

608-742-2169 (Office) 608-742-2592 (Fax) gec@generalengineering.net www.generalengineering.net

Engineers • Consultants • Inspectors

April 10, 2020

Ms. Janet DiMaggio Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Fitchburg, WI 53711

RE: REMEDIAL DOCUMENTATION REPORT Kreyer Country Store (Lutzen Property) 6858 US Highway 18 Mount Ida, Wisconsin BRRTs #: 03-22-152084 PECFA # 53809-9640-58-A

Dear Ms. DiMaggio:

General Engineering Company has completed this Remedial Documentation Report for the excavation activities performed at the former Kreyer Country Store (Lutzen Property) located at 6858 U.S. Highway 18 in the Town of Mount Ida, Wisconsin.

Please feel free to contact General Engineering Company with any questions.

Sincerely yours,

GENERAL ENGINEERING COMPANY

uas

Brian Youngwirth Project Manager

Beth A. Edman

Beth A. Erdman Project Manager

C:

Jeff and Gloria Lutzen (6858 Highway 18, Fennimore, Wisconsin 53809)

608-742-2169 (Office) 608-742-2592 (Fax) gec@generalengineering.net www.generalengineering.net

REMEDIAL DOCUMENTATION REPORT

For

KREYER COUNTRY STORE (LUTZEN PROPERTY)

Located at

6858 U.S. HIGHWAY 18 TOWM OF MOUNT IDA, WISCONSIN

April 10, 2020

Prepared by:

GENERAL ENGINEERING COMPANY

916 Silver Lake Drive Portage, WI 53901 GEC Project No.0710-190 (608) 742-2169 Client:

Jeff and Gloria Lutzen 6858 U.S. Highway 18 Fennimore, Wisconsin 53809

608-742-2169 (Office) 608-742-2592 (Fax) gec@generalengineering.net www.generalengineering.net

Page

TABLE OF CONTENTS

INTRODUCTION		1
General Purpose Scope Authorization		1_5
Site Features		04 - O
Background		
REMEDIAL EXCAVATION FIELD ACTIVITIES		5-6
 Remedial Excavation Field Activities Site Geology Volatile Vapor Emission Screening Soil Sample Collection Procedures 		
EVALUATION AND DISCUSSION		6
NR 720 Soil StandardsLaboratory Soil Results	8	
CONCLUSION		7
GENERAL COMMENTS		7

608-742-2169 (Office) 608-742-2592 (Fax) gec@generalengineering.net www.generalengineering.net

Engineers • Consultants • Inspectors

APPENDICES

APPENDIX A

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Soil Probe, Boring and Monitoring Well Location Map
- Figure 4 Limits of Remedial Excavation and Soil Sample Locations Map
- Figure 5 Potable Well Location Map

APPENDIX B

- Table 1 Soil Boring and Probe Analytical Results
- Table 2 Groundwater Analytical Results
- Table 3 Groundwater Elevation Results
- Table 4 Vapor Sampling Results
- Table 5 Remedial Excavation Soil Sampling Results

APPENDIX C

Remedial Excavation Soil Analytical Report & Chain of Custody

APPENDIX D

La Crosse County Landfill Soil Disposal Documentation

APPENDIX E

Soil Boring Abandonment Form

INTRODUCTION

General

This report presents the findings of the remedial excavation of petroleum contaminated soils from the former Kreyer Country Store (Lutzen Property), located at 6858 U.S. Highway 18 in the Town of Mount Ida, Grant County, Wisconsin (Site). The remedial activities and this report were prepared under the authorization of Jeff and Gloria Lutzen, the responsible party for the release and current owners of the property.

Purpose

This remedial excavation was conducted to excavate and properly dispose of petroleum contaminated soils previously identified near the location of a former petroleum tank system consisting of three underground storage tanks (USTs) and three associated dispensers.

<u>Scope</u>

The scope of remedial services included: performance of the remedial excavation of up to 700 tons of petroleum contaminated soils, field and laboratory testing of selected soil samples, and an analysis of the data obtained. The remedial activities were structured specifically to address the presence of petroleum contaminated soils identified during the site investigation activities, which are discussed within the background section of the report.

Authorization

This *"Remedial Documentation Report"* has been prepared on behalf of, and exclusively for the use of Jeff and Gloria Lutzen. The information contained in this *"Remedial Documentation Report"* may not be relied upon by any other parties without the written consent of General Engineering Company (GEC).

SITE FEATURES AND BACKGROUND

Site Features

The Site is located at 6858 U.S. Highway 18 in the Town of Mount Ida, Wisconsin. The Site is situated within the northwest ¼ of the northwest ¼ of Section 29, Township 06 North, Range 03 West, Grant County, Wisconsin. The Site is located within a rural residential area surrounded by primarily other residential properties, wooded and agricultural land. A Site Location Map is shown in Figure 1, Appendix A.

The Site is currently occupied by a residence and garage on the southwestern portion of the Site with a few other outbuildings located to the northeast. The northwestern portion of the house is underlain by a basement. The southeastern portion of the house is underlain by a crawl space. The southeastern portion of the house is also surrounded by a fenced in patio block walkway.

Two, 300-gallon capacity USTs containing unleaded gasoline and fuel oil and one, 500-gallon capacity UST containing unleaded gasoline were formerly located just southeast of the southeast corner of the residence. A dispenser island with three dispensers was located southwest of the former tanks to the southeast of the current residence. The surface of the site is covered primarily by grass with gravel drive areas along the southwestern portion of the Site. A Site Plan is shown on Figure 2, Appendix A.

The surrounding properties are comprised of residential properties to the west/northwest; agricultural or wooded land to the north; residential properties followed by dense wooded land to the east; and US Highway 18, followed by residential properties and agricultural land to the south, southeast, and southwest.

The Site is serviced by a shared potable well located near the property line of the adjoining property to the southeast at 6846 U.S. Highway 18. Four other potable wells have also been identified within 1,200 feet of the

Site. GEC is currently evaluating the presence of other potable wells within 1,200 feet of the Site. Known potable well locations are shown on Figure 5, Appendix A.

There does not appear to be the potential for impacts to threatened or endangered species; sensitive species, habitat, or ecosystems; wetlands; outstanding or exceptional resource waters; or sites of historical or archaeological significance. No immediate or interim actions have been taken, and none appear warranted at this time.

Background

According to Wisconsin Department of Agriculture, Trade, and Consumer Protection (DATCP) Storage Tank Database, two, 300 gallon single-wall, coated steel tanks, each containing unleaded gasoline and fuel oil, and one, 500 gallon single-wall, coated steel tank containing unleaded gasoline are registered as closed/removed on November 6, 1998. The tanks were owned at that time by Mr. Donald Kreyer and were utilized for resale. The business operated as the former Kreyer Country Store.

The Wisconsin Department of Natural Resources (WDNR) was reportedly notified of contamination on the property prior to removal of the tank system on June 16, 1997. A responsible party (RP) letter was sent on July 8, 1997. A Site Investigation Work Plan was prepared by others and approved on January 23, 1998. According to the WDNR BRRTS records, subsequent to the tank removal activities, no further action was taken until May 15, 2006, when a second RP letter was sent and push action was initiated. A deed affidavit for enforcement was filed by the WDNR on March 31, 2008, and an additional push action was taken on January 11, 2010. As a result, GEC was retained to perform a soil and groundwater investigation at the site on June 3, 2010.

The site investigation activities performed to date include the advancement of 7 soil probes, designated GP-1 to GP-7, the advancement of 11 soil borings (B-1 to B-11), which with the exception of B-7, were converted to monitoring wells MW-1L to MW-9L and MW-8AL. Soil samples were submitted for laboratory analysis from selected probes/borings and depths for the presence of petroleum volatile organic compounds (PVOCs) and naphthalene. To date, one to fourteen rounds of groundwater samples were collected from the site monitoring wells (MW-1L to MW-9L, MW-8AL) and available potable wells within 1,200 feet of the Site (PW-1, Klar PW, Speaker PW, Freymiller PW, and Jeidy PW) and submitted for laboratory analysis for the presence of volatile organic compounds (VOCs)/PVOCs, naphthalene, and/or 1,2 DCA and lead. An ambient air sample (Ambient 1) was collected from the crawl space beneath the house along the southeast side of the house nearest the former tank system. The sample was submitted for laboratory analysis of VOCs.

The soil probes were advanced by Kitson Environmental of Hellenville, Wisconsin under the direction of GEC. Soil samples were collected continuously with a truck-mounted or all-terrain geoprobe units by driving a 5-foot plastic sleeve within a metal sampler into undisturbed soils. The soil borings and monitoring wells were advanced by Ground Source of Green Bay, Wisconsin or Badger State Drilling of Stoughton, Wisconsin under the direction of GEC. The borings were advance utilizing truck-mounted drilling rig and soil samples were collected at selected intervals and locations utilizing a steel split spoon sampler, which was advanced ahead of the augers into undisturbed soils. Air rotary drilling techniques were utilized to advance the borings beyond the refusal depths at all of test locations with the exception of B-7 and B-8/MW-7.

Soil probes GP-1 to GP-7 were advanced on September 22, 2010, in the vicinity of the former USTs and dispensers. The probes were utilized to define the extent of soil contamination. The locations of the soil probes are shown on Figure 3, Appendix A.

Soil boring B-1 was advanced on June 12, 2011, between the area of the former USTs and dispensers and converted to monitoring well MW-1L. Three additional monitoring wells were installed on September 8, 2011, including two on the Site near the U.S. Highway 18 right-of-way (ROW) (B-2/MW-2L) and one on the northeastern portion of the property (B-4/MW-4L) and one off-site on the southeastern portion of the property located at 6868 U.S. Highway 18 (B-3/MW-3L). An additional monitoring well (B-5/MW-5L) was advanced on the site beyond MW-4L on June 29, 2016. Subsequent to the remedial excavation, monitoring well B-6/MW-6L was advanced

near the northwestern property line of the Site between January 15 and 20, 2020. The week of March 10 to 16, 2020, subsequent to the remedial excavation activities, a soil boring (B-7) and a monitoring well (B-8/MW-7) were advanced between the area of the house on garage on the Site and three off-site monitoring wells (B-9/MW-8. B-10/MW-9, and B-11/MW-8A) were advanced on the property to the northwest located at 6868 U.S. Highway 18. At B-7, a sanitary gray water line was struck during the drilling and the boring was abandoned. An abandonment form is included in Appendix E.

Refusal was encountered at the probes at depths ranging from 13 feet (GP-1 to GP-3) to 20 feet (GP-7) below ground surface (bgs). Refusal was encountered at the borings at depths ranging from 8 feet bgs (MW-4L) to 28 feet bgs (MW7L). Auger refusal was encountered on sandstone and limestone/dolomite bedrock. The borings were advanced into bedrock utilizing air rotary drilling techniques (with the exception of B-7 and B-8/MW-7) to depths ranging from 35 feet bgs (MW-9) to 75 feet bgs (MW-8). As exceptions, during the air rotary drilling, clay layers were encountered between rock layers at MW-8A (28 feet to 35 feet bgs) and MW-9 (19 feet to 28 feet bgs). The monitoring wells were installed to depths ranging from 28 feet bgs (MW-7L) to 75 feet bgs (MW-8L). The monitoring wells were utilized to define the relative extent of the groundwater contamination. The locations of the soil borings and monitoring wells are shown on Figure 3, Appendix A.

The soil samples collected from soil probes GP-2, GP-3, and GP-5 reported concentrations of PVOCs and naphthalene exceeding their respective Wisconsin Administrative Code (WAC) NR 720 soil to groundwater, cancer (C) residual contaminant levels (RCLs), and/or direct contact standards. The highest concentrations were reported in the soil samples collected from GP-2 and GP-3 in the immediate vicinity of the former tanks and dispensers. Those soil samples reported maximum concentrations of benzene (4,630 micrograms per kilogram (μ g/kg)), ethylbenzene (3,310 μ g/kg), naphthalene (24,000 μ g/kg), toluene (6,010 μ g/kg), 1,2,4 trimethylbenzene (21,600 μ g/kg), 1,3,5 trimethylbenzene (9,300 μ g/kg), and xylenes (15,080 μ g/kg). The sample collected from GP-3 within the direct contact zone (upper 4 feet) contained naphthalene at a concentration of 24,000 μ g/kg, which exceeds its WAC NR 720 direct contact RCL of 5,520 μ g/kg), naphthalene (700 μ g/kg), and trimethylbenzenes (6,900 μ g/kg), which exceed their respective NR 720 soil to groundwater RCLs. The samples collected at the remaining probe or boring locations either did not contain petroleum compounds or did not contain them at levels exceeding their respective adjusted reporting limit or WAC NR 720 RCL standards. The results of the chemical analyses on the soil samples are summarized on Table 1, Appendix B.

One to fourteen rounds of groundwater sampling were performed at the site monitoring wells between July 5, 2011, and March 24, 2020. The groundwater samples collected from on-site monitoring wells MW-4L, MW-6L, and MW-7L have reported concentrations of PVOCs or naphthalene exceeding the WAC NR 140 enforcement standard (ES) during all the sampling rounds performed at those wells. The highest concentrations were detected at MW-7L, just northeast of the former tanks and excavation area, which reported concentration of benzene (2,030 micrograms per liter (μ g/L), ethylbenzene (1,670 μ g/L), 1,2,4 trimethylbenzene (2,280 μ g/L), 1,3,5 trimethylbenzene (620 μ g/L), xylenes (6,640 μ g/L), and naphthalene (450 μ g/L). It should be noted that during the March 24, 2020, sampling round, possible free product was observed at monitoring well MW-6 after the removal of approximately 5 gallons of water from the monitoring well. The groundwater samples collected from MW-6 during the three sampling rounds performed have only reported benzene, ethylbenzene, 1,2,4 trimethylbenzene, xylenes, and naphthalene at concentrations exceeding the NR 140 ES with maximum concentrations of 360 μ g/L, 1,420 μ g/L, 1,630 μ g/L, 5,290 μ g/L, and 380J μ g/L, respectively. It is possible that if the screened interval intersected the water table that higher concentrations would be observed.

The groundwater samples collected from monitoring well MW-1 during the initial two sampling rounds (July 5, 2011 and November 22, 2011) reported concentrations of benzene exceeding the WAC NR 140 ES but have not reported concentrations of PVOCs or naphthalene in the twelve other sampling rounds performed since 2012. The groundwater samples collected from monitoring well MW-8 reported concentrations of benzene exceeding the WAC NR 140 preventive action limit (PAL). The groundwater samples collected from monitoring wells MW-2, MW-3, MW-5, MW-8A, and MW-9 have not reported concentrations of PVOCs or naphthalene exceeding the laboratory detection limits.

A shallow perched water table is present on the Site that typically occurs at depths of less than 25 feet bgs around elevations (EL. 1195 to 1200). There is also a deeper, possible regional water table that appears to be present on the Site at depths ranging from 40 feet to below 70 feet bgs (below EL. 1170), depending on the surface elevation. Groundwater contamination appears to extend from the area of the former tanks/dispensers in the direction of groundwater flow toward the northwest/northeast/east and onto the off-site property located at 6868 U.S. Highway 18 within the shallow perched water table (see MW-6 and MW-7). The deeper water table appears to be substantially less impacted (see MW-1, MW-2, MW-3, MW-5 and MW-8) with the exception of MW-4. It should be noted that an additional leaking underground storage tank case (LUST) case is on-going at the Speaker Property, southeast of the site, at 6832 U.S. Highway 18 and the dynamics of the groundwater plumes and whether the releases are co-mingled is still being evaluated. The results of the groundwater analyses are summarized in Table 2 in Appendix B.

With regard to the potable well sampling, the shared potable well associated with the Site was sampled at the Lutzen residence (PW-1) on June 28, 2011, and June 7, 2018, and the Klar residence (Klar PW) potable well was also sampled on June 7, 2018. The samples did not report detectable concentrations of VOCs.

The other known potable wells within 1,200 feet of the Site are shared wells and are identified below along with what properties share the well. The locations accesses for sampling of each well are also identified below and include Jeidy PW, Freymiller PW, and 6770 PW. An evaluation of other potable wells within 1,200 feet of the site and how each of the wells are shared is on-going.

Well Location – 6832 U.S. Highway 18 – 300 feet southeast of the Site (Speaker PW). The Speaker potable well was recently re-drilled because it was reportedly dry. GEC was not aware the potable well was being re-installed. The well was re-drilled in the location of the previous potable well (southeast of the residence) to a depth of 500 feet on March 11, 2019. The well is cased to a depth of 304 feet. This well will be sampled in the future. The original Speaker PW was sampled on January 14, 2010, prior to the performance of any site investigation activities. The sample did not contain detectable concentrations of PVOCs or naphthalene.

- Well Location 6875 U.S. Highway 18 275 feet northwest of the Site, across U.S. Highway 18 Shared – 6861 U.S. Highway 18 (Jeidy PW) Shared – 6868 U.S. Highway 18 Shared – 6880 U.S. Highway 18
- Well Location 6827 U.S. Highway 18 525 feet southeast, across U.S. Highway 18
 Shared 6819 U.S. Highway 18
 Shared 6807 U.S. Highway 18 (Freymiller PW)
- Well Location 6770 U.S. Highway 18 1000 feet southeast of the Site (6770 PW) Shared – 6726 U.S. Highway 18

Possibly Shared - 6804 and 6792 U.S. Highway 18, currently being evaluated

Groundwater samples were collected from the Freymiller PW and Jeidy PW on December 4, 2019. A groundwater sample was collected from PW 6770 on March 12, 2020. None of the samples reported detectable concentrations of PVOCs, naphthalene, or 1,2 DCA. Potable well results are summarized on Table 2, Appendix B.

An ambient vapor sample (Ambient 1) was collected from the crawl space along the southeastern portion of the residence on January 30, 2019. The sample did not contain VOCs at concentrations exceeding their respective standards. Vapor analytical results are summarized in Table 4 in Appendix B.

As a result of the petroleum contaminants detected within the soil samples collected in the area of the former tanks and dispensers, the remedial activities discussed herein were subsequently performed.

REMEDIAL EXCAVATION FIELD ACTIVITIES

Remedial Excavation Field Activities

On November 19 and 20, 2019, GEC oversaw the excavation of 531.68 tons petroleum contaminated soils. Excavation activities were performed by Wiederholt Enterprises, LLC of Cuba City, Wisconsin. Contaminated soils were transported to La Crosse County Landfill in La Crosse, Wisconsin for proper disposal. Waste disposal documentation is included in Appendix D. Soil samples were periodically field screened, utilizing a photoionization detector (PID). The limits of the remedial soil excavation are shown on Figure 4, Appendix A.

The excavation activities were performed in the area of the three USTs and dispensers. The northwestern limits of the excavation were impeded by the residence. The northeastern limits of the excavation were impeded by the garage. The excavation was "L" shaped and extended approximately 40 feet northeast/southwest and 40 feet northwest and southeast. Obvious contaminated soils remained at the horizontal limits of the northwestern end of the excavation along the southeast end of the residence and near the southeastern corner of the garage near the bottom of the excavation at the maximum depth of the excavation at a depth of 17 feet bgs. The depth of the excavation extended to depths of approximately 10 feet to 17 feet bgs. A large slab of dolomite was encountered within the southeast central portion of the excavation. Monitoring well MW-1 was damaged during the excavation activities when the northwestern sidewall of the excavation unexpectedly collapsed into the excavation and the well was broken near the bottom of the excavation and could not be safely repaired or abandoned properly. Upon completion, the excavation was backfilled with compacted granular backfill.

Fifteen soil samples were collected from the sidewalls and bottom of the excavation, which were submitted for laboratory analysis for the presence of PVOCs, naphthalene, and/or lead. With regard to the soil samples submitted for laboratory analysis, six soil samples were collected from the sidewalls of the excavation at depths of 4 feet bgs (W-1 to W-6); eight soil samples were collected from near the sidewalls and/or bottom of the excavation at depths of 10 to 17 feet bgs (S-1 to S-8); and one soil sample was collected from the bottom of the excavation at a depth of 17 feet bgs (SB-1).

Site Geology

During the soil probing activities performed in the area of the former tanks and dispensers, the surface of the site consisted of sand and gravel fill. The near surface fill was underlain by variable soils consisting brown and reddish brown clayey silt and sandy silt and reddish brown silty clay with varying amounts of gravel to the refusal depths of the probes at depths ranging from 13 feet to 20 feet bgs. During the excavation activities similar soils were encountered to the maximum depths of the excavation at 10 feet to 17 feet bgs. A large slab of dolomite was observed surrounded by silty clay soils within the southeast central portion of the excavation. Groundwater was not encountered during the excavation activities. Water level data from the on-site monitoring wells is summarized on Table 3, Appendix B.

Volatile Vapor Emission Screening

Soil samples collected from the limits of the remedial excavation were screened for volatile organic vapor emissions with a PID. The soil samples were placed in a plastic bag and permitted to equilibrate to at least 70 degrees Fahrenheit for a period of at least 15 minutes, based upon the ambient outdoor temperature. The screening was then performed by inserting the probe in the bag and measuring the headspace. The PID is an electronic instrument that measures the relative concentration of volatile organic vapor emissions in the headspace of a container. The response of the instrument is dependent upon volatility, temperature, and the ionization potential of the compounds measured. The meter serves as one tool in selecting samples for analytical testing, as it only gives a relative indication of the presence of volatile organic vapor emission but cannot quantify concentrations of individual compounds. The soil samples collected from the limits of the excavation contained PID readings ranging from 0 to 2561 instrument units (IU) with the higher reading being observed along the bottom of the excavation near SB-1.

Soil Sample Collection Procedures

The soil samples for chemical analyses were selected from the excavation limits based upon location, depth, geology, the depth to groundwater, the direct contact zone, and PID results. Selected samples obtained from the excavation were submitted for laboratory analysis of PVOCs, naphthalene, and/or lead.

The soil samples submitted for laboratory analysis for the presence of PVOC and naphthalene were extracted from the soils utilizing a sterile syringe and approximately 10 to 15 grams of soil were transferred into laboratory prepared jar containing approximately 10 milliliters of methanol. The samples collected for laboratory analysis of lead were placed into a laboratory prepared 4 ounce plastic cup until no headspace remained within the container. The samples were placed on ice, and chain of custody procedures were initiated. The samples were then submitted to Synergy Environmental Laboratory in Appleton, Wisconsin, for laboratory analysis.

EVALUATION AND DISCUSSION

NR 720 Soil Standards

Chapter 720 of the WAC NR700 series code established RCLs for soils intended to be protective of the direct contact (upper 4 feet of soil defined by human exposure to substances in soil through inhalation of particulate matter, dermal absorption, incidental ingestion, or inhalation of vapors from the soil) and soil-to-groundwater pathways. The direct contact levels are dependent on the planned use and zoning of the affected property. Although these individual RCLs have been established for a wide range of compounds, the WDNR requires that the cumulative effects of detected compounds be evaluated through use of a WDNR interactive table where individual concentrations can be entered to evaluate whether the target cancer risk has been exceeded. The individual RCLs provided by the WDNR were developed using standard default exposure assumptions. As an alternative, site specific calculations can be performed utilizing the U.S. Environmental Protection Agency (EPA) Regional Screening Level Web Calculator.

Laboratory Soil Results

The soil samples collected from S-1, S-5, and SB-1 reported relatively low concentrations of benzene ranging from 36J µg/kg to 470 µg/kg exceeding its WAC NR 720 soil to groundwater RCL of 5.1 µg/kg. The samples collected at the remaining locations either did not contain detectable concentrations of PVOCs or naphthalene or did not report them at concentrations exceeding their respective standards. None of the soil samples collected from the upper four feet of soil contained PVOCs or naphthalene exceeding their respective WAC NR 720 direct contact standards.

With regard to the lead testing within soil, lead was detected at variable concentrations ranging from 12.8 milligrams per kilogram (mg/kg) to 269 mg/kg within the remedial excavation confirmation samples. The highest concentrations were detected at S-2, S-3, S-5, S-7, and SB-1 which reported lead concentrations of 72.5 mg/kg, 52.2 mg/kg, 124 mg/kg, 269 mg/kg, and 52.1 mg/kg, respectively exceeding its NR 720 soil to groundwater RCL of 27 mg/kg or background threshold level of 52 mg/kg. However, the highest concentrations of lead were generally detected within the soil samples that reported relatively low or non-detectable concentrations of PVOCs and naphthalene. It appears unlikely that the lead concentrations are attributable to the release are indicative of locally high background concentrations.

Soil analytical results for samples collected during the remedial excavation are included in Table 5 in Appendix B and a copy of the analytical results and chain of custody are included in Appendix C. The locations of the remedial excavation soil samples are shown on Figure 4, Appendix A.

CONCLUSIONS

During the remedial excavation, 531.68 tons of petroleum contaminated soils were removed from the site and properly disposed. Residual contaminated soils appeared to remain along the northwestern and northeastern ends of the excavation at S-1 and S-5 and at the bottom of the excavation near SB-1. Relatively low concentrations of petroleum contamination were detected at S-1, S-5, and SB-1 including benzene concentrations of 36J μ g/kg, 100 μ g/kg, and 470 μ g/kg, respectively. The excavation was impeded by the fenced patio block walk area along the house on the northwest end of the excavation and the garage on the northeast end of the excavation near S-1 and S-5. The excavation could not be extended beyond a depth of 17 feet near SB-1 due to the reach of the equipment and the potential risk of cave in and damage to buildings.

Petroleum contaminated soils have been removed and properly disposed to the maximum extent possible given the structures in the area of the contamination. However, based on the groundwater contamination at monitoring wells MW-6 and MW-7, it appears that contaminated groundwater (and possibly soil) is present beneath the garage and house. Although the garage does not appear to be of concern, it is recommended that additional ambient air samples be collected from within the crawl space and basement of the residence.

Based on the prior site investigation activities, it appears that the extent of soil and groundwater contamination has been adequately defined. In addition, none of the sampled potable wells appears to have been impacted by the release. Therefore, it is recommended that a Site Investigation Report be prepared. Due to the potential presence of free product at monitoring well MW-6 and that groundwater is currently present at an elevation that is approximately 5 feet above the screened interval at that location, it is recommended that an additional shallow monitoring well be installed within a few feet of MW-6 to a depth of approximately 35 feet bgs. The monitoring well would be utilized to evaluate whether a more substantial thickness of free product is present within the well and whether other remedial alternatives are necessary. If groundwater is present within the new shallower well, it is recommended that MW-6 be abandoned.

It is also recommended that the remaining potable wells within 1,200 feet of the site (if any) be sampled. It is recommended that quarterly (or an accelerated sampling schedule due to the PECFA sunset date, if approved by the WDNR) be performed to evaluate the effectiveness of the remedial excavation, and further evaluate the contaminant concentrations, plume stability, and whether this release is co-mingled with the Speaker case. If the contaminant concentrations appear stable and/or decreasing within the source area monitoring well (MW-7L) and other impacted down-gradient monitoring wells (MW-4L and MW-6L), it is recommended that a closure request be prepared, subject to the review and concurrence of the WDNR.

GENERAL COMMENTS

The investigative and remediation activities have been conducted in a manner consistent with that level of care ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions. The findings, recommendations and opinions contained herein have been promulgated in accordance with generally accepted practice in similar fields. No other representations expressed or implied, and no warranty or guarantee is included or intended in this report.

The conclusions presented in this report were formulated from the data obtained during the course of exploratory work on the site, which may result in a redirection of conclusions and interpretations where new information is obtained. The regulatory climate and interpretation may also have an effect on the outcome of the environmental investigation for this site. The information contained in this report may have an effect on the value of the property and is considered confidential. Copies of this report will be submitted to others only with authorization from the client.

APPENDIX A FIGURES

APPENDIX B

1

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS (SOIL PROBES AND BORINGS) KREYER COUNTRY STORE (LUTZEN PROPERTY) GEC PROJECT NO. 0710-190

Sample No.		NID 700	ND 700		GP-1	GP-2	GP-2	GP-3	GP-3	GP-4	GP-5	GP-5	GP-6	GP-7	B-2/MW-2	B-3/MW-3	B-4/MW-4	B-8/MW-7
Sampling Date	Cancer RCL	Direct	Cancer	NR 720 Soil to	09/22/10	09/22/10	09/22/10	09/22/10	09/22/10	09/22/10	09/22/10	09/22/10	09/22/10	09/22/10	09/08/11	09/08/11	09/08/11	09/08/11
Sample Depth (feet)	Non-	Contact	RCL Non-	Groundwater RCI	12-13'	3-4	10-12	3-4	11-12	15-16	2-4	13-14	15-16	18-19	7.5-9'	7-9'	5-7'	17-18
Saturated (S)/Unsaturated (U)	Industrial	RCL	Industrial	NOL	U	U	U	U	U	U	U	U	U	U	U	U	U	S
PETROLEUM VOLATILE ORO	GANIC COMP	POUNDS (F	PVOC) (µg/k	(g)	La relieu	100		214,84		UT AL	100			5 29571	-		33	
Benzene	106,000	1,600	1,600	5.1	<25	59.9J	4,630	341J	1,380	<25	36.9J	<62.5	<25	<25	<25.0	<25.0	<25.0	800
Ethylbenzene	4,080,000	8,020	8,020	1,570	<25	225	3,310	2,250	459	<25	<25	1,490	<25	<25	<25.0	<25.0	<25.0	210
Methyl tert-butyl ether	22,100,000	63,800	63,800	27	<25	<25	<25	<250	160J	<25	<25	<62.5	<25	<25	<25.0	<25.0	<25.0	<25.0
Naphthalnene	178,000	5,520	5,520	658	<25	394	1,150	24,000	13,900	<25	<25	5,190	<25	<25	<25.0	<25.0	<25.0	700
Toluene	5,240,000	NE	818,000	1,107	<25	81.9	6,010	507J	<100	<25	31.2J	342	<25	<25	<25.0	<25.0	<25.0	150
1,2,4-Trimethylbenzene	373,000	NE	219,000	1 393	<25	1,740	5,680	21,600	2,540	<25	<25	4,850	<25	<25	<25.0	<25.0	<25.0	4,600
1,3,5-Trimethylbenzene	339,000	NE	182,000	1,362	<25	751	1,880	9,300	5,430	<25	<25	6,060	<25	<25	<25.0	<25.0	<25.0	2,300
Xylenes, -m, -p Xylenes, -o	- 818,000	NE	260,000	3,960	<75	1,545	15,080	11,860	1,924J	<75	<75	5,490	<75	<75	<75.0	<75.0	<75.0	1,270

mg/kg = milligrams per kilogram

µg/kg = micrograms per kilogram

RCL = Residual Contaminant Level

SSL = Soil Screening Level

DCL = Direct Contact Level

NA = Parameter not analyzed NE = NR 720 RCL not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation.

Bold indicates analytical results exceed NR 720 RCL

Monitoring Well	NR	140								MW-1							
Sampling Date	ES	PAL	7/5/2011	11/22/2011	6/21/2012	6/4/2013	7/14/2014	2/11/2016	6/30/2016	10/17/2016	1/18/2017	8/17/2017	1/30/2018	6/7/2018	12/5/2018	3/27/2019	12/4/2019
VOLATILE ORGANIC C	OMEOUNI	DS (VOC) (µg/L)					N.S.	Accession of the		3 15-11-	1.2.0.00		1		a sala	
Benzene	5	0.5	17.8	13.6	3.8	2,3	<0.24	<0.44	<0.44	<0.46	<0.17	<0,17	<0.22	<0.22	<0.22	<0.22	Well
Ethylbenzene	700	140	2.2	6,7	0,43J	2,2	<0,55	<0.71	<0,71	<0.73	<0.2	<0.2	<0.53	<0.53	<0.53	<0,26	Damaged
Methyl tert-butyl ether	60	12	<0,61	<0.38	<0,38	<0,37	<0.23	<1.1	<1.1	<0.49	<0.82	<0.82	<0.57	<0.57	<0.57	<0.28	During
Toluene	800	160	7	2.5	1.2	<0.58J	<0,69	<0.44	<0.44	<0.39	<0.67	<0.67	<0.45	<0.45	<0.45	<0,19	Remedial
1,2,4 -Trimethylbenzene	480	96	1.1	1	<0.43	<0.33	<2.2	<1.6	<1.6	<0.68	<1.14	<1.14	<0.73	<0.73	<0.73	<0,8	Excavation
1,3,5 -Trimethylbenzene	400	50	7.8	1.3	<0.40	<0,36	<1.4	<1,5	<1,5	<0_83	<0.91	<0.91	<0.75	<0.75	<0.75	<0,63	
Xylenes, -m, -p	2000	400	34.8	12	2.011	1.491	<1.32	(31	<3.1	<2.06	<1.05	<1.05	<1.59	<1 59	<1.59	<0.72	
Xylenes, -o	2000	400	54,0	14	2,815	1,455	\$1,52	43,1	~ J _1	~2,00	<1,55	~1,95	<1 _* 30	-1.50	\$1,50	C0.72	
OTHER VOLATILE ORG	SANIC COL	MPOUNDS	(VOC) (µg/)	Constant of		ALC: NO	10 m						1212-1-22			
1,2-Dichloroethane	5	0.5	1,5	NA	NA	NA	NA	<0.48	<0.48	NA	<0.45	<0.45	NA	NA	NA	NA	
Naphthalene	100	10	<0.89	<0.40	<0.40	<0.37	<1,7	<1.6	<1.6	<2.6	<2.17	<2,17	NA	NA	NA	NA	1
LEAD (µg/L)			and the second	Constraint of the	and the second s	25415		1941	THE PART							and the second	1000
Lead	15	1.5	1.6J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

ES = Enforcement Standard

PAL = Preventive Action Limit

µg/L = micrograms per liter

 $\overline{\mathbf{x}}$

NA = Parameter not analyzed

NE = NR 140 ES not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation.

Monitoring Well	NR	140							MW	1-2						
Sampling Date	ES	PAL	6/21/2012	6/4/2013	7/14/2014	2/11/2016	6/30/2016	10/17/2016	1/18/2017	8/17/2017	1/30/2018	6/7/2018	12/5/2018	3/27/2019	12/4/2019	3/24/2020
VOLATILE ORGANIC CO	OMPOUND	os (voc) (µg/L)	A mine	1 Martin Contraction	a la de	1/2 - All	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			and the second		2	1.22	ALCONT.	
Benzene	5	0.5	<0,39	<0.34	<0.24	<0.44	<0.44	<0.46	<0.17	<0.17	<0.22	<0.22	<0.22	<0.22	<0.32	<0.48
Ethylbenzene	700	140	<0.41	<0.34	<0.55	<0.71	<0.71	<0_73	<0.2	<0.2	<0.53	<0.26	<0.53	<0.26	<0.29	<0.55
Methyl tert-butyl ether	60	12	<0.38	<0,37	<0.23	<1.1	<1.1	<0.49	<0.82	<0.82	<0.57	<0.28	<0.57	<0.28	<0.24	<0.71
Toluene	800	160	<0.42	<0.34	<0.69	<0.44	<0.44	<0.39	<0.67	<0.67	<0.45	<0.19	<0.45	<0,19	<0.29	<0.62
1,2,4 -Trimethylbenzene	480	96	<0.43	<0.33	<2.2	<1.6	<1.6	<0.68	<1.14	<1.14	<0.73	<0.8	<0.73	<0.8	<0.46	<0.71
1,3,5 -Trimethylbenzene	400	50	<0.40	<0.36	<1.4	<1.5	<1.5	<0.83	<0.91	<0,91	<0.75	<0,63	<0.75	<0.63	<0.67	<0.66
Xylenes, -m, -p	2000	400	c1 25	<1.03	<1 32	-21	(31	c2.06	<1.05	<1.95	<1.59	<0.72	<1.69	<0.72	c1 22	<2.04
Xylenes, -o	2000	400	\$1.25	1.03	<1.0Z	5.1	43 ,1	~2,00	<1.50	~1,95	\$1,50	50,72	~1.50	-0.72	\$1,22	~2.04
OTHER VOLATILE ORG	ANIC CON	NPOUNDS	(VOC) (µg/L)				a summer and a				and the second second	The last	The state		(Law and	
1,2-Dichloroethane	5	0.5	NA	NA	NA	<0.48	<0.48	NA	<0.45	<0.45	NA	NA	NA	NA	NA	NA
Naphthalene	100	10	<0.40	<0.37	<1.7	<1.6	<1,6	<2.6	<2.17	<2.17	NA	NA	NA	NA	NA	NA
LEAD (µg/L)	217-1		367 313					AC LONGE		the second	AV I'M T		Contraction of the second			
Lead	15	1.5	NA	NA	NA -	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

ES = Enforcement Standard

PAL = Preventive Action Limit

µg/L = micrograms per liter

NA = Parameter not analyzed

NE = NR 140 ES not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation.

Monitoring Well	NR	140							MW-3						
Sampling Date	ES	PAL	6/21/2012	7/14/2014	2/11/2016	6/30/2016	10/17/2016	1/18/2017	8/17/2017	1/30/2018	6/7/2018	12/5/2018	3/27/2019	12/4/2019	3/24/2020
VOLATILE ORGANIC C	OMPOUND	DS (VOC) (µg/L)	and the second			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and the second		T. S. T.		Sector Sector	ALC: NO	E alteria	a sail and
Benzene	5	0.5	<0,39	<0.24	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
Ethylbenzene	700	140	<0.41	<0.55	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
Methyl tert-butyl ether	60	12	<0.38	<0.23	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
Toluene	800	160	<0.42	<0,69	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
1,2,4 -Trimethylbenzene	480	96	<0.43	<2.2	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
1,3,5 -Trimethylbenzene	400	50	<0.40	<1.4	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
Xylenes, -m, -p	2000	400	<1.25	<1 32	DPV	DPV	DPV	DPV	DPV	DPV	DBY	DRV	DBY	NBA	DRY
Xylenes, -o	2000	400	\$1,20	\$1.52	DICI	DIKI	DRI	DICT	DICI	DIKT	DICI	DRI	DRI	DINT	DKI
OTHER VOLATILE ORG	ANIC COM	MPOUNDS	(VOC) (µg/L))	A CAT						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-	A STATE OF	E Papel	And and and
1,2-Dichloroethane	5	0.5	NA	NA	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
Naphthalene	100	10	<0_40	<1.7	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
LEAD (µg/L)		THES.						State of the second	Part and	1		a Daralta		a Completion	Ter Colis
Lead	15	1,5	NA	NA	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY

ES = Enforcement Standard

PAL = Preventive Action Limit

µg/L = micrograms per liter

NA = Parameter not analyzed

NE = NR 140 ES not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation.

Monitoring Well	NR	140								MW-4							
Sampling Date	ES	PAL	11/22/2011	6/21/2012	6/4/2013	7/14/2014	2/11/2016	6/30/2016	10/17/2016	1/18/2017	8/17/2017	1/30/2018	6/7/2018	12/5/2018	3/27/2019	12/4/2019	3/24/2020
VOLATILE ORGANIC CO	OMPOUND	os (voc) (µg/L)				1 - F2				A state	Star and		1	and the second		
Benzene	5	0.5	96	211	104	29,2	46	111	70	170	141	63	119	85	106	18.9	79
Ethylbenzene	700	140	21,9	136	77	19.2	33	67	17.2	73	107	27,1	107	55	60	4.9	42
Methyl tert-butyl ether	60	12	<0.61	4.3	3.4	<0.23	<1,1	<1.1	<0.49	<0.82	<0.82	<0.28	<0.28	<0.28	<0.28	<0.24	<0.71
Toluene	800	160	15.9	6.8	11.3	1.93J	5.1	9.3	3.2	10.6	13,2	6.5	16	1.68	2,89	1.26	7.4
1,2,4 -Trimethylbenzene	490	96	10.3	71.7	64.4	7,5	28.7	48	17,3	101	117	46	69	57	41	3.7	20,9
1,3,5 -Trimethylbenzene	400	50	7.7	24.4	1.3	<1.4	2.29J	1.89J	<0.83	1,03J	<0,91	1.01J	<0,63	0.95J	<0.63	<0.67	<0.66
Xylenes, -m, -p	2000	400	38.4	70.4	46.4	<6.43	31 14	37.1	15.28	60.4	83.2	38.4	47	42.1	<39.8	7 52	39.7
Xylenes, -o	2000	400	00,4	10,4	10.1	-0.40	01-14	57.1	13 20	00.4	0012	50,4		42,1	-03.0	7.52	55.1
ON FRION OF AN MEORG	ANIC COL	MPOUNDS	(VOC) (µg/L)	1000								5 710	1. 2. C	100 C	111 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1,2-Dichloroethane	5	0.5	3.5	NA	NA	NA	<0.48	<0,48	NA	1.63	0.82J	1.07	1.07	3.3	3,3	NS	NS
Naphthalene	100	10	2.6J	28	1.8	<1.7	2.3J	3.3J	<2.6	5.6J	16.7	10.2	3.2J	24	<2.1	NS	NS
LEAD (µg/L)	1000	The second second	States and	1114-	-	NAME TO	AND ADD	1999 - 18 B				TTO SA				1940 - 19 M	
Lead	15	1.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

ES = Enforcement Standard

PAL = Preventive Action Limit

µg/L = micrograms per liter

NA = Parameter not analyzed

NE = NR 140 ES not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation.

Monitoring Well	NR	140					M	N-5					· · · · · · · · · · · · · · · · · · ·	MW-6		MW-7	MW-8	MW-8A	MW-9
Sampling Date	ES	PAL	6/30/2016	10/17/2016	1/18/2017	8/17/2017	1/30/2018	6/7/2018	12/5/2018	3/27/2019	12/4/2019	3/24/2020	1/20/2020	2/3/2020	2/3/2020	3/24/2020	3/24/2020	3/24/2020	3/24/2020
VOLATILE ORGANIC C	OMPOUND	SALOOH	(µg/L)	1.9		1. S.		(Sec. 57)		DETUSIES OF									
Benzene	5	0.5	<0.44	<0.46	<0.17	DRY	DRY	DRY	DRY	DRY	<0.32	DRY	264	360	150	2,030	0.99J	<0.48	<0.48
Ethylbenzene	700	140	<0.71	<0.73	<0.2	DRY	DRY	DRY	DRY	DRY	<0.29	DRY	1,420	209	590	1,670	0.56J	<0.55	<0.55
Methyl tert-butyl ether	60	12	<1.1	<0.49	<0.82	DRY	DRY	DRY	DRY	DRY	<0.24	DRY	<28	<35.5	<23.5	<47	<0.71	<0.71	<0.71
Toluene	800	160	<0.44	<0.39	<0.67	DRY	DRY	DRY	DRY	DRY	<0.29	DRY	330	160	153	650	0.72J	<0.62	<0.62
1,2,4 -Trimethylbenzene	480	96	<16	<0.68	<1.14	DRY	DRY	DRY	DRY	DRY	<0.46	DRY	2,630	340	1,630	2,280	0.86J	<0.71	<0.71
1,3,5 -Trimethylbenzene	400		<1.5	<0.83	<0.91	DRY	DRY	DRY	DRY	DRY	<0.67	DRY	770	121	450	630	<0.66	<0.66	<0.66
Xylenes, -m, -p Xylenes, -o	2000	400	<3,1	<2.06	<1,95	DRY	DRY	DRY	DRY	DRY	<1,22	DRY	5,290	1,190	2,320	6,640	0.93J	<2.04	<2.04
OTHER VOLATILE ORG	ANIC CO	MPOUNDS	(VOC) (µg/	L)	1111	THE P	1 10 X								1 10 10				
1,2-Dichloroethane	5	0.5	<0.48	NA	<0.45	DRY	DRY	DRY	DRY	DRY	DRY	DRY	NA	NA	<19.5	<39	NA	NA	NA
Naphthalene	100	10	<1.6	<26	<2.17	DRY	DRY	DRY	DRY	DRY	DRY	DRY	380J	47J	156J	450	<1.44	<1.44	<1.44
LEAD (µg/L)				3.00 M.C.	MAN, C	1.000				and the		The second				The second second	100 C		
Lead	15	1.5	NA	NA	NA	DRY	DRY	DRY	DRY	DRY	DRY	DRY	NA	NA	NA	NA	NA	NA	NA

ES = Enforcement Standard

PAL = Preventive Action Limit

μg/L = micrograms per liter

NA = Parameter not analyzed

NE = NR 140 ES not established

 $\mathsf{J}=\mathsf{Analyte}\ \mathsf{detected}\ \mathsf{above}\ \mathsf{laboratory}\ \mathsf{limit}\ \mathsf{of}\ \mathsf{detection}\ \mathsf{but}\ \mathsf{below}\ \mathsf{limit}\ \mathsf{of}\ \mathsf{quantitation},$

Monitoring Well	NR	140	SPEAKER PW	PW	/-1	KLAR PW	FREYMILLER PW	JEIDY PW	PW 6770
Sampling Date	ES	PAL	1/14/2010	6/28/2011	6/7/2018	6/7/2018	12/4/2019	12/4/2019	3/12/2020
VOLATILE ORGANIC COMPO	UNDS (V	ЮС) (µg/	L)				and the second second	1000	
Benzene	5	0.5	<0.39	<0.41	<0.22	<0.22	<0.22	<0.22	<0.48
Ethylbenzene	700	140	<0.41	<0.54	<0.26	<0.26	<0.26	<0.26	<0.55
Methyl tert-butyl ether	60	12	<0.38	<0.61	<0.28	<0.28	<0.28	<0.28	<0.71
Toluene	800	160	<0.42	<0.67	<0.19	<0.19	<0.19	<0.19	<0.62
1,2,4 -Trimethylbenzene	480	96	<0.43	<0.97	<0.8	<0.8	<0.8	<0.8	<0.71
1,3,5 -Trimethylbenzene	400	30	<0.40	<0.83	<0.63	<0.63	<0.63	<0.63	<0.66
Xylenes, -m, -p	2000	400	<1.25	<2.63	<0.72	<0.72	<0.72	<0.72	<2.04
Xylenes, -o	2000	400	\$1.25	~2,00	SU.72	~0.72	50.72	-0.72	~2.04
OTHER DETECTED VOLATIL	E ORGA	NIC COM	POUNDS (VOC) (μg/L)			and the state of the	N	12 23
Chloromethane	30	3	NA	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NE	NE	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethane	5	0.5	NA	<0.36	<0.25	<0.25	<0.25	<0.25	NA
Isopropylbenzene	NE	NE	NA	NA	NA	NA	NA	NA	NA
Napthalene	100	10	<0.40	<0.89	<2.1	<2.1	<2.1	<2.1	<1.44
n-Propylbenzene	NE	NE	NA	NA	NA	NA	NA	NA	NA
LEAD (µg/L)	1. 15 1. 5		N RALLAS		A SHE OF STREET	all and an	Mar and the second	R. S. B. C.	
Lead	15	1.5	NA	NA	NA	NA	NA	NA	NA

ES = Enforcement Standard

PAL = Preventive Action Limit

µg/L = micrograms per liter

NA = Parameter not analyzed

NE = NR 140 ES not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation.

TABLE 3 WATER LEVEL DATA KREYER COUNTRY STORE (LUTZEN PROPERTY) GEC PROJECT NO. 0710-190

Monitoring	Top of Well	Screen Interval	Date	Depth	Groundwater
Well	Casing		Measured	to Water	Elevation
Number	Elevation			(FL)	(Ft.)
			7/5/2011	37.00	1182.51
		1177	11/22/2011	36.37	1183.14
	1219.51		6/21/2012	35.12	1184.39
			6/4/2013	30.86	1188,65
		1162	7/14/2014	28.92	1190.59
			6/9/2015	34.37	1185.14
			2/11/2016	34.51	1185.00
MW-1		 (1) 	6/30/2016	33.46	1186.05
			10/17/2016	33.81	1185.70
			1/18/2017	36.72	1182.79
			8/17/2017	35,43	1184.08
			1/30/2018	38.61	1180.90
	8		6/7/2018	34.41	1185.10
			12/5/2018	33.66	1185.85
			3/27/2019	35.58	1185.85
			11/20/2019	Well Damaged D	During Excavation
			7/5/2011	NA *	NA
		1178.49	11/22/2011	DRY	DRY
	1220.39		6/21/2012	52.35	1168.04
		2022	6/4/2013	DRY	DRY
		1163.49	7/14/2014	55.15	1165.24
			6/9/2015	54.96	1165.43
			2/11/2016	55.65	1164.74
			6/30/2016	55.90	1164,49
MW-2			10/17/2016	55.92	1164.47
			1/18/2017	56.10	1164.29
			8/17/2017	56.06	1164.33
			1/30/2018	56.43	1163.96
			6/7/2018	56,16	1164.23
			12/5/2018	55.92	1164.47
			3/27/2019	54.40	1165.99
			12/4/2019	55.37	1165.02
			2/3/2020	Snow and Ice	
			3/24/2020	54.67	1165.72
		a au an ann	7/5/2011	NA	NA
		1179.62	11/22/2011	DRY	DRY
	1221.03		6/21/2012	51.62	1169.41
			6/4/2013	54.35	1166.68
		1164.62	7/14/2014	56.18	1164.85
			6/9/2015	DRY	DRY
			2/11/2016	DRY	DRY
			6/30/2016	DRY	DRY
MW-3			10/17/2016	DRY	DRY
			1/18/2017	DRY	DRY
			8/17/2017	DRY	DRY
			1/30/2018	DRY	DRY
			6/7/2018	DRY	DRY
			12/5/2018	DRY	DRY
			3/27/2019	DRY	DRY
			12/4/2019	DRY	DRY
			2/3/2020	DRY	DRY
			3/24/2020	DRY	DRY
		1400	7/5/2011	NA	NA
	4000.00	1172.98	11/22/2011	39,44	1165.74
	1205.18		6/21/2012	41.46	1163.72
			6/4/2013	39.67	1165.51
		1157.98	7/14/2014	40.28	1164.90
			6/9/2015	40.27	1164.91
			2/11/2016	40.18	1165.00
			6/30/2016	40.07	1165.11
MW-4			10/17/2016	40.03	1165.15
		ļ	1/18/2017	40.06	1165.12
			8/17/2017	40.24	1164.94
			1/30/2018	40.36	1164.82
		ļ	6/7/2018	40.27	1164.91
			12/5/2018	40.28	1164.90
		1	3/27/2019	40.31	1164.87
		ļ	12/4/2019	40.24	1164.94
			2/3/2020	NR	
			3/24/2020	40.17	1165.01

ft = feet NR≕Not recorded Elevations in feet in reference to Mean Sea Level (MSL)

TABLE 3 WATER LEVEL DATA KREYER COUNTRY STORE (LUTZEN PROPERTY) GEC PROJECT NO. 0710-190

Monitoring	Top of Well	Screen Interval	Date	Depth	Groundwater
Well Number	Elevation	<u>*</u>	Measured	to Water (Ft.)	Elevation (Ft.)
			6/30/2016	25.00	1172.66
		1167.8	10/17/2016	44.07	1153.59
	1197.66		1/18/2017	43.47	1154.19
			8/17/2017	44.10	1153.56
		1152.8	1/30/2018	DRY	
MW-5			6/7/2018	DRY	
			12/5/2018	44.08	1153.58
			3/27/2019	44.12	1153.54
		17- 17-	12/4/2019	43.86	1153.80
			2/3/2020	NR	
			3/24/2020	DRY	
			2/3/2020	49.65	1172.53
	· · · ·	1192.18	3/24/2020	25.07	1197.11
BANA/ C	1222.18				
IAIAA-O		1 1			
		1172.18		·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·			3/24/2020	16.43	1202.90
		1206.56			
	1219.33	<i>x</i>			F
MW-7					
		1191.56			
			3/24/2020	73.44	1151.63
		1165.7			
	1225.07				
MW-8					
		1150.7			
					1
			3/24/2020	27.40	1197.60
		1201.65	<i>k</i> ²		
M\A/. Q A	1225				
WIW-OA					
		1186.65			
			3/24/2020	22.09	1199.09
		1202.56			
	1221.18	L L			
MW-9					
		1187.56			

NR=Not recorded

Elevations in feet in reference to Mean Sea Level (MSL).

TABLE 4 SUMMARY OF CRAWL SPACE AMBIENT VAPOR ANALYTICAL RESULTS KREYER COUNTRY STORE (LUTZEN PROPERTY) GEC PROJECT NO. 0710-190

TABLE 1 REGIONAL SCREENING LEVEL SUMMARY									
Sample No.	Residential	Ambient 1							
Sampling Date	Indoor Air VAL	01/30/18							
	ug/m3								
VOLATILE ORGANIC CO	MPOUNDS (VC	C) (ug/m3)							
Benzene	3.6	0.610							
Chloroform	1.2	<0.930							
1,1 Dichloroethane	18	<0.685							
1,1-Dichloroethene	210	<0.646							
cis-1,2-Dichloroethene	NE	<0.515							
trans-1,2-Dichloroethene	NE	<0.614							
Ethylbenzene	11	<0.733							
Trichlorofluoromethane	NE	1.31							
Dichlorodifluoromethane	100	1.54							
Methylene Chloride	630	<0.538							
Naphthalene	0.83	<2.69							
Tetrachloroethylene	42	8.23							
Toluene	5200	<0.625							
1,1,1-Trichloroethane	5200	<1.21							
Trichloroethylene	2.1	<0.975							
1,2,4-Trimethylbenzene	7.3	<0.790							
1,3,5-Trimethylbenzene	NE	<1.03							
Vinyl chloride	1.7	<0.389							
m&p-Xylene	100	<1.37							
o-Xylene	100	<0.915							
TPH (GC/MS)	NE								

UG/M^{3 -} Micrograms per Cubic Meter of Air

Bold indicates analytical results exceed sub-slab screening level

TABLE 5
SUMMARY OF SOIL ANALYTICAL RESULTS (REMEDIAL EXCAVATION)
KREYER COUNTRY STORE (LUTZEN PROPERTY)
GEC PROJECT NO. 0710-190

Sample No.	NR 720 Non	ND 720	NP 720	NR 720 Soil		W-1	W-2	W-3	W-4	W-5	W-6	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	SB-1
Sampling Date	Cancer RCL	Direct	Cancer	to	Background	11/19/19	11/20/19	11/20/19	11/20/19	11/20/19	11/20/19	11/19/19	11/20/19	11/20/19	11/20/19	11/20/19	11/20/19	11/20/19	11/20/19	11/20/19
Sample Depth (feet)	Non-	Contact	RCL Non-	Groundwater	Threshold	4	4	4	4	4	4	11	17	17	10	14	10	10	14	17
Saturated (S)/Unsaturated (U)	Industrial	RCL	Industrial	RCL		U	υ	U ·	U	U	U	υ	υ	U	υ	U	U	υ	U	U
LEAD (mg/kg)			1-1-5-3				100	15. 1	1000		19-20-14	THE P		200			1000	ALC: L		
Lead	400	400	NE	27	52	35	26.8	15.3	13.6	13.3	12.8	NE	72.5	52.2	46.5	124	35.9	269	NS	52.1
PETROLEUM VOLATILE ORG	ANIC COMP	OUNDS (P	VOC) (µg/kg	7)		1			1	all a strength	C AL	A Providence	10 A - 2				-			101
Benzene	106,000	1,600	1,600	5.1	NE	<25	<25	<25	<25	<25	<25	36J	<25	<25	<25	100	<25.0	<25.0	<25.0	470
Ethylbenzene	4,080,000	8,020	8,020	1,570	NE	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25.0	<25.0	<25.0	<25.0	<25.0
Methyl tert-butyl ether	22,100,000	63,800	63,800	27	NE	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25.0	<25.0	<25.0	<25,0	<25.0
Naphthainene	178,000	5,520	5,520	658	NE	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	36	<25.0	<25.0	<25.0	33
Toluene	5,240,000	NE	818,000	1,107	NE	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	25.4J	35J	<25.0	<25.0	27.8
1,2,4-Trimethylbenzene	373,000	NE	219,000	1 382	NE	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25.0	<25.0	<25.0	<25.0	<25.0
1,3,5-Trimethylbenzene	339,000	NE	182,000	1,002		<25	<25	<25	<25	<25	<25	<25	25.6J	<25	<25	<25.0	<25.0	<25.0	<25.0	51
Xylenes, -m, -p Xylenes, -o	818,000	NE	260,000	3,960	NE	<75	<75	<75	<75	<75	<75	<75	<75	<75	28.9J	135J	<75.0	<75.0	<75.0	35.2J

mg/kg = milligrams per kilogram

µg/kg = micrograms per kilogram RCL = Residual Contaminant Level

NS = Parameter Not Sampled DCL = Direct Contact Level

NA = Parameter not analyzed

NE = NR 720 RCL not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation, Bold indicates analytical results exceed NR 720 RCL

APPENDIX C

REMEDIAL EXCAVATION SOIL ANALYTICAL REPORT AND CHAIN OF CUSTODY FORM

Lab I.D. #	Contraction (Caller 4		Emira		atal I			ll pri	-	-		Pa	je Sar		U.	ndli	na De			
QUOTE # :				CIIVIIO	nnei	ILCI In	CI IL	9 1		C.,			Rus	<u>סמו</u> אור או	nalva	sis	nun Di	ate Ro	aquire	d.	
Project #:				1990 P	www.syne rospect Ct.	rgy-lab.net • Appleton, V	VI 54:	914				(Ru	ishe	aco	cepte	d on	ily wi	th prio	r autho	rizatl	ion)
Sampler: (signature)	Bhin Younxu	AVR.	*	920-830	-2455 • mrs	ynergy@wi.t	wcbc	.com			-	7	Non	nal	Turr	1 An	ound	1		- 1	2.
Project (Name / Locat	lion): Linten	Int T.	din					Ana	lysi	is Re	ques	ted						0	ther A	nalys	sis
Reports To: R	In Yanx.	IN	Invoice To:																		
Company 65	FCFU		Company	\cap	15/5	51								Ś							÷.
Address Gib	> Sulver Lul	NO Dr	Address		11/53							ш									
City State Zip	I'm WI	53901	City State	Zip	10		ep 95					ALEN		۵ ۵	<u>2</u>						
Phone GAY	657 8010		Phone				S O C		E	ų į		121) HTH			A 52	- 15)	ALS				
Email Lun Y	WW PERANI	Menjinari	Email						EN I	A B2		PA 8	ш	SUSP	(EP	E	MET				PID/ FID
Lab I.D.	Sample I.D.	Collectio	on Fitter Time Y/N	red No. of V Containers	Sample Type (Matrix)*	Preservation	DRO (M	LEAD	NITRATE	OIL & GF PAH (EP	PCB	PVOC (E	SULFAT	TOTALS	VOC DW	VOC AIF	8-RCRA				F
SO37175A	W-1 4	11/15/19 4	m	3	5	1 May		X	_			X				_			1		
B	Nº2 7	11/20/19/1	(M)			8	++		-	-			-	-		-	++		72		
D	W-4 4'												-		-	-		-	-		-
E	W-5 4'											N	4								
F	W-6 41		- <u>}</u>	7		IMAL	-	1		-		H	4		_	-	+		_		
1 7	5.7 17'		(m)	3		1 mil		X	-				1			+	-	-		-	
- î	5-3 17'		1	1		5760		Î													51
J	3.4 10°	,	1				-						1			_					
K L	5.5 14	1 1/	+		4		+	10	-		+	5	1-		+	+	-	-	+	++-	201
Comments/Specia	I Instructions (*Specify	y groundwater *	GW", Drinkii	ng Water "DW", N	Waste Water	"WW", Soil "S	", Air '	"A", O	ii, S	iludge	e, etc	.)						() b		L	
Sample Inte	agrity - To be complete	ed by receiving	lab.	Relinquist	hed By: (sign)	1	Time	1	•/2	ate // 1	Re	ceive	d By:	(sig	n)				l'ime		Date

	STODY RECO	ORD		1	S	jy.ı	erg	У							Ch Pa	ain ge	#	N of	0 4')	1625	C			
Lab I.U. #			day.	E	nviroi	nmei	ntal L.	a	b,	1	nc	-1 				Sar	nple	Ha	ndli	ng F	Requ	lest		
QUOTE # :				-		www.syne	rgy-lab.net						e	10	Rus	h A	naly	sis	D	ate F	Requ	lired:	ation	_
Project #:	nin			-	1990 Pro	ospect Ct.	• Appleton, W	VI 5	491	4				X	Norr	s aci mal	Tur	n Ar		d d		unoriza	auon	1
Sampler: (signature)	12~ J		70		920-830-2	2455 • mrs	ynergy@wi.t	WCE	ю.co	nn			7				0.000							_
Project (Name / Loc	ation):	PA/MD.	+de						4	Analy	/sis	Req	ues	ted	1	<u> </u>	-i-	1	1		Othe	r Anal	ysis	
Reports To:		,	Invoi	ce To:																			.	
Company	00		Com	рапу	C1	10										SS					\mathbb{R}^{2}			
Address 5	PR		Add	ress	(10	(1)	مر اب	G	10					ц		SOLIC								
City State Zip	Address Address City State Zip Phone Email						6	99 de	ep 96							ËD	a F					(-) - i		
Phone	N/		Pho	ne				0 S	0 S	TIA	Ψ	õ		021) HTH		END	A 524	- 15)	ALS					9 - I
Email	V		Ema	,ii	1		>1	HO P	d GF	NIT	EAS	A 82		B A 4		USP	EP -	E	MET					PID/
Lab I.D.	Sample I.D.	Collect Date	ion Time	Filtered Y/N	No. of Containers	Sample Type (Matrix)*	Preservation	DRO (Mc	GRO (Mo	LEAD	OIL & GF	PAH (EP	BCB	PVOC (E	SULFAT	TOTAL S	VOC DW	VOC AIR	B-RCRA					
5037175M	5.7 10'	upp	PIN	<u>()</u>	13212	2	3			8	Ť		-	5	2	i	-	1	-		+			
N	5-8 14			1	1-2171, 1200-	3	2							5	<									
0	56-1 17	/ ¥	1	¥	- Mare		3	_		>	_		_		<u> </u>			-	-	-	-			2561
								-		-	-	$\left \right $	-	-	+		-	+	-		-			
								t			-										-			200
								1	1										44				相	1
	100							-		_	_	-	_	_	_		_	-	-		_			
								+			-	-	-					+	-	\vdash		++		
AUTOR IN THE WAY								-		-	1				1				-			1		
																318			9	22				
Sample II Meth	ntegrity - To be comp and of Shipment:	eted by receiving	lab.		Relinguish	ad By: (sign)		Tin	16		Date	k ↓	Re	ceive	d By:	(sig	п)	~	1	-	Time	3	Da	ite
Cooler se	p. or Temp. Blank:	t: <u>X</u> Yes	No		Received in	n Laboratory	By: Neh		2	L	_				Time	»: ()	33		ſ	Date:	田	1/21	119

Synergy Environmental Lab, INC

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PORTAGE. WI 53901

Report Date 11-Dec-19

-

Project Name Project #	LUTZEN/MI	ΓIDA					Invoice #	E37175			
Lab Code Sample ID Sample Matrix Sample Date	5037175A W-1 4' Soil 11/19/2019	Result	Unit	LOD	LOQ	Dil	Method Ext	Date R	lun Date	Analyst	Code
General											
Solids Percent		72.8	%			1	5021		11/22/2019	NJC	1
Inorganic Metals Lead Total		35.0	mg/Kg	0.17	0.58	1	6010B		11/29/2019	CWT	1
Organic PVOC + Nant	hthalene						×				
Benzene	in an en e	< 0.025	mø/kø	0.018	0.056	1	GR095/8021		12/2/2019	CIR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.047	i	GR095/8021		12/2/2019	CIR	i
Methyl tert-butyl et	ther (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GR095/8021		12/2/2019	CIR	ì
Naphthalene	,	< 0.025	mg/kg	0.025	0.01	1	GRO95/8021		12/2/2019	CJR	1
Toluene		< 0.025	mg/kg	0.013	0.055	1	GRO95/8021		12/2/2019	CJR	1
1,2,4-Trimethylber	zene	< 0.025	mg/kg	0.015	0.048	1	GRO95/8021		12/2/2019	CJR	1
1,3,5-Trimethylber	zene	< 0.025	mg/kg	0.011	0.036	1	GRO95/8021		12/2/2019	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.026	0.083	1	GRO95/8021		12/2/2019	CJR	1
o-Xylene		< 0.025	mg/kg	0.013	0.056	1	GRO95/8021		12/2/2019	CJR	1

Project Name 1 Project #	LUTZEN/M	ΓIDA					Invo	ice # E371	75		
Lab Code Sample ID Sample Matrix Sample Date	5037175B W-2 4' Soil 11/20/2019	1									
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General General Solids Percent		72.5	%			1	5021		11/22/2019	NJC	1
Inorganic Metals Lead, Total		26.8	mg/Kg	0.17	0.58	1	6010B		11/29/2019	CWT	1
Organic PVOC + Naph	thalene		2								
Benzene		< 0.025	mg/kg	0.018	0.056	1	GRO95/8	021	12/2/2019	CJR	ĩ
Ethylbenzene		< 0.025	mg/kg	0.015	0.047	1	GRO95/8	021	12/2/2019	CJR	1
Methyl tert-butyl eth	ner (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/8	021	12/2/2019	CJR	1
Naphthalene		< 0.025	mg/kg	0.025	0.01	1	GRO95/8	021	12/2/2019	CJR	1
Toluene		< 0.025	mg/kg	0.013	0.055	1	GRO95/8	021	12/2/2019	CJR	1
1,2,4-Trimethylbenz	zene	< 0.025	mg/kg	0.015	0.048	1	GRO95/8	021	12/2/2019	CJR	1
1,3,5-Trimethylbenz	zene	< 0.025	mg/kg	0.011	0.036	1	GRO95/8	021	12/2/2019	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.026	0.083	1	GRO95/8	021	12/2/2019	CJR	1
o-Xylene		< 0.025	mg/kg	0.013	0.056	1	GRO95/8	021	12/2/2019	CJR	1
Lab Code Sample ID Sample Matrix Sample Date	5037175C W-3 4' Soil 11/20/2019	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Consent											
General Solids Percent		71.3	%			1	5021		11/22/2019	NJC	1
Inorganic											
Metals Lead, Total		15.3	mg/Kg	0.17	0.58	1	6010B		11/29/2019	CWT	1
Organic PVOC + Naph	thalene										
Benzene		< 0.025	mg/kg	0.018	0.056	1	GRO95/80)21	12/2/2019	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.047	1	GRO95/80)21	12/2/2019	CJR	1
Methyl tert-butyl eth	er (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/80)21	12/2/2019	CJR	1
Naphthalene		< 0.025	mg/kg	0.025	0.01	1	GRO95/80)21	12/2/2019	CJR	1
Toluene		< 0.025	mg/kg	0.013	0.055	1	GRO95/80	021	12/2/2019	CJR	1
1,2,4-Trimethylbenz	ene	< 0.025	mg/kg	0.015	0.048	1	GRO95/80	021	12/2/2019	CJR	1
1,3,5-Trimethylbenz	ene	< 0.025	mg/kg	0.011	0.036	1	GRO95/80	021	12/2/2019	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.026	0.083	1	GRO95/80	021	12/2/2019	CJR	1
o-Xylene		< 0.025	mg/kg	0.013	0.056	1	GRO95/80	21	12/2/2019	CJR	1

Project Name Project #	LUTZEN/M	T IDA					Invo	ice # E371	75		
Lab Code Sample ID Sample Matrix Sample Date	5037175D W-4 4' Soil 11/20/2019	,	a								
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General General Solids Percent		71.8	%			1	5021		11/22/2019	NJC	1
Inorganic Metals Lead, Total		13.6	mg/Kg	0.17	0.58	1	6010B		11/29/2019	CWT	1
Organic PVOC + Naph	thalene										
Benzene		< 0.025	mg/kg	0.018	0.056	1	GRO95/8	021	12/2/2019	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.047	1	GRO95/8	021	12/2/2019	CJR	1
Methyl tert-butyl et	her (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/8	021	12/2/2019	CJR	1
Naphthalene		< 0.025	mg/kg	0.025	0.01	1	GRO95/8	021	12/2/2019	CJR	1
Toluene		< 0.025	mg/kg	0.013	0.055	1	GRO95/8	021	12/2/2019	CJR	1
1,2,4-Trimethylben	zene	< 0.025	mg/kg	0.015	0.048	1	GRO95/8	021	12/2/2019	CJR	1
1,3,5-Trimethylben	zene	< 0.025	mg/kg	0.011	0.036	1	GRO95/8	021	12/2/2019	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.026	0.083	1	GRO95/8	021	12/2/2019	CJR	1
o-Xylene		< 0.025	mg/kg	0.013	0.056	1	GRO95/8	021	12/2/2019	CJR	1
Lab Code Sample ID Sample Matrix Sample Date	5037175E W-5 4' Soil 11/20/2019	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Cananal										-	
General Solida Paramet		70.0	04			1	5021		11/22/2010	NIC	ī
Solids Percent		19.9	70			1	5021		11/22/2019	NJC	1
Inorganic Metals Lead, Total		13.3	mg/Kg	0.17	0.58	1	6010 B		11/29/2019	CWT	I
Organic PVOC + Naph	thalene										
Benzene		< 0.025	mg/kg	0.018	0.056	1	GRO95/80)21	12/2/2019	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.047	1	GRO95/80)21	12/2/2019	CJR	1
Methyl tert-butyl etl	ner (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/80)21	12/2/2019	CJR	1
Naphthalene		< 0.025	mg/kg	0.025	0.01	1	GRO95/80)21	12/2/2019	CJR	1
Toluene		< 0.025	mg/kg	0.013	0.055	1	GRO95/80)21	12/2/2019	CJR	1
1,2,4-Trimethylbenz	zene	< 0.025	mg/kg	0.015	0.048	1	GRO95/80)21	12/2/2019	CJR	1
1,3,5-Trimethylbenz	zene	< 0.025	mg/kg	0.011	0.036	1	GRO95/80	021	12/2/2019	CJR	1
m&p-Xylene		< 0.05	mg/kg	0,026	0.083	1	GRO95/80	021	12/2/2019	CJR	1
o-Xylene		< 0.025	mg/kg	0.013	0.056	1	GRO95/80)21	12/2/2019	CJR	1

Project Name Project #	LUTZEN/M7	T IDA			Υ.		Invoi	ice # E371	175		
Lab Code Sample ID Sample Matrix	5037175F W-6 4' Soil										
Sample Date	11/20/2019	Result	Unit	LOD	100	Dil	Method	Ext Date	Run Date	Anglyst	Code
Ganaral		Result	Chit	202	204	DI		Dat Dutt	Kun Date	i tinui y Sc	Coue
General Solida Descort		80.2	0/			1	5021		11/22/2010	NIC	9
Inorganic		80.2	70			1	5021		11/22/2019	NJC	
Metals Lead, Total		12.8	mg/Kg	0,17	0.58	1	6010B	8	11/29/2019	CWT	1
Organic PVOC + Naph	thalene							x.1			
Benzene		< 0.025	mg/kg	0.018	0.056	1	GRO95/80	021	12/2/2019	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.047	1	GRO95/80	021	12/2/2019	CJR	1
Methyl tert-butyl etl	her (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/80	21	12/2/2019	CJR	1
Naphthalene		< 0.025	mg/kg	0.025	0.01	1	GRO95/80	21	12/2/2019	CJR	1
Toluene		< 0.025	mg/kg	0.013	0.055	1	GRO95/80	21	12/2/2019	CJR	1
1,2,4-Trimethylben	zene	< 0.025	mg/kg	0.015	0.048	1	GRO95/80	21	12/2/2019	CJR	1
1,3,5-Trimethylben	zene	< 0.025	mg/kg	0.011	0.036	1	GRO95/80	21	12/2/2019	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.026	0.083	1	GRO95/80	21	12/2/2019	CJR	1
o-Xylene		< 0.025	mg/kg	0.013	0.056	1	GRO95/80	21	12/2/2019	CJR	1
Lab Code	5037175G										
Sample ID	S-1 11'										
Sample Matrix	Soil										
Sample Date	11/19/2019										
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		76.4	%			1	5021		11/22/2019	NJC	1
Organic PVOC + Naph	thalene										
Benzene	unarene	0.036 "I"	mø/kø	0.018	0.056	1	GR095/80	21	12/2/2019	CIR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.047	1	GR095/80	21	12/2/2019	CIR	i
Methyl tert-butyl eth	ner (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GR095/80	21	12/2/2019	CJR	1
Naphthalene		< 0.025	mg/kg	0.025	0.01	1	GRO95/80	21	12/2/2019	CJR	1
Toluene		< 0.025	mg/kg	0.013	0.055	1	GR095/80	21	12/2/2019	CJR	ī
1.2.4-Trimethylbenz	tene	< 0.025	mg/kg	0.015	0.048	1	GR095/80	21	12/2/2019	CJR	1
1.3.5-Trimethylbenz	ene	< 0.025	mg/kg	0.011	0.036	1	GRO95/80	21	12/2/2019	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.026	0.083	1	GRO95/80	21	12/2/2019	CJR	1
o-Xylene		< 0.025	mg/kg	0.013	0.056	1	GRO95/802	21	12/2/2019	CJR	1
			5.0								

Project Name 1 Project #	LUTZEN/M	ΓIDA					Invo	bice # E371	.75		
Lab Code Sample ID Sample Matrix Sample Date	5037175H S-2 17' Soil 11/20/2019									a.	
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General General Solids Percent		61.0	%			1	5021		11/22/2019	NJC	1
Inorganic Metals Lead Total		72.5	mg/Kg	0.17	0.58	- 1	6010B		11/29/2019	CWT	1
Organic		12.0	mg res	0.17	0.50	1	00100		11127/2017	CWI	1
PVOC + Nanh	thalene	N.									
Benzene	tiluitite	< 0.025	mg/kg	0.018	0.056	1	GRO95/8	8021	12/3/2019	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.047	1	GRO95/8	8021	12/3/2019	CJR	1
Methyl tert-butyl eth	ner (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/8	8021	12/3/2019	CJR	1
Naphthalene		< 0.025	mg/kg	0.025	0.01	1	GRO95/8	021	12/3/2019	CJR	1
Toluene		< 0.025	mg/kg	0.013	0.055	1	GRO95/8	8021	12/3/2019	CJR	1
1,2,4-Trimethylbenz	zene	< 0.025	mg/kg	0.015	0.048	1	GRO95/8	021	12/3/2019	CJR	1
1,3,5-Trimethylbenz	zene	0.0256 "J"	mg/kg	0.011	0.036	1	GRO95/8	021	12/3/2019	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.026	0.083	1	GRO95/8	021	12/3/2019	CJR	1
o-Xylene		< 0.025	mg/kg	0.013	0.056	1	GRO95/8	021	12/3/2019	CJR	1
Lab Code Sample ID Sample Matrix Sample Date	50371751 S-3 17' Soil 11/20/2019							25			
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General General Solids Percent		65.9	%			1	5021		11/22/2019	NJC	1
Inorganic Metals Lead, Total		52.2	mg/Kg	0.17	0.58	1	6010 B		11/29/2019	CWT	I
Organic PVOC + Naph	thalene										
Benzene		< 0.025	mg/kg	0.018	0.056	1	GRO95/8	021	12/3/2019	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.047	1	GRO95/8	021	12/3/2019	CJR	1
Methyl tert-butyl eth	er (MTBE)	< 0.025	mg/kg	0,014	0.045	1	GRO95/8	021	12/3/2019	CJR	1
Naphthalene		< 0.025	mg/kg	0.025	0.01	1	GRO95/8	021	12/3/2019	CJR	1
Toluene		< 0.025	mg/kg	0.013	0.055	1	GRO95/8	021	12/3/2019	CJR	1
1,2,4-Trimethylbenz	ene	< 0.025	mg/kg	0.015	0.048	1	GRO95/8	021	12/3/2019	CJR	1
1,3,5-Trimethylbenz	ene	< 0,025	mg/kg	0.011	0.036	1	GRO95/8	021	12/3/2019	CJR	1
m&p-Xylene		< 0.050	mg/kg	0.026	0.083	1	GRO95/8	021	12/3/2019	CJR	1
o-Xylene		< 0.025	mg/kg	0.013	0.056	1	GRO95/80	021	12/3/2019	CJR	1

Project Name] Project #	LUTZEN/M	ΓIDA					Invo	ice # E37	175		
Lab Code Sample ID Sample Matrix Sample Date	5037175J S-4 10' Soil 11/20/2019										
197		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General General Solids Percent		67.7	%			1	5021	5	11/22/2019	NJC	1
Inorganic Metals Lead Total		46.5	mø/Kg	0.17	0.58	. 1	6010 B		11/29/2019	CWT	1
Organic PVOC + Naph	thalene										
Benzene		< 0.025	mg/kg	0.018	0.056	1	GRO95/8	021	12/3/2019	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.047	1	GRO95/8	021	12/3/2019	CJR	1
Methyl tert-butyl eth	ner (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/8	021	12/3/2019	CJR	1
Naphthalene		< 0.025	mg/kg	0.025	0,01	1	GRO95/8	021	12/3/2019	CJR	1
Toluene		< 0.025	mg/kg	0.013	0.055	1	GRO95/8	021	12/3/2019	ĊJR	1
1,2,4-Trimethylbenz	zene	< 0.025	mg/kg	0.015	0.048	1	GRO95/8	021	12/3/2019	CJR	1
1,3,5-Trimethylbenz	zene	< 0.025	mg/kg	0.011	0.036	1	GRO95/8	021	12/3/2019	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.026	0.083	1	GRO95/80	021	12/3/2019	CJR	1
o-Xylene		0.0289 "J"	mg/kg	0.013	0.056	1	GRO95/80	021	12/3/2019	CJR	1
Lab Code Sample ID Sample Matrix Sample Date	5037175K S-5 14' Soil 11/20/2019	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General						4					
General Solids Percent		65.4	%			1	5021		11/22/2019	NJC	ı
Inorganic Metals Lead, Total		124	mg/Kg	3.4	11.6	20	6010B		12/10/2019	CWT	1 49
Organic PVOC + Naph	thalene				*7						
Benzene		0.1	mg/kg	0.018	0.056	1	GRO95/80)21	12/3/2019	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.047	1	GRO95/80)21	12/3/2019	CJR	1
Methyl tert-butyl eth	ner (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/80	21	12/3/2019	CJR	1
Naphthalene		0.036	mg/kg	0.025	0.01	1	GRO95/80)21	12/3/2019	CJR	1
Toluene		0.0254 "J"	mg/kg	0.013	0.055	1	GRO95/80	021	12/3/2019	CJR	1
1,2,4-Trimethylbenz	ene	< 0.025	mg/kg	0.015	0.048	1	GRO95/80	021	12/3/2019	CJR	1
1,3,5-Trimethylbenz	ene	< 0.025	mg/kg	0.011	0.036	1	GRO95/80	021	12/3/2019	CJR	1
m&p-Xylene		0.079 "J"	mg/kg	0.026	0.083	1	GRO95/80	21	12/3/2019	CJR	1
o-Xylene		0.056 "J"	mg/kg	0.013	0.056	1	GRO95/80	121	12/3/2019	CJR	1

÷

Project Name I Proiect #	LUTZEN/MI	ΓIDA					Invo	ice # E371	75		
Lab Code Sample ID Sample Matrix Sample Date	5037175L S-6 10' Soil 11/20/2019					1		8			
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General General Solids Percent		64.1	%			1	5021		11/22/2019	NJC	1
Inorganic Metals Lead, Total		35.9	mg/Kg	0.17	0.58	1	6010B		11/29/2019	CWT	1
Organic											
PVOC + Naph	thalene										
Benzene		< 0.025	mg/kg	0.018	0.056	1	GRO95/8	021	12/3/2019	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.047	1	GRO95/8	021	12/3/2019	CJR	1
Methyl tert-butyl eth	ner (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/8	021	12/3/2019	CJR	1
Naphthalene		< 0.025	mg/kg	0.025	0.01	1	GRO95/8	021	12/3/2019	CJR	1 0
Toluene		0.035 "J"	mg/kg	0.013	0.055	1	GRO95/8	021	12/3/2019	CJR	1
1,2,4-Trimethylbenz	ene	< 0.025	mg/kg	0.015	0.048	1	GRO95/8	021	12/3/2019	CJR	1
1,3,5-Trimethylbenz	tene	< 0.025	mg/kg	0.011	0.036	1	GR095/8	021	12/3/2019	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.026	0.083		GRO95/80	021	12/3/2019	CJR	1
o-Xylene		< 0.025	mg/kg	0.013	0.056		GKU95/80	JZI	12/3/2019	CJR	Ŧ
Lab Code Sample ID Sample Matrix Sample Date	5037175M S-7 10' Soil 11/20/2019										ų.
-		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General General Solids Percent	÷	73.1	%			1	5021		11/22/2019	NJC	ı
Inorganic Metals Lead, Total		269	mg/Kg	0.17	0.58	1	6010B		11/29/2019	CWT	1
Organic PVOC + Naphi	thalene										
Benzene		< 0.025	mg/kg	0.018	0.056	1	GRO95/80)21	12/4/2019	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0,047	1	GRO95/80	21	12/4/2019	CJR	1
Methyl tert-butyl eth	er (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/80	021	12/4/2019	CJR	1
Naphthalene		< 0.025	mg/kg	0.025	0.01	1	GRO95/80	021	12/4/2019	CJR	1
Toluene		< 0.025	mg/kg	0.013	0.055	1	GRO95/80	21	12/4/2019	CJR	1
1,2,4-Trimethylbenz	ene	< 0.025	mg/kg	0.015	0.048	1	GRO95/80	21	12/4/2019	CJR	1
1,3,5-Trimethylbenz	ene	< 0.025	mg/kg	0.011	0.036	1	GRO95/80	21	12/4/2019	CJR	1
m&p-Xylene		< 0.05	mg/kg	0,026	0.083	1	GRO95/80	21	12/4/2019	CJR	1
o-Xylene		< 0.025	mg/kg	0.013	0.056	1	GRO95/80	21	12/4/2019	CJR	1

35

Project Name 1 Project #	LUTZEN/MI	ΓIDA					Invoi	ce # E371	175		
Lab Code Sample ID Sample Matrix Sample Date	5037175N S-8 14' Soil 11/20/2019				100						
		Kesult	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General General Solids Percent		61.2	%			1	5021		11/22/2019	NJC	1
Organic BVOC + Namb	thalana										
Proc + Naph Benzane	unaiene	< 0.025	malka	0.018	0.056	1	GPO05/80	21	12/4/2010	CIP	1
Ethulbonzene		< 0.025	mg/kg	0.015	0.030	1	GP005/80	21	12/4/2019	CIR	1
Methyl tert-butyl eth	ner (MTRF)	< 0.025	mg/kg	0.013	0.047	1	GR095/80	21	12/4/2019	CIR	,
Nanhthalene		< 0.025	mg/kg	0.014	0.045	1	GR095/80	21	12/4/2019	CIR	1
Toluene		< 0.025	mg/kg	0.013	0.055	1	GR095/80	21	12/4/2019	CIR	î
1 2 4-Trimethylbenz	zene	< 0.025	mg/kg	0.015	0.048	1	GR095/80	21	12/4/2019	CIR	i
1.3.5-Trimethylbenz	zene	< 0.025	mg/kg	0.011	0.036	1	GRO95/80	21	12/4/2019	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.026	0.083	1	GRO95/80	21	12/4/2019	CJR	1
o-Xylene		< 0.025	mg/kg	0.013	0.056	1	GRO95/80	21	12/4/2019	CJR	1
,											
Lab Code	50371750										
Sample ID	SB-1 17'										
Sample Matrix	Soil										
Sample Date	11/20/2019	_				-		-	-		~ ~
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		60.7	%			1	5021		11/22/2019	NJC	1
Inorganic											
Metals											
Lead, Total		52.1	mg/Kg	0.17	0.58	1	6010B		11/29/2019	CWT	1
Organic											
PVOC + Naph	thalene	12									
Benzene		0.47	mg/kg	0.018	0.056	1	GRO95/80	21	12/4/2019	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.047	1	GRO95/80	21	12/4/2019	CJR	1
Methyl tert-butyl eth	ner (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/80	21	12/4/2019	CJR	1
Naphthalene		0.033	mg/kg	0.025	0.01	1	GRO95/802	21	12/4/2019	CJR	1
Toluene		0.0 278 "J "	mg/kg	0.013	0.055	1	GRO95/802	21	12/4/2019	CJR	1
1,2,4-Trimethylbenz	zene	< 0.025	mg/kg	0.015	0.048	1	GRO95/802	21	12/4/2019	CJR	1
1,3,5-Trimethylbenz	ene	0.051	mg/kg	0.011	0.036	1	GRO95/802	21	12/4/2019	CJR	1
m&p-Xylene		0.08 "J"	mg/kg	0.026	0.083	1	GRO95/802	21	12/4/2019	CJR	1
o-Xylene		0.0272 "J"	mg/kg	0.013	0.056	1	GRO95/802	21	12/4/2019	CJR	1

"J" Flag: Analyte detected between LOD and LOQ LOD Limit of Detection LOQ Limit of Quantitation

Code	Comment	
1	Laboratory QC within limits.	
49 -	Sample diluted to compensate for matrix interference.	
	CWT denotes sub contract lab - Certification #445126660	

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Authorized Signature

Technoly/Lee

APPENDIX D

SOIL AND GROUNDWATER DISPOSAL DOCUMENTATION

La Crosse County, WI

Date 12/02/19 Time 14:17:24

Material Analysis Report by Material

Inbound and outbound materials for the period 11/01/2019 - 12/02/2019 Summary Report for Sites: 1, 2, 99 Accounts 50069 - 50069 Customer Types - Z Materials - ZZZZZZZZZ Material Types - ZZ

Date	Material	Type	Customer	Туре	Tickets	Count	Est. vol.	Act. Vol.	Est. Wt. A	ctual Wt.	Charge
10	ADC)		Total	26	0	0	0	(658.10)	658.10	15,794.40 - (Speaker)
(9	BIOPILE			Total Average	21	0	0	0	(531.68 25.32)	531.68 25.32	15,950.40 (Lutzia) 759.54
L	PERMITE)		Total Average	9	9 1	0	0	0.00	0.00	225.00
				Report To	otal 56	9	Ď	0	1189.78	1189 78	31 969 80
				Report Av	verage	ő	0	0	21.25	21.25	570.89

Page 1

La Crosse County Solid Waste

3200 Berlin Drive La Crosse, WI 54601 Phone: (608) 785-9572

020 = 5 - 23

INVOICE

Ac	count#
5	0069
in the second second	volce #
	1760
Invoice Date	Terme
11/30/2019	Net EOM
Current Charges	Total Due
\$ 31,969.80	\$ 31,969.80
	- 225
	3174

Bill To: General Engineering Company 916 Silver Lake Drive Portage, WI 53901

Deter	Ticket	Truck	Deference	Description	Quantity	Amount
Date	TICKEL	HUCK.	Reference	Previous Balance		0.00
444040	04 00042096	SW/1010 02	151	ADC Petro Impacted S	27 25	654.00
11/18/19	01-00043086	SW1019-03	151	Permit 3 Day	1 00	25.00
11/18/19	01-00043080	SW1019-03	110	ADC Petro Impacted S	25.69	616.56
11/18/19	01-00043091	SW1019-03A	110	Permit 3 Day	1 00	25.00
11/10/19	01-00043091	SW1019-03A	112	ADC Petro Impacted S	26.16	627.84 J
11/10/19	01-00043098	SW1019-03	112	Permit 3 Day	1 00	25.00 0
11/10/19	01-00043090	SW1019-03	10-01	ADC Petro Impacted S	20.60	494.40
11/10/19	01-00043099	SW1019-03A	19-01	Permit 3 Day	1.00	-25.00
11/10/19	01-00043099	SW1019-03R	8	ADC Petro Impacted S	21.37	512.88
11/10/19	01-00043100	SW1019-03B	8	Permit 3 Day	1.00	-25.00
11/10/19	01-00043100	SW1019-03C	109	ADC Petro Impacted S	25.62	614.88
11/10/19	01-00043102	SW1019-03C	109	Permit 3 Day	1.00	- 25.00 P
11/10/19	01-00043104	SW1019-03D	113	ADC Petro Impacted S	25.70	616.80
11/10/19	01-00043104	SW1019-03D	113	Permit 3 Day	1.00	-25.00
11/18/10	01 00043115	SW1019-03	104	ADC Petro Impacted S	23.00	552.00
11/18/10	01-00043115	SW1019-03	104	Permit 3 Day	1.00	-25:00
11/18/10	01-00043116	SW1019-03A	115	ADC Petro Impacted S	24.52	588.48
11/18/19	01-00043116	SW1019-03A	115	Permit 3 Day	1.00	-25.00
11/18/19	01-00043196	SW1019-03	110	ADC Petro Impacted S	29.09	698.16 CJ
11/18/19	01-00043203	SW1019-03A	19-01	ADC Petro Impacted S	24.74	593.76
11/18/19	01-00043213	SW1019-03B	109	ADC Petro Impacted S	25.82	619.68
11/18/19	01-00043221	SW1019-03	113	ADC Petro Impacted S	27.01	648.24
11/19/19	01-00043248	SW1019-03	112	ADC Petro Impacted S	25.62	614.88
11/19/19	01-00043250	SW1019-03A	115	ADC Petro Impacted S	24.89	597.36
11/19/19	01-00043252	SW1019-03B	8	ADC Petro Impacted S	25.24	605.76
11/19/19	01-00043253	SW1019-03C	104	ADC Petro Impacted S	25.75	(18.00 م) والم
11/19/19	01-00043263	SW1019-03	151	ADC Petro Impacted S	26.97	647.28
11/19/19	01-00043273	SW1019-03	19-01	ADC Petro Impacted S	22.13	531.12
11/19/19	01-00043275	SW1019-03A	109	ADC Petro Impacted S	27.11	650.64 (J)
11/19/19	01-00043283	SW1019-03B	113 -	ADC Petro Impacted S	25.29	606.96
11/19/19	01-00043285	SW1019-03	110	ADC Petro Impacted S	24.59	590.16
11/19/19	01-00043327	SW1019-03	112	ADC Petro Impacted S	28.24	677.76
11/19/19	01-00043330	SW1019-03A	115	ADC Petro Impacted S	27.11	650.64
11/19/19	01-00043332	SW1019-03B	104	ADC Petro Impacted S	23.87	572.88
11/19/19	01-00043337	SW1019-03C	8	ADC Petro Impacted S	24.72	593.28
11/19/19	01-00043354	SW1019-02	151	Biopile Pet Impact S	28.61	858.30
11/19/19	01-00043365	SW1019-02A	109	Biopile Pet Impact S	26.13	783.90
11/19/19	01-00043368	SW1019-02	19-01	Biopile Pet Impact S	22.89	686.70
11/19/19	01-00043374	SW1019-02A	113	Biopile Pet Impact S	25.57	767.10
						1

Please reference Account # 50069 and Invoice # 1760 when submitting payment.

Date Ticket Truck Reference Description Quantity Amount 11//2/19 01-00043379 SW1019-02 110 Biople Pet Impact S 27.69 80050 30.75 11//2/19 01-0004320 SW1019-02 110 Biople Pet Impact S 27.69 80070 30.77	La Cros Invoice	sse Coun	ty Solid \	Naste	Account #: Invoice #: Total Due:			50069 1760 31,969.80	
Minute Display Switch 9-02 110 Bioplie Pet Impact S 22.85 805.00 30.777.30 30.	Date	Ticket	Truck	Reference	Description	Quantity	A	mount	SC
Net weight: 1,189.78 Invoice amount excluding Finance charge \$ 31,969.80 0 - 29 30 - 59 60 - 89 Over 90 31,969.80 0.00 0.00 0.00	Date 11/19/19 11/20/19 11/20/19 11/20/19 11/20/19 11/20/19 11/20/19 11/20/19 11/20/19 11/20/19 11/20/19 11/20/19 11/20/19 11/20/19	Ticket 01-00043379 01-00043419 01-00043420 01-00043421 01-00043433 01-00043437 01-00043451 01-00043452 01-00043452 01-00043507 01-00043507 01-00043531 01-00043551	SW1019-02 SW1019-02 SW1019-02A SW1019-02B SW1019-02 SW1019-02 SW1019-02 SW1019-02 SW1019-02 SW1019-02 SW1019-02 SW1019-02 SW1019-02 SW1019-02B SW1019-02B SW1019-02B SW1019-02B	Reference 110 115 8 104 112 151 19-01 109 113 110 115 104 8 112 151 19-01 109	Biopile Pet Impact S Biopile Pet Impact S	26.95 27.69 25.18 25.91 28.56 27.68 24.57 24.97 24.67 27.53 25.01 22.67 22.68 24.51 24.94 22.21 22.75		808.50 830.70 755.40 777.30 856.80 830.40 737.10 749.10 740.10 825.90 750.30 680.10 680.40 735.30 748.20 666.30 682.50	[utzen 531, 68 tor
\$ 31,969.80 \$ 31,969.80	0-29	Net weight:	1,189.78 60 - 89 0.00	Over 90 0.00	Invoice amount excluding Finance Finance charge Current charges Payments received Previous Balance Due Total Amount Due	charge	\$ \$ \$ \$ \$	31,969.80 0.00 31,969.80 0.00 0.00	
	31,969.80	J U.UU	0.00	0.00			\$	31,969.80	,

Please reference Account # 50069 and Invoice # 1760 when submitting payment.

.

Page 2 of 2 Peri

APPENDIX E

MONITORING WELL ABANDONMENT FORMS

State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Report Form 3300-005 (R 4/2015) Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

		Route	to DNR Bureau:		and the design of the second se		14	
Varification Only of Fill	and Seal		rinking Water		Watershed/W	/astewater	Remediation	on/Redevelopment
	anu Jean		laste Manageme	nt 🗍	Other:		_	
1. Well Location Information	na si casa	CA FLINE		2. Facility	/ Owner Inf	formation	1	
County WI Uni	que Well # of	Hicap #		Facility Nam	e i	r	1	0
Coc A Remov	ved Well				Krp	1Pr Lon	Ary.	Sport
Latitude (Longitude (see instructio	ins) Eorm:	I Code	Method Code	Facility ID (F	ID or PWS)		1	
4) 9726559	N X		GPS008					
-00 7/15056			SCR002	License/Pen	mit/Monitoring	$P \approx Q \gamma$		
70, 11, 12 NU		washin		Original Wel	Owner	10-1		
or Gov't Lot #					3 Atal	Glorin L	willen	
Well Street Address				Present Wel	Owner	_		
6858 STH	18			A allow A date	<u> </u>	in		
Well City, Village or Town	0	Well			T CT	IA IX		
	N	5	3007	City of Prese	ent Owner	A 13	State Z	IP Code
Subdivision Name		Lot #		FR	mm	10	WI	5,7,809
Reason for Removal from Service	WI Unique W	ell # of Re	placement Well	4. Pump, I	iner, Scree	en, Casing & Se	ealing Materia	al
2/18/20	rti onque ri		placement from	Pump and	d piping remov	ved?	☐ Ye	s No N/A
3. Filled & Sealed Well / Dril	Ihole / Borehol	e Inform	ation	Liner(s) re	emoved?		Ye	s 🗌 No 🕅 N/A
	Original Construct	tion Date	(mm/dd/yyyy)	Liner(s) p	erforated?		Ye	6 No NA
	3/10	20		Screen re	moved?		∐ Ye	
	If a Well Constru	ction Repo	ort is available,		It in place?		Ye	
Borehole / Drillhole	please attach.			Was casir	ng cut off belo	w surface?	Ye	
Construction Type:				Did sealin	ig material rise	e to surface?	Ye	s No N/A
Drilled Driven (Sandpoint)	Dug	3	Did mater	ial settle after	24 hours?		
Other (specify):				If bentonil	, was noie rei le chins were	used were they by		
Formation Type:				with water	r from a know	n safe source?	Ye:	
Unconsolidated Formation	Bec	rock		Required Me	ethod of Placin	ng Sealing Materia	J	
Total Well Depth From Ground Su	rface (ft.) Casing	Diameter	r (in.)	Condu	ctor Pipe-Gra	vity Conducto	or Pipe-Pumped	
12		1)		Bento	nite Chips)	Other (E	xplain):	
Lower Drillhole Diameter (in.)	Casing	Depth (ft	.)	Sealing Mate	erials			
				Neat C	Cement Grout	E E	Concrete	
Was well annular snace grouted?		X No		Sand-(Cement (Cond	rete) Grout	Bentonite Ch	lips
If you to what don'th (fact)?	Depth to 104	tor (feet)		For Monitori	ng Wells and	Monitoring Well Bo	preholes Only:	~ .
If yes, to what depth (leet)?	Departo Wa			Bentor	nite Chips	L Ben	itonite - Cement	Grout
	<u> </u>	JV	essantili e sertan e	Granul	ar Bentonite		itonite - Sand Sli	umy
5. Material Used to Fill Well	/ Drillhole			From (ft.)	To (ft.)	Volume (circ	s Sealant or cle one)	Mud Weight
3/8" chip				Surface	12	8 5655		
						00		
			and the local division of the local division					(March 1) (10) (San Ching and 1)
6. Comments								PUR STREET

7. Supervision of Work			DN	IR Use Only
Name of Person or Firm Doing Filling & Sealing	License #	Date of Filling & Sealing or Verification	Date Received	Noted By
Several Ensurerin Compiny		(mm/dd/yyyy) 3/15/2-0		
Street or Route 0 1, 1 /	0	Telephone Number	Comments	
916 Silver Luter	Vrijp	(6.6) 142 2169		
City S	tate ZIP Code	Signature of Person Doing W	/ork	Date Signed
Portuge	W1 334	101 Bart	2	4920
0	si ¹²	().		<i>k</i>