

EIS Brake Parts

West Bend, Wisconsin

Delta No. 10-87-285

Delta Environmental Consultants, Inc.

EIS Brake Parts

West Bend, Wisconsin

Delta No. 10-87-285

Prepared by:

Delta Environmental Consultants, Inc. 1801 Highway 8, Suite 114 St. Paul, MN 55112 (612) 636-2427

August 25, 1988

EIS Brake Parts West Bend, Wisconsin Delta No. 10-87-285

1.0 INTRODUCTION

1.1 Purpose and Authorization

The purpose of this report is to present the results of the Remedial Investigation (RI) conducted at the EIS Brake Parts property in West Bend, Wisconsin. This remedial investigation follows Delta Environmental Consultants, Inc. (Delta's) Remedial Investigation and Feasibility Study Work Plan dated December 30, 1987. The work plan was approved by the Wisconsin Department of Natural Resources (WDNR) in a letter dated February 11, 1988.

The work described in this report was authorized by EIS Brake Parts January 4, 1988.

1.2 Scope of Services

The scope of services performed in regard to this project included:

- o Advancing five soil borings to define the extent of contamination in an area suspected of waste disposal (i.e., the old dumping area).
- o Collecting soil samples from the old dumping area and chemically analyzing them for selected parameters.
- o Field-screening soil samples with a photoionization device (PID) to determine the presence of volatile organic chemical contamination.
- o Installing seven monitoring wells.
- Surveying the locations and casing elevations of each of the monitoring wells.
- o Obtaining water level elevation measurements on several occassions.
- o Obtaining representative ground water samples from the site's monitoring wells and chemically analyzing them for selected parameters.
- o Conducting slug and recovery tests in the monitoring wells and evaluating local ground water flow in the shallow unconfined aquifer.
- o Interpretation of data collected and preparation of this report.

EIS Brake Parts

West Bend, Wisconsin

Delta No. 10-87-285

Page 2

2.0 BACKGROUND INFORMATION

2.1 Site Description

The site is located at 133 Oak Street in West Bend, Washington County, Wisconsin (Figures 1 and 2).

The site is bounded on the north by Oak Street, on the east by the Chicago and Northwestern Railroad,

on the west by Second Avenue and on the south by Decorah Road (Figure 3). Praefke Brake and

Supply Company operates an asbestos brake shoe manufacturing facility at the site. The brake shoe

manufacturing operation occupies building #1 (Figure 3); building #2 is empty. Building #3 presently

houses an auto repair shop and building #4 is abandoned. A metal storage shed is located southwest of

building #1.

The site is paved on the northern property line adjacent to building #1; the western edge is wooded and

slopes steeply upward to a residential area. The south end of the property, near building #4, is

undeveloped and wooded. Along the east side of the property, between building #1 and building #2 and

the railroad, is a grassy lane.

2.2 Site History

The site originally operated in the 1920s as a facility which finished wood for caskets. During the

1940s, the site housed an operation that treated and varnished poles used for soldier's tents in World

War II. Since the 1950s, the site has housed a brake shoe manufacturing operation which continues

today.

Other operations have coexisted at this property at various times in the past. These include a metal

painting firm (1985 to 1987), a garage door manufacturer, and a junk yard. This junk yard contained

used cars, tractors, paper products, plastic wastes, and scrap metal. The junk yard was abandoned and

the junk removed in 1976 or 1977.

2.3 Previous Investigations

Two investigations have been conducted at this site in the past by Warzyn Engineering. A "walk-

through" audit of the facility was performed on December 23, 1986 followed by a limited subsurface

investigation in January 1987. The following is a brief summary of the results of these investigations.

REMEDIAL INVESTIGATION/REPORT EIS Brake Parts West Bend, Wisconsin Delta No. 10-87-285 Page 3

The audit identified several locations which could potentially contain hazardous chemicals or present potential environmental problems. These included several buried tanks, a metal storage shed which contains solvents and stamping dyes, and an area at the back of the property where a scrap metal yard once existed. Warzyn recommended soil sampling at various locations to further investigate the presence of contaminants.

In January 1987, Warzyn performed an initial investigation which consisted of seven test pits, three soils borings, two floor borings, and three surface soil samples (Figure 4). Test pits 1, 2, 6, and 7 were dug north of building #4. Test pits 4 and 5 were dug south of building #4 while test pit 3 was dug west of building #4. Two core samples were taken through the floor in building #1. Three soil borings were drilled near the gas tank, storage shed and fuel tank, respectively. Three additional surface soil samples were collected on the grassy area along the railroad tracks. The logs of these borings and pits are provided in Appendix A.

The investigation results indicated relatively high concentrations of 1,1,1-trichloroethane, carbon tetrachloride, chloroform, ethylbenzene, tetrachloroethane, toluene, 1,1,1-trichloroethene, and xylene in the soil (Table 1). The major areas of concern, based upon Warzyn's data, were near test pits 1, 2, 6, 7, and the northwest side of the site where soil borings B-1, B-2, and B3 were advanced. Other borings and test pit samples detected little contamination. No ground water samples were collected during the Warzyn investigation.

Delta was contracted to conduct an environmental investigation to determine the presence and nature of ground water contamination at the site. Six shallow monitoring wells were installed and sampled in September 1987. Delta's report titled "Environmental Investigation" (dated November 16, 1987), describes the findings of that initial investigation. Several contaminants were identified in the ground water (Table 2) and tentatively related to a source location on-site. Among others, the chemicals 1,1-dichloroethylene, carbon tetrachloride, 1,1,2-trichloroethylene, and benzene were found in concentrations exceeding Wisconsin or U.S. EPA water quality standards.

The data (e.g., soil boring logs, monitor well construction details, chemical data, etc.) presented in Delta's November 1987 report are incorporated into this report.

REMEDIAL INVESTIGATION/REPORT EIS Brake Parts West Bend, Wisconsin Delta No. 10-87-285 Page 4

2.4 Water Supply Inventory

The area surrounding the site is supplied by the city of West Bend water supply system. Delta contacted the city of West Bend Water Utilities Department and obtained the following information regarding West Bend's municipal wells. Presently, the city of West Bend utilizes 10 wells to supply water (Figure 5). These wells (numbered 4 to 13) are screened in both the shallow sand and gravel aquifer and the deeper dolomite aquifer (see Section 4.1 for further discussion of these aquifers). The city has used three deep wells in the past (wells 1, 2, and 3), but has since abandoned these wells. No private water wells were identified in the area during the investigation.

3.0 PROJECT RESULTS

3.1 Soil Borings

Six soil borings (MW-1, MW-2, MW-3, MW-4, MW-5, and MW-6A) were drilled in September 1987 as part of the initial investigation. These borings were completed as monitoring wells. Six soil borings were drilled in March 1988 and completed as monitor wells (MW-A, MW-6B, MW-C, MW-D1, MW-D2, MW-E). Two soil borings were drilled in association with MW-C, i.e., MW-C, and B-C2. B-C2 was grouted to the surface and MW-C was completed as a monitor well. An additional soil boring was drilled May 25, 1988 and completed as monitor well MW-F. The logs of these borings are provided in Appendix B.

On March 16, 1988, five soil borings (B-1, -2, -3, -4, -5) were drilled to define the extent of soil contamination at the old dumping area (Figure 6). The lithologic logs of the soil borings are provided in Appendix B.

The soil borings were drilled using four-inch diameter hollow stem auger and split spoon sampling techniques. All equipment was steam-cleaned between borings to minimize the chance of cross-contamination. The borings were continuously logged to the water table. The borings were backfilled with natural cuttings.

All recovered soil samples were scanned with a photoionization device (PID) to screen for volatile chemicals. The results of the PID scan are given in Table 3.

Soil samples from borings B-1,-2,-3,-4, and B-5 were submitted for analysis of purgeable halocarbon/aromatics (using EPA Method 601/602) and phenols (using EPA Method 604). The EPA

EIS Brake Parts

West Bend, Wisconsin

Delta No. 10-87-285

Page 5

recommended holding times for the soil samples (extraction should occur within 14 days after the date of collection) was exceeded by 12 days. Delta instructed the lab to complete the analyses. Two additional soil borings, B-6 and B-7, were drilled at the locations shown in Figure 6 on May 25, 1988 with the same installation procedures used in the previous borings. Boring B-6 was installed to provide a new data point with which to compare to the other borings. Boring B-7 was installed next to boring B-5 to verify the analytical results obtained from B-5. The results of the chemical analysis of the soil samples are provided in Appendix C and summarized in Table 4.

The WDNR requested a dioxin analysis of the most contaminated sample. A dioxin analysis was done on a sample from B-5. No dioxin was detected in that analysis.

The soils encountered in the soil borings were primarily silty-sand to fine-sand overlying a gray, lean clay.

3.2 Monitoring Wells

Thirteen monitoring wells have been installed at this site (Figure 3). Six of the wells (MW-1, -2, -3, -4, -5, -6A) were installed in September 1987. Wells MW-A, -6B, -C, -D1, -D2, and MW-E were installed in March 1988. Well MW-F was installed May 25, 1988. The monitoring well construction details are provided in Appendix D. Briefly, the wells were constructed of two inch diameter Schedule 40 PVC riser pipe with 10 foot screens for all of the wells except MW-6B and MW-D2 which have 5 foot screens. The natural soils were allowed to collapse around the screen as the augers were withdrawn to two feet above the screen, followed by a three foot bentonite seal and grouted to the surface with a neat cement-bentonite grout. The well risers are housed at the surface within a steel protective casing and locking cap. All well materials were steam-cleaned before installation. The wells were developed with a bailer after installation.

3.3 Ground Water Measurements and Observations

The monitoring wells elevations and locations were surveyed by a land surveyor. The ground water levels were measured several times during the course of the investigation. The water level data are presented in Table 5.

See bon

REMEDIAL INVESTIGATION/REPORT EIS Brake Parts West Bend, Wisconsin Delta No. 10-87-285

Page 6

Figures 7A and 7B are contour maps of the ground water table surface using the groundwater level data of May 25, 1988 and June 22, 1988. This data indicates a northeasterly flow of ground water beneath the site with an approximate horizontal gradient of 0.016.

The vertical gradient was measured in the well nests MW-6 and MW-D. The vertical gradient measured at nest MW-6 was -8.3×10^{-3} (May 25, 1988) and -6.6×10^{-3} (June 22, 1988). The vertical gradient at nest MW-D was -5.7×10^{-2} (May 25, 1988) and -7.3×10^{-2} (June 22, 1988). The negative gradients reflect an upward component of flow, indicating that the nearby Milwaukee River is a discharge zone for the shallow ground water.

Slug tests were conducted in wells MW-2, -5, -6B, -C, -D1, -D2. The results of the slug test analyses are provided in Table 7 and Appendix E. An average hydraulic conductivity of 1.28×10^{-5} feet per second (3.9 x 10^{-4} cm/sec) was calculated.

3.4 Ground Water Sampling

The wells have been sampled September 25 and 26, 1987, March 23, 1988, and May 25 and 26, 1988. Samples were submitted to the laboratory and analyzed for purgeable halocarbons/aromatics (EPA Method 601/602), phenols (EPA Method 604) (the 1987 samples were also analyzed for phthalate esters (EPA Method 606), total cyanide and cadmium). The results of the ground water sampling are provided in Appendix F and summarized in Tables 2, 8a, and 8b.

3.5 Other Test Results

A permeability, sieve, and hydrometer analysis was performed on a thin-walled tube sample (Shelby tube) taken from the clay unit encountered in boring D-2 at a depth of 35 feet. The results of these tests are provided in Appendix G. The coefficient of permeability measured for the lean clay unit is 3.3×10^{-10} ft/sec (1 x 10 $^{-8}$ cm/sec).

A sieve analysis was conducted on two soil samples of the fine sand from MW-1 and MW-6. The results of those analyses are included in Appendix G.

EIS Brake Parts

West Bend, Wisconsin

Delta No. 10-87-285

Page 7

4.0 DISCUSSION OF RESULTS

4.1 Hydrogeology

Southeastern Wisconsin's geology consists of surficial glacial deposits underlain by eastward dipping

Paleozoic sedimentary units over Precambrian bedrock. The three major aquifers found in southeastern

Wisconsin are the sand and gravel aquifer, the Silurian dolomite, and sandstone aquifers. The

Precambrian basement rocks are occassionally utilized as a local source of water but will not be included

in this discussion.

In the West Bend region, the sand and gravel aquifer consists primarily of unconsolidated deposits within

the glacial drift that is associated with the interlobate Kettle Moraine area. The Kettle Moraine is a

large deposit of clay, silt, sand, and gravel associated with the Wisconsin glacial stage. The city of

West Bend is located at the eastern edge of this moraine.

The sand and gravel aquifer is essentially continuous but varies in thickness over the region from 50 to

400 feet. In the West Bend area, the sand and gravel aquifer is about 100 feet thick. Regionally,

ground water within the sand and gravel aquifer flows northwestward from Big Cedar Lake (a recharge

area) towards the Milwaukee River (a discharge area).

The top of the Silurian dolomite is an erosional surface; therefore, its thickness can vary from 0 to over

200 feet (Mikulic, 1977). The Silurian dolomite aquifer is light gray to brown-gray, fractured and is a

source of water for over 56 wells in Washington County (Kammerer, 1981). Based upon well data,

bedrock beneath West Bend consists of the Silurian dolomite of the Niagaran series at a depth of about

100-200 feet (Young and Batton, 1980; Layne-Northwest, 1979).

The deepest main aquifer in southeastern Wisconsin is the sandstone aquifer composed of Cambrian and

Ordovician sandstones and dolomites (Kammerer, 1981). The sandstone aquifer provides water to nine

wells in Washington County.

Locally, the geology beneath the site is as illustrated in Figure 8 (see Figure 6 for location of cross-

sections). A shallow, silty-fine sand aquifer is encountered in all the soil borings. This sand aquifer

ranges in thickness from 15 feet (MW-2) to 35 feet (MW-6A).

EIS Brake Parts

West Bend, Wisconsin

Delta No. 10-87-285

Page 8

A gray, lean clay aquitard is found below the sand aquifer. The gray, lean clay aquitard is derived from Wisconsin-age glacial lake deposits (Young and Batten, 1980, p.8). The EIS Brake Parts facility is located at the southwestern edge of a large area of glacial lake deposits.

The lean clay aquitard is continuous over the site as evidenced by its presence in B-C2, MW-D2, MW-6B, and MW-2. The lean clay aquitard was also encountered in Layne Northwest's (1979) test holes east of the site. Appendix H provides logs for those test holes. Test hole 45 encountered the "gray, heavy clay" at a depth consistent with soil boring B-C2.

Little information is available regarding the local thickness of this lean clay aquitard. It is at least 13 feet thick in Layne Northwest's (1979) test hole #45 and at least 12 feet thick in boring MW-C. Data from test hole #42 suggest the gray clay is over 25 feet thick. Review of the well log from municipal well #1 (Appendix H) (see Figure 5 for location) suggests the lean clay aquitard is about 30 feet thick and is underlain by sand and gravel and additional clay layers. Based upon this limited data, we conclude that the lean clay aquitard is at least 12 feet thick locally, as indicated in soil boring MW-3, and probably is much thicker, as suggested by Figure 4 of Young and Batten (1980).

As mentioned in Section 3.0, a soil sample of this lean clay unit had a permeability of 3.3 \times 10⁻¹⁰ ft/sec (1 \times 10⁻⁸ cm/sec) (Appendix G). Its low permeability provides a very effective retardant with respect to hydraulic communication between the silty-fine sand unit and underlying sediments.

As illustrated in Figure 8, we suggest that sand and gravel exists beneath this lean clay aquitard. This lower sand and gravel aquifer is estimated to be about 60 - 100 feet thick beneath the site, based upon municipal well logs (Appendix H), and overlies the Silurian dolomite.

4.2 Ground Water Flow Analysis

The ground water flow direction is in a northerly direction towards the Milwaukee River (Figures 2, 7A and 7B) with a horizontal hydraulic gradient of approximately 0.016. The regional discharge zone for ground water near the site is the Milwaukee River, located approximately 250 feet north of MW-C. A local seasonal discharge zone may be expressed by the ephemeral stream located east of the site (Figure 2).

REMEDIAL INVESTIGATION/REPORT EIS Brake Parts West Bend, Wisconsin Delta No. 10-87-285 Page 9

The hydraulic conductivity for the silty-fine sand aquifer is estimated from the slug test data, contained in Appendix E and summarized in Table 7. The average value for the hydraulic conductivity (K) of the fine-medium sand unit is 1.28×10^{-5} feet/second (3.9 x 10^{-4} cm/second).

A rough check on the hydraulic conductivities obtained from the slug test data can be made using Hazen's approximation (Freeze and Cherry, 1979, p. 350). Using the data from the sieve analysis of the soil samples collected from MW-1 and MW-6 (Appendix G), hydraulic conductivity (K) can be estimated in the following manner:

$$K = A(d_{10})^2 \tag{1}$$

Where:

K = hydraulic conductivity (cm/s)

d₁₀ = the grain size diameter at which 10% by weight of the soils are finer and 90% are coarser.

A = 1.0

MW-1 d_{10} = approximately 0.05 mm $K = 2.5 \times 10^{-3} \text{ cm/s} = 8.2 \times 10^{-5} \text{ ft/s}$

MW-6 d_{10} = approximately 0.1 mm 2 . $K = 1 \times 10^{-2}$ cm/s = 3.28 x 10^{-4} ft/s

An average K value, as determined from Hazen's approximation, is 2.05×10^{-4} ft/s (6.25×10^{-3} cm/s). This compares favorably with the hydraulic conductivity estimated from the slug test data.

The average linear ground water flow velocity can be determined using the relationship:

$$v = \frac{K}{n} \frac{dh}{dl}$$
 (2)

Where:

v = average linear ground water flow velocity.

dh/dl = hydraulic gradient = 0.016

 $K = hydraulic conductivity = approximately 1.28 x <math>10^{-5}$ feet/second

n = effective porosity = 30% to 50% for sands.

Using the values cited above, the average linear ground water flow velocity is 6.83×10^{-7} feet/second (0.059 feet/day) to 4.10×10^{-7} feet/second (0.035 feet/day).

REMEDIAL INVESTIGATION/REPORT EIS Brake Parts West Bend, Wisconsin Delta No. 10-87-285 Page 10

4.3 Extent of Contamination

4.3.1 Extent of Soil Contamination

Based upon the results of the PID screening and chemical analysis of the soil samples recovered from the soil borings B-1, -2, -3, -4, -5, -6, B-7, and the soil borings associated with the monitor well installation, the extent of soil contamination appears to be confined to that area immediately west of MW-3 (Figure 9). Some soil contamination may exist underneath and adjacent to the storage shed near MW-2 (Figure 3).

The extent of soil contamination is determined from the following observations:

- o Warzyn's test pits TP1, TP6, and TP7 encountered contaminated soils.
- o Warzyn's soil borings B-1, B-2, and B-3 encountered contaminated soil.
- Warzyn's test pits TP-3, TP-4, and TP-5 did not encounter contaminated soil, based on field screening with PID.
- o Delta's soil borings B-1, B-3, B-4, and B-5 encountered contaminated soil while borings B-2 and B-6 did not have contaminated soil.

The soil contamination near MW-3 is well defined horizontally and vertically. The horizontal extent of contamination is shown in Figure 9. The vertical extent of contamination is to the depth of the water table as indicated by the soil samples collected at or just above the water table (Table 3).

The extent of soil contamination near MW-2 is not well defined. However, Warzyn's work identified disperse 1,1,1-trichloroethane and toluene contamination in the area of Warzyn's borings B-1, B-2, and B-3 (Table 1). The concentrations observed by Warzyn in these borings were less than 100 ug/kg. In our opinion, there is not a point source for contamination near MW-2; contamination is primarily from 1,1,1-trichloroethane and appears to be dispersed around the storage shed.

The degree of contamination is greatest near soil borings B-3, B-4, and B-5 (Table 4). Pentachlorophenol (PCP) contamination is highest in B-3 (2400 mg/kg) and significant concentrations were observed in B-4 (240 mg/kg) and B-5 (250 mg/kg). It appears that the highest soil contamination is at a depth of 5-10 feet below grade, based upon the results of the soil samples (Table 3).

REMEDIAL INVESTIGATION/REPORT EIS Brake Parts West Bend, Wisconsin • Delta No. 10-87-285

Page 11

The primary contaminants appear to be polyaromatic hydrocarbons (PAHs) (Table 4) that are believed to be associated with dumping from the days when the plant functioned as a wood treating facility. According to the plant manager, and based upon the appearance of the area, no dumping has occurred at this area since the 1940s.

The fuel oil #2 that was detected in soil boring B-5 is probably the medium with which the PCP was applied to the wood. The other contaminants observed in the soil borings are associated with wood treating operations.

In our opinion, the fact that the EPA holding times were exceeded on selected soil samples does not reduce the validity of the chemical data since the sample results appear internally consistent, generally consistent with the data of Warzyn, and consistent with the PID screening. Contamination was not detected in soil boring B-7, which was drilled to provide a check on the values measured in B-5. The most likely explanation for this is that the soil contamination measured in B-5 is laterally variable. Boring B-7 was drilled approximately two feet north of the B-5 location and did not encounter the contamination detected in B-5.

4.3.2 Extent of Ground Water Contamination

Two plumes of contamination have been identified (Figure 10) that coalesce into one plume. This conclusion is based upon the ground water flow direction (Figures 7A and 7B) and the ground water sample results (Table 8).

The first plume originates from the old disposal area adjacent to MW-3 and is characterized primarily by 1,1-dichloroethane, chloroform, 1,1,1-trichloroethane, carbon tetrachloride, ethyl benzene, and locally pentachlorophenol.

The second plume originates from that area bound by MW-2, MW-5, and MW-6A. It is characterized primarily by 1,1,1-trichloroethane and 1,1,2-trichloroethylene.

We have determined that there are three contaminants of greatest concern. These are 1,1,1-trichloroethane, 1,1,2-trichloroethylene, and pentachlorophenol. The Wisconsin and EPA enforcement

REMEDIAL INVESTIGATION/REPORT EIS Brake Parts West Bend, Wisconsin Delta No. 10-87-285 Page 12

limits for all of the contaminants are included in Table 2. The chemical and physical properties of these contaminants are included in Table 9.

The horizontal extent of PCP contamination is shown in Figure 11. This is based upon the lack of PCP contamination in all monitoring wells other than MW-3 and upon the properties of the contaminant itself. Pentachlorophenol is only slightly soluble in water and has a high octanol-water partition coefficient (Kow) (Table 9). These properties serve to inhibit its horizontal migration.

The downgradient extent of the PCP can be estimated by utilizing the retardation equation.

$$R_D = 1 + 3.2 \text{ f foc } (\text{Kow})^{0.72} \checkmark \frac{1 - N_t}{N_t}$$
 (3)

(Schwarzenbach et al, 1983)

Where:

RD = retardation coefficient

f = Fraction of material <125 um

foc = fraction of organic carbon on <125 /m material

 $\mathcal{C} = \text{bulk density } (g/\text{cm}^3)$

 $N_t = porosity$

Kow = octanol/water partition coefficient

For this site, we assume f = 0.05, $f_{OC} = 0.001$, and estimate f = 2.6 g/cm³, Nt = 0.30, and Kow for PCP = 100,000 (Table 9). Inserting these values into equation 3 yields a retardation coefficient of 7.62. The movement of the PCP is related to the groundwater flow velocity in this manner.

$$V_{S} = \frac{V}{Rd}$$
 (4)

Where:

V_s = average velocity of solute

V = average linear ground water flow velocity (from equation 2).

This analysis predicts that the PCP contamination will migrate at an average rate of about 2.8 feet per year. If one assumes dumping occurred about 1940, the downgradient extent of the PCP should be about 135 feet. The horizontal extent of PCP contamination in Figure 11 is based upon the above discussion and the results of ground water sampling.

EIS Brake Parts

West Bend, Wisconsin

Delta No. 10-87-285

Page 13

The horizontal extent of 1,1,1-trichloroethane (TCA) contamination is shown in Figure 12. Monitoring wells MW-3, MW-D1, MW-D2, MW-A, MW-6A, MW-6B, and MW-F contain measurable levels of TCA contamination. As illustrated in Figure 12, there appears to be two sources of TCA contamination, the old dumping area adjacent to MW-3 and the area bounded by MW-2, MW-5, and MW-6A.

The extent of 1,1,2-trichloroethylene (TCE) contamination is shown in Figure 13. This is based upon the contamination detected in MW-6A, MW-6B, MW-A, and MW-F. Low levels of TCE were detected in MW-3 (March), MW-D1, and MW-D2 and may be associated with a minor source near MW-3.

In summary, the horizontal extent of ground water contamination has been defined. There are two plumes of contamination emanating from the EIS Brake Parts facility. These plumes contain organic chemicals including 1,1,1-trichloroethane, 1,1,2-trichloroethylene and locally near the site pentachlorophenol.

Due to the very low permeability of the clay aquitard, the observed upward gradients, and the fact that the Milwaukee River is the discharge point for the shallow aquifer, the vertical extent of contamination is confined to the shallow silty-fine sand aquifer in which the monitor wells are screened. Based upon the results of the ground water sampling program, contamination is largely within the upper 10 feet of the shallow aquifer.

5.0 RECOMMENDATIONS

We recommend a soil boring be drilled to the water table at the northernmost corner of the storage shed adjacent to MW-2. Soil samples should be collected continuously to the water table and field screened with a PID. Those samples exhibiting measurable concentrations of contaminants should be analyzed for purgeable halocarbons/aromatics (using EPA Method 601/602). This will provide an accurate determination of the degree of soil contamination adjacent to the storage shed, and verify the data of Warzyn.

The soil boring should be completed as a monitoring well A water sample should be collected from this well and analyzed for purgeable halocarbons/aromatics (using EPA Method 601/602). This will quantify the amount of contamination originating from the storage shed.

EIS Brake Parts

West Bend, Wisconsin

Delta No. 10-87-285

Page 14

Other than the above recommendations, it is our opinion that the extent of soil and ground water contamination has been adequately defined for this site. We recommend that a Risk Assessment and Feasibility Study be completed for this site. These tasks are necessary to define appropriate remedial actions.

We recommend the existing monitoring wells remain in place until the Risk Assessment and Feasibility

Study is completed. Additional water quality and water level data may be needed.

6.0 METHODS AND PROCEDURES

6.1 Soil Classifications

As the samples were obtained in the field, they were visually and manually classified by the crew chief in accordance with ASTM:D 2488-84. Representative portions of the samples were then returned to the laboratory for further examination and for verification of the field classification. Logs of the borings indicating the depth and identification of the various strata, the "N" value, water level information, and pertinent information regarding the method of maintaining and advancing the drill hole are attached.

6.2 Soil Sampling

Soil sampling was done in accordance with ASTM:D 1586-84. Using this procedure, a 2 inch O.D. split barrel sampler is driven into the soil by a 140 pound weight falling 30 inches. After an initial set of 6 inches, the number of blows required to drive the sampler an additional 12 inches is known as the penetration resistance, or the "N" value. The "N" value is an index of the relative density of cohesionless soils and the consistency of cohesive soils.

6.3 Ground Water Sampling

All monitoring wells were sampled from suspected cleanest to most contaminated according to the following steps.

Field Protocol

- Step 1 Measure water level.
- Step 2 Evacuate three to five volumes with stainless steel bailer.
- Step 3 Collect water samples using a stainless steel bailer.

EIS Brake Parts

West Bend, Wisconsin

Delta No. 10-87-285

Page 15

Step 4 - Cool water samples to 40 and transport to laboratory, following all documentation and

Chain of Custody procedures.

Step 5 - Clean equipment. Water level measurement equipment will be cleaned with clean tap

water followed by deionized water rinse.

All pertinent information was recorded on a sampling information form.

6.4 Water Level Measurements

All ground water level measurements are obtained by using an electronic measuring device which

indicates when a probe is in contact with the ground water in the well. Measurements are obtained by

lowering the divide into the well until it indicates that the water surface has been encountered and by

measuring the distance from the top of the inside riser pipe to the probe. All of the measurements are

recorded to the nearest 0.01 foot; however, the manufacturer's reported accuracy for the instrument is

0.04 foot.

6.5 PID Scan

The following discussion describes the TIP analytical instrument and follows PHOTOVAC, Inc's User

Manual, dated October 1986. An hNu instrument functions in a similar manner.

A TIP is an analytical instrument designed to sense certain important impurities in air and other gases.

The name TIP stands for "Total Ionizable Present"; this implies that the instrument senses any

"ionizable" chemicals. In the case of the TIP, "ionizable" actually means photoionizable. The TIP relies

on an internal ultraviolet lamp which photoionizes molecules of certain chemicals. The TIPs ultraviolet

lamp has an energy of about 10.6 electron volts (eV) and can detect organic chemicals which enter the

air as gases or vapors and have ionization potentials below 10.5 eV, that is, the vast majority of those

compounds which are regulated as "Pollutants". Gasoline and some solvent vapors are included in the

group of gases detected by the TIP. We utilize the TIP to detect the presence and concentration of

organic vapors in soil samples or other samples at the site.

EIS Brake Parts

West Bend, Wisconsin

Delta No. 10-87-285

Page 16

7.0 REMARKS

The recommendations contained in this report represent our professional opinions. These opinions are based on currently available information and are arrived at in accordance with currently accepted hydrogeologic and engineering practices at this time and location. Other than this, no warranty is implied or intended.

This report was prepared by DELTA ENVIRONMENTAL CONSULTANTS, INC.

Kenneth Shimko

Hydrogeologist/Project Manager

Date: 24 August, 1988

Reviewed by:

Daniel L. Sanville, P.E.

Investigation Department Manager

Date: 8/24/88

REFERENCES

- Freeze, R. A., and Cherry, J. A., 1979. Groundwater, Prentice-Hall, Inc., Englewood Cliffs New Jersey 07632.604 pp.
- Kammerer, P. A., 1981. Ground-Water Quality Atlas of Wisconsin. U.S. Geological Survey and University of Wisconsin Extension Geological and Natural History Survey, 39 pp.
- Layne Northwest Company, 1979. Ground Water Hydrology Study, West Bend, Wisconsin Interim Report for the city of West Bend, Layne Northwest Company, 6005 West Martin Drive, Milwaukee, Wisconsin 53213, 294 pp.
- Mikulic, D.G., 1979. A preliminary revision of the Silurian Stratigraphy of southeastern Wisconsin, in 41st Annual Tri-state field conference geology of southeastern Wisconsin Guide book. University of Wisconsin Milwaukee, 136 pp.
 - Schwarzenbach, R. P., Giger, W., Hoehn, E., and Schneider, J. K., 1983. Behavior of organic compounds during infiltration of river water to ground water. Field studies. Journal of Environmental Science and Technology, vol. 17, no. 8, pp. 472-479.
- Young, H. L. and Batten, W. G. 1980. Ground Water Resources and Geology of Washington and Ozaukee Counties, Wisconsin. U. S. Geological Survey and University of Wisconsin Extension Geological and Natural History Survey, Information Circular no. 38, 37 pp.

TABLE 1

Warzyn Chemical Data EIS Brake Parts West Bend, Wisconsin Delta No. 10-87-285

(Refer to Figure 4 and Appendix A for sample location)

Sample (Sample Depth)	Parameter	Concentrations ug/kg
B1/S5 (14 feet)	1,1,1-trichloroethane	75
B2/S1 (2.5 feet)	Toluene	66.4
B2/S4 (10 feet)	1,1,1-trichloroethane	84.1
B3/S1 (2 feet)	1,1,1-trichloroethane	66.4
C2/S1 (0.4 feet)	1,1,1-trichloroethane	86.7
TP1 - 3 (7 feet)		
	Carbon Tetrachloride	2590
	Chloroform	454
	Ethylbenzene	958
	Tetrachloroethene	1120
	Toluene	2819
	1,1,1-trichloroethane	1100
	Xylenes	8400
	Total Cyanide	10.9
TP2-2 (5 feet)	Total Cyanide	10.9 mg/kg
TP6-1 Dup (2 feet)		
	Benzyl alcohol	240000
	Hexachloroethane	490000
	Benzoic acid	53000 (J)
	Napthalene	4100 (J)
	Hexachlorobutadiene	9500
	Diethylphthalatic	76000
	Di-n-butylphthalate	1100000
t	Butyl benzylphthalate	8000000
	Bix (2-ethylhexyl) phthalate	93000
	Di-n-octyl phthalate	90000

⁽J) Estimated value

TP6-1 Dup (2 feet) (Continued)

Tentatively Identified Compounds

		Parameter	Concentration ug/kg
		Benzene, 1,2 - dimethyl - (or isomer)	1200000
		Methanol, dibutoxy-	210000
		Unknown	31000
		Unknown	46000
		1,2-Benzenedicarboxylic acid	41000
		Unknown	36000
		Unknown	14000
		Unknown	24000
		Unknown	41000
		Benzenesulfonamide, 4-methyl-	320000
		Unknown	73000
		Hexadecanoic acid, 2-methyl-,	
		methyl ester	120000
		Unknown	310000
		Unknown	410000
		Unknown	410000
		Unknown	320000
		1-phenanthrecarboxylic acid,	
		7-ethenyl-1,2,3,4 (CAS #56051684)	390000
		Unknown	960000
		Unknown	340000
		Unknown	340000
TP7-1	(6 feet)	Cadmium	0.13 (EP TOX)
TP7-2	(9 feet)		
		Naphthalene	13000 (J)
		2-Methylnapthalene	31000
		Pentachlorophenol	21000
		Phenanthrene	5000 (J)
		Xylenes	7000
	Tentatively Identified Co	mpounds	
		Unknown alkane	
		Unknown	29000
		Unknown alkane	11000
		Tridecane	13000
		Naphthalene, 1-methyl-	54000
		Unknown alkane	23000
		Naphthalene, 1,8-dimethyl-	12000
		Or isomer	1=000
		Tetradecane	25000
		Naphthalene, 1,8-dimethyl-	58000
		or isomer	
		Napthalene, 1,5-dimethyl-	27000
		or isomer	

<u>Parameter</u>	Concentrations (ug/kg)
Decane, 2,3,6-trimethyl-	
or isomer	18000
Pentadecane	59000
Unknown alkane	45000
Heptadecane	45000
Unknown	13000
Unknown alkane	27000
Nonadecane	16000
Unknown alkane	11000
Carbon tetrachloride	2340
Ethyl benzene	724
Xylenes	29200

clo.729

TP7-3 (10 feet)

TABLE 2

Results of Ground Water Sampling
(data from September 1987)
(Concentrations in ug/L)
EIS Brake Parts
West Bend, Wisconsin
Delta No. 10-87-285

B	MDI	un1	EPA ²	MII_4	W11-2	MU-T	WU_£	: 40-5	MU-&	Dum	Trip
<u>Parameter</u>	MDL	NR 1	EPA	MN-1	MM-S	MM-3	MU-4	<u> 44-5</u>	WM-9	Dnb	_
		•									BIK
Chloroethane	1.0			•••		1.2	•••	• • •	•••		
Hethylene Chloride	1.0	150		2.0	1.3	2.5	13	•••	1.1	1.8	1.8
1,1-dichloroethylene	0.3	.24	7	•••		5.7		•••	2.7 .		
1,1-dichloroethane	0.2				•	66 ³	•••	•••	1.1	• • •	
Chloroform .	0.5			0.6		30	0.6	•••	1.2	0.7	1.4
1,2-dichloroethane	0.2	.5	5	•••		0.3		•••			
1,1,1-Trichloroethane	0.5	200	200		0.6	180 ³	•••		1804	0.5	•••
Carbon Tetrachloride	0.3		5	•••		33	•••				
1,1,2-Trichloroethylene	0.5	1.8	5		•••	2.8			2304		
Benzene	1.0	.67	5	4		•••		•••		3.4	
Toluene .	1.0	343				4.9		•••			
Ethyl Benzene	1.0	•••		·		2.4		•••	•••		
2,4-Dichlorophenol .	2.4			•••		13	•••	•••	• • • •	•••	
Pentachlorophenol	9.3	•••				590			•••		
Bis(2-ethyl hexyl) phthalate	5.0			6.1			•••		•••	•••	

HDL - Hethod Detection Limit

^{1 -} Ground Water Enforcement Standards for Wisconsin. (Preventive Action Limits are lower. Administrative Code NR 140, Ground Water Quality effective October 1, 1987

^{2 -} EPA Haximum Contaminant Levels (HCL) from EPA final rules on Volatile Organic Compounts (52FR25690)

^{3 -} MDL is 2 times higher due to sample dilution

^{4 -} HDL is 5 times higher due to sample dilution

TABLE 3

Results of PID Screening of Soil Borings B-1 to B-7 EIS Brake Parts West Bend, Wisconsin Delta No. 10-87-285

Boring	Depth (feet)	PID	Headspace(1)
B-1	0-2 2-4 4-6 6-8 8-10 10-12 12-14	0 0 0 0 0 4 1	1 0 0 0.5 0(2) 0 1.0(2)
B-2	0-2 2-4 4-6 6-8 8-10 10-11 11-12 12-13	0 0 0 0 0 0	1.0 1.0 0.5 2.2 0.5 (2) (2) 1.0(2)
B-3	0-2 2-4 4-6	0 4 14	2.0 (2) 5.5(2)
B-4	0-2 2-4 4-6 6-8 8-10 10-12	0 0 0 6 12	1.0 0.5 0.5 1.0 1.0(2)
B-5	0-2 2-4 4-6 6-8 8-10 10-12	0 0 0 50 140 50	1.0 1.0 1.5 (2) 4.0

B-6	0-2	0	
	2-4	0	
	4-6	0	
	6-8	0	
	8-10	0	
	10-12	0	
	12-14	0	(2)
B-7	0-2	0	
	2-4	0	
	4-6	0	
	6-8	0	
	8-10	0	
	10-12	25	(2)

 [&]quot;---" headspace measurement of sample not conducted.
 sample collected for chemical analysis

clo.729

TABLE 4 Results of Soil Sample - Chemical Analysis EIS Brake Parts

West Bend, Wisconsin Delta No. 10-87-285

Parameter	MDL	<u>B1</u>	<u>B2</u>	<u>B3</u>	<u>B4</u>	<u>B5</u>	<u>B5-2</u>	<u>B6</u>	<u>B7</u>
Toluene	120 ug/kg	280	ND	ND	ND	750	1200	ND	ND
Ethylbenzene	120 ug/kg	ND	ND	650	ND	ND	ND	ND	ND
Pentachlorophenol	11 mg/kg	ND	ND	2400	240	250	20	ND	ND
Napthalene	5.2 mg/kg	ND	ND	50	200	560	43		
Phenanthrene	7.4 mg/kg	ND	ND	87	170	360	23		
Fluoranthene	6.8 mg/kg	ND	ND	ND	ND	27	ND		
Fluorene	9.0 mg/kg	ND	ND	ND	ND	ND	8.3		
Fuel Oil #2	5.0 mg/kg						3400		
2,3,7,8 - Tetrachlorodibenzo P - Dioxin	0.3 ug/kg			\bigcirc	-		ND		
clo.729				1/					

clo.729

see mind

TABLE 5

Ground Water Elevation Measurements
EIS Brake Parts
West Bend, Wisconsin
Delta No. 10-87-285

Well	Top of Riser Elevation (feet)	9/25/87	Depth <u>5/4/88</u>	to Ground 5/25/88	Water 6/22/88	GW ELEV 9/25/87	/ATION 5/4/88	5/25/88	6/22/88
MW-1	915.35	10.83	10.86	11.19	11.60	904.52	904.49	904.16	903.75
MW-2	909.88	12.88	11.87	12.71	13.37	897.80	898.01	897.17	896.51
MW-3	914.50	11.69	11.65	12.11	12.47	902.81	902.85	902.39	902.03
MW-4	906.16	3.93	3.85	4.36	4.52	902.23	902.31	901.80	901.64
MW-5	907.82	14.79	14.88	15.33	15.92	893.03	892.94	892.49	891.90
MW6A	906.96	18.32	18.39	18.47	18.82	888.64	888.57	888.49	888.14
MW-6B	906.80		18.16	18.21	18.58		888.64	888.59	888.22
MW-A	905.50		19.69	19.81	20.20		885.81	885.69	885.30
MW-C	894.23		13.16	13.42	13.80		881.07	880.81	880.43
MWD1	913.21		20.61	20.98	21.5		892.59	892.45	891.70
MWD2	913.40		19.94	20.31	20.88		893.46	893.09	892.52
MW-E	915.21		10.99	11.35	11.72		904.22	903.86	903.49
MW-F				13.28	13.42			879.77	879.63

TABLE 6

Vertical Ground Water Gradient Measurements EIS Brake Parts West Bend, Wisconsin Delta No. 10-87-285

		Ground Water F	Elevation	Vertical Grad	dient			
Well Nest	Screen Midpoint	5/25/88	6/22/88	5/25/88	6-22-88			
MW-6				-8.3×10^{-3}	-6.6×10^{-3}			
MW-6A	885.86	888.49	888.14					
MW-6B	873.80	888.59	888.22					
MW-D				-0.057	-0.073			
MW-D				-0.037	-0.073			
MW-D1	891.21	892.45	891.70					
MW-D2	879.90	893.09	892.52					

TABLE 7

Slug Test Results EIS Brake Parts West Bend, Wisconsin Delta No. 10-87-285

Well	Hydraulic Conductivity (ft/s)
MW-2	1.45 x 10 ⁻⁵
MW-5	1.16×10^{-5}
MW-6B	1.51×10^{-5}
MW-C	1.60×10^{-5}
MW-D1	6.39 x 10 ⁻⁶
MW-D2	1.35×10^{-5}

Average = 1.28×10^{-5} feet/second

clo.729

TABLE BA

PERSONAL RESTAURANT RESTAURANT RESTAURANT PROPERTY RESTAURANT PROPERTY RESTAURANT RESTAU

Results of Ground Water Sampling March 1988 (ug/l) West Bend, Wisconsin Delta No. 10-87-285

	1	11															Travel	Bailer
Parameter	MDL (ug/l	NR NR	EPA	MU-1	MW-2	MW-3/MW3D	MU-4	MW-5	MW6A	MW6B	MWA	MUC	MWD1	MNDS	MUE	MW-F	Blank	Blank
Methylene Chloride	3.0	150) ••••	•••	•••	17/19		3.3	18		•••			•••		•••	•••	3.3
1,1-Dichloroethylene	0.3	24	7	•••	•••	***	•••	•••	•••	•••	•••	•••	***	•••	0.5	•••		•••
1,1-Dichloroethane	0.2	850	85		***	43/43	•••		•••	•••	•••	•••	•••	•••	•••	•••		•••
Chloroform	0.5			•••		24/22	•••			•••	•••		•••	•••	•••	•••		
1,1,1-trichloroethane	0.5	200	200	•••	•••	65/61		•••	140	9.2	24		***	24	2.4	•••	•••	1.3
Carbon Tetrachloride	0.3	•••	5	•••	•••	35/33			•••	***	•••	***	•	•••	•••	•••	•••	•••
1,1,2-Trichloroethylene	0.5	1.8	5		•••	2.4/2.1		***	78	4.5	300		1.7	1.8	0.5	•••		•••
Benzene	1.0	.67	5	•••	1.4			•••	3.7	1.4	•••	***	• • •	•••	4.2	•••		•••
Chlorobenzene	•••		•••	•••	•••	6.0/ND	•••	•••	***	•••	•••	•••		•••		•••	•••	•••
Toluene	1.0	V 343	•••	•••	•••	4.7/6.4			•••		•••	•••		•••		•••	•••	•••
Ethyl Benzene	1.0	1360	•••	•••	•••	ND/11	•••	***	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
Pentachlorophenol	14	•••	•••	•••		16,000/	•••		•••		•••	***	***	•••	•••	•••	•••	***
1,2-Dichloropropane	0.2	•••	•••	•••	•••	12,000		•••	***		•••	•••	•••	•••	0.3	•••	•••	***
												-						

RCR

12-dullershame? 24-dullershame?

Control of the Contro

TABLE 8B

Results of Ground Water Sampling May 1988 (ug/l) West Bend, Wisconsin Delta No. 10-87-285

Parameter	MDL(ug/l)	NR	EPA	<u>MU-1</u>	MW-2	MW-3	MU-4	MW-5	MUGA	MU6B	MUA	MWC	MWD1	MWD2	MUE	MUF	Blank 1	Blank 3
Methylene Chloride	1.0	150	••	•••	•••	9.2	•••	•••		•••	•••	•••	1.4	•••	1.4	•••		6.3
1,1-Dichloroethylene	0.3	.24	7		•••	•••	•••	•••	11	***		•••		0.5		•••	•••	
1,1-Dichloroethane	0.2	850	85	•••	•••	43	•••		•••	***	•••	•••	•••	•••	•••	•••	•••	•••
Chloroform	0.5	••	••		***	11	•••	P * *	•••		•••	•••	•••	0.5		•••		•••
1,1,1-Trichloroethane	0.5	200	200	•••	•••	50	•••	***	210	6.5	7.8		•••	24	3.8	2.8	12	•••
Carbon Tetrachloride	0.3	••	5	•••	•••	14	•••		•••	•••	•••	•••	0.3	•••		•••	•••	•••
1,1,2-Trichloroethylene	0.5	1.8	5		•••	•••	•••		180	2.0	180	•••	0.5	0.6		1.6	•••	•••
Benzene	1.0	.67	5	•••	•••		•••		•••	•••		•••	•••	•••	2.9	•••	170	. ***
Toluene	1.0	343	••	•••		•••	•••	***	•••	•••		•••	•••	•••		•••	•••	3.9
Ethyl Benzene	1.0	••	••		•••	7.4	•••	•••	•••	•••	•••	•••	***	•••	•••	•••		
Pentachlorophenol	14		••	•••	***	590	•••	•••	•••	•••	•••	•••	•••	***	•••	•••	•••	•••

erte kent in die deutschaften in die des jeden troops daar die jedenkaar kan die die die die die kent in die d

Blank 1 - Duplicate sample of MWA
Blank 2 was ND for all parameters
Blank 3 - Travel blank
clo.729

TABLE 9

Contaminant Chemical and Physical Properties
EIS Brake Parts
West Bend, Wisconsin
Delta No. 10-87-285

<u>Parameter</u>	<u>Density</u>	Water Solubility	Vapor Pressure (mm/hg)	KOW	Boiling <u>Pts</u>
Chloroethane	.9028	Slight	1064		12.5°C
Methylene Chloride	1.3350	Slight	350		40.1°C
1,1-Dichloroethane	1.1796	Slight	182		57.59°C
Chloroform	1.4916	Slight	160		61.2 ^o C
1,2-Dichloroethane	1.2560	Slight	62		84°C
1,1,1-Trichloroethane	1.3492	Insoluble	100		75°C
Carbon Tetrachloride	1.5942	Insoluble	91.3		76.74°C
1,1,2-Trichloroethylene	1.4620	Slight	58	0.20	86.7°C
Benzene	.8787	Slight	77	135	80.1°C
Chlorobenzene	1.105	Slight	8.8		131.6°C
Toluene	.8669	Insoluble	22		110.7°C
Ethyl Benzene	.8672	Insoluble	7.1	1413	136.2°C
Pentachlorophenol	1.978	Slight	nil	1x10 ⁵	310°C

clo.729

FIGURE 2 TOPOGRAPHIC MAP OF SITE EIS BRAKE PARTS WEST BEND, WISCONSIN DELTA NO. 10-87-285 W Hospital 8 Kilbourn St 24 CONTOUR INTERVAL = 10' Memorial Park 2000 WISCONSIN Feet Scale Delta Environmental Consultants, Inc.

LOG OF TEST BURING

Project	Crivello Audit
	133 Oak Street
	Wort Rand Wisconsin

	13-1
Boring No.	
Surface Elev	Atlon -205752
Job Na	MC-203132
Sheet	1_0/1

THE SCHITH 102ND STREET, SUITE 130, MILWAUKEE, WI 53227 . TELEPHONE (414) 321-0100

						2448 30	UTH 102ND STREET, 3011E 130, MICHAELE WALLE					-
/	. SAMPLE						VISUAL CLASSIFICATION		L PF	OP	ERT	IES)
1	R	eco	rery	Mois	ture		and Remarks	I EVU 2PM	W	LL	PL	D
11	p. Ty	pe	+	+	H	Depth	, , , , , , , , , , , , , , , , , , ,					-
]	SS	5	12"	Н	2	E	FILL: Light brown, fine silty sand, little fine gravel, trace wood chips	10				
	2 59	5	10"	M	2	E E 5 -	Very loose to modium dense, light brown fine SAND; trace silt (SP)	12				
	3 53	5	14"	М	11	Ē.		5	e.			
	1 55	S			21	E 10-		12				
											·	
	5 5	S		W	7	- 15-		15				
						E	End of Boring - 15.0 Feet					
						F						
						= 20 -	1					
						E						
						Ē			7,000			
						-25-						
1						E	•					
+						E						
						= 30-						
1						E						
1			٠			E-35-						
1						E						
1						E						
						=40	1 :					
-					WA	TEF	LEVEL OBSERVATIONS	G	ENER	AL	NOT	ES
	While Drilling 13.0*								1/9/8 ~ Chief	7 Con	plete	/9/87
	Upon Completion of Prilling								w Chief ling Mel			
	Tir	חפ .	Afte	r Ori	lling	12.5			IISA O		•••••	
ì	Depth to Water 12.5											

LOG OF TEST BORING

Project _	Crivello Audit	_
	133 Oak Street	
	Work Bond Wissonsin	

Boring Na.		B-2	
Surface Elev	ration	- <u>7</u> 05	752
Sheet			

2448 SOUTH 102HO STREET, SUITE 130, MILWAUKEE, WI S3227 . TELEPHONE (414) 321-0100

+		. s	AN	IPL	E		VISUAL CLASSIFICATION	SOIL PROPERTIES						
1	Ho.	Type	very	Hoi:	ture	Depth	and Remarks		W	u	PL	D		
1	1_		1a" 1"	M	15		FILL: Mixture of green brown mottled lean clay and dark brown fine silty sand, trace gravel, weak chemical odor	PPI-1 40 17						
7	3	SS	18"	n.	7		FILL: Brown sandy clay/clayey sand, with seams of silty/sand, trace gravel	9						
+	4	SS	18"	W	13	- 10 -	Medium dense, light brown fine to coarse SAND; little silt, trace to little fine gravel (SP-SM)	12			-			
	5	5 S	18"	W		20-	End of Boring - 15.0 Feet	13	٠	•				
	1					35- 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	LEVEL OBSERVATIONS	GI	ENER	AL		ES		
		•				.0'	LEVEL UBSERVATIONS .					/2/87		
		While Joon Time Death Death	Com After	pletic Prill Vater	on of	Orillio	0'	Cre	w Chief ing Mei IISA 0	JOS,	Rig CIE	45		

ENGINEERING INC

LOG OF TEST BORING

	•	
Project _	Crivello Au	dit
	133 Oak Str	
1	Wast Band	Wissensin

Boring No	B-3	
Surface Eleva	MC-205752	_
Job Na	1 of 1	

2448 SOUTH 102HD STREET, SUITE 130, MILWAUKEE, WI 53227 . TELEPHONE (414) 321-0100

1		SAMPLE			E	VISUAL CLASSIFICATION			SOIL PROPERTIES					
		1	overy	Moi:	sture	Depth	and Remarks	IINU	W	ıı	PL	D		
7	1	Type	13"	М	12	E	Medium dense to dense, light brown fine SAND; trace silt, trace gravel, occasional cobbles (SP)	13						
,	2		1:8" 1:3"		20_ 50	-	Weak chemical odor present in 2.5', 5.0' samples	17 5						
	4	SS	18"	W	35_	- - - - - - - - - - - - - - - - - - -		12						
	5	ss_	18"	Ы	_7	15-	Gray lean CLAY; trace gravel (CL) End of Boring - 15.0 Feet	7						
						 25 				•	-			
						-30-								
						10-								
-				•	WA	TER	LEVEL OBSERVATIONS .	GE		AL I		ES		
1	While Drilling 8.51 Upan Completion of Drilling Time After Drilling Depth to Water Depth to Cave In								Chief	/87 JUS R thod	ig	/9/87 E 45		

WARZYN ENGINEERING INC

LOG OF TEST BORING

Crivello Audit Project _ 133 Oak Street Location West Bend, Wisconsin

Boring No. Surface Elevation 1C-205752 of_ Sheet_

SAMPLE	MPLE VISUAL CLASSIFICATION			SOIL PROPERTIES					
Recovery Moisture	and Remarks	HNU	W	u	PL	D			
Type + + N	Brown sand and gravel, trace broken cast iron and foundry sand Brown silty SAND CONCRETE FILCOR Boring 35" North of Wall 65' East of Loading Dock #4								
hile Drilling	R LEVEL OBSERVATIONS	Start	NER/	Com	plete .				

LOG OF TEST BORING

Project	Crivello Audit
	133 Oak Street
Location	West Rend. Wisconsin

Boring No.	C2	
Surface Ele	vallon -205752	
Job No Sheet		

2445 SOUTH 102HO STREET, SUITE 130, MILWAUKEE, WI 53227 . TELEPHONE (414) 321 8100

. SAMPLE				E		VISUAL CLASSIFICATION	SOIL PRO		ROPI	PERTIES		
	Reco	very	Mois	_	Depth	and Remarks	HNU PPM	W	u	PL	D	
	4	_		_	بان فی ایران اوران	CONCRETE. Brown fine SAND; little silt (SP-SN)	20					
2	М	_		_	1-1-1-d-1-		12					
l	И			-	 - - - - - -		12					
ŀ	ы	-			ابالطيابا		1:0					
5	ч					Light brown fine SAND; trace silt (SP) _ End of Boring - 2.8 Feet	12					
				WA	TER	LEVEL OBSERVATIONS	GE	NER	AL	TON	ES	
U	While Drilling Upon Completion of Drilling Time After Drilling Depth to Water				Crev Dritti	v Chief ng Me	thod .	Rig				

Project	Crivello Audit
	133 Oak Street
	Work Bond Winsonsin

Pitto		
Surface E	levation NA	
Job No.	MC-205752	
Date		

2448 SOUTH 102ND STREET, SUITE 130, MILWAUKEE, WI 53227 . TELEPHONE (414) 321 8100

SAMPLE			VISUAL CLASSIFICATION	SOIL PROPE		ERT	RTIES	
Recover	y Maisture		and Remarks				_	
Туре	1	Depth	6" FROZEN GRAVEL AND PEBBLES	PPM	W	ll	PL	D
		Ē,_	FILL: Light brown, very fine gray sand, trace of pebbles					
	M	-1-	A foundry brick encountered 2 5'					
		-3-						
		E4-						
G	M	-5-		25			-	
G	14	F.	FILL: Gray fine sand	25				
G	M/W	<u>-</u> 7-	ACOD CHIPS: Black, brown, odor a 3' wood appears cleaner, grading with sand	25			•	
		F 8-	FILL: Fine moist, wet, gray sand					
	11	<u>-</u> 9-						
.G	W	<u>+</u> 10 -		25				
		=11-		23	-			
		- 12 -	Brown fine SAND					
	11	F 13-	Total Pit Depth 12' (13" x 13")					-
		Ē14						
		F 15.		H				-
	T	- 16 -			-		1	
		E17-					1	
	1	E 18 -		1				
		- 19-						
	WA	E 20 -	LEVEL OBSERVATIONS	GEN	IERA	LN	OTE	S
ile Excavating 11.5'							ackho	
Upon Completion of Excavating					····			
				Caolor	niet.			

WARZYN ENGINEERING INC

LOG OF TEST PIT

Project <u>Crivello Audit</u>

133 Oak Street

Location West Bend, Wisconsin

PENO	2	
Surface E	levation	
Job No.	MC-205752	
Date	1/9/87	
	•	

2448 SOUTH 102ND STREET, SUITE 130, MILWAUKEE, WI 53227 . TELEPHONE (414) 321-0100

SAM	1PLE	VISUAL CLASSIFICATION SOIL			L PROPERTIES				
Recovery		and Remarks							
V. Type	Depth	6" FROZEN GRAVEL AND PEBBLES	IIVII	W	EL.	PL	D		
	=,_	FILL: Light brown, fine grained sand, trace of moist clay	PF						
	M = 2-								
	3-								
	5-								
	7-				•				
G	M	WOOD CHIPS: Brown, slight odor, to moist to wet fine GRAY	10						
2 G	M = 10-	SAND a 8.5'	3						
	11-	TOPSOIL: Black silty soil, root and fibrous, odor, trace of fine brown black sand				·			
	14 -	local Pic Depui 11.5 (16 x 13)							
	15-16-	·							
	18 -	•							
	19-								
-		LEVEL OBSERVATIONS	GEN	IERA	LN	OTE	S		
Upon Comple	etion of Excavating		Equipo	nent Us	ed: _				
Time After Ex	cavating		Geolog	gist:					

LOG OF TEST PIT

Project _	Crivello Audit	
	133 Oak Street	
Lacation	West Rend Wisconsin	

Pit No	3	_
Surface 8	levation	-
Job No.	MC-205752	_
Date		_

2448 SOUTH 102NO STREET, SUITE 130, MILWAUKEE, WI 53227 . TELEPHONE (414) 321-0100

SAMPLE ecovery Moisture			VISUAL CLASSIFICATION	SOIL PROPERTIES					
ecovery	Maistu	re Depth	and Remarks		W	LL	PL	D	
)he A	1	-	FILL: Black brown fibroud fill, thin black plastic chips						
•		3-	Light brown fine SAND						
		F-7-	Total Pit Depth 7' (18" X 13")						
		10	NOTE: Asphalt chunks in area						
		15 - 16 - 17 - 18 - 19 -	15 16 17 18 19						
WATER LEVEL OBSERVATIONS Excavating The completion of Excavating					NERA oment Us				
to Wate	cavaling	0		Gede	ogist:				

VARZYN

NGINEERING INC

LOG OF TEST PIT

Project <u>Crivello Audit</u>

133 Oak Street
Locallon <u>West Bend</u>, <u>Wisconsin</u>

Pit No	4
Surface E	levation
Job No.	MC-205752
Date	

2448 SOUTH TOZNO STREET, SUITE 130, MILWAUKEE, WI 53227 . TELEPHONE (414) 321-0100

SAMPLE			VISUAL CLASSIFICATION	SOIL PROPERT			ERT	TES
Recovery Type	Moistu	re Depth	and Remarks	q.	W	ш	PL	D
	м		Brown silty SAND; interbedded with traces of red brown silty clay					
	M M		Light gray - light brown SAND					
		11-11-11-11-11-11-11-11-11-11-11-11-11-	Total Pit Depth 11' (18" x 13")					
	w	17 18 19 20	LEVEL OBSERVATIONS	GEN	VERA		IOTE	S
e Alter Ex	tion of E cavating	xcavating				sed: _		

LOG OF TEST PIT

Project	Crivello Au	dit	
	133 Oak St	rect	_
Location	West Rend	Wisconsin	

MNO	5
Surface E	MC-205752
Job No.	MC-205752
Date	

2448 SOUTH 102NO STREET, SUITE 130, MILWAUKEE, WI 53227 . TELEPHONE (414) 3210100

SAMPLE		1PLE VISUAL CLASSIFICATION		SOIL PROPERTIES				
	Recovery Moistu		and Remarks		+ W	ıı	PL	D
Type	11	Depth						-
		F.	FILL: Concrete, asphalt, gravel, sand					
	M	E'						
-						-		
	::	_E,_	•					
		-						
1								-
	1.1	5_	Tick been fine CAMP, with been f					
		F.	Light brown, fine SAND; with trace of silty clay					
		E						
		7_						
	M	F8-						
		E _g						
		-	Total pit depth 8'					
	1 1	<u>+</u> 10-						-
! !	1 :	11_						
	İ	F 12						
		-						
	1	- 13-						
!	1 :	14		-				
		-	·					
	Ti	- 16 -						
	-	17-		1			-	
		E_18						
		E						
	1		LEVEL OBSERVATIONS	CE	ICD A		OTE	<u> </u>
			LEVEL OBSERVATIONS		VERA		OTE	
				Equipr	ment Us	ed: _		
				-				
epih to Water								

LOG OF TEST PIT

Pario	6	_
Surface E	levation	
Job No.	MC-205752	
Date	1/9/87	_
		_

2446 SOUTH 102ND STREET, SUITE 130, MILWAUKEE, WI 53227 . TELEPHONE (414) 321-0100

SAMPLE			VISUAL CLASSIFICATION	SOIL PROPERTIES				
Recovery Moisture		ure	and Remarks					
ype	11	Depth		HIM.	W	IL	PL	D
		E	FILL: Light brown, light gray, fine sand	1				
		E	a 2 1/2' multi-colored glue like					
G		2-	substance strone odor (Glob of glue 2' x 3')	125				
9		F.,_	a 4-4 1/2' Fine black silty sand	123				
		E						
		F.						
		E,-	Light brown fine SAND					
		F.						
1.		E						
		-8-						
		F						
		E 9-						
		F 10-						
		Ξ.,	Total pit depth 10' (13" x 13")					
1		11-						
		-						
1		13						
- 1		-						
-	1	<u>F</u> 15 ·				-	$\neg \uparrow$	-
		F 16 -						
		E						
		-17-				-		
		F 1						
		E 19-						
1		F 20-						
	W	ATER	LEVEL OBSERVATIONS	GEN	IERA	LN	OTE	S
e Excava	ting	10'		Equipr	nent Us	ed: E	ackho	e
		-						
				Geolog	gist:			

LOG OF TEST PIT

Project <u>Crivello Audit</u>

133 Oak Street
Location <u>West Bend</u>. Wisconsin

Pit No	7	
Surface E	MC-205752	
	1/9/87	

2448 SOUTH 102ND STREET, SUITE 130, MILWAUKEE, WI 53227 . TELEPHONE (414) 3214100

SAMPLE			VISUAL CLASSIFICATION	SOIL PROPERTIES				
Recovery	ry Moisture and Remarks		CVIII	W	LL	PL	D	
pe t	1	Depth		рру				
		F.	FILL: Light brown, light gray fine sand					
		E	•					
	М							
		F,						
		E,_						
+-								
	M	F 5 -						
		E						
3	М	E 5 -	WOOD CHIPS: Black, brown, odor	30	-		-:	
1				-				
		F.	FILL: Light brown, light gray fine sand					
		F						
+		F 9-					-	
G	М		TOPSOIL: Black silty sand	40				
	W	-	Light gray, fine SAND and GRAVEL	50				
1	:	-11-						
-		12-		-				
		F ₁₃	Total depth 12 1/2' (18" x 13")	1 1				
		Ė.						
+	1	14 -				-	-	
		F15.						
i		-						•
		E 16 -						
-		17-				_	-	
		F ₁₈ -						
		下"7						
		19-						
		E20-						
	WA	TER	LEVEL OBSERVATIONS	GEN	VERA	LN	OTE	S
cava	ting	11.5	5'	Equip	ment Us	ed:		
\				-	-1-6-			
/ I I I				Geolo	gist:			

WARZYN ENGINEERING ANALYTICAL LABORATORY RESULTS

PROJECT: WARZYN ENGINEERING INC.

WEST BEND AUDIT

LOCATION: MILWAUKEE, WISCONSIN

PROJECT#: 205752
DATE SAMPLED: 01/09/87

CK'D: (MA) APP'D: MJL
DATE ISSUED: 2.3-87 LAMY TOX

		TOTAL	
LAB #	SAMPLE DESCRIPTION	CYANIDE	PHENOLS
=====	=======================================	200100	======
13979	TP2 - 2	10.9	<2.43

RESULTS ARE REPORTED IN MG/KG AS RECEIVED.

JARZYN ENGINEERING

VOLATILE ORGANIC COMPOUND RESULTS

PROJECT: WEST BEND AUDIT

_OCATION: MILWAUKEE, WISCONSIN

C#: 205752

Te Lacy 70 2.3.57

My Martie

		1		7		50
~ 868	13976 TP1-3	13983 TP7-2	13984 TP7-3	13985 / DRAIN 1	13986 / DRAIN 2	
TOMPOUND (UNITS: UG/KG)	01/09/87	01/09/87	01/09/87	01/09/87	01/09/87	
	=======	=======	=======	=======	=======	
ENZENE	<250	<500	<500	<50	<50	
BROMODICHLOROMETHANE	<250	<500	<500	<50	(50	
BROMOFORM	BHDL (<500)	<1000	<1000	<100	<100	
CARBON TETRACHLORIDE	2590	<500	2340	BHDL (<50)	<50	
HLOROBENZENE	<250	<500	<500	<50	<50	
CHLORODIBROMOMETHANE	<250	<500	<500	<50	<50	
ZHLOROETHANE	<250	<500	<500	<50	<50	7 MDLX?
2-CHLOROETHYVINYL ETHER	(5000 V	5((10000)	<10000	VS (1000)	<1000	CITIDEA.
CHLOROFORM	454	<500	<500	<50	<50	
1.2-DICHLOROBENZENE	<1250	<2500	<2500	<250	<250	
-3-DICHLOROBENZENE	<1250	<2500	<2500	<250	<250	•
1.4-DICHLOROBENZENE	<1250	<2500	<2500	<250	<250	
1.1-DICHLOROETHANE	BHOL (< 250)	<500	<500	<50	<50	
1.2-DICHLOROETHANE	<250	<500	<500	<50	<50	
1-1-DICHLOROETHENE	<250	<500	<500	<50	<50	
1.2-DICHLOROETHENE	<250	<500	<500	<50	<50	
T-1.3-DICHLOROPROPENE	<250	<500	<500	<50	<50	
C-1.3-DICHLOROPROPENE	<250	<500	<500	<50	<50	
1.2-DICHLOROPROPANE	<250	<500	<500	<50	<50	
ETHYLBENZENE	958	<500	724	<50	BHDL ((50)	
METHYL BROMIDE	<500	<1000	<1000	<100	<100	
METHYL CHLORIDE	<250	<500	<500	<50	<50	
METHYLENE CHLORIDE	<250	<500	<500	<50	<50	
1.1.2.2-TETRACHLOROETHANE	<250	<500	<500	<50	<50	
TETRACHLOROETHENE	1120	<500	<500	<50	<50	
TOLUENE	2819	<500	<500	<50	<50	
1,1,1-TRICHLOROETHANE	1100	<500	<500	<50	BHDL (<50)	
1.1.2-TRICHLOROETHANE	<250	<500	<500	<50	<50	
TRICHLOROETHENE	BHDL (<250)	<500	<500	<50	<50	
VINYL CHLORIDE	<250	<500	<500	<50	(50	
XYLENES	8400	7000	29200	<50	<50	

BMDL = DETECTED, BUT LESS THAN REPORTED DETECTION LIMIT.

WARZYN ENGINEERING VOLATILE ORGANIC COMPOUND RESULTS PROJECT: WEST BEND AUDIT

LOCATION: MILWAUKEE, WISCONSIN

C#: 205752

To Lany to 2-3-87

1	890	13994	13995	13998	14001	14006
{	N/	B1/S5	B2/S1	B2/S4	B3/S1	C2/S1
	COMPOUND (UNITS: UG/KG)	01/09/87	01/09/87	01/09/87	01/09/87	01/09/87
	# = = = = = = = = = = = = = = = = = = =	=======	=======	=======	=======	- Person
-	ENZENE	<50	<50	<50	<50	<50
	BROHODICHLOROMETHANE	<50	<50	BHOL (<50)	<50	<50
(pronoform	<100	<100	BMDL(<100)	<100	<100
1	CARBON TETRACHLORIDE	<50	<50	<50	<50	<50
1	THLOROBENZENE	<50	<50	<50	<50	<50
,	CHLORODIBROMOMETHANE	<50	<50	BHDL ((50)	<50	<50
1	THLOROETHANE	<50	<50	<50	<50	<50
(2-CHLOROETHYVINYL ETHER	<1000	<1000	<1000	<1000	<1000
	CHLOROFORM	<50	<50	<50	<50	<50
(1,2-DICHLOROBENZENE	<250	<250	<250	<250	<250
	1.3-DICHLOROBENZENE	<250	<250	<250	<250	<250
	1.4-DICHLOROBENZENE	<250	. <250	<250	<250	<250
(1.1-DICHLOROETHANE	<50	<50	<50	<50	<50
	1.2-DICHLOROETHANE	<50	<50	BHOL ((50)	<50	<50
,	1-1-DICHLOROETHENE	<50	<50	<50	<50	<50
,	1,2-DICHLOROETHENE	<50	<50	<50	<50	<50
-	T-1.3-DICHLOROPROPENE	<50	<50	<50	(50	<50
1	C-1.3-DICHLOROPROPENE	<50	<50	<50	<50	<50
,	1.2-DICHLOROPROPANE	<50	<50	BMDL ((50)	<50	<50
	ETHYLBENZENE	<50	<50	<50	<50	(50
	METHYL BROHIDE	<100	<100	<100	<100	<100
	METHYL CHLORIDE	<50	<50	<50	<50	<50
	METHYLENE CHLORIDE	<50	<50	BHOL ((50)	<50	BHDL (<50)
	1,1,2,2-TETRACHLOROETHANE	<50	<50	<50	<50	<50
	TETRACHLOROETHENE	<50	<50	<50	<50	<50
	TOLUENE	<50	66.4	<50	<50	<50
	1,1,1-TRICHLOROETHANE	75.0	<50	84.1	66.4	86.7
	1,1,2-TRICHLOROETHANE	<50	<50	<50	<50	<50
	TRICHLOROETHENE	<50	<50	<50	<50	<50
1	VINYL CHLORIDE	<50	<50	<50	<50	(50
	XYLENES	<50	BMDL (<50)	<50	<50	<50
	· ·					

BMDL = DETECTED, BUT LESS THAN REPORTED DETECTION LIMIT.

3301 KINSMAN BLVD. . P.O. BOX 7545 . MADISON, WISCONSIN 53707 . PHONE (608) 241-4471 . TLX 703956 HAZRAL MDS UD

REPORT OF ANALYSIS

HAN ELWOOD

ERZYN ENGINEERING, INC.

SCIENCE COURT

IVERSITY RESEARCH PARK

DISON, WI 53705

SAMPLE NUMBER: 70101535

DATE ENTERED: 01/13/87

REPORT PRINTED: 01/20/87

IL: WEI #14005; C-1

RCHASE ORDER NUMBER: 205752-01/13/87

7 CB

COMPOUND	NAME	PPM (WET I	BASIS
PCB 1260		LESS THAN	0.01
PCB 1254		LESS THAN	0.01
PCB 1248		LESS THAN	0.01
PCB 1242		LESS THAN	0.01
PCB 1232		LESS THAN	0.01.
PCB 1016		LESS THAN	0.01
PCB 1221		LESS THAN	0.01

MOISTURE

13.4%

THOD REFERENCES

WEHISTRY LABORATORY HANUAL FOR BOTTOM SEDIMENTS AND ELUTRIATE TESTING, U. S. VIRONMENTAL PROTECTION AGENCY, CHICAGO, IL., MARCH 1979, CRL METHOD NUMBERS 8 THRU 207.

WARZYN ENGINEERING ANALYTICAL LABORATORY RESULTS

PROJECT: WARZYN ENGINEERING INC.

WEST BEND AUDIT

LOCATION: MILWAUKEE, WISCONSIN

PROJECT#: 205752

DATE SAMPLED: 01/09/87 CK'D: 0AW APP'D: MJL

DATE ISSUED: 2-3-87

LAB # SAMPLE DESCRIPTION	13780 TP6-1	13982 TP7-1
ARSENIC	<0.005	<0.005
BARIUM	<1.00	<1.00
CADHIUM	<0.02	0.13
CHROMIUM	<0.10	<0.10
LEAD	<0.50	<0.50
MERCURY	<0.0005	<0.0005
SELENIUM	<0.001	<0.001
SILVER	<0.05	<0.05

RESULTS ARE REPORTED IN HG/L ON AN EP TOXICITY EXTRACTION.

3301 KINSMAN BLVD. - P.O. BOX 7545 - MADISON, WISCONSIN 53707 - PHONE (608) 241-4471 - TLX 703956 HAZRAL MOS UD

REPORT OF ANALYSIS

DAN ELUOOD

WARZYN ENGINEERING, INC.

1 SCIENCE COURT

UNIVERSITY RESEARCH PARK
MADISON, WI 53705

SAMPLE NUMBER: 70101886

DATE ENTERED: 01/15/87

REPORT PRINTED: 02/10/87

WASTE SOIL: WEI #13981; TP6-1 DUP, 01/09/87

PURCHASE ORDER NUMBER: 205752-01/14/87

ACID FRACTION - SEMIVOLATILE COMPOUND LIST)

BASE/NEUTRAL FRACTION

SEMIVOLATILE COMPOUNDS

COMPOUND NAME	MCG/KG
PHENOL	LESS THAN 28000
BIS(-2-CHLOROETHYL)ETHER	LESS THAN 28000
2-CHLOROPHENOL	LESS THAN 28000
1,3-DICHLOROBENZENE	LESS THAN 28000
1,4-DICHLOROBENZENE	LESS THAN 28000
BENZYL ALCOHOL	240,000
1,2-DICHLOROBENZENE	LESS THAN 28000
2-METHYLPHENOL	LESS THAN 28000
BIS(2-CHLOROISOPROPYL)ETHER	LESS THAN 28000
4-METHYLPHENOL . N-NITROSO-DI-N-PROPYLAMINE W.E.R.L.	LESS THAN 28000
N-NITROSO-DI-N-PROPYLAMINE W.E.K.L.	LESS THAN 28000
HEXACHLOROETHANE # 796	490000 COD# 67-12-1
NITROBENZENE	LESS THAN 28000
ISOPHORONE	LESS THAN 28000
2-NITROPHENOL	LESS THAN 28000
2,4-DIMETHYLPHENOL	LESS THAN 28000
BENZOIC ACID # 233	53000 J Ca# 65-85-0
BIS(2-CHLOROETHOXY)METHANE	LESS THAN 28000
2,4-DICHLOROPHENOL	LESS THAN 28000
1,2,4-TRICHLOROBENZENE	LESS THAN 28000
NAPHTHALENE # 1050	4100 J cast 91-20-3
4-CHLOROANILINE	4100 J COS# 91-20-3 LESS THAN 28000 95000 COS# 118-74-1
HEXACHLOROBUTADIENE	95,000 CON# 118-74-1
4-CHLORO-3-METHYLPHENOL	LESS THAN 28000
2-METHYLNAPHTHALENE	LESS THAN 28000
HEXACHLOROCYCLOPENTADIENE	LESS THAN 28000
2,4,6-TRICHLOROPHENOL	LESS THAN 28000
2,4,5-TRICHLOROPHENOL	LESS THAN 140000
2-CHLORONAPHTHALENE	LESS THAN 28000

3301 KINSMAN BLVD. . P.O. BOX 7545 . MADISON, WISCONSIN 53707 . PHONE (608) 241-4471 . TLX 703956 HAZRAL MOS UD

SAMPLE NUMBER: 70101386

PAGE

3

WASTE SOIL: WEI #13981; TP6-1 DUP, 01/09/87

BASE/NEUTRAL FRACTION

(CONTINUED)

2-NITROANILINE	LESS	THAN	140000	
DIMETHYL PHTHALATE	LESS	THAN	28000	
ACENAPHTHYLENE	LESS	THAN	28000	
3-NITROANILINE	LESS	THAN	140000	
ACENAPHTHENE			29000	
2.4-DINITROPHENOL			140000	
4-NITROPHENOL			140000	
DIBENZOFURAN			29000	
2,4-DINITROTOLUENE			28000	
2,6-DINITROTOLUENE WERL.		THAN	28000	
DIETHYLPHTHALATE # 5%6	7600	0	Co-	#84-66-2
4-CHLOROPHENYL-PHENYLETHER	LESS	THAN	28000	
FLUORENE	LESS	THAN	28000	
4-NITROANILINE	LESS	THAN	140000	
4,6-DINITRO-2-METHYLPHENOL	LESS	THAN	140000	
N-NITROSODIPHENYLAMINE*(1)	LESS	THAN	28000	
4-BROMOPHENYL-PHENYLETHER	LESS	THAN	.28000	
HEXACHLOROBENZENE	LESS	THAN	28000	
PENTACHLOROPHENOL	LESS	THAN	140,000	
PHENANTHRENE		THAN	29000	
ANTHRACENE		THAN	28000	Cas# 84-74-2
DI-N-BUTYLPHTHALATE # 501	1,100,0			Cast
FLUORANTHENE		THAN		
PYRENE "#311		THAN	23000	
BUTTLBENZTLPHTHALATE	8,000,0			CONT 85-68-7
3,3'-DICHLOROBENZIDINE		THAN	_	
BENZO(A)ANTHRACENE		THAN	28000	cos# 117-81-7
BIS(2-ETHYLHEXYL)PHTHALATE # 268	93000			COST III
CHRYSENE		THAN	28000	4 117 7
DI-N-OCTYL PHTHALATE # 502	90000			can # 117-84-0
BENZO(B)FLUORANTHENE		THAN	28000	
BENZO(K)FLUORANTHENE	LESS		28000	
BENZO (A) PYRENE	LESS		28000	
INDENO(1,2,3-CD)PYRENE	LESS		28000	
DIBENZO(A, H) ANTHRACENE	LESS		28000	
BENZO(G,H,I)PERYLENE	LESS	MAN	28000	

*(1) CANNOT BE SEPARATED FROM DIPHENYLAMINE.

INDICATES AN ESTIMATED VALUE. MASS SPECTRAL DATA INDICATED THE PRESENCE OF A COMPOUND THAT MEETS THE IDENTIFICATION CRITERIA BUT THE RESULT IS LESS THAN THE SPECIFIED DETECTION LIMIT BUT GREATER THAN ZERO. ENTATIVELY IDENTIFIED COMPOUNDS

COMPOUND NAME

BENZENE, 1,2-DIMETHYL-(OR ISOMER)

SCAN NUMBER 305

ESTIMATED CONCENTRATION MCG/KG

1,200000

see years o-

3301 KINSMAN BLVD. . P.O. BOX 7545 . MADISON, WISCONSIN 53707 . PHONE (608) 241-4471 . TLX 703956 HAZRAL MDS UD

SAMPLE NUMBER: 70101886

PAGE

3

WASTE SOIL: WEI #13981; TP6-1 DUP, 01/09/87

RY	12	۲/	NE	υı	KA	L	Τ.	K A	C	Ι.	Τ(N	

(CONTINUED)

METHANOL, DIBUTOXY-	738	210,000
UNKNOUN	997	31000
UNKNOUN	1219	46000
1,2-BENZENEDICARBOXYLIC ACID	1362	41000
UNKNOUN	1560	36000
UNKNOUN	1823	14000
UNKNOUN	1859	24000
UNKNOUN	1930	41000
BENZENESULFONAMIDE, 4-METHYL-	2137	320,000
UNKNOUN	2319	73000
HEXADECANOIC ACID, 2-METHYL-,		
METHYL ESTER	2491	120000
UNKNOUN	2509	310000
UNKNOWN	2577	41-0000
UNKNOUN	2591	410000
UNKNOUN	2606	320000
1-PHENANTHRECARBOXYLIC ACID,		
7-ETHENYL-1,2,3,4 (CAS #56051684)	2624	390000
UNKNOUN	2696	960000
UNKNOUN	2708	340000
UNKNOUN	2775	340000

METHOD REFERENCES

ACID FRACTION

METHODS FOR ORGANIC ANALYSIS OF MUNICIPAL AND INDUSTRIAL WASTEWATER, EPA PUBLICATION NO. 600/4-82-057, METHOD 625, U.S. EPA, CINCINNATI, OH (REVISED OCTOBER 1984)

U.S. EPA METHOD 625 (FEDERAL REGISTER, VOLUME 49, NO. 209, PG. 43385-43406, OCTOBER 26, 1984)

TEST METHODS FOR EVALUATING SOLID WASTE, EPA PUBLICATION NO. SW-846, SECOND EDITION, METHOD 8270, U.S. EPA, WASHINGTON, DC (REVISED APRIL 1984)

BASE/NEUTRAL FRACTION

METHODS FOR ORGANIC ANALYSIS OF MUNICIPAL AND INDUSTRIAL WASTEWATER, EPA PUBLICATION NO. 600/4-82-057, METHOD 625, U.S. EPA, CINCNNATI, OH (REVISED OCTOBER 1984)

U.S. EPA METHOD 625 (FEDERAL REGISTER, VOLUME 49, NO. 209, PG. 43385-43406, OCTOBER 26, 1984)

TEST METHODS FOR EVALUATING SOLID WASTE, EPA PUBLICATION NO. SW-946, SECOND EDITION, METHOD 8270, U.S. EPA, WASHINGTON, DC (REVISED APRIL 1984)

3301 KINSMAN BLVD. • P.O. BOX 7545 - MADISON, WISCONSIN 53707 • PHONE (608) 241-4471 • TLX 703956 HAZRAL MDS UD

MCG/KG

REPORT OF ANALYSIS

)AN ELWOOD

WARZYN ENGINEERING, INC.

SCIENCE COURT

INIVERSITY RESEARCH PARK

HADISON, WI 53705

SAMPLE NUMBER: 70101887

DATE ENTERED: 01/15/87

REPORT PRINTED: 02/10/87

MASTE SOIL: WEI #13983; TP7-2, 01/09/87

URCHASE ORDER NUMBER: 205752-01/14/87

CID FRACTION - SEMIVOLATILE COMPOUND LIST)

BASE/NEUTRAL FRACTION

COMPOUND NAME

SEMIVOLATILE COMPOUNDS

PHENOL	LESS	THAN	27000
BIS(-2-CHLOROETHYL)ETHER	LESS	THAN	27000
2-CHLOROPHENOL	LESS	THAN	27000
1,3-DICHLOROBENZENE	LESS	THAN	27000
1,4-DICHLOROBENZENE	LESS	THAN	27000
BENZYL ALCOHOL	LESS	THAN	27000
1,2-DICHLOROBENZENE	LESS	THAN	27000
2-METHYLPHENOL	LESS	THAN	27000
BIS(2-CHLOROISOPROPYL)ETHER	LESS	THAN	27000
4-METHYLPHENOL	LESS	THAN	27000
N-NITROSO-DI-N-PROPYLAMINE	LESS	THAN	27000
HEXACHLOROETHANE	LESS	THAN	27000
NITROBENZENE	LESS	THAN	27000
ISOPHORONE	LESS	THAN	27000
2-NITROPHENOL	LESS	THAN	27000
2,4-DIMETHYLPHENOL	LESS	THAN	27000
BENZOIC ACID	LESS	THAN	130000
BIS(2-CHLOROETHOXY)METHANE	LESS	THAN	27000
2,4-DICHLOROPHENOL	LESS	THAN	27000
1,2,4-TRICHLOROBENZENE	LESS	THAN	27000
NAPHTHALENE .	13000	J	
4-CHLOROANILINE	LESS	THAN	27000
HEXACHLOROBUTADIENE	LESS	THAN	27000
4-CHLORO-3-METHYLPHENOL	LESS	THAN	27000
2-METHYLNAPHTHALENE	31000		
HEXACHLOROCYCLOPENTAD I ENE	LESS	THAN	27000
2,4,6-TRICHLOROPHENOL	LESS	THAN	27000
2,4,5-TRICHLOROPHENOL	LESS	THAN	130000
2-CHLORONAPHTHALENE	LESS	THAN	27000

3301 KINSMAN BLVD. . P.O. BOX 7545 . MADISON, WISCONSIN 53707 . PHONE (608) 241-4471 . TLX 703956 HAZRAL MDS UD

SAMPLE NUMBER: 70101887

PAGE

3

WASTE SOIL: WEI #13983; TP7-2, 01/09/87

BASE/NEUTRAL FRACTION

(CONTINUED)

	•
2-NITROANILINE	LESS THAN 130000
DIMETHYL PHTHALATE	LESS THAN 27000
ACENAPHTHYLENE	LESS THAN 27000
3-NITROANILINE	LESS THAN 130000
ACENAPHTHENE	LESS THAN 27000
2,4-DINITROPHENOL	LESS THAN 130000 LESS THAN 27000 LESS THAN 130000 LESS THAN 130000 LESS THAN 27000
4-NITROPHENOL	LESS THAN 130000
DIBENZOFURAN	LESS THAN 27000
2,4-DINITROTOLUENE	LESS THAN 27000
	LESS THAN 27000
	LESS THAN 27000
	LESS THAN 27000
FLUORENE	LESS THAN 27000 .
	LESS THAN 130000
	LESS THAN 130000
	LESS THAN 27000
4-BROMOPHENYL-PHENYLETHER	LESS THAN :27000
	LESS THAN 27000 1 17-86-5
HEXACHLOROBENZENE PENTACHLOROPHENOL	· 210,000 CAS# 8/-
PHENANTHRENE # 1160	LESS THAN 27000 # 87-86-5 210000
ANTHRACENE	LESS THAN 27000
DI-N-BUTYLPHTHALATE	LESS THAN 27000
FLUORANTHENE	LESS THAN 27000
PYRENE	LESS THAN 27000
BUTYLBENZYLPHTHALATE .	LESS THAN 27000
3,3'-DICHLOROBENZIDINE	LESS THAN 53000
BENZO(A)ANTHRACENE	LESS THAN 27000
BIS(2-ETHYLHEXYL)PHTHALATE	LESS THAN 27000-
CHRYSENE	LESS THAN 27000
DI-N-OCTYL PHTHALATE	LESS THAN 27000
BENZO(B)FLUORANTHENE	LESS THAN 27000
BENZO(K)FLUORANTHENE	LESS THAN 27000
BENZO(A)PYRENE	LESS THAN 27000
	LESS THAN 27000
DIBENZO(A, H) ANTHRACENE	LESS THAN 27000
BENZO(G, H, I)PERYLENE	LESS THAN 27000
	· · · · · · · · · · · · · · · · ·

- *(1) CANNOT BE SEPARATED FROM DIPHENYLAMINE.
- J' INDICATES AN ESTIMATED VALUE. MASS SPECTRAL DATA INDICATED THE PRESENCE OF A COMPOUND THAT MEETS THE IDENTIFICATION CRITERIA BUT THE RESULT IS LESS THAN THE SPECIFIED DETECTION LIMIT BUT GREATER THAN ZERO. TENTATIVELY IDENTIFIED COMPOUNDS

COMPOUND NAME

SCAN NUMBER 1107 ESTIMATED CONCENTRATION MCG/KG 29000

3301 KINSMAN BLVD. • P.O. BOX 7545 • MADISON, WISCONSIN 53707 • PHONE (608) 241-4471 • TLX 703956 HAZRAL MOS UD

SAMPLE NUMBER: 70101887 -

PAGE

3

HASTE SOIL: WEI #13983; TP7-2, 01/09/87 "

BASE/NEUTRAL FRACTION	(CONTINUED)				
UNKNOUN	1142	11000			
UNKNOWN ALKANE	1283	13000			
TRIDECANE	1346	54000			
NAPHTHALENE, 1-METHYL-	1354	23000			
UNKNOUN ALKANE	1520	12000			
NAPHTHALENE, 1,8-DIMETHYL-					
OR ISOMER	1566	25000			
TETRADECANE	1571	58000			
NAPHTHALENE, 1,8-DIMETHYL-					
OR ISOMER	1598	27000			
NAPHTHALENE, 1,5-DIMETHYL-					
OR ISOMER	1604	15000			
DECANE, 2,3,6-TRIMETHYL-					
OR ISOMER	1704	18000			
PENTADECANE	1783	59000			
UNKNOUN ALKANE	1983	45000			
HEPTADECANE	2174	45000			
UNKNOWN		13000			
UNKNOWN ALKANE	2349	27000			
NONADECANE	2453	16000			
UNKNOWN ALKANE	2590	11000			

IETHOD REFERENCES

ACID FRACTION

ETHODS FOR ORGANIC ANALYSIS OF MUNICIPAL AND INDUSTRIAL WASTEWATER, EPA DUBLICATION NO. 600/4-82-057, METHOD 625, U.S. EPA, CINCINNATI, OH (REVISED OCTOBER 1984)

I.S. EPA METHOD 625 (FEDERAL REGISTER, VOLUME 49, NO. 209, PG. 43385-43406, CTOBER 26, 1984)

TEST METHODS FOR EVALUATING SOLID WASTE, EPA PUBLICATION NO. SW-846, SECOND LDITION, METHOD 8270, U.S. EPA, WASHINGTON, DC (REVISED APRIL 1984)

BASE/NEUTRAL FRACTION

METHODS FOR ORGANIC ANALYSIS OF MUNICIPAL AND INDUSTRIAL WASTEWATER, EPA UBLICATION NO. 600/4-82-057, METHOD 625, U.S. EPA, CINCNNATI, OH (REVISED UCTOBER 1984)

U.S. EPA METHOD 625 (FEDERAL REGISTER, VOLUME 49, NO. 209, PG. 43385-43406, CTOBER 26, 1984)

TEST METHODS FOR EVALUATING SOLID WASTE, EPA PUBLICATION NO. SU-846, SECOND EDITION, METHOD 8270, U.S. EPA, WASHINGTON, DC (REVISED APRIL 1984)

3U	0.02	- I	:31 l	ואע	LLI	NG, INC. FIELD BORING LOG	S	heet	_	_1_	_ Of_	<u> </u>	
	-	ISCON	SIN				J	ob N	о.	1	207		
	De			_	1	biDand UT							
					ves	tiBend, WI Elev.	_ 1	oring	T				
		Vhile d			1	None None				Start .	3-16-	-88	
WA'	1 + 14	Before (After ca				Depth to water 9.6'				Unit _ Chief	MK		
		Blows				Casing/Probe			Chief MK				
No.	Moisture	Sam	6/12	Sample Recovery	Total Blows	VISUAL FIELD CLASSIFICATION AND REMARKS Weight 14	0#	Unconfined Strength	Boulders		Probe Size	Drilling Method	
1	D	4	4			Light Grey-Brown SAND, Fine, W/Gravel			_			41411	
2		55	<u>4</u> 6	1.0	9	No Recovery - Pounded rock	Ξ		_			HSA	
		5	5	0	10	No Recovery - Pounded rock	Ξ		_				
3	D	3	4		-		5 —						
4	D	32	<u>4</u> 2	0	7	Dk Brn Silty 6.0' SAND Lt.Brn Silty 7.0' SAND			-				
					4	Lt.Brn Silty 7.0 SAND							
5	_M_	4	6	1 5		8.5'	=						
6	М	2			1L	_1	10 —		-			-	
7	1.1	3	10	TT	9	12.51	Ξ						
7	W	6 16	12 16	20	32	Blk Silty SAND 12.5' Lt Brn Silty SAND			-	 -		-	
						Lt Brn Silty SAND E.O.B. @ 14.0'	<u></u>						
		-					- 13 =						
				-		<u>-</u>	Ξ	-	-				
						-	Ξ						
				-		20	20 —		_				
	-			┤─		Engineer took all of sample 5 and 6	=			-		-	
						=	=						
				-		<u>=</u>	Ξ		-				
	-	-	-	+-	-	25	25 —	-	+-	-	-	-	
						-							
		-		-			=		-				
							-	-	-		-	-	
	-	-		-	-		30 —						
	-		-	╁	┼─	_	=		-	-		-	
_							=	+	-	-	-		
	-	-	-	+	-	35	35 —						
	-	-	-	╫	┤─-	<u>-</u> -			-	-	-	-	
					1	E		1	-	-	-	-	
	-	-		-	+	E							
	-	+-	+	+	1-	40	40 —	-	+		-	-	
					1_	Ε		+	-	-	-	-	
	-	-			-	1=							
			1	_ _		= 45			-	-	-	-	
		-]_	= 3	45 —		+-	1-	-	-	
	-	-	-	- -	-	· <u>=</u>							
_				_	_	<u> </u>			-	-	-	- -	
]=		-	-	-	-	_	

FIELD BORING LOG Sheet
West Bend, WI Elev. Boring No. B-2
After casing removal After casing removal Depth to water Depth to water Depth to cave-in Blows on Sampler VISUAL FIELD CLASSIFICATION AND REMARKS O/4 6/12 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/
Sampler Samp
1 D 5 7 Brown SAND, Fine, With Trace Gravel 2 D 4 8 D 10 13 1.8 23 Lt. Brn SAND, 3.0' Very Fine
2 D 4 8 H
2 D 4 8 H
10 13 1.8 23 Lt. Brn SAND, 3.0 Very Fine
3 D 7 12 4.5' CDAVE
S GRAVEI 5 t. Brn SAND & T. GRAVEI 5
13 12 1.8 25 - 5 Lt. BIII SAND & GRAVEL
13 12 1.8 25
5 W 6 6 H BTK Sandy ORGANIC O Matter
8 10 6 18 Black SAND 8.5
6 W 4 4 1.0 8 H Brn SAND W/Trc . Gravel
7 W 1 5 0 130 111 374703 1 111C 11 01
8 W 10 12 1.0 22 SAND, Med, Trc 12.0 of Grave
Lt Brn SAND, Medium
E.O.B. @ 14.0'

Engineer took samples 4,6, & 8.
- Lingtineer cook samples 4,0, a 0.
20

25

30

35
35

40
45

VISC	ONS	IN TI	EST	DRI	LL	ING, INC.		FLE	ID BOI	NG LO)G	S	heet_		1	_ Of_	1_
CHOF	_	viscon elta	SIN								_	J	ob N	0		1207	
	TION			_		West Ben	d, WI		Elev			B	Boring	, N	o	B-3	
GRO	UND TER	While d Before After ca	casing	reme				Depth to	ter drilling	4' None						3-16- 45	-88
		Blow Sam	s on pler		0.00						Casing/Probo _	7.4	ned		Blox	PS 000	
Sample No.	Moisture	0/6	6/12	Sample Recovery	Total Blows	VISUAL F	TELD CLAS	SSIFICAT	ION AND R	EMARKS	Weight 140)# 	Unconfined Strength	Boulders	Cusing Size	Probe Size	Drilling
1	М	2	3			- Brov	n Silty	SAND,	Fine			Ξ					41/1"
2	W	4.	3	-5	1	Hs Blad	·k Sil+v		.5'	, W/Trc.	Gravel	=					нѕА
		4	7	1.0	11	H Organ	ic lens	i SAND,	Course	, M/11C.	diavei	Ξ					
_3	W		12	-		11			.01			<u>-</u>					
		12	12	1.8	24	Med	SAND &	GRVL S	. o . o	ı 				-			- -
					-	=		E.U.B	. @ 6.0			=					
						Ė		•				Ξ					
				_	_	10						10 —					
	 	-			├-	-						=		-			
	 	 	-	┼─	┤─	=						_		-			
			-	-	-	=						=					
						15						15 -					
		-		_	_	= "						· =	-	<u> </u>			
		-	 	-	-	=					,	Ξ		-	 -		-
			 	-		=						=		-			
				1-		= 20						20 _					
						= 20											
		ļ	ļ	┦—	ــــ	=						_	 	<u> </u>			.
		-		┼	╀	-E						Ξ		-			
	-	-	 	1-	+	=						, =	-	-		-	
						25						25 —					
						E						_					
				-	1_	 -						=		-		-	-
	-				┤—	=						=		-	-		-
	+		+	+-	1-	30						30 —	-	1	1	1	+
						Ē						Ξ	-				
						E						=	-	-	-	-	-
	-	-	-	4—	+-	丰						=	-	-	-		-
	-	-	+-	+	+-	35						35 —	_	+-	-	+	+-
	-	-	1-	1	+	 						=		-	-	-	-
					1	Ī				•		=					
	_			_ _	4_	F						_	-	-			-
		-	-	+								40 —	-	+		+-	-
-	-	-	-	- -	- -	- -							+	-	-	1-	-
						<u> </u>						=					
]_	⊣ Ξ						=					
			-	+	- -	45						45 —		4-			
-	-		-	+	-							=	-	-		-	-
<u> </u>	-	-	-	- -	-	_=						=	-	1	-	1	-
						<u> </u>						-					
1	- !		_		7	1=						_	_			-	-

/ISC	ONS	IN TE	EST	DRI	LLI	NG, INC. FIELD BORING LOG	S	heet_	1		01_	1_
CHOF	_	viscon Delta					J	ob N	o	12	07	
		·				West Bend, WI Elev.	F	Boring	g N	o. <u> </u>	B-4	
	UND	While d Before (rilling casing			Time after drilling					3-16- 45	
2	5	Blow Sam	s on pler	le er)	Total Blows	VISUAL FIELD CLASSIFICATION AND REMARKS Casing/Probe	#_	Unconfined	£		79 00	200
Sample No.	Moisture	0/6	6/12	Sample Recovery	Total	VISUAL FIELD CLASSIFICATION AND REMARKS Weight 140	<u>"</u>	Unco	Boulders	Casin	Probe Size	HSA
1	D	6	13				Ξ					414
2	M	35 5	<u>42</u> 5	1.8	77	Light Brown SAND, Fine	Ξ	 				H3/4
		5		1.8	10		=		-			
3	D	4	6			1 E!	5 —					
		11	13	1.8	23	Light Brown SAND, With Trace Gravel	_					-
_4	_M_	8	14	p 0	11							-
5	-W	18 5	<u>23</u>	۲۰۱۱	41	Dk. Brown SAND, 7.5' Fine	_=					1-
		8	9	2.0	17	- Brown SAND Fine	10 —					
6	W	5					=					II
		9	11	2.0	20	E.O.B. @ 12.0'	_=	-	-			╀
		-	<u> </u>		-		Ξ		-			-
				 	-	-	_ =	-	-			-
	1	_		 		 15	15 —	-	1-			-
						,	Ξ	-				
							=		_			
				_	_	•	=		-			-
		-	ļ	-		20	20 -	<u> </u>				-
		-		┤	-		-		-	 	 	-
	-	-		\vdash	-	- -	=	-	-		-	-
	 	-	1	1-	1		=					
						- 25	25 —					
						25	-		_			_
				-	_	• •	-		-		-	-
	-		-	┨—	┼		-		-	 	-	-
	-			┪—	1-		:		-	-	-	-
	+	-		+	1-	30	30	-	+-	+-		-
						- -	:	-				
					_				_ _			
	-	_	-	4—	+-	_	:	Ϊ	-	-	-	-
		+	+	+-	+-	35	35 -		+-	-	+	+-
		-	1-	+	-	=	:	=	-	-	-	-
					1	-	:	\exists			-	1-
	_	-	-	+			40 -		_			
	-	_	-	- -	-	-		+-	-	_		-
-	-	-	-	- -	4-			-	- -	-	-	-
	-	-	-	- -	-	=		_	- -	-	-	-
			_	_			4.	_	- -	-		-
							45 -			+-		+
						- - -		3				
<u></u>	-			-	_ -	<u>=</u>						
-		_	-	-	-	E		=	_ _	_	_	_ _
f	1	Í	1	1	1	J =			,	I .	1	

i

NISC	ONS	IN T	EST	DRI	ILL	NG, INC. FIELD BORING LOG		Sheet_	1		Of .	1_
		wiscon Delta						Job 1	No.	120	7	
FOR .		V		_		West Bend, WI Elev.		Borin	o N	No.	8-5	
GRO	UND	While d	lrilling casing	rem		Time after drilling hr. Depth to water None			-	Start . Unit .	3-16- 45	
		After c	asing r	emo	val	Depth to cave-in 10.0'			-니_	Chief .	MK	
Sample No.	Moisture	Blow Sam	on pier	Sample Recovery	Total Blows	VISUAL FIELD CLASSIFICATION AND REMARKS Visual Field Classification and Remarks Drep		Unconfined	Boulders	Casing Size	Prohe 50 EL	Drilling Method
I	D	5	6									41,11
2	D	6	7 2	20	13	Light Brown SAND, Fine		<u> </u>	-			HSA
		3	4	2,0	7			=	_	-		-
3	D	1	3	1.0	16	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 -	-				
4	M	6	9	150	15	Green Silty SAND, With Trace Gravel		=-	-			-
		7	8	1.0	15							
5	M	13	11 15	1.0	20			=	-		<u> </u> -	
6	W	5	8			Const Ciltu CAND	10-			-		
		9	12	1.8	21	Green Silty SAND E.O.B. @ 12.0'						
<u> </u>		-		-	-			=	-		<u> </u>	
						15	15 •					
				-			13					
	-	-	┨	╢	-	Engineer took Samples 4 & 5.		=	-	-	<u> </u>	-
						20	20 -	_	_			
			-	-	┼	E			-	-	 	
-	-[1	1-	-	•		-	-	-	-
 	-			┼—	-	25	25 -		-	-		
	-	-			1-			=	-	-	-	-
	_				1_							
-		-	-	┤─	╂—	[=	- -	-	-	-
						30	30				-	-
-	-				-	<u> </u>		3			-	
-	-	_	+	1	1-			1	- -	-	-	-
						35	35					_
-	-			-	-	<u> </u>	33	=				
	-	_	1	+-	1-	F		=	- -		-	-
					L	Ę						
-			+-	+	-		40	_	4		-	
						- - - 		1	- -	-	-	-
]_	4=						
-	-	_	-	- -	-	1			_ _			
					<u> </u>	45 	45	1	-		-	-
]_	- - 			_	-	-	-
-	-			+	- -	- -						
	-		-	- -	-	†=		=	_ _	_	_	

SOIL BORING LOG

BORING # 6

PROJECT: West Bend LOCATION: as per Delta Date completed: 5/25/88 ELEVATION none taken

		SAMPLE NUMBER	BLOW	MOIS- TURE	
SOIL CLASSIFICATION		DEPTH	COUNTS	REC	Q
FillBrown silty clay mixed w/ silty F-M sand & gravel occassional cobbles mostly F-M sand w/ some silt	1	0.0-2.0	3,3,3,3	15	
	2	2.0-4.0	2,1,2,4	20	
5—	3	4.0-6.0	2,2,2,3	24	be ber fir palligie bender t
=	4	6.0-8.0	3,3,4,8	22	
10'-6"	5	8.0-10	3,5,3,4	24	tradition after Managhroup to a day of demands
Black peaty topsoil clayey w/ depth W.L. @ 12'-4" @ 10 min.	6	10-12	1,2,3,3	16	tes file detraffin des des des las cas-
Gray F-M sand End of Boring 5	7	12-14	1,3,4,6	16	
	ma grandin admirata dan dan dan dan dan dan dan dan dan da				
			n den der		
0—	*		E : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :		
	- Africa de demando do de de	2	1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
25					

SOIL BORING LOG

BORING # 7

PROJECT: West Bend LOCATION: as per Delta Date completed: 5/25/88 ELEVATION none taken

1	SOIL CLASSIFICATION	4	SAMPLE NUMBER	BLOW COUNTS	MOIS- TURE	
d 0	SOIL CLASSIFICATION	† †	DEPTH	COUNTS	REC	Q
e p t h	FillBrown F-M sand, trace silt	1	0.0-2.0	5,5,4,6	3	de abre des chandes alles pardes d
5		2	2.0-4.0	2,3,3,3	18	. de divide des des des des des desdes
-	<pre>w/ gray fine silty sand layers 6'-0" to 8'-9"</pre>	3	4.0-6.0	2,2,2,3	15	de dirida Derida idie de Ger
-	W.L. @ 7'-9" @ 10 min. w/ occ organic seams	4	6.0-8.0	5,6,9,9	18	Berr Bas Charles Co. Cr.
10-	Brown F-M sand w/ some silt	5	8.0-10	7,6,7,9	18	T De Coulom de La Laure Sand
-	12'-0"	6	10-12	6,6,6,7	18	Adresia, Gardendo des de des
15—						
						7
1						
20						
L. L. L. L.		***************************************				***
1-1-1-1-1		ger der der fan drestan fin		† • • • • • • •		

SC	ONS	IN TE	ST	DRI	LLI	NG, INC. FIELD BORING LOG	٤	heet_	1		_ 0(_	1
	_	viscon:	SIN			West Bend Monitoring Wells		Job N	o	1127	·	
OR _				_		11 - 1 0 1 1/7	- ,	Boring	N	o Mil	1	
	TION						-1'	DOLIN	T			_
ROI WAT	LEB	While d Before (After ca	asing			9.5' Time after drilling 4 hr. Depth to water Depth to cave-in				Start S Unit _ Chief _	D-50	
		Blow								Blow		
Sample No.	Moisture	Samo	oler	Sample Recovery	Total Blows		10# 30"	Unconfined	Boulders	Casing Sire		Drilling
3 ²	ž	0/6	6/12	Sa	To	Orep		28	B	ਹੈ ਲੋ		č
				-		ASPHALT 0.3'						6ਖ਼ HS/
1	M		7			Tan to Brown Silty SAND Very Fine	=					
		7	12	1.3	19	<u> </u>	=					
_	14	10	10	-		5	. 5 -	<u> </u>				
2	<u>M</u>	10	10	1.5	22	<u> </u>	=	-				-
3	W		8			<u>-</u> -	=					
		11	9	1.2	20	<u> </u>						_
4	W	15	8	-	-	10	10 -]	-			-
7		11		.4	19	11.0'		-	-			-
5	W		15			Tan to Brown SAND M-F						
		17	22	1.1	39	<u></u>	:	-				_
6	W	4	18	-	_	15	15 -		-			-
0_	_ W	22	10	1.5	40	<u> </u>	:		-			-
7	W		15	7								
		10	11	1.5	21	Tan to Brn Silty SAND 18.0' Very Fine			-			_
	-	-		-	-		20 –		-		-	-
				\vdash	-	Well Set @ 18.0'	:	=	-			十
	-					Ē						1-
				$oxed{\Box}$;	-	-			-
	 			┼	-	25	25 –		-		-	╀
			-	┤			;	=	-		·	-
		-		1	1	F						
				\bot				=	-			- -
	├	-	-	-	-	30	30 -		+-	-	-	+
	-	-		+	+-	F					-	- -
						E						
				-	1	<u> </u>		╡	-		-	- -
_	-	-	-	+-	┼	35	35 -		+-		-	╁
	-		-	+	 	-		=				-
						E						
				_	+	-		#	- -	-	-	- -
	-		-	+-	-	40	40 -	1		-		+
	-			_	-	1=		+	- -	-	-	- -
]=						
			-		4-	 -		=	_		-	_
	+-		+-	+-	-	45	45 -	-	+	-		+
	_		-	_	1-	<u> </u> =		-	- -	-	-	- -
_						<u> </u>						
				1		-		-				

/ISC	ONS	IN TE	EST [DRI	LLI	NG, INC. FIELD BORING LOG	_	heet_		1	Of_	1	_
CHOF	ELD, Y	VISCON	SIN					lob N	lo.	112	27		
		lta				Uses Dand UT					2		
		<u> </u>		_		West Bend, WI Elev.	1	Borin	τ	lo. M			4
GRO	<u>מאט</u>	While d	rilling		1	13.5' Time after drilling 13.0'				Start Start Start Start	9-16-	87	4
WAT	1 P FC	Before (After ca	_			Depth to water Depth to cave-in				Chief .	PD		1
		Blows	on			Casing/	Probe	1,	Ì	1	78 00a		1
ᆲ.	Moisture	Samp	pler	ple	Total Blows	VISUAL FIELD CLASSIFICATION AND REMARKS Weight	140#	Linconfined Strength	Boulders	9 1	١	- C	
Sample No.	Mois	0/6	6/12	Sam	Tota	Drep _	30"	Lince	Boul	Casi	Probe Sire	Drilling	
						Tan to Brown SAND M-F W/Silt W/Clay						6날"	
1	D		6	-		-	=] 	-			HSA L	4
		6	10	.5	16	<u> </u>	=					二	
2	D	5	12	_		5.5'	5 —	-	-			+	_
_		12		1.1	24	Tan to Brn. SAND 7.0' M-F, W/Organics						士	_
3_	_D_	2	2	L	6	Tan to Brn. SAND M-F		-	-			+	_
			4	3	J	Clay till layer.	- 01					士	_
4	М	6	8	7 2	19	H			-	-			_
5	W		8	1.3	19	<u></u>	-					_	_
		13		10	28	Tan to Brown Silty SAND		-	_			\perp	_
6	W	8	15	├	-	H 15	15 -		-	-		+	_
		16		9	31				_			\perp	_
7	W	7	6	9	13	18.0'		-	╁	┼		\vdash	_
				1		Gray Stity CLAT	20 -						_
8	W	27	8	7	35	Alot of gravel Z0.5' Tan to Brn SAND M-F		∄	╁	-		\vdash	_
				-		E.O.B. @ 22.5'							_
			-	┼		Well Set @ 22.3'	:	-	-				_
						25	25 –						_
				_		E			-	-	 		_
		-		1-	-	F		_					_
٠.					-	30	30 -		-	-		-	_
	-	-	-	+	+-	-				1		-	_
				I		Ę		1	_		-	-	_
	-	-	+	+	+	[-	-	-			_
						35	35 -			1			_
	-	-	-	+	-	[=-	-		-	-	_
				1		Ė		=					_
				-			40 -		+	-		-	_
	-	-	-	-	-	<u> </u>		1	_				_
]_	<u>-</u>			_				_
	-	-	-	-	-	[=	-	-	-	-	_
						145 -	45 -	=					_
	_			-	-	- <u>-</u>		=-	+			-	_
				\perp		<u>1</u>							
											1	1	

:

1

						NG, INC. FIELD BORING LOG	5	heet_	1		Of	<u> </u>
		ISCON				Wort Road Manitoning Walle]	Job N	o	1	127	
		_	.a	-		West Bend Monitoring Wells West Bend, WI	- ,	D	- N1	_ M.	3	
	TION					12.41	<u> </u>	Boring	1			
		Vhile d	rilling			- I mile after drilling				Start 2	9-15-	<u>·87</u>
WAT		Before (After ca	_			9.81 Depth to water 9.8				Unit _ Chief _	D-50 PD	<u>'</u>
		Blow								$\overline{}$	79 000	_
	١	Sami	oler i	٦£	Total Blows	VISUAL FIELD CLASSIFICATION AND REMARKS Weight 140	#	Linconfined Strength	4		1	
Sample No.	Moisture		4/14	Sample Recuvery	Tallo	Drop30		ncon	Boulders	Casing Sire	Probe Size	Drilling
-		0/6	4/12	3,12				38	—			ے 6کڑ
						Tan to Brown SAND M-F W/Trc. Silt	=		_			HS.
1	D	3	_4_		10	- -	Ξ					
		6		1.1	10	1	=	 	—			-
2	D	4	8			T-5 Lavers of gray sand M-F	5	-	-			-
		9		1.0	17	Layers of gray sand M-F Some Gravel	Ξ					
3	_D	7	_ <u>7</u> 10_	1.2	17	-	Ξ					<u> </u> _
			10	1.2	1/	<u></u>						-
4	D	4	6			10	10 -					
5	W	8_	8	.9	14	<u>-</u>	=			-		_
<u> </u>	<u> </u>	10	10	. 8	20		Ξ		<u> </u>			-
						15	15 —					-
6	W	6	7	0	10		13 =					
7	W	12	16	 U	19		Ξ	-				-
,		15	11	1.2	26	Silt Layer	=		-	ļ		╁
						20	20 —					
8	W	5	5	1 2	10	1	-	<u> </u>				-
		-		15	10	E.O.B. @ 22.0'			-			-
						Well Set @ 19.1'						
	-			┼		25	25 —		-			-
	 		-	\vdash		-			-		 	- -
						- -						
	 		<u> </u>	┼			:		-	ļ		- -
	-		-	+	-	30	30 —		\vdash			╁
		-	-		_	=		-	-			- -
			 	+	╁			=	-	·	-	- -
						 35	35 -					+
		-	-	-					_			_ _
				+	┼	 - -		3	-			- -
						 				-	1	- -
	-			-		= 7	70		_			
	-	-	-	╢	 	<u>-</u>		=-	-	-{	-	- -
						E			-	-	-	- -
			-		-	45	45 -					1
	-	-	-	+		-			-	-	-	- -
	-			-	1-			-	-	-	-	- -
								_1	•	!	1	

130	UNS	IN TE	ST	ORI	LLI	NG, INC. FIELD BORING LOG	ı	Sheet_		1	_ 01_	1
		/ISCON	SIN		1	West Bend Monitoring Wells		Job N	lo	112	27	
	Del			_		Inch Bond III		Borin	~ N	Io MI	1_1	
_	TER	While d Before o	casing		oval	8.3' Time after drilling 4.9' Depth to water Depth to cave-in		Both		Start S	0-16- 0-50	<u>. </u>
		Blows			OWS	Cesing	140#	- Paul		<u> </u>	78 OB	
Sample No.	Moisture	0/6	6/12	Sample Recovery	Total Blows	VISUAL FIELD CLASSIFICATION AND REMARKS Drep	30"	Unconfined Strength	Boulders	Casing Size	Prube Size	Drilling
						ASPHALT 0.3'						6년" HSA
			6			Tan to Brown Silty SAND Medium to Fi	ne		-			HSA
	0	7		1.1	16			-	╢			-
						5	5	=				
2	W	8	15		- 24	 - -			-			
3	W	19	9	كمل	34	Gravel Layer Blk Sand layer 1' thick		=	├—			-
<u> </u>	W	6	$\frac{3}{7}$.8	13			=	-			
							10	=				
4	W	8	6	_		∐ Gravel layers	10	=	-			
	W	7_	2	-9	13	Ė l		-	┤—		<u> </u>	
5	- W	3	6	7	9	F			╢			-
						<u> </u>	15					
						E.O.B. @ 16.0'		=	\perp			
		-	<u> </u>		<u> </u>				-		 	-
			 	-	-	Well Set @ 15.5'			-			-
		+	 		-	F	20	=	1		-	1
						20	20					
								=	-			-
				-	-	<u> </u>		=	-			-
	 	-		┼	-	=		=	-			-
_	-	 		\vdash		25	25					
						E						
_			<u> </u>		-			=-	-			-
	 	 	-		┤—	[-	-	-	-	- -
_	+	+	-	+	 	30	30	_	+	 	 	\dagger
_						E						
	_		<u> </u>			-		1	- -	-	-	- -
	-		+-	+-	┼	[3-	-			- -
	-	+	+	╁╾	+-	35	35		+	+	-	+
						Ė						_ _
						<u>-</u>		=	_ _		_	- -
	-			+-	+	-		=-	- -		-	- -
	+		-	+	┤一		40) —	+	+	+	+
	-					<u>i</u>						
]_	=						_
		_	-	- -	⊣ –	- 		=	_ _	-	-	- -
	-			+-		45	45	· 	+	+		-
	-	-	-	+	-	- - -		=	-			- -
												_ _
					1	-		-				

10F1	ELD, W	ISCON	SIN			FIELD BORING LOG		Tel Y	M.c.	1 '	27	
				_		West Bend Monitoring Wells		Job 1	NO	1.1	.21	
						West Bend, WI Elev.		Borin	g N	o. M	1-5	
			rilling			Time offer drilling 4 hr.			-	Start _	9-25	 :_8
			casing	remo	oval	Depth to water 13.01				Unit _		
V A	ER !	After c	asing re	mov	/ 2	Depth to cave-in			-	Chief _		_
		Blow Sam	s on		ws	Cosing/	Probo	- g				
	Moisture		6/12	a co	Total Blows	VISUAL FIELD CLASSIFICATION AND REMARKS Weight		Unconfined Strength	Boulders	a in	اۃ	
No.	Moi	0/6	6/12	Sam	Tota	Drop _		Sire	Воп	Casing Size	Prul	0.111
						_ (Fill)						
_						Silty SAND M-F Red to Brown						-
_				-		— ←Wood Railroad Tie		₫	+			╢
							5.	-				
							3-					
					_	7.0'			-	 		-
					-	Sandy SILT Red to Brown Uniform Fine		=	-			-
					 		10.					-
							10 -	=				
				-	_	= ·		=				-
	<u> </u>			-	 			-	-			-
						=	1.5	_	-			-
						15 	15 •	=				
						17.51		+	-			-
			-			SAND Red to Brown Uniform Fine		∃—		· · · ·		-
			-	-	 		20 -	+	┪	ļ —	<u> </u>	1-
						E.O.B. @ 21.0'	20 .	=				
			ļ	_				-	-	.	. 	- -
_			 	-	-	Well Set @ 20.6'		=	-			- -
				 	-	=	36	=	-		-	- -
						25	25					
								=	-		-	- -
				┤	├			=-	-	-		- -
			-	┼	┼─		30			-	-	- -
						30	30					
	-	<u> </u>		╄	↓_	=		=	-		-	- -
		-	-	┼	┤—	-			-	-	-	╁
_	 	-	+	+-	+	+	35	_				- -
_						35	33	=				_
	-	-		+-	+	E		=	-	-	-	- -
	┤──	+	-	+-	+-	-		+	-	-	1-	+
_						E 40	40					
					_	= "	70	=	_	-	-	_ -
		-	-	-	-	[=	- -	-		- -
	-	-	+	+	-	 =		-	- -	-	-	- -
_						<u>]</u>	45					
]_	=	43	=				
	-	-		-	-	· <u>-</u>		-	-	-	-	- -
	_			4	-1-	- 			_	-	_	-1-

WISC	ONS	IN T	EST	DRI	LL	ING, INC		FIEL	D BOR	ING LO	OG		Sheet]		Of_	1
	_	WISCON	SIN			lles+	Don't 14						Job	No.	1	127	
FOR .		elta					Bend,	<u>onitorin</u> WI					Dorie	N	I M	W-6A	2
LOCA							0'		Elev	1-	hr		DOLII	ıg ı			
		While d	rilling casing	remo	oval		. U	Time afte Depth to	-	1	7.9'					9-16- 0-50	
WA	TER	After c						Depth to						_	Chief .		
		Blow Sam	s on		4.5						Casing/	Probe	. 9	T	Blos	78 OB	
Sample No.	Moisture		-	Sample Recovery	Blo	VISUAL	FIELD CLA	ASSIFICATION	ON AND RI	EMARKS	Weight	140#	Unconfined	Boulders	in in	ا ۃ	ang Pod
Sam	Ψ	0/€	6/12	San	Tota						Drep .	30"	Street -	Bou	Casing Size	Prube Sire	Drilling Method
		-				AS	PHALT	0	.2'				=				64"
1	D		_ 5			Ta	n to Br	own SAND	Medium	to Fin	e		=	-			HSA
		12	17	1.1	29	且											
2	D	12	25	├	_	5						5 -	- 	+	-		$\vdash\vdash$
		40		1.2	65												
3	<u> </u>	6	7	.9	16	Ħ							1-	-			- -
						10						10 -					
4	D	20	9	1.0	29	Н							_	-			-
5	D	20	7			<u> </u>											
F-		9	20	1.5	29	=							=	_			
6	D	10	14			15						15 -	1				
		19	-	1.5	33						, .		=				
7	W	12	<u>6</u> 15	8	27	Ħ							=	-		 	\vdash
						20						20 -	=				二
8	W	8 18	12	1.1	30	且							=	- -	-	-	
9	W		5			<u> </u>											
-		20	47	1.5	67	<u>H</u>					•		=	- -	-	├	-
10	W	8	9			H 25						25					
	-	20	 	1.5	29			— E.O.B	. @ 27.	0' —				+	-	┼	┼-
						E			et @ 26							-	
			-	-	_	30						30		_			-
-	-	-		+	-	F								_	 	-	
						Ē							=				
-	-	-		+-	┝	E							=	- -		-	-
						35						35	=				
_	-	-		+	-	E							=	-	-	-	
						E											
		-	-	+	-	40						40	-		-	-	-
						=											
				-	1-	=							1			-	-
						45						45	=		-	-	
					-	-==									-		
				1		===							=			_	_
				-	_	==										_	-
t	ı			_!_									-,	,	-	-	

	_	ISCON	SIN					LD BORING			1	ob N	o	1207			_
OR .		<u>lta</u>		_		Most 1	Bend, WI					Boring					
	TION		.,,,,			uc2r		Elev	با	hr.	[r						=
		While d Before	casing	гem	oval		Time aft Depth to	er drilling —		6'				Start .	<u>3-18</u>	- 80	2
WA'	1 P R	After c	_				Depth to		Unk	nown				Unit . Chief .	MK		_
		Blow	s on		,					Casing/	raba	-			79 04		
Sample No.	Moisture	Sam	pler	Sample Recovery	Total Blows	VISUAL FIEL	D CLASSIFICATI	ON AND REMA	RKS	Weight	<u>140#</u> 30"	Unconfined Strength	Boulders	Casing Sire	Probe Sire	Drilling	-
S	X	0/6	6/12	S.S.	To					Drop _		=======================================	Bo	Casi	Siz	-	
				-	├	See Lo	g MW-6 (01d	Well Log)			Ξ				ļ	41; H;	
						_	-				Ξ						7
				_							=						Ī
			-	├-	-	5					5 —					-	ŀ
			-	1-	 	=					Ξ		-			-	ŀ
											=						ł
						E					Ξ						I
				-	-	10					. 10 -						ļ
		 		-	+-	=					=					-	ł
						Ξ					=						t
						E					Ξ						Į
			-	-	-	15					15 —		-			Н	ļ
		-		-	+-	E				,	=						
											Ξ						
				_		E					Ξ						
	-			╀	-	20					20 —	_	├	-	-	-	1
	 		 	╁	╁	E					=		一		-	-	1
						Ē					Ξ						
				$oxed{\Box}$		E					=	-	-		ļ	-	4
		-	-	+-	 	25					25		┼			-	
	 	 	-	╁	1-	=					=	-	-	-		1	
					1_	E											-
		-		-	 	=					=		-		-	- -	-
1	W	12	14	+-	-	30	 3	0.0'		<u></u>	30 -	-	+	 	-	+	-
		23		1.5	3	Brown	SAND, Mediu	m, With Tra	ace S	Silt	-					-	-
			-	-		=	-	-			=		_			_	_
	-	-	+	+-	+	=						1	-	-	-	- -	-
2	W	20	30	1	1	35					35 —		+-	1	+	+	-
		23		1.9	5 5	Gray (LAY W/Trc. 3	6.5' Grv1									_
3	M	15	/ . <u>5</u>	1.5	5 1	#						-	-	-	-	- -	-
_4	<u>M</u> _	17	15/	+	+-	-		. @ 38.5'-				-	-		-	-F	_
		1 711				40	Well S	et.@ 36.0'			40 —					-	-
		_	-		4-	=											-
	-	-	+	-	-	1=						-	-	-	-	- -	-
											45 -	-	-	-	-	+	-
				T]_]= "					45 -						_
	-	-	-	- -	-	- =						-	_		-	- -	_
		-	+	+	- -	† =							-	-		- -	-
					1	1= 50 -					3"	_	- -	-	-	- -	-

		ISCON	SIN				J	ob N	lo	1	207	
	De l			_	•	West Bend, WI Elev.	В	oring	g N	o	MW-A	7
GRO!	TER 1	While d Before (casing	reme		Time after drilling 17° Depth to water 18° Depth to cave-in				Start . Unit . Chief .	3-21 45 MK	-8
	2	Blow	s on pier	ery	Slows	VISUAL FIELD CLASSIFICATION AND REMARKS Voight 140#	-	fined		Blov	9 00	
Sample No.	Moisture	0/6	6/12	Sample Recovery	Total Blows	Drop 30"		Unconfined	Boulders	Casing	Probe Sire_	
						Light Brown SAND, Fine						4 H
				-			5					-
1	D	5 9	8	1.5	17		, , ,					-
							1111					_
2	D	2	4			10	0=					-
		5		1.5	9							-
7	М	4	6			-15 I	5 =					-
		8		1,5	14	<u>. </u>	=					-
						20.0'						-
4	. W	8	4	1.5	12	·	1111					-
				+			=					- -
5	W	4 7	5	1.5	12	·	25 —					-
		-		-	1	E.O.B. @ 27.0'						-
							30 -					-
							Ξ					-
				+		35	35 =					-
				+	-		-		-			- -
					E		10					
							-					
					-		=					
			1	#	=	— 45 —	45 =					-
			-						-			-
							_		-		-	-1-

						ING, INC. FIELD BORING LO	JG	Shee			Of_	
OR .	Del			_				Job	No		1207	
DCA	TION	51	4 Mi	chi	gan	, West Bend, WI Elev.		Bor	ng	No. <u>1</u>	1W-C	
GRO WA	reb	While d Before (After ca	casing			Time after drilling Depth to water Depth to cave-in			_	Start Unit Chief	3-17- 45 MK	-88
٤	ure	Blow: Sam	s on pler	le rery	Total Blows	VISUAL FIELD CLASSIFICATION AND REMARKS	Cooling/Probe Weight 140#	Unconfined Strength		Blo	000	
Sample No.	Moisture	0/6	6/12	Sample Recovery	Total		Drep30"	Unco	Strength	Casing	Probe Size	Drilling
						See Log MWC-2						41/2"
						E		=		_	-	HSA
						E						
				_	_	5	5	-	_			1
				-		Ē		=	-	-	-	-
						=				-	1	1
	·					E						
1	M	-	7	-	_	10	10	<u> </u>	-	_	-	$\vdash \vdash$
	M	8		1 5	14	Brn Silty CLAY 10.5'		_	- -	_	-	╁
					*	Green Silty SAND, Medium						
						E						
				-	-	15	15			_		
		-		┼	-	E		=		_	-	-
		1		-	-	<u> </u>		=	_	_	-	
						E		=				
				_		20	20	, —				\perp
			-	┼	-	E		=-	_		-	-
		-		╁	1-	-			_	_		-
						Ē						
						E.O.B. @ 25.0'		, =				
			 		 	<u> </u>		_	-		-	-
		-	╁─	╢	┼─	Well Set @ 23.2'		=		_	-	-
						Ē		=				-
					_	30	. 30	, =				
	-	-	-	+-	┼-	E				-	_	-
	 	-	 	+-	1-	=		=			-	- -
						Ē						1
				Ļ		35	3:	, ===				
	-		-	+	+	E		=_		_	_	-
	-	-	 	+-	╁	[=	-	-	-	- -
				1		<u>‡</u>			-		_	\dashv
							4	_ =				
	-	-		-	- -	1=	·	=			_	-
		-		1-	-	†=		=			-	-
]=					_	- -
	-		4		-	- 45	4	5 =				
	-			-	-	- =		=	_		-	-
	-	-	-	- -	-	 =		=			-	-
]=		=	-		-	- -
							_	_			_	- -

ISC	ONS	IN TE	ST	DRI	LLI	NG, INC. FIELD BORING LOG	Si	neet	1		_ Of_	_1
	_	n scon elta	SIN				J	ob N	0	1207		_
R.		5	 14 Mi	- ch	iga	n Westbend, WI Elev.	B	oring	N	o. My	F-2	
		While d			· J	Time after drilling 12.2	1-	<u> </u>	T	Start .		
		Before o		remo	oval	Depth to water				Unit .	45	-00
YA.	IER	After ca	ising re	emov	al	Depth to cave-in	Depth to cave-in Chief					
	ی	Blows Samp	alae	2	lows	VISUAL FIELD CLASSIFICATION AND REMARKS Weight 140#	-	ined	2	<u> </u>	00	-
No.	Moisture	0/6	6/12	Sample Recovery	Total Blows	VISUAL FIELD CLASSIFICATION AND REMARKS Weight 140# 30"	_	Unconfined Strength	Boulders	Casing Size	robe	Drilling
		0/4	6/12	0111		TOPSOIL 0.5			_		- 3	414
_						Light Brown SAND, Fine						HS/
_						- Light brown SARD, Fine			_			
1	D	2	2			<u></u>	<u>, </u>					-
<u>-</u>		3		1,5	5	6.5'						
						Black Silty CLAY			_			1
						10.0'	Ē					
2	M	2	1_	6	3	Fine SAND Lenses & Clay Lens	´ =		_			$\left - \right $
				-0	<u>ي</u>	- Title SARD Letises a Citay Letis	111					
_				-		=	-					
3	W	6	5			15.0'	=					
	-	4_		1.0	9	Brown SAND, Fine	=		-	 		┦
						<u>-</u>	Ξ					
4	W	8	7		_	20.01	=		-		-	\vdash
_	·	9		1.5	16	Medium SAND & GRAVEL	Ξ					
			-	-		Ē	Ξ		-	 	-	\vdash
_						25.0'	<u> </u>					
5	W_	15	16		33	<u> </u>	Ξ		-	-	-	+
_						- 3,115 & 31,101 11 406 51 51 10	Ξ					
	1-	-		-	\vdash				-	-	 	-
6	М	12	16	-	39	Gray SILT, W/Clay Hard Dril	 di	7	L			\Box
		23		.5	23	E 1	· '=	Þ	1			
				1	F	ૄ	=	-	-	-		-
7	D	8	12			35 35	s <u> </u>		+-			
_		17	-	1.5	29	<u>E</u>			-			-
_				士		E	=		_			_
8	n	23	40	+	-	40.01	<u>-</u>		-			+
<u>u</u>		58	1911	1.0	98	Gray SILT & GRVL (Hard Pan) E.O.B. @ 42.0'	=					
	-	-	-	+	-	=	=	-	-	-	-	-
_				T	1_		5 <u>-</u>			1		上
	-			+	-	Grouted Hole 0-42'	Ξ	-	-	-	-	-
_					-	1=	Ξ			1		
	-	-		-	-	 -	=		-		-	-

R.	_	viscon elta	SIN	_		FIELD BORING LOG	1	ob N	0	_12	07	F	
CA	TION	ı				West Bend, WI Elev.	F	oring	, N	o. <u>M</u>	W=02	7	
	TFR	While d Before of	casing	remo		Time after drilling Depth to water Depth to cave-in			!	Start 3. Unit Chief .	-22- 45 MK	:-88	
No.	Moisture	Blow Sam	s on pler	Sample Recovery	Total Blows	VISUAL FIELD CLASSIFICATION AND REMARKS Oreo	140# 30"	Unconfined Strength	Boulders	Casing Size	Probe 8	Drilling	
_		0,6		5712	-	See Log MW-D1			_		<u> </u>	HS	
						•	`=					41/2	
	ļ			-		BLIND DRILLED	Ξ					-	
				-	-	• •	=		-			╢	
						 5	5					\vdash	
			Į				=						
				_		- -							
			-	-	_	<u>.</u> -	. =					$ \Box $	
				-		10	10 -	 				-	
	1	1		1		• •	Ξ		-			+	
	1	1			_	• •	=		_				
						-	Ξ						
				_			15						
_	-	-		-	<u> </u>	<u>.</u>	=	-				-	
		-		-		<u>-</u>	Ξ					-	
	┼──			┤─	-	-						-	
_	1	1		1	-		30 =	-	1		 	1	
							20						
							Ξ						
				┼	 	:	=		-			-	
				+-	-		=		-			-	
	-	 	 	-	-	E.O.B@ 25.0'		-	-		-	-	
					1	Well Set @ 25.0'	=	-	 	-	 	-	
	-	-		-	_	-							
			-	-	-	_			_		_	_	
	-	-	+	+-	┼─	30	30 —		+-			4-	
					1	=		_	-	-	-	- -	
				I		<u>-</u>	=	_	1			- -	
		-	-	+	-	=							
	+		-	+	+	35	35 -						
_	+-	-	┥	+-	-		•		-		_	_	
		_	 	+	1	F			-	-	-	- -	
						E		+	- -	-	-	-	
			1			40	40.		1	1	_	- -	
	-			- -	-	=	40 —	-					
			+	-	- -	E	;						
	-	_	+	\vdash	-	=	:	-	-	-		_ _	
						<u>-</u>				-	-		
						-43	45 –	-	+-	+	-	+	
				\bot	4_	=			-			- -	
				-	_ -	 =	:		7-		1-	- -	
		_			_ـــ	<u>-</u>		_			_	- -	

/ISC	ONS	N TE	EST	DRI	LLI	NG, INC. FIELD BORING LOG	;	She	et	1		_ Of_	1_
CHOF	ELD, W	iscon lta	SIN					Job	No)	120	07	3/1
OCA	TION			We	est	Bend, Wisconsin Elev.	·	Boı	ring	N	o. <u>M</u>		
GRO WA	I P. K	Vhile d Before (After ca	casing			Time after drilling Depth to water Depth to cave-in				ι	Start	45	-88
į	ure	Blow: Samp	s on pler	le rery	Total Blows	WOULD STAND OF A COUNTY OF THE PARTY OF THE	asing/Probe	-	Strength	lers	Blow		***
Sample No.	Moisture	0/6	6/12	Sample Recovery	Total	D	тер	- 2	Streng	Boulders	Casing Size	Probe Size_	Drilling Method
				-		Light Brown SAND, Fine		=	-		—-		4½" HSA
						=		主					1137
						Ē		_	-	_			-
1	D	4	6		-	5	5 -	+	-	-			-
		9		1.5	15			土					
						<u> </u>		-	-	_			-
			 -					=		\dashv			-
2	D	4	7			10	10	=					
		9		1.5	16	<u>r</u>		+	-	_			- -
				├─		E		-					\vdash
						F	15						
3	W	8	11			15	13	1					
	-	14		1.5	25		•	=					-
			-	-	-	E		=	_				-
						20.0							
4	W	5	6	<u>_</u>	1.4	<u> </u>		=		_			-
	ļ .	8	-	1.5	14	Brown Silty SAND, Fine		-		—			-
	1					<u>E</u>		=		_			
						25	25	4					$\downarrow \downarrow$
5	-W-	3	3	-	6	<u>#_</u>		=		—			$\left - \right $
	-				1	E		士				-	-
				-	┧—	-	•	==					
6	W	9	9	+	1-	30.0'	30	-					+
		10		1.0	0 19	Brown SILT, With Trace Sand		_				-	1+
	-		+		┼	-		=					
	She	lby I	ube	+	+-	34.0'				_	 		-
						3Pushed Shelby tube 20" Gray CLAY	w/T Grv 135	一		-	-	 	┼┸
		-		+-	+	E.O.B. @ 35.5'		=					
		+	+	╁	+	Well Set @ 34.0'		=		_		-	-
						<u> </u>		=		-	├──	-	-
]_	- -	40						1
		-		╁	4-	1		1					
				_	<u> </u>	<u>∃</u> ≘		+		-		-	-
							45	=		-	-	-	-
-	_	-	-	+	4-	- =	43						
-			-	- -	- -	- -		=		_			_ _
						<u> </u>		=		-	-	-	-
						<u> </u>		_		-	-	-	- -

CHOF	ELD. W	VISCON	SIN .			FIELD BORING LOG			ob No. 1207				
	, w							Job I	No	120)/		
•		i				West Bend, WI Elev.		Borin	g N	a. MW-	-E		
GRO	UND TER	While d Before After ca	rilling casing	remo		Time after drilling 4 hr. Depth to water Depth to cave-in			-	Start 2 Unit 2 Chief 2	3-22- 45 MK	-88	
Sample No.	Moisture	Blow Sam	s on pler	ample tecovery	Total Blows	VISUAL FIELD CLASSIFICATION AND REMARKS Cosing/Pro Weight 1 Orep		Unconfined	Boulders	Casing Size	Probe 8	Orilline	
S		0/6	6/18	SH	1	Brown SAND, Fine, With Trace Silt		- 26	-	3	1 0	41	
						brown saws, the, with hate stre		3	-			H	
				-	-			3-	-			-	
							5.	=					
1	М	3	6			-	٠.					_	
		7		1.5	13	<u>.</u>		=	-			_	
				-	-			-	-			-	
		 	 	+-	-			=	+			-	
2	W	4	6			10.0'	10-					-	
		8		1.5	14	Brown SAND, Fine to Medium							
		-		-		· · · · · · · · · · · · · · · · · · ·		=	-			_	
	-			+-	-	·		=	-			-	
3	W	4	6	+	-	15	15 -	1-	+-			-	
	W	7	0	1.5	13	←Silt Lens			_			-	
						E.O.B. @ 18.0'		Ξ_					
								=					
	-		-	-	_	Well Set @ 17.5'	20		-	-		-	
	ļ. —	-		┼	-			=	-		-	-	
	-		 	+-	╁			=	_	\ 		- -	
	-	1		+-	╁	• •	,		_			1	
	1	1-		1	1	• •	25	=					
						25	43	=	_				
				-[_		- - -		_	_			- -	
				-	+	•		=	-		<u> </u>		
		+	-		-		•	-	-	-	-	- -	
					1	30	30		+-	1	-	+	
						- -						-	
		-	+	-	-	=		=	_				
	+		+	+	╁			=-	_ _	-		- -	
	+	+	1	+	+	35	35	1	+-	-	+	+	
						•••			_		-	+	
								=					
	-			+-	+-	<u>-</u>		#				_	
	+		+-	-	-		40			-		-	
	_	_	1	_	-	=		=		-	-	- -	
						=		+	_		-	-	
						-		=				-	
-		-	-	+-	- -	 45	45	=					
-	-		+	+	-	<u>-</u>		=	- -	-	-	_[.	
	1		1	_	- -	-		=	+		-	- -	
						-		=	\dashv	-		- -	
					7	-		-		-	-	_ .	

SOIL BORING LOG

BORING # MW "F"

ENVIRONMENTAL & FOUNDATION DRILLING INC.

PROJECT: West Bend LOCATION: across from 233 Kilbourne Date completed: 5/25/88 ELEVATION none taken

	SOIL CLASSIFICATION		SAMPLE NUMBER	BLOW COUNTS	MOIS- TURE REC	Q
d e p t h	FillBrown fine sand mixed w/ layers of Dark Brown clayey F-M sand	The state of the s				
5	Dark Brown Clayey F-M sand 5'-6"	1	3.5-5.0	2, 1, 1	18	
	Brown layers of fine, F-M & F-C sand	edire - Prandicto d'Ar disse mas distrações dos citos e desa demada				\$1.500 \$1.000 \$1
10-	predominantly Brown F-M sand	2	8.5-10	3, 5, 4	18	
15—	·	3	13.5-15	2, 2, 3	18	
10						
20	End of Boring	4	18.5-20	1, 1, 1	18	
			e de la companya de l			
25		•				

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

June 24, 1988

Mr. Kenneth Shimko Delta Environmental Consultants, Inc. 1801 Old Highway 8 Suite 123 New Brighton, MN 55112

RE: Delta Project No. 10-87-285 PACE Project No. 880321.501

Dear Mr. Shimko:

Enclosed is the report of laboratory analyses for samples received March 21, 1988.

The organic analyses were performed March 23 - June 13, 1988.

A copy of the chain of custody record for the samples and an invoice for services provided are also enclosed.

Please contact us if you have any questions regarding the enclosures.

Sincerely,

teggy F. Gaskill

Peggy F. Gaskill

Coordinator of Services

Roger C. Sprinter, Ph.D.

Director, Laboratory Services

Enclosures

June 24, 1988

PACE Project Number:

062760

062770

Offices: Minneapolis, Minnesota Tampa, Florida Coralville, lowa

laboratories, inc.

Delta Environmental Consultants, Inc.

1801 Old Highway 8

Suite 123

New Brighton, MN 55112

Attn: Mr. Kenneth Shimko

PACE Sample Number:

Date Sample(s) Collected: 03/16/88 Date Sample(s) Received: 03/21/88

10-87-285

PACE Sample Number:			U6276U Drilling	Trip
Parameter	<u>Units</u>	MDL	Fluid	Blank
Chloromethane Bromomethane Dichlorodifluoromethane Vinyl chloride Chloroethane	ug/L ug/L ug/L ug/L ug/L	1.0 1.5 1.5 1.5	ND ND ND ND ND	ND ND ND ND ND
Methylene chloride Trichlorofluoromethane 1,1-Dichloroethylene 1,1-Dichloroethane trans-1,2-Dichloroethylene	ug/L <mark>ug/L</mark> ug/L ug/L ug/L	1.0 0.4 0.3 0.2 0.3	ND ND ND ND ND	ND O.6 ND ND ND
Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	ug/L ug/L ug/L ug/L ug/L	0.5 0.2 0.5 0.3	0.8 ND 0.8 ND 1.1	ND ND ND ND ND
1,2-Dichloropropane cis-1,3-Dichloro-1-propene 1,1,2-Trichloroethylene Benzene Dibromochloromethane	ug/L ug/L ug/L ug/L ug/L	0.2 0.5 0.5 1.0	ND ND ND ND 1.0 (1)	ND ND ND ND ND
1,1,2-Trichloroethane trans-1,3-Dichloro-1-propene 2-Chloroethylvinyl ether Bromoform 1,1,2,2-Tetrachloroethane	ug/L ug/L ug/L ug/L ug/L	1.0 0.3 5.0 1.0	1.0 (1) ND ND ND ND	ND ND ND ND ND
1,1,2,2-Tetrachloroethylene	ug/L	1.0	ND	ND

ND

Not detected at or above the MDL.

MDL

Method Detection Limit

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 2 June 24, 1988

PACE Project Number: 880321501

PACE Sample Number:			062760 Drilling	062770 Trip
<u>Parameter</u>	<u>Units</u>	MDL	Fluid	<u>Blank</u>
Toluene Chlorobenzene Ethyl benzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene	ug/L ug/L ug/L ug/L	1.0 1.0 1.0 4.0 4.0	3.5 ND 2.1 ND ND	ND ND ND ND ND
1.4-Dichlorobenzene	ug/L	4.0	ND	ND

ND Not detected at or above the MDL.
MDL Method Detection Limit

Offices: Minneapolis, Minnesota Tampa, Florida Coraiville, Iowa

Mr. Kenneth Shimko Page 3		4, 1988 roject N	umber: 880	321501	10 ship
0			WPLX	100	my.
PACE Sample Number: Parameter	Units	MDL	062690 B1	062710 B2	062720 B3 (4)
Pheno1	mg/kg	0.33	ND (2)	ND	ND (2)
2-Chlorophenol	mg/kg	0.93	ND (2)	ND	ND (2)
2-Nitrophenol	mg/kg	0.90	ND (2)	ND	ND (2)
· V N	mg/kg	0.60	ND (2)	ND '	ND (2)
2,4-Dichlorophenol +	mg/kg	0.80	ND (2)	ND	ND (2)
2,4-Dimethylphenol 2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol	mg/kg	3.3	ND (2)	ND	ND (2)
2,4,6-Trichlorophenol	mg/kg	2.4	ND (2)	ND	ND (2)
2,4-Dinitrophenol	mg/kg	3.3	ND (2)	ND	ND (2)
4-Ni trophenol	mg/kg	3.3	ND (2)	ND	ND (2)
2-Methyl-4,6-dinitrophenol	mg/kg	4.3	ND (2)	ND	ND (2)
	mg/kg(50	00 50	(ND (2)	ND	(ND (2)
Pentachlorophenol Chloromethane	ug/kg R	120	ND	ND .	ND
Bromomethane	ug/kg	190	ND	ND	ND
Dichlorodifluoromethane	ug/kg	190	ND	ND	ND
Vinyl Chloride	ug/kg	190	ND	ND	ND
Chloroethane	ug/kg	120	ND	ND	ND
Methylene Chloride	ug/kg	120	ND	ND	'ND
Trichlorofluoromethane	ug/kg	50	ND	ND	ND
1,1-Dichloroethylene	ug/kg	38	ND	ND	ND
1,1-Dichloroethane	ug/kg	25	ND	ND	ND
Trans-1,2-Dichloroethylene	ug/kg	38	ND	ND	ND
Chloroform	ug/kg	62	ND	ND	ND
1,2-Dichloroethane	ug/kg	25	ND	ND	ND
1,1,1-Trichloroethane	ug/kg	62	ND	ND	ND
Carbon Tetrachloride	ug/kg	38	ND	ND	ND
Bromodichloromethane	ug/kg	25	ND	ND	ND
1.2-Dichloropropane	ug/kg	25	ND	ND	ND
cis-1,3-Dichloro-1-propene	ug/kg	62	ND	ND	ND
1,1,2-Trichloroethylene	ug/kg	62	ND	ND	ND
Benzene	ug/kg	120	ND	ND	ND
Dibromochloromethane	ug/kg	120	ND	ND	ND
1,1,2-Trichloroethane	ug/kg	120	ND	ND	ND
Trans-1,3-Dichloro-1-propene	ug/kg	38	ND	ND	ND

Method Detection Limit MDL Not detected at or above the MDL. ND

oratories, inc.

laboratories, inc.

REPORT OF LABORATORY ANALYSIS

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, lowa

Mr. Kenneth Shimko Page

June 24, 1988 PACE Project Number: 880321501

PACE Sample Number:			062690	062710	062720
Parameter	Units	MDL	B1	B2 (5)	B3 (4)(6)
T at ame cer	511165	1100		99	
2-Chloroethylvinyl Ether	ug/kg	620	ND	ND	ND
Bromoform	ug/kg	120	ND	ND	ND
1,1,2,2-Tetrachloroethane	ug/kg	120	ND	ND	ND
1,1,2,2-Tetrachloroethylene	ug/kg	120	ND	ND .	ND
Toluene Toluene	ug/kg	120	280	ND	ND
Tordene	, ug/kg	120	200	NO	NO
Chlorobenzene	ug/kg	120	ND	ND	ND
Ethylbenzene	ug/kg	120	ND	ND	650
1,3-Dichlorobenzene	ug/kg	500	ND	ND	ND
1,2-Dichlorobenzene	ug/kg	500	ND	ND	ND
1,4-Dichlorobenzene	≈ PMB ug/kg	500	ND	ND	ND
1,4-DICHIOIODENZENE	≈ pro ug/kg	300	NO	No	110
4-chloro-3-methylphenol	Se PPM mg/kg	8.2	-	ND	ND
2-chlorophenol	mg/kg	2.6	- /	ND	ND /
2,4-Dichlorophenol	mg/kg	7.8	_ \	ND	ND /
2,4-Dimethylphenol	mg/kg	12	- 1	ND	ND
2,4-Dinitrophenol	mg/kg	20	_	ND	ND
z, romiti opnicio				1.0	- L
2-Methyl-4,6-Dinitrophenol	mg/kg	9.2	-	ND.	ND
2-Nitrophenol	mg/kg	5.4	- 10.10	ND	ND
4-Nitrophenol	mg/kg	32	-	ND	ND
Pentachlorophenol Pentachlorophenol	mg/kg	11	-	ND	2400 DPM
Phenol	mg/kg	3.6		ND	ND
				0	
2,4,6-Trichlorophenol	mg/kg	4.0	-	ND	ND
Acenaphthene	mg/kg	7.6	-	ND	ND
Acenaphthylene	mg/kg	9.8	_	ND	ND
Anthracene	mg/kg	9.6	-	ND	ND
Benzo(a)anthracene	mg/kg	6.0		ND	ND
Benzo(a)pyrene	mg/kg	13	eleate	ND	ND
Benzo(b)fluoranthene	mg/kg	2.0	-	ND	ND
Benzo(k)fluoranthene	mg/kg	7.6	-	ND	ND
Benzo(g,h,i)perylene	mg/kg	4.0	-	ND	ND
Bis(2-chloroethoxy)methane	mg/kg	12	-	ND	ND
Bis(2-chloroethyl)ether	mg/kg	34		ND	ND
Bis(2-chloroisopropyl)ether	mg/kg	13	_	ND	ND
Bis(2-ethyl hexyl)phthalate	mg/kg	5.2		ND	ND
DISTZ-ethyl nexylyphthatate	my/ky	3.2	mer	110	NO

ND Not detected at or above the MDL.

MDL Method Detection Limit

laboratories, inc.

REPORT OF LABORATORY ANALYSIS

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, lowa

Mr. Kenneth Shimko Page 5

June 24, 1988 PACE Project Number: 880321501

			-6	IN-DIVI
PACE Sample Number: Parameter	<u>Units</u>	MDL	062710 B2 (5)	062720 B3 (4)(5)(6)
	//-	7 0	ND	ND
4-Bromophenyl phenyl ether	mg/kg	7.8		
Butyl benzyl phthalate	mg/kg	6.0	2.5	ND
2-chloronaphthalene	mg/kg	8.4	ND	ND .
4-chlorophenyl phenyl ether	mg/kg	2.0	ND	ND
Chrysene	mg/kg	6.0	ND	ND
Dibenzo(a,h)anthracene	mg/kg	7.7	ND	ND
1,2-Dichlorobenzene	mg/kg	5.2	ND	ND
1,3-Dichlorobenzene	mg/kg	7.8	ND	ND
1,4-Dichlorobenzene	mg/kg	4.4	ND	ND
3,3-Dichlorobenzidine	mg/kg	28	ND	ND
01-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	ma/ka	9.6	ND	ND
Diethyl phthalate	mg/kg	6.4	ND	ND
Dimethyl phthalate	mg/kg	4.0	ND	ND
Di-n-butyl phthalate	mg/kg			
2,4-Dinitrotoluene	mg/kg	6.5	ND	ND
2,6-Dinitrotoluene	mg/kg	5.4	ND	ND
Di-n-octyl phthalate	mg/kg	6.0	ND	ND
Fluoranthene	mg/kg	6.8	ND	ND
Fluorene	mg/kg	9.0	ND	ND
Hexachlorobenzene	mg/kg	7.4	· ND	ND
Hexachlorobutadiene	mg/kg	4.8	ND	ND
Hexachloroethane	mg/kg	8.6	ND .	ND .
Indeno(1,2,3-c,d)pyrene	mg/kg	7.7	ND	ND
Isophorone	mg/kg	14	ND	ND
Naphthalene Naphthalene	mg/kg	5.2	ND	50
Nitrobenzene	mg/kg	5.4	ND	ND
Withopenzene	ilig/ kg	3.4	NO	110
N-Nitrosodimethylamine	mg/kg	4.4	ND	ND
N-Nitrosodi-n-propylamine	mg/kg	8.0	ND	ND
N-Nitrosodiphenylamine	mg/kg	12	ND	ND
Phenanthrene	mg/kg	7.4	ND	87
Pyrene Cyl File	mg/kg	7.4	ND	ND
1,2,4-Trichlorobenzene	mg/kg	5.4	ND	ND
Hexachlorocyclopentadiene	mg/kg	19	ND	ND
ne a chi tot ocyc topen cad tene	my my			

MDL

Method Detection Limit

ND

Not detected at or above the MDL.

laboratories, inc.

REPORT OF LABORATORY ANALYSIS

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 6

June 24, 1988 PACE Project Number: 880321501

PACE Sample Number: Parameter	<u>Units</u>	MDL	062730 B4 (4)(5)	062740 B5 (4)(5)	062750 B5-2 (5)
2.3.7.8-Tetrachlorodibenzo-P-Dioxin	ug/kg	0.300	_	_	ND
Pheno1	mg/kg	3.3	ND	ND (3)	ND (2)
2-Chlorophenol	mg/kg	9.3	ND	ND (3)	ND (2)
2-Nitrophenol	mg/kg	9.0	ND	ND (3)	ND (2)
2,4-Dimethylphenol	mg/kg	6.0	ND	ND (3)	ND (2)
2,4-Dichlorophenol	mg/kg	8.0	ND	ND (3)	ND (2)
4-Chloro-3-methylphenol	mg/kg	33	ND	ND (3)	ND (2)
2,4,6-Trichlorophenol	mg/kg	24	ND	ND (3)	ND (2)
2,4-Dinitrophenol	mg/kg	33	ND	ND (3)	ND (2)
4-Ni trophenol	mg/kg	33	ND	ND (3)	ND (2)
2-Methyl-4,6-dinitrophenol	mg/kg	43	ND	ND (3)	ND (2)
Pentachlorophenol ~ PPM	mg/kg	500	ND	ND (3)	ND (2)
Pentachlorophenol Chloromethane Rromomethane	ug/kg	120	ND	ND	ND
Bromomethane	ug/kg	190	ND	ND	ND '
Dichlorodifluoromethane	ug/kg	190	ND	ND	ND
Vinyl Chloride	ug/kg	190	ND	ND	ND
Chloroethane	ug/kg	120	ND	ND	ND
Methylene Chloride	ug/kg	120	ND	ND	ND
Trichlorofluoromethane	ug/kg	50	ND	ND	ND
1,1-Dichloroethylene	ug/kg	38	ND	ND	ND
1,1-Dichloroethane	ug/kg	25	ND	ND	ND
Trans-1,2-Dichloroethylene	ug/kg	38	ND	ND	ND
Chloroform	ug/kg	62	ND	ND	ND
1,2-Dichloroethane	ug/kg	25	ND	ND	ND
1,1,1-Trichloroethane	ug/kg	62	ND	ND	ND
Carbon Tetrachloride	ug/kg	38	ND	ND	ND
Bromodichloromethane	ug/kg	25	ND	ND	ND
1,2-Dichloropropane	ug/kg	25	ND	ND	ND
cis-1,3-Dichloro-1-propene	ug/kg	62	ND	ND	ND
1,1,2-Trichloroethylene	ug/kg	62	ND	ND	ND
Benzene	ug/kg	120	ND	ND	ND
Dibromochloromethane	ug/kg	120	ND	ND	ND
1,1,2-Trichloroethane	ug/kg	120	ND	ND	ND

Not detected at or above the MDL. ND MDL Method Detection Limit

PACE laboratories, inc.

REPORT OF LABORATORY ANALYSIS

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 7 June 24, 1988

PACE Project Number: 880321501

PACE Sample Number: Parameter	Units	MDL	062730 <u>B4 (4)(5)</u>	062740 B5 (4)(5)	062750 <u>B5-2 (5)</u>
Trans-1,3-Dichloro-1-propene	ug/kg	38	ND	ND	ND
2-Chloroethylvinyl Ether	ug/kg	620	ND	ND	ND
Bromoform	ug/kg	120	ND	ND .	ND
1,1,2,2-Tetrachloroethane	ug/kg	120	ND	ND	ND
1,1,2,2-Tetrachloroethylene	ug/kg	120	ND	ND	ND
Toluene	<mark>ug/kg</mark>	120	ND	750	1200
Chlorobenzene	ug/kg	120	ND	ND	ND
Ethylbenzene	ug/kg	120	ND	ND	ND
1,3-Dichlorobenzene	ug/kg	500	ND	ND	ND
1,2-Dichlorobenzene	ug/kg	500	ND	ND	ND
1,4-Dichlorobenzene	≈ PPB ug/kg	500	ND	ND	ND
4-chloro-3-methylphenol	SPPM mg/kg	8.2	ND	ND	ND
2-chlorophenol	mg/kg	2.6	ND	ND	ND
2,4-Dichlorophenol	mg/kg	7.8	ND	ND	ND
2,4-Dimethylphenol	mg/kg	12	ND	ND	ND
2,4-Dinitrophenol	mg/kg	20	ND	ND	ND
2-Methyl-4,6-Dinitrophenol	mg/kg	9.2	ND	ND	ND
2-Nitrophenol	mg/kg	5.4	ND	ND	ND
4-Nitrophenol	mg/kg	32	ND	ND	ND
Pentachlorophenol	mg/kg	11	240	250	20
Pheno1	· mg/kg	3.6	ND	ND	ND
2,4,6-Trichlorophenol	mg/kg	4.0	ND	ND	ND
Acenaphthene	mg/kg	7.6	ND	ND	ND
Acenaphthylene	mg/kg	9.8	ND	ND	ND
Anthracene	mg/kg	9.6	ND	ND	ND
Benzo(a)anthracene	mg/kg	6.0	ND	ND	ND
Benzo(a)pyrene	mg/kg	13	ND	ND	ND
Benzo(b)fluoranthene	mg/kg	2.0	ND	ND	ND
Benzo(k)fluoranthene	mg/kg	7.6	ND	ND	ND
Benzo(g,h,i)perylene	mg/kg	4.0	ND	ND	ND
Bis(2-chloroethoxy)methane	mg/kg	12	ND	ND	ND
Bis(2-chloroethyl)ether	mg/kg	34	ND	ND	ND
Bis(2-chloroisopropyl)ether	mg/kg	13	ND	ND	ND

ND

Not detected at or above the MDL.

MDL

Method Detection Limit

PACE laboratories, inc.

REPORT OF LABORATORY ANALYSIS

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 8 June 24, 1988

PACE Project Number: 880321501

PACE Sample Number: Parameter	<u>Units</u>	MDL	062730 <u>B4 (4)(5)</u>	062740 <u>B5 (4)(5)</u>	062750 <u>B5-2 (5)</u>
Bis(2-ethyl hexyl)phthalate	mg/kg	5.2	ND	ND	ND
4-Bromophenyl phenyl ether	mg/kg	7.8	ND	ND	ND
Butyl benzyl phthalate	mg/kg	6.0	ND	ND	ND
	mg/kg	8.4	ND	ND .	ND
2-chloronaphthalene	mg/kg	2.0	ND	ND	ND
4-chlorophenyl phenyl ether -	mg/kg	2.0	NU	NU	NU
Chrysene	mg/kg	6.0	ND	ND	ND
Dibenzo(a,h)anthracene	mg/kg	7.7	ND	ND	ND
1,2-Dichlorobenzene	mg/kg	5.2	ND	ND	ND
1.3-Dichlorobenzene	mg/kg	7.8	ND	ND	ND
1,4-Dichlorobenzene	mg/kg	4.4	ND	ND	ND
1,4-biciliorobenzene	mg, kg		110	,,,,	
3,3-Dichlorobenzidine	mg/kg	28	ND	ND	ND
Diethyl phthalate	mg/kg	9.6	ND	ND	ND
Dimethyl phthalate	mg/kg	6.4	ND	ND	ND
Di-n-butyl phthalate	mg/kg	4.0	ND	ND	ND
2,4-Dinitrotoluene	mg/kg	6.5	ND	ND	ND
2,4-011176106016		***			
2,6-Dinitrotoluene	mg/kg	5.4	ND	ND	ND
Di-n-octyl phthalate	mg/kg	6.0	ND	ND	ND
Fluoranthene cus 206-44-0 # 754	mg/kg	6.8	ND	27	ND
Fluorene as 86 13-7 #755	mg/kg	9.0	ND	ND	8.3
Fluorene au 86-13-7 ±755 Hexachlorobenzene	mg/kg	7.4	ND	ND	ND
	11	4.0	NO	ND	NO
Hexachlorobutadiene	mg/kg	4.8	ND	ND	ND
Hexachloroethane	mg/kg	8.6	ND	ND	ND
Indeno(1,2,3-c,d)pyrene	mg/kg	7.7	ND	ND	ND
Isophorone	mg/kg	14	ND	ND	ND
<u>Naphthalene</u>	mg/kg	5.2	200	560	43
Nitrobenzene	mg/kg	5.4	ND	ND	ND
N-Nitrosodimethylamine	mg/kg	4.4	ND	ND	ND
N-Nitrosodi-n-propylamine	mg/kg	8.0	ND	ND	ND
	mg/kg	12	ND	ND	ND
N-Nitrosodiphenylamine		7.4	170	360	23
Phenanthrene	mg/kg	1.4	170	300	23
Pyrene	mg/kg	7.4	ND	ND	ND
1,2,4-Trichlorobenzene	mg/kg	5.4	ND	ND	ND
Hexachlorocyclopentadiene	mg/kg	19	ND	ND	ND
nexactitorocyclopentatiene	my/ ky	13	110	110	110

ND Not detected at or above the MDL.
MDL Method Detection Limit

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, lowa

Mr. Kenneth Shimko Page 9

June 24, 1988 PACE Project Number: 880321501

PACE Sample Number: Parameter	<u>Units</u>	MDL	062730 B4 (4)(5)	062740 B5 (4)(5)	062750 <u>B5-2 (5)</u>
Gasoline Fuel Oil #1 Fuel Oil #2	mg/kg mg/kg mg/kg	5.0 5.0 5.0	-	-	ND ND 3400

Not detected at or above the MDL. ND Method Detection Limit MDL

Offices:

V --

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

HIDUK Z

Mr. Kenneth Shimko Page 10 June 24, 1988

PACE Project Number: 880321501

PACE Sample Number:			062780
Parameter	Units	MDL	B3-A (4)
Chloromethane	ug/kg	120	ND
Bromome thane	ug/kg	190	ND
Dichlorodifluoromethane	ug/kg	190	ND
Vinyl Chloride	ug/kg	190	ND
Chloroethane	ug/kg	120	ND
Methylene Chloride	ug/kg	120	ND
Trichlorofluoromethane	ug/kg	50	ND
1,1-Dichloroethylene	ug/kg	38	ND
1,1-Dichloroethane	ug/kg	25	ND
Trans-1,2-Dichloroethylene	ug/kg	38	ND
Chloroform	ug/kg	62	ND
1,2-Dichloroethane	ug/kg	25	ND .
1,1,1-Trichloroethane	ug/kg	62	ND
Carbon Tetrachloride	ug/kg	38	ND
Bromodichloromethane	ug/kg	25	ND
1,2-Dichloropropane	ug/kg	25	ND
cis-1,3-Dichloro-1-propene	ug/kg	62	ND
1,1,2-Trichloroethylene	ug/kg	62	ND
Benzene	ug/kg	120	ND
Dibromochloromethane	ug/kg	120	ND
1,1,2-Trichloroethane	ug/kg	120	ND .
Trans-1,3-Dichloro-1-propene	ug/kg	38	ND
2-Chloroethylvinyl Ether	ug/kg	620	ND
Bromoform	ug/kg	120	ND
1,1,2,2-Tetrachloroethane	ug/kg	120	ND
1,1,2,2-Tetrachloroethylene	ug/kg	120	ND
Toluene	ug/kg	120	ND
Chlorobenzene	ug/kg	120	ND
Ethylbenzene	ug/kg	120	ND
1,3-Dichlorobenzene	ug/kg	500	ND
1,2-Dichlorobenzene	ug/kg	500	ND
1,4-Dichlorobenzene	ug/kg	500	ND

ND Not detected at or above the MDL.

MDL Method Detection Limit

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 11 June 24, 1988

PACE Project Number: 880321501

- (1) These compounds co-elute; compound calculated as dibromochloromethane.
- (2) The sample was diluted 1 to 100 for the phenol analysis; all phenolic compound MDLs must be multiplied by the dilution factor.
- (3) The sample was diluted 1 to 10 for the phenol analysis; all phenolic compound MDLs must be multiplied by the dilution factor.
- (4) The sample was diluted 1 to 2 for the volatile analysis; all volatile compound MDLs must be multiplied by the dilution factor.
- (5) The <u>sample was concentrated 1 to 6</u> for the base/neutral acid analysis; all base/neutral/acid compound MDIs must be divided by the concentration factor.
- (6) The sample was diluted 1 to 17 for the base/neutral acid analysis; all base/neutral/acid compound MDLs must be multiplied by the dilution factor.

The data contained in this report were obtained using EPA or other approved methodologies. All analyses were performed by me or under my direct supervision.

William H. Scruton

Organic Chemistry Manager

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Table 1

Delta Environmental Consultants, Inc. PACE Project Number: 880321.501

Other Semi-Volatile Compounds Tentatively Identified by GC/MS

Sample Number	<u>Parameter</u>	Retention Time (Min.)	Estimated Concentration mg/kg
62710	2-Hydroxy-propanoic acid 4-Hydroxy-4-methyl-2-pentanone 4-Methyl octane Dibutyl Phthalate Unknown Phthalate Unknown	5.33 8.32 9.00 29.05 35.87 10.13 34.73	4.3 47 1.4 7.7 9.7 2.6 2.9
62720	Undecane Unknown hydrocarbon	16.63 18.60 19.98 20.43 21.48 22.13 23.75 25.27 25.35 28.10	890 1600 660 1500 830 1400 1300 1200 730 660
62730	2-Methylnaphthalene Undecane Unknown hydrocarbon Unknown hydrocarbon Unknown dimethylnaphthalene Unknown dimethylnaphthalene Unknown hydrocarbon Unknown hydrocarbon Unknown hydrocarbon Unknown hydrocarbon Unknown hydrocarbon	18.88 16.45 18.38 20.20 20.63 20.90 21.88 23.48 25.00 26.45	5000 2600 3000 3300 1200 1300 3300 3300 3000 1800
62740	2-Methylnaphthalene Unknown hydrocarbon 1-Methyl naphthalene Unknown hydrocarbon 2,6-Dimethylnaphthalene Unknown hydrocarbon 4,2,6-Trimethyloctane Unknown hydrocarbon Unknown hydrocarbon Heptadecane	18.92 18.32 18.53 20.13 20.55 21.83 23.42 24.93 26.38 27.73	4200 4000 2800 4300 2000 4200 4100 3800 2400 1800
62750	2-Methylnaphthalene	18.90	210

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 13 July 07, 1988

PACE Project Number: 880527502

PACE Sample Number:			136560	136570	136580 Excavated
Parameter	Units	MDL	<u>B6</u>	<u>B 7</u>	Soil
Pheno1	mg/kg	0.33	ND 1	-	-
Phenol	mg/kg	3.3	-	ND	-
2-Chlorophenol	mg/kg	0.93	ND	-	` -
2-Chlorophenol	mg/kg	9.3	-	ND	_
2-Nitrophenol	mg/kg	0.90	ND	-	-
Z-M Crophenor	9. 1.3		,		
2-Nitrophenol	mg/kg	9.0	-	ND	-
2,4-Dimethylphenol	mg/kg	0.60	ND	-	-
2,4-Dimethylphenol	mg/kg	6.0	_	ND	_
2,4-Dichlorophenol	mg/kg	0.80	ND	-	_
2.4-Dichlorophenol	mg/kg	8.0	_	ND	_
2,4-bichiolophenol	g, kg	0.0			
4-Chloro-3-methylphenol	mg/kg	3.3	ND	-	
4-Chloro-3-methylphenol	mg/kg	33	- ′	ND	
2,4,6-Trichlorophenol	mg/kg	2.4	ND	-	_
2,4,6-Trichlorophenol	mg/kg	24	-	ND	_
2,4-Dinitrophenol	mg/kg	3.3	ND .	-	_
2,4-Diffici optieno	my/kg	3.3	110		
2,4-Dinitrophenol	mg/kg	33	_	ND	
4-Nitrophenol	mg/kg	3.3	ND	_	_
4-Nitrophenol	mg/kg	33	-	ND	_
	mg/kg	4.3	ND	-	
2-Methyl-4,6-dinitrophenol	mg/kg	43	-	ND	_
2-Methyl-4,6-dinitrophenol	my/ky	43	_	NO	_
Dente ablamenhanel	mg/kg	4.7	ND	-	_
Pentachlorophenol	mg/kg	47	-	ND	_
Pentachlorophenol		0.12		NU	ND
Benzene	mg/kg		-	-	ND
Toluene	mg/kg	0.12	-	-	ND
Xylene	mg/kg	0.12	- ()	-	NU
Total Hydrocarbons	mg/kg	1.2	-	_	ND
•					

MDL Method Detection Limit

ND Not detected at or above the MDL.

Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 14

July 07, 1988 PACE Project Number: 880527502

PACE Sample Number: Parameter	<u>Units</u>	_MDL_	136590 <u>B 6</u>
Chloromethane Bromomethane Dichlorodifluoromethane Vinyl Chloride Chloroethane	ug/kg ug/kg ug/kg ug/kg ug/kg	120 190 190 190 120	ND ND ND ND
Methylene Chloride Trichlorofluoromethane 1,1-Dichloroethylene 1,1-Dichloroethane Trans-1,2-Dichloroethylene	ug/kg ug/kg ug/kg ug/kg ug/kg	120 50 38 25 38	ND ND ND ND
Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane	ug/kg	62	ND
	ug/kg	25	ND
	ug/kg	62	ND
	ug/kg	38	ND
	ug/kg	25	ND
1,2-Dichloropropane cis-1,3-Dichloro-1-propene 1,1,2-Trichloroethylene Benzene Dibromochloromethane	ug/kg	25	ND
	ug/kg	62	ND
	ug/kg	62	ND
	ug/kg	120	ND
	ug/kg	120	ND
<pre>1,1,2-Trichloroethane Trans-1,3-Dichloro-1-propene 2-Chloroethylvinyl Ether Bromoform 1,1,2,2-Tetrachloroethane</pre>	ug/kg ug/kg ug/kg ug/kg ug/kg	120 38 620 120 120	ND ND ND ND
1,1,2,2-Tetrachloroethylene	ug/kg	120	ND
Toluene	ug/kg	120	ND
Chlorobenzene	ug/kg	120	ND
Ethylbenzene	ug/kg	120	ND
1,3-Dichlorobenzene	ug/kg	500	ND
<pre>1,2-Dichlorobenzene 1,4-Dichlorobenzene</pre>	ug/kg	500	ND
	ug/kg	500	ND

MDL

Method Detection Limit

ND

Not detected at or above the MDL.

WELL DETAIL INFORMATION SHEET

	70	B NO112	7	
	ВО	RING NO. MW-	1	
	DA	TE 9-1	5-87	
Elev.		IEF P.D		
9)	OCATION	West Be	nd Monitoring Wells	
B Elev.	to be		ents of <u>well detail</u> curface unless other	
			OM OF WELL POINT OR FE	
	2	DEPTH OF BOTTO	OM OF SEAL (if insta	illed)
5	3		OF SEAL (if installe	ed)
	4	LENGTH OF WELL	PEIO.O FEET.	CREEN) (Circle One)
	5	TOTAL LENGTH	OF PIPE <u>10.0</u> IN. DIAMETER.	FEET
	6		R MATERIAL AROUND W TED PIPE <u>#30 Flint</u>	
3	7	CONCRETE CAP,	YES NO	(Circle One)
2	8		L CASING ABOVE GROU	ND
4 6	9	PROTECTIVE CA HEIGHT ABOVE LOCKING CAP?	SING? YES NO GROUND 2.1'	(Circle One)
	(10)		ILL: Bentonite Grou	-
1		THE OF BRIGHT	er. Beneditte at ou	
		WATER LEVEL C	HECKS	
			rotective casing him of protective cas	
	BORING # DA	TE TIME	DEPTH TO WATER	REMARKS

WISCONSIN TEST DRILLING

WELL DETAIL INFORMATION SHEET

JOB NO. 1127
BORING NOMW-3 2
DATE 9-16-87
CHIEF PD
LOCATION West Bend Monitoring Wells
All depth measurements of well detail assumed to be from ground surface unless otherwise indicated.
DEPTH TO BOTTOM OF WELL POINT OR SLOTTED PIPE 22.3 FEET.
2 DEPTH OF BOTTOM OF SEAL (if installed)
DEPTH TO TOP OF SEAL (if installed) 9.8 FEET.
LENGTH OF WELL POINT, PVC WELL SCREEN OR SLOTTED PIPE 10.0 FEET. (Circle One)
5 TOTAL LENGTH OF PIPE 14.3 FEET @ IN. DIAMETER.
TYPE OF FILTER MATERIAL AROUND WELL POINT OR SLOTTED PIPE #30 Flint Sand.
7 CONCRETE CAP, YES NO (Circle One)
8 HEIGHT OF WELL CASING ABOVE GROUND 2.0 FEET.
9 PROTECTIVE CASING? YES NO (Circle One) HEIGHT ABOVE GROUND 2.1' LOCKING CAP? YES NO (Circle One)
10) TYPE OF BACKFILL: Bentonite Grout
WATER LEVEL CHECKS
*From top of casing, if protective casing higher, take measurement from top of protective casing.
BORING # DATE TIME DEPTH TO WATER REMARKS
WISCONSIN TEST DRILLING

WELL DETAIL INFORMATION SHEET

	J)B NO1	127	
	BC	ORING NOM	1-82 3	
		NTE9.	-15-87	
	Ch	HEFP	.D.	
			Monitoring Wells	
Elev.	to be	depth measureme from ground cated.	ents of <u>well detail</u> surface <u>unless</u> other	assumed wise
			OM OF WELL POINT OR	ET.
	2	DEPTH OF BOTT	OM OF SEAL (if insta	illed)
5	3		OF SEAL (if installe FEET.	ed)
10	4	LENGTH OF WEL OR SLOTTED PI	L POINT, PVC WELL SO PE 10.0 FEET.	CREEN) (Circle One)
	5	TOTAL LENGTH @ 2	OF PIPE 11.1 I	FEET
	6		R MATERIAL AROUND WI TED PIPE <u>#30 Flint</u>	
	7	CONCRETE CAP,	YES NO	(Circle One)
2	. 8		L CASING ABOVE GROU	ND
4	9	PROTECTIVE CAMEIGHT ABOVE LOCKING CAP?		(Circle One)
	10	TYPE OF BACK	FILL: <u>Bentonite Grou</u>	t
		WATER LEVEL	CHECKS	
			rotective casing hig p of <u>protective</u> casi	
	BORING # DA	ATE TIME	DEPTH TO WATER	REMARKS

WISCONSIN TEST DRILLING

MONITORING WELL DEVELOPMENT
WELL NUMBER
DESCRIPTION OF DEVELOPMENT METHOD
VOLUME OF WATER REMOVED FROM WELL 40 Gal.
CLARITY OF WATER IN WELL BEFORE DEVELOPMENT Black, very cloudy
CLARITY OF WATER IN WELL AFTER DEVELOPMENT Lt. Blk, Cloudy
VOLUME OF WATER ADDED TO WELL
SOURCE OF WATER ADDED TO WELL
TIME SPENT FOR DEVELOPMENT: 45 Min.
COMMENTS:

WISCONSIN TEST DRILLING INC.

101 ALDERSON
P. O. BOX 89
SCHOFIELD, WISCONSIN 54476
(715) 359-7090

	0	3 NO
	B	ORING NO. MW-4
		ATE 9-16-87
1	Elev C	HIEF P.D.
	114	West Bend Monitoring Wells
8	to b	depth measurements of <u>well detail</u> assumed e from ground surface unless otherwise cated.
		DEPTH TO BOTTOM OF WELL POINT OR SLOTTED PIPE FEET.
	2	DEPTH OF BOTTOM OF SEAL (if installed) 4.3 FEET.
5	(3)	DEPTH TO TOP OF SEAL (if installed) 3.1 FEET.
	4	OR SLOTTED PIPE 10.0 FEET. (Circle One)
	5	TOTAL LENGTH OF PIPE 50.0 FEET Q 2 IN. DIAMETER
	6	TYPE OF FILTER MATERIAL AROUND WELL POINT OR SLOTTED PIPE #30 Flint Sand.
		CONCRETE CAP, YES NO (Circle One)
*	2 8	HEIGHT OF WELL CASING ABOVE GROUND O.6 FEET.
4	6	PROTECTIVE CASING? YES NO (Circle One) HEIGHT ABOVE GROUND 0 (Flush Mount Top) LOCKING CAP? YES NO (Circle One)
		TYPE OF BACKFILL: Bentonite Grout
*		HATER LEVEL CHECKE
	*F +	WATER LEVEL CHECKS
		f casing, if protective casing higher, rement from top of <u>protective</u> casing.
	BORING # D.	ATE TIME DEPTH TO WATER REMARKS
	*	
,		
	· ·	WISCONSIN TEST DRILLING

JOB NO1127	
BORING NOMW-5	
DATE 9-25-87	
CHIEF L.E.	
LOCATION West Bend Monitoring Wells	
All depth measurements of well detail to be from ground surface unless other indicated.	
1 DEPTH TO BOTTOM OF WELL POINT OR SLOTTED PIPE 20.6 FE	ET.
2 DEPTH OF BOTTOM OF SEAL (if insta	illed)
3 DEPTH TO TOP OF SEAL (if installe	ed)
4 LENGTH OF WELL POINT, PVC WELL SO OR SLOTTED PIPE 10.0 FEET.	(Circle One)
5 TOTAL LENGTH OF PIPE 12.0 PIPE 2 IN. DIAMETER.	FEET
6 TYPE OF FILTER MATERIAL AROUND WI POINT OR SLOTTED PIPE #30 Flint	
7 CONCRETE CAP, YES NO	(Circle One)
8 HEIGHT OF WELL CASING ABOVE GROU	ND
(4) HEIGHT ABOVE GROUND 2.2'	(Circle One)
TYPE OF BACKFILL: Bentonite Gro	ut
WATER LEVEL CHECKS	
*From top of casing, if protective casing his take measurement from top of protective casing	, , ,
BORING # DATE TIME DEPTH TO WATER	REMARKS
WISCONSIN	TEST DRILLING

	JUB NU. 1127
	BORING NOMW-6A
•	DATE9-16-87
Elev.	CHIEF P.D.
LOCATION	West Bend Monitoring Wells
B Elev.	All <u>depth</u> measurements of <u>well detail</u> assumed to be from ground surface unless otherwise indicated.
	DEPTH TO BOTTOM OF WELL POINT OR SLOTTED PIPE FEET.
	DEPTH OF BOTTOM OF SEAL (if installed) 15.4 FEET.
5	3 DEPTH TO TOP OF SEAL (if installed) 14.2 FEET.
	4 LENGTH OF WELL POINT, PVC WELL SCREEN) OR SLOTTED PIPE 10.0 FEET. (Circle One)
	5 TOTAL LENGTH OF PIPE 16.0 FEET @ 2 IN. DIAMETER.
	6 TYPE OF FILTER MATERIAL AROUND WELL POINT OR SLOTTED PIPE #30 Flint Sand.
3	7) CONCRETE CAP, YES) NO (Circle One)
2	8 HEIGHT OF WELL CASING ABOVE GROUND 0.46 0= FEET.
4	PROTECTIVE CASING? YES NO (Circle One) HEIGHT ABOVE GROUND O (Flush Mount Well Top LOCKING CAP? YES) NO (Circle One)
	(10) TYPE OF BACKFILL: Bentonite Grout
* (1)	
	WATER LEVEL CHECKS
	top of casing, if protective casing higher, measurement from top of <u>protective</u> casing.
BORING #	DATE TIME DEPTH TO WATER REMARKS
•	
	WISCONSIN TEST DRILLING

	JOB NO1207
	BORING NO. MW-6B
	DATE3-21-88
Elev.	CHIEF MK
LOCATION	West Bend, WI
Elev.	All <u>depth</u> measurements of <u>well detail</u> assumed to be from ground surface unless otherwise indicated.
	DEPTH TO BOTTOM OF WELL POINT OR SLOTTED PIPE36 FEET.
	DEPTH OF BOTTOM OF SEAL (if installed) 28 FEET.
5	3 DEPTH TO TOP OF SEAL (if installed) 22 FEET.
10	4 LENGTH OF WELL POINT, PVC WELL SCREEN OR SLOTTED PIPE 5 FEET. (Circle One)
	5 TOTAL LENGTH OF PIPE 31 FEET Q 2 IN. DIAMETER.
	TYPE OF FILTER MATERIAL AROUND WELL POINT OR SLOTTED PIPE #30 Flint Sand.
	7) CONCRETE CAP, YES NO (Circle One)
2	8 HEIGHT OF WELL CASING ABOVE GROUND = 0.5 fe
4	9 PROTECTIVE CASING? YES NO (Circle One) HEIGHT ABOVE GROUND Flush Mount LOCKING CAP? YES NO (Circle One)
	10 TYPE OF BACKFILL: Bentonite Slurry
*F===	WATER LEVEL CHECKS
take	m top of casing, if protective casing higher, e measurement from top of protective casing.
BORING #	DATE TIME DEPTH TO WATER REMARKS
	WISCONSIN TEST DRILLING

				J	OB NO.		1207			
				В	ORING	NO	MW-A			
			-				3-22-88			
		Elev		C	HIEF _		M.K.			
1 8			LOCATION			West	Bend, WI			
		Elev		to b	depth me from cated.	neasure ground	ments of <u>well</u> surface unle	detail ss othe	_assumed rwise	
					DEPTH SLOTTE	TO BOT	TOM OF WELL P	OINT OR	EET.	
				2	DEPTH 4.	OF BOT	TOM OF SEAL (if inst	alled)	
5	- -			3	DEPTH	TO TOP 2.5	OF SEAL (if	install	ed)	
		(10)		4	LENGTH OR SLO	OF WE	LL POINT, PVC IPE 10	WELL S FEET.	CREEN) (Circle On	e)
	- - -			5	TOTAL	LENGTH	OF PIPE 19. IN. DIAMETER	.5		
				6	TYPE O	F FILTI OR SLO	ER MATERIAL A TTED PIPE #30	ROUND W	ELL Sand	
				7	CONCRE	TE CAP	, YES	<u>NO</u>	(Circle On	e)
*	T	2		8	HE I GHT	OF WEI	LL CASING ABO 2.5 FEET	VE GROU	ND	
(6		9	HE IGHT	TIVE CABOVE	ASING? YES GROUND YES NO	3.0'NO		e)
÷	1			10			FILL: Bentoni		rcle One) ry	
	. 💥				WATER	LEVEL	CHECKS			
			*From take	top of measure	casino	ı. if n	rotective cas p of <u>protect</u> i	ing hig ve casi	her,	
			BORING #	DAT		TIME	DEPTH TO W		REMARKS	
•										
		//								

WISCONSIN TEST DRILLING

	J	OB NO1207
	В	ORING NOMW-C
•		ATE3-17-88
Elev.		HIEF M.K.
LOCATION		Michigan, West Bend, WI
Elev.	to be	depth measurements of well detail assumed e from ground surface unless otherwise cated.
	1	DEPTH TO BOTTOM OF WELL POINT OR SLOTTED PIPE 23.2 FEET.
	(2)	DEPTH OF BOTTOM OF SEAL (if installed) 11.4 FEET.
5	3	DEPTH TO TOP OF SEAL (if installed) 9.3 FEET.
- - - 10	4	DR SLOTTED PIPE 10 FEET. (Circle One)
	(5)	TOTAL LENGTH OF PIPE 15.7 FEET @ 2 IN. DIAMETER.
	6	TYPE OF FILTER MATERIAL AROUND WELL POINT OR SLOTTED PIPE #30 Flint Sand.
	7	CONCRETE CAP, YES NO (Circle One)
2	8	HEIGHT OF WELL CASING ABOVE GROUND 2.5 FEET.
	9	PROTECTIVE CASING? HEIGHT ABOVE GROUND LOCKING CAP? YES NO (Circle One)
	(10)	TYPE OF BACKFILL: Bentonite Grout
		WATER LEVEL CHECKS
*From take s	top of measure	casing, if protective casing higher, ement from top of protective casing.
BORING #	DAT	
•		
	1	MICOONOM
		WISCONSIN TEST DRILLING

	JOB NO. 1207
	BORING NOMW-D2 D1
	DATE
1011	CHIEF M.K.
	LOCATION West Bend, WI
	Elev. All depth measurements of well detail assumed to be from ground surface unless otherwise indicated.
	DEPTH TO BOTTOM OF WELL POINT OR SLOTTED PIPE 25 FEET.
	DEPTH OF BOTTOM OF SEAL (if installed) 13 FEET.
5	DEPTH TO TOP OF SEAL (if installed) 11 FEET.
	LENGTH OF WELL POINT, PVC WELL SCREEN OR SLOTTED PIPE 10 FEET. (Circle One
-	5 TOTAL LENGTH OF PIPE 17 FEET @ 2 IN. DIAMETER.
-	TYPE OF FILTER MATERIAL AROUND WELL POINT OR SLOTTED PIPE #30 Flint Sand.
	7 CONCRETE CAP, YES NO (Circle One
★	8 HEIGHT OF WELL CASING ABOVE GROUND 2.5 FEET.
4	9 PROTECTIVE CASING? YES NO (Circle One LOCKING CAP? YES) NO (Circle One)
	10 TYPE OF BACKFILL: Bentonite Slurry
	WATER LEVEL CHECKS
	*From top of casing, if protective casing higher, take measurement from top of protective casing.
	BORING # DATE TIME DEPTH TO WATER REMARKS
	WISCONSIN TEST DRILLING

	J	OB NO. 1207
	В	ORING NOMW-BZ
•	D	ATÉ3-22-88
Elev.		HIEFM.K.
LOCATION		West Bend, WI
Elev.	to be	depth measurements of well detail assumed e from ground surface unless otherwise cated.
		DEPTH TO BOTTOM OF WELL POINT OR SLOTTED PIPE 34 FEET.
	2	DEPTH OF BOTTOM OF SEAL (if installed) FEET.
5	3	DEPTH TO TOP OF SEAL (if installed) FEET.
- 10	4	LENGTH OF WELL POINT, (PVC WELL SCREEN) OR SLOTTED PIPE 5.0 _ FEET. (Circle One)
	5	TOTAL LENGTH OF PIPE 26 FEET 0 2 IN. DIAMETER.
	6	TYPE OF FILTER MATERIAL AROUND WELL POINT OR SLOTTED PIPE #30 Flint Sand.
	7	CONCRETE CAP, $(Circle One)$
2	8	HEIGHT OF WELL CASING ABOVE GROUND 2.5 FEET.
4	9	PROTECTIVE CASING? YES NO (Circle One) HEIGHT ABOVE GROUND 2.5' LOCKING CAP? YES NO (Circle One)
	10	TYPE OF BACKFILL: Bentonite Slurry
		WATER LEVEL CHECKS
*From take	top of measur	casing, if protective casing higher, ement from top of protective casing.
BORING #	DA*	
·		
		WISCONSIN TEST DRILLING

	JOB NO.	1207
	BORING NO.	MW-E
	DATÉ	3-22-88
Elev.	CHIEF	M.K.
	LOCATION We	est Bend, WI
Elev	All <u>depth</u> measure to be from ground indicated.	urements of <u>well detail</u> assumed und surface unless otherwise
	DEPTH TO E SLOTTED PI	BOTTOM OF WELL POINT OR IPE17.5 FEET.
	2 DEPTH OF E	BOTTOM OF SEAL (if installed) FEET.
5	3 DEPTH TO 1	TOP OF SEAL (if installed) 3.5 FEET.
10	4 LENGTH OF OR SLOTTED	WELL POINT, PVC WELL SCREEN OFFEET. (Circle One)
	TOTAL LENG	TH OF PIPE 7.5 FEET IN. DIAMETER.
	6 TYPE OF FI POINT OR S	ILTER MATERIAL AROUND WELL SLOTTED PIPE #30 Flint Sand
	7) CONCRETE C	CAP, (Circle One)
2	8 HEIGHT OF 2.	WELL CASING ABOVE GROUND FEET.
4 6	9 PROTECTIVE HEIGHT ABO LOCKING CA	OVE GROUND 3.0
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	11PE OF BA	ACKFILL: Bentonite Slurry
	WATER LEVE	EL CHECKS
	*From top of casing, if take measurement from	f protective casing higher, top of <u>protective</u> casing.
	BORING # DATE TIME	DEPTH TO WATER REMARKS

WISCONSIN TEST DRILLING

Date completed: 5/25/88

PROJECT: West Bend

LOCATION: across from 233 Kilbourne

WELL # "F"

ELEVATION: None taken

BORING METHOD: 6.25 ID augers BORE HOLE DIAMETER: 9.5 in. PROTECTOR PIPE: 6" diameter, concreted, locking

Depth below ground surface - 2'-0" -Top of riser pipe Type: 2" ID, sch 40 PVC, with threaded, flush & "O" rings @ joints Length: 10'-6" 2'-3" -Top of bentonite seal Type: Dry CS 50 powder 7'-4" -Top of silica sand Type: Fine, washed silica sand 8'-6" Top of gravel pack Type: #20 flint sand from 11'-4" to 8'-6" natural soil from 18'-6" to 11'-4" 8'-6" Top of screen Type: 2" ID sch 40, slots = 0.010 in.threaded, flush & "O" ring joints w/ a threaded & "O" ring bottom plug Length: 10'-0" 18'-6" -Bottom of screen point -X—X—X—X—X—X—X—Depth drilled (below G.S.)= 18'-6"

Delta Environmental Consultants, Inc. Slug Test Data

11.87 6.95902408 0.84254834

	Project: Project No. Well No.:		EIS Brake 198728 HW-2			Tested by: Data analyz Date of Tes		14.				
	Slag Da	ata					Well data Measuring poin Well depth:		p of pvc	riser 24.3		
	Outside ra	dius of s	lug:	0.0512			Inside radius	of riser:		0.083		
	Slug botto	a :	•	24.3			Effective inta			. 0.083		
	Slag leagt	h:		4			Screened inter		:	10		
							Static water l			11.87		
							t Regression Va			Column 1		
	Time						Col. 2 Col			Regression	Oatput:	
			bove sta		,,,				nstant	,		-0.3611
	0			0 0	Ear	-0.3611326	0	0 st	d Err of	Y Est		0.0390.
	28	11.	21 0.	66 0.38693815	-0.4123584	-0.4680375		R	Squared			0.97590
	60	11.	43 0.	44 0.25795877	-0.5884497	-0.5902146		Ko	. of Obs	ervations		
	73			38 0.22278257				De	grees of	Freedom		
	92			29 0.17001828								
	120			26 0.15243018					Coeffici		-0.00381	
	150			19 0.11139129				\$1	d Err of		0.0002267	
	16!			16 0.09380319				•	T1 =	0		0.74252
	180			16 0.09380319					12 =	270		0.06916
	21			13 0.07621509					K2 =	1.458-05		3.26E
	24			13 0.07621509					K4 =	1.45E-05 Column 2	K5 =	1.60E
	27	n II		.13 0.07621509 .87 6.95902408			l			Column 2		
				87 6.9590240								
				.87 6.9590240								
				.87 6.9590240								•
				.87 6.9590240	_							
				87 6.9590240								
				87 6.9590240								
				.87 6.9590240								
				.87 6.9590240								
•			11	.87 6.9590240	8 0.84254834				71 =		\$1 =	1.70569
				.87 6.9590240					T2 =		S2 =	1.70569
			11	.37 6.9590240	8 0.84254834	l			K 2 =	ERR	K3 =	0.00E
			11	.87 6.9590240	8 0.84254834	ł			K4 =	ERR	K5 =	
				.87 6.9590240						Column 3		
				87 / 5555514								

AZ-AD and the theory dening this				
spreadsheet are explained in				
Thompson, D. B. 1987. A microcomputer program	71 =		S1 =	1.70569
for interpreting time-lag	?? =		\$2 =	1.70569
permeability tests. Ground Water.	K2 =	ERR	K3 =	0.09E

Delta Snvironaental Consultanta, Inc. Slug Test Jata

Head March	4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4			2 100 100 100 100 100 100 100 100 100 10	20 Se			
Fig. 10 Parks Pa	,	が一部が		1 4.1 1 m 2 m 2 m 1 m 2 m 2 m 2 m 2 m 2 m 3	1	m		
Stationard and address 1.72	ing Data de radics of		5.55 5.55 5.55			iesta sve je	2 12 to 1	
194 M.P. Bode static Constant Cons	Sing length: Initial drawddwn at	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					7 m	11 14 10 10 10 10 10 10 10 10 10 10 10 10 10
14.28		bove static						0.06515923
14.75 0.13 0.0722E29 -1.11799 0.0724466 -1.179357 No. of Ghaervations 0.13 0.0722E29 -1.11799 0.0472466 -1.179357 No. of Ghaervations 0.14.77 0.10 0.0449692 -1.1790879 0.0472546 -1.179357 No. of Ghaervations 0.10 0.04469692 -1.1790879 0.0472525		<		0.08515523	100000000000000000000000000000000000000	Std Err of Y		0.00663293
14.77 0.11 0.06448959 -1.275497 0.062935 -1.215548		0.13		0.07472469	175177	R Squared No. of Observet's	<u>u</u>	0.87353579
14.79 0.09 0.0227427 - 1.2778572 1.2451927 1.2457512 14.82 0.09 0.04690159 1.2587512 0.04690159 1.2587512 0.04690159 1.328972 0.04690159 1.328972 0.04690159 1.328972 0.04690159 1.328972 0.04690159 1.328972 0.04690159 1.328972 0.04690159 1.328972 0.04690159 1.328972 0.04690159 0.0537742 0.04030152 0.04030152 0.04030152 0.04030152 0.04030152 0.0537742 0.0403015951 0.051652 0.0537742 0.0403015951 0.051652 0.0537742 0.0403015951 0.051652 0.0537742 0.0403015951 0.051652 0.0537742 0.0403015951 0.051652 0.0537742 0.04070055 0.0816972 0.0537742 0.0537742 0.04070055 0.040700		0.11	,	0.0628653	OUI I str I sin I sin I sin I sin I sin		!	· Pro
14.82	•••	60.0			11 - 41 C			
14.82 0.06 0.0351742 -1.4537511 0.04057137 -1.477065		0.06		0,04505015	4 C.1	400 40 LL 20 40 CO	4,22578-6	on 4450
14.82 0.06 0.0521742 -1.4577511 0.0214575 -1.4770465 TZ = 195 92 = 1.482 0.06 0.0551742 -1.4577511 0.02719501 -1.5144576 KZ = 1.358-06 KZ = 1.		0.09		0.04057137	1022903			
14.82 0.06 0.0351762 -1.4537511 0.02719501 -1.5144576 KZ = 1.358-05 KZ = 1.538-05 KZ = 1.4.88 8.7254657 0.94070055 0.08515927 -1.0237972 K4 = 1.368-95 KZ = 1.568-95 KZ = 1.4.88 8.7254657 0.94070055 0.08515927 -1.0237972 Regression Output: 14.88 8.72546457 0.94070055 0.94070055 Regression Output: 14.88 8.72546457 0.94070055 Regression Output: 14.88 8.72		0.08		0.03165379	1770653		E-1	1.81592233
8.7224957 0.94070053 0.08513922 1.0235392		90.0		0.02719501	-1) t 		9	
### Regression Output: ###################################					N. S.	ii ii	2	1
8.72259557 0.94070055 Constant 8.72369557 0.94070055 Constant 8.72369557 0.94070055 Co.94070055 Co.940						di di di di	nion Output:	
8.72369657 0.94070053 R. Squared 8.72369657 0.94070053								1,0283991
8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053 8.72369637 0.94070053						>-		0.05259467
9.72369437 0.94070053						Squared or		0.98774
8.72269637 0.94070055 8.72269637 0.94070055 8.72269637 0.94070055 8.72269637 0.94070055 8.72269637 0.94070055 8.72269637 0.94070055 8.72269637 0.94070055 8.72269637 0.94070055 8.72269637 0.94070055 8.72269637 0.94070055 8.72269637 0.94070055 8.72269637 0.94070055 8.72269637 0.94070055 8.72269637 0.94070055 8.72269637 0.94070055 8.72269637 0.94070055 8.72269637 0.94070055						Ms. of Observation	w	ņ.
9.72249617 0.94070055 8.72249637 0.94070055 8.72249637 0.94070055 8.72349637 0.94070055 8.72349637 0.94070055 9.72349637 0.94070055 9.72349637 0.94070055 8.72349637 0.94070055 8.72349637 0.94070055 8.72349637 0.94070055 8.72349637 0.94070055 8.72349637 0.94070055 8.72349637 0.94070055 8.72349637 0.94070055						100 L		for a
8.72259557 0.94070055 8.72259557 0.94070055 8.72359557 0.94070055 8.72359557 0.94070055 8.72359557 0.94070055 8.72359557 0.94070055 8.72359557 0.94070055 8.72359557 0.94070055 8.72259557 0.94070055 8.72259557 0.94070055 8.72259557 0.94070055								
8.72249657 0.94070055 8.72349657 0.94070055 8.72349657 0.94070055 8.72349657 0.94070055 8.72349657 0.94070055 8.72349657 0.94070055 8.72349657 0.94070055 8.72349657 0.94070055 8.72349657 0.94070055 8.72349657 0.94070055						K Castfiriant(s)	-0.0024524	
8.72349637 0.94070055 8.72349637 0.94070055 8.72349637 0.94070055 8.72349637 0.94070055 8.72349637 0.94070055 8.72349637 0.94070055 8.72349637 0.94070055						100	0.0007752	
9.72269637 0.94070053 K3 = 0. 9.72269637 0.94070053 K3 = 1.155-05 K3 = 0. 8.72269637 0.94070053 K3 = 1.155-03 K5 = 0. 8.72269637 0.94070053 K3 = 0.051usm 3							Çi)	0.13450642
8.72269657 0.94070055 8.72269657 0.94070055 8.72259557 0.94070055 8.72259557 0.94070055						11	8	0.05217287
8.72589657 0.94070055 8.72589657 0.94070055 8.72589657 0.94070055						n	2	101
8.72349457 0.94070053 8.72287457 0.94079053						11	100 200 200 200 200 200 200 200 200 200	111
1000						Column	P)	

H H H n n n

Talks Englandens Territoria (40

Slug Test Data

Project: EIS Brake Parts
Project No.: 108TIBE
Well Advance: MR Manage THILL STORE BAY late engineer by: Ass

Well cats Sinc Pata

Maaauning delais - Tee di gyo nisan Aell decim: 35.5 Inside radius of miser: 0.083 Effective intexa radius: 0.083 Outside resils of slug: 0.0541 Stug bestea: Sonsened Inderval Lengths 9.000 Sonsened Inderval Lengths 5 Sostio Weter Levels 18.14 Sint lenttr:

Instill prayour at deploying of test (Bols Willister) Instantant Represent Values Column 1

Instill prayour at deploying of test (Bols Willister) Instantant Represent Values

Institut of the district Control of test (Bols Willister) Instantant Control of the district Co -0.196413 A State Service 9 Sea 0.40574202 e Equared 45 0.48541315 No. of Observations 40 17.39 0.77 0.45145785 -0.7454117 -0.435984e . Degrees of Freedom 75 17.49 0.67 0.37280095 -0.4088278 -0.4708775 90 17.57 0.59 0.34589925 -0.4610504 -0.5057704 105 17.42 0.54 0.31658575 -0.4995066 -0.5405633 120 17.68 0.48 0.28140957 -0.5506511 -0.5755582 X Caefficient(s) -0.0021262 Sti Err of Coef. 0.00051952 T1 = 45 S1 = 0.6773462 T2 = 570 S2 = 0.04047667 135 17.74 0.42 0.24423337 -0.6086531 -0.6104491 163 17.79 0.37 0.21591987 -3.5637007 -0.6802349 180 17.83 0.33 0.19346908 -0.7133884 -0.7151279 . 72 = K2 = 1.515-05 K3 = 4.43E-04 195 17.87 0.29 0.17001928 -0.7693044 -0.7500208 210 17.88 0.28 0.15415353 -0.7847443 -0.7849137 240 17.93 0.23 0.13494208 -0.8701745 -0.9548995 270 17.98 0.18 0.10522857 -0.9746299 -0.9244833 K4 = 1.515-05 K5 = 1.965-05 Column 2 0.15 0.09380319 -1.0277824 -0.9942711 300 18 330 18.03 0.13 0.07421509 -1.117959 -1.0640549 350 18.07 0.09 0.05276429 -1.2776599 -1.1338427 390 18.07 0.09 0.05276429 -1.2776599 -1.2036236 18.1 0.08 0.0351762 -1.4537511 -1.2734144 18.1 0.06 0.0351762 -1.4537511 -1.3432002 420 450 18.12 0.04 0.0234509 -1.5299424 -1.412955 490 T1 = S1 = 1.70555674 T2 = S2 = 1.705598°1 K2 = ERR K3 = 0.005-00 K4 = ERR K3 = ERR 19.14 0.02 0.0117254 -1.9309724 -1.4827719 510 0.01 0.0053637 -2.2319034 -1.8555578 540 570 18.16 0 0 ERR -1.6029435 18.14 10.5466519 1.03721348 18.16 10.6456619 1.02721346 Column 3 18.16 10.6466619 1.02721346

K2-K5 and the theory behind this				
spreadsheet are explained in				
Thompson, D. B. 1987. A sicrocomputer program	T1 =		S1 =	1.70549394
for interpreting time-lag	72 =		92 =	1.70549894
permeability tests. Ground Water.	KC =	533	K3 =	C.00E+00
v. 25, ma. 1.	K4 =	225	K5 =	207

THE STATE OF THE S

on the state of th	w is		SA S	5.00 (1.00 (
ent tre	:: :3 :0 :0	151 161 162 163	THE STATE OF THE S	6/8 6/8	746 miss 20,7 0,093		
Slug bottom: Slug length:		tr. sd tra trat	Effective intake radius: Ecreened interval length Otatic water level:	00 SS			
Initial drawdown at teginni Time Depth be- Haigh	drawdown at ceginning of Depth be- Height a-	ing of test (So): 1.7/3537594 ght a- H=Sk/So log(Fk)	ng of test (80): 1.7554734 Independent Asgression Values t a- H=Sk/So log(Hx) Oni. 1 Col. 2 Col. 3		Column 1 Regression Output:	H H H H H H H H H H H H H H H H H H H	19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10
	~U1	a static 0 0 EFF		Constant Std Err et	.4.7 (1) (1)		0.05975461
S 102	12.8	0.34 0.21103713 -0.4785999 0.32 0.18740423 -0.7267224	-0.65373537	R Squared No. of Observations			0.97520796
90 75	12.93	0.15415533	-0.7420342 -0.8251597	co m m m m m t.	EI 13		F)
90	5 5 5	0.21 0.12311649 -0.50949371	-0.93/97/37 -0.93/97/97/97	Ata Franch Conf.		0.0042032	
821	57	0.0000000000000000000000000000000000000		i i i i	8		0.29455012
2 61	13.02	0.08207779	-1.1407773	" " " !!	1.405-05 KZ	11 11	10008870.0 3.69E-04
60 C	13.04	0.12 0.07035239 -1.1527211 0 00 0 007754290 -1 7775500	-1.2039068 -: 2470347	* **	1.60E-05 KS		1,775-05
210	8	0.0449139	-1,3932713		4 33 33 33 33 33 33 33 33 33 33 33 33 33		
240	를 다 12 년 13 년	0.04 0.0351752 -1.4537511	P3 P				
000		0.0117254	-1.720234				
		0- 0- 11- 11- 11- 11- 11- 11- 11- 11- 11					
,		13.16 7.7231223 0.4877873 7.16 7.7231239 0.4877333		11	5.7	11	400000000000000000000000000000000000000
**		7,71531279		H 1		. 11	1 100 to
				1 11		1 11	
					600 600 605 605 609 609 603		
	भाग भी हुन. ११ मा हुन ११ १३ हुन ११ १३ हुन ११ १३ हुन	100 100 100 100 100 100 100 100 100 100	1 		wis fi	11 (# 2 # 2 # 2 # 2 # 2 # 2 # 2 # 2 # 2 # 2
		10	6 919 917 917	P PP F Prof This		11 11	# 100 pp

1.4.0	111	כינו
9 0 pro - 9.0 pr	THE THE PARTY OF T	11 11 11 11 11 11 11 11 11 11 11 11 11
on the state of th	10877295	101
11 to 12 to	ייים: מריל יאם. יי	MEN NO. 1

	ODD-COD CARROLL SED BY MO	
	007 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2	
	Menantring points Top of two riser	38.
Outside radius of sluc: 0.0542	Transit to sucher whitel	0.083
Sing botton:	היייים היייים היייים היייים היייים	0.083
Sing length:	Tayrung in a comment	6.77
	Charle Sates Commen	29.41

0	nitial drawdown at begin	# J			45		1:3029361	inclapandant Regrassion Values	נוז ני נוז ני נוז ני	on Value	, n,	3 5	Column !		
ESS -0.687351 0 0 364 Err of Y Est 0.03558 -0.713582 -0.774724 0.745724 0.745724 0.745724 0.745724 0.745724 0.745724 0.745724 0.745724 0.745724 0.745724 0.745724 0.745724 0.745724 0.745724 0.745724 0.745724 0.775272 0.4152572	DESCRIPTION OF THE PROPERTY OF			1.	3.	C)	5		7		-		Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci C		-0. 692754.0-
-0.6873355 -0.7267524	7	7	7	10		<>	0:	-0.4933942		0		ate Err of	 !!!		0.03548229
-0.7153884 -0.744754	20.25			12	1	0.20519448	-0.6878	-0,7299554				o.			0.94883173
0.12370619 -0.724724 -0.724724 -0.724722				13	-			-0.744736				No. of Guary	वर्षाय		CT 3
1,17019192 -0,7652044 -0,7822972 1,12827283 -0,8005386 -0,8005788 1,12827283 -0,8005386 -0,8005788 1,12827383 -0,8005386 -0,8005789 1,128456749 -0,8157825 -0,835557 1,125456749 -0,835552 -0,835557 1,15465748 -0,835552 -0,835557 1,15465748 -0,835552 -0,835557 1,15465748 -0,835552 -0,835557 1,15465748 -0,835552 -0,835557 1,1554679 -0,935458 -0,9778379 1,10552857 -0,9778279 1,1055287 -0,9778279 1,1055287 -0,	20.29 0.32	0.32	0.32	57				-0.7445165				Li.	1.7	·	~f! +4
X Cosficient(s)	20,72 0.29	0.29	0.29	. 23		0.17001973	-0.7695044	-0.7822972							
9.15243018 -9.316929 -0.9183682	20.34 0.27	0.27	0.27	1.27		DRISTS 1 0	-0.8005326	-0.800077B				Topic Control X		-0.0011354	
0.15464294		0.25	0.25	.25		0.15243018	-0.916929	-6. 61.76551 155.00				Std Err of Co		6. 5904E-03	
0.15581659 -0.8701755 -0.9554197	20.25 0.25	0.25	0.25			0.14656748	J. 8559524	-0,8358391		¥		#	\$50	er Eri	0,31236087
0.112911649 -0.9094531 -0.9712003	20.38 0.23	0.23	0.23	13		0.13484209		C 4554.9			•	= 7:	420	625	0,10981234
0.11139119 -0.9531452 -0.9047415	20.4 0.21	0.21	0.21	13		9,127,1659	-0.9095831	-0.8712003				n	4.395-06	2	2.085-04
0.09350319 -1.0277824 -0.9778239 0.09350319 -1.0277824 -1.013451 0.09350319 -1.0277824 -1.013451 0.09350319 -1.0277824 -1.013451 0.09550319 -1.0277824 -1.013451 0.09750319 -1.0528111 -1.049064 0.07521509 -1.117959 -1.1201292 0.07521509 -1.117959 -1.1912512 0.07521509 -1.117959 -1.1912512 12.0830233 1.09217551 12.0830233 1.09217551 12.0830233 1.09217551 12.0830233 1.09217551 12.0830233 1.09217551 12.0830233 1.0917551 12.0830233 1.0917551 12.0830233 1.0917551	20.42 0.19	6.19	6.19	1.19		0.11139129		-0.9067515				**	6. 39E-06	11 10 7 24	7.308-04
0.0936019 -1.0277824 -0.9778839 0.09360319 -1.0277824 -0.0134451 0.09360319 -1.0277824 -1.0134451 0.07421509 -1.117959 -1.0945675 0.07421509 -1.117959 -1.15569 0.07421509 -1.117959 -1.15159 0.07421509 -1.117959 -1.15159 0.07421509 -1.117959 -1.15159 12.0830233 1.08217541 12.0830233 1.08217541 12.0830233 1.08217541 12.0830233 1.08217541 12.0830233 1.08217551 12.0830233 1.08217551 12.0830233 1.08217551 12.0830233 1.08217551	20.45 0.18	0.13	0.13	. E		0.10552559	-0.9756299	-0.9427277				្ជ	Summer Park		
0.09350319 -1.0277824 -1.013451 0.07521509 -1.117959 -1.159152 0.07521509 -1.117959 -1.151512 0.07521509 -1.117959 -1.151512 0.07521509 -1.117959 -1.151512 0.07521509 -1.117959 -1.1912512 0.07521509 -1.117959 -1.1912512 12.0820233 1.08217541 12.0830233 1.08217541 12.0830233 1.08217541 12.0830233 1.08217541 12.0830233 1.08217541 12.0830233 1.08217551 12.0830233 1.08217551	20.45 0.15	0.15	0.15	3::5		9.09350319									
0.08794049 -L.0558111 -L.0496044 0.07421509 -L.117959 -L.1201289 0.07421509 -L.117959 -L.1201289 0.07421509 -L.117959 -L.1201289 0.07421509 -L.117959 -L.1201289 0.07421509 -L.117959 -L.1201289 0.07421509 -L.117959 -L.1912512 12.0830233 L.08217541 12.0830233 L.08217541 12.0830233 L.08217541 12.0830233 L.08217541 12.0830233 L.08217551 12.0830233 L.08217551 12.0830233 L.08217551	20.45 0.16			. 16		0.09350319	-1.0277824								
0.07421509 -1.117959 -1.201239 0.07421509 -1.117959 -1.15549 0.07421509 -1.117959 -1.15549 0.07421509 -1.117959 -1.15549 0.07421509 -1.117959 -1.15549 12.0830333 1.08217541 12.0830333 1.08217541 12.0830333 1.08217541 12.0830333 1.08217541 12.0830333 1.08217541 12.0830333 1.08217551 12.0830333 1.08217551 12.0830333 1.08217551 12.0830333 1.08217551	20.46			9.15		0.08794049		-1.0490064							
0.07421509 -1.11759 -1.12512 0.07421509 -1.117959 -1.15569 0.07421509 -1.117959 -1.1912512 12.0820233 1.08217541 12.0820233 1.08217541 12.0830233 1.08217541 12.0830233 1.08217541 12.0830233 1.08217541 12.0830233 1.08217541 12.0830233 1.08217551 12.0830233 1.08217551 12.0830233 1.08217551	20, 43			9.13		0.07521509					•	٠			
0.07421509 -1.117959 -1.15549 0.07421509 -1.117959 -1.1912512 12.0830273 1.08217541 12.0830273 1.08217541 12.0830273 1.08217541 12.0830273 1.08217541 12.0830273 1.08217541 12.0830273 1.08217541 12.0830273 1.08217541 12.0830273 1.08217551	20.48			0.17		0.07421509		-1,1201299			,				
0.07421309 -1.117959 -1.1912512 12.0830233 1.08217541 12.0830233 1.08217541 12.0830233 1.08217541 12.0830233 1.08217541 12.0830233 1.08217541 12.0830233 1.08217541 12.0830233 1.08217541 12.0830233 1.08217551				9.13		0.07621509	-1.117959	-1.15569							
12.0830233 1.08217551				0.13		0.07821509		6136151							
12.0870273 1.08217551	20.61	20.61	20.61	.0		12,0830233	+-4								
12.0830275 1.0821755 11 = S1 = 1.70559 12.0830275 1.0821775	20.41	20.51	20.41	0.51			4.4								
12.0910171 1.09217754	20.61	20.61	20.61	19:0								# 		ii To	1.7055995
1.09217551 K7 = E5A K3 = 0.005 1.09217551 K4 = ERR K5 = 0.005 1.09217551 Column 3	20.51	20.51	20.51	0.51		12.0930273	4-4					= 21		83	1.7055444
12.0830273 1.08217551 KF = ERR KS = 12.0830273 1.08117551 L2.0830273 1.08217551	20.51	20.51	20.51	0.51			-					11 C3	E	2	0.305+00
12.0830273 1.08217561 12.0830273 1.08217551	20.51	20.51	20.51	-77			- 1					# + X	Ĉi	" "	
12,0830253	20.51	20.5	20.5	2.5								23	iten 3		
	20.61	20.61	20.61	0.6											

		*7			
		0,			
		1			
		, ,		_	
		4		. "	
		870			
		. * *		+01	
		1 2			
907		11			
				. 0. 0	
		2.7	0-6.	: ;	
. 9. 9		1 .			
71					
9. *		**	202	7.73	
	1.1	88	. 4		
.0:	***			-	
111	4	- F		***	
	111				
				611	
1		£11			
	2.	0.0 -	. 9 . 4		
959	***		000		1 -1
.0 .				1	
.0.0					
	4				
199				::	٠.
.8.		. :	9 7	498	
				150	L1 2
77	121			199	
8		1.5	1:	8 -	
444	618	1.7	6.3	115	
	73	***	***	£2.	
u)	175	C.			
112	611	9.77			
Ä,	6.4				
1	***				
4-0.0	200	4.0			

	1,7936332	1,705,1831	0.45.0	! ;;
	**	**	**	**
15 6 1	in	1,1	10 to	57
			111	
	"	"	11	
异四烷基	j.:	ţ		***

Talla Chylensonial Complement. Inc. Slug Test Sits

Project: Project No.: Well Mo.: "%

EIE Brake Farts 1,07772

TESTET THE THEFT International team (See Section 1997)

---feeting points. For of promiser 201 10000 36 V. 2372 Inside radius of riser; 0.097 Outside radius of slug: 36 0.023 Effective intake radius: Sing bottom: 4 Ecreaned interval leacth: Slug length: Etatic water lavel: 19.74

itial			aginning of								Caluen 1			
Tiae			Height a-		log (Hx)	C=1. 1	Coi. 2	Cal. 3			Regression	<u> Outqui</u>	:	
	low		bove stati:							instant				-0.181999
	0	19.74			_	-9.1919593	0			id Err di	Y Est			0.0305538
	20	18.85		0.63903422						Squared				0.9931805
	45	18.95	0.99	0.58040723	-0.2162572	-0.2753007					servations			20
	60	19.03	0.91	0.53350564	-0.272361	-0.3064378			ដ្ឋិន	grees of	Fraedoa			2.
	73	19.14	9.9	0.46901594	-0.329E124	-9.337574?	,							
	90	19.22	0.72	0.42211435	-0.3745899	-0.368712			X	Coeffici	ent(s)	-0.002		
1	120	19.29	0.35	0.38107545	-0.418989	-0.4309852			St	d Err o		3.5111		
	135	19.35	0.59	0.34589926	-0.4610504	-0.4421233				T1 =	30			0.7721622
	150	19.4	0.54	0.31659576	-0.4995086	-0.49325)7			-	T2 =	600			0.0637372
	165	19.47	0.47	0.27534597	-0.5578045	-9.5243974					1.35E-05			6.425-0
	190	19.48	0.46	0.26968417	-0.5691445	-1.5555745				K4 =	1.335-05	K5	=	1.745-)
	215	19.54	0.4	0.23450797	-0.6293424	-9.5281877					Column 2			
	225	19.5	0.35	0.21105719	-0.6755999	-0.6489458								
	240	19.5	0.34	0.19933178	-0.70042IE	-0.5800929								
	253	19.53	0.31	0.18174348	-0.7405407	-0.7112199								
	270	19.46	0.29	0.15415558	-0.7847413	-0.742537				•				
	300	19.5	0.25	0.15243019	-0.216929	-0.8044312								
	330	19.7		0.13484208	-0.8701745	-0.86690E4								
	290	19.7		0.11139129	-0.7531483	-0.9291774								
	390	19.78	0.15	0.09320519	-1.0277824	-0.4914537								
	420	19.	0.14	0.08207779	-1.0857743	-1.0537277								
	450	19.	0.14	0.09207779	-1.0857743	-1.1150021				T1 =	30			1.7035969
	480	17.8		0.07035239	-1.1527711	-1.1782763				72 =	720			1.7054989
	510	19.3	4 0.1	0.05862697	-1.2319024	-1.2405504				X2 =	0.00E+00			0.005+0
	540	17.3	4 0.1	0.05352599	-1.2319024	-1.3029244				K4 =	0.005-00	KS	=	0.005-0
	570	19.3	6 0.08	0.04570157	-1.3258124	-1.3850953					Caluan 3			
	600	19.3		0.0351762	-1.4537511	-1.427373								
	630	19.9												
	663	19.9												
	490	19.9												
	720	19.9												

K2-K5 and the theory behind this sureadsheet are explained in Thompson, 0. 8. 1987. A microcomputer program for interpreting time-lap perseability tests. Bround Water. v. 25, ag. 1.

S1 = 1.70519594 S2 = 1.70519894 T1 = 17 = ERR K3 = 0.00E-00 K2 = ERR KE = 223 K4 =

pratories, inc.

REPORT OF LABORATORY ANALYSIS

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, lowa

October 16, 1987

Mr. Kenneth Snimko Delta Environmental Consultants, Inc. 1801 Old Highway 8 Suite 123 New Brighton, MN 55112

RE: Delta Project No. 10-87-285 PACE Project No. 870928.501

Dear Mr. Shimko:

Enclosed is a report for the laboratory analysis of samples received September 28, 1987. A copy of the chain of custody record for the samples and an invoice for services provided are also enclosed.

Please contact us if you have any questions regarding the enclosures.

Sincerely,

Daniel A. Comeau

Environmental Scientist

Roger C. Sprinter, Ph.D.

Director, Laboratory Services

DAC: KCS/1g

Enclosures

laboratories, inc.

Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Delta Environmental Consultants, Inc. 1801 01a Highway 8

October 16, 1987

Suite 123

PACE Project Number: 870928501

New Brighton, MN 55112

Attn: Nr. Kenneth Shimko

Project #10-87-285

Date Sample(s) Collected: 09/25/87

Date Sample(s) Received:

09/28/87

PACE Sample Number:

166680

166690

166700

Parameter	Units	MDL	MW-1	MW-2	MW-3
Cadmiuu	mg/L	0.01	ND	ND	· ND
Cyanide, Total	mg/L	0.02	ND	ND	ND
Chloromethane	ug/L	1.0	ND	ND	ND
Bromomethane	ug/L	1.5	ND	ND	ND
Dichlorodifluoromethane(1)	ug/L	1.5	ND	ND	ND
Vinyl chloride(1)	ug/L	1.5	ND	ND	ND
Chloroethane	ug/L	1.0	ND	ND	1.2
Methylene chloride	ug/L	1.0	2.0	1.3	2.5
Trichlorofluoromethane	ug/L	0.4	ND	ND	ND
1,1-Dich Toroethylene	ug/L	0.3	ND	ND	5.7
1,1-Dichloroethane	ug/L	0.2	ND	ND	66(3)
trans-1,2-Dichloroethylene	ug/L	0.3	ND	ND	ND
Chloroform	ug/L	0.5	0.6	ND	30
1,2-vichloroethane	ug/L	0.2	ND	ND	0.3
1,1,1-Trichloroethane	ug/L	0.5	ND	0.6	180(3)
Carpon tetrachloride	ug/L	0.3	ND	ND	33
Bromodicnloromethane	ug/L	0.2	ND	ND	ND
1,2-bichloropropane	ug/L	0.2	ND	ND	ND
cis-1,3-Dichloro-1-propene	ug/L	0.5	ND	ND	ND
1,1,2-Trichloroethylene	ug/L	0.5	ND	ND	2.8
Benzene	ug/L	1.0	ND	ND	ND
Dibromoch loromethane(2)	ug/L	1.0	ND	ND	ND
1, 1,2-Trichloroethane(2)	ug/L	1.0	ND	ND	ND
trans-1,3-Dichloro-1-propene	ug/L	0.3	ND	ND	ND
2-Chloroethylvinyl ether	ug/L	5.0	ND	ND	ND
Brono form	ug/L	1.0	ND	ND	ND
1, 1,2,2-Tetrachloroethane	ug/L	1.0	ND	ND	ND

NU

Not detected at or above the MDL.

MUL

Method Detection Limit

PACE laboratories, inc.

Offices:
Minneapolis, Minnesota
Tampa, Florida
Coralville, Iowa

Mr. Kenneth Shimko Page 2 October 16, 1987

PACE Project Number: 870928501

PACE Sample Number:			166680	166690	166700
Parameter	Units	MDL	MW-1	MW-2	MW-3
1,1,2,2-Tetrachloroethylene	ug/L	1.0	ND	ND	ND
Toluene	ug/L	1.0	ND	ND	4.9
Ch lorobenzene	ug/L	1.0	ND	ND	ND
Ethyl benzene	ug/L	1.0	ND	ND	2.4
1,3-Dichlorobenzene	ug/L	4.0	ND	ND	ND
1,2-Dichlorobenzene	ug/L	4.0	ND	ND	ND
l,4-Dichlorobenzene	ug/L	4.0	ND	ND	ND
Pheno 1	ug/L	1.0	ND	ND	ND
2-Chlorophenol	ug/L	2.8	ND	ND	ND
2-Nitrophenol	ug/L	2.7	ND	ND	ND
2,4-Dimethylphenol	ug/L	1.8	ND	ND	ND
2,4-Dichlorophenol	ug/L	2.4	ND	ND	13
4-Chloro-3-methylphenol	ug/L	10	ND	ND	ND
2,4,6-Trichlorophenol	ug/L	7.3	ND	ND	ND
2,4-uinitrophenol	ug/L	10	ND	DИ	ND
4-Nitrophenol	ug/L	10	ND	ND	ND
2-Methyl-4,6-dinitrophenol	ug/L	13	ND	ND	ND
Pentach lorophenol	ug/L	9.3	ND	ND	590
Di-n-butyl phthalate	ug/L	1.0	ND	ND	1.7
Bis(2-ethyl hexyl)phthalate	ug/L	5.0	6.1	ND	ND
Di-n-octyl pnthalate	ug/L	5.0	ND	ND	ND
Butyl benzyl phthalate	ug/L	1.0	ND	ND	ND
Diethyl phthalate	ug/L	1.0	ND	ND	ND
Dimethyl phthalate	ug/L	1.0	ND	ND	ND
o imoong i piranara	J · -	-			

MDL Method

Method Detection Limit

ND Not detected at or above the MDL.

Offices:
Minneapolis, Minnesota
Tampa, Florida
Coralville, Iowa

166730

166720

Mr. Kenneth Shimko Free 3

PACE Sample Number:

October 16, 1987 PACE Project Number: 870928501

166710

Units	MDL	MW-4	MW-5	MW-6
ma /1	0.01	ND	ND	ND
				ND
49/2	1.0	110		110
ug/L	1.5	ND	ND	ND
ug/L		ND	ND	ND
ug/L	1.0	1.3	ND	1.1
ug/L	0.4	ND .	ND	ND
ug/L	0.3	ND	ND	2.7
ug/l	0.2	ND	ND	1.1
				ND
				1.2
				ND MADE
ug/L	0.5	ND	ND	180(4)
ug/L	0.3	NU	ND	ND
-		ND	ND	ND
•		ND	ND	ND
		ND	ND	ND
ug/L	0.5	ND	ND	230(4)
uq/L	1.0	ND	ND	ND
	1.0	ND	ND	ND
	1.0	ND	ND	ND
	0.3	ND	ND	ND
ug/L	5.0	ND	ND	ND
uo/l	1.0	ND	ND	ND
				ND
				ND
49/ L	1.0	ND	ND	ND
	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	mg/L mg/L ug/L ug/L ug/L ug/L l.5 ug/L ug/L l.5 ug/L l.0	mg/L mg/L ug/L ug/L ug/L l.0 ND ug/L l.5 ND ug/L l.5 ND ug/L l.0 ND	mg/L 0.01 ND ND ND ND ug/L 1.5 ND ND ND ug/L 1.5 ND ND ND ug/L 1.0 ND ND ND ug/L 1.0 ND ND ND Ug/L 1.0 ND ND ND Ug/L 0.3 ND ND Ug/L 0.5 ND ND Ug/L 0.5 ND ND Ug/L 0.2 ND ND Ug/L 0.5 ND ND Ug/L 0.2 ND ND Ug/L 0.5 ND ND Ug/L 0.2 ND ND Ug/L 0.5 ND ND ND Ug/L 0.3 ND ND ND ND Ug/L 1.0 ND ND ND ND ND Ug/L 1.0 ND ND ND ND ND Ug/L 1.0 ND

Method Detection Limit

Not detected at or above the MDL.

Offices:
Minneapolis, Minnesota
Tampa, Florida

Coralville, lowa

Mr. Kenneth Shimko Page 7 October 16, 1987

PACE Project Number: 870928501

(1) These compounds co-elute.

(2) These compounds co-elute.

(3) MDL is 2 times higher due to sample dilution.

(4) MDL is 5 times higher due to sample dilution.

The data contained in this report were obtained using EPA or other approved methodologies. All analyses were performed by me or under my direct supervision.

Thomas L. Halverson

Inorganic Chemistry Manager

William South sie

William W. Samutan

William H. Scruton Organic Chemistry Manager

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

April 27, 1988

.- - > ' '

Mr. Kenneth Shimko Delta Environmental Consultants, Inc. 1801 Old Highway 8 Suite 123 New Brighton, MN 55112

RE: Delta Project No. 10-87-285 PACE Project No. 880324.515

Dear Mr. Shimko:

Enclosed is the report of laboratory analyses for samples received March 24, 1988.

The organic analyses were performed March 26 - April 25, 1988.

A copy of the chain of custody record for the samples and an invoice for services provided are also enclosed.

Please contact us if you have any questions regarding the enclosures.

Sincerely,

Daniel A. Comeau

Environmental Scientist

Roger C. Splinter, Ph.D.

Director, Laboratory Services

Enclosures

boratories, inc.

REPORT OF LABORATORY ANALYSIS

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, lowa

Delta Environmental Consultants, Inc. 1801 Old Highway 8

April 27, 1988

PACE Project Number: 880324515

Suite 123

New Brighton, MN 55112

Attn: Mr. Kenneth Shimko

10-87-285

Date Sample(s) Collected: 03/23/88 03/24/88 Date Sample(s) Received:

PACE Sample Number: Parameter	<u>Units</u>	MDL	066130 MW-A(1)	066140 	066150 MW-D1
Pheno1	ug/L	1.0	ND	ND	ND
2-Chlorophenol	ug/L	2.8	ND	ND	ND
2-Nitrophenol	ug/L	2.7	ND	ND	ND
2,4-Dimethylphenol	ug/L	1.8	ND	ND	ND
2,4-Dichlorophenol	ug/L	2.4	ND	ND	ND
4-Chloro-3-methylphenol	ug/L	10	ND	ND	ND
2,4,6-Trichlorophenol	ug/L	7.3	ND	ND	ND
2,4-Dinitrophenol	ug/L	10	ND	ND	ND
4-Nitrophenol	ug/L	10	ND	ND	ND
2-Methyl-4,6-dinitrophenol	ug/L	13	ND	ND	ND
Pentachlorophenol	ug/L	14	ND	ND	ND
Chloromethane	ug/L	1.0	ND	ND	ND
Bromomethane	ug/L	1.5	ND	ND	ND
Dichlorodifluoromethane	ug/L	1.5	ND	ND	ND
Vinyl chloride	ug/L	1.5	ND	ND	ND .
Chloroethane	ug/L	1.0	ND	ND	ND
Methylene chloride	ug/L	3.0	ND	ND	ND
Trichlorofluoromethane	ug/L	0.4	ND	ND	ND
1,1-Dichloroethylene	ug/L	0.3	ND	ND	ND
1,1-Dichloroethane	ug/L	0.2	ND	ND	ND
trans-1,2-Dichloroethylene	ug/L	0.3	ND	ND	ND
Chloroform	ug/L	0.5	ND	ND	ND
1,2-Dichloroethane	ug/L	0.2	ND	ND	ND
1,1,1-Trichloroethane	ug/L	0.5	24	ND	ND
Carbon tetrachloride	ug/L	0.3	ND	ND	ND
Bromodichloromethane	ug/L	0.2	ND	ND	ND
1,2-Dichloropropane	ug/L	0.2	ND	ND	ND
cis-1,3-Dichloro-1-propene	ug/L	0.5	ND	ND	ND

ND

Not detected at or above the MDL.

MDL

Method Detection Limit

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 2

April 27, 1988 PACE Project Number: 880324515

PACE Sample Number: <u>Parameter</u>	<u>Units</u>	MDL	066130 MW-A(1)	066140 <u>MW-C</u>	066150 MW-D1
1,1,2-Trichloroethylene Benzene Dibromochloromethane 1,1,2-Trichloroethane trans-1,3-Dichloro-1-propene	ug/L ug/L ug/L ug/L ug/L	0.5 1.0 1.0 1.0	300 ND ND ND ND	ND ND ND ND ND	1.7 ND ND ND ND ND
2-Chloroethylvinyl ether Bromoform 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethylene Toluene	ug/L ug/L ug/L ug/L ug/L	5.0 1.0 1.0 1.0	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND
Chlorobenzene Ethyl benzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene	ug/L ug/L ug/L ug/L ug/L	1.0 1.0 4.0 4.0 4.0	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND

Not detected at or above the MDL. ND MDL Method Detection Limit

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 3 April 27, 1988

PACE Project Number: 880324515

PACE Sample Number: Parameter	<u>Units</u>	MDL	066160 MW-D2	066170 <u>MW-E</u>	066180 <u>MW-1</u>
Phenol	ug/L	1.0	ND	ND ND	ND ND
2-Chlorophenol	ug/L ug/L	2.8 2.7	ND ND	ND .	ND
2-Nitrophenol 2,4-Dimethylphenol	ug/L	1.8	ND	ND	ND
2,4-Dichlorophenol	ug/L	2.4	ND	ND	ND
4-Chloro-3-methylphenol	ug/L	10	ND	ND	ND
2,4,6-Trichlorophenol	ug/L	7.3	ND	ND	ND
2,4-Dinitrophenol	ug/L	10	ND	ND	ND
4-Nitrophenol	ug/L	10	ND	ND	ND
2-Methyl-4,6-dinitrophenol	ug/L	13	ND	ND	ND
Pentachlorophenol	ug/L	14	ND	ND	ND
Chloromethane	ug/L	1.0	ND	ND	ND
Bromomethane	ug/L	1.5	ND	ND	ND
Dichlorodifluoromethane	ug/L	1.5	ND ·	ND	ND
Vinyl chloride	ug/L	1.5	ND	ND.	ND
Chloroethane	ug/L	1.0	ND	ND	ND
Methylene chloride	ug/L	3.0	ND	ND	ND
Trichlorofluoromethane	ug/L	0.4	ND	ND	ND
1,1-Dichloroethylene	ug/L	0.3	ND	0.5	ND
1,1-Dichloroethane	ug/L	0.2	ND	ND	ND
trans-1,2-Dichloroethylene	ug/L	0.3	ND	ND	ND
Chloroform	ug/L	0.5	ND	ND	ND
1,2-Dichloroethane	ug/L	0.2	ND	ND	ND
1,1,1-Trichloroethane	ug/L	0.5	24	2.4	ND I
Carbon tetrachloride	ug/L	0.3	ND	ND	ND
Bromodichloromethane	ug/L	0.2	ND	ND	ND
1.2-Dichloropropane	ug/L	0.2	ND	0.3	ND
cis-1,3-Dichloro-1-propene	ug/L	0.5	ND	ND	ND
1,1,2-Trichloroethylene	ug/L	0.5	1.8	0.5	ND
Benzene	ug/L	1.0	ND	4.2	ND
Dibromochloromethane	ug/L	1.0	ND	ND	ND
1,1,2-Trichloroethane	ug/L	1.0	ND	ND	ND
trans-1,3-Dichloro-1-propene	ug/L	0.3	ND	ND	ND
2-Chloroethylvinyl ether	ug/L	5.0	ND	ND	ND

ND

Not detected at or above the MDL.

MDL

Method Detection Limit

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 4 April 27, 1988

PACE Project Number: 880324515

PACE Sample Number: <u>Parameter</u>	<u>Units</u>	MDL	066160 <u>MW</u> -D2	066170 <u>MW-E</u>	066180 <u>MW-1</u>	-
Bromoform 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethylene Toluene Chlorobenzene	ug/L ug/L ug/L ug/L ug/L	1.0 1.0 1.0 1.0	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	
Ethyl benzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene	ug/L ug/L ug/L ug/L	1.0 4.0 4.0 4.0	ND ND ND ND	ND ND ND ND	ND ND ND ND	

ND

Not detected at or above the MDL.

MDL

Method Detection Limit

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 5 April 27, 1988

PACE Project Number: 880324515

PACE Sample Number: <u>Parameter</u>	<u>Units</u>	MDL	066190 <u>MW-2</u>	066200 <u>MW-3(2)</u>	066210 <u>MW-3D(2)</u>
Phenol Phenol Phenol 2-Chlorophenol 2-Chlorophenol	ug/L ug/L ug/L ug/L ug/L	1.0 10 100 2.8 28	ND - ND -	- ND · -	ND - ND ND
2-Chlorophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2,4-Dimethylphenol	ug/L ug/L ug/L ug/L ug/L	280 2.7 27 270 1.8	- ND - - ND	ND - - ND -	- ND -
2,4-Dimethylphenol 2,4-Dimethylphenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol	ug/L ug/L ug/L ug/L ug/L	18 180 2.4 24 240	- ND -	- ND - - ND	ND - - ND -
4-Chloro-3-methylphenol 4-Chloro-3-methylphenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol	ug/L ug/L ug/L ug/L ug/L	10 100 1000 7.3 73	ND - - ND	 ND 	ND - - ND
2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 4-Nitrophenol	ug/L ug/L ug/L ug/L ug/L	730 10 100 1000 10	- ND - - ND	ND - - ND -	- ND -
4-Nitrophenol 4-Nitrophenol 2-Methyl-4,6-dinitrophenol 2-Methyl-4,6-dinitrophenol 2-Methyl-4,6-dinitrophenol	ug/L ug/L ug/L ug/L ug/L	100 1000 13 130 1300	- ND -	 ND ND	ND - - ND -
Pentachlorophenol Pentachlorophenol Pentachlorophenol Chloromethane	ug/L ug/L ug/L ug/L	14 140 1400 1.0	ND - - ND	- 16,000 ND	12,000 - ND

ND Not detected at or above the MDL.
MDL Method Detection Limit

PACE laboratories, inc.

REPORT OF LABORATORY ANALYSIS

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 6 April 27, 1988

PACE Project Number: 880324515

PACE Sample Number: Parameter	Units	MDL	066190 MW-2	066200 MW-3(2)	066210 MW-3D(2)
Bromomethane	ug/L	1.5	ND	ND	ND
Dichlorodifluoromethane	ug/L	1.5	ND	ND	ND
Vinyl chloride	ug/L	1.5	ND	ND .	ND
Chloroethane	ug/L	1.0	ND	ND	ND
Methylene chloride	ug/L	3.0	ND	17	19
Trichlorofluoromethane	ug/L	0.4	ND	ND	ND
	ug/L	0.3	ND	ND	ND
1,1-Dichloroethylene 1,1-Dichloroethane	ug/L	0.2	ND	43	43
trans-1,2-Dichloroethylene	ug/L	0.3	ND	ND	ND
Chloroform	ug/L	0.5	ND	24	22
				ND	NO
1,2-Dichloroethane	ug/L	0.2	ND	ND	ND
1,1,1-Trichloroethane	ug/L	0.5	ND	65	61
Carbon tetrachloride	ug/L	0.3	ND	35	33
Bromodichloromethane	. ug/L	0.2	ND	ND	ND
1,2-Dichloropropane	ug/L	0.2	ND .	ND	ND
cis-1,3-Dichloro-1-propene	ug/L	0.5	ND	ND	ND
1,1,2-Trichloroethylene	ug/L	0.5	ND	2.4	2.1
Benzene	ug/L	1.0	1.4	ND	ND
Dibromochloromethane	ug/L	1.0	ND	ND	ND
1,1,2-Trichloroethane	ug/L	1.0	ND	ND	ND
trans-1,3-Dichloro-1-propene	ug/L	0.3	ND	ND	ND
2-Chloroethylvinyl ether	ug/L	5.0	ND	ND	ND
Bromoform	ug/L	1.0	ND	ND	ND
1,1,2,2-Tetrachloroethane	ug/L	1.0	ND	ND	ND
1,1,2,2-Tetrachloroethylene	ug/L	1.0	ND	ND	ND
•	ua/1	1.0	ND	4.7	6.4
Toluene	ug/L ug/L	1.0	ND	6.0	ND ND
Chlorobenzene		1.0	ND	ND	11
Ethyl benzene	ug/L	4.0	ND	ND	ND
1,3-Dichlorobenzene	ug/L	4.0	ND	ND	ND
1,2-Dichlorobenzene	ug/L	4.0	NU	NU	NU
1,4-Dichlorobenzene	ug/L	4.0	ND	ND	ND

ND Not detected at or above the MDL.
MDL Method Detection Limit

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 7 April 27, 1988

PACE Project Number: 880324515

PACE Sample Number: Parameter	<u>Units</u>	_MDL_	066220 <u>MW-4</u>	066230 <u>MW-5</u>	066240 MW-6A(3)
Phenol 2-Chlorophenol 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dichlorophenol	ug/L	1.0	ND	ND	ND
	ug/L	2.8	ND	ND	ND
	ug/L	2.7	ND	ND	ND
	ug/L	1.8	ND	ND	ND
	ug/L	2.4	ND	ND	ND
4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 2-Methyl-4,6-dinitrophenol	ug/L	10	ND	ND	ND
	ug/L	7.3	ND	ND	ND
	ug/L	10	ND	ND	ND
	ug/L	10	ND	ND	ND
	ug/L	13	ND	ND	ND
Pentachlorophenol Chloromethane Bromomethane Dichlorodifluoromethane Vinyl chloride	ug/L ug/L ug/L ug/L ug/L	14 1.0 1.5 1.5	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND
Chloroethane Methylene chloride Trichlorofluoromethane 1,1-Dichloroethylene 1,1-Dichloroethane	ug/L	1.0	ND	ND	ND
	ug/L	3.0	ND	3.3	18
	ug/L	0.4	ND	ND	ND
	ug/L	0.3	ND	ND	ND
	ug/L	0.2	ND	ND	ND
trans-1,2-Dichloroethylene Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride	ug/L	0.3	ND	ND	ND
	ug/L	0.5	ND	ND	ND
	ug/L	0.2	ND	ND	ND
	ug/L	0.5	ND	ND	140
	ug/L	0.3	ND	ND	ND
Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene 1,1,2-Trichloroethylene Benzene	ug/L ug/L ug/L ug/L ug/L	0.2 0.2 0.5 0.5	ND ND ND ND ND	ND ND ND ND ND	ND ND ND 78 3.7
Dibromochloromethane 1,1,2-Trichloroethane trans-1,3-Dichloro-1-propene 2-Chloroethylvinyl ether	ug/L	1.0	ND	ND	ND
	ug/L	1.0	ND	ND	ND
	ug/L	0.3	ND	ND	ND
	ug/L	5.0	ND	ND	ND

ND Not detected at or above the MDL.
MDL Method Detection Limit

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, lowa

Mr. Kenneth Shimko Page 8

April 27, 1988 PACE Project Number: 880324515

PACE Sample Number: Parameter	<u>Units</u>	MDL	066220 <u>MW</u> -4	066230 <u>MW-5</u>	066240 MW-6A(3)
Bromoform 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethylene Toluene Chlorobenzene	ug/L ug/L ug/L ug/L ug/L	1.0 1.0 1.0 1.0	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND
Ethyl benzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene	ug/L ug/L ug/L ug/L	1.0 4.0 4.0 4.0	ND ND ND ND	ND ND ND ND	ND ND ND ND

Not detected at or above the MDL. ND

Method Detection Limit MDL

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page

April 27, 1988

PACE Project Number: 880324515

PACE Sample Number:			066250	066260 Bailer
Parameter	<u>Units</u>	MDL	<u>MW-6B</u>	Blank
Phenol 2-Chlorophenol 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dichlorophenol	ug/L ug/L ug/L ug/L ug/L	1.0 2.8 2.7 1.8 2.4	ND ND ND ND ND	ND ND ND ND
4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 2-Methyl-4,6-dinitrophenol	ug/L ug/L ug/L ug/L ug/L	10 7.3 10 10 13	ND ND ND ND ND	ND ND ND ND ND
Pentachlorophenol Chloromethane Bromomethane Dichlorodifluoromethane Vinyl chloride	ug/L ug/L ug/L ug/L ug/L	14 1.0 1.5 1.5	ND ND ND ND ND	ND ND ND ND ND
Chloroethane Methylene chloride Trichlorofluoromethane 1,1-Dichloroethylene 1,1-Dichloroethane	ug/L ug/L ug/L ug/L ug/L	1.0 3.0 0.4 0.3	ND ND ND ND ND	ND 3.3 1.1 ND ND
trans-1,2-Dichloroethylene Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride	ug/L ug/L ug/L ug/L ug/L	0.3 0.5 0.2 0.5	ND ND ND 9.2 ND	ND ND ND 1.3 ND
Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene 1,1,2-Trichloroethylene Benzene	ug/L ug/L ug/L ug/L ug/L	0.2 0.2 0.5 0.5	ND ND ND 4.5	ND ND ND ND ND
Dibromochloromethane 1,1,2-Trichloroethane trans-1,3-Dichloro-1-propene	ug/L ug/L ug/L	1.0 1.0 0.3	ND ND ND	ND ND ND

ND

Not detected at or above the MDL.

MDL

Method Detection Limit

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 10 April 27, 1988

PACE Project Number: 880324515

PACE Sample Number:			066250	066260 Bailer	
<u>Parameter</u>	<u>Units</u>	MDL	MW-6B	Blank	-
2-Chloroethylvinyl ether Bromoform 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethylene Toluene	ug/L ug/L ug/L ug/L ug/L	5.0 1.0 1.0 1.0	ND ND ND ND ND	ND ND ND ND ND	
Chlorobenzene Ethyl benzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene	ug/L ug/L ug/L ug/L ug/L	1.0 1.0 4.0 4.0 4.0	ND ND ND ND ND	ND ND ND ND ND	

ND	Not detected at or above the MDL.
MDL	Method Detection Limit
(1)	The sample was diluted 1 to 10 for volatile compounds; all volatile
	compound MDLs must be multiplied by the dilution factor.
(2)	The sample was diluted 1 to 2 for volatile compounds; all volatile
	compound MDLs must be multiplied by the dilution factor.
(3)	The sample was diluted 1 to 2.5 for volatile compounds; all volatile
	compound MDLs must be multiplied by the dilution factor.

The data contained in this report were obtained using EPA or other approved methodologies. All analysis were performed by me or under my direct supervision.

William H. Scruton

Organic Chemistry Manager

will- AlSe=

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

July 07, 1988

Mr. Kenneth Shimko Delta Environmental Consultants, Inc. 1801 Old Highway 8 Suite 123 New Brighton, MN 55112

RE: Delta Project No. 10-87-285 PACE Project No. 880527.502

Dear Mr. Shimko:

Enclosed is the report of laboratory analyses for samples received May 27, 1988.

The organic analyses were performed June 03 - July 01, 1988.

A copy of the chain of custody record for the samples and an invoice for services provided are also enclosed.

Please contact us if you have any questions regarding the enclosures.

Sincerely,

Feagy F. Gaskill Peggy F. Gaskill

Coordinator of Services

Roger C. Splinter, Ph.D.

Director, Laboratory Services

Enclosures

IPACEJaboratories, inc.

REPORT OF LABORATORY ANALYSIS

July 07, 1988

PACE Project Number: 880527502

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Delta Environmental Consultants, Inc.

1801 Old Highway 8

Suite 123

New Brighton, MN 55112

Attn: Mr. Kenneth Shimko

10-87-285

Date Sample(s) Collected: 05/25/88 Date Sample(s) Received: 05/27/88

PACE Sample Number: Parameter	Units	_MDL_	136600 B 7	136610 Blank 3	136620 Blank 2
Chloromethane	ug/L	1.0	ND	ND	ND
Bromomethane	ug/L	1.5	ND	ND	ND
Dichlorodifluoromethane	ug/L	1.5	ND	ND	ND
Vinyl chloride	ug/L ´	1.5	ND	ND	ND
Chloroethane	ug/L	1.0	ND	ND	ND
					110
Methylene chloride	ug/L	1.0	ND	6.3	ND
Trichlorofluoromethane	ug/L	0.4	ND	0.5	ND
1,1-Dichloroethylene	ug/L	0.3	ND	ND	ND
1,1-Dichloroethane	ug/L	0.2	ND	ND	ND
trans-1,2-Dichloroethylene	ug/L	0.3	ND.	ND	ND
Chloroform	ug/L	0.5	ND	ND	ND
1,2-Dichloroethane	ug/L	0.2	ND	ND	ND
1,1,1-Trichloroethane	ug/L	0.5	ND	ND	ND.
Carbon tetrachloride	ug/L	0.3	ND	ND	ND
Bromodichloromethane	ug/L	0.2	ND	ND	ND
bi ollogi cirror olle thane	09,2	0.2	,		
1,2-Dichloropropane	ug/L	0.2	ND	ND	ND
cis-1,3-Dichloro-1-propene	ug/L	0.5	ND	ND	ND
1,1,2-Trichloroethylene	ug/L	0.5	ND	ND	ND
Benzene	ug/L	1.0	ND	ND	ND
Dibromochloromethane	ug/L	1.0	ND	ND	ND
,	-				
1,1,2-Trichloroethane	ug/L	1.0	ND	ND	ND
trans-1,3-Dichloro-1-propene	ug/L	0.3	ND	ND	ND
2-Chloroethylvinyl ether	ug/L	5.0	ND	ND	ND
Bromoform	ug/L	1.0	ND	ND	ND
1,1,2,2-Tetrachloroethane	ug/L	1.0	ND	ND	ND
1,1,2,2-Tetrachloroethylene	ug/L	1.0	ND	ND	ND
Toluene Toluene	ug/L	1.0	ND	ND	3.9
TOTUETIE	09, 0	1.0		, 1 w	

MDL

Method Detection Limit

ND

Not detected at or above the MDL.

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 2

July 07, 1988 PACE Project Number: 880527502

PACE Sample Number: Parameter	Units	_MDL_	136600 B_7	136610 Blank 3	136620 Blank 2
Chlorobenzene Ethyl benzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene	ug/L ug/L ug/L ug/L ug/L	1.0 1.0 4.0 4.0	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND

Method Detection Limit MDL

ND Not detected at or above the MDL.

aboratories, inc.

Page 3

REPORT OF LABORATORY ANALYSIS

Offices:

Minneapolis, Minnesota Tampa, Florida Coraiville, Iowa

July 07, 1988 Mr. Kenneth Shimko

PACE Project Number: 880527502

PACE Sample Number: Parameter	<u>Units</u>	MDL	136630 Blank 1	136640 MW-1	136650 <u>MW-2</u>
Phenol	ug/L	1.0	ND	ND	ND
2-Chlorophenol	ug/L	2.8	ND	ND	ND
2-Nitrophenol	ug/L	2.7	ND	ND	ND
2,4-Dimethylphenol	ug/L	1.8	ND	ND ·	· ND
2,4-Dichlorophenol	ug/L	2.4	ND	ND	ND
4-Chloro-3-methylphenol	ug/L	10	ND	ND	ND .
2.4.6-Trichlorophenol	ug/L	7.3	ND	ND	ND
2,4-Dinitrophenol	ug/L	10	ND	ND	ND
4-Nitrophenol	ug/L	10	ND	ND	ND
2-Methyl-4,6-dinitrophenol	ug/L	20	ND	ND	ND
Pentachlorophenol	ug/L	14	ND	ND	ND .
Chloromethane	ug/L	1.0	ND	ND	ND
Bromomethane	ug/L	1.5	ND	ND	ND
Dichlorodifluoromethane	ug/L	1.5	ND	ND	ND
Vinyl chloride	ug/L	1.5	ND	ND	ND
Chloroethane	ug/L	1.0	ND	ND	ND
Methylene chloride	ug/L	1.0	ND	ND	ND
Trichlorofluoromethane	ug/L	0.4	ND	ND	ND
1.1-Dichloroethylene	ug/L	0.3	ND	ND	ND
1,1-Dichloroethane	ug/L	0.2	ND	ND	ND
trans-1,2-Dichloroethylene	ug/L	0.3	ND	ND	ND
Chloroform	ug/L	0.5	ND	ND	ND
1,2-Dichloroethane	ug/L	0.2	ND	ND	ND
1,1,1-Trichloroethane	ug/L.	0.5	12	ND	ND
Carbon tetrachioride	ug/∟	0.3	HD "	ND	ND :
Bromodichloromethane	ug/L	0.2	ND	ND	ND I
1,2-Dichloropropane	ug/L	0.2	ND	ND	ND
cis-1.3-Dichloro-1-propene	ug/L	0.5	ND	ND	ND
1,1,2-Trichloroethylene	ນໆ/L	0.5	-	ND	ND
1,1,2-Trichloroethylene	ug/L	5.0	170	-	-
Benzene	ug/L	1.0	ND	ND	ND .
Dibromochloromethane	ug/L	1.0	ND	ND	ND :
1,1,2-Trichloroethane	ug/L	1.0	ND	ND	ND ·

MDL

Method Detection Limit

Offices:

Minneapolis, Minnesota Tampa, Florida Coraiville, Iowa

Mr. Kenneth Shimko Page

July 07, 1988 PACE Project Number: 880527502

PACE Sample Number: Parameter	<u>Units</u>	MDL	136630 <u>Blank l</u>	136640 <u>MW-1</u>	136650 MW-2
trans-1,3-Dichloro-1-propene	ug/L	0.3	ND	ND	ND
2-Chloroethylvinyl ether	ug/L	5.0	ND	ND	ND
Bromoform	ug/L	1.0	ND	ND	ND
1,1,2,2-Tetrachloroethane	ug/L	1.0	ND	ND ·	· ND
1,1,2,2-Tetrachloroethylene	ug/L	1.0	ND	ND	ND
Toluene	ug/L	1.0	ND	ND	ND ·
Chlorobenzene	ug/L	1.0	ND	ND	ND
Ethyl benzene	ug/L	1.0	ND	ND	· ND
1,3-Dichlorobenzene	ug/L	4.0	ND	ND	ND
1,2-Dichlorobenzene	ug/L	4.0	ND	ND	ND
1,4-Dichlorobenzene	ug/L	4.0	ND .	ND	ND

Method Detection Limit MDL

Offices:
Minneapolis, Minnesota
Tampa, Florida
Coralville, Iowa

Mr. Kenneth Shimko Page 5 July 07, 1988

PACE Project Number: 880527502

PACE Sample Number: Parameter	Units	MDL	136660 MW-3(1)	136670 MW-4	136680 MW-5
Phenol	ug/L	1.0	8.1	_	ND
Phenol	ug/L	50	-	ND	-
2-Chlorophenol	ug/L	140	-	ND	
2-Chlorophenol	ug/L	2.8	ND	-	· ND
2-Nitrophenol	ug/L	140	-	ND	-
2-Nitrophenol	. ug/L	2.7	ND	-	ND ·
2,4-Dimethylphenol	ug/L	1.8	7.4	-	ND
2,4-Dimethylphenol	ug/L	90	-	ND	•
2,4-Dichlorophenol	ug/L	120	-	ND	-
2,4-Dichlorophenol	ug/L	2.4	ND	-	ND
4-Chloro-3-methylphenol	ug/L	10	ND	-	ND
4-Chloro-3-methylphenol	ug/L	500	_	ND	-
2,4,6-Trichlorophenol	ug/L	370		ND	-
2,4,6-Trichlorophenol	ug/L	7.3	ND	-	ND
2,4-Dinitrophenol	ug/L	10	ND	-	ND
2,4-Dinitrophenol	ug/L	500	_ `	ND	-
4-Nitrophenol	ug/L	10	ND	-	ND
4-Nitrophenol	ug/L	500	-	ND	-
2-Methyl-4,6-dinitrophenol	ug/L	1000	_	ND	-
2-Methyl-4,6-dinitrophenol	ug/L	20	ND	-	ND
Pentachlorophenol	ug/L	14	2600	-	ND ·
Pentachlorophenol	ug/L	700	-	ND	- :
Chloromethane	ug/L	1.0	ND	ND	ND :
Bromomethane	ug/L	1.5	ND	ND	ND
Dichlorodifluoromethane	ug/L	1.5	ND	ND	ND
Vinyl chloride	ug/L	1.5	ND	ND	ND :
Chloroethane	ug/L	1.0	ND	ND	ND
Methylene chloride	ug/L	1.0	9.2	ND	ND
Trichlorofluoromethane	ug/L	0.4	ND	ND	ND
1,1-Dichloroethylene	ug/L	0.3	ND	ND	ND
1,1-Dichloroethane	ug/L	0.2	43	ND	ND
trans-1,2-Dichloroethylene	ug/L	0.3	ND	ND	ND
Chloroform	ug/L	0.5	11	ND	ND

MDL Method Detection Limit

Offices:
Minneapolis, Minnesota
Tampa, Florida
Coralville, Iowa

Mr. Kenneth Shimko Page 6 July 07, 1988

PACE Project Number: 880527502

PACE Sample Number: Parameter	<u>Units</u>	MDL	136660 <u>MW-3(1)</u>	136670 MW-4	136680 MW-5
1,2-Dichloroethane	ug/L	0.2	ND	ND	ND
1,1,1-Trichloroethane	ug/L	0.5	50	ND	ND
Carbon tetrachloride	ug/L	0.3	14	ND	ND
Bromodichloromethane	ug/L	0.2	ND	ND ·	· ND
1,2-Dichloropropane	ug/L	0.2	ND	ND	ND
cis-1,3-Dichloro-1-propene	ug/L	0.5	ND	ND	ND ·
1,1,2-Trichloroethylene	ug/L	0.5	ND	ND	ND
Benzene	ug/L	1.0	ND	ND	- ND
Dibromochloromethane	ug/L	1.0	ND	ND	ND
1,1,2-Trichloroethane	ug/L	1.0	ND	ND	ND
trans-1,3-Dichloro-1-propene	ug/L	0.3	ND	ND	ND
2-Chloroethylvinyl ether	ug/L	5.0	ND	ND	ND
Bromoform	ug/L	1.0	ND	ND	ND
1,1,2,2-Tetrachloroethane	ug/L	1.0	ND .	ND	ND
1,1,2,2-Tetrachloroethylene	ug/L	1.0	ND	ND	ND
Toluene	ug/L	1.0	ND	ND	ND
Chlorobenzene	ug/L	1.0	ND	ND	ND
Ethyl benzene	ug/L	1.0	7.4	ND	ND
1,3-Dichlorobenzene	ug/L	4.0	ND	ND	ND
1,2-Dichlorobenzene	ug/L	4.0	ND	ND	ND
1,4-Dichlorobenzene	ug/L	4.0	ND .	ND	ND

MDL Method Detection Limit

Offices: Minneapolis, Minnesota Tampa, Florida Coralville, lowa

Mr. Kenneth Shimko 7 Page

laboratories, inc.

July 07, 1988

PACE Project Number: 880527502

PACE Sample Number: Parameter	<u>Units</u>	MDL	136690 NH-6A(1)	136700 MW-6B	136710 MW-C
Phenol	ug/L	1.0	_	ND	ND
Phenol	ug/L	50	ND	-	-
2-Chlorophenol	ug/L	140	ND	-	-
2-Chlorophenol	ug/L	2.8	_	ND ·	· ND
2-Nitrophenol	ug/L	140	ND	-	-
2-Nitrophenol	ug/L	2.7	_	ND	ND ·
2,4-Dimethylphenol	ug/L	1.8	-	ND	ND
2,4-Dimethylphenol	ug/L	90	ND	_	_
2,4-Dichlorophenol	ug/L	120	ND		_
2,4-Dichlorophenol	ug/L	2.4	-	ND	ND
4-Chloro-3-methylphenol	ug/L	10	_	ND	ND
4-Chloro-3-methylphenol	ug/L	500	ND	_	_
2,4,6-Trichlorophenol	ug/L	370	ND	_	
2,4,6-Trichlorophenol	ug/L	7.3	-	ND	ND
2,4-Dinitrophenol	ug/L	10	_	ND	ND
2,4-Dinitrophenol	ug/L	500	ND	_	_
4-Nitrophenol	ug/L	10	_	ND	ND
4-Nitrophenol	ug/L	500	ND	_	_
2-Methyl-4,6-dinitrophenol	ug/L	1000	ND		_
2-Methyl-4,6-dinitrophenol	ug/L	20	_	ND	ND
Pentachlorophenol	ug/L	14	_	ND	ND
Pentachlorophenol	ug/L	700	ND	_	<u> </u>
Chloromethane	ug/L	1.0	ND	ND	ND
Bromomethane	ug/L	1.5	ND	ND	ND
Dichlorodifluoromethane	ug/L	1.5	ND	ND	ND
Vinyl chloride	ug/L	1.5	ND	ND	ND
Chloroethane	ug/L	1.0	ND	ND	ND
Methylene chloride	ug/L	1.0	ND	ND	ND
Trichlorofluoromethane	ug/L	0.4	ND	ND	ND
1,1-Dichloroethylene	ug/L	0.3	11	ND	ND
1,1-Dichloroethane	ug/L	0.2	ND	ND	ND
trans-1,2-Dichloroethylene	ug/L	0.3	ND	ND	ND
Chloroform	ug/L	0.5	ND	ND	ND

Method Detection Limit MDL

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 8 July 07, 1988

PACE Project Number: 880527502

PACE Sample Number: Parameter	<u>Units</u>	MDL	136690 MW-6A(1)	136700 <u>MW-6B</u>	136710 MW_C
1,2-Dichloroethane	ug/L	0.2	ND	ND	ND
1,1,1-Trichloroethane	ug/L	0.5	210	6.5	ND ,
Carbon tetrachloride	ug/L	0.3	NU	ND	ND 1
Bromodichloromethane	ug/L	0.2	ND	ND ·	· ND
1,2-Dichloropropane	ug/L	0.2	ND	ND	ND ,
cis-1,3-Dichloro-1-propene	ug/L	0.5	ND	ND	ND
1,1,2-Trichloroethylene	ug/L	0.5	180	2.0	ND
Benzene	ug/L	1.0	ND	ND	ND
Dibromochloromethane	ug/L	1.0	ND	ND	ND '
1,1,2-Trichloroethane	ug/L	1.0	ND	ND	ND
trans-1,3-Dichloro-1-propene	ug/L	0.3	ND	ND	ND
2-Chloroethylvinyl ether	ug/L	5.0	ND	ND	ND
Bromoform	ug/L	1.0	ND	ND	ND
1,1,2,2-Tetrachloroethane	ug/L	1.0	ND	ND	ND
1,1,2,2-Tetrachloroethylene	ug/L	1.0	ND	ND	ND
Toluene	ug/L	1.0	ND	ND	ND
Chlorobenzene	ug/L	1.0	ND	ND	ND
Ethyl benzene	ug/L	1.0	ND	ND	ND
1,3-Dichlorobenzene	ug/L	4.0	ND	ND	ND
1,2-Dichlorobenzene	ug/L	4.0	ND	ND	ND
1,4-Dichlorobenzene	ug/L	4.0	ND	ND	ND

MDL Method Detection Limit

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

PACE laboratories, inc.

Mr. Kenneth Shimko Page 9 July 07, 1988

PACE Project Number: 880527502

			4 0	V	
PACE Sample Number:			136720	136730	136740
Parameter Number :	<u>Units</u>	MDL	MW-F(2)	MW-D1	MW-D2
Phenol	ug/L	1.0	ND	ND	ND
2-Chlorophenol	ug/L	2.8	ND	ND	ND
2-Nitrophenol	ug/L	2.7	ND	ND	ND
2,4-Dimethylphenol	ug/L	1.8	ND		· ND
2,4-Dichlorophenol	ug/L	2.4	ND	ND	ND
4-Chloro-3-methylphenol	ug/L	10	ND	ND	ND ·
2,4,6-Trichlorophenol	ug/L	7.3	ND	ND	ND
2.4-Dinitrophenol	ug/L	10	ND	ND	ND
4-Nitrophenol	ug/L	10	ND	ND	ND
2-Methy1-4,6-dinitrophenol	ug/L	20	ND	ND	ND
Pentachlorophenol	ug/L	14	ND	ND	ND
Chloromethane	ug/L	1.0	ND	ND	ND
Bromomethane	ug/L	1.5	ND .	ND	ND
Dichlorodifluoromethane	ug/L	1.5	ND	ND	ND
Vinyl chloride	ug/L	1.5	ND	ND	ND
Chloroethane	ug/L	1.0	ND	ND	ND
Methylene chloride	ug/L	1.0	ND	1.4	ND
Trichlorofluoromethane	ug/L	0.4	ND	ND	ND
1,1-Dichloroethylene	ug/L	0.3	ND	ND	0.5
1,1-Dichloroethane	ug/L	0.2	ND	ND	ND
trans-1,2-Dichloroethylene	ug/L	0.3	ND	ND	ND
Chloroform	ug/L	0.5	ND	ND	0.5
1,2-Dichloroethane	ug/L	0.2	ND	ND	ND
1,1,1-Trichloroethane	ug/L	0.5	2.8	ND	24
Carbon tetrachloride	ug/L	0.3	ND	0.3	ND
Bromodichloromethane	ug/L	0.2	ND	ND	ND
1,2-Dichloropropane	ug/L	0.2	ND	ND	ND
cis-1,3-Dichloro-1-propene	ug/L	0.5	ND	ND	ND
1,1,2-Trichloroethylene	ug/L	0.5	16	0.5	0.6
Benzene	ug/L	1.0	ND	ND	ND
Dibromochloromethane	ug/L	1.0	ND	ND	ND
1,1,2-Trichloroethane	ug/L	1.0	ND	ND	ND
trans-1,3-Dichloro-1-propene	ug/L	0.3	ND	ND	ND

MDL Method Detection Limit

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 10

July 07, 1988 PACE Project Number: 880527502

PACE Sample Number: Parameter	<u>Units</u>	MDL	136720 MW-F(2)	136730 MW-D1	136740 <u>MW</u> –D2
2-Chloroethylvinyl ether	ug/L	5.0	ND	ND	ND
Bromoform	ug/L	1.0	ND	ND	ND
1,1,2,2-Tetrachloroethane	ug/L	1.0	ND	ND	ND
1,1,2,2-Tetrachloroethylene	ug/L	1.0	ND	ND	ND
Toluene	ug/L	1.0	ND	ND	ND
Chlorobenzene	ug/L	1.0	ND	ND	ND ·
Ethyl benzene	ug/L	1.0	ND	ND	ND
1,3-Dichlorobenzene	ug/L	4.0	ND	ND	ND
1,2-Dichlorobenzene	ug/L	4.0	ND	ND	ND
1,4-Dichlorobenzene	ug/L	4.0	ND	ND	ND

Method Detection Limit MDL

Offices:
Minneapolis, Minnesota
Tampa, Florida
Coralville, Iowa

Mr. Kenneth Shimko Page 11 July 07, 1988

PACE Project Number: 880527502

PACE Sample Number: Parameter		<u>Units</u>	MDL	136750 PTO	136760 MW-E
Phenol 2-Chlorophenol 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dichlorophenol		ug/L ug/L ug/L ug/L ug/L	1.0 2.8 2.7 1.8 2.4	ND ND ND ND ND	ND ND ND ND · ·
4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 2-Methyl-4,6-dinitrophenol		ug/L ug/L ug/L ug/L ug/L	10 7.3 10 10 20	ND ND ND ND ND	ND ND ND ND ND
Pentachlorophenol Chloromethane Bromomethane Dichlorodifluoromethane Vinyl chloride		ug/L ug/L ug/L ug/L ug/L	14 1.0 1.5 1.5	ND ND ND ND ND	ND ND ND ND
Chloroethane Methylene chloride Trichlorofluoromethane 1,1-Dichloroethylene 1,1-Dichloroethane	·	ug/L ug/L ug/L ug/L ug/L	1.0 1.0 0.4 0.3	ND ND ND ND ND	ND 1.4 ND ND ND
trans-1,2-Dichloroethylene Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride		ug/L ug/L ug/L ug/L ug/L	0.3 0.5 0.2 0.5 0.3	ND ND ND 7.8 ND	ND ND ND 3.8 ND
Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene 1,1,2-Trichloroethylene Benzene		ug/L ug/L ug/L ug/L ug/L	0.2 0.2 0.5 0.5	ND ND ND 180 ND	ND ND ND ND 2.9
Dibromochloromethane 1,1,2-Trichloroethane trans-1,3-Dichloro-1-propen	ne	ug/L ug/L ug/L	1.0 1.0 0.3	ND ND ND	ND ND ND

MDL Method Detection Limit

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 12

July 07, 1988 PACE Project Number: 880527502

			7 7		
PACE Sample Number: Parameter	<u>Units</u>	_MDL_	136750 MW-A(3)	136760 MW-E	
2-Chloroethylvinyl ether Bromoform 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethylene Toluene	ug/L ug/L ug/L ug/L ug/L	5.0 1.0 1.0 1.0	ND ND ND ND ND	ND ND ND ND · ND	•
Chlorobenzene Ethyl benzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1.4-Dichlorobenzene	ug/L ug/L ug/L ug/L ug/L	1.0 1.0 4.0 4.0 4.0	ND ND ND ND ND	ND ND ND ND ND	

Method Detection Limit MDL

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Kenneth Shimko Page 15 July 07, 1988 PACE Project Number: 880527502

- (1) The sample was diluted 1 to 5 for the volatile analysis; all volatile compound MDLs must be multiplied by the dilution factor.
- (2) The sample was diluted 1 to 2 for the volatile analysis; all volatile compound MDLs must be multiplied by the dilution factor.
- (3) The sample was diluted 1 to 10 for the volatile analysis; all volatile compound MDLs must be multiplied by the dilution factor.

The data contained in this report were obtained using EPA or other approved methodologies. All analyses were performed by me or under my direct supervision.

William H. Scruton

Organic Chemistry Manager

Mile Han-

May 2, 1988

662 CROMWELL AVENUE ST. PAUL. MN 55114 PHONE 612/645-3601

Delta Environmental Consultants, Inc. 1801 Highway 8 Suite 123 St. Paul. MN 55112

Attn: Mr. Kenneth Shimko

SUBJ: Permeability and Particle Size Analysis

West Bend, Delta Job #1087285

TCT #4220 88-475

Gentlemen:

This report includes the results of a permeability and sieve and hydrometer analysis performed on a thin-walled tube sample you delivered to our office on April 19, 1988. This work was verbally authorized by you. We are sending you five copies of our report.

The sieve and hydrometer analyses were performed in general accordance with procedures given under ASTM: D422. Results are given on the attached summary and grain size distribution curve sheets. The permeability test was performed in a triaxial-like chamber by the "flexible wall" method. The specimen was encased in a heavy latex membrane and confined to the estimated overburden pressure of 20 psi. After allowing the specimen to saturate and adjust under the effective confining pressure, a falling head of 5' was established. Readings were then taken at appropriate time intervals for 11 days. The given hydraulic conductivity (coefficient of permeability) is based on an average of the latter four trials (recordings). Deaired, St. Paul City tapwater was used. Results are given on the attached data summary sheet.

The remaining portion of the sample will be held at this office for one month unless other arrangements are made. If you have any questions regarding the test results, or if we can be of any further assistance, please call me at 641-9390. We sincerely appreciate this opportunity to serve you.

Very truly yours,

Gordon R. Eischens

Manager/Laboratory Services

Jula 1. Einelon

GRE/d.is

Encs.

LABORATORY TEST DATA

OJECT: West Bend, Delta Job No. 1087285		DATE: April 29, 1988
REPORTED TO: Delta Environment	tal Consultants, Inc.	JOB NO.: 4220 88-475
Boring No.	D-2	
Sample No. Sample Designation		
Depth (ft)	@35	
Type of Sample	3T	
Soil Classification (ASTM:D2487)	Lean Clay (CL)	
In-Place Moisture Content (%)		
Moisture-Density Relation of Soil (ASTM:D698) Max. Dry Density (PCF)		
Optimum Moisture Content (%)		
Permeability Test Trial No.	7-10	
Type of Test	Falling Head	
Type of Specimen	Undisturbed	
Specimen Height (inches)	2.86	
Specimen Diameter (inches)	2.86	
Dry Density (PCF)	120.0	
Percent of Max. Density		
Moisture Content (%)	15.4	
Max. Head Differential (ft)	5.0	
Confining Pressure (effective - PSF)	20.0	
Water Temperature (°C)	20	
Coefficient of Permeability • K@ 20°C (cm/sec)	1 X 10-8	
K @ 20°C (ft/min)	2 X 10 ⁻⁸	
Atterberg Limits Liquid Limit (%)		
Plastic Limit (%)		
Plasticity Index		

E twin aty testing

SIEVE ANALYSIS TESTS

REPORTED TO	REPORTED TO Delta Environmental Consultants, Inc.		Inc.	JOB NO. 4220 88-475		
BORING NO.		D-2				
SAMPLE NO.						
DEPTH (ft)		@35				
TYPE OF SAMPLE		3T				
CLASSIFICATION (AS	STM: D 2487)	(CL)				
Description		Lean Clay				
MECHANICAL ANAL		443	·			
Based on Total Sam	ple					
% Finer Than	3"					
	2"					
	1"					
	3/4"	100				
	3/8"	97.2				
	# 4	96.1				
	# 10	95.6				
	# 40	94.2				
	# 100	91.9				
	# 200	90.2				

E twin city testing

GRAIN SIZE DISTRIBUTION CURVE

ASIM Designation: (Based on Unified Soil Classification System)

JUIL LINUINLLINIIN

		Soil Classification			
	Criteria for Assigning Grou	up Symbols and Group Na	rmes Using Laboratory Tests ^A	Group Symbol	Group Name ⁸
Coarse-Grained Soils	Graveis	Clean Graveis	Cu_24 and 1 ≤ Cc ≤ 3 ^E	GW	Well graded gravel ^F
More than 50% retained on No. 200 sieve	More than 50% coarse fraction retained on No. 4 sieve	Less than 5% fines ^C	Cu < 4 and/or 1 > Cc > 3 ^E	GP	Poorty graded gravel
		Gravels with Fines More than 12% fines ^C	Fines classify as ML or MH	GM	Silty gravel ^{F,G,H}
		MOTE (Hall 1270 tilles	Fines classify as CL or CH	GC	Clayey gravel ^{F,G,H}
	Sands	Clean Sands	Cu≥6 and 1 Cc C3 ^E	sw	Well-graded sand
	50% or more of coarse fraction passes No. 4 sieve	Less than 5% fines ^D	Cu < 6 and/or 1 > Cc > 3 ^E	SP	Poorly graded sand
		Sands with Fines	Fines classify as ML or MH	SM	Silty sand ^{G,H,I}
		More than 12% fines ^D	Fines classify as CL or CH	sc	Clayey sand ^{G,H,I}
Fine-Grained Soils 50% or more passes the No. 200 sieve	Silts and Clays Liquid limit less than 50	inorganic	PI >7 and plots on or above "A" line	CL	Lean clay ^{KLM}
			PI < 4 or plots below "A" line ^J	ML	Sin ^{KLM}
		organic	Liquid limit - oven dried <0.75	OL	Organic clay ^{K,L,M,N} Organic silt ^{K,L,M,O}
	Silts and Clays Liquid limit 50 or more	inorganic	PI plots on or above "A" line	СН	Fat clay ^{K,L,M}
			PI plots below "A" line	МН	Elastic siltKLM
		organic	Liquid limit - oven dried < 0.75 Liquid limit - not dried	ОН	Organic clay ^{KLM,P}
					Organic silt ^{K,L,M,Q}
Highly organic soils Fibric Peat > 67% Fibers		anic matter, dark in color, 33%-67% Fibers	and organic odor	PT Sapric Pe	Peat eat < 33% Fibers

ABased on the material passing the 3-in. (75-mm) sieve. $^{\it B}$ If field sample contained cobbles or boulders, or both, add

with cobbles or boulders, or both" to group name. Gravels with 5 to 12% fines require dual symbols:

GW-GM well-graded gravel with silt GW-GC well-graded gravel with clay

GP-GM poorly graded gravel with silt

GP-GC poorly graded gravel with clay DSands with 5 to 12% fines require dual symbols:

SW-SM well-graded sand with silt SW-SC well-graded sand with clay

SP-SM poorly graded sand with silt

SP-SC poorly graded sand with ciay

Fif soil contains ≥ 15% sand, add "with sand" to group

 $^{\rm G}$ If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

 $^{\it H}$ lf fines are organic, add "with organic fines" to group

 $^{I}\mathrm{M}$ soil contains \geq 15% gravel, add "with gravel" to group

If Atterberg limits plot in hatched area, soil is a CL-ML. sifty clay.

"If soil contains 15 to 29% plus No. 200, add "with sand" "with gravel," whichever is predominant,

Liff soil contains >30% plus no. 200, predominantly sand, add "sandy" to to group name.

^Mff soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.

^NPI ≥4 and plots on or above "A" line.

OPI < 4 or plots below "A" line.

PPI plots on or above "A" line.

OPI plots below "A" line.

TEST HOLES DÉILLED FOR CITY OF WEST BEND IN 1972-1973

Test Hole #40:	600' North of Kilbourn Street; 350' East of River; 36' North of fence line at woods. 150' East from lone tree.
0 - 4' 4 - 14' 14 - 16' 16 - 23' 23 - 30' 30 - 44' 44 - 50' 50 - 77'	Gray clay Very muddy sand and fine gravel Medium sand and gravel, silty Medium sand and gravel, small boulders, silty Fine to medium sand and gravel, some silt. Tan fine sand, some silt. Tan fine to coarse sand, fine gravel, clay on bottom Gray heavy clay. Static Water Level = 24.82'
Test Hole #41:	320' North of Test Hole #40, 50' East of lone tree.
0 - 10' 10 - 16' 16 - 20' 20 - 25' 25 - 30' 30 - 39' 39 - 43' 43 - 53' 53 - 59'	Muddy fine sand Muddy sand and gravel, some drilling Medium-fine sand, some medium to coarse gravel (slightly silty) Medium to fine sand Medium to fine sand Fine to medium-coarse sand, some fine gravel Fine to medium sand and gravel more silt Fine to medium sand, silty. Static 26.31', Clay on bottom Gray clay
Test Hole #42:	200' North and 90' East from centerline of Kilbourn and Idlewood Avenue. 140' East of light pole #69T1363.
0 - 4' 4 - 10' 10 - 18' 18 - 20' 20 - 29' 29 - 37' 37 - 40'	Red clay Sandy clay (Hid to drill) Fine to medium coarse sand, rocks, and fine gravel Very coarse to fine sand, fine gravel. Large boulders at 20'. Fine to medium sand, boulders, gravel, very silty and tight (drilled) Fine to very silty sand Fine to very fine sand, silty

TEST HOLES DEILLED FOR CITY OF WEST BEND IN 1972-1973

rest Hole #42 (cont'd.)

*

1300

40 - 51' Fine to very fine sand, silty

51 - 53' Sandy tan clay

53' - 74' Gray clay, streaks of sand

74 - 80' Hardpan and gray clay. Static Water Level = 31.8'

Test Hole #43: 175' West of centerline of "G", 30' North of property line; 195' West of Hiline pole #55-10199.

0 - 4' Red clay

4 - 6' Sandy tan clay

6 - 8' Hardpan

8 - 25' Very fine silty tan sand

25 - 28' Very fine silty sand

28 - 30' Very fine silty sand, some tan clay and black

boulders (Had to drill)

30 - 63' Very fine silty sand

63 - 68' Very fine silty sand and tan clay

68 - 70' Gray heavy clay

Static Water Level - 26.29'

Test Hole #44: 75' East from centerline of Juniper, 445' South from centerline of Hillcrest and Juniper Street intersection minus eight feet to Decorah and "G".

0 - 2' Red clay

2 - 8' Hardpan and rocks

8 - 12' Medium to coarse gravel and sand

12 - 25' Tan clay and gravel, semi-hardpan and boulders

25 - 41' Dirty fine sand and gravel

41 - 45' Muddy fine sand, some clay

45 - 58' Muddy fine sand Static 31.70'.

Test Hole #45: 150' North from centerline of Kilbourn Avenue, and 75' East from centerline of Indiana Avenue.

0 - 10' Gray clay, gravel and boulders semi-hardpan

10 - 15' Muddy coarse gravel, had to drill

15 - 17' Dirty fine sand drilled

17 - 33' Fine silty sand

33 - 37' Gray clay and gravel

37 - 50' Gray heavy clay Static Water Level = 15'

CITY WELL, IWEST BEND, WIS.
SE. 14. J. II. R. 19 E.
F. M. Gray, Jr., Contractor
Arthur West, Driller Completed, Jan. 1919 Samples examined by F.T. Thwaites, U.W. Nos. 51765-51858 Elevation 920

		0-40	00000	very limy	AC. F SWS EFSOFE
		40.70		Cluy, year, limy	
		70-100	0.	Gravel, sundy	7
,		100-110	10.0:0:0.0.	Glucial fill. buff. stony	<u> </u>
`		119-120	2090,069 1100	Sund and gravel	
DRIF		120-170		Clay, yray, limy	•
	190	170-180	90.00.000	Sund and grave/]
	770		=	Clay, gray, limy	
RA	131	190-250		Limestone, magnesian, gray	: !
MEARA	**/				<u>i</u>
₹ ?	80	250-270	글날급:	Limestone, magnesian, olusti gray, smaley	1
		270-290		Shale, blue, limy	1
	•	290-320		Limestone, magnesian, gray with layers at blue, limy shule	· <u>:</u>
	بر بر	320-390		Shale, blue, limy (sample missing 300-390)	
	۶.	1	5=-		!
	-	1			!
7	٠,		_===		
7	*3	390-430		Shale, plue, stuley, little line	1
CINCINA (RICHINGND)			===	7,	!
< ;	1 53	<u></u>	===		ال ا
25		430-535		Shale, blue limy	i
~ \$	10	[
< 3	آب ا	1			I
0.5					1
•	1			•	1
					į
	265	1		•	ī
		676.700		/ in the second of the second	•
		535.700		Limestone, magnesian, gray	{
>-	2	1		•	
24	1	ł		•	
7	Ι :	1			1
	13	1			:
27					i
5.	10	1			:
RENZ Tr: VI					
-REN7	v				<u>:</u>
TREN7				·	
· TRENT (PLATTEVI	200			·	
•	200			·	
•	200				
•	will be a	700-770		Limestone, magnesian, butt-gruy, sandy	
•	· waspec	700-770		Limestone, magnesian, butt-gray, sandy	
•	will be a	700-770		Limestone, magnesian, butt-gruy, sandy	
•	innipee	700-770		Limestone, maynesian, butt-gray, sandy	
6ALENA - TRENT	· waspec			·	
•	innipee	700-770		·	
A GALENA.	innipee			Limestone, maynesian, butt-gray, sandy Sandstone, fine to warse, gray	
ER GALENA.	innipee			·	
A GALENA.	innipee			·	

CONSTRUCTION
of
CITY WELL NO. 4
WEST BEND, WISCONSIN

CONSTRUCTION of CITY WELL NO. 5-A WEST BEND, WISCONSIN

-129-

2-19-79

GID

LAYNE NORTHWEST