

Sent via E-Mail and Overnight Courier

Mr. Trevor Nobile, PG, CPG Wisconsin Department of Natural Resources 2300 North Dr. Martin Luther King, Jr. Drive Milwaukee, Wisconsin 53212

REMEDIAL DESIGN REPORT FORMER ONE-HOUR VALET DRY CLEANERS PROPERTY 1214 WEST WELLS STREET, MILWAUKEE, WISCONSIN BRRTS NO. 02-41-152248 AND FID NO. 241086120

Dear Mr. Nobile:

On behalf of the Marquette University, Ramboll US Corporation¹ (Ramboll) has prepared the attached Remedial Design (RD) report for the for the Former One-Hour Valet Dry Cleaners property located at 1214 West Wells Street in Milwaukee, Wisconsin (Site) in accordance with the requirements of Wisconsin Administrative Code (WAC) Chapter NR 724. The enclosed RD report presents details on the implementation of the enhanced reductive dechlorination remedy which utilizes a combined *in-situ* chemical and biological reduction approach through *in-situ* blending of zero-valent iron (ZVI) and carbon amendment followed by natural attenuation monitoring of groundwater. The soil blending activities are scheduled to begin in April 2018.

Please note that the Infiltration Approval Request is being submitted concurrently to Mr. Binyoti Amungwafor with a check for \$700.00 to cover the associated technical review fee.

February 12, 2018

Ramboll 175 N. Corporate Drive Brookfield, WI 53045 USA

T +1 262 901 0099 F +1 262 901 0079 www.ramboll.com

Ref. 1690005819

Should you have any questions or comments, please do not hesitate to contact us.

Yours sincerely,

Juxon Attopske

Susan Petrofske Managing Consultant

D 262.901.3501 spetrofske@ramboll.com

cc: Mr. Joel Smullen, Marquette

Attachments

eanne M. Tarvin, PG

Principal

D 262.901.0085 jtarvin@ramboll.com

¹ Effective on December 28, 2017, the legal corporate name of Ramboll Environ US Corporation (formerly ENVIRON International Corporation) was changed to Ramboll US Corporation.

Prepared for: Marquette University 517 North 14th Street Milwaukee, Wisconsin

Date: February 2018

Project Number: 1690005819

FORMER ONE-HOUR VALET DRY CLEANERS SITE

BRRTS NO. 02-41-152248 FID NO. 241086120

REMEDIAL DESIGN REPORT

CERTIFICATIONS

I, Scott W. Tarmann, hereby certify that I am a Professional Engineer as that term is defined in s. NR 712.03(2), Wis. Adm. Code, and that to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Scott W. Tarmann, PE License No. 33530-006

February 12, 2018 Date

I, Jeanne Tarvin, hereby certify that I am a Hydrogeologist as that term is defined in s. NR 712.03(1), Wis. Adm. Code, and that to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

10

Jeanne M. Tarvin, PG, CPG License No. G-307-13

February 12, 2018 Date

Ramboll US Corporation 175 North Corporate Drive Suite 160 Brookfield, WI 53045 USA T +1 262 901 0099 F +1 262 901 0079 www.ramboll.com

CONTENTS

1.	INTRODUCTION	1
1.1	Site Background	1
1.2	Purpose of Remedial Design Report	2
2.	SUMMARY OF PREVIOUS SUBSURFACE INVESTIGATIONS	2
2.1	Geologic and Hydrogeologic Setting	3
2.2	Previous Subsurface Investigations	3
2.3	CVOC Mass Estimates	4
2.4	Potential Receptors	5
3.	REMEDIAL GOALS AND OBJECTIVES	6
3.1	Proposed Remedial Action Goal for Soil	6
3.2	Proposed Remedial Action Goals for Groundwater	7
4.	EVALUATION OF REMEDIAL ACTION OPTIONS	8
4.1	Remedial Action Options Evaluation Considerations	8
4.2	Technical Feasibility	9
4.3	Economic Feasibility	9
4.4	Identified Remedial Action Options	9
4.5	Selected Remedial Action	23
5.	PRE-REMEDIAL SAMPLING AND TREATABILITY STUDY RESULTS	24
5 . 5.1	PRE-REMEDIAL SAMPLING AND TREATABILITY STUDY RESULTS Pre-Remedial Groundwater Sampling	24 24
5 . 5.1 5.2	PRE-REMEDIAL SAMPLING AND TREATABILITY STUDY RESULTS Pre-Remedial Groundwater Sampling Pre-Remedial Concrete Sampling	24 24 24
5 . 5.1 5.2 5.3	PRE-REMEDIAL SAMPLING AND TREATABILITY STUDY RESULTS Pre-Remedial Groundwater Sampling Pre-Remedial Concrete Sampling Pre-Remedial Treatability Study	24 24 24 25
 5.1 5.2 5.3 6. 	PRE-REMEDIAL SAMPLING AND TREATABILITY STUDY RESULTS Pre-Remedial Groundwater Sampling Pre-Remedial Concrete Sampling Pre-Remedial Treatability Study REMEDIAL ACTION DESIGN AND IMPLEMENTATION PLAN	24 24 24 25 26
 5.1 5.2 5.3 6. 6.1 	PRE-REMEDIAL SAMPLING AND TREATABILITY STUDY RESULTS Pre-Remedial Groundwater Sampling Pre-Remedial Concrete Sampling Pre-Remedial Treatability Study REMEDIAL ACTION DESIGN AND IMPLEMENTATION PLAN Description of Current Site Conditions	24 24 25 26 26
 5.1 5.2 5.3 6. 6.1 6.2 	PRE-REMEDIAL SAMPLING AND TREATABILITY STUDY RESULTS Pre-Remedial Groundwater Sampling Pre-Remedial Concrete Sampling Pre-Remedial Treatability Study REMEDIAL ACTION DESIGN AND IMPLEMENTATION PLAN Description of Current Site Conditions Pre-Soil Blending Activities	24 24 25 26 26 26
 5.1 5.2 5.3 6. 6.1 6.2 6.3 	PRE-REMEDIAL SAMPLING AND TREATABILITY STUDY RESULTS Pre-Remedial Groundwater Sampling Pre-Remedial Concrete Sampling Pre-Remedial Treatability Study REMEDIAL ACTION DESIGN AND IMPLEMENTATION PLAN Description of Current Site Conditions Pre-Soil Blending Activities Implementation of <i>In-Situ</i> Enhanced Reductive Dechlorination	24 24 25 26 26 28
 5.1 5.2 5.3 6. 6.1 6.2 6.3 6.4 	PRE-REMEDIAL SAMPLING AND TREATABILITY STUDY RESULTS Pre-Remedial Groundwater Sampling Pre-Remedial Concrete Sampling Pre-Remedial Treatability Study REMEDIAL ACTION DESIGN AND IMPLEMENTATION PLAN Description of Current Site Conditions Pre-Soil Blending Activities Implementation of <i>In-Situ</i> Enhanced Reductive Dechlorination Soil Remediation Confirmation Sampling	24 24 25 26 26 28 33
 5.1 5.2 5.3 6. 6.1 6.2 6.3 6.4 6.5 	PRE-REMEDIAL SAMPLING AND TREATABILITY STUDY RESULTS Pre-Remedial Groundwater Sampling Pre-Remedial Concrete Sampling Pre-Remedial Treatability Study REMEDIAL ACTION DESIGN AND IMPLEMENTATION PLAN Description of Current Site Conditions Pre-Soil Blending Activities Implementation of <i>In-Situ</i> Enhanced Reductive Dechlorination Soil Remediation Confirmation Sampling Implementation of Groundwater Monitoring Program	24 24 25 26 26 26 33 34
 5.1 5.2 5.3 6. 6.1 6.2 6.3 6.4 6.5 7. 	PRE-REMEDIAL SAMPLING AND TREATABILITY STUDY RESULTS Pre-Remedial Groundwater Sampling Pre-Remedial Concrete Sampling Pre-Remedial Treatability Study REMEDIAL ACTION DESIGN AND IMPLEMENTATION PLAN Description of Current Site Conditions Pre-Soil Blending Activities Implementation of <i>In-Situ</i> Enhanced Reductive Dechlorination Soil Remediation Confirmation Sampling Implementation of Groundwater Monitoring Program	 24 24 25 26 26 28 33 34 36
 5.1 5.2 5.3 6. 6.1 6.2 6.3 6.4 6.5 7. 7.1 	PRE-REMEDIAL SAMPLING AND TREATABILITY STUDY RESULTS Pre-Remedial Groundwater Sampling Pre-Remedial Concrete Sampling Pre-Remedial Treatability Study REMEDIAL ACTION DESIGN AND IMPLEMENTATION PLAN Description of Current Site Conditions Pre-Soil Blending Activities Implementation of In-Situ Enhanced Reductive Dechlorination Soil Remediation Confirmation Sampling Implementation of Groundwater Monitoring Program REPORTING Preparation of a Remedial Action Completion Report	 24 24 25 26 26 28 33 34 36
 5.1 5.2 5.3 6. 6.1 6.2 6.3 6.4 6.5 7. 7.1 7.2 	PRE-REMEDIAL SAMPLING AND TREATABILITY STUDY RESULTS Pre-Remedial Groundwater Sampling Pre-Remedial Concrete Sampling Pre-Remedial Treatability Study REMEDIAL ACTION DESIGN AND IMPLEMENTATION PLAN Description of Current Site Conditions Pre-Soil Blending Activities Implementation of <i>In-Situ</i> Enhanced Reductive Dechlorination Soil Remediation Confirmation Sampling Implementation of Groundwater Monitoring Program REPORTING Preparation of a Remedial Action Completion Report Groundwater Monitoring Reports	24 24 25 26 26 26 28 33 34 33 34 36 36
 5.1 5.2 5.3 6. 6.1 6.2 6.3 6.4 6.5 7. 7.1 7.2 7.3 	PRE-REMEDIAL SAMPLING AND TREATABILITY STUDY RESULTS Pre-Remedial Groundwater Sampling Pre-Remedial Concrete Sampling Pre-Remedial Treatability Study REMEDIAL ACTION DESIGN AND IMPLEMENTATION PLAN Description of Current Site Conditions Pre-Soil Blending Activities Implementation of <i>In-Situ</i> Enhanced Reductive Dechlorination Soil Remediation Confirmation Sampling Implementation of Groundwater Monitoring Program REPORTING Preparation of a Remedial Action Completion Report Groundwater Monitoring Reports Site Closure Report	 24 24 25 26 26 28 33 34 36 36 36 36
 5.1 5.2 5.3 6. 6.1 6.2 6.3 6.4 6.5 7. 7.1 7.2 7.3 8. 	PRE-REMEDIAL SAMPLING AND TREATABILITY STUDY RESULTSPre-Remedial Groundwater SamplingPre-Remedial Concrete SamplingPre-Remedial Treatability StudyREMEDIAL ACTION DESIGN AND IMPLEMENTATION PLANDescription of Current Site ConditionsPre-Soil Blending ActivitiesImplementation of In-Situ Enhanced Reductive DechlorinationSoil Remediation Confirmation SamplingImplementation of Groundwater Monitoring ProgramREPORTINGPreparation of a Remedial Action Completion ReportGroundwater Monitoring ReportsSite Closure ReportIMPLEMENTATION SCHEDULE	 24 24 25 26 26 28 33 34 36

TABLES

- Table 1: Groundwater Elevation Measurements
- Table 2: Pre-Remediation Groundwater Analytical Results
- Table 3: Pre-Remediation Groundwater Monitored Natural Attenuation Parameter Results
- Table 4: Pre-Remediation Concrete Sampling Results

FIGURES

- Figure 1: Site Location Map
- Figure 2: Site Plan
- Figure 3: Extent of Soil PCE Impacts
- Figure 4: Groundwater Elevation (November 2017)
- Figure 5: Extent of Groundwater PCE Impacts (November 2017)
- Figure 6: Extent of PCE-Impacted Concrete
- Figure 7: Source Soil and Groundwater Treatment Area
- Figure 8: Post-Remediation Soil Sampling Locations
- Figure 9: Remedial Implementation Schedule

APPENDICES

- Appendix A: CVOC Mass Estimates
- Appendix B: Laboratory Analytical Results for Pre-Remediation Groundwater and Concrete Sampling Activities
- Appendix C: Pre-Remediation Treatability Study Documentation
- Appendix D: Plan Drawings and Specifications
- Appendix E: Erosion Control Permit
- Appendix F: Documentation of Fenceline Air Action Levels for Tetrachloroethene and Trichloroethene

1. INTRODUCTION

Ramboll US Corporation¹ (Ramboll) has prepared the following Remedial Design Report for the Former One-Hour Valet Cleaners Site in Milwaukee, Wisconsin (the "Site"), on behalf of Marquette University (Marquette). Parties currently involved with this project include the following:

Responsible Party/Site Owner:	Marquette University Joel Smullen, AIA 517 North 14 th Street Milwaukee, Wisconsin 53233 (414) 288-4620
Regulatory Agency/Project Manager:	Mr. Trevor Nobile Wisconsin Department of Natural Resources (WDNR) 2300 North Dr. Martin Luther King, Jr. Drive Milwaukee, Wisconsin 53212-3128 (414) 263-8524
Environmental Consultant:	Ms. Jeanne Tarvin Ramboll US Corporation 175 North Corporate Drive, Suite 160 Brookfield, Wisconsin 53045 (262) 901-0085

1.1 Site Background

The Site is located at 1214-1222 West Wells Street in the southwest ¼ of the northwest ¼ of Section 29, Township 7 North, Range 22 East, City of Milwaukee, Milwaukee County, Wisconsin (Figure 1). The geographic position of the Site in WTM 91 (x, y) coordinates obtained from the Wisconsin Department of Natural Resources (WDNR) Remediation and Redevelopment (RR) interactive Site Map (http://dnrmaps.wi.gov) is 688795, 287401.

The Site is bounded on the west by a public alley and Marquette parking structure, on the north by a hospital parking garage, on the east by North 12th Street and on the south by West Wells Street, as shown on Figure 2. The Site is currently owned by Marquette and is enrolled in the WDNR-administered Dry Cleaner Environmental Response Fund Program (DERP) for claimants seeking financial assistance with the site investigation and remediation of dry cleaning solvent releases to the subsurface.

The Site includes a one-story building with a basement. Marquette currently uses a garage located within the northeast portion of the building for storage of landscape equipment and de-icing salt; however, the remainder of the building is vacant. The building is bounded on the east by an adjoining vacant brick and block building with a slab-on-grade foundation that was last occupied by a child daycare. The Site reportedly consisted of a parking lot prior to 1961, and three different tenants of the property operated dry cleaning operations beginning in 1961. Dry cleaning operations ended in 2008, when Marquette purchased the Site. The last dry cleaning operation at the Site was conducted by the One-Hour Valet Cleaners, which was located on the ground floor of the one-story building and utilized space in the basement for dry cleaning solvent storage and laundering operations. An approximate 300-gallon aboveground storage tank (AST) that contained

¹ Effective on December 28, 2017, the legal corporate name of Ramboll Environ US Corporation (formerly ENVIRON International Corporation) was changed to Ramboll US Corporation.

tetrachloroethene (PCE) was present in the basement within the northwest portion of the building at the approximate location shown on Figure 2.

The Site slopes from the northwest to the east and south, resulting in storm water drainage toward North 12th Street and West Wells Street. The Site and vicinity commercial properties are served by the Milwaukee municipal water supply that obtains potable water from Lake Michigan. The nearest surface water body is the Menomonee River, which is located approximately ½ mile to the south of the Site.

The Site and adjacent areas to the west (alley and portions of the Marquette parking garage property) have been the subject of several subsurface investigations since 1998. The WDNR has assigned Bureau for Remediation and Redevelopment Tracking System (BRRTS) #02-41-152248 and Federal Identification (FID) #241086120 to the case file. The existing on-site buildings have been identified for demolition in advance of the remediation activities. Marquette University may eventually redevelop the site as a parking lot or it may remain vacant for a period of time following completion of active remedial site work. The site includes two tax parcels in the City of Milwaukee, including Tax Parcel Nos. 3910218000 and 3910219000.

1.2 Purpose of Remedial Design Report

The purpose of this report is to present the remedial design to address chlorinated volatile organic compound (CVOCs) soil and groundwater impacts at the Site. These impacts are dominated by PCE and its degradation products of trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), and vinyl chloride (VC). This report also documents the detailed methods for implementation of source area mass reduction and monitored natural attenuation of residual groundwater impacts within and down-gradient of the source area. Specific objectives include the following:

- Present remedial action goals and objectives for the source area soil and groundwater impacts in accordance with Wisconsin Administrative Code (WAC) NR 720.
- Present an evaluation of remedial alternatives considered for the Site in accordance with WAC NR 722.
- Present a specific remediation technology to address the target treatment volume.
- Present details regarding the design, implementation, and monitoring of the selected remedy in accordance with WAC NR 724.
- Present details for implementing a monitored natural attenuation (MNA) remedy following contaminant mass and concentration reduction.
- Present supporting project planning and permitting details for the remedy implementation.
- Present post-remedial action reporting and site closure submittals.

2. SUMMARY OF PREVIOUS SUBSURFACE INVESTIGATIONS

The following sections present a summary of the subsurface investigation results that were previously completed at the Site as presented in GZA GeoEnvironmental, Inc.'s (GZA) 2012 Site Investigation Report (GZA, 2012). The 2012 Site Investigation Report was approved by the WDNR on June 11, 2012. A list of previous subsurface investigation documents that were submitted to the WDNR is also provided.

2.1 Geologic and Hydrogeologic Setting

The predominant lithologic units encountered at the Site at depths ranging from 28 feet below ground surface (bgs) (Boring PZ-4) to 35 feet bgs (Boring PZ-3) include granular and cohesive fill and glacial deposits comprised of silty clay and clayey silt with interbedded thin discontinuous silt and fine sand seams. These glacial deposits shift to silty sand and sand deposits that contain thin discontinuous lenses of silt and silty clay to the maximum depth of GZA's 2012 Site Investigation (51 feet at boring PZ-3 and 45 feet at boring PZ-4) (GZA, 2012).

Water levels in the water table monitoring wells have ranged between approximately 7 and 17 feet bgs, and are within approximately 1 to 2 feet of the former dry cleaning building's basement floor slab. At times, water has been present in the basement of the building. Water table elevations are highest in the northwestern portion of the Site (approximately 642.5 to 648.5 feet above mean sea level [msl] at MW-2), and the lowest water table elevations are present within the eastern portion of the Site (approximately 635.6 to 637.5 feet msl at MW-5 and MW-1, respectively).

Shallow groundwater generally flows from northwest to southeast with a horizontal hydraulic gradient of 0.03 to 0.05 feet per foot (ft/ft) (GZA, 2012). Based on the invert elevations of 12-inch diameter sanitary sewer lines reportedly located near the eastern and southern property boundary, groundwater may be intercepted by the sanitary sewers. Previous water level measurements obtained from monitoring well/piezometer nests MW-5/PZ-4, MW-6/PZ-2 and PZ-I/PZ-3 indicate downward vertical hydraulic gradients that range from approximately 0.5 to 1 ft/ft (GZA, 2012).

With respect to monitoring wells previously subjected to in-situ hydraulic conductivity testing by GZA in 2011, MW-3 is screened in the upper clayey silt deposit, MW-5 is screened in the upper sand/silty sand deposit, and PZ-3 and PZ-4 are screened in the deeper sand/silty sand deposit (GZA, 2012). The results of the in-situ aquifer testing revealed hydraulic conductivities in the range of 7.8×10^{-5} centimeters per second (cm/sec) to 6×10^{-4} cm/sec, with a geometric mean of 3×10^{-4} cm/sec. Based on the low, mean and high hydraulic conductivities, the measured hydraulic gradient and an estimated porosity of 25 percent, the horizontal groundwater flow velocity was calculated to range between 15 feet per year (ft/yr) to 100 ft/yr, with a mean of 50 ft/yr (GZA, 2012).

2.2 Previous Subsurface Investigations

Several investigation reports have been submitted to the WDNR by previous consultants that contain additional background information regarding this Site. Key documents identified by GZA (2012) for the site include the following:

STS, January 14, 2000, Results of the Environmental Assessment at 1214-1222 West Wells Street, Milwaukee, Wisconsin.

GeoTrans, Inc., June 30, 2003, Results of Soil Sampling at Parking Lot at N. 13th Street & Wells Street, Milwaukee, Wisconsin.

GeoTrans, Inc., October 2, 2003, One Hour Valet Cleaners, 1214 W. Wells Street, Milwaukee, WI 53223, FID #241086120, BRRTS #02-41-152248.

Arcadis, November 14, 2005, Draft Site Investigation Report Valet Cleaners, 1214-1222 West Wells Street, Milwaukee, Wisconsin.

WDNR, January 12, 2006, Request for Letter of Concurrence for Hazardous Waste Determination Former Valet Dry Cleaners Site, 1214 West Wells Street, Milwaukee.

Prior to the November 2017 groundwater sampling event completed by Ramboll, which is further discussed in Section 5.1, subsurface investigation activities had not been completed at the Site since

2011. Based on the GZA 2012 Site Investigation report, the timeline below summarizes work completed by others prior to 2012:

February 1997 through November 1999 – STS observed the installation of 16 Geoprobe[®] borings at the Site (GP-1 through GP-16), and borings GP-1 and GP-5 through GP-15 were completed as temporary monitoring wells.

May 2003 – GeoTrans, Inc. observed the installation of three Geoprobe[®] borings (GP-1 through GP-3) southwest of the Site. Boring GP-1 was completed as a temporary monitoring well. This work was conducted as part of pre-construction activities related to the Marquette parking garage construction to the west of the Site.

2004 – As part of further pre-construction-related activities, the excavation of six test pits and advancement of two hand-augered soil borings to the west of the Site within the public alley was conducted by GeoSyntec.

January 2002, July 2003, and August 2004 – Arcadis observed the installation of five groundwater monitoring wells (MW-1 through MW-5) and three piezometers (PZ-1 through PZ-3) at the Site.

August 2009 – GZA installed six hand-augered soil borings (HA-1 through HA-6) within the basement of the Site building, three of which (HA-1, HA-4, and HA-5) were completed as temporary monitoring wells. In addition, GZA observed the installation of three exterior Geoprobe[®] borings (SB-1 through SB-3), four 1-inch diameter monitoring wells (MW-6 through MW-9), and one piezometer (PZ-4).

February and March 2011 – GZA observed the installation of eight Geoprobe[®] borings (GP-17 through GP-24), one of which was completed as a one-inch diameter monitoring well (GP-24).

November 2011 – In-situ hydraulic conductivity testing of monitoring wells MW-3 and MW-5, and piezometers PZ-3 and PZ-4 was conducted by GZA.

2.3 CVOC Mass Estimates

Based on the available site information presented in GZA's 2012 Site Investigation Report, the CVOC contaminant mass present in site soil and groundwater was calculated, which included analytical data for PCE, TCE, cis-1,2-DCE, and trans-1,2-dichloroethene (trans-1,2-DCE). As part of this evaluation, the area of impacted soil and groundwater was divided into 18 areas, for which average soil and groundwater concentrations and vertical layer thickness were assigned. The contaminant mass estimates indicate that approximately 1,750 pounds of CVOC is present in the areas evaluated. The primary CVOC contaminant in soil and groundwater is PCE (approximately 97.7% of total CVOC mass present), with smaller amounts of PCE-degradation products (TCE, cis-1,2-DCE, and trans-1,2-DCE). As discussed below, this evaluation indicates that approximately 99% of the CVOC is present in soil, with approximately 1.0% present in groundwater. The summary of contaminant mass estimates and a supporting figure are presented in Appendix A.

2.3.1 Soil

The CVOC soil impacts in the targeted source area treatment zone (which is further discussed in Section 4.4) represent approximately 97% of the CVOC contaminant mass. A small percent (approximately 5%) of the PCE contaminant mass is located in the vadose zone, whereas the remainder of the PCE mass present in the target treatment zone is located at depths ranging from 15 to 35 feet bgs, below the existing basement slab.

2.3.2 Groundwater

Only 1% percent of the total contaminant mass is estimated to be present in site groundwater. The highest CVOC concentrations in groundwater have been identified at piezometer PZ-1, near the northeastern corner of the former dry cleaning building where PCE was historically stored in a 300-gallon AST. Detected concentrations in PCE in groundwater at PZ-1 have been measured as high as 61,000 micrograms per liter (μ g/L).

Based on the concentrations of PCE, TCE, cis-1,2-DCE, and trans-1,2-DCE detected in groundwater, impacted groundwater with CVOC concentrations greater than ES values extend toward the east/southeast from the source area near PZ-2, PZ-4, and MW-6 and toward the west from the source area near MW-4. Historically, CVOCs have not been detected in groundwater, or were detected at low concentrations below the ES, at monitoring wells located north of the plume (MW-2), east of the plume (MW-9), west of the plume (MW-7 and MW-8), southeast of the plume (MW-1), and southwest of the plume (MW-3).

2.4 Potential Receptors

2.4.1 Soil

Previous subsurface investigations have identified the presence of CVOCs in soil at the site. Potential scenarios by which CVOCs may come in contact with receptors include direct dermal contact during drilling, soil excavation, or soil blending activities. Such activities at the site will be monitored to reduce potential risk due to inhalation of vapors or particulate matter and dermal protection will be utilized as necessary to protect field personnel from direct contact.

2.4.2 Groundwater

Potential ingestion of CVOC-impacted groundwater could hypothetically occur if affected groundwater were to migrate off-site to a private or municipal well used for potable water supply. However, no such groundwater receptors are currently present within the site vicinity, as it is served by the Milwaukee municipal water supply that obtains potable water from Lake Michigan. As such, the groundwater exposure pathway is not complete.

2.4.3 Surface Water

Local surface waters consist of the Milwaukee River, which is located approximately ³/₄ mile to the east of the Site, and the Menomonee River, which is located approximately ¹/₂ mile to the south of the Site. Impacts to local surface waters could potentially occur due to off-site migration of CVOC-impacted groundwater towards such surface water bodies; however, based on groundwater analytical results, groundwater impacts are limited to the immediate site area. Therefore, the surface water exposure pathway is not complete on site.

2.4.4 Utility Corridors

Potential concerns for sites with chlorinated-solvent contamination include migration of contaminants along utility corridors. The depth to the water table at the Site ranges between 7 and 17 feet bgs. Based on their invert elevations relative to the water table, 12-inch diameter sanitary sewer lines reportedly located adjacent to the southern (hydraulically downgradient) and eastern property boundaries may receive groundwater from the Site.

2.4.5 Vapor Intrusion

Potential concerns for sites with CVOC contamination include vapor migration into buildings. WDNR's vapor intrusion guidance for CVOCs indicates that the vapor intrusion pathway should be investigated if any of the following conditions are met:

- the building of interest is located over a CVOC source;
- the building is located within 100 feet of a CVOC source;
- the building overlies a groundwater plume that exceeds WAC NR 140 Enforcement Standard (ES) concentrations;
- groundwater with CVOC concentrations that exceed WAC NR 140 Preventive Action Limit (PAL) values is entering the building or is in contact with the building foundation or sump; and
- vapors have the potential to enter preferential pathways that connect to the building.

As no occupied buildings are located within 100 feet of the on-site CVOC source and none of the other conditions identified above have been met, Ramboll concludes that an investigation of the vapor intrusion pathway is not currently warranted at the Site. However, as part of the final close-out of the site, the potential for vapor migration along utilities adjacent to the site will be evaluated. As described in Ramboll Environ's June 7, 2016 proposal, the utility vapor migration evaluation will be conducted along a north-south trending sanitary sewer line reportedly located adjacent to the site in North 12th Street. The utility vapor migration evaluation will be completed after the remediation activities described in this report are completed. In addition, the Site may potentially be redeveloped as a parking lot, or it may remain vacant for a period of time following the completion of active remediation work. If the Site redevelopment plans change such that the construction of any on-site buildings is considered, the vapor pathway will need to be evaluated at that time.

3. REMEDIAL GOALS AND OBJECTIVES

This section presents the proposed remedial action goals and objectives for the impacted soil and groundwater at the Site. The overall goal of the remedial action is to remediate soil impacts that threaten human health and the environment, reduce source soil concentrations and mass to minimize leaching of volatile organic compounds (VOCs) through the vadose zone to groundwater, and decrease the persistent groundwater contaminant concentrations at the source and downgradient of the source area, consistent with WAC NR 700. This goal can be realized by effectively remediating source soil and groundwater contaminant concentrations downgradient of the source and downgradient of receding groundwater contaminant concentrations downgradient of the source area. The remedial actions proposed for achieving this goal will also result in increased value to the Site. The following sections discuss the rationale and selected method for establishment of the soil clean-up goals and the remedial objective for achieving no-further action for residual groundwater impacts at the Site.

The case closure goal for the Site is to obtain a no further action status under WAC NR 726, following successful implementation of soil and groundwater remedial actions. The closure pathway is anticipated to rely upon WDNR's GIS registry for recording closed sites that have contamination exceeding residual contaminant levels (RCLs) in soil and ES in groundwater. For the Site, the closure pathway for obtaining a no further action status for soil is via the use of a soil performance standard as a component of active remediation, while the closure pathway for obtaining a no further action status for groundwater is via a MNA remedy subsequent to active remediation.

3.1 Proposed Remedial Action Goal for Soil

With respect to the unconsolidated soils, the remedial objectives presented in this report include reducing CVOC concentrations in soil to concentrations below WAC NR 720 direct contact and protection of groundwater site specific RCLs, where feasible. As a condition of case closure, a portion of the impacted soils may need to be addressed through performance barriers and/or inclusion of the

Site on the Wisconsin GIS Registry of Closed Remediation Sites for Soil, if WAC NR 720 RCL values in soil are not achieved.

The generic WDNR soil to groundwater pathway RCLs for the chemicals of interest (PCE [4.54 μ g/kg], TCE [3.6 μ g/kg], cis-1,2-DCE [41.2 μ g/kg], and VC [0.1 μ g/kg]) using a dilution-attenuation factor of 2 are more stringent that the corresponding non-industrial direct contact RCLs (PCE [33,000 μ g/kg], TCE [1,300 μ g/kg], cis-1,2-DCE [156,000 μ g/kg], and VC [66.8 μ g/kg]). For example, the maximum detected PCE concentration in soil (6,700,000 μ g/kg) would require greater than a 99.999 percent reduction in the maximum soil concentration to achieve the soil to groundwater pathway RCL. Contaminant concentration reduction of this magnitude is beyond the capabilities of ordinary soil remedial technologies, and therefore, may not be technically or economically feasible. Moreover, the RCL concentrations identified above are below the method detection limits that analytical laboratories can achieve using the most current SW846 methods. As such, a performance-based remedial action goal for the protection of groundwater is recommended in lieu of these RCLs and for the following additional reasons:

- remediation of the soil source area to the groundwater protection RCLs would create an area of clean subsurface soil that may become re-contaminated by the shallow groundwater in the area;
- rebound to higher concentrations following remediation activities could exceed the groundwater pathway RCLs listed above (from this perspective, any added benefit to achieving additional mass removal to meet these concentrations may be ineffective in the long term); and
- remediation of soil to these concentrations would be cost prohibitive.

As such, a performance based soil remedial action goal for the protection of groundwater is proposed for the Site. As described in the previous paragraphs, WAC NR 720 stipulates that site-specific soil cleanup standards protective of public health, safety, and welfare and the environment are generally established to restore the environment to the lowest concentration practicable for specified soil contaminants. However, in the event that it is not practicable to achieve the site-specific soil cleanup standards, a soil performance standard may instead be implemented. For this Site, soil performance standards are applicable to address both the direct contact and groundwater pathways and must be implemented and maintained to verify that contamination no longer poses a threat to human health or the environment.

The final soil remedial action goal for the Site will be performance-based to verify that any residual soil contamination remaining at the Site does not further degrade groundwater quality. The performance based soil remedial action goal will be evaluated by monitoring groundwater conditions to document a stable and/or receding contaminant plume.

3.2 Proposed Remedial Action Goals for Groundwater

With regard to groundwater, the objective of the recommended remedial action is to reduce CVOC concentrations in groundwater near the identified source area based on the results of the previous site investigations. Following the completion of the remedial actions to reduce CVOC mass loading to groundwater, a groundwater monitoring program will be implemented to evaluate plume conditions and document that no adverse impact on human health, safety or welfare, or to the environment exists or develops in the future. The groundwater monitoring program will also document that the residual groundwater plume is stabilized and/or has receding CVOC concentrations. The closure pathway for the residual groundwater impacts is anticipated to incorporate an approach relying upon the WDNR's GIS registry for recording closed sites that have contamination exceeding the ES in groundwater.

4. EVALUATION OF REMEDIAL ACTION OPTIONS

This section identifies several feasible remedial action options that have the greatest potential to achieve the goals and objectives for remediating the impacted soil and groundwater at the Site. The identified remedial action options were evaluated based on the requirements specified in WAC NR 722, which are summarized in the following sections. Alternatives that were determined to not be technically or economically feasible were not retained for further evaluation. Information regarding this remedial action options evaluation was previously submitted to the WDNR during the remedial consultant selection process.

4.1 Remedial Action Options Evaluation Considerations

Based on the above site conditions and pathways of concern, a summary of site conditions relative to remedial evaluation and selection is as follows:

- The site is located in a populated urban area, with high visibility. A remediation strategy should be selected that minimizes short-term exposure and impacts to receptors during construction and long-term exposure based on the final remedy. Excavation and in-situ mixing techniques could potentially increase exposure to area residents and the public during the remediation and appropriate controls would be required.
- While impacted soils and groundwater extend onto the adjacent west public alley, soil impacts in this area are not proposed to be remediated as part of this remedial action. These isolated areas of impacts will need to be considered as part of the overall remedy; however, treatment of all areas of concern is not practicable.
- The soils on site are clayey in nature with associated low hydraulic conductivity. Traditional groundwater remedies such as groundwater extraction and treatment or air sparging are less effective in tight clay environments. Higher pressure injections will be necessary, which will create microfracturing of the clay soils during injection.
- Vadose zone soils are generally not highly contaminated, except in the northwest portion of the site, likely outside where the former PCE fill pipe was located. The majority of the treatment zone of concern is below the former PCE tank area (below the concrete floor slab) and extends to the southeast in the direction of groundwater flow. The depth of contamination extends from about 20 feet bgs to at least 35 feet bgs. The vadose zone soil contamination in the northwest portion of the site extends from the ground surface to 35 feet bgs.
- While dense non-aqueous phase liquid (DNAPL) was not observed on site, the concentrations of PCE are sufficiently high that DNAPL is likely present within the interstitial pore spaces of the clay and possibly heavily concentrated in the sand seams within the clay strata. Bioremediation technologies alone will not be effective within a reasonable period of time given the potential for the presence of DNAPL and the high concentrations of PCE and TCE in solution near the source area.
- Removal of all contamination in soil and groundwater to below generic soil cleanup standards is not practicable given the magnitude and extent of impacted soil and groundwater. Treatment of isolated areas of soil and groundwater impacts (not related to the primary source area) is not practicable. Therefore, a performance based standard goal for soil and groundwater cleanup, which focuses on contaminant mass removal, is necessary.
- After contaminant mass removal, groundwater remediation via natural attenuation in the existing naturally anaerobic environment present will be necessary. Enhancing degradation via reductive dechlorination technologies consistent with natural processes will likely be more successful for

long-term groundwater natural attenuation. As such, reductive dechlorination technologies should be more amenable to site conditions than chemical oxidation technologies.

• To date, approximately \$120,000 has been incurred in site investigation costs. As such, available funds for remediation using the DERP funds total approximately \$380,000. A key remedial objective is to maximize risk reduction through cost effective application of available funding.

4.2 Technical Feasibility

The technical feasibility of appropriate remedial action options was evaluated using the following criteria:

- 1. **Long-term effectiveness**. The long-term effectiveness of appropriate remedial action options, taking into account the following factors:
 - a. the degree to which the toxicity, mobility and volume of the contamination is expected to be reduced; and
 - b. the degree to which a remedial action option, if implemented, will protect public health, safety and welfare and the environment over time.
- 2. **Short-term effectiveness**. The short-term effectiveness of appropriate remedial action options, taking into account any adverse impacts on public health, safety and welfare and the environment that may be posed during the construction and implementation period until case closure under WAC NR 726.
- 3. **Implementability**. The implementability of appropriate remedial action options, taking into account the technical and administrative feasibility of construction and implementation of the remedial action options. Disruption of the existing business and potential impacts to neighboring properties were also considered when evaluating the implementability of each alternative.
- 4. Restoration timeframe. The expected timeframe needed to achieve the necessary restoration.

4.3 Economic Feasibility

The economic feasibility of each appropriate remedial action option was evaluated using the following criteria: capital costs, annual operation and maintenance costs, total present worth of the costs, costs associated with potential future liability, and disruption to businesses on or adjacent to the site. The economic feasibility of a remedial action option is determined by comparing the costs to what is expected to be technically achieved by that option, taking into account long-term effectiveness, short-term effectiveness, implementability, and the time until restoration is achieved for each option. The estimated remedial action option costs identified herein are intended to be within the target accuracy range of minus 30 percent to plus 50 percent of actual cost (United States Environmental Protection Agency [USEPA], 1988a).

4.4 Identified Remedial Action Options

The response actions identified for preliminary screening for the subject property include an appropriate range of potential remedial action options. The no action alternative is included as a general response action against which other actions can be evaluated.

Based on a review of laboratory results of previously collected soil and groundwater samples the recommended soil and groundwater treatment area includes the area below the existing basement, the area just west of the northwestern building corner (around PZ-1 and PZ-3), and the area due north of the northwestern corner of the existing building. This target treatment volume covers an area of approximately 3,280 square feet, and extends down to treatment depths ranging between

20 and 35 feet below bgs (approximately 5 to 20 feet below the former dry cleaning building basement grade). Based on these dimensions, the target treatment volume totals approximately 1,940 cubic yards.

With respect to evaluation of contaminant concentrations, the geometric mean is often used to evaluate data that cover several orders of magnitude. The geometric mean is the average of the logarithmic values of a data set, converted back to a base 10 number. A geometric mean, unlike an arithmetic mean, tends to dampen the effect of very high or low values, which might bias the mean if a straight average (arithmetic mean) were calculated. The geometric mean of PCE concentrations detected in soil samples collected to date outside of the target treatment volume (shown on Figure 3) is 77.5 μ g/kg, which is 99 percent less than the geometric mean of PCE concentrations detected in soil inside of the target treatment volume. Moreover, the majority of soil samples submitted for laboratory analysis outside of the target treatment volume were collected in 1999; as such, much of the associated CVOC mass has likely migrated from the vadose zone or attenuated over the past 18-year timeframe. Assuming active remediation of the target treatment volume is completed, such a substantial reduction in PCE concentration represents a substantial reduction in risk to public health, safety and welfare.

Approximately 97% of the CVOC mass in soil is present within this target treatment area. While the majority of the CVOC mass is present in the saturated zone, CVOC mass remaining above the water table can act as a long-term source of groundwater impacts. Therefore, the intended remediation will include reduction of contaminant mass flux to the water table from the vadose zone.

Remedial action options considered for the impacted soil and groundwater at the Site are as follows:

- No Action;
- Institutional controls;
- Vadose zone source remediation via:
 - Soil excavation and off-site treatment/disposal;
 - Soil vapor extraction;
 - *In-situ* chemical oxidation; and
 - In-situ chemical reduction;
- Natural attenuation with vadose zone remediation;
- In-situ anaerobic bioremediation with vadose zone remediation;
- Groundwater collection with vadose zone remediation;
- Air sparging with vadose zone remediation;
- Slurry wall installation with vadose zone remediation;
- Reactive barrier installation with vadose zone remediation;
- In-situ chemical oxidation;
- *In-situ* chemical reduction; and
- *In-situ* electro-thermal remediation.

4.4.1 No Action

The no action response involves no treatment or monitoring of contaminated soil and groundwater at the subject property. This response typically serves as a baseline against which the other

technologies and process options and/or alternatives can be compared. If prevailing site conditions lead to the determination that the site poses no significant risk to human health or the environment, then the no action response can be used as the sole remedial action. In that event, implementation of other types of action becomes unnecessary.

In terms of technical feasibility, the no action alternative would eventually reduce the magnitude of the existing risk in response to natural attenuation processes. Because no action is proposed in this alternative, the implementability is very high. From an administrative feasibility point of view, this alternative will likely not be accepted by the WDNR as the remedy for the site as short-term remedial objectives will not be met.

This alternative was considered the lowest in terms of present worth cost and disruption to the Site. It has no associated capital costs or operation and maintenance costs. This alternative will likely not be accepted by the WDNR, as CVOC concentrations have been increasing over time; as such, the no action alternative was not retained for further evaluation.

4.4.2 Institutional Controls

In Wisconsin, the GIS Registry of Closed Remediation Sites provides a means of public notice regarding residual contamination on owned or operated properties where a release of a hazardous substance occurred, was reported and cleaned up. Sites closed with soil contamination remaining above WAC NR 720 RCLs are required to be included in the GIS Registry for Soil. Sites closed with groundwater contamination remaining above WAC NR 140 ES values are required to be included in the GIS Registry for Groundwater. Sites closed with deed restrictions prior to June 2006 are also included in the GIS Registry. As of June 2006, the GIS Registry also became the database for listing sites closed with land use controls, which replaced deed restrictions.

If a land use control is required for a particular site, a maintenance plan may also be required. Maintenance plans may include requirements for cover inspections, fencing inspections, and/or routine groundwater monitoring. General information provided in the GIS Registry Package includes the most recent groundwater analytical data, site maps, groundwater elevation and flow direction as well as any special precautions that may be required for future potential redevelopment of a site. For sites identified on the GIS Registry, approval of well construction or reconstruction by the WDNR Bureau of Drinking Water is required and special well construction features may be needed. If the WDNR would accept monitored natural attenuation as a final groundwater remedy for the Site, a GIS registry would be placed on the property as the institutional control.

With regard to technical feasibility, no additional treatment technology would be included as part of this alternative; therefore, this alternative can only offer gradual reduction in the toxicity, mobility or volume of the contaminants. As with the no action alternative, this alternative may not be accepted as the sole remedy for the site as short-term remedial objectives will not be met.

In response to natural attenuation processes, the institutional control alternative would limit the migration of the plume downgradient of the site to some degree such that it would reduce the risk of future human exposure gradually over time. The risk of on-site human exposure would be reduced by restriction of installation of drinking water supply wells. This alternative will likely not be accepted by the WDNR as the sole remedy for the site as short-term remedial objectives have not been met; however, the alternative can be effective when completed in conjunction with other remedies. The cost for completing the appropriate institutional control documents is expected to be comparatively small. As indicated above, this alternative will likely not be accepted by the WDNR as a sole remedy for further evaluation, except in conjunction with other remedies.

4.4.3 Vadose Zone Source Remediation

Within the target treatment volume identified in Section 4.4, concentrations of PCE in soil within the vadose zone (above the water table) range at least as high as 73,700 μ g/kg (at GP-10, 0.5 to 2 feet below basement grade) and 71,200 μ g/kg (at GP-12, 0 to 2 feet below basement grade). These PCE concentrations are documented on Figure 3. These impacted soils, which extend to the water table that is present at approximately 2 feet below the building and 7 to 17 feet bgs, represent a substantial mass of PCE that will need to be remediated as part of any groundwater remediation effort, to reduce future migration of PCE from the vadose zone to the water table.

The remedial action options described in Sections 4.4.4, 4.4.9, 4.4.10, 4.4.11, and 4.4.12 are therefore recommended to include vadose zone source remediation in tandem with the evaluated groundwater remedial action options for the Site. The remedial action options described in Sections 4.4.5, 4.4.6, 4.4.7, and 4.4.8 include in-situ treatment of both the vadose zone and groundwater. The following sections provide an evaluation of vadose zone soil remediation alternatives.

4.4.3.1 Soil Excavation and Off-Site Treatment/Disposal

In terms of remedial alternatives to address the PCE-impacted soil, soil disposal costs associated with the excavation and off-site landfill disposal alternative could be very high as a portion of the impacted soils would represent RCRA characteristic hazardous waste based on PCE concentrations. It is Ramboll's experience at similar dry cleaning sites that the results of on-site mobile (or off-site "quick turnaround") laboratory analyses of soil samples collected during the course of excavation activities often reveal substantially greater PCE concentrations than those detected as part of previous site investigations. Such an outcome has led to the generation of unpredictable quantities of RCRA characteristic hazardous waste, with prohibitive cost implications.

Soil affected with PCE from former dry cleaner operations are subject to Universal Treatment Standards, under 40 CFR §268.49. Soil with PCE concentrations that exceed 60 milligrams per kilogram (mg/kg) and are intended to be disposed at RCRA Subtitle C facilities are required to first be treated to the 60 mg/kg standard; such treatment is typically conducted through chemical oxidation at the Subtitle C facilities. Soil with PCE concentrations that exceed approximately 1,000 mg/kg are required to be treated through incineration with a transportation and disposal costs that exceeds approximately \$1,200 per ton. Detected PCE concentrations in soil at the Site range as high as 6,700 mg/kg, such that incineration would be a necessary component of the excavation and off-site disposal alternative. Ramboll estimates that approximately 1,000 tons of heavily impacted vadose zone soil is present below and near the building (but above the water table) at the site. If, for example, one-third of this heavily impacted soil exceeds 1,000 mg/kg of PCE and the other twothirds ranges between 60 mg/kg and 1,000 mg/kg of PCE, estimated costs to characterize, excavate, transport, dispose and backfill the 1,000 tons of this heavily impacted soil would exceed \$1,000,000. Based on the foregoing, the vadose zone soil excavation alternative was not retained for further evaluation.

4.4.3.2 Soil Vapor Extraction

Soil vapor extraction (SVE), also known as "soil venting" or "vacuum extraction", is an *in-situ* remedial technology that reduces concentrations of VOCs adsorbed to soils in the unsaturated (vadose) zone. In this technology, a vacuum is applied through extraction wells near the source of contamination in the soil. Volatile constituents of the contaminant mass "evaporate" and the vapors are drawn toward the extraction wells. Extracted vapor is then treated as necessary (commonly with carbon adsorption) before being released to the atmosphere. SVE is most effective in removing VOCs at sites with homogeneous, coarse grained (sandy) soils where the water table is sufficiently deep such that upwelling of groundwater into SVE wells does not occur.

13 of 37

The vadose zone site lithology at the site consists of silty clay and clayey silt; the depth to the water table is only approximately 2 feet below the building. Considering the permeability and configuration of the impacted vadose zone soil (shallow vertical extent of vadose zone PCE mass within relatively low permeability fine-grained soils), the application of SVE would not effectively reduce PCE mass. As such, the SVE alternative for vadose zone remediation was not retained for further evaluation.

4.4.3.3 In-Situ Chemical Oxidation

The remediation of soil contamination using *in*-situ chemical oxidation (ISCO) involves injecting oxidants and potentially co-amendments directly into the source zone. The oxidant chemicals react with the contaminants, producing innocuous substances such as carbon dioxide, water, and (in the case of chlorinated compounds) inorganic chloride. Chlorinated solvents (ethene and ethanes) are amenable to treatment by ISCO.

The four major oxidants used for soil and groundwater remediation are permanganate, persulfate, peroxide, and ozone. Potassium permanganate (KMnO4) has been demonstrated to cost-effectively remediate soil and groundwater impacted with chlorinated ethenes, such as PCE and TCE. For treatment of contaminated soil, potassium permanganate in concentrated solution or solid form (approximately 50% by weight) has been delivered using injection lances, soil mixing, or hydraulic fracturing techniques.

ISCO requires direct contact of the oxidant with the target contaminants; however, injection of permanganate in liquid form through vertical hydraulic probes into shallow heterogeneous vadose zone soils can readily result in preferential transport of oxidant through relatively high permeability zones. As such, a total of four ISCO injection events would likely be necessary to achieve sufficient oxidant delivery and effective soil remediation. Solid permanganate is therefore often delivered into contaminated soil using in-situ soil blending, which serves to increase contact between the oxidant and impacted soil. This approach is most applicable to relatively shallow contamination (ITRC, 2005).

In-situ soil blending involves using an *in-situ* blender to effectively distribute chemical amendments throughout the soil medium to treat contaminants of concern. One such *in-situ* blender is mounted on a large excavator with a modified diesel engine and hydraulic power system. The *in-situ* blender utilizes a 28-inch diameter mixing drum with specially designed "teeth" which rotates at speeds up to 100 revolutions per minute (rpm) with torque in excess of 20,000 foot pounds. The mixer is capable of mixing dry soil as well as sludge material to depths of 18 feet bgs.

The *in-situ* blending process is performed systematically by subdividing the treatment area into smaller cells. The cell dimensions and chemical loading requirements are determined prior to mobilization. Each cell is mixed with the designated chemical amendments ensuring that site wide distribution is achieved. In some instances, where the target zones are thicker than 5 feet or where site conditions warrant it, each cell is subdivided into lifts of 5 feet. Each lift is mixed separately with predetermined quantities of chemical amendments. The entire soil column is then mixed, such that proper vertical distribution is achieved.

It is useful to note that the soil blending process inherently loosens the structural strength of the soils. Because the majority of the blending would occur below the water table, the blended soil may not stabilize over time to allow construction without additional geotechnical support systems. The soil may therefore not be suitable for building construction after the blending has been completed without the use of costly deep foundations for support. Because Marquette may potentially redevelop the site as a parking lot or it may remain vacant for a period of time following the

Soil oxidant demand testing on several site-specific soil samples would be conducted prior to implementing the ISCO remedial action, in order to estimate proper oxidant loading rates. Based on the implemented oxidant loading rate, the duration of chemical oxidation of the CVOCs of interest ranges between several days and several weeks.

The estimated cost for permitting, engineering design, *in-situ* soil injection (four injection events) of the vadose zone soil within the target treatment area using potassium permanganate and construction documentation would total approximately \$210,000. As indicated in Section 4.3, this estimated remedial action option cost is intended to be within the target accuracy range of minus 30 percent to plus 50 percent of actual cost (USEPA, 1988a).

4.4.3.4 In-Situ Chemical Reduction

Chemical reduction is one half of a redox reaction, which results in the gain of electrons. One of the reactants in the reaction becomes oxidized, or loses electrons, while the other reactant becomes reduced, or gains electrons. In *in-situ* chemical reduction (ISCR), reducing compounds, compounds that accept electrons given by other compounds in a reaction, are used to change the contaminants into harmless compounds.

ISCR involves the placement of a reductant or reductant-generating material in the subsurface for the purpose of degrading toxic organic compounds to potentially nontoxic or less toxic compounds, immobilizing metals such as Cr (VI) by adsorption or precipitation, and degrading non-metallic oxyanions such as nitrate. The most commonly used reductant is zero valent iron (ZVI), which is used to remediate halogenated ethenes and ethanes.

ISCR using ZVI represents an applicable remedial alternative for impacted soil at the Site. The ZVI rapidly produces anaerobic conditions and provides a hydrogen source over a several year timeframe, which serves to create a reducing environment. In addition, the corrosion of iron metal yields ferrous iron and hydrogen, both of which are possible reducing agents. The hydrogen gas produced is also an excellent energy source for a wide range of bacteria.

ZVI-Clay is an ISCR remediation technology for treatment of subsurface chlorinated solvent source zones. The technology involves admixing reactive media (e.g., granular ZVI), and a stabilizing agent (clay) using conventional soil mixing techniques. Benefits of the technology include contaminant depletion via ZVI-mediated reductive dechlorination and reduced hydraulic conductivity of the mixed zone. Contaminants are both chemically degraded and stabilized. The purpose of mixing clay into the source zones is to create a stagnant hydrologic environment to inhibit transfer of contaminants from the source zone to groundwater while the reaction with ZVI occurs inside the source zone (NRC, 2004). ZVI also can be mixed directly into source zones where the soil has low permeability (Faircloth, 2010).

As indicated in Section 4.4.3.3, the soil blending process inherently loosens the structural strength of the soils. In addition, the addition of bentonite and ZVI, combined with the blending process, will increase the volume of soil present, potentially resulting in a mounding effect. The soil may also not be suitable for building construction without additional geotechnical evaluation after the blending has been completed. However, because Marquette may potentially redevelop the site as a parking lot or the site may remain vacant for a period of time following the completion of active remedial site work, the soil blending process could be used to distribute the chemical amendments into the subsurface soils.

ISCR does not require direct contact of the reductant with the target contaminants; however, a single injection event of ZVI as a suspension through vertical hydraulic probes may not provide sufficient electron donor to remediate the impacted soils. In general, ZVI is active over a longer timeframe in the subsurface, and therefore, a total of two ISCR injection events would likely be necessary to achieve sufficient reductant delivery and effective soil remediation.

The estimated cost for permitting, engineering design, two ZVI injection events of the vadose zone soil within that target treatment area, and construction documentation would total approximately \$130,000.

4.4.3.5 Summary of Vadose Zone Source Remedial Alternatives

As indicated above, the excavation and off-site treatment/disposal alternative for vadose zone soil within the target treatment area would likely be cost prohibitive and is therefore not retained for further evaluation. Considering the permeability and configuration of the impacted vadose zone soil (shallow vertical extent of vadose zone PCE mass within relatively low permeability fine-grained soils), the application of SVE would not effectively reduce PCE mass. As such, the SVE alternative for vadose zone soil remediation is not retained for further evaluation associated with the Site.

The estimated cost for remediation of the vadose zone soil within that target treatment area using ISCR (\$130,000 based on two ZVI injection events) is less than that associated with in-situ chemical oxidation (\$210,000). Moreover, the duration of chemical oxidation of the CVOCs of interest would range between several days and several weeks; in contrast, the application of *in-situ* chemical reduction would provide a hydrogen source to support reductive dechlorination over a several-year timeframe. As such, the potential necessity for multiple injection events (and associated additional costs) is substantially higher with the ISCO alternative than with the ISCR alternative. Based on the foregoing, the remedial action options described in Sections 4.4.4, 4.4.5, 4.4.6, 4.4.7, 4.4.8, and 4.4.9 would therefore be recommended to include *in-situ* chemical reduction of the vadose zone in tandem with the evaluated groundwater remedial action options for the Site. The remedial action options described in Sections 4.4.12 are each able to be applied to remediate both vadose zone soil as well as groundwater.

4.4.4 Natural Attenuation with Vadose Zone Remediation

This alternative consists of natural attenuation of groundwater coupled with vadose zone source remediation, as the selected remedial action option to treat affected soil and groundwater at the subject property.

Natural attenuation processes can account for improvements in groundwater quality. This process is therefore considered a passive remedial alternative. Natural attenuation in the subsurface occurs due to a combination of processes including the following: biodegradation, adsorption, dilution, and dispersion. Depending on the initial concentrations and properties of the chemicals in the groundwater, and physical or biological processes controlling attenuation, the contaminant plume may eventually shrink or narrow over time, as the edges of the plume will degrade to insignificant concentrations. Intrinsic bioremediation is the use of a scientific approach to demonstrate the occurrence of microbial degradation of contaminants by monitoring the geochemical and biological properties of the groundwater, including pH, temperature, conductivity, oxidation/reduction potential, electron acceptors (e.g., dissolved oxygen, nitrate, nitrite, sulfate, etc.), carbonate, bicarbonate, carbon dioxide, methane, alkalinity, cations, TDS, chloride, sulfide, etc.

Soluble hydrocarbon plumes containing CVOCs are amenable to natural attenuation processes. MNA has limited effectiveness for contaminant plumes that have migrated to receptors or are present in an area where future groundwater use is likely. The ideal goal of MNA is to demonstrate that active

remediation is unnecessary because groundwater plumes will not reach potential receptors or other points of compliance before being remediated by organisms that occur naturally in groundwater.

Groundwater monitoring is used as a tool to provide information regarding changes in subsurface conditions over time. This action is a component of remedial action options for groundwater. In the case of monitored natural attenuation, time-series data are collected from monitoring wells to evaluate plume stability and to confirm the effectiveness of natural processes in the degradation of contaminants. Per current WDNR guidance, the Mann-Whitney U Test should be conducted by assembling well data for the most recent eight consecutive quarterly or semi-annual sampling events for each contaminant that has exceeded the WAC NR 140 ES at one or more monitoring wells.

From an administrative feasibility point of view, this option will require a demonstration of effectiveness (i.e., stable or declining concentration trends) before the administrative agency can accept this alternative as the final remedy for the site. Based on the relatively high and historically increasing PCE concentrations detected in on-site groundwater, it is not currently possible to accurately estimate a timeframe for completion of MNA and achievement of regulatory case closure in the absence of active groundwater remediation.

An evaluation of PCE concentrations in previously collected groundwater samples from the subject property was conducted to assess the possible presence of PCE as DNAPL. An organic compound concentration in groundwater that exceeds 1 percent of that compound's aqueous solubility is generally indicative of the presence of NAPL in the vicinity of the monitoring well screen (USEPA, 1994). The maximum detected PCE concentration in groundwater (61,000 μ g/L at piezometer PZ-1 in August 2009) is compared with the aqueous solubility of PCE (150,000 μ g/L) (USEPA, 1981). The detected maximum PCE concentration identified above represents approximately 41 percent of the aqueous solubility of PCE. Therefore, although DNAPL pools have not been observed, the available shallow groundwater quality information indicates the presence of interstitial DNAPL (where the DNAPL either coats soil surfaces or is held in soil pore space by capillary pressure) in groundwater at the subject property. Based on the probable presence of PCE as interstitial DNAPL at an approximate depth of 10 feet below the water table (based on the screen interval for piezometer PZ-1), achievement of regulatory case closure in the absence of active groundwater remediation is likely not possible within a reasonable timeframe. Therefore, the MNA alternative would likely not be acceptable to the regulatory agency based on the detected PCE concentrations. As such, the MNA alternative for groundwater was not retained for further evaluation.

4.4.5 In-Situ Anaerobic Bioremediation with Vadose Zone Remediation

CVOCs can be degraded by anaerobic microbes known as reductive dechlorinators to non-toxic daughter products. Such biodegradation requires reducing conditions to stimulate anaerobic bacteria to dechlorinate the CVOC. The approach is designed to provide a carbon or electron donor source to create reducing conditions necessary to enhance anaerobic biodegradation. A molasses/water mixture, whey, high fructose corn syrup, or sodium lactate, when delivered to the subsurface, are examples of effective electron donors that have been shown to degrade the CVOCs. Such anaerobic bioremediation processes have been successful and well documented at a wide variety of sites, and guidance documents are available that describe the process in detail (AFCEE, 2004).

The anaerobic microbes use CVOCs during dehalorespiration via reductive dechlorination. There are a variety of bacteria that dehalorespire only on PCE or TCE, producing toxic cis-1,2-DCE in the process. In contrast, the dechlorinating microorganism Dehalococcoides (Dhc) is the only known microorganism capable of further dechlorination to non-toxic ethene. Although Dhc microorganisms are widely distributed in the environment, research indicates that they are not ubiquitous. If Dhc is absent from a site, incomplete dechlorination and accumulation of cis-1,2-DCE is anticipated to occur, or extended acclimation periods will be required to allow low concentrations or poorly distributed Dhc populations to achieve functional cell densities. If the results of groundwater monitoring during the course of anaerobic bioremediation indicate insufficient Dhc bacterial populations, then the biostimulation is often combined with bioaugmentation using Dhc microbes that are naturally-acclimated to site groundwater.

Under this remedial approach, the naturally adapted microbes sequentially dechlorinate the CVOCs and gain energy in each step while utilizing the substrate as a carbon source and the CVOC as an electron acceptor. The adapted microbes respire using the CVOCs in place of other electron acceptors such as oxygen. The areas in which substrate is delivered become anaerobic due to the uptake of available electron acceptors to support respiration of the microbes, which provides the environment required for the bioremediation process to take place. This process has been shown to be more effective and less costly than other treatment processes, such as physical and chemical removal.

In order to effectively anaerobically bioremediate a particular area, it is critical to:

- select the optimal chemical additives;
- bioaugment (if necessary) the site with dechlorinating microbes;
- properly distribute the chemical and biological additives to stimulate the dechlorination process within the contaminated area; and
- maintain the enhanced subsurface conditions for sufficient time to fully dechlorinate the dissolved and adsorbed CVOCs.

The goal of the bioremediation is to inject amendments in the area of interest prior to "consumption" of the added electron donor. The electron donor that is added is consumed by the CVOCs in dechlorination reactions, as well as naturally-occurring electron acceptors in methanogenic reactions (plus sulfate reduction, nitrate reduction, etc.). The design of the bioremediation program is based on delivery of sufficient amendments to the impacted aquifer within a finite time period. The empirically determined guidance for the design of a bioremediation program is generally considered to maintain total organic carbon (TOC) concentrations within the active treatment zone within a range of 10 milligrams per liter (mg/L) to 200 mg/L.

Although *in-situ* anaerobic bioremediation has been applied at a few sites with residual or sorbed DNAPL, *in-situ* anaerobic bioremediation is typically more suitable as a polishing step following more aggressive DNAPL removal technologies (Stroo et al., 2003). Based on the foregoing and the apparent presence of DNAPL over a large portion of the target treatment volume at the Site as indicated in Section 4.4.4, the in-situ anaerobic bioremediation alternative for groundwater was not retained for further evaluation.

4.4.6 Groundwater Collection with Vadose Zone Remediation

This alternative consists of groundwater collection coupled with vadose zone source remediation as the selected remedial action option to treat affected groundwater and soil at the subject property.

Collection of groundwater is conducted as part of pump-and-treat systems. Groundwater is extracted from the subsurface for the purpose of aboveground treatment prior to rejection, reuse or discharge. Collection techniques include use of vertical or horizontal extraction wells or interceptor trenches.

It is widely established that contaminated aquifers typically cannot be restored through simple groundwater extraction and treatment (Keely, 1990; Travis and Doty, 1990; and McKay and Cherry,

1989). As such, groundwater extraction is often used as a hydraulic containment technology, as opposed to an aquifer restoration technology. The limitations associated with pump-and-treat methodology include the following:

- Organic contaminants generally have low solubility in groundwater. Therefore, only a small fraction of the total contaminant mass is accessible to the pump-and-treat process.
- Contaminants sorb onto sediments, further restricting their removal by the pump-and-treat process.
- The geology of most sites is complex, consisting of soils with both high and low hydraulic conductivities. Although removal of contaminants from high-hydraulic conductivity zones can be enhanced by increasing groundwater extraction rates, the rate of mass removal of contaminants from low hydraulic conductivity zones is often limited by desorption.
- Many pumping systems create stagnation zones or lead to contamination of previously uncontaminated areas.

Based on the foregoing, the probable presence of DNAPL in Site groundwater as discussed in Section 4.4.4, and the low measured hydraulic conductivity of saturated soils at the Site, the groundwater collection alternative was not retained for further evaluation.

4.4.7 Air Sparging with Vadose Zone Remediation

Air sparging is an in-situ remedial technology that reduces concentrations of volatile constituents in petroleum products that are adsorbed to soils and dissolved in groundwater. This technology, which is also known as "*in situ* air stripping" and "*in situ* volatilization," involves the injection of contaminant-free air into the subsurface saturated zone, enabling a phase transfer of hydrocarbons from a dissolved state to a vapor phase. The air is then vented through the unsaturated zone.

Air sparging is often used together with SVE, but it can also be used with other remedial technologies. When air sparging is combined with SVE, the SVE system creates a negative pressure in the unsaturated zone through a series of extraction wells to control the vapor plume migration.

When used appropriately, air sparging has been found to be effective in reducing concentrations of VOCs found in petroleum products. Air sparging is generally more applicable to the lighter gasoline constituents (i.e., benzene, ethylbenzene, toluene, and xylene [BTEX]), because they readily transfer from the dissolved to the gaseous phase. Oxygen added to contaminated groundwater as part of air sparging can also enhance biodegradation of BTEX and other VOCs that are amenable to aerobic bioremediation. Although methane can be used as an amendment to the sparged air to enhance cometabolism of lower halogenated CVOCs (such as TCE and cis-1,2-DCE), PCE has not been widely-demonstrated to be remediated co-metabolically. Moreover, air sparging can create groundwater mounding which could potentially cause free product to migrate and contamination to spread. In addition, potentially dangerous constituent concentrations can accumulate in nearby basements sewers, or other subsurface confined spaces. Based on the foregoing and the low measured hydraulic conductivity of saturated soils at the Site, this remedial alternative was not retained for further evaluation.

4.4.8 Slurry Wall Installation with Vadose Zone Remediation

The terms slurry wall, slurry trench, or slurry cut-off wall refer to non-structural vertical cutoff walls constructed using the slurry trench installation method. The slurry trench installation method refers to construction practices that utilize an engineered fluid (normally consisting of some mixture of clay and water) to hold open the sidewalls of an excavation, thereby permitting the excavation of deep and narrow trenches without the need for other conventional excavation support systems. Slurry

walls are mainly constructed to slow the flow of groundwater. Occasionally, these walls are also intended to reduce the migration of subsurface contaminants, by slowing the flow of the groundwater carrying the contaminants.

Most slurry walls are excavated with backhoes that can be modified to excavate to depths as great as 90 feet bgs. Greater depths are possible with clamshell excavators. When the excavation is complete, the trench is filled with a low permeability backfill (normally less than 1×10^{-7} cm/s). The backfill typically consists of a blend of soil and bentonite; soil, cement, and bentonite; or cement and bentonite. Composite barriers using synthetic materials (such as High Density Polyethylene [HDPE] liners) or composite trench systems are also possible.

Slurry walls are constructed by excavating a narrow trench under an engineered fluid. The most common engineered fluid in this application is a colloidal suspension of bentonite clay in water. Even below the water table, the slurry stabilizes the excavation and prevents the trench walls from collapsing. For the Site, the anticipated slurry wall dimensions would be 3 feet (width) by 60 feet (depth) by 520 linear feet to encapsulate the impacted area, for a total of 31,200 vertical square feet (VSF). Based on these dimensions, the estimated cost for permitting, engineering design, slurry wall construction, documentation, eight quarterly groundwater monitoring events (post-construction), and vadose zone remediation would total approximately \$980,000.

4.4.9 Reactive Barrier Installation with Vadose Zone Remediation

Permeable reactive barrier walls, sometimes called passive reactive barriers or permeable reactive barriers (PRBs), are vertical elements used to passively remediate contaminated soil and groundwater. This technology does not require any mass excavation, disposal or conventional "pump and treat" methods. Under this technology, a treatment media or reactive barrier is buried in a narrow trench beneath the ground surface so that contaminated groundwater can pass through the media. After the contaminated groundwater passes through and reacts with the media, the groundwater exits the other side of the wall with reduced contaminant concentrations. Typical treatment media used in PRBs includes granular iron, activated carbon, engineered bacteria, chemicals, and special clays.

Occasionally slurry walls are used to funnel the groundwater toward a reactive media gate; this type of installation is known as a "funnel and gate" system. Cost-effective PRB installations that ensure the design life require special construction considerations. Because any permeable reactive barrier wall must be buried deep underground and below the groundwater table, specialty geotechnical construction methods, such as those employed in deep drain installations, are quite useful in minimizing excavation volumes, eliminating dewatering, and reducing costs.

For the Site, the anticipated PRB dimensions would be 3 feet (width) by 60 feet (depth) by 120 linear feet, for a total of 7,200 VSF. Based on these dimensions, the estimated cost for permitting, engineering design, PRB construction, documentation, eight quarterly groundwater monitoring events (post-construction), and vadose zone remediation would total approximately \$970,000.

4.4.10 In-Situ Chemical Oxidation

The remediation of groundwater contamination using ISCO involves injecting oxidants and potentially co-amendments directly into the source zone. The oxidant chemicals react with the contaminants, producing innocuous substances such as carbon dioxide, water, and (in the case of chlorinated compounds) inorganic chloride. Chlorinated solvents (ethene and ethanes) are amenable to treatment by ISCO. The application of this remedial technology is further discussed in Section 4.4.3.3. However, under this alternative, ISCO would be applied to treat both the heavily impacted

vadose zone as well as impacted groundwater within the target treatment volume identified in Section 4.4.

For this application, potassium permanganate would be the recommended oxidant based on its demonstrated effectiveness in treating PCE and its degradation products without complicated activation methods. Proper design of a field-scale implementation of ISCO involves evaluation of contaminant concentrations as well as quantitative estimates of other oxidant sinks. If all of the oxidant sinks are not properly taken into account, the amount of oxidant that needs to be injected will be underestimated, and it is likely that the ISCO effort will fail. In addition to the target contaminants, other possible oxidant sinks include reduced minerals and naturally occurring organic matter (NOM). The amount of reduced minerals that will deplete oxidant depends upon the present oxidation-reduction potential (ORP) of the subsurface environment, as well as the chemical composition of the soil matrix (percentage of iron, for example). Approximate estimates of the oxidant demand for reduced minerals can be identified based upon soil description and semiqualitative descriptions of the ORP state of the aquifer (for example, iron- or sulfate-reducing conditions). However, this type of estimate can easily be in error as much as an order-of-magnitude and cause the ISCO to fail or lead to over application of oxidants. The other major oxidant sink is NOM. Not all NOM will be amenable to oxidation, and the level of oxidation of NOM depends upon the oxidant selected. Therefore, a laboratory analysis such as TOC may not provide an accurate estimate of the oxidant required for NOM. As such, several subsurface soil samples would be obtained as a pre-design task, and submitted for analysis of total oxidant demand (TOD).

Based on the presence of relatively organic-rich silt and clay soils and apparent reducing conditions in light of the presence of substantial concentrations of PCE-degradation product cis-1,2-DCE, a total oxidant demand of 8 grams of oxidant per kilogram of soil is assumed. As such, approximately 53,200 pounds of oxidant would be required for the target treatment volume.

As indicated in Section 4.4.3.3, ISCO requires direct contact of the oxidant with the target contaminants; however, injection of permanganate in liquid form through vertical hydraulic probes into shallow heterogeneous vadose zone soils can readily result in preferential transport of oxidant through relatively high permeability zones. At least four injection events would likely be necessary to deliver sufficient oxidant (13,000 pounds for each of the four injection events) to treat the high subsurface CVOC concentrations (that are indicative of DNAPL) at the Site.

Soil oxidant demand testing on several site-specific soil samples would be conducted prior to implementing the ISCO remedial action, in order to estimate proper oxidant loading rates. Based on the implemented oxidant loading rate, the duration of chemical oxidation of the CVOCs of interest ranges between several days and several weeks.

In accordance with WAC NR 169.23(6)(d), a pilot test would be conducted to evaluate the feasibility of the ISCO alternative. The pilot test would be conducted within the source area (area with the highest concentrations), addressing a single 20-foot by 20-foot area. For cost estimating purposes, it is assumed that this pilot test area cell would extend to approximately 35 feet bgs, for a total of treatment volume of approximately 300 cubic yards. The pilot test would be evaluated based on laboratory results of groundwater sampling of existing piezometer PZ-1 for analysis of VOCs. If the results of the groundwater sampling reveal substantially reduced CVOC concentrations, then full-scale ISCO would be conducted.

The estimated cost for permitting, engineering design, pilot and full-scale injection of the target treatment area (vadose zone and groundwater) using potassium permanganate, construction documentation, and nine groundwater monitoring events, would total approximately \$550,000 (assuming four full-scale injection events). Based on the relatively short duration of oxidant

longevity (several days to several weeks), additional soil injection events might be necessary at additional cost.

4.4.11 In-Situ Chemical Reduction

As indicated in Section 4.4.3.4, chemical reduction is one half of a redox reaction, which results in the gain of electrons. One of the reactants in the reaction becomes oxidized, or loses electrons, while the other reactant becomes reduced, or gains electrons. In ISCR, reducing compounds, compounds that accept electrons given by other compounds in a reaction, are used to change the contaminants into harmless compounds.

ISCR involves the placement of a reductant or reductant-generating material in the subsurface for the purpose of degrading toxic organic compounds to potentially nontoxic or less toxic compounds, immobilizing metals such as Cr (VI) by adsorption or precipitation, and degrading non-metallic oxyanions such as nitrate. The most commonly used reductant is ZVI, which is used to remediate halogenated ethenes and ethanes. The application of this remedial technology is discussed in Section 4.4.3.4. However, under this alternative, ISCR would be applied to treat both the heavily impacted vadose zone as well as groundwater.

Treatment of CVOCs by ZVI is a demonstrated and widely-accepted effective in-situ remediation technology. The degradation process is an abiotic reductive dehalogenation process occurring on the surface of the granular iron, with the iron acting as an electron source. During the dehalogenation process, the halides on the compound (chloride, fluoride and bromide) are replaced by hydrogen resulting in the transformation of halogenated VOCs to ethane, ethane, methane, and halide ions (CI-, FI-, and Br-). Dehalogenation proceeds by three processes commonly referred to as β -elimination, hydrogenolysis and hydrogenation. For chlorinated ethenes such as PCE and TCE, β -elimination involves the removal of two chlorides on adjacent carbons resulting in the formation of a lesser chlorinated acetylene intermediate and is considered to be the dominant dechlorination process for most chlorinated ethenes.

Under this remedial alternative, the recommended carbon amendment would be a patented mixture of lactates/fatty acids and micron-scale ZVI. The carbon amendment contains soluble lactic acid as well as slow- and long-term releasing components. A phosphate buffer provides phosphates, which are a micronutrient for bioremediation. In addition, the buffer helps to maintain the pH in a range that is best suited for microbial growth.

ISCR does not require direct contact of the reductant with the target contaminants, and delivery of the reductants can be completed using hydraulic injection or in-situ soil blending. Hydraulic injection approaches are not effective in delivering reagent to locations just below ground surface as indicated above. As such, a total of two ISCR injection events would likely be necessary to achieve sufficient reductant delivery and effective soil remediation. Based on the high detected CVOC concentrations in soil samples previously obtained at the Site, and the high costs associated with soil disposal, application of enhanced reductive dechlorination using *in-situ* soil blending is retained for further evaluation.

The application of approximately 167,000 pounds of ZVI and carbon amendment would be recommended to treat the targeted CVOC-impacted soil and groundwater. The ZVI content would be equivalent to 2.5% of the weight of the target treatment volume. A pilot test would not be necessary for the ISCR alternative, as *in-situ* soil blending facilitates effective contact between amendments and contaminants and allows for greater amendment dosing that hydraulic injection delivery approaches. Therefore, completion of a costly and time-consuming pilot test would not

The estimated cost for permitting, engineering design, completion of a bench scale test, and completion of full-scale *in-situ* soil blending within the target treatment area to treat both vadose zone soil and groundwater, construction documentation, and nine groundwater monitoring events would total approximately \$350,000.

4.4.12 In-Situ Electro-Thermal Remediation

This alternative consists of *in-situ* electro-thermal remediation of the area in the immediate vicinity of the facility building at the Site, as the selected remedial action option to treat affected soil and groundwater at the property.

Using an *in-situ* electrical resistance thermal remediation technology, the impacted soil and groundwater in the target area is heated by resistance from an electric current applied between subsurface electrodes. The heating creates an in-situ source of steam to strip VOCs from the soil and groundwater as the dissolved constituents' partition to the vapor phase. Udell (1996) determined that steam stripping was the mechanism by which subsurface heating removed a wide range of hydrocarbons from pore spaces, including high boiling point compounds. Specific processes include evaporation into the subsurface air stream (for example, the vapor pressure of TCE increases 15-fold between ambient temperature and 100 degrees Celsius), and steam distillation (as the treatment zone is heated, each milliliter of soil moisture produces over a liter of steam). Organic vapors tend to partition into the produced steam, and are swept along with it toward extraction wells.

The continuous heating also lowers the viscosity of water and causes pressure-driven microfracturing in low permeability soils to increase the effective permeability of the soil; these two processes increase the mobility of the VOCs. The increased contaminant mobility allows for the removal of the VOCs using soil vapor extraction to a degree that would not be possible in the current condition of the soil. Municipal tap water would be injected into the electrodes and drawn to soil vapor extraction wells during the operation to sustain the presence of beneficial steam.

Based on a conceptual design, the thermal remediation system could consist of an array of approximately 14 electrode well locations each spaced 20 feet apart, approximately nine vapor/ liquid extraction wells, and 5 temperature sensor locations within the impacted area.

Soil vapor consisting of volatilized contaminants, steam, and air would be removed from the subsurface using the vacuum extraction wells. The extracted soil vapor would be cooled, dried and treated prior to discharge. The soil vapor condensate would be treated to a concentration acceptable for appropriate discharge, in conformance with applicable air emission regulations. A target temperature of 100 degrees Celsius within the treatment volume would be achieved during the 6-month system operation timeframe. A 1-year timeframe after ceasing operations at the site may be required for the subsurface in the vicinity of the remediation to return to ambient temperatures.

Under this remedial alternative, the estimated cost for permitting, bench-scale testing, engineering design, remedial system installation, 6 months remedial system operations and maintenance, remedial system decommissioning, construction documentation, and eight quarterly groundwater monitoring events (post-treatment), would total approximately \$960,000.

4.5 Selected Remedial Action

Based on the identification and evaluation of remedial options, the following remedial alternatives were retained:

- a. Slurry wall installation with vadose zone remediation, can provide hydraulic containment of CVOCimpacted groundwater. However, long-term groundwater monitoring (well beyond 2 years) would be required, as impacted groundwater is encapsulated as opposed to remediated.
- Permeable reactive barrier installation with vadose zone remediation, is designed to remediate CVOC-impacted groundwater prior to exiting the hydraulically downgradient property boundaries. However, long-term groundwater monitoring (well beyond two years) would be required, as only impacted groundwater downgradient of the source is remediated.
- c. *In-situ* chemical oxidation though hydraulic probe injection of potassium permanganate, may be subject to greater than four injection events based on a relatively short oxidant longevity, resulting in uncertain total remedial costs.
- d. *In-situ* chemical reduction though *in-situ* soil blending of ZVI and carbon amendment, is associated with a longer-duration active reagent when compared with oxidation technologies, which reduces the need for multiple events.
- e. *In-situ* electro-thermal treatment, is an aggressive CVOC mass removal technology that, based on high infrastructure capital costs, is more cost effective in remediating sites with larger treatment volumes than the subject Site.

The slurry wall installation, permeable reactive barrier installation, and *in-situ* electro-thermal treatment options were not selected based on their high associated remedial costs. The estimated cost for remediation of the target treatment volume using *in-situ* chemical reduction is less than that associated with *in-situ* chemical oxidation. Moreover, the duration of chemical oxidation of the CVOCs of interest would range between several days and several weeks; in contrast, the application of *in-situ* chemical reduction would provide a hydrogen source to support reductive dechlorination over a several-year timeframe. As such, the potential necessity for greater than four hydraulic probe injection events (and associated additional costs) is substantially higher with the *in-situ* chemical oxidation alternative than with the *in-situ* chemical reduction alternative which includes only one soil blending event since the ZVI/ carbon amendment is much longer lasting. Sufficient mass/ distribution of the ZVI and carbon amendment is achieved through the *in-situ* soil blending process. In addition, the purple color associated with permanganate-treated soil and groundwater could also result in unwanted public attention to this visually accessible site in downtown Milwaukee.

Based on the factors summarized above, Ramboll recommended implementation of *in-situ* chemical reduction though in-situ soil blending of ZVI and carbon amendment to remediate CVOC-impacted soil and groundwater at the subject property.

Treatment of CVOCs by ZVI has been proven and widely-accepted as an effective *in situ* remediation technology. ZVI destroys CVOCs in groundwater, including PCE and daughter products detected in soil and groundwater at the Site. The degradation process is an abiotic reductive dehalogenation process occurring on the surface of the granular iron, with the iron acting as an electron source. Because the microbes at the Site are already anaerobically degrading the PCE impacts, this remedial process will enhance the natural degradation process.

The WDNR approved the recommended remedial action in a letter dated March 3, 2017, and associated DERP funding of \$349,506. A natural attenuation groundwater monitoring program will be instituted following implementation of chemical reduction using in-situ soil blending. A request for case closure will be submitted to the WDNR in accordance with WAC NR 726 after demonstrating

CVOC concentrations are stable or declining. Eight rounds of groundwater monitoring are proposed as required by WDNR guidance to demonstrate natural attenuation after source treatment.

5. PRE-REMEDIAL SAMPLING AND TREATABILITY STUDY RESULTS

This section summarizes the results of the WDNR-approved pre-remedial groundwater sampling and concrete sampling conducted at the Site in November 2017. Soil and groundwater samples were also collected in November 2017 for a treatability study, and the treatability study is discussed in the following subsections. These pre-remediation sampling activities were completed in accordance with Ramboll Environ's *Health and Safety Plan* (Ramboll Environ, 2017).

5.1 Pre-Remedial Groundwater Sampling

Ramboll Environ conducted a round of baseline groundwater monitoring in November 2017. It was critical to conduct a baseline groundwater monitoring event since the existing wells had not been sampled since 2009. As part of this task, groundwater elevations were measured across the site at nine monitoring wells and four piezometers. Shallow groundwater generally flows from the northwest portion of the Site towards the southeast and east. The water table elevations measured in November 2017 are shown on Figure 4.

Additionally, eight of nine monitoring wells and four piezometers were sampled for VOCs (Method 8260). One monitoring well, MW-8 was not sampled in November 2017 because the well did not sufficiently recharge for sample collection. During the November 2017 groundwater sampling event, a YSI multi-parameter meter was used to measure geochemical parameters, including pH, dissolved oxygen, and ORP. In accordance with the WDNR October 2014 guidance document "Understanding Chlorinated Hydrocarbon Behavior in Groundwater" (WDNR Publication RR-699), monitoring wells MW-1, MW-2, MW-6, and piezometers PZ-1 and PZ-2, located within, upgradient, and downgradient of the treatment area, were also sampled for the following natural attenuation parameters: ethene/ ethane/methane (Method 8015), dissolved iron (Method 8146), total organic carbon (Method 5310), nitrate+nitrite (Method 353.2), and sulfate (Method 300). Three quality assurance/quality control (QA/QC) duplicate groundwater samples and two QA/QC laboratory trip blank samples were submitted for laboratory analysis of VOCs as part of the baseline groundwater monitoring event.

Based on the pre-remedial groundwater sampling results, the concentration of PCE in groundwater ranged from non-detect to 16,200 μ g/L. The maximum PCE concentration was detected at piezometer PZ-1. The extent of PCE impacts in groundwater is shown on Figure 5. The groundwater analytical results were compared to the WAC NR 140 ES. For PCE, measured concentrations exceeded the WAC NR 140 ES (5 μ g/L) at three monitoring wells (MW-4, MW-5, and PZ-1). Exceedances of the WAC NR 140 ES for cDCE (70 μ g/L) and TCE (5 μ g/L) were also measured in groundwater at the following monitoring wells:

- cDCE: MW-5, PZ-1 and PZ-3
- TCE: PZ-1 and PZ-3

The groundwater analytical results are presented in Table 2, and the natural attenuation parameter analytical results are presented in Table 3. The laboratory analytical data is included in Appendix B.

5.2 Pre-Remedial Concrete Sampling

As part of the pre-remedial investigation activities, four concrete samples were collected from the concrete slab in the existing building basement, in the vicinity of the former location of the reported

300-gallon PCE storage tank. Concrete samples were collected using a battery-powered drill at the locations shown on Figure 6. The concrete samples were submitted to Pace Analytical for analysis of VOCs and TCLP-VOCs. The concentration of PCE in concrete ranged from 47.3 J μ g/kg to 115,000 μ g/kg. TCLP PCE concentrations ranged from 16.1 μ g/L to 95.0 μ g/L. The concrete analytical results are presented in Table 4, and the laboratory analytical data is included in Appendix B.

Although the TCLP-PCE concentrations are less than 700 μ g/L and indicate that the material is not characteristically hazardous, the WDNR has indicated that impacted concrete removed from the site will likely need to be handled as a listed waste due to the historic dry cleaning operations that took place at the site. Therefore, the impacted concrete floor within the former PCE storage room will be transported off-site for disposal as a listed hazardous waste. Approximately 8 tons of impacted concrete will be treated and disposed off-site at an approved disposal facility.

5.3 Pre-Remedial Treatability Study

A pre-remedial treatability study was also completed in order to obtain information related to the dose of ZVI to be applied to the soil. In November 2017, Ramboll Environ collected a 2-liter representative sample of contaminated soil, using a geoprobe soil boring (TB-1) advanced to a depth of approximately 28 feet bgs in the vicinity of soil boring location GP-23 (Figure 3). A photoionization detector (PID) was used to field screen the soils prior to collection of the treatability soil sample. The soil boring log and abandonment form for TB-1 are included in Appendix C-1. Please note that an additional boring (referred to as TB-2) was initially advanced near PZ-1 to facilitate collection of the treatability sample; however, due to the conditions encountered (i.e., low PID readings), the location was abandoned and TB-1 was advanced near GP-23 where higher PID readings were encountered. Additionally, one liter of site groundwater was collected from piezometer PZ-1.

The treatability study soil and groundwater samples were submitted to ReSolution Partners. ReSolution Partners submitted a sub-sample of soil and groundwater were submitted for analysis of VOCs by Pace Analytical, and concentrations were found to be acceptable. Treatability samples were prepared, and included the following:

- an unamended control;
- soil plus 1.5% ZVI (using ZVI sample obtained from the remediation contractor);
- soil plus 2.5% ZVI; and
- soil plus 3.0% ZVI.

The treatability samples were prepared to achieve a target moisture content of 15% by weight, and the samples were stored inverted and in the dark at room temperature for four weeks of reaction time, from November 20, 2017 to December 18, 2017. At the end of the reaction period, a sub-sample of soil from each treatability sample was submitted for analysis of VOCs by Pace Analytical in order to evaluate the treatment effectiveness for each ZVI loading rate and the unamended control. The treatability study revealed reductions in PCE concentrations between 30 to 42%, while TCE concentrations were observed to increase likely due to the degradation of PCE. Based on these results and discussions between ReSolution Partners, Redox Tech, and Ramboll, further treatability testing was determined to be necessary in order to increase the moisture content to improve chemical performance.

The second phase of the treatability study was conducted for the soil plus 2.5% ZVI only, using remaining treatability study soil and groundwater previously submitted by Ramboll to ReSolution Partners. The treatability sample was prepared to achieve a target moisture content of 30% by

26 of 37

weight. The sample was stored inverted and in a dark room at room temperature for 2 weeks of reaction time, from January 4 to January 18, 2018. At the end of the reaction period, the treated sample and unamended control were submitted for analysis of moisture content and VOCs by Pace Analytical. The laboratory-measured moisture content in the treated sample and control were 17.8% by weight and 21.4% by weight, respectively, both below the target of 30% by weight. Additionally, no reduction in PCE concentrations were observed when comparing the treated sample to the control. As such, the results of the second phase of treatability testing are considered inconclusive, as the desired moisture content was not maintained throughout the test. Without adequate moisture, the ZVI will not sufficiently react to reduce contaminant concentrations.

Further bench scale testing is currently being performed maintaining the desired 30% by weight moisture and utilizing 2.5% ZVI with ABC® carbon amendment (together referred to as ABC® +) to better simulate the generally saturated soil conditions that will be encountered during field implementation. The prior tests included ZVI alone, as the focus of the testing was on determining the optimum dosing rate and ZVI provides a more immediate reaction that could be measured during the short duration bench scale treatability testing. The addition of ABC® along with the ZVI is expected to aid in the retention of moisture during the testing, while in the field, it will provide a long-term source of nutrients to anaerobic growth, which will help to maintain a reducing environment.

Additional information on the treatability study methods and findings for both phases of the treatability study is included in Appendix C-2.

6. REMEDIAL ACTION DESIGN AND IMPLEMENTATION PLAN

The following sections present the design and implementation plan for the selected enhanced reductive dechlorination remedy for the source area soil and groundwater impacts at the Site. Also included in this section is the groundwater monitoring plan for verifying remedy performance for onsite groundwater.

6.1 Description of Current Site Conditions

The Site is located at 1214-1222 West Wells Street and occupies approximately 0.75 acres of land within the City of Milwaukee. The property is currently zoned as a Local Business District LB2 in the City of Milwaukee. The surrounding area contains a mixture of vacant parcels and both residential and commercial/business properties. The Site is currently developed with a multi-story, multiple tenant building, along with an asphalt parking lot and subsurface utilities that serviced the facility. Removal of the on-site buildings and asphalt parking areas will occur prior to the implementation of the Site remedial activities.

6.2 Pre-Soil Blending Activities

6.2.1 Permitting and Waste Profile Approvals

The following permits and waste profile approvals will be obtained prior to implementing the remedial action activities.

Underground Injection Control (UIC) Permit and General Permit for Groundwater Remediation

In accordance with the Wisconsin Pollutant Discharge Elimination System (WPDES) general permit requirements, a temporary exemption for injection in accordance with WAC NR 140.28(5) and approval to inject remedial materials under WAC NR 812.05, will be requested. The permit exemption applications are being submitted to the WDNR under separate cover concurrently with this Remedial Design Report.

Waste Profile for Impacted Concrete Disposal

A waste profile form will be completed for disposal of contaminated remediation waste (concrete) generated during the pre-remedial demolition activities. The impacted concrete identified for off-site disposal includes all of the basement flooring within the former PCE storage room as shown on Figure 6. Documentation on the ultimate treatment/disposal location will be included in the Remedial Action Completion report, described in Section 7.1.

6.2.2 Removal of Existing Building and Utilities

The Site currently contains an existing building, associated utilities that serviced the various operations at the Site, and asphalt parking areas. The building will be demolished by the redevelopment contractor (herein referred to as the general contractor) as part of the site preparation activities prior to the implementation of the remedial action. As part of the building demolition, the majority of the existing concrete basement foundation walls and slab will be removed to provide access to the impacted soil beneath the slab. The southern basement wall that is adjacent to West Wells Street is intended to remain. The abandoned utilities present in the vicinity of the soil treatment area will also be removed either during or prior to conducting the soil remediation activities. In addition, the existing asphalt pavement within the remediation area will also be removed surfaces outside of the remediation area will remain to minimize tracking of soil.

Based on the pre-remedial concrete sampling activities described in Section 5.2, a portion of the concrete slab material has been impacted by the former dry cleaning operations previously conducted at the Site. The impacted concrete floor from within the former PCE storage room will be removed, segregated, and disposed off-site. The remaining basement floor and other concrete from the building demolition activities will be crushed on-site and used as backfill following the completion of the site remediation activities.

Demolition of the on-site structures and removal of abandoned utilities and the asphalt parking areas will be performed by the general contractor, under a separate contact with Marquette University. Details of the locations and the demolition are provided in Appendix D, Plan Drawings and Specifications, for reference.

6.2.3 Soil Erosion and Sediment Control Measures

Prior to implementing the site redevelopment and remediation work, soil erosion and sediment controls measures will be undertaken by the general contractor to prevent runoff, tracking, or loss of soil materials by water or mechanical action from disturbed portions of the Site. The soil erosion and sediment controls may consist of placing silt fence along the perimeter of the Site where drainage of water from high areas toward low areas is expected to occur, if adequate pavement is not identified to remain around the remediation area. In addition, filter fabric barriers may be installed at affected non-curbside and curbside catch basins. The general contractor will establish and maintain the erosion control features until all earthwork and soil blending is completed and final surface materials have been placed onto work area. A copy of the general contractor's erosion control permit is provided in Appendix E.

6.2.4 Security of Work Area

For purposes of securing the work area from bystanders and/or pedestrians walking along North 12th Street and West Wells Street, a temporary fence has been installed by the general contractor along the Site property boundary to enclose the work area. The location of the temporary fence is detailed in Appendix D, Plan Drawings and Specifications. The temporary fence consists of chain-link fencing panels, approximately 6 feet in height. The fence is secured in place using sand bags that are placed on each of the pole bases. Jersey barriers will be added along the West Wells Street fence line, as

appropriate, to provide additional protection. The temporary fence contains two access gates, one located at the southwest corner of the property along West Wells Street and the other located at the northwest corner of the Site on the northern property boundary. Two temporary access gates are also installed along North 12th Street, one at the northeast end and the other at the southeast end. The gates will be locked during non-working hours of the day. The temporary fence will remain in-place throughout the duration of the pre-remedial building demolition activities, the active soil and

6.2.5 Monitoring Well Abandonment

Existing piezometers PZ-1 and PZ-3, located within the target treatment zone were abandoned in accordance with WAC NR 141 on January 11, 2018. Well abandonment form 3300-005 will be completed to document the abandonment and will be included in the Remedial Action Completion report.

groundwater treatment activities, and site restoration activities. Once the soil blending activities are

complete and the site is restored, the general contractor will remove the chain link fence.

6.3 Implementation of In-Situ Enhanced Reductive Dechlorination

The following sections present the details of the implementation of the selected remedial approach. This section also describes the final site restoration activities to be completed following active soil and groundwater remediation.

6.3.1 Treatment Area Layout and Soil Blending Procedure

The extent of the treatment area and layout for soil blending are shown in Figure 7and Sheet 5 in Appendix D (Plan Drawings and Specifications). The designated soil blending treatment area will be gridded into approximately 20-foot by 20-foot treatment cells by the remediation contractor and uploaded into an electronic mapping system.

In-situ soil blending involves using an in-situ blender to effectively distribute chemical amendments throughout the soil medium to treat the contaminants of concern. The *in-situ* blender is a proprietary system that is mounted on a large excavator with a modified diesel engine and hydraulic system. The *in-situ* blender utilizes a 28-inch diameter mixing drum with specially designed "teeth" which rotates at speeds up to 100 revolutions per minute (rpm) with torque in excess of 20,000 foot pounds. This allows the mixing drum to penetrate all soil types, even backfill materials such as bricks, rebar, and small rocks.

An excavator will work in tandem with the in-situ blending equipment. The excavator will be used to excavate soils as needed and to "loosen" the soils prior to blending in order to ensure there are no buried items, such as boulders, debris, etc. that may potentially damage the blending head. The excavator will also be used to manage soil and movement and addition of the chemical amendments, as needed. All excavation activities will be conducted in accordance with Occupational Safety and Health Administration (OSHA) excavation standards where applicable. Excavation protection methods may include a combination of benching and shoring, and the remediation contractor will be responsible for developing the excavation protection methods. A separation distance of approximately 20 feet is required between the remediation area and the adjacent parking structure to the west of the Site. The remediation contractor will provide an implementation plan for Ramboll's review and approval prior to commencement of remediation activities.

The existing site building will be demolished prior to the implementation of the remedial action. The removal of the site building will result in an approximately 15 feet deep excavation, from which soil blending treatment depths will then be measured. The upper 5 feet of soil (currently 0 to 5 feet below basement grade) will be excavated and placed on the adjacent cell within the treatment area. The *in situ* blending process will be performed systematically in the treatment cells that are divided

into approximately 20-foot by 20-foot treatment cells across the treatment area. The treatment volume of each cell will be divided into lifts, with the thickness of each lift ranging from 5 to 10 feet depending on the treatment cell. The number of lifts per treatment cell will depend on the target treatment depth for a given cell and will be specified in the remediation contractor's implementation plan.

When soil blending within a treatment cell, the upper lift(s) of soil will be excavated and placed on the adjacent cell within the treatment area. Once the lower lift(s) has (have) been blended with the predetermined quantity of amendment (ABC+), the upper lift(s) will be backfilled and the process repeated with additional ABC+. The purpose of performing the soil blending in lifts is to ensure that the amendments are properly distributed throughout the soil column and to thoroughly mix and homogenize the entire cell. Each cell/lift will be blended independently. Only after a targeted cell/lift has been fully completed will the equipment move to the next cell/lift. The strategy proposed is intended as a guide and is subject to change if field conditions require. This will be left up to the discretion of the operator and field lead. Details of the locations and methods and materials to be used are included in Appendix D, Plan Drawings and Specifications.

6.3.2 Chemical Amendment Mixing and Delivery

The chemical amendment loading rates for each cell and lift will be predetermined. ABC+ will be delivered to the site in two separate components. The liquid portion (ABC[®]) will be delivered in 330-gallon totes, while the ZVI will be delivered in 1,000- or 2,000-pound supersacks. The remediation contractor's implementation plan will attempt to design cell dimensions/sizes so that full supersacks of ZVI will be utilized (i.e., Redox Tech will attempt to minimize using partial sacks at cells). This will increase efficiency and maintain proper loading rates. It is estimated that approximately 167,000 pounds of ZVI and ABC[®] solution will be used to treat the target CVOC-impacted soil and groundwater. The ZVI content will be equivalent to approximately 2.5% of the weight of the target treatment volume.

The super sacks containing ZVI will be moved on site using an off-road forklift. As needed, the sacks will be brought from the staging area to the treatment cell using the excavator. Each sack is equipped with four looped lifting straps (one on each corner) that when pulled upwards, allows for the entire sack to drain under gravity. These loops will be connected to the lifting ring, located on the bottom of the excavator's bucket. The operator of the excavator will then tilt the sack on its side to allow access to release nylon braided lifting straps located on the underside of the sacks. Once the operator signals the field technician to proceed, the technician will release the straps on the underside of the sack to allow for the chemicals to pour from the sack once lifted. The technician will then leave the exclusion zone (approximately 50 to 75 feet away from the equipment) and signal the operator to proceed. The operator will lift the sack over the treatment cell, emptying the contents of the sack.

The ABC[®] solution will be added to the treatment cell as the soil is being blended. The solution will be brought to the work area via 330-gallon totes or via a 550-gallon tank mounted on a flat-bed trailer. As the blender is mixing the soil, a predetermined amount of solution will be transferred from the storage tank to the treatment cell via transfer pumps and hoses. The blender will blend all chemicals throughout the entire lift/cell. The process is deemed complete when the operator has determined that a homogenous mixture has been obtained (based on visual observations and pressure readings on his equipment). Once completed, the equipment will move to the next lift and/or cell, and the process will be repeated until all the material is thoroughly mixed into the lift/cell.

6.3.3 Potable Water Use

During blending, additional water will be added to the treatment cell to assist in the blending process. Water will be obtained from a faucet located in the adjacent Marquette parking garage immediately west of the remediation area. The remediation contractor will attempt to use as little water as possible (less than 500 gallons per cell) to avoid producing extremely wet conditions. Blending will continue until a homogenous consistency is attained. The amount of water that is used will be monitored using a water meter or other method employed by the remediation contractor. Additional details regarding the water source are included in Appendix D, Plan Drawings and Specifications.

6.3.4 Management of Excess Soil during Soil Blending

The soil blending process, combined with the addition of amendments and water, often results in an expansion of soil volume resulting in mounding or soil swell. If this occurs, the excess soils will be moved towards the center of the blending/treatment area by the excavator and tapered towards the edges of the target area. Segregated soil material that is accumulated will be temporarily stored within the "area of contamination" in accordance with all applicable federal and state laws and regulations. Potentially contaminated waste materials will be handled in the same manner as materials that are known to be contaminated. It is estimated that the degree of soil swell resulting from the soil blending will not exceed 2 feet and will therefore be readily accommodated by the post-demolition building excavation.

6.3.5 Materials Storage Area

The amendments to be used as part of the intended remedial actions (ABC[®] and ZVI) will be stored within the temporary fence area/secured work area, described in Section 6.2.4. These amendments will be stored in the equipment and material staging area located on the northern portion of the Site. This location will allow delivery trucks access to the storage area without interfering with the soil treatment process, and this location is shown in Appendix D, Plan Drawings and Specifications.

6.3.6 Equipment Decontamination

The soil blender and excavator will be decontaminated by the remediation contractor using potable water and/or a steam cleaner at the completion of the work and before transporting the equipment off-site. Decontamination will be performed in the area above the treatment zone in order to minimize the management and disposal of decontamination rinse water. The rinse water will be allowed to percolate into the treated soil/blending area. It is anticipated that the volume of decontamination water generated during this process will be minimal.

6.3.7 Ambient Air Monitoring

During implementation of the *in situ* soil blending activities, air quality around the Site must be monitored to ensure that safe conditions are maintained and on-Site workers and the surrounding community is protected. Therefore, an ambient air monitoring program will be conducted during the soil remediation activities. Air monitoring is also useful in determining the necessary level of worker respiratory protection. Air monitoring can also provide first indication that emissions are elevated, and it gives workers and Site managers an early warning that elevated emissions are present before air quality at the perimeter zone is affected.

6.3.7.1 Air Action Levels

An action level is the measured concentration of a specific contaminant in the air that triggers emission control and/or worker upgrade in respiratory protection. Action levels have been developed for PCE and TCE, the contaminants of interest at the Site.

Work Zone Action Levels: The work zone action levels are based on the OSHA regulations that govern worker safety. The OSHA 8-hour time weighted average (TWA) permissible exposure limit (PEL) is the air concentration of a specific contaminant that a worker may be exposed to over an 8-hour period without use of a respirator or other equipment.

Although the 8-hour OSHA PEL represents the acceptable level of exposure over an 8-hour period, one-half the PEL will be used as the action level in the work zone during operations at the Site. This provides a level of safety that allows actions to be implemented to control emissions before they represent a hazard to on-site workers or the surrounding community. The work zone action levels are as follows:

• The OSHA 8-hour TWA PEL for PCE and TCE for workers is 100 ppm. The PCE and TCE action level for the Work Zone that will require an increase in respiratory protection and emission control is one-half the OSHA PEL or 50 ppm measured continuously in the breathing zone for 5 minutes.

Additional information on the work zone action level is provided in the project-specific *Health and Safety Plan* (Ramboll Environ, 2017).

Perimeter Zone Action Levels: Standard risk assessment procedures consistent with USEPA guidelines were used to derive action levels for PCE and TCE. The rationale and procedures used to determine the Perimeter Zone Action Levels are included in Appendix F, Documentation of Fenceline Air Action Level for Tetrachloroethene and Trichloroethene. The perimeter zone action levels are as follows:

- PCE: 2.1 mg/m3 (0.31 ppmv)
- TCE: 0.10 mg/m3 (0.019 ppmv)

To monitor the concentrations in air during the soil remediation activities, an air monitoring technician will operate a calibrated portable Gasmet DX4040 gas analyzer instrument that utilizes Fourier Transformed Infrared Spectroscopy (FTIR) to measure the concentration of PCE and TCE in ambient air. The Gasmet DX4040 can detect concentrations of PCE and TCE as low as 0.030 mg/m³. This instrument can accurately and simultaneously identify and quantify organic compounds present in ambient air in a matter of seconds. Instantaneous readings of specific chemicals are recorded and the FTIR communicates with a handheld PDA that can provide the real time air concentration on a continuous basis. The data is also stored for later download for reporting purposes, if required. During routine operations, an air monitoring technician will monitor the work zone and Site perimeter air quality throughout the soil blending operations.

Perimeter air monitoring will be conducted on the perimeter of the Site (i.e., property boundary) based on receptor location and the most probable wind direction at the time of conducting the remediation. If the action level at a perimeter location is exceeded for 5 minutes or if operations in the work zone require an increase in respiratory protection, actions will be immediately implemented to reduce air emissions and continuous monitoring at a downwind perimeter location will continue until monitoring levels are below the action level. The primary responses for reducing air emissions will likely include the use of vapor suppressant foam that can be applied immediately to the soil blending area by the remediation contractor, as discussed in Section 6.3.8, or the application of treated or staged material to cover the exposed soil.

6.3.7.2 Protocols and Quality Control Procedures

Work Zone Monitoring: The purpose of monitoring air quality within the work zone is to ensure worker safety and provide an early warning (before air quality at the perimeter zone is affected) that
elevated emissions are present. A portable instrument (Gasmet DX4040) will be used to measure the levels of VOCs in the areas where workers are located - generally near the edge of the immediate work zone (when soil blending is paused), around stockpiled material, near mixing operations, etc. The instrument will be operated by trained air monitoring technicians, who will move around the work zone. Additional information on the air monitoring in the work zone is provided in the projectspecific *Health and Safety Plan* (Ramboll Environ, 2017). These monitors will provide the most immediate alert if emissions are becoming elevated.

Due to the nature of the soil blending work, the potential exists for small rocks or other debris to be thrown from the *in situ* soil blending head. Therefore, on-site workers must remain at a distance from the blending operations while active soil blending is occurring. As such, a PID or other air monitoring device will be used by the remediation contractor to measure the levels of VOCs for onsite workers operating equipment and working near the edge of the immediate work zone (while soil blending is occurring).

All air monitoring equipment will be calibrated using manufacturers' guidelines and protocols at the beginning of each work day, and the results of each calibration documented in a bound project field log book. All air monitoring measurements will be recorded electronically by the Gasmet DX4040 and will be relayed to the Site Safety Officer and/or Site Operations Manager verbally. At the end of the workday, data from the monitoring instrument will be downloaded into the project database. For air monitoring equipment that does not digitally record measurements (i.e., the PID), periodic air monitoring measurements will be verbally relayed to the Site Safety Officer and/or Site Operations Manager throughout the course of each workday and recorded in a bound project field log book.

During operations, if it is determined that a contaminant-specific action level has been exceeded in the work zone, work will be stopped, the level of personal protective equipment (PPE) for on-site workers will be upgraded as necessary, and actions will be initiated to reduce volatile air emissions. Continuous perimeter monitoring in a downwind location will be initiated. The *Health and Safety Plan* (Ramboll Environ, 2017) provides additional information on the required levels of PPE.

Perimeter Zone Monitoring: During routine operations, the air monitoring technician will monitor the air concentration around the property boundary at 30-minute to 1-hour intervals using the calibrated portable FTIR described above. As previously noted, exceedance of the perimeter zone action level is unlikely since the air monitoring system is designed to register an exceedance of an action level in the work zone before the perimeter zone is affected.

All measurements will be recorded electronically in the handheld PDA and will be relayed to the Site Safety Officer and/or Site Operations Manager verbally. At the end of the workday, data from the instrument will be downloaded into the project database. If the air action level at a perimeter location is exceeded or if operations in the work zone require an increase in respiratory protection, actions will be immediately implemented to reduce air emissions and continuous monitoring at a downwind perimeter location will be initiated and continued until air quality is below the established action level.

6.3.8 Vapor Emissions Control Systems

Vapor controls will be provided during soil blending activities to suppress volatile vapors that may be driven off during soil blending. If necessary, a vapor control system consisting of Rusmar[®] Foam will be used to produce a thick, long-lasting, viscous foam barrier within the blending area for immediate control of VOCs. The foam, if required based on the ambient air-monitoring readings, will be applied during active soil blending activities or for overnight coverage of exposed contaminated soils within the blending area. The foam can supply up to 17 hours of continuous and effective emission control

and is non-hazardous, non-combustible, biodegradable, and safe for Site personnel and the environment.

The foam will be obtained from the manufacturer in 450-pound drums of liquid concentrate and requires dilution with water prior to application (6.5 parts water to 1 part chemical). Each drum of chemical will cover approximately 4,500 square feet. A Rusmar[®] pneumatic foam unit will be used to apply the foam to the soil blending area. This unit is a completely self-contained and portable foam-generating system and can be mobilized around the Site with a pickup truck. The unit includes an air compressor, pump, hoses, nozzles, a 400-gallon solution storage tank, and freeze protection for use during cold weather. A protective barrier of foam will be applied to the extent of the soil blending area as often as necessary, depending on the real-time ambient air quality data supplied by the ambient air monitoring personnel.

6.3.9 Backfilling and Site Restoration Activities

Following completion of the soil mixing activities, a geotextile fabric will be placed on the surface of the soil treatment area by the remediation contractor to provide for both a physical and visual barrier between the treated soil and the backfill material. As referenced in Section 6.2.2, on-site crushed concrete will be used as the initial backfill material placed on top of the geotextile. A minimum thickness of 12 inches of 3-inch diameter crushed concrete will be placed over the treatment area, followed by lifts of 1.25-inch diameter crushed concrete. If warranted, additional soil stabilization measures may be employed in the upper 5 feet of the backfill material, based on conditions encountered. The general contractor will performing the backfilling. The site may potentially be redeveloped as a parking lot or it may remain vacant for a period of time following completion of active remedial site work.

6.4 Soil Remediation Confirmation Sampling

Verification of soil remediation will be conducted through confirmation soil sampling and analysis. To evaluate post-remediation soil conditions, eight hydraulic probes will be installed approximately 20 months after completion of the *in situ* chemical reduction remedial action. The eight hydraulic probes will be installed to approximately 27 feet below post-remediation ground surface. The locations of the proposed post-remediation soil borings are shown on Figure 7.

Two soil samples will be collected at each probe location (for 16 confirmation soil samples in total). The proposed sampling depths for the confirmation soil boring locations are as follows:

- C-1: 16-17' and 25-27' below post-remediation ground surface (bpgs)
- C-2: 16-17' and 25-27' bpgs
- C-3: 16-17' and 25-27' bpgs
- C-4: 16-17' and 28-30' bpgs
- C-5: 16-17' and 22-24' bpgs
- C-6: 16-17' and 18-19' bpgs
- C-7: 16-17' and 18-19' bpgs
- C-8: 16-17' and 18-19' bpgs

Confirmation soil samples will not be collected from the upper 4 feet of soil for evaluation of the direct contact exposure pathway because the upper 4 feet of the treatment area will be backfill material and crushed concrete. The confirmation soil sampling will focus on the collection of treated soil samples, which will be used to evaluate the treatment effectiveness of the remedial action.

Soil samples will be submitted for laboratory analysis of VOCs using USEPA Method 8260. Following soil sample collection, each sample container will be labeled with the sample location identification, date of sample collection, and intended analysis. The sample containers will then be packed in an iced, insulated container. A chain-of-custody form will be filled out upon completion and will accompany the container of soil samples to the laboratory. The samples will be transported from the Site to the laboratory via same-day or overnight courier. Laboratory results of soil samples collection prior to commencement of *in situ* chemical reduction that revealed detectable concentrations of these CVOCs will be compared to the results of the soil samples collected after completion of in situ chemical reduction.

6.5 Implementation of Groundwater Monitoring Program

As part of the overall Site remedial action, impacted groundwater downgradient of the source treatment area will be monitored for natural attenuation. Natural attenuation is defined by the USEPA as "the biodegradation, dispersion, dilution, sorption, volatilization, and/or chemical and biochemical stabilization of contaminants to effectively reduce contaminant toxicity, mobility, or volumes to levels that are protective of human health and the ecosystem" (Brady, et al., 1997). Contaminants present in soil and groundwater are allowed to attenuate via naturally occurring aerobic and anaerobic processes. Natural attenuation processes and rates of contaminant degradation are monitored by changes in contaminant concentration versus time and hydrogeochemical parameters of the affected aquifer. The following sections present the groundwater monitoring program, sampling protocols, monitoring frequency, and data evaluation for the groundwater remediation activities at the Site.

6.5.1 Installation of Additional Monitoring Wells

After completion of the soil blending activities and before implementation of the MNA groundwater monitoring program, the installation of replacement monitoring wells at the former locations of piezometers PZ-1 and PZ-3 will be conducted. The location of these replacement piezometers, PZ-1R and PZ-3R, are shown on Figure 8. The wells will be constructed with a screened intervals similar to those of the former piezometers PZ-1 and PZ-3.

In addition, if post-remediation groundwater monitoring activities warrant, one optional off-site groundwater monitoring well (MW-10) may be installed in the general location of the southern margin of the groundwater plume affecting the West Wells Street area of the Site at a location satisfactory to the WDNR. The monitoring wells will be installed using hollow stem auger drilling methods and will be developed in accordance with WAC NR 141 requirements. A monitoring well construction form for replacement wells PZ-1R and PZ-3R and for MW-10 (if required) will be provided in the Remedial Action Completion Report described in Section 7.1.

6.5.2 Monitoring Well Sampling Locations and Frequency

Subsequent to completion of the *in-situ* chemical reduction process, natural attenuation monitoring will be implemented on a quarterly basis to evaluate and document the progress of groundwater remediation at the Site. Groundwater monitoring will be initiated approximately 5 months following the completion of the soil remediation to allow for the new well installation and stabilization of the groundwater following *in situ* reductive dechlorination of the source area. Modification to this monitoring program may be recommended, based on an evaluation of the results received.

A total of eight quarterly groundwater monitoring events will be conducted. As part of this task, five existing monitoring wells (MW-4, MW-5, MW-6, PZ-2, and PZ-4) and three new monitoring wells (PZ-1R, PZ-3R and MW-10 [if required]) will be sampled for VOCs (Method 8260). Monitoring wells MW-1, MW-2, MW-3, MW-7, MW-8, and MW-9 have historically not revealed detectable VOC concentrations, and based on the results of the baseline monitoring event, these wells will not be

included as part of the subsequent quarterly monitoring program. However, all 13 wells and piezometers will be sampled as part of the eighth (and assumed final) quarterly groundwater monitoring event prior to preparation of a Case Closure Request.

6.5.3 Field Parameter Measurements

Field parameter measurements including dissolved oxygen, ORP, pH, specific conductivity, and temperature will be measured at the monitoring wells as part of each quarterly groundwater sampling event. These data will be used to assist with the groundwater sample collection to document that groundwater conditions have stabilized prior to sample collection and for continued evaluation of the aquifer conditions. Isopleths of dissolved oxygen and ORP may be plotted and contoured to assist in the remedy performance evaluation and to document the potential area of influence of the *in-situ* reductive dechlorination process.

6.5.4 Laboratory Analytical Parameters

Monitoring wells MW-6, PZ-1R, and PZ-2 will also be sampled on a semi-annual basis for the following natural attenuation parameters: ethene/ethane/methane (Method 8015), dissolved iron (Method 8146), total organic carbon (Method 5310), nitrate+nitrite (Method 353.2), and sulfate (Method 300). One QA/QC duplicate groundwater sample and one QA/QC laboratory trip blank sample will be submitted for laboratory analysis of VOCs as part of each groundwater monitoring event. The monitoring wells will be sampled for VOCs (Method 8260).

6.5.5 Groundwater Elevation Monitoring

Groundwater elevations will also be collected and documented from the quarterly groundwater monitoring events and will be used to plot equipotential contours of shallow groundwater. The resulting equipotential contours will be used to evaluate hydraulic gradients across the Site, to assist with the estimation of groundwater flow and solute transport analysis.

6.5.6 Data Evaluation and Assessment

To evaluate the progress of groundwater remediation, groundwater concentration trends will be evaluated at each of the groundwater MNA performance monitoring wells. Concentration vs. time graphs for each of the VOCs of interest using the historical and quarterly groundwater sample data will be prepared. The Mann-Kendall Statistical Test for Trends, combined with the Coefficient for Variation Test for Stability on Non-Trending Data, is recommended by the WDNR for evaluating natural attenuation processes and will be conducted as part of this task. A minimum of four rounds of groundwater monitoring data is necessary to complete the Mann-Kendall Statistical Test evaluation. Stable or decreasing CVOC concentration trends represent a primary line of evidence for natural attenuation of groundwater impacts. In addition, groundwater elevation and field-measured parameters will be reviewed to determine groundwater flow gradients across the Site and to evaluate aquifer conditions resulting from the *in-situ* reductive dechlorination.

6.5.7 Termination of Groundwater Monitoring Program

Groundwater monitoring will continue until it is demonstrated that concentrations of the chemicals of interest are stable or decreasing to the extent that a conditional regulatory closure under WAC NR 726 is feasible. As residual groundwater concentrations are likely to remain above WAC NR 140 ESs, institutional controls will be employed to satisfy the requirement of conditional closure as part of the active remedy. The institutional control will consist of listing the Former One-Hour Valet Dry Cleaners property on the WDNR GIS Registry.

7. **REPORTING**

7.1 Preparation of a Remedial Action Completion Report

Pursuant to WAC NR 724.15, a Remedial Action Completion Report will be prepared after completion of the remedial actions, which will include the following information: a summary of the remedial action and documentation that the design was carried out in accordance with the Remedial Action Plan and specifications; an explanation of any minor changes to the technical approach and the rationale for those changes; the results from the soil remediation verification sampling; and a comparison of the public health and environmental standards applicable to any residual contamination.

7.2 Groundwater Monitoring Reports

Ramboll will submit groundwater monitoring reports to the WDNR on an annual basis after the implementation of the monitoring program. These monitoring reports will summarize the methodology and results of the monitoring activities described above to document the progress of groundwater remediation. The reports will present the laboratory analytical data, water level elevation, and field parameters in tabular format and the statistical contaminant trend analysis graphs with the calculated trend line slope and estimated rate of change in contaminant concentrations at selected downgradient monitoring wells. The report will include groundwater for the contaminants of interest. In addition, the report will provide recommendations regarding any proposed changes to the monitoring program.

7.3 Site Closure Report

After completion of the soil and groundwater remedial activities and groundwater monitoring results document that the groundwater plume remains stable and/or is receding, a site closure package will be prepared and submitted for WDNR approval in accordance with WAC NR 726. Institutional controls will be implemented, as necessary, as part of case closure. Institution controls will consist of recording the Site and any adjacent properties affected by the residual CVOC impacts to be recorded on the WDNR GIS database for closed remediation sites.

The groundwater monitoring data will be continuously evaluated to determine when the plume has become stable. If constituent concentrations remain stable or decrease after eight quarters of monitoring, a request for closure will be submitted in accordance with WAC NR 726. The necessity for these institutional controls will be based on the effectiveness of the recommended remediation measures. The closure package will include the applicable GIS Registry information required for a conditional site closure, as appropriate. After final closure is granted by the WDNR, the groundwater monitoring wells will be abandoned in accordance with WAC NR 141.

8. IMPLEMENTATION SCHEDULE

A schedule that includes the major remedial activities, milestones, and phases for the project is presented in Figure 9. The quarterly groundwater monitoring program will begin approximately 5 months after source area remediation and site restoration activities are completed. Groundwater monitoring results and annual monitoring report will be submitted approximately 1 to 2 months following completion of the fourth quarterly groundwater monitoring event.

9. **REFERENCES**

- Air Force Center for Environmental Excellence (AFCEE). 2004. "Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents." Environmental Security Technology Certification Program, Arlington, Virginia.
- Brady, P.V., M.V. Brady, and D.J. Borns, 1997. Natural Attenuation: CERCLA, RBCAs, and the Future of Environmental Remediation. Lewis Publishers/CRC Press, Boca Raton, FL, 256 pp.
- Faircloth, Harlan, Elgin Kirkland, Phil La Mori, Mark Kershner, and John Matthews. 2010. Complete In Situ Reduction of DNAPL Source Zones Using Combined Thermal and ZVI Soil Mixing (PPT)Seventh International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA; May 2010.
- GZA GeoEnvironmental, Inc., 2012. Site Investigation Report Dry Cleaner Solvent Release, Former One-Hour Valet Dry Cleaners Property. February 24.
- Keely, J.F., October 1990, "Performance Evaluation of Pump-and-Treat Remediations," EPA/540/4-89/005.
- Mackay, D.M. and Cherry, J.A., 1989. "Groundwater Contamination: Pump-and-Treat Remediation," Environmental Science & Technology, Vol. 23, No. 6, pp. 630.
- NRC (National Research Council). 2004. Contaminants in the Subsurface: Source Zone Assessment and Remediation National Academies Press, Washington, DC, 2004.
- Ramboll Environ, June 7, 2016. Updated Proposal for Remedial Action Services at the Former One-Hour Valet Dry Cleaners Property.
- Ramboll Environ, 2017. Health and Safety Plan.
- Stroo, H.F., M. Unger, C.H. Ward, M.C. Kavanaugh, C. Vogel, A. Leeson, J.A. Marqusee, and B.P. Smith. 2003. Chlorinated solvent source zones. Environmental Science & Technology 37, no 11: 224A–230A.
- Travis, C.C. and Doty, C.B., 1990. "Can Contaminated Aquifers at Superfund Sites be Remediated?" Environmental Science & Technology, Vol. 24, No. 10, pp. 1465.
- Udell, K.S. 1996. Heat and mass transfer in clean-up of underground toxic wastes. In Annual Reviews of Heat Transfer, vol. 7, ed. C.-L. Tien. 333–405. New York/Wallingford, UK: Begell House, Inc.
- USEPA, 1981. "Treatability Manual, vols. I and II, Industrial Descriptions," Office of Research and Development, EPA-600/2.82-001a, b, Washington, DC, September.
- USEPA, 1994. DNAPL Site Characterization. Publication 9355.4-16FS, EPA/540/F-94/049, PB94-963317.

REMEDIAL DESIGN REPORT

TABLES

Table 1. Historic Groundwater Elevations

Former One-Hour Valet Dry Cleaners 1614 West Wells Street, Milwaukee, Wisconsin Ramboll Project No. 1690005819

	Top of	Ground		5/8/20	02	7/11/20	003	8/7/20	03	10/7/20	004	8/25/20	09	11/2/20	11	11/1/2017 &	11/9/2017*
Well ID	Casing Elevation (TOC, ft msl) ^(A)	Surface Elevation (ft) ^(A,B)	Screen Interval (ft msl) ^(A)	Groundwater Elevation (ft msl)	DTW (ft)												
MW-1	647.95	648.3	630.1-640.1	637.45	10.50	636.81	11.14	636.03	11.92	635.6	12.35	637.15	10.80	637.27	10.68	637.43	10.52
MW-2	655.74	656.0	635.5-645.5	648.54	7.20	645.87	9.87	645.31	10.43	644.59	11.15	644.89	10.85	642.61	13.13	645	10.74
MW-3	649.54	649.7	629.5-639.5	638.16	11.38	638.34	11.20	637.23	12.31	637.15	12.39	639.92	9.62	638.37	11.17	639.32	10.22
MW-4	652.32	652.7	634.4-644.4	NI	NI	NI	NI	638.51	13.81	638.76	13.56	640.3	12.02	639.64	12.68	639.51	12.81
MW-5	653.26	650.4	631.8-641.8	NI	NI	NI	NI	636.38	16.88	636.13	17.13	637.54	15.72	637.22	16.04	637.15	16.11
MW-6	648.11	648.5	630.3-640.3	NI	NI	NI	NI	NI	NI	NI	NI	637.26	10.85	637.32	10.79	637.81	10.30
MW-7	649.74	649.9	638.2-648.2	NI	NI	NI	NI	NI	NI	NI	NI	642.58	7.16	640.73	9.01	640.76	8.98
MW-8	649.80	650.0	638.4-648.4	NI	NI	NI	NI	NI	NI	NI	NI	642.62	7.18	640.71	9.09	640.41	9.39
MW-9	650.27	650.4	633.5-643.5	NI	NI	NI	NI	NI	NI	NI	NI	637.22	13.05	637.08	13.19	636.97	13.30
PZ-1	653.10	653.7	618.8-623.8	634.9	18.20	633.51	19.59	633	20.10	632.28	20.82	631.58	21.52	NM	NM	630.13	22.97
PZ-2	648.74	649.1	619-624	NI	NI	NI	NI	623.2	25.54	623.81	24.93	625.32	23.42	625	23.74	625.52	23.22
PZ-3	653.41	653.7	603-608	NI	NI	NI	NI	NI	NI	620.27	33.14	622.26	31.15	621.96	31.45	622.31	31.10
PZ-4	649.78	650.3	604.8-609.8	NI	NI	NI	NI	NI	NI	NI	NI	NM	NM	621.38	28.4	621.95	27.83

Notes:

Data collected prior to 2017 presented in a Site Investigation Report prepared by GZA GeoEnvironmental, Inc. dated February 24, 2012.

(A) Top of casing elevations, ground surface elevations, and screen intervals presented in GZA GeoEnvironmental, Inc.'s February 24, 2012 Site Investigation Report.

^(B) Relative to mean sea level

* Groundwater elevation measurements for MW-6, MW-7, MW-8, and MW-9 collected on November 9, 2017.

DTW = Distance to water

MSL = Mean Sea Level

NI = Not installed at the time of the water level measurement

NM = Not Measured

TOC = Top of Casing

Table 2. Groundwater Analytical Results - Summary of Detected Constituents

Former One-Hour Valet Dry Cleaners

1214 West Wells Street, Milwaukee, Wisconsin

Ramboll Project No. 1690005819

	Analyte ^{1,2}	Benzene	Chloroform	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Ethylbenzene	Methylene chloride	Tetrachloroethene	Toluene	Trichloroethene	1,2,4-Trimethylbenzene ³	Vinyl chloride	Xylenes, total ⁴
CAS	5	71-43-2	67-66-3	75-35-4	156-59-2	156-60-5	100-41-4	75-09-2	127-18-4	108-88-3	79-01-6	95-63-6	75-01-4	1330-20-7
Unit	s	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NR 140) ES	5	6	7	70	100	700	5	5	800	5	480	0.2	2000
NR 140	PAL	0.5	0.6	0.7	7	20	140	0.5	0.5	160	0.5	96	0.02	400
	1/14/2002	ND	<0.23	<0.27	<0.21	<0.25	<0.22	<0.24	<0.22	<0.41	0.46 J	< 0.15	44	#N/A
	5/8/2002	ND	<0.1	<0.11	< 0.11	< 0.11	<0.08	<0.24	<0.15	< 0.08	<0.13	<0.11	<0.16	#N/A
N/N/ 1	8/7/2003	ND	<0.25	<0.5	<0.5	< 0.5	<0.5	< 1	< 0.5	0.9	0.3 J	< 0.25	<0.25	<0.5
10100 - 1	10/7/2003	ND	<0.25	< 0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.25	<0.25	<0.25	<0.25	<0.5
	8/25/2009	<0.2	<0.2	< 0.5	<0.5	<0.5	<0.5	< 1	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5
	11/1/2017	<0.50	<2.5	<0.41	<0.26	<0.26	<0.50	<0.23	<0.50	<0.50	< 0.33	<0.50	<0.18	<1.5
	1/14/2002	ND	<0.23	< 0.21	<0.21	<0.25	<0.22	<0.22	<0.22	< 0.41	<0.24	<0.26	<0.25	#N/A
	5/8/2002	ND	<0.1	<0.11	<0.11	< 0.11	<0.08	<0.24	<0.15	<0.08	<0.13	<0.11	<0.16	#N/A
M/M/- 2	8/7/2003	ND	<0.25	< 0.5	<0.5	<0.5	<0.5	<1	<0.5	0.32 J	<0.25	<0.25	<0.25	<0.5
10100-2	10/7/2003	ND	<0.25	< 0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.25	<0.25	<0.25	<0.25	<0.5
	8/27/2009	<0.2	<0.2	< 0.5	<0.5	<0.5	< 0.5	< 1	<0.5	<0.5	<0.2	< 0.2	<0.2	<0.5
	11/1/2017	<0.50	<2.5	<0.41	<0.26	<0.26	<0.50	<0.23	<0.50	<0.50	< 0.33	<0.50	<0.18	<1.5
	1/15/2002	ND	<0.23	< 0.27	<0.21	<0.25	<0.22	<0.22	<0.22	<0.41	<0.24	<0.26	<0.25	#N/A
	5/8/2002	ND	<0.1	<0.11	<0.11	<0.11	<0.08	<0.24	<0.15	0.32	0.34 J	<0.11	<0.16	#N/A
M/M/_ 3	8/7/2003	ND	<0.25	< 0.5	<0.5	<0.5	<0.5	<1	< 0.5	0.88	0.42 J	<0.25	<0.25	<0.5
10100-5	10/7/2003	ND	<0.25	< 0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.25	<0.25	<0.25	<0.25	<0.5
	8/27/2009	<0.2	<0.2	< 0.5	<0.5	<0.5	< 0.5	< 1	<0.5	<0.5	<0.2	< 0.2	<0.2	<0.5
	11/1/2017	<0.50	<2.5	<0.41	<0.26	<0.26	<0.50	<0.23	<0.50	<0.50	< 0.33	<0.50	<0.18	<1.5
	8/7/2003	ND	<0.25	< 0.5	<0.5	<0.5	<0.5	<1	<u>0.88 J</u>	0.9	<u>0.71 J</u>	0.34 J	<0.25	<0.5
M/M-4	10/7/2003	ND	<0.25	<0.5	<0.5	<0.5	<0.5	< 1	<u>0.57 J</u>	<0.25	<0.25	<0.25	<0.25	<0.5
	8/25/2009	<0.2	<0.2	<0.5	<0.5	<0.5	<0.5	< 1	7	<0.5	<0.2	<0.2	<0.2	<0.5
	11/2/2017	<0.50	<2.5	<0.41	<0.26	<0.26	<0.50	<0.23	7.8	<0.50	< 0.33	<0.50	<0.18	<1.5
	8/7/2003	ND	<0.25	<0.5	<u>11</u>	<0.5	<0.5	<1	80	0.9	7.9	0.34 J	<0.25	<0.5
MW-5	10/7/2003	ND	<0.25	<0.5	150	1.2	<0.5	< 1	93	<0.25	6.4	<0.25	<0.25	<0.5
	8/27/2009	<0.2	<0.2	<0.5	110	1.2	<0.5	< 1	140	<0.5	<0.2	32	22	<0.5
	11/2/2017	<0.50	<2.5	<0.41	73.6	1.5	<0.50	<0.23	30.3	<0.50	<u>3.2</u>	<0.50	0.45 J	<1.5
MW-6	8/25/2009	<0.2	<2	<5	980	< 5	<5	<10	<5	<5	18	<2	57	<5
	11/9/2017	<0.50	<2.5	<0.41	4.5	<0.26	<0.50	<0.23	<0.50	<0.50	< 0.33	<0.50	1.0	<1.5
MW-7	8/26/2009	<0.2	<0.2	<0.5	<0.5	<0.5	<0.5	< 1	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5
	11/9/2017	<0.50	<2.5	<0.41	<0.26	<0.26	<0.50	<0.23	<0.50	<0.50	<0.33	<0.50	<0.18	<1.5
MW-8	8/26/2009	<0.2	<0.2	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5
	11/9/2017 ⁵	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-9	8/27/2009	0.28	<0.2	<0.5	<0.5	<0.5	<0.5	<1	<0.5	0.64	<0.2	<0.2	<0.2	<0.5
	11/9/2017	<0.50	<2.5	<0.41	<0.26	<0.26	<0.50	<0.23	<0.50	0.59 J	< 0.33	<0.50	<0.18	<1.5

Table 2. Groundwater Analytical Results - Summary of Detected Constituents

Former One-Hour Valet Dry Cleaners

1214 West Wells Street, Milwaukee, Wisconsin

Ramboll Project No. 1690005819

	Analyte ^{1,2}	Benzene	Chloroform	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Ethylbenzene	Methylene chloride	Tetrachloroethene	Toluene	Trichloroethene	1,2,4-Trimethylbenzene ³	Vinyl chloride	Xylenes, total ⁴
CAS	6	71-43-2	67-66-3	75-35-4	156-59-2	156-60-5	100-41-4	75-09-2	127-18-4	108-88-3	79-01-6	95-63-6	75-01-4	1330-20-7
Unit	S	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NR 140	DAL	5	6	/	70	100	700	5	5	800	5	480	0.2	2000
NR 140		0.5	0.6	0.7	/	20	140	0.5	0.5	160	0.5	96	0.02	400
	T/15/2002	ND	<1.2	< 1.4	400	4 J	< .		< 1.1	<2.1	<1.2	<0.75	< 1.3	#N/A
	5/8/2003	ND		< 0.0	3000	10.0	< 4	23 J	27000	< 4	2800	< 5.5	22 J	#N/A
PZ-1	8/8/2003	ND		8.4	2600	18.0	1.8	< 1	27000	4.8	2500	<0.25	<120	< 250
	8/25/2000	-22	< 120	<250	2800	<250	<250	< 160	61000	< 120	2000	< 120	< 120	< 200
	11/2/2017	<125	< 625	<103	414	< 64 1	<125	< 58.1	16200	<125	435	<125	< 13.0	< 375
	8/8/2003	ND	< 0.25	< 0.5	< 0.5	< 0.5	< 0.5	<1	< 0.5	0.43	<0.25	< 0.25	58	< 0.5
	10/6/2003	ND	< 0.25	< 0.5	< 0.5	< 0.5	< 0.5	<1	< 0.5	< 0.25	< 0.25	< 0.25	8.9	< 0.5
ΡΖ-2	8/27/2009	<0.2	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	14	< 0.5
	11/1/2017	<0.50	<2.5	< 0.41	4.1	< 0.26	<0.50	<0.23	<0.50	<0.50	< 0.33	< 0.50	11.0	<1.5
	8/26/2004	ND	<2	<5	440	<5	<5	<10	56	<2	<2	<2	<2	<5
7 2	10/7/2004	ND	<1	<2.5	300	<2.5	<2.5	<5	73	<1	<1	< 1	<1	<2.5
42-3	8/25/2009	<2	<2	<5	1100	11.0	<5	<10	5.6	<5	7.1	<2	3.9	<5
	11/2/2017	<25.0	<125	<20.5	2060	<u>22.4 J</u>	<25.0	<11.6	<25.0	<25.0	144	<25.0	<8.8	<75.0
P7_4	8/25/2009	<0.20	<0.2	< 0.5	4.4	< 0.5	<0.5	<1	<u>0.84</u>	< 0.5	<u>0.56</u>	< 0.2	<0.2	< 0.5
۲۷-4	11/2/2017	< 0.50	<2.5	< 0.41	< 0.26	< 0.26	< 0.50	< 0.23	< 0.50	< 0.50	< 0.33	< 0.50	1.3	<1.5

Notes:

VOCs = Volatile Organic compounds

All results reported in micrograms per Liter (ug/L)

ES = Enforcement Standard

PAL = Preventive Action Limit

Bold value = NR 140 ES Exceedance

<u>Italic Value</u> = NR 140 PAL Exceedance -- = No NR 140 ES or PAL established.

#N/A = Not analyzed

NS = Not sampled

J = Estimated concentration. Laboratory results reported between the limit of detection and limit of quantification.

¹ Analytical results are displayed for detected parameters only.

² All sampling results prior to 2017 obtained from a Site Investigation Report prepared by GZA GeoEnvironmental, Inc. on February 24, 2012.

³ Standards are for 1,2,4- and 1,3,5-Trimethylbenzene

⁴ Standards are for Total Xylenes (-m, -p, and -o).

⁵ MW-8 not sampled during the November 2017 groundwater sampling event because well did not recharge sufficiently.

Table 3. MNA Parameter Groundwater Sampling Results

Former One-Hour Valet Dry Cleaners 1214 West Wells Street, Milwaukee, Wisconsin Ramboll Project No. 1690005819

Well ID	Sample	Dissolved Oxygen	Ethane	Ethene	Iron*	Iron, Ferric	Iron, Ferrous	Methane	Nitrogen, NO ₂ plus NO ₃	ORP	Sulfate*	Total Organic Carbon
	Date	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	(mg/L)	(ug/L)	(mg/L)	(mV)	(mg/L)	(mg/L)
HA-5	8/25/2009	NA	< 10	<10	NA	NA	NA	< 10	NA	NA	NA	2.67
	1/14/2002	10.39	NA	NA	NA	NA	NA	NA	NA	-37	NA	NA
	5/8/2002	3.57	NA	NA	NA	NA	NA	NA	NA	287.1	NA	NA
MW-1	8/7/2003	0.22	NA	NA	NA	NA	NA	NA	NA	161.3	NA	NA
	10/7/2003	1.05	0.028	0.049	NA	NA	NA	14	NA	396.8	NA	NA
	8/25/2009	0.69	<10	<10	NA	NA	NA	<10	NA	95	NA	1.26
	11/1/2017	1.69	<0.58	<0.52	12.6 J	0.0 J	<0.017	<1.4	< 0.095	57.7	< 100	<0.25
	1/14/2002	6.42	NA	NA	NA	NA	NA	NA	NA	168.4	NA	NA
	5/8/2002	1.07	NA	NA	NA	NA	NA	NA	NA	256.9	NA	NA
MW-2	8/7/2003	0.1	NA	NA	NA	NA	NA	NA	NA	2.3	NA	NA
	10/7/2003	4.43	0.018	0.021	NA	NA	NA	22	NA	364	NA	NA
	8/27/2009	0.98	NA	NA	NA	NA	NA	NA	NA	86	NA	NA
	11/1/2017	1.71	<0.58	<0.52	1770	0.54	1.2	<1.4	< 0.095	-74.3	93.5	<0.25
	8/7/2003	0.15	NA	NA	NA	NA	NA	NA	NA	68	NA	NA
MW-3 ⁽¹⁾	10/7/2003	5.74	0.16	0.056	NA	NA	NA	45	NA	327.8	NA	NA
	8/27/2009	1.01	NA	NA	NA	NA	NA	NA	NA	16	NA	NA
	11/1/2017	0.73	NA	NA	NA	NA	NA	NA	NA	-125.6	NA	NA
	8/7/2003	5.83	NA	NA	NA	NA	NA	NA	NA	139	NA	NA
MW-4	10/7/2003	3.44	0.021	0.033	NA	NA	NA	22	NA	383.4	NA	NA
	8/25/2009	2.55	NA	NA	NA	NA	NA	NA	NA	77	NA	NA
	11/2/2017	0.88	NA	NA	NA	NA	NA	NA	NA	-19.8	NA	NA
	8/7/2003	0.86	NA	NA	NA	NA	NA	NA	NA	190.5	NA	NA
MW-5	10/7/2003	1.05	0.041	0.0097	NA	NA	NA	0.99	NA	396.8	NA	NA
11111 0	8/27/2009	0.99	< 10	<10	NA	NA	NA	136	NA	98	NA	1.82
	11/2/2017	2.04	NA	NA	NA	NA	NA	NA	NA	18.6	NA	NA
MW-6 ⁽¹⁾	8/25/2009	1	NA	NA	NA	NA	NA	NA	NA	-50	NA	NA
NIV 0	11/9/2017	0.62	<0.58	<0.52	13600	8.3	5.2	< 1.4	< 0.095	-112.7	82.4	< 0.25
MW-7 ⁽²⁾	11/9/2017	7.49	NA	NA	NA	NA	NA	NA	NA	-50.7	NA	NA
MW-8 ⁽³⁾	11/9/2017	4.03	NA	NA	NA	NA	NA	NA	NA	-28.7	NA	NA
MW-9	8/27/2009	NA	< 10	<10	NA	NA	NA	< 10	NA	NA	NA	1.27
,	11/9/2017	6.40	NA	NA	NA	NA	NA	NA	NA	-42.6	NA	NA
	1/15/2002	0.66	NA	NA	NA	NA	NA	NA	NA	-65.3	NA	NA
	5/8/2003	1.31	NA	NA	NA	NA	NA	NA	NA	-18.3	NA	NA
P7-1	8/8/2003	0.12	NA	NA	NA	NA	NA	NA	NA	-93.7	NA	NA
	10/7/2003	0.09	1.7	0.48	NA	NA	NA	7	NA	-97.1	NA	NA
	8/25/2009	0.83	< 10	< 10	NA	NA	NA	< 10	NA	-73	NA	2.04
	11/2/2017	0.64	<0.58	<0.52	2290	2.2	0.060	< 1.4	0.33	38.5	155	0.50 J
	8/8/2003	0.19	NA	NA	NA	NA	NA	NA	NA	-41.3	NA	NA
P7-2 ⁽¹⁾	10/6/2003	0.15	1.3	0.79	NA	NA	NA	60	NA	-35.1	NA	NA
r 2=2	8/27/2009	0.78	NA	NA	NA	NA	NA	NA	NA	-16	NA	NA
	11/1/2017	2.67	<0.58	<0.52	8820	5.7	3.1	23.1	< 0.095	-100.3	178	<0.25
P7-3	8/25/2009	0.72	NA	NA	NA	NA	NA	NA	NA	-53	NA	NA
120	11/2/2017	1.34	NA	NA	NA	NA	NA	NA	NA	-103.8	NA	NA
P7-4	8/25/2009	0.72	NA	NA	NA	NA	NA	NA	NA	-55	NA	NA
12-4	11/2/2017	1.47	NA	NA	NA	NA	NA	NA	NA	-111.8	NA	NA

Notes:

J = Estimated concentration at or above the level of detection and below the level of quantification.

mg/L = milligrams per liter

mV = millivolts

NA = Data was not collected or not able to be collected.

ORP = Oxidation-reduction potential; measured in the field.

ug/L = micrograms per liter

* NR 140 Table 2. Public Welfare Standards exist for sulfate (Enforcement Standard = 250 mg/L; Preventative Action Limit = 125 mg/L) and iron

(Enforcement Standard = 0.3 mg/L; Preventative Action Limit = 0.15 mg/L).

All sampling resluts prior to 2017 obtained from a Site Investigation Report prepared by GZA GeoEnvironmental, Inc. dated February 24, 2012. (1) Well cap either missing or not plugged at time of inspection; potential for water and other constituents to have entered the well.

(2) Monitoring well purged dry after first stabilization parameter reading. Well sampled later in day without collecting new stabilization parameters.

(3) Monitoring well purged dry before water passed completely through flow-through cell. Stabilization parameters collected from flow-through cell approximately 4/5 of the way full.

Table 4. Concrete Sample Analytical Results

Former One-Hour Valet Dry Cleaners 1214 West Wells Street, Milwaukee, Wisconsin Ramboll Project No. 1690005819

	Parameters	n-Butylbenzene	n-Propylbenzene	Tetrachloroethene
VOCs (ug/kg)	11/9/2017	104	112	115000
CONCRETE-2	11/9/2017	< 25.0	< 25.0	243
CONCRETE-3	11/9/2017	<25.0	<25.0	47.3 J
CONCRETE-4	11/9/2017	<25.0	<25.0	1760
TCLP VOCs (ug/L)	11/9/2017	#N/A	#N/A	28.4
CONCRETE-2	11/9/2017	#N/A	#N/A	37.9
CONCRETE-3	11/9/2017	#N/A	#N/A	16.1
CONCRETE 4	11/0/2017	$\pm NI/A$	$\pm N/\Delta$	95 N

Notes:

VOCs = Volatile Organic compounds

ug/kg = micrograms per kilogram

ug/L = micrograms per liter

#N/A = Not analyzed

 $\mathsf{J}=\mathsf{Estimated}$ concentration. Laboratory results reported between the limit of detection and limit of quantification.

Analytical results are displayed for detected parameters only.

FIGURES

E:_CAD\1690005819_Former 1hr Dry Cleaners_Design Report\01_Site Location Map.dwg

E:_CAD\1690005819_Former 1hr Dry Cleaners_Design Report\02_Site Plan.d

E:_CAD\1690005819_Former 1hr Dry Cleaners_Design Report\04_GW Elevation (November 2017).

LEGEND

1690005819

E:_CAD\1690005819_Former 1hr Dry Cleaners_Design Report\07_Source Soil & GW Treatment Area.

::_CAD\1690005819_Former 1hr Dry Cleaners_Design Report\08_Post-Remediation Soil Samp Locs.d

Figure 9. Remedial Implementation Schedule Former One-Hour Valet Dry Cleaners Property, Milwaukee, Wisconsin Ramboll Project No. 169005819

ID	Task Name	Duration	Start	Finish	Qtr 4, 2017 Qtr 1, 2018 Qtr 2, 2018 Qtr 3, 2018 Qtr 4, 2018 Qtr 1, 2019 Qtr 2, 2019 Oct NovDec Jan FebMarAprMayJun Jul Aug Sep Oct NovDec Jan FebMarAprMayJun
1	Assumed Date of Proposal Authorization	1 day	Mon 10/9/17	Mon 10/9/17	 ◆ 10/9
2	Baseline Groundwater Sampling Event & Concrete Slab Sampling	9 days	Wed 11/1/17	Thu 11/9/17	•
3	Laboratory Analysis of Bench Scale Samples	70 days	Fri 11/10/17	Thu 1/18/18	
4	Installation of Soil Erosion Controls and Temporary Fencing	5 days	Mon 11/27/17	Fri 12/1/17	• 12/1
5	Building Demolition	58 days	Mon 12/4/17	Tue 1/30/18	
6	Preparation and Submittal of NR 724 Remedial Design Report/Permit Requests	124 days	Mon 10/9/17	Fri 2/9/18	
7	WDNR Approval of NR 724 Remedial Design Report and Permit Requests	54 days	Mon 2/12/18	Fri 4/6/18	
8	In Situ Soil Blending	12 days	Mon 4/16/18	Fri 4/27/18	
9	Site Stabilization and Restoration	38 days	Mon 4/30/18	Wed 6/6/18	
10	Preparation of NR 724 Remedial Action Completion Report	58 days	Mon 4/30/18	Tue 6/26/18	
11	1st Post Remediation Quarterly Groundwater Monitoring Round	3 days	Tue 9/11/18	Thu 9/13/18	•
12	2nd Post Remediation Quarterly Groundwater Monitoring Round	3 days	Tue 12/11/18	Thu 12/13/18	I
13	3rd Post Remediation Quarterly Groundwater Monitoring Round	3 days	Tue 3/12/19	Thu 3/14/19	•
14	4th Post Remediation Quarterly Groundwater Monitoring Round	3 days	Tue 6/11/19	Thu 6/13/19	•
15	5th Post Remediation Quarterly Groundwater Monitoring Round	3 days	Tue 9/17/19	Thu 9/19/19	
16	Post Soil Blending Verification Soil Sampling	3 days	Tue 12/17/19	Thu 12/19/19	
17	6th Post Remediation Quarterly Groundwater Monitoring Round	3 days	Tue 12/17/19	Thu 12/19/19	
18	7th Post Remediation Quarterly Groundwater Monitoring Round	3 days	Tue 3/17/20	Thu 3/19/20	
19	8th Post Remediation Quarterly Groundwater Monitoring Round	3 days	Tue 6/16/20	Thu 6/18/20	
20	Preparation and Submittal of NR 726 Closure/GIS Documents	60 days	Tue 6/30/20	Fri 8/28/20	
21	WDNR Case Closure Review	60 days	Mon 8/31/20	Thu 10/29/20	
22	Estimated Case Closure by WDNR	1 day	Mon 11/2/20	Mon 11/2/20	
23	Well Abandonment	2 days	Mon 11/23/20	Tue 11/24/20	

APPENDIX A

CVOC MASS ESTIMATE

Table A-1. Summary of CVOC Mass Estimates

Former One-Hour Valet Dry Cleaners Property, Milwaukee, Wisconsin

	Total Area	Estimated Contaminant Mass (lbs)									contaminant Mass (Ib)	Percent Contaminant Mass		
Site Area	(sq. ft.)	Before Treatment				After Treatment				In Soil	In Groundwater	In Soil	In Groundwater	
		PCE	TCE	cDCE	tDCE	PCE	TCE	cDCE	tDCE					
Treatment Zone	3,273	1,692	9	25	2	85	0	1	0	1707	22	97.1%	1.3%	
Non-Treatment Zone	10,283	26	1	1	1	26	1	1	1	28	1	1.6%	0.1%	
Total Contaminant M	ass On-Site (lb):		1,7	758			1.	15			1758		100%	
Estimated Total Mas	s Removal (%):				93	3%								

Notes:

1. Assume 95% mass reduction in the treatment zone.

2. Assume that all existing mass in the non-treatment zone will remain on-site at the end of remedial activities.

PCE - Tetrachloroethene

TCE - Trichloroethene

cDCE - cis-1,2,-dichloroethene

tDCE - trans-1,2-dichloroethene

 Table A-2. Treatment Area: PCE Mass Estimate

 Former One-Hour Valet Dry Cleaners Property, Milwaukee, Wisconsin

	Area Dim	ensions	Area V	olume	Soil Par	ameters	Contan	nination	Contamin	ant Mass
Contaminated Zone:	Thicknoss	Aroo			Soil	Soil	Soil	Groundwater	bylovor	bylayor
Treatment Area	(ft)	(ft ²)	(ft ³)	(m ³)	(kg/m ³)	porosity	(ug/kg)	(ug/L)	(kilograms)	(pounds)
Tetrachloroethene (PCF)								<u> </u>		
Area 1										
Soil - Vadose Zone	2	400	400	11	1922		13,869		0.30	0.66
Soil (SC/CS, Saturated)	13	400	5,200	147	1922		730		0.21	0.45
Soil (S/SS, Saturated)	5	400	2,000	57	1922		0		0.00	0.00
Groundwater (SC/CS, saturated)	13	400	5,200	147		0.3		61000	2.69	5.93
Groundwater (S/SS, saturated)	5	400	2,000	57		0.3		61000	1.04	2.28
Area 2										
Soil - Vadose Zone	13	250	3,250	92	1922		384		0.07	0.15
Soil (SC/CS, Saturated)	20	250	5,000	142	1922		840		0.23	0.50
Soil (S/SS, Saturated)	2	250	500	14	1922		350,000		9.52	20.94
Groundwater (SC/CS, saturated)	20	250	5,000	142		0.3		280.7983835	0.01	0.03
Groundwater (S/SS, saturated)	2	250	500	14		0.3		116999.3264	0.50	1.09
Area 3										
Soil - Vadose Zone	2	660	1 320	37	1922		73 700		5.29	11.64
Soil (SC/CS_Saturated)	15	660	9 900	280	1922		35 550		19.14	42.12
Soil (S/SS, Saturated)	3	660	1,980	56	1922		6,700,000		721.57	1.587.46
Groundwater (SC/CS, saturated)	15	660	9,900	280		0.3	.,	29650	2.49	5.49
Groundwater (S/SS, saturated)	3	660	1,980	56		0.3		29650	0.50	1.10
Area 4										
Area 4 Soil Vadoso Zopo	1	1 212	1 212	27	1022		41 600		2.07	4 5 2
Soil (SC/CS_Saturated)	1	1,313	5 250	1/0	1922		41,000		0.20	0.33
Soil (S/SS_Saturated)	0	1 313	0,250	0	1922		120		0.00	0.00
Groundwater (SC/CS, saturated)	4	1,313	5.250	149	1722	0.3	120	574	0.03	0.06
Groundwater (S/SS, saturated)	0	1,313	0	0		0.3		0	0.00	0.00
A										
	4	(50	2 (00	74	1 0 2 2		15		0.00	0.00
Soll - Vadose Zone	4	650	2,600	/4	1,922		11 000		0.00	0.00
Groupdwater (SC/CS_saturated)	6	650	3,900	110	1,922	0.3	11,000	2000.0	2.33	0.15
Groundwater (S/SS_saturated)	0	000	3,900	0		0.3		2000.0	0.07	0.15
	Ŭ	U	Ŭ	0		0.0		0	0.00	0.00
Total - Tetrachloroethene										4 (00
(in pounds)										1,692

 Table A-3. Treatment Area: TCE Mass Estimate

 Former One-Hour Valet Dry Cleaners Property, Milwaukee, Wisconsin

	Area Dime	ensions	Area V	olume	Soil Par	ameters	Contan	nination	Contaminant Mass	
Contaminated Zone:	Thickness	Aree			Soil	Soil	Soil	Groundwater	bulayor	bulayar
Treatment Area	(ft)	(ft ²)	(ft^3)	(m ³)	(ka/m^3)	porosity	(ug/kg)	(ug/L)	(kilograms)	(nounds)
				. ,			(09,109)	(09, 2)	(integratio)	(poundo)
Trichloroethene (TCE)										
Soil - Vadose Zone	2	400	400	11	1922		164		0.00	0.01
Soil (SC/CS, Saturated)	13	400	5,200	147	1922		270		0.08	0.17
Soil (S/SS, Saturated)	5	400	2,000	57	1922		0		0.00	0.00
Groundwater (SC/CS, saturated)	13	400	5,200	147		0.3		1600	0.07	0.16
Groundwater (S/SS, saturated)	5	400	2,000	57		0.3		1600	0.03	0.06
Area 2										
Soil - Vadose Zone	13	250	3,250	92	1922		15		0.00	0.01
Soil (SC/CS, Saturated)	20	250	5,000	142	1922		15		0.00	0.01
Soil (S/SS, Saturated)	2	250	500	14	1762		9,300		0.23	0.51
Groundwater (SC/CS, saturated)	20	250	5,000	142		0.3		16.67132829	0.00	0.00
Groundwater (S/SS, saturated)	2	250	500	14		0.3		10692.64504	0.05	0.10
Aroa 3										
Soil - Vadose Zone	2	660	1 320	37	1022		3 680		0.26	0.58
Soil (SC/CS_Saturated)	15	660	9,900	280	1922		3 593		1.93	4.26
Soil (S/SS, Saturated)	3	660	1,980	56	1922		7.000		0.75	1.66
Groundwater (SC/CS, saturated)	15	660	9,900	280		0.3	.,	2250	0.19	0.42
Groundwater (S/SS, saturated)	3	660	1,980	56		0.3		2250	0.04	0.08
Aroa 4										
Soil - Vadose Zone	1	1 3 1 3	1 3 1 3	37	1022		1 610		0.11	0.25
Soil (SC/CS_Saturated)	4	1,313	5 250	149	1922		23		0.01	0.23
Groundwater (SC/CS, saturated)	4	1,313	5,250	149		0.3	20	0.89	0.00	0.00
Groundwater (S/SS, saturated)	0	1,313	0	0		0.3		0	0.00	0.00
Area 5 Sail Madaga Zana	4	(50	2 (00	74	1 0 2 2		15		0.00	0.00
Soil (SC/CS_Saturated)	4	650	2,800	110	1,922		1 900		0.00	0.00
Groupdwater (SC/CS_saturated)	6	650	3,900	110	1,922	0.3	1,800	680.0	0.38	0.84
Groundwater (S/SS_saturated)	0	000	0,700	0		0.3		0.0	0.02	0.00
	Ŭ	U U	Ŭ	U		0.0		0.0	0.00	0.00
Total - Trichloroethene										0.17
(in pounds)										9.17

 Table A-4. Treatment Area: cDCE Mass Estimate

 Former One-Hour Valet Dry Cleaners Property, Milwaukee, Wisconsin

Contaminated Zone:	Area Dime	ensions	Area V	olume	Soil Par	ameters Soil	Contan	nination Groupdwator	Contaminant Mass	
Treatment Area	Thickness (ft)	Area (ft ²)	(ft ³)	(m ³)	density (kg/m ³)	porosity	concentration (ug/kg)	concentration (ug/L)	by layer (kilograms)	by layer (pounds)
cis-1,2-dichloroethene (cDCE)										
Area 1 Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 13 5 13 5	400 400 400 400 400	400 5,200 2,000 5,200 2,000	11 147 57 147 57	1922 1922 1922	0.3 0.3	21 15 0	2000 2000	0.00 0.00 0.00 0.09 0.03	0.00 0.01 0.00 0.19 0.07
Area 2 Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	13 20 2 20 2	250 250 250 250 250	3,250 5,000 500 5,000 500	92 142 14 142 14	1922 1922 1762	0.3 0.3	15 15 1,400	32.3 3120.8	0.00 0.00 0.03 0.00 0.01	0.01 0.01 0.08 0.00 0.03
Area 3 Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 15 3 15 3	660 660 660 660 660	1,320 9,900 1,980 9,900 1,980	37 280 56 280 56	1922 1922 1922	0.3 0.3	4,410 6,918 7,000	17700 17700	0.32 3.72 0.75 1.49 0.30	0.70 8.19 1.66 3.28 0.66
Area 4 Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	1 4 4 0	1,313 1,313 1,313 1,313 1,313	1,313 5,250 5,250 0	37 149 149 0	1922 1922	0.3 0.3	586 698	43 0	0.04 0.20 0.00 0.00	0.09 0.44 0.00 0.00
Area 5 Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	4 6 6 0	650 650 650 0	2,600 3,900 3,900 0	74 110 110 0	1,922 1,922	0.3 0.3	3,100 18,000	9700 0.0	0.44 3.82 0.32 0.00	0.96 8.40 0.71 0.00
Total - cis-1,2-dichloroethene (in pounds)										25.5

Table A-5. Treatment Area: tDCE Mass Estimate

	Area Dime	ensions	Area V	olume	Soil Par	ameters	Contam	nination	Contamin	ant Mass
Contaminated Zone:	Thistory	A			Soil	Soil	Soil	Groundwater	here become	
Treatment Area	(ft)	Area (ft ²)	(ft^3)	(m ³)	(kg/m ³)	porosity	(ug/kg)	(ug/L)	(kilograms)	(pounds)
trans 1.2 dichloroothono (tDCE)		<u> </u>		<u> </u>			(((([========
Area 1 Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (SS, Saturated)	2 13 5 13	400 400 400 400	400 5,200 2,000 5,200 2,000	11 147 57 147 57	1922 1922 1922	0.3	14 15 0	40	0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.00
Area 2 Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	13 20 2 20 2	250 250 250 250 250 250	3,250 5,000 500 5,000 5,000 500	92 142 14 142 142 14	1922 1922 1762	0.3 0.3	15 15 1,400	40 49.0 4730.9	0.00 0.00 0.03 0.00 0.02	0.01 0.01 0.08 0.00 0.04
Area 3 Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 15 3 15 3	660 660 660 660 660	1,320 9,900 1,980 9,900 1,980	37 280 56 280 56	1922 1922 1922	0.3 0.3	65 87 7,000	40 40	0.00 0.05 0.75 0.00 0.00	0.01 0.10 1.66 0.01 0.00
Area 4 Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	1 4 4 0	1,313 1,313 1,313 1,313 1,313	1,313 5,250 5,250 0	37 149 149 0	1922 1922	0.3 0.3	19 28	0.105 0	0.00 0.01 0.00 0.00	0.00 0.02 0.00 0.00
Area 5 Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	4 6 6 0	650 650 650 0	2,600 3,900 3,900 0	74 110 110 0	1,922 1,922	0.3 0.3	79 220	94.0 0.0	0.01 0.05 0.00 0.00	0.02 0.10 0.01 0.00
Total - trans-1,2-dichloroethene (in pounds)										2.1

Table A-6. Non-Treatment Area: PCE Mass Estimate

	Area Dime	ensions	Area V	olume	Soil Par	ameters	Contan	nination	Contamin	ant Mass
Contaminated Zone:	Thickness	Aroa			Soil	Soil	Soil	Groundwater	by laver	by laver
	(ft)	(ft ²)	(ft ³)	(m ³)	(kg/m ³)	porosity	(ug/kg)	(ug/L)	(kilograms)	(pounds)
Tetrachloroethene (PCE)										
Area A Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 23 2 23 2	1,456 1,456 1,456 1,456 1,456	14,560 33,488 2,912 33,488 2,912	412 948 82 948 82	1922 1922 1922	0.3 0.3	1,595		1.26 0.00 0.00 0.00 0.00	2.78 0.00 0.00 0.00 0.00
Area B Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 0 0 0 0	849 849 849 849 849	8,490 0 0 0 0	240 0 0 0 0	1922 1922 1762	0.3 0.3	467		0.22 0.00 0.00 0.00 0.00	0.47 0.00 0.00 0.00 0.00
Area C Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 8 0 8 0	613 613 613 613 613	1,226 4,904 0 4,904 0	35 139 0 139 0	1922 1922 1922	0.3 0.3	376 376 0	125.75 125.75	0.03 0.10 0.00 0.01 0.00	0.06 0.22 0.00 0.01 0.00
Area D Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 8 8 0	1,879 1,879 1,879 1,879	3,758 15,032 15,032 0	106 425 425 0	1922 1922	0.3 0.3	11 11	0.69 0.00	0.00 0.01 0.00 0.00	0.00 0.02 0.00 0.00
Area E Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 3 3 0	991 991 991 0	1,982 2,973 2,973 0	56 84 84 0	1,922 1,922	0.3 0.3	10 10	0.1 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Area F Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 0 0 0	1,500 1,500 1,500 1,500	15,000 0 0 0	425 0 0 0	1,922 1,922	0.3 0.3	705 0	0.0 0	0.58 0.00 0.00 0.00	1.27 0.00 0.00 0.00
Area G Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 0 0 0	675 675 675 675	6,750 0 0 0	191 0 0 0	1,922 1,922	0.3 0.3	3,486 0	0.0 0	1.28 0.00 0.00 0.00	2.82 0.00 0.00 0.00

Table A-6. Non-Treatment Area: PCE Mass Estimate

	Area Dime	nsions	Area Volume		Soil Parameters		Contan	nination	Contaminant Mass	
Contaminated Zone:	Area Bine		Alca V	oranie	Soil	Soil	Soil	Groundwater	oontaniii	
Non-Treatment Area	Thickness	Area	(f+ ³)	(m^{3})	density	porosity	concentration	concentration	by layer	by layer
Area H	(ft)	(11)	(11)	(m)	(kg/m)		(ug/kg)	(ug/L)	(kilograms)	(pounds)
Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	21 11.5 2.5 11.5 2.5	794 794 794 794 794 794	16,674 9,131 1,985 9,131 1,985	472 258 56 258 56	1,922 1,922 1,922	0.3 0.3	3,900 3,900 3,900	38.0 38.0	3.54 1.94 0.42 0.00 0.00	7.78 4.26 0.93 0.01 0.00
Area I Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 3 3 0	0 0 0 0	0 0 0 0	0 0 0 0	1,922 1,922	0.3 0.3	12,000 13,623	4553.8 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Area J Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	13 7 7 0	500 500 500 500	6,500 3,500 3,500 0	184 99 99 0	1,922 1,922	0.3 0.3	586 586	24.2 0.0	0.21 0.11 0.00 0.00	0.46 0.25 0.00 0.00
Area K Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	4 6 6 0	344 344 344 344	1,376 2,064 2,064 0	39 58 58 0	1,922 1,922	0.3 0.3	730 730	244.0 0.0	0.05 0.08 0.00 0.00	0.12 0.18 0.01 0.00
Area L Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 20 5 20 5	682 682 682 682 682	6,820 13,640 3,410 13,640 3,410	193 386 97 386 97	1,922 1,922 1,922	0.3 0.3	384 840 5,000	280.8 1671.4	0.14 0.62 0.93 0.03 0.05	0.31 1.37 2.04 0.07 0.11
Area M Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	1 7 2 7 2	0 0 0 0	0 0 0 0	0 0 0 0	1,922 1,922 1,922	0.3 0.3	15 11,000 11,000	574.0 574.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
Total - tetrachloroethene										26
(in pounds)										20

Table A-7. Non-Treatment Area: TCE Mass Estimate

	Area Dim	ensions	Area V	olume	Soil Par	ameters	Contamination		Contaminant Mass	
Contaminated Zone:			Aicu V	olume	Soil	Soil	Soil	Groundwater		
Non-Treatment Area	Thickness (ft)	Area (ft ²)	(ft ³)	(m ³)	(kg/m ³)	porosity	concentration (ug/kg)	concentration (ug/L)	by layer (kilograms)	by layer (pounds)
Trichloroethene (TCE)										
Area A Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 23 2 23 2	1,456 1,456 1,456 1,456 1,456	14,560 33,488 2,912 33,488 2,912	412 948 82 948 82	1922 1922 1922	0.3 0.3	7 0 0		0.01 0.00 0.00 0.00 0.00	0.01 0.00 0.00 0.00 0.00
Area B Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 0 0 0 0	849 849 849 849 849	8,490 0 0 0 0	240 0 0 0 0	1922 1922 1762	0.3 0.3	16		0.01 0.00 0.00 0.00 0.00	0.02 0.00 0.00 0.00 0.00
Area C Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 8 0 8 0	613 613 613 613 613	1,226 4,904 0 4,904 0	35 139 0 139 0	1922 1922 1922	0.3 0.3	15 15 0	16.67 16.67	0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.00 0.00
Area D Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 8 8 0	1,879 1,879 1,879 1,879 1,879	3,758 15,032 15,032 0	106 425 425 0	1922 1922	0.3 0.3	7 7	0.11 0.00	0.00 0.01 0.00 0.00	0.00 0.01 0.00 0.00
Area E Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 3 3 0	991 991 991 0	1,982 2,973 2,973 0	56 84 84 0	1,922 1,922	0.3 0.3	6 6	0.1 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Area F Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 0 0 0	1,500 1,500 1,500 1,500	15,000 0 0 0	425 0 0 0	1,922 1,922	0.3 0.3	11 0	0.0 0	0.01 0.00 0.00 0.00	0.02 0.00 0.00 0.00
Area G Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 0 0 0	675 675 675 675	6,750 0 0 0	191 0 0 0	1,922 1,922	0.3 0.3	15 0	0.0 0	0.01 0.00 0.00 0.00	0.01 0.00 0.00 0.00

Table A-7. Non-Treatment Area: TCE Mass Estimate

	Area Dime	ensions	Area V	olume	Soil Par	ameters	Contam	nination	Contaminant Mass	
Contaminated Zone:			7		Soil	Soil	Soil	Groundwater		
Non-Treatment Area	Thickness (ft)	Area (ft ²)	(ft^3)	(m^3)	(kg/m ³)	porosity	concentration	concentration	by layer (kilograms)	by layer (pounds)
Area H	(11)	(11)	(11)	(111)	(((g/11))		(dg/kg)	(ug/L)	(kilograms)	(pounds)
Soil - Vadose Zone	21	794	16,674	472	1,922		7		0.01	0.01
Soil (SC/CS, Saturated)	11.5	794	9,131	258	1,922		7		0.00	0.01
Soil (S/SS, Saturated)	2.5	794	1,985	56	1,922		7		0.00	0.00
Groundwater (SC/CS, saturated)	11.5	794	9,131	258		0.3		0.4	0.00	0.00
Groundwater (S/SS, saturated)	2.5	794	1,985	56		0.3		0.4	0.00	0.00
Area I										
Soil - Vadose Zone	2	0	0	0	1,922		110		0.00	0.00
Soil (SC/CS, Saturated)	3	0	0	0	1,922		2,786		0.00	0.00
Groundwater (SC/CS, saturated)	3	0	0	0		0.3		3203.2	0.00	0.00
Groundwater (S/SS, saturated)	0	0	0	0		0.3		0.0	0.00	0.00
Area J										
Soil - Vadose Zone	13	500	6,500	184	1,922		15		0.01	0.01
Soil (SC/CS, Saturated)	7	500	3,500	99	1,922		15		0.00	0.01
Groundwater (SC/CS, saturated)	7	500	3,500	99		0.3		1.1	0.00	0.00
Groundwater (S/SS, saturated)	0	500	0	0		0.3		0.0	0.00	0.00
Area K										
Soil - Vadose Zone	4	344	1.376	39	1,922		270		0.02	0.04
Soil (SC/CS, Saturated)	6	344	2,064	58	1,922		270		0.03	0.07
Groundwater (SC/CS, saturated)	6	344	2,064	58		0.3		310.4	0.01	0.01
Groundwater (S/SS, saturated)	0	344	0	0		0.3		0.0	0.00	0.00
Areal										
Soil - Vadose Zone	10	682	6.820	193	1,922		15		0.01	0.01
Soil (SC/CS, Saturated)	20	682	13,640	386	1,922		15		0.01	0.02
Soil (S/SS, Saturated)	5	682	3,410	97	1,922		1,500		0.28	0.61
Groundwater (SC/CS, saturated)	20	682	13,640	386		0.3		16.7	0.00	0.00
Groundwater (S/SS, saturated)	5	682	3,410	97		0.3		1724.6	0.05	0.11
Area M										
Soil - Vadose Zone	1	0	0	0	1,922		10		0.00	0.00
Soil (SC/CS, Saturated)	7	0	0	0	1,922		1,800		0.00	0.00
Soil (S/SS, Saturated)	2	0	0	0	1,922		1,800		0.00	0.00
Groundwater (SC/CS, saturated)	7	0	0	0		0.3		0.9	0.00	0.00
Groundwater (S/SS, saturated)	2	0	0	0		0.3		0.9	0.00	0.00
Total - trichloroethene										
(In pounds)										1.02

Table A-8. Non-Treatment Area: cDCE Mass Estimate

	Area Dim	ensions	Area Volume		Soil Parameters		Contamination		Contaminant Mass	
Contaminated Zone:	Area Dini		Alcuiv	June	Soil	Soil	Soil	Groundwater		
Non-Treatment Area	Thickness (ft)	Area (ft ²)	(ft ³)	(m ³)	(kg/m ³)	porosity	concentration (ug/kg)	concentration (ug/L)	by layer (kilograms)	by layer (pounds)
cis-1,2-dichloroethene (cDCE)										
Area A Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 23 2 23 2	1,456 1,456 1,456 1,456 1,456	14,560 33,488 2,912 33,488 2,912	412 948 82 948 82	1922 1922 1922	0.3 0.3	6 0 0		0.00 0.00 0.00 0.00 0.00	0.01 0.00 0.00 0.00 0.00
Area B Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 0 0 0 0	849 849 849 849 849	8,490 0 0 0 0	240 0 0 0 0	1922 1922 1762	0.3 0.3	16 0 0		0.01 0.00 0.00 0.00 0.00	0.02 0.00 0.00 0.00 0.00
Area C Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 8 0 8 0	613 613 613 613 613	1,226 4,904 0 4,904 0	35 139 0 139 0	1922 1922 1922	0.3 0.3	170 170 0	378.58 378.58	0.01 0.05 0.00 0.02 0.00	0.02 0.10 0.00 0.03 0.00
Area D Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 8 8 0	1,879 1,879 1,879 1,879 1,879	3,758 15,032 15,032 0	106 425 425 0	1922 1922	0.3 0.3	12 12	0.10 0.00	0.00 0.01 0.00 0.00	0.01 0.02 0.00 0.00
Area E Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 3 3 0	991 991 991 0	1,982 2,973 2,973 0	56 84 84 0	1,922 1,922	0.3 0.3	6 6	0.2 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Area F Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 0 0 0	1,500 1,500 1,500 1,500	15,000 0 0 0	425 0 0 0	1,922 1,922	0.3 0.3	10 0	0.0 0	0.01 0.00 0.00 0.00	0.02 0.00 0.00 0.00
Area G Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 0 0 0	675 675 675 675	6,750 0 0 0	191 0 0 0	1,922 1,922	0.3 0.3	14 0	0.0 0	0.00 0.00 0.00 0.00	0.01 0.00 0.00 0.00

Table A-8. Non-Treatment Area: cDCE Mass Estimate

Contominated Zana	Area Dime	ensions	Area V	Area Volume		ameters	Contamination		Contaminant Mass	
Non-Treatment Area	Thickness (ft)	Area (ft ²)	(ft ³)	(m ³)	density (kg/m ³)	porosity	concentration (ug/kg)	concentration (ug/L)	by layer (kilograms)	by layer (pounds)
Area H Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	21 11.5 2.5 11.5 2.5	794 794 794 794 794	16,674 9,131 1,985 9,131 1,985	472 258 56 258 56	1,922 1,922 1,922	0.3 0.3	6 6 6	0.2 0.2	0.01 0.00 0.00 0.00 0.00	0.01 0.01 0.00 0.00 0.00
Area I Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 3 3 0	0 0 0 0	0 0 0 0	0 0 0 0	1,922 1,922	0.3 0.3	51 2,454	5469.7 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Area J Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	13 7 7 0	500 500 500 500	6,500 3,500 3,500 0	184 99 99 0	1,922 1,922	0.3 0.3	31 31	4.9 0.0	0.01 0.01 0.00 0.00	0.02 0.01 0.00 0.00
Area K Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	4 6 6 0	344 344 344 344	1,376 2,064 2,064 0	39 58 58 0	1,922 1,922	0.3 0.3	15 15	33.4 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Area L Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 20 5 20 5	682 682 682 682 682	6,820 13,640 3,410 13,640 3,410	193 386 97 386 97	1,922 1,922 1,922	0.3 0.3	15 15 1,400	32.3 3120.8	0.01 0.01 0.26 0.00 0.09	0.01 0.02 0.57 0.01 0.20
Area M Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	1 7 2 7 2	0 0 0 0 0	0 0 0 0	0 0 0 0	1,922 1,922 1,922	0.3 0.3	3,100 18,000 18,000	43.0 43.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
Total - cis-1,2-dichloroethene (in pounds)										1.13

Table A-9. Non-Treatment Area: tDE Mass Estimate

	Area Dime	ensions	Area Volume		Soil Par	ameters	Contamination		Contaminant Mass	
Contaminated Zone:			Ai cu V	orume	Soil	Soil	Soil	Groundwater	· ·	
Non-Treatment Area	Thickness (ft)	Area (ft ²)	(ft ³)	(m ³)	density (kg/m ³)	porosity	concentration (ug/kg)	concentration (ug/L)	by layer (kilograms)	by layer (pounds)
trans-1,2-dichloroethene (tDCE)										
Area A Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 23 2 23 2	1,456 1,456 1,456 1,456 1,456 1,456	14,560 33,488 2,912 33,488 2,912	412 948 82 948 82	1922 1922 1922	0.3 0.3	7 0 0		0.01 0.00 0.00 0.00 0.00	0.01 0.00 0.00 0.00 0.00
Area B Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 0 0 0 0	849 849 849 849 849	8,490 0 0 0 0	240 0 0 0 0	1922 1922 1762	0.3 0.3	16 0 0		0.01 0.00 0.00 0.00 0.00	0.02 0.00 0.00 0.00 0.00
Area C Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 8 0 8 0	613 613 613 613 613	1,226 4,904 0 4,904 0	35 139 0 139 0	1922 1922 1922	0.3 0.3	15 15 0	49.00 49.00	0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.00 0.00
Area D Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 8 8 0	1,879 1,879 1,879 1,879 1,879	3,758 15,032 15,032 0	106 425 425 0	1922 1922	0.3 0.3	6 6	0.11 0.00	0.00 0.01 0.00 0.00	0.00 0.01 0.00 0.00
Area E Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 3 3 0	991 991 991 0	1,982 2,973 2,973 0	56 84 84 0	1,922 1,922	0.3 0.3	6 6	0.1 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Area F Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 0 0 0	1,500 1,500 1,500 1,500	15,000 0 0 0	425 0 0 0	1,922 1,922	0.3 0.3	11 0	0.0 0	0.01 0.00 0.00 0.00	0.02 0.00 0.00 0.00
Area G Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 0 0 0	675 675 675 675	6,750 0 0 0	191 0 0 0	1,922 1,922	0.3 0.3	15 0	0.0 0	0.01 0.00 0.00 0.00	0.01 0.00 0.00 0.00

Table A-9. Non-Treatment Area: tDE Mass Estimate

Contaminated Zono:	Area Dime	ensions	Area Vo	olume	Soil Par	ameters	Contan	nination Groupdwater	Contaminant Mass	
Non-Treatment Area	Thickness (ft)	Area (ft ²)	(ft ³)	(m ³)	density (kg/m ³)	porosity	concentration (ug/kg)	concentration (ug/L)	by layer (kilograms)	by layer (pounds)
Area H Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	21 11.5 2.5 11.5 2.5	794 794 794 794 794	16,674 9,131 1,985 9,131 1,985	472 258 56 258 56	1,922 1,922 1,922	0.3 0.3	7 7 7	0.1 0.1	0.01 0.00 0.00 0.00 0.00	0.01 0.01 0.00 0.00 0.00
Area I Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	2 3 3 0	0 0 0 0	0 0 0 0	0 0 0 0	1,922 1,922	0.3 0.3	15 43	143.6 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Area J Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	13 7 7 0	500 500 500 500	6,500 3,500 3,500 0	184 99 99 0	1,922 1,922	0.3 0.3	15 15	0.5 0.0	0.01 0.00 0.00 0.00	0.01 0.01 0.00 0.00
Area K Soil - Vadose Zone Soil (SC/CS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	4 6 6 0	344 344 344 344	1,376 2,064 2,064 0	39 58 58 0	1,922 1,922	0.3 0.3	15 15	50.7 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Area L Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	10 20 5 20 5	682 682 682 682 682	6,820 13,640 3,410 13,640 3,410	193 386 97 386 97	1,922 1,922 1,922	0.3 0.3	15 15 1,400	49.0 4730.9	0.01 0.01 0.26 0.01 0.14	0.01 0.02 0.57 0.01 0.30
Area M Soil - Vadose Zone Soil (SC/CS, Saturated) Soil (S/SS, Saturated) Groundwater (SC/CS, saturated) Groundwater (S/SS, saturated)	1 7 2 7 2	0 0 0 0	0 0 0 0	0 0 0 0	1,922 1,922 1,922	0.3 0.3	79 220 220	0.1 0.1	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
Total - trans-1,2-dichloroethene (in pounds)										1.06
APPENDIX B

LABORATORY ANALYTICAL RESULTS FOR PRE-REMEDIATION GROUNDWATER AND CONCRETE SAMPLING ACTIVITIES

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

November 21, 2017

Jeanne Tarvin Ramboll Environ 175 North Corporate Drive Suite 160 Brookfield, WI 53045

RE: Project: 1690005819 FORMER 1-HOUR VALET Pace Project No.: 40160138

Dear Jeanne Tarvin:

Enclosed are the analytical results for sample(s) received by the laboratory on November 03, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

A.V.M

Steven Mleczko steve.mleczko@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Jim Hutchens, Ramboll Environ Jim Kane, Ramboll Environ Snejana Karakis, Environ David L. Markelz, Ramboll Environ Michelle Murphy, Environ Susan Petrofske, Ramboll Environ Scott Tarmann, Ramboll Environ Abigail M. Wedig, Environ International Corp

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Minnesota Certification IDs

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #:MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Maryland Certification #: 322 Massachusetts Certification #: M-MN064

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: MN00064 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon NwTPH Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DW Certification #: 9952 C West Virginia DEP Certification #: 382 Wisconsin Certification #: 999407970

Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: 1104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.:

	1090003619 FURIMER 1-HOUR VALE
ect No.:	40160138

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40160138001	PZ-2	Water	11/01/17 13:20	11/03/17 14:35
40160138002	MW-1	Water	11/01/17 14:35	11/03/17 14:35
40160138003	MW-2	Water	11/01/17 15:45	11/03/17 14:35
40160138004	MW-3	Water	11/01/17 16:46	11/03/17 14:35
40160138005	PZ-4	Water	11/02/17 08:00	11/03/17 14:35
40160138006	PZ-3	Water	11/02/17 09:05	11/03/17 14:35
40160138007	MW-4	Water	11/02/17 09:50	11/03/17 14:35
40160138008	MW-4 DUP	Water	11/02/17 09:53	11/03/17 14:35
40160138009	MW-5	Water	11/02/17 10:50	11/03/17 14:35
40160138010	MW-5 DUP	Water	11/02/17 10:53	11/03/17 14:35
40160138011	PZ-1	Water	11/02/17 11:40	11/03/17 14:35
40160138012	TRIP BLANK	Water	11/02/17 00:00	11/03/17 14:35

SAMPLE ANALYTE COUNT

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40160138001	– PZ-2	EPA 8015B Modified	ALD	3	PASI-G
		SM 3500-Fe B	AJM	1	PASI-M
		EPA 6020A	RJS	1	PASI-M
		EPA 8260	HNW	65	PASI-G
		EPA 300.0	НМВ	1	PASI-G
		SM 3500-Fe B	DCL	1	PASI-M
		EPA 353.2	DAW	1	PASI-G
		SM 5310C	TJJ	1	PASI-G
40160138002	MW-1	EPA 8015B Modified	ALD	3	PASI-G
		SM 3500-Fe B	AJM	1	PASI-M
		EPA 6020A	RJS	1	PASI-M
		EPA 8260	HNW	65	PASI-G
		EPA 300.0	HMB	1	PASI-G
		SM 3500-Fe B	DCL	1	PASI-M
		EPA 353.2	DAW	1	PASI-G
		SM 5310C	TJJ	1	PASI-G
40160138003	MW-2	EPA 8015B Modified	ALD	3	PASI-G
		SM 3500-Fe B	AJM	1	PASI-M
		EPA 6020A	RJS	1	PASI-M
		EPA 8260	HNW	65	PASI-G
		EPA 300.0	HMB	1	PASI-G
		SM 3500-Fe B	DCL	1	PASI-M
		EPA 353.2	DAW	1	PASI-G
		SM 5310C	TJJ	1	PASI-G
40160138004	MW-3	EPA 8260	HNW	65	PASI-G
40160138005	PZ-4	EPA 8260	HNW	65	PASI-G
40160138006	PZ-3	EPA 8260	HNW	65	PASI-G
40160138007	MW-4	EPA 8260	HNW	65	PASI-G
40160138008	MW-4 DUP	EPA 8260	HNW	65	PASI-G
40160138009	MW-5	EPA 8260	HNW	65	PASI-G
40160138010	MW-5 DUP	EPA 8260	HNW	65	PASI-G
40160138011	PZ-1	EPA 8015B Modified	ALD	3	PASI-G
		SM 3500-Fe B	AJM	1	PASI-M
		EPA 6020A	RJS	1	PASI-M
		EPA 8260	HNW	65	PASI-G
		EPA 300.0	HMB	1	PASI-G

REPORT OF LABORATORY ANALYSIS

SM 3500-Fe B

DCL

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

PASI-M

1

SAMPLE ANALYTE COUNT

Project: Pace Project No	1690005819 FORMER 1-HOUR VALET				
Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 353.2	DAW	1	PASI-G
		SM 5310C	TJJ	1	PASI-G
40160138012	TRIP BLANK	EPA 8260	HNW	65	PASI-G

SUMMARY OF DETECTION

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Lab Sample ID Client Sample ID Method Parameters Qualifiers Result Units Report Limit Analyzed 40160138001 PZ-2 EPA 8015B Modified Methane 23.1 ug/L 2.8 11/08/17 07:52 SM 3500-Fe B Iron, Ferric 5.7 mg/L 0.050 11/20/17 15:02 N2 EPA 6020A 8820 19.0 11/15/17 02:46 Iron ug/L EPA 8260 cis-1,2-Dichloroethene 4.1 ug/L 1.0 11/07/17 08:53 EPA 8260 Vinyl chloride 11.0 ug/L 1.0 11/07/17 08:53 Sulfate 178 11/15/17 00:16 EPA 300.0 mg/L 15.0 SM 3500-Fe B Iron, Ferrous 3.1 0.40 11/17/17 13:29 H6 mg/L 40160138002 **MW-1** EPA 6020A Iron 12.6J 19.0 11/15/17 02:32 ug/L 40160138003 MW-2 SM 3500-Fe B Iron, Ferric 0.54 mg/L 0.050 11/20/17 15:02 N2 EPA 6020A Iron 1770 ug/L 19.0 11/15/17 02:37 93.5 EPA 300.0 Sulfate mg/L 30.0 11/14/17 13:23 SM 3500-Fe B 11/17/17 13:55 H6 Iron, Ferrous 1.2 mg/L 0.20 40160138005 PZ-4 EPA 8260 11/06/17 16:48 Vinyl chloride 1.3 1.0 ug/L 40160138006 PZ-3 EPA 8260 cis-1.2-Dichloroethene 2060 ug/L 50.0 11/06/17 14:58 EPA 8260 trans-1.2-Dichloroethene 22.4J 50.0 11/06/17 14:58 ug/L EPA 8260 Trichloroethene 144 ug/L 50.0 11/06/17 14:58 40160138007 MW-4 EPA 8260 Tetrachloroethene 7.8 ug/L 1.0 11/06/17 17:09 MW-4 DUP 40160138008 EPA 8260 Tetrachloroethene 7.9 11/06/17 13:25 ug/L 1.0 40160138009 MW-5 EPA 8260 cis-1,2-Dichloroethene 73.6 ug/L 1.0 11/06/17 15:42 EPA 8260 trans-1,2-Dichloroethene 1.0 11/06/17 15:42 1.5 ug/L EPA 8260 Tetrachloroethene 30.3 1.0 11/06/17 15:42 ug/L EPA 8260 Trichloroethene 11/06/17 15:42 3.2 1.0 ug/L EPA 8260 0.45J Vinyl chloride 1.0 11/06/17 15:42 ug/L 40160138010 MW-5 DUP EPA 8260 cis-1,2-Dichloroethene 80.2 1.0 11/06/17 12:20 ug/L EPA 8260 trans-1,2-Dichloroethene 11/06/17 12:20 1.4 ug/L 1.0 Tetrachloroethene EPA 8260 28.3 ug/L 1.0 11/06/17 12:20 EPA 8260 Trichloroethene 3.4 ug/L 1.0 11/06/17 12:20 EPA 8260 Vinyl chloride 0.55J ug/L 1.0 11/06/17 12:20 40160138011 PZ-1 SM 3500-Fe B Iron, Ferric 2.2 mg/L 0.050 11/20/17 15:02 N2 EPA 6020A Iron 2290 ug/L 19.0 11/15/17 02:42 EPA 8260 cis-1,2-Dichloroethene 414 11/06/17 14:36 ug/L 250 EPA 8260 Tetrachloroethene 16200 ug/L 250 11/06/17 14:36 EPA 8260 Trichloroethene 11/06/17 14:36 435 ug/L 250

SUMMARY OF DETECTION

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
PZ-1					
Sulfate Iron, Ferrous Nitrogen, NO2 plus NO3	155 0.060 0.33	mg/L mg/L mg/L	30.0 0.040 0.25	11/14/17 13:33 11/17/17 13:31 11/10/17 10:15	H6
	Client Sample ID Parameters PZ-1 Sulfate Iron, Ferrous Nitrogen, NO2 plus NO3 Total Organic Carbon	Client Sample ID Parameters Result PZ-1 Sulfate 155 Iron, Ferrous 0.060 Nitrogen, NO2 plus NO3 0.33 Total Organic Carbon 0 50.1	Client Sample ID Parameters Result Units PZ-1 Sulfate 155 mg/L Iron, Ferrous 0.060 mg/L Nitrogen, NO2 plus NO3 0.33 mg/L Total Organic Carbon 0.50 mg/L	Client Sample ID Parameters Result Units Report Limit PZ-1 Sulfate 155 mg/L 30.0 Iron, Ferrous 0.060 mg/L 0.040 Nitrogen, NO2 plus NO3 0.33 mg/L 0.25 Total Organic Carbon 0.50.1 mg/L 0.84	Client Sample ID Result Units Report Limit Analyzed PZ-1 Sulfate 155 mg/L 30.0 11/14/17 13:33 Iron, Ferrous 0.060 mg/L 0.040 11/17/17 13:31 Nitrogen, NO2 plus NO3 0.33 mg/L 0.25 11/10/17 10:15 Total Organic Carbon 0.50.1 mg/L 0.84 11/09/17 11:44

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.:

t No.: 40160138

Sample: PZ-2	Lab ID: 40160138001 Collected: 11/01/17 13:20 Received: 11/03/17 14:35 Matrix						atrix: Water		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Methane, Ethane, Ethene GCV	Analytical	Method: EPA 8	015B Modi	fied					
Ethane	<0.58	ug/L	5.6	0.58	1		11/08/17 07:52	74-84-0	
Ethene	<0.52	ug/L	5.0	0.52	1		11/08/17 07:52	74-85-1	
Methane	23.1	ug/L	2.8	1.4	1		11/08/17 07:52	74-82-8	
Iron, Ferric (Calculation)	Analytical	Method: SM 35	500-Fe B						
Iron, Ferric	5.7	mg/L	0.050		1		11/20/17 15:02	7439-89-6	N2
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	hod: El	PA 3020			
Iron	8820	ug/L	19.0	5.7	1	11/13/17 18:26	11/15/17 02:46	7439-89-6	
8260 MSV	Analytical	Method: EPA 8	260						
Benzene	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	71-43-2	
Bromobenzene	<0.23	ug/L	1.0	0.23	1		11/07/17 08:53	108-86-1	
Bromochloromethane	<0.34	ug/L	1.0	0.34	1		11/07/17 08:53	74-97-5	
Bromodichloromethane	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	75-27-4	
Bromoform	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	75-25-2	
Bromomethane	<2.4	ug/L	5.0	2.4	1		11/07/17 08:53	74-83-9	
n-Butylbenzene	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	104-51-8	
sec-Butylbenzene	<2.2	ug/L	5.0	2.2	1		11/07/17 08:53	135-98-8	
tert-Butylbenzene	<0.18	ug/L	1.0	0.18	1		11/07/17 08:53	98-06-6	
Carbon tetrachloride	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	56-23-5	
Chlorobenzene	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	108-90-7	
Chloroethane	<0.37	ug/L	1.0	0.37	1		11/07/17 08:53	75-00-3	
Chloroform	<2.5	ug/L	5.0	2.5	1		11/07/17 08:53	67-66-3	
Chloromethane	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	74-87-3	
2-Chlorotoluene	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	95-49-8	
4-Chlorotoluene	<0.21	ug/L	1.0	0.21	1		11/07/17 08:53	106-43-4	
1,2-Dibromo-3-chloropropane	<2.2	ug/L	5.0	2.2	1		11/07/17 08:53	96-12-8	
Dibromochloromethane	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	124-48-1	
1,2-Dibromoethane (EDB)	<0.18	ug/L	1.0	0.18	1		11/07/17 08:53	106-93-4	
Dibromomethane	<0.43	ug/L	1.0	0.43	1		11/07/17 08:53	74-95-3	
1,2-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	95-50-1	
1,3-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	541-73-1	
1,4-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	106-46-7	
Dichlorodifluoromethane	<0.22	ug/L	1.0	0.22	1		11/07/17 08:53	75-71-8	
1,1-Dichloroethane	<0.24	ug/L	1.0	0.24	1		11/07/17 08:53	75-34-3	
1,2-Dichloroethane	<0.17	ug/L	1.0	0.17	1		11/07/17 08:53	107-06-2	
1,1-Dichloroethene	<0.41	ug/L	1.0	0.41	1		11/07/17 08:53	75-35-4	
cis-1,2-Dichloroethene	4.1	ug/L	1.0	0.26	1		11/07/17 08:53	156-59-2	
trans-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/07/17 08:53	156-60-5	
1,2-Dichloropropane	<0.23	ug/L	1.0	0.23	1		11/07/17 08:53	/8-87-5	
1,3-Dichloropropane	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	142-28-9	
2,2-Dichloropropane	<0.48	ug/L	1.0	0.48	1		11/07/17 08:53	594-20-7	
1,1-Dichloropropene	<0.44	ug/L	1.0	0.44	1		11/07/17 08:53	563-58-6	
cis-1,3-Dichloropropene	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	10061-01-5	
trans-1,3-Dichloropropene	<0.23	ug/L	1.0	0.23	1		11/07/17 08:53	10061-02-6	L2

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Sample: PZ-2	Lab ID:	40160138001	Collected: 11/01/17 13:20			Received: 11	atrix: Water		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
Diisopropyl ether	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	108-20-3	
Ethylbenzene	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	100-41-4	
Hexachloro-1,3-butadiene	<2.1	ug/L	5.0	2.1	1		11/07/17 08:53	87-68-3	
Isopropylbenzene (Cumene)	<0.14	ug/L	1.0	0.14	1		11/07/17 08:53	98-82-8	
p-Isopropyltoluene	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	99-87-6	
Methylene Chloride	<0.23	ug/L	1.0	0.23	1		11/07/17 08:53	75-09-2	
Methyl-tert-butyl ether	<0.17	ug/L	1.0	0.17	1		11/07/17 08:53	1634-04-4	
Naphthalene	<2.5	ug/L	5.0	2.5	1		11/07/17 08:53	91-20-3	
n-Propylbenzene	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	103-65-1	
Styrene	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	100-42-5	
1,1,1,2-Tetrachloroethane	<0.18	ug/L	1.0	0.18	1		11/07/17 08:53	630-20-6	
1,1,2,2-Tetrachloroethane	<0.25	ug/L	1.0	0.25	1		11/07/17 08:53	79-34-5	
Tetrachloroethene	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	127-18-4	
Toluene	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	108-88-3	
1,2,3-Trichlorobenzene	<2.1	ug/L	5.0	2.1	1		11/07/17 08:53	87-61-6	
1,2,4-Trichlorobenzene	<2.2	ug/L	5.0	2.2	1		11/07/17 08:53	120-82-1	
1,1,1-Trichloroethane	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	71-55-6	
1,1,2-Trichloroethane	<0.20	ug/L	1.0	0.20	1		11/07/17 08:53	79-00-5	
Trichloroethene	<0.33	ug/L	1.0	0.33	1		11/07/17 08:53	79-01-6	
Trichlorofluoromethane	<0.18	ug/L	1.0	0.18	1		11/07/17 08:53	75-69-4	
1,2,3-Trichloropropane	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	96-18-4	
1,2,4-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	95-63-6	
1,3,5-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	108-67-8	
Vinyl chloride	11.0	ug/L	1.0	0.18	1		11/07/17 08:53	75-01-4	
Xylene (Total)	<1.5	ug/L	3.0	1.5	1		11/07/17 08:53	1330-20-7	
m&p-Xylene	<1.0	ug/L	2.0	1.0	1		11/07/17 08:53	179601-23-1	
o-Xylene	<0.50	ug/L	1.0	0.50	1		11/07/17 08:53	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	91	%	61-130		1		11/07/17 08:53	460-00-4	
Dibromofluoromethane (S)	92	%	67-130		1		11/07/17 08:53	1868-53-7	
Toluene-d8 (S)	91	%	70-130		1		11/07/17 08:53	2037-26-5	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Sulfate	178	mg/L	15.0	5.0	5		11/15/17 00:16	14808-79-8	
3500FE B Iron, Ferrous	Analytical	Method: SM 35	500-Fe B						
Iron, Ferrous	3.1	mg/L	0.40	0.17	10		11/17/17 13:29		H6
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	<0.095	mg/L	0.25	0.095	1		11/10/17 10:08		
5310C TOC	Analytical	Method: SM 53	310C						
Total Organic Carbon	<0.25	mg/L	0.84	0.25	1		11/08/17 17:50	7440-44-0	

Project: 1690005819 FORMER 1-HOUR VALET

i iojeot.

Pace Project No.: 40160138

Sample: MW-1	Lab ID:	40160138002	Collected:	11/01/17	7 14:35	Received: 11/	03/17 14:35 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Methane, Ethane, Ethene GCV	Analytical	Method: EPA 8	015B Modifie	ed					
Ethane	<0.58	ug/L	5.6	0.58	1		11/08/17 07:59	74-84-0	
Ethene	<0.52	ug/L	5.0	0.52	1		11/08/17 07:59	74-85-1	
Methane	<1.4	ug/L	2.8	1.4	1		11/08/17 07:59	74-82-8	
Iron, Ferric (Calculation)	Analytical	Method: SM 35	00-Fe B						
Iron, Ferric	0.0J	mg/L	0.050		1		11/20/17 15:02	7439-89-6	N2
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prepa	ration Met	hod: EF	PA 3020			
Iron	12.6J	ug/L	19.0	5.7	1	11/13/17 18:26	11/15/17 02:32	7439-89-6	
8260 MSV	Analytical	Method: EPA 8	260						
Benzene	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	71-43-2	
Bromobenzene	<0.23	ug/L	1.0	0.23	1		11/06/17 11:14	108-86-1	
Bromochloromethane	<0.34	ug/L	1.0	0.34	1		11/06/17 11:14	74-97-5	
Bromodichloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	75-27-4	
Bromoform	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	75-25-2	M1
Bromomethane	<2.4	ug/L	5.0	2.4	1		11/06/17 11:14	74-83-9	
n-Butylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	104-51-8	
sec-Butylbenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 11:14	135-98-8	
tert-Butylbenzene	<0.18	ug/L	1.0	0.18	1		11/06/17 11:14	98-06-6	
Carbon tetrachloride	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	56-23-5	
Chlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	108-90-7	
Chloroethane	<0.37	ug/L	1.0	0.37	1		11/06/17 11:14	75-00-3	
Chloroform	<2.5	ug/L	5.0	2.5	1		11/06/17 11:14	67-66-3	
Chloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	74-87-3	
2-Chlorotoluene	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	95-49-8	
4-Chlorotoluene	<0.21	ug/L	1.0	0.21	1		11/06/17 11:14	106-43-4	
1,2-Dibromo-3-chloropropane	<2.2	ug/L	5.0	2.2	1		11/06/17 11:14	96-12-8	M1
Dibromochloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	124-48-1	
1,2-Dibromoethane (EDB)	<0.18	ug/L	1.0	0.18	1		11/06/17 11:14	106-93-4	M1
Dibromomethane	<0.43	ug/L	1.0	0.43	1		11/06/17 11:14	74-95-3	
1,2-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	95-50-1	
1,3-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	541-73-1	
1,4-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	106-46-7	
Dichlorodifluoromethane	<0.22	ug/L	1.0	0.22	1		11/06/17 11:14	75-71-8	
1,1-Dichloroethane	<0.24	ug/L	1.0	0.24	1		11/06/17 11:14	75-34-3	
1,2-Dichloroethane	<0.17	ug/L	1.0	0.17	1		11/06/17 11:14	107-06-2	
1,1-Dichloroethene	<0.41	ug/L	1.0	0.41	1		11/06/17 11:14	75-35-4	
cis-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/06/17 11:14	156-59-2	
trans-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/06/17 11:14	156-60-5	
1,2-Dichloropropane	<0.23	ug/L	1.0	0.23	1		11/06/17 11:14	78-87-5	
1,3-Dichloropropane	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	142-28-9	
2,2-Dichloropropane	<0.48	ug/L	1.0	0.48	1		11/06/17 11:14	594-20-7	
1,1-Dichloropropene	<0.44	ug/L	1.0	0.44	1		11/06/17 11:14	563-58-6	
cis-1,3-Dichloropropene	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	10061-01-5	
trans-1,3-Dichloropropene	<0.23	ug/L	1.0	0.23	1		11/06/17 11:14	10061-02-6	L2,M0

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Sample: MW-1	Lab ID: 40160138002		Collected	Collected: 11/01/17 14:35			Received: 11/03/17 14:35 Matrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV	Analytical	Method: EPA 8	260							
Diisopropyl ether	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	108-20-3		
Ethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	100-41-4		
Hexachloro-1,3-butadiene	<2.1	ug/L	5.0	2.1	1		11/06/17 11:14	87-68-3		
Isopropylbenzene (Cumene)	<0.14	ug/L	1.0	0.14	1		11/06/17 11:14	98-82-8		
p-lsopropyltoluene	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	99-87-6		
Methylene Chloride	<0.23	ug/L	1.0	0.23	1		11/06/17 11:14	75-09-2		
Methyl-tert-butyl ether	<0.17	ug/L	1.0	0.17	1		11/06/17 11:14	1634-04-4		
Naphthalene	<2.5	ug/L	5.0	2.5	1		11/06/17 11:14	91-20-3		
n-Propylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	103-65-1		
Styrene	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	100-42-5		
1,1,1,2-Tetrachloroethane	<0.18	ug/L	1.0	0.18	1		11/06/17 11:14	630-20-6		
1,1,2,2-Tetrachloroethane	<0.25	ug/L	1.0	0.25	1		11/06/17 11:14	79-34-5	M1	
Tetrachloroethene	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	127-18-4		
Toluene	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	108-88-3		
1,2,3-Trichlorobenzene	<2.1	ug/L	5.0	2.1	1		11/06/17 11:14	87-61-6		
1,2,4-Trichlorobenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 11:14	120-82-1		
1,1,1-Trichloroethane	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	71-55-6		
1,1,2-Trichloroethane	<0.20	ug/L	1.0	0.20	1		11/06/17 11:14	79-00-5		
Trichloroethene	<0.33	ug/L	1.0	0.33	1		11/06/17 11:14	79-01-6		
Trichlorofluoromethane	<0.18	ug/L	1.0	0.18	1		11/06/17 11:14	75-69-4		
1,2,3-Trichloropropane	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	96-18-4		
1,2,4-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	95-63-6		
1,3,5-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	108-67-8		
Vinyl chloride	<0.18	ug/L	1.0	0.18	1		11/06/17 11:14	75-01-4		
Xylene (Total)	<1.5	ug/L	3.0	1.5	1		11/06/17 11:14	1330-20-7		
m&p-Xylene	<1.0	ug/L	2.0	1.0	1		11/06/17 11:14	179601-23-1		
o-Xylene	<0.50	ug/L	1.0	0.50	1		11/06/17 11:14	95-47-6		
Surrogates										
4-Bromofluorobenzene (S)	90	%	61-130		1		11/06/17 11:14	460-00-4		
Dibromofluoromethane (S)	94	%	67-130		1		11/06/17 11:14	1868-53-7		
Toluene-d8 (S)	95	%	70-130		1		11/06/17 11:14	2037-26-5		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0							
Sulfate	<100	mg/L	300	100	100		11/15/17 15:21	14808-79-8	D3	
3500FE B Iron, Ferrous	Analytical	Method: SM 35	00-Fe B							
Iron, Ferrous	<0.017	mg/L	0.040	0.017	1		11/17/17 13:30		H6	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2							
Nitrogen, NO2 plus NO3	<0.095	mg/L	0.25	0.095	1		11/10/17 10:13			
5310C TOC	Analytical	Method: SM 53	10C							
Total Organic Carbon	<0.25	mg/L	0.84	0.25	1		11/09/17 11:23	7440-44-0		

Project: 1690005819 FORMER 1-HOUR VALET

i iojeot.

Pace Project No.: 40160138

Parameters Results Units LOQ LOD DF Prepared Analyzed CAS No. Qual Methane, Ethane, Ethane GCV Analytical Method: EPA 8015B Modified Ethane 40.55 ugL 5.6 0.58 1 1100817 08.07 74-86-1 Ethane 40.52 ugL 5.6 0.52 1 1100817 08.07 74-86-1 Methane 41.4 ugL 2.8 1.4 1 1100817 08.07 74-85-1 Iron, Ferric (Catcutation) Analytical Method: SM 3500-Fe B 1 1102017 15.02 7439-89-6 N2 6020A MET (CPMS Analytical Method: EPA 8020L Preparation Method: EPA 3020L 1 1106017 16:04 71-43-2 Bromochizomethane 40.50 ugL 1.0 0.50 1 1106017 16:04 74-85-2 Bromochizomethane 40.50 ugL 1.0 0.50 1 1106017 16:04 78-22-2 Bromochizomethane 40.34 ugL 5.0 2.4 1 106017 16:04 78-23-2	Sample: MW-2	Lab ID:	40160138003	Collecte	Collected: 11/01/17 15:45			5 Received: 11/03/17 14:35 Matrix: Water			
Autane, Ethane, CCV Analytical Method: EPA 8015B Modified Ehane -0.58 ugl. 5.6 0.58 1 1108171 08:07 74-84-0 Ehane -0.52 ugl. 5.0 0.52 1 1108171 08:07 74-85-1 Mathane - 1. 0.50 0.52 1 1108171 08:07 74-85-1 Iron, Ferric 0.54 mgl. 0.050 1 11/2017 15:02 7439-89-6 N2 6202 METICPMS Analytical Method: EPA 8200 Preparation Method: 11/1317 18:03 11/1317 18:04	Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
Ehene -0.58 ugl 5.6 0.58 1 1008/17 0807 74.86-1 Ehene 4.1 ugl 5.0 0.52 1 1108/17 0807 74.85-1 Iron, Ferric (Calculation) Analytical Hettor: SM 3500-Fe 5 1 1120/17 15.02 7439-89-6 N2 6020 MET ICPMS Analytical Hettor: EPA 5020- Preprational Method: SM 3500-Fe F 1 1120/17 15.02 7439-89-6 N2 6020 MET ICPMS Analytical Hettor: EPA 5020- Preprational Method: EPA 5020- 1 1106/17 16.04 71-3-2 8260 MSV Analytical Hettor: EPA 5020- 1 1106/17 16.04 71-3-2 Bromochoromethane -0.30 ugl 1.0 0.50 1 1106/17 16.04 75-7-4 Bromochoromethane -0.30 ugl 1.0 0.50 1 1106/17 16.04 75-7-2-4 Bromochoromethane -0.30 ugl 1.0 0.50 1 1006/17 16.04 75-2-2-2 Bromochoromethane -0.50 ugl 1.0 <t< td=""><td>Methane, Ethane, Ethene GCV</td><td>Analytical</td><td>Method: EPA 8</td><td>015B Modif</td><td>fied</td><td></td><td></td><td></td><td></td><td></td></t<>	Methane, Ethane, Ethene GCV	Analytical	Method: EPA 8	015B Modif	fied						
Ehnen -0.52 -0.74 <th< td=""><td>Ethane</td><td><0.58</td><td>ug/L</td><td>5.6</td><td>0.58</td><td>1</td><td></td><td>11/08/17 08:07</td><td>74-84-0</td><td></td></th<>	Ethane	<0.58	ug/L	5.6	0.58	1		11/08/17 08:07	74-84-0		
Methane	Ethene	<0.52	ug/L	5.0	0.52	1		11/08/17 08:07	74-85-1		
ran, Ferric (Calculation)Analytical Weiter Si Stöv Fe Biron, Ferric0.54mg/L0.050I1/20/17 15:027439-89N26020 MET ICPMSAnalytical Weiter EFA 6020 APreparation Weiter EFA 5020 A1/15/17 02:377439-89-6S6020 MSVAnalytical Weiter EFA 8020 A11/16/17 16:04714-3-27439-89-6S6020 MSVAnalytical Weiter EFA 8020 A11106/17 16:04714-3-21Bonzene<0.23	Methane	<1.4	ug/L	2.8	1.4	1		11/08/17 08:07	74-82-8		
Iron, Feric0.54mg/L0.050111/20/17 15:027439-89N26020A MET ICPMSAnalytical Metter: EFA 6020APreparation (1)/2000A11/30/17 18:0211/16/17 02:377439-89-18200 MSVAnalytical Metter: EFA 250CSecondoration (2)/2000A0.050111/06/17 18:027439-89-7439-89-Benzene<0.53ug/L1.00.50111/06/17 18:0474-32-14.300-86-1Bromobenzene<0.34ug/L1.00.23111/06/17 18:0474-32-14.300-86-1Bromobenkomethane<0.50ug/L1.00.50111/06/17 18:0475-27-4Bromodenkomethane<0.50ug/L1.00.50111/06/17 18:0475-27-4Bromodenkomethane<0.50ug/L1.00.50111/06/17 18:0475-27-4Bromodenkomethane<0.50ug/L1.00.50111/06/17 18:0475-27-4Bromodenkomethane<0.50ug/L1.00.50111/06/17 18:0475-27-4Bromodenkomethane<0.50ug/L1.00.50111/06/17 18:0475-27-4Bromodenkomethane<0.50ug/L1.00.50111/06/17 18:0475-27-4Bromodenkomethane<0.50ug/L1.00.50111/06/17 18:0475-37-4Bromodenkomethane<0.50ug/L1.00.50111/06/17 18:0475-37-4Bromodenkomethane<0.50 <td>Iron, Ferric (Calculation)</td> <td>Analytical</td> <td>Method: SM 35</td> <td>500-Fe B</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Iron, Ferric (Calculation)	Analytical	Method: SM 35	500-Fe B							
Analytical Versensities Verse	Iron, Ferric	0.54	mg/L	0.050		1		11/20/17 15:02	7439-89-6	N2	
Iron 1770 ugL 19.0 5.7 1 11/13/17 16:20 11/15/17 02:37 7439-89-6 8260 MSV Analytical EPA 8260 Semania 0.50 ugL 1.0 0.50 1 11/16/17 16:04 71-33-2 Bromochormethane 0.034 ugL 1.0 0.23 1 11/06/17 16:04 71-33-2 Bromochormethane 0.034 ugL 1.0 0.50 1 11/06/17 16:04 74-97-5 Bromochormethane 0.50 ugL 1.0 0.50 1 11/06/17 16:04 75-52-2 Bromomethane -2.2 ugL 5.0 2.2 1 11/06/17 16:04 78-98-8 Bromothorm -2.2 ugL 5.0 2.2 1 11/06/17 16:04 78-98-8 Bromothorm -2.2 ugL 1.0 0.50 1 11/06/17 16:04 78-98-8 Bromothorm -2.2 ugL 1.0 0.50 1 11/06/17 16:04 98-98-8 Chorobarcene -0.5	6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	hod: El	PA 3020				
Set MSV Analytical Method: EPA 8260 Benzene <0.50	Iron	1770	ug/L	19.0	5.7	1	11/13/17 18:26	11/15/17 02:37	7439-89-6		
Benzene -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 71-43-2 Bromochloromethane -0.23 ug/L 1.0 0.23 1 11/06/17 16:04 74-37-5 Bromochloromethane -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 75-27-4 Bromochloromethane -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 75-27-4 Bromochloromethane -2.4 ug/L 5.0 2.4 1 11/06/17 16:04 75-27-2 Bromochloromethane -2.4 ug/L 5.0 2.4 1 11/06/17 16:04 76-43-3 Bromochloromethane -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 96-6 Carbon tetrachloride -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 96-90-7 Chlorobethane -0.50 ug/L 1.0 0.37 1 11/06/17 16:04 96-90-3 Chlorobethane -0.50 ug/L <	8260 MSV	Analytical	Method: EPA 8	260							
Bromochoromethane -0.23 ug/L 1.0 0.23 1 11/06/17 16:04 108-86-1 Bromochloromethane -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 74-97-5 Bromodichloromethane -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 75-27-4 Bromodichloromethane -2.4 ug/L 1.0 0.50 1 11/06/17 16:04 74-83-9 n-Butylbenzene -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 104-51-8 sec-Butylbenzene -0.18 ug/L 1.0 0.50 1 11/06/17 16:04 96-06-6 Carbon tetrachloride -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 95-00-3 Chloromethane -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 95-49-8 Chloromethane -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 95-49-8 2-Chlororoluene -0.50 ug/L </td <td>Benzene</td> <td><0.50</td> <td>ug/L</td> <td>1.0</td> <td>0.50</td> <td>1</td> <td></td> <td>11/06/17 16:04</td> <td>71-43-2</td> <td></td>	Benzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	71-43-2		
Bromochloromethane -0.34 ug/L 1.0 0.34 1 11/06/17 16:04 74-97-5 Bromodichloromethane -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 75-27-4 Bromomethane -2.4 ug/L 5.0 2.4 1 11/06/17 16:04 77-25-2 Bromomethane -2.4 ug/L 5.0 2.4 1 11/06/17 16:04 78-37-9 n-Butylbenzene -2.2 ug/L 5.0 2.2 1 11/06/17 16:04 98-06-6 Carbon tetrachloride -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 108-90-7 Chlorobenzene -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 78-03-3 Chloroform -2.5 ug/L 1.0 0.50 1 11/06/17 16:04 78-03-3 Chlorobuene -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 78-03-3 2-Chlorobuene -0.50 ug/L 1.0	Bromobenzene	<0.23	ug/L	1.0	0.23	1		11/06/17 16:04	108-86-1		
Bromodichloromethane -0.50 ug/L 1.0 0.50 1 11/106/17 16:04 75-27-4 Bromothane -2.4 ug/L 1.0 0.50 1 11/06/17 16:04 75-25-2 Bromorethane -2.4 ug/L 1.0 0.50 1 11/06/17 16:04 104-51-8 sec-Butylbenzene -2.2 ug/L 1.0 0.50 1 11/06/17 16:04 135-98-8 ter-Butylbenzene -0.18 ug/L 1.0 0.50 1 11/06/17 16:04 98-06-6 Carbon tetrachloride -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 68-23-5 Chlorobtane -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 67-66-3 Chlorobtane -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 95-49-8 4.Chlorobtuene -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 95-49-8 1.2-Dibromochane(EOB) -0.81 ug/L	Bromochloromethane	<0.34	ug/L	1.0	0.34	1		11/06/17 16:04	74-97-5		
Bromoderm <0.50 ug/L 1.0 0.50 1 11/06/17 16:04 72-25-2 Bromomethane <2.4 ug/L 5.0 2.4 1 11/06/17 16:04 74-83-9 Bromomethane <0.50 ug/L 1.0 0.50 1 11/06/17 16:04 10-45-18 sec-Butylbenzene <2.2 ug/L 1.0 0.18 1 11/06/17 16:04 98-06-6 Carbon tetrachloride <0.50 ug/L 1.0 0.50 1 11/06/17 16:04 76-8-3 Chlorobehzene <0.50 ug/L 1.0 0.50 1 11/06/17 16:04 76-8-3 Chlorobehane <0.50 ug/L 1.0 0.50 1 11/06/17 16:04 96-49-8 Chlorobemathane <0.50 ug/L 1.0 0.50 1 11/06/17 16:04 96-49-8 Chloroborm <0.21 ug/L 1.0 0.50 1 11/06/17 16:04 96-49-8 Chloroborm <0.22 ug/L 1.0 0.50<	Bromodichloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	75-27-4		
Bromomethane -2.4 ug/L 5.0 2.4 1 11/06/17 16:04 74-83-9 n-Butylbenzene -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 104-51-8 sec-Butylbenzene -2.2 ug/L 1.0 0.50 1 11/06/17 16:04 185-98-8 tert-Butylbenzene -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 568-06-6 Carbon tetrachloride -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 569-03 Chlorobenzene -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 75-90-3 Chloroothane -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 75-48-3 2-Chloroothuene -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 75-48-3 2-Chloroothuene -0.50 ug/L 1.0 0.50 1 11/06/17 16:04 75-49-3 1-2-Dibromochloromethane -0.50 ug/L	Bromoform	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	75-25-2		
n-Butybenzene <0.50 ug/L 1.0 0.50 1 11/06/17 16:04 104-51-8 sec-Butybenzene <2.2	Bromomethane	<2.4	ug/L	5.0	2.4	1		11/06/17 16:04	74-83-9		
sec-Butylbenzene <2.2 ug/L 5.0 2.2 1 11/06/17 16:04 135-98-8 tert-Butylbenzene <0.18	n-Butylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	104-51-8		
tert-Butylbenzene <0.18 ug/L 1.0 0.18 1 11/06/17 16:04 98-06-6 Carbon tetrachloride <0.50	sec-Butylbenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 16:04	135-98-8		
Carbon tetrachloride <0.50 ug/L 1.0 0.50 1 11/06/17 16:04 56-23-5 Chlorobenzene <0.50	tert-Butylbenzene	<0.18	ug/L	1.0	0.18	1		11/06/17 16:04	98-06-6		
Chlorobenzene <0.50 ug/L 1.0 0.50 1 11/06/17 16:04 108-90-7 Chlorobentane <0.37	Carbon tetrachloride	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	56-23-5		
Chloroethane	Chlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	108-90-7		
Chloroform <2.5 ug/L 5.0 2.5 1 11/06/17 16:04 67-66-3 Chloromethane <0.50	Chloroethane	<0.37	ug/L	1.0	0.37	1		11/06/17 16:04	75-00-3		
Chloromethane <0.50 ug/L 1.0 0.50 1 11/06/17 16:04 74-87-3 2-Chlorotoluene <0.50	Chloroform	<2.5	ug/L	5.0	2.5	1		11/06/17 16:04	67-66-3		
2-Chlorotoluene <0.50	Chloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	74-87-3		
4-Chlorotoluene <0.21	2-Chlorotoluene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	95-49-8		
1,2-Dibromo-3-chloropropane <2.2	4-Chlorotoluene	<0.21	ug/L	1.0	0.21	1		11/06/17 16:04	106-43-4		
Dibromochloromethane <0.50 ug/L 1.0 0.50 1 11/06/17 16:04 124-48-1 1,2-Dibromoethane (EDB) <0.18	1,2-Dibromo-3-chloropropane	<2.2	ug/L	5.0	2.2	1		11/06/17 16:04	96-12-8		
1,2-Dibromoethane (EDB) <0.18	Dibromochloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	124-48-1		
Dibromomethane <0.43 ug/L 1.0 0.43 1 11/06/17 16:04 74-95-3 1,2-Dichlorobenzene <0.50	1,2-Dibromoethane (EDB)	<0.18	ug/L	1.0	0.18	1		11/06/17 16:04	106-93-4		
1,2-Dichlorobenzene <0.50	Dibromomethane	<0.43	ug/L	1.0	0.43	1		11/06/17 16:04	74-95-3		
1,3-Dichlorobenzene <0.50	1,2-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	95-50-1		
1,4-Dichlorobenzene <0.50	1,3-Dichlorobenzene	< 0.50	ug/L	1.0	0.50	1		11/06/17 16:04	541-73-1		
Dichlorodifuoromethane <0.22 1 11/06/17 16:04 75-71-8 1,1-Dichloroethane <0.24	1,4-Dichlorobenzene	< 0.50	ug/L	1.0	0.50	1		11/06/17 16:04	106-46-7		
1,1-Dichlorodetnane <0.24	Dichlorodinuoromethane	<0.22	ug/L	1.0	0.22	1		11/06/17 16:04	75-71-8		
1,2-Dichlorodethane <0.17	1,1-Dichloroethane	<0.24	ug/L	1.0	0.24	1		11/06/17 16:04	75-34-3		
1,1-Dichlorodethene <0.41	1,2-Dichloroethane	<0.17	ug/L	1.0	0.17	1		11/06/17 16:04	107-06-2		
CIS-1,2-Dichlorobernene <0.26 I II//06/17 16:04 ISO-S9-2 trans-1,2-Dichlorobernene <0.26		<0.41	ug/L	1.0	0.41	1		11/06/17 16:04	75-35-4		
trans-1,2-Dichloropropane <0.20 ug/L 1.0 0.20 1 11/06/17 16:04 150-60-5 1,2-Dichloropropane <0.23	trans 1.2 Dichlorosthans	<0.20	ug/L	1.0	0.20	1		11/06/17 16:04	100-09-2		
Image: construction opposite Construction opposite Construction opposite Image: construction opposite Image		<0.20	ug/L	1.0	0.20	1		11/06/17 16:04	100-00-0		
1,0 0.50 1 11/06/17 16.04 142-26-9 2,2-Dichloropropane <0.48	1.2 Dichloropropana	<0.23	ug/L	1.0	0.23	1		11/06/17 16:04	142.29.0		
z,z-bit introproparie x,0 ug/L 1.0 0.46 1 11/06/17 16:04 594-20-7 1,1-Dichloropropene <0.44	2.2-Dichloropropana	<0.0U	ug/L	1.0	0.00	1		11/06/17 16:04	142-20-9 501-20 7		
cis-1,3-Dichloropropene <0.44 1 11/06/17 10.04 503-50-6 cis-1,3-Dichloropropene <0.50	1 1-Dichloropropeno	<0.40 -0 11	ug/L	1.0	0.40	1		11/06/17 16:04	563-59 6		
trans-1.3-Dichloropropene <a>(0.23 ug/L 1.0 0.23 1 11/06/17 16:04 10001-01-5	cis-1 3-Dichloropropene	<0.44 ~0 50	ug/L	1.0	0.44	1		11/06/17 16:04	10061-01-5		
	trans-1.3-Dichloropropene	<0.23	ug/l	1.0	0.00	1		11/06/17 16:04	10061-02-6	12	

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No .:

ct No.: 40160138

Sample: MW-2	Lab ID:	40160138003	Collected: 11/01/17 15:45			Received: 11/03/17 14:35 Matrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
Diisopropyl ether	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	108-20-3	
Ethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	100-41-4	
Hexachloro-1,3-butadiene	<2.1	ug/L	5.0	2.1	1		11/06/17 16:04	87-68-3	
Isopropylbenzene (Cumene)	<0.14	ug/L	1.0	0.14	1		11/06/17 16:04	98-82-8	
p-Isopropyltoluene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	99-87-6	
Methylene Chloride	<0.23	ug/L	1.0	0.23	1		11/06/17 16:04	75-09-2	
Methyl-tert-butyl ether	<0.17	ug/L	1.0	0.17	1		11/06/17 16:04	1634-04-4	
Naphthalene	<2.5	ug/L	5.0	2.5	1		11/06/17 16:04	91-20-3	
n-Propylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	103-65-1	
Styrene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	100-42-5	
1,1,1,2-Tetrachloroethane	<0.18	ug/L	1.0	0.18	1		11/06/17 16:04	630-20-6	
1,1,2,2-Tetrachloroethane	<0.25	ug/L	1.0	0.25	1		11/06/17 16:04	79-34-5	
Tetrachloroethene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	127-18-4	
Toluene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	108-88-3	
1,2,3-Trichlorobenzene	<2.1	ug/L	5.0	2.1	1		11/06/17 16:04	87-61-6	
1,2,4-Trichlorobenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 16:04	120-82-1	
1,1,1-Trichloroethane	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	71-55-6	
1,1,2-Trichloroethane	<0.20	ug/L	1.0	0.20	1		11/06/17 16:04	79-00-5	
Trichloroethene	<0.33	ug/L	1.0	0.33	1		11/06/17 16:04	79-01-6	
Trichlorofluoromethane	<0.18	ug/L	1.0	0.18	1		11/06/17 16:04	75-69-4	
1,2,3-Trichloropropane	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	96-18-4	
1,2,4-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	95-63-6	
1,3,5-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	108-67-8	
Vinyl chloride	<0.18	ug/L	1.0	0.18	1		11/06/17 16:04	75-01-4	
Xylene (Iotal)	<1.5	ug/L	3.0	1.5	1		11/06/17 16:04	1330-20-7	
m&p-Xylene	<1.0	ug/L	2.0	1.0	1		11/06/17 16:04	179601-23-1	
o-Xylene Surrogates	<0.50	ug/L	1.0	0.50	1		11/06/17 16:04	95-47-6	
4-Bromofluorobenzene (S)	89	%	61-130		1		11/06/17 16:04	460-00-4	
Dibromofluoromethane (S)	97	%	67-130		1		11/06/17 16:04	1868-53-7	
Toluene-d8 (S)	94	%	70-130		1		11/06/17 16:04	2037-26-5	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Sulfate	93.5	mg/L	30.0	10.0	10		11/14/17 13:23	14808-79-8	
3500FE B Iron, Ferrous	Analytical	Method: SM 35	500-Fe B						
Iron, Ferrous	1.2	mg/L	0.20	0.086	5		11/17/17 13:55		H6
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	<0.095	mg/L	0.25	0.095	1		11/10/17 10:14		
5310C TOC	Analytical	Method: SM 53	310C						
Total Organic Carbon	<0.25	mg/L	0.84	0.25	1		11/08/17 18:32	7440-44-0	

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Sample: MW-3	Lab ID: 40160138004		Collecte	Collected: 11/01/17 16:46			Received: 11/03/17 14:35 Matrix: Water				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
8260 MSV	Analytical	Method: EPA 8	260								
Benzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	71-43-2			
Bromobenzene	<0.23	ug/L	1.0	0.23	1		11/06/17 16:26	108-86-1			
Bromochloromethane	<0.34	ug/L	1.0	0.34	1		11/06/17 16:26	74-97-5			
Bromodichloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	75-27-4			
Bromoform	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	75-25-2			
Bromomethane	<2.4	ug/L	5.0	2.4	1		11/06/17 16:26	74-83-9			
n-Butylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	104-51-8			
sec-Butylbenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 16:26	135-98-8			
tert-Butylbenzene	<0.18	ug/L	1.0	0.18	1		11/06/17 16:26	98-06-6			
Carbon tetrachloride	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	56-23-5			
Chlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	108-90-7			
Chloroethane	<0.37	ug/L	1.0	0.37	1		11/06/17 16:26	75-00-3			
Chloroform	<2.5	ug/L	5.0	2.5	1		11/06/17 16:26	67-66-3			
Chloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	74-87-3			
2-Chlorotoluene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	95-49-8			
4-Chlorotoluene	<0.21	ug/L	1.0	0.21	1		11/06/17 16:26	106-43-4			
1,2-Dibromo-3-chloropropane	<2.2	ug/L	5.0	2.2	1		11/06/17 16:26	96-12-8			
Dibromochloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	124-48-1			
1,2-Dibromoethane (EDB)	<0.18	ug/L	1.0	0.18	1		11/06/17 16:26	106-93-4			
Dibromomethane	<0.43	ug/L	1.0	0.43	1		11/06/17 16:26	74-95-3			
1,2-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	95-50-1			
1,3-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	541-73-1			
1,4-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	106-46-7			
Dichlorodifluoromethane	<0.22	ug/L	1.0	0.22	1		11/06/17 16:26	75-71-8			
1,1-Dichloroethane	<0.24	ug/L	1.0	0.24	1		11/06/17 16:26	75-34-3			
1,2-Dichloroethane	<0.17	ug/L	1.0	0.17	1		11/06/17 16:26	107-06-2			
1,1-Dichloroethene	<0.41	ug/L	1.0	0.41	1		11/06/17 16:26	75-35-4			
cis-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/06/17 16:26	156-59-2			
trans-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/06/17 16:26	156-60-5			
1,2-Dichloropropane	<0.23	ug/L	1.0	0.23	1		11/06/17 16:26	/8-87-5			
1,3-Dichloropropane	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	142-28-9			
2,2-Dichloropropane	<0.48	ug/L	1.0	0.48	1		11/06/17 16:26	594-20-7			
1,1-Dichloropropene	<0.44	ug/L	1.0	0.44	1		11/06/17 16:26	563-58-6			
trong 1.2 Dichleropropene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	10061-01-5	1.2		
trans-1,3-Dichloropropene	<0.23	ug/L	1.0	0.23	1		11/06/17 16:26	10061-02-6	LZ		
	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	108-20-3			
Etnyidenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	100-41-4			
	<2.1	ug/L	5.0	2.1	1		11/06/17 16:26	07-00-3			
	<0.14	ug/L	1.0	0.14	1		11/06/17 16:26	90-02-0			
Mothylono Chlorido	<0.30	ug/L	1.0	0.50	1		11/06/17 16:26	99-07-0 75 00 2			
Methyl-tert-butyl othor	<0.23 -0.17	ug/L	1.0	0.23	1		11/06/17 16:20	1634-04 4			
Nanhthalene	<0.17 ∠2 F	ug/L	5.0	0.17	1		11/06/17 16:20	91_20_3			
n-Pronylbenzene	~2.5	ug/L	10	2.J 0.50	1		11/06/17 16:20	103-65-1			
Styrene	~0.50	ug/L	1.0	0.50	1		11/06/17 16:20	100-42-5			
1 1 1 2-Tetrachloroethane	<0.00 ∠0.19	ug/L	1.0	0.00 0.18	1		11/06/17 16:26	630-20-6			
	NO.10	ug/L	1.0	0.10			11,00,11 10.20	200 20 0			

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Sample: MW-3	Lab ID: 40160138004		Collected: 11/01/17 16:46			Received: 11/03/17 14:35 Matrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
1,1,2,2-Tetrachloroethane	<0.25	ug/L	1.0	0.25	1		11/06/17 16:26	79-34-5	
Tetrachloroethene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	127-18-4	
Toluene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	108-88-3	
1,2,3-Trichlorobenzene	<2.1	ug/L	5.0	2.1	1		11/06/17 16:26	87-61-6	
1,2,4-Trichlorobenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 16:26	120-82-1	
1,1,1-Trichloroethane	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	71-55-6	
1,1,2-Trichloroethane	<0.20	ug/L	1.0	0.20	1		11/06/17 16:26	79-00-5	
Trichloroethene	<0.33	ug/L	1.0	0.33	1		11/06/17 16:26	79-01-6	
Trichlorofluoromethane	<0.18	ug/L	1.0	0.18	1		11/06/17 16:26	75-69-4	
1,2,3-Trichloropropane	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	96-18-4	
1,2,4-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	95-63-6	
1,3,5-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	108-67-8	
Vinyl chloride	<0.18	ug/L	1.0	0.18	1		11/06/17 16:26	75-01-4	
Xylene (Total)	<1.5	ug/L	3.0	1.5	1		11/06/17 16:26	1330-20-7	
m&p-Xylene	<1.0	ug/L	2.0	1.0	1		11/06/17 16:26	179601-23-1	
o-Xylene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:26	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	85	%	61-130		1		11/06/17 16:26	460-00-4	
Dibromofluoromethane (S)	84	%	67-130		1		11/06/17 16:26	1868-53-7	
Toluene-d8 (S)	106	%	70-130		1		11/06/17 16:26	2037-26-5	

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Sample: PZ-4	Lab ID:	40160138005	Collected	d: 11/02/17	08:00	Received: 11	/03/17 14:35 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
Benzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	71-43-2	
Bromobenzene	<0.23	ug/L	1.0	0.23	1		11/06/17 16:48	108-86-1	
Bromochloromethane	<0.34	ug/L	1.0	0.34	1		11/06/17 16:48	74-97-5	
Bromodichloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	75-27-4	
Bromoform	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	75-25-2	
Bromomethane	<2.4	ug/L	5.0	2.4	1		11/06/17 16:48	74-83-9	
n-Butylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	104-51-8	
sec-Butylbenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 16:48	135-98-8	
tert-Butylbenzene	<0.18	ug/L	1.0	0.18	1		11/06/17 16:48	98-06-6	
Carbon tetrachloride	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	56-23-5	
Chlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	108-90-7	
Chloroethane	<0.37	ug/L	1.0	0.37	1		11/06/17 16:48	75-00-3	
Chloroform	<2.5	ug/L	5.0	2.5	1		11/06/17 16:48	67-66-3	
Chloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	74-87-3	
2-Chlorotoluene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	95-49-8	
4-Chlorotoluene	<0.21	ug/L	1.0	0.21	1		11/06/17 16:48	106-43-4	
1,2-Dibromo-3-chloropropane	<2.2	ug/L	5.0	2.2	1		11/06/17 16:48	96-12-8	
Dibromochloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	124-48-1	
1,2-Dibromoethane (EDB)	<0.18	ug/L	1.0	0.18	1		11/06/17 16:48	106-93-4	
Dibromomethane	<0.43	ug/L	1.0	0.43	1		11/06/17 16:48	74-95-3	
1,2-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	95-50-1	
1,3-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	541-73-1	
1,4-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	106-46-7	
Dichlorodifluoromethane	<0.22	ug/L	1.0	0.22	1		11/06/17 16:48	75-71-8	
1,1-Dichloroethane	<0.24	ug/L	1.0	0.24	1		11/06/17 16:48	75-34-3	
1,2-Dichloroethane	<0.17	ug/L	1.0	0.17	1		11/06/17 16:48	107-06-2	
1,1-Dichloroethene	<0.41	ug/L	1.0	0.41	1		11/06/17 16:48	75-35-4	
cis-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/06/17 16:48	156-59-2	
trans-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/06/17 16:48	156-60-5	
1,2-Dichloropropane	<0.23	ug/L	1.0	0.23	1		11/06/17 16:48	78-87-5	
1,3-Dichloropropane	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	142-28-9	
2,2-Dichloropropane	<0.48	ug/L	1.0	0.48	1		11/06/17 16:48	594-20-7	
1,1-Dichloropropene	<0.44	ug/L	1.0	0.44	1		11/06/17 16:48	563-58-6	
cis-1,3-Dichloropropene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	10061-01-5	
trans-1,3-Dichloropropene	<0.23	ug/L	1.0	0.23	1		11/06/17 16:48	10061-02-6	L2
Diisopropyl ether	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	108-20-3	
Ethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	100-41-4	
Hexachloro-1,3-butadiene	<2.1	ug/L	5.0	2.1	1		11/06/17 16:48	87-68-3	
Isopropylbenzene (Cumene)	<0.14	ug/L	1.0	0.14	1		11/06/17 16:48	98-82-8	
p-Isopropyltoluene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	99-87-6	
Methylene Chloride	<0.23	ug/L	1.0	0.23	1		11/06/17 16:48	75-09-2	
Methyl-tert-butyl ether	<0.17	ug/L	1.0	0.17	1		11/06/17 16:48	1634-04-4	
Naphthalene	<2.5	ug/L	5.0	2.5	1		11/06/17 16:48	91-20-3	
n-Propylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	103-65-1	
Styrene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	100-42-5	
1,1,1,2-Tetrachloroethane	<0.18	ug/L	1.0	0.18	1		11/06/17 16:48	630-20-6	

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Sample: PZ-4	Lab ID: 40160138005		Collected: 11/02/17 08:00			Received: 11/03/17 14:35 Matrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
1,1,2,2-Tetrachloroethane	<0.25	ug/L	1.0	0.25	1		11/06/17 16:48	79-34-5	
Tetrachloroethene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	127-18-4	
Toluene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	108-88-3	
1,2,3-Trichlorobenzene	<2.1	ug/L	5.0	2.1	1		11/06/17 16:48	87-61-6	
1,2,4-Trichlorobenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 16:48	120-82-1	
1,1,1-Trichloroethane	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	71-55-6	
1,1,2-Trichloroethane	<0.20	ug/L	1.0	0.20	1		11/06/17 16:48	79-00-5	
Trichloroethene	<0.33	ug/L	1.0	0.33	1		11/06/17 16:48	79-01-6	
Trichlorofluoromethane	<0.18	ug/L	1.0	0.18	1		11/06/17 16:48	75-69-4	
1,2,3-Trichloropropane	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	96-18-4	
1,2,4-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	95-63-6	
1,3,5-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	108-67-8	
Vinyl chloride	1.3	ug/L	1.0	0.18	1		11/06/17 16:48	75-01-4	
Xylene (Total)	<1.5	ug/L	3.0	1.5	1		11/06/17 16:48	1330-20-7	
m&p-Xylene	<1.0	ug/L	2.0	1.0	1		11/06/17 16:48	179601-23-1	
o-Xylene	<0.50	ug/L	1.0	0.50	1		11/06/17 16:48	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	89	%	61-130		1		11/06/17 16:48	460-00-4	
Dibromofluoromethane (S)	87	%	67-130		1		11/06/17 16:48	1868-53-7	
Toluene-d8 (S)	100	%	70-130		1		11/06/17 16:48	2037-26-5	

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Sample: PZ-3	Lab ID:	Collected: 11/02/17 09:05			Received: 11/03/17 14:35 Matrix: Water				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
Benzene	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	71-43-2	
Bromobenzene	<11.5	ug/L	50.0	11.5	50		11/06/17 14:58	108-86-1	
Bromochloromethane	<17.0	ug/L	50.0	17.0	50		11/06/17 14:58	74-97-5	
Bromodichloromethane	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	75-27-4	
Bromoform	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	75-25-2	
Bromomethane	<122	ug/L	250	122	50		11/06/17 14:58	74-83-9	
n-Butylbenzene	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	104-51-8	
sec-Butylbenzene	<109	ug/L	250	109	50		11/06/17 14:58	135-98-8	
tert-Butylbenzene	<9.0	ug/L	50.0	9.0	50		11/06/17 14:58	98-06-6	
Carbon tetrachloride	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	56-23-5	
Chlorobenzene	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	108-90-7	
Chloroethane	<18.7	ug/L	50.0	18.7	50		11/06/17 14:58	75-00-3	
Chloroform	<125	ug/L	250	125	50		11/06/17 14:58	67-66-3	
Chloromethane	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	74-87-3	
2-Chlorotoluene	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	95-49-8	
4-Chlorotoluene	<10.7	ug/L	50.0	10.7	50		11/06/17 14:58	106-43-4	
1,2-Dibromo-3-chloropropane	<108	ug/L	250	108	50		11/06/17 14:58	96-12-8	
Dibromochloromethane	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	124-48-1	
1,2-Dibromoethane (EDB)	<8.9	ug/L	50.0	8.9	50		11/06/17 14:58	106-93-4	
Dibromomethane	<21.3	ug/L	50.0	21.3	50		11/06/17 14:58	74-95-3	
1,2-Dichlorobenzene	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	95-50-1	
1,3-Dichlorobenzene	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	541-73-1	
1,4-Dichlorobenzene	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	106-46-7	
Dichlorodifluoromethane	<11.2	ug/L	50.0	11.2	50		11/06/17 14:58	75-71-8	
1,1-Dichloroethane	<12.1	ug/L	50.0	12.1	50		11/06/17 14:58	75-34-3	
1,2-Dichloroethane	<8.4	ug/L	50.0	8.4	50		11/06/17 14:58	107-06-2	
1,1-Dichloroethene	<20.5	ug/L	50.0	20.5	50		11/06/17 14:58	75-35-4	
cis-1,2-Dichloroethene	2060	ug/L	50.0	12.8	50		11/06/17 14:58	156-59-2	
trans-1,2-Dichloroethene	22.4J	ug/L	50.0	12.8	50		11/06/17 14:58	156-60-5	
1,2-Dichloropropane	<11.7	ug/L	50.0	11.7	50		11/06/17 14:58	78-87-5	
1,3-Dichloropropane	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	142-28-9	
2,2-Dichloropropane	<24.2	ug/L	50.0	24.2	50		11/06/17 14:58	594-20-7	
1,1-Dichloropropene	<22.1	ug/L	50.0	22.1	50		11/06/17 14:58	563-58-6	
cis-1,3-Dichloropropene	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	10061-01-5	
trans-1,3-Dichloropropene	<11.5	ug/L	50.0	11.5	50		11/06/17 14:58	10061-02-6	L2
Diisopropyl ether	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	108-20-3	
Ethylbenzene	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	100-41-4	
Hexachloro-1,3-butadiene	<105	ug/L	250	105	50		11/06/17 14:58	87-68-3	
Isopropylbenzene (Cumene)	<7.2	ug/L	50.0	7.2	50		11/06/17 14:58	98-82-8	
p-Isopropyltoluene	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	99-87-6	
Methylene Chloride	<11.6	ug/L	50.0	11.6	50		11/06/17 14:58	75-09-2	
Methyl-tert-butyl ether	<8.7	ug/L	50.0	8.7	50		11/06/17 14:58	1634-04-4	
Naphthalene	<125	ug/L	250	125	50		11/06/17 14:58	91-20-3	
n-Propylbenzene	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	103-65-1	
Styrene	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	100-42-5	
1,1,1,2-Tetrachloroethane	<9.0	ug/L	50.0	9.0	50		11/06/17 14:58	630-20-6	

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Sample: PZ-3	Lab ID:	40160138006	Collected: 11/02/17 09:05			Received: 11	atrix: Water		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
1,1,2,2-Tetrachloroethane	<12.5	ug/L	50.0	12.5	50		11/06/17 14:58	79-34-5	
Tetrachloroethene	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	127-18-4	
Toluene	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	108-88-3	
1,2,3-Trichlorobenzene	<107	ug/L	250	107	50		11/06/17 14:58	87-61-6	
1,2,4-Trichlorobenzene	<110	ug/L	250	110	50		11/06/17 14:58	120-82-1	
1,1,1-Trichloroethane	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	71-55-6	
1,1,2-Trichloroethane	<9.9	ug/L	50.0	9.9	50		11/06/17 14:58	79-00-5	
Trichloroethene	144	ug/L	50.0	16.5	50		11/06/17 14:58	79-01-6	
Trichlorofluoromethane	<9.2	ug/L	50.0	9.2	50		11/06/17 14:58	75-69-4	
1,2,3-Trichloropropane	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	96-18-4	
1,2,4-Trimethylbenzene	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	95-63-6	
1,3,5-Trimethylbenzene	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	108-67-8	
Vinyl chloride	<8.8	ug/L	50.0	8.8	50		11/06/17 14:58	75-01-4	
Xylene (Total)	<75.0	ug/L	150	75.0	50		11/06/17 14:58	1330-20-7	
m&p-Xylene	<50.0	ug/L	100	50.0	50		11/06/17 14:58	179601-23-1	
o-Xylene	<25.0	ug/L	50.0	25.0	50		11/06/17 14:58	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	90	%	61-130		50		11/06/17 14:58	460-00-4	
Dibromofluoromethane (S)	95	%	67-130		50		11/06/17 14:58	1868-53-7	
Toluene-d8 (S)	95	%	70-130		50		11/06/17 14:58	2037-26-5	

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.:

40160138

гасе	FIUJECI NO	4010

Sample: MW-4	Lab ID:	40160138007	07 Collected: 11/02/17 09:50			Received: 11/03/17 14:35 Matrix: Water				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV	Analytica	l Method: EPA 8	260							
Benzene	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	71-43-2		
Bromobenzene	<0.23	ug/L	1.0	0.23	1		11/06/17 17:09	108-86-1		
Bromochloromethane	<0.34	ug/L	1.0	0.34	1		11/06/17 17:09	74-97-5		
Bromodichloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	75-27-4		
Bromoform	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	75-25-2		
Bromomethane	<2.4	ug/L	5.0	2.4	1		11/06/17 17:09	74-83-9		
n-Butylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	104-51-8		
sec-Butylbenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 17:09	135-98-8		
tert-Butylbenzene	<0.18	ug/L	1.0	0.18	1		11/06/17 17:09	98-06-6		
Carbon tetrachloride	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	56-23-5		
Chlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	108-90-7		
Chloroethane	<0.37	ug/L	1.0	0.37	1		11/06/17 17:09	75-00-3		
Chloroform	<2.5	ug/L	5.0	2.5	1		11/06/17 17:09	67-66-3		
Chloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	74-87-3		
2-Chlorotoluene	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	95-49-8		
4-Chlorotoluene	<0.21	ug/L	1.0	0.21	1		11/06/17 17:09	106-43-4		
1,2-Dibromo-3-chloropropane	<2.2	ug/L	5.0	2.2	1		11/06/17 17:09	96-12-8		
Dibromochloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	124-48-1		
1,2-Dibromoethane (EDB)	<0.18	ug/L	1.0	0.18	1		11/06/17 17:09	106-93-4		
Dibromomethane	<0.43	ug/L	1.0	0.43	1		11/06/17 17:09	74-95-3		
1,2-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	95-50-1		
1,3-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	541-73-1		
1,4-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	106-46-7		
Dichlorodifluoromethane	<0.22	ug/L	1.0	0.22	1		11/06/17 17:09	75-71-8		
1,1-Dichloroethane	<0.24	ug/L	1.0	0.24	1		11/06/17 17:09	75-34-3		
1,2-Dichloroethane	<0.17	ug/L	1.0	0.17	1		11/06/17 17:09	107-06-2		
1,1-Dichloroethene	<0.41	ug/L	1.0	0.41	1		11/06/17 17:09	75-35-4		
cis-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/06/17 17:09	156-59-2		
trans-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/06/17 17:09	156-60-5		
1,2-Dichloropropane	<0.23	ug/L	1.0	0.23	1		11/06/17 17:09	78-87-5		
1,3-Dichloropropane	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	142-28-9		
2,2-Dichloropropane	<0.48	ug/L	1.0	0.48	1		11/06/17 17:09	594-20-7		
1,1-Dichloropropene	<0.44	ug/L	1.0	0.44	1		11/06/17 17:09	563-58-6		
cis-1,3-Dichloropropene	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	10061-01-5		
trans-1,3-Dichloropropene	<0.23	ug/L	1.0	0.23	1		11/06/17 17:09	10061-02-6	L2	
Disopropyl ether	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	108-20-3		
Ethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	100-41-4		
Hexachloro-1,3-butadiene	<2.1	ug/L	5.0	2.1	1		11/06/17 17:09	87-68-3		
Isopropylbenzene (Cumene)	<0.14	ug/L	1.0	0.14	1		11/06/17 17:09	98-82-8		
p-isopropyltoluene	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	99-87-6		
ivietnylene Chloride	<0.23	ug/L	1.0	0.23	1		11/06/17 17:09	75-09-2		
Methyl-tert-butyl ether	<0.17	ug/L	1.0	0.17	1		11/06/17 17:09	1634-04-4		
Naphthalene	<2.5	ug/L	5.0	2.5	1		11/06/17 17:09	91-20-3		
n-Propylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	103-65-1		
Styrene	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	100-42-5		
1,1,1,2-letrachloroethane	<0.18	ug/L	1.0	0.18	1		11/06/17 17:09	630-20-6		

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Sample: MW-4	Lab ID: 40160138007		Collected: 11/02/17 09:50			Received: 11/03/17 14:35 Matrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
1,1,2,2-Tetrachloroethane	<0.25	ug/L	1.0	0.25	1		11/06/17 17:09	79-34-5	
Tetrachloroethene	7.8	ug/L	1.0	0.50	1		11/06/17 17:09	127-18-4	
Toluene	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	108-88-3	
1,2,3-Trichlorobenzene	<2.1	ug/L	5.0	2.1	1		11/06/17 17:09	87-61-6	
1,2,4-Trichlorobenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 17:09	120-82-1	
1,1,1-Trichloroethane	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	71-55-6	
1,1,2-Trichloroethane	<0.20	ug/L	1.0	0.20	1		11/06/17 17:09	79-00-5	
Trichloroethene	<0.33	ug/L	1.0	0.33	1		11/06/17 17:09	79-01-6	
Trichlorofluoromethane	<0.18	ug/L	1.0	0.18	1		11/06/17 17:09	75-69-4	
1,2,3-Trichloropropane	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	96-18-4	
1,2,4-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	95-63-6	
1,3,5-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	108-67-8	
Vinyl chloride	<0.18	ug/L	1.0	0.18	1		11/06/17 17:09	75-01-4	
Xylene (Total)	<1.5	ug/L	3.0	1.5	1		11/06/17 17:09	1330-20-7	
m&p-Xylene	<1.0	ug/L	2.0	1.0	1		11/06/17 17:09	179601-23-1	
o-Xylene	<0.50	ug/L	1.0	0.50	1		11/06/17 17:09	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	89	%	61-130		1		11/06/17 17:09	460-00-4	
Dibromofluoromethane (S)	93	%	67-130		1		11/06/17 17:09	1868-53-7	
Toluene-d8 (S)	95	%	70-130		1		11/06/17 17:09	2037-26-5	

Project: 1690005819 FORMER 1-HOUR VALET

Tioject

Pace Project No.: 40160138

Sample: MW-4 DUP	Lab ID:	40160138008	Collected: 11/02/17 09:53			Received: 11/03/17 14:35 Matrix: Water				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV	Analytica	I Method: EPA 8	260							
Benzene	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	71-43-2		
Bromobenzene	<0.23	ug/L	1.0	0.23	1		11/06/17 13:25	108-86-1		
Bromochloromethane	<0.34	ug/L	1.0	0.34	1		11/06/17 13:25	74-97-5		
Bromodichloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	75-27-4		
Bromoform	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	75-25-2		
Bromomethane	<2.4	ug/L	5.0	2.4	1		11/06/17 13:25	74-83-9		
n-Butylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	104-51-8		
sec-Butylbenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 13:25	135-98-8		
tert-Butylbenzene	<0.18	ug/L	1.0	0.18	1		11/06/17 13:25	98-06-6		
Carbon tetrachloride	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	56-23-5		
Chlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	108-90-7		
Chloroethane	<0.37	ug/L	1.0	0.37	1		11/06/17 13:25	75-00-3		
Chloroform	<2.5	ug/L	5.0	2.5	1		11/06/17 13:25	67-66-3		
Chloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	74-87-3		
2-Chlorotoluene	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	95-49-8		
4-Chlorotoluene	<0.21	ug/L	1.0	0.21	1		11/06/17 13:25	106-43-4		
1,2-Dibromo-3-chloropropane	<2.2	ug/L	5.0	2.2	1		11/06/17 13:25	96-12-8		
Dibromochloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	124-48-1		
1,2-Dibromoethane (EDB)	<0.18	ug/L	1.0	0.18	1		11/06/17 13:25	106-93-4		
Dibromomethane	<0.43	ug/L	1.0	0.43	1		11/06/17 13:25	74-95-3		
1,2-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	95-50-1		
1,3-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	541-73-1		
1,4-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	106-46-7		
Dichlorodifluoromethane	<0.22	ug/L	1.0	0.22	1		11/06/17 13:25	75-71-8		
1,1-Dichloroethane	<0.24	ug/L	1.0	0.24	1		11/06/17 13:25	75-34-3		
1,2-Dichloroethane	<0.17	ug/L	1.0	0.17	1		11/06/17 13:25	107-06-2		
1,1-Dichloroethene	<0.41	ug/L	1.0	0.41	1		11/06/17 13:25	75-35-4		
cis-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/06/17 13:25	156-59-2		
trans-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/06/17 13:25	156-60-5		
1,2-Dichloropropane	<0.23	ug/L	1.0	0.23	1		11/06/17 13:25	78-87-5		
1,3-Dichloropropane	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	142-28-9		
2,2-Dichloropropane	<0.48	ug/L	1.0	0.48	1		11/06/17 13:25	594-20-7		
1,1-Dichloropropene	<0.44	ug/L	1.0	0.44	1		11/06/17 13:25	563-58-6		
cis-1,3-Dichloropropene	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	10061-01-5		
trans-1,3-Dichloropropene	<0.23	ug/L	1.0	0.23	1		11/06/17 13:25	10061-02-6	L2	
Diisopropyl ether	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	108-20-3		
Ethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	100-41-4		
Hexachloro-1,3-butadiene	<2.1	ug/L	5.0	2.1	1		11/06/17 13:25	87-68-3		
Isopropylbenzene (Cumene)	<0.14	ug/L	1.0	0.14	1		11/06/17 13:25	98-82-8		
p-Isopropyltoluene	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	99-87-6		
Methylene Chloride	<0.23	ug/L	1.0	0.23	1		11/06/17 13:25	75-09-2		
Methyl-tert-butyl ether	<0.17	ug/L	1.0	0.17	1		11/06/17 13:25	1634-04-4		
Naphthalene	<2.5	ug/L	5.0	2.5	1		11/06/17 13:25	91-20-3		
n-Propylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	103-65-1		
Styrene	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	100-42-5		
1,1,1,2-Tetrachloroethane	<0.18	ug/L	1.0	0.18	1		11/06/17 13:25	630-20-6		

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Sample: MW-4 DUP	Lab ID: 40160138008		Collecte	Collected: 11/02/17 09:53			Received: 11/03/17 14:35 Matrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV	Analytical	Method: EPA 8	260							
1,1,2,2-Tetrachloroethane	<0.25	ug/L	1.0	0.25	1		11/06/17 13:25	79-34-5		
Tetrachloroethene	7.9	ug/L	1.0	0.50	1		11/06/17 13:25	127-18-4		
Toluene	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	108-88-3		
1,2,3-Trichlorobenzene	<2.1	ug/L	5.0	2.1	1		11/06/17 13:25	87-61-6		
1,2,4-Trichlorobenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 13:25	120-82-1		
1,1,1-Trichloroethane	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	71-55-6		
1,1,2-Trichloroethane	<0.20	ug/L	1.0	0.20	1		11/06/17 13:25	79-00-5		
Trichloroethene	<0.33	ug/L	1.0	0.33	1		11/06/17 13:25	79-01-6		
Trichlorofluoromethane	<0.18	ug/L	1.0	0.18	1		11/06/17 13:25	75-69-4		
1,2,3-Trichloropropane	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	96-18-4		
1,2,4-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	95-63-6		
1,3,5-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	108-67-8		
Vinyl chloride	<0.18	ug/L	1.0	0.18	1		11/06/17 13:25	75-01-4		
Xylene (Total)	<1.5	ug/L	3.0	1.5	1		11/06/17 13:25	1330-20-7		
m&p-Xylene	<1.0	ug/L	2.0	1.0	1		11/06/17 13:25	179601-23-1		
o-Xylene	<0.50	ug/L	1.0	0.50	1		11/06/17 13:25	95-47-6		
Surrogates										
4-Bromofluorobenzene (S)	91	%	61-130		1		11/06/17 13:25	460-00-4		
Dibromofluoromethane (S)	95	%	67-130		1		11/06/17 13:25	1868-53-7		
Toluene-d8 (S)	93	%	70-130		1		11/06/17 13:25	2037-26-5		

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Sample: MW-5	Lab ID: 40160138009		Collected: 11/02/17 10:50			Received: 11/03/17 14:35 Matrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
Benzene	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	71-43-2	
Bromobenzene	<0.23	ug/L	1.0	0.23	1		11/06/17 15:42	108-86-1	
Bromochloromethane	<0.34	ug/L	1.0	0.34	1		11/06/17 15:42	74-97-5	
Bromodichloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	75-27-4	
Bromoform	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	75-25-2	
Bromomethane	<2.4	ug/L	5.0	2.4	1		11/06/17 15:42	74-83-9	
n-Butylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	104-51-8	
sec-Butylbenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 15:42	135-98-8	
tert-Butylbenzene	<0.18	ug/L	1.0	0.18	1		11/06/17 15:42	98-06-6	
Carbon tetrachloride	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	56-23-5	
Chlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	108-90-7	
Chloroethane	<0.37	ug/L	1.0	0.37	1		11/06/17 15:42	75-00-3	
Chloroform	<2.5	ug/L	5.0	2.5	1		11/06/17 15:42	67-66-3	
Chloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	74-87-3	
2-Chlorotoluene	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	95-49-8	
4-Chlorotoluene	<0.21	ug/L	1.0	0.21	1		11/06/17 15:42	106-43-4	
1,2-Dibromo-3-chloropropane	<2.2	ug/L	5.0	2.2	1		11/06/17 15:42	96-12-8	
Dibromochloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	124-48-1	
1,2-Dibromoethane (EDB)	<0.18	ug/L	1.0	0.18	1		11/06/17 15:42	106-93-4	
Dibromomethane	<0.43	ug/L	1.0	0.43	1		11/06/17 15:42	74-95-3	
1,2-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	95-50-1	
1,3-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	541-73-1	
1,4-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	106-46-7	
Dichlorodifluoromethane	<0.22	ug/L	1.0	0.22	1		11/06/17 15:42	75-71-8	
1,1-Dichloroethane	<0.24	ug/L	1.0	0.24	1		11/06/17 15:42	75-34-3	
1,2-Dichloroethane	<0.17	ug/L	1.0	0.17	1		11/06/17 15:42	107-06-2	
1,1-Dichloroethene	<0.41	ug/L	1.0	0.41	1		11/06/17 15:42	75-35-4	
cis-1,2-Dichloroethene	73.6	ug/L	1.0	0.26	1		11/06/17 15:42	156-59-2	
trans-1,2-Dichloroethene	1.5	ug/L	1.0	0.26	1		11/06/17 15:42	156-60-5	
1,2-Dichloropropane	<0.23	ug/L	1.0	0.23	1		11/06/17 15:42	78-87-5	
1,3-Dichloropropane	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	142-28-9	
2,2-Dichloropropane	<0.48	ug/L	1.0	0.48	1		11/06/17 15:42	594-20-7	
1,1-Dichloropropene	<0.44	ug/L	1.0	0.44	1		11/06/17 15:42	563-58-6	
cis-1,3-Dichloropropene	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	10061-01-5	
trans-1,3-Dichloropropene	<0.23	ug/L	1.0	0.23	1		11/06/17 15:42	10061-02-6	L2
Diisopropyl ether	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	108-20-3	
Ethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	100-41-4	
Hexachloro-1,3-butadiene	<2.1	ug/L	5.0	2.1	1		11/06/17 15:42	87-68-3	
Isopropylbenzene (Cumene)	<0.14	ug/L	1.0	0.14	1		11/06/17 15:42	98-82-8	
p-lsopropyltoluene	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	99-87-6	
Methylene Chloride	<0.23	ug/L	1.0	0.23	1		11/06/17 15:42	75-09-2	
Methyl-tert-butyl ether	<0.17	ug/L	1.0	0.17	1		11/06/17 15:42	1634-04-4	
Naphthalene	<2.5	ug/L	5.0	2.5	1		11/06/17 15:42	91-20-3	
n-Propylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	103-65-1	
Styrene	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	100-42-5	
1,1,1,2-Tetrachloroethane	<0.18	ug/L	1.0	0.18	1		11/06/17 15:42	630-20-6	

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Sample: MW-5	Lab ID: 40160138009		Collected: 11/02/17 10:50			Received: 11/03/17 14:35 Matrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
1,1,2,2-Tetrachloroethane	<0.25	ug/L	1.0	0.25	1		11/06/17 15:42	79-34-5	
Tetrachloroethene	30.3	ug/L	1.0	0.50	1		11/06/17 15:42	127-18-4	
Toluene	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	108-88-3	
1,2,3-Trichlorobenzene	<2.1	ug/L	5.0	2.1	1		11/06/17 15:42	87-61-6	
1,2,4-Trichlorobenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 15:42	120-82-1	
1,1,1-Trichloroethane	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	71-55-6	
1,1,2-Trichloroethane	<0.20	ug/L	1.0	0.20	1		11/06/17 15:42	79-00-5	
Trichloroethene	3.2	ug/L	1.0	0.33	1		11/06/17 15:42	79-01-6	
Trichlorofluoromethane	<0.18	ug/L	1.0	0.18	1		11/06/17 15:42	75-69-4	
1,2,3-Trichloropropane	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	96-18-4	
1,2,4-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	95-63-6	
1,3,5-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	108-67-8	
Vinyl chloride	0.45J	ug/L	1.0	0.18	1		11/06/17 15:42	75-01-4	
Xylene (Total)	<1.5	ug/L	3.0	1.5	1		11/06/17 15:42	1330-20-7	
m&p-Xylene	<1.0	ug/L	2.0	1.0	1		11/06/17 15:42	179601-23-1	
o-Xylene	<0.50	ug/L	1.0	0.50	1		11/06/17 15:42	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	89	%	61-130		1		11/06/17 15:42	460-00-4	
Dibromofluoromethane (S)	90	%	67-130		1		11/06/17 15:42	1868-53-7	
Toluene-d8 (S)	96	%	70-130		1		11/06/17 15:42	2037-26-5	

Project: 1690005819 FORMER 1-HOUR VALET

1 10,000

Pace Project No.: 40160138

Sample: MW-5 DUP	Lab ID:	40160138010	Collecte	d: 11/02/17	10:53	Received: 11/03/17 14:35 Matrix: Water						
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual			
8260 MSV	Analytica	l Method: EPA 8	260									
Benzene	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	71-43-2				
Bromobenzene	<0.23	ug/L	1.0	0.23	1		11/06/17 12:20	108-86-1				
Bromochloromethane	<0.34	ug/L	1.0	0.34	1		11/06/17 12:20	74-97-5				
Bromodichloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	75-27-4				
Bromoform	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	75-25-2				
Bromomethane	<2.4	ug/L	5.0	2.4	1		11/06/17 12:20	74-83-9				
n-Butylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	104-51-8				
sec-Butylbenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 12:20	135-98-8				
tert-Butylbenzene	<0.18	ug/L	1.0	0.18	1		11/06/17 12:20	98-06-6				
Carbon tetrachloride	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	56-23-5				
Chlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	108-90-7				
Chloroethane	<0.37	ug/L	1.0	0.37	1		11/06/17 12:20	75-00-3				
Chloroform	<2.5	ug/L	5.0	2.5	1		11/06/17 12:20	67-66-3				
Chloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	74-87-3				
2-Chlorotoluene	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	95-49-8				
4-Chlorotoluene	<0.21	ug/L	1.0	0.21	1		11/06/17 12:20	106-43-4				
1,2-Dibromo-3-chloropropane	<2.2	ug/L	5.0	2.2	1		11/06/17 12:20	96-12-8				
Dibromochloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	124-48-1				
1,2-Dibromoethane (EDB)	<0.18	ug/L	1.0	0.18	1		11/06/17 12:20	106-93-4				
Dibromomethane	<0.43	ug/L	1.0	0.43	1		11/06/17 12:20	74-95-3				
1,2-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	95-50-1				
1,3-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	541-73-1				
1,4-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	106-46-7				
Dichlorodifluoromethane	<0.22	ug/L	1.0	0.22	1		11/06/17 12:20	75-71-8				
1,1-Dichloroethane	<0.24	ug/L	1.0	0.24	1		11/06/17 12:20	75-34-3				
1,2-Dichloroethane	<0.17	ug/L	1.0	0.17	1		11/06/17 12:20	107-06-2				
1,1-Dichloroethene	<0.41	ug/L	1.0	0.41	1		11/06/17 12:20	75-35-4				
cis-1,2-Dichloroethene	80.2	ug/L	1.0	0.26	1		11/06/17 12:20	156-59-2				
trans-1,2-Dichloroethene	1.4	ug/L	1.0	0.26	1		11/06/17 12:20	156-60-5				
1,2-Dichloropropane	<0.23	ug/L	1.0	0.23	1		11/06/17 12:20	78-87-5				
1,3-Dichloropropane	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	142-28-9				
2,2-Dichloropropane	<0.48	ug/L	1.0	0.48	1		11/06/17 12:20	594-20-7				
1,1-Dichloropropene	<0.44	ug/L	1.0	0.44	1		11/06/17 12:20	563-58-6				
cis-1,3-Dichloropropene	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	10061-01-5				
trans-1,3-Dichloropropene	<0.23	ug/L	1.0	0.23	1		11/06/17 12:20	10061-02-6	L2			
Dilsopropyl ether	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	108-20-3				
Ethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	100-41-4				
Hexachioro-1,3-butadiene	<2.1	ug/L	5.0	2.1	1		11/06/17 12:20	87-68-3				
Isopropyibenzene (Cumene)	<0.14	ug/L	1.0	0.14	1		11/06/17 12:20	98-82-8				
p-isopropyitoluene	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	99-87-6 75 00 0				
Method test but dette	<0.23	ug/L	1.0	0.23	1		11/06/17 12:20	15-09-2				
	<0.17	ug/L	1.0	0.17	1		11/06/17 12:20	1034-04-4				
	<2.5	ug/L	5.0	2.5	1		11/06/17 12:20	91-20-3				
n-riopyidenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	103-05-1				
	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	100-42-5				
1,1,1,2-letrachioroethane	<0.18	ug/L	1.0	0.18	1		11/06/17 12:20	030-20-6				

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Sample: MW-5 DUP	Lab ID: 40160138010		Collected: 11/02/17 10:53			Received: 11	/03/17 14:35 Ma	trix: Water		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV	Analytical	Method: EPA 8	260							
1,1,2,2-Tetrachloroethane	<0.25	ug/L	1.0	0.25	1		11/06/17 12:20	79-34-5		
Tetrachloroethene	28.3	ug/L	1.0	0.50	1		11/06/17 12:20	127-18-4		
Toluene	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	108-88-3		
1,2,3-Trichlorobenzene	<2.1	ug/L	5.0	2.1	1		11/06/17 12:20	87-61-6		
1,2,4-Trichlorobenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 12:20	120-82-1		
1,1,1-Trichloroethane	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	71-55-6		
1,1,2-Trichloroethane	<0.20	ug/L	1.0	0.20	1		11/06/17 12:20	79-00-5		
Trichloroethene	3.4	ug/L	1.0	0.33	1		11/06/17 12:20	79-01-6		
Trichlorofluoromethane	<0.18	ug/L	1.0	0.18	1		11/06/17 12:20	75-69-4		
1,2,3-Trichloropropane	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	96-18-4		
1,2,4-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	95-63-6		
1,3,5-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	108-67-8		
Vinyl chloride	0.55J	ug/L	1.0	0.18	1		11/06/17 12:20	75-01-4		
Xylene (Total)	<1.5	ug/L	3.0	1.5	1		11/06/17 12:20	1330-20-7		
m&p-Xylene	<1.0	ug/L	2.0	1.0	1		11/06/17 12:20	179601-23-1		
o-Xylene	<0.50	ug/L	1.0	0.50	1		11/06/17 12:20	95-47-6		
Surrogates										
4-Bromofluorobenzene (S)	91	%	61-130		1		11/06/17 12:20	460-00-4		
Dibromofluoromethane (S)	93	%	67-130		1		11/06/17 12:20	1868-53-7		
Toluene-d8 (S)	94	%	70-130		1		11/06/17 12:20	2037-26-5		

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Sample: PZ-1 Lab ID: 40160138011 Collected: 11/02/17 11:40 Received: 11/03/17 14:35 N						03/17 14:35 Ma	atrix: Water		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Methane, Ethane, Ethene GCV	Analytical	Method: EPA 8	015B Modif	ied					
Ethane	<0.58	ug/L	5.6	0.58	1		11/08/17 08:13	74-84-0	
Ethene	<0.52	ug/L	5.0	0.52	1		11/08/17 08:13	74-85-1	
Methane	<1.4	ug/L	2.8	1.4	1		11/08/17 08:13	74-82-8	
Iron, Ferric (Calculation)	Analytical	Method: SM 35	500-Fe B						
Iron, Ferric	2.2	mg/L	0.050		1		11/20/17 15:02	7439-89-6	N2
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	hod: EF	PA 3020			
Iron	2290	ug/L	19.0	5.7	1	11/13/17 18:26	11/15/17 02:42	7439-89-6	
8260 MSV	Analytical	Method: EPA 8	260						
Benzene	<125	ug/L	250	125	250		11/06/17 14:36	71-43-2	
Bromobenzene	<57.5	ug/L	250	57.5	250		11/06/17 14:36	108-86-1	
Bromochloromethane	<85.1	ug/L	250	85.1	250		11/06/17 14:36	74-97-5	
Bromodichloromethane	<125	ug/L	250	125	250		11/06/17 14:36	75-27-4	
Bromoform	<125	ug/L	250	125	250		11/06/17 14:36	75-25-2	
Bromomethane	<609	ug/L	1250	609	250		11/06/17 14:36	74-83-9	
n-Butylbenzene	<125	ug/L	250	125	250		11/06/17 14:36	104-51-8	
sec-Butylbenzene	<547	ug/L	1250	547	250		11/06/17 14:36	135-98-8	
tert-Butylbenzene	<45.1	ug/L	250	45.1	250		11/06/17 14:36	98-06-6	
Carbon tetrachloride	<125	ug/L	250	125	250		11/06/17 14:36	56-23-5	
Chlorobenzene	<125	ug/L	250	125	250		11/06/17 14:36	108-90-7	
Chloroethane	<93.6	ug/L	250	93.6	250		11/06/17 14:36	75-00-3	
Chloroform	<625	ug/L	1250	625	250		11/06/17 14:36	67-66-3	
Chloromethane	<125	ug/L	250	125	250		11/06/17 14:36	74-87-3	
2-Chlorotoluene	<125	ug/L	250	125	250		11/06/17 14:36	95-49-8	
4-Chlorotoluene	<53.4	ug/L	250	53.4	250		11/06/17 14:36	106-43-4	
1,2-Dibromo-3-chloropropane	<541	ug/L	1250	541	250		11/06/17 14:36	96-12-8	
Dibromochloromethane	<125	ug/L	250	125	250		11/06/17 14:36	124-48-1	
1,2-Dibromoethane (EDB)	<44.4	ug/L	250	44.4	250		11/06/17 14:36	106-93-4	
Dibromomethane	<107	ug/L	250	107	250		11/06/17 14:36	74-95-3	
1,2-Dichlorobenzene	<125	ug/L	250	125	250		11/06/17 14:36	95-50-1	
1,3-Dichlorobenzene	<125	ug/L	250	125	250		11/06/17 14:36	541-73-1	
1,4-Dichlorobenzene	<125	ug/L	250	125	250		11/06/17 14:36	106-46-7	
Dichlorodifluoromethane	<56.0	ug/L	250	56.0	250		11/06/17 14:36	75-71-8	
1,1-Dichloroethane	<60.4	ug/L	250	60.4	250		11/06/17 14:36	75-34-3	
1,2-Dichloroethane	<42.0	ug/L	250	42.0	250		11/06/17 14:36	107-06-2	
	<103	ug/L	250	103	250		11/06/17 14:36	75-35-4	
cis-1,2-Dichloroethene	414	ug/∟	250	64.0	250		11/06/17 14:36	156-59-2	
	<04.1	ug/L	250	04.1	200		11/06/17 14:30	100-00-0 70 07 F	
1,2-Dichloropropane	<58.3	ug/L	250	58.3	250		11/06/17 14:36	10-01-5	
	<125	ug/L	250	125	250		11/06/17 14:36	142-28-9	
2,2-Dichloropropane	<121	ug/L	250	121	250		11/06/17 14:36	594-20-7	
	<110	ug/∟	250	110	250		11/06/17 14:36	203-28-6	
	<120	ug/L	250	125	200		11/00/17 14:30	10001-01-5	10
trans-1,3-Dicnioropropene	<57.4	ug/∟	250	57.4	250		11/06/17 14:36	10061-02-6	L2

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Sample: PZ-1	Lab ID: 40160138011		Collected: 11/02/17 11:40			Received: 11/03/17 14:35 Matrix: Water					
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
8260 MSV	Analytical	Method: EPA 8	260								
Diisopropyl ether	<125	ug/L	250	125	250		11/06/17 14:36	108-20-3			
Ethylbenzene	<125	ug/L	250	125	250		11/06/17 14:36	100-41-4			
Hexachloro-1,3-butadiene	<526	ug/L	1250	526	250		11/06/17 14:36	87-68-3			
Isopropylbenzene (Cumene)	<35.8	ug/L	250	35.8	250		11/06/17 14:36	98-82-8			
p-Isopropyltoluene	<125	ug/L	250	125	250		11/06/17 14:36	99-87-6			
Methylene Chloride	<58.1	ug/L	250	58.1	250		11/06/17 14:36	75-09-2			
Methyl-tert-butyl ether	<43.6	ug/L	250	43.6	250		11/06/17 14:36	1634-04-4			
Naphthalene	<625	ug/L	1250	625	250		11/06/17 14:36	91-20-3			
n-Propylbenzene	<125	ug/L	250	125	250		11/06/17 14:36	103-65-1			
Styrene	<125	ug/L	250	125	250		11/06/17 14:36	100-42-5			
1,1,1,2-Tetrachloroethane	<45.1	ug/L	250	45.1	250		11/06/17 14:36	630-20-6			
1,1,2,2-Tetrachloroethane	<62.3	ug/L	250	62.3	250		11/06/17 14:36	79-34-5			
Tetrachloroethene	16200	ug/L	250	125	250		11/06/17 14:36	127-18-4			
Toluene	<125	ug/L	250	125	250		11/06/17 14:36	108-88-3			
1,2,3-Trichlorobenzene	<533	ug/L	1250	533	250		11/06/17 14:36	87-61-6			
1,2,4-Trichlorobenzene	<552	ug/L	1250	552	250		11/06/17 14:36	120-82-1			
1,1,1-Trichloroethane	<125	ug/L	250	125	250		11/06/17 14:36	71-55-6			
1,1,2-Trichloroethane	<49.3	ug/L	250	49.3	250		11/06/17 14:36	79-00-5			
Irichloroethene	435	ug/L	250	82.7	250		11/06/17 14:36	79-01-6			
Trichlorofluoromethane	<46.2	ug/L	250	46.2	250		11/06/17 14:36	75-69-4			
1,2,3-Trichloropropane	<125	ug/L	250	125	250		11/06/17 14:36	96-18-4			
1,2,4-Trimethylbenzene	<125	ug/L	250	125	250		11/06/17 14:36	95-63-6			
1,3,5-Irimethylbenzene	<125	ug/L	250	125	250		11/06/17 14:36	108-67-8			
Vinyl chloride	<43.9	ug/L	250	43.9	250		11/06/17 14:36	75-01-4			
Xylene (Total)	<375	ug/L	750	375	250		11/06/17 14:36	1330-20-7			
m&p-Xylene	<250	ug/L	500	250	250		11/06/17 14:36	179601-23-1			
o-Xylene	<125	ug/L	250	125	250		11/06/17 14:36	95-47-6			
A Bromofluorobonzono (S)	00	0/	61 120		250		11/06/17 11:26	460.00.4			
A-Bromofluoromethane (S)	90	70 0/	67 120		250		11/06/17 14:30	400-00-4			
Toluene-d8 (S)	07	70 9/2	70-130		250		11/06/17 14:30	2037-26-5			
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0		200		11/00/17 14.30	2037-20-3			
Sulfato	155	ma/l	20.0	10.0	10		11/11/17 12:22	14000 70 0			
	100 As a lational		30.0	10.0	10		11/14/17 13.33	14000-79-0			
3500FE B Iron, Ferrous	Analytical	Method: SM 35	00-ге в								
Iron, Ferrous	0.060	mg/L	0.040	0.017	1		11/17/17 13:31		H6		
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2								
Nitrogen, NO2 plus NO3	0.33	mg/L	0.25	0.095	1		11/10/17 10:15				
5310C TOC	Analytical	Method: SM 53	310C								
Total Organic Carbon	0.50J	mg/L	0.84	0.25	1		11/09/17 11:44	7440-44-0			

Project: 1690005819 FORMER 1-HOUR VALET

1 10,000

Pace Project No.: 40160138

Sample: TRIP BLANK	Lab ID:	40160138012	Collecte	d: 11/02/17	00:00	Received: 11/03/17 14:35 Matrix: Water						
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual			
8260 MSV	Analytica	l Method: EPA 8	260									
Benzene	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	71-43-2				
Bromobenzene	<0.23	ug/L	1.0	0.23	1		11/06/17 10:52	108-86-1				
Bromochloromethane	<0.34	ug/L	1.0	0.34	1		11/06/17 10:52	74-97-5				
Bromodichloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	75-27-4				
Bromoform	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	75-25-2				
Bromomethane	<2.4	ug/L	5.0	2.4	1		11/06/17 10:52	74-83-9				
n-Butylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	104-51-8				
sec-Butylbenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 10:52	135-98-8				
tert-Butylbenzene	<0.18	ug/L	1.0	0.18	1		11/06/17 10:52	98-06-6				
Carbon tetrachloride	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	56-23-5				
Chlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	108-90-7				
Chloroethane	<0.37	ug/L	1.0	0.37	1		11/06/17 10:52	75-00-3				
Chloroform	<2.5	ug/L	5.0	2.5	1		11/06/17 10:52	67-66-3				
Chloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	74-87-3				
2-Chlorotoluene	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	95-49-8				
4-Chlorotoluene	<0.21	ug/L	1.0	0.21	1		11/06/17 10:52	106-43-4				
1,2-Dibromo-3-chloropropane	<2.2	ug/L	5.0	2.2	1		11/06/17 10:52	96-12-8				
Dibromochloromethane	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	124-48-1				
1,2-Dibromoethane (EDB)	<0.18	ug/L	1.0	0.18	1		11/06/17 10:52	106-93-4				
Dibromomethane	<0.43	ug/L	1.0	0.43	1		11/06/17 10:52	74-95-3				
1,2-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	95-50-1				
1,3-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	541-73-1				
1,4-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	106-46-7				
Dichlorodifluoromethane	<0.22	ug/L	1.0	0.22	1		11/06/17 10:52	75-71-8				
1,1-Dichloroethane	<0.24	ug/L	1.0	0.24	1		11/06/17 10:52	75-34-3				
1,2-Dichloroethane	<0.17	ug/L	1.0	0.17	1		11/06/17 10:52	107-06-2				
1,1-Dichloroethene	<0.41	ug/L	1.0	0.41	1		11/06/17 10:52	75-35-4				
cis-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/06/17 10:52	156-59-2				
trans-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/06/17 10:52	156-60-5				
1,2-Dichloropropane	<0.23	ug/L	1.0	0.23	1		11/06/17 10:52	78-87-5				
1,3-Dichloropropane	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	142-28-9				
2,2-Dichloropropane	<0.48	ug/L	1.0	0.48	1		11/06/17 10:52	594-20-7				
1,1-Dichloropropene	<0.44	ug/L	1.0	0.44	1		11/06/17 10:52	563-58-6				
cis-1,3-Dichloropropene	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	10061-01-5				
trans-1,3-Dichloropropene	<0.23	ug/L	1.0	0.23	1		11/06/17 10:52	10061-02-6	L2			
Diisopropyl ether	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	108-20-3				
Ethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	100-41-4				
Hexachloro-1,3-butadiene	<2.1	ug/L	5.0	2.1	1		11/06/17 10:52	87-68-3				
Isopropylbenzene (Cumene)	<0.14	ug/L	1.0	0.14	1		11/06/17 10:52	98-82-8				
p-Isopropyltoluene	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	99-87-6				
Methylene Chloride	<0.23	ug/L	1.0	0.23	1		11/06/17 10:52	75-09-2				
Methyl-tert-butyl ether	<0.17	ug/L	1.0	0.17	1		11/06/17 10:52	1634-04-4				
Naphthalene	<2.5	ug/L	5.0	2.5	1		11/06/17 10:52	91-20-3				
n-Propylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	103-65-1				
Styrene	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	100-42-5				
1,1,1,2-Tetrachloroethane	<0.18	ug/L	1.0	0.18	1		11/06/17 10:52	630-20-6				

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

	40100100
Sample: TRIP BL/	ANK

Sample: TRIP BLANK	Lab ID: 40160138012		Collected	Collected: 11/02/17 00:00			/03/17 14:35 Ma	atrix: Water		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV	Analytical	Method: EPA 8	260							
1,1,2,2-Tetrachloroethane	<0.25	ug/L	1.0	0.25	1		11/06/17 10:52	79-34-5		
Tetrachloroethene	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	127-18-4		
Toluene	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	108-88-3		
1,2,3-Trichlorobenzene	<2.1	ug/L	5.0	2.1	1		11/06/17 10:52	87-61-6		
1,2,4-Trichlorobenzene	<2.2	ug/L	5.0	2.2	1		11/06/17 10:52	120-82-1		
1,1,1-Trichloroethane	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	71-55-6		
1,1,2-Trichloroethane	<0.20	ug/L	1.0	0.20	1		11/06/17 10:52	79-00-5		
Trichloroethene	<0.33	ug/L	1.0	0.33	1		11/06/17 10:52	79-01-6		
Trichlorofluoromethane	<0.18	ug/L	1.0	0.18	1		11/06/17 10:52	75-69-4		
1,2,3-Trichloropropane	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	96-18-4		
1,2,4-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	95-63-6		
1,3,5-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	108-67-8		
Vinyl chloride	<0.18	ug/L	1.0	0.18	1		11/06/17 10:52	75-01-4		
Xylene (Total)	<1.5	ug/L	3.0	1.5	1		11/06/17 10:52	1330-20-7		
m&p-Xylene	<1.0	ug/L	2.0	1.0	1		11/06/17 10:52	179601-23-1		
o-Xylene	<0.50	ug/L	1.0	0.50	1		11/06/17 10:52	95-47-6		
Surrogates										
4-Bromofluorobenzene (S)	87	%	61-130		1		11/06/17 10:52	460-00-4		
Dibromofluoromethane (S)	92	%	67-130		1		11/06/17 10:52	1868-53-7		
Toluene-d8 (S)	97	%	70-130		1		11/06/17 10:52	2037-26-5		

Project:	1690005819 FORMER 1-HOUR VALET

EPA 8015B Modified

Pace Project No.: 40160138

QC Batch:	273

Associated Lab Samples:

QC Batch Method:

3356

56	Analysis Method:	EPA 8015B Modified
8015B Modified	Analysis Description:	Methane, Ethane, Ethene GCV
40160138001, 40160138002, 40	160138003, 40160138011	

METHOD BLANK: 1608396		N	latrix: Wa	ater						
Associated Lab Samples: 40160	38001, 40160138002,	40160138	003, 4016	60138011						
		Blank		Reporting						
Parameter	Units	Result	t	Limit		Analyzed		ers		
Ethane	ug/L	<0.58		5.6	11/08/17 07:21					
Ethene	ug/L	<	:0.52	5.0	11/08/17 07:21					
Methane	ug/L		<1.4	2.8	11/08/	17 07:21				
LABORATORY CONTROL SAMPLE	& LCSD: 1608397			1608398						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Ethane	ug/L	53.6	57.	8 58.4	108	109	80-120	1	20	
Ethene	ug/L	50	53.	5 54.0	107	108	80-119	1	20	
Methane	ug/L	28.6	31.	2 31.4	109	110	80-120	1	20	

MATRIX SPIKE & MATRIX SPIK	ATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1608726 1608727												
			MS	MSD									
		40160138002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual	
Ethane	ug/L	<0.58	53.6	53.6	58.4	56.4	109	105	79-120	3	20		
Ethene	ug/L	<0.52	50	50	54.6	52.7	109	105	78-119	4	20		
Methane	ug/L	<1.4	28.6	28.6	32.5	31.3	114	110	10-200	4	20		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	1690005819 FOR	MER 1-HOUR VAL	ET									
Pace Project No.:	40160138											
QC Batch:	507314		Analys	is Method:	E	PA 6020A						
QC Batch Method:	EPA 3020		Analys	Analysis Description:		6020A Water UPD4						
Associated Lab San	nples: 40160138	8001, 40160138002	, 40160138	003, 40160	0138011							
METHOD BLANK:	2757509		Ν	latrix: Wat	er							
Associated Lab San	nples: 40160138	8001, 40160138002	, 40160138	003, 40160	0138011							
			Blank	R	eporting							
Paran	neter	Units	Result	t	Limit	Analyz	ed	Qualifiers				
Iron		ug/L		<5.7	19.0) 11/15/17 ()2:28					
LABORATORY COM	NTROL SAMPLE:	2757510										
			Spike	LCS		LCS	% Rec	;				
Paran	neter	Units	Conc.	Resu	lt	% Rec	Limits	Qı	alifiers			
Iron		ug/L	2000		1990	100	80	-120		-		
MATRIX SPIKE & M	IATRIX SPIKE DUI	PLICATE: 27575	11		2757512							
			MS	MSD								
_		40160138001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	_
Paramete	r Un	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron	ug	/L 8820	2000	2000	11100	11000	113	109	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	169000	5819 FORMER 1-HOUR VA	LET						
Pace Project No .:	4016013)138							
QC Batch:	27308	8	Analysis Metho	od: EP	A 8260				
QC Batch Method:	FPA 8	260	Analysis Descr	ription: 826	50 MSV				
Accorded Lab San			12 40160138003 40 ²	160138004 40	160138005 40160	138006 40160138007			
Associated Lab San	iipies.	40160138008, 4016013800)9, 40160138010, 40 ⁻	160138011, 40 ⁻	160138012	, 100000, 40100100007,			
METHOD BLANK:	1607173	3	Matrix: V	Vater					
Associated Lab San	nples:	40160138001, 4016013800)2, 40160138003, 40 [,]	160138004, 40	160138005, 40160)138006, 40160138007,			
	•	40160138008, 4016013800	9, 40160138010, 40 ⁻	160138011, 40	160138012				
		Blank Reporting							
Paran	neter	Units	Result	Limit	Analyzed	Qualifiers			
1,1,1,2-Tetrachloroe	thane	ug/L	<0.18	1.0	11/06/17 08:07				
1,1,1-Trichloroethan	e	ug/L	<0.50	1.0	11/06/17 08:07				
1,1,2,2-Tetrachloroe	thane	ug/L	<0.25	1.0	11/06/17 08:07				
1,1,2-Trichloroethan	e	ug/L	<0.20	1.0	11/06/17 08:07				
1,1-Dichloroethane		ug/L	<0.24	1.0	11/06/17 08:07				
1,1-Dichloroethene		ug/L	<0.41	1.0	11/06/17 08:07				
1,1-Dichloropropene	e	ug/L	<0.44	1.0	11/06/17 08:07				
1,2,3-Trichlorobenze	ene	ug/L	<2.1	5.0	11/06/17 08:07				
1,2,3-Trichloropropa	ane	ug/L	<0.50	1.0	11/06/17 08:07				
1,2,4-Trichlorobenze	ene	ug/L	<2.2	5.0	11/06/17 08:07				
1,2,4-Trimethylbenz	ene	ug/L	<0.50	1.0	11/06/17 08:07				
1,2-Dibromo-3-chlor	opropane	e ug/L	<2.2	5.0	11/06/17 08:07				
1,2-Dibromoethane	(EDB)	ug/L	<0.18	1.0	11/06/17 08:07				
1,2-Dichlorobenzen	е	ug/L	< 0.50	1.0	11/06/17 08:07				
1,2-Dichloroethane		ug/L	<0.17	1.0	11/06/17 08:07				
1,2-Dichloropropane	•	ug/L	<0.23	1.0	11/06/17 08:07				
1,3,5-Inmethylbenz	ene	ug/L	<0.50	1.0	11/06/17 08:07				
1.3 Dichloropropage		ug/L	< 0.50	1.0	11/06/17 08:07				
1,3-Dichlorobenzen		ug/∟	<0.50	1.0	11/06/17 08:07				
2 2-Dichloropropage	2	ug/L	<0.30	1.0	11/06/17 08:07				
2-Chlorotoluene		ug/L	<0.40	1.0	11/06/17 08:07				
4-Chlorotoluene		ug/L	<0.00	1.0	11/06/17 08:07				
Benzene		ug/L	<0.50	1.0	11/06/17 08:07				
Bromobenzene		ug/L	<0.23	1.0	11/06/17 08:07				
Bromochloromethar	ne	ug/L	< 0.34	1.0	11/06/17 08:07				
Bromodichlorometha	ane	ug/L	<0.50	1.0	11/06/17 08:07				
Bromoform		ug/L	<0.50	1.0	11/06/17 08:07				
Bromomethane		ug/L	<2.4	5.0	11/06/17 08:07				
Carbon tetrachloride		ug/L	<0.50	1.0	11/06/17 08:07				
Chlorobenzene		ug/L	<0.50	1.0	11/06/17 08:07				
Chloroethane		ug/L	<0.37	1.0	11/06/17 08:07				
Chloroform		ug/L	<2.5	5.0	11/06/17 08:07				
Chloromethane		ug/L	<0.50	1.0	11/06/17 08:07				
cis-1,2-Dichloroethene		ug/L	<0.26	1.0	11/06/17 08:07				
cis-1,3-Dichloroprop	ene	ug/L	<0.50	1.0	11/06/17 08:07				
Dibromochlorometh	ane	ug/L	<0.50	1.0	11/06/17 08:07				
Dibromomethane		ug/L	<0.43	1.0	11/06/17 08:07				
Dichlorodifluoromet	hane	ug/L	<0.22	1.0	11/06/17 08:07				
Diisopropyl ether		ug/L	<0.50	1.0	11/06/17 08:07				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

METHOD BLANK: 160	07173	Matrix: Water	
Associated Lab Samples	s: 40160138001, 40160138002, 40160 40160138008, 40160138009, 40160	0138003, 40160138004, 40160138005, 40160138006, 0138010, 40160138011, 40160138012	40160138007,

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Ethylbenzene	ug/L	<0.50	1.0	11/06/17 08:07	
Hexachloro-1,3-butadiene	ug/L	<2.1	5.0	11/06/17 08:07	
Isopropylbenzene (Cumene)	ug/L	<0.14	1.0	11/06/17 08:07	
m&p-Xylene	ug/L	<1.0	2.0	11/06/17 08:07	
Methyl-tert-butyl ether	ug/L	<0.17	1.0	11/06/17 08:07	
Methylene Chloride	ug/L	<0.23	1.0	11/06/17 08:07	
n-Butylbenzene	ug/L	<0.50	1.0	11/06/17 08:07	
n-Propylbenzene	ug/L	<0.50	1.0	11/06/17 08:07	
Naphthalene	ug/L	<2.5	5.0	11/06/17 08:07	
o-Xylene	ug/L	<0.50	1.0	11/06/17 08:07	
p-Isopropyltoluene	ug/L	<0.50	1.0	11/06/17 08:07	
sec-Butylbenzene	ug/L	<2.2	5.0	11/06/17 08:07	
Styrene	ug/L	<0.50	1.0	11/06/17 08:07	
tert-Butylbenzene	ug/L	<0.18	1.0	11/06/17 08:07	
Tetrachloroethene	ug/L	<0.50	1.0	11/06/17 08:07	
Toluene	ug/L	<0.50	1.0	11/06/17 08:07	
trans-1,2-Dichloroethene	ug/L	<0.26	1.0	11/06/17 08:07	
trans-1,3-Dichloropropene	ug/L	<0.23	1.0	11/06/17 08:07	
Trichloroethene	ug/L	<0.33	1.0	11/06/17 08:07	
Trichlorofluoromethane	ug/L	<0.18	1.0	11/06/17 08:07	
Vinyl chloride	ug/L	<0.18	1.0	11/06/17 08:07	
Xylene (Total)	ug/L	<1.5	3.0	11/06/17 08:07	
4-Bromofluorobenzene (S)	%	94	61-130	11/06/17 08:07	
Dibromofluoromethane (S)	%	97	67-130	11/06/17 08:07	
Toluene-d8 (S)	%	94	70-130	11/06/17 08:07	

LABORATORY CONTROL SAMPLE: 1607174

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	49.6	49.7	100	70-130	
1,1,2,2-Tetrachloroethane	ug/L	49.6	35.2	71	70-130	
1,1,2-Trichloroethane	ug/L	49.6	37.4	75	70-130	
1,1-Dichloroethane	ug/L	49.6	54.5	110	71-132	
1,1-Dichloroethene	ug/L	49.6	53.0	107	75-130	
1,2,4-Trichlorobenzene	ug/L	49.6	42.2	85	70-130	
1,2-Dibromo-3-chloropropane	ug/L	49.6	36.5	74	63-123	
1,2-Dibromoethane (EDB)	ug/L	49.6	36.4	73	70-130	
1,2-Dichlorobenzene	ug/L	49.6	44.3	89	70-130	
1,2-Dichloroethane	ug/L	49.6	45.0	91	70-131	
1,2-Dichloropropane	ug/L	49.6	45.3	91	80-120	
1,3-Dichlorobenzene	ug/L	49.6	44.5	90	70-130	
1,4-Dichlorobenzene	ug/L	49.6	43.0	87	70-130	
Benzene	ug/L	49.6	47.7	96	73-145	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

LABORATORY CONTROL SAMPLE: 1607174

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromodichloromethane	ug/L	49.6	45.8	92	70-130	
Bromoform	ug/L	49.6	34.8	70	67-130	
Bromomethane	ug/L	50	30.6	61	26-128	
Carbon tetrachloride	ug/L	49.6	44.0	89	70-133	
Chlorobenzene	ug/L	49.6	44.2	89	70-130	
Chloroethane	ug/L	50	48.8	98	58-120	
Chloroform	ug/L	49.6	47.4	96	80-121	
Chloromethane	ug/L	50	29.6	59	40-127	
cis-1,2-Dichloroethene	ug/L	49.6	45.4	92	70-130	
cis-1,3-Dichloropropene	ug/L	49.6	41.0	83	70-130	
Dibromochloromethane	ug/L	49.6	36.5	74	70-130	
Dichlorodifluoromethane	ug/L	50	40.9	82	20-135	
Ethylbenzene	ug/L	49.6	45.9	93	87-129	
Isopropylbenzene (Cumene)	ug/L	49.6	42.6	86	70-130	
m&p-Xylene	ug/L	99.2	82.3	83	70-130	
Methyl-tert-butyl ether	ug/L	49.6	47.1	95	66-143	
Methylene Chloride	ug/L	49.6	47.0	95	70-130	
o-Xylene	ug/L	49.6	44.5	90	70-130	
Styrene	ug/L	49.6	40.5	82	70-130	
Tetrachloroethene	ug/L	49.6	42.6	86	70-130	
Toluene	ug/L	49.6	43.1	87	82-130	
trans-1,2-Dichloroethene	ug/L	49.6	53.9	109	75-132	
trans-1,3-Dichloropropene	ug/L	49.6	33.9	68	70-130 l	_2
Trichloroethene	ug/L	49.6	50.3	101	70-130	
Trichlorofluoromethane	ug/L	50	53.0	106	76-133	
Vinyl chloride	ug/L	50	49.9	100	57-136	
Xylene (Total)	ug/L	149	127	85	70-130	
4-Bromofluorobenzene (S)	%			103	61-130	
Dibromofluoromethane (S)	%			97	67-130	
Toluene-d8 (S)	%			92	70-130	

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	ATE: 16072	17		1607218							
			MS	MSD								
		40160138002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	<0.50	49.6	49.6	45.1	48.7	91	98	70-134	8	20	
1,1,2,2-Tetrachloroethane	ug/L	<0.25	49.6	49.6	31.6	34.7	64	70	70-130	9	20	M1
1,1,2-Trichloroethane	ug/L	<0.20	49.6	49.6	35.7	36.6	72	74	70-130	3	20	
1,1-Dichloroethane	ug/L	<0.24	49.6	49.6	52.5	55.8	106	113	71-133	6	20	
1,1-Dichloroethene	ug/L	<0.41	49.6	49.6	51.6	53.8	104	109	75-136	4	20	
1,2,4-Trichlorobenzene	ug/L	<2.2	49.6	49.6	40.3	42.1	81	85	70-130	4	20	
1,2-Dibromo-3- chloropropane	ug/L	<2.2	49.6	49.6	28.8	31.9	58	64	63-123	10	20	M1
1,2-Dibromoethane (EDB)	ug/L	<0.18	49.6	49.6	33.2	35.6	67	72	70-130	7	20	M1
1,2-Dichlorobenzene	ug/L	<0.50	49.6	49.6	41.7	44.2	84	89	70-130	6	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

MATRIX SPIKE & MATRIX SPI	KE DUPLI	CATE: 16072	17		1607218							
			MS	MSD								
		40160138002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2-Dichloroethane	ug/L	<0.17	49.6	49.6	41.4	45.5	83	92	70-131	9	20	
1,2-Dichloropropane	ug/L	<0.23	49.6	49.6	39.8	45.6	80	92	80-120	13	20	
1,3-Dichlorobenzene	ug/L	<0.50	49.6	49.6	43.9	45.5	89	92	70-130	3	20	
1,4-Dichlorobenzene	ug/L	<0.50	49.6	49.6	42.0	43.7	85	88	70-130	4	20	
Benzene	ug/L	<0.50	49.6	49.6	44.7	48.3	90	97	73-145	8	20	
Bromodichloromethane	ug/L	<0.50	49.6	49.6	40.7	44.7	82	90	70-130	9	20	
Bromoform	ug/L	<0.50	49.6	49.6	32.3	33.6	65	68	67-130	4	20	M1
Bromomethane	ug/L	<2.4	50	50	35.5	36.2	71	72	26-129	2	20	
Carbon tetrachloride	ug/L	<0.50	49.6	49.6	42.5	44.8	86	90	70-134	5	20	
Chlorobenzene	ug/L	<0.50	49.6	49.6	43.6	45.2	88	91	70-130	4	20	
Chloroethane	ug/L	<0.37	50	50	57.2	52.0	114	104	58-120	10	20	
Chloroform	ug/L	<2.5	49.6	49.6	44.2	48.5	89	98	80-121	9	20	
Chloromethane	ug/L	<0.50	50	50	30.7	30.3	61	61	40-128	1	20	
cis-1,2-Dichloroethene	ug/L	<0.26	49.6	49.6	41.3	46.7	83	94	70-130	12	20	
cis-1,3-Dichloropropene	ug/L	<0.50	49.6	49.6	36.3	40.5	73	82	70-130	11	20	
Dibromochloromethane	ug/L	<0.50	49.6	49.6	34.7	35.1	70	71	70-130	1	20	
Dichlorodifluoromethane	ug/L	<0.22	50	50	32.9	34.8	66	70	20-146	6	20	
Ethylbenzene	ug/L	<0.50	49.6	49.6	45.9	46.4	93	94	87-129	1	20	
Isopropylbenzene (Cumene)	ug/L	<0.14	49.6	49.6	42.4	44.0	86	89	70-130	4	20	
m&p-Xylene	ug/L	<1.0	99.2	99.2	82.5	84.1	83	85	70-130	2	20	
Methyl-tert-butyl ether	ug/L	<0.17	49.6	49.6	43.3	47.0	87	95	66-143	8	20	
Methylene Chloride	ug/L	<0.23	49.6	49.6	45.7	49.0	92	99	70-130	7	20	
o-Xylene	ug/L	<0.50	49.6	49.6	45.0	46.5	91	94	70-130	3	20	
Styrene	ug/L	<0.50	49.6	49.6	40.3	41.3	81	83	70-130	2	20	
Tetrachloroethene	ug/L	<0.50	49.6	49.6	41.8	44.6	84	90	70-130	7	20	
Toluene	ug/L	<0.50	49.6	49.6	43.0	44.3	87	89	82-131	3	20	
trans-1,2-Dichloroethene	ug/L	<0.26	49.6	49.6	52.9	55.9	107	113	75-135	5	20	
trans-1,3-Dichloropropene	ug/L	<0.23	49.6	49.6	33.4	33.2	67	67	70-130	0	20	MO
Trichloroethene	ug/L	<0.33	49.6	49.6	45.4	50.7	92	102	70-130	11	20	
Trichlorofluoromethane	ug/L	<0.18	50	50	56.4	55.6	113	111	76-150	1	20	
Vinyl chloride	ug/L	<0.18	50	50	53.1	51.2	106	102	56-143	3	20	
Xylene (Total)	ug/L	<1.5	149	149	128	131	86	88	70-130	2	20	
4-Bromofluorobenzene (S)	%						103	101	61-130			
Dibromofluoromethane (S)	%						99	98	67-130			
Toluene-d8 (S)	%						95	92	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	1690005819 FOR	MER 1-HOUR VAI	_ET									
Pace Project No.:	40160138											
QC Batch:	273685		Analys	is Method:	E	PA 300.0						
QC Batch Method:	EPA 300.0		Analys	sis Descript	ion: 3	00.0 IC Anio	ns					
Associated Lab San	nples: 40160138	001, 40160138002	2									
METHOD BLANK:	1610282		Ν	Aatrix: Wat	ter							
Associated Lab San	nples: 40160138	001, 40160138002	2									
			Blank	K R	eporting							
Paran	neter	Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Sulfate		mg/L		<1.0	3.0	11/14/17	18:07					
LABORATORY COM	NTROL SAMPLE:	1610283										
			Spike	LCS	;	LCS	% Rec	>				
Paran	neter	Units	Conc.	Resu	llt	% Rec	Limits	a Qi	ualifiers			
Sulfate		mg/L	20		21.2	106	90)-110				
MATRIX SPIKE & M	IATRIX SPIKE DUF	PLICATE: 16102	284		1610285							
			MS	MSD								
		40160380001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Uni	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Sulfate	mg	/L 40.5J	400	400	460	456	105	104	90-110	1	15	
MATRIX SPIKE & N	IATRIX SPIKE DUF	PLICATE: 16102	286		1610287							
			MS	MSD								
		40160138002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Uni	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Sulfate	mg	/L <100	2000	2000	2150	2170	103	104	90-110	1	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	1690005819 FOR	MER 1-HOUR VAL	.ET									
Pace Project No.:	40160138											
QC Batch:	273812		Analys	is Method:	E	PA 300.0						
QC Batch Method:	EPA 300.0		Analys	is Descript	ion: 3	00.0 IC Anio	ns					
Associated Lab San	nples: 40160138	003, 40160138011										
METHOD BLANK:	1611033		Ν	Aatrix: Wat	ter							
Associated Lab San	nples: 40160138	003, 40160138011										
			Blank	K R	eporting							
Paran	neter	Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Sulfate		mg/L		<1.0	3.0	11/14/17	11:06					
LABORATORY CON	NTROL SAMPLE:	1611034										
			Spike	LCS	;	LCS	% Rec	2				
Paran	neter	Units	Conc.	Resu	lt	% Rec	Limits	a Qi	ualifiers			
Sulfate		mg/L	20		20.7	103	90)-110				
MATRIX SPIKE & M	ATRIX SPIKE DUF	PLICATE: 16110	35		1611036							
			MS	MSD								
		40160534003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Un	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Sulfate	mg	/L 96.2	400	400	520	519	106	106	90-110	0	15	
MATRIX SPIKE & M	IATRIX SPIKE DUF	PLICATE: 16110	37		1611038							
			MS	MSD								
		40160318001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Uni	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Sulfate	mg	/L 88.4	400	400	503	508	104	105	90-110	1	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	1690005819 FOF	RMER 1-HOUR VAI	_ET									
Pace Project No.:	40160138											
QC Batch:	509196		Analys	sis Method	: ;	SM 3500-Fe I	В					
QC Batch Method:	SM 3500-Fe B		Analys	sis Descrip	tion:	3500FE B Iro	n, Ferrous					
Associated Lab San	nples: 4016013	8001, 4016013800	2, 40160138	003, 4016	0138011							
METHOD BLANK:	2767971		Ν	Matrix: Wa	ter							
Associated Lab San	nples: 4016013	8001, 4016013800	2, 40160138	003, 4016	0138011							
			Blank	K R	eporting							
Paran	neter	Units	Resu	t	Limit	Analyz	ied	Qualifiers	_			
Iron, Ferrous		mg/L	<	0.017	0.04	0 11/17/17	13:21 H6	6				
LABORATORY COM	NTROL SAMPLE:	2767972										
Paran	neter	Units	Spike Conc.	LCS Resu	S Ilt	LCS % Rec	% Reo Limits	c Qu	ualifiers			
Iron, Ferrous		mg/L	.5		0.50	101	90)-110 H6		-		
MATRIX SPIKE & M	IATRIX SPIKE DU	PLICATE: 27679	973		2767974	Ļ						
			MS	MSD								
_		40160138001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	- ·
Paramete	er Ur	nits Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron, Ferrous	m	g/L 3.1	5	5	8.3	3 8.2	104	101	80-120	2	20	H6
MATRIX SPIKE & M	IATRIX SPIKE DU	PLICATE: 27679	975		2767976	6						
			MS	MSD					_			
Paramete	sr I Ir	40160138002	Spike Conc	Spike Conc	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual
non, renous	m	y/∟ <0.017	.s	.5	0.50	J 0.49	98	95	60-120	2	20	ΠO

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	1690005819 FO	RMER 1-H	OUR VAL	ET									
Pace Project No.:	40160138												
QC Batch:	273669			Analys	is Method:	E	EPA 353.2						
QC Batch Method:	EPA 353.2			Analys	is Descript	tion: 3	353.2 Nitrate	+ Nitrite, p	reserved				
Associated Lab San	nples: 4016013	8001											
METHOD BLANK:	1610025			Ν	Aatrix: Wa	ter							
Associated Lab San	nples: 4016013	8001											
				Blank	k R	eporting							
Paran	neter	Ur	nits	Resul	t	Limit	Analyz	ed	Qualifiers	_			
Nitrogen, NO2 plus	NO3	m	g/L	<(0.095	0.25	5 11/10/17	09:33					
LABORATORY COM	NTROL SAMPLE:	1610026	;										
				Spike	LCS	;	LCS	% Rec	;				
Paran	neter	Ur	nits	Conc.	Resu	lt	% Rec	Limits	Qı	alifiers	_		
Nitrogen, NO2 plus	NO3	m	g/L	2.5		2.5	100	90)-110				
MATRIX SPIKE & M	IATRIX SPIKE DI	JPLICATE:	16100	27		1610028							
	_	-		MS	MSD								
		40160	104009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er U	nits F	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrogen, NO2 plus	NO3 m	g/L	8.0	5	5	12.7	12.6	95	92	90-110	1	20	
MATRIX SPIKE & N	IATRIX SPIKE DU	IPLICATE:	161002	29		1610030							
				MS	MSD								
		40160	138001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er U	nits F	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrogen, NO2 plus	NO3 m	g/L	<0.095	2.5	2.5	2.4	2.4	96	96	90-110	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	1690005	819 FORME	R 1-HOUR VAL	ET									
Pace Project No .:	4016013	8											
QC Batch:	273670)		Analys	sis Method:	E	PA 353.2						
QC Batch Method:	EPA 35	3.2		Analys	sis Descript	ion: 3	53.2 Nitrate	+ Nitrite, p	reserved				
Associated Lab San	nples: 4	40160138002	2, 40160138003	, 40160138	8011								
METHOD BLANK:	1610060	I		١	Matrix: Wat	ter							
Associated Lab San	nples: 4	40160138002	2, 40160138003	, 40160138	8011								
				Blank	K R	eporting							
Paran	neter		Units	Resu	lt	Limit	Analyz	zed	Qualifiers				
Nitrogen, NO2 plus	NO3		mg/L	<	0.095	0.25	5 11/10/17	10:11					
LABORATORY CON	NTROL SA	AMPLE: 16	610061										
				Spike	LCS	;	LCS	% Red	;				
Paran	neter		Units	Conc.	Resu	lt	% Rec	Limits	Qı	ualifiers	_		
Nitrogen, NO2 plus	NO3		mg/L	2.5	5	2.5	98	90)-110				
MATRIX SPIKE & M	IATRIX SI		CATE: 16100	62		1610063							
				MS	MSD								
Paramete	er	Units	40160348003 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Nitrogen, NO2 plus l	NO3	mg/L	0.43	2.5	2.5	2.9	2.9	97	98	90-110	0	20	
MATRIX SPIKE & M	IATRIX SI		CATE: 16100	64		1610065							
				MS	MSD								
Paramete	er	Units	40160369002 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Nitrogen, NO2 plus l	NO3	mg/L	<1250 ug/L	12.5	12.5	12.3	12.4	98	98	90-110	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	1690005819 I	ORME	R 1-HOUR VAL	ET									
Pace Project No.:	40160138												
QC Batch:	273395			Analys	sis Method:	Ś	SM 5310C						
QC Batch Method:	SM 5310C			Analys	sis Descript	tion: t	5310C Total C	Drganic Ca	rbon				
Associated Lab San	nples: 40160	0138001	, 40160138002	, 40160138	003, 40160	0138011							
METHOD BLANK:	1608542			Ν	Matrix: Wat	ter							
Associated Lab San	nples: 40160	0138001	, 40160138002	, 40160138	003, 40160	0138011							
				Blank	K R	eporting							
Paran	neter		Units	Resul	t	Limit	Analyz	ed	Qualifiers	_			
Total Organic Carbo	n		mg/L		<0.25	0.8	4 11/08/17	13:19					
LABORATORY COM	NTROL SAMPL	E: 16	08543										
_				Spike	LCS	5	LCS	% Red	;				
Paran	neter		Units	Conc.	Resu	llt	% Rec	Limits	. Qi	alifiers	-		
Total Organic Carbo	n		mg/L	2.5		2.5	100	80	-120				
MATRIX SPIKE & N	IATRIX SPIKE	DUPLIC	ATE: 16085	44		1608545	;						
				MS	MSD								
Paramete	٥r	l Inits	40160023001 Result	Spike Conc	Spike Conc	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Total Organic Carbo		ma/l			1		- <u> </u>	100	120	80-120		10	
Iotal Organic Oarbo		ing/L	2000 ug/L	·		4.0	у т .т	105	120	00 120	0	10	
MATRIX SPIKE & M	IATRIX SPIKE	DUPLIC	ATE: 16085	46		1608547	,						
				MS	MSD								
Deve		11.26	40160095001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	0
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	LIMITS	RPD		Qual
Total Organic Carbo	n	mg/L	<840 ug/L	1	1	1.1	I 1.1	51	51	80-120	0	10	MO

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

PASI-M Pace Analytical Services - Minneapolis

WORKORDER QUALIFIERS

WO: 40160138

[1] Revised - PM - Revised report to fix Sample ID errors on -009 & -010 to match COC. Login error. SVM 11/21/17

ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results may be biased low.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 1690005819 FORMER 1-HOUR VALET

Pace Project No.: 40160138

Analytical Lab ID **QC Batch Method** QC Batch Batch Sample ID **Analytical Method** 40160138001 PZ-2 EPA 8015B Modified 273356 40160138002 **MW-1** EPA 8015B Modified 273356 40160138003 MW-2 EPA 8015B Modified 273356 40160138011 PZ-1 EPA 8015B Modified 273356 PZ-2 SM 3500-Fe B 509757 40160138001 40160138002 **MW-1** SM 3500-Fe B 509757 MW-2 40160138003 SM 3500-Fe B 509757 40160138011 PZ-1 SM 3500-Fe B 509757 40160138001 PZ-2 EPA 3020 507314 EPA 6020A 508510 40160138002 **MW-1** EPA 3020 507314 EPA 6020A 508510 40160138003 MW-2 EPA 3020 507314 EPA 6020A 508510 40160138011 PZ-1 EPA 3020 507314 EPA 6020A 508510 40160138001 PZ-2 EPA 8260 273088 40160138002 **MW-1** EPA 8260 273088 40160138003 MW-2 273088 EPA 8260 40160138004 MW-3 EPA 8260 273088 40160138005 PZ-4 EPA 8260 273088 40160138006 PZ-3 EPA 8260 273088 40160138007 MW-4 EPA 8260 273088 40160138008 MW-4 DUP 273088 EPA 8260 40160138009 **MW-5** 273088 EPA 8260 40160138010 MW-5 DUP EPA 8260 273088 40160138011 PZ-1 EPA 8260 273088 40160138012 **TRIP BLANK** EPA 8260 273088 PZ-2 40160138001 EPA 300.0 273685 40160138002 MW-1 EPA 300.0 273685 40160138003 273812 **MW-2** EPA 300.0 40160138011 PZ-1 EPA 300.0 273812 40160138001 PZ-2 SM 3500-Fe B 509196 40160138002 **MW-1** SM 3500-Fe B 509196 40160138003 MW-2 SM 3500-Fe B 509196 40160138011 PZ-1 SM 3500-Fe B 509196 40160138001 PZ-2 EPA 353.2 273669 273670 40160138002 **MW-1** EPA 353.2 40160138003 MW-2 EPA 353.2 273670 40160138011 EPA 353.2 PZ-1 273670 40160138001 PZ-2 SM 5310C 273395 40160138002 **MW-1** SM 5310C 273395 40160138003 MW-2 SM 5310C 273395 40160138011 SM 5310C PZ-1 273395

Present / Not Present / Not Drawn	Date/Time:	ł By:	Received		fime:	Date/			əd By:	Relinquish	to bility	on HOLD are subject sing and release of Ital	Samples special pric	
	Date/Time:	d By:	Received		lime:	Date/		4	ad by:					Fax:
432 Sampl	Alac UISIN I	WARY		1905	11/5		J Choo	mon	WT K	R		n Branchan Dana Branchan Darin ya mangan kata kata kata kata kata kata kata ka		Email #2 Telephor
Receipt Temp	Date/Time:		Received	101	fime;	Date	0	È.	ad By	Religionish			*	Email #1
171300	The Kan II 3/	TV A M	Kana	1300	5/15	MA	5	J.	and .		ete what you want):	sh Results by (comple	mit Prelim Rus	Trans
11/20 4/16	U/6/1/ min	wy the	2	1500	17	11/3/	R	The second	All Rv.	Reinfornish	al/surcharge)	ubject to approva e Needed:	Rush TAT si Date	(F
1/ 1/ PAC	W we we Jrr. M twM je ► Date/Time:		Received		Ţime:	Date/			gd By:	Relinquisb	sted - Prelims	und Time Reque	ish Turnaroi	R
	Maddad not dimatic													
2. Montul							Х				ANK	RIP BLA	L T	0
< <		\times	ム ×	X ×	X	X	X	4	0	*		1-20		C
	4						X		53	10	DUP	mw-s		0
	_						×		05	0/		S-mw	19	8
							Х		53	0	DUP	mw - q)Å	8
							Х		058	0		mw-4		0
							X		506	10		PZ-3	le le	0
							X		88	11/2/17 0:		65-2	15	8
12-4Dm/w							Χ		946	1/1/17 10		mw-3	х Т	8
)		$\frac{\chi}{2}$	X	X X	$\frac{\lambda}{\lambda}$	X	X		54:	1/1/17 15		mw-2	Ŵ	8
		×	$\frac{1}{\chi}$	X X	X	\boldsymbol{x}	×		55	1/1/17 14		mw -1		8
-40mluB 1-125mlan	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	x K	X	$\frac{x}{x}$	X	×	Х	š	320 6	1 21/1/		PZ-2		g
(Lab Use Only)	COMMENTS	Fe Fo	Tot	SU Ni	Cor	MEH	Vc	A A	TIME	DATE		CLIENT FIE	LAB #	PACE
LAB COMMENT		sm sm	() al	Fat	bor	ethi	0C	¶ i (nal)	= Waste Wat = Wipe	oil WM Sludge WP	ur sample s = s			
(262) 901-	Invoice To Phone:	us 3 c I	<u>353</u> In 20	te i	<u>n (s</u>	e (-s	t it it /805 i	= Drinking W = Ground Wa = Surface Wa	iota DW harcoal GW	Vour sample B = B			
suite 160.		FI SO NON	$\frac{5.2}{00}$	(34	n. M	1E 80	(8	Sedn	Codes	Matrix		ptions MS	Package O	Data
175 N Corpo	Invoice To Address:	00000	<u> </u>	ر، مر 	53k	ithav (S)	20	oster		gulatory ogram:	Re			PO #:
Rambol	Invoice To Company:			>) ;re	5c)	re/)	,		('	E S	How :	ed By (Sign)	Sample
Susan Pet	Invoice To Contact:	в	V	A O	<u>(</u>)	S	B	ION Pick	RESERVAT	Š.	nan Fuq	Jonat	ed By (Print)	Sample
		\prec	<u>ר</u> ז	ک 	2	2	۔ ک	AIA C	FILTERED (YES/NO)		C ~	2	t State:	Project
an share a sun share an an an an share an	Mail To Address:		-	J=Othe	Thiosulfate	I=Sodium	ution	n Bisulfate Sol	H=Sodiun	let	1-Hour Vo	Former 1	t Name:	Project
	Mail To Company:	NaOH	hanol G=	ter F=Mel	E=DI Wat	Preservati D=HNO3	C=H2SO4	B=HCL (A=None	1910 Namesan	b1850	16900	t Number:	Project
	Mail To Contact:	4	A d C	STO	n C		AIN	CH	-		901-35	(262)		Phone
	Quote #:	Ø,			RT1	verava.vu	ar raar. ju		Carl March Street Street Street	K C	Petrofs	Susan	t Contact:	Projec
2016015		え				NTIC:	eAna	1 ac			Freld	Brookt	h/Location:	Branc
	WI: 920-469-2436	612-607-1700	MN:				-744 1	Z			0=	hamb	any Name:	Compa
Page	EGION	R MIDWEST R	UPPE								learly)	Please Print C	(F	

N.

C019a(27Jun2006)

OHIGINAL

5	7	
Pi	áce An	alytical

Sample Condition Upon Receipt

		Project #:	40160138
Client Name: <u>Rambol</u>			40100100
Courier: Fed Ex UPS Client Pa	ace Other:		
Tracking #:		40160138	
Custody Seal on Cooler/Box Present: ye	s no Seals inta	ct: yes no	anna ann a guillean a stair ann agus 1 11111 1 11111111 11 2 1 111111111 11
Packing Material: Rubble Wrop R	L no Seals inte	ct: yes no	
Thermometer Used		Plus Day Nana	
Cooler Temperature Uncorr: //Corr:		logical Tissue is Frozen: Ves	on ice, cooling process has begun
Temp Blank Present: Ves Fno	1-01		Person examining contents
Temp should be above freezing to 6° C. Biota Samples may be received at $\leq 0^{\circ}$ C.		Comments:	Date: 1131
Chain of Custody Present:		/A 1.	
Chain of Custody Filled Out:	Ves 🛛 No 🗇 N	/A 2.	1999 - Carlo C
Chain of Custody Relinquished:	ØYes □No □N	/A 3.	
Sampler Name & Signature on COC:	Vies DNO DN	Ά 4 .	
Samples Arrived within Hold Time:	DYes DNO DN	A 5.	
- VOA Samples frozen upon receipt	□Yes □No	Date/Time:	
Short Hold Time Analysis (<72hr):		A 6.	
Rush Turn Around Time Requested:		A 7	
Sufficient Volume:		AS NO NAPMARD	d/1-11/2/12
Correct Containers Used:			01911511
-Pace Containers Used:			
-Pace IR Containers Used:		Δ	
Containers Intact:		A 10	
Filtered volume received for Dissolved tests		A 11	
Sample Labels match COC:		4 12	
-Includes date/time/ID/Analysis Matrix	$\overline{\mathbf{N}}$	12.	
All containers needing preservation have been checked	1.		
Non-Compliance noted in 13.)		13. P HINOS P H2504	NaOH NaOH +ZnAct
compliances needing preservation are round to be in compliance with EPA recommendation.			
HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12)			IDate/
&G, WIDROW, Phenolics, OTHER:	Dres DNo	completed Pio preservative	Time:
leadspace in VOA Vials (>6mm):		14.	
rip Blank Present:		15.	
rip Blank Custody Seals Present	Pres No N/		
ace Trip Blank Lot # (if purchased): <u>308</u>	11		
Ilent Notification/ Resolution:	P ·	If checked, see attack	hed form for additional comments
Comments/ Resolution:	Date	(Time:	
		$\overline{}$	
			1/17/12
Project Mensue, D.			

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

November 30, 2017

Jeanne Tarvin Ramboll Environ 175 North Corporate Drive Suite 160 Brookfield, WI 53045

RE: Project: 1690005819 FORMER 1-HOUR CLEAN Pace Project No.: 40160676

Dear Jeanne Tarvin:

Enclosed are the analytical results for sample(s) received by the laboratory between November 10, 2017 and November 11, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

This report was revised on November 30, 2017 to delete additional compounds not requested by the client..

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

A.V.M

Steven Mleczko steve.mleczko@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Jim Hutchens, Ramboll Environ Jim Kane, Ramboll Environ Snejana Karakis, Environ David L. Markelz, Ramboll Environ Michelle Murphy, Environ

Susan Petrofske, Ramboll Environ Scott Tarmann, Ramboll Environ Abigail M. Wedig, Environ International Corp

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

Minnesota Certification IDs

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #:MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Maryland Certification #: 322 Massachusetts Certification #: M-MN064

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: MN00064 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon NwTPH Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DW Certification #: 9952 C West Virginia DEP Certification #: 382 Wisconsin Certification #: 999407970

Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 4016

).:	40160676		

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40160676001	MW-6	Water	11/09/17 12:40	11/11/17 10:00
40160676002	MW-6 DUP	Water	11/09/17 12:45	11/11/17 10:00
40160676003	MW-7	Water	11/09/17 15:35	11/11/17 10:00
40160676004	MW-9	Water	11/09/17 11:15	11/11/17 10:00
40160676005	TRIP BLANK	Water	11/09/17 00:00	11/10/17 11:45

SAMPLE ANALYTE COUNT

 Project:
 1690005819 FORMER 1-HOUR CLEAN

 Pace Project No.:
 40160676

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40160676001	MW-6	EPA 8015B Modified	ALD	3	PASI-G
		SM 3500-Fe B	RAM	1	PASI-M
		EPA 6020A	TT3	1	PASI-M
		EPA 8260	LAP	65	PASI-G
		EPA 300.0	HMB	1	PASI-G
		SM 3500-Fe B	DCL	1	PASI-M
		EPA 353.2	DAW	1	PASI-G
		SM 5310C	TJJ	1	PASI-G
40160676002	MW-6 DUP	EPA 8260	HNW	65	PASI-G
40160676003	MW-7	EPA 8260	LAP	65	PASI-G
40160676004	MW-9	EPA 8260	LAP	65	PASI-G
40160676005	TRIP BLANK	EPA 8260	HNW	65	PASI-G

SUMMARY OF DETECTION

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

Lab Sample ID **Client Sample ID** Method Parameters Qualifiers Result Report Limit Analyzed Units 40160676001 **MW-6** SM 3500-Fe B Iron, Ferric 8.3 mg/L 0.050 11/30/17 14:50 N2 EPA 6020A Iron 13600 ug/L 190 11/30/17 10:56 M6 EPA 8260 cis-1,2-Dichloroethene 4.5 ug/L 1.0 11/17/17 14:43 EPA 8260 Vinyl chloride 1.0 ug/L 1.0 11/17/17 14:43 15.0 11/28/17 05:26 EPA 300.0 Sulfate 82.4 mg/L SM 3500-Fe B Iron, Ferrous 5.2 0.40 11/17/17 13:56 H6 mg/L 40160676002 MW-6 DUP EPA 8260 cis-1,2-Dichloroethene 3.8 1.0 11/15/17 11:13 ug/L EPA 8260 Vinyl chloride 0.91J 11/15/17 11:13 ug/L 1.0 40160676004 MW-9 EPA 8260 Toluene 0.59J ug/L 1.0 11/17/17 15:05

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.:

o.: 40160676

Sample: MW-6	Lab ID:	40160676001	Collected	I: 11/09/17	7 12:40	Received: 11/	11/17 10:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Methane, Ethane, Ethene GCV	Analytical	Method: EPA 8	015B Modifi	ed					
Ethane	<0.58	ug/L	5.6	0.58	1		11/16/17 09:54	74-84-0	
Ethene	<0.52	ug/L	5.0	0.52	1		11/16/17 09:54	74-85-1	
Methane	<1.4	ug/L	2.8	1.4	1		11/16/17 09:54	74-82-8	
Iron, Ferric (Calculation)	Analytical	Method: SM 35	500-Fe B						
Iron, Ferric	8.3	mg/L	0.050		1		11/30/17 14:50	7439-89-6	N2
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prepa	aration Met	hod: EF	PA 3020			
Iron	13600	ug/L	190	57.0	10	11/16/17 18:41	11/30/17 10:56	7439-89-6	M6
8260 MSV	Analytical	Method: EPA 8	260						
Benzene	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	71-43-2	
Bromobenzene	<0.23	ug/L	1.0	0.23	1		11/17/17 14:43	108-86-1	
Bromochloromethane	<0.34	ug/L	1.0	0.34	1		11/17/17 14:43	74-97-5	
Bromodichloromethane	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	75-27-4	
Bromoform	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	75-25-2	
Bromomethane	<2.4	ug/L	5.0	2.4	1		11/17/17 14:43	74-83-9	
n-Butylbenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	104-51-8	
sec-Butylbenzene	<2.2	ug/L	5.0	2.2	1		11/17/17 14:43	135-98-8	
tert-Butylbenzene	<0.18	ug/L	1.0	0.18	1		11/17/17 14:43	98-06-6	
Carbon tetrachloride	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	56-23-5	
Chlorobenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	108-90-7	
Chloroethane	<0.37	ug/L	1.0	0.37	1		11/17/17 14:43	75-00-3	
Chloroform	<2.5	ug/L	5.0	2.5	1		11/17/17 14:43	67-66-3	
Chloromethane	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	74-87-3	
2-Chlorotoluene	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	95-49-8	
4-Chlorotoluene	<0.21	ug/L	1.0	0.21	1		11/17/17 14:43	106-43-4	
1,2-Dibromo-3-chloropropane	<2.2	ug/L	5.0	2.2	1		11/17/17 14:43	96-12-8	
Dibromochloromethane	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	124-48-1	
1,2-Dibromoethane (EDB)	<0.18	ug/L	1.0	0.18	1		11/1//1/ 14:43	106-93-4	
Dibromometnane	<0.43	ug/L	1.0	0.43	1		11/17/17 14:43	74-95-3	
1,2-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	95-50-1	
1,3-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	541-73-1	
Dichlorodifluoromethone	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	106-46-7	
	<0.22	ug/L	1.0	0.22	1		11/17/17 14:43	75-71-6	
1,1-Dichloroethane	<0.24	ug/L	1.0	0.24	1		11/17/17 14.43	107.06.2	
1,2-Dichloroethane	<0.17	ug/L	1.0	0.17	1		11/17/17 14:43	107-00-2	
r, r-Dichloroethene	<0.41	ug/L	1.0	0.41	1		11/17/17 14:43	15-35-4	
trans-1.2-Dichloroothono	4.J	ug/L	1.0	0.20	1		11/17/17 14:43	156-60 5	
1 2-Dichloropropage	~0.20	ug/L	1.0	0.20	1		11/17/17 14.43	78-87-5	
1 3-Dichloropropage	~0.23	ug/L	1.0	0.23	1		11/17/17 14.43	142-28-0	
2 2-Dichloropropane	<0.00 <0 48	ug/L	1.0	0.00	1		11/17/17 14.43	594-20-3	
1 1-Dichloropropene	<0.70 <0 44	ug/L	1.0	0.40	1		11/17/17 14.43	563-58-6	
cis-1.3-Dichloropropene	<0.50	ug/l	1.0	0.50	1		11/17/17 14:43	10061-01-5	
trans-1,3-Dichloropropene	<0.23	ug/L	1.0	0.23	1		11/17/17 14:43	10061-02-6	

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.:

o.: 40160676

Sample: MW-6	Lab ID:	40160676001	Collected	d: 11/09/17	12:40	Received: 11/11/17 10:00 Matrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
Diisopropyl ether	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	108-20-3	
Ethylbenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	100-41-4	
Hexachloro-1,3-butadiene	<2.1	ug/L	5.0	2.1	1		11/17/17 14:43	87-68-3	
Isopropylbenzene (Cumene)	<0.14	ug/L	1.0	0.14	1		11/17/17 14:43	98-82-8	
p-Isopropyltoluene	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	99-87-6	
Methylene Chloride	<0.23	ug/L	1.0	0.23	1		11/17/17 14:43	75-09-2	
Methyl-tert-butyl ether	<0.17	ug/L	1.0	0.17	1		11/17/17 14:43	1634-04-4	
Naphthalene	<2.5	ug/L	5.0	2.5	1		11/17/17 14:43	91-20-3	
n-Propylbenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	103-65-1	
Styrene	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	100-42-5	
1,1,1,2-Tetrachloroethane	<0.18	ug/L	1.0	0.18	1		11/17/17 14:43	630-20-6	
1,1,2,2-Tetrachloroethane	<0.25	ug/L	1.0	0.25	1		11/17/17 14:43	79-34-5	
Tetrachloroethene	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	127-18-4	
Toluene	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	108-88-3	
1,2,3-Trichlorobenzene	<2.1	ug/L	5.0	2.1	1		11/17/17 14:43	87-61-6	
1,2,4-Trichlorobenzene	<2.2	ug/L	5.0	2.2	1		11/17/17 14:43	120-82-1	
1,1,1-Trichloroethane	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	71-55-6	
1,1,2-Trichloroethane	<0.20	ug/L	1.0	0.20	1		11/17/17 14:43	79-00-5	
Trichloroethene	<0.33	ug/L	1.0	0.33	1		11/17/17 14:43	79-01-6	
Trichlorofluoromethane	<0.18	ug/L	1.0	0.18	1		11/17/17 14:43	75-69-4	
1,2,3-Trichloropropane	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	96-18-4	
1,2,4-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	95-63-6	
1,3,5-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	108-67-8	
Vinyl chloride	1.0	ug/L	1.0	0.18	1		11/17/17 14:43	75-01-4	
Xylene (Total)	<1.5	ug/L	3.0	1.5	1		11/17/17 14:43	1330-20-7	
m&p-Xylene	<1.0	ug/L	2.0	1.0	1		11/17/17 14:43	179601-23-1	
o-Xylene Surrogates	<0.50	ug/L	1.0	0.50	1		11/17/17 14:43	95-47-6	
4-Bromofluorobenzene (S)	84	%	61-130		1		11/17/17 14:43	460-00-4	
Dibromofluoromethane (S)	107	%	67-130		1		11/17/17 14:43	1868-53-7	
Toluene-d8 (S)	102	%	70-130		1		11/17/17 14:43	2037-26-5	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Sulfate	82.4	mg/L	15.0	5.0	5		11/28/17 05:26	14808-79-8	
3500FE B Iron, Ferrous	Analytical	Method: SM 35	00-Fe B						
Iron, Ferrous	5.2	mg/L	0.40	0.17	10		11/17/17 13:56		H6
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	<0.095	mg/L	0.25	0.095	1		11/21/17 13:37		
5310C TOC	Analytical	Method: SM 53	10C						
Total Organic Carbon	<0.25	mg/L	0.84	0.25	1		11/27/17 19:30	7440-44-0	

Project: 1690005819 FORMER 1-HOUR CLEAN

1 10,000

Pace Project No.: 40160676

Sample: MW-6 DUP	Lab ID:	40160676002	Collecte	d: 11/09/17	12:45	Received: 11	/11/17 10:00 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
Benzene	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	71-43-2	
Bromobenzene	<0.23	ug/L	1.0	0.23	1		11/15/17 11:13	108-86-1	
Bromochloromethane	<0.34	ug/L	1.0	0.34	1		11/15/17 11:13	74-97-5	
Bromodichloromethane	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	75-27-4	
Bromoform	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	75-25-2	
Bromomethane	<2.4	ug/L	5.0	2.4	1		11/15/17 11:13	74-83-9	
n-Butylbenzene	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	104-51-8	
sec-Butylbenzene	<2.2	ug/L	5.0	2.2	1		11/15/17 11:13	135-98-8	
tert-Butylbenzene	<0.18	ug/L	1.0	0.18	1		11/15/17 11:13	98-06-6	
Carbon tetrachloride	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	56-23-5	
Chlorobenzene	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	108-90-7	
Chloroethane	<0.37	ug/L	1.0	0.37	1		11/15/17 11:13	75-00-3	
Chloroform	<2.5	ug/L	5.0	2.5	1		11/15/17 11:13	67-66-3	
Chloromethane	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	74-87-3	
2-Chlorotoluene	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	95-49-8	
4-Chlorotoluene	<0.21	ug/L	1.0	0.21	1		11/15/17 11:13	106-43-4	
1,2-Dibromo-3-chloropropane	<2.2	ug/L	5.0	2.2	1		11/15/17 11:13	96-12-8	
Dibromochloromethane	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	124-48-1	
1,2-Dibromoethane (EDB)	<0.18	ug/L	1.0	0.18	1		11/15/17 11:13	106-93-4	
Dibromomethane	<0.43	ug/L	1.0	0.43	1		11/15/17 11:13	74-95-3	
1,2-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	95-50-1	
1,3-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	541-73-1	
1,4-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	106-46-7	
Dichlorodifluoromethane	<0.22	ug/L	1.0	0.22	1		11/15/17 11:13	75-71-8	
1,1-Dichloroethane	<0.24	ug/L	1.0	0.24	1		11/15/17 11:13	75-34-3	
1,2-Dichloroethane	<0.17	ug/L	1.0	0.17	1		11/15/17 11:13	107-06-2	
1,1-Dichloroethene	<0.41	ug/L	1.0	0.41	1		11/15/17 11:13	75-35-4	
cis-1,2-Dichloroethene	3.8	ug/L	1.0	0.26	1		11/15/17 11:13	156-59-2	
trans-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/15/17 11:13	156-60-5	
1,2-Dichloropropane	<0.23	ug/L	1.0	0.23	1		11/15/17 11:13	78-87-5	
1,3-Dichloropropane	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	142-28-9	
2,2-Dichloropropane	<0.48	ug/L	1.0	0.48	1		11/15/17 11:13	594-20-7	
1,1-Dichloropropene	<0.44	ug/L	1.0	0.44	1		11/15/17 11:13	563-58-6	
cis-1,3-Dichloropropene	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	10061-01-5	
trans-1,3-Dichloropropene	<0.23	ug/L	1.0	0.23	1		11/15/17 11:13	10061-02-6	
Diisopropyl ether	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	108-20-3	
Ethylbenzene	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	100-41-4	
Hexachloro-1,3-butadiene	<2.1	ug/L	5.0	2.1	1		11/15/17 11:13	87-68-3	
Isopropylbenzene (Cumene)	<0.14	ug/L	1.0	0.14	1		11/15/17 11:13	98-82-8	
p-Isopropyltoluene	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	99-87-6	
Methylene Chloride	<0.23	ug/L	1.0	0.23	1		11/15/17 11:13	75-09-2	
Methyl-tert-butyl ether	<0.17	ug/L	1.0	0.17	1		11/15/17 11:13	1634-04-4	
Naphthalene	<2.5	ug/L	5.0	2.5	1		11/15/17 11:13	91-20-3	
n-Propylbenzene	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	103-65-1	
Styrene	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	100-42-5	
1,1,1,2-Tetrachloroethane	<0.18	ug/L	1.0	0.18	1		11/15/17 11:13	630-20-6	

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

Sample: MW-6 DUP	Lab ID:	40160676002	Collecte	d: 11/09/17	' 12:45	Received: 11	/11/17 10:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
1,1,2,2-Tetrachloroethane	<0.25	ug/L	1.0	0.25	1		11/15/17 11:13	79-34-5	
Tetrachloroethene	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	127-18-4	
Toluene	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	108-88-3	
1,2,3-Trichlorobenzene	<2.1	ug/L	5.0	2.1	1		11/15/17 11:13	87-61-6	
1,2,4-Trichlorobenzene	<2.2	ug/L	5.0	2.2	1		11/15/17 11:13	120-82-1	
1,1,1-Trichloroethane	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	71-55-6	
1,1,2-Trichloroethane	<0.20	ug/L	1.0	0.20	1		11/15/17 11:13	79-00-5	
Trichloroethene	<0.33	ug/L	1.0	0.33	1		11/15/17 11:13	79-01-6	
Trichlorofluoromethane	<0.18	ug/L	1.0	0.18	1		11/15/17 11:13	75-69-4	
1,2,3-Trichloropropane	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	96-18-4	
1,2,4-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	95-63-6	
1,3,5-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	108-67-8	
Vinyl chloride	0.91J	ug/L	1.0	0.18	1		11/15/17 11:13	75-01-4	
Xylene (Total)	<1.5	ug/L	3.0	1.5	1		11/15/17 11:13	1330-20-7	
m&p-Xylene	<1.0	ug/L	2.0	1.0	1		11/15/17 11:13	179601-23-1	
o-Xylene	<0.50	ug/L	1.0	0.50	1		11/15/17 11:13	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	84	%	61-130		1		11/15/17 11:13	460-00-4	
Dibromofluoromethane (S)	92	%	67-130		1		11/15/17 11:13	1868-53-7	
Toluene-d8 (S)	100	%	70-130		1		11/15/17 11:13	2037-26-5	

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.:

40160676

race	FIUJE	0	401

Sample: MW-7	Lab ID:	40160676003	Collecte	d: 11/09/17	' 15:35	Received: 11	/11/17 10:00 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytica	l Method: EPA 8	260						
Benzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	71-43-2	
Bromobenzene	<0.23	ug/L	1.0	0.23	1		11/17/17 15:27	108-86-1	
Bromochloromethane	<0.34	ug/L	1.0	0.34	1		11/17/17 15:27	74-97-5	
Bromodichloromethane	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	75-27-4	
Bromoform	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	75-25-2	
Bromomethane	<2.4	ug/L	5.0	2.4	1		11/17/17 15:27	74-83-9	
n-Butylbenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	104-51-8	
sec-Butylbenzene	<2.2	ug/L	5.0	2.2	1		11/17/17 15:27	135-98-8	
tert-Butylbenzene	<0.18	ug/L	1.0	0.18	1		11/17/17 15:27	98-06-6	
Carbon tetrachloride	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	56-23-5	
Chlorobenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	108-90-7	
Chloroethane	<0.37	ug/L	1.0	0.37	1		11/17/17 15:27	75-00-3	
Chloroform	<2.5	ug/L	5.0	2.5	1		11/17/17 15:27	67-66-3	
Chloromethane	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	74-87-3	
2-Chlorotoluene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	95-49-8	
4-Chlorotoluene	<0.21	ug/L	1.0	0.21	1		11/17/17 15:27	106-43-4	
1,2-Dibromo-3-chloropropane	<2.2	ug/L	5.0	2.2	1		11/17/17 15:27	96-12-8	
Dibromochloromethane	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	124-48-1	
1,2-Dibromoethane (EDB)	<0.18	ug/L	1.0	0.18	1		11/17/17 15:27	106-93-4	
Dibromomethane	<0.43	ug/L	1.0	0.43	1		11/17/17 15:27	74-95-3	
1,2-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	95-50-1	
1,3-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	541-73-1	
1,4-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	106-46-7	
Dichlorodifluoromethane	<0.22	ug/L	1.0	0.22	1		11/17/17 15:27	75-71-8	
1,1-Dichloroethane	<0.24	ug/L	1.0	0.24	1		11/17/17 15:27	75-34-3	
1,2-Dichloroethane	<0.17	ug/L	1.0	0.17	1		11/17/17 15:27	107-06-2	
1,1-Dichloroethene	<0.41	ug/L	1.0	0.41	1		11/17/17 15:27	75-35-4	
cis-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/17/17 15:27	156-59-2	
trans-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/17/17 15:27	156-60-5	
1,2-Dichloropropane	<0.23	ug/L	1.0	0.23	1		11/17/17 15:27	78-87-5	
1,3-Dichloropropane	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	142-28-9	
2,2-Dichloropropane	<0.48	ug/L	1.0	0.48	1		11/17/17 15:27	594-20-7	
1,1-Dichloropropene	<0.44	ug/L	1.0	0.44	1		11/17/17 15:27	563-58-6	
cis-1,3-Dichloropropene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	10061-01-5	
trans-1,3-Dichloropropene	<0.23	ug/L	1.0	0.23	1		11/17/17 15:27	10061-02-6	
Disopropyl ether	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	108-20-3	
Ethylbenzene	<0.50	ug/L	1.0	0.50	1		11/1//1/ 15:2/	100-41-4	
Hexachioro-1,3-butadiene	<2.1	ug/L	5.0	2.1	1		11/17/17 15:27	87-68-3	
isopropyidenzene (Cumene)	<0.14	ug/L	1.0	0.14	1		11/17/17 15:27	90-02-0	
p-isopropyitoluene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	99-87-6 75 00 0	
Method test but dette	<0.23	ug/L	1.0	0.23	1		11/1//1/ 15:2/	15-09-2	
weinyl-tert-butyl ether	<0.17	ug/L	1.0	0.17	1		11/1//1/ 15:2/	1634-04-4	
	<2.5	ug/L	5.0	2.5	1		11/17/17 15:27	91-20-3	
n-riopyidenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	103-05-1	
	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	100-42-5	
i, i, i, 2- letrachioroethane	<0.18	ug/L	1.0	0.18	Т		11/17/17 15:27	030-20-6	

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

Sample: MW-7	Lab ID:	40160676003	Collecte	d: 11/09/17	15:35	Received: 11	/11/17 10:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
1,1,2,2-Tetrachloroethane	<0.25	ug/L	1.0	0.25	1		11/17/17 15:27	79-34-5	
Tetrachloroethene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	127-18-4	
Toluene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	108-88-3	
1,2,3-Trichlorobenzene	<2.1	ug/L	5.0	2.1	1		11/17/17 15:27	87-61-6	
1,2,4-Trichlorobenzene	<2.2	ug/L	5.0	2.2	1		11/17/17 15:27	120-82-1	
1,1,1-Trichloroethane	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	71-55-6	
1,1,2-Trichloroethane	<0.20	ug/L	1.0	0.20	1		11/17/17 15:27	79-00-5	
Trichloroethene	<0.33	ug/L	1.0	0.33	1		11/17/17 15:27	79-01-6	
Trichlorofluoromethane	<0.18	ug/L	1.0	0.18	1		11/17/17 15:27	75-69-4	
1,2,3-Trichloropropane	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	96-18-4	
1,2,4-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	95-63-6	
1,3,5-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	108-67-8	
Vinyl chloride	<0.18	ug/L	1.0	0.18	1		11/17/17 15:27	75-01-4	
Xylene (Total)	<1.5	ug/L	3.0	1.5	1		11/17/17 15:27	1330-20-7	
m&p-Xylene	<1.0	ug/L	2.0	1.0	1		11/17/17 15:27	179601-23-1	
o-Xylene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:27	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	86	%	61-130		1		11/17/17 15:27	460-00-4	
Dibromofluoromethane (S)	104	%	67-130		1		11/17/17 15:27	1868-53-7	
Toluene-d8 (S)	103	%	70-130		1		11/17/17 15:27	2037-26-5	

Project: 1690005819 FORMER 1-HOUR CLEAN

40160676

Pace Project No.: ~

Sample: MW-9	Lab ID:	40160676004	Collected	d: 11/09/17	7 11:15	Received: 11	/11/17 10:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
Benzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	71-43-2	
Bromobenzene	<0.23	ug/L	1.0	0.23	1		11/17/17 15:05	108-86-1	
Bromochloromethane	<0.34	ug/L	1.0	0.34	1		11/17/17 15:05	74-97-5	
Bromodichloromethane	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	75-27-4	
Bromoform	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	75-25-2	
Bromomethane	<2.4	ug/L	5.0	2.4	1		11/17/17 15:05	74-83-9	
n-Butylbenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	104-51-8	
sec-Butylbenzene	<2.2	ug/L	5.0	2.2	1		11/17/17 15:05	135-98-8	
tert-Butylbenzene	<0.18	ug/L	1.0	0.18	1		11/17/17 15:05	98-06-6	
Carbon tetrachloride	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	56-23-5	
Chlorobenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	108-90-7	
Chloroethane	<0.37	ug/L	1.0	0.37	1		11/17/17 15:05	75-00-3	
Chloroform	<2.5	ug/L	5.0	2.5	1		11/17/17 15:05	67-66-3	
Chloromethane	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	74-87-3	
2-Chlorotoluene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	95-49-8	
4-Chlorotoluene	<0.21	ug/L	1.0	0.21	1		11/17/17 15:05	106-43-4	
1,2-Dibromo-3-chloropropane	<2.2	ug/L	5.0	2.2	1		11/17/17 15:05	96-12-8	
Dibromochloromethane	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	124-48-1	
1,2-Dibromoethane (EDB)	<0.18	ug/L	1.0	0.18	1		11/17/17 15:05	106-93-4	
Dibromomethane	<0.43	ug/L	1.0	0.43	1		11/17/17 15:05	74-95-3	
1,2-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	95-50-1	
1,3-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	541-73-1	
1,4-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	106-46-7	
Dichlorodifluoromethane	<0.22	ug/L	1.0	0.22	1		11/17/17 15:05	75-71-8	
1,1-Dichloroethane	<0.24	ug/L	1.0	0.24	1		11/17/17 15:05	75-34-3	
1,2-Dichloroethane	<0.17	ug/L	1.0	0.17	1		11/17/17 15:05	107-06-2	
1,1-Dichloroethene	<0.41	ug/L	1.0	0.41	1		11/17/17 15:05	75-35-4	
cis-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/17/17 15:05	156-59-2	
trans-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/17/17 15:05	156-60-5	
1,2-Dichloropropane	<0.23	ug/L	1.0	0.23	1		11/17/17 15:05	78-87-5	
1,3-Dichloropropane	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	142-28-9	
2,2-Dichloropropane	<0.48	ug/L	1.0	0.48	1		11/17/17 15:05	594-20-7	
1,1-Dichloropropene	<0.44	ug/L	1.0	0.44	1		11/17/17 15:05	563-58-6	
cis-1,3-Dichloropropene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	10061-01-5	
trans-1,3-Dichloropropene	<0.23	ug/L	1.0	0.23	1		11/17/17 15:05	10061-02-6	
Diisopropyl ether	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	108-20-3	
Ethylbenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	100-41-4	
Hexachloro-1,3-butadiene	<2.1	ug/L	5.0	2.1	1		11/17/17 15:05	87-68-3	
Isopropylbenzene (Cumene)	<0.14	ug/L	1.0	0.14	1		11/17/17 15:05	98-82-8	
p-Isopropyltoluene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	99-87-6	
Methylene Chloride	<0.23	ug/L	1.0	0.23	1		11/17/17 15:05	75-09-2	
Methyl-tert-butyl ether	<0.17	ug/L	1.0	0.17	1		11/17/17 15:05	1634-04-4	
Naphthalene	<2.5	ug/L	5.0	2.5	1		11/17/17 15:05	91-20-3	
n-Propylbenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	103-65-1	
Styrene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	100-42-5	
1,1,1,2-Tetrachloroethane	<0.18	ug/L	1.0	0.18	1		11/17/17 15:05	630-20-6	

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

Sample: MW-9	Lab ID:	40160676004	Collecte	d: 11/09/17	' 11:15	Received: 11	/11/17 10:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
1,1,2,2-Tetrachloroethane	<0.25	ug/L	1.0	0.25	1		11/17/17 15:05	79-34-5	
Tetrachloroethene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	127-18-4	
Toluene	0.59J	ug/L	1.0	0.50	1		11/17/17 15:05	108-88-3	
1,2,3-Trichlorobenzene	<2.1	ug/L	5.0	2.1	1		11/17/17 15:05	87-61-6	
1,2,4-Trichlorobenzene	<2.2	ug/L	5.0	2.2	1		11/17/17 15:05	120-82-1	
1,1,1-Trichloroethane	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	71-55-6	
1,1,2-Trichloroethane	<0.20	ug/L	1.0	0.20	1		11/17/17 15:05	79-00-5	
Trichloroethene	<0.33	ug/L	1.0	0.33	1		11/17/17 15:05	79-01-6	
Trichlorofluoromethane	<0.18	ug/L	1.0	0.18	1		11/17/17 15:05	75-69-4	
1,2,3-Trichloropropane	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	96-18-4	
1,2,4-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	95-63-6	
1,3,5-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	108-67-8	
Vinyl chloride	<0.18	ug/L	1.0	0.18	1		11/17/17 15:05	75-01-4	
Xylene (Total)	<1.5	ug/L	3.0	1.5	1		11/17/17 15:05	1330-20-7	
m&p-Xylene	<1.0	ug/L	2.0	1.0	1		11/17/17 15:05	179601-23-1	
o-Xylene	<0.50	ug/L	1.0	0.50	1		11/17/17 15:05	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	84	%	61-130		1		11/17/17 15:05	460-00-4	
Dibromofluoromethane (S)	110	%	67-130		1		11/17/17 15:05	1868-53-7	
Toluene-d8 (S)	102	%	70-130		1		11/17/17 15:05	2037-26-5	

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

Sample: TRIP BLANK	Lab ID:	40160676005	Collected	d: 11/09/17	7 00:00	Received: 11/	10/17 11:45 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
Benzene	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	71-43-2	
Bromobenzene	<0.23	ug/L	1.0	0.23	1		11/21/17 00:25	108-86-1	
Bromochloromethane	<0.34	ug/L	1.0	0.34	1		11/21/17 00:25	74-97-5	
Bromodichloromethane	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	75-27-4	
Bromoform	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	75-25-2	
Bromomethane	<2.4	ug/L	5.0	2.4	1		11/21/17 00:25	74-83-9	
n-Butylbenzene	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	104-51-8	
sec-Butylbenzene	<2.2	ug/L	5.0	2.2	1		11/21/17 00:25	135-98-8	
tert-Butylbenzene	<0.18	ug/L	1.0	0.18	1		11/21/17 00:25	98-06-6	
Carbon tetrachloride	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	56-23-5	
Chlorobenzene	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	108-90-7	
Chloroethane	<0.37	ug/L	1.0	0.37	1		11/21/17 00:25	75-00-3	
Chloroform	<2.5	ug/L	5.0	2.5	1		11/21/17 00:25	67-66-3	
Chloromethane	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	74-87-3	
2-Chlorotoluene	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	95-49-8	
4-Chlorotoluene	<0.21	ug/L	1.0	0.21	1		11/21/17 00:25	106-43-4	
1,2-Dibromo-3-chloropropane	<2.2	ug/L	5.0	2.2	1		11/21/17 00:25	96-12-8	
Dibromochloromethane	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	124-48-1	
1,2-Dibromoethane (EDB)	<0.18	ug/L	1.0	0.18	1		11/21/17 00:25	106-93-4	
Dibromomethane	<0.43	ug/L	1.0	0.43	1		11/21/17 00:25	74-95-3	
1,2-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	95-50-1	
1,3-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	541-73-1	
1,4-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	106-46-7	
Dichlorodifluoromethane	<0.22	ug/L	1.0	0.22	1		11/21/17 00:25	75-71-8	
1,1-Dichloroethane	<0.24	ug/L	1.0	0.24	1		11/21/17 00:25	75-34-3	
1,2-Dichloroethane	<0.17	ug/L	1.0	0.17	1		11/21/17 00:25	107-06-2	
1,1-Dichloroethene	<0.41	ug/L	1.0	0.41	1		11/21/17 00:25	75-35-4	
cis-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/21/17 00:25	156-59-2	
trans-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		11/21/17 00:25	156-60-5	
1,2-Dichloropropane	<0.23	ug/L	1.0	0.23	1		11/21/17 00:25	78-87-5	
1,3-Dichloropropane	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	142-28-9	
2,2-Dichloropropane	<0.48	ug/L	1.0	0.48	1		11/21/17 00:25	594-20-7	
1,1-Dichloropropene	<0.44	ug/L	1.0	0.44	1		11/21/17 00:25	563-58-6	
cis-1,3-Dichloropropene	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	10061-01-5	
trans-1,3-Dichloropropene	<0.23	ug/L	1.0	0.23	1		11/21/17 00:25	10061-02-6	
Diisopropyl ether	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	108-20-3	
Ethylbenzene	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	100-41-4	
Hexachloro-1,3-butadiene	<2.1	ug/L	5.0	2.1	1		11/21/17 00:25	87-68-3	
Isopropylbenzene (Cumene)	<0.14	ug/L	1.0	0.14	1		11/21/17 00:25	98-82-8	
p-Isopropyltoluene	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	99-87-6	
Methylene Chloride	<0.23	ug/L	1.0	0.23	1		11/21/17 00:25	75-09-2	
Methyl-tert-butyl ether	<0.17	ug/L	1.0	0.17	1		11/21/17 00:25	1634-04-4	
Naphthalene	<2.5	ug/L	5.0	2.5	1		11/21/17 00:25	91-20-3	
n-Propylbenzene	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	103-65-1	
Styrene	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	100-42-5	
1,1,1,2-Tetrachloroethane	<0.18	ug/L	1.0	0.18	1		11/21/17 00:25	630-20-6	

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.:

No.: 40160676

Sample: TRIP BLANK	Lab ID:	40160676005	Collecte	d: 11/09/17	7 00:00	Received: 11	/10/17 11:45 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytica	l Method: EPA 8	260						
1,1,2,2-Tetrachloroethane	<0.25	ug/L	1.0	0.25	1		11/21/17 00:25	79-34-5	
Tetrachloroethene	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	127-18-4	
Toluene	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	108-88-3	
1,2,3-Trichlorobenzene	<2.1	ug/L	5.0	2.1	1		11/21/17 00:25	87-61-6	
1,2,4-Trichlorobenzene	<2.2	ug/L	5.0	2.2	1		11/21/17 00:25	120-82-1	
1,1,1-Trichloroethane	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	71-55-6	
1,1,2-Trichloroethane	<0.20	ug/L	1.0	0.20	1		11/21/17 00:25	79-00-5	
Trichloroethene	<0.33	ug/L	1.0	0.33	1		11/21/17 00:25	79-01-6	
Trichlorofluoromethane	<0.18	ug/L	1.0	0.18	1		11/21/17 00:25	75-69-4	L1
1,2,3-Trichloropropane	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	96-18-4	
1,2,4-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	95-63-6	
1,3,5-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	108-67-8	
Vinyl chloride	<0.18	ug/L	1.0	0.18	1		11/21/17 00:25	75-01-4	
Xylene (Total)	<1.5	ug/L	3.0	1.5	1		11/21/17 00:25	1330-20-7	
m&p-Xylene	<1.0	ug/L	2.0	1.0	1		11/21/17 00:25	179601-23-1	
o-Xylene	<0.50	ug/L	1.0	0.50	1		11/21/17 00:25	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	88	%	61-130		1		11/21/17 00:25	460-00-4	
Dibromofluoromethane (S)	109	%	67-130		1		11/21/17 00:25	1868-53-7	
Toluene-d8 (S)	94	%	70-130		1		11/21/17 00:25	2037-26-5	

Proiect:	1690005819 FORMER 1-HOUR CLEAN
1 10,000.	

Pace Project No.: 40160676

QC Batch: 274201		Analysis Method:			PA 8015	3 Modifie	d			
QC Batch Method: EPA 8015B Modi	fied	Analys	is Descrip	otion: M	Methane, Ethane, Ethene GCV					
Associated Lab Samples: 40160676	001									
METHOD BLANK: 1613563		N	latrix: Wa	ater						
Associated Lab Samples: 40160676	001									
		Blank	F	Reporting						
Parameter	Units	Result	Result Limit Analyzed					ers		
Ethane	ug/L	<0.58 5.6 11/16/17			17 06:24					
Ethene	ug/L	<	<0.52 5.0 11/16/17 06:24		17 06:24					
Methane	ug/L		<1.4	2.8	11/16/	17 06:24				
LABORATORY CONTROL SAMPLE &	LCSD: 1613564			1613565						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Ethane	ug/L	53.6	58.	5 58.6	109	109	80-120	0	20	
Ethene	ug/L	50	54.	1 54.2	108	108	80-119	0	20	
Methane	ug/L	28.6	30.	5 30.7	107	107	80-120	1	20	

MATRIX SPIKE & MATRIX SPIK	ATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1614682											
		40460607006	MS	MSD Spille	MC	MCD	MC	MCD	0/ Dee		Max	
		40160607006	Spike	эріке	IVIS	IVISD	IVIS	10120	% Rec		INIAX	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Ethane	ug/L	<0.58	53.6	53.6	56.6	56.6	106	106	79-120	0	20	
Ethene	ug/L	<0.52	50	50	52.8	52.9	106	106	78-119	0	20	
Methane	ug/L	<1.4	28.6	28.6	29.9	30.0	105	105	10-200	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	1690005819 FOF	RMER 1-HOUR CLE	AN									
Pace Project No.:	40160676											
QC Batch:	508614		Analysi	s Method:	E	PA 6020A						
QC Batch Method:	EPA 3020		Analysi	s Descript	ion: 6	020A Water	UPD4					
Associated Lab San	nples: 4016067	6001										
METHOD BLANK:	2764414		М	latrix: Wat	er							
Associated Lab San	nples: 4016067	6001										
			Blank	Re	eporting							
Paran	neter	Units	Result		Limit	Analyz	ed	Qualifiers				
Iron		ug/L		<5.7	19.0	11/30/17	10:28					
LABORATORY COM	NTROL SAMPLE:	2764415										
			Spike	LCS		LCS	% Rec	;				
Paran	neter	Units	Conc.	Resu	lt	% Rec	Limits	Qı	alifiers	_		
Iron		ug/L	2000		2190	110	80	-120				
MATRIX SPIKE & M	IATRIX SPIKE DU	PLICATE: 27644	16		2764417							
			MS	MSD								
_		40160676001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er Ur	nits Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron	uç	g/L 13600	2000	2000	16100	16400	127	140	75-125	2	20	M6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

QC Batch:	273887	Analysis Method:	EPA 8260	
QC Batch Method:	EPA 8260	Analysis Description:	8260 MSV	
Associated Lab Sam	ples: 40160676002			
METHOD BLANK:	1612241	Matrix: Water		
Associated Lab Sam	ples: 40160676002			

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<0.18	1.0	11/15/17 07:13	
1,1,1-Trichloroethane	ug/L	<0.50	1.0	11/15/17 07:13	
1,1,2,2-Tetrachloroethane	ug/L	<0.25	1.0	11/15/17 07:13	
1,1,2-Trichloroethane	ug/L	<0.20	1.0	11/15/17 07:13	
1,1-Dichloroethane	ug/L	<0.24	1.0	11/15/17 07:13	
1,1-Dichloroethene	ug/L	<0.41	1.0	11/15/17 07:13	
1,1-Dichloropropene	ug/L	<0.44	1.0	11/15/17 07:13	
1,2,3-Trichlorobenzene	ug/L	<2.1	5.0	11/15/17 07:13	
1,2,3-Trichloropropane	ug/L	<0.50	1.0	11/15/17 07:13	
1,2,4-Trichlorobenzene	ug/L	<2.2	5.0	11/15/17 07:13	
1,2,4-Trimethylbenzene	ug/L	<0.50	1.0	11/15/17 07:13	
1,2-Dibromo-3-chloropropane	ug/L	<2.2	5.0	11/15/17 07:13	
1,2-Dibromoethane (EDB)	ug/L	<0.18	1.0	11/15/17 07:13	
1,2-Dichlorobenzene	ug/L	<0.50	1.0	11/15/17 07:13	
1,2-Dichloroethane	ug/L	<0.17	1.0	11/15/17 07:13	
1,2-Dichloropropane	ug/L	<0.23	1.0	11/15/17 07:13	
1,3,5-Trimethylbenzene	ug/L	<0.50	1.0	11/15/17 07:13	
1,3-Dichlorobenzene	ug/L	<0.50	1.0	11/15/17 07:13	
1,3-Dichloropropane	ug/L	<0.50	1.0	11/15/17 07:13	
1,4-Dichlorobenzene	ug/L	<0.50	1.0	11/15/17 07:13	
2,2-Dichloropropane	ug/L	<0.48	1.0	11/15/17 07:13	
2-Chlorotoluene	ug/L	<0.50	1.0	11/15/17 07:13	
4-Chlorotoluene	ug/L	<0.21	1.0	11/15/17 07:13	
Benzene	ug/L	<0.50	1.0	11/15/17 07:13	
Bromobenzene	ug/L	<0.23	1.0	11/15/17 07:13	
Bromochloromethane	ug/L	<0.34	1.0	11/15/17 07:13	
Bromodichloromethane	ug/L	<0.50	1.0	11/15/17 07:13	
Bromoform	ug/L	<0.50	1.0	11/15/17 07:13	
Bromomethane	ug/L	<2.4	5.0	11/15/17 07:13	
Carbon tetrachloride	ug/L	<0.50	1.0	11/15/17 07:13	
Chlorobenzene	ug/L	<0.50	1.0	11/15/17 07:13	
Chloroethane	ug/L	<0.37	1.0	11/15/17 07:13	
Chloroform	ug/L	<2.5	5.0	11/15/17 07:13	
Chloromethane	ug/L	<0.50	1.0	11/15/17 07:13	
cis-1,2-Dichloroethene	ug/L	<0.26	1.0	11/15/17 07:13	
cis-1,3-Dichloropropene	ug/L	<0.50	1.0	11/15/17 07:13	
Dibromochloromethane	ug/L	<0.50	1.0	11/15/17 07:13	
Dibromomethane	ug/L	<0.43	1.0	11/15/17 07:13	
Dichlorodifluoromethane	ug/L	<0.22	1.0	11/15/17 07:13	
Diisopropyl ether	ug/L	<0.50	1.0	11/15/17 07:13	
Ethylbenzene	ug/L	<0.50	1.0	11/15/17 07:13	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Matrix: Water

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

METHOD BLANK: 1612241

Associated Lab Samples: 40160676002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Hexachloro-1,3-butadiene	ug/L	<2.1	5.0	11/15/17 07:13	
Isopropylbenzene (Cumene)	ug/L	<0.14	1.0	11/15/17 07:13	
m&p-Xylene	ug/L	<1.0	2.0	11/15/17 07:13	
Methyl-tert-butyl ether	ug/L	<0.17	1.0	11/15/17 07:13	
Methylene Chloride	ug/L	<0.23	1.0	11/15/17 07:13	
n-Butylbenzene	ug/L	<0.50	1.0	11/15/17 07:13	
n-Propylbenzene	ug/L	<0.50	1.0	11/15/17 07:13	
Naphthalene	ug/L	<2.5	5.0	11/15/17 07:13	
o-Xylene	ug/L	<0.50	1.0	11/15/17 07:13	
p-Isopropyltoluene	ug/L	<0.50	1.0	11/15/17 07:13	
sec-Butylbenzene	ug/L	<2.2	5.0	11/15/17 07:13	
Styrene	ug/L	<0.50	1.0	11/15/17 07:13	
tert-Butylbenzene	ug/L	<0.18	1.0	11/15/17 07:13	
Tetrachloroethene	ug/L	<0.50	1.0	11/15/17 07:13	
Toluene	ug/L	<0.50	1.0	11/15/17 07:13	
trans-1,2-Dichloroethene	ug/L	<0.26	1.0	11/15/17 07:13	
trans-1,3-Dichloropropene	ug/L	<0.23	1.0	11/15/17 07:13	
Trichloroethene	ug/L	<0.33	1.0	11/15/17 07:13	
Trichlorofluoromethane	ug/L	<0.18	1.0	11/15/17 07:13	
Vinyl chloride	ug/L	<0.18	1.0	11/15/17 07:13	
Xylene (Total)	ug/L	<1.5	3.0	11/15/17 07:13	
4-Bromofluorobenzene (S)	%	90	61-130	11/15/17 07:13	
Dibromofluoromethane (S)	%	92	67-130	11/15/17 07:13	
Toluene-d8 (S)	%	99	70-130	11/15/17 07:13	

LABORATORY CONTROL SAMPLE: 1612242

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	49.6	45.6	92	70-130	
1,1,2,2-Tetrachloroethane	ug/L	49.6	49.1	99	70-130	
1,1,2-Trichloroethane	ug/L	49.6	50.2	101	70-130	
1,1-Dichloroethane	ug/L	49.6	53.1	107	71-132	
1,1-Dichloroethene	ug/L	49.6	52.7	106	75-130	
1,2,4-Trichlorobenzene	ug/L	49.6	55.3	111	70-130	
1,2-Dibromo-3-chloropropane	ug/L	49.6	44.5	90	63-123	
1,2-Dibromoethane (EDB)	ug/L	49.6	49.5	100	70-130	
1,2-Dichlorobenzene	ug/L	49.6	55.1	111	70-130	
1,2-Dichloroethane	ug/L	49.6	45.5	92	70-131	
1,2-Dichloropropane	ug/L	49.6	48.1	97	80-120	
1,3-Dichlorobenzene	ug/L	49.6	54.5	110	70-130	
1,4-Dichlorobenzene	ug/L	49.6	54.0	109	70-130	
Benzene	ug/L	49.6	46.3	93	73-145	
Bromodichloromethane	ug/L	49.6	49.5	100	70-130	
Bromoform	ua/L	49.6	42.7	86	67-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

LABORATORY CONTROL SAMPLE: 1612242

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromomethane	ug/L	50	22.9	46	26-128	
Carbon tetrachloride	ug/L	49.6	40.3	81	70-133	
Chlorobenzene	ug/L	49.6	53.0	107	70-130	
Chloroethane	ug/L	50	47.6	95	58-120	
Chloroform	ug/L	49.6	46.2	93	80-121	
Chloromethane	ug/L	50	21.5	43	40-127	
cis-1,2-Dichloroethene	ug/L	49.6	47.2	95	70-130	
cis-1,3-Dichloropropene	ug/L	49.6	42.5	86	70-130	
Dibromochloromethane	ug/L	49.6	44.6	90	70-130	
Dichlorodifluoromethane	ug/L	50	21.6	43	20-135	
Ethylbenzene	ug/L	49.6	53.5	108	87-129	
Isopropylbenzene (Cumene)	ug/L	49.6	50.0	101	70-130	
m&p-Xylene	ug/L	99.2	96.6	97	70-130	
Methyl-tert-butyl ether	ug/L	49.6	49.7	100	66-143	
Methylene Chloride	ug/L	49.6	50.4	102	70-130	
o-Xylene	ug/L	49.6	54.4	110	70-130	
Styrene	ug/L	49.6	48.8	98	70-130	
Tetrachloroethene	ug/L	49.6	51.8	104	70-130	
Toluene	ug/L	49.6	50.1	101	82-130	
trans-1,2-Dichloroethene	ug/L	49.6	53.7	108	75-132	
trans-1,3-Dichloropropene	ug/L	49.6	39.7	80	70-130	
Trichloroethene	ug/L	49.6	54.5	110	70-130	
Trichlorofluoromethane	ug/L	50	45.2	90	76-133	
Vinyl chloride	ug/L	50	43.9	88	57-136	
Xylene (Total)	ug/L	149	151	101	70-130	
4-Bromofluorobenzene (S)	%			95	61-130	
Dibromofluoromethane (S)	%			89	67-130	
Toluene-d8 (S)	%			98	70-130	

MATRIX SPIKE & MATRIX SP	1612244											
			MS	MSD								
	4	0160644007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	<0.50	49.6	49.6	42.9	42.7	87	86	70-134	0	20	
1,1,2,2-Tetrachloroethane	ug/L	<0.25	49.6	49.6	43.6	43.7	88	88	70-130	0	20	
1,1,2-Trichloroethane	ug/L	<0.20	49.6	49.6	45.8	43.5	92	88	70-130	5	20	
1,1-Dichloroethane	ug/L	<0.24	49.6	49.6	45.6	45.4	92	91	71-133	1	20	
1,1-Dichloroethene	ug/L	<0.41	49.6	49.6	45.9	45.2	93	91	75-136	2	20	
1,2,4-Trichlorobenzene	ug/L	<2.2	49.6	49.6	57.9	56.3	117	114	70-130	3	20	
1,2-Dibromo-3- chloropropane	ug/L	<2.2	49.6	49.6	44.7	42.3	90	85	63-123	6	20	
1,2-Dibromoethane (EDB)	ug/L	<0.18	49.6	49.6	45.2	43.4	91	87	70-130	4	20	
1,2-Dichlorobenzene	ug/L	<0.50	49.6	49.6	50.6	48.8	102	98	70-130	4	20	
1,2-Dichloroethane	ug/L	<0.17	49.6	49.6	40.7	41.7	82	84	70-131	2	20	
1,2-Dichloropropane	ug/L	<0.23	49.6	49.6	40.2	40.6	81	82	80-120	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1612243 1612244												
			MS	MSD								
	4	0160644007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,3-Dichlorobenzene	ug/L	<0.50	49.6	49.6	50.8	48.5	102	98	70-130	5	20	
1,4-Dichlorobenzene	ug/L	0.62J	49.6	49.6	49.2	47.2	98	94	70-130	4	20	
Benzene	ug/L	1.6	49.6	49.6	43.2	43.7	84	85	73-145	1	20	
Bromodichloromethane	ug/L	<0.50	49.6	49.6	42.7	42.5	86	86	70-130	1	20	
Bromoform	ug/L	<0.50	49.6	49.6	38.9	38.0	78	77	67-130	2	20	
Bromomethane	ug/L	<2.4	50	50	18.4	20.3	37	41	26-129	10	20	
Carbon tetrachloride	ug/L	<0.50	49.6	49.6	37.6	38.0	76	77	70-134	1	20	
Chlorobenzene	ug/L	<0.50	49.6	49.6	47.3	46.9	95	95	70-130	1	20	
Chloroethane	ug/L	<0.37	50	50	42.6	40.1	85	80	58-120	6	20	
Chloroform	ug/L	<2.5	49.6	49.6	41.7	43.2	84	87	80-121	4	20	
Chloromethane	ug/L	<0.50	50	50	17.2	17.3	34	35	40-128	1	20	M1
cis-1,2-Dichloroethene	ug/L	<0.26	49.6	49.6	43.3	45.1	87	91	70-130	4	20	
cis-1,3-Dichloropropene	ug/L	<0.50	49.6	49.6	37.5	37.2	76	75	70-130	1	20	
Dibromochloromethane	ug/L	<0.50	49.6	49.6	40.1	39.1	81	79	70-130	2	20	
Dichlorodifluoromethane	ug/L	<0.22	50	50	18.8	19.2	38	38	20-146	2	20	
Ethylbenzene	ug/L	<0.50	49.6	49.6	49.1	48.3	98	97	87-129	2	20	
Isopropylbenzene (Cumene)	ug/L	1.8	49.6	49.6	50.8	49.1	99	96	70-130	3	20	
m&p-Xylene	ug/L	4.1	99.2	99.2	95.9	93.9	93	91	70-130	2	20	
Methyl-tert-butyl ether	ug/L	<0.17	49.6	49.6	43.5	44.8	88	90	66-143	3	20	
Methylene Chloride	ug/L	<0.23	49.6	49.6	42.8	43.2	86	87	70-130	1	20	
o-Xylene	ug/L	0.80J	49.6	49.6	50.1	47.7	99	95	70-130	5	20	
Styrene	ug/L	<0.50	49.6	49.6	44.3	42.8	89	86	70-130	3	20	
Tetrachloroethene	ug/L	<0.50	49.6	49.6	47.1	45.5	95	92	70-130	4	20	
Toluene	ug/L	<0.50	49.6	49.6	46.3	44.9	93	90	82-131	3	20	
trans-1,2-Dichloroethene	ug/L	<0.26	49.6	49.6	45.9	48.6	93	98	75-135	6	20	
trans-1,3-Dichloropropene	ug/L	<0.23	49.6	49.6	34.7	34.4	70	69	70-130	1	20	M1
Trichloroethene	ug/L	<0.33	49.6	49.6	45.9	47.0	93	95	70-130	2	20	
Trichlorofluoromethane	ug/L	<0.18	50	50	36.7	37.4	73	75	76-150	2	20	M1
Vinyl chloride	ug/L	<0.18	50	50	37.1	35.7	74	71	56-143	4	20	
Xylene (Total)	ug/L	4.9	149	149	146	142	95	92	70-130	3	20	
4-Bromofluorobenzene (S)	%						98	97	61-130			
Dibromofluoromethane (S)	%						92	93	67-130			
Toluene-d8 (S)	%						98	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1690005819 FORMER 1-HOUR CLEAN

EPA 8260

Pace Project No.: 40160676

QC Batch: 274446

QC Batch Method:

Analysis Method:

Analysis Description: 8260 MSV

EPA 8260

Associated Lab Samples: 40160676001, 40160676003, 40160676004

METHOD BLANK: 1614835 Matrix: Water Associated Lab Samples: 40160676001, 40160676003, 40160676004 Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers 1,1,1,2-Tetrachloroethane ug/L <0.18 1.0 11/17/17 06:40 Qualifiers 1,1,1-Trichloroethane ug/L <0.50 1.0 11/17/17 06:40 11/17/17 06:40 1,1,2-Tetrachloroethane ug/L <0.25 1.0 11/17/17 06:40 11/17/17 06:40 1,1,2-Trichloroethane ug/L <0.25 1.0 11/17/17 06:40 11/17/17 06:40 1,1-Dichloroethane ug/L <0.24 1.0 11/17/17 06:40 11/17/17 06:40 1,1-Dichloroethane ug/L <0.24 1.0 11/17/17 06:40 11/17/17 06:40 1,1-Dichloroethane ug/L <0.41 1.0 11/17/17 06:40 11/17/17 06:40 1,1-Dichloropropene ug/L <0.44 1.0 11/17/17 06:40 11/2,3-Trichlorobenzene ug/L <2.1 5.0 11/17/17 06:40 1,2,3-Trichloropropane ug/L <0.50 1.0 11/17/17 06:40 11/2,4-Trichlorobenzene ug/L <2.2 5.0 11/17/17
1,1,1,2-Tetrachloroethaneug/L<0.181.011/17/17 06:401,1,1-Trichloroethaneug/L<0.50
1,1,1-Trichloroethaneug/L<0.501.011/17/17 06:401,1,2-Trichloroethaneug/L<0.25
1,1,2,2-Tetrachloroethaneug/L<0.251.011/17/17 06:401,1,2-Trichloroethaneug/L<0.20
1,1,2-Trichloroethaneug/L<0.201.011/17/17 06:401,1-Dichloroethaneug/L<0.24
1,1-Dichloroethaneug/L<0.241.011/17/17 06:401,1-Dichloroetheneug/L<0.41
1,1-Dichloroetheneug/L<0.411.011/17/17 06:401,1-Dichloropropeneug/L<0.44
1,1-Dichloropropeneug/L<0.441.011/17/17 06:401,2,3-Trichlorobenzeneug/L<2.1
1,2,3-Trichlorobenzeneug/L<2.15.011/17/17 06:401,2,3-Trichloropropaneug/L<0.50
1,2,3-Trichloropropane ug/L <0.50 1.0 11/17/17 06:40 1,2,4-Trichlorobenzene ug/L <2.2
1,2,4-Trichlorobenzene ug/L <2.2 5.0 11/17/17 06:40
1,2,4-Trimethylbenzene ug/L <0.50 1.0 11/17/17 06:40
1,2-Dibromo-3-chloropropane ug/L <2.2 5.0 11/17/17 06:40
1,2-Dibromoethane (EDB) ug/L <0.18 1.0 11/17/17 06:40
1,2-Dichlorobenzene ug/L <0.50 1.0 11/17/17 06:40
1,2-Dichloroethane ug/L <0.17 1.0 11/17/17 06:40
1,2-Dichloropropane ug/L <0.23 1.0 11/17/17 06:40
1,3,5-Trimethylbenzene ug/L <0.50 1.0 11/17/17 06:40
1,3-Dichlorobenzene ug/L <0.50 1.0 11/17/17 06:40
1,3-Dichloropropane ug/L <0.50 1.0 11/17/17 06:40
1,4-Dichlorobenzene ug/L <0.50 1.0 11/17/17 06:40
2,2-Dichloropropane ug/L <0.48 1.0 11/17/17 06:40
2-Chlorotoluene ug/L <0.50 1.0 11/17/17 06:40
4-Chlorotoluene ug/L <0.21 1.0 11/17/17 06:40
Benzene ug/L <0.50 1.0 11/17/17 06:40
Bromobenzene ug/L <0.23 1.0 11/17/17 06:40
Bromochloromethane ug/L <0.34 1.0 11/17/17 06:40
Bromodichloromethane ug/L <0.50 1.0 11/17/17 06:40
Bromoform ug/L <0.50 1.0 11/17/17 06:40
Bromomethane ug/L <2.4 5.0 11/17/17 06:40
Carbon tetrachloride ug/L <0.50 1.0 11/17/17 06:40
Chlorobenzene ug/L <0.50 1.0 11/17/17 06:40
Chloroethane ug/L <0.37 1.0 11/17/17 06:40
Chloroform ug/L <2.5 5.0 11/17/17 06:40
Chloromethane ug/L <0.50 1.0 11/17/17 06:40
cis-1,2-Dichloroethene ug/L <0.26 1.0 11/17/17 06:40
cis-1,3-Dichloropropene ug/L <0.50 1.0 11/17/17 06:40
Dibromochloromethane ug/L <0.50 1.0 11/17/17 06:40
Dibromomethane ug/L <0.43 1.0 11/17/17 06:40
Dichlorodifluoromethane ug/L <0.22 1.0 11/17/17 06:40
Diisopropyl ether ug/L <0.50 1.0 11/17/17 06:40
Ethylbenzene ug/L <0.50 1.0 11/17/17 06:40

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

METHOD BLANK: 1614835		Matrix:	Water			
Associated Lab Samples: 401606	76001, 40160676003	, 40160676004				
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
Hexachloro-1,3-butadiene	ug/L	<2.1	5.0	11/17/17 06:40		
Isopropylbenzene (Cumene)	ug/L	<0.14	1.0	11/17/17 06:40		
m&p-Xylene	ug/L	<1.0	2.0	11/17/17 06:40		
Methyl-tert-butyl ether	ug/L	<0.17	1.0	11/17/17 06:40		
Methylene Chloride	ug/L	<0.23	1.0	11/17/17 06:40		
n-Butylbenzene	ug/L	<0.50	1.0	11/17/17 06:40		
n-Propylbenzene	ug/L	<0.50	1.0	11/17/17 06:40		
Naphthalene	ug/L	<2.5	5.0	11/17/17 06:40		
o-Xylene	ug/L	<0.50	1.0	11/17/17 06:40		
p-Isopropyltoluene	ug/L	<0.50	1.0	11/17/17 06:40		
sec-Butylbenzene	ug/L	<2.2	5.0	11/17/17 06:40		
Styrene	ug/L	<0.50	1.0	11/17/17 06:40		
tert-Butylbenzene	ug/L	<0.18	1.0	11/17/17 06:40		
Tetrachloroethene	ug/L	<0.50	1.0	11/17/17 06:40		
Toluene	ug/L	<0.50	1.0	11/17/17 06:40		
trans-1,2-Dichloroethene	ug/L	<0.26	1.0	11/17/17 06:40		
trans-1,3-Dichloropropene	ug/L	<0.23	1.0	11/17/17 06:40		
Trichloroethene	ug/L	<0.33	1.0	11/17/17 06:40		
Trichlorofluoromethane	ug/L	<0.18	1.0	11/17/17 06:40		
Vinyl chloride	ug/L	<0.18	1.0	11/17/17 06:40		
Xylene (Total)	ug/L	<1.5	3.0	11/17/17 06:40		
4-Bromofluorobenzene (S)	%	85	61-130	11/17/17 06:40		
Dibromofluoromethane (S)	%	107	67-130	11/17/17 06:40		
Toluene-d8 (S)	%	99	70-130	11/17/17 06:40		

LABORATORY CONTROL SAMPLE: 1614836

		Spike	LCS	LCS	% Rec	0 11	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
1,1,1-Trichloroethane	ug/L	49.6	56.8	114	70-130		
1,1,2,2-Tetrachloroethane	ug/L	49.6	53.1	107	70-130		
1,1,2-Trichloroethane	ug/L	49.6	51.0	103	70-130		
1,1-Dichloroethane	ug/L	49.6	59.3	120	71-132		
1,1-Dichloroethene	ug/L	49.6	56.2	113	75-130		
1,2,4-Trichlorobenzene	ug/L	49.6	41.8	84	70-130		
1,2-Dibromo-3-chloropropane	ug/L	49.6	48.0	97	63-123		
1,2-Dibromoethane (EDB)	ug/L	49.6	50.1	101	70-130		
1,2-Dichlorobenzene	ug/L	49.6	46.6	94	70-130		
1,2-Dichloroethane	ug/L	49.6	55.4	112	70-131		
1,2-Dichloropropane	ug/L	49.6	52.9	107	80-120		
1,3-Dichlorobenzene	ug/L	49.6	49.2	99	70-130		
1,4-Dichlorobenzene	ug/L	49.6	50.4	102	70-130		
Benzene	ug/L	49.6	54.1	109	73-145		
Bromodichloromethane	ug/L	49.6	54.0	109	70-130		
Bromoform	ua/L	49.6	47.0	95	67-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

LABORATORY CONTROL SAMPLE: 1614836

Parameter Units Conc. Result % Rec Limits Qualifiers Bromomethane ug/L 50 46.7 93 26-128 Carbon tetrachloride ug/L 49.6 58.4 118 70-133 Chlorobenzene ug/L 49.6 52.0 105 70-130 Chloroberthane ug/L 49.6 54.2 109 80-121 Chloroberthane ug/L 49.6 54.8 111 70-130 Cisi-1,2-Dichloroethene ug/L 49.6 54.8 111 70-130 Dibromochloromethane ug/L 49.6 55.3 111 87-129 Dibromochloromethane ug/L 49.6 55.3 111 87-129 Isopropylbenzene (Cumene) ug/L 49.6 55.3 111 87-129 Isopropylbenzene (Cumene) ug/L 49.6 55.3 111 70-130 Methylene Chloride ug/L 49.6 55.3 1111 70-130 Sy			Spike	LCS	LCS	% Rec	
Bromomethane ug/L 50 46.7 93 26-128 Carbon tetrachloride ug/L 49.6 58.4 118 70-133 Chlorobenzene ug/L 49.6 52.0 105 70-130 Chlorobenzene ug/L 50 57.8 116 58-120 Chlorobenzene ug/L 49.6 54.2 109 80-121 Chlorobentane ug/L 49.6 54.2 109 80-121 Chlorobethane ug/L 49.6 54.8 111 70-130 cis-1,2-Dichloroptopene ug/L 49.6 52.7 106 70-130 Dichlorodifluoromethane ug/L 49.6 55.3 111 87-129 Stopropylbenzene (Cumene) ug/L 49.6 55.3 111 87-129 Isopropylbenzene (Cumene) ug/L 49.6 55.3 111 70-130 Methylene Chloride ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 55.3 111 70-130 Styrene ug/L	Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Carbon tetrachloride ug/L 49.6 58.4 118 70-133 Chlorobenzene ug/L 49.6 52.0 105 70-130 Chlorobentane ug/L 50 57.8 116 58-120 Chloroom ug/L 49.6 54.2 109 80-121 Chloroomethane ug/L 49.6 54.8 111 70-130 Cis-1,2-Dichloroothene ug/L 49.6 54.8 111 70-130 Dibromochloromethane ug/L 49.6 52.7 106 70-130 Dibromochloromethane ug/L 49.6 55.3 111 87-129 Isopropylbenzene (Cumene) ug/L 49.6 56.3 113 66-143 Methyl-tert-butyl ether ug/L 49.6 56.3 111 70-130 Styrene ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 51.9 105 70-130 Tetrachloroethene ug/L	Bromomethane	ug/L		46.7	93	26-128	
Chlorobenzene ug/L 49.6 52.0 105 70-130 Chloroethane ug/L 50 57.8 116 58-120 Chloroethane ug/L 49.6 54.2 109 80-121 Chloroethane ug/L 49.6 54.8 111 70-130 cis-1,2-Dichloroethene ug/L 49.6 47.5 96 70-130 Dibromochloromethane ug/L 49.6 52.7 106 70-130 Dibromochloromethane ug/L 49.6 55.3 111 87-129 Isopropylbenzene (Cumene) ug/L 49.6 55.3 111 87-129 Isopropylbenzene (Cumene) ug/L 49.6 56.1 113 66-143 Methyl-tert-butyl ether ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 51.9 105 70-130 Tetrachloroethene ug/L	Carbon tetrachloride	ug/L	49.6	58.4	118	70-133	
Chloroethane ug/L 50 57.8 116 58-120 Chloroform ug/L 49.6 54.2 109 80-121 Chloromethane ug/L 50 40.1 80 40-127 cis-1,2-Dichloroethene ug/L 49.6 54.8 111 70-130 Dibromochloromethane ug/L 49.6 52.7 106 70-130 Dichlorodifluoromethane ug/L 50 35.9 72 20-135 Ethylbenzene ug/L 49.6 54.0 109 70-130 sopropylbenzene (Cumene) ug/L 49.6 54.0 109 70-130 Methyl-tert-butyl ether ug/L 49.6 56.1 113 66-143 Methylene Chloride ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 51.9 105 70-130 Tetrachloroethene ug/L 49.6 51.9 105 70-130 Tetrachloroethene ug/L <	Chlorobenzene	ug/L	49.6	52.0	105	70-130	
Chloroform ug/L 49.6 54.2 109 80-121 Chloromethane ug/L 50 40.1 80 40-127 cis-1,2-Dichloroethene ug/L 49.6 54.8 111 70-130 Dibromochloromethane ug/L 49.6 52.7 106 70-130 Dibromochloromethane ug/L 50 35.9 72 20-135 Ethylbenzene ug/L 49.6 55.3 111 87-129 Isopropylbenzene (Cumene) ug/L 49.6 55.3 111 70-130 Methyl-tert-butyl ether ug/L 49.6 56.1 113 66-143 Methylene Chloride ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 51.9 105 70-130 Styrene ug/L 49.6 51.9 105 70-130 Tetrachloroethene ug/L 49.6 51.9 105 70-130 Tetrachloroethene ug/L 49	Chloroethane	ug/L	50	57.8	116	58-120	
Chloromethane ug/L 50 40.1 80 40-127 cis-1,2-Dichloroethene ug/L 49.6 54.8 111 70-130 cis-1,3-Dichloroptopene ug/L 49.6 47.5 96 70-130 Dibromochloromethane ug/L 49.6 52.7 106 70-130 Dichlorodifluoromethane ug/L 49.6 55.3 111 87-129 Isopropylbenzene (Cumene) ug/L 49.6 54.0 109 70-130 Methyl-tert-butyl ether ug/L 49.6 56.1 113 66-143 Methylene Chloride ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 51.9 105 70-130 Totuene ug/L 49.6 51.9 105 70-130 Trans-1,2-Dichloroethene ug/L	Chloroform	ug/L	49.6	54.2	109	80-121	
cis-1,2-Dichloroethene ug/L 49.6 54.8 111 70-130 cis-1,3-Dichloropropene ug/L 49.6 47.5 96 70-130 Dibromochloromethane ug/L 49.6 52.7 106 70-130 Dichlorodifluoromethane ug/L 50 35.9 72 20-135 Ethylbenzene ug/L 49.6 55.3 111 87-129 Isopropylbenzene (Cumene) ug/L 49.6 56.1 109 70-130 m&p-Xylene ug/L 49.6 56.1 113 66-143 Methyl-tert-butyl ether ug/L 49.6 55.3 111 70-130 o-Xylene ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 51.9 105 70-130 Toluene ug/L 49.6 51.1 103 82-130 trans-1,2-Dichloroethene ug/L	Chloromethane	ug/L	50	40.1	80	40-127	
cis-1,3-Dichloropropene ug/L 49.6 47.5 96 70-130 Dibromochloromethane ug/L 49.6 52.7 106 70-130 Dichlorodifluoromethane ug/L 50 35.9 72 20-135 Ethylbenzene ug/L 49.6 55.3 111 87-129 Isopropylbenzene (Cumene) ug/L 49.6 54.0 109 70-130 Mep-Xylene ug/L 49.6 56.1 113 66-143 Methyl-tert-butyl ether ug/L 49.6 55.3 111 70-130 o-Xylene ug/L 49.6 55.3 111 70-130 o-Xylene ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 51.9 105 70-130 Toluene ug/L 49.6 51.1 103 82-130 trans-1,3-Dichloroptopene ug/L 49.6 57.5 116 75-132 trans-1,3-Dichloroptopene ug/L	cis-1,2-Dichloroethene	ug/L	49.6	54.8	111	70-130	
Dibromochloromethane ug/L 49.6 52.7 106 70-130 Dichlorodifluoromethane ug/L 50 35.9 72 20-135 Ethylbenzene ug/L 49.6 55.3 111 87-129 Isopropylbenzene (Curnene) ug/L 49.6 54.0 109 70-130 m&p-Xylene ug/L 49.6 56.1 113 70-130 Methyl-tert-butyl ether ug/L 49.6 55.3 111 70-130 O-Xylene ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 51.9 105 70-130 Tetrachloroethene ug/L 49.6 51.9 105 70-130 Taras-1,2-Dichloroptopene ug/L 49.6 57.5 116 75-132 trans-1,3-Dichloroptopene ug/L 49.6 57.5 115 76-133 Vinyl chloride ug/L	cis-1,3-Dichloropropene	ug/L	49.6	47.5	96	70-130	
Dichlorodifluoromethane ug/L 50 35.9 72 20-135 Ethylbenzene ug/L 49.6 55.3 111 87-129 Isopropylbenzene (Cumene) ug/L 49.6 54.0 109 70-130 m&p-Xylene ug/L 99.2 112 113 70-130 Methyl-tert-butyl ether ug/L 49.6 55.3 111 70-130 Methylene Chloride ug/L 49.6 55.3 111 70-130 o-Xylene ug/L 49.6 55.3 111 70-130 o-Xylene ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 51.9 105 70-130 Toluene ug/L 49.6 51.1 103 82-130 trans-1,2-Dichloroethene ug/L 49.6 57.5 116 75-132 trans-1,3-Dichloropropene ug/L 49.6 55.3 112 70-130 Trichlorofluoromethane ug/L <td< td=""><td>Dibromochloromethane</td><td>ug/L</td><td>49.6</td><td>52.7</td><td>106</td><td>70-130</td><td></td></td<>	Dibromochloromethane	ug/L	49.6	52.7	106	70-130	
Ethylbenzene ug/L 49.6 55.3 111 87-129 Isopropylbenzene (Cumene) ug/L 49.6 54.0 109 70-130 m&p-Xylene ug/L 99.2 112 113 70-130 Methyl-tert-butyl ether ug/L 49.6 56.1 113 66-143 Methylene Chloride ug/L 49.6 55.3 111 70-130 o-Xylene ug/L 49.6 55.3 111 70-130 o-Xylene ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 55.3 111 70-130 Tetrachloroethene ug/L 49.6 51.9 105 70-130 Toluene ug/L 49.6 57.5 116 75-132 trans-1,2-Dichloroptopene ug/L 49.6 55.3 112 70-130 Trichlorofhueroptenee ug/L 49.6 55.3 112 70-130 Trichlorofluoromethane ug/L 50 57.5 115 76-133 Vinyl chloride ug/L <	Dichlorodifluoromethane	ug/L	50	35.9	72	20-135	
Isopropylbenzene (Cumene) ug/L 49.6 54.0 109 70-130 m&p-Xylene ug/L 99.2 112 113 70-130 Methyl-tert-butyl ether ug/L 49.6 56.1 113 66-143 Methylene Chloride ug/L 49.6 55.3 111 70-130 o-Xylene ug/L 49.6 55.3 111 70-130 o-Xylene ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 51.9 105 70-130 Toluene ug/L 49.6 51.9 105 70-130 Toluene ug/L 49.6 51.1 103 82-130 trans-1,2-Dichloroethene ug/L 49.6 57.5 116 75-132 trans-1,3-Dichloropropene ug/L 49.6 55.3 112 70-130 Trichlorofthene ug/L 50 57.5 115 76-133 Vinyl chloride ug/L 50 48.6 97 57-136 Xylene (Total) ug/L 149	Ethylbenzene	ug/L	49.6	55.3	111	87-129	
m&p-Xylene ug/L 99.2 112 113 70-130 Methyl-tert-butyl ether ug/L 49.6 56.1 113 66-143 Methylene Chloride ug/L 49.6 55.3 111 70-130 o-Xylene ug/L 49.6 55.3 111 70-130 o-Xylene ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 51.9 105 70-130 Tetrachloroethene ug/L 49.6 51.9 105 70-130 Toluene ug/L 49.6 51.1 103 82-130 trans-1,2-Dichloroethene ug/L 49.6 57.5 116 75-132 trans-1,3-Dichloropropene ug/L 49.6 57.5 116 75-132 trans-1,3-Dichloropropene ug/L 49.6 55.3 112 70-130 Trichlorofluoromethane ug/L 50 57.5 115 76-133 Vinyl chloride ug/L 50 48.6 97 57-136 Xylene (Total) ug/L	Isopropylbenzene (Cumene)	ug/L	49.6	54.0	109	70-130	
Methyl-tert-butyl ether ug/L 49.6 56.1 113 66-143 Methylene Chloride ug/L 49.6 55.3 111 70-130 o-Xylene ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 49.1 99 70-130 Tetrachloroethene ug/L 49.6 51.9 105 70-130 Toluene ug/L 49.6 51.1 103 82-130 trans-1,2-Dichloroethene ug/L 49.6 57.5 116 75-132 trans-1,3-Dichloropropene ug/L 49.6 57.5 116 75-132 trans-1,3-Dichloropropene ug/L 49.6 55.3 112 70-130 Trichlorofluoromethane ug/L 50 57.5 115 76-133 Vinyl chloride ug/L 50 48.6 97 57-136 Xylene (Total) ug/L 149 167 113 70-130 4-Bromofluorobenzene (S) %	m&p-Xylene	ug/L	99.2	112	113	70-130	
Methylene Chloride ug/L 49.6 55.3 111 70-130 o-Xylene ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 49.1 99 70-130 Tetrachloroethene ug/L 49.6 51.9 105 70-130 Toluene ug/L 49.6 51.1 103 82-130 trans-1,2-Dichloroethene ug/L 49.6 57.5 116 75-132 trans-1,3-Dichloropropene ug/L 49.6 57.5 112 70-130 Trichloroethene ug/L 49.6 55.3 112 70-130 Trichlorofluoromethane ug/L 49.6 55.3 115 76-133 Vinyl chloride ug/L 50 57.5 115 76-133 Vinyl chloride ug/L 50 48.6 97 57-136 Xylene (Total) ug/L 149 167 113 70-130 4-Bromofluorobenzene (S) % 100	Methyl-tert-butyl ether	ug/L	49.6	56.1	113	66-143	
vsylene ug/L 49.6 55.3 111 70-130 Styrene ug/L 49.6 49.1 99 70-130 Tetrachloroethene ug/L 49.6 51.9 105 70-130 Toluene ug/L 49.6 51.1 103 82-130 Toluene ug/L 49.6 57.5 116 75-132 trans-1,2-Dichloroethene ug/L 49.6 47.7 96 70-130 trans-1,3-Dichloropropene ug/L 49.6 55.3 112 70-130 Trichloroethene ug/L 49.6 55.3 112 70-130 Trichlorofluoromethane ug/L 50 57.5 115 76-133 Vinyl chloride ug/L 50 48.6 97 57-136 Xylene (Total) ug/L 149 167 113 70-130 4-Bromofluorobenzene (S) % 100 61-130 101 67-130 Dibromofluoromethane (S) % 97	Methylene Chloride	ug/L	49.6	55.3	111	70-130	
Styrene ug/L 49.6 49.1 99 70-130 Tetrachloroethene ug/L 49.6 51.9 105 70-130 Toluene ug/L 49.6 51.1 103 82-130 trans-1,2-Dichloroethene ug/L 49.6 57.5 116 75-132 trans-1,3-Dichloropropene ug/L 49.6 47.7 96 70-130 Trichloroethene ug/L 49.6 55.3 112 70-130 Trichloroethene ug/L 50 57.5 115 76-133 Vinyl chloride ug/L 50 57.5 115 76-133 Vinyl chloride ug/L 50 48.6 97 57-136 Xylene (Total) ug/L 149 167 113 70-130 4-Bromofluorobenzene (S) % 100 61-130 01 Dibromofluoromethane (S) % 97 70-130 01	o-Xylene	ug/L	49.6	55.3	111	70-130	
Tetrachloroethene ug/L 49.6 51.9 105 70-130 Toluene ug/L 49.6 51.1 103 82-130 trans-1,2-Dichloroethene ug/L 49.6 57.5 116 75-132 trans-1,3-Dichloropropene ug/L 49.6 47.7 96 70-130 Trichloroethene ug/L 49.6 55.3 112 70-130 Trichloroethene ug/L 50 57.5 115 76-133 Vinyl chloride ug/L 50 48.6 97 57-136 Xylene (Total) ug/L 149 167 113 70-130 4-Bromofluoromethane (S) % 100 61-130 67-130 Dibromofluoromethane (S) % 107 67-130 Toluene-d8 (S) % 97 70-130	Styrene	ug/L	49.6	49.1	99	70-130	
Toluene ug/L 49.6 51.1 103 82-130 trans-1,2-Dichloroethene ug/L 49.6 57.5 116 75-132 trans-1,3-Dichloropropene ug/L 49.6 47.7 96 70-130 Trichloroethene ug/L 49.6 55.3 112 70-130 Trichloroethene ug/L 50 57.5 115 76-133 Vinyl chloride ug/L 50 48.6 97 57-136 Xylene (Total) ug/L 149 167 113 70-130 4-Bromofluoromethane (S) % 100 61-130 Dibromofluoromethane (S) % 107 67-130	Tetrachloroethene	ug/L	49.6	51.9	105	70-130	
trans-1,2-Dichloroethene ug/L 49.6 57.5 116 75-132 trans-1,3-Dichloropropene ug/L 49.6 47.7 96 70-130 Trichloroethene ug/L 49.6 55.3 112 70-130 Trichlorofluoromethane ug/L 50 57.5 115 76-133 Vinyl chloride ug/L 50 48.6 97 57-136 Xylene (Total) ug/L 149 167 113 70-130 4-Bromofluoromethane (S) % 100 61-130 Dibromofluoromethane (S) % 107 67-130 Toluene-d8 (S) % 97 70-130	Toluene	ug/L	49.6	51.1	103	82-130	
trans-1,3-Dichloropropene ug/L 49.6 47.7 96 70-130 Trichloroethene ug/L 49.6 55.3 112 70-130 Trichlorofluoromethane ug/L 50 57.5 115 76-133 Vinyl chloride ug/L 50 48.6 97 57-136 Xylene (Total) ug/L 149 167 113 70-130 4-Bromofluoromethane (S) % 100 61-130 Dibromofluoromethane (S) % 97 70-130	trans-1,2-Dichloroethene	ug/L	49.6	57.5	116	75-132	
Trichloroethene ug/L 49.6 55.3 112 70-130 Trichlorofluoromethane ug/L 50 57.5 115 76-133 Vinyl chloride ug/L 50 48.6 97 57-136 Xylene (Total) ug/L 149 167 113 70-130 4-Bromofluoromethane (S) % 100 61-130 Dibromofluoromethane (S) % 107 67-130 Toluene-d8 (S) % 97 70-130	trans-1,3-Dichloropropene	ug/L	49.6	47.7	96	70-130	
Trichlorofluoromethane ug/L 50 57.5 115 76-133 Vinyl chloride ug/L 50 48.6 97 57-136 Xylene (Total) ug/L 149 167 113 70-130 4-Bromofluorobenzene (S) % 100 61-130 Dibromofluoromethane (S) % 107 67-130 Toluene-d8 (S) % 97 70-130	Trichloroethene	ug/L	49.6	55.3	112	70-130	
Vinyl chloride ug/L 50 48.6 97 57-136 Xylene (Total) ug/L 149 167 113 70-130 4-Bromofluorobenzene (S) % 100 61-130 Dibromofluoromethane (S) % 107 67-130 Toluene-d8 (S) % 97 70-130	Trichlorofluoromethane	ug/L	50	57.5	115	76-133	
Xylene (Total) ug/L 149 167 113 70-130 4-Bromofluorobenzene (S) % 100 61-130 Dibromofluoromethane (S) % 107 67-130 Toluene-d8 (S) % 97 70-130	Vinyl chloride	ug/L	50	48.6	97	57-136	
4-Bromofluorobenzene (S) % 100 61-130 Dibromofluoromethane (S) % 107 67-130 Toluene-d8 (S) % 97 70-130	Xylene (Total)	ug/L	149	167	113	70-130	
Dibromofluoromethane (S) % 107 67-130 Toluene-d8 (S) % 97 70-130	4-Bromofluorobenzene (S)	%			100	61-130	
Toluene-d8 (S) % 97 70-130	Dibromofluoromethane (S)	%			107	67-130	
	Toluene-d8 (S)	%			97	70-130	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1616416 1616417												
			MS	MSD								
	4	0160669002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	<0.50	49.6	49.6	56.5	56.6	114	114	70-134	0	20	
1,1,2,2-Tetrachloroethane	ug/L	<0.25	49.6	49.6	52.6	53.5	106	108	70-130	2	20	
1,1,2-Trichloroethane	ug/L	<0.20	49.6	49.6	54.4	52.3	110	106	70-130	4	20	
1,1-Dichloroethane	ug/L	<0.24	49.6	49.6	59.4	59.6	120	120	71-133	0	20	
1,1-Dichloroethene	ug/L	<0.41	49.6	49.6	57.0	56.9	115	115	75-136	0	20	
1,2,4-Trichlorobenzene	ug/L	<2.2	49.6	49.6	43.4	43.5	88	88	70-130	0	20	
1,2-Dibromo-3- chloropropane	ug/L	<2.2	49.6	49.6	50.3	47.3	101	95	63-123	6	20	
1,2-Dibromoethane (EDB)	ug/L	<0.18	49.6	49.6	54.3	51.3	110	104	70-130	6	20	
1,2-Dichlorobenzene	ug/L	<0.50	49.6	49.6	47.4	47.8	95	96	70-130	1	20	
1,2-Dichloroethane	ug/L	<0.17	49.6	49.6	53.7	56.0	108	113	70-131	4	20	
1,2-Dichloropropane	ug/L	<0.23	49.6	49.6	52.8	56.8	106	115	80-120	7	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

MATRIX SPIKE & MATRIX SPI	KE DUPLIC	ATE: 16164 ⁻	16		1616417							
			MS	MSD								
	4	40160669002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,3-Dichlorobenzene	ug/L	<0.50	49.6	49.6	49.8	51.0	100	103	70-130	2	20	
1,4-Dichlorobenzene	ug/L	<0.50	49.6	49.6	51.1	50.2	103	101	70-130	2	20	
Benzene	ug/L	<0.50	49.6	49.6	55.1	56.7	111	114	73-145	3	20	
Bromodichloromethane	ug/L	<0.50	49.6	49.6	53.7	57.5	108	116	70-130	7	20	
Bromoform	ug/L	<0.50	49.6	49.6	49.8	48.6	100	98	67-130	2	20	
Bromomethane	ug/L	<2.4	50	50	48.1	51.9	96	104	26-129	8	20	
Carbon tetrachloride	ug/L	<0.50	49.6	49.6	58.1	58.5	117	118	70-134	1	20	
Chlorobenzene	ug/L	<0.50	49.6	49.6	52.8	51.9	106	105	70-130	2	20	
Chloroethane	ug/L	<0.37	50	50	57.6	58.2	115	116	58-120	1	20	
Chloroform	ug/L	<2.5	49.6	49.6	54.9	55.3	111	112	80-121	1	20	
Chloromethane	ug/L	<0.50	50	50	41.1	40.5	82	81	40-128	1	20	
cis-1,2-Dichloroethene	ug/L	<0.26	49.6	49.6	55.5	56.7	112	114	70-130	2	20	
cis-1,3-Dichloropropene	ug/L	<0.50	49.6	49.6	49.8	52.8	100	107	70-130	6	20	
Dibromochloromethane	ug/L	<0.50	49.6	49.6	56.2	52.9	113	107	70-130	6	20	
Dichlorodifluoromethane	ug/L	<0.22	50	50	35.8	36.1	72	72	20-146	1	20	
Ethylbenzene	ug/L	<0.50	49.6	49.6	57.8	55.8	117	113	87-129	4	20	
Isopropylbenzene (Cumene)	ug/L	<0.14	49.6	49.6	56.9	55.8	115	112	70-130	2	20	
m&p-Xylene	ug/L	<1.0	99.2	99.2	117	112	118	113	70-130	4	20	
Methyl-tert-butyl ether	ug/L	<0.17	49.6	49.6	56.6	57.5	114	116	66-143	1	20	
Methylene Chloride	ug/L	<0.23	49.6	49.6	56.2	56.1	113	113	70-130	0	20	
o-Xylene	ug/L	<0.50	49.6	49.6	57.1	56.2	115	113	70-130	2	20	
Styrene	ug/L	<0.50	49.6	49.6	52.9	51.1	107	103	70-130	3	20	
Tetrachloroethene	ug/L	<0.50	49.6	49.6	51.6	49.8	104	100	70-130	3	20	
Toluene	ug/L	<0.50	49.6	49.6	53.2	51.7	107	104	82-131	3	20	
trans-1,2-Dichloroethene	ug/L	<0.26	49.6	49.6	59.4	60.1	120	121	75-135	1	20	
trans-1,3-Dichloropropene	ug/L	<0.23	49.6	49.6	49.7	49.0	100	99	70-130	1	20	
Trichloroethene	ug/L	<0.33	49.6	49.6	52.8	56.5	107	114	70-130	7	20	
Trichlorofluoromethane	ug/L	<0.18	50	50	55.8	56.3	112	113	76-150	1	20	
Vinyl chloride	ug/L	<0.18	50	50	48.7	48.2	97	96	56-143	1	20	
Xylene (Total)	ug/L	<1.5	149	149	174	168	117	113	70-130	3	20	
4-Bromofluorobenzene (S)	%						104	99	61-130			
Dibromofluoromethane (S)	%						107	108	67-130			
Toluene-d8 (S)	%						105	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

QC Batch:	274754	Analysis Method:	EPA 8260
QC Batch Method:	EPA 8260	Analysis Description:	8260 MSV
Associated Lab San	nples: 40160676005		
METHOD BLANK:	1616844	Matrix: Water	
Associated Lab San	nples: 40160676005		
		Blank Reporti	ng

		Blank	Blank Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<0.18	1.0	11/20/17 15:49	
1,1,1-Trichloroethane	ug/L	<0.50	1.0	11/20/17 15:49	
1,1,2,2-Tetrachloroethane	ug/L	<0.25	1.0	11/20/17 15:49	
1,1,2-Trichloroethane	ug/L	<0.20	1.0	11/20/17 15:49	
1,1-Dichloroethane	ug/L	<0.24	1.0	11/20/17 15:49	
1,1-Dichloroethene	ug/L	<0.41	1.0	11/20/17 15:49	
1,1-Dichloropropene	ug/L	<0.44	1.0	11/20/17 15:49	
1,2,3-Trichlorobenzene	ug/L	<2.1	5.0	11/20/17 15:49	
1,2,3-Trichloropropane	ug/L	<0.50	1.0	11/20/17 15:49	
1,2,4-Trichlorobenzene	ug/L	<2.2	5.0	11/20/17 15:49	
1,2,4-Trimethylbenzene	ug/L	<0.50	1.0	11/20/17 15:49	
1,2-Dibromo-3-chloropropane	ug/L	<2.2	5.0	11/20/17 15:49	
1,2-Dibromoethane (EDB)	ug/L	<0.18	1.0	11/20/17 15:49	
1,2-Dichlorobenzene	ug/L	<0.50	1.0	11/20/17 15:49	
1,2-Dichloroethane	ug/L	<0.17	1.0	11/20/17 15:49	
1,2-Dichloropropane	ug/L	<0.23	1.0	11/20/17 15:49	
1,3,5-Trimethylbenzene	ug/L	<0.50	1.0	11/20/17 15:49	
1,3-Dichlorobenzene	ug/L	<0.50	1.0	11/20/17 15:49	
1,3-Dichloropropane	ug/L	<0.50	1.0	11/20/17 15:49	
1,4-Dichlorobenzene	ug/L	<0.50	1.0	11/20/17 15:49	
2,2-Dichloropropane	ug/L	<0.48	1.0	11/20/17 15:49	
2-Chlorotoluene	ug/L	<0.50	1.0	11/20/17 15:49	
4-Chlorotoluene	ug/L	<0.21	1.0	11/20/17 15:49	
Benzene	ug/L	<0.50	1.0	11/20/17 15:49	
Bromobenzene	ug/L	<0.23	1.0	11/20/17 15:49	
Bromochloromethane	ug/L	<0.34	1.0	11/20/17 15:49	
Bromodichloromethane	ug/L	<0.50	1.0	11/20/17 15:49	
Bromoform	ug/L	<0.50	1.0	11/20/17 15:49	
Bromomethane	ug/L	<2.4	5.0	11/20/17 15:49	
Carbon tetrachloride	ug/L	<0.50	1.0	11/20/17 15:49	
Chlorobenzene	ug/L	<0.50	1.0	11/20/17 15:49	
Chloroethane	ug/L	<0.37	1.0	11/20/17 15:49	
Chloroform	ug/L	<2.5	5.0	11/20/17 15:49	
Chloromethane	ug/L	<0.50	1.0	11/20/17 15:49	
cis-1,2-Dichloroethene	ug/L	<0.26	1.0	11/20/17 15:49	
cis-1,3-Dichloropropene	ug/L	<0.50	1.0	11/20/17 15:49	
Dibromochloromethane	ug/L	<0.50	1.0	11/20/17 15:49	
Dibromomethane	ug/L	<0.43	1.0	11/20/17 15:49	
Dichlorodifluoromethane	ug/L	<0.22	1.0	11/20/17 15:49	
Diisopropyl ether	ug/L	<0.50	1.0	11/20/17 15:49	
Ethylbenzene	ug/L	<0.50	1.0	11/20/17 15:49	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Matrix: Water

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

METHOD BLANK: 1616844

Associated Lab Samples:	40160676005	

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Hexachloro-1,3-butadiene	ug/L	<2.1	5.0	11/20/17 15:49	
Isopropylbenzene (Cumene)	ug/L	<0.14	1.0	11/20/17 15:49	
m&p-Xylene	ug/L	<1.0	2.0	11/20/17 15:49	
Methyl-tert-butyl ether	ug/L	<0.17	1.0	11/20/17 15:49	
Methylene Chloride	ug/L	<0.23	1.0	11/20/17 15:49	
n-Butylbenzene	ug/L	<0.50	1.0	11/20/17 15:49	
n-Propylbenzene	ug/L	<0.50	1.0	11/20/17 15:49	
Naphthalene	ug/L	<2.5	5.0	11/20/17 15:49	
o-Xylene	ug/L	<0.50	1.0	11/20/17 15:49	
p-Isopropyltoluene	ug/L	<0.50	1.0	11/20/17 15:49	
sec-Butylbenzene	ug/L	<2.2	5.0	11/20/17 15:49	
Styrene	ug/L	<0.50	1.0	11/20/17 15:49	
tert-Butylbenzene	ug/L	<0.18	1.0	11/20/17 15:49	
Tetrachloroethene	ug/L	<0.50	1.0	11/20/17 15:49	
Toluene	ug/L	<0.50	1.0	11/20/17 15:49	
trans-1,2-Dichloroethene	ug/L	<0.26	1.0	11/20/17 15:49	
trans-1,3-Dichloropropene	ug/L	<0.23	1.0	11/20/17 15:49	
Trichloroethene	ug/L	<0.33	1.0	11/20/17 15:49	
Trichlorofluoromethane	ug/L	<0.18	1.0	11/20/17 15:49	
Vinyl chloride	ug/L	<0.18	1.0	11/20/17 15:49	
Xylene (Total)	ug/L	<1.5	3.0	11/20/17 15:49	
4-Bromofluorobenzene (S)	%	88	61-130	11/20/17 15:49	
Dibromofluoromethane (S)	%	107	67-130	11/20/17 15:49	
Toluene-d8 (S)	%	99	70-130	11/20/17 15:49	

LABORATORY CONTROL SAMPLE: 1616845

	1010010					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	49.6	50.2	101	70-130	
1,1,2,2-Tetrachloroethane	ug/L	49.6	48.7	98	70-130	
1,1,2-Trichloroethane	ug/L	49.6	50.5	102	70-130	
1,1-Dichloroethane	ug/L	49.6	57.5	116	71-132	
1,1-Dichloroethene	ug/L	49.6	44.3	89	75-130	
1,2,4-Trichlorobenzene	ug/L	49.6	42.7	86	70-130	
1,2-Dibromo-3-chloropropane	ug/L	49.6	51.4	104	63-123	
1,2-Dibromoethane (EDB)	ug/L	49.6	50.9	103	70-130	
1,2-Dichlorobenzene	ug/L	49.6	49.5	100	70-130	
1,2-Dichloroethane	ug/L	49.6	58.9	119	70-131	
1,2-Dichloropropane	ug/L	49.6	54.6	110	80-120	
1,3-Dichlorobenzene	ug/L	49.6	47.2	95	70-130	
1,4-Dichlorobenzene	ug/L	49.6	51.4	104	70-130	
Benzene	ug/L	49.6	40.7	82	73-145	
Bromodichloromethane	ug/L	49.6	57.3	116	70-130	
Bromoform	ug/L	49.6	59.9	121	67-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

LABORATORY CONTROL SAMPLE: 1616845

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromomethane	ug/L	50	41.6	83	26-128	
Carbon tetrachloride	ug/L	49.6	55.0	111	70-133	
Chlorobenzene	ug/L	49.6	53.1	107	70-130	
Chloroethane	ug/L	50	46.8	94	58-120	
Chloroform	ug/L	49.6	48.8	98	80-121	
Chloromethane	ug/L	50	29.4	59	40-127	
cis-1,2-Dichloroethene	ug/L	49.6	39.4	79	70-130	
cis-1,3-Dichloropropene	ug/L	49.6	45.4	92	70-130	
Dibromochloromethane	ug/L	49.6	53.7	108	70-130	
Dichlorodifluoromethane	ug/L	50	24.4	49	20-135	
Ethylbenzene	ug/L	49.6	52.2	105	87-129	
Isopropylbenzene (Cumene)	ug/L	49.6	52.4	106	70-130	
m&p-Xylene	ug/L	99.2	104	105	70-130	
Methyl-tert-butyl ether	ug/L	49.6	51.1	103	66-143	
Methylene Chloride	ug/L	49.6	47.1	95	70-130	
o-Xylene	ug/L	49.6	50.4	102	70-130	
Styrene	ug/L	49.6	52.8	106	70-130	
Tetrachloroethene	ug/L	49.6	54.8	111	70-130	
Toluene	ug/L	49.6	49.0	99	82-130	
trans-1,2-Dichloroethene	ug/L	49.6	46.8	94	75-132	
trans-1,3-Dichloropropene	ug/L	49.6	44.4	90	70-130	
Trichloroethene	ug/L	49.6	52.7	106	70-130	
Trichlorofluoromethane	ug/L	50	67.4	135	76-133 L	.1
Vinyl chloride	ug/L	50	36.1	72	57-136	
Xylene (Total)	ug/L	149	155	104	70-130	
4-Bromofluorobenzene (S)	%			108	61-130	
Dibromofluoromethane (S)	%			100	67-130	
Toluene-d8 (S)	%			99	70-130	

MATRIX SPIKE & MATRIX SP	46		1616847									
			MS	MSD								
	4	0161038001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	<0.50	50	50	53.3	53.0	107	106	70-134	0	20	
1,1,2,2-Tetrachloroethane	ug/L	<0.25	50	50	49.3	50.1	99	100	70-130	2	20	
1,1,2-Trichloroethane	ug/L	<0.20	50	50	53.2	53.8	106	108	70-130	1	20	
1,1-Dichloroethane	ug/L	<0.24	50	50	61.4	62.0	123	124	71-133	1	20	
1,1-Dichloroethene	ug/L	<0.41	50	50	53.3	53.1	106	106	75-136	0	20	
1,2,4-Trichlorobenzene	ug/L	<2.2	50	50	45.3	46.4	90	92	70-130	2	20	
1,2-Dibromo-3- chloropropane	ug/L	<2.2	50	50	52.2	53.6	104	107	63-123	3	20	
1,2-Dibromoethane (EDB)	ug/L	<0.18	50	50	53.1	53.6	106	107	70-130	1	20	
1,2-Dichlorobenzene	ug/L	<0.50	50	50	50.4	50.5	101	101	70-130	0	20	
1,2-Dichloroethane	ug/L	2.6	50	50	63.5	63.6	122	122	70-131	0	20	
1,2-Dichloropropane	ug/L	<0.23	50	50	56.3	57.3	113	115	80-120	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

MATRIX SPIKE & MATRIX SPI	KE DUPLIC	ATE: 16168	46		1616847							
			MS	MSD								
	4	0161038001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,3-Dichlorobenzene	ug/L	<0.50	50	50	48.2	49.0	96	98	70-130	2	20	
1,4-Dichlorobenzene	ug/L	<0.50	50	50	52.0	53.9	103	107	70-130	4	20	
Benzene	ug/L	<0.50	50	50	43.3	43.5	86	86	73-145	0	20	
Bromodichloromethane	ug/L	<0.50	50	50	59.1	59.6	118	119	70-130	1	20	
Bromoform	ug/L	<0.50	50	50	61.1	61.0	122	122	67-130	0	20	
Bromomethane	ug/L	<2.4	50	50	55.3	58.5	109	116	26-129	6	20	
Carbon tetrachloride	ug/L	<0.50	50	50	58.7	58.2	117	116	70-134	1	20	
Chlorobenzene	ug/L	<0.50	50	50	54.0	54.2	108	108	70-130	0	20	
Chloroethane	ug/L	2.6	50	50	56.7	58.5	108	112	58-120	3	20	
Chloroform	ug/L	<2.5	50	50	50.8	50.3	102	101	80-121	1	20	
Chloromethane	ug/L	<0.50	50	50	46.4	50.2	93	100	40-128	8	20	
cis-1,2-Dichloroethene	ug/L	43.9	50	50	84.0	84.8	80	82	70-130	1	20	
cis-1,3-Dichloropropene	ug/L	<0.50	50	50	48.3	49.6	97	99	70-130	3	20	
Dibromochloromethane	ug/L	<0.50	50	50	56.0	55.4	112	111	70-130	1	20	
Dichlorodifluoromethane	ug/L	<0.22	50	50	49.3	49.9	99	100	20-146	1	20	
Ethylbenzene	ug/L	<0.50	50	50	53.6	54.1	107	108	87-129	1	20	
Isopropylbenzene (Cumene)	ug/L	<0.14	50	50	54.3	54.2	109	108	70-130	0	20	
m&p-Xylene	ug/L	<1.0	100	100	107	108	107	108	70-130	1	20	
Methyl-tert-butyl ether	ug/L	<0.17	50	50	55.4	55.1	111	110	66-143	1	20	
Methylene Chloride	ug/L	<0.23	50	50	51.4	51.8	103	104	70-130	1	20	
o-Xylene	ug/L	<0.50	50	50	51.8	52.4	104	105	70-130	1	20	
Styrene	ug/L	<0.50	50	50	54.2	54.0	108	108	70-130	0	20	
Tetrachloroethene	ug/L	<0.50	50	50	58.6	58.2	117	116	70-130	1	20	
Toluene	ug/L	<0.50	50	50	51.8	52.0	104	104	82-131	0	20	
trans-1,2-Dichloroethene	ug/L	1.5	50	50	54.2	53.7	105	104	75-135	1	20	
trans-1,3-Dichloropropene	ug/L	<0.23	50	50	47.9	48.5	96	97	70-130	1	20	
Trichloroethene	ug/L	0.34J	50	50	55.7	56.7	111	113	70-130	2	20	
Trichlorofluoromethane	ug/L	<0.18	50	50	79.2	78.7	158	157	76-150	1	20	MO
Vinyl chloride	ug/L	4.8	50	50	56.4	58.8	103	108	56-143	4	20	
Xylene (Total)	ug/L	<1.5	150	150	159	161	106	107	70-130	1	20	
4-Bromofluorobenzene (S)	%						107	106	61-130			
Dibromofluoromethane (S)	%						102	101	67-130			
Toluene-d8 (S)	%						101	101	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	1690005819 FOR	MER 1-HOUR CLE	AN									
Pace Project No.:	40160676											
QC Batch:	275138		Analys	sis Method:	E	PA 300.0						
QC Batch Method:	EPA 300.0		Analys	sis Descript	ion: 3	00.0 IC Anio	ons					
Associated Lab San	nples: 40160676	001										
METHOD BLANK:	1618568		Ν	Matrix: Wat	ter							
Associated Lab San	nples: 40160676	001										
			Blank	K R	eporting							
Paran	neter	Units	Resu	lt	Limit	Analyz	ed	Qualifiers	_			
Sulfate		mg/L		<1.0	3.0	11/28/17	02:27					
LABORATORY COM	NTROL SAMPLE:	1618569										
			Spike	LCS	;	LCS	% Red	0				
Paran	neter	Units	Conc.	Resu	lt	% Rec	Limits	; Qi	ualifiers			
Sulfate		mg/L	20)	20.8	104	90)-110		-		
MATRIX SPIKE & M	IATRIX SPIKE DUP	LICATE: 16185	70		1618571							
			MS	MSD								
		40160617004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Uni	ts Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Sulfate	mg/	L 35.4	20	20	56.0	56.1	103	103	90-110	0	15	
MATRIX SPIKE & N	IATRIX SPIKE DUP	LICATE: 16185	72		1618573							
			MS	MSD								
		40160933001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Uni	ts Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Sulfate	mg/	′L 144J	1000	1000	1200	1200	105	105	90-110	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	1690005819 FOR	RMER 1-HOUR CL	EAN									
Pace Project No.:	40160676											
QC Batch:	509196		Analys	sis Method:	s S	M 3500-Fe	В					
QC Batch Method:	SM 3500-Fe B		Analys	sis Descript	tion: 3	500FE B Iro	n, Ferrous					
Associated Lab San	nples: 40160676	5001										
METHOD BLANK:	2767971		٦	Matrix: Wa	ter							
Associated Lab San	nples: 40160676	6001										
			Blank	k R	eporting							
Paran	neter	Units	Resu	lt	Limit	Analyz	ed	Qualifiers				
Iron, Ferrous		mg/L	<	0.017	0.040	11/17/17	13:21 H6	;				
LABORATORY CON	NTROL SAMPLE:	2767972										
_			Spike	LCS	5	LCS	% Rec	;				
Paran	neter	Units	Conc.	Resu		% Rec	Limits	Qi	ualifiers	-		
Iron, Ferrous		mg/L	.5	5	0.50	101	90	-110 H6				
MATRIX SPIKE & M	IATRIX SPIKE DUI	PLICATE: 27679	973		2767974							
			MS	MSD								
		40160138001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er Un	iits Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron, Ferrous	mg	g/L 3.1	5	5	8.3	8.2	104	101	80-120	2	20	H6
MATRIX SPIKE & M	IATRIX SPIKE DUI	PLICATE: 27679	975		2767976							
			MS	MSD								
		40160138002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	<u> </u>
Paramete	er Un	nts Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron, Ferrous	mg	g/L <0.017	.5	.5	0.50	0.49	98	95	80-120	2	20	H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	1690005819 F	ORME	R 1-HOUR CLE	AN									
Pace Project No.:	40160676												
QC Batch:	274984			Analys	sis Method:	E	PA 353.2						
QC Batch Method:	EPA 353.2			Analys	sis Descript	ion: 3	53.2 Nitrate	+ Nitrite, p	reserved				
Associated Lab Sam	nples: 40160	676001	l										
METHOD BLANK:	1617733			N	Matrix: Wat	er							
Associated Lab Sam	nples: 40160	676001	l										
				Blank	K R	eporting							
Param	neter		Units	Resu	lt	Limit	Analyz	zed	Qualifiers				
Nitrogen, NO2 plus	NO3		mg/L	<	0.095	0.25	5 11/21/17	13:17					
LABORATORY COM	NTROL SAMPL	E: 16	617734										
				Spike	LCS	i i	LCS	% Red)				
Param	neter		Units	Conc.	Resu	lt	% Rec	Limits	; Qi	ualifiers	_		
Nitrogen, NO2 plus	NO3		mg/L	2.5	5	2.4	98	90	0-110				
MATRIX SPIKE & M	ATRIX SPIKE	DUPLIC	CATE: 16177:	35		1617736							
				MS	MSD								
_			40161194008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrogen, NO2 plus I	NO3	mg/L	<0.095	2.5	2.5	2.3	2.3	91	91	90-110	0	20	
MATRIX SPIKE & M	ATRIX SPIKE	DUPLIC	CATE: 16177:	37		1617738							
				MS	MSD								
			40160680008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrogen, NO2 plus I	NO3	mg/L	<0.25	2.5	2.5	2.5	2.5	93	93	90-110	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	1690005819 F	ORME	R 1-HOUR CLE	AN									
Pace Project No.:	40160676												
QC Batch:	274606			Analys	sis Method:	S	M 5310C						
QC Batch Method:	SM 5310C			Analys	sis Descript	ion: 5	310C Total C	Drganic Ca	rbon				
Associated Lab Sam	nples: 40160	676001	1										
METHOD BLANK:	1615659			Ν	Matrix: Wat	ter							
Associated Lab Sam	nples: 40160	67600	1										
_				Blank	K R	eporting			o ""				
Param	neter		Units	Resu	t	Limit	Analyz	.ed	Qualifiers	_			
Total Organic Carbo	n		mg/L		<0.25	0.84	11/27/17 ·	17:25					
LABORATORY CON	NTROL SAMPL	E: 16	615660										
				Spike	LCS	i	LCS	% Red	;				
Param	neter		Units	Conc.	Resu	lt	% Rec	Limits	Qı	ualifiers	_		
Total Organic Carbo	n		mg/L	2.5		2.5	98	80	-120				
MATRIX SPIKE & M	ATRIX SPIKE	DUPLIC	CATE: 16156	61		1615662							
				MS	MSD								
Deremete	-	Linita	40160635006	Spike	Spike	MS	MSD Desult	MS % Dec	MSD	% Rec	חחח	Max	Qual
	·I	Units		Conc.	Conc.			% Rec	% Rec				Quai
Total Organic Carbo	n	mg/L	3.7	3	3	7.0	6.9	110	107	80-120	1	10	
MATRIX SPIKE & M	ATRIX SPIKE	DUPLIC	CATE: 16156	63		1615664							
				MS	MSD								
Deremete	-	Linite	40160694001	Spike	Spike	MS	MSD Deput	MS % Dec	MSD	% Rec		Max	Qual
Paramete	I	Units		Conc.	Conc.	Result	Result	% Kec	% Kec				Qual
Total Organic Carbo	n	mg/L	<0.84	1	1	0.76J	0.80J	38	42	80-120		10	MO

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160676

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

PASI-M Pace Analytical Services - Minneapolis

WORKORDER QUALIFIERS

WO: 40160676

[1] Revised - Sub Lab (MN) - Incorrect 6020 metals list reported and autoshipped to client. SVM 11/30/17

ANALYTE QUALIFIERS

H6	Analysis initiated outside of the 15 minute EPA required holding time.
L1	Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results may be biased high.
M0	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery
M6	Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
N2	The lab does not hold NELAC/TNI accreditation for this parameter.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 1690005819 FORMER 1-HOUR CLEAN

 Pace Project No.:
 40160676

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40160676001	MW-6	EPA 8015B Modified	274201		
40160676001	MW-6	SM 3500-Fe B	511207		
40160676001	MW-6	EPA 3020	508614	EPA 6020A	509781
40160676001	MW-6	EPA 8260	274446		
40160676002	MW-6 DUP	EPA 8260	273887		
40160676003 40160676004	MW-7 MW-9	EPA 8260 EPA 8260	274446 274446		
40160676005	TRIP BLANK	EPA 8260	274754		
40160676001	MW-6	EPA 300.0	275138		
40160676001	MW-6	SM 3500-Fe B	509196		
40160676001	MW-6	EPA 353.2	274984		
40160676001	MW-6	SM 5310C	274606		

C019a(27Jun2006)

Version 6.0 06/14/06	Dater Hite.	- received by -							id release of liability	ocial pricing an	sp
Présent / Not Present	normalization of the second	Received By:		Date/Time-			uished By:	Relin	VLD are subject to	Samples on HO	
Coolar Cristody Soal		www.							n de la constante de la constan		Fax:
OK / Adjusted	PaterTime	Received Rv:		Date/Time:			uished By:	Relin			Telephone:
Samle Receint nH	the to ulto 1000	A X	1000	1/1 /1 S</th <th>Lowstu</th> <th>S</th> <th></th> <th></th> <th></th> <th></th> <th>Emall #2:</th>	Lowstu	S					Emall #2:
-Receipt Temp = ROL °C		Dessigned Bur	1010	110/17	mar	No L	IL IQUA	ant): (suits by (complete what you w	alm Kush Kes	Email #1:
	Date/Vine:	Received By:	1200	Date/Time:	1	4	tuished By:	Belin		Date Net	1
	Janu 1/10/14/1-46	Received by:	11:45		_ in/ia/	AL.	The Content		t to approval/surcharge	TAT subjec	(Rush
BACE Broject No		, ,				K			lime Reculested - Prelin	Imaround 1	Rush T
									n min an i mar an		
							7		6		
	nan hende men beste state ander ander ander ander ander ander and and an enter an and an and an and an and an a							¥			âtrie-gougeze
								{	Va		
									A A		
										V	
									na na 1999 na mana mana	Y	
									a de la companya de La companya de la comp		V
					X				BLANK	Thi	T
	J				×	4	1115	4	nw - q	N	400
yLoB	Only 1 Vial (1.40)				×		1535		1w-7	2	003
68	24.5				×		1245		W-6 DUP	3	82
× 8.40,00	3-250 algo Acis (45-la	$\langle X X $	××	××	×	E	1240 0	Waha	0-0	м	100
Use Only)	COMMENTS (Lat	70 (Fe ()	Su N ¹³	Eth Tot	Vo	MATRIX		DATE	IENT FIELD ID	CL	PACE LAB #
COMMENTS Profile #	CLIENT LAB	(3 stal GC SM	1fa	ene al i (S	Cs (^{later}	SW = Surface v WW = Waste W WP = Wipe	C = Oil S = Soil SI = Sludge	your sample	A Level IV	
1001-2001	Invoice To Phone: (262)	53 020 05 35	ite	ero M	(82	Water S	DW = Drinking \ GW = Ground V	B = Biota C = Charcoal	(billable)	A Level III	
Ared w1 53045	Prov. #	Irc JI COO	(30	(80 2010 53	260 Eth	Regi	rix Codes W = Water	A = Air		age Option	Data Pack
N Corporate Dr	Invoice To Address: 175) m)	0.00 0.00 1.74	15 6 10C)	lester		Regulatory Program:	1 2		PO #:
amboll	Invoice To Company:		シャ) don		1	9999999		Jobber for	(Sign):	Sampled By
an Petrofske	Invoice To Contact: Sug	D B	A	0	ar B)* Pic	PRESERVA (CODE)	8	ionathan Fuc	(Print):	Sampled By
		<u>、</u> マーイ	2 7	2 7	π ζ	ري تو تو	FILTERE (YES/NO		-3		Project Stat
	Mail To Address:		lfate J=Othe	Sodium Thiosu	olution I=	ım Bisulfate Sc	H=Sodiu	Cleaners	ormer 1-Hour	e: 77	Project Nam
	Mail To Company:	hanol G=NaOH	des Water F=Met	=HNO3 E=DI	<u>-е</u> н2SO4 D	B=HCL	A=None		69000 5819	ber: / 4	Project Num
	Mail To Contact:	SDY/	USTÀ	OF C	AIN	n	-		62 901-3501	<2	Phone:
Рас	Quote #:		0					ske	usan Petrof.	act:	Project Con
30 L D O D 1 0 +		P	\sim	à cal	ie Anal	- Tag		21	Brookfield, u	tion:	Branch/Loc
of 40	WI: 920-469-2436	MN: 612-607-1700							Ramboll	ame:	Company N
Page 1 of	EGION	UPPER MIDWEST F			0		tera gang		se Print Clearly)	(Plea	

ORIGINAL

Version 6.0 06/14/06	n son and a substantial substantial substantial substantial substantial substantial substantial substantial sub							ſ	sour to an interview successing the source	enerse of nability	iar pricing and it	
Present /	Date/Time:	Received By:		Date/Time:		-	By:	Relinquished		are subject to	mples on HOLD	ş
Cooler	*						-					Fax:
NO	Date/Time:	Received By:		Date/Time:			By:	Relinquished				Telephone:
Sam	Date/Time:	Received By:		Date/Time:			By:	Relinquished				Emali #2:
Receipt Tem	n de la companya de La companya de la comp	Ţ							u want):	s by (complete what yo	m Rush Results	Transmit Prei
	Date/Fime:	Received By: // /		Date/Time:		ÿ	By:	Relinquished		ed:	Date Neede	
1-42	James Date/Times	Received By:	1:45	Date/Time:	Valiz			Relinquished	nge)	ne Requested - Pre o approval/surchar	AT subject to	(Rush T
and a substant of the substant							/					
								ľ				
									<u>Ж</u>	N		
					-					A		
				1							X	
									2. 2. 2. 2.			
and a property of the second se												
a de la manda de la martía (° 11 a de la como de la manda de la dela de la dela de la dela de la dela de									-	BLANK	TKIP	
							N V	100		γ - 9	Ŵ	2
	Only / Vial				<u>×</u>			153		N-7	MU	
							2	124		0-6 Duf	MM	
		×	\times	×	\times		060	17 20)-6	mu	
(Lab Use Only	COMMENTS	T L	S Ni	641 701	VC me		E MATRO	ATE TIM	g	INT FIELD ID	CLIE	PACE LAB #
LAB COMMEN	CLIENT	Co Oda (Gu SM	410 410	tene tal)Cs etho	Anaiy	Vaste Water Vipe	B WP = N WW = 1	S = Soil SI = Sludg	your sample	Level IV	
262)901-3	Invoice To Phone:	2 1 2 2 2 2 2 3	ate te-	$\frac{\nu}{SM}$	(8	/805	irrinking water iround Water	oat GW = 0	C = Charo	(billable)	Level III	
movfred 6	0	ン ズロ の) 500	2 (3	<u>(8</u> 892 53	260 EH	Req	des	W=W		MS/MSD	ge Options	Data Packa
15 N COLDE	Invoice To Address:	ror Stor	00. <u>1740</u> 1	015 c G .100	?) nane	ueste		itory am:	Progr	4 10		PO #
Annboll	Invoice To Company:		o) ite) vition .)	7	d				Aler Its	Sign):	Sampled By (
Susan Pe	Invoice To Contact:	D B	AC	0	8 0	Pick	SERVATION	PRE	8	nathan Fo	Print): Jor	Sampled By (
		XX	NN	Z	N N	VIN	LTERED? (YES/NO)			601		Project State:
	Mail To Address:		e J=Other	dium Thiosulfate	l=So	Ifate Solution	t=Sodium Bis	<u> </u>	Clean	mer 1-Hour	For	Project Name
	Mail To Company:	nol G=NaOH	ater F=Metha	VO3 E=DI Wa	04 D=Hh	HCL C=H2S	A≃None B=	L	2	1000 581	er: 160	Project Numb
	Mail To Contact:	DY	USTO	T C C	Z O	SHAI	-	<u> </u>	~	2) 901-350	(26)	Phone:
	Quote #:			75-COTT	a ar, franciska				fske	an Petro	8000 SUS	Project Conta
				2	nanyr	Face A	7		W)	too WF reld,	ion: Bi	Branch/Locat
	WI: 920-469-2436	MN: 612-607-1700					X			amboll	ne:	Company Nat
Page	EGION	UPPER MIDWEST R)			2	Print Clearly)	(Please	
										، یہ 		

C019a(27Jun2006)

(Intact) Not Pressent Not Intac	Date/Time:	Received By:		Date/Time:	and company of the second s	Y:	Relinquished B	ect to Nability	les on HOLD are subj pricing and release of	Samp special
Cooler Custody S	~									Fax:
OK / Adjusted	Date/Time:	Received By:		Date/Time:		Ÿ.	Relinquished B			Telephone:
Sample Receipt	.15 ⁴						eccentra			Email #2:
Receipt Temp =	Date/Time	Received By:	1 0000	Date/Time:	LT C		Relinquished B	ilpiele what you wallt).		Email #1:
INAN	Date/Time:	Received By DOC	Can C	Date/Time:	ようの	えん	Rennuisted		ate Needed:	Transmit Dralim t
11-46	Jane 1/0/19	July and	11:45	17 11	11/10	and the second	Ser N	oval/surcharge)	subject to appro	(Rush TAT
PACE Project N	DataTime	Beneived By:		Date/Time*			Relinquished R	uested - Prelims	round Time Rea	Rush Turna
						1	_			
							//			
								N.		
								AR		
				2					XX	
									and the second	
2-40m/v3					×			ANK -	TRIP BL	2005
					X	¢.			- mm	
	Only I Vial				×		1535		MW-7	
					\times		5 C	200	0-mm	
		\times	\times	X	\times	0 6 2	111119		mw-6	
(Lab Use Only)	COMMENTS	70 	Si	Me Eth Tot	vo	MATRIX	COLLECTION		CLIENT F	PACE LAB #
LAB COMMENTS	CLIENT	sm	140 +rai	thai icne al (3	lnaly	rface Water aste Water pe	190 SW = Su WW = W	OT needed on S = Oil your sample S = Siud		
1025-100 (202)	Invoice To Phone:	2 2 2 2 2 2 2 2 3	1e 1e	n / <u>-</u> Ore im	505 (8;	inking Water ound Water	xal DW = Dr	(billable) C = Chan		
Brookfield W1 53		xra 2) 7 500	- (3 - 1)	<i>eth</i> <u>(80</u> yani'i 53	Requ	er es	Matrix Coc W = Wat			Data Package (billable)
175 N Corporate	Invoice To Address:	iron) 200,0 200,0	ane <u>215</u> e G 100	ieste		atory am:	Prog		PO #
hamboll	Invoice To Company:	N	?) .'+c	/ <u>)</u> .)	d			- Alter	n): Johle	Sampled By (Sig
Susan Petrofs	Invoice To Contact:	B B	AC	0	Pick B	SERVATION	PRES	nan Frank	nt): Jonath	Sampled By (Prin
	· · · ·	λ λ	N = N	NN	VIN N	TERED? (ES/NO)	<u>ار</u>	**20 1997-84	8	Project State:
	Mail To Address:		fate J=Other	I=Sodium Thiosul	e Solution	=Sodium Bisulfat	Ŝ X	- 1-Hour Clea	Former	Project Name:
	Mail To Company:	Inol G=NaOH	des Water F=Metha	Preservation Cod D=HNO3 E=DI	L C=H2SO4	=None B=HC	Þ	N185 0	16900	Project Number:
	Mail To Contact:	DY "U	USTO	OFC	HAIN	ດ		1025-10	(262) 9	Phone:
	Quote #:		<	OSKEDS. COM	ed man an			Petrofske	Susain	Project Contact:
		. /)\	ð,	yrical .	ace Ana			itical with	" Brook	Branch/Location
	WI: 920-469-2436	MN: 612-607-1700	そ					0	Bow	Company Name:
Page 1 of	REGION	UPPER MIDWEST	p .)		÷	Clearly)	(Please Print	

C019a(27Jun2006)

ø	7		
	Pacel	Analy	/tical

靈

Sample Condition Upon Receipt

		Project #:		
Client Name: Ramboll		-		
Courier: Fed Ex UPS Client P	ace Other	ristia	AFFIX WC	RKORDER LABEL HERE
Tracking #:				
Custody Seal on Cooler/Box Present:	s no Seals intact	yes no [
Custody Seal on Samples Present: 1 yes	ho Seals intact:	yes no		
Thermometer land	ubble Bags None		Complex or	
Cooler Temperature	r RO) Biolog	lical Tissue is Fro	zen: T ves	rice, cooking process has begun
Temp Blank Present:	<u></u>		no	Person examining contents:
Temp should be above freezing to 6° C. Biota Samples may be received at $\leq 0^{\circ}$ C.		Comments:		Date:
Chain of Custody Present:	Yes No N/A	1.		
Chain of Custody Filled Out:		2.		
Chain of Custody Relinquished:	ØYes □No □N/A	3.		
Sampler Name & Signature on COC:		4.		
Samples Arrived within Hold Time:		5.		
- VOA Samples frozen upon receipt	□Yes □No	Date/Time:		
Short Hold Time Analysis (<72hr):		6.		
Rush Turn Around Time Requested:		7		
Sufficient Volume:	Pres DNo DN/A	8.		
Correct Containers Used:	Yes INO IN/A	9.		
-Pace Containers Used:	Yes INO IN/A			
-Pace IR Containers Used:	UYes UNO DINA			
Containers Intact:		10.		
Filtered volume received for Dissolved tests		11.		
Sample Labels match COC:	PYes DNo DN/A	12.		
-Includes date/time/ID/Analysis Matrix:_	\sim			
All containers needing preservation have been check (Non-Compliance noted in 13.)	ed. □Yes □No □MA		H2SO4	NaOH T NaOH +ZnAct
All containers needing preservation are found to be in	n	10.		
compliance with EPA recommendation.	□Yes □No ☑MA			
exceptions: VQA, celiform, TOC, TOX, TOH,		Initial when	Lab Std #ID of	Date/
O&G, WIDRO		completed	preservative	
Headspace in VOA Vials (>6mm):		14.		
Trip Blank Present:		15.		
Trip Blank Custody Seals Present				
Client Notification/ Resolution:		if <i>c</i>	hecked see attac	hed form for additional comments
Person Contacted:	▲ Date/T	ïme: / /	anconcu, see allau	
Comments/ Resolution:	s preceived Sim	11/18/12-		
		, ,		//
		\neg —		$-\frac{1}{1}$
Project Manager Poview		/	Data	- <u> <i> </i> </u>
Froject manager review:	*			-+++++++====
Pace Analytical Services LLC Green Bay WI				
	\mathcal{C}			Page 39 of

	Sample Condi	tion Upon Receipt	Pace Analytical Services, LLC Green Bay W 1241 Bellevue Street, Suite S
Pace Analytical		Project #	Green Bay, WI 54302
Client Name: Kan bo (W	
Courier:	ce Other:	5 Log 57:15	69676
Custody Seal on Cooler/Box Present: 🚝 yes	no Seals inta	ct: Kyes T no	
Custody Seal on Samples Present:	Tho Seals inta	ot:	
Packing Material: Subble Wrap Bu	bble Bags 「 No	ne 🔽 Other	
Thermometer Used V//+	Type of Ice: We	Blue Dry None	Samples on ice, cooling process has begun
Tomp Blank Present:	Bio	logical Tissue is Frozen:	yes
Temp should be above freezing to 6°C			Person examining-contents:
Biota Samples may be received at $\leq 0^{\circ}$ C.		Comments:	Initials:SSM
Chain of Custody Present:	KaYes □No □N	A 1.	
Chain of Custody Filled Out:		A 2.	
Chain of Custody Relinquished:		A 3	
Sampler Name & Signature on COC		A A	
Samples Arrived within Hold Time		∧ F	
- VOA Samples frozen upon roppint			
Short Hold Time Analysis (272h-)		Date/Time:	
Buch Turn Amanual Time P		A 6.	N.,
Rush Turn Around Time Requested:	Yes No N/	A 7.	
Sufficient Volume:		A 8/10 as /ms Dool.	55m 11/17
Correct Containers Used:	XYes □No □N/	A 9.	
-Pace Containers Used:	⊠Yes □No □N/	4	
-Pace IR Containers Used:	□Yes □No \$\$(N/	4	
Containers Intact:	XYes DNO DN/	A 10.	
Filtered volume received for Dissolved tests	□Yes □No 🕅N/	A 11.	
Sample Labels match COC:		12. Trip Blacks A	it received
-Includes date/time/ID/Analysis Matrix:	4		5h 4/4/4
All containers needing preservation have been checked		K HNO3 K	
All containers needing preservation are found to be in		13.	
compliance with EPA recommendation.	Ares DNO DN/	A	
(HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12) exceptions: VOX, coliform, OC, TOX, TOH.		Initial when	t#ID of IDate/
O&G, WIDROW, Phenolics, OTHER:	Yes 🗆 No	completed SM preserv	ative Time:
Headspace in VOA Vials (>6mm):	□Yes ANO □N//	14.	
Trip Blank Present:		15.	
Trip Blank Custody Seals Present	□Yes □No ₽N//		
Pace Trip Blank Lot # (if purchased):			
Person Contacted	Data	If checked	d, see attached form for additional comments
Comments/ Resolution:	Date	/ IIme.	
			/_/
		\rightarrow	
Project Manager Review:		/ /	Date: 11/17/1
F-GB-C-031-Rev.04 (12Dec2016) SCUR.xls			
Pace Analytical Services LLC Green Bay WI			
			' Page 40 of 40

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

November 28, 2017

Jeanne Tarvin Ramboll Environ 175 North Corporate Drive Suite 160 Brookfield, WI 53045

RE: Project: 1690005819 FORMER 1-HOUR CLEAN Pace Project No.: 40160674

Dear Jeanne Tarvin:

Enclosed are the analytical results for sample(s) received by the laboratory on November 11, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

A.V.M

Steven Mleczko steve.mleczko@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Jim Hutchens, Ramboll Environ Jim Kane, Ramboll Environ Snejana Karakis, Environ David L. Markelz, Ramboll Environ Michelle Murphy, Environ

Susan Petrofske, Ramboll Environ Scott Tarmann, Ramboll Environ Abigail M. Wedig, Environ International Corp

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

-				
Lab ID	Sample ID	Matrix	Date Collected	Date Received
40160674001	CONCRETE-1	Solid	11/09/17 14:30	11/11/17 10:00
40160674002	CONCRETE-2	Solid	11/09/17 14:55	11/11/17 10:00
40160674003	CONCRETE-3	Solid	11/09/17 15:00	11/11/17 10:00
40160674004	CONCRETE-4	Solid	11/09/17 15:10	11/11/17 10:00

SAMPLE ANALYTE COUNT

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40160674001	CONCRETE-1	EPA 8260	LAP, SMT	65	PASI-G
		EPA 8260	LAP	13	PASI-G
		ASTM D2974-87	RMV	1	PASI-G
40160674002	CONCRETE-2	EPA 8260	LAP	65	PASI-G
		EPA 8260	LAP	13	PASI-G
		ASTM D2974-87	RMV	1	PASI-G
40160674003	CONCRETE-3	EPA 8260	LAP	65	PASI-G
		EPA 8260	LAP	13	PASI-G
		ASTM D2974-87	RMV	1	PASI-G
40160674004	CONCRETE-4	EPA 8260	LAP	65	PASI-G
		EPA 8260	LAP	13	PASI-G
		ASTM D2974-87	RMV	1	PASI-G

SUMMARY OF DETECTION

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

Lab Sample ID **Client Sample ID** Method Parameters Analyzed Qualifiers Result Units Report Limit **CONCRETE-1** 40160674001 EPA 8260 Tetrachloroethene 115000 ug/kg 1570 11/27/17 10:39 H1,M1 EPA 8260 n-Butylbenzene 104J ug/kg 126 11/23/17 00:44 EPA 8260 n-Propylbenzene 112J ug/kg 126 11/23/17 00:44 EPA 8260 Tetrachloroethene 28.4 ug/L 10.0 11/22/17 12:13 ASTM D2974-87 Percent Moisture 4.7 % 0.10 11/27/17 14:29 40160674002 **CONCRETE-2** EPA 8260 Tetrachloroethene 243 61.9 11/22/17 21:38 ug/kg Tetrachloroethene 37.9 EPA 8260 ug/L 10.0 11/22/17 11:51 ASTM D2974-87 Percent Moisture 3.1 % 0.10 11/27/17 14:29 40160674003 **CONCRETE-3** EPA 8260 Tetrachloroethene 47.3J ug/kg 63.1 11/22/17 22:01 EPA 8260 Tetrachloroethene 16.1 ug/L 10.0 11/22/17 12:36 ASTM D2974-87 Percent Moisture 4.9 % 0.10 11/27/17 14:29 40160674004 **CONCRETE-4** EPA 8260 Tetrachloroethene 1760 ug/kg 63.9 11/22/17 22:25 EPA 8260 Tetrachloroethene 95.0 10.0 11/22/17 12:58 ug/L ASTM D2974-87 Percent Moisture 6.1 % 0.10 11/27/17 14:29

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

 Sample:
 CONCRETE-1
 Lab ID:
 40160674001
 Collected:
 11/09/17 14:30
 Received:
 11/11/17 10:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP/	A 8260 Prepa	ration Meth	od: EP	A 5035/5030B			
1,1,1,2-Tetrachloroethane	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	630-20-6	W
1,1,1-Trichloroethane	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	71-55-6	W
1,1,2,2-Tetrachloroethane	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	79-34-5	M1,W
1,1,2-Trichloroethane	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	79-00-5	M1,W
1,1-Dichloroethane	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	75-34-3	M1,W
1,1-Dichloroethene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	75-35-4	W
1,1-Dichloropropene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	563-58-6	W
1,2,3-Trichlorobenzene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	87-61-6	W
1,2,3-Trichloropropane	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	96-18-4	W
1,2,4-Trichlorobenzene	<95.1	ug/kg	500	95.1	2	11/21/17 05:30	11/23/17 00:44	120-82-1	W
1,2,4-Trimethylbenzene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	95-63-6	W
1,2-Dibromo-3-chloropropane	<182	ug/kg	500	182	2	11/21/17 05:30	11/23/17 00:44	96-12-8	W
1,2-Dibromoethane (EDB)	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	106-93-4	W
1,2-Dichlorobenzene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	95-50-1	W
1.2-Dichloroethane	<50.0	ua/ka	120	50.0	2	11/21/17 05:30	11/23/17 00:44	107-06-2	W
1,2-Dichloropropane	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	78-87-5	W
1,3,5-Trimethylbenzene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	108-67-8	W
1,3-Dichlorobenzene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	541-73-1	W
1.3-Dichloropropane	<50.0	ua/ka	120	50.0	2	11/21/17 05:30	11/23/17 00:44	142-28-9	W
1.4-Dichlorobenzene	<50.0	ua/ka	120	50.0	2	11/21/17 05:30	11/23/17 00:44	106-46-7	W
2,2-Dichloropropane	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	594-20-7	W
2-Chlorotoluene	<50.0	ua/ka	120	50.0	2	11/21/17 05:30	11/23/17 00:44	95-49-8	W
4-Chlorotoluene	<50.0	ua/ka	120	50.0	2	11/21/17 05:30	11/23/17 00:44	106-43-4	W
Benzene	<50.0	ua/ka	120	50.0	2	11/21/17 05:30	11/23/17 00:44	71-43-2	W
Bromobenzene	<50.0	ua/ka	120	50.0	2	11/21/17 05:30	11/23/17 00:44	108-86-1	W
Bromochloromethane	<50.0	ua/ka	120	50.0	2	11/21/17 05:30	11/23/17 00:44	74-97-5	W
Bromodichloromethane	<50.0	ua/ka	120	50.0	2	11/21/17 05:30	11/23/17 00:44	75-27-4	W
Bromoform	<50.0	ua/ka	120	50.0	2	11/21/17 05:30	11/23/17 00:44	75-25-2	W
Bromomethane	<140	ua/ka	500	140	2	11/21/17 05:30	11/23/17 00:44	74-83-9	W
Carbon tetrachloride	<50.0	ua/ka	120	50.0	2	11/21/17 05:30	11/23/17 00:44	56-23-5	W
Chlorobenzene	<50.0	ua/ka	120	50.0	2	11/21/17 05:30	11/23/17 00:44	108-90-7	W
Chloroethane	<134	ua/ka	500	134	2	11/21/17 05:30	11/23/17 00:44	75-00-3	W
Chloroform	<92.9	ug/kg	500	92.9	2	11/21/17 05:30	11/23/17 00:44	67-66-3	L1,M0, W
Chloromethane	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	74-87-3	W
Dibromochloromethane	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	124-48-1	W
Dibromomethane	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	74-95-3	W
Dichlorodifluoromethane	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	75-71-8	W
Diisopropyl ether	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	108-20-3	W
Ethylbenzene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	100-41-4	M1,W
Hexachloro-1,3-butadiene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	87-68-3	W
Isopropylbenzene (Cumene)	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	98-82-8	W
Methyl-tert-butyl ether	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	1634-04-4	W
Methylene Chloride	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	75-09-2	W
Naphthalene	<80.1	ug/kg	500	80.1	2	11/21/17 05:30	11/23/17 00:44	91-20-3	W

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

 Sample:
 CONCRETE-1
 Lab ID: 40160674001
 Collected: 11/09/17 14:30
 Received: 11/11/17 10:00
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix: Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP	A 8260 Prepa	ration Methe	od: EP	A 5035/5030B			
Styrene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	100-42-5	W
Tetrachloroethene	115000	ug/kg	1570	656	25	11/21/17 05:30	11/27/17 10:39	127-18-4	H1,M1
Toluene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	108-88-3	M1,W
Trichloroethene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	79-01-6	M1,W
Trichlorofluoromethane	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	75-69-4	W
Vinyl chloride	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	75-01-4	W
Xylene (Total)	<150	ug/kg	360	150	2	11/21/17 05:30	11/23/17 00:44	1330-20-7	W
cis-1,2-Dichloroethene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	156-59-2	W
cis-1,3-Dichloropropene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	10061-01-5	W
m&p-Xylene	<100	ug/kg	240	100	2	11/21/17 05:30	11/23/17 00:44	179601-23-1	W
n-Butylbenzene	104J	ug/kg	126	52.5	2	11/21/17 05:30	11/23/17 00:44	104-51-8	
n-Propylbenzene	112J	ug/kg	126	52.5	2	11/21/17 05:30	11/23/17 00:44	103-65-1	
o-Xylene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	95-47-6	W
p-lsopropyltoluene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	99-87-6	W
sec-Butylbenzene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	135-98-8	W
tert-Butylbenzene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	98-06-6	W
trans-1,2-Dichloroethene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	156-60-5	W
trans-1,3-Dichloropropene	<50.0	ug/kg	120	50.0	2	11/21/17 05:30	11/23/17 00:44	10061-02-6	W
Surrogates									
Dibromofluoromethane (S)	98	%	68-130		2	11/21/17 05:30	11/23/17 00:44	1868-53-7	1q,P4
Toluene-d8 (S)	122	%	68-149		2	11/21/17 05:30	11/23/17 00:44	2037-26-5	
4-Bromofluorobenzene (S)	125	%	58-141		2	11/21/17 05:30	11/23/17 00:44	460-00-4	
8260 MSV TCLP	Analytical	Method: EP	A 8260 Leach	ate Method	/Date:	EPA 1311; 11/20/1	7 14:25		
1,1-Dichloroethene	<4.1	ug/L	10.0	4.1	10		11/22/17 12:13	75-35-4	
1,2-Dichloroethane	<1.7	ug/L	10.0	1.7	10		11/22/17 12:13	107-06-2	
2-Butanone (MEK)	<29.8	ug/L	200	29.8	10		11/22/17 12:13	78-93-3	L1
Benzene	<5.0	ug/L	10.0	5.0	10		11/22/17 12:13	71-43-2	
Carbon tetrachloride	<5.0	ug/L	10.0	5.0	10		11/22/17 12:13	56-23-5	
Chlorobenzene	<5.0	ug/L	10.0	5.0	10		11/22/17 12:13	108-90-7	
Chloroform	<25.0	ug/L	50.0	25.0	10		11/22/17 12:13	67-66-3	
Tetrachloroethene	28.4	ug/L	10.0	5.0	10		11/22/17 12:13	127-18-4	
Trichloroethene	<3.3	ug/L	10.0	3.3	10		11/22/17 12:13	79-01-6	
Vinyl chloride	<1.8	ug/L	10.0	1.8	10		11/22/17 12:13	75-01-4	
Surrogates									
Toluene-d8 (S)	97	%	70-130		10		11/22/17 12:13	2037-26-5	
4-Bromofluorobenzene (S)	95	%	61-130		10		11/22/17 12:13	460-00-4	
Dibromofluoromethane (S)	93	%	67-130		10		11/22/17 12:13	1868-53-7	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
Percent Moisture	4.7	%	0.10	0.10	1		11/27/17 14:29		

REPORT OF LABORATORY ANALYSIS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

 Sample:
 CONCRETE-2
 Lab ID:
 40160674002
 Collected:
 11/09/17 14:55
 Received:
 11/11/17 10:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP/	A 8260 Prepa	ration Methe	od: EP/	A 5035/5030B			
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	630-20-6	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	71-55-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	79-34-5	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	79-00-5	W
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	75-34-3	W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	75-35-4	W
1,1-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	563-58-6	W
1,2,3-Trichlorobenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	87-61-6	W
1,2,3-Trichloropropane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	96-18-4	W
1,2,4-Trichlorobenzene	<47.6	ug/kg	250	47.6	1	11/21/17 05:30	11/22/17 21:38	120-82-1	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	95-63-6	W
1,2-Dibromo-3-chloropropane	<91.2	ug/kg	250	91.2	1	11/21/17 05:30	11/22/17 21:38	96-12-8	W
1,2-Dibromoethane (EDB)	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	106-93-4	W
1,2-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	95-50-1	W
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	107-06-2	W
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	78-87-5	W
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	108-67-8	W
1,3-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	541-73-1	W
1,3-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	142-28-9	W
1,4-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	106-46-7	W
2,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	594-20-7	W
2-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	95-49-8	W
4-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	106-43-4	W
Benzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	71-43-2	W
Bromobenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	108-86-1	W
Bromochloromethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	74-97-5	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	11/21/17 05:30	11/22/17 21:38	74-83-9	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	11/21/17 05:30	11/22/17 21:38	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	11/21/17 05:30	11/22/17 21:38	67-66-3	L1,W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	74-87-3	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	124-48-1	W
Dibromomethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	74-95-3	W
Dichlorodifluoromethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	75-71-8	W
Diisopropyl ether	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	108-20-3	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	100-41-4	W
Hexachloro-1,3-butadiene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	87-68-3	W
Isopropylbenzene (Cumene)	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	98-82-8	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	1634-04-4	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	75-09-2	W
Naphthalene	<40.0	ug/kg	250	40.0	1	11/21/17 05:30	11/22/17 21:38	91-20-3	W
Styrene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	100-42-5	W

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

 Sample:
 CONCRETE-2
 Lab ID:
 40160674002
 Collected:
 11/09/17 14:55
 Received:
 11/11/17 10:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP	A 8260 Prepar	ration Metho	od: EP	A 5035/5030B			
Tetrachloroethene	243	ug/kg	61.9	25.8	1	11/21/17 05:30	11/22/17 21:38	127-18-4	
Toluene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	108-88-3	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	79-01-6	W
Trichlorofluoromethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	75-69-4	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	75-01-4	W
Xylene (Total)	<75.0	ug/kg	180	75.0	1	11/21/17 05:30	11/22/17 21:38	1330-20-7	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	156-59-2	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	10061-01-5	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	11/21/17 05:30	11/22/17 21:38	179601-23-1	W
n-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	104-51-8	W
n-Propylbenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	103-65-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	95-47-6	W
p-Isopropyltoluene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	99-87-6	W
sec-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	135-98-8	W
tert-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	98-06-6	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	156-60-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 21:38	10061-02-6	W
Surrogates									
Dibromofluoromethane (S)	112	%	68-130		1	11/21/17 05:30	11/22/17 21:38	1868-53-7	1q,P4
Toluene-d8 (S)	134	%	68-149		1	11/21/17 05:30	11/22/17 21:38	2037-26-5	
4-Bromofluorobenzene (S)	130	%	58-141		1	11/21/17 05:30	11/22/17 21:38	460-00-4	
8260 MSV TCLP	Analytical	Method: EP	A 8260 Leacha	ate Method	/Date:	EPA 1311; 11/20/1	7 14:25		
1,1-Dichloroethene	<4.1	ug/L	10.0	4.1	10		11/22/17 11:51	75-35-4	
1,2-Dichloroethane	<1.7	ug/L	10.0	1.7	10		11/22/17 11:51	107-06-2	
2-Butanone (MEK)	<29.8	ug/L	200	29.8	10		11/22/17 11:51	78-93-3	L1
Benzene	<5.0	ug/L	10.0	5.0	10		11/22/17 11:51	71-43-2	
Carbon tetrachloride	<5.0	ug/L	10.0	5.0	10		11/22/17 11:51	56-23-5	
Chlorobenzene	<5.0	ug/L	10.0	5.0	10		11/22/17 11:51	108-90-7	
Chloroform	<25.0	ug/L	50.0	25.0	10		11/22/17 11:51	67-66-3	
Tetrachloroethene	37.9	ug/L	10.0	5.0	10		11/22/17 11:51	127-18-4	
Trichloroethene	<3.3	ug/L	10.0	3.3	10		11/22/17 11:51	79-01-6	
Vinyl chloride <i>Surrogates</i>	<1.8	ug/L	10.0	1.8	10		11/22/17 11:51	75-01-4	
Toluene-d8 (S)	95	%	70-130		10		11/22/17 11:51	2037-26-5	
4-Bromofluorobenzene (S)	91	%	61-130		10		11/22/17 11:51	460-00-4	
Dibromofluoromethane (S)	108	%	67-130		10		11/22/17 11:51	1868-53-7	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
Percent Moisture	3.1	%	0.10	0.10	1		11/27/17 14:29		

REPORT OF LABORATORY ANALYSIS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

 Sample:
 CONCRETE-3
 Lab ID:
 40160674003
 Collected:
 11/09/17 15:00
 Received:
 11/11/17 10:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepa	ration Meth	od: EP	A 5035/5030B			
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	630-20-6	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	71-55-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	79-34-5	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	79-00-5	W
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	75-34-3	W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	75-35-4	W
1,1-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	563-58-6	W
1.2.3-Trichlorobenzene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	87-61-6	W
1.2.3-Trichloropropane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	96-18-4	W
1.2.4-Trichlorobenzene	<47.6	ua/ka	250	47.6	1	11/21/17 05:30	11/22/17 22:01	120-82-1	W
1.2.4-Trimethylbenzene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	95-63-6	W
1.2-Dibromo-3-chloropropane	<91.2	ua/ka	250	91.2	1	11/21/17 05:30	11/22/17 22:01	96-12-8	W
1.2-Dibromoethane (EDB)	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	106-93-4	W
1.2-Dichlorobenzene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	95-50-1	W
1.2-Dichloroethane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	107-06-2	W
1.2-Dichloropropane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	78-87-5	W
1.3.5-Trimethylbenzene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	108-67-8	W
1.3-Dichlorobenzene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	541-73-1	W
1.3-Dichloropropane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	142-28-9	W
1.4-Dichlorobenzene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	106-46-7	W
2,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	594-20-7	W
2-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	95-49-8	W
4-Chlorotoluene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	106-43-4	W
Benzene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	71-43-2	W
Bromobenzene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	108-86-1	W
Bromochloromethane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	74-97-5	W
Bromodichloromethane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	75-27-4	W
Bromoform	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	75-25-2	W
Bromomethane	<69.9	ua/ka	250	69.9	1	11/21/17 05:30	11/22/17 22:01	74-83-9	W
Carbon tetrachloride	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	56-23-5	W
Chlorobenzene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	108-90-7	W
Chloroethane	<67.0	ua/ka	250	67.0	1	11/21/17 05:30	11/22/17 22:01	75-00-3	W
Chloroform	<46.4	ua/ka	250	46.4	1	11/21/17 05:30	11/22/17 22:01	67-66-3	L1.W
Chloromethane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	74-87-3	Ŵ
Dibromochloromethane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	124-48-1	W
Dibromomethane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	74-95-3	W
Dichlorodifluoromethane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	75-71-8	W
Diisopropyl ether	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	108-20-3	W
Ethylbenzene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	100-41-4	W
Hexachloro-1.3-butadiene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	87-68-3	W
Isopropylbenzene (Cumene)	<25.0	ug/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	98-82-8	W
Methyl-tert-butyl ether	<25.0	ug/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	1634-04-4	W
Methylene Chloride	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	75-09-2	W
Naphthalene	<40.0	ug/ka	250	40.0	1	11/21/17 05:30	11/22/17 22:01	91-20-3	W
Styrene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	100-42-5	W

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

 Sample:
 CONCRETE-3
 Lab ID:
 40160674003
 Collected:
 11/09/17
 15:00
 Received:
 11/11/17
 10:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepa	ration Metho	od: EP	A 5035/5030B			
Tetrachloroethene	47.3J	ug/kg	63.1	26.3	1	11/21/17 05:30	11/22/17 22:01	127-18-4	
Toluene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	108-88-3	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	79-01-6	W
Trichlorofluoromethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	75-69-4	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	75-01-4	W
Xylene (Total)	<75.0	ug/kg	180	75.0	1	11/21/17 05:30	11/22/17 22:01	1330-20-7	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	156-59-2	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	10061-01-5	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	11/21/17 05:30	11/22/17 22:01	179601-23-1	W
n-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	104-51-8	W
n-Propylbenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	103-65-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	95-47-6	W
p-Isopropyltoluene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	99-87-6	W
sec-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	135-98-8	W
tert-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	98-06-6	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	156-60-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:01	10061-02-6	W
Surrogates									
Dibromofluoromethane (S)	119	%	68-130		1	11/21/17 05:30	11/22/17 22:01	1868-53-7	1q,P4
Toluene-d8 (S)	132	%	68-149		1	11/21/17 05:30	11/22/17 22:01	2037-26-5	
4-Bromofluorobenzene (S)	128	%	58-141		1	11/21/17 05:30	11/22/17 22:01	460-00-4	
8260 MSV TCLP	Analytical	Method: EP/	A 8260 Leach	ate Method	/Date:	EPA 1311; 11/20/1	7 14:25		
1,1-Dichloroethene	<4.1	ug/L	10.0	4.1	10		11/22/17 12:36	75-35-4	
1,2-Dichloroethane	<1.7	ug/L	10.0	1.7	10		11/22/17 12:36	107-06-2	
2-Butanone (MEK)	<29.8	ug/L	200	29.8	10		11/22/17 12:36	78-93-3	L1
Benzene	<5.0	ug/L	10.0	5.0	10		11/22/17 12:36	71-43-2	
Carbon tetrachloride	<5.0	ug/L	10.0	5.0	10		11/22/17 12:36	56-23-5	
Chlorobenzene	<5.0	ug/L	10.0	5.0	10		11/22/17 12:36	108-90-7	
Chloroform	<25.0	ug/L	50.0	25.0	10		11/22/17 12:36	67-66-3	
Tetrachloroethene	16.1	ug/L	10.0	5.0	10		11/22/17 12:36	127-18-4	
Trichloroethene	<3.3	ug/L	10.0	3.3	10		11/22/17 12:36	79-01-6	
Vinyl chloride <i>Surrogates</i>	<1.8	ug/L	10.0	1.8	10		11/22/17 12:36	75-01-4	
Toluene-d8 (S)	99	%	70-130		10		11/22/17 12:36	2037-26-5	
4-Bromofluorobenzene (S)	95	%	61-130		10		11/22/17 12:36	460-00-4	
Dibromofluoromethane (S)	101	%	67-130		10		11/22/17 12:36	1868-53-7	
Percent Moisture	Analytical	Method: AS	FM D2974-87						
Percent Moisture	4.9	%	0.10	0.10	1		11/27/17 14:29		

REPORT OF LABORATORY ANALYSIS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

 Sample:
 CONCRETE-4
 Lab ID:
 40160674004
 Collected:
 11/09/17 15:10
 Received:
 11/11/17 10:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepa	ration Metho	od: EP/	A 5035/5030B			
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	630-20-6	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	71-55-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	79-34-5	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	79-00-5	W
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	75-34-3	W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	75-35-4	W
1.1-Dichloropropene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	563-58-6	W
1.2.3-Trichlorobenzene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	87-61-6	W
1.2.3-Trichloropropane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	96-18-4	W
1.2.4-Trichlorobenzene	<47.6	ua/ka	250	47.6	1	11/21/17 05:30	11/22/17 22:25	120-82-1	W
1.2.4-Trimethylbenzene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	95-63-6	W
1.2-Dibromo-3-chloropropane	<91.2	ua/ka	250	91.2	1	11/21/17 05:30	11/22/17 22:25	96-12-8	W
1.2-Dibromoethane (EDB)	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	106-93-4	W
1.2-Dichlorobenzene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	95-50-1	W
1.2-Dichloroethane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	107-06-2	W
1.2-Dichloropropane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	78-87-5	W
1.3.5-Trimethylbenzene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	108-67-8	W
1.3-Dichlorobenzene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	541-73-1	W
1.3-Dichloropropane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	142-28-9	W
1 4-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	106-46-7	W
2.2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	594-20-7	Ŵ
2-Chlorotoluene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	95-49-8	W
4-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	106-43-4	W
Benzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	71-43-2	W
Bromobenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	108-86-1	W
Bromochloromethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	74-97-5	Ŵ
Bromodichloromethane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	75-27-4	W
Bromoform	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	11/21/17 05:30	11/22/17 22:25	74-83-9	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	56-23-5	W
Chlorobenzene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	108-90-7	W
Chloroethane	<67.0	ua/ka	250	67.0	1	11/21/17 05:30	11/22/17 22:25	75-00-3	W
Chloroform	<46.4	ua/ka	250	46.4	1	11/21/17 05:30	11/22/17 22:25	67-66-3	I 1.W
Chloromethane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	74-87-3	, W
Dibromochloromethane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	124-48-1	W
Dibromomethane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	74-95-3	W
Dichlorodifluoromethane	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	75-71-8	W
Diisopropyl ether	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	108-20-3	W
Ethylbenzene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	100-41-4	W
Hexachloro-1.3-butadiene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	87-68-3	W
Isopropylbenzene (Cumene)	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	98-82-8	Ŵ
Methyl-tert-butyl ether	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	1634-04-4	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	75-09-2	W
Naphthalene	<40.0	ug/kg	250	40.0	1	11/21/17 05:30	11/22/17 22:25	91-20-3	W
Styrene	<25.0	ua/ka	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	100-42-5	W
		~ 9' ' 9	00.0	20.0					

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

 Sample:
 CONCRETE-4
 Lab ID:
 40160674004
 Collected:
 11/09/17 15:10
 Received:
 11/11/17 10:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP	A 8260 Prepa	ration Metho	od: EP	A 5035/5030B			
Tetrachloroethene	1760	ug/kg	63.9	26.6	1	11/21/17 05:30	11/22/17 22:25	127-18-4	
Toluene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	108-88-3	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	79-01-6	W
Trichlorofluoromethane	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	75-69-4	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	75-01-4	W
Xylene (Total)	<75.0	ug/kg	180	75.0	1	11/21/17 05:30	11/22/17 22:25	1330-20-7	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	156-59-2	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	10061-01-5	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	11/21/17 05:30	11/22/17 22:25	179601-23-1	W
n-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	104-51-8	W
n-Propylbenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	103-65-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	95-47-6	W
p-lsopropyltoluene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	99-87-6	W
sec-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	135-98-8	W
tert-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	98-06-6	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	156-60-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	11/21/17 05:30	11/22/17 22:25	10061-02-6	W
Surrogates									
Dibromofluoromethane (S)	87	%	68-130		1	11/21/17 05:30	11/22/17 22:25	1868-53-7	1q,P4
Toluene-d8 (S)	128	%	68-149		1	11/21/17 05:30	11/22/17 22:25	2037-26-5	
4-Bromofluorobenzene (S)	123	%	58-141		1	11/21/17 05:30	11/22/17 22:25	460-00-4	
8260 MSV TCLP	Analytical	Method: EP/	A 8260 Leach	ate Method	/Date:	EPA 1311; 11/20/1	7 14:25		
1,1-Dichloroethene	<4.1	ug/L	10.0	4.1	10		11/22/17 12:58	75-35-4	
1,2-Dichloroethane	<1.7	ug/L	10.0	1.7	10		11/22/17 12:58	107-06-2	
2-Butanone (MEK)	<29.8	ug/L	200	29.8	10		11/22/17 12:58	78-93-3	L1
Benzene	<5.0	ug/L	10.0	5.0	10		11/22/17 12:58	71-43-2	
Carbon tetrachloride	<5.0	ug/L	10.0	5.0	10		11/22/17 12:58	56-23-5	
Chlorobenzene	<5.0	ug/L	10.0	5.0	10		11/22/17 12:58	108-90-7	
Chloroform	<25.0	ug/L	50.0	25.0	10		11/22/17 12:58	67-66-3	
Tetrachloroethene	95.0	ug/L	10.0	5.0	10		11/22/17 12:58	127-18-4	
Trichloroethene	<3.3	ug/L	10.0	3.3	10		11/22/17 12:58	79-01-6	
Vinyl chloride <i>Surrogates</i>	<1.8	ug/L	10.0	1.8	10		11/22/17 12:58	75-01-4	
Toluene-d8 (S)	97	%	70-130		10		11/22/17 12:58	2037-26-5	
4-Bromofluorobenzene (S)	97	%	61-130		10		11/22/17 12:58	460-00-4	
Dibromofluoromethane (S)	93	%	67-130		10		11/22/17 12:58	1868-53-7	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
Percent Moisture	6.1	%	0.10	0.10	1		11/27/17 14:29		

EPA 8260

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

QC Batch: 274932 QC Batch Method: EPA 5035/5030B

Analysis Method: Analysis Description:

QC Batch Method:EPA 5035/5030BAnalysis Description:8260 MSV Med Level Normal ListAssociated Lab Samples:40160674001, 40160674002, 40160674003, 40160674004

METHOD BLANK:	1617480	Matrix: Solid	
Associated Lab Sam	ples:	0160674001, 40160674002, 40160674003, 40160674004	
		Blank Reporting	

Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	<13.7	50.0	11/22/17 17:23	
1,1,1-Trichloroethane	ug/kg	<14.4	50.0	11/22/17 17:23	
1,1,2,2-Tetrachloroethane	ug/kg	<17.5	50.0	11/22/17 17:23	
1,1,2-Trichloroethane	ug/kg	<20.2	50.0	11/22/17 17:23	
1,1-Dichloroethane	ug/kg	<17.6	50.0	11/22/17 17:23	
1,1-Dichloroethene	ug/kg	<17.6	50.0	11/22/17 17:23	
1,1-Dichloropropene	ug/kg	<14.0	50.0	11/22/17 17:23	
1,2,3-Trichlorobenzene	ug/kg	<17.0	50.0	11/22/17 17:23	
1,2,3-Trichloropropane	ug/kg	<22.3	50.0	11/22/17 17:23	
1,2,4-Trichlorobenzene	ug/kg	<47.6	250	11/22/17 17:23	
1,2,4-Trimethylbenzene	ug/kg	<12.2	50.0	11/22/17 17:23	
1,2-Dibromo-3-chloropropane	ug/kg	<91.2	250	11/22/17 17:23	
1,2-Dibromoethane (EDB)	ug/kg	<14.7	50.0	11/22/17 17:23	
1,2-Dichlorobenzene	ug/kg	<16.2	50.0	11/22/17 17:23	
1,2-Dichloroethane	ug/kg	<15.0	50.0	11/22/17 17:23	
1,2-Dichloropropane	ug/kg	<16.8	50.0	11/22/17 17:23	
1,3,5-Trimethylbenzene	ug/kg	<14.5	50.0	11/22/17 17:23	
1,3-Dichlorobenzene	ug/kg	<13.2	50.0	11/22/17 17:23	
1,3-Dichloropropane	ug/kg	<12.0	50.0	11/22/17 17:23	
1,4-Dichlorobenzene	ug/kg	<15.9	50.0	11/22/17 17:23	
2,2-Dichloropropane	ug/kg	<12.6	50.0	11/22/17 17:23	
2-Chlorotoluene	ug/kg	<15.8	50.0	11/22/17 17:23	
4-Chlorotoluene	ug/kg	<13.0	50.0	11/22/17 17:23	
Benzene	ug/kg	<9.2	20.0	11/22/17 17:23	
Bromobenzene	ug/kg	<20.6	50.0	11/22/17 17:23	
Bromochloromethane	ug/kg	<21.4	50.0	11/22/17 17:23	
Bromodichloromethane	ug/kg	<9.8	50.0	11/22/17 17:23	
Bromoform	ug/kg	<19.8	50.0	11/22/17 17:23	
Bromomethane	ug/kg	<69.9	250	11/22/17 17:23	
Carbon tetrachloride	ug/kg	<12.1	50.0	11/22/17 17:23	
Chlorobenzene	ug/kg	<14.8	50.0	11/22/17 17:23	
Chloroethane	ug/kg	<67.0	250	11/22/17 17:23	
Chloroform	ug/kg	<46.4	250	11/22/17 17:23	
Chloromethane	ug/kg	<20.4	50.0	11/22/17 17:23	
cis-1,2-Dichloroethene	ug/kg	<16.6	50.0	11/22/17 17:23	
cis-1,3-Dichloropropene	ug/kg	<16.6	50.0	11/22/17 17:23	
Dibromochloromethane	ug/kg	<17.9	50.0	11/22/17 17:23	
Dibromomethane	ug/kg	<19.3	50.0	11/22/17 17:23	
Dichlorodifluoromethane	ug/kg	<12.3	50.0	11/22/17 17:23	
Diisopropyl ether	ug/kg	<17.7	50.0	11/22/17 17:23	
Ethylbenzene	ug/kg	<12.4	50.0	11/22/17 17:23	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

METHOD BLANK: 1617480 Matrix: Solid Associated Lab Samples: 40160674001, 40160674002, 40160674003, 40160674004 Blank Reporting

Parameter	Units	Result	Limit	Analvzed	Qualifiers
Lloveshlare 1.2 hutediane			<u> </u>	11/00/17 17:00	
	ug/kg	<24.5	50.0	11/22/17 17:23	
Isopropyibenzene (Cumene)	ug/kg	<12.6	50.0	11/22/17 17:23	
m&p-Xylene	ug/kg	<34.4	100	11/22/17 17:23	
Methyl-tert-butyl ether	ug/kg	<12.7	50.0	11/22/17 17:23	
Methylene Chloride	ug/kg	<16.2	50.0	11/22/17 17:23	
n-Butylbenzene	ug/kg	<10.5	50.0	11/22/17 17:23	
n-Propylbenzene	ug/kg	<11.6	50.0	11/22/17 17:23	
Naphthalene	ug/kg	<40.0	250	11/22/17 17:23	
o-Xylene	ug/kg	<14.0	50.0	11/22/17 17:23	
p-Isopropyltoluene	ug/kg	<12.0	50.0	11/22/17 17:23	
sec-Butylbenzene	ug/kg	<11.9	50.0	11/22/17 17:23	
Styrene	ug/kg	<9.0	50.0	11/22/17 17:23	
tert-Butylbenzene	ug/kg	<9.5	50.0	11/22/17 17:23	
Tetrachloroethene	ug/kg	<12.9	50.0	11/22/17 17:23	
Toluene	ug/kg	<11.2	50.0	11/22/17 17:23	
trans-1,2-Dichloroethene	ug/kg	<16.5	50.0	11/22/17 17:23	
trans-1,3-Dichloropropene	ug/kg	<14.4	50.0	11/22/17 17:23	
Trichloroethene	ug/kg	<23.6	50.0	11/22/17 17:23	
Trichlorofluoromethane	ug/kg	<24.7	50.0	11/22/17 17:23	
Vinyl chloride	ug/kg	<21.1	50.0	11/22/17 17:23	
Xylene (Total)	ug/kg	<48.4	150	11/22/17 17:23	
4-Bromofluorobenzene (S)	%	103	58-141	11/22/17 17:23	
Dibromofluoromethane (S)	%	101	68-130	11/22/17 17:23	
Toluene-d8 (S)	%	110	68-149	11/22/17 17:23	

LABORATORY CONTROL SAMPLE: 1617481

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	2500	2640	106	61-122	
1,1,2,2-Tetrachloroethane	ug/kg	2500	2990	120	73-130	
1,1,2-Trichloroethane	ug/kg	2500	2960	118	70-130	
1,1-Dichloroethane	ug/kg	2500	2970	119	63-124	
1,1-Dichloroethene	ug/kg	2500	2080	83	53-117	
1,2,4-Trichlorobenzene	ug/kg	2500	2330	93	78-130	
1,2-Dibromo-3-chloropropane	ug/kg	2500	2550	102	49-140	
1,2-Dibromoethane (EDB)	ug/kg	2500	2800	112	70-130	
1,2-Dichlorobenzene	ug/kg	2500	2530	101	70-130	
1,2-Dichloroethane	ug/kg	2500	3150	126	56-135	
1,2-Dichloropropane	ug/kg	2500	2840	114	77-122	
1,3-Dichlorobenzene	ug/kg	2500	2480	99	70-130	
1,4-Dichlorobenzene	ug/kg	2500	2450	98	70-130	
Benzene	ug/kg	2500	2780	111	66-130	
Bromodichloromethane	ug/kg	2500	2480	99	62-135	
Bromoform	ug/kg	2500	2010	80	68-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

LABORATORY CONTROL SAMPLE: 1617481

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromomethane	ug/kg	2500	1910	76	29-137	
Carbon tetrachloride	ug/kg	2500	2610	104	57-130	
Chlorobenzene	ug/kg	2500	2650	106	70-130	
Chloroethane	ug/kg	2500	2280	91	36-144	
Chloroform	ug/kg	2500	2910	117	69-115 I	L1
Chloromethane	ug/kg	2500	1660	67	32-126	
cis-1,2-Dichloroethene	ug/kg	2500	2740	109	65-130	
cis-1,3-Dichloropropene	ug/kg	2500	2200	88	70-130	
Dibromochloromethane	ug/kg	2500	2690	108	70-130	
Dichlorodifluoromethane	ug/kg	2500	1490	60	10-99	
Ethylbenzene	ug/kg	2500	2880	115	82-122	
Isopropylbenzene (Cumene)	ug/kg	2500	2710	108	70-130	
m&p-Xylene	ug/kg	5000	5300	106	70-130	
Methyl-tert-butyl ether	ug/kg	2500	2760	110	63-134	
Methylene Chloride	ug/kg	2500	2550	102	56-123	
o-Xylene	ug/kg	2500	2660	106	70-130	
Styrene	ug/kg	2500	2770	111	70-130	
Tetrachloroethene	ug/kg	2500	2440	98	70-131	
Toluene	ug/kg	2500	2880	115	80-120	
trans-1,2-Dichloroethene	ug/kg	2500	2450	98	66-130	
trans-1,3-Dichloropropene	ug/kg	2500	2950	118	68-130	
Trichloroethene	ug/kg	2500	2850	114	70-130	
Trichlorofluoromethane	ug/kg	2500	1930	77	37-149	
Vinyl chloride	ug/kg	2500	1870	75	43-128	
Xylene (Total)	ug/kg	7500	7960	106	70-130	
4-Bromofluorobenzene (S)	%			110	58-141	
Dibromofluoromethane (S)	%			105	68-130	
Toluene-d8 (S)	%			108	68-149	

MATRIX SPIKE & MATRIX SP	PIKE DUPLICA	TE: 16174	82		1617483							
			MS	MSD								
	40	0160674001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/kg	<50.0	1310	1310	1490	1420	113	108	57-123	5	20	
1,1,2,2-Tetrachloroethane	ug/kg	<50.0	1310	1310	320	334	24	25	73-135	4	20	M1
1,1,2-Trichloroethane	ug/kg	<50.0	1310	1310	1730	1710	132	130	70-130	1	20	M1
1,1-Dichloroethane	ug/kg	<50.0	1310	1310	1680	1720	128	131	63-124	2	20	M1
1,1-Dichloroethene	ug/kg	<50.0	1310	1310	1160	1090	89	83	48-117	6	23	
1,2,4-Trichlorobenzene	ug/kg	<95.1	1310	1310	1530	1470	117	112	78-145	5	20	
1,2-Dibromo-3- chloropropane	ug/kg	<182	1310	1310	1970	1840	150	140	38-168	7	22	
1,2-Dibromoethane (EDB)	ug/kg	<50.0	1310	1310	1610	1490	123	113	70-130	8	20	
1,2-Dichlorobenzene	ug/kg	<50.0	1310	1310	1470	1530	112	117	70-130	4	20	
1,2-Dichloroethane	ug/kg	<50.0	1310	1310	1840	1800	140	137	56-145	2	20	
1,2-Dichloropropane	ug/kg	<50.0	1310	1310	1590	1600	122	122	77-123	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 161748	82		1617483							
			MS	MSD								
		40160674001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,3-Dichlorobenzene	ug/kg	<50.0	1310	1310	1510	1460	115	111	70-130	4	20	
1,4-Dichlorobenzene	ug/kg	<50.0	1310	1310	1610	1400	123	107	70-130	14	20	
Benzene	ug/kg	<50.0	1310	1310	1590	1580	121	121	65-130	0	20	
Bromodichloromethane	ug/kg	<50.0	1310	1310	1260	1310	96	100	59-141	4	20	
Bromoform	ug/kg	<50.0	1310	1310	1370	1390	105	106	59-141	1	20	
Bromomethane	ug/kg	<140	1310	1310	890	792	68	60	28-139	12	20	
Carbon tetrachloride	ug/kg	<50.0	1310	1310	1440	1360	109	104	50-130	5	20	
Chlorobenzene	ug/kg	<50.0	1310	1310	1580	1590	121	121	70-130	0	20	
Chloroethane	ug/kg	<134	1310	1310	1040	1060	80	81	36-144	1	20	
Chloroform	ug/kg	<92.9	1310	1310	1640	1610	125	123	68-122	2	20	MO
Chloromethane	ug/kg	<50.0	1310	1310	933	949	71	72	30-126	2	20	
cis-1,2-Dichloroethene	ug/kg	<50.0	1310	1310	1550	1500	118	115	63-130	3	20	
cis-1,3-Dichloropropene	ug/kg	<50.0	1310	1310	1100	1090	84	83	70-130	1	20	
Dibromochloromethane	ug/kg	<50.0	1310	1310	1400	1330	107	101	66-136	5	20	
Dichlorodifluoromethane	ug/kg	<50.0	1310	1310	771	770	59	59	10-99	0	33	
Ethylbenzene	ug/kg	<50.0	1310	1310	1690	1620	129	123	80-122	5	20	M1
Isopropylbenzene (Cumene)	ug/kg	<50.0	1310	1310	1620	1500	122	113	70-130	7	20	
m&p-Xylene	ug/kg	<100	2620	2620	3210	3010	122	115	70-130	6	20	
Methyl-tert-butyl ether	ug/kg	<50.0	1310	1310	1630	1570	124	120	63-134	4	20	
Methylene Chloride	ug/kg	<50.0	1310	1310	1450	1410	110	107	56-127	3	20	
o-Xylene	ug/kg	<50.0	1310	1310	1530	1490	117	114	70-130	3	20	
Styrene	ug/kg	<50.0	1310	1310	1550	1450	118	110	70-130	7	20	
Tetrachloroethene	ug/kg	115000	1310	1310	13500	15100	-7750	-7620	70-131	12	20	M1
Toluene	ug/kg	<50.0	1310	1310	1700	1640	130	125	80-120	4	20	M1
trans-1,2-Dichloroethene	ug/kg	<50.0	1310	1310	1410	1330	107	101	60-130	6	20	
trans-1,3-Dichloropropene	ug/kg	<50.0	1310	1310	1410	1430	108	109	68-130	1	20	
Trichloroethene	ug/kg	<50.0	1310	1310	2720	2840	207	216	70-130	4	20	M1
Trichlorofluoromethane	ug/kg	<50.0	1310	1310	951	1090	73	83	37-149	13	24	
Vinyl chloride	ug/kg	<50.0	1310	1310	1070	1040	82	79	39-128	4	20	
Xylene (Total)	ug/kg	<150	3930	3930	4740	4500	120	114	70-130	5	20	
4-Bromofluorobenzene (S)	%						133	124	58-141			
Dibromofluoromethane (S)	%						108	105	68-130			
Toluene-d8 (S)	%						130	126	68-149			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

QC Batch:	274926	Analysis Method:	EPA 8260
QC Batch Method:	EPA 8260	Analysis Description:	8260 MSV TCLP
Associated Lab Samp	les: 40160674001, 401606740	02, 40160674003, 40160674004	

Matrix: Water

METHOD BLANK: 16174	24	Matrix: Water
Associated Lab Samples:	40160674001, 40160674002	, 40160674003, 40160674004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1.1-Dichloroethene	ua/L	<0.41	1.0	11/22/17 07:42	
1,2-Dichloroethane	ug/L	<0.17	1.0	11/22/17 07:42	
2-Butanone (MEK)	ug/L	<3.0	20.0	11/22/17 07:42	
Benzene	ug/L	<0.50	1.0	11/22/17 07:42	
Carbon tetrachloride	ug/L	<0.50	1.0	11/22/17 07:42	
Chlorobenzene	ug/L	<0.50	1.0	11/22/17 07:42	
Chloroform	ug/L	<2.5	5.0	11/22/17 07:42	
Tetrachloroethene	ug/L	<0.50	1.0	11/22/17 07:42	
Trichloroethene	ug/L	<0.33	1.0	11/22/17 07:42	
Vinyl chloride	ug/L	<0.18	1.0	11/22/17 07:42	
4-Bromofluorobenzene (S)	%	93	61-130	11/22/17 07:42	
Dibromofluoromethane (S)	%	102	67-130	11/22/17 07:42	
Toluene-d8 (S)	%	99	70-130	11/22/17 07:42	

METHOD BLANK: 1616945

Matrix: Solid

Associated Lab Samples: 40160674001, 40160674002, 40160674003, 40160674004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1-Dichloroethene	ug/L	<4.1	10.0	11/22/17 13:44	
1,2-Dichloroethane	ug/L	<1.7	10.0	11/22/17 13:44	
2-Butanone (MEK)	ug/L	<29.8	200	11/22/17 13:44	
Benzene	ug/L	<5.0	10.0	11/22/17 13:44	
Carbon tetrachloride	ug/L	<5.0	10.0	11/22/17 13:44	
Chlorobenzene	ug/L	<5.0	10.0	11/22/17 13:44	
Chloroform	ug/L	<25.0	50.0	11/22/17 13:44	
Tetrachloroethene	ug/L	<5.0	10.0	11/22/17 13:44	
Trichloroethene	ug/L	<3.3	10.0	11/22/17 13:44	
Vinyl chloride	ug/L	<1.8	10.0	11/22/17 13:44	
4-Bromofluorobenzene (S)	%	92	61-130	11/22/17 13:44	
Dibromofluoromethane (S)	%	100	67-130	11/22/17 13:44	
Toluene-d8 (S)	%	98	70-130	11/22/17 13:44	

LABORATORY CONTROL SAMPLE: 1617425

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1-Dichloroethene	ug/L		42.8	86	75-130	
1,2-Dichloroethane	ug/L	50	43.5	87	70-131	
2-Butanone (MEK)	ug/L	50	75.3	151	50-150 L	.1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

LABORATORY CONTROL SAMPLE: 1617425

			Spike	LCS	LCS	% Rec	
	Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene		ug/L	50	50.9	102	73-145	
Carbon tetrad	chloride	ug/L	50	48.9	98	70-133	
Chlorobenzei	ne	ug/L	50	57.5	115	70-130	
Chloroform		ug/L	50	46.7	93	80-121	
Tetrachloroet	hene	ug/L	50	53.1	106	70-130	
Trichloroethe	ne	ug/L	50	48.5	97	70-130	
Vinyl chloride	•	ug/L	50	41.6	83	57-136	
4-Bromofluor	obenzene (S)	%			105	61-130	
Dibromofluor	omethane (S)	%			93	67-130	
Toluene-d8 (S	S)	%			104	70-130	

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	ATE: 16188	37		1618838							
			MS	MSD								
	4	0160674002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1-Dichloroethene	ug/L	<4.1	500	500	445	477	89	95	75-136	7	20	
1,2-Dichloroethane	ug/L	<1.7	500	500	449	450	90	90	70-131	0	20	
2-Butanone (MEK)	ug/L	<29.8	500	500	429	474	86	95	50-150	10	20	
Benzene	ug/L	<5.0	500	500	523	554	105	111	73-145	6	20	
Carbon tetrachloride	ug/L	<5.0	500	500	507	548	101	110	70-134	8	20	
Chlorobenzene	ug/L	<5.0	500	500	555	555	111	111	70-130	0	20	
Chloroform	ug/L	<25.0	500	500	492	510	98	102	80-121	4	20	
Tetrachloroethene	ug/L	37.9	500	500	554	558	103	104	70-130	1	20	
Trichloroethene	ug/L	<3.3	500	500	496	497	99	99	70-130	0	20	
Vinyl chloride	ug/L	<1.8	500	500	456	484	91	97	56-143	6	20	
4-Bromofluorobenzene (S)	%						102	104	61-130			
Dibromofluoromethane (S)	%						98	101	67-130			
Toluene-d8 (S)	%						105	102	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

QC Batch:	27532	7	Analysis Method:	ASTM D2974-87
QC Batch Method:	ASTM	D2974-87	Analysis Description:	Dry Weight/Percent Moisture
Associated Lab Samp	oles:	40160674001, 40160674002, 40	160674003, 40160674004	

		4040000
SAIVIPL	E DUPI	1619632

		40161263001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	5.0	5.0	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

SAMPLE QUALIFIERS

Sample: 40160674001

[1] ZHE exposed to air during crushing process

[2] ZHE received in ziplock SOP calls for glass container

Sample: 40160674002

- [1] ZHE exposed to air during crushing process
- [2] ZHE received in ziplock SOP calls for glass container

Sample: 40160674003

- [1] ZHE exposed to air during crushing process
- [2] ZHE received in ziplock SOP calls for glass container

Sample: 40160674004

- [1] ZHE exposed to air during crushing process
- [2] ZHE received in ziplock SOP calls for glass container

ANALYTE QUALIFIERS

- 1q Sample aliquot was taken from a zipock bag with head space and MeOH preserved in the laboratory.
- H1 Analysis conducted outside the recognized method holding time.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results may be biased high.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALIFIERS

Project: 1690005819 FORMER 1-HOUR CLEAN

Pace Project No.: 40160674

ANALYTE QUALIFIERS

P4	Sample field preservation does not meet EPA or method recommendations for this analysis.
----	--

W Non-detect results are reported on a wet weight basis.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 1690005819 FORMER 1-HOUR CLEAN

 Pace Project No.:
 40160674

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40160674001	CONCRETE-1	EPA 5035/5030B	274932	EPA 8260	274943
40160674002	CONCRETE-2	EPA 5035/5030B	274932	EPA 8260	274943
40160674003	CONCRETE-3	EPA 5035/5030B	274932	EPA 8260	274943
40160674004	CONCRETE-4	EPA 5035/5030B	274932	EPA 8260	274943
40160674001	CONCRETE-1	EPA 8260	274926		
40160674002	CONCRETE-2	EPA 8260	274926		
40160674003	CONCRETE-3	EPA 8260	274926		
40160674004	CONCRETE-4	EPA 8260	274926		
40160674001	CONCRETE-1	ASTM D2974-87	275327		
40160674002	CONCRETE-2	ASTM D2974-87	275327		
40160674003	CONCRETE-3	ASTM D2974-87	275327		
40160674004	CONCRETE-4	ASTM D2974-87	275327		

C019a(27Jun2006)

ORIGINAL

Version 6.0 06/14/06								g and release of liability	special pricing
Present / Not Present	Date/Time:	Received By:	ne:	Date/Tin		hed By:	Relinquis	HOLD are subject to	Samples on
Coolar Custody Seal									Fax:
OK / Adjusted	Date/Time:	Received By:	me:	Date/Vin	J	hed By:	Relinquis		Telephone:
Sample Receipt pH	1 m July 1 (00	5	17 1000	Stice Intre	5	6		a no construction de la const	Email #2:
Receipt Temp = ROI °C	w / Date/Time	Received By:		n Date/Tin	N VYVVV	hed By: Uur	Relinguis	results by (complete what you want	Email #1:
~\~~\~	Date/Time:	Received By:	me: 1200	Date/Tin	2 2 2	hed By:	Relinquis		Table Della Dick (
	11/2/1/ - mm	Man Th	45	0/17 //:	111	Un hy	here	ject to approval/surcharge)	(Rush TAT subj
PACE Project No.	Date/Time:	Received By:	me:	/ Date/Tir	• /	hed By:	Relinquis	d Time Requested - Prelims	Rush Turnaroun
						7			
							/		
				;				Ø	
								Â	
									X
		1							/
		He a							
¢				Ŷ		510 V	4	crete-4	out Con
				▲ X	<	500		crete - 3	2003 (Con
		<i>A</i>		x \ \	<	155/		chete -2	002 Conc
Lzipla *			A	^ X	×	430 Convete	11/9/17/1	zrete -1	OO (Cono
Lab Use Only)	COMMENTS (I	<u>/</u>	- 	TC	P	TIME MATRIX	DATE	CLIENT FIELD ID	PACE LAB #
B COMMENTS Profile #	CLIENT		1	22	Anah	v – Sundce Water V – Waste Water S – Wipe	Soil W	V NOT needed on S= your sample Si=	
1075-109 (2)	Invoice To Phone: (20			p	/888	V = Drinking Water V = Ground Water	Dia Di Charcoal Gi	(billable) C=	
okfield, w/ S3045	or g live		_	Vol	Requ	Codes = Water	Air Matrix		Data Package Opti (billable)
L Corporate Dr	Invoice To Address:	nn an a		ati	iesto		egulatory rogram:		PO #:
lamboll	Invoice To Company:			les	d		\ 	Partin Shap	Sampled By (Sign):
isan Petrofske	Invoice To Contact: S			A A A	Letter	PRESERVATION (CODE)*	à	Jonathan Fuq.	Sampled By (Print):
				V V	V NIA	FILTERED? (YES/NO)		ω_{1}	Project State:
	Mail To Address:		iosulfate J=Other	I=Sodium Thi	ate Solution	H=Sodium Bisuh	Mers	former 1-Hour Clea	Project Name:
	Mail To Company:	anol G=NaOH	t Codes E=DI Water F=Meth	*Preservation 04 D=HNO3 E	ICL C=H2S(A=None B=+		1690005819	Project Number:
	Mail To Contact:	DDY	CUSTC	NOF	HAI	0	×	(262) 901-350	Phone:
Pag	Quote #:		_				9	Susan Petrofsk	Project Contact:
40160674		P		nalytical	ace A	1		Brookfield, W	Branch/Location:
• of 25	WI: 920-469-2436	MN: 612-607-1700		5 5				hambell	Company Name:
Page 1 of	REGION	UPPER MIDWEST R			J			ase Print Clearly)	(Ple

	Sample Condit	ion Upon Rec	eipt Pace	Analytical Services, LLC Green Bay \ 1241 Bellevue Street, Suite
Pace Analytical"				Green Bay, WI 543
Client Name: Ray boll		Project #:	WO# :	40160674
Courier: Fed Ex UPS Client Pa	ace Other:	5 Log Stils		
Custody Seal on Cooler/Box Present:	s no Seals intac	t. Sves E no	40160674	
Custody Seal on Samples Present:	no Seals intac	t: F yes - no		
Packing Material: The Bubble Wrap	Ibble Bags T Nor	ne TOther		
Thermometer Used <u>V/A</u>	Type of Ice: Wei	Blue Dry None	🕅 Samples o	n ice, cooling process has begun
Cooler Temperature Uncorr: 1/0 P /Corr:	Biol	ogical Tissue is Fre	ozen: 🔽 yes	-
Temp Blank Present: Tyes 1310			r no	Person examining contents:
Temp should be above freezing to 6°C. Biota Samples may be received at < 0°C		Comments:		Initials: <u>SSM</u>
Chain of Custody Present:		1.		
Chain of Custody Filled Out:	BerYes □No □N/A	2.	******	
Chain of Custody Relinquished:	1⊠yes □No □N/4	3.		
Sampler Name & Signature on COC:		4.		
Samples Arrived within Hold Time:	TYes No N/A	5.		
- VOA Samples frozen upon receipt	□Yes □No	Date/Time:		
Short Hold Time Analysis (<72hr):	□Yes \$\$\$No □N/A	6.		~.
Rush Turn Around Time Requested:		7.		
Sufficient Volume:	□Yes XNo □N/A	8. Mons/ns	D wol.	552 1 Juli
Correct Containers Used:	Dyes DNo DN/A	9. novels for	WC'S	
-Pace Containers Used:	□Yes \$No □N/#			, ,
-Pace IR Containers Used:		\		St 4/1//>
Containers Intact:		10.		
Filtered volume received for Dissolved tests	□Yes □No \\ \/	11.		
Sample Labels match COC:		12.		
-Includes date/time/ID/Analysis Matrix:	S(concrete)			
All containers needing preservation have been checke (Non-Compliance noted in 13.)	:d. □Yes □No KAN/#	T HNO:	3 🖵 H2SO4	└─ NaOH / └─ NaOH +ZnAct
All containers needing preservation are found to be in		1		
(HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12)	∐Yes □No 🕰N/A			
exceptions: VOA, coliform, TOC, TOX, TOH, O&G, WIDROW, Phenolics, OTHER:	□Yes ĎNo	Initial when completed	Lab Std #ID of preservative	Date/ Time:
Headspace in VOA Vials (>6mm):	□Yes □No 絶N/A	14.		<u></u>
Trip Blank Present:		15.		
Trip Blank Custody Seals Present	□Yes □No ੴN/A		·	
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution: Person Contacted:	Data	/Time:	checked, see attacl	ned form for additional comments
Comments/ Resolution:	Date	/ Time.		
			·	<u>/ </u>
		/		
Project Manager Review:		\sim	Date:	11/10/17
7-GB-C-031-Rev.04 (12Dec2016) SCUR.xls				
ate maryital Services LLC Gleen Day WI				Page 25 of 2

99 - T.

APPENDIX C

PRE-REMEDIATION TREATABILITY STUDY DOCUMENTATION

De

-98

te of Wis partment	consin of Natur	ral Reso	ources								SOII For	BORI m 4400-	NG LO 122	G INFO	DRMATI Rev. 7
	Rout	<u>e To</u> :	Watersh	ed/Wastewater □ Wa	ste Manag	gement									
			Remedia	ation/Redevelopment Oth	ner 🗆							D	1	- £	2
Facility	Droigot	Nama				Lice	nso/Dor	mit/Mon	itorin	a Number	Bori	Page	l	01	3
гасшиу	Flojeci	MU	- Former	1-Hour Valet Cleaners Site		Lice	1150/1 01		norm	g inumber	DOII	ing inum	TB- 1	l	
Boring	Drilled I	By: Nan	ne of crev	w chief (first, last) and Firm		Date	Drillin	g Started	1	Date Drill	ing Con	npleted	Drilling	g Metho	d
First I	Name: Prob	Daniel e Techn	ologies	Last Name: Bendorf		<u>1</u> <u>1</u> m m	/ <u>0</u> 9	$\frac{1}{2} \frac{0}{2}$	$\frac{1}{v} \frac{7}{v}$	$\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{9}{4} / \frac{2}{2}$	$\frac{0}{1} \frac{1}{7}$	Direct I	Push - C	GeoProbe
WI Uni	que Wel	ll No.	loiogies, i	DNR Well ID No. Well Name	1	Fina	1 Static	Water L	evel	Surface E	levation	y y y	Boreho	le Diam	eter
	·			N	JA		F	eet MSL	,		Feet M	SL	2	inch	es
Local C	brid Orig	gin 🗆	estimat	ed: D) or Boring Location [Local Gri	d Locati	on			- 5
State Pl	ane $\frac{1}{4}$ of	1/	4 of Sect	N, ion T N R	E	Lat	°	— ;́—	—"		Feet			Feet	
Facility	ID	1/	1 of Beet	County	Cour	ty Code		ivil Tow	/n/Cit	v/ or Villa	ge Teet				
1 4011109	12			Milwaukee		4	1		n on	City of N	Jilwaul	kee, Wi	sconsir	1	
San	nple								[-	Soi	il Propei	ties		s
	. & (ft)	ıts	eet urface)	Soil/Rock Description			හ	am		ve					ment
er 'pe	n Alt ered	Cour	in Fe ound s	and Geologic Origin for			ic Lo	Diagr	A	essiv th	ure at		ity		Com
dmb d T	ength	ow o	epth ^{dow gr}	Each Major Unit		SCS	raph	ell I	D/F	ompi reng	oistu	quid mit	astic dex	200	QD/(
an an	л¤	B	Q 9			Ŋ	Ű	3	Ы	τς Σ	ΣŬ	ΞΞ	PI h	Ь	Ř
			1.0 —												
			2.0 —												
			3.0 —	Ъ											
			10 -	В I											
			4.0 -	i											
			5.0 —	n											
				d											
			6.0 —	D											
			7.0 —	r											
			8.0 —	1											
				e											
			9.0 —	d											
			10.0 —												
	1	l	1110	1			1	1	1		1	1	1		1

I hereby certify that the information on this form is true and correct to the best of my knowledge.

12.0

Signature 1 H + +	Firm
1) when I ge	Ramboll Environ

Department of Natural Resources

Route To:

Watershed/Wastewater

Waste Management

Form 4400-122

Rev. 7-98

			Remedia	ation/Redevelopment ■ Other □										
											Page	2	of	3
Facility	/Project	Name			Lice	ense/Perr	nit/Mon	itoring	Number	Bori	ng Num	ber		
		MU	- Former	1-Hour Valet Cleaners Site								TB-1	l	
Boring	Drilled I	By: Nan	ne of crew	v chief (first, last) and Firm	Date	e Drilling	g Started	ł D	ate Drill	ing Con	npleted	Drilling	g Methoo	d
First l	Name:	Daniel		Last Name: Bendorf	<u>1</u> <u>1</u>	<u>/09</u>	/ <u>2</u> 0	<u>1</u> <u>7</u> <u>1</u>	<u>1 / 0</u>	<u>9 / 2</u>	<u>0 1 7</u>	Direct I	Push - G	eoProhe
Firm:	Prob	e Techn	ologies, I	nc.	m n	n d d	у у	y y m	nm d	d y	у у у	Directi	usii O	
WI Uni	que Wel	1 No.		DNR Well ID No. Well Name	Fina	al Static	Water L	evel S	urface El	evation		Boreho	le Diam	eter
				NA		F	eet MSL	,		Feet M	SL	2	inche	es
Local G	rid Orig	gin □	(estimate	ed: \Box) or Boring Location \Box				L	ocal Gric	l Locati	on	-		
State Pl	ane			N,E	Lat	•	'	"			\square N			$\square E$
1	/4 of	1/	4 of Secti	ion , T N, R	Long	•	_ ' _	"		Feet	\Box S		Feet	\square W
Facility	ID			County Coun	nty Code	e C	ivil Tow	/n/City/	or Villag	ge				
2				Milwaukee	4	1			'ity of M	- filwaul	cee Wi	sconsir		
	1						1			ni waui	1.0	··		
San	nple		(e)				_			501	I Propei	ties		nts
	t. & I (ff	nts	reet surfa	Soil/Rock Description		80	ram		ive					ıme
er Pe	ı Al ered	Cou	in F ound	and Geologic Origin for		сL	Jiag	А	essith	ure it		ity		Con
Ty T	igth sove) M	oth w gr	Each Major Unit	CS	idq	IID	D/FI	npr	istu ater	uid nit	stic ex	00	D/Q
Nu and	Ler Rec	Blc	De] (belc		SU	Ğ.	We	Шd	Coi Stre	Mo Coi	Lin	Pla Ind	P 2	RQ
			12.0											
			13.0 —	В										
				1										
			14.0 —	i										
				n										
			15.0 —	d										
			16.0 —	D										
				r										
			17.0 —	i										
				1										
			18.0 —	1										
				е										
			19.0	d										
			17.0											
			20.0											
			20.0 -											
								5.6						
			21.0 —											
								7.0						
	R=3'		22.0 —	(20-24') Brown, silty fine to medium	SM									
				sand, come clay, wet	51.1			>2,000)					
			23.0 —											
								>2 000						
			24.0 —					-2,000						
	ļ													

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature Author Firm Ramboll Environ

Sta

Dep

98

tate of W Departmen	visconsin nt of Nat	ı tural Re	sources									SOIL Form	BORIN 4400-12	G LOG 2	INFOF	RMATIO Rev. 7-9
	<u>Route</u>	<u>e To</u> :	Watersh Remedia	ed/Wastewater □ ation/Redevelopment	■ Other	Manag □	gement									
Facility	/Project	Name					Lice	nse/Peri	mit/Mon	itoring	Number	Bori	Page	3 ber	of	3
		MU	- Former	1-Hour Valet Cleane	ers Site									TB-1	1	
Boring I First N Firm:	Drilled H Name: Prob	By: Nan Daniel e Techn	ne of crev	v chief (first, last) and Last Name: Bend Inc.	d Firm dorf		Date <u>1</u> 1 mm	Drillin / <u>0</u> 9 d d	g Started / <u>2</u> 0 y y	1 <u>1</u>	Date Drill <u>1</u> / <u>0</u> 1 m d	ing Con <u>9</u> / <u>2</u> d y	npleted <u>0</u> <u>1</u> <u>7</u> y y y	Drilling Direct l	g Methoo Push - G	l eoProbe
WI Uni	que Wel	l No.		DNR Well ID No.	Well Name NA		Fina	l Static F	Water Lo eet MSL	evel S	urface E	levation Feet M	SL	Boreho 2	le Diame inche	eter es
Local G State Pl	rid Orig ane /4 of	in □ 1/	estimat 4 of Sect	ed: \Box) or Boring N, ion , T	Location	E	Lat	°	;	I	ocal Gri	d Locati Feet	on □N □S	1	Feet	□ E □ W
Facility	ID			County		Cour	tv Code		ivil Tow	n/City/	or Villa	<u></u>	~			
		[T	Milwau	ıkee		4	1	1	(City of N	Ailwaul	kee, Wi	sconsin	l	
San	iple		(e)						_			Soi	l Proper	ties		nts
Number and Type	Length Alt. & Recovered (ft)	Blow Counts	Depth in Feet (below ground surfac	Soil/Rock and Geolog Each M	Description cic Origin for ajor Unit		USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/Comme
	R=4'	25.0 — 26.0 —	(24-27') Brown, fine to medium sand a gravel, some clay, wet			SW		>2,000								
									1,960							
			27.0 -	(27-28') Bro	wn, clay, stiff		CL		11.8							
			28.0 -	End of	Boring											
			29.0 —													
			30.0 —													
			31.0 —													
			32.0 —													
			33.0 —													
			34.0 —													

I hereby certify that the information on this form is true and correct to the best of my knowledge.

35.0 -

36.0

Signature 1 the Fall	Firm
1) when I for	Ramboll Environ

State of Wis, Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Form 3300-005 (R 4/08) Page 1 of 2

Notice: Completion of this report is required bychs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis, Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

			L F	Route	to:								
Verification Only	of Fill and	d Seal		D	rinking Water		Watershed/W	Vastewater	Reme	diation/R	edevelop	ment	
				N	/aste Managemen	t •	Other:						
1. Well Location Inform	nation					2 Facilit	y/ Owner li	nformation					
County	WI Unique	Well # of	н	icap #		Facility Nan	ne						
Milwaukee	Removed v	vell				Marquette	e Universit	y - Former 1-Hou	r Valet (Cleane	ers		
Lattitude / Longitude (Dec	rees and M	inutes) M	lethod (Code	see instructions)	Facility ID (I	FID or PWS)					
		2' N		0000									
····· ···· ···· ···						License/Per	mit/Monitori	ng #					
		vv											
1/4/1/4 1/4	S	ection	Towr	ship	Range E	Original We	ell Owner						
or Gov't Lot #				Ν	w	Descentiate					_		
Well Street Address						Present We	ii Owner						
1200 West Wells Stre	eet						toop of D	ant Oumer	_				
Well City, Village or Town				Well	ZIP Code		ress of Pres	ent Owner					
Milwaukee				532	33	City of Drog	ont Owner		Ctata	700	ada		
Subdivision Name				Lot #		1 City of Pres	ent Owner		Siale	ZIPC	ode		
						A D	ince Or						
Reason For Removal From	m Service	WI Unique	Well #	of Re	placement Well	4. Pump, l	_iner, Scre	en, Casing & Seal	ing Mat	erial	_		
-Site Glacuse						Pump and p	iping remove	d?		Yes	No	N/A	
3. Well / Drillhole / Bor	ehole Info	rmation				Liner(s) remo	oved?			Yes	No	N/A	
	Orig	inal Cons	truction	n Date	(mm/dd/yyyy)	Screen remo	ved?			Yes	No	N/A	
Monitoring We	9/1	7		Casing left in	n place?			Yes	No	(N/A)			
Water Well	lfa	Well Const	ruction	Report	is available.	Was casing	cut off below	/ surface?		Yes	No		
Borehole / Drillhole	plea	ase attach	S.			Did sealing	material rise	to surface?		res	No	N/A	
Construction Type:				Did sealing material ise to surface? Did material settle after 24 hours?						Yes	No	N/A	
Drilled !	Driven (Sand	point)		Dug		If yes, was h	ole retopped	?		Yes	No	N/A	
Other (specify):		,		0		If bentonite chips were used, were they hydrated with water from a known safe source?							
						Required Ma	thed of Dies	In sale source?		es	INO	N/A	
Formation Type:)			Conduct	or Pipe Grou			nod			
Unconsolidated Format		t in the	searoc	(Screene	d & Poured	Other (Expla	ain):	peu			
I otal Well Depth From Gro	ound Surfac	e (ft.) Ca	sing Di	amete	r (in.)	(Renton	ite Chine)						
						Sealing Mate	erials			_			
Lower Drillhole Diameter (in.)	Ca	sing De	epth (f	t.)	Neat Cement	Grout		Clav-Sar	nd Slurn	(11 lb:/c	al wt)	
2			2			Sand-Ce	ement (Conci	ete) Grout	Bentoni	te-Sand	Slurry"		
Was well appulat space or	outed?	 		No	Linknown	Concrete			Bentonite	e Chips	5.2.17		
was wen annular space gru		re		110	Unknown	For Monitori	ng Wells and	d Monitoring Well Bor	eholes O	nly:			
If yes, to what depth (feet)	?	Depth to	Water	(feet)		Bentonite	e Chips	Bentor	nite - Cerr	ient Gro	ut		
						Granula	Bentonite	Bentor	nite - San	d Slurry			
5. Material Used To Fi	ll Well / Dr	illhole				From (ft.)	To (ft.)	No. Yards, Sacks	Sealant	M	ix Ratio	or	
Carabato						Surface	0 -		e one)		uu weig	т	
Concrete	01.14	2.0				Surface	0.5						
isentonite	Chip	5		_		0.5	28						
			_										

TB-1

7. Supervision of Work					DN	IR Use Only
Name of Person or Firm Doing Filling & Sealing	Licens	e#	Date of	Filling & Sealing (mm/dd/yyyy) Date Received	Noted By
Ramboll / Probe Technologies			11/9/2	2017		
Street or Route				Telephone Number	Comments	
175 N Corporate Dr, Suite 160				(262)901-3505		
City S	tate	ZIP Code		Signature of Person Doing	Work	Date Signed
Brookfield	VI	53045		Author	-	11/10/2017
				1	1	

State of Wisconsin

Department of Natural Resources <u>Route To</u>: Waters

Watershed/Wastewater

Waste Management

Form 4400-122

Rev. 7-98

			Remedia	ation/Redevelopment ■ Other □											
												Page	1	of	3
Facility/	Project l	Name			L	licens	se/Perr	nit/Moni	toring N	Jumber	Borii	ng Numl	ber	-	
	0	MU	- Former	1-Hour Valet Cleaners Site					-			-	TB-2	2	
Boring I	Drilled B	y: Nam	e of crew	chief (first, last) and Firm	Ľ	Date E	Drilling	g Started	Γ	ate Drill	ing Com	pleted	Drilling	Method	1
First N	Vame:	Daniel		Last Name: Bendorf	1	<u>1</u> /	/ <u>0</u> 9	/ <u>2</u> 0	171	<u>1 / 0</u>	<u>9 / 2</u>	<u>0 1 7</u>	Direct		
Firm:	Prob	e Techno	ologies, Ii	nc.	n	n m	d d	у у	y y n	nm d	d y	ууу	Direct	Pusn - G	eoprobe
WI Unic	que Well	No.		DNR Well ID No. Well Name	F	Final S	Static '	Water Le	evel S	urface El	evation		Borehol	e Diame	eter
				NA			F	eet MSL			Feet MS	SL	2	inche	es
Local G	rid Origi	in 🗆	(estimate	\square \square \square \square \square					T	ocal Grid	Locatio	n			
State Pl	ina Oligi		(estimate	N	E La	+	•	,	"		Locan				ΠE
1/	4 of	1/	4 of Secti	ion T N R	L			_ , _			Foot			Foot	
	<u> </u>	1/-	+ of Seed		Long	5							_		L
Facility	ID			County Co	ounty Co	ode	C	Ivil Tow	n/City/	or Villag	e				
				Milwaukee	4	1			(City of N	/lilwauk	kee, Wi	sconsin		
Sam	ple			<u> </u>			_	1			Soi	1 Proper	ties	I	
	t k		t ce)					ц							ents
	lt. ا d (f	ints	Fee	Soil/Rock Description			go	gran		ive					Ш
er /pe	n A erec	Cot	in l ound	and Geologic Origin for			ic L	Jiag	Θ	th	are at		ity		Cor
mb I T	ngth	ow (pth ^{w gn}	Each Major Unit	CS	2	hqu	III	D/F]	ndm Bug	istu nter	uid nit	stic ex	00	D/Q
Nu and	Leı Re	Blc	Dej (belo		SU	2	Gr	We	IId	Co. Str	Mo Co:	Lig Lin	Pla Ind	P 2	RQ
				(0-3") Concrete					0.0						
			1.0 —						04						
									0.1						
	R=2'		2.0 —							-					
			30 -	(3" 6') Brown silty clay with fine to					0.8						
			0.0	medium sand trace fine gravel moist	CI	L			0.0						
			4.0	medium sund, trace fine graver, moist											
			4.0 —							1					
			5.0 —						11.2						
	R=2'		6.0 —												
			7.0 —						1.5						
				(6-9') Brown, silty sand, trace fine grave	l, sn	л			110						
			0.0	moist	51	VI									
			8.0 -							1					
									10.2						
			9.0 —												
									155						
			10.0 —	(9-20') Brown silty clay high plasticity	r.				15.5						
	R=4'			wet. Gray and more stiff beginning at	,					4					
			11.0	10.5'. Silt seam at 18.5'. Fine to mediur	n CI	Ĺ									
			11.0	sand seam at 19.5'.					Q /						
			10.0						0.4						
			12.0 —	1											
				l						1					

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature Firm atter Efe 0 Ramboll Environ

State of Wisconsin

Department of Natural Resources <u>Route To</u>: Waters

Watershed/Wastewater

Waste Management \square

Form 4400-122

Rev. 7-98

			Remedia	ation/Redevelopment Other											
											Page	2	of	3	
Facility/	Project 1	Name			Lice	ense/Pern	nit/Moni	toring N	lumber	Bori	ng Numl	ber			
		MU	- Former	1-Hour Valet Cleaners Site								TB-2	2		
Boring I	Drilled E	By: Nam	e of crew	v chief (first, last) and Firm	Dat	e Drilling	s Started	D	ate Drill	ing Com	pleted	Drilling	Method	l	
First N	Name:	Daniel		Last Name: Bendorf	<u>1</u> 1	1 1 / 0 9 / 2 0 1 7 1 1 / 0 9 / 2 0				<u>0 1 7</u>	Direct 1	Push - G	eoProbe		
Firm:	Prob	e Techno	ologies, I	nc.	m r	mm dd yyyymm dd yyyy					Directi	usii O	011000		
WI Unio	que Well	l No.		DNR Well ID No. Well Name	Fina	al Static V	Water Le	evel S	Surface Elevation Borehole			e Diame	eter		
				NA	_	Feet MSL			Feet MSL			2	inche	es	
Local G	rid Origi	in 🗆	(estimate	ed: \Box) or Boring Location \Box				L	ocal Gric	l Locatio	on				
State Pla	ane			<u> </u>	Lat	at ° ' "					\square N			🗆 E	
1/	4 of	1/4	4 of Secti	ion, TN, R	Long	°	'	"		Feet	\Box S		Feet	\square W	
Facility	ID			County Coun	nty Code	e Ci	ivil Tow	n/City/	or Villag	e					
				Milwaukee	4	1		(City of N	/lilwauł	kee, Wi	ee, Wisconsin			
Sam	nle			I - <u></u>					r –	Soi	1 Proner	ties			
Bull			t ce)				c			50	i i iopei	ties		ents	
	lt. <i>§</i> d (fi	unts	Feet surfa	Soil/Rock Description		go	gran		sive					nme	
er ype	h A 'ere	Cot	in	and Geologic Origin for Each Major Unit		ic I	Diag	A	ress	ure nt		ity		Col	
d T	ngti cov	MO	spth ow gr	Each Major Ont	SCS	aph	ell]	D/F	dm eng	oist inte	nit	astic lex	500	D/	
Nu	Le Re	Bl	De (bel		ñ	G	à	Id	St CC	ŬŬ	Lia	Pli Inc	P	R(
			13.0 —					74							
			15.0					,							
	D _2'		14.0												
	K=3		14.0												
			15.0					47.2							
			15.0 —	(9-20') Brown, silty clay, high plasticity.				47.5							
			160	wet. Gray and more stiff beginning at	ar										
			16.0 —	10.5'. Silt seam at 18.5'. Fine to medium	CL				1						
				sand seam at 19.5'.											
			17.0 —					58.2							
	R=3.5'		18.0 —						1						
			19.0 —					43.7							
			20.0 —												
			21.0 —					48.7							
			22.0 —	(20-24') Brown, silty fine to medium sand.					4						
	R=4'			come clay, wet	SM										
			23.0 —												
								783							
			24.0 —												
	24.0 —														

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature Firm atter Ramboll Environ

State of Wisconsin

Department of Natural Resources <u>Route To:</u> Waters

Watershed/Wastewater □

Waste Management \square

Rev. 7-98

Form 4400-122

			Remedia	tion/Redevelopment	 Other 								-		c	
													Page	3	of	3
Facility/	Project	Name	Former	1 Hour Valat Classo	. Sita		Lice	nse/Per	mit/Moni	toring	Number	Borii	ng Numl	oer	,	
Boring I	Drilled F	Rv. Nam	e of crew	chief (first last) and	Firm		Date	Drillin	g Started	ſ	Date Drill	ing Com	npleted Drilling Method			
First N	Vame:	Daniel	0 01 010 0	Last Name: Bend	lorf		1 1 / 0 9 / 2 0 1 7 1 1			1 1 / 0	9/2	0 1 7	Dining Di			
Firm:	Prob	e Techn	ologies, I	nc.			mm dd yyyymr				mm d	d y	ууу	Direct I	Push - G	eoProbe
WI Unic	que Well	l No.		DNR Well ID No.	Well Name		Fina	l Static	Water Le	vel	Surface Elevation			Borehol	e Diame	eter
					NA		Feet MSL			Feet MSL			2	inche	es	
Local G	rid Orig	in 🗆	(estimate	ed:□) or Boring	Location			Local Grid Location				on				
State Pla	ane			<u>N,</u>		E	Lat	°		"			\square N			□ E
1/	4 of	1/	4 of Secti	on, T	N, R	L	ong	°	'	"		Feet	\Box S		Feet	\square W
Facility	ID			County		County	Code	(Civil Tow	n/City	or Villag	e				
				Milwau	kee	4		1			City of M	Ailwauł	kee, Wi	sconsin	l	
Sam	ple						_					Soi	1 Proper	ties		s
	& ft)	S	et rface)	Soil/Rock	Description			50	E		e					nent
e .	Alt. ed (Junc	n Fe	and Geolog	ic Origin for			Log	agra	~	ssiv	a		y		umo
Typ	gth . over	Ŭ	th ir grou	Each M	Each Major Unit				I Di	FIL	ngth	stur tent	iid it	ticit x	0	0/C
Nun and	Len; Rec	Blov	Dep				USC	Graj	Wel	DID	Con	Moi Con	Liqu	Plas Inde	P 20	RQI
, , , ,	, , , , ,															
			25.0													
			25.0 —	(24-27') Brown, fine	24-27') Brown, fine to medium sand and gravel, some clay, wet				(70							
	D 41		26.0	gravel, son					6/8							
	K=4		20.0													
			27.0													
			27.0	(27.28') Bro	wn clay stiff		CI		178							
			28.0	(27-28) BIO	wii, ciay, still		CL		178							
			20.0 -	End of	Boring											
			29.0													
			27.0													
			30.0													
			20.0													
			31.0 -													
			0110													
			32.0 —													
			0210													
			33.0 —													
			34.0 —						1							
									1							
			35.0 —													
									1							
			36.0 —						1							

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature A the Four	Firm
1) when I for	Ramboll Environ

State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Form 3300-005 (R 4/08) Page 1 of 2

Notice: Completion of this report is required bychs. 160, 281, 283, 289, 291-293, 295, and 299, Wis, Stats., and ch. NR 141, Wis, Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis, Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

			Route	to:						
Verification Only	of Fill and Se	eal		rinking Water		Watershed/V	Vastewater 🛛	emediation/R	Redevelop	ment
			v V	/aste Management	:	Other:				
1. Well Location Inform	nation				2 Facilit	y/ Owner Ir	formation			
County	WI Unique Well	# of	Hicap #		Facility Nan	ne				ž
Milwaukee	Removed Well				Marquette	e Universit	y - Former 1-Hour Va	ilet Cleane	ers	
Lattitude / Longitude (Degi	rees and Minute	s) Metho	d Code	(see instructions)	Facility ID (FID or PWS)				
• • • • • • • • • • • • • • • • • • •		4			License/Per	rmit/Monitori	ng #			
a · ·	* W						ig //			
1/4/1/4 1/4	Sectio	n Tov	wnship	Range E	Original We	ell Owner				
or Gov't Lot #			Ν	w	Descential					
Well Street Address					Present we	Uwner				
1200 West Wells Stre	eet				Moiling Add	roop of Droo	ant Ourpor			-
Well City, Village or Town			Well.	ZIP Code	i Malling Add	ress of Pres	ent Owner			
Milwaukee			532	33	City of Pres	ent Owner	(Cta)		odo	
Subdivision Name			Lot #		Oity of Free	Sent Owner				
Reason For Removal From	n Service WI U	Inique Well	# of Re	placement Well	4. Pump, I	Liner, Scre	en, Casing & Sealing	Material		
Site Glosure.					Pump and p	iping remove	d?	Yes	No	N/A
3. Well / Drillhole / Bor	ehole Informa	ation			Liner(s) remo	oved?	Yes	No	N/A	
Monitoring Woll Original Construct			on Date	(mm/dd/yyyy)	Screen remo	ved?	Yes	No	N/A	
Monitoring ^{Well}			7		Casing left in	n place?		Yes	No	N/A
Water Well	Wonitoring Water Well Borebole / Drillhole Brebole / Drillhole / Drillhole Brebole / Drillhole			is available,	Was casing	cut off below	surface?	Yes	No	
	please a	attach.			Did sealing	material rise	to surface?	es	No	N/A
Construction 1990					Did material	settle after 2	4 hours?	Yes	$\mathbb{N}_{\mathbb{O}}$	N/A
	Driven (Sandpoint))	Dug		If yes, was h	ole retopped	?	Yes	No	N/A
Other (specify):					with water	from a know	n safe source?	Yes	No	N/A
Formation Type:					Required Me	ethod of Plac	ing Sealing Material			
Unconsolidated Formati	ion	Bedro	ock		Conduct	tor Pipe-Gravi	Conductor Pipe-	Pumped		
Total Well Depth From Gro	ound Surface (ft.) Casing	Diamete	er (in.)	- Sueene		Other (Explain).			
					(Benton Sealing Mate	arials				-
Lower Drillhole Diameter (i	n.)	Casing	Depth (f	t.)	Neat Cement	Grout	Clay	-Sand Slurn	/ (11 lh /r	al wt)
2					Sand-Ce	ement (Concr	ete) Grout Ber	tonite-Sand	Slurry" "	
Was well annular space gro	uted?	Yes	No	Unknown	Concret	Ð	Ben	tonite Chips	olany	
If yes, to what depth (feet)?	? De	pth to Wat	er (feet)		For Woniton	ng vveils and	I Wonitoring Weil Borenol	es Only:		
					Granula	r Bentonite	Bentonite -	Sand Slurn	bul	
- Mada dal Harad Ta Fil							No. Yards, Sacks Sea	iant N	lix Ratio	or
5. Waterial Used 10 Fil	weil / Drillho	DIE			From (tt.)	10 (ft.)	or Volume (circle on	e) M	lud Weig	iht
Loncre	re				Surface	0.5				
Bentonite	e chips	1			0.5	28				
6. Comments					·					
TR-D										
10-6						_				

7. Supervision of Work						DN	IR Use Only
Name of Person or Firm Doing Filling & Sealing	Licens	e#	Date of	Filling	& Sealing (mm/dd/yyyy) Date Received	Noted By
Ramboll / Probe Technologies		11/9/2017					
Street or Route				Telepl	hone Number	Comments	
175 N Corporate Dr, Suite 160				(262) 901-3505		
City	State	ZIP Code		Sig	gnature of Person Doing	Work	Date Signed
Brookfield	VVI	53045			1 Min	in	11/10/2017
				/			

Treatability Study Summary for Chlorinated Ethenes Destruction by Zero-valent Iron (ZVI) at the One Hour Valet Cleaners Site

Prepared for: Ramboll, Milwaukee, Wisconsin

Revision 2 – February 7, 2018

Introduction

The former One Hour Valet Cleaner site in Milwaukee, Wisconsin, has approximately $2,000 \text{ yd}^3$ of soil that was contaminated by tetrachloroethene (PCE) from historical operations. The targeted soil is predominantly silty clay both above and below the water table. Ramboll is evaluating the application of ZVI mechanically mixed into the soil for the degradation of PCE and potential daughter products from reductive dechlorination. The proposed treatability study is designed to provide information related to the dose of ZVI applied to the soil.

Samples Received for Evaluation

Ramboll collected soil and groundwater samples on November 9, 2017. Two 1-litre samples representative of the contaminated soil from TB-1(total of 3.4 kg), and one litre of site groundwater from PZ-1 were received on November 10, 2017 under chain-of-custody in good condition. ReSolution Partners (RP) opened one of the bottles, with most of the soil described as CLAY with a small amount of coarse sand to fine gravel (\leq 1.5 cm), moist and plastic and dark greyish brown (2.5Y4/2). The sample also included a small amount of SAND with silt and clay that was slightly plastic and dark greyish brown.

RP quickly mixed both soil types in a stainless-steel bowl using a stainless-steel spatula (approximately 2 minutes). Gravel > 1 cm was removed and the homogenized soil was repacked in the field sample bottles and placed in refrigerated storage prior to testing. Homogenization and repacking required approximately four minutes.

ZVI was received from ReDox Tech for use during the evaluation. The ZVI is representative of material that will be used for the remediation.

Treatability Study – Phase 1

RP submitted a representative subsample of soil to Pace Analytical Services-WI for analysis of volatile organic compounds by USEPA Method 8260B. The base line analyses detected methylene chloride, tetrachloroethene (PCE) and trichloroethene (Table 1). Laboratory reports are provided in Attachment 1. Ramboll agreed to proceed with the use of site soil based on these reported concentrations.

The following microcosms were prepared in glass bottles with Teflon-lined lids on November 20, 2017:

- An unamended control
- Soil plus 1.5 wt. % ZVI
- Soil plus 2.5 wt. % ZVI
- Soil plus 3.0 wt. % ZVI

Each microcosm received 300 g of soil to achieve a zero headspace in the bottle. The asreceived soil contained 13.2 wt.% water, so an additional 2 wt. % (6 mL) of site groundwater was added to achieve a 15 wt.% target moisture content that had been specified in the study scope of work. The added water did not change the visual or textural consistency of the soil samples (Figure 1). Each microcosm exposed the soil to the atmosphere for approximately 2 minutes.

The microcosms were stored inverted and in the dark at room temperature for 4 weeks of reaction time. At the end of the 4-week reaction period, soil samples were shipped to Pace Analytical Services-WI for analysis of VOCs by USEPA Method 8260B under standard-turnaround-time on December 18, 2017.

Results – Phase 1

Table 1 includes results of constituents of concern. No other VOCs were detected. Laboratory reports are provided in Attachment 1.

When compared to the control sample, PCE concentrations were reduced by 30 to 42 percent over a range of ZVI concentrations between 1.5 and 3.0 wt%. TCE concentrations increased between 123 and 190 percent, possibly due to the breakdown of PCE. No other daughter products were detected in the analyses. However, the control sample appears to have an unusually high PCE concentration compared to the baseline and compared to the Phase 2 baseline and control samples discussed below. Comparing the treated samples to the baseline concentrations results in PCE concentration reductions

of 7, 17, and 23 % as the ZVI dose increases from 1.5 to 3.0 wt.%. TCE concentrations still increased with ZVI dose, again suggesting PCE degradation to TCE.

The moisture content of TB-1A was 12.7 wt.% (slightly less than the target 15 wt. %). The treated samples' moisture contents ranged from 10.5 to 9.7 to 9.0 wt.% with the moisture content decreasing with increased ZVI dose.

There was no visual evidence of gas generation (i.e. bulging of the cap septa) in the ZVIamended samples.

The amount of degradation was less than expected. Review of the results with Redox Tech and Ramboll concluded that there may have been insufficient moisture content to facilitate the VOC destruction by ZVI. A second phase of testing was agreed to with a target moisture content of 30 wt.%.

Treatability Study – Phase 2

The second 1-litre container of soil was opened for the Phase 2 trials at higher water content. The sample was homogenized as described above. The soil was soil described as CLAY with a small amount of coarse sand to fine gravel (≤ 1.5 cm), moist and plastic and dark greyish brown (2.5Y4/2). There was no sand fraction in the second container.

RP submitted a representative subsample of soil from the second container to Pace Analytical Services-WI for analysis of volatile organic compounds by USEPA Method 8260B. Only PCE was detected in the baseline sample from the second container (Table 2). The PCE concentration in the second container was within 8 % of the PCE concentration in the first container. The moisture content of the second container was 13.0 wt.%, or the same as the first container.

Microcosms were prepared on January 4, 2018 for an unamended control and soil plus 2.5 wt. % ZVI. Each microcosm received 350 g of soil. A slightly larger amount of soil was used in Phase 2 to facilitate filling the bottles to zero head space. It was assumed that the 13.2 wt. % water content of the first bottle also was applicable to the second bottle, so an additional 17 wt. % (60 mL) of site groundwater was added to achieve a target 30 wt.% moisture content. The added water resulted in the soil samples having the consistency of peanut butter (Figure 1) and a measured water content of 26.7 wt.% in a separate aliquot of soil from the amended soil aliquots.

The microcosms were stored inverted and in the dark at room temperature for 2 weeks of reaction time. At the end of the 2-week reaction period, soil samples were shipped to Pace Analytical Services-WI for analysis of VOCs by USEPA Method 8260B under standard-turnaround-time on January 18, 2018.

Results – Phase 2

Table 2 presents the results of constituents of concern. Only PCE was detected. The PCE concentration at 2.5 wt. % was essentially unchanged from the control and baseline results. The moisture content of TB-1 B2 Control was 21.4 wt.%. The treated sample moisture content was 17.8 wt.%. Both test samples were again, less than the target 30 wt. %). As in Phase 1, there was no visual evidence of gas generation (i.e. bulging of the cap septa) in the ZVI-amended sample.

Conclusions

The comparison of control to baseline results indicate that there was no VOC loss from the microcosms over the 4- and 2-week reaction times of Phase 1 and 2.

The addition of ZVI to the soil and groundwater samples at up to 2.5 wt.% resulted in limited PCE destruction and TCE formation at a soil moisture content of about 13 wt. %.

Increasing the soil moisture content to 21 wt. % resulted in no significant PCE loss at 2.5 wt. % ZVI.

The water contents of the test samples at 14 days reaction time were always less than the 30 wt. % target for Phase 1 or the measured Phase 2 water content of 27 wt. % following the addition of 6 or 60 mL of groundwater and there appeared to a consistent loss of water with increasing ZVI addition. Given the lack of VOC loss from the microcosms, it is unlikely that the water escaped as vapor from the bottles. The consistent rate of water loss shown below suggests the water was consumed by chemical reaction(s) or was lost to hydration reactions that were unaffected by the low temperature drying used to determine moisture content.

967 Jonathon Drive • Madison, WI • 53713

Figure 1. Consistency of soil with varying amounts of water addition.

967 Jonathon Drive • Madison, WI • 53713

	TB-1A TB-1A Control		A Control	TB-1A		TI	3-1A	TB-1A		
Amaluta	Baseline	(0%	ώZVI)	(1.5% ZVI)		(2.5% ZVI)		(3.0% ZVI)		
Analyte	Result	Result	%	Result	%	Result	%	Result	%	
	(µg/kg)	(µg/kg)	Reduction	(µg/kg)	Reduction	(µg/kg)	Reduction	(µg/kg)	Reduction	
Methylene Chloride	2,230 J	<1,490	N/A	<1,450	N/A	<898	N/A	<891	N/A	
TCE	2,710	2,470 J	N/A	5,520	-123	7,160	-190	6,660	-170	
PCE	643,000	850,000	N/A	601,000	30	534,000	37	497,000	42	

Table 1. Phase 1 Treatability Results.

J – Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. Negative reduction values indicate an increase in concentration.

Table 2.	Phase 2	Treatability	Results.
		2	

Analyte	TB-1 B2	TB-1 B	2 Control	TB-1 B	2 2.5ZVI
	Baseline	(0%	ωZVI)	(2.5%	% ZVI)
	Result	Result	%	Result	%
	(µg/kg)	(µg/kg)	Reduction	(µg/kg)	Reduction
Methylene Chloride	<1,490	<1,650	N/A	<1,970	N/A
TCE	<2,710	<2,470	N/A	<2,880	N/A
PCE	591,000	606,000	NA	650,000	-107

J – Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. Negative reduction values indicate an increase in concentration.

Attachment 1

Laboratory Reports

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

January 30, 2018

Angela Hassell ReSolution Partners, LLC. 967 Jonathon Drive Madison, WI 53713

RE: Project: RAMBOLL ENV - 1 HR MKE Pace Project No.: 40163710

Dear Angela Hassell:

Enclosed are the analytical results for sample(s) received by the laboratory on January 19, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Kevin Baker, ReSolution Partners, LLC. Bernd Rehm, ReSolution Partners, LLC.

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: RAMBOLL ENV - 1 HR MKE

Pace Project No.: 40163710

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: RAMBOLL ENV - 1 HR MKE

Pace Project No.: 40163710

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40163710001	TB-1 B2 CONTROL	Solid	01/18/18 10:00	01/19/18 08:30
40163710002	TB-1 B2 2.5 ZVI	Solid	01/18/18 10:10	01/19/18 08:30

SAMPLE ANALYTE COUNT

Project: RAMBOLL ENV - 1 HR MKE Pace Project No.: 40163710

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40163710001	TB-1 B2 CONTROL	EPA 8260	SMT	51	PASI-G
		ASTM D2974-87	RMV	1	PASI-G
40163710002	TB-1 B2 2.5 ZVI	EPA 8260	SMT	51	PASI-G
		ASTM D2974-87	RMV	1	PASI-G

SUMMARY OF DETECTION

Project: RAMBOLL ENV - 1 HR MKE

Pace Project No.: 40163710

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40163710001	TB-1 B2 CONTROL					
EPA 8260	Tetrachloroethene	606000	ug/kg	5090	01/24/18 10:28	
ASTM D2974-87	Percent Moisture	21.4	%	0.10	01/29/18 16:00	
40163710002	TB-1 B2 2.5 ZVI					
EPA 8260	Tetrachloroethene	650000	ug/kg	6090	01/24/18 10:51	
ASTM D2974-87	Percent Moisture	17.8	%	0.10	01/29/18 16:00	

PROJECT NARRATIVE

Project: RAMBOLL ENV - 1 HR MKE

Pace Project No.: 40163710

Method: EPA 8260

Description:8260 MSV Med Level Full ListClient:ReSolution Partners, LLC.Date:January 30, 2018

General Information:

2 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 5035/5030B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: 279575

S4: Surrogate recovery not evaluated against control limits due to sample dilution.

- TB-1 B2 2.5 ZVI (Lab ID: 40163710002)
 - 4-Bromofluorobenzene (S)
 - Dibromofluoromethane (S)
 - Toluene-d8 (S)
- TB-1 B2 CONTROL (Lab ID: 40163710001)
 - 4-Bromofluorobenzene (S)
 - Dibromofluoromethane (S)
 - Toluene-d8 (S)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: RAMBOLL ENV - 1 HR MKE

Pace Project No.: 40163710

Method:EPA 8260Description:8260 MSV Med Level Full ListClient:ReSolution Partners, LLC.Date:January 30, 2018

This data package has been reviewed for quality and completeness and is approved for release.

Project: RAMBOLL ENV - 1 HR MKE

Pace Project No.: 40163710

 Sample: TB-1 B2 CONTROL
 Lab ID: 40163710001
 Collected: 01/18/18 10:00
 Received: 01/19/18 08:30
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

B250 MSV Med Level Full List Analytical Method: EPA 8260 Preparation Method: EPA 5035/5030B Acctone <10000 ug/kg 25400 10000 80 01/23/18 07.45 01/24/18 10.28 67-64-1 Bernzene <938 ug/kg 2040 938 80 01/23/18 07.45 01/24/18 10.28 72-42 Bromodichioromethane <910 ug/kg 5090 2010 80 01/23/18 07.45 01/24/18 10.28 75-24 Bromomethane <7110 ug/kg 26400 12600 01/23/18 07.45 01/24/18 10.28 75-15-0 Carbon disulfide <1230 ug/kg 5090 1500 80 01/23/18 07.45 01/24/18 10.28 75-15-0 Carbon disulfide <1230 ug/kg 5090 1500 80 01/23/18 07.45 01/24/18 10.28 75-15-0 Chiorothane <6520 ug/kg 5090 1500 80 01/23/18 07.45 01/24/18 10.28 76-6-3 Chiorothane <6530 ug/kg 5090 1800 80 01/	Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Acatone <10000	8260 MSV Med Level Full List	Analytical	Method: EPA	A 8260 Prepa	ration Meth	od: EP/	A 5035/5030B			
Benzene 493 ug/kg 5040 932 80 01/22/18 07:45 01/24/18 10:28 71-32 Bromodichloromethane 4932 ug/kg 5030 992 80 01/23/18 07:45 01/24/18 10:28 75-27-4 Bromomethane 47110 ug/kg 25400 7118 80 01/23/18 07:45 01/24/18 10:28 74-83-9 Subtanone (MEK) 41300 ug/kg 5080 1130 80 01/23/18 07:45 01/24/18 10:28 75-15-0 Carbon tetracholoide 4130 ug/kg 5080 1500 80 01/23/18 07:45 01/24/18 10:28 75-0-3 Chiorobenzane 4500 ug/kg 5080 2080 01/23/18 07:45 01/24/18 10:28 76-6-3 Chiorobentane 46320 ug/kg 5080 2080 01/23/18 07:45 01/24/18 10:28 76-6-3 Chiorobenzane 4380 ug/kg 5080 1630 01/23/18 07:45 01/24/18 10:28 76-6-3 1.2-Dichorobenzane 4380 ug/kg 5080	Acetone	<10000	ug/kg	25400	10000	80	01/23/18 07:45	01/24/18 10:28	67-64-1	
Bromodichloromethane	Benzene	<938	ug/kg	2040	938	80	01/23/18 07:45	01/24/18 10:28	71-43-2	
Bromolom -2010 ug/kg 5090 2010 80 01/23/18 07-45 01/24/18 10:28 78-25-2 Bromomethane <7110	Bromodichloromethane	<992	ug/kg	5090	992	80	01/23/18 07:45	01/24/18 10:28	75-27-4	
Bromosethane <7110 ug/kg 25400 7110 120 01/23/18 07:45 01/24/18 10:28 78-33-3 2-Butanone (MEK) <12600	Bromoform	<2010	ug/kg	5090	2010	80	01/23/18 07:45	01/24/18 10:28	75-25-2	
2-Butanone (MEK) <12600	Bromomethane	<7110	ua/ka	25400	7110	80	01/23/18 07:45	01/24/18 10:28	74-83-9	
Carbon disulitie <1130 ug/kg 5090 1130 80 01/23/18 07.45 01/24/18 10.28 75-15-0 Carbon disulitide <1230	2-Butanone (MEK)	<12600	ua/ka	25400	12600	80	01/23/18 07:45	01/24/18 10:28	78-93-3	
Carbon tetrachloride <1230 ug/kg 5090 1230 80 01/23/18 07:45 01/24/18 10:28 56-23-5 Chlorobenzene <1500	Carbon disulfide	<1130	ua/ka	5090	1130	80	01/23/18 07:45	01/24/18 10:28	75-15-0	
Chlorobenzene <1500 ug/kg 5090 1500 80 01/23/18 07:45 01/24/18 10:28 108-90-7 Chloroberhane <6820	Carbon tetrachloride	<1230	ua/ka	5090	1230	80	01/23/18 07:45	01/24/18 10:28	56-23-5	
Chloroethane	Chlorobenzene	<1500	ua/ka	5090	1500	80	01/23/18 07:45	01/24/18 10:28	108-90-7	
Chloroform <4730 ug/kg 25400 4730 80 01/23/18 07:45 01/24/18 10:28 67-66-3 Chloromethane <2080	Chloroethane	<6820	ua/ka	25400	6820	80	01/23/18 07:45	01/24/18 10:28	75-00-3	
Chloromethane <2080 ug/kg 5090 2080 80 01/23/18 07:45 01/24/18 10:28 74-87-3 Cyclohexane <63350	Chloroform	<4730	ua/ka	25400	4730	80	01/23/18 07:45	01/24/18 10:28	67-66-3	
Cyclohexane 63350 ug/kg 25400 6350 80 01/23/18 07:45 01/24/18 10:28 110-82-7 1,2-Dibromo-3-chloropropane 49290 ug/kg 25400 9290 80 01/23/18 07:45 01/24/18 10:28 10-82-7 1,2-Dibromochormethane <1820	Chloromethane	<2080	ua/ka	5090	2080	80	01/23/18 07:45	01/24/18 10:28	74-87-3	
12-Dibromo-3-chloropropane 9290 80 01/23/18 07:45 01/24/18 10:28 96-12-8 Dibromochloromethane 4120 ug/kg 5090 1820 80 01/23/18 07:45 01/24/18 10:28 124-48-1 1,2-Dibromochloromethane (EDB) <1500	Cyclohexane	<6350	ua/ka	25400	6350	80	01/23/18 07:45	01/24/18 10:28	110-82-7	
Dibromochioromethane	1.2-Dibromo-3-chloropropane	<9290	ua/ka	25400	9290	80	01/23/18 07:45	01/24/18 10:28	96-12-8	
1,2-Dibromethane (EDB) <1500	Dibromochloromethane	<1820	ua/ka	5090	1820	80	01/23/18 07:45	01/24/18 10:28	124-48-1	
1,2-Dichlorobenzene <1650	1.2-Dibromoethane (EDB)	<1500	ua/ka	5090	1500	80	01/23/18 07:45	01/24/18 10:28	106-93-4	
1,3-Dichlorobenzene <1340	1.2-Dichlorobenzene	<1650	ua/ka	5090	1650	80	01/23/18 07:45	01/24/18 10:28	95-50-1	
1.4-Dichlorobenzene <1620	1.3-Dichlorobenzene	<1340	ua/ka	5090	1340	80	01/23/18 07:45	01/24/18 10:28	541-73-1	
Dicklorodiffuoromethane 1250 ug/kg 5090 1250 80 01/23/18 07:45 01/24/18 10:28 75-71-8 1,1-Dickloroethane <1790	1.4-Dichlorobenzene	<1620	ua/ka	5090	1620	80	01/23/18 07:45	01/24/18 10:28	106-46-7	
1,1-Dichloroethane<1790ug/kg509017908001/23/18 07:4501/24/18 10:2875:34-31,2-Dichloroethane<1530	Dichlorodifluoromethane	<1250	ua/ka	5090	1250	80	01/23/18 07:45	01/24/18 10:28	75-71-8	
1,2-Dichloroethane <1530	1.1-Dichloroethane	<1790	ua/ka	5090	1790	80	01/23/18 07:45	01/24/18 10:28	75-34-3	
1,1-Dichloroethene <1790	1.2-Dichloroethane	<1530	ua/ka	5090	1530	80	01/23/18 07:45	01/24/18 10:28	107-06-2	
cis-1,2-Dichloroethene<1690ug/kg509016808001/23/18 07:4501/24/18 10:28156-59-2trans-1,2-Dichloroethene<1680	1.1-Dichloroethene	<1790	ua/ka	5090	1790	80	01/23/18 07:45	01/24/18 10:28	75-35-4	
trans-1,2-Dichloroethene <1680	cis-1.2-Dichloroethene	<1690	ua/ka	5090	1690	80	01/23/18 07:45	01/24/18 10:28	156-59-2	
1,2-Dichloropropane<1710ug/kg509017108001/23/18 07:4501/24/18 10:2878-87-5cis-1,3-Dichloropropene<1690	trans-1.2-Dichloroethene	<1680	ua/ka	5090	1680	80	01/23/18 07:45	01/24/18 10:28	156-60-5	
cis-1,3-Dichloropropene<1690ug/kg509016908001/23/18 07:4501/24/18 10:2810061-01-5trans-1,3-Dichloropropene<1470	1.2-Dichloropropane	<1710	ua/ka	5090	1710	80	01/23/18 07:45	01/24/18 10:28	78-87-5	
trans-1,3-Dichloropropene <1470	cis-1.3-Dichloropropene	<1690	ua/ka	5090	1690	80	01/23/18 07:45	01/24/18 10:28	10061-01-5	
Ethylbenzene<1260ug/kg5090126080001/23/18 07:4501/24/18 10:28100-41-42-Hexanone<5290	trans-1.3-Dichloropropene	<1470	ua/ka	5090	1470	80	01/23/18 07:45	01/24/18 10:28	10061-02-6	
2-Hexanone<5290ug/kg2540052908001/23/18 07:4501/24/18 10:28591-78-6Isopropylbenzene (Cumene)<1280	Ethylbenzene	<1260	ua/ka	5090	1260	80	01/23/18 07:45	01/24/18 10:28	100-41-4	
Isopropylbenzene (Cumene) <1280	2-Hexanone	<5290	ua/ka	25400	5290	80	01/23/18 07:45	01/24/18 10:28	591-78-6	
Methyl acetate<16700ug/kg25400167008001/23/18 07:4501/24/18 10:2879-20-9Methylcyclohexane<7360	Isopropylbenzene (Cumene)	<1280	ua/ka	5090	1280	80	01/23/18 07:45	01/24/18 10:28	98-82-8	
Methylcyclohexane <7360 ug/kg 25400 7360 80 01/23/18 07:45 01/24/18 10:28 108-87-2 Methylene Chloride <1650	Methyl acetate	<16700	ua/ka	25400	16700	80	01/23/18 07:45	01/24/18 10:28	79-20-9	
Methylene Chloride <1650 ug/kg 5090 1650 80 01/23/18 07:45 01/24/18 10:28 75-09-2 4-Methyl-2-pentanone (MIBK) <4180	Methylcvclohexane	<7360	ua/ka	25400	7360	80	01/23/18 07:45	01/24/18 10:28	108-87-2	
4-Methyl-2-pentanone (MIBK) <4180	Methylene Chloride	<1650	ua/ka	5090	1650	80	01/23/18 07:45	01/24/18 10:28	75-09-2	
Methyl-tert-butyl ether <1290 ug/kg 5090 1290 80 01/23/18 07:45 01/24/18 10:28 1634-04-4 Styrene <917	4-Methyl-2-pentanone (MIBK)	<4180	ua/ka	25400	4180	80	01/23/18 07:45	01/24/18 10:28	108-10-1	
Styrene <917 ug/kg 5090 917 80 01/23/18 07:45 01/24/18 10:28 100-42-5 1,1,2,2-Tetrachloroethane <1790	Methyl-tert-butyl ether	<1290	ua/ka	5090	1290	80	01/23/18 07:45	01/24/18 10:28	1634-04-4	
1,1,2,2-Tetrachloroethane <1790 ug/kg 5090 1790 80 01/23/18 07:45 01/24/18 10:28 79-34-5 Tetrachloroethene 606000 ug/kg 5090 1310 80 01/23/18 07:45 01/24/18 10:28 127-18-4 Toluene <1140	Styrene	<917	ua/ka	5090	917	80	01/23/18 07:45	01/24/18 10:28	100-42-5	
Totachloroethane 606000 ug/kg 5090 1310 80 01/23/18 07:45 01/24/18 10:28 127-18-4 Toluene <1140 ug/kg 5090 1140 80 01/23/18 07:45 01/24/18 10:28 127-18-4 1,2,4-Trichlorobenzene <4840 ug/kg 5090 1140 80 01/23/18 07:45 01/24/18 10:28 108-88-3 1,1,1-Trichloroethane <1470 ug/kg 5090 1470 80 01/23/18 07:45 01/24/18 10:28 120-82-1	1.1.2.2-Tetrachloroethane	<1790	ua/ka	5090	1790	80	01/23/18 07:45	01/24/18 10:28	79-34-5	
Toluene <1140 ug/kg 5090 1140 80 01/23/18 07:45 01/24/18 10:28 108-88-3 1,2,4-Trichlorobenzene <4840	Tetrachloroethene	606000	ua/ka	5090	1310	80	01/23/18 07:45	01/24/18 10:28	127-18-4	
1,2,4-Trichlorobenzene <4840	Toluene	<1140	ua/ka	5090	1140	80	01/23/18 07:45	01/24/18 10:28	108-88-3	
1,1,1-Trichloroethane <1470 ug/kg 5090 1470 80 01/23/18 07:45 01/24/18 10:28 71-55-6	1.2.4-Trichlorobenzene	<4840	ua/ka	25400	4840	80	01/23/18 07:45	01/24/18 10:28	120-82-1	
	1.1.1-Trichloroethane	<1470	ug/ka	5090	1470	80	01/23/18 07:45	01/24/18 10:28	71-55-6	
1.1.2-Trichloroethane <2060 ug/kg 5090 2060 80 01/23/18 07:45 01/24/18 10:28 79-00-5	1.1.2-Trichloroethane	<2060	ua/ka	5090	2060	80	01/23/18 07:45	01/24/18 10:28	79-00-5	
Trichloroethene <2400 ug/kg 5090 2400 80 01/23/18 07:45 01/24/18 10:28 79-01-6	Trichloroethene	<2400	ug/ka	5090	2400	80	01/23/18 07:45	01/24/18 10:28	79-01-6	
Trichlorofluoromethane <2510 ug/kg 5090 2510 80 01/23/18 07:45 01/24/18 10:28 75-69-4	Trichlorofluoromethane	<2510	ua/ka	5090	2510	80	01/23/18 07:45	01/24/18 10:28	75-69-4	

Project: RAMBOLL ENV - 1 HR MKE

Pace Project No.: 40163710

 Sample: TB-1 B2 CONTROL
 Lab ID: 40163710001
 Collected: 01/18/18 10:00
 Received: 01/19/18 08:30
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix: Solid

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Full List	Analytical	Method: EP/	A 8260 Prepa	ration Metho	od: EP	A 5035/5030B			
1,1,2-Trichlorotrifluoroethane	<2060	ug/kg	5090	2060	80	01/23/18 07:45	01/24/18 10:28	76-13-1	
Vinyl chloride	<2150	ug/kg	5090	2150	80	01/23/18 07:45	01/24/18 10:28	75-01-4	
Xylene (Total)	<4930	ug/kg	15300	4930	80	01/23/18 07:45	01/24/18 10:28	1330-20-7	
Surrogates									
Dibromofluoromethane (S)	0	%	68-130		80	01/23/18 07:45	01/24/18 10:28	1868-53-7	S4
Toluene-d8 (S)	0	%	68-149		80	01/23/18 07:45	01/24/18 10:28	2037-26-5	S4
4-Bromofluorobenzene (S)	0	%	58-141		80	01/23/18 07:45	01/24/18 10:28	460-00-4	S4
Percent Moisture	Analytical	Method: AST	FM D2974-87						
Percent Moisture	21.4	%	0.10	0.10	1		01/29/18 16:00		

Project: RAMBOLL ENV - 1 HR MKE

Pace Project No.: 40163710

 Sample: TB-1 B2 2.5 ZVI
 Lab ID: 40163710002
 Collected: 01/18/18 10:10
 Received: 01/19/18 08:30
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Full List	Analytical	Method: EP/	A 8260 Prepa	ration Meth	od: EP/	A 5035/5030B			
Acetone	<12000	ug/kg	30400	12000	100	01/23/18 07:45	01/24/18 10:51	67-64-1	
Benzene	<1120	ug/kg	2430	1120	100	01/23/18 07:45	01/24/18 10:51	71-43-2	
Bromodichloromethane	<1190	ug/kg	6090	1190	100	01/23/18 07:45	01/24/18 10:51	75-27-4	
Bromoform	<2410	ug/kg	6090	2410	100	01/23/18 07:45	01/24/18 10:51	75-25-2	
Bromomethane	<8510	ug/kg	30400	8510	100	01/23/18 07:45	01/24/18 10:51	74-83-9	
2-Butanone (MEK)	<15100	ug/kg	30400	15100	100	01/23/18 07:45	01/24/18 10:51	78-93-3	
Carbon disulfide	<1350	ug/kg	6090	1350	100	01/23/18 07:45	01/24/18 10:51	75-15-0	
Carbon tetrachloride	<1470	ug/kg	6090	1470	100	01/23/18 07:45	01/24/18 10:51	56-23-5	
Chlorobenzene	<1800	ug/kg	6090	1800	100	01/23/18 07:45	01/24/18 10:51	108-90-7	
Chloroethane	<8160	ug/kg	30400	8160	100	01/23/18 07:45	01/24/18 10:51	75-00-3	
Chloroform	<5650	ug/kg	30400	5650	100	01/23/18 07:45	01/24/18 10:51	67-66-3	
Chloromethane	<2490	ug/kg	6090	2490	100	01/23/18 07:45	01/24/18 10:51	74-87-3	
Cyclohexane	<7590	ug/kg	30400	7590	100	01/23/18 07:45	01/24/18 10:51	110-82-7	
1,2-Dibromo-3-chloropropane	<11100	ug/kg	30400	11100	100	01/23/18 07:45	01/24/18 10:51	96-12-8	
Dibromochloromethane	<2180	ug/kg	6090	2180	100	01/23/18 07:45	01/24/18 10:51	124-48-1	
1,2-Dibromoethane (EDB)	<1790	ug/kg	6090	1790	100	01/23/18 07:45	01/24/18 10:51	106-93-4	
1,2-Dichlorobenzene	<1970	ug/kg	6090	1970	100	01/23/18 07:45	01/24/18 10:51	95-50-1	
1,3-Dichlorobenzene	<1610	ug/kg	6090	1610	100	01/23/18 07:45	01/24/18 10:51	541-73-1	
1,4-Dichlorobenzene	<1930	ug/kg	6090	1930	100	01/23/18 07:45	01/24/18 10:51	106-46-7	
Dichlorodifluoromethane	<1500	ug/kg	6090	1500	100	01/23/18 07:45	01/24/18 10:51	75-71-8	
1,1-Dichloroethane	<2150	ug/kg	6090	2150	100	01/23/18 07:45	01/24/18 10:51	75-34-3	
1,2-Dichloroethane	<1830	ug/kg	6090	1830	100	01/23/18 07:45	01/24/18 10:51	107-06-2	
1,1-Dichloroethene	<2150	ug/kg	6090	2150	100	01/23/18 07:45	01/24/18 10:51	75-35-4	
cis-1,2-Dichloroethene	<2020	ug/kg	6090	2020	100	01/23/18 07:45	01/24/18 10:51	156-59-2	
trans-1,2-Dichloroethene	<2010	ug/kg	6090	2010	100	01/23/18 07:45	01/24/18 10:51	156-60-5	
1,2-Dichloropropane	<2050	ug/kg	6090	2050	100	01/23/18 07:45	01/24/18 10:51	78-87-5	
cis-1,3-Dichloropropene	<2020	ug/kg	6090	2020	100	01/23/18 07:45	01/24/18 10:51	10061-01-5	
trans-1,3-Dichloropropene	<1750	ug/kg	6090	1750	100	01/23/18 07:45	01/24/18 10:51	10061-02-6	
Ethylbenzene	<1510	ug/kg	6090	1510	100	01/23/18 07:45	01/24/18 10:51	100-41-4	
2-Hexanone	<6330	ug/kg	30400	6330	100	01/23/18 07:45	01/24/18 10:51	591-78-6	
Isopropylbenzene (Cumene)	<1530	ug/kg	6090	1530	100	01/23/18 07:45	01/24/18 10:51	98-82-8	
Methyl acetate	<20000	ug/kg	30400	20000	100	01/23/18 07:45	01/24/18 10:51	79-20-9	
Methylcyclohexane	<8800	ug/kg	30400	8800	100	01/23/18 07:45	01/24/18 10:51	108-87-2	
Methylene Chloride	<1970	ug/kg	6090	1970	100	01/23/18 07:45	01/24/18 10:51	75-09-2	
4-Methyl-2-pentanone (MIBK)	<5000	ug/kg	30400	5000	100	01/23/18 07:45	01/24/18 10:51	108-10-1	
Methyl-tert-butyl ether	<1540	ug/kg	6090	1540	100	01/23/18 07:45	01/24/18 10:51	1634-04-4	
Styrene	<1100	ug/kg	6090	1100	100	01/23/18 07:45	01/24/18 10:51	100-42-5	
1,1,2,2-Tetrachloroethane	<2140	ug/kg	6090	2140	100	01/23/18 07:45	01/24/18 10:51	79-34-5	
Tetrachloroethene	650000	ug/kg	6090	1570	100	01/23/18 07:45	01/24/18 10:51	127-18-4	
Toluene	<1370	ug/kg	6090	1370	100	01/23/18 07:45	01/24/18 10:51	108-88-3	
1,2,4-Trichlorobenzene	<5790	ug/kg	30400	5790	100	01/23/18 07:45	01/24/18 10:51	120-82-1	
1,1,1-Trichloroethane	<1760	ug/kg	6090	1760	100	01/23/18 07:45	01/24/18 10:51	71-55-6	
1,1,2-Trichloroethane	<2460	ug/kg	6090	2460	100	01/23/18 07:45	01/24/18 10:51	79-00-5	
Trichloroethene	<2880	ug/kg	6090	2880	100	01/23/18 07:45	01/24/18 10:51	79-01-6	
Trichlorofluoromethane	<3000	ug/kg	6090	3000	100	01/23/18 07:45	01/24/18 10:51	75-69-4	

Project: RAMBOLL ENV - 1 HR MKE

Pace Project No.: 40163710

 Sample: TB-1 B2 2.5 ZVI
 Lab ID: 40163710002
 Collected: 01/18/18 10:10
 Received: 01/19/18 08:30
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Full List	Analytical	Method: EP/	A 8260 Prepa	ration Meth	od: EP	A 5035/5030B			
1,1,2-Trichlorotrifluoroethane	<2460	ug/kg	6090	2460	100	01/23/18 07:45	01/24/18 10:51	76-13-1	
Vinyl chloride	<2570	ug/kg	6090	2570	100	01/23/18 07:45	01/24/18 10:51	75-01-4	
Xylene (Total)	<5890	ug/kg	18300	5890	100	01/23/18 07:45	01/24/18 10:51	1330-20-7	
Surrogates		0 0							
Dibromofluoromethane (S)	0	%	68-130		100	01/23/18 07:45	01/24/18 10:51	1868-53-7	S4
Toluene-d8 (S)	0	%	68-149		100	01/23/18 07:45	01/24/18 10:51	2037-26-5	S4
4-Bromofluorobenzene (S)	0	%	58-141		100	01/23/18 07:45	01/24/18 10:51	460-00-4	S4
Percent Moisture	Analytical	Method: AS	FM D2974-87						
Percent Moisture	17.8	%	0.10	0.10	1		01/29/18 16:00		

EPA 8260

8260 MSV Med Level Full List

Project: RAMBOLL ENV - 1 HR MKE

Pace Project No .: 40163710

QC	Batch:	

279575 QC Batch Method: EPA 5035/5030B

Analysis Description:

Analysis Method:

Associated Lab Samples: 40163710001, 40163710002

METHOD BLANK: 1641061 Matrix: Solid Associated Lab Samples: 40163710001, 40163710002 Blank Reporting MDL Result Limit Parameter Units Analyzed Qualifiers 1,1,1-Trichloroethane <14.4 50.0 14.4 01/23/18 09:39 ug/kg 1,1,2,2-Tetrachloroethane <17.5 50.0 17 5 01/23/18 09:39 ug/kg 1.1.2-Trichloroethane ug/kg <20.2 50.0 20.2 01/23/18 09:39 1,1,2-Trichlorotrifluoroethane <20.2 50.0 ug/kg 20.2 01/23/18 09:39 1,1-Dichloroethane ug/kg <17.6 50.0 17.6 01/23/18 09:39 1,1-Dichloroethene ug/kg <17.6 50.0 17.6 01/23/18 09:39 1,2,4-Trichlorobenzene ug/kg <47.6 250 47.6 01/23/18 09:39 1,2-Dibromo-3-chloropropane <91.2 250 91.2 01/23/18 09:39 ug/kg 1,2-Dibromoethane (EDB) ug/kg <14.7 50.0 14.7 01/23/18 09:39 1.2-Dichlorobenzene ug/kg <16.2 50.0 16.2 01/23/18 09:39 1,2-Dichloroethane <15.0 50.0 15.0 01/23/18 09:39 ug/kg <16.8 50.0 1,2-Dichloropropane ug/kg 16.8 01/23/18 09:39 50.0 1,3-Dichlorobenzene <13.2 13.2 01/23/18 09:39 ug/kg 50.0 1,4-Dichlorobenzene <15.9 15.9 01/23/18 09:39 ug/kg 250 2-Butanone (MEK) ug/kg <124 124 01/23/18 09:39 2-Hexanone ug/kg <52.0 250 52.0 01/23/18 09:39 4-Methyl-2-pentanone (MIBK) ug/kg <41.1 250 41.1 01/23/18 09:39 Acetone ug/kg <98.6 250 98.6 01/23/18 09:39 Benzene <9.2 20.0 01/23/18 09:39 ug/kg 9.2 Bromodichloromethane 50.0 01/23/18 09:39 ug/kg <9.8 9.8 Bromoform ug/kg <19.8 50.0 19.8 01/23/18 09:39 Bromomethane <69.9 250 69.9 01/23/18 09:39 ug/kg Carbon disulfide ug/kg <11.1 50.0 01/23/18 09:39 11.1 Carbon tetrachloride <12.1 50.0 12 1 01/23/18 09:39 ug/kg Chlorobenzene <14.8 50.0 14.8 01/23/18 09:39 ug/kg Chloroethane ug/kg <67.0 250 67.0 01/23/18 09:39 250 Chloroform ug/kg <46.4 46.4 01/23/18 09:39 Chloromethane ug/kg <20.4 50.0 20.4 01/23/18 09:39 cis-1,2-Dichloroethene <16.6 50.0 16.6 01/23/18 09:39 ug/kg 50.0 01/23/18 09:39 cis-1,3-Dichloropropene ug/kg <16.6 16.6 Cyclohexane ug/kg <62.4 250 624 01/23/18 09:39 ug/kg Dibromochloromethane <17.9 50.0 17.9 01/23/18 09:39 Dichlorodifluoromethane ug/kg <12.3 50.0 12.3 01/23/18 09:39 Ethylbenzene ug/kg < 12.450.0 124 01/23/18 09:39 <12.6 Isopropylbenzene (Cumene) ug/kg 50.0 12.6 01/23/18 09:39 Methyl acetate ug/kg <164 250 164 01/23/18 09:39 Methyl-tert-butyl ether 50.0 ug/kg <12.7 12.7 01/23/18 09:39 250 Methylcyclohexane ug/kg <72.3 72.3 01/23/18 09:39 Methylene Chloride ug/kg <16.2 50.0 16.2 01/23/18 09:39 Stvrene <9.0 50.0 9.0 01/23/18 09:39 ug/kg Tetrachloroethene 01/23/18 09:39 ug/kg <12.9 50.0 12.9

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: RAMBOLL ENV - 1 HR MKE

Pace Project No.: 40163710

METHOD BLANK: 164106	Matrix:	Solid				
Associated Lab Samples:	40163710001, 40163710002					
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Toluene	ug/kg	<11.2	50.0	11.2	01/23/18 09:39	
trans-1,2-Dichloroethene	ug/kg	<16.5	50.0	16.5	01/23/18 09:39	
trans-1,3-Dichloropropene	ug/kg	<14.4	50.0	14.4	01/23/18 09:39	
Trichloroethene	ug/kg	<23.6	50.0	23.6	01/23/18 09:39	
Trichlorofluoromethane	ug/kg	<24.7	50.0	24.7	01/23/18 09:39	
Vinyl chloride	ug/kg	<21.1	50.0	21.1	01/23/18 09:39	
Xylene (Total)	ug/kg	<48.4	150	48.4	01/23/18 09:39	
4-Bromofluorobenzene (S)	%	93	58-141		01/23/18 09:39	
Dibromofluoromethane (S)	%	93	68-130		01/23/18 09:39	
Toluene-d8 (S)	%	96	68-149		01/23/18 09:39	

LABORATORY CONTROL SAMPLE: 1641062

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	2500	2620	105	61-122	
1,1,2,2-Tetrachloroethane	ug/kg	2500	2490	100	73-130	
1,1,2-Trichloroethane	ug/kg	2500	2620	105	70-130	
1,1,2-Trichlorotrifluoroethane	ug/kg	2500	2570	103	50-150	
1,1-Dichloroethane	ug/kg	2500	2690	108	63-124	
1,1-Dichloroethene	ug/kg	2500	2620	105	53-117	
1,2,4-Trichlorobenzene	ug/kg	2500	2300	92	78-130	
1,2-Dibromo-3-chloropropane	ug/kg	2500	2090	84	49-140	
1,2-Dibromoethane (EDB)	ug/kg	2500	2550	102	70-130	
1,2-Dichlorobenzene	ug/kg	2500	2480	99	70-130	
1,2-Dichloroethane	ug/kg	2500	2720	109	56-135	
1,2-Dichloropropane	ug/kg	2500	2690	108	77-122	
1,3-Dichlorobenzene	ug/kg	2500	2450	98	70-130	
1,4-Dichlorobenzene	ug/kg	2500	2360	94	70-130	
Benzene	ug/kg	2500	2630	105	66-130	
Bromodichloromethane	ug/kg	2500	2520	101	62-135	
Bromoform	ug/kg	2500	2000	80	68-130	
Bromomethane	ug/kg	2500	1950	78	29-137	
Carbon disulfide	ug/kg	2500	2830	113	64-137	
Carbon tetrachloride	ug/kg	2500	2610	104	57-130	
Chlorobenzene	ug/kg	2500	2530	101	70-130	
Chloroethane	ug/kg	2500	2200	88	36-144	
Chloroform	ug/kg	2500	2580	103	69-115	
Chloromethane	ug/kg	2500	1950	78	32-126	
cis-1,2-Dichloroethene	ug/kg	2500	2400	96	65-130	
cis-1,3-Dichloropropene	ug/kg	2500	2320	93	70-130	
Cyclohexane	ug/kg	2500	2970	119	50-150	
Dibromochloromethane	ug/kg	2500	2230	89	70-130	
Dichlorodifluoromethane	ug/kg	2500	1460	58	10-99	
Ethylbenzene	ug/kg	2500	2600	104	82-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: RAMBOLL ENV - 1 HR MKE

Pace Project No.: 40163710

LABORATORY CONTROL SAMPLE: 1641062

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Isopropylbenzene (Cumene)	ug/kg	2500	2680	107	70-130	
Methyl acetate	ug/kg	2500	2820	113	50-150	
Methyl-tert-butyl ether	ug/kg	2500	2720	109	63-134	
Methylcyclohexane	ug/kg	2500	2870	115	50-150	
Methylene Chloride	ug/kg	2500	2490	100	56-123	
Styrene	ug/kg	2500	2680	107	70-130	
Tetrachloroethene	ug/kg	2500	2450	98	70-131	
Toluene	ug/kg	2500	2570	103	80-120	
trans-1,2-Dichloroethene	ug/kg	2500	2640	105	66-130	
trans-1,3-Dichloropropene	ug/kg	2500	2450	98	68-130	
Trichloroethene	ug/kg	2500	2500	100	70-130	
Trichlorofluoromethane	ug/kg	2500	2300	92	37-149	
Vinyl chloride	ug/kg	2500	2310	92	43-128	
Xylene (Total)	ug/kg	7500	7780	104	70-130	
4-Bromofluorobenzene (S)	%			93	58-141	
Dibromofluoromethane (S)	%			94	68-130	
Toluene-d8 (S)	%			95	68-149	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: RAMBOLL ENV - 1 HR MKE

Pace Project No.: 40163710

QC Batch:	280044	Analysis Method:	ASTM D2974-87	
QC Batch Method:	ASTM D2974-87	Analysis Description:	Dry Weight/Percent Moisture	
Associated Lab Sam	bles: 40163710001, 40163710002			
SAMPLE DUPLICAT	E: 1643343			
	4	40163670003 Dup	Max	

Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	63.9	65.1	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: RAMBOLL ENV - 1 HR MKE

Pace Project No.: 40163710

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

S4 Surrogate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: RAMBOLL ENV - 1 HR MKE Pace Project No.: 40163710

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40163710001 40163710002	TB-1 B2 CONTROL TB-1 B2 2.5 ZVI	EPA 5035/5030B EPA 5035/5030B	279575 279575	EPA 8260 EPA 8260	279576 279576
40163710001 40163710002	TB-1 B2 CONTROL TB-1 B2 2.5 ZVI	ASTM D2974-87 ASTM D2974-87	280044 280044		

Method of Shipmen Relinguished By Da	Special Instructions	TB-1 B2 2.5 ZVI	TB-1 B2 Control	Descripti		Phone Numt	Sampler Name (pri	Phone Numt	Lab Conta	City/State/2	Analytical La	N N N H H H H H
$\frac{11}{18/18}$		1/18/2018 1010	1/18/2018 1000	Sam Date Date Time Sampled	Sample Information	per: 608-669-6949	nt): Kevin Baker	ber: (920)-469-2436	act: Dan Milewsky	Zip: Green Bay, WI 54302	ESS: 1241 Bellevue Street	
			0 1 2	No. of Containers	agent Ste		a de la companya de la companya de las					1944 1
		×	*	Grad Composite Filtered			Proje	City		Proje		
Tra		×	×	lce HNO3 HCI	Prese		ct Manager: A	//State/Zip: N	Address: 9	ct Number:	Project ID: R	+ NJ~~~~
icking No: H By/Date:				NaOH H2SO4 plastic H2SO4 glass	rvative		Angela Hasse	Madison, WI)67 Jonathor		Ramboll Env-	bacalintian D
16 16				Other: Groundwater Waste Water			<u> </u>	53719	n Drive		- 1 hr MKE	and the second second
38-1		×	×	Drinking Water Sludge Soil	Matrix						ſ	J
				Other :		=	Ema	Repo	Ema	Repo	Ema	
		×	×	VOCs Method 8260B	Ъ	nvoice To:	il Address:	rt To:	il Address:	rt To:	it i0. il Address:	¥ 7.
	Laboratory Com		1-402 Ca T		Analyze For:	Angela Hassell	brehm@resolutionpa	Bernd Rehm	kbaker@resolutionpation kbaker@resolution kbaker@res	Kevin Baker	ahassell@resolution]	Annals Usecall
	nments:	×	×	RUSH: Standard	TAT		artnersllc.net		artnersllc.net		oartnersllc.ne	

Page 18 of 19

40/6370

\sim	
Pace	Analytical

Client Name: Resolution		Project #:	JO# : 401	63710
	Other Astalter	> II		
Tracking #: $166838 - 1$		<u> </u>	0163710	
Custody Seal on Cooler/Box Present: yes	no Seals intact:			New York (1997)
Custody Seal on Samples Present: 🔽 yes 🗸	no Seals intact:	yes no		
Packing Material: Bubble Wrap Bubble	ole Bags None	C Other		
Thermometer Used <u>N(A</u>	Type of Ice: Wet E	Blue Dry None	Samples on ice, cooli	ng process has begun
Cooler Temperature Uncorr: 1201 /Corr:	Biologi	cal Tissue is Frozen:	yes	
Temp Blank Present: yes / no			Perso	on examining contents:
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C.		Comments:	Initials	
Chain of Custody Present:	Yes No N/A 1			
Chain of Custody Filled Out:	ŹYes □No □N/A 2			
Chain of Custody Relinquished:	Yes INO IN/A 3	. NO relingues	2h Time	031/19/x
Sampler Name & Signature on COC:	□Yes INO □N/A 4	U.	**************************************	
Samples Arrived within Hold Time:	Øyes □No □N/A 5	j.		
- VOA Samples frozen upon receipt	□Yes □No □	Date/Time:		
Short Hold Time Analysis (<72hr):	□Yes ØNo □N/A 6	j.		
Rush Turn Around Time Requested:	□Yes 🖉No □N/A 7	,		
Sufficient Volume:	□Yes ØNO □N/A 8	10 ms/ms	>	
Correct Containers Used:	ØYes □No □N/A 9	/• I.		
-Pace Containers Used:	ZYes □No □N/A			
-Pace IR Containers Used:	□Yes □No ØN/A			
Containers Intact:	ŹYes □No □N/A 1	0.	······································	
Filtered volume received for Dissolved tests	□Yes □No ØN/A 1	1.		·····
Sample Labels match COC:	ØYes □No □N/A 1	2.		
-Includes date/time/ID/Analysis Matrix:				
All containers needing preservation have been checked. (Non-Compliance noted in 13.)		3 THNO3 T	H2SO4 T NaOH	I 🦵 NaOH +ZnAct
All containers needing preservation are found to be in	·/'	0.		
compliance with EPA recommendation.	□Yes □No ØN/A			
exceptions: VOA, coliform, TOC, TOX, TOH,		nitial when Lab S	d #ID of	Date/
O&G, WIDROW, Phenolics, OTHER:	□Yes INO C	ompleted preser	vative	Time:
Headspace in VOA Vials (>6mm):	□Yes □No ZN/A 1	4.	ANT:	
Trip Blank Present:	□Yes INO □N/A 1	5.		
Trip Blank Custody Seals Present	□Yes □No ØN/A			
Pace Trip Blank Lot # (if purchased):			an a	
Client Notification/ Resolution:	Date (Th	If checke	d, see attached form fo	or additional comments
Comments/ Resolution	Date/11			
Project Manager Review: RMR	for Dn		Date: (//9/	118

F-GB-C-031-Rev.04 (12Dec2016) SCUR.xls Pace Analytical Services LLC. - Green Bay WI

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

January 12, 2018

Angela Hassell ReSolution Partners, LLC. 967 Jonathon Drive Madison, WI 53713

RE: Project: 179-002A MU-FORMER 1-HR CLEANE Pace Project No.: 40163198

Dear Angela Hassell:

Enclosed are the analytical results for sample(s) received by the laboratory on January 06, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Kevin Baker, ReSolution Partners, LLC. Bernd Rehm, ReSolution Partners, LLC.

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 179-002A MU-FORMER 1-HR CLEANE

Pace Project No.: 40163198

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 179-002A MU-FORMER 1-HR CLEANE

Pace Project No.: 40163198

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
40163198001		Solid	01/04/18 10:00	01/06/18 08:10	

SAMPLE ANALYTE COUNT

Project:	179-002A MU-FORMER 1-HR CLEANE
Pace Project No.:	40163198

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40163198001		EPA 8260	MDS	51	PASI-G
		ASTM D2974-87	KTS	1	PASI-G

SUMMARY OF DETECTION

Project: 179-002A MU-FORMER 1-HR CLEANE

Pace Project No.: 40163198

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40163198001	TB-1 B2					
EPA 8260 ASTM D2974-87	Tetrachloroethene Percent Moisture	591000 13.0	ug/kg %	4600 0.10	01/08/18 19:16 01/11/18 13:47	

PROJECT NARRATIVE

Project: 179-002A MU-FORMER 1-HR CLEANE

Pace Project No.: 40163198

Method:EPA 8260Description:8260 MSV Med Level Full ListClient:ReSolution Partners, LLC.Date:January 12, 2018

General Information:

1 sample was analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 5035/5030B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: 179-002A MU-FORMER 1-HR CLEANE

Pace Project No.: 40163198

 Sample: TB-1 B2
 Lab ID: 40163198001
 Collected: 01/04/18 10:00
 Received: 01/06/18 08:10
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Full List	Analytical	Method: EPA	A 8260 Prepai	ration Meth	od: EP/	A 5035/5030B			
Acetone	<9070	ug/kg	23000	9070	80	01/08/18 08:15	01/08/18 19:16	67-64-1	
Benzene	<848	ug/kg	1840	848	80	01/08/18 08:15	01/08/18 19:16	71-43-2	
Bromodichloromethane	<897	ug/kg	4600	897	80	01/08/18 08:15	01/08/18 19:16	75-27-4	
Bromoform	<1820	ug/kg	4600	1820	80	01/08/18 08:15	01/08/18 19:16	75-25-2	
Bromomethane	<6430	ua/ka	23000	6430	80	01/08/18 08:15	01/08/18 19:16	74-83-9	
2-Butanone (MEK)	<11400	ua/ka	23000	11400	80	01/08/18 08:15	01/08/18 19:16	78-93-3	
Carbon disulfide	<1020	ug/kg	4600	1020	80	01/08/18 08:15	01/08/18 19:16	75-15-0	
Carbon tetrachloride	<1110	ua/ka	4600	1110	80	01/08/18 08:15	01/08/18 19:16	56-23-5	
Chlorobenzene	<1360	ua/ka	4600	1360	80	01/08/18 08:15	01/08/18 19:16	108-90-7	
Chloroethane	<6160	ua/ka	23000	6160	80	01/08/18 08:15	01/08/18 19:16	75-00-3	
Chloroform	<4270	ua/ka	23000	4270	80	01/08/18 08:15	01/08/18 19:16	67-66-3	
Chloromethane	<1880	ua/ka	4600	1880	80	01/08/18 08:15	01/08/18 19:16	74-87-3	
Cvclohexane	<5740	ua/ka	23000	5740	80	01/08/18 08:15	01/08/18 19:16	110-82-7	
1.2-Dibromo-3-chloropropane	<8390	ua/ka	23000	8390	80	01/08/18 08:15	01/08/18 19:16	96-12-8	
Dibromochloromethane	<1640	ua/ka	4600	1640	80	01/08/18 08:15	01/08/18 19:16	124-48-1	
1.2-Dibromoethane (EDB)	<1350	ua/ka	4600	1350	80	01/08/18 08:15	01/08/18 19:16	106-93-4	
1.2-Dichlorobenzene	<1490	ua/ka	4600	1490	80	01/08/18 08:15	01/08/18 19:16	95-50-1	
1.3-Dichlorobenzene	<1210	ua/ka	4600	1210	80	01/08/18 08:15	01/08/18 19:16	541-73-1	
1.4-Dichlorobenzene	<1460	ua/ka	4600	1460	80	01/08/18 08:15	01/08/18 19:16	106-46-7	
Dichlorodifluoromethane	<1130	ua/ka	4600	1130	80	01/08/18 08:15	01/08/18 19:16	75-71-8	
1.1-Dichloroethane	<1620	ua/ka	4600	1620	80	01/08/18 08:15	01/08/18 19:16	75-34-3	
1.2-Dichloroethane	<1380	ua/ka	4600	1380	80	01/08/18 08:15	01/08/18 19:16	107-06-2	
1.1-Dichloroethene	<1620	ua/ka	4600	1620	80	01/08/18 08:15	01/08/18 19:16	75-35-4	
cis-1.2-Dichloroethene	<1530	ua/ka	4600	1530	80	01/08/18 08:15	01/08/18 19:16	156-59-2	
trans-1.2-Dichloroethene	<1520	ua/ka	4600	1520	80	01/08/18 08:15	01/08/18 19:16	156-60-5	
1.2-Dichloropropane	<1550	ua/ka	4600	1550	80	01/08/18 08:15	01/08/18 19:16	78-87-5	
cis-1.3-Dichloropropene	<1530	ua/ka	4600	1530	80	01/08/18 08:15	01/08/18 19:16	10061-01-5	
trans-1.3-Dichloropropene	<1330	ua/ka	4600	1330	80	01/08/18 08:15	01/08/18 19:16	10061-02-6	
Ethylbenzene	<1140	ua/ka	4600	1140	80	01/08/18 08:15	01/08/18 19:16	100-41-4	
2-Hexanone	<4780	ug/kg	23000	4780	80	01/08/18 08:15	01/08/18 19:16	591-78-6	
Isopropylbenzene (Cumene)	<1160	ua/ka	4600	1160	80	01/08/18 08:15	01/08/18 19:16	98-82-8	
Methyl acetate	<15100	ua/ka	23000	15100	80	01/08/18 08:15	01/08/18 19:16	79-20-9	
Methylcyclohexane	<6650	ua/ka	23000	6650	80	01/08/18 08:15	01/08/18 19:16	108-87-2	
Methylene Chloride	<1490	ua/ka	4600	1490	80	01/08/18 08:15	01/08/18 19:16	75-09-2	
4-Methyl-2-pentanone (MIBK)	<3780	ua/ka	23000	3780	80	01/08/18 08:15	01/08/18 19:16	108-10-1	
Methyl-tert-butyl ether	<1160	ua/ka	4600	1160	80	01/08/18 08:15	01/08/18 19:16	1634-04-4	
Styrene	<829	ua/ka	4600	829	80	01/08/18 08:15	01/08/18 19:16	100-42-5	
1.1.2.2-Tetrachloroethane	<1610	ua/ka	4600	1610	80	01/08/18 08:15	01/08/18 19:16	79-34-5	
Tetrachloroethene	591000	ua/ka	4600	1190	80	01/08/18 08:15	01/08/18 19:16	127-18-4	
Toluene	<1030	ug/kg	4600	1030	80	01/08/18 08:15	01/08/18 19:16	108-88-3	
1.2.4-Trichlorobenzene	<4370	ug/ka	23000	4370	80	01/08/18 08:15	01/08/18 19:16	120-82-1	
1.1.1-Trichloroethane	<1330	ug/ka	4600	1330	80	01/08/18 08:15	01/08/18 19:16	71-55-6	
1.1.2-Trichloroethane	<1860	ua/ka	4600	1860	80	01/08/18 08 15	01/08/18 19:16	79-00-5	
Trichloroethene	<2170	ug/kg	4600	2170	80	01/08/18 08:15	01/08/18 19:16	79-01-6	
Trichlorofluoromethane	<2270	ua/ka	4600	2270	80	01/08/18 08:15	01/08/18 19:16	75-69-4	
								•	

ANALYTICAL RESULTS

Project: 179-002A MU-FORMER 1-HR CLEANE

Pace Project No.: 40163198

 Sample: TB-1 B2
 Lab ID: 40163198001
 Collected: 01/04/18 10:00
 Received: 01/06/18 08:10
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix: Solid

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Full List	Analytical	Method: EP/	8260 Prepa	ration Metho	od: EP	A 5035/5030B			
1,1,2-Trichlorotrifluoroethane	<1860	ug/kg	4600	1860	80	01/08/18 08:15	01/08/18 19:16	76-13-1	
Vinyl chloride	<1940	ug/kg	4600	1940	80	01/08/18 08:15	01/08/18 19:16	75-01-4	
Xylene (Total)	<4450	ug/kg	13800	4450	80	01/08/18 08:15	01/08/18 19:16	1330-20-7	
Surrogates									
Dibromofluoromethane (S)	114	%	68-130		80	01/08/18 08:15	01/08/18 19:16	1868-53-7	
Toluene-d8 (S)	110	%	68-149		80	01/08/18 08:15	01/08/18 19:16	2037-26-5	
4-Bromofluorobenzene (S)	138	%	58-141		80	01/08/18 08:15	01/08/18 19:16	460-00-4	
Percent Moisture	Analytical	Method: AST	FM D2974-87						
Percent Moisture	13.0	%	0.10	0.10	1		01/11/18 13:47		

Project: 179-002A MU-FORMER 1-HR CLEANE

Pace Project No.: 40163198

QC Batch: 278676		Analysis Meth	nod: EPA	8260		
QC Batch Method: EPA 5035/5030B		Analysis Deso	cription: 8260	MSV Med Lev	/el Full List	
Associated Lab Samples: 40163198001						
METHOD BLANK: 1636810		Matrix:	Solid			
Associated Lab Samples: 40163198001						
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1.1.1-Trichloroethane	ua/ka	<14.4	50.0	14.4	01/08/18 10:24	
1,1,2,2-Tetrachloroethane	ug/kg	<17.5	50.0	17.5	01/08/18 10:24	
1,1,2-Trichloroethane	ug/kg	<20.2	50.0	20.2	01/08/18 10:24	
1,1,2-Trichlorotrifluoroethane	ug/kg	<20.2	50.0	20.2	01/08/18 10:24	
1,1-Dichloroethane	ug/kg	<17.6	50.0	17.6	01/08/18 10:24	
1,1-Dichloroethene	ug/kg	<17.6	50.0	17.6	01/08/18 10:24	
1,2,4-Trichlorobenzene	ug/kg	<47.6	250	47.6	01/08/18 10:24	
1,2-Dibromo-3-chloropropane	ug/kg	<91.2	250	91.2	01/08/18 10:24	
1,2-Dibromoethane (EDB)	ug/kg	<14.7	50.0	14.7	01/08/18 10:24	
1,2-Dichlorobenzene	ug/kg	<16.2	50.0	16.2	01/08/18 10:24	
1,2-Dichloroethane	ug/kg	<15.0	50.0	15.0	01/08/18 10:24	
1,2-Dichloropropane	ug/kg	<16.8	50.0	16.8	01/08/18 10:24	
1,3-Dichlorobenzene	ug/kg	<13.2	50.0	13.2	01/08/18 10:24	
1.4-Dichlorobenzene	ua/ka	<15.9	50.0	15.9	01/08/18 10:24	
2-Butanone (MEK)	ua/ka	<124	250	124	01/08/18 10:24	
2-Hexanone	ua/ka	<52.0	250	52.0	01/08/18 10:24	
4-Methyl-2-pentanone (MIBK)	ug/kg	<41.1	250	41.1	01/08/18 10:24	
Acetone	ug/kg	<98.6	250	98.6	01/08/18 10:24	
Benzene	ug/kg	<9.2	20.0	9.2	01/08/18 10:24	
Bromodichloromethane	ug/kg	<9.8	50.0	9.8	01/08/18 10:24	
Bromoform	ug/kg	<19.8	50.0	19.8	01/08/18 10:24	
Bromomethane	ug/kg	<69.9	250	69.9	01/08/18 10:24	
Carbon disulfide	ug/kg	<11.1	50.0	11.1	01/08/18 10:24	
Carbon tetrachloride	ug/kg	<12.1	50.0	12.1	01/08/18 10:24	
Chlorobenzene	ug/kg	<14.8	50.0	14.8	01/08/18 10:24	
Chloroethane	ua/ka	<67.0	250	67.0	01/08/18 10:24	
Chloroform	ug/kg	<46.4	250	46.4	01/08/18 10:24	
Chloromethane	ug/kg	<20.4	50.0	20.4	01/08/18 10:24	
cis-1,2-Dichloroethene	ug/kg	<16.6	50.0	16.6	01/08/18 10:24	
cis-1,3-Dichloropropene	ug/kg	<16.6	50.0	16.6	01/08/18 10:24	
Cyclohexane	ug/kg	<62.4	250	62.4	01/08/18 10:24	
Dibromochloromethane	ug/kg	<17.9	50.0	17.9	01/08/18 10:24	
Dichlorodifluoromethane	ug/kg	<12.3	50.0	12.3	01/08/18 10:24	
Ethylbenzene	ug/kg	<12.4	50.0	12.4	01/08/18 10:24	
Isopropylbenzene (Cumene)	ug/kg	<12.6	50.0	12.6	01/08/18 10:24	
Methyl acetate	ug/kg	<164	250	164	01/08/18 10:24	
Methyl-tert-butyl ether	ug/kg	<12.7	50.0	12.7	01/08/18 10:24	
Methylcyclohexane	ug/kg	<72.3	250	72.3	01/08/18 10:24	
Methylene Chloride	ug/kg	<16.2	50.0	16.2	01/08/18 10:24	
Styrene	ug/kg	<9.0	50.0	9.0	01/08/18 10:24	
Tetrachloroethene	ug/kg	27.5J	50.0	12.9	01/08/18 10:24	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Matrix: Solid

Project: 179-002A MU-FORMER 1-HR CLEANE

Pace Project No.: 40163198

METHOD BLANK: 1636810

Associated Lab Samples:	40163198001
-------------------------	-------------

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Toluene	ug/kg	<11.2	50.0	11.2	01/08/18 10:24	
trans-1,2-Dichloroethene	ug/kg	<16.5	50.0	16.5	01/08/18 10:24	
trans-1,3-Dichloropropene	ug/kg	<14.4	50.0	14.4	01/08/18 10:24	
Trichloroethene	ug/kg	<23.6	50.0	23.6	01/08/18 10:24	
Trichlorofluoromethane	ug/kg	<24.7	50.0	24.7	01/08/18 10:24	
Vinyl chloride	ug/kg	<21.1	50.0	21.1	01/08/18 10:24	
Xylene (Total)	ug/kg	<48.4	150	48.4	01/08/18 10:24	
4-Bromofluorobenzene (S)	%	101	58-141		01/08/18 10:24	
Dibromofluoromethane (S)	%	111	68-130		01/08/18 10:24	
Toluene-d8 (S)	%	109	68-149		01/08/18 10:24	

LABORATORY CONTROL SAMPLE: 1636811

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	2500	2900	116	61-122	
1,1,2,2-Tetrachloroethane	ug/kg	2500	2620	105	73-130	
1,1,2-Trichloroethane	ug/kg	2500	2620	105	70-130	
1,1,2-Trichlorotrifluoroethane	ug/kg	2500	2850	114	50-150	
1,1-Dichloroethane	ug/kg	2500	2900	116	63-124	
1,1-Dichloroethene	ug/kg	2500	2770	111	53-117	
1,2,4-Trichlorobenzene	ug/kg	2500	2530	101	78-130	
1,2-Dibromo-3-chloropropane	ug/kg	2500	2190	88	49-140	
1,2-Dibromoethane (EDB)	ug/kg	2500	2620	105	70-130	
1,2-Dichlorobenzene	ug/kg	2500	2720	109	70-130	
1,2-Dichloroethane	ug/kg	2500	2780	111	56-135	
1,2-Dichloropropane	ug/kg	2500	2680	107	77-122	
1,3-Dichlorobenzene	ug/kg	2500	2670	107	70-130	
1,4-Dichlorobenzene	ug/kg	2500	2660	106	70-130	
Benzene	ug/kg	2500	2920	117	66-130	
Bromodichloromethane	ug/kg	2500	2670	107	62-135	
Bromoform	ug/kg	2500	2060	82	68-130	
Bromomethane	ug/kg	2500	1920	77	29-137	
Carbon disulfide	ug/kg	2500	3060	122	64-137	
Carbon tetrachloride	ug/kg	2500	2660	106	57-130	
Chlorobenzene	ug/kg	2500	2530	101	70-130	
Chloroethane	ug/kg	2500	2290	92	36-144	
Chloroform	ug/kg	2500	2810	113	69-115	
Chloromethane	ug/kg	2500	1950	78	32-126	
cis-1,2-Dichloroethene	ug/kg	2500	2820	113	65-130	
cis-1,3-Dichloropropene	ug/kg	2500	2470	99	70-130	
Cyclohexane	ug/kg	2500	3210	128	50-150	
Dibromochloromethane	ug/kg	2500	2260	91	70-130	
Dichlorodifluoromethane	ug/kg	2500	1600	64	10-99	
Ethylbenzene	ug/kg	2500	2690	108	82-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 179-002A MU-FORMER 1-HR CLEANE

Pace Project No.: 40163198

LABORATORY CONTROL SAMPLE: 1636811

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Isopropylbenzene (Cumene)	ug/kg	2500	2730	109	70-130	
Methyl acetate	ug/kg	2500	2360	94	50-150	
Methyl-tert-butyl ether	ug/kg	2500	2870	115	63-134	
Methylcyclohexane	ug/kg	2500	2960	119	50-150	
Methylene Chloride	ug/kg	2500	2740	110	56-123	
Styrene	ug/kg	2500	2700	108	70-130	
Tetrachloroethene	ug/kg	2500	2410	97	70-131	
Toluene	ug/kg	2500	2570	103	80-120	
trans-1,2-Dichloroethene	ug/kg	2500	2870	115	66-130	
trans-1,3-Dichloropropene	ug/kg	2500	2580	103	68-130	
Trichloroethene	ug/kg	2500	2730	109	70-130	
Trichlorofluoromethane	ug/kg	2500	2300	92	37-149	
Vinyl chloride	ug/kg	2500	2270	91	43-128	
Xylene (Total)	ug/kg	7500	8040	107	70-130	
4-Bromofluorobenzene (S)	%			98	58-141	
Dibromofluoromethane (S)	%			106	68-130	
Toluene-d8 (S)	%			101	68-149	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 179-002A MU-FORMER 1-HR CLEANE

Pace Project No.: 40163198

QC Batch: QC Batch Method:	278947 ASTM D2974-87		Analysis Metho Analysis Descri	d: ption:	ASTM D2974-87 Dry Weight/Percent M	loisture	
Associated Lab Samp	Associated Lab Samples: 40163198001						
SAMPLE DUPLICATI	E: 1638044						
Parame	eter	Units	40163198001 Result	Dup Result	RPD	Max RPD	Qualifiers

Percent Moisture	%	13.0	14.2	9	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 179-002A MU-FORMER 1-HR CLEANE

Pace Project No.: 40163198

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 179-002A MU-FORMER 1-HR CLEANE

 Pace Project No.:
 40163198

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40163198001	TB-1 B2	EPA 5035/5030B	278676	EPA 8260	278679
40163198001	TB-1 B2	ASTM D2974-87	278947		

Page 15 of 16

40/62/98

	cample condition opon Receipt	1241 Relievue Street Sui
Pace Analytical"		Green Bay, WI 54
Client Nome: Do C-al. A	Project IIO	#:40163198
Client Name: <u>RESOlution</u>	tartners NV	m· 40103130
Courier: Fed Ex UPS Client F	Pace Other: Walf CO	
Custody Seal on Cooler/Bey Present	40163	198
Custody Seal on Samples Present: U yo		
Packing Material: Bubble Wrap	Bubble Roge None Others (Long	
Thermometer Used	Type of Ice: Wet Blue Dry None	epcan
Cooler Temperature Uncorr: /Co	Biological Tissue is Frozen:	Samples on ice, cooling process has begun
Temp Blank Present: Ves Z no	C	no Person examining contents:
Temp should be above freezing to 6°C.		Date: 110115
Biota Samples may be received at $\leq 0^{\circ}$ C.	Comments:	Initials: Kf
Chain of Custody Present:	Kres INO IN/A 1.	
Chain of Custody Filled Out:	ØYes □No □N/A 2.	
Chain of Custody Relinquished:	QYes DNO DN/A 3. NO time VA	- 1110118
Sampler Name & Signature on COC:	□Yes ØNo □N/A 4.	- hol
Samples Arrived within Hold Time:		
- VOA Samples frozen upon receipt	Yes No. Date/Time:	
Short Hold Time Analysis (<72hr):		
Rush Turn Around Time Requested:		
Sufficient Volume:	UYes DNo DNA 8 P 111 COMPANY	1 49 11 119
Correct Containers Used:	UYes ZNO DN/A 9 00 VOC VOL	rec'd
-Pace Containers Used:		
-Pace IR Containers Used		
Containers Intact		K-8-11(4
Filtered volume received for Dissolved tests		
Sample Labels match COC		
-Includes date/time/ID/Analysis Matrix		
All containers needing preservation have been check	ked.	
Non-Compliance noted in 13.)	$\qquad \qquad $	2SO4 🗌 NaOH 🥅 NaOH +ZnAct
compliance with EPA recommendation.		
HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12)		
D&G, WIDROW, Phenolics, OTHER:	□Yes ZNo Initial when Lab Std #	ID of Date/ ve Time:
Headspace in VOA Vials (>6mm):	□Yes □No ØN/A 14	
Trip Blank Present:	□Yes □No □N/A 15.	
Frip Blank Custody Seals Present		
Pace Trip Blank Lot # (if purchased):	7	
Client Notification/ Resolution:	If checked,	see attached form for additional comments
Person Contacted:	Date/Time:	
Comments/ Resolution:		

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

December 27, 2017

Angela Hassell ReSolution Partners, LLC. 967 Jonathon Drive Madison, WI 53713

RE: Project: TB-1A Pace Project No.: 40162585

Dear Angela Hassell:

Enclosed are the analytical results for sample(s) received by the laboratory on December 19, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Kevin Baker, ReSolution Partners, LLC. Bernd Rehm, ReSolution Partners, LLC.

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: TB-1A Pace Project No.: 40162585

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: TB-1A Pace Project No.: 40162585

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40162585001	TB-1A (0)	Solid		12/19/17 08:45
40162585002	TB-1A (1.5)	Solid		12/19/17 08:45
40162585003	TB-1A (2.5)	Solid		12/19/17 08:45
40162585004	TB-1A (3.0)	Solid		12/19/17 08:45

SAMPLE ANALYTE COUNT

Project: TB-1A Pace Project No.: 40162585

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40162585001	 TB-1A (0)	EPA 8260	SMT	51	PASI-G
		ASTM D2974-87	SKW	1	PASI-G
40162585002	TB-1A (1.5)	EPA 8260	SMT	51	PASI-G
		ASTM D2974-87	SKW	1	PASI-G
40162585003	TB-1A (2.5)	EPA 8260	SMT	51	PASI-G
		ASTM D2974-87	SKW	1	PASI-G
40162585004	TB-1A (3.0)	EPA 8260	SMT	51	PASI-G
		ASTM D2974-87	SKW	1	PASI-G

SUMMARY OF DETECTION

Project: TB-1A Pace Project No.: 40162585

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40162585001	TB-1A (0)					
EPA 8260	Tetrachloroethene	850000	ug/kg	4580	12/20/17 16:47	
EPA 8260	Trichloroethene	2470J	ug/kg	4580	12/20/17 16:47	
ASTM D2974-87	Percent Moisture	12.7	%	0.10	12/26/17 10:41	
40162585002	TB-1A (1.5)					
EPA 8260	Tetrachloroethene	601000	ug/kg	4470	12/20/17 17:10	
EPA 8260	Trichloroethene	5520	ug/kg	4470	12/20/17 17:10	
ASTM D2974-87	Percent Moisture	10.5	%	0.10	12/26/17 10:41	
40162585003	TB-1A (2.5)					
EPA 8260	Tetrachloroethene	534000	ug/kg	2770	12/20/17 17:33	
EPA 8260	Trichloroethene	7160	ug/kg	2770	12/20/17 17:33	
ASTM D2974-87	Percent Moisture	9.7	%	0.10	12/26/17 10:41	
40162585004	TB-1A (3.0)					
EPA 8260	Tetrachloroethene	497000	ug/kg	2750	12/20/17 17:55	
EPA 8260	Trichloroethene	6660	ug/kg	2750	12/20/17 17:55	
ASTM D2974-87	Percent Moisture	9.0	%	0.10	12/26/17 10:41	

PROJECT NARRATIVE

Project: TB-1A Pace Project No.: 40162585

Method: EPA 8260

Description:8260 MSV Med Level Full ListClient:ReSolution Partners, LLC.Date:December 27, 2017

General Information:

4 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 5035/5030B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: 277670

S4: Surrogate recovery not evaluated against control limits due to sample dilution.

- TB-1A (0) (Lab ID: 40162585001)
 - 4-Bromofluorobenzene (S)
 - Dibromofluoromethane (S)
 - Toluene-d8 (S)
- TB-1A (1.5) (Lab ID: 40162585002)
 - 4-Bromofluorobenzene (S)
 - Dibromofluoromethane (S)
 - Toluene-d8 (S)
- TB-1A (2.5) (Lab ID: 40162585003)
 - 4-Bromofluorobenzene (S)
 - Dibromofluoromethane (S)
 - Toluene-d8 (S)
- TB-1A (3.0) (Lab ID: 40162585004)
 - 4-Bromofluorobenzene (S)
 - Dibromofluoromethane (S)
 - Toluene-d8 (S)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

PROJECT NARRATIVE

Project: TB-1A Pace Project No.: 40162585

Method:	EPA 8260
Description:	8260 MSV Med Level Full List
Client:	ReSolution Partners, LLC.
Date:	December 27, 2017

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 277670

L2: Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results may be biased low.

• LCS (Lab ID: 1632242)

• 2-Butanone (MEK)

Acetone

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: TB-1A

Pace Project No.: 40162585

Sample: TB-1A (0)	Lab ID:	40162585001	Collecte	d:		Received: 12/	19/17 08:45 Ma	atrix: Solid	
Results reported on a "dry weigh	ht" basis and are	e adjusted for	percent mo	oisture, sar	nple s	ize and any diluti	ons.		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Full List	Analytical	Method: EPA 8	3260 Prepa	ration Meth	od: EP	A 5035/5030B		_	_
Acetone	<9040	ug/kg	22900	9040	80	12/20/17 07:45	12/20/17 16:47	67-64-1	L2
Benzene	<845	ug/kg	1830	845	80	12/20/17 07:45	12/20/17 16:47	71-43-2	
Bromodichloromethane	<893	ug/kg	4580	893	80	12/20/17 07:45	12/20/17 16:47	75-27-4	
Bromoform	<1810	ug/kg	4580	1810	80	12/20/17 07:45	12/20/17 16:47	75-25-2	
Bromomethane	<6400	ug/kg	22900	6400	80	12/20/17 07:45	12/20/17 16:47	74-83-9	
2-Butanone (MEK)	<11300	ug/kg	22900	11300	80	12/20/17 07:45	12/20/17 16:47	78-93-3	L2
Carbon disulfide	<1010	ug/kg	4580	1010	80	12/20/17 07:45	12/20/17 16:47	75-15-0	
Carbon tetrachloride	<1110	ug/kg	4580	1110	80	12/20/17 07:45	12/20/17 16:47	56-23-5	
Chlorobenzene	<1350	ug/kg	4580	1350	80	12/20/17 07:45	12/20/17 16:47	108-90-7	
Chloroethane	<6140	ug/kg	22900	6140	80	12/20/17 07:45	12/20/17 16:47	75-00-3	
Chloroform	<4250	ug/kg	22900	4250	80	12/20/17 07:45	12/20/17 16:47	67-66-3	
Chloromethane	<1870	ug/kg	4580	1870	80	12/20/17 07:45	12/20/17 16:47	74-87-3	
Cyclohexane	<5720	ug/kg	22900	5720	80	12/20/17 07:45	12/20/17 16:47	110-82-7	
1,2-Dibromo-3-chloropropane	<8360	ug/kg	22900	8360	80	12/20/17 07:45	12/20/17 16:47	96-12-8	
Dibromochloromethane	<1640	ug/kg	4580	1640	80	12/20/17 07:45	12/20/17 16:47	124-48-1	
1,2-Dibromoethane (EDB)	<1350	ug/kg	4580	1350	80	12/20/17 07:45	12/20/17 16:47	106-93-4	
1,2-Dichlorobenzene	<1480	ug/kg	4580	1480	80	12/20/17 07:45	12/20/17 16:47	95-50-1	
1,3-Dichlorobenzene	<1210	ug/kg	4580	1210	80	12/20/17 07:45	12/20/17 16:47	541-73-1	
1,4-Dichlorobenzene	<1450	ug/kg	4580	1450	80	12/20/17 07:45	12/20/17 16:47	106-46-7	
Dichlorodifluoromethane	<1130	ug/kg	4580	1130	80	12/20/17 07:45	12/20/17 16:47	75-71-8	
1,1-Dichloroethane	<1610	ug/kg	4580	1610	80	12/20/17 07:45	12/20/17 16:47	75-34-3	
1,2-Dichloroethane	<1370	ug/kg	4580	1370	80	12/20/17 07:45	12/20/17 16:47	107-06-2	
1,1-Dichloroethene	<1610	ug/kg	4580	1610	80	12/20/17 07:45	12/20/17 16:47	75-35-4	
cis-1,2-Dichloroethene	<1520	ug/kg	4580	1520	80	12/20/17 07:45	12/20/17 16:47	156-59-2	
trans-1,2-Dichloroethene	<1510	ug/kg	4580	1510	80	12/20/17 07:45	12/20/17 16:47	156-60-5	
1,2-Dichloropropane	<1540	ug/kg	4580	1540	80	12/20/17 07:45	12/20/17 16:47	78-87-5	
cis-1,3-Dichloropropene	<1520	ug/kg	4580	1520	80	12/20/17 07:45	12/20/17 16:47	10061-01-5	
trans-1,3-Dichloropropene	<1320	ug/kg	4580	1320	80	12/20/17 07:45	12/20/17 16:47	10061-02-6	
Ethylbenzene	<1140	ug/kg	4580	1140	80	12/20/17 07:45	12/20/17 16:47	100-41-4	
2-Hexanone	<4760	ug/kg	22900	4760	80	12/20/17 07:45	12/20/17 16:47	591-78-6	
Isopropylbenzene (Cumene)	<1150	ug/kg	4580	1150	80	12/20/17 07:45	12/20/17 16:47	98-82-8	
Methyl acetate	<15000	ug/kg	22900	15000	80	12/20/17 07:45	12/20/17 16:47	79-20-9	
Methylcyclohexane	<6630	ug/kg	22900	6630	80	12/20/17 07:45	12/20/17 16:47	108-87-2	
Methylene Chloride	<1490	ug/kg	4580	1490	80	12/20/17 07:45	12/20/17 16:47	75-09-2	
4-Methyl-2-pentanone (MIBK)	<3770	ug/kg	22900	3770	80	12/20/17 07:45	12/20/17 16:47	108-10-1	
Methyl-tert-butyl ether	<1160	ug/kg	4580	1160	80	12/20/17 07:45	12/20/17 16:47	1634-04-4	
Styrene	<825	ug/kg	4580	825	80	12/20/17 07:45	12/20/17 16:47	100-42-5	
1,1,2,2-Tetrachloroethane	<1610	ug/kg	4580	1610	80	12/20/17 07:45	12/20/17 16:47	79-34-5	
Tetrachloroethene	850000	ug/kg	4580	1180	80	12/20/17 07:45	12/20/17 16:47	127-18-4	
Ioluene	<1030	ug/kg	4580	1030	80	12/20/17 07:45	12/20/17 16:47	108-88-3	
1,2,4-Irichlorobenzene	<4360	ug/kg	22900	4360	80	12/20/17 07:45	12/20/17 16:47	120-82-1	
1,1,1-Irichloroethane	<1320	ug/kg	4580	1320	80	12/20/17 07:45	12/20/17 16:47	/1-55-6	
1,1,2-Irichloroethane	<1850	ug/kg	4580	1850	80	12/20/17 07:45	12/20/17 16:47	79-00-5	
Tricnioroethene	2470J	ug/kg	4580	2160	80	12/20/17 07:45	12/20/17 16:47	79-01-6	
Irichlorofluoromethane	<2260	ug/kg	4580	2260	80	12/20/17 07:45	12/20/17 16:47	/5-69-4	

-...

. .

ANALYTICAL RESULTS

.

Project: TB-1A

Pace Project No .: 40162585 -

Sample: TB-1A (0)	Lab ID:	4016258500	01 Collected	d:	Received: 12/19/17 08:45 Matrix: Solid						
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.											
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
8260 MSV Med Level Full List	Analytical	Method: EPA	8260 Prepa	ration Metho	od: EP/	A 5035/5030B					
1,1,2-Trichlorotrifluoroethane	<1850	ug/kg	4580	1850	80	12/20/17 07:45	12/20/17 16:47	76-13-1			
Vinyl chloride	<1930	ug/kg	4580	1930	80	12/20/17 07:45	12/20/17 16:47	75-01-4			
Xylene (Total)	<4440	ug/kg	13700	4440	80	12/20/17 07:45	12/20/17 16:47	1330-20-7			
Surrogates		0 0									
Dibromofluoromethane (S)	0	%	68-130		80	12/20/17 07:45	12/20/17 16:47	1868-53-7	S4		
Toluene-d8 (S)	0	%	68-149		80	12/20/17 07:45	12/20/17 16:47	2037-26-5	S4		
4-Bromofluorobenzene (S)	0	%	58-141		80	12/20/17 07:45	12/20/17 16:47	460-00-4	S4		
Percent Moisture	Analytical	Method: AST	FM D2974-87								
Percent Moisture	12.7	%	0.10	0.10	1		12/26/17 10:41				

ANALYTICAL RESULTS

Project: TB-1A

Pace Project No.: 40162585

Sample: TB-1A (1.5)	Lab ID:	40162585002	Collecte	d:		Received: 12/	19/17 08:45 Ma	atrix: Solid	
Results reported on a "dry weigh	ht" basis and are	adjusted for	percent mo	oisture, sar	nple s	ize and any diluti	ons.		
_									
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Full List	Analytical	Method: EPA 8	260 Prepa	ration Methe	od: EP	A 5035/5030B			
Acetone	<8820	ug/kg	22300	8820	80	12/20/17 07:45	12/20/17 17:10	67-64-1	L2
Benzene	<824	ug/kg	1790	824	80	12/20/17 07:45	12/20/17 17:10	71-43-2	
Bromodichloromethane	<871	ug/kg	4470	871	80	12/20/17 07:45	12/20/17 17:10	75-27-4	
Bromoform	<1770	ug/kg	4470	1770	80	12/20/17 07:45	12/20/17 17:10	75-25-2	
Bromomethane	<6250	ug/kg	22300	6250	80	12/20/17 07:45	12/20/17 17:10	74-83-9	
2-Butanone (MEK)	<11100	ug/kg	22300	11100	80	12/20/17 07:45	12/20/17 17:10	78-93-3	L2
Carbon disulfide	<989	ug/kg	4470	989	80	12/20/17 07:45	12/20/17 17:10	75-15-0	
Carbon tetrachloride	<1080	ug/kg	4470	1080	80	12/20/17 07:45	12/20/17 17:10	56-23-5	
Chlorobenzene	<1320	ug/kg	4470	1320	80	12/20/17 07:45	12/20/17 17:10	108-90-7	
Chloroethane	<5990	ug/kg	22300	5990	80	12/20/17 07:45	12/20/17 17:10	75-00-3	
Chloroform	<4150	ug/kg	22300	4150	80	12/20/17 07:45	12/20/17 17:10	67-66-3	
Chloromethane	<1830	ug/kg	4470	1830	80	12/20/17 07:45	12/20/17 17:10	74-87-3	
Cyclohexane	<5580	ug/kg	22300	5580	80	12/20/17 07:45	12/20/17 17:10	110-82-7	
1,2-Dibromo-3-chloropropane	<8150	ug/kg	22300	8150	80	12/20/17 07:45	12/20/17 17:10	96-12-8	
Dibromochloromethane	<1600	ug/kg	4470	1600	80	12/20/17 07:45	12/20/17 17:10	124-48-1	
1,2-Dibromoethane (EDB)	<1310	ug/kg	4470	1310	80	12/20/17 07:45	12/20/17 17:10	106-93-4	
1,2-Dichlorobenzene	<1450	ug/kg	4470	1450	80	12/20/17 07:45	12/20/17 17:10	95-50-1	
1,3-Dichlorobenzene	<1180	ug/kg	4470	1180	80	12/20/17 07:45	12/20/17 17:10	541-73-1	
1,4-Dichlorobenzene	<1420	ug/kg	4470	1420	80	12/20/17 07:45	12/20/17 17:10	106-46-7	
Dichlorodifluoromethane	<1100	ug/kg	4470	1100	80	12/20/17 07:45	12/20/17 17:10	75-71-8	
1,1-Dichloroethane	<1580	ug/kg	4470	1580	80	12/20/17 07:45	12/20/17 17:10	75-34-3	
1,2-Dichloroethane	<1340	ug/kg	4470	1340	80	12/20/17 07:45	12/20/17 17:10	107-06-2	
1,1-Dichloroethene	<1580	ug/kg	4470	1580	80	12/20/17 07:45	12/20/17 17:10	75-35-4	
cis-1,2-Dichloroethene	<1480	ug/kg	4470	1480	80	12/20/17 07:45	12/20/17 17:10	156-59-2	
trans-1,2-Dichloroethene	<1470	ug/kg	4470	1470	80	12/20/17 07:45	12/20/17 17:10	156-60-5	
1,2-Dichloropropane	<1500	ug/kg	4470	1500	80	12/20/17 07:45	12/20/17 17:10	78-87-5	
cis-1,3-Dichloropropene	<1480	ug/kg	4470	1480	80	12/20/17 07:45	12/20/17 17:10	10061-01-5	
trans-1,3-Dichloropropene	<1290	ug/kg	4470	1290	80	12/20/17 07:45	12/20/17 17:10	10061-02-6	
Ethylbenzene	<1110	ug/kg	4470	1110	80	12/20/17 07:45	12/20/17 17:10	100-41-4	
2-Hexanone	<4650	ug/kg	22300	4650	80	12/20/17 07:45	12/20/17 17:10	591-78-6	
Isopropylbenzene (Cumene)	<1130	ug/kg	4470	1130	80	12/20/17 07:45	12/20/17 17:10	98-82-8	
Methyl acetate	<14700	ug/kg	22300	14700	80	12/20/17 07:45	12/20/17 17:10	79-20-9	
Methylcyclohexane	<6470	ug/kg	22300	6470	80	12/20/17 07:45	12/20/17 17:10	108-87-2	
Methylene Chloride	<1450	ug/kg	4470	1450	80	12/20/17 07:45	12/20/17 17:10	75-09-2	
4-Methyl-2-pentanone (MIBK)	<3670	ug/kg	22300	3670	80	12/20/17 07:45	12/20/17 17:10	108-10-1	
Methyl-tert-butyl ether	<1130	ug/kg	4470	1130	80	12/20/17 07:45	12/20/17 17:10	1634-04-4	
Styrene	<805	ug/kg	4470	805	80	12/20/17 07:45	12/20/17 17:10	100-42-5	
1,1,2,2-Tetrachloroethane	<1570	ug/kg	4470	1570	80	12/20/17 07:45	12/20/17 17:10	79-34-5	
Tetrachloroethene	601000	ug/kg	4470	1150	80	12/20/17 07:45	12/20/17 17:10	127-18-4	
Toluene	<1000	ug/kg	4470	1000	80	12/20/17 07:45	12/20/17 17:10	108-88-3	
1,2,4-Trichlorobenzene	<4250	ug/kg	22300	4250	80	12/20/17 07:45	12/20/17 17:10	120-82-1	
1,1,1-Trichloroethane	<1290	ug/kg	4470	1290	80	12/20/17 07:45	12/20/17 17:10	71-55-6	
1,1,2-Trichloroethane	<1810	ug/kg	4470	1810	80	12/20/17 07:45	12/20/17 17:10	79-00-5	
Trichloroethene	5520	ug/kg	4470	2110	80	12/20/17 07:45	12/20/17 17:10	79-01-6	
Trichlorofluoromethane	<2210	ug/kg	4470	2210	80	12/20/17 07:45	12/20/17 17:10	75-69-4	

...

-

ANALYTICAL RESULTS

Project: TB-1A

Pace Project No.: 40162585

-

Sample: TB-1A (1.5)	Lab ID:	4016258500	02 Collecte	d:		Received: 12/	19/17 08:45 Ma	atrix: Solid	
Results reported on a "dry weigh	t" basis and are	e adjusted fo	or percent mo	oisture, san	nple s	ize and any diluti	ions.		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Full List	Analytical	Method: EP/	A 8260 Prepa	ration Metho	od: EP	A 5035/5030B			
1,1,2-Trichlorotrifluoroethane	<1810	ug/kg	4470	1810	80	12/20/17 07:45	12/20/17 17:10	76-13-1	
Vinyl chloride	<1890	ug/kg	4470	1890	80	12/20/17 07:45	12/20/17 17:10	75-01-4	
Xylene (Total)	<4330	ug/kg	13400	4330	80	12/20/17 07:45	12/20/17 17:10	1330-20-7	
Surrogates									
Dibromofluoromethane (S)	0	%	68-130		80	12/20/17 07:45	12/20/17 17:10	1868-53-7	S4
Toluene-d8 (S)	0	%	68-149		80	12/20/17 07:45	12/20/17 17:10	2037-26-5	S4
4-Bromofluorobenzene (S)	0	%	58-141		80	12/20/17 07:45	12/20/17 17:10	460-00-4	S4
Percent Moisture	Analytical	Method: AS	TM D2974-87						
Percent Moisture	10.5	%	0.10	0.10	1		12/26/17 10:41		

ANALYTICAL RESULTS

Project: TB-1A

Pace Project No.: 40162585

Sample: TB-1A (2.5)	Lab ID:	40162585003	Collecte	d:		Received: 12/	19/17 08:45 Ma	atrix: Solid	
Results reported on a "dry weigh	ht" basis and are	e adjusted for	percent mo	oisture, saı	nple s	ize and any diluti	ons.		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Full List	Analytical	Method: EPA 8	260 Prepa	ration Meth	od: EP	A 5035/5030B			
Acetone	<5460	ug/kg	13800	5460	50	12/20/17 07:45	12/20/17 17:33	67-64-1	L2
Benzene	<511	ug/kg	1110	511	50	12/20/17 07:45	12/20/17 17:33	71-43-2	
Bromodichloromethane	<540	ug/kg	2770	540	50	12/20/17 07:45	12/20/17 17:33	75-27-4	
Bromoform	<1100	ug/kg	2770	1100	50	12/20/17 07:45	12/20/17 17:33	75-25-2	
Bromomethane	<3870	ug/kg	13800	3870	50	12/20/17 07:45	12/20/17 17:33	74-83-9	
2-Butanone (MEK)	<6850	ug/kg	13800	6850	50	12/20/17 07:45	12/20/17 17:33	78-93-3	L2
Carbon disulfide	<613	ug/kg	2770	613	50	12/20/17 07:45	12/20/17 17:33	75-15-0	
Carbon tetrachloride	<670	ug/kg	2770	670	50	12/20/17 07:45	12/20/17 17:33	56-23-5	
Chlorobenzene	<817	ug/kg	2770	817	50	12/20/17 07:45	12/20/17 17:33	108-90-7	
Chloroethane	<3710	ug/kg	13800	3710	50	12/20/17 07:45	12/20/17 17:33	75-00-3	
Chloroform	<2570	ug/kg	13800	2570	50	12/20/17 07:45	12/20/17 17:33	67-66-3	
Chloromethane	<1130	ug/kg	2770	1130	50	12/20/17 07:45	12/20/17 17:33	74-87-3	
Cyclohexane	<3460	ug/kg	13800	3460	50	12/20/17 07:45	12/20/17 17:33	110-82-7	
1,2-Dibromo-3-chloropropane	<5050	ug/kg	13800	5050	50	12/20/17 07:45	12/20/17 17:33	96-12-8	
Dibromochloromethane	<990	ug/kg	2770	990	50	12/20/17 07:45	12/20/17 17:33	124-48-1	
1,2-Dibromoethane (EDB)	<815	ug/kg	2770	815	50	12/20/17 07:45	12/20/17 17:33	106-93-4	
1,2-Dichlorobenzene	<896	ug/kg	2770	896	50	12/20/17 07:45	12/20/17 17:33	95-50-1	
1,3-Dichlorobenzene	<731	ug/kg	2770	731	50	12/20/17 07:45	12/20/17 17:33	541-73-1	
1,4-Dichlorobenzene	<880	ug/kg	2770	880	50	12/20/17 07:45	12/20/17 17:33	106-46-7	
Dichlorodifluoromethane	<680	ug/kg	2770	680	50	12/20/17 07:45	12/20/17 17:33	75-71-8	
1,1-Dichloroethane	<976	ug/kg	2770	976	50	12/20/17 07:45	12/20/17 17:33	75-34-3	
1,2-Dichloroethane	<831	ug/kg	2770	831	50	12/20/17 07:45	12/20/17 17:33	107-06-2	
1,1-Dichloroethene	<976	ug/kg	2770	976	50	12/20/17 07:45	12/20/17 17:33	75-35-4	
cis-1,2-Dichloroethene	<919	ug/kg	2770	919	50	12/20/17 07:45	12/20/17 17:33	156-59-2	
trans-1,2-Dichloroethene	<913	ug/kg	2770	913	50	12/20/17 07:45	12/20/17 17:33	156-60-5	
1,2-Dichloropropane	<931	ug/kg	2770	931	50	12/20/17 07:45	12/20/17 17:33	78-87-5	
cis-1,3-Dichloropropene	<919	ug/kg	2770	919	50	12/20/17 07:45	12/20/17 17:33	10061-01-5	
trans-1,3-Dichloropropene	<798	ug/kg	2770	798	50	12/20/17 07:45	12/20/17 17:33	10061-02-6	
Ethylbenzene	<688	ug/kg	2770	688	50	12/20/17 07:45	12/20/17 17:33	100-41-4	
2-Hexanone	<2880	ug/kg	13800	2880	50	12/20/17 07:45	12/20/17 17:33	591-78-6	
Isopropylbenzene (Cumene)	<698	ug/kg	2770	698	50	12/20/17 07:45	12/20/17 17:33	98-82-8	
Methyl acetate	<9090	ug/kg	13800	9090	50	12/20/17 07:45	12/20/17 17:33	79-20-9	
Methylcyclohexane	<4010	ug/kg	13800	4010	50	12/20/17 07:45	12/20/17 17:33	108-87-2	
Methylene Chloride	<898	ug/kg	2770	898	50	12/20/17 07:45	12/20/17 17:33	75-09-2	
4-Methyl-2-pentanone (MIBK)	<2280	ug/kg	13800	2280	50	12/20/17 07:45	12/20/17 17:33	108-10-1	
Methyl-tert-butyl ether	<701	ug/kg	2770	701	50	12/20/17 07:45	12/20/17 17:33	1634-04-4	
Styrene	<499	ug/kg	2770	499	50	12/20/17 07:45	12/20/17 17:33	100-42-5	
1,1,2,2-Tetrachloroethane	<972	ug/kg	2770	972	50	12/20/17 07:45	12/20/17 17:33	79-34-5	
Tetrachloroethene	534000	ug/kg	2770	715	50	12/20/17 07:45	12/20/17 17:33	127-18-4	
Ioluene	<621	ug/kg	2770	621	50	12/20/17 07:45	12/20/17 17:33	108-88-3	
1,2,4-Irichlorobenzene	<2630	ug/kg	13800	2630	50	12/20/17 07:45	12/20/17 17:33	120-82-1	
1,1,1-Irichloroethane	<799	ug/kg	2770	799	50	12/20/17 07:45	12/20/17 17:33	/1-55-6	
1,1,2-Irichloroethane	<1120	ug/kg	2770	1120	50	12/20/17 07:45	12/20/17 17:33	79-00-5	
Tricnioroethene	7160	ug/kg	2770	1310	50	12/20/17 07:45	12/20/17 17:33	79-01-6	
Irichlorofluoromethane	<1370	ug/kg	2770	1370	50	12/20/17 07:45	12/20/17 17:33	/5-69-4	

. ...

ANALYTICAL RESULTS

.

Project: TB-1A

Pace Project No.: 40162585

-

Sample: TB-1A (2.5)	Lab ID: 40162585003 Collected:					Received: 12/19/17 08:45 Matrix: Solid					
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.											
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
8260 MSV Med Level Full List	Analytical	Method: EP	A 8260 Prepa	ration Metho	od: EP/	A 5035/5030B					
1,1,2-Trichlorotrifluoroethane	<1120	ug/kg	2770	1120	50	12/20/17 07:45	12/20/17 17:33	76-13-1			
Vinyl chloride	<1170	ug/kg	2770	1170	50	12/20/17 07:45	12/20/17 17:33	75-01-4			
Xylene (Total)	<2680	ug/kg	8310	2680	50	12/20/17 07:45	12/20/17 17:33	1330-20-7			
Surrogates											
Dibromofluoromethane (S)	0	%	68-130		50	12/20/17 07:45	12/20/17 17:33	1868-53-7	S4		
Toluene-d8 (S)	0	%	68-149		50	12/20/17 07:45	12/20/17 17:33	2037-26-5	S4		
4-Bromofluorobenzene (S)	0	%	58-141		50	12/20/17 07:45	12/20/17 17:33	460-00-4	S4		
Percent Moisture	Analytical	Method: AS	TM D2974-87								
Percent Moisture	9.7	%	0.10	0.10	1		12/26/17 10:41				

ANALYTICAL RESULTS

Project: TB-1A

Pace Project No.: 40162585

Sample: TB-1A (3.0)	Lab ID:	40162585004	Collecte	d:		Received: 12/	19/17 08:45 Ma	atrix: Solid	
Results reported on a "dry weigh	nt" basis and are	adjusted for	percent m	oisture, sar	nple s	ize and any diluti	ons.		
					•	-			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Full List	Analytical	Method: EPA 8	260 Prepa	ration Methe	od: EP	A 5035/5030B			
Acetone	<5420	ug/kg	13700	5420	50	12/20/17 07:45	12/20/17 17:55	67-64-1	L2
Benzene	<507	ug/kg	1100	507	50	12/20/17 07:45	12/20/17 17:55	71-43-2	
Bromodichloromethane	<536	ug/kg	2750	536	50	12/20/17 07:45	12/20/17 17:55	75-27-4	
Bromoform	<1090	ug/kg	2750	1090	50	12/20/17 07:45	12/20/17 17:55	75-25-2	
Bromomethane	<3840	ug/kg	13700	3840	50	12/20/17 07:45	12/20/17 17:55	74-83-9	
2-Butanone (MEK)	<6800	ug/kg	13700	6800	50	12/20/17 07:45	12/20/17 17:55	78-93-3	L2
Carbon disulfide	<608	ug/kg	2750	608	50	12/20/17 07:45	12/20/17 17:55	75-15-0	
Carbon tetrachloride	<664	ug/kg	2750	664	50	12/20/17 07:45	12/20/17 17:55	56-23-5	
Chlorobenzene	<811	ug/kg	2750	811	50	12/20/17 07:45	12/20/17 17:55	108-90-7	
Chloroethane	<3680	ug/kg	13700	3680	50	12/20/17 07:45	12/20/17 17:55	75-00-3	
Chloroform	<2550	ug/kg	13700	2550	50	12/20/17 07:45	12/20/17 17:55	67-66-3	
Chloromethane	<1120	ug/kg	2750	1120	50	12/20/17 07:45	12/20/17 17:55	74-87-3	
Cyclohexane	<3430	ug/kg	13700	3430	50	12/20/17 07:45	12/20/17 17:55	110-82-7	
1,2-Dibromo-3-chloropropane	<5010	ug/kg	13700	5010	50	12/20/17 07:45	12/20/17 17:55	96-12-8	
Dibromochloromethane	<983	ug/kg	2750	983	50	12/20/17 07:45	12/20/17 17:55	124-48-1	
1,2-Dibromoethane (EDB)	<808	ug/kg	2750	808	50	12/20/17 07:45	12/20/17 17:55	106-93-4	
1,2-Dichlorobenzene	<889	ug/kg	2750	889	50	12/20/17 07:45	12/20/17 17:55	95-50-1	
1,3-Dichlorobenzene	<725	ug/kg	2750	725	50	12/20/17 07:45	12/20/17 17:55	541-73-1	
1,4-Dichlorobenzene	<873	ug/kg	2750	873	50	12/20/17 07:45	12/20/17 17:55	106-46-7	
Dichlorodifluoromethane	<675	ug/kg	2750	675	50	12/20/17 07:45	12/20/17 17:55	75-71-8	
1,1-Dichloroethane	<969	ug/kg	2750	969	50	12/20/17 07:45	12/20/17 17:55	75-34-3	
1,2-Dichloroethane	<824	ug/kg	2750	824	50	12/20/17 07:45	12/20/17 17:55	107-06-2	
1,1-Dichloroethene	<969	ug/kg	2750	969	50	12/20/17 07:45	12/20/17 17:55	75-35-4	
cis-1,2-Dichloroethene	<912	ug/kg	2750	912	50	12/20/17 07:45	12/20/17 17:55	156-59-2	
trans-1,2-Dichloroethene	<906	ug/kg	2750	906	50	12/20/17 07:45	12/20/17 17:55	156-60-5	
1,2-Dichloropropane	<924	ug/kg	2750	924	50	12/20/17 07:45	12/20/17 17:55	78-87-5	
cis-1,3-Dichloropropene	<912	ug/kg	2750	912	50	12/20/17 07:45	12/20/17 17:55	10061-01-5	
trans-1,3-Dichloropropene	<792	ug/kg	2750	792	50	12/20/17 07:45	12/20/17 17:55	10061-02-6	
Ethylbenzene	<683	ug/kg	2750	683	50	12/20/17 07:45	12/20/17 17:55	100-41-4	
2-Hexanone	<2860	ug/kg	13700	2860	50	12/20/17 07:45	12/20/17 17:55	591-78-6	
Isopropylbenzene (Cumene)	<692	ug/kg	2750	692	50	12/20/17 07:45	12/20/17 17:55	98-82-8	
Methyl acetate	<9020	ug/kg	13700	9020	50	12/20/17 07:45	12/20/17 17:55	79-20-9	
Methylcyclohexane	<3980	ug/kg	13700	3980	50	12/20/17 07:45	12/20/17 17:55	108-87-2	
Methylene Chloride	<891	ug/kg	2750	891	50	12/20/17 07:45	12/20/17 17:55	75-09-2	
4-Methyl-2-pentanone (MIBK)	<2260	ug/kg	13700	2260	50	12/20/17 07:45	12/20/17 17:55	108-10-1	
Methyl-tert-butyl ether	<696	ug/kg	2750	696	50	12/20/17 07:45	12/20/17 17:55	1634-04-4	
Styrene	<495	ug/kg	2750	495	50	12/20/17 07:45	12/20/17 17:55	100-42-5	
1,1,2,2-Tetrachloroethane	<964	ug/kg	2750	964	50	12/20/17 07:45	12/20/17 17:55	79-34-5	
Tetrachloroethene	497000	ug/kg	2750	710	50	12/20/17 07:45	12/20/17 17:55	127-18-4	
Toluene	<617	ug/kg	2750	617	50	12/20/17 07:45	12/20/17 17:55	108-88-3	
1,2,4-Trichlorobenzene	<2610	ug/kg	13700	2610	50	12/20/17 07:45	12/20/17 17:55	120-82-1	
1,1,1-Trichloroethane	<793	ug/kg	2750	793	50	12/20/17 07:45	12/20/17 17:55	71-55-6	
1,1,2-Trichloroethane	<1110	ug/kg	2750	1110	50	12/20/17 07:45	12/20/17 17:55	79-00-5	
Trichloroethene	6660	ug/kg	2750	1300	50	12/20/17 07:45	12/20/17 17:55	79-01-6	
Trichlorofluoromethane	<1360	ug/kg	2750	1360	50	12/20/17 07:45	12/20/17 17:55	75-69-4	

...

-

ANALYTICAL RESULTS

Project: TB-1A

Pace Project No.: 40162585

-

Sample: TB-1A (3.0)	Lab ID:	4016258500	04 Collecte	d:		Received: 12/	19/17 08:45 Ma	atrix: Solid	
Sample: IB-1A (3.0) Lab ID: 40162585004 Collected: Received: 12/19/17/08:45 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Dif Prepared Analyzed CAS No. Qual Base Results Units PQL MDL DF Prepared Analyzed CAS No. Qual Base Mode Level Full List Analytical Method: EPA 8260 Preparetion Method: EPA 5035/5030B 1,1,2-Trichlorotrifluoroethane <1110									
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Full List	Analytical	Method: EP	A 8260 Prepa	ration Metho	od: EP	A 5035/5030B			
1,1,2-Trichlorotrifluoroethane	<1110	ug/kg	2750	1110	50	12/20/17 07:45	12/20/17 17:55	76-13-1	
Vinyl chloride	<1160	ug/kg	2750	1160	50	12/20/17 07:45	12/20/17 17:55	75-01-4	
Xylene (Total)	<2660	ug/kg	8240	2660	50	12/20/17 07:45	12/20/17 17:55	1330-20-7	
Surrogates									
Dibromofluoromethane (S)	0	%	68-130		50	12/20/17 07:45	12/20/17 17:55	1868-53-7	S4
Toluene-d8 (S)	0	%	68-149		50	12/20/17 07:45	12/20/17 17:55	2037-26-5	S4
4-Bromofluorobenzene (S)	0	%	58-141		50	12/20/17 07:45	12/20/17 17:55	460-00-4	S4
Percent Moisture	Analytical	Method: AS	TM D2974-87						
Percent Moisture	9.0	%	0.10	0.10	1		12/26/17 10:41		

Project: TB-1A

Pace Project No.: 40162585

QC Batch:	277670	Anal
QC Batch Method:	EPA 5035/5030B	Anal

Analysis Method:EPA 8260Analysis Description:8260 MSV Med Level Full List

Associated Lab Samples: 40162585001, 40162585002, 40162585003, 40162585004

 METHOD BLANK:
 1632241
 Matrix:
 Solid

 Associated Lab Samples:
 40162585001, 40162585002, 40162585003, 40162585004
 40162585004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/kg	<14.4	50.0	14.4	12/20/17 09:55	
1,1,2,2-Tetrachloroethane	ug/kg	<17.5	50.0	17.5	12/20/17 09:55	
1,1,2-Trichloroethane	ug/kg	<20.2	50.0	20.2	12/20/17 09:55	
1,1,2-Trichlorotrifluoroethane	ug/kg	<20.2	50.0	20.2	12/20/17 09:55	
1,1-Dichloroethane	ug/kg	<17.6	50.0	17.6	12/20/17 09:55	
1,1-Dichloroethene	ug/kg	<17.6	50.0	17.6	12/20/17 09:55	
1,2,4-Trichlorobenzene	ug/kg	<47.6	250	47.6	12/20/17 09:55	
1,2-Dibromo-3-chloropropane	ug/kg	<91.2	250	91.2	12/20/17 09:55	
1,2-Dibromoethane (EDB)	ug/kg	<14.7	50.0	14.7	12/20/17 09:55	
1,2-Dichlorobenzene	ug/kg	<16.2	50.0	16.2	12/20/17 09:55	
1,2-Dichloroethane	ug/kg	<15.0	50.0	15.0	12/20/17 09:55	
1,2-Dichloropropane	ug/kg	<16.8	50.0	16.8	12/20/17 09:55	
1,3-Dichlorobenzene	ug/kg	<13.2	50.0	13.2	12/20/17 09:55	
1,4-Dichlorobenzene	ug/kg	<15.9	50.0	15.9	12/20/17 09:55	
2-Butanone (MEK)	ug/kg	<124	250	124	12/20/17 09:55	
2-Hexanone	ug/kg	<52.0	250	52.0	12/20/17 09:55	
4-Methyl-2-pentanone (MIBK)	ug/kg	<41.1	250	41.1	12/20/17 09:55	
Acetone	ug/kg	<98.6	250	98.6	12/20/17 09:55	
Benzene	ug/kg	<9.2	20.0	9.2	12/20/17 09:55	
Bromodichloromethane	ug/kg	<9.8	50.0	9.8	12/20/17 09:55	
Bromoform	ug/kg	<19.8	50.0	19.8	12/20/17 09:55	
Bromomethane	ug/kg	<69.9	250	69.9	12/20/17 09:55	
Carbon disulfide	ug/kg	<11.1	50.0	11.1	12/20/17 09:55	
Carbon tetrachloride	ug/kg	<12.1	50.0	12.1	12/20/17 09:55	
Chlorobenzene	ug/kg	<14.8	50.0	14.8	12/20/17 09:55	
Chloroethane	ug/kg	<67.0	250	67.0	12/20/17 09:55	
Chloroform	ug/kg	<46.4	250	46.4	12/20/17 09:55	
Chloromethane	ug/kg	<20.4	50.0	20.4	12/20/17 09:55	
cis-1,2-Dichloroethene	ug/kg	<16.6	50.0	16.6	12/20/17 09:55	
cis-1,3-Dichloropropene	ug/kg	<16.6	50.0	16.6	12/20/17 09:55	
Cyclohexane	ug/kg	<62.4	250	62.4	12/20/17 09:55	
Dibromochloromethane	ug/kg	<17.9	50.0	17.9	12/20/17 09:55	
Dichlorodifluoromethane	ug/kg	<12.3	50.0	12.3	12/20/17 09:55	
Ethylbenzene	ug/kg	<12.4	50.0	12.4	12/20/17 09:55	
Isopropylbenzene (Cumene)	ug/kg	<12.6	50.0	12.6	12/20/17 09:55	
Methyl acetate	ug/kg	<164	250	164	12/20/17 09:55	
Methyl-tert-butyl ether	ug/kg	<12.7	50.0	12.7	12/20/17 09:55	
Methylcyclohexane	ug/kg	<72.3	250	72.3	12/20/17 09:55	
Methylene Chloride	ug/kg	<16.2	50.0	16.2	12/20/17 09:55	
Styrene	ug/kg	<9.0	50.0	9.0	12/20/17 09:55	
Tetrachloroethene	ug/kg	<12.9	50.0	12.9	12/20/17 09:55	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: TB-1A Pace Project No.: 40162585

METHOD BLANK: 163224	41	Matrix:	Solid			
Associated Lab Samples:	40162585001, 40162585002,	40162585003, 40	0162585004			
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Toluene	ug/kg	<11.2	50.0	11.2	12/20/17 09:55	
trans-1,2-Dichloroethene	ug/kg	<16.5	50.0	16.5	12/20/17 09:55	
trans-1,3-Dichloropropene	ug/kg	<14.4	50.0	14.4	12/20/17 09:55	
Trichloroethene	ug/kg	<23.6	50.0	23.6	12/20/17 09:55	
Trichlorofluoromethane	ug/kg	<24.7	50.0	24.7	12/20/17 09:55	
Vinyl chloride	ug/kg	<21.1	50.0	21.1	12/20/17 09:55	
Xylene (Total)	ug/kg	<48.4	150	48.4	12/20/17 09:55	
4-Bromofluorobenzene (S)	%	87	58-141		12/20/17 09:55	
Dibromofluoromethane (S)	%	101	68-130		12/20/17 09:55	
Toluene-d8 (S)	%	95	68-149		12/20/17 09:55	

LABORATORY CONTROL SAMPLE: 1632242

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	2500	2530	101	61-122	
1,1,2,2-Tetrachloroethane	ug/kg	2500	2260	90	73-130	
1,1,2-Trichloroethane	ug/kg	2500	2380	95	70-130	
1,1,2-Trichlorotrifluoroethane	ug/kg	2500	3060	122	50-150	
1,1-Dichloroethane	ug/kg	2500	2210	89	63-124	
1,1-Dichloroethene	ug/kg	2500	2460	99	53-117	
1,2,4-Trichlorobenzene	ug/kg	2500	2070	83	78-130	
1,2-Dibromo-3-chloropropane	ug/kg	2500	1900	76	49-140	
1,2-Dibromoethane (EDB)	ug/kg	2500	2330	93	70-130	
1,2-Dichlorobenzene	ug/kg	2500	2470	99	70-130	
1,2-Dichloroethane	ug/kg	2500	2550	102	56-135	
1,2-Dichloropropane	ug/kg	2500	2400	96	77-122	
1,3-Dichlorobenzene	ug/kg	2500	2490	100	70-130	
1,4-Dichlorobenzene	ug/kg	2500	2450	98	70-130	
2-Butanone (MEK)	ug/kg	2500	1200	48	50-150 L2	
2-Hexanone	ug/kg	2500	1730	69	50-150	
4-Methyl-2-pentanone (MIBK)	ug/kg	2500	1910	76	50-150	
Acetone	ug/kg	2500	1190	48	50-150 L2	
Benzene	ug/kg	2500	2470	99	66-130	
Bromodichloromethane	ug/kg	2500	2490	99	62-135	
Bromoform	ug/kg	2500	2170	87	68-130	
Bromomethane	ug/kg	2500	2660	106	29-137	
Carbon disulfide	ug/kg	2500	2520	101	64-137	
Carbon tetrachloride	ug/kg	2500	2820	113	57-130	
Chlorobenzene	ug/kg	2500	2520	101	70-130	
Chloroethane	ug/kg	2500	2330	93	36-144	
Chloroform	ug/kg	2500	2510	100	69-115	
Chloromethane	ug/kg	2500	1850	74	32-126	
cis-1,2-Dichloroethene	ug/kg	2500	2270	91	65-130	
cis-1,3-Dichloropropene	ug/kg	2500	2240	89	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: TB-1A Pace Project No.: 40162585

LABORATORY CONTROL SAMPLE: 1632242

ParameterUnitsConc.Result% RecLimitsQCyclohexaneug/kg250023809550-1500Dibromochloromethaneug/kg250024009670-130Dichlorodifluoromethaneug/kg250015406210-99	ualifiara
Cyclohexane ug/kg 2500 2380 95 50-150 Dibromochloromethane ug/kg 2500 2400 96 70-130 Dichlorodifluoromethane ug/kg 2500 1540 62 10-99	uaimers
Dibromochloromethane ug/kg 2500 2400 96 70-130 Dichlorodifluoromethane ug/kg 2500 1540 62 10-99	
Dichlorodifluoromethane ug/kg 2500 1540 62 10-99	
Ethylbenzene ug/kg 2500 2420 97 82-122	
Isopropylbenzene (Cumene) ug/kg 2500 2480 99 70-130	
Methyl acetate ug/kg 2500 2190 87 50-150	
Methyl-tert-butyl ether ug/kg 2500 2360 94 63-134	
Methylcyclohexane ug/kg 2500 2590 104 50-150	
Methylene Chloride ug/kg 2500 2640 106 56-123	
Styrene ug/kg 2500 2400 96 70-130	
Tetrachloroethene ug/kg 2500 3010 121 70-131	
Toluene ug/kg 2500 2420 97 80-120	
trans-1,2-Dichloroethene ug/kg 2500 2530 101 66-130	
trans-1,3-Dichloropropene ug/kg 2500 2310 93 68-130	
Trichloroethene ug/kg 2500 2440 98 70-130	
Trichlorofluoromethane ug/kg 2500 2810 113 37-149	
Vinyl chloride ug/kg 2500 2230 89 43-128	
Xylene (Total) ug/kg 7500 7310 97 70-130	
4-Bromofluorobenzene (S) % 94 58-141	
Dibromofluoromethane (S) % 101 68-130	
Toluene-d8 (S) % 97 68-149	

MATRIX SPIKE & MATRIX SPIK	KE DUPLICA	ATE: 163224	43		1632244							
			MS	MSD								
	4	0162622002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/kg	<65.1	1620	1620	1630	1620	100	99	57-123	1	20	
1,1,2,2-Tetrachloroethane	ug/kg	<65.1	1620	1620	1570	1410	97	87	73-135	11	20	
1,1,2-Trichloroethane	ug/kg	<65.1	1620	1620	1590	1520	98	93	70-130	4	20	
1,1,2-Trichlorotrifluoroethane	ug/kg	<65.1	1620	1620	2090	2000	129	123	47-150	4	25	
1,1-Dichloroethane	ug/kg	<65.1	1620	1620	1510	1450	93	89	63-124	4	20	
1,1-Dichloroethene	ug/kg	<65.1	1620	1620	1740	1630	107	100	48-117	7	23	
1,2,4-Trichlorobenzene	ug/kg	<325	1620	1620	1670	1480	100	89	78-145	12	20	
1,2-Dibromo-3-	ug/kg	<325	1620	1620	1470	1230	91	75	38-168	18	22	
chloropropane												
1,2-Dibromoethane (EDB)	ug/kg	<65.1	1620	1620	1560	1510	96	93	70-130	4	20	
1,2-Dichlorobenzene	ug/kg	<65.1	1620	1620	1770	1640	109	101	70-130	7	20	
1,2-Dichloroethane	ug/kg	<65.1	1620	1620	1730	1650	106	102	56-145	5	20	
1,2-Dichloropropane	ug/kg	<65.1	1620	1620	1590	1540	98	95	77-123	3	20	
1,3-Dichlorobenzene	ug/kg	<65.1	1620	1620	1700	1580	105	97	70-130	7	20	
1,4-Dichlorobenzene	ug/kg	<65.1	1620	1620	1660	1540	102	95	70-130	7	20	
2-Butanone (MEK)	ug/kg	<325	1620	1620	1250	1060	77	65	50-150	17	20	
2-Hexanone	ug/kg	<325	1620	1620	1580	1370	97	84	50-150	15	20	
4-Methyl-2-pentanone (MIBK)	ug/kg	<325	1620	1620	1220	1150	75	71	50-150	6	20	
Acetone	ug/kg	<325	1620	1620	1130	1090	70	67	50-150	4	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

QUALITY CONTROL DATA

Project:	TB-1A
Pace Project No.:	40162585

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 163224	43		1632244							
			MS	MSD								
		40162622002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/kg	<26.0	1620	1620	1650	1570	101	97	65-130	4	20	
Bromodichloromethane	ug/kg	<65.1	1620	1620	1550	1580	96	97	59-141	2	20	
Bromoform	ug/kg	<65.1	1620	1620	1560	1490	96	92	59-141	4	20	
Bromomethane	ug/kg	<325	1620	1620	1890	1880	116	116	28-139	0	20	
Carbon disulfide	ug/kg	<65.1	1620	1620	1690	1670	104	103	60-137	1	20	
Carbon tetrachloride	ug/kg	<65.1	1620	1620	1830	1730	113	106	50-130	6	20	
Chlorobenzene	ug/kg	<65.1	1620	1620	1690	1610	104	99	70-130	5	20	
Chloroethane	ug/kg	<325	1620	1620	1580	1690	97	104	36-144	7	20	
Chloroform	ug/kg	<325	1620	1620	1650	1630	102	100	68-122	1	20	
Chloromethane	ug/kg	<65.1	1620	1620	1420	1380	87	85	30-126	3	20	
cis-1,2-Dichloroethene	ug/kg	<65.1	1620	1620	1560	1470	96	90	63-130	6	20	
cis-1,3-Dichloropropene	ug/kg	<65.1	1620	1620	1450	1390	89	86	70-130	4	20	
Cyclohexane	ug/kg	<325	1620	1620	1590	1530	98	94	50-150	4	20	
Dibromochloromethane	ug/kg	<65.1	1620	1620	1640	1540	101	94	66-136	6	20	
Dichlorodifluoromethane	ug/kg	<65.1	1620	1620	1240	1180	76	72	10-99	5	33	
Ethylbenzene	ug/kg	<65.1	1620	1620	1610	1550	98	94	80-122	4	20	
Isopropylbenzene (Cumene)	ug/kg	<65.1	1620	1620	1690	1620	104	99	70-130	5	20	
Methyl acetate	ug/kg	<325	1620	1620	1860	1740	115	107	50-150	7	20	
Methyl-tert-butyl ether	ug/kg	<65.1	1620	1620	1650	1550	102	95	63-134	7	20	
Methylcyclohexane	ug/kg	<325	1620	1620	1760	1670	108	103	50-150	5	20	
Methylene Chloride	ug/kg	<65.1	1620	1620	1780	1710	109	105	56-127	4	20	
Styrene	ug/kg	<65.1	1620	1620	1560	1470	96	91	70-130	6	20	
Tetrachloroethene	ug/kg	183	1620	1620	1850	1770	102	97	70-131	5	20	
Toluene	ug/kg	<65.1	1620	1620	1600	1540	98	95	80-120	4	20	
trans-1,2-Dichloroethene	ug/kg	<65.1	1620	1620	1750	1630	108	100	60-130	7	20	
trans-1,3-Dichloropropene	ug/kg	<65.1	1620	1620	1460	1390	90	85	68-130	5	20	
Trichloroethene	ug/kg	<65.1	1620	1620	1670	1650	103	101	70-130	2	20	
Trichlorofluoromethane	ug/kg	<65.1	1620	1620	1910	1870	118	115	37-149	3	24	
Vinyl chloride	ug/kg	<65.1	1620	1620	1550	1520	96	93	39-128	2	20	
Xylene (Total)	ug/kg	<195	4880	4880	4930	4770	101	98	70-130	3	20	
4-Bromofluorobenzene (S)	%						109	108	58-141			
Dibromofluoromethane (S)	%						120	118	68-130			
Toluene-d8 (S)	%						112	110	68-149			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	TB-1A			
Pace Project No.:	40162585			
QC Batch:	277964	Analysis Method:	ASTM D2974-87	
QC Batch Method:	ASTM D2974-87	Analysis Description:	Dry Weight/Percent Moisture	
Associated Lab Sar	mples: 40162585001, 4016258	5002, 40162585003, 4016258500	4	
SAMPLE DUPLICA	TE: 1633921	_		
		40162885001 Dun	Max	

Parameter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture	%	7.0	7.0	1	10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TB-1A Pace Project No.: 40162585

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results may be biased low.

S4 Surrogate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TB-1A Pace Project No.: 40162585

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40162585001	TB-1A (0)	EPA 5035/5030B	277670	EPA 8260	277676
40162585002	TB-1A (1.5)	EPA 5035/5030B	277670	EPA 8260	277676
40162585003	TB-1A (2.5)	EPA 5035/5030B	277670	EPA 8260	277676
40162585004	TB-1A (3.0)	EPA 5035/5030B	277670	EPA 8260	277676
40162585001	TB-1A (0)	ASTM D2974-87	277964		
40162585002	TB-1A (1.5)	ASTM D2974-87	277964		
40162585003	TB-1A (2.5)	ASTM D2974-87	277964		
40162585004	TB-1A (3.0)	ASTM D2974-87	277964		

treet Cript Namber: Froject ID: Froject ID: Froject ID: Froject ID: Froject ID: Report To: Report To: Report To: Report To: Report To: Bend Address: Report To: Report To: <th>Address: 1241 Bellevue Stri City/State/Zip: Green Bay, WI 543 Lab Contact: Dan Milewsky Phone Number: (920)-469-2436 Sampler Name (print): Kevin Baker Phone Number: 608-669-6949 Phone Number: 608-669-6949 Sample Informat Description FB-1A (0) CO/ FB-1A (1.5) Date FB-1A (2.5) FB-1A (2.5) FB-1A (2.5) FB-1A (3.0) FB-1A (3.0) FB-1A</th>	Address: 1241 Bellevue Stri City/State/Zip: Green Bay, WI 543 Lab Contact: Dan Milewsky Phone Number: (920)-469-2436 Sampler Name (print): Kevin Baker Phone Number: 608-669-6949 Phone Number: 608-669-6949 Sample Informat Description FB-1A (0) CO/ FB-1A (1.5) Date FB-1A (2.5) FB-1A (2.5) FB-1A (2.5) FB-1A (3.0) FB-1A
--	--

• 10 (10 (10 ·

	Sample Cond	ition Upon Rece	eipt Pace	e Analytical Services, LLC Green Bay 1241 Bellevue Street, Suite
				Green Bay, WI 543
	0,	Project # [.]		0162585
Client Name: <u>Resolution</u>	Partnors		WU# · 4	WI0ZJUJ
Courier: Fed Ex UPS Client Pa	ace Other:	Walto_		
Tracking #: 1509 735-1		geome geome	40162585	
Custody Seal on Cooler/Box Present:	s X no Seals int	act: j yes j no	· · · · · · · · · · · · · · · · · · ·	
Packing Material: Rubble Wrap RB	ibble Bags	one C Other		
Thermometer Used	Type of Ice: V	Blue Dry None	K Samples	on ice, cooling process has begun
Cooler Temperature Uncorr: ROJ /Corr	Bi	ological Tissue is Fre	ozen: Tyes	
Temp Blank Present: 🔽 yes 🕅 no			i no	Person examining contents:
Temp should be above freezing to 6°C.		Commenter		Date: <u>78 / 19// /</u> Initials: <u>55/5</u>
Blota Samples may be received at 2 0°C.		Comments:		
Chain of Custody Present:		RINC VO L	115	an 11 Milla
Chain of Custody Filled Out:		MA 2. I DALA	ane with wi	1/all 7
Chain of Custody Belinquished:		NTA 3. IVU YIME		
Sampler Nartie & Signature on COC:		N/A 4.	M. L. J. K.	<i>l</i>
Samples Anived within Hold Time:	□Yes □No 🎗	NIA 5. UN KNOWN	Collect User	time
- VOA Samples frozen upon receipt	□Yes □No	Date/Time:	<u>/</u>	55h 12/19/17
Short Hold Time Analysis (<72hr):	□Yes □No 🎗	N/A 6.	95m/A/19/	117
Rush Turn Around Time Requested:		N/A 7.		· · · · · · · · · · · · · · · · · · ·
Sufficient Volume:	🛛 Yes 🖾 No 🛛	N/A 8/ 3 /3 //SD	101	55m/2/14/12
Correct Containers Used:	🛛 Yes 🖄 No 🛛	N/A 9-10 Vin15	receive X	Sr VOCS
-Pace Containers Used:	XYes No D	NIA - Blue most	Kis that	around all ago
-Pace IR Containers Used:	□Yes □No ⊅	N/A		ss-12/14/12
Containers Intact:		N/A 10.		
Filtered volume received for Dissolved tests	🗆 Yes 🗆 No 🗋	N/A 11.		
Sample Labels match COC:	□Yes 🕅 🛛	N/A 12. NO ID'S	(onthin "A"	
-Includes date/time/ID/Analysis Matrix:	5			55m 12/14/12
All containers needing preservation have been checke	ed. □Yes □No Pa		3 TH2SO4	► NaOH ► NaOH +ZnAct
All containers needing preservation are found to be in				
compliance with EPA recommendation.	🗆 Yes 🗆 No 🎽	N/A		
exceptions: VOA, coliform, TOC, TOX, TOH,		Initial when	Lab Std #ID of	Date/
O&G, WIDROW, Phenolics, OTHER:		completed	preservative	Time:
Headspace in VOA Vials (>6mm):		N/A 14.		
Trip Blank Present:	🗆 Yes 🗆 No 🖄	N/A 15.		
Trip Blank Custody Seals Present	🛛 Yes 🗆 No 🗳	N/A		
Pace Trip Blank Lot # (if purchased):		I	checked see atta	ched form for additional comments
Person Contacted:	Da	ite/Time:		
Comments/ Resolution:				
<u>e</u>				
A	- F	Nia -		
Project Manager Review:	Ltor	νm	Date	12/19/17
F-GB-C-031-Rev.04 (12Dec2016) SCUR.xls				
race Analytical Services LLC Green Bay WI				Page 24 o

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

November 15, 2017

Angela Hassell ReSolution Partners, LLC. 967 Jonathon Drive Madison, WI 53713

RE: Project: PZ-1 & TB-1A 8260 VOCs Pace Project No.: 40160640

Dear Angela Hassell:

Enclosed are the analytical results for sample(s) received by the laboratory on November 11, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Kevin Baker, ReSolution Partners, LLC. Bernd Rehm, ReSolution Partners, LLC.

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40160640001	PZ-1	Water	11/10/17 11:05	11/11/17 08:15
40160640002	TB-1A	Solid	11/10/17 11:00	11/11/17 08:15

SAMPLE ANALYTE COUNT

 Project:
 PZ-1 & TB-1A 8260 VOCs

 Pace Project No.:
 40160640

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40160640001	PZ-1	EPA 8260	LAP	51	PASI-G
40160640002	TB-1A	EPA 8260	SMT	51	PASI-G
		ASTM D2974-87	SKW	1	PASI-G

SUMMARY OF DETECTION

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40160640001	PZ-1					
EPA 8260	cis-1,2-Dichloroethene	665	ug/L	200	11/14/17 14:15	
EPA 8260	Tetrachloroethene	17700	ug/L	200	11/14/17 14:15	
EPA 8260	Trichloroethene	580	ug/L	200	11/14/17 14:15	
40160640002	TB-1A					
EPA 8260	Methylene Chloride	2230J	ug/kg	4610	11/14/17 14:34	
EPA 8260	Tetrachloroethene	643000	ug/kg	4610	11/14/17 14:34	
EPA 8260	Trichloroethene	2710J	ug/kg	4610	11/14/17 14:34	
ASTM D2974-87	Percent Moisture	13.2	%	0.10	11/15/17 06:41	

PROJECT NARRATIVE

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

Method: EPA 8260

Description:8260 MSV Med Level Full ListClient:ReSolution Partners, LLC.Date:November 15, 2017

General Information:

1 sample was analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 5035/5030B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: 274095

S4: Surrogate recovery not evaluated against control limits due to sample dilution.

- TB-1A (Lab ID: 40160640002)
 - 4-Bromofluorobenzene (S)
 - Dibromofluoromethane (S)
 - Toluene-d8 (S)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

Method:EPA 8260Description:8260 MSV OxygenatesClient:ReSolution Partners, LLC.Date:November 15, 2017

General Information:

1 sample was analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

. .

ANALYTICAL RESULTS

.

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

-

Sample: PZ-1	Lab ID:	Lad ID: 40160640001 Collected: 11/10/17 11:05 Received: 11/11/17 08:15 Matrix: Water							
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Oxygenates	Analytical	Method: EPA 8	260						
Acetone	<591	ug/L	4000	591	200		11/14/17 14:15	67-64-1	
Benzene	<100	ug/L	200	100	200		11/14/17 14:15	71-43-2	
Bromodichloromethane	<100	ug/L	200	100	200		11/14/17 14:15	75-27-4	
Bromoform	<100	ug/L	200	100	200		11/14/17 14:15	75-25-2	
Bromomethane	<487	ug/L	1000	487	200		11/14/17 14:15	74-83-9	
2-Butanone (MEK)	<596	ug/L	4000	596	200		11/14/17 14:15	78-93-3	
Carbon disulfide	<123	ug/L	1000	123	200		11/14/17 14:15	75-15-0	
Carbon tetrachloride	<100	ug/L	200	100	200		11/14/17 14:15	56-23-5	
Chlorobenzene	<100	ug/L	200	100	200		11/14/17 14:15	108-90-7	
Chloroethane	<74.9	ug/L	200	74.9	200		11/14/17 14:15	75-00-3	
Chloroform	<500	ug/L	1000	500	200		11/14/17 14:15	67-66-3	
Chloromethane	<100	ug/L	200	100	200		11/14/17 14:15	74-87-3	
Cyclohexane	<175	ug/L	1000	175	200		11/14/17 14:15	110-82-7	
1,2-Dibromo-3-chloropropane	<433	ug/L	1000	433	200		11/14/17 14:15	96-12-8	
Dibromochloromethane	<100	ug/L	200	100	200		11/14/17 14:15	124-48-1	
1,2-Dibromoethane (EDB)	<35.6	ug/L	200	35.6	200		11/14/17 14:15	106-93-4	
1,2-Dichlorobenzene	<100	ug/L	200	100	200		11/14/17 14:15	95-50-1	
1,3-Dichlorobenzene	<100	ug/L	200	100	200		11/14/17 14:15	541-73-1	
1,4-Dichlorobenzene	<100	ug/L	200	100	200		11/14/17 14:15	106-46-7	
Dichlorodifluoromethane	<44.8	ug/L	200	44.8	200		11/14/17 14:15	75-71-8	
1,1-Dichloroethane	<48.3	ug/L	200	48.3	200		11/14/17 14:15	75-34-3	
1,2-Dichloroethane	<33.6	ug/L	200	33.6	200		11/14/17 14:15	107-06-2	
1,1-Dichloroethene	<82.0	ug/L	200	82.0	200		11/14/17 14:15	75-35-4	
cis-1,2-Dichloroethene	665	ug/L	200	51.2	200		11/14/17 14:15	156-59-2	
trans-1,2-Dichloroethene	<51.3	ug/L	200	51.3	200		11/14/17 14:15	156-60-5	
1,2-Dichloropropane	<46.6	ug/L	200	46.6	200		11/14/17 14:15	78-87-5	
cis-1,3-Dichloropropene	<100	ug/L	200	100	200		11/14/17 14:15	10061-01-5	
trans-1,3-Dichloropropene	<45.9	ug/L	200	45.9	200		11/14/17 14:15	10061-02-6	
Ethylbenzene	<100	ug/L	200	100	200		11/14/17 14:15	100-41-4	
2-Hexanone	<222	ug/L	1000	222	200		11/14/17 14:15	591-78-6	
Isopropylbenzene (Cumene)	<28.7	ug/L	200	28.7	200		11/14/17 14:15	98-82-8	
Methyl acetate	<434	ug/L	2000	434	200		11/14/17 14:15	79-20-9	
Methylcyclohexane	<467	ug/L	1000	467	200		11/14/17 14:15	108-87-2	
Methylene Chloride	<46.5	ug/L	200	46.5	200		11/14/17 14:15	75-09-2	
4-Methyl-2-pentanone (MIBK)	<428	ug/L	1000	428	200		11/14/17 14:15	108-10-1	
Methyl-tert-butyl ether	<34.8	ug/L	200	34.8	200		11/14/17 14:15	1634-04-4	
Styrene	<100	ug/L	200	100	200		11/14/17 14:15	100-42-5	
1,1,2,2-Tetrachloroethane	<49.9	ug/L	200	49.9	200		11/14/17 14:15	79-34-5	
Tetrachloroethene	17700	ug/L	200	100	200		11/14/17 14:15	127-18-4	
Toluene	<100	ug/L	200	100	200		11/14/17 14:15	108-88-3	
1,2,4-Trichlorobenzene	<442	ug/L	1000	442	200		11/14/17 14:15	120-82-1	
1,1,1-Trichloroethane	<100	ug/L	200	100	200		11/14/17 14:15	71-55-6	
1,1,2-Trichloroethane	<39.5	ug/L	200	39.5	200		11/14/17 14:15	79-00-5	
Trichloroethene	580	ug/L	200	66.1	200		11/14/17 14:15	79-01-6	
Trichlorofluoromethane	<37.0	ug/L	200	37.0	200		11/14/17 14:15	75-69-4	
1,1,2-Trichlorotrifluoroethane	<162	ug/L	1000	162	200		11/14/17 14:15	76-13-1	

ANALYTICAL RESULTS

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

Sample: PZ-1	Lab ID:	40160640001	Collecte	d: 11/10/17	7 11:05	Received: 11	(11/17 08:15 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Oxygenates	Analytical	Method: EPA 8	260						
Vinyl chloride	<35.1	ug/L	200	35.1	200		11/14/17 14:15	75-01-4	
Xylene (Total)	<300	ug/L	600	300	200		11/14/17 14:15	1330-20-7	
Surrogates		-							
Dibromofluoromethane (S)	104	%	67-130		200		11/14/17 14:15	1868-53-7	
Toluene-d8 (S)	99	%	70-130		200		11/14/17 14:15	2037-26-5	
4-Bromofluorobenzene (S)	85	%	61-130		200		11/14/17 14:15	460-00-4	

ANALYTICAL RESULTS

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

 Sample: TB-1A
 Lab ID: 40160640002
 Collected: 11/10/17 11:00
 Received: 11/11/17 08:15
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

B250 MSV Med Level Full List Analytical Method: EPA 8260 Preparation Method: EPA 5035/5030B Acetone -9090 ug/kg 23000 908 80 11/14/17 08.30 11/14/17 14.34 75-45-1 Bornodchloromethane 4990 ug/kg 4610 880 11/14/17 08.30 11/14/17 14.34 75-27-4 Bromoferm 6120 ug/kg 4610 1820 80 11/14/17 08.30 11/14/17 14.34 75-27-4 Bromofermane 6440 ug/kg 42000 6440 80 11/14/17 08.30 11/14/17 14.34 75-82-5 Carbon disulfide 11/02 ug/kg 4510 1100 80 11/14/17 08.30 11/14/17 14.34 75-80-5 Carbon disulfide 11/10 ug/kg 4510 1168 80 11/14/17 08.30 11/14/17 14.34 76-83-3 Chiorobenzene <1380 ug/kg 23000 4510 180 80 11/14/17 08.30 11/14/17 14.34 16-86-3 Chiorobenzene <1480 ug/kg 4610 180 <t< th=""><th>Parameters</th><th>Results</th><th>Units</th><th>PQL</th><th>MDL</th><th>DF</th><th>Prepared</th><th>Analyzed</th><th>CAS No.</th><th>Qual</th></t<>	Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Accone <999	8260 MSV Med Level Full List	Analytical	Method: EPA	A 8260 Prepa	ration Meth	od: EP	A 5035/5030B			
Banzene	Acetone	<9090	ug/kg	23000	9090	80	11/14/17 08:30	11/14/17 14:34	67-64-1	
Bromodichloromethane 489 ug/kg 4610 899 80 11/14/17 103:00 11/14/17 103:00 11/14/17 103:00 Bromomethane <6440 ug/kg 23000 6440 80 11/14/17 103:00 11/14/17 11/14/14/14/14/14/14/14/14/14/14/14/14/1	Benzene	<850	ug/kg	1840	850	80	11/14/17 08:30	11/14/17 14:34	71-43-2	
Bromothm <1820 ug/kg 2400 6440 80 11/14/17 108.30 11/14/17 14.34 75-25-2 Bromomethane <6440	Bromodichloromethane	<899	ug/kg	4610	899	80	11/14/17 08:30	11/14/17 14:34	75-27-4	
Bromomethane <6440 ug/kg 23000 6440 80 11/14/17 163:30 11/14/17 143:47 74:33 2-Butanone (MEK) <11400	Bromoform	<1820	ug/kg	4610	1820	80	11/14/17 08:30	11/14/17 14:34	75-25-2	
2-Butaone (MEK) <1400 ug/kg 2300 11400 80 111/417 108:30 11/14/17 14:34 78-93.3 Carbon titrachloride <1100 ug/kg 4610 1100 80 11/14/17 08:30 11/14/17 14:34 58-23.5 Chlorobenzene <1360 ug/kg 4610 1100 80 11/14/17 08:30 11/14/17 14:34 58-23.5 Chlorobenzene <1800 ug/kg 23000 6180 80 11/14/17 08:30 11/14/17 14:34 78-07.3 Chloroform <14280 ug/kg 23000 6180 80 11/14/17 08:30 11/14/17 14:34 78-07.3 Chloroform <14280 ug/kg 23000 5750 80 11/14/17 08:30 11/14/17 14:34 78-07.3 Cyclohexane <1570 ug/kg 23000 5750 80 11/14/17 08:30 11/14/17 14:34 78-07.3 Cyclohexane <1570 ug/kg 23000 5750 80 11/14/17 08:30 11/14/17 14:34 78-07.3 Cyclohexane <1570 ug/kg 23000 5750 80 11/14/17 08:30 11/14/17 14:34 10-82-7 Cyclohexane <1570 ug/kg 4610 1650 80 11/14/17 08:30 11/14/17 14:34 10-82-7 L2-Dibromochane(EDB) <1360 ug/kg 4610 1200 80 11/14/17 08:30 11/14/17 14:34 124-48-1 L2-Dibromochane(EDB) <1360 ug/kg 4610 1200 80 11/14/17 08:30 11/14/17 14:34 124-48-1 L3-Dibromochane(EDB) <1360 ug/kg 4610 1200 80 11/14/17 08:30 11/14/17 14:34 10-68-7 L3-Dibromochane(EDB) <1360 ug/kg 4610 1200 80 11/14/17 08:30 11/14/17 14:34 10-68-7 L3-Dibromochane(EDB) <1360 ug/kg 4610 1200 80 11/14/17 08:30 11/14/17 14:34 10-64-7 L3-Dibromochane(EDB) <1360 ug/kg 4610 1200 80 11/14/17 08:30 11/14/17 14:34 10-64-7 L3-Dibromochane(EDB) <1360 ug/kg 4610 1200 80 11/14/17 08:30 11/14/17 14:34 10-64-7 L3-Dibromochane(EDB) <1360 ug/kg 4610 1200 80 11/14/17 08:30 11/14/17 14:34 10-64-7 L3-Dibromochane <1520 ug/kg 4610 1530 80 11/14/17 08:30 11/14/17 14:34 10-64-7 L3-Dibromochane <1520 ug/kg 4610 1530 80 11/14/17 08:30 11/14/17 14:34 10-64-7 L3-Dibromochane <1520 ug/kg 4610 1530 80 11/14/17 08:30 11/14/17 14:34 10-64-7 L3-Dibromochane <1520 ug/kg 4610 1530 80 11/14/17 08:30 11/14/17 14:34 10-64-7 L3-Dibromochane <1530 ug/kg 4610 1530 80 11/14/17 08:30 11/14/17 14:34 10-64-7 L3-Dibromochane <1530 ug/kg 4610 1530 80 11/14/17 08:30 11/14/17 14:34 10-64-7 L3-Dibromochane <1530 ug/kg 4610 1530 80 11/14/17 08:30 11/14/17 14:34 10-64-7 L3-Dibromochane <1530 ug/kg 4610 1500 80 11/1	Bromomethane	<6440	ua/ka	23000	6440	80	11/14/17 08:30	11/14/17 14:34	74-83-9	
Carbon Isulide <1020 ug/kg 4610 1020 80 11/14/17 08:30 11/14/17 14:34 75-15-0 Carbon tetrachloride <1110	2-Butanone (MEK)	<11400	ug/kg	23000	11400	80	11/14/17 08:30	11/14/17 14:34	78-93-3	
Carbon tetrachloride <1110	Carbon disulfide	<1020	ua/ka	4610	1020	80	11/14/17 08:30	11/14/17 14:34	75-15-0	
Chlorobenzene <1360 ug/kg 4610 1380 80 11/14/17 1434 108-90-7 Chloroferma <2800	Carbon tetrachloride	<1110	ua/ka	4610	1110	80	11/14/17 08:30	11/14/17 14:34	56-23-5	
Chloroethane <6180 ugkg 23000 6180 80 11/14/17 11/14/17 14:34 75-00-3 Chloroform <2200	Chlorobenzene	<1360	ua/ka	4610	1360	80	11/14/17 08:30	11/14/17 14:34	108-90-7	
Chloroform 44280 ug/kg 23000 4280 80 11/14/17 14:33 67-66-3 Chloromethane -5750 ug/kg 4610 1880 80 11/14/17 14:34 74-87-3 Cyclohexane -5750 ug/kg 23000 5750 80 11/14/17 10:33 11/14/17 14:34 96-12-8 Dibromochloromethane <1650	Chloroethane	<6180	ua/ka	23000	6180	80	11/14/17 08:30	11/14/17 14:34	75-00-3	
Chloromethane <1880 ug/kg 4610 1880 80 11/14/17 14:34 74:87:3 Cyclohexane 45750 ug/kg 23000 5750 80 11/14/17 10:30 11/14/17 14:34 10:82-7 J.2Dibromo-3-chloropropane 48410 ug/kg 4610 1650 80 11/14/17 10:30 11/14/17 14:34 10:82-7 J.2Dibromochane (EDB) <1360	Chloroform	<4280	ua/ka	23000	4280	80	11/14/17 08:30	11/14/17 14:34	67-66-3	
Cyclohexane <3750 ug/kg 23000 5750 80 11/14/17 08:30 11/14/17 14:34 11082-7 1,2-Dibromo-3-chloropropane <8410	Chloromethane	<1880	ua/ka	4610	1880	80	11/14/17 08:30	11/14/17 14:34	74-87-3	
1.2-Dibromo-3-chloropropane 4810 ug/kg 23000 8410 80 11/14/17 08:30 11/14/17 14:34 96-12-8 Dibromochloromethane <1650	Cvclohexane	<5750	ua/ka	23000	5750	80	11/14/17 08:30	11/14/17 14:34	110-82-7	
Dibromochloromethane 1650 80 11/14/17 14:34 124-84-1 1,2-Dichlorobetnzene 1490 ug/kg 4610 1360 80 11/14/17 14:34 106-93-4 1,2-Dichlorobenzene 1490 ug/kg 4610 1490 80 11/14/17 14:34 95-50-1 1,3-Dichlorobenzene 1220 ug/kg 4610 1400 80 11/14/17 14:34 541-73-1 1,4-Dichlorobenzene 1300 ug/kg 4610 1400 80 11/14/17 14:34 75-71-8 1,1-Dichloroethane 11/24/17 08:30 11/14/17 14:34 75-34-3 1,2-Dichloroethane 1320 ug/kg 4610 1380 80 11/14/17 14:34 75-35-4 1,2-Dichloroethane 1320 ug/kg 4610 1530 80 11/14/17 10:31 11/14/17 14:34 106-60-5 1,2-Di	1.2-Dibromo-3-chloropropane	<8410	ua/ka	23000	8410	80	11/14/17 08:30	11/14/17 14:34	96-12-8	
1.2-Dibromoethane (EDB) 1360 ug/kg 4610 1360 80 11/14/17 14:34 106-93-4 1.2-Dichlorobenzene 1490 ug/kg 4610 1490 80 11/14/17 14:34 541-73-1 1.3-Dichlorobenzene 80 11/14/17 108:30 11/14/17 14:34 541-73-1 1.4-Dichlorobenzene 11/30 ug/kg 4610 1160 80 11/14/17 108:30 11/14/17 14:34 55-0-1 1.4-Dichloroethane 11/30 ug/kg 4610 1620 80 11/14/17 108:30 11/14/17 14:34 75-34-3 1.2-Dichloroethane 12/20 ug/kg 4610 1520 80 11/14/17 11/14/17 13:43 156-59-2 1.1-Dichloroethene 11/14/17 108:30 11/14/17 13:43 106-10-1-5 1.2-Dichloropropane	Dibromochloromethane	<1650	ua/ka	4610	1650	80	11/14/17 08:30	11/14/17 14:34	124-48-1	
1.2-Dichlorobenzene <1490	1.2-Dibromoethane (EDB)	<1360	ua/ka	4610	1360	80	11/14/17 08:30	11/14/17 14:34	106-93-4	
1.3-Dichlorobenzene 1220 ug/kg 4610 1220 80 11/14/17 14:34 541-73-1 1.4-Dichlorobenzene 1460 ug/kg 4610 1460 80 11/14/17 14:34 541-73-1 Dichlorodifluoromethane 130 ug/kg 4610 1130 80 11/14/17 14:34 75-71-8 1.1-Dichloroethane 1620 ug/kg 4610 1380 80 11/14/17 14:34 75-34-3 1.2-Dichloroethane 1380 ug/kg 4610 1530 80 11/14/17 14:34 75-35-4 cis-1.2-Dichloroethene 1520 ug/kg 4610 1530 80 11/14/17 14:34 16-60-5 1.2-Dichloroptopene 1530 ug/kg 4610 1550 80 11/14/17 14:34 106-10-5 1.2-Dichloroptopene 1530 ug/kg 4610 1530 80 11/14/17 14:34 1061-10-5 trans-1,3-Dichloroptopene 1330 ug/kg	1.2-Dichlorobenzene	<1490	ua/ka	4610	1490	80	11/14/17 08:30	11/14/17 14:34	95-50-1	
1.4-Dichlorobenzene <1400	1.3-Dichlorobenzene	<1220	ua/ka	4610	1220	80	11/14/17 08:30	11/14/17 14:34	541-73-1	
Dichlorodifiluoromethane <1130 ug/kg 4610 1130 80 11/14/17 08:30 11/14/17 14:17 14:17 14:17 14:17 14:17 14:14:17	1.4-Dichlorobenzene	<1460	ua/ka	4610	1460	80	11/14/17 08:30	11/14/17 14:34	106-46-7	
1,1-Dickloroethane <1620	Dichlorodifluoromethane	<1130	ua/ka	4610	1130	80	11/14/17 08:30	11/14/17 14:34	75-71-8	
1,2-Dichloroethane <1380	1.1-Dichloroethane	<1620	ua/ka	4610	1620	80	11/14/17 08:30	11/14/17 14:34	75-34-3	
1.1-Dichloroethene <	1.2-Dichloroethane	<1380	ua/ka	4610	1380	80	11/14/17 08:30	11/14/17 14:34	107-06-2	
cis-1,2-Dichloroethene <1530	1.1-Dichloroethene	<1620	ua/ka	4610	1620	80	11/14/17 08:30	11/14/17 14:34	75-35-4	
ista in trans-1,2-Dichloroethene <1520	cis-1.2-Dichloroethene	<1530	ua/ka	4610	1530	80	11/14/17 08:30	11/14/17 14:34	156-59-2	
1.2-Dichloropropane <1550	trans-1.2-Dichloroethene	<1520	ua/ka	4610	1520	80	11/14/17 08:30	11/14/17 14:34	156-60-5	
cis-1,3-Dichloropropene<1530ug/kg461015308011/14/1711/14/1714:3410061-01-5trans-1,3-Dichloropropene<1330	1.2-Dichloropropane	<1550	ua/ka	4610	1550	80	11/14/17 08:30	11/14/17 14:34	78-87-5	
trans-1,3-Dichloropropene <1330	cis-1.3-Dichloropropene	<1530	ua/ka	4610	1530	80	11/14/17 08:30	11/14/17 14:34	10061-01-5	
Lith type provide </td <td>trans-1.3-Dichloropropene</td> <td><1330</td> <td>ua/ka</td> <td>4610</td> <td>1330</td> <td>80</td> <td>11/14/17 08:30</td> <td>11/14/17 14:34</td> <td>10061-02-6</td> <td></td>	trans-1.3-Dichloropropene	<1330	ua/ka	4610	1330	80	11/14/17 08:30	11/14/17 14:34	10061-02-6	
2-Hexanone <4800	Ethylbenzene	<1150	ua/ka	4610	1150	80	11/14/17 08:30	11/14/17 14:34	100-41-4	
Isopropylbenzene (Cumene) <1160	2-Hexanone	<4800	ua/ka	23000	4800	80	11/14/17 08:30	11/14/17 14:34	591-78-6	
Methyl acetate<15100ug/kg23000151008011/14/17 08:3011/14/17 14:3479-20-9Methylcyclohexane<6670	Isopropylbenzene (Cumene)	<1160	ua/ka	4610	1160	80	11/14/17 08:30	11/14/17 14:34	98-82-8	
Methylcyclohexane <6670	Methyl acetate	<15100	ua/ka	23000	15100	80	11/14/17 08:30	11/14/17 14:34	79-20-9	
Methylene Chloride 2230J ug/kg 4610 1490 80 11/14/17 11/14/17 14:34 75-09-2 4-Methyl-2-pentanone (MIBK) <3790	Methylcyclohexane	<6670	ua/ka	23000	6670	80	11/14/17 08:30	11/14/17 14:34	108-87-2	
4-Methyl-2-pentanone (MIBK) <3790	Methylene Chloride	2230J	ua/ka	4610	1490	80	11/14/17 08:30	11/14/17 14:34	75-09-2	
Methyl-tert-butyl ether <1170 ug/kg 4610 1170 80 11/14/17 14:34 1634-04-4 Styrene <830 ug/kg 4610 830 80 11/14/17 14:34 1634-04-4 Styrene <830 ug/kg 4610 830 80 11/14/17 14:34 100-42-5 1,1,2,2-Tetrachloroethane <1620 ug/kg 4610 190 80 11/14/17 14:34 79-34-5 Tetrachloroethane <643000 ug/kg 4610 1030 80 11/14/17 11/14/17 14:34 127-18-4 Toluene <1030 ug/kg 4610 1030 80 11/14/17 11/14/17 14:34 127-18-4 Toluene <1030 ug/kg 4610 1030 80 11/14/17 14:34 120-82-1 1,1,1-Trichlorobenzene <4380 ug/kg 4610 1330 80 11/14/17 14:34 120-82-1 1,1,2-Trichloroethane <1330 ug/kg 4610 1330 80 11/14/17 11/14/17 14:34 71-55-6	4-Methyl-2-pentanone (MIBK)	<3790	ua/ka	23000	3790	80	11/14/17 08:30	11/14/17 14:34	108-10-1	
Styrene <830 ug/kg 4610 830 80 11/14/17 11/14/17 14:34 100-42-5 1,1,2,2-Tetrachloroethane <1620	Methyl-tert-butyl ether	<1170	ua/ka	4610	1170	80	11/14/17 08:30	11/14/17 14:34	1634-04-4	
1,1,2,2-Tetrachloroethane <1620 ug/kg 4610 1620 80 11/14/17 08:30 11/14/17 14:34 79-34-5 Tetrachloroethene 643000 ug/kg 4610 1190 80 11/14/17 08:30 11/14/17 14:34 79-34-5 Tetrachloroethene 643000 ug/kg 4610 1190 80 11/14/17 08:30 11/14/17 14:34 127-18-4 Toluene <1030	Styrene	<830	ua/ka	4610	830	80	11/14/17 08:30	11/14/17 14:34	100-42-5	
Tetrachloroethene 643000 ug/kg 4610 1190 80 11/14/17 11.14/17 14.34 127-18-4 Toluene <1030 ug/kg 4610 1030 80 11/14/17 14.34 127-18-4 Toluene <1030 ug/kg 4610 1030 80 11/14/17 14.34 108-88-3 1,2,4-Trichlorobenzene <4380 ug/kg 23000 4380 80 11/14/17 14.34 120-82-1 1,1,1-Trichloroethane <1330 ug/kg 4610 1330 80 11/14/17 11.14/17 14.34 120-82-1 1,1,2-Trichloroethane <1330 ug/kg 4610 1330 80 11/14/17 14.34 71-55-6 1,1,2-Trichloroethane <1870 ug/kg 4610 1870 80 11/14/17 14.34 79-00-5 Trichloroethene 2710J ug/kg 4610 2180 80 11/14/17 11/14/17 11/14/17 11/14/17 11/14/17 11/14/17 11/14/17 11/14/17 11/14/17 11/14/17 11/14/17 11/14/17 11/1	1.1.2.2-Tetrachloroethane	<1620	ua/ka	4610	1620	80	11/14/17 08:30	11/14/17 14:34	79-34-5	
Toluene <1030 ug/kg 4610 1030 80 11/14/17	Tetrachloroethene	643000	ua/ka	4610	1190	80	11/14/17 08:30	11/14/17 14:34	127-18-4	
1,2,4-Trichlorobenzene <4380	Toluene	<1030	ua/ka	4610	1030	80	11/14/17 08:30	11/14/17 14:34	108-88-3	
1,1,1-Trichloroethane <1330	1.2.4-Trichlorobenzene	<4380	ua/ka	23000	4380	80	11/14/17 08:30	11/14/17 14:34	120-82-1	
1,1,2-Trichloroethane <1870	1.1.1-Trichloroethane	<1330	ug/ka	4610	1330	80	11/14/17 08:30	11/14/17 14:34	71-55-6	
Trichloroethene 2710J ug/kg 4610 2180 80 11/14/17 14:04 75:00 0 Trichloroethene 2710J ug/kg 4610 2180 80 11/14/17 14:34 79-01-6 Trichloroethene 2270 ug/kg 4610 2270 80 11/14/17 14:34 75-69-4	1.1.2-Trichloroethane	<1870	ug/kg	4610	1870	80	11/14/17 08:30	11/14/17 14.34	79-00-5	
Trichlorofluoromethane <2270 ug/kg 4610 2270 80 11/14/17 08:30 11/14/17 14:34 75-69-4	Trichloroethene	2710.1	ug/kg	4610	2180	80	11/14/17 08:30	11/14/17 14.34	79-01-6	
	Trichlorofluoromethane	<2270	ua/ka	4610	2270	80	11/14/17 08:30	11/14/17 14:34	75-69-4	

ANALYTICAL RESULTS

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

 Sample: TB-1A
 Lab ID: 40160640002
 Collected: 11/10/17 11:00
 Received: 11/11/17 08:15
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Image: Collected: 11/10/17 11:00
 Image: Collected: 11/10/17 11:00

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Full List	Analytical	Method: EP/	A 8260 Prepa	ration Metho	od: EP	A 5035/5030B			
1,1,2-Trichlorotrifluoroethane	<1870	ug/kg	4610	1870	80	11/14/17 08:30	11/14/17 14:34	76-13-1	
Vinyl chloride	<1940	ug/kg	4610	1940	80	11/14/17 08:30	11/14/17 14:34	75-01-4	
Xylene (Total)	<4460	ug/kg	13800	4460	80	11/14/17 08:30	11/14/17 14:34	1330-20-7	
Surrogates									
Dibromofluoromethane (S)	0	%	68-130		80	11/14/17 08:30	11/14/17 14:34	1868-53-7	S4
Toluene-d8 (S)	0	%	68-149		80	11/14/17 08:30	11/14/17 14:34	2037-26-5	S4
4-Bromofluorobenzene (S)	0	%	58-141		80	11/14/17 08:30	11/14/17 14:34	460-00-4	S4
Percent Moisture	Analytical	Method: AST	FM D2974-87						
Percent Moisture	13.2	%	0.10	0.10	1		11/15/17 06:41		

EPA 8260

8260 MSV Med Level Full List

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

QC Batch:	274095	Analysis Method:
QC Batch Method:	EPA 5035/5030B	Analysis Description:
Associated Lab Sam	ples: 40160640002	
	1613016	Matrix: Solid

METHOD BLANK: 1613016		Matrix:	Solid			
Associated Lab Samples: 40160640002						
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1.1.1-Trichloroethane	ua/ka	<14.4	50.0	14.4	11/14/17 11:18	
1,1,2,2-Tetrachloroethane	ug/kg	<17.5	50.0	17.5	11/14/17 11:18	
1,1,2-Trichloroethane	ug/kg	<20.2	50.0	20.2	11/14/17 11:18	
1,1,2-Trichlorotrifluoroethane	ug/kg	<20.2	50.0	20.2	11/14/17 11:18	
1,1-Dichloroethane	ug/kg	<17.6	50.0	17.6	11/14/17 11:18	
1,1-Dichloroethene	ug/kg	<17.6	50.0	17.6	11/14/17 11:18	
1,2,4-Trichlorobenzene	ug/kg	<47.6	250	47.6	11/14/17 11:18	
1,2-Dibromo-3-chloropropane	ug/kg	<91.2	250	91.2	11/14/17 11:18	
1,2-Dibromoethane (EDB)	ug/kg	<14.7	50.0	14.7	11/14/17 11:18	
1,2-Dichlorobenzene	ug/kg	<16.2	50.0	16.2	11/14/17 11:18	
1.2-Dichloroethane	ua/ka	<15.0	50.0	15.0	11/14/17 11:18	
1,2-Dichloropropane	ug/kg	<16.8	50.0	16.8	11/14/17 11:18	
1.3-Dichlorobenzene	ua/ka	<13.2	50.0	13.2	11/14/17 11:18	
1.4-Dichlorobenzene	ua/ka	<15.9	50.0	15.9	11/14/17 11:18	
2-Butanone (MEK)	ua/ka	<124	250	124	11/14/17 11:18	
2-Hexanone	ua/ka	<52.0	250	52.0	11/14/17 11:18	
4-Methyl-2-pentanone (MIBK)	ua/ka	<41.1	250	41.1	11/14/17 11:18	
Acetone	ua/ka	<98.6	250	98.6	11/14/17 11:18	
Benzene	ua/ka	<9.2	20.0	9.2	11/14/17 11:18	
Bromodichloromethane	ua/ka	<9.8	50.0	9.8	11/14/17 11:18	
Bromoform	ua/ka	<19.8	50.0	19.8	11/14/17 11:18	
Bromomethane	ua/ka	<69.9	250	69.9	11/14/17 11:18	
Carbon disulfide	ua/ka	<11.1	50.0	11.1	11/14/17 11:18	
Carbon tetrachloride	ua/ka	<12.1	50.0	12.1	11/14/17 11:18	
Chlorobenzene	ua/ka	<14.8	50.0	14.8	11/14/17 11:18	
Chloroethane	ua/ka	<67.0	250	67.0	11/14/17 11:18	
Chloroform	ua/ka	<46.4	250	46.4	11/14/17 11:18	
Chloromethane	ua/ka	<20.4	50.0	20.4	11/14/17 11:18	
cis-1.2-Dichloroethene	ua/ka	<16.6	50.0	16.6	11/14/17 11:18	
cis-1.3-Dichloropropene	ua/ka	<16.6	50.0	16.6	11/14/17 11:18	
Cvclohexane	ua/ka	<62.4	250	62.4	11/14/17 11:18	
Dibromochloromethane	ug/kg	<17.9	50.0	17.9	11/14/17 11:18	
Dichlorodifluoromethane	ug/kg	<12.3	50.0	12.3	11/14/17 11:18	
Ethvlbenzene	ua/ka	<12.4	50.0	12.4	11/14/17 11:18	
Isopropylbenzene (Cumene)	ua/ka	<12.6	50.0	12.6	11/14/17 11:18	
Methyl acetate	ua/ka	<164	250	164	11/14/17 11:18	
Methyl-tert-butyl ether	ug/kg	<12.7	50.0	12.7	11/14/17 11:18	
Methylcyclohexane	ug/ka	<72.3	250	72.3	11/14/17 11:18	
Methylene Chloride	ug/ka	<16.2	50.0	16.2	11/14/17 11:18	
Styrene	ug/ka	<9.0	50.0	9.0	11/14/17 11:18	
Tetrachloroethene	ug/kg	<12.9	50.0	12.9	11/14/17 11:18	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

METHOD BLANK: 161301	6	Matrix:	Solid			
Associated Lab Samples:	40160640002					
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Toluene	ug/kg	<11.2	50.0	11.2	11/14/17 11:18	
trans-1,2-Dichloroethene	ug/kg	<16.5	50.0	16.5	11/14/17 11:18	
trans-1,3-Dichloropropene	ug/kg	<14.4	50.0	14.4	11/14/17 11:18	
Trichloroethene	ug/kg	<23.6	50.0	23.6	11/14/17 11:18	
Trichlorofluoromethane	ug/kg	<24.7	50.0	24.7	11/14/17 11:18	
Vinyl chloride	ug/kg	<21.1	50.0	21.1	11/14/17 11:18	
Xylene (Total)	ug/kg	<48.4	150	48.4	11/14/17 11:18	
4-Bromofluorobenzene (S)	%	99	58-141		11/14/17 11:18	
Dibromofluoromethane (S)	%	96	68-130		11/14/17 11:18	
Toluene-d8 (S)	%	104	68-149		11/14/17 11:18	

LABORATORY CONTROL SAMPLE: 1613017

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	2500	2680	107	61-122	
1,1,2,2-Tetrachloroethane	ug/kg	2500	2780	111	73-130	
1,1,2-Trichloroethane	ug/kg	2500	2720	109	70-130	
1,1,2-Trichlorotrifluoroethane	ug/kg	2500	2330	93	50-150	
1,1-Dichloroethane	ug/kg	2500	2680	107	63-124	
1,1-Dichloroethene	ug/kg	2500	2610	105	53-117	
1,2,4-Trichlorobenzene	ug/kg	2500	2660	106	78-130	
1,2-Dibromo-3-chloropropane	ug/kg	2500	2290	92	49-140	
1,2-Dibromoethane (EDB)	ug/kg	2500	2690	108	70-130	
1,2-Dichlorobenzene	ug/kg	2500	2640	106	70-130	
1,2-Dichloroethane	ug/kg	2500	2740	110	56-135	
1,2-Dichloropropane	ug/kg	2500	2630	105	77-122	
1,3-Dichlorobenzene	ug/kg	2500	2630	105	70-130	
1,4-Dichlorobenzene	ug/kg	2500	2660	106	70-130	
Benzene	ug/kg	2500	2740	109	66-130	
Bromodichloromethane	ug/kg	2500	2520	101	62-135	
Bromoform	ug/kg	2500	2160	86	68-130	
Bromomethane	ug/kg	2500	2310	92	29-137	
Carbon disulfide	ug/kg	2500	2370	95	64-137	
Carbon tetrachloride	ug/kg	2500	2590	103	57-130	
Chlorobenzene	ug/kg	2500	2660	106	70-130	
Chloroethane	ug/kg	2500	2550	102	36-144	
Chloroform	ug/kg	2500	2740	109	69-115	
Chloromethane	ug/kg	2500	1510	60	32-126	
cis-1,2-Dichloroethene	ug/kg	2500	2600	104	65-130	
cis-1,3-Dichloropropene	ug/kg	2500	2670	107	70-130	
Cyclohexane	ug/kg	2500	2810	112	50-150	
Dibromochloromethane	ug/kg	2500	2740	110	70-130	
Dichlorodifluoromethane	ug/kg	2500	962	38	10-99	
Ethylbenzene	ug/kg	2500	2740	109	82-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

LABORATORY CONTROL SAMPLE: 1613017

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Isopropylbenzene (Cumene)	ug/kg	2500	2740	110	70-130	
Methyl acetate	ug/kg	2500	2490	100	50-150	
Methyl-tert-butyl ether	ug/kg	2500	2670	107	63-134	
Methylcyclohexane	ug/kg	2500	2490	99	50-150	
Methylene Chloride	ug/kg	2500	2640	106	56-123	
Styrene	ug/kg	2500	2760	110	70-130	
Tetrachloroethene	ug/kg	2500	2600	104	70-131	
Toluene	ug/kg	2500	2560	102	80-120	
trans-1,2-Dichloroethene	ug/kg	2500	2590	104	66-130	
trans-1,3-Dichloropropene	ug/kg	2500	2780	111	68-130	
Trichloroethene	ug/kg	2500	2560	102	70-130	
Trichlorofluoromethane	ug/kg	2500	2370	95	37-149	
Vinyl chloride	ug/kg	2500	1920	77	43-128	
Xylene (Total)	ug/kg	7500	8140	108	70-130	
4-Bromofluorobenzene (S)	%			102	58-141	
Dibromofluoromethane (S)	%			104	68-130	
Toluene-d8 (S)	%			99	68-149	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

QC Batch:	273864	Analysis Method:	EPA 8260	
QC Batch Method:	EPA 8260	Analysis Description:	8260 MSV Oxygenates	
Associated Lab Sam	ples: 40160640001			
METHOD BLANK:	1612158	Matrix: Water		
Associated Lab Sam	ples: 40160640001			
		Blank Reportir	a	

		ыапк	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	<0.50	1.0	0.50	11/13/17 16:26	
1,1,2,2-Tetrachloroethane	ug/L	<0.25	1.0	0.25	11/13/17 16:26	
1,1,2-Trichloroethane	ug/L	<0.20	1.0	0.20	11/13/17 16:26	
1,1,2-Trichlorotrifluoroethane	ug/L	<0.81	5.0	0.81	11/13/17 16:26	
1,1-Dichloroethane	ug/L	<0.24	1.0	0.24	11/13/17 16:26	
1,1-Dichloroethene	ug/L	<0.41	1.0	0.41	11/13/17 16:26	
1,2,4-Trichlorobenzene	ug/L	<2.2	5.0	2.2	11/13/17 16:26	
1,2-Dibromo-3-chloropropane	ug/L	<2.2	5.0	2.2	11/13/17 16:26	
1,2-Dibromoethane (EDB)	ug/L	<0.18	1.0	0.18	11/13/17 16:26	
1,2-Dichlorobenzene	ug/L	<0.50	1.0	0.50	11/13/17 16:26	
1,2-Dichloroethane	ug/L	<0.17	1.0	0.17	11/13/17 16:26	
1,2-Dichloropropane	ug/L	<0.23	1.0	0.23	11/13/17 16:26	
1,3-Dichlorobenzene	ug/L	<0.50	1.0	0.50	11/13/17 16:26	
1,4-Dichlorobenzene	ug/L	<0.50	1.0	0.50	11/13/17 16:26	
2-Butanone (MEK)	ug/L	<3.0	20.0	3.0	11/13/17 16:26	
2-Hexanone	ug/L	<1.1	5.0	1.1	11/13/17 16:26	
4-Methyl-2-pentanone (MIBK)	ug/L	<2.1	5.0	2.1	11/13/17 16:26	
Acetone	ug/L	<3.0	20.0	3.0	11/13/17 16:26	
Benzene	ug/L	<0.50	1.0	0.50	11/13/17 16:26	
Bromodichloromethane	ug/L	<0.50	1.0	0.50	11/13/17 16:26	
Bromoform	ug/L	<0.50	1.0	0.50	11/13/17 16:26	
Bromomethane	ug/L	<2.4	5.0	2.4	11/13/17 16:26	
Carbon disulfide	ug/L	<0.61	5.0	0.61	11/13/17 16:26	
Carbon tetrachloride	ug/L	<0.50	1.0	0.50	11/13/17 16:26	
Chlorobenzene	ug/L	<0.50	1.0	0.50	11/13/17 16:26	
Chloroethane	ug/L	<0.37	1.0	0.37	11/13/17 16:26	
Chloroform	ug/L	<2.5	5.0	2.5	11/13/17 16:26	
Chloromethane	ug/L	<0.50	1.0	0.50	11/13/17 16:26	
cis-1,2-Dichloroethene	ug/L	<0.26	1.0	0.26	11/13/17 16:26	
cis-1,3-Dichloropropene	ug/L	<0.50	1.0	0.50	11/13/17 16:26	
Cyclohexane	ug/L	<0.88	5.0	0.88	11/13/17 16:26	
Dibromochloromethane	ug/L	<0.50	1.0	0.50	11/13/17 16:26	
Dichlorodifluoromethane	ug/L	<0.22	1.0	0.22	11/13/17 16:26	
Ethylbenzene	ug/L	<0.50	1.0	0.50	11/13/17 16:26	
Isopropylbenzene (Cumene)	ug/L	<0.14	1.0	0.14	11/13/17 16:26	
Methyl acetate	ug/L	<2.2	10.0	2.2	11/13/17 16:26	
Methyl-tert-butyl ether	ug/L	<0.17	1.0	0.17	11/13/17 16:26	
Methylcyclohexane	ug/L	<2.3	5.0	2.3	11/13/17 16:26	
Methylene Chloride	ug/L	<0.23	1.0	0.23	11/13/17 16:26	
Styrene	ug/L	<0.50	1.0	0.50	11/13/17 16:26	
Tetrachloroethene	ug/L	<0.50	1.0	0.50	11/13/17 16:26	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

METHOD BLANK: 1612158		Matrix:	Water			
Associated Lab Samples: 401606400	001					
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Toluene	ug/L	<0.50	1.0	0.50	11/13/17 16:26	
trans-1,2-Dichloroethene	ug/L	<0.26	1.0	0.26	11/13/17 16:26	
trans-1,3-Dichloropropene	ug/L	<0.23	1.0	0.23	11/13/17 16:26	
Trichloroethene	ug/L	<0.33	1.0	0.33	11/13/17 16:26	
Trichlorofluoromethane	ug/L	<0.18	1.0	0.18	11/13/17 16:26	
Vinyl chloride	ug/L	<0.18	1.0	0.18	11/13/17 16:26	
Xylene (Total)	ug/L	<1.5	3.0	1.5	11/13/17 16:26	
4-Bromofluorobenzene (S)	%	87	61-130		11/13/17 16:26	
Dibromofluoromethane (S)	%	101	67-130		11/13/17 16:26	
Toluene-d8 (S)	%	100	70-130		11/13/17 16:26	

LABORATORY CONTROL SAMPLE: 1612159

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	49.6	54.9	111	70-130	
1,1,2,2-Tetrachloroethane	ug/L	49.6	52.8	107	70-130	
1,1,2-Trichloroethane	ug/L	49.6	49.1	99	70-130	
1,1,2-Trichlorotrifluoroethane	ug/L	49.6	55.6	112	50-150	
1,1-Dichloroethane	ug/L	49.6	56.3	113	71-132	
1,1-Dichloroethene	ug/L	49.6	55.4	112	75-130	
1,2,4-Trichlorobenzene	ug/L	49.6	42.7	86	70-130	
1,2-Dibromo-3-chloropropane	ug/L	49.6	48.1	97	63-123	
1,2-Dibromoethane (EDB)	ug/L	49.6	49.3	99	70-130	
1,2-Dichlorobenzene	ug/L	49.6	47.6	96	70-130	
1,2-Dichloroethane	ug/L	49.6	54.1	109	70-131	
1,2-Dichloropropane	ug/L	49.6	50.0	101	80-120	
1,3-Dichlorobenzene	ug/L	49.6	49.5	100	70-130	
1,4-Dichlorobenzene	ug/L	49.6	48.6	98	70-130	
Benzene	ug/L	49.6	53.8	108	73-145	
Bromodichloromethane	ug/L	49.6	51.5	104	70-130	
Bromoform	ug/L	49.6	45.9	93	67-130	
Bromomethane	ug/L	50	51.6	103	26-128	
Carbon disulfide	ug/L	49.6	56.3	113	72-156	
Carbon tetrachloride	ug/L	49.6	54.8	111	70-133	
Chlorobenzene	ug/L	49.6	50.3	101	70-130	
Chloroethane	ug/L	50	56.5	113	58-120	
Chloroform	ug/L	49.6	53.0	107	80-121	
Chloromethane	ug/L	50	41.6	83	40-127	
cis-1,2-Dichloroethene	ug/L	49.6	53.6	108	70-130	
cis-1,3-Dichloropropene	ug/L	49.6	47.0	95	70-130	
Cyclohexane	ug/L	49.6	58.4	118	50-150	
Dibromochloromethane	ug/L	49.6	50.2	101	70-130	
Dichlorodifluoromethane	ug/L	50	42.7	85	20-135	
Ethylbenzene	ug/L	49.6	52.8	107	87-129	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

LABORATORY CONTROL SAMPLE: 1612159

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Isopropylbenzene (Cumene)	ug/L	49.6	53.9	109	70-130	
Methyl acetate	ug/L	49.6	56.2	113	50-150	
Methyl-tert-butyl ether	ug/L	49.6	55.3	112	66-143	
Methylcyclohexane	ug/L	49.6	58.5	118	50-150	
Methylene Chloride	ug/L	49.6	53.7	108	70-130	
Styrene	ug/L	49.6	48.0	97	70-130	
Tetrachloroethene	ug/L	49.6	49.7	100	70-130	
Toluene	ug/L	49.6	47.8	96	82-130	
trans-1,2-Dichloroethene	ug/L	49.6	57.8	116	75-132	
trans-1,3-Dichloropropene	ug/L	49.6	46.4	94	70-130	
Trichloroethene	ug/L	49.6	51.2	103	70-130	
Trichlorofluoromethane	ug/L	50	56.4	113	76-133	
Vinyl chloride	ug/L	50	50.7	101	57-136	
Xylene (Total)	ug/L	149	161	108	70-130	
4-Bromofluorobenzene (S)	%			96	61-130	
Dibromofluoromethane (S)	%			107	67-130	
Toluene-d8 (S)	%			96	70-130	

MATRIX SPIKE & MATRIX SPI	KE DUPLICA	TE: 161284	44		1612845							
			MS	MSD								
	4	0160555003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	<1.0	49.6	49.6	55.1	55.6	111	112	70-134	1	20	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	49.6	49.6	52.3	51.8	105	104	70-130	1	20	
1,1,2-Trichloroethane	ug/L	<1.0	49.6	49.6	51.1	51.1	103	103	70-130	0	20	
1,1,2-Trichlorotrifluoroethane	ug/L	<5.0	49.6	49.6	54.6	56.2	110	113	50-150	3	20	
1,1-Dichloroethane	ug/L	<1.0	49.6	49.6	55.1	55.6	111	112	71-133	1	20	
1,1-Dichloroethene	ug/L	<1.0	49.6	49.6	53.8	54.8	108	110	75-136	2	20	
1,2,4-Trichlorobenzene	ug/L	<5.0	49.6	49.6	44.4	42.1	90	85	70-130	5	20	
1,2-Dibromo-3- chloropropane	ug/L	<5.0	49.6	49.6	49.0	46.8	99	94	63-123	4	20	
1,2-Dibromoethane (EDB)	ug/L	<1.0	49.6	49.6	51.8	51.5	105	104	70-130	1	20	
1,2-Dichlorobenzene	ug/L	<1.0	49.6	49.6	47.0	47.5	95	96	70-130	1	20	
1,2-Dichloroethane	ug/L	<1.0	49.6	49.6	51.0	52.7	103	106	70-131	3	20	
1,2-Dichloropropane	ug/L	<1.0	49.6	49.6	50.6	52.2	102	105	80-120	3	20	
1,3-Dichlorobenzene	ug/L	<1.0	49.6	49.6	49.4	49.1	100	99	70-130	1	20	
1,4-Dichlorobenzene	ug/L	<1.0	49.6	49.6	49.8	50.2	100	101	70-130	1	20	
Benzene	ug/L	<1.0	49.6	49.6	52.6	55.8	106	113	73-145	6	20	
Bromodichloromethane	ug/L	<1.0	49.6	49.6	53.3	53.0	107	107	70-130	1	20	
Bromoform	ug/L	<1.0	49.6	49.6	46.6	47.8	94	96	67-130	3	20	
Bromomethane	ug/L	<5.0	50	50	47.8	53.5	96	107	26-129	11	20	
Carbon disulfide	ug/L	<5.0	49.6	49.6	55.9	57.1	113	115	72-156	2	30	
Carbon tetrachloride	ug/L	<1.0	49.6	49.6	55.4	57.2	112	115	70-134	3	20	
Chlorobenzene	ug/L	<1.0	49.6	49.6	51.7	52.4	104	106	70-130	1	20	
Chloroethane	ug/L	<1.0	50	50	54.5	57.2	109	114	58-120	5	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

MATRIX SPIKE & MATRIX SPI	KE DUPLIC	CATE: 161284	44		1612845							
		40160555003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloroform	ug/L	<5.0	49.6	49.6	51.9	53.5	105	108	80-121	3	20	
Chloromethane	ug/L	<1.0	50	50	41.0	40.6	82	81	40-128	1	20	
cis-1,2-Dichloroethene	ug/L	<1.0	49.6	49.6	51.4	52.5	104	106	70-130	2	20	
cis-1,3-Dichloropropene	ug/L	<1.0	49.6	49.6	49.1	48.4	99	98	70-130	1	20	
Cyclohexane	ug/L	<5.0	49.6	49.6	58.0	59.0	117	119	50-150	2	20	
Dibromochloromethane	ug/L	<1.0	49.6	49.6	52.6	52.1	106	105	70-130	1	20	
Dichlorodifluoromethane	ug/L	<1.0	50	50	41.5	41.9	83	84	20-146	1	20	
Ethylbenzene	ug/L	<1.0	49.6	49.6	54.8	55.4	111	112	87-129	1	20	
Isopropylbenzene (Cumene)	ug/L	<1.0	49.6	49.6	54.7	56.6	110	114	70-130	4	20	
Methyl acetate	ug/L	<10.0	49.6	49.6	50.6	53.4	102	108	50-150	5	20	
Methyl-tert-butyl ether	ug/L	<1.0	49.6	49.6	55.0	55.4	111	112	66-143	1	20	
Methylcyclohexane	ug/L	<5.0	49.6	49.6	58.9	58.5	119	118	50-150	1	20	
Methylene Chloride	ug/L	<1.0	49.6	49.6	52.2	52.9	105	107	70-130	1	20	
Styrene	ug/L	<1.0	49.6	49.6	49.8	49.1	100	99	70-130	1	20	
Tetrachloroethene	ug/L	<1.0	49.6	49.6	51.3	51.7	103	104	70-130	1	20	
Toluene	ug/L	<1.0	49.6	49.6	50.5	52.7	102	106	82-131	4	20	
trans-1,2-Dichloroethene	ug/L	<1.0	49.6	49.6	56.5	57.2	114	115	75-135	1	20	
trans-1,3-Dichloropropene	ug/L	<1.0	49.6	49.6	47.8	48.2	96	97	70-130	1	20	
Trichloroethene	ug/L	<1.0	49.6	49.6	53.5	52.1	108	105	70-130	3	20	
Trichlorofluoromethane	ug/L	<1.0	50	50	54.7	55.8	109	112	76-150	2	20	
Vinyl chloride	ug/L	<1.0	50	50	48.9	50.0	98	100	56-143	2	20	
Xylene (Total)	ug/L	<3.0	149	149	166	169	112	113	70-130	1	20	
4-Bromofluorobenzene (S)	%						98	99	61-130			
Dibromofluoromethane (S)	%						103	105	67-130			
Toluene-d8 (S)	%						93	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

QC Batch:	274204		Analysis Meth	od:	ASTM D2974-8	37		
QC Batch Method:	ASTM D2974-87		Analysis Desc	ription:	Dry Weight/Per	cent Moisture	e	
Associated Lab Sam	ples: 40160640002							
SAMPLE DUPLICAT	E: 1613572							
			40160640002	Dup		Max	(
Param	neter	Units	Result	Result	RPD	RPD)	Qualifiers
Percent Moisture		%	13.2	13	.5	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: PZ-1 & TB-1A 8260 VOCs

Pace Project No.: 40160640

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

S4 Surrogate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 PZ-1 & TB-1A 8260 VOCs

 Pace Project No.:
 40160640

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40160640002	TB-1A	EPA 5035/5030B	274095	EPA 8260	274103
40160640001	PZ-1	EPA 8260	273864		
40160640002	TB-1A	ASTM D2974-87	274204		

	Por	2 1816		E		0		Date		Rei	Rec		2	₩	$\sim $	12		_	telinquished By/Date:	
							:5	Date	d By/	eive	Rec			2017	10/2	/11		assell	elinquished By/Date: Angela H	
	4							g No	ackin	Ţ									Aethod of Shipment:	
iments:	Laboratory Com											ŀ		-	-	ŀ			pecial Instructions:	
×		×	×									×			×				B-1A - 4/52 p.A	P
: ×		×				×				×		×			×			An one of the CANADA AND A CANADA	2-1 3-40~1v3	
RUSH:		Other : VOCs Method 8260B	Soil	Sludge	Waste Water	Groundwater	Other:	H2SO4 plass	NaOH	HCI	HNO3	lce	Filtered		Crab	No. of Containart	Time Sampled	Date Sampled	Description	Seleta and an an ann an an an Arabian.
TA	Analyze For:			atrix	Z			Ne	rvati	rese	P							nformation	Sample I	5
	Angela Hassell	Invoice To:												és.				-6949	Phone Number: 608-669	an ta a
rtnersllc.ne	brehm@resolutionpa	Email Address:					ssell	a Ha	ngel	er: A	anag	M C	roje	σ				er	ampler Name (print): Kevin Bak	<u>i da da</u>
	Bernd Rehm	Report To:			And the product of the second	3719	N 5	ion, V	ladis	ip: N	ite/Z	y/Sta	City	. 2010)				9-2436	Phone Number: (920)-46	
rtnersllc.ne	kbaker@resolutionpa	Email Address:				Drive	10n [onath	67 J	6 :ss	ddre	Þ						vsky	Lab Contact: Dan Milev	
	Kevin Baker	Report To:					1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			er.	umb	ect N	Proje					, WI 54302	City/State/Zip: Green Bay	
artnersllc.n	ahassell@resolutionp	Email Address:								ē	ject	Pro						evue Street	Address: 1241 Bell	
A	Angela Hassell	Report To:		and the second second second	FC	ners,) Part	utior	eSol	e: R	am	it N	lien	Ω				ytical	Analytical Lab: Pace Anal	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

Page 22 of 23

002

5	Sample Condition Upon Receipt Pace Analytical Services, LLC Green Bay W 1241 Bellevue Street, Suite 9
Pace Analytical"	Green Bay, WI 54302
Client Name: Resolution	Project: WO#: 40160640
Courier: Fed Ex UPS Client	Pace Other: Waltco
Custody Seal on Cooler/Box Present:	res Z no Seals intact: Ves T no
Custody Seal on Samples Present: 🔽 yes	s 🔽 no Seals intact: 🔽 yes 🗌 no
Packing Material: 7 Bubble Wrap	3ubble Bags T None T Other
Thermometer UsedA	Type of Ice: Wet Blue Dry None V Samples on ice, cooling process has begun
Cooler Temperature Uncorr: Col ICo	rr:Biological Tissue is Frozen: yes
Temp Blank Present: Ves P no	no Person examining contents:
Biota Samples may be received at $\leq 0^{\circ}$ C.	Comments:
Chain of Custody Present:	
Chain of Custody Filled Out:	DYes DNO DNA 2. No date / time DS Willing
Chain of Custody Relinquished:	BYES DNO DN/A 3. Thread only DS 11/11/17
Sampler Name & Signature on COC:	
Samples Arrived within Hold Time:	ØYes □No □N/A 5.
- VOA Samples frozen upon receipt	□Yes ØNo Date/Time
Short Hold Time Analysis (<72hr):	
Rush Turn Around Time Requested:	
Sufficient Volume:	$\Box Y = \Box N = \Box N = 8 \qquad A(a) A = A = A = A = A = A = A = A = A = A$
Correct Containers Lised:	The first find and with wal soon and
-Pace Containers Used	
-Pace IR Containers Used	
Containers Intact	
Filtered volume received for Dissolved tests	
Sample Labels match COC:	Tyes PINO DIVIA 12 001 Time: 1105 Date: 11/10/12
-Includes date/time/ID/Analysis Matrix:	Stw 002 Time: 1100 Date: 11/15/17 05
All containers needing preservation have been check	
(Non-Compliance noted in 13.)	
compliance with EPA recommendation.	
(HINU3, H2SU4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12) exceptions: VOA. coliform, TOC, TOX. TOH.	Initial when ILab Std #ID of IDate/
O&G, WIDROW, Phenolics, OTHER:	Yes No completed preservative Time:
Headspace in VOA Vials (>6mm):	□Yes
Trip Blank Present:	□Yes ZNo □N/A 15.
Trip Blank Custody Seals Present	□Yes □No ØN/A
Pace Trip Blank Lot # (if purchased):	
Person Contacted: Comments/ Resolution:	If checked, see attached form for additional comments
Project Manager Review	A fox Diago Portos II II II
F-GB-C-031-Rev.04 (12Dec2016) SCUR.xls	/10/10/10/10/10/10/10/10/10/10/10/10/10/

Pace Analytical Services LLC. - Green Bay WI

APPENDIX D

PLAN DRAWINGS AND SPECIFICATIONS

PLAN DRAWINGS AND SPECIFICATIONS SOURCE AREA SOIL AND GROUNDWATER REMEDIATION FORMER ONE-HOUR VALET DRY CLEANERS 1214 WEST WELLS STREET, MILWAUKEE, WISCONSIN

JANUARY 2018

INDEX TO DRAWINGS

SHEET 1 COVER SHEET

SHEET 2 PRE-REMEDIATION SITE CONSTRUCTION PLAN

- SHEET 3 DETAILS FOR MANAGEMENT OF PCE-IMPACTED CONCRETE
- SHEET 4 SOIL BLENDING AREA
- SHEET 5 SOIL BLENDING TREATMENT AREA LAYOUT
- SHEET 6 GEOLOGIC CROSS-SECTION A-A'
- SHEET 7 GEOLOGIC CROSS-SECTION B-B'
- SHEET 8 CONCEPTUAL SITE RESTORATION PLAN

LEGEND PROPERTY BOUNDARY	ISSUED FOR	DESCRIPTION			
UILDING FOOTPRINT		ш			
ASPHALT		DAT			
CONCRETE					
OVERHEAD ELECTRIC			\vdash	+	
— g — g — GAS		R			
AIR CONDITIONER					
M METER			œ		z
EXTENT OF CONTAMINATED CONCRETE ON BASEMENT SLAB	רי אין	5	r: API	ST ST	SHOW
CONCRETE CORE SAMPLE LOCATION (APPROXIMATE)	PROJECT MG		DRAFTED BY	CHECKED BY	SCALE: AS

1. THE EXTENT OF IDENTIFIED CONTAMINATED CONCRETE, AS SHOWN ON SHEET 3, IS TO BE MANAGED BY THE GENERAL CONTRACTOR AS DIRECTED BY THE OWNER.

2. GENERAL CONTRACTOR SHALL REMOVE AND STAGE THE CONTAMINATED CONCRETE AS DIRECTED BY THE OWNER.

3. OWNER WILL RETAIN AND COORDINATE WITH A DISPOSAL CONTRACTOR FOR TRANSPORTATION AND DISPOSAL OF THE CONCRETE AS A LISTED HAZARDOUS WASTE.

DETAILS FOR MANAGEMENT OF PCE-IMPACTED CONCRETE FORMER ONE-HOUR VALET DRY CLEANERS 1214 WEST WELLS STREET MILWAUKEE, WISCONSIN J. βġ 0 RAMB yright 2018 All rights ument may be reprodu ns without permission SHEET 3 1690005819

REFERENCE: THE SITE LAYOUT, SITE FEATURES, ELEVATIONS, UTILITIES, AND OTHER FEATURES NEAR THE PROPERTY WERE OBTAINED FROM GRAEF-USA IN DECEMBER 2017.

JUCE010 Econor 1hr Dur Clonner, Durre 8. Concel D1 Coil B1

APPENDIX E

EROSION CONTROL PERMIT

City of Milwaukee

Department of Neighborhood Services

Erosion Control Permit

Permit Number:	ECP-17-00381	Issue Date: 12/06/2017
Project Location:	1200 W WELLS ST, MILWAUKEE	, WI 532331304
Application Name:	Raze	
Description of Work:	Erosion control measures fo permit is specific to these b Call Inspector Kraus at 286-2	or garage & store front. This uildings & this demolition site. 8003.
Issued to:	(Owner:
Herb Pundsack		MARQUETTE UNIVERSITY
2445 S 179th Stree	t	PO BOX 1881
New Berlin, WI 530	946	MILWAUKEE, WI 53201
Issued By: WSPA	ARA	

No asbestos project, as defined in Ch. 66 of the Milwaukee Code of Ordinances, is included in the work performed under this permit. I understand that any falsification or misinformation may result in penalties prescribed in the Milwaukee Code of Ordinances

To obtain more information about this permit or to schedule a required inspection log on to: <u>www.Milwaukee.gov/LMS</u> or call (414) 286-2513

Permits expire if work is not started within 6 months of issuance or if new construction ceases more than 3 months.

Permits are non-transferrable. There is no refund for a minimum fee permit.

841 N. Broadway • Milwaukee, WI 53202 • 414-286-2268 • www.milwaukee.gov/dns

APPENDIX F

DOCUMENTATION OF FENCELINE AIR ACTION LEVELS FOR TETRACHLOROETHENE AND TRICHLOROETHENE

Table F-1Toxicity Criteria for Tetrachloroethene and TrichloroetheneFormer One-Hour Valet Dry Cleaners Property

Milwaukee, Wisconsin

Chemical	Inhalation Unit Risk (ug/m ³) ⁻¹	Inhalation Reference Concentration (mg/m ³) ^(c)					
TCE (USEPA) PCE (USEPA)	4.1E-06 ^(a) 2.60E-07 ^(b)	2.00E-03 ^(a) 4.00E-02 ^(b)					
Notes: (a) USEPA, 2017. Integrated Risk Information System (IRIS), Chemical Assessment Summary for Trichloroethene (Completion date: September 28, 2011). Available online at: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=199							
(b) USEPA, 2017. Integrated Risk Information System (IRIS), Chemical Assessment Summary for Tetrachloroethene (Completion date: February 10, 2012). Available online at: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=106							
(c) The reference concentration is "an estimate (with uncertainty spanning perhaps an order of magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime." (USEPA, 2009a). The reference concentrations are derived to be protective of chronic (long-term) inhalation exposures, and thus are very conservative for evaluating a subchronic period of exposure.							

Table F-2 Derivation of Risk-Based Air Concentration for PCE and TCE (Carcinogenic Effects) Former One-Hour Valet Dry Cleaners Property Milwaukee, Wisconsin

Chemical	Target Cancer Risk Level	Lifetime (years)	Days per year Exposed (days/year)	Averaging Time (days) ^(a)	Inhalation Unit Risk (m ³ /ug)	Conversion Factor (ug/mg)	Hours of exposure ^(b)	Hours in a day ^(b)	Exposure Frequency ^(c)	Exposure Duration (yr) ^(d)	RBAC (mg/m ³) ^(e)
TCE (USEPA)	1.00E-06	70	365	25550	4.10E-06	1.00E+03	12	24	14	1	0.89
PCE (USEPA)	1.00E-06	70	365	25550	2.60E-07	1.00E+03	12	24	14	1	14.0
Notes: RBAC - Risk-Based Air Concentration (a) Averaging Time (days) = 365 days/year for 70 years (b) The hours of exposure and hours in a day are used to calcuate the exposure time, which is the ratio of the number of hours of exposure to the number of hours in a day.											

(c) The work will be conducted over a 14 day period during one year, giving an exposure frequency of 14 days per year.

(e) Risk-Based Air Concentration (mg/m³) =

TR * AT (days)

IUR (m³/ug) * (1000 ug/mg) * Exposure Time * Exposure Frequency * Exposure Duration (yr)

Table F-3 Derivation of Risk-Based Air Concentration for PCE and TCE (Noncarcinogenic Effects) Former One-Hour Valet Dry Cleaners Property

Milwaukee, Wisconsin

Chemical	Reference Concentration (mg/m ³)	Hours of exposure ^(a)	Hours in a day ^(a)	Days per year Exposed ^(b)	Averaging time (days) ^(c)	RBAC (mg/m ³) ^(d)		
TCE (USEPA)	2.00E-03	12	24	14	365	0.10		
PCE (USEPA)	4.00E-02	12	24	14	365	2.1		
Notes: RBAC - Risk-Based Air Concentration (a) The hours of exposure and hours in a day are used to calcuate the exposure time, which is the ratio of the number of hours of exposure to the number of hours in a day.								
 (b) The work will be conducted over a 14 day period during one year, giving an exposure frequency of 14 days per year. (c) An averaging time of 365 days per year is assumed since the work will be completed during one year. (d) Risk-Based Air Concentration (mg/m3) = <u>Reference Concentration (mg/m3) * Averaging Time (365 days/year)</u> Exposure Time (unitless) * Exposure Frequency (14 days/year) 								

Table F-4Selection of Fenceline Air Action Level for PCE and TCEFormer One-Hour Valet Dry Cleaners PropertyMilwaukee, Wisconsin

	Ris	k-Based Air Con	centration (mg	Fenceline Air	Fenceline Air	Fenceline Air		
Chemical	Non-cancer		Cancer		Action Level ^(a) (mg/m ³)	Action Level ^(a)	Action Level ^(a.b) (ppm _v)	
		10 ⁻⁶	10 ⁻⁵	10 ⁻⁴		(ug/m ³)		
TCE (USEPA)	0.10	0.89	8.9	89	0.10	104	0.019	
PCE (USEPA)	2.1	14	140	1,404	2.1	2,086	0.31	
Notes:								
(a) - Lowest of cancer and non-c	ancer risk-based a	air concentrations	for each chemic	al.				
(b) - Molecular weights for PCE a	and TCE are as fol	lows:						
Molecular Weight _{PCE} = 165.83 g/mol								
Molec	cular Weight _{TCE} =	131.4	g/mol					