.17	ug / L			04/08/15 17:32	1
sec-Butylbenzene	<0.15		1.0	0.15	ug/L			04/08/15 17:32	1
Styrene	<0.10		1.0	0.10	ug/L			04/08/15 17:32	1
tert-Butylbenzene	<0.14		1.0	0.14	ug / L			04/08/15 17:32	1
Tetrachloroethene	<0.17		1.0	0.17	ug/L			04/08/15 17:32	1
Toluene	<0.11		0.50	0.11	ug/L			04/08/15 17:32	1
trans-1,2-Dichloroethene	<0.25		1.0	0.25	ug/L			04/08/15 17:32	1
trans-1,3-Dichloropropene	<0.21		1.0	0.21	ug/L			04/08/15 17:32	1
Trichloroethene	20		0.50	0.19	ug/L			04/08/15 17:32	1
Trichlorofluoromethane	<0.19		1.0	0.19	ug / L			04/08/15 17:32	1
Vinyl chloride	<0.10		0.50	0.10	ug/L			04/08/15 17:32	1
Xylenes, Total	<0.068		1.0	0.068	ug/L			04/08/15 17:32	1
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		75-125					04/08/15 17:32	1
4-Bromofluorobenzene (Surr)	95		75-120					04/08/15 17:32	1
Dibromofluoromethane	93		75-120					04/08/15 17:32	1
Toluene-d8 (Surr)	96		75-120					04/08/15 17:32	1

Client Sample ID: MW21
Lab Sample ID: 500-93974-15
Date Collected: 03/31/15 13:25
Matrix: Water
Date Received: 04/01/15 10:05

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<1.3		5.0	1.3	ug/L			04/08/15 18:01	5
1,1,1-Trichloroethane	<1.0		5.0	1.0	ug/L			04/08/15 18:01	5
1,1,2,2-Tetrachloroethane	<1.2		5.0	1.2	ug/L			04/08/15 18:01	5
1,1,2-Trichloroethane	<1.4		5.0	1.4	ug/L			04/08/15 18:01	5
1,1-Dichloroethane	<0.95		5.0	0.95	ug/L			04/08/15 18:01	5
1,1-Dichloroethene	91		5.0	1.6	ug/L			04/08/15 18:01	5
1,1-Dichloropropene	<1.7		5.0	1.7	ug/L			04/08/15 18:01	5
1,2,3-Trichlorobenzene	<1.2		5.0	1.2	ug/L			04/08/15 18:01	5
1,2,3-Trichloropropane	<2.3		5.0	2.3	ug/L			04/08/15 18:01	5
1,2,4-Trichlorobenzene	<1.6		5.0	1.6	ug/L			04/08/15 18:01	5
1,2,4-Trimethylbenzene	7.9		5.0	0.70	ug/L			04/08/15 18:01	5
1,2-Dibromo-3-Chloropropane	<4.4		10	4.4	ug/L			04/08/15 18:01	5

Client Sample ID: MW21
Lab Sample ID: 500-93974-15
Date Collected: 03/31/15 13:25
Matrix: Water
Date Received: 04/01/15 10:05
Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	<1.8		5.0	1.8	ug/L			04/08/15 18:01	5
1,2-Dichlorobenzene	<1.4		5.0	1.4	ug/L			04/08/15 18:01	5
1,2-Dichloroethane	<1.4		5.0	1.4	ug/L			04/08/15 18:01	5
1,2-Dichloropropane	<1.0		5.0	1.0	ug/L			04/08/15 18:01	5
1,3,5-Trimethylbenzene	<0.90		5.0	0.90	ug/L			04/08/15 18:01	5
1,3-Dichlorobenzene	<0.75		5.0	0.75	ug/L			04/08/15 18:01	5
1,3-Dichloropropane	<0.65		5.0	0.65	ug/L			04/08/15 18:01	5
1,4-Dichlorobenzene	<0.75		5.0	0.75	ug/L			04/08/15 18:01	5
2,2-Dichloropropane	<1.6		5.0	1.6	ug/L			04/08/15 18:01	5
2-Chlorotoluene	<1.1		5.0	1.1	ug/L			04/08/15 18:01	5
4-Chlorotoluene	<1.0		5.0	1.0	ug/L			04/08/15 18:01	5
Benzene	140		2.5	0.37	ug/L			04/08/15 18:01	5
Bromobenzene	<1.3		5.0	1.3	ug/L			04/08/15 18:01	5
Bromochloromethane	<2.0		5.0	2.0	ug/L			04/08/15 18:01	5
Bromodichloromethane	<0.85		5.0	0.85	ug/L			04/08/15 18:01	5
Bromoform	<1.4		5.0	1.4	ug/L			04/08/15 18:01	5
Bromomethane	<1.6		5.0	1.6	ug / L			04/08/15 18:01	5
Carbon tetrachloride	<1.3		5.0	1.3	ug/L			04/08/15 18:01	5
Chlorobenzene	<0.70		5.0	0.70	ug/L			04/08/15 18:01	5
Chloroethane	<1.7		5.0	1.7	ug / L			04/08/15 18:01	5
Chloroform	3.6	J	5.0	1.0	ug / L			04/08/15 18:01	5
Chloromethane	<0.90		5.0	0.90	ug/L			04/08/15 18:01	5
cis-1,3-Dichloropropene	<0.90		5.0	0.90	ug/L			04/08/15 18:01	5
Dibromochloromethane	<1.6		5.0	1.6	ug / L			04/08/15 18:01	5
Dibromomethane	<1.7		5.0	1.7	ug/L			04/08/15 18:01	5
Dichlorodifluoromethane	<1.0		5.0	1.0	ug/L			04/08/15 18:01	5
Ethylbenzene	67		2.5	0.65	ug/L			04/08/15 18:01	5
Hexachlorobutadiene	<1.3		5.0	1.3	ug/L			04/08/15 18:01	5
Isopropyl ether	<0.75		5.0	0.75	ug/L			04/08/15 18:01	5
Isopropylbenzene	3.1	J	5.0	0.70	ug/L			04/08/15 18:01	5
Methyl tert-butyl ether	<1.2		5.0	1.2	ug/L			04/08/15 18:01	5
Methylene Chloride	<3.4		25	3.4	ug / L			04/08/15 18:01	5
Naphthalene	<0.80		5.0	0.80	ug/L			04/08/15 18:01	5
n-Butylbenzene	<0.65		5.0	0.65	ug/L			04/08/15 18:01	5
N-Propylbenzene	<0.65		5.0	0.65	ug/L			04/08/15 18:01	5
p-Isopropyltoluene	<0.85		5.0	0.85	ug/L			04/08/15 18:01	5
sec-Butylbenzene	<0.75		5.0	0.75	ug/L			04/08/15 18:01	5
Styrene	<0.50		5.0	0.50	ug/L			04/08/15 18:01	5
tert-Butylbenzene	<0.70		5.0	0.70	ug/L			04/08/15 18:01	5
Tetrachloroethene	9.3		5.0	0.85	ug/L			04/08/15 18:01	5
Toluene	30		2.5	0.55	ug/L			04/08/15 18:01	5
trans-1,2-Dichloroethene	120		5.0	1.3	ug/L			04/08/15 18:01	5
trans-1,3-Dichloropropene	<1.1		5.0	1.1	ug / L			04/08/15 18:01	5
Trichlorofluoromethane	<0.95		5.0	0.95	ug/L			04/08/15 18:01	5
Xylenes, Total	85		5.0	0.34	ug/L			04/08/15 18:01	5

Surrogate		\%Recovery	Qualifier	
	Limits			
1,2-Dichloroethane-d4 (Surr)	100		$75-125$	
4-Bromofluorobenzene (Surr)	100	$75-120$		
Dibromofluoromethane	97	$75-120$		

Prepared		Analyzed	
		Dil Fac	
	$04 / 08 / 1518: 01$		5
	$04 / 08 / 1518: 01$		5
	$04 / 08 / 1518: 01$		5

TestAmerica Chicago

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		75-120		04/08/15 18:01	5

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	39000		500	60	ug/L			04/09/15 12:36	500
Trichloroethene	27000		250	95	ug/L			04/09/15 12:36	500
Vinyl chloride	4400		250	50	ug/L			04/09/15 12:36	500
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		75-125					04/09/15 12:36	500
4-Bromofluorobenzene (Surr)	97		75-120					04/09/15 12:36	500
Dibromofluoromethane	97		75-120					04/09/15 12:36	500
Toluene-d8 (Surr)	96		75-120					04/09/15 12:36	500

Client Sample ID: MW21 Dup.
Lab Sample ID: 500-93974-16
Date Collected: 03/31/15 13:25
Matrix: Water
Date Received: 04/01/15 10:05

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<1.3		5.0	1.3	ug/L			04/08/15 18:29	5
1,1,1-Trichloroethane	<1.0		5.0	1.0	ug/L			04/08/15 18:29	5
1,1,2,2-Tetrachloroethane	<1.2		5.0	1.2	ug/L			04/08/15 18:29	5
1,1,2-Trichloroethane	11		5.0	1.4	ug/L			04/08/15 18:29	5
1,1-Dichloroethane	<0.95		5.0	0.95	ug/L			04/08/15 18:29	5
1,1-Dichloroethene	90		5.0	1.6	ug/L			04/08/15 18:29	5
1,1-Dichloropropene	<1.7		5.0	1.7	ug/L			04/08/15 18:29	5
1,2,3-Trichlorobenzene	<1.2		5.0	1.2	ug/L			04/08/15 18:29	5
1,2,3-Trichloropropane	<2.3		5.0	2.3	ug/L			04/08/15 18:29	5
1,2,4-Trichlorobenzene	<1.6		5.0	1.6	ug/L			04/08/15 18:29	5
1,2,4-Trimethylbenzene	7.1		5.0	0.70	ug/L			04/08/15 18:29	5
1,2-Dibromo-3-Chloropropane	<4.4		10	4.4	ug/L			04/08/15 18:29	5
1,2-Dibromoethane	<1.8		5.0	1.8	ug / L			04/08/15 18:29	5
1,2-Dichlorobenzene	<1.4		5.0	1.4	ug/L			04/08/15 18:29	5
1,2-Dichloroethane	<1.4		5.0	1.4	ug/L			04/08/15 18:29	5
1,2-Dichloropropane	<1.0		5.0	1.0	ug/L			04/08/15 18:29	5
1,3,5-Trimethylbenzene	<0.90		5.0	0.90	ug/L			04/08/15 18:29	5
1,3-Dichlorobenzene	<0.75		5.0	0.75	ug/L			04/08/15 18:29	5
1,3-Dichloropropane	<0.65		5.0	0.65	ug/L			04/08/15 18:29	5
1,4-Dichlorobenzene	<0.75		5.0	0.75	ug/L			04/08/15 18:29	5
2,2-Dichloropropane	<1.6		5.0	1.6	ug/L			04/08/15 18:29	5
2-Chlorotoluene	<1.1		5.0	1.1	ug/L			04/08/15 18:29	5
4-Chlorotoluene	<1.0		5.0	1.0	ug/L			04/08/15 18:29	5
Benzene	140		2.5	0.37	ug/L			04/08/15 18:29	5
Bromobenzene	<1.3		5.0	1.3	ug/L			04/08/15 18:29	5
Bromochloromethane	<2.0		5.0	2.0	ug/L			04/08/15 18:29	5
Bromodichloromethane	<0.85		5.0	0.85	ug/L			04/08/15 18:29	5
Bromoform	<1.4		5.0	1.4	ug/L			04/08/15 18:29	5
Bromomethane	<1.6		5.0	1.6	ug/L			04/08/15 18:29	5
Carbon tetrachloride	<1.3		5.0	1.3	ug/L			04/08/15 18:29	5
								TestAmerica	hicago

Client Sample ID: MW21 Dup.
Lab Sample ID: 500-93974-16
Date Collected: 03/31/15 13:25
Matrix: Water
Date Received: 04/01/15 10:05
Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorobenzene	<0.70		5.0	0.70	ug/L			04/08/15 18:29	5
Chloroethane	<1.7		5.0	1.7	ug/L			04/08/15 18:29	5
Chloroform	<1.0		5.0	1.0	ug/L			04/08/15 18:29	5
Chloromethane	<0.90		5.0	0.90	ug/L			04/08/15 18:29	5
cis-1,3-Dichloropropene	<0.90		5.0	0.90	ug/L			04/08/15 18:29	5
Dibromochloromethane	<1.6		5.0	1.6	ug/L			04/08/15 18:29	5
Dibromomethane	<1.7		5.0	1.7	ug/L			04/08/15 18:29	5
Dichlorodifluoromethane	<1.0		5.0	1.0	ug/L			04/08/15 18:29	5
Ethylbenzene	67		2.5	0.65	ug/L			04/08/15 18:29	5
Hexachlorobutadiene	<1.3		5.0	1.3	ug/L			04/08/15 18:29	5
Isopropyl ether	<0.75		5.0	0.75	ug/L			04/08/15 18:29	5
Isopropylbenzene	3.4	J	5.0	0.70	ug/L			04/08/15 18:29	5
Methyl tert-butyl ether	<1.2		5.0	1.2	ug/L			04/08/15 18:29	5
Methylene Chloride	<3.4		25	3.4	ug/L			04/08/15 18:29	5
Naphthalene	<0.80		5.0	0.80	ug/L			04/08/15 18:29	5
n-Butylbenzene	<0.65		5.0	0.65	ug/L			04/08/15 18:29	5
N-Propylbenzene	<0.65		5.0	0.65	ug/L			04/08/15 18:29	5
p-Isopropyltoluene	<0.85		5.0	0.85	ug/L			04/08/15 18:29	5
sec-Butylbenzene	<0.75		5.0	0.75	ug/L			04/08/15 18:29	5
Styrene	<0.50		5.0	0.50	ug/L			04/08/15 18:29	5
tert-Butylbenzene	<0.70		5.0	0.70	ug/L			04/08/15 18:29	5
Tetrachloroethene	7.8		5.0	0.85	ug/L			04/08/15 18:29	5
Toluene	32		2.5	0.55	ug/L			04/08/15 18:29	5
trans-1,2-Dichloroethene	120		5.0	1.3	ug/L			04/08/15 18:29	5
trans-1,3-Dichloropropene	<1.1		5.0	1.1	ug / L			04/08/15 18:29	5
Trichlorofluoromethane	<0.95		5.0	0.95	ug/L			04/08/15 18:29	5
Xylenes, Total	75		5.0	0.34	ug/L			04/08/15 18:29	5
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		75-125					04/08/15 18:29	5
4-Bromofluorobenzene (Surr)	98		75-120					04/08/15 18:29	5
Dibromofluoromethane	97		75-120					04/08/15 18:29	5
Toluene-d8 (Surr)	97		75-120					04/08/15 18:29	5

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	40000		500	60	ug/L			04/09/15 13:31	500
Trichloroethene	24000		250	95	ug/L			04/09/15 13:31	500
Vinyl chloride	5000		250	50	ug/L			04/09/15 13:31	500
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		75-125					04/09/15 13:31	500
4-Bromofluorobenzene (Surr)	94		75-120					04/09/15 13:31	500
Dibromofluoromethane	93		75-120					04/09/15 13:31	500
Toluene-d8 (Surr)	98		75-120					04/09/15 13:31	500

Client Sample ID: MW13R
Lab Sample ID: 500-93974-17
Date Collected: 03/31/15 13:45
Matrix: Water
Date Received: 04/01/15 10:05

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<1.3		5.0	1.3	ug/L			04/08/15 18:58	5
1,1,1-Trichloroethane	<1.0		5.0	1.0	ug/L			04/08/15 18:58	5
1,1,2,2-Tetrachloroethane	<1.2		5.0	1.2	ug/L			04/08/15 18:58	5
1,1,2-Trichloroethane	<1.4		5.0	1.4	ug/L			04/08/15 18:58	5
1,1-Dichloroethane	<0.95		5.0	0.95	ug/L			04/08/15 18:58	5
1,1-Dichloroethene	28		5.0	1.6	ug/L			04/08/15 18:58	5
1,1-Dichloropropene	<1.7		5.0	1.7	ug/L			04/08/15 18:58	5
1,2,3-Trichlorobenzene	<1.2		5.0	1.2	ug/L			04/08/15 18:58	5
1,2,3-Trichloropropane	<2.3		5.0	2.3	ug/L			04/08/15 18:58	5
1,2,4-Trichlorobenzene	<1.6		5.0	1.6	ug/L			04/08/15 18:58	5
1,2,4-Trimethylbenzene	<0.70		5.0	0.70	ug/L			04/08/15 18:58	5
1,2-Dibromo-3-Chloropropane	<4.4		10	4.4	ug/L			04/08/15 18:58	5
1,2-Dibromoethane	<1.8		5.0	1.8	ug/L			04/08/15 18:58	5
1,2-Dichlorobenzene	<1.4		5.0	1.4	ug/L			04/08/15 18:58	5
1,2-Dichloroethane	<1.4		5.0	1.4	ug/L			04/08/15 18:58	5
1,2-Dichloropropane	<1.0		5.0	1.0	ug/L			04/08/15 18:58	5
1,3,5-Trimethylbenzene	<0.90		5.0	0.90	ug/L			04/08/15 18:58	5
1,3-Dichlorobenzene	<0.75		5.0	0.75	ug/L			04/08/15 18:58	5
1,3-Dichloropropane	<0.65		5.0	0.65	ug/L			04/08/15 18:58	5
1,4-Dichlorobenzene	<0.75		5.0	0.75	ug/L			04/08/15 18:58	5
2,2-Dichloropropane	<1.6		5.0	1.6	ug/L			04/08/15 18:58	5
2-Chlorotoluene	<1.1		5.0	1.1	ug/L			04/08/15 18:58	5
4-Chlorotoluene	<1.0		5.0	1.0	ug/L			04/08/15 18:58	5
Benzene	5.5		2.5	0.37	ug/L			04/08/15 18:58	5
Bromobenzene	<1.3		5.0	1.3	ug/L			04/08/15 18:58	5
Bromochloromethane	<2.0		5.0	2.0	ug/L			04/08/15 18:58	5
Bromodichloromethane	<0.85		5.0	0.85	ug/L			04/08/15 18:58	5
Bromoform	<1.4		5.0	1.4	ug/L			04/08/15 18:58	5
Bromomethane	<1.6		5.0	1.6	ug/L			04/08/15 18:58	5
Carbon tetrachloride	<1.3		5.0	1.3	ug/L			04/08/15 18:58	5
Chlorobenzene	<0.70		5.0	0.70	ug/L			04/08/15 18:58	5
Chloroethane	<1.7		5.0	1.7	ug/L			04/08/15 18:58	5
Chloroform	<1.0		5.0	1.0	ug/L			04/08/15 18:58	5
Chloromethane	<0.90		5.0	0.90	ug/L			04/08/15 18:58	5
cis-1,3-Dichloropropene	<0.90		5.0	0.90	ug/L			04/08/15 18:58	5
Dibromochloromethane	<1.6		5.0	1.6	ug/L			04/08/15 18:58	5
Dibromomethane	<1.7		5.0	1.7	ug/L			04/08/15 18:58	5
Dichlorodifluoromethane	<1.0		5.0	1.0	ug/L			04/08/15 18:58	5
Ethylbenzene	1.5	J	2.5	0.65	ug/L			04/08/15 18:58	5
Hexachlorobutadiene	<1.3		5.0	1.3	ug/L			04/08/15 18:58	5
Isopropyl ether	<0.75		5.0	0.75	ug/L			04/08/15 18:58	5
Isopropylbenzene	<0.70		5.0	0.70	ug/L			04/08/15 18:58	5
Methyl tert-butyl ether	<1.2		5.0	1.2	ug/L			04/08/15 18:58	5
Methylene Chloride	<3.4		25	3.4	ug/L			04/08/15 18:58	5
Naphthalene	<0.80		5.0	0.80	ug/L			04/08/15 18:58	5
n-Butylbenzene	<0.65		5.0	0.65	ug/L			04/08/15 18:58	5
N -Propylbenzene	<0.65		5.0	0.65	ug/L			04/08/15 18:58	5
p-Isopropyltoluene	<0.85		5.0	0.85	ug/L			04/08/15 18:58	5
sec-Butylbenzene	<0.75		5.0	0.75	ug/L			04/08/15 18:58	5

Client Sample ID: MW13R
Date Collected: 03/31/15 13:45
Lab Sample ID: 500-93974-17
Matrix: Water
Date Received: 04/01/15 10:05

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<0.50		5.0	0.50	ug/L			04/08/15 18:58	5
tert-Butylbenzene	<0.70		5.0	0.70	ug/L			04/08/15 18:58	5
Tetrachloroethene	<0.85		5.0	0.85	ug/L			04/08/15 18:58	5
Toluene	3.5		2.5	0.55	ug/L			04/08/15 18:58	5
trans-1,2-Dichloroethene	55		5.0	1.3	ug / L			04/08/15 18:58	5
trans-1,3-Dichloropropene	<1.1		5.0	1.1	ug/L			04/08/15 18:58	5
Trichloroethene	350		2.5	0.95	ug/L			04/08/15 18:58	5
Trichlorofluoromethane	<0.95		5.0	0.95	ug/L			04/08/15 18:58	5
Xylenes, Total	<0.34		5.0	0.34	ug/L			04/08/15 18:58	5
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		75-125					04/08/15 18:58	5
4-Bromofluorobenzene (Surr)	97		75-120					04/08/15 18:58	5
Dibromofluoromethane	96		75-120					04/08/15 18:58	5
Toluene-d8 (Surr)	98		75-120					04/08/15 18:58	5

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	11000		500	60	ug/L			04/09/15 13:58	500
Vinyl chloride	1200		250	50	ug/L			04/09/15 13:58	500
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		75-125					04/09/15 13:58	500
4-Bromofluorobenzene (Surr)	95		75-120					04/09/15 13:58	500
Dibromofluoromethane	95		75-120					04/09/15 13:58	500
Toluene-d8 (Surr)	96		75-120					04/09/15 13:58	500

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
Result exceeded calibration range.	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
\%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

GC/MS VOA

Analysis Batch: 282867

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-93974-1	Trip Blank	Total/NA	Water	8260B	
500-93974-2	MW1RR	Total/NA	Water	8260B	
500-93974-3	MW2	Total/NA	Water	8260B	
500-93974-4	MW4R	Total/NA	Water	8260B	
500-93974-5	MW4C	Total/NA	Water	8260B	
500-93974-6	MW5R	Total/NA	Water	8260B	
500-93974-7	MW5A	Total/NA	Water	8260B	
500-93974-8	MW6	Total/NA	Water	8260B	
500-93974-9	MW7	Total/NA	Water	8260B	
500-93974-10	MW7 Dup.	Total/NA	Water	8260B	
500-93974-11	MW9	Total/NA	Water	8260B	
500-93974-12	MW14	Total/NA	Water	8260B	
500-93974-13	MW15	Total/NA	Water	8260B	
500-93974-14	MW16	Total/NA	Water	8260B	
500-93974-15	MW21	Total/NA	Water	8260B	
500-93974-16	MW21 Dup.	Total/NA	Water	8260B	
500-93974-17	MW13R	Total/NA	Water	8260B	
500-93974-17 MS	MW13R	Total/NA	Water	8260B	
500-93974-17 MSD	MW13R	Total/NA	Water	8260B	
LCS 500-282867/4	Lab Control Sample	Total/NA	Water	8260B	
MB 500-282867/6	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 283035

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-93974-4 - DL	MW4R	Total/NA	Water	8260B	
500-93974-6 - DL	MW5R	Total/NA	Water	8260B	
500-93974-15 - DL	MW21	Total/NA	Water	8260B	
500-93974-16 - DL	MW21 Dup.	Total/NA	Water	8260B	
500-93974-17-DL	MW13R	Total/NA	Water	8260B	
LCS 500-283035/4	Lab Control Sample	Total/NA	Water	8260B	
MB 500-283035/6	Method Blank	Total/NA	Water	8260B	

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 500-282867/6
Client Sample ID: Method Blank Prep Type: Total/NA
Analysis Batch: 282867

Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.25		1.0	0.25	ug/L			04/08/15 10:02	1
1,1,1-Trichloroethane	<0.20		1.0	0.20	ug/L			04/08/15 10:02	1
1,1,2,2-Tetrachloroethane	<0.23		1.0	0.23	ug/L			04/08/15 10:02	1
1,1,2-Trichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 10:02	1
1,1-Dichloroethane	<0.19		1.0	0.19	ug/L			04/08/15 10:02	1
1,1-Dichloroethene	<0.31		1.0	0.31	ug/L			04/08/15 10:02	1
1,1-Dichloropropene	<0.34		1.0	0.34	ug/L			04/08/15 10:02	1
1,2,3-Trichlorobenzene	<0.24		1.0	0.24	ug/L			04/08/15 10:02	1
1,2,3-Trichloropropane	<0.45		1.0	0.45	ug/L			04/08/15 10:02	1
1,2,4-Trichlorobenzene	<0.31		1.0	0.31	ug/L			04/08/15 10:02	1
1,2,4-Trimethylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 10:02	1
1,2-Dibromo-3-Chloropropane	<0.87		2.0	0.87	ug/L			04/08/15 10:02	1
1,2-Dibromoethane	<0.36		1.0	0.36	ug/L			04/08/15 10:02	1
1,2-Dichlorobenzene	<0.27		1.0	0.27	ug/L			04/08/15 10:02	1
1,2-Dichloroethane	<0.28		1.0	0.28	ug/L			04/08/15 10:02	1
1,2-Dichloropropane	<0.20		1.0	0.20	ug/L			04/08/15 10:02	1
1,3,5-Trimethylbenzene	<0.18		1.0	0.18	ug/L			04/08/15 10:02	1
1,3-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 10:02	1
1,3-Dichloropropane	<0.13		1.0	0.13	ug/L			04/08/15 10:02	1
1,4-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/08/15 10:02	1
2,2-Dichloropropane	<0.32		1.0	0.32	ug/L			04/08/15 10:02	1
2-Chlorotoluene	<0.21		1.0	0.21	ug/L			04/08/15 10:02	1
4-Chlorotoluene	<0.20		1.0	0.20	ug/L			04/08/15 10:02	1
Benzene	<0.074		0.50	0.074	ug/L			04/08/15 10:02	1
Bromobenzene	<0.25		1.0	0.25	ug/L			04/08/15 10:02	1
Bromochloromethane	<0.40		1.0	0.40	ug/L			04/08/15 10:02	1
Bromodichloromethane	<0.17		1.0	0.17	ug/L			04/08/15 10:02	1
Bromoform	<0.28		1.0	0.28	ug/L			04/08/15 10:02	1
Bromomethane	<0.31		1.0	0.31	ug/L			04/08/15 10:02	1
Carbon tetrachloride	<0.26		1.0	0.26	ug/L			04/08/15 10:02	1
Chlorobenzene	<0.14		1.0	0.14	ug/L			04/08/15 10:02	1
Chloroethane	<0.34		1.0	0.34	ug/L			04/08/15 10:02	1
Chloroform	<0.20		1.0	0.20	ug/L			04/08/15 10:02	1
Chloromethane	<0.18		1.0	0.18	ug/L			04/08/15 10:02	1
cis-1,2-Dichloroethene	<0.12		1.0	0.12	ug/L			04/08/15 10:02	1
cis-1,3-Dichloropropene	<0.18		1.0	0.18	ug/L			04/08/15 10:02	1
Dibromochloromethane	<0.32		1.0	0.32	ug/L			04/08/15 10:02	1
Dibromomethane	<0.33		1.0	0.33	ug/L			04/08/15 10:02	1
Dichlorodifluoromethane	<0.20		1.0	0.20	ug/L			04/08/15 10:02	1
Ethylbenzene	<0.13		0.50	0.13	ug/L			04/08/15 10:02	1
Hexachlorobutadiene	<0.26		1.0	0.26	ug/L			04/08/15 10:02	1
Isopropyl ether	<0.15		1.0	0.15	ug/L			04/08/15 10:02	1
Isopropylbenzene	<0.14		1.0	0.14	ug/L			04/08/15 10:02	1
Methyl tert-butyl ether	<0.24		1.0	0.24	ug/L			04/08/15 10:02	1
Methylene Chloride	<0.68		5.0	0.68	ug/L			04/08/15 10:02	1
Naphthalene	<0.16		1.0	0.16	ug/L			04/08/15 10:02	1
n-Butylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 10:02	1
N-Propylbenzene	<0.13		1.0	0.13	ug/L			04/08/15 10:02	1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-282867/6
Client Sample ID: Method Blank Prep Type: Total/NA
Matrix: Water
Analysis Batch: 282867

Analyte	MB	MB	RL			D	Prepared	Analyzed	Dil Fac
	Result	Qualifier		MDL	Unit				
p-Isopropyltoluene	<0.17		1.0	0.17	ug/L			04/08/15 10:02	1
sec-Butylbenzene	<0.15		1.0	0.15	ug / L			04/08/15 10:02	1
Styrene	<0.10		1.0	0.10	ug/L			04/08/15 10:02	1
tert-Butylbenzene	<0.14		1.0	0.14	ug / L			04/08/15 10:02	1
Tetrachloroethene	<0.17		1.0	0.17	ug/L			04/08/15 10:02	1
Toluene	<0.11		0.50	0.11	ug/L			04/08/15 10:02	1
trans-1,2-Dichloroethene	<0.25		1.0	0.25	ug/L			04/08/15 10:02	1
trans-1,3-Dichloropropene	<0.21		1.0	0.21	ug/L			04/08/15 10:02	1
Trichloroethene	<0.19		0.50	0.19	ug/L			04/08/15 10:02	1
Trichlorofluoromethane	<0.19		1.0	0.19	ug / L			04/08/15 10:02	1
Vinyl chloride	<0.10		0.50	0.10	ug/L			04/08/15 10:02	1
Xylenes, Total	<0.068		1.0	0.068	ug/L			04/08/15 10:02	1
	MB	MB							
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		75-125					04/08/15 10:02	1
4-Bromofluorobenzene (Surr)	97		75-120					04/08/15 10:02	1
Dibromofluoromethane	92		75-120					04/08/15 10:02	1
Toluene-d8 (Surr)	97		75-120					04/08/15 10:02	1

Lab Sample ID: LCS 500-282867/4
Matrix: Water
Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Analysis Batch: 282867

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	\%Rec	\%Rec. Limits
1,1,1,2-Tetrachloroethane	50.0	48.8		ug/L		98	75-122
1,1,1-Trichloroethane	50.0	48.7		ug/L		97	72-130
1,1,2,2-Tetrachloroethane	50.0	47.2		ug/L		94	72-130
1,1,2-Trichloroethane	50.0	48.3		ug/L		97	75-120
1,1-Dichloroethane	50.0	47.3		ug/L		95	75-120
1,1-Dichloroethene	50.0	45.1		ug/L		90	69-120
1,1-Dichloropropene	50.0	48.5		ug/L		97	75-130
1,2,3-Trichlorobenzene	50.0	46.2		ug/L		92	69-131
1,2,3-Trichloropropane	50.0	48.1		ug/L		96	65-132
1,2,4-Trichlorobenzene	50.0	47.8		ug/L		96	73-130
1,2,4-Trimethylbenzene	50.0	48.6		ug/L		97	75-121
1,2-Dibromo-3-Chloropropane	50.0	46.0		ug/L		92	62-130
1,2-Dibromoethane	50.0	48.7		ug/L		97	78-122
1,2-Dichlorobenzene	50.0	46.7		ug/L		93	75-120
1,2-Dichloroethane	50.0	46.6		ug/L		93	69-130
1,2-Dichloropropane	50.0	48.0		ug/L		96	75-120
1,3,5-Trimethylbenzene	50.0	49.3		ug/L		99	75-121
1,3-Dichlorobenzene	50.0	46.4		ug/L		93	75-120
1,3-Dichloropropane	50.0	48.0		ug/L		96	77-124
1,4-Dichlorobenzene	50.0	45.9		ug/L		92	75-120
2,2-Dichloropropane	50.0	50.7		ug/L		101	65-132
2-Chlorotoluene	50.0	48.2		ug/L		96	75-120
4-Chlorotoluene	50.0	47.9		ug/L		96	75-120
Benzene	50.0	46.7		ug/L		93	75-120

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-282867/4
Matrix: Water
Analysis Batch: 282867

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	\%Rec	\%Rec. Limits
Bromobenzene	50.0	47.9		ug/L		96	75-120
Bromochloromethane	50.0	45.5		ug/L		91	76-120
Bromodichloromethane	50.0	49.4		ug/L		99	77-121
Bromoform	50.0	49.3		ug/L		99	68-126
Bromomethane	50.0	50.1		ug/L		100	45-169
Carbon tetrachloride	50.0	50.3		ug/L		101	70-130
Chlorobenzene	50.0	48.0		ug/L		96	75-120
Chloroethane	50.0	46.8		ug/L		94	58-147
Chloroform	50.0	47.2		ug/L		94	76-120
Chloromethane	50.0	44.2		ug/L		88	63-133
cis-1,2-Dichloroethene	50.0	47.2		ug/L		94	75-120
cis-1,3-Dichloropropene	50.0	48.6		ug/L		97	78-130
Dibromochloromethane	50.0	49.0		ug/L		98	71-126
Dibromomethane	50.0	46.8		ug/L		94	75-120
Dichlorodifluoromethane	50.0	39.3		ug/L		79	41-146
Ethylbenzene	50.0	48.7		ug/L		97	75-120
Hexachlorobutadiene	50.0	48.0		ug/L		96	71-131
Isopropylbenzene	50.0	49.6		ug/L		99	75-121
Methyl tert-butyl ether	50.0	46.0		ug/L		92	75-130
Methylene Chloride	50.0	46.3		ug/L		93	73-130
Naphthalene	50.0	50.0		ug/L		100	69-135
n-Butylbenzene	50.0	49.6		ug/L		99	75-121
N-Propylbenzene	50.0	50.0		ug/L		100	75-120
p-Isopropyltoluene	50.0	50.3		ug/L		101	75-121
sec-Butylbenzene	50.0	49.6		ug/L		99	75-120
Styrene	50.0	49.4		ug/L		99	75-120
tert-Butylbenzene	50.0	48.9		ug/L		98	75-123
Tetrachloroethene	50.0	48.6		ug/L		97	75-120
Toluene	50.0	47.6		ug/L		95	75-120
trans-1,2-Dichloroethene	50.0	46.9		ug/L		94	77-120
trans-1,3-Dichloropropene	50.0	48.4		ug/L		97	74-130
Trichloroethene	50.0	46.7		ug/L		93	75-120
Trichlorofluoromethane	50.0	50.5		ug/L		101	71-130
Vinyl chloride	50.0	47.2		ug/L		94	72-123
Xylenes, Total	100	95.7		ug/L		96	75-120

LCS LCS

Surrogate		\%Recovery	Qualifier		Limits
	1,2-Dichloroethane-d4 (Surr)		98		$75-125$
4-Bromofluorobenzene (Surr)		97		$75-120$	
Dibromofluoromethane	98	$75-120$			
Toluene-d8 (Surr)	101	$75-120$			

Lab Sample ID: 500-93974-17 MS
Matrix: Water
Analysis Batch: 282867

	Sample	Sample	Spike	MS	MS				\%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	\%Rec	Limits
1,1,1,2-Tetrachloroethane	<1.3		250	235		ug/L		94	75-122

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-93974-17 MS
Matrix: Water
Analysis Batch: 282867

Analyte	Sample Result	Sample Qualifier	Spike Added	$\begin{array}{r} \text { MS } \\ \text { Result } \end{array}$	MS Qualifier	Unit	D	\%Rec	\%Rec. Limits
1,1,1-Trichloroethane	<1.0		250	230		ug/L		92	72-130
1,1,2,2-Tetrachloroethane	<1.2		250	230		ug/L		92	72-130
1,1,2-Trichloroethane	<1.4		250	235		ug/L		94	75-120
1,1-Dichloroethane	<0.95		250	229		ug/L		92	75-120
1,1-Dichloroethene	28		250	242		ug/L		86	69-120
1,1-Dichloropropene	<1.7		250	226		ug/L		90	75-130
1,2,3-Trichlorobenzene	<1.2		250	222		ug/L		89	69-131
1,2,3-Trichloropropane	<2.3		250	228		ug/L		91	65-132
1,2,4-Trichlorobenzene	<1.6		250	231		ug/L		92	73-130
1,2,4-Trimethylbenzene	<0.70		250	235		ug/L		94	75-121
1,2-Dibromo-3-Chloropropane	<4.4		250	236		ug/L		94	62-130
1,2-Dibromoethane	<1.8		250	234		ug/L		93	78-122
1,2-Dichlorobenzene	<1.4		250	229		ug/L		91	75-120
1,2-Dichloroethane	<1.4		250	231		ug/L		92	69-130
1,2-Dichloropropane	<1.0		250	233		ug/L		93	75-120
1,3,5-Trimethylbenzene	<0.90		250	238		ug/L		95	75-121
1,3-Dichlorobenzene	<0.75		250	227		ug/L		91	75-120
1,3-Dichloropropane	<0.65		250	236		ug/L		94	77-124
1,4-Dichlorobenzene	<0.75		250	221		ug/L		88	75-120
2,2-Dichloropropane	<1.6		250	215		ug/L		86	65-132
2-Chlorotoluene	<1.1		250	234		ug/L		93	75-120
4-Chlorotoluene	<1.0		250	231		ug/L		92	75-120
Benzene	5.5		250	232		ug/L		91	75-120
Bromobenzene	<1.3		250	233		ug/L		93	75-120
Bromochloromethane	<2.0		250	226		ug/L		90	76-120
Bromodichloromethane	<0.85		250	242		ug/L		97	77-121
Bromoform	<1.4		250	237		ug/L		95	68-126
Bromomethane	<1.6		250	208		ug/L		83	45-169
Carbon tetrachloride	<1.3		250	227		ug/L		91	70-130
Chlorobenzene	<0.70		250	232		ug/L		93	75-120
Chloroethane	<1.7		250	233		ug/L		93	58-147
Chloroform	<1.0		250	233		ug/L		93	76-120
Chloromethane	<0.90		250	198		ug/L		79	63-133
cis-1,2-Dichloroethene	9200	E	250	9130	E 4	ug/L		-32	75-120
cis-1,3-Dichloropropene	<0.90		250	237		ug/L		95	78-130
Dibromochloromethane	<1.6		250	237		ug/L		95	71-126
Dibromomethane	<1.7		250	232		ug/L		93	75-120
Dichlorodifluoromethane	<1.0		250	178		ug/L		71	41-146
Ethylbenzene	1.5	J	250	230		ug/L		91	75-120
Hexachlorobutadiene	<1.3		250	233		ug/L		93	71-131
Isopropylbenzene	<0.70		250	233		ug/L		93	75-121
Methyl tert-butyl ether	<1.2		250	229		ug/L		92	75-130
Methylene Chloride	<3.4		250	223		ug/L		89	73-130
Naphthalene	<0.80		250	245		ug/L		98	69-135
n-Butylbenzene	<0.65		250	233		ug/L		93	75-121
N-Propylbenzene	<0.65		250	234		ug/L		94	75-120
p-Isopropyltoluene	<0.85		250	234		ug/L		94	75-121
sec-Butylbenzene	<0.75		250	234		ug/L		94	75-120

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-93974-17 MS
Matrix: Water
Analysis Batch: 282867

Analyte	Sample Result	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	\%Rec	\%Rec. Limits
Styrene	<0.50		250	240		ug/L		96	75-120
tert-Butylbenzene	<0.70		250	235		ug/L		94	75-123
Tetrachloroethene	<0.85		250	224		ug/L		90	75-120
Toluene	3.5		250	232		ug/L		91	75-120
trans-1,2-Dichloroethene	55		250	281		ug/L		90	77-120
trans-1,3-Dichloropropene	<1.1		250	233		ug/L		93	74-130
Trichloroethene	350		250	574		ug/L		88	75-120
Trichlorofluoromethane	<0.95		250	224		ug/L		90	71-130
Vinyl chloride	1300	E	250	1570	E 4	ug/L		106	72-123
Xylenes, Total	<0.34		500	462		ug/L		92	75-120

Lab Sample ID: 500-93974-17 MSD
Client Sample ID: MW13R
Matrix: Water
Prep Type: Total/NA
Analysis Batch: 282867

Analyte	Sample Result	Sample Qualifier	Spike Added	$\begin{array}{r} \text { MSD } \\ \text { Result } \end{array}$	MSD Qualifier	Unit	D	\%Rec	\%Rec. Limits	RPD	RPD Limit
1,1,1,2-Tetrachloroethane	<1.3		250	247		ug/L		99	75-122	5	20
1,1,1-Trichloroethane	<1.0		250	241		ug/L		96	72-130	5	20
1,1,2,2-Tetrachloroethane	<1.2		250	257		ug/L		103	72-130	11	20
1,1,2-Trichloroethane	<1.4		250	255		ug/L		102	75-120	8	20
1,1-Dichloroethane	<0.95		250	247		ug/L		99	75-120	8	20
1,1-Dichloroethene	28		250	251		ug/L		89	69-120	3	20
1,1-Dichloropropene	<1.7		250	237		ug/L		95	75-130	5	20
1,2,3-Trichlorobenzene	<1.2		250	223		ug/L		89	69-131	0	20
1,2,3-Trichloropropane	<2.3		250	257		ug/L		103	65-132	12	20
1,2,4-Trichlorobenzene	<1.6		250	229		ug/L		92	73-130	1	20
1,2,4-Trimethylbenzene	<0.70		250	250		ug/L		100	75-121	6	20
1,2-Dibromo-3-Chloropropane	<4.4		250	255		ug/L		102	62-130	8	20
1,2-Dibromoethane	<1.8		250	256		ug/L		102	78-122	9	20
1,2-Dichlorobenzene	<1.4		250	242		ug/L		97	75-120	6	20
1,2-Dichloroethane	<1.4		250	254		ug/L		102	69-130	10	20
1,2-Dichloropropane	<1.0		250	259		ug/L		104	75-120	11	20
1,3,5-Trimethylbenzene	<0.90		250	251		ug/L		100	75-121	5	20
1,3-Dichlorobenzene	<0.75		250	237		ug/L		95	75-120	5	20
1,3-Dichloropropane	<0.65		250	255		ug/L		102	77-124	8	20
1,4-Dichlorobenzene	<0.75		250	234		ug/L		94	75-120	6	20
2,2-Dichloropropane	<1.6		250	227		ug/L		91	65-132	6	20
2-Chlorotoluene	<1.1		250	249		ug/L		99	75-120	6	20
4-Chlorotoluene	<1.0		250	244		ug/L		98	75-120	6	20
Benzene	5.5		250	246		ug/L		96	75-120	6	20
Bromobenzene	<1.3		250	254		ug/L		102	75-120	9	20
Bromochloromethane	<2.0		250	245		ug/L		98	76-120	8	20

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-93974-17 MSD
Client Sample ID: MW13R
Matrix: Water
Prep Type: Total/NA
Analysis Batch: 282867

Analyte	Sample Result	Sample Qualifier	Spike Added	MSD Result	MSD Qualifier	Unit	D	\%Rec	\%Rec. Limits	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Limit } \end{aligned}$
Bromodichloromethane	<0.85		250	270		ug/L		108	77-121	11	20
Bromoform	<1.4		250	259		ug/L		103	68-126	9	20
Bromomethane	<1.6		250	201		ug/L		80	45-169	4	20
Carbon tetrachloride	<1.3		250	246		ug/L		98	70-130	8	20
Chlorobenzene	<0.70		250	243		ug/L		97	75-120	5	20
Chloroethane	<1.7		250	227		ug/L		91	58-147	3	20
Chloroform	<1.0		250	252		ug/L		101	76-120	8	20
Chloromethane	<0.90		250	203		ug/L		81	63-133	3	20
cis-1,2-Dichloroethene	9200	E	250	9500	E 4	ug/L		113	75-120	4	20
cis-1,3-Dichloropropene	<0.90		250	250		ug/L		100	78-130	5	20
Dibromochloromethane	<1.6		250	263		ug/L		105	71-126	10	20
Dibromomethane	<1.7		250	262		ug/L		105	75-120	12	20
Dichlorodifluoromethane	<1.0		250	179		ug/L		71	41-146	0	20
Ethylbenzene	1.5	J	250	241		ug/L		96	75-120	5	20
Hexachlorobutadiene	<1.3		250	223		ug/L		89	71-131	4	20
Isopropylbenzene	<0.70		250	250		ug/L		100	75-121	7	20
Methyl tert-butyl ether	<1.2		250	254		ug/L		102	75-130	11	20
Methylene Chloride	<3.4		250	245		ug/L		98	73-130	10	20
Naphthalene	<0.80		250	253		ug/L		101	69-135	3	20
n-Butylbenzene	<0.65		250	237		ug/L		95	75-121	2	20
N-Propylbenzene	<0.65		250	248		ug/L		99	75-120	6	20
p-Isopropyltoluene	<0.85		250	245		ug/L		98	75-121	5	20
sec-Butylbenzene	<0.75		250	248		ug/L		99	75-120	6	20
Styrene	<0.50		250	246		ug/L		98	75-120	2	20
tert-Butylbenzene	<0.70		250	246		ug/L		99	75-123	5	20
Tetrachloroethene	<0.85		250	234		ug/L		94	75-120	4	20
Toluene	3.5		250	242		ug/L		95	75-120	4	20
trans-1,2-Dichloroethene	55		250	288		ug/L		93	77-120	3	20
trans-1,3-Dichloropropene	<1.1		250	253		ug/L		101	74-130	8	20
Trichloroethene	350		250	605		ug/L		100	75-120	5	20
Trichlorofluoromethane	<0.95		250	232		ug/L		93	71-130	3	20
Vinyl chloride	1300	E	250	1540	E 4	ug/L		94	72-123	2	20
Xylenes, Total	<0.34		500	474		ug/L		95	75-120	3	20

Surrogate	$\begin{array}{r} \text { MSD } \\ \text { \%Recovery } \end{array}$	MSD Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		75-125
4-Bromofluorobenzene (Surr)	99		75-120
Dibromofluoromethane	100		75-120
Toluene-d8 (Surr)	97		75-120

Lab Sample ID: MB 500-283035/6
Matrix: Water
Client Sample ID: Method Blank Prep Type: Total/NA
Analysis Batch: 283035

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.25		1.0	0.25	ug/L			04/09/15 10:00	1
1,1,1-Trichloroethane	<0.20		1.0	0.20	ug/L			04/09/15 10:00	1
1,1,2,2-Tetrachloroethane	<0.23		1.0	0.23	ug/L			04/09/15 10:00	1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-283035/6
Matrix: Water
Analysis Batch: 283035

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	<0.28		1.0	0.28	ug/L			04/09/15 10:00	1
1,1-Dichloroethane	<0.19		1.0	0.19	ug/L			04/09/15 10:00	1
1,1-Dichloroethene	<0.31		1.0	0.31	ug/L			04/09/15 10:00	1
1,1-Dichloropropene	<0.34		1.0	0.34	ug/L			04/09/15 10:00	1
1,2,3-Trichlorobenzene	<0.24		1.0	0.24	ug/L			04/09/15 10:00	1
1,2,3-Trichloropropane	<0.45		1.0	0.45	ug/L			04/09/15 10:00	1
1,2,4-Trichlorobenzene	<0.31		1.0	0.31	ug/L			04/09/15 10:00	1
1,2,4-Trimethylbenzene	<0.14		1.0	0.14	ug/L			04/09/15 10:00	1
1,2-Dibromo-3-Chloropropane	<0.87		2.0	0.87	ug/L			04/09/15 10:00	1
1,2-Dibromoethane	<0.36		1.0	0.36	ug/L			04/09/15 10:00	1
1,2-Dichlorobenzene	<0.27		1.0	0.27	ug/L			04/09/15 10:00	1
1,2-Dichloroethane	<0.28		1.0	0.28	ug/L			04/09/15 10:00	1
1,2-Dichloropropane	<0.20		1.0	0.20	ug/L			04/09/15 10:00	1
1,3,5-Trimethylbenzene	<0.18		1.0	0.18	ug/L			04/09/15 10:00	1
1,3-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/09/15 10:00	1
1,3-Dichloropropane	<0.13		1.0	0.13	ug / L			04/09/15 10:00	1
1,4-Dichlorobenzene	<0.15		1.0	0.15	ug/L			04/09/15 10:00	1
2,2-Dichloropropane	<0.32		1.0	0.32	ug/L			04/09/15 10:00	1
2-Chlorotoluene	<0.21		1.0	0.21	ug / L			04/09/15 10:00	1
4-Chlorotoluene	<0.20		1.0	0.20	ug / L			04/09/15 10:00	1
Benzene	<0.074		0.50	0.074	ug/L			04/09/15 10:00	1
Bromobenzene	<0.25		1.0	0.25	ug/L			04/09/15 10:00	1
Bromochloromethane	<0.40		1.0	0.40	ug / L			04/09/15 10:00	1
Bromodichloromethane	<0.17		1.0	0.17	ug/L			04/09/15 10:00	1
Bromoform	<0.28		1.0	0.28	ug/L			04/09/15 10:00	1
Bromomethane	<0.31		1.0	0.31	ug/L			04/09/15 10:00	1
Carbon tetrachloride	<0.26		1.0	0.26	ug/L			04/09/15 10:00	1
Chlorobenzene	<0.14		1.0	0.14	ug/L			04/09/15 10:00	1
Chloroethane	<0.34		1.0	0.34	ug/L			04/09/15 10:00	1
Chloroform	<0.20		1.0	0.20	ug/L			04/09/15 10:00	1
Chloromethane	<0.18		1.0	0.18	ug/L			04/09/15 10:00	1
cis-1,2-Dichloroethene	<0.12		1.0	0.12	ug/L			04/09/15 10:00	1
cis-1,3-Dichloropropene	<0.18		1.0	0.18	ug/L			04/09/15 10:00	1
Dibromochloromethane	<0.32		1.0	0.32	ug/L			04/09/15 10:00	1
Dibromomethane	<0.33		1.0	0.33	ug/L			04/09/15 10:00	1
Dichlorodifluoromethane	<0.20		1.0	0.20	ug/L			04/09/15 10:00	1
Ethylbenzene	<0.13		0.50	0.13	ug / L			04/09/15 10:00	1
Hexachlorobutadiene	<0.26		1.0	0.26	ug / L			04/09/15 10:00	1
Isopropyl ether	<0.15		1.0	0.15	ug/L			04/09/15 10:00	1
Isopropylbenzene	<0.14		1.0	0.14	ug/L			04/09/15 10:00	1
Methyl tert-butyl ether	<0.24		1.0	0.24	ug/L			04/09/15 10:00	1
Methylene Chloride	<0.68		5.0	0.68	ug / L			04/09/15 10:00	1
Naphthalene	<0.16		1.0	0.16	ug/L			04/09/15 10:00	1
n-Butylbenzene	<0.13		1.0	0.13	ug / L			04/09/15 10:00	1
N-Propylbenzene	<0.13		1.0	0.13	ug / L			04/09/15 10:00	1
p-Isopropyltoluene	<0.17		1.0	0.17	ug/L			04/09/15 10:00	1
sec-Butylbenzene	<0.15		1.0	0.15	ug/L			04/09/15 10:00	1
Styrene	<0.10		1.0	0.10	ug/L			04/09/15 10:00	1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-283035/6
Client Sample ID: Method Blank Prep Type: Total/NA
Matrix: Water
Analysis Batch: 283035

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
tert-Butylbenzene	<0.14		1.0	0.14	ug/L			04/09/15 10:00	1
Tetrachloroethene	<0.17		1.0	0.17	ug/L			04/09/15 10:00	1
Toluene	<0.11		0.50	0.11	ug/L			04/09/15 10:00	1
trans-1,2-Dichloroethene	<0.25		1.0	0.25	ug/L			04/09/15 10:00	1
trans-1,3-Dichloropropene	<0.21		1.0	0.21	ug/L			04/09/15 10:00	1
Trichloroethene	<0.19		0.50	0.19	ug/L			04/09/15 10:00	1
Trichlorofluoromethane	<0.19		1.0	0.19	ug/L			04/09/15 10:00	1
Vinyl chloride	<0.10		0.50	0.10	ug/L			04/09/15 10:00	1
Xylenes, Total	<0.068		1.0	0.068	ug/L			04/09/15 10:00	1

Surrogate	\%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		75-125
4-Bromofluorobenzene (Surr)	96		75-120
Dibromofluoromethane	92		75-120
Toluene-d8 (Surr)	98		75-120

Prepared	Analyzed	Dil Fac
	04/09/15 10:00	1
	04/09/15 10:00	1
	04/09/15 10:00	1
	04/09/15 10:00	1

Lab Sample ID: LCS 500-283035/4
Matrix: Water
Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Analysis Batch: 283035

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	\%Rec	\%Rec. Limits
1,1,1,2-Tetrachloroethane	50.0	49.3		ug/L		99	75-122
1,1,1-Trichloroethane	50.0	46.3		ug/L		93	72-130
1,1,2,2-Tetrachloroethane	50.0	48.9		ug/L		98	72-130
1,1,2-Trichloroethane	50.0	48.7		ug/L		97	75-120
1,1-Dichloroethane	50.0	47.9		ug/L		96	75-120
1,1-Dichloroethene	50.0	47.5		ug/L		95	69-120
1,1-Dichloropropene	50.0	49.6		ug/L		99	75-130
1,2,3-Trichlorobenzene	50.0	47.4		ug/L		95	69-131
1,2,3-Trichloropropane	50.0	50.9		ug/L		102	65-132
1,2,4-Trichlorobenzene	50.0	49.8		ug/L		100	73-130
1,2,4-Trimethylbenzene	50.0	47.4		ug/L		95	75-121
1,2-Dibromo-3-Chloropropane	50.0	49.2		ug/L		98	62-130
1,2-Dibromoethane	50.0	48.5		ug/L		97	78-122
1,2-Dichlorobenzene	50.0	46.7		ug/L		93	75-120
1,2-Dichloroethane	50.0	48.6		ug/L		97	69-130
1,2-Dichloropropane	50.0	46.7		ug/L		93	75-120
1,3,5-Trimethylbenzene	50.0	47.3		ug/L		95	75-121
1,3-Dichlorobenzene	50.0	46.8		ug/L		94	75-120
1,3-Dichloropropane	50.0	47.2		ug/L		94	77-124
1,4-Dichlorobenzene	50.0	46.7		ug/L		93	75-120
2,2-Dichloropropane	50.0	46.5		ug/L		93	65-132
2-Chlorotoluene	50.0	47.0		ug/L		94	75-120
4-Chlorotoluene	50.0	46.6		ug/L		93	75-120
Benzene	50.0	46.7		ug/L		93	75-120
Bromobenzene	50.0	47.2		ug/L		94	75-120
Bromochloromethane	50.0	47.4		ug/L		95	76-120
Bromodichloromethane	50.0	48.0		ug/L		96	77-121

TestAmerica Chicago

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Date Received: 04/01/15 10:05

Client Sample ID: MW1RR
Lab Sample ID: 500-93974-2
Date Collected: 03/30/15 10:00
Matrix: Water
Date Received: 04/01/15 10:05

Client Sample ID: MW2
Date Collected: 03/30/15 14:45
Lab Sample ID: 500-93974-3

Date Received: 04/01/15 10:05

Client Sample ID: MW4R
Date Collected: 03/30/15 10:25
Lab Sample ID: 500-93974-4

Date Received: 04/01/15 10:05

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		50	282867	04/08/15 12:54	PMF	TAL CHI
Total/NA	Analysis	8260B	DL	2000	283035	04/09/15 11:40	PMF	TAL CHI

Client Sample ID: MW4C
Lab Sample ID: 500-93974-5
Matrix: Water
Date Collected: 03/30/15 10:45
Matrix: Water
Date Received: 04/01/15 10:05

Client Sample ID: MW5R

Lab Sample ID: 500-93974-6
Date Collected: 03/30/15 11:05
Matrix: Water
Date Received: 04/01/15 10:05

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	282867	04/08/15 13:50	PMF	TAL CHI
Total/NA	Analysis	8260B	DL	20	283035	04/09/15 12:08	PMF	TAL CHI

Lab Chronicle

Client: SCS Engineers
TestAmerica Job ID: 500-93974-1
Project/Site: Quic Frez SFR 25211806.62

Client Sample ID: MW5A
Lab Sample ID: 500-93974-7
Matrix: Water
Date Received: 04/01/15 10:05

Client Sample ID: MW6
Date Collected: 03/30/15 11:50
Lab Sample ID: 500-93974-8
Matrix: Water
Date Received: 04/01/15 10:05

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	282867	04/08/15 14:47	PMF	TAL CHI

Client Sample ID: MW7

Date Collected: 03/30/15 12:10
Lab Sample ID: 500-93974-9
Matrix: Water
Date Received: 04/01/15 10:05

Client Sample ID: MW7 Dup.
Lab Sample ID: 500-93974-10
Date Collected: 03/30/15 12:10
Matrix: Water
Date Received: 04/01/15 10:05

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	282867	04/08/15 15:43	PMF	TAL CHI

Client Sample ID: MW9
Lab Sample ID: 500-93974-11
Date Collected: 03/31/15 12:35
Matrix: Water
Date Received: 04/01/15 10:05

Client Sample ID: MW14
Lab Sample ID: 500-93974-12
Date Collected: 03/31/15 14:00
Matrix: Water
Date Received: 04/01/15 10:05

Prep Type	Batch	Batch		Dilution	Batch	Prepared		
	Type	Method	$\underline{\text { Run }}$	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	282867	04/08/15 16:38	PMF	TAL CHI

Lab Chronicle

Client: SCS Engineers
Project/Site: Quic Frez SFR 25211806.62
Client Sample ID: MW15
Lab Sample ID: 500-93974-13
Date Collected: 03/31/15 14:30
Matrix: Water
Date Received: 04/01/15 10:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	282867	04/08/15 17:05	PMF	TAL CHI

Client Sample ID: MW16
Lab Sample ID: 500-93974-14
Matrix: Water
Date Collected: 03/31/15 13:00
Date Received: 04/01/15 10:05

Client Sample ID: MW21
Lab Sample ID: 500-93974-15
Date Collected: 03/31/15 13:25
Matrix: Water
Date Received: 04/01/15 10:05

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		5	282867	04/08/15 18:01	PMF	TAL CHI
Total/NA	Analysis	8260B	DL	500	283035	04/09/15 12:36	PMF	TAL CHI
lient Sa	: MW2	Dup.						Samp

Date Collected: 03/31/15 13:25
Matrix: Water
Date Received: 04/01/15 10:05

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		5	282867	04/08/15 18:29	PMF	TAL CHI
Total/NA	Analysis	8260B	DL	500	283035	04/09/15 13:31	PMF	TAL CHI

Client Sample ID: MW13R
Lab Sample ID: 500-93974-17
Matrix: Water
Date Collected: 03/31/15 13:45
Date Received: 04/01/15 10:05

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		5	282867	04/08/15 18:58	PMF	TAL CHI
Total/NA	Analysis	8260B	DL	500	283035	04/09/15 13:58	PMF	TAL CHI

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Laboratory: TestAmerica Chicago

The certifications listed below are applicable to this report.
$\left[\frac{\text { Authority }}{\text { Wisconsin }} \frac{\text { Program }}{\text { State Program }} \frac{\text { EPA Region }}{5} \frac{\text { Certification ID }}{999580010} \frac{\text { Expiration Date }}{08-31-15}\right.$

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING 2417 Bond Street, University Park, II 60484 Phone: 708.5345200 Faw. 708.50484 Fax: 708.534.521

TestAmerica
THE LEADER IN ENVIRONMENTAL TESTING
2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.521

(optlonal)

Chain of Custody Record Laslow $500-93974$ Chain of Custody Number: Page 2 of 2 Temperature ${ }^{\circ} \mathrm{C}$ of Cooler: \qquad

Login Sample Receipt Checklist

Login Number: 93974
List Source: TestAmerica Chicago
List Number: 1
Creator: Kelsey, Shawn M

Question	Answer	Comment
Radioactivity wasn't checked or is </= background as measured by a survey meter.	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.2c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

ATTACHMENT B

Sampling Field Notes

SCS Engineers Personnel: S.S...
SCS Engineers Project: \#25211406.62
Sampling Date: $\quad 3 / 30 / 15$
Weather:
see Fred Book

Field Equipment: pH Meter:

All mewseremts
Conductivity Meter:

DO Meter:
Red-Ox Meter:

Site Name: QuicFrez SFR Site
Site Address: 105 Oak St., Fond du Lac, WI
SCS Engineers Personnel:
SCS Engineers Project: \#25211406.6
Sampling Date:
Weather:

Well No.	Sample Date	Depth to Water	Total Well Depth	Volume Purged (gal.)	Top of Well Elevation (msl ft.)	Groundwater Elevation (msl ft.)	Odor	Color	Turbidity	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Specific Conductivity ($\mu \mathrm{s} / \mathrm{cm}$)	Dissolved Oxygen (mg / L)	Red-Ox Potential (mV)	Field pH (s.u.)	Time Sampled
MW8	$3 / 30115$	8.21	17.6	-	758.29	750.08	-								
MW8A		18.30	32.7	-	758.04	739.74									\sim
MW8B		238.51	41.9	-	758.68	720.17									-
MW9		9.09	15.7	LF	759.78	750.69	Sump	c	N	7.73	854	7.78	-175.4	7.60	1235
MW10B		29.17	44.4	-	755.12	725.95									
MW11A		1818.75	32.8	-	757.35	738.60	\cdots								
MW11B		32.35	47.8	-	757.59	725.24									
MW12C		Dry	51.4	-	758.98	707.58									-
MW13R		5.90	16.2	E	756.26	750.36	s-up	C	N	6.19	731	1,79	-107.2	7.75	134
MW14		9.60	17.4	LF	759.70	750.10	$5 \mathrm{sm7}$	c	$5 \operatorname{losh}$	63×2	$\begin{array}{r} 1653 \\ 0.936 \\ \hline \end{array}$	2,120	$\begin{aligned} & -26.8 \\ & -108 . c \end{aligned}$	$\begin{aligned} & 8.28 \\ & 9.585 \end{aligned}$	140
MW14A		20990	31.7	-	759.73	736.83									
MW15		11.01	17.8	LF	761.30	750.29	Sunfl	C	N	8.67	1157	6.32	-226.6	7.86	1430
MW15A		20.35	31.8	-	760.77	740.42									\sim
MW16		9.40	15.4	$L F$	759.79	750.39	N	C	\sim	6.67	740	4.12	-174.0	7. 4.4	1300
MW16A	\downarrow	20.66	31.9	-	760.14	739.48									-
Trip Blank \#2															
murl Dup.	3/30/15	\angle		Sane	as	21								>	1325
Dup.															

Site Address: 105 Oak St., Fond du Lac, WI
SCS Engineers Personnel:
SCS Engineers Project: \#25211406.6
Sampling Date:
Weather:

ATTACHMENT C

CD with Electronic Copies of Tables and Maps

ATTACHMENT D

CDs (2) with Electronic Copy of Entire Report

[^0]: $=$ Detected below the Limit of Quantitation
 $=$ Detectea below the Limit of
 $=$ =Not Tested / Not Required

[^1]: Note: The following compound was detected in MW7B during the August 2009 sampling event: Benzyl Alcohol ($1.2 \mathrm{\mu g} / \mathrm{L}$)
 Note: As of the December 2010 ch. NR 140 Wisconsin Administrative Code, eff. 1-1-11, the enforcement standards (ESs) and preventive action limits (PALs) have changed for Toluene and Xylenes.

 Note: The following compound was detected in MW8 during the August 30,2011 sampling event: Chloromethane $(0.45 \mu \mathrm{~g} \mathrm{~L}, \mathrm{Jc})$

[^2]: Note: The following compound was detected in MW118 during the August 2009 sampling event: Benzyl Alcohol ($2.0 \mathrm{\mu g} / \mathrm{L}$).

[^3]: Note: As of the December 2010 ch. NR 140 Wisconsin Administrative Code, eff. $1-1-111$, the ee
 The previous standards were Toluene 1,000 ES $/ 200$ PLL; xylenes 10,000 ESS $1,000 \mathrm{PAL}$

[^4]: $t=$ Detected below the Limit of Quantitation
 $-=$ Not Tested / Not Reauired

[^5]: $-=$ Not Tested Not Required $\quad=$ No Standard
 A-01- - High concentration of non-target analyte pre

[^6]: This Detection Summary does not include radiochemical test results.

