11-10-2005

FINAL REPORT

SITE INVESTIGATION REPORT

DB OAK FACILITY 700 – 710 OAK STREET FORT ATKINSON, JEFFERSON COUNTY WISCONSIN

Prepared for

Thomas Industries P.O. Box 29 Sheboygan, Wisconsin

November 2005

NewFields 2110 Luann Lane, Suite 101 Madison, Wisconsin 53713 (608) 442-5223 (608) 442-9013 FAX

Project No. 0451-002-800

November 10, 2005

Mr. Hank Kuehling Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Madison, Wisconsin 53711

RE: NewFields Project No. 0451-002-800

WDNR BRRTs No. 03-28-176509

Site Investigation Report

D.B. Oak Facility 700-710 Oak Street Ft. Atkinson, Wisconsin

NewFields Project No. 0451-002-800

Dear Mr. Kuehling:

Attached is the above report of our investigation at the DB Oak facility, submitted on behalf of Thomas Industries. This report includes the results of studies performed at the facility between December 2004 and August 2005. An earlier status report that included information obtained during December 2004 was submitted to the Department in February 2005. Data from that investigation have also been included in this report.

After you have had a chance to review this document, representatives from Thomas Industries would appreciate the opportunity to meet with you at your office to discuss these findings and recommendations. I will contact you within the next two weeks to discuss your availability and possible dates and times for this meeting.

DNR SOUTH CENTRAL REGION

Sincerely,

NewFields

David P. Trainor, P.E., P.G.

Associate

cc: Mark Chiado, Gardner Denver

John Novak, Thomas Industries

Randall Knox, D.B Oak

Leah Krider, Foley & Lardner

 $Dpt\thomas\fort\thuehling 111005ltr$

NewFields

TABLE OF CONTENTS

EXECUT	IVE SUMMA	RY	ES-1
1.0	INTR	ODUCTION	1-1
	1.1	SITE DESCRIPTION	1-1
	1.2	SITE HISTORY	1-2
	1.3	PURPOSE AND SCOPE	1-3
2.0	ENVIRONMENTAL SETTING		
	2.1	REGIONAL GEOLOGY	2-1
	2.2	REGIONAL HYDROGEOLOGY	2-1
	2.3	SITE GEOLOGY	2-2
	2.4	SITE HYDROGEOLOGY	2-2
3.0	COM	PLETED SITE INVESTIGATION ACTIVITIES	3-1
	3.1	INITIAL SITE INVESTIGATION RESULTS	
	3.2	HYDROGEOLOGIC INVESTIGATION	
		3.2.1 Monitoring Well Installation and Well Development	
		3.2.2 In-Situ Hydraulic Conductivity Testing	
		3.2.3 Groundwater Sample Collection	3-4
	3.3	SOIL INVESTIGATION	3-5
,		3.3.1 Geoprobe Soil Sample Collection	3-5
		3.3.2 Mobile Laboratory Analyses	3-5
	3.4	SITE INVESTIGATION RESULTS	3-6
		3.4.1 Groundwater Sample Results	3-6
		3.4.2 Groundwater Contaminant Distribution	3-7
		3.4.3 Soil Sample Results	3-9
		3.4.4 Soil Contaminant Distribution	3-10
4.0	SUMM	MARY AND CONCLUSIONS	4-1
5.0	RECO	DMMENDADTIONS	5-1
6.0	REFE	RENCES	6-1

List of Tables, Figures and Appendices

<u>Tables</u>

Table 1	Groundwater Elevations
Table 2	Summary of In-Situ Hydraulic Conductivity Test Results
Table 3	December 2004 Groundwater Sample Results
Table 4	June 2005 Groundwater Sample Results
Table 5	May 2005 Mobile Laboratory Soil Sample Results

Figures

Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Cross Section A – A'
Figure 4A	June 2005 Groundwater Elevations
Figure 4B	August 2005 Groundwater Elevations
Figure 5A	Preliminary Investigation Soil Sample Results – ATEC 1995
Figure 5B	Sample Locations and Summary of VOCs Detected in Groundwater
Figure 6	Total VOC Isoconcentration Contours for Groundwater
Figure 7	Soil Boring Locations
Figure 8A	Lateral Extent of PCE in Soil – 0 to 2.5 Foot Interval
Figure 8B	Lateral Extent of PCE in Soil – 2.5 to 5.0 Foot Interval
Figure 8C	Lateral Extent of PCE in Soil – 5.0 to 7.5 Foot Interval
Figure 9A	Lateral Extent of Total VOCs in Soil -0 to 2.5 Foot Interval
Figure 9B	Lateral Extent of Total VOCs in Soil –2.5 to 5.0 Foot Interval
Figure 9C	Lateral Extent of Total VOCs in Soil –5.0 to 7.5 Foot Interval
Figure 10	Lateral Extent of Soil Contamination

Appendices

Appendix A	Soil Boring Logs, Well Construction Forms, and Well Development Forms
Appendix B	In-Situ Hydraulic Conductivity Test Results
Appendix C	Laboratory Reports - December 2004 Groundwater Samples
Appendix D	Laboratory Reports - June 2005 Groundwater Samples
Appendix E	Laboratory Reports – Mobile Laboratory Soil Samples

Executive Summary

The D. B. Oak property is located at 700 -710 Oak Street in Fort Atkinson, Wisconsin. As shown on Figure 1, the site is located on the north side of Fort Atkinson in the west ½ of the southwest ¼ of Section 34, Township 6 north, Range 14 east. The property is relatively flat and lies at an approximate elevation of 790 feet above mean sea level (MSL). In the vicinity of the site, regional topography slopes to the east and south towards the Rock River. The property is currently owned by D.B. Oak, and the building is occupied by 5 Alarm Fire and Safety Equipment Inc., and W & A Distribution.

Residential lighting fixtures were first manufactured at the facility by Moe Brothers Manufacturing beginning in 1939; Moe Brothers Manufacturing changed its name to Moe Lighting in 1939 and was acquired by Thomas Industries in 1948. Lighting fixtures continued to be manufactured at the facility until 1985 when Thomas sold the facility. The Wand Corporation (Wand) subsequently utilized the facility to manufacture storm doors and windows in 1985, but vacated the building by 1992. Two other businesses (Gross EMO and Wisconsin Packaging Corporation) occupied portions of the property between 1986 and 1994. Miller Machining began operating at a portion of the property in 1994.

In an August 28, 1985 letter to Wand, RMT, Inc. identified a 10,000 gallon above ground storage tank (AST) that was used to store tetrachloroethene (PCE), and an 18,000 gallon underground storage tank (UST) that held No. 2 fuel oil (see Figure 2). The Wisconsin Department of Natural Resources (WDNR) subsequently performed a generator inspection on March 27, 1986, completed at the time Wand occupied the property. The inspection was completed by Wendell Wojner of the WDNR and described in an April 1986 memo. As described in that memo, no hazardous waste was observed during the inspection. The inspection report indicated that the site had been decontaminated prior to remodeling the building based on information provided by a Wand employee. Decontamination included the removal of all hazardous waste stored on site, and the decontamination and removal of wastewater treatment tanks and degreasers. An electroplating line had been dismantled, and a new concrete floor installed; the old concrete floor had also been removed and transported off-site for disposal. A foundation for a large AST remained on site at the rear of the building, but the tank had been removed.

¹ A June 1985 report prepared by Dames & Moore prior to dismantling the electroplating line described an investigation of the plating line area. Samples of concrete and subsoil were collected and analyzed for metals and cyanides. Although the concrete yielded extractable levels of chromium and cyanide, the report concluded that there was little potential for contaminant releases to groundwater or soil beyond the plating area.

Executive Summary

A Phase I ESA completed at the site in early 1994 identified former underground petroleum storage tanks and the former PCE AST. A subsequent Phase II ESA was completed in March 1994. The Phase II ESA identified soil and groundwater contaminated with PCE and other chlorinated VOCs. The WDNR was subsequently notified of the release. The Agency then issued letters to Thomas Industries in March and again in May 2004 demanding that it complete a site investigation to identify the lateral and vertical extent of subsurface contamination associated with the PCE release.

A work plan was submitted to the WDNR in November 2004, and a preliminary hydrogeologic investigation was completed in December 2004. Results of that investigation and recommendations for additional investigation were presented in a February 2005 status report. Additional investigation was subsequently completed between April and August 2005, and results are presented in this report.

Results of this 2005 investigation indicate that groundwater quality has been impacted by chlorinated VOCs. PCE is the primary constituent of concern that exceeded groundwater quality standards, but degradation products of PCE (TCE, cis-DCE, 1,1-DCE, and vinyl chloride), and trans-DCE also exceed groundwater quality standards. The highest concentrations of chlorinated VOCs were detected in samples collected from MW-3 located adjacent to facility loading docks, and from MW-4 located adjacent to the former PCE tank. Elevated concentrations of chlorinated VOCs were also detected in samples collected from the down gradient well nest at MW-2, which is located along the southeastern property boundary. These levels indicate that contaminants have the potential to have migrated off-site. However, chlorinated VOCs were not detected in samples collected from down gradient wells MW-6 and MW-6A located approximately 600 feet south of the property, or in samples collected from down gradient well MW-1, located about 250 feet southwest of the MW-2 well nest. Hydraulic characterization data indicates that groundwater velocity is high (about 200 feet/year); seasonal water level data also indicate that the horizontal configuration of the contaminant plume is properly defined. The approximate lateral extent of the chlorinated VOC plume is shown on Figure 6.

Samples collected from piezometer MW-4A indicate that contaminants have not migrated vertically into the underlying sand near the former PCE tank. Elevated chlorinated VOC concentrations at MW-3A indicate that contaminants have migrated vertically with groundwater in the loading dock area. Lower concentrations of chlorinated VOCs detected in samples collected from piezometer MW-2A indicate that contaminants are migrating laterally with groundwater from the source area at depth. Elevated PCE degradation products at MW-2A and

Executive Summary

MW-3A indicate that reductive dechlorination of PCE is occurring as contaminants migrate vertically and laterally. These conditions, along with the lack of contaminants at the MW-6 well nest, indicate that the aquifer shows high natural attenuation capacity.

Elevated concentrations of chlorinated VOCs detected in soil samples collected from Geoprobe borings advanced near the former PCE tank and loading dock areas indicate that source areas are located on the east side of the D.B. Oak facility building. Chlorinated VOCs were detected in soil samples collected from the saturated and unsaturated zones. Site investigation results indicate that contaminants have been absorbed into the fine-grained soil matrix encountered at shallow depths in this area. Three primary source areas have been identified: these include the former PCE tank area, the area immediately east of the primary loading dock, and a separate area about 50 feet southeast of the primary loading dock source zone. Mobile laboratory results of soils collected from these areas yielded total VOC concentrations in excess of 10,000 µg/kg within the first 10 feet from the ground surface. Based on this spatial arrangement of sample data, more than 5,000 cubic yards of material is estimated to be affected at these levels. Adjacent to these primary source zones, mobile lab results show soils contaminated with total VOCs between 1,000 and 10,000 µg/kg. An additional 6,500 cubic yards of materials within the first 10 feet is estimated at these levels at these adjacent areas. Because groundwater is encountered at shallow depths, (between three and six feet from the ground surface at the primary source areas) these contaminated soils are a source for groundwater contamination. However, the rapid flow of groundwater away from the source areas and the high concentration of degradation compounds show that the plume is not extensive and is dissipating beyond the down gradient property boundary. The results of these 2004 - 2005 investigations confirm that the contaminant sources in soil are well-defined. Similarly, seasonal monitoring of groundwater indicate that both the vertical and horizontal extent of the contaminant plume have also been well-defined

Additional soil samples should be collected and analyzed for VOCs by TCLP to determine if contaminated soil would be hazardous by characteristic (toxicity). Soil samples should also be collected and submitted for bench scale treatability studies to design a pilot test for in-situ treatment. TCLP and bench scale test results should then be submitted to the WDNR along with a completed Remediation Site Hazardous Waste Determination Form and supporting historic site data as a formal request for a hazardous waste determination. The WDNR determination will then be used as part of a remedial action options analyses. This analyses will evaluate a complete range of remedial options, including both ex-situ and full-scale in-situ alternatives.

1.1 SITE DESCRIPTION

The D. B. Oak property is located at 700 -710 Oak Street in Fort Atkinson, Wisconsin. As shown on Figure 1, the site is located on the north side of Fort Atkinson in the west ½ of the southwest ¼ of Section 34, Township 6 north, Range 14 east. The property is relatively flat and lies at an approximate elevation of 790 feet above mean sea level (MSL). In the vicinity of the site, regional topography slopes to the east and south towards the Rock River. The nearest approach of the river to the site is approximately 0.6 miles directly south of the property.

The D.B. Oak property is a triangular shaped parcel bordered by East Cramer Street to the north, Oak Street to the west-southwest, and the Union Pacific (formerly Chicago and Northwest) rail line to the east-southeast. A large building over 180,000 square feet in size and driveways and parking lots are located on the property. A parking lot and driveway accessible from North Main Street to the west is located on the west side of the facility building. A gravel driveway and loading dock area are also located on the east side of the facility building. This loading dock area is accessible from an asphalt driveway and small parking lot area located on the south side of the property and from a gravel driveway located on the north side of the facility building. A wooded undeveloped area is located between the driveway on the north side of the building and East Cramer Street. A large lawn area is located between the facility building and Oak Street. A site map for the facility is shown on Figure 2.

The D.B. Oak facility is currently leased to several tenants. W & A Distribution utilizes the northern portion of the facility building as warehouse space, and 5 Alarm Fire & Safety Inc. (5 Alarm) occupies the southern portion of the facility building. The 5 Alarm portion of the building consists of offices, shop areas for outfitting emergency vehicles, and warehouse space. Residential homes are located on the west side of Oak Street and west of the D.B. Oaks property fronting the east and west sides of North Main Street. The Lorman Iron and Metals Company (Lorman) is located on the east side of the DB Oaks property and the Union Pacific rail line. The DB Oaks property is accessible from the Lorman property via Lorman Drive. Properties south of the DB Oaks property include a parcel located at 600 Oak Street owned by Mr. Dale Maquert used for storage of equipment for a construction company, and property owned by 2L Lobe LLC and utilized for the storage of roll off boxes and dumpsters associated with the Lorman facility.

1.2 SITE HISTORY

Residential lighting fixtures were manufactured at the facility by Moe Brothers Manufacturing beginning in 1939; Moe Brothers Manufacturing changed its name to Moe Lighting in 1939 and was acquired by Thomas Industries in 1948. Lighting fixtures continued to be manufactured at the facility until 1985 when Thomas sold the facility. The actual date of the acquisition was December 1985. The Wand Corporation (Wand) subsequently utilized the facility to manufacture storm doors and windows in 1985, but vacated the building by 1992. Two other businesses (Gross EMO and Wisconsin Packaging Corporation) occupied portions of the property between 1986 and 1994. Miller Machining began operating at a portion of the property in 1994. The property is currently owned by D.B. Oak, and the building is occupied by 5 Alarm Fire and Safety Equipment Inc., and W & A Distribution.

In an August 28, 1985 letter to Wand, RMT, Inc. identified a 10,000 gallon above ground storage tank (AST) that was used to store tetrachloroethene (PCE), and an 18,000 gallon underground storage tank (UST) that held No. 2 fuel oil (see Figure 2). The Wisconsin Department of Natural Resources (WDNR) subsequently performed a generator inspection on March 27, 1986, completed at the time Wand had occupied the property. The inspection was completed by Wendell Wojner of the WDNR and described in an April 1986 memo. As described in that memo, no hazardous waste was observed during the inspection. The inspection report indicated that the site had been decontaminated prior to remodeling the building based on information provided by a Wand employee. Decontamination included the removal of all hazardous waste stored on site, and the decontamination and removal of wastewater treatment tanks and degreasers. An electroplating line had been dismantled, and a new concrete floor installed; the old concrete floor had also been removed and transported off-site for disposal.² A foundation for a large AST remained on site at the rear of the building, but the tank had been removed.

During a March 16, 1994 Phase I Environmental Site Assessment (ESA), Gabriel Midwest could not find evidence of the fuel oil UST. It also observed that the AST that held PCE was absent, but confirmed that the concrete AST cradle remained on-site. In March 1995 ATEC Associates Inc. (ATEC) completed a Phase II ESA of the D.B. Oaks facility to identify potential releases

² A June 1985 report prepared by Dames & Moore prior to dismantling the electroplating line described an investigation of the plating line area. Samples of concrete and subsoil were collected and analyzed for metals and cyanides. Although the concrete yielded extractable levels of chromium and cyanide, the report concluded that there was little potential for contaminant releases to groundwater or soil beyond the plating area.

from the former fuel oil UST, PCE AST, and a former 500 gallon gasoline UST; the latter was not identified in previous reports. The Phase II ESA consisted of the collection of soil and groundwater samples from Geoprobe borings. Trace levels of petroleum constituents (ethylbenzene, toluene, and xylenes) along with low concentrations of metals (arsenic, barium, chromium, and lead) were detected in soil and groundwater samples at various locations on the facility property. PCE and associated degradation products were also detected in soil and groundwater samples along the east and south sides of the facility building. ATEC described the results of this investigation in a Phase II ESA report dated April 1995.

The WDNR was notified of the release. The Agency then issued a March 2004 letter to Thomas Industries demanding an immediate site investigation. The Agency issued a subsequent letter in May 2004 to Thomas Industries demanding it identify the lateral and vertical extent of subsurface contamination associated with the PCE release. Thomas then submitted a work plan to the WDNR in November 2004, and completed a hydrogeologic investigation in December 2004. Results of that investigation and recommendations for additional investigation were presented in a February 2005 status report. Additional investigation was subsequently completed between April and August 2005, and results are presented in this report.

1.3 PURPOSE AND SCOPE

The purpose of this report is to present the results of two phases of site investigation recently completed on the subject property. The first phase of investigation was completed in December 2004 and included the installation of water table observation wells and piezometers, the collection of groundwater samples from these wells, and an evaluation of groundwater flow conditions. A second phase of investigation was completed between April and August 2005 and included the installation of two additional piezometers and a water table observation well. This phase also included the collection of a second round of groundwater samples to further characterize the lateral and vertical extent of groundwater contamination. Additionally, soil samples were collected from Geoprobe borings advanced in the loading dock area on the east side of the facility building, which were analyzed by a mobile laboratory to further characterize potential contaminant source areas. Results of both phases of investigation indicate that soil and groundwater characterization is adequate. This report presents this information, along with recommendations to perform additional supplementary sampling to allow focused remedial action analyses.

2.1 REGIONAL GEOLOGY

Geology in the vicinity of Fort Atkinson consists of alluvial deposits along the Rock River underlain by Pleistocene aged glacial sediments overlying Paleozoic aged sedimentary bedrock units. Glacial deposits include ground moraine, outwash deposits, and loess deposits. Bedrock units include Ordovician aged shales, dolomites, and sandstone units overlying Cambrian aged sandstone.

Depth to bedrock beneath the DB Oak property is unknown. However, bedrock was encountered at a depth of 325 feet below the ground surface at the City of Fort Atkinson Cloute Hill No. 6 well located approximately ¾ mile west of the D.B. Oak facility.

2.2 REGIONAL HYDROGEOLOGY

The upper most water bearing units in the vicinity of Fort Atkinson are the unconsolidated deposits. Groundwater is typically encountered within 20 feet of the ground surface, and the direction of groundwater flow is likely towards the nearby Rock River, the nearest approach to the site is about 0.6 miles south.

The City of Fort Atkinson obtains utilizes five wells to obtain water from the deep bedrock aquifer for the municipal water supply.³ Water supply wells are between 985 and 1,066 feet deep, and are cased to bedrock encountered at depths between 250 and 325 feet below the ground surface. The regional direction of groundwater flow in the underlying bedrock aquifers is unknown. However, groundwater flow in the vicinity of the high capacity municipal water supply wells is likely influenced by localized cones of depression surrounding each well.

The DB Oak facility and surrounding properties obtain their potable water from the municipal system. No private wells have been identified at nearby properties.

³ The nearest city wells to the DB Oak property are Well Nos. 3 and 4, located southwest and south of the site, respectively. Both wells are within a few hundred feet of the Rock River, approximately ½-mile from the property. The wells are routinely sampled and tested for contaminants.

2.3 SITE GEOLOGY

Soil samples collected from water table observation well borings identified interbedded subsurface soil units consisting of clayey silt, silty clay, silt, clayey sand, silty sand, and sand. A fine to medium grained sand unit within interbedded silt and silty clay lenses was encountered beneath these interbedded units. Soil boring logs for monitoring well borings are included in Appendix A. Soil units are shown on the Geologic Cross-Section included as Figure 3.

As shown on Figure 3, interbedded silty clay, silt, clay sand, and sand unit were encountered at the MW-2A, MW-3A, and MW-4A borings at depths of 13, 16, and 10 feet below the ground surface (bgs), respectively. In general, fine grained soil units (silty clay and silt) were encountered in the upper portion of each monitoring well boring, but soils become sandier with depth. A fine to medium grained sand was encountered beneath these interbedded fine grained soils. The sand unit underlies interbedded silty clays at the MW-1 and MW-5 locations; MW-1 was terminated at a depth of 18 feet bgs, and MW-5 was terminated at 15 feet bgs. At the MW-2A location, interbedded silt and silty clay lenses were encountered between 17 and 28 feet bgs; the boring was terminated at 40 feet bgs. At the MW-3A location, a silty clay unit was encountered between 35 and 41 feet bgs, and a silt unit was encountered at 48 feet; the boring was terminated at 50 feet bgs. At the MW-6A location, a dense fine-grained silty sand was encountered within its depth of exploration except for a silt unit between seven and 11 feet; this boring was terminated at 38 feet bgs. This sand likely represents a glacial till deposit, while the sand encountered at depth in the remaining piezometers likely represents glacial outwash deposits.

2.4 SITE HYDROGEOLOGY

Data obtained from site monitoring wells were used to evaluate site hydrogeologic conditions. As described in Section 3.2 below, the recently completed hydrogeologic investigation consisted of the installation of water table observation wells and in-situ permeability testing. The top of well casing elevation for each well and the ground surface elevation at each well location was surveyed relative to mean sea level datum. Prior to collecting groundwater samples in December 2004 and June 2005, static water levels were measured in all site monitoring wells; a third round of water levels was also obtained in August 2005. Groundwater was encountered in site wells at depths between 4 and 6 feet on the east side of the D.B. Oak building between well locations MW-3, MW-4, and MW-5. Groundwater was encountered at depths between 7 and 10 feet bgs

at MW-2, and at 10 feet bgs at MW-1, and at 12 feet bgs at MW-6. Reference elevations, ground surface elevations, depth to water measurements, and groundwater elevations are summarized in Table 1. Groundwater elevations measured in June 2005 are shown on Figure 4A, and groundwater elevations measured in August 2005 are shown on Figure 4B.

June and August 2005 groundwater elevations indicate that the direction of groundwater flow is to the south-southwest between MW-4A and MW-3A. Horizontal gradients were calculated using June and August 2005 groundwater elevations. The horizontal hydraulic gradient in the shallow aquifer between MW-4A and MW-3A is 0.015 ft/ft for June 2005 and 0.013 ft/ft for August 2005. Based on June 2005 groundwater elevations, the direction of groundwater flow in the shallow aquifer is west-southwest away from a drainage swale south of the D.B. Oaks property. (The head of this swale is located at the discharge of a storm water culvert near well nest MW-2. It parallels the rail road south of the DB Oak property.) These results indicate that seepage from the adjacent drainage swale is resulting in localized recharge of the shallow aquifer near MW-2. (June groundwater elevations were measured following heavy precipitation, and flowing water was observed in the drainage swale at that time.) August 2005 groundwater elevations (measured following several days with no rain) indicate that groundwater flow is towards the drainage swale south of the D.B. Oak property.

June and August 2005 Groundwater elevations for piezometers indicate that flow in the underlying sand aquifer is also to the south-southwest. The horizontal gradient for the underlying aquifer was calculated to be 0.0167 ft/ft between MW-4A and MW-3A, and 0.002 ft/ft between MW-3A and MW-6A for both June and August 2005.

Estimated vertical gradients were also calculated between well nests. At the MW-4/MW-4A well nest a very slight upward gradient was observed in December 2004 (+0.0003 ft/ft), and a very slight downward vertical gradient was observed in June 2005 (-0.0003 ft/ft). August 2005 groundwater elevations in MW-4 and MW-4A were identical indicating no vertical gradient. A slight downward vertical gradient was observed at the MW-2/MW-2A (-0.004 ft/ft) well nest in December 2004, and moderately strong downward vertical gradients were observed at the MW-2/MW-2A (-0.10 ft/ft), MW-3/MW-3A (-0.17 ft/ft), and MW-6/MW-6A (-0.22 ft/ft) well nests in June 2005. Moderately strong downward vertical gradients were observed at the MW-3/MW-3A (-0.16 ft/ft) and MW-6/MW-6A (-0.24 ft/ft) well nests, but a slight downward vertical gradient was observed at the MW-2/MW-2A (-0.0007 ft/ft) during August 2005.

Slight vertical gradients at well nests MW-2/MW-2A and MW-4/MW-4A indicate that flow is essentially horizontal in the underlying sand unit at these locations. The well screens of both nested wells are screened in the same hydrogeologic unit. The moderately strong downward vertical gradient observed at MW-2/MW-2A in June 2005 indicates that the shallow aquifer is influenced by localized recharge from the adjacent drainage swale. The MW-2/MW-2A well nest is located adjacent to this drainage swale that receives water from a storm sewer. This storm sewer receives water from roof drains and from inlets on the west side of the D.B Oak building. Water in the drainage swale seeps into the shallow aquifer resulting in localized recharge in this area. (The head difference between MW-2 and MW-2A was 2.76 feet in June 2004. The head difference between MW-2 and MW-2A was 0.11 feet in December 2004, and 0.02 feet in August 2005.) Moderate downward vertical gradients observed at the MW-3/MW-3A well locations indicate that the shallow fine grained soils restrict the vertical movement of groundwater between hydrogeologic units. (The screen for well MW-3 does not intersect the underlying sand unit.) The moderate down ward vertical gradients observed at the MW-6/MW-6A well locations also indicate a restriction of groundwater between the upper and lower portions this unit. (The silt and clay content increases below 24 feet at the MW-6/MW-6A.)

As described in Section 3.4.3 below, the hydraulic conductivities in the vicinity of on-site monitoring well screens were determined from in-situ permeability tests performed on all on-site wells. As shown in Table 3, the average hydraulic conductivity derived from water table observation wells is 3.32×10^{-3} cm/sec, and the average hydraulic conductivity derived from piezometers is 2.28×10^{-2} cm/sec. The average linear velocity of groundwater was calculated from the following equation:

$$v = \underline{ki}$$

where:

v = average linear velocity of groundwater

k = hydraulic conductivityi = horizontal gradient

n = porosity

Assuming a porosity of 25%, a horizontal gradient of 0.0167 ft/ft, the average linear velocity of groundwater in the interbedded units is 0.63 feet per day, or approximately 230 feet per year. Assuming a porosity of 25%, and a horizontal gradient of 0.002 ft/ft, the average linear velocity of groundwater in the underlying sand unit is 0.52 feet per day or 189 feet per year.

3.1 INITIAL SITE INVESTIGATION RESULTS

Phase I Environmental Site Assessments at the DB Oak property were performed in 1985 by RMT and 1994 by Gabriel Midwest. The first subsurface investigation was a Phase II Site Assessment completed in March 1995 by ATEC Associates Inc. (ATEC). This Phase II assessment included the collection of soil and groundwater samples from 31 Geoprobe borings. Results were presented in an April 1995 report prepared by ATEC. Results of soil samples collected during the preliminary site investigation are summarized on Figure 5A, and groundwater sample results are shown on Figure 5B.

ATEC stated that the purpose of the assessment was "... to determine the presence or absence of contamination that may be associated with former underground storage tanks (USTs), specifically one 19,000-gallon fuel oil and one 500-gallon gasoline UST, former above ground storage tanks (ASTs), one 10,000 gallon tetrachloroethene AST, past on-site activities or operations, and adjacent leaking UST facilities." ATEC reported that petroleum constituents were detected at low concentrations below clean up standards in soil and groundwater samples. However, chlorinated hydrocarbons including tetrachloroethene (PCE), trichloroethene (TCE), 1,1-dichloroethene, total (cis and trans) 1,2-dichloroethene, and vinyl chloride were detected in soil and groundwater samples collected along the east side of the facility building. These results indicated that releases from petroleum storage tanks had not impacted soil or groundwater quality at the site, but chlorinated hydrocarbons identified in soil samples implied a release from the area of the former PCE tank.

A site investigation was also completed at the adjacent Lorman Iron & Metals Company in 1995 the vicinity of a former waste oil tank located on the south end of the Lorman property. That investigation included the collection of soil samples, the installation of monitoring wells, and the collection of groundwater samples. Results of the site investigation indicated that the direction of groundwater flow is to the south-southwest, and that petroleum constituents from the former waste oil tank resulted in an impact to soil and groundwater quality at the site. Site remediation consisted of the removal of contaminated soil by excavation and groundwater monitoring. Chlorinated VOCs were detected in groundwater samples collected from site monitoring wells. The site was closed in 1997 for the petroleum contamination. However, ongoing monitoring was performed for chlorinated compounds. The results of this monitoring showed continuous declines in contaminant levels. As a result, the Agency closed this incident with a groundwater use restriction in 2001. As shown on Figure 2, the Lorman property is located on the east side of

the railway adjacent to the D.B. Oak property, and former wells MW-1, MW-2, and MW-3 are side gradient from the D.B. Oak property.

3.2 HYDROGEOLOGIC INVESTIGATION

NewFields completed an initial hydrogeologic investigation at the D.B. Oak facility in accordance with the Work Plan dated November 8, 2004. That hydrogeologic investigation consisted of the installation of five water table observation wells, two piezometers, well development, the collection of one round of groundwater samples for volatile organic compound (VOC) analysis, groundwater elevation measurements, and in-situ permeability tests. The site work was completed in December 2004, and results were presented in a February 2005 status report along with recommendations for the installation of a down gradient well nest and an additional peizometer to further characterize the lateral and vertical extent of groundwater contamination. Additionally, the collection of soil samples to further characterize potential source areas was also recommended in this status report. Monitoring wells were subsequently installed in April 2005, soil samples were collected and analyzed by a mobile lab in May 2005, and a second round of groundwater samples were collected. A description of these completed activities follows.

3.2.1 Monitoring Well Installation and Well Development

NewFields supervised the installation of five water table observation wells and two piezometers at the D.B. Oaks facility in December 2004. Water table observation wells MW-1 and MW-2 were installed on the south side of the facility building as down gradient monitoring wells. Well MW-3 and MW-4 were installed on the east side of the facility building; well MW-3 was installed down gradient (south) from the former PCE tank adjacent to the facility building, and well MW-4 was installed in the vicinity of the former PCE tank. Well MW-5 was installed on the north side of the facility building up gradient from the former PCE tank. Piezometers MW-2A and MW-4A were installed adjacent to wells MW-2 and MW-4, respectively. In April 2005, down gradient well next MW-6/MW-6A was installed, and piezometer MW-3A was installed adjacent to MW-3 to further characterize the lateral and vertical extent of groundwater. Well locations are shown on Figures 4A through 6.

All monitoring wells were installed in boreholes advanced with hollow stem augers utilizing a truck mounted rotary drill rig. Soil samples were collected with a split-barrel sampler (split

spoon), visually classified in accordance with the Unified Soil Classification System, and recorded on soil boring logs. Soil samples collected from the unsaturated zone at on-site well locations MW-1, MW-2, MW-3, MW-4, and MW-5 were also field screened with a hand held photo-ionization device (PID) equipped with an 11.7 eV lamp. PID field measurements were recorded on soil boring logs. Soil boring logs are included in Appendix A.

Water table observation wells were constructed with two-inch diameter schedule 40 PVC well casings and screens. The water table was encountered between four and 12 feet below ground surface, and water table observation wells were installed at depths between 13 and 18 feet below ground surface with well screens 10 feet in length placed between six and eight feet below the water table. Piezometers were constructed with well screens five-feet in length at depths 25 feet below the water table observation wells (approximately 40 feet below ground surface). Top of screen and bottom of screen elevations are summarized in Table 1, and well construction forms are also included in Appendix A.

Following well installation, monitoring wells were developed by NewFields. Well development was completed by surging and purging ten well casing volumes. Well development forms are included in Appendix A.

Purge water was placed in 55-gallon drums, and temporarily stored on-site. Soil cuttings were also placed in 55-gallon drums and temporarily stored on-site. These drummed materials were subsequently transported off-site for disposal by Onyx. Drilling services were provided by Badger State Drilling Company, Inc. of Stoughton, Wisconsin.

3.2.2 In-Situ Hydraulic Conductivity Testing

NewFields performed in-situ hydraulic conductivity tests on each monitoring well to determine the hydraulic conductivity of the soil unit near each monitoring well screen. In-situ hydraulic conductivity tests were performed on December 16, 2004 following groundwater sample collection. These tests were performed by rapidly removing a bailer, or "slug" of water from the well. A pressure transducer in the well and data logger were then used to measure the draw down and subsequent recovery of water elevations in the well. Because the recovery was rapid, two tests were performed at each well. The hydraulic conductivity around each well screen was then calculated using the Bouwer and Rice Method with USGS provided spread sheet tables.

Hydraulic conductivity estimates are summarized in Table 2, and in-situ hydraulic conductivity test results are included in Appendix B.

Layered fine grained low permeability soils (i.e. silty clay and silt) were encountered at all well locations interbedded with permeable soil units (silty sand and sand). In the upper few feet of the soil profile, the fine-grained materials predominate, while in the deeper zones, the coarse-grained materials predominate. Water table observation wells were constructed with 10 feet-long well screens that intersected these layered units. Consequently, the in-situ hydraulic conductivity well test results represent the permeability of the more permeable coarse-grained soils intersecting the well screens. The permeability of the silt and silty clay soils encountered in the upper portion of each well boring are likely several orders of magnitude lower than the permeability of the underlying sand units.

3.2.3 Groundwater Sample Collection

Two rounds of groundwater samples were collected. The first round of samples were collected on December 16, 2004, and the second round of samples on June 1, 2005. Prior to sample collection, four well casing volumes were purged from each well. The purge water was placed in 55 gallon drums along with the well development purge water described above, and later transported off-site for disposal by Onyx. Samples were collected with bailers equipped with bottom emptying devices; a bailer was dedicated to each well. Laboratory provided containers were filled, held in a cooler on ice, and shipped to a Wisconsin-certified environmental laboratory for analyses. All samples were analyzed for volatile organic compounds (VOCs) by USEPA method 8260. In accordance with WDNR guidance, one duplicate sample and a trip blank were also analyzed for VOCs. Laboratory services were provided by Northern Lakes Service, Inc. of Crandon, Wisconsin. Groundwater monitoring results for December 2004 samples are summarized in Table 3, and laboratory reports are included in Appendix C. Additionally, field measurements for pH, conductivity, temperature, oxidation-reduction potential, and dissolved oxygen were made at the time of sample collection in December 2004; field measurements are also summarized in Table 3. Groundwater monitoring results for June 2005 samples are summarized in Table 4, and laboratory reports are included in Appendix D.

3.3 SOIL INVESTIGATION

3.3.1 Geoprobe Soil Sample Collection

Data collected prior to 2005 indicate that potential source areas are present on the east side of the facility building near the former PCE tank and adjacent to the building loading dock. Additional investigation was recommended in the February 2005 status report to further characterize the lateral and vertical extent of soil contamination. Over 60 soil borings were subsequently advanced in these potential source areas. Soil borings were advanced in a regular grid pattern; borings were advanced in columns 1 through 19 on 20 foot centers in rows A through D on 30 foot centers (see Figure 7). At each location, soil samples were collected from the borings at intervals from 0 to 2.5 feet, from 2.5 to 5 feet, and from 5 to 7.5 feet below ground surface. Soil samples were also collected from boring A4, A6, A8, and A10 advanced inside the building at 7.5 to 10 feet because the floor of the building is approximately 3 feet higher than the exterior loading dock / driveway area. Soil boring locations are shown on Figure 7.

Soil samples were analyzed by a mobile laboratory, and mobile laboratory results were used to guide the investigation. Following soil sample collection, all borings were backfilled with bentonite. Geoprobe services were provided by Soil Essentials of New Glarus, Wisconsin. Mobile laboratory analyses are described in detail Section 3.3.2 below.

3.3.2 Mobile Laboratory Analyses

Mobile laboratory services were provided by Environmental Chemistry Consulting Services Inc. (ECCS) of Madison, Wisconsin. All soil samples were analyzed for benzene, toluene, PCE, trans-1,2-dichloroethene (transDCE), and degradation products of PCE including vinyl chloride, 1,1-dichloroethene (DCE), cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE). VOCs were analyzed with a high-resolution gas chromatography (GC) with a mass selective detector (MSD). Following sample collection, soil samples were submitted to the mobile laboratory analyst. The analyst then mixed ten grams of soil with ten milliliters of methanol. Methanol extractions were then directly injected into a Hewlett-Packard 5971 GC/MS system. All samples were analyzed by a "high" level analysis to determine constituent concentrations above 1 mg/kg (part per million - ppm; equal to 1,000 μ g/kg)), targeting constituents with concentrations between 1 and 200 mg/kg. Samples with non-detectable concentrations or with constituent concentrations below 5 mg/kg were re-analyzed for "low" level analysis by direct injection SIM analysis, which

provided detection between 0.05 and 10 mg/kg. Mobile laboratory results are included in Appendix E. High level analysis results are summarized in Table 1 and low level analysis results are summarized in Table 2 in Appendix E. Soil boring locations and laboratory results are described in detail in Section 3.4.2 below.

3.4 SITE INVESTIGATION RESULTS

3.4.1 Groundwater Sample Results

Groundwater sample results for samples collected in December 2004 and June 2005 indicate that chlorinated volatile organic compounds (VOCs) have impacted groundwater quality on the D.B. Oaks property. The primary constituents of concern detected in groundwater samples are PCE and related products of PCE⁴. December 2004 groundwater monitoring results are summarized in Table 3, and June 2005 groundwater monitoring results are summarized in Table 4. Historic groundwater sample results are summarized on Figure 5B, and the lateral extent of the total VOCs in groundwater are shown on Figure 6.

Other constituents, including benzene toluene, and dichlorofluoromethane, were also detected at low concentrations. Dichlorofluoromethane was detected in the December 2004 and June 2005 MW-4A samples at low concentrations slightly above the detection limit and below groundwater quality standards. Benzene (6.0 μ g/L) and toluene (0.25 μ g/L) were detected in the December 2004 MW-4A sample, but neither compound was detected in the June 2005 MW-4A samples. Although benzene exceeded the Enforcement Standard (ES), the low concentration plus its lack of detection in other samples indicates that benzene should not be considered a constituent of concern at this site. None of these other compounds have a chemical relationship with the aliphatic chlorinated compounds that are the focus of this investigation.

As shown on Figure 6, the highest concentrations of total VOCs were detected in MW-3 samples. Total VOCs were detected in the December 2004 and June 2005 MW-3 samples at concentrations of 57,800 μ g/L and 35,100 μ g/L, respectively. Elevated total VOC concentrations were also detected in samples collected from well MW-4 located adjacent to the

⁴ Degradation products, or daughter products of PCE include trichloroethene (TCE), 1,1-dichloroethene (1,1 DCE), cis-1,2-dichloroethene (cis-DCE), and vinyl chloride. Trans-1,2-dichloroethene (trans-DCE) is not a degradation product of PCE, but is inherently found with PCE.

former PCE tank. Total VOCs were detected in the December 2004 and June 2005 MW-4 samples at concentrations of 12,500 μ g/L and 7,200 μ g/L, respectively.

Samples collected from down gradient well MW-2 indicate that contaminants are migrating laterally with groundwater. Total VOCs were detected in the December 2004 and June 2005 MW-2 samples at concentrations of 6,243 μ g/L and 4,120 μ g/L, respectively. Samples collected from piezometer MW-3A also indicate that contaminants have migrated vertically at that location. Total VOCs were detected at a concentration of 19,460 μ g/L in the June 2005 MW-3A sample. However, samples collected from down gradient piezometer MW-2A indicate that the lateral migration of contaminants from the source area at depth is limited. Total VOCs were detected in the December 2004 and June 2005 MW-2A samples at concentrations of 522 μ g/L and 579 μ g/L, respectively.

3.4.2 Groundwater Contaminant Distribution

Although elevated concentrations of chlorinated VOCs were detected in samples collected from wells MW-2, MW-2A, MW-3, MW-3A, and MW-4 adjacent to and down gradient from the primary soil contaminant source areas, low concentrations of chlorinated VOCs were detected in samples collected from down gradient well MW-1, and up gradient well MW-5. As shown on Figure 6, this indicates that the chlorinated VOC plume is located between the facility building and the railway corridor and is elongated in the direction of groundwater flow. Although VOCs were not detected in samples collected from off-site down gradient wells MW-6 and MW-6A, contaminants have the potential to have migrated off-site. Down gradient wells MW-2 and MW-2A are located adjacent to the southeastern property line, and constituents of concern exceed groundwater quality standards at this location.

Concentrations of PCE in groundwater samples above one-percent of the solubility of PCE⁶, (1,500 μ g/L) indicate that the source for PCE is localized. PCE exceeded one-percent of solubility in samples collected from MW-3, MW-3A, and MW-4. Concentrations of PCE above ten-percent of the solubility indicate that PCE may be present in a non-aqueous phase. PCE exceeded ten-percent of the solubility (15,000 μ g/L) in the December 2004 (34,000 μ g/L) and

⁵ Detections of chlorinated compounds were limited to the December 2005 sampling event, approaching or below the method detection limits; no detections were measured in the June 2006 samples from both wells.

 $^{^6}$ Published solubility for PCE ranges from 150 to 200 mg/L, or from 150,000 to 200,000 $\mu g/L.$

June 2003 (27,000 μ g/L) MW-3 samples. However, non-aqueous phase PCE was not observed in MW-3 samples at the time of collection. PCE has likely adsorbed onto the soil matrix near the MW-3 well screen.

PCE is the predominant constituent of the total VOC concentration in MW-3 samples. PCE was detected in the December 2004 and June 2005 MW-3 samples at concentrations of 34,000 μ g/L and 27,000 μ g/L, respectively, yielding 59-percent of the total VOC concentration for the December sample and 77-percent for the June 2005 MW-3 sample. Degradation products of PCE (TCE and cis-DCE) comprise the remaining VOCs detected in MW-3 samples. These results indicate that MW-3 is located near a source area for PCE.

PCE was detected at elevated concentrations in MW-3A and MW-4 samples, but it is not the predominant constituent of total VOC concentrations in these samples. PCE was detected in both the December 2004 and June 2005 MW-4 samples at a concentration of 2,500 μ g/L, yielding 20-percent of the total VOC concentration for the December sample and 35-percent for the June 2005 MW-4 sample. TCE comprised the remaining total VOC concentration in the December 2004 (10,000 μ g/L) and June 2005 (4,700 μ g/L) MW-4 samples. PCE detected in the June 2005 (3,000 μ g/L) MW-3A sample comprises only 15-percent of the total VOC concentration in this sample. Degradation products of PCE (TCE, cis-DCE, and vinyl chloride) and trans-DCE comprise the remaining total VOC concentration in this sample. PCE concentrations in MW-3A and MW-4 samples indicate that these wells are also located near a source for PCE. However, the high levels of daughter products in these samples indicate that natural attenuation processes are active.

Active degradation conditions are also observed with distance from the source areas. Groundwater samples collected from down gradient well MW-2 indicate that PCE is degrading to TCE and cisDCE. In December 2004 samples PCE concentrations declined from 34,000 μ g/L to 120 μ g/L. Between MW-3 and MW-2; in the June 2005 sample PCE declined from 27,000 μ g/L at MW-3 to non-detect at MW-2. December 2004 TCE concentrations declined from 17,000 μ g/L at MW-3 to 140 μ g/L at MW-2; June 2005 TCE concentrations declined from 5,500 μ g/L at MW-3 to 170 μ g/L at MW-2. However, elevated concentrations of cis-DCE were detected in MW-2 samples in December 2004 (5,900 μ g/L) and June 2005 (3,600 μ g/L), and in MW-3 samples in December 2004 (6,800 μ g/L) and June 2005 (2,600 μ g/L). Low concentrations of other degradation products including 1,1 DCE (18 μ g/L), transDCE (32 μ g/L), and vinyl chloride (33 μ g/L) were also detected in the MW-2 sample.

Although elevated concentrations of PCE were detected in June 2005 MW-3A samples, the presence of elevated concentrations of degradation products also indicate that PCE is degrading vertically. The formation of degradation products in MW-2, MW-2A, MW-3, MW-3A, and MW-4 samples indicates that reductive dechlorination of PCE is occurring in the subsurface. PCE degrades to TCE, which degrades to cis-DCE, and then to vinyl chloride.

3.4.3 Soil Sample Results

Chlorinated VOCs were detected in soil samples collected from Geoprobe borings advanced in the loading dock and driveway area on the east side of the D.B. Oak facility building. As with groundwater samples, PCE is the primary constituent of concern detected in soil samples, but degradation products for PCE (TCE, cis-DCE, 1,1-DCE, and vinyl chloride) were also detected in soil samples. Soil sample results are summarized in Table 5, and boring locations are shown on Figure 7. Isoconcentration contours showing PCE concentrations in soil at 0-2.5, 2.5-5.0, and 5.0-7.5 foot intervals are shown on Figures 8A, 8B, and 8C, respectively. Isoconcentration contours showing total VOC concentrations in soil at 0-2.5, 2.5-5.0, and 5.0-7.5 foot intervals are shown on Figures 9A, 9B, and 9C, respectively.

Elevated concentrations of benzene were detected in soil samples collected from borings A4, A8, and A10 at depths between 2.5 and 10 feet below the building floor. Toluene was detected at an elevated concentration in the A8 boring between 2.5 and 5 feet below the building floor. Borings A4, A8, and A10 were advanced beneath the building floor west of the MW-3/MW-3A well nest. Benzene and toluene were also detected at low concentrations in soil samples collected from borings C9 and D7 at depths between 0 and 2.5 feet from borings advanced in the loading dock area north-northeast of the MW-3/MW-3A well nest. A summary of benzene and toluene detected in these soil samples is as follows:

Boring	Depth	Benzene	Toluene
Location	(ft)	$(\mu g/kg)$	(μg/kg)
A4	5.0-7.5	16,000	<1,000
A8	2.5-5.0	1,200	75,000
A10	2.5-5.0	< 50	89
A10	7.5-10.0	420	< 50
C9	0.0-2.5	< 50	140
D7	0.0-2.5	65	< 50

As described earlier, these aromatic compounds have no association with the PCE and related chlorinated compounds found at the DB Oak property.

3.4.4 Soil Contaminant Distribution

Mobile laboratory soil sample results indicate that PCE and PCE degradation constituents are present at elevated concentrations on the east side of the D.B. Oak property between the facility building and the railway line. As shown on Figure 10, total VOC concentrations exceeds 10,000 μg/kg (10 mg/kg) at a source area located near the former PCE tank near wells MW-4/MW-4A, and at source areas located near the loading dock area near wells MW-3/MW-3A. The lateral extent of total VOCs exceeding 1,000 μg/kg (1 mg/kg) is also shown on Figure 10.

Groundwater is encountered at depths between three and four feet below ground surface near MW-3 and between 5 and 6 feet near well MW-4. Soil samples collected at the 0 - 2.5 and 2.5 - 5 foot intervals were collected from the unsaturated zone, and soil samples collected from the 5 to 7.5 interval were collected from the saturated zone. Results for soil samples collected from Geoprobe borings indicate that contamination is present in the saturated and unsaturated zones in the vicinity of the former PCE tank and in the loading dock area on the east side of the facility.

Soil samples were collected from the saturated zone, but the vertical extent of soil contamination in the saturated zone was not identified during the investigation. Site investigation results indicate that VOCs have adsorbed onto the fine grained interbedded soils. The vertical extent of soil contamination likely corresponds to the vertical extent of the fine grained soil unit. These fine grained soils were encountered at a depths of 14, 17, and 11 feet at the MW-2/MW-2A, MW-3/MW-3A, and MW-4/MW-4A well locations, respectively.

Results of this 2005 investigation indicate that groundwater quality has been impacted by chlorinated VOCs. PCE is the primary constituent of concern that exceeded groundwater quality standards, but degradation products of PCE (TCE, cis-DCE, 1,1-DCE, and vinyl chloride), and trans-DCE also exceed groundwater quality standards. The highest concentrations of chlorinated VOCs were detected in samples collected from MW-3 located adjacent to facility loading docks, and from MW-4 located adjacent to the former PCE tank. Elevated concentrations of chlorinated VOCs were also detected in samples collected from the down gradient well nest at MW-2, which is located along the southeastern property boundary. These levels indicate that contaminants have the potential to have migrated off-site. However, chlorinated VOCs were not detected in samples collected from down gradient wells MW-6 and MW-6A located approximately 600 feet south of the property, or in samples collected from down gradient well MW-1 located about 250 feet southwest of the MW-2 well nest. Hydraulic characterization data indicates that groundwater velocity is high (about 200 feet/year), and seasonal data indicates that the horizontal configuration of the contaminant plume is properly defined. The approximate lateral extent of the chlorinated VOC plume is shown on Figure 6.

Samples collected from piezometer MW-4A indicate that contaminants have not migrated vertically into the underlying sand near the former PCE tank. Elevated chlorinated VOC concentrations at MW-3A indicate that contaminants have migrated vertically with groundwater in the loading dock area. Lower concentrations of chlorinated VOCs detected in samples collected from piezometer MW-2A indicate that contaminants are migrating laterally with groundwater from the source area at depth. Elevated PCE degradation products at MW-2A and MW-3A indicate that reductive dechlorination of PCE is occurring as contaminants migrate vertically and laterally. These conditions, along with the lack of contaminants at the MW-6 well nest, indicate that the aquifer shows high natural attenuation capacity.

Elevated concentrations of chlorinated VOCs detected in soil samples collected from Geoprobe borings advanced near the former PCE tank and loading dock areas indicate that source areas are located on the east side of the D.B. Oak facility building. Chlorinated VOCs were detected in soil samples collected from the saturated and unsaturated zones. Site investigation results indicate that contaminants have been absorbed into the fine-grained soil matrix encountered at shallow depths in this area. Three primary source areas have been identified: these include the former PCE tank area, the area immediately east of the primary loading dock, and a separate area about 50 feet southeast of the primary loading dock source zone. Mobile laboratory results of soils collected from these areas yielded total VOC concentrations in excess of $10,000 \mu g/kg$

within the first 10 feet from the ground surface. Based on this spatial arrangement of sample data, more than 5,000 cubic yards of material is estimated to be affected at these levels. Adjacent to these primary source zones, mobile lab results show soils contaminated with total VOCs between 1,000 and 10,000 μ g/kg. An additional 6,500 cubic yards of materials within the first 10 feet is estimated at these levels at these adjacent areas. Because groundwater is encountered at shallow depths, (between three and six feet at the primary source areas) these contaminated soils are a source for groundwater contamination. However, the rapid flow of groundwater away from the source areas and the high concentration of degradation compounds show that the plume is not extensive and is dissipating beyond the down gradient property boundary.

NewFields recommends that additional soil samples should be collected from a minimum of the three primary source areas. Soil samples should be analyzed for VOCs by TCLP to determine if contaminated soil would be hazardous by characteristic (toxicity). Soil samples should also be collected and submitted for bench scale treatability studies to design a pilot test for in-situ treatment. TCLP and bench scale test results should then be submitted to the WDNR along with a completed Remediation Site Hazardous Waste Determination Form and supporting historic site data as a formal request for a hazardous waste determination. The WDNR determination will then be used as part of a remedial action options analyses. This analyses will evaluate a complete range of remedial options, including both ex-situ and full-scale in-situ alternatives.

Phase II Environmental Site Assessment, D.B. Oak Property, 700-710 Oak Street, Fort Atkinson, Wisconsin, ATEC Project No. 74-07-95-00018. Prepared by ATEC Associates, Inc. April 26, 1995.

Work Plan for Hydrogeologic Site Investigation and Evaluation of Potential Remedial Responses. Prepared by NewFields, November 8, 2004.

Hydrogeologic Site Investigation Status Report, D.B. Oaks Facility, 700-710 Oak Street, Ft. Atkinson, Wisconsin. Prepared by NewFields, February 11, 2005.

Draft Guidance for Hazardous Waste Remediation, Publication RR-705-WA, Wisconsin Department of Natural Resources, Bureau for Remediation and Redevelopment, Bureau for Waste Management.

Figures

Tables

Table 1
Groundwater Elevations
D.B Oaks Facility, Fort Atkinson, Wisconsin

Well	Reference	Ground	Depth to	Top of Bottom Screen Screen		per 16, 2004	Jun	e 1, 2005	Augu	st 25, 2005		
Location	Elevation	Surface Elevation	Top of Screen	Bottom of Screen	Screen Elevation	Screen Elevation	Depth to Water	Groundwater Elevation	Depth to Water	Groundwater Elevation	Depth to Water	Groundwater Elevation
MW-1	793.36	791.3	8.0	18.0	783.3	773.3	12.77	780.59	11.77	781.59	12.38	780.98
MW-2	791.21	791.5	5.5	15.5	786.0	776.0	10.59	780.62	7.01	784.20	10.50	780.71
MW-2A	791.27	791.5	35.0	4.0	756.5	751.5	10.76	780.51	9.83	781.44	10.54	780.73
MW-3	793.20	790.9	3.0	13.0	787.9	777.9	7.09	786.11	6.49	786.71	7.45	785.75
MW-3A	793.51	790.9	43.0	48.0	747.9	742.9			11.37	782.14	12.04	781.47
MW-4	799.24	796.8	5.0	15.0	791.8	781.8	8.11	791.13	8.09	791.15	9.84	789.40
MW-4A	799.13	797.1	34.0	39.0	763.1	758.1	7.99	791.14	7.99	791.14	9.73	789.40
MW-5	798.51	796.2	4.0	14.0	792.2	782.2	7.83	790.68	6.48	792.03	9.96	788.55
MW-6	797.29	797.7	6.0	16.0	791.7	781.7			11.78	785.51	12.03	785.26
MW-6A	797.45	797.8	35.0	40.0	762.8	757.8			17.16	780.29	17.92	779.53

Note: Wells MW-3A, MW-6, and MW-6A were installed in April 2005. The remaining wells were installed in December 2004. Reference elevations surveyed by Woodman & Associates on July 14, 2005.

Table 2
Summary of In-Situ Hydraulic Conductivity Test Results
D.B Oaks Facility, Fort Atkinson, Wisconsin

Well Location	Trial #1 Hydraulic Conductivity (cm/sec)	Trial #2 Hydraulic Conductivity (cm/sec)	Trial #3 Hydraulic Conductivity (cm/sec)	Water Table Observation Well Average Hydraulic Conductivity (cm/sec)	Piezometer Average Hydraulic Conductivity (cm/sec)
MW-1	3.53 x 10 ⁻³	7.06 x 10 ⁻³		5.30 x 10 ⁻³	
MW-2	1.06 x 10 ⁻³	1.06 x 10 ⁻³		1.06 x 10 ⁻³	
MW-2A	1.69 x 10 ⁻²	1.76 x 10 ⁻²			1.73 x 10 ⁻²
MW-3	1.76 x 10 ⁻³	2.82 x 10 ⁻³		2.29 x 10 ⁻³	
MW-4	3.53 x 10 ⁻³	7.06 x 10 ⁻³		5.30 x 10 ⁻³	
MW-4A	2.54 x 10 ⁻²	2.96 x 10 ⁻²	2.96 x 10 ⁻²		2.82 x 10 ⁻²
MW-5	2.12 x 10 ⁻³	3.18 x 10 ⁻³		2.65 x 10 ⁻³	
			Average	3.32 x 10 ⁻³	2.28 x 10 ⁻²

Table 3

December 2004 Groundwater Sample Results – Volatile Organic Compounds (VOCs) and Field Measurements

D.B Oaks Facility, Fort Atkinson, Wisconsin

Well	Units	MW-1	MW-2	MW-2A	MW-3	MW-4	Dup 1	MW-4A	MW-5	PAL	ES
							(MW-4)				
			1	V	OCs		- 	L			<u> </u>
Benzene	μg/L	<0.12	<5.8	<5.8	<508	<58	<58	6.0	< 0.12	0.5	5
Dichlorofluoromethane	μg/L	<0.15	<7.7	<7.7	<770	<77	<77	<0.49>	<0.15	200	1,000
1,1-Dichloroethene	μg/L	<0.24	<18>	<12	<1,200	<120	<120	<0.24	<0.24	0.7	7
cis-1,2-Dichloroethene	μg/L	<0.14>	5,900	380	6,800	<66	<66	0.89	<0.21>	7	70
trans-1,2-Dichloroethene	μg/L	<0.11	32	<5.4	<540	<54	<54	<0.11	<0.11	20	100
Tetrachloroethene	μg/L	< 0.13	120	44	34,000	2,500	2,300	7.1	2.3	0.5	5
Toluene	μg/L	< 0.20	<10	<10	<1,000	<100	<100	<0.25>	<0.20	200	1,000
Trichloroethene	μg/L	< 0.12	140	69	17,000	10,000	8,900	23	1.2	0.5	5
Vinyl Chloride	μg/L	< 0.16	33	<29>	<820	<82	<82	<0.16	< 0.16	0.02	0.2
Total VOCs	μg/L	0.14	6,243	522	57,800	12,500	11,200	37.73	3.71		
				Field Mea	surement	S					
pH	pH Units	7.09	7.5	7.31	7.54	7.49		7.38	6.85		
Conductivity	μS	752	937	638	685	656		614	1,124		
Temperature	C°	11.8	12.3	10.9	10.6	11.4		11.1	10.3		
Oxidation-reduction potential	mV	119	107	90	44	48		52	157		
Dissolved oxygen	mg/L	5.24	0.69	1.92	0.22	0.53		2.44	3.98		

PAL - Preventive Action Limit per Wisconsin Admin. Code sec. NR 141.10.

Concentrations exceeding the PAL are in italics.

Concentrations exceeding the ES have been shaded.

ES - Enforcement Standard per Wisconsin Admin. Code sec. NR 141.10.

< - Detected below Limit of Detection.

< > - Detected above Limit of Detection, but below Limit of Quantification

Table 4 June 2005 Groundwater Sample Results - Volatile Organic Compounds (VOCs) D.B Oaks Facility, Fort Atkinson, Wisconsin

Well	Units	MW-1	MW-2	Dup 1 (MW-2)	MW-2A	MW-3	MW-3A	MW-4	MW-4A	MW-5	MW-6	MW-6A	PAL	ES
			I		l	VOC	3				I		_	<u> </u>
Benzene	μg/L	<0.29	<150	<150	<7.3	<730	<150	<150	<0.29	<0.29	<0.29	<0.29	0.5	5
Dichlorofluoromethane	μg/L	<0.18	<89	<89	<4.5	<450	<89	<89	<0.50>	< 0.18	<0.18	< 0.18	200	1,000
1,1-Dichloroethene	μg/L	<0.41	<210	<210	<10	<1,000	<210	<210	<0.41	<0.41	<0.41	<0.41	0.7	7
cis-1,2-Dichloroethene	μg/L	<0.40	3,600	3,800	350	<2,600>	13,000	<200	<0.40	<0.40	<0.40	< 0.40	7	70
trans-1,2-Dichloroethene	μg/L	<0.35	<170	<160>	<8.7	<870	<250>	<170	<0.35	<0.35	< 0.35	< 0.35	20	100
Tetrachloroethene	μg/L	< 0.31	<150	<150	110	27,000	3,000	2,500	1.2	< 0.31	< 0.31	<0.31	0.5	5
Toluene	μg/L	<0.34	<170	<170	<8.4	<840	<170	<170	<0.34	< 0.34	<0.34	<0.34	200	1,000
Trichloroethene	μg/L	<0.25	<170>	<160>	83	5,500	2,300	4,700	<0.59>	< 0.25	<0.25	<0.25	0.5	5
Vinyl Chloride	μg/L	< 0.11	<53	<53	36	<270	910	<53	<0.11	<0.11	< 0.11	< 0.11	0.02	0.2
Total VOCs	μg/L	0.0	3,770	4,120	579	35,100	19,460	7,200	2.29	0.0	0.0	0.0		

Concentrations exceeding the PAL are in italics.

Concentrations exceeding the ES have been shaded.

PAL - Preventive Action Limit per Wisconsin Admin. Code sec. NR 141.10. ES - Enforcement Standard per Wisconsin Admin. Code sec. NR 141.10.

< - Detected below Limit of Detection.

< > - Detected above Limit of Detection, but below Limit of Quantification

Table 5 (Page 1 of 7) May 2005 Mobile Laboratory Soil Sample Results – Volatile Organic Compounds (VOCs) D.B Oaks Facility, Fort Atkinson, Wisconsin

Boring Location	Detection Limit	PCE	TCE	cis DCE	trans DCE	1,1 DCE	Vinyl Chloride	Total VOCs
Depth (feet)		0 - 2.5	0 - 2.5	0 - 2.5	0 - 2.5	0 - 2.5	0 - 2.5	0 - 2.5
A4	1,000						0 2.0	0 - 2.3
A4 (low)*	50							
A6	1,000	2,500						2,500
A6 (low)*	50	2,300		57				2,357
A8	1,000						2 2	2001
A8 (low)*	50	450						450
A10	1,000	4,000						4,000
A10 (low)*	50	4,300	62	- 4				4,362
A13	1,000							
A13 (low)* A15	50	51						51
A15 (low)*	1,000		Section 1997 Company					
A13 (10W)*	50	0.500						
A16 (low)*	1,000	2,500						2,500
A10 (low)	1,000	3,500	1,300	110				4,910
A17 (low)*	50	1,700 1,100	200					1,700
B13	1,000	1,100	280	61				1,441
B-13 (low)*	50							100 000 000
B14	1,000	3,300						
B-14 (low)*	50	3,100	510					3,300
B15	1,000	3,100	510					3,610
B-15 (low)*	50	180	140					200
B16	1,000	1,400						320
B-16 (low)*	50	1,100	220				81	1,400 1,401
B17	1,000	11,000					01	11,000
B-17 (low)*	50							11,000
B18	1,000							
B-18 (low)*	50							
B19	1,000							
B-19 (low)*	50					11		
C4	1,000							
C4 (low)*	50	240					52	292
C5	1,000	2,700						2,700
C5 (low)*	50	3,300		280			170	3,750
C7 C7 (low)*	1,000		1,300	2,200				3,500
C7 (low)*	50	2 100	1,800				190	1,990
C8 (low)*	1,000	3,100	3,500	2,100				8,700
C9 C9	1,000	1,900	3,500	1,700			190	7,290
C9 (low)*	50	3,200 1,000	1,300	3,200	200			7,700
C10	1,000	4.500	1 100	3,400			730	5,270
C10 (low)*	50	1,500 750	1,100 1,100	4,100	490			6,700
C13	1,000	1,800	, 1,100		490	580	710	3,630
C13 (low)*	50	1,600	560					1,800
C14	1,000	1,300	300					2,160
C14 (low)*	50	930	480				68	1,300
C15	1,000	3,000	1,300				Do	1,478
C15 (low)*	50	2,300	1,000				52	4,300
C16	1,000	4,700	10,000			4-10-10-10-10-10-10-10-10-10-10-10-10-10-	52	2,352
C17	1,000							14,700
C17 (low)*	50		150					150
C19	1,000							130
C19 (low)*	50							

All concentrations reported in $\mu g/kg$ (part per billion - ppb). (low)* Sample re-analyzed at low detection limit.

Table 5 (Page 2 of 7) May 2005 Mobile Laboratory Soil Sample Results – Volatile Organic Compounds (VOCs) D.B Oaks Facility, Fort Atkinson, Wisconsin

Boring Location	Detection Limit	PCE	TCE	cis DCE	trans DCE	1,1 DCE	Vinyl Chloride	Total VOCs
Depth (feet)		0 - 2.5	0 - 2.5	0 - 2.5	0 - 2.5	0 - 2.5	0 - 2.5	0 - 2.5
D1	1,000	1,800			2.0	V - 2.3	0-2.5	1,800
D1 (low)*	50	1,100	270	1,000				2,370
D2 D2 (low)*	1,000	3,000 2,300		220			**************************************	3,000
D3	1,000	2,200		320				2,620
D3 (low)*	50	1,800	170					2,200 1,970
D4	1,000	5,900						7,000
D4 (low)* D5	1,000	750		55				805
D5 (low)*	50	5,100		1,500				6,600
D6	1,000							
D6 (low)*	50	68	100	230			94	392
D7 D7 (low)*	1,000 50		200					
D8	1,000	51 1,600	280 1,600	9,400		170	330	996
D9	1,000	27,000	2,300	2,400			,	12,600 29,300
D10	1,000							29,300
D10(low)* D11	50 1.000	72						72
D11 (low)*	1,000			500		0.0		
D12	1,000			2,200		92		592
D12 (low)*	50		110	2,300				2,200 2,410
D13 (low)*	1,000							24.10
D13 (10W)	1,000	170					64	234
D14 (low)*	50			14111763-000				<50
D15	1,000						88 N N N N N N N N N N N N N N N N N N	<u> </u>
D15 (low)*	50	78						138
D16 (low)*	1,000	280	220					
D17	1,000	280	220					500
D17 (low)*	50	170						170
D18	1,000							1/0
D18 (low)* D19	1,000							<50
D19 (low)*	50							
E0	1,000							<50
E0 (low)*	50	490	240				58	788
El (low)*	1,000 50							,,,,
E2	1,000	94,000	31,000	7 300			59	59
E2 (low)*	50	24,000	31,000	7,200				132,200
E3	1,000	15,000	1,800					16,800
E3 (low)* E4	50	4000						10,000
E4 (low)*	1,000 50	4,900 3,300	3,400	1,500 1,400				9,800
E5	1,000	2,000	3,300	1,400 1,600				8,000
E5 (low)*	50	860	480	3,400	78		En.	1,600 4,818
E6 (low)*	1,000							
E6 (low)*	1,000	3,200	5 300	1.000		3.5		
E7 (low)*	50	3,400	5,300	1,600	100		7 (100 (100 (100 (100 (100 (100 (100 (10	10,100
E8	1,000	1,300		4,900	100			6,200
E8 (low)*	50	960		4,900	110			5,970
E9 (low)*	1,000 50	62						
E10	1,000	5,300	3,900	2,400				622
E10 (low)*	50	5,500	3,700	2,400			335000	11,600
El1	1,000		2,100	3,000				5,100
El1 (low)*	50	1,500	1,200					2,700
X13 X13 (low)*	1,000 50	110						
Y13	1,000	110						110
Y13 (low)*	50	260	270	200				730

All concentrations reported in $\mu g/kg$ (part per billion - ppb). (low)* Sample re-analyzed at low detection limit.

Table 5 (Page 3 of 7) May 2005 Mobile Laboratory Soil Sample Results – Volatile Organic Compounds (VOCs) D.B Oaks Facility, Fort Atkinson, Wisconsin

Boring Location	Detection Limit	PCE	TCE	cis DCE	trans DCE	1,1 DCE	Vinyl Chloride	Total VOCs
Depth (feet)		2.5 - 5.0	2.5 - 5.0	2.5 - 5.0	2.5 - 5.0	2.5 - 5.0	2.5 - 5.0	2.5 - 5.0
A4	1,000		2.0 0.0	2.3 3.0	2.3 – 3.0	2.3 = 3.0	2.3 - 3.0	2.5 - 5.0
A4 (low)*	50	140					88	228
A6	1,000							220
A6 (low)*	50	120	56	870				1,046
A8	1,000							76,200
A8 (low)*	50							70,200
A10	1,000	1,700						1,700
A10 (low)*	50	1,300	490				1,200	3,079
A13	1,000							,,,,,
A13 (low)*	50							
A15 A15 (low)*	1,000							
A15 (low)*	50	58					82	140
A16 (low)*	1,000	2,200						2,200
A10 (10W)	50	1,300						1,300
A17 (low)*	1,000 50	1,300						1,300
B13	1,000		26,000	7.400				
B-13 (low)*	50		36,000	5,400				41,400
B14	1,000							
B-14 (low)*	50	400	180					
B15	1,000	1,000	100					580
B-15 (low)*	50	690						1,000
B16	1,000	5,900	1,600					870
B-16 (low)*	50		2,000					7,500
B17	1,000	3,600						3,600
B-17 (low)*	50	2,300				April 1		2,300
B18	1,000							2,500
B-18 (low)*	50	80						80
B19	1,000							
B-19 (low)*	50							
C4	1,000							
C4 (low)*	50						dia di	
C5	1,000	4,300						4,300
C5 (low)*	50	2,700	450	110				3,260
C7 (low)*	1,000	4,200	11,000	5,300				20,500
C8	1,000	2 100 000	100.000	^ 100				
C8 (low)*	50	2,100,000	180,000	2,100				2,283,500
C9 C9	1,000	76,000	14,000	1.000				
C9 (low)*	50		14,000	1,900				91,900
C10	1,000	4,700	7,700	10,000				
C10 (low)*	50	4,700	7,700	10,000				22,400
C13	1,000	1,600						4 606
C13 (low)*	50	1,300	390					1,600
C14	1,000	1,900	570		-			1,690
C14 (low)*	50	1,600	520					1,900 2,120
C15	1,000	4,300	3,400	www.w.t.			-	7,700
C15 (low)*	50	2,300	3,400					5,700
C16	1,000	4,200	14,000					18,200
C17	1,000							10,200
C17 (low)*	50	480	690				77	1,247
C19	1,000			75/27			11	1,47/
C19 (low)*	50	11.379						

All concentrations reported in $\underline{\mu g/kg}$ (part per billion - ppb). (low)* Sample re-analyzed at low detection limit.

Table 5 (Page 4 of 7) May 2005 Mobile Laboratory Soil Sample Results – Volatile Organic Compounds (VOCs) D.B Oaks Facility, Fort Atkinson, Wisconsin

Boring Location	Detection Limit	РСЕ	TCE	cis DCE	trans DCE	1,1 DCE	Vinyl Chloride	Total VOCs
Depth (feet)		2.5 - 5.0	2.5 – 5.0	2.5 - 5.0	2.5 - 5.0	2.5 - 5.0	2.5 - 5.0	2.5 – 5.0
D1	1,000	4,400	2,200					6,600
D1 (low)*	50	3,800		1,700				5,500
D2	1,000	1,300	Indiana and the state and a					1,300
D2 (low)* D3	1,000	1,000 2,500						1,000
D3 (low)*	50	2,400	53					2,500
D4	1,000	1,800	53	S2 Perkindish (1) (1)			155 56.8 - 5666 686 1500	2,453 1,800
D4 (low)*	50							1,000
D5	1,000	9,800						9,800
D5 (low)* D6	50	1500						
D6 (low)*	1,000 50	1,500 1,400	500	160				1,500
D7	1,000	22,000	7,800	6,200			54	2,114 36,000
D7 (low)*	50	==,000	7,000	0,200				30,000
D8	1,000	35,000	2,200					37,200
D9	1,000	26,000	2,500					28,500
D10 D10(low)*	1,000 50	72		1,400				1,400
Dit(iow)	1,000	5,400		1,000				1,072
DII (low)*	50	5,700						5,400
D12	1,000	1,000						1,000
D12 (low)*	50	680	290	130				1,100
D13 (low)*	1,000							
D13 (10W)*	1,000	110					55	165
D14 (low)*	50	150						150
D15	1,000	200						130
D15 (low)*	50					12.0		<50
D16	1,000							
D16 (low)* D17	50 1,000	350 1,100	200				61	611
D17 (low)*	50	400						1,100
D18	1,000							400
D18 (low)*	50	250				914		344
D19	1,000							
D19 (low)*	50							
E0 (low)*	1,000 50	93						
El	1,000	1,400			7-30		97	93 1,400
El (low)*	50	1,100	160				61	1,321
E2	1,000	3,800						3,800
E2 (low)*	50	3,500	460			100	1,00	3,960
E3 (low)*	1,000 50	1,100 660						1,100
E4	1,000	20.000	3,100	1,400				660
E4 (low)*	50	20,000	3,100	1,400				23,500
E5	1,000	930,000						930,000
E5 (low)*	50							
E6 (low)*	1,000							
E6 (low)* E7	1,000						126.15 B	
E7 (low)*	50	590	540				84	1,214
E8	1,000	6,600	1,600				04	1,214 8,200
E8 (low)*	50			SAME A				0,200
E9	1,000	1,400	1,000					2,400
E9 (low)* E10	50	1,200	550	630				2,380
E10 (low)*	1,000 50	4,500 4,400	1,300 1,300					5,800
E11	1,000	5,000	1,200					5,700 6,200
El1 (low)*	50	170	2,200	3,000				6,200 5,830
X13	1,000		17 2 3	5,000				2,030
X13 (low)*	50		3.3					
Y13	1,000	3,200	1,800					5,000
Y13 (low)*	50	2,800	2,000	96	Li.			4,896

All concentrations reported in $\mu g/kg$ (part per billion - ppb). (low)* Sample re-analyzed at low detection limit.

Table 5 (Page 5 of 7) May 2005 Mobile Laboratory Soil Sample Results – Volatile Organic Compounds (VOCs) D.B Oaks Facility, Fort Atkinson, Wisconsin

Boring Location	Detection Limit	PCE	TCE	cis DCE	trans DCE	1,1 DCE	Vinyl Chloride	Total VOCs
Depth (feet)		5.0 – 7.5	5.0 – 7.5	5.0 - 7.5	5.0 - 7.5	5.0 – 7.5	5.0 – 7.5	50 75
A4	1,000	0.0 7.0	0.0 7.5	3.0 - 1.3	3.0 - 7.3	3.0 - 7.3	3.0 - 7.3	5.0 – 7.5
A4 (low)*	50							16,000
A6	1,000			1,600				1,600
A6 (low)*	50			1,600			160	1,760
A8	1,000			2,000			100	1,700
A8 (low)*	50							
A10	1,000	1,200		1,000				2,200
A10 (low)*	50	540		1,200		520	260	2,520
A13	1,000							
A13 (low)*	50							100
A15	1,000							
A15 (low)*	50			2				
A16	1,000	1,600						1,600
A16 (low)*	50	1,500						1,500
A17 (low)*	1,000 50	400						
B13	1,000	180	1 100		<u>i</u>			180
B-13 (low)*	50		1,400					1,400
B14	1,000		1,400	210	53			1,663
B-14 (low)*	50	180	100					Deep Control of the C
B15	1,000	3,000	100					280
B-15 (low)*	50	3,000	890					3,000
B16	1,000	13,000	7,200				52	3,942
B-16 (low)*	50	10,000	7,200					20,200
B17	1,000	530,000	31,000					561,000
B-17 (low)*	50		5 2,000					301,000
B18	1,000							
B-18 (low)*	50	120						120
B19	1,000							120
B-19 (low)*	50		290					290
C4	1,000	1,000						1,000
C4 (low)*	50	570						570
C5	1,000	5,400						5,400
C5 (low)*	50							-,
C7	1,000	39,000	13,000	5,900				57,900
C7 (low)*	50				400			,
C8	1,000	6,400,000	1,200,000	3,100				7,603,100
C8 (low)* C9	50	000 000						
C9 (low)*	1,000 50	980,000	120,000	2,500				1,102,500
C10	1,000		12.000	0 =00	1502			
C10 (low)*	1,000		12,000	8,700				20,700
C13 (IOW)	1,000	1 600						
C13 (low)*	50	1,600 750	290					1,600
C14	1,000	1,800	270					1,040
C14 (low)*	50	1,500	350					1,800
C15	1,000	5,600	2,700					1,850
C15 (low)*	50		2,700			7.00		8,300
C16	1,000	98,000	81,000		3000			170 000
C17	1,000	2,500	3,200					<u>179,000</u> 5,700
C17 (low)*	ź50	2,300	3,600				75	5,700
C19	1,000		-,,-				15	وا لارو
C19 (low)*	50	69	380					449

All concentrations reported in <u>ug/kg</u> (part per billion - ppb). (low)* Sample re-analyzed at low detection limit.

Table 5 (Page 6 of 7) May 2005 Mobile Laboratory Soil Sample Results – Volatile Organic Compounds (VOCs) D.B Oaks Facility, Fort Atkinson, Wisconsin

Boring Location	Detection Limit	PCE	TCE	cis DCE	trans DCE	1,1 DCE	Vinyl Chloride	Total VOCs
Depth (feet)		5.0 - 7.5	5.0 – 7.5	5.0 – 7.5	5.0 – 7.5	5.0 – 7.5	5.0 – 7.5	5.0 – 7.5
D1 (low)*	1,000	370						
D2	1,000	370		56			58_	484
D2 (low)*	50							
D3 (low)*	1,000	1,300 940						1,300
D4	1,000	17,000						940 17,000
D4 (low)* D5	50	18,000	330	110				18,440
D5 (low)*	1,000	8,200	440	150				8,200
D6	1,000	3,000		130				590 4,000
D6 (low)* D7	50	3,100	44.000	710		70	81	3,961
D7 (low)*	1,000	390,000	11,000					401,000
D8	1,000	1,600,000	160,000	1,300				1,761,300
D9 D10	1,000	26,000	3,600				-	29,600
D10(low)*	1,000 50							
D11	1,000	1,100						1,100
D11 (low)* D12	1,000	430		2,300		87		2,817
D12 (low)*	50	<50		2,900	77	54	97	2 120
D13	1,000			-1,700		54	71	3,128
D13 (low)* D14	1,000	260				100	57	317
D14 (low)*	50	<50						<50
D15	1,000	1,800	1,500					2,300
D15 (low)*	1,000	1,400 13,000	1,500				53	2,953
D16 (low)*	50	13,000	11,000					24,000
D17	1,000	38,000	5,100					43,100
D17 (low)*	1,000	19,000						
D18 (low)*	50	19,000						19,000
D19	1,000							
D19 (low)* E0	1,000							
E0 (low)*	50	190						287
El .	1,000							
El (low)* E2	50 1,000	220 1,500						220
E2 (low)*	50	1,400	70					1,500 1,470
E3	1,000	1,000						1,000
E3 (low)* E4	1,000	21,000						620
E4 (low)*	50	,						21,000
E5 (low)*	1,000 50	35,000	1,200	3,100				39,300
E6 (low)	1,000			2,300				2.202
E6 (low)*	50	75	430	4,200			440	2,300 5,145
E7 (low)*	1,000 50	1,700	6.5	1,000				2,700
E8	1,000	910 6,900	1,700	830 1,300	66		140	1,946
E8 (low)*	50		2,700	1,000				9,900
E9 (low)*	1,000 50	2,500	1,100					3,600
E10	1,000	1,300 4,500	7,500	2,000				2,840
E10 (low)*	50			2,000				14,000
E11 (low)*	1,000	9,800	2,800	The second secon				11,600
X13	1,000	(1) seria						
X13 (low)*	50							
Y13 (low)*	1,000	3,000	1,300					4,300
Y13 (low)* All concentrat	50							

All concentrations reported in ug/kg (part per billion - ppb).

(low)* Sample re-analyzed at low detection limit.

Table 5 (Page 7 of 7) May 2005 Mobile Laboratory Soil Sample Results – Volatile Organic Compounds (VOCs) D.B Oaks Facility, Fort Atkinson, Wisconsin

Boring Location	Detection Limit	PCE	TCE	cis DCE	trans DCE	1,1 DCE	Vinyl Chloride	Total VOCs
Depth (ft.)	Limit	7.5-10 Feet	7.5-10 Feet	7.5-10 Feet				
A4	1,000							<1,000
A4 (low)*	50				.			1,000
A6	1,000	8,300		2,000				10,300
A6 (low)*	50							10,500
A8	1,000	2,400		2,200	- Line			4,600
A8 (low)*	50	1,900	35 July 1	1,700			500	4,100
A10	1,000	28,000	2,900	2,300			200	33,200
A10 (low)*	50	25,000	3,200	1,900			79	30,599
A13	1,000					100 100 100 100 100 100	Of stellpasement senior	30,377
A13 (low)*	50							
A15	1,000							
A15 (low)*	50							
A16	1,000							
A16 (low)*	50							
A17	1,000							
A17 (low)*	50							

All concentrations reported in $\mu g/kg$ (part per billion - ppb). (low)* Sample re-analyzed at low detection limit.

Appendix A

Soil Boring Logs, Well Construction Forms, And Well Development Forms

Department of Natural Resources		of Wis		ral Bassu	roog	Route To: Solid Waste							BORI		OG II	NFOR	MAT	ION	
Gold Waste Undergoond Tanks	Depa	anent	oi Natu	ndi Kesou	Rou	ute To:		□ H ₂₇	Wasta			F	orm 440	0-122				7	'-91
WasterNets						Solid Waste		_ 1102			nks								
Page 1 of 2						Wastewater		_	-										
Pacific Project Name Boting Number MW-1						Emergency R	esponse								P	age _1	of	2_	
Borng Dalled By (Firm name and name of crew chief)	Facili	tv / Pro	iect Na	me				Lice	nse/Pe	ermit/N	/onitori	na Num	her						
No.	1 40111	.,,,,,	,,000,140	DB C	oak Facility, Fort	Atkinson, \	Wisconsin	_					 _	_ '	Joining 1	T UITIDET	MW	<i>l</i> -1	
County C	Borin	g Drille	d By (F			chief)		Date	Drilling	Starte	ed								
County C								11	<u> 2</u>	<u>8</u> /	04	.	<u>12</u> /	8_ /	04				
P.P. 4.8.9 MW-1 Feet MSL 791.3 Feet MSL 8.3 Inches							- !! \$1					_			YY				}
Reference Location State Plane Substitute Subst				lo. W	/I Unique Well No. PP489			Final				1				Bor			
State Plane	27900,000	. 25				14144	- •			eet N	15L						0.5	_ inches	
SE 14 of SE SE SE SE SE SE SE S			_		N	ES	S/C/N	La	ıt —	_	_	100	ai Gilu Li			cable)		0	E
Sample (V) sport of Fort Atkinson Soil/Rock Description And Geologic Origin For Each Major Unit Oo 12 1	SE	1/4 c	of SE	_ 1/4 of S	Section 34 T	<u>6</u> N, F	R 14 E/W	Lon	9 —	_	_		Fe				Fe		
Sample Page	Coun	ty					DNR Count	y Code		Civil T	own / C	City / or \	/illage		·				
Soil/Rock Description And Geologic Origin For Each Major Unit 1 8 3.5 7.9 3 3 -as above, slightly moist, dark brown CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CLAY, silty, trace fine sand, slightly moist, multiple subrounded gravel, moist to wet, medium desne, low plasticity, light grayish brown with rust mottles - 1				Jefferso	o n		_2	8			Ci	ity of F	ort Atk	inson					
Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And			_						<u>'</u> _	Ī			ı	Soil P	ropertie	s		w	
SILT, moist, firm, with roots, non-plastic, dark brown SILT, moist, firm, with roots, non-plastic, dark brown O 12 1 8 3.5 7.9 3 -as above, slightly moist, dark brown CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray O 15 SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles		Ê	<u>N</u>	te						^p	E a			T	Ī	Τ		Je J	
Silt, moist, firm, with roots, non-plastic, dark brown Silt, moist, firm, with roots, non-plastic, dark brown O 12 1 8 3.5 7.9 3 -as above, slightly moist, dark brown CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles	Je.	je g	orut	Fē.						ic Lo	iagr	۵	ation	을 ±	1			u u	
SILT, moist, firm, with roots, non-plastic, dark brown SILT, moist, firm, with roots, non-plastic, dark brown O 12 1 8 3.5 7.9 3 -as above, slightly moist, dark brown CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray O 15 SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles - ight brown, wet, soft SC 0 15 - rock fragment encountered at 12 feet BGS, split spoon refusal 0 50+	Ĕ	ove.	ن ≩	tr ir					ပ္လ	aph	<u>e</u>	D/FI	anda	oist	i di	astic	8	0	
dark brown ML 1 8 7,9 3 -as above, slightly moist, dark brown 2 16 6,6 9,12 7 CLAY, sitty, trace fine sand, slightly moist, firm, non-plastic, gray CL-ML SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles - 1 1 - 1 1 - 1 2 - rock fragment encountered at 12 feet BGS, split spoon refusal 0 12 0 15 CLAY, sitty, trace fine sand, slightly moist, firm, non-plastic, gray CL-ML 0 19 0 19 1 10 1 2 - rock fragment encountered at 12 feet BGS, split spoon refusal 0 19 0 50+		2 &	B	Der	Eaci	Each Major Unit				Θ	≥	<u>a</u>	જ જ	ΣŬ	ڐڐ	ڌ ه	۵	8	
dark brown ML 1 8 7,9 3 -as above, slightly moist, dark brown 2 16 6,6 9,12 7 CLAY, sitty, trace fine sand, slightly moist, firm, non-plastic, gray CL-ML SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles - 1 1 - 1 1 - 1 2 - rock fragment encountered at 12 feet BGS, split spoon refusal 0 12 0 15 CLAY, sitty, trace fine sand, slightly moist, firm, non-plastic, gray CL-ML 0 19 0 19 1 10 1 2 - rock fragment encountered at 12 feet BGS, split spoon refusal 0 19 0 50+				I T	SILT moiet	SILT moist firm with roots non-r													
1 8 3.5 7.9 3 -as above, slightly moist, dark brown 2 16 6.6 9.12 5 CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles 1 2 3.9 6.8 10 - 11 - 12 - 12 - 13 - 13 - 13 - 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15				ᆫᆌ											İ				
-as above, slightly moist, dark brown 2 16 6.6 9.12 5 CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CL-ML SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles -light brown, wet, soft SC 0 15 4 20 6.8 10 - 12 -rock fragment encountered at 12 feet BGS, split spoon refusal 0 50+				E '	dank brown				'''-					-	İ				
-as above, slightly moist, dark brown 2 16 6.6 9.12 5 CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CL-ML SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles -light brown, wet, soft SC 0 15 4 20 6.8 10 - 12 -rock fragment encountered at 12 feet BGS, split spoon refusal 0 50+				F ,										ł					
-as above, slightly moist, dark brown 2 16 6,6 9,12 5 CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray 3 18 7,9 6 7 CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles -light brown, wet, soft 5 4 17, 50/2 13				- 2										1				1	
2 16 6,6 9,12 5 CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CL-ML SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles - light brown, wet, soft SC 0 15 - rock fragment encountered at 12 feet BGS, split spoon refusal 0 50+	1	R										0	12						
2 16 9,12 5 CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CL-ML SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles light brown, wet, soft SC 0 19 19 10 10 11 11 12 -rock fragment encountered at 12 feet BGS, split spoon refusal 0 50+	•	ľ	7,9	3	aa abaya al	iahtlu majat	t dod brown	_						1					
CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CL-ML SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles				E	-as above, si	ignuy moisi	i, dark brown	1							ŀ				
CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CL-ML SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles 4 20 6,8 10 - 11 - 11 - 12 - rock fragment encountered at 12 feet BGS, split spoon refusal 5 4 17, 50/2 13				- 4															
CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CLAY, silty, trace fine sand, slightly moist, firm, non-plastic, gray CL-ML SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles light brown, wet, soft SC 0 15 17, 50/2 13																			
3 18 7.9 10,12 8 SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles	_	4.0	6,6	- 5			- M. W			Щ		0	15	l					
3 18 7,9 10,12 8 SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles 4 20 6,8 10 - 11 - 12 12 -rock fragment encountered at 12 feet BGS, split spoon refusal 5 4 17, 50/2 13	2	16	9,12		CLAY, silty, tr	ace fine sa	nd, slightly n	noist,]		1		
3 18 7,9 7,9 10,12 8 SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles 4 20 6,8 10 - 10 - 11 - 12 - 12 - 13 - 13 - 13 - 13 - 13				F 6	firm, non-plas	tic, gray			CL-						1				
3 18 7,9 10,12 8 SAND, clayey, fine grained, trace fine subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles 4 20 3,9 6,8 10 — 11 — 11 — 12 — rock fragment encountered at 12 feet BGS, split spoon refusal 5 4 17, 50/2 13				F															
3 18 10,12 8 subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles 4 20 6,8 10 - 11 - 11 - 12 - 12 - 12 - 13 - 13 - 13				7															
3 18 10,12 8 subrounded gravel, moist to wet, medium dense, low plasticity, light grayish brown with rust mottles 4 20 6,8 10 - 11 - 11 - 12 - 12 - 12 - 13 - 13 - 13			7,9		SAND, clayev.	fine graine	ed, trace fine					_	10						
4 20 $6,8$ -light brown, wet, soft SC 0 15 -11 -rock fragment encountered at 12 feet BGS, split spoon refusal 0 50+	3	18	10,12	R R	subrounded gr	avel, moist	to wet, med	lium				"	'9				1		
4 20 6,8 10 -light brown, wet, soft SC 0 15 -rock fragment encountered at 12 feet BGS, split spoon refusal 0 50+				Ŀ°	dense, low pla	sticity, light												1	
4 20 3,9 6,8 10 -light brown, wet, soft SC 0 15 -rock fragment encountered at 12 feet BGS, split spoon refusal 0 50+				F ,	with rust mottle	es													
4 20 6,8 10 0 15 0 15 0 15 17 12 17 13 17 13 15 10 15 10 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16				F a	-light brown	et soft										1			
4 20 6,8 10			30	I	-light blown, w	σ ι, συιι			80										
5 4 17, 50/2 13 -rock fragment encountered at 12 feet BGS, split spoon refusal 0 50+	4	20		10								0	15						
5 4 17, 50/2 13 -rock fragment encountered at 12 feet BGS, split spoon refusal 0 50+	•		, -	_															
5 4 17, 50/2 13 BGS, split spoon refusal 0 50+				11												1			
5 4 17, 50/2 13 BGS, split spoon refusal 0 50+															1				
5 4 17, 50/2 13 0 50+				12					1							1	1		
5 4 50/2 13 0 50+	_		17.		poo, spiit spo	on relusal											1		
	5	4		13	1							0	50+						
L 14 CLAY, see next page				=					<u> </u>										
		<u> </u>		14	CLAY, see ne	xt page			CL										

Firm

NewFields, Madison, Wisconsin

Signature

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A 7-91

Borir	ng Num	ber	MW-	<u>1</u>							P	age 2	of _	2
Samp	ole 🔶	(N)								Soil Pr				
Number	Length Recovered (N)	Blow Counts (N)	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	nscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	ROD/Comments
6	24	8,20 23,17	15	CLAY, trace fine sand, trace fine subrounded gravel, moist, firm, medium plasticity, gray	CL			0	43					
7	24	7,23	17 18 18 19 19 20 21 22 23 24 25 26 27 26 27 28 29 30 31 31 32 33 33 34 35	SAND, clayey, trace fine subrounded gravel, moist, medium dense, medium plasticity, light yellow brown EOB at 19 feet BGS, set well MW-1	sc			0	39					
			36											

	of Wis		ı ural Resou	arcoc.							SOIL	BORI	NG L	OG II	NFOR	MAT	ION
Бор	ai (111011)	Orriac	arai ricsoc	Ro	ute To:		□ Haz	* \A/oct	^		F	orm 440	0-122				7-91
				0	Solid Waste			dergrou		nke							
					Wastewater			ter Res									
					Emergency Re	esponse	☐ Oth							F	age1	l of	1
Faci	ity / Pro	oject Na	ame		····		Lic	ense/P	ermit/	Monitor	ring Num	ner			Number		
			DB C	Dak Facility, For		Visconsin	_						_	Donnig i	Turriber	ΜV	<i>l</i> -2
Bori	ng Drille	ed By (I		e and name of crew	chief)		Date	Drilling	Start	ed	Dat	e Drilling	Comple	eted	Dri	lling Me	thod
				n McCumber				12 /-	9	/ <u>04</u> YY	. .	e Drilling <u>12</u> / M M	9	<u>/ 04</u>			" ID HSA
<u> </u>			CONTRACTOR ASSESSMENT	ger State Drilling /I Unique Well No.										YY			t Spoon
DNH	Facilit	y Well I		P_P_4_8_7_	Common We MW-		Final	Static '				ace Eleva			Bor		Diameter
Borin	ng Loca	ition			10100-				Feet N	MSL		791.5	_ Feet			8.3	inches
	Plane			N	E S	/C/N	L	at —	-	_	Loca	al Grid Lo] N (II Abbii	cable)		ΟE
SE	1/4 (of SE	1/4 of \$	Section 34	т <u> 6 </u>	14 E	Lon	ng	- —			Fe		J S		Fe	eet 🗆 W
Cour	nty					DNR Coun	ty Code		Civil 7	Fown /	City / or \	/illage					
			Jefferso	on		2	8			С	ity of F	ort Atki	inson				
Samp			1	<u> </u>				T	Т	<u> </u>	1	1		ropertie			Γ.,
	Length Recovered (N)	Blow Counts (N)	#	_					ō	Ę		<u> </u>	_	Toperae	"	Т	ROD/Comments
je	Pe d	ount	Depth in Feet		ck Descri				Graphic Log	Well Diagram		Standard Penetration	e +				I E
Number	ove cove) }	ŧ		ologic Orig			nscs	aphi	 	PID/FID	anda	Moisture Content	Liquid	Plastic Limit	P 200	0
	19 B	E E	a	Eac	h Major Ur	nit		۱ä	Ō	>	료	th g	žŏ	בֿבֿן	ت ت	à	8
								İ									
			F 2	No soil same	olae collacto	d Earsoil	_										
			F	descriptions	. see borina	log for MW	5 I-2A										
			_ з	Set well MW	-2 at 16 feet	t BGS.											
								Ī]
			 					ļ									
			⊢														
			_ 5														
			- .														
		•	E 6														
			<u> </u>														1
			上 ' ∣														
			<u> </u>							:							
			E °						1								
	İ		<u> </u>									1		İ			
			_ ₁₀											ŀ		İ	
			<u> </u>														
			11														
)		Ξ														
			12 							•							
			<u> </u>														
			13 -							;					1		
			_												}		
			14	•				1						1	1		
			<u> -</u>														
	<u> </u>	<u></u>	15					<u> </u>		l .	<u> </u>	<u> </u>		<u>L</u>	}	<u> </u>	<u> </u>
		ity that	the inform	nation on this form is	true and correc	ct to the best of						_					
Signa	ature						Firm	١	lew F	ields	, Madis	on, Wi					

		sconsin t of Nati	ıral Resoi	urces							SOIL			OG II	NFOR	MAT	ION	
				Rou	ute To:		□ _{Haz}	z. Waste			F	orm 440	0-122				7-9	1
					Solid Waste			dergrou		nks								
					Wastewater			ter Res										
					Emergency R	esponse	□ Oth	er						F	age1	of _	3_	
Facil	ity / Pr	oject Na	me DB (Dak Facility, Fort	Atkinson, \	Wisconsin	Lice	ense/Pe	ermit/N	/lonitor	ing Num	per	E	Boring N	Number	ΜV	/-2A	
Borir	ng Drille	ed By (F		e and name of crew	chief)		Date	Drilling	Starte	:d	Dat	e Drilling	Comple	eted	Dril	ling Me	thod	
				n McCumber				12 /	<u>9</u> /	04		12 /	9	04			" ID HSA	
				ger State Drilling		- 11 h l						мм ′	DD .	YY			nud rotary	/
DNR	Facilit	y Well N	io. v	VI Unique Well No. PP488	Common We		Final	Static \				ace Eleva '91.5			Bor		Diameter	
Borin	g Loca	tion	ــالــــ					<u>'</u>	eet M	ISL			_ Feet I		anbla)	8.3	_ inches	
	Plane			N	ES	/C/N	La	at —		_	Loca	al Grid Lo		ıı Appii	cable)		0 E	
		of SE	1/4 of 3	Section 34 T	6 N, F	R 14 E/W	Lon	g	_			Fe		s		Fe	et 🗆 W	
Coun	ty					DNR Count	y Code		Civil T	own / (City / or \	'illage						
			Jeffers	on		2	8			С	ity of F	ort Atk	inson					
Samp		÷						-				Ī	Soil Pr	opertie	s		v	
	Length Recovered (N)	Blow Counts (N)	ĕ	0-11/0-		4.			g	ä		_	T	Ĺ	Π		ROD/Comments	
Number	erec	ğ	in Feet		ck Descri Iogic Oriç			١.,	Graphic Log	Well Diagram	₽	Standard Penetration	9 t				Ē	
ž	angt eco	<u>§</u>	Depth i		ունցին Օրվ ո Major Ui			nscs	rap	Nell	PID/FID	tand	Moisture Content	Liquid	Plastic Limit	P 200)ac	
	2 %	60	ă							-		S σ	20		<u> </u>	<u> </u>	č	
			F	Surface = asph	alt parking lo	ot												
			F 1															
	ĺ		F	CLAY, silty, n	noist firm to	o etiff high												
			_ 2	plasticity, ligh			n	CL										
	l	4,6			•													
1	24	6,9	3								0	12						
			–															
			— 4															
_		6,6	- 5								0	16						
2	24	10,12										10						
			_ 					ļ	ШШ									
			F	CLAY, with fine				sc										
			- 7	gravel, wet, fin	m, medium	plasticity, liq	ght											
_		3,7	R	Drown							0	10						
3	24	7,12	8								0	10						
			_															
			9	sandi wat E									•					
			ţ	-sandy, wet, fir	m, meaium	ı pıastıcıty, ı	ignt											
		5,7	- 10	2.0411														
4	22	10,11									0	17						
			11	ot:tt														
			F	-stiff														
			12											ŀ				
		10,11		041/2														
5	12	23,31	13	SAND, clayey, t wet, medium de				sc				34						
			<u> </u>	brown	, non-pla	ouo, uaik ura	ye-											
			14	SAND, trace cl	ay, see nex	kt page		SP										
I here	by cert	tify that	the inform	nation on this form is	true and corre	ct to the best of	f my kno	wledge			·				•	•	Ł	-

Firm

NewFields, Madison, Wisconsin

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A 7-91

			Irai Kesou		Form	4400	-122A	١						7-91
	ng Num	ber	MW-	ZA		,		Υ			P	age2	of_	3
Samı	ple S	its (N)	aet .				E			Soil Pr	opertie	s		nents
Number	Length Recovered (N)	Blow Counts (N)	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	nscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	ROD/Comments
6	14	42,31 23,27	15 — 16	SAND, trace clay, with fine subrounded gravel, wet, very dense, orange-brown	SP				54					
7	10	22,24 30,21		SILT, trace very fine sand, wet, hard, non- plastic, gray	ML				39					
8	22	16,17 15,20	19 20 						32					
			22 22 23											
		9,18		CLAY, silty, trace very fine sand, wet, hard, low plasticity, gray SAND, fine grained, wet, dense, gray (6")	CL SP									
9	22	23,25	- 25 - - 26	CLAY, silty, trace very fine sand, wet, hard, low plasticity, gray	CL				41					
:			27 27 28											
10	16	15,20 23,25	- 29 - 30	SAND, trace clay, fine grained, poorly graded, wet, medium dense, brown to brownish gray	SP				43				,	
			31 - 32 - 32 - 32											
11	15	15,20 26,31	33 34 35	SAND, fine to medium grained, trace fine subrounded gravel, poorly graded, wet, dense, gray	SP		•		46					
			36						_					

Borii	ng Num	ber	MW-	2A							D	age	} _f	7-91 3
Sam	ole	l .					T		<u> </u>	Soil Pr			<u> </u>	
Number	Length Recovered (N)	Blow Counts (N)	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	nscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid		P 200	ROD/Comments
12		17,25	37 - - - 38 - - 39	SAND, fine to medium grained, trace fine subrounded gravel, poorly graded, wet, dense, gray EOB at 42 feet BGS, set well MW-2A at 40 feet.	SP				57					
					L									

		consin	ural Resou	rece						SOIL			OG II	NFOF	RMAT	ΓΙΟΝ
Deh	ai ti iiei ii	Of INAL	ulai Nesol	Route To:	1	□ _{Haz} .	Wast	•		F	orm 440	0-122				7-91
				☐ Solid Waste		Und			nks							
				☐ Wastewater		□ Wat										
				☐ Emergency R									F	age	1of	1_
Facil	ity / Pro	ject Na	ame			Lice	nse/Pe	ermit/l	Monitori	ing Numt	per			Number		· · · · · · · · · · · · · · · · · · ·
			DB C	Dak Facility, Fort Atkinson,	Wisconsin	_					–	_ `	Donnig i	TOTTISCT	MV	V-3
Borir	ng Drille	ed By (F		e and name of crew chief)		Date I	Drilling	Starte	ed	Date	e Drilling	Comple	eted	Dri	lling Me	
				n McCumber		1	2/	9 /	04	_	<u>12</u> /	9	04	ŀ		" ID HSA
				ger State Drilling // Unique Well No. Common W		ММ		D '	YY		M M	DD	YY			it Spoon
DNR	Facility	/ Well N		VI Unique Well No. Common W P_P_4_9_0 MW		Final	Static \				ace Eleva 90.9			Bor		Diameter
Borin	g Loca	tion		14144.		l	<u> </u>	Feet N	ASL	- 		_ Feet		<u> </u>	8.3	inches
	Plane			N E S	S/C/N	La	ıt <u>—</u>		_	Loca	l Grid Lo		(if Appli N	cable)		ΟE
NE	1/4	of SE	1/4 of \$	Section <u>34</u> T <u>6</u> N, I	R 14 E	Long	- ·			l	Fe		S		F	eet 🗆 W
Coun	ty				DNR County	/ Code	1	Civil T	own / C	City / or V	'illage					<u> </u>
			Jefferso	on	2	8			Ci	ity of F	o rt At ki	nson				
Samp	ole				·			1			Ī	Soil D	ropertie			Τ
	Length Recovered (N)	Blow Counts (N)	#					₅₀	٤		<u> </u>	3011 21	- Operue	Ī	T	ROD/Comments
ĕ	Pe de	Ϊž	Depth in Feet	Soil/Rock Descri	•			Graphic Log	Well Diagram	•	Standard Penetration	<u>ء</u> ج				E
Number	gth Sove	ŏ	F	And Geologic Original	_		nscs	ğ		PID/FID	netra netra	Moisture Content	Liquid	Plastic Limit	P 200	ŏ
Z	\$ ĕ	8	De	Each Major U	nit		SN	ত	Š	II d	Sts Pe	≱ပိ	를들	문년	4	8
			- 1	Surface = gravel parking	lot										1	
			F .			ĺ							ŀ	Ì		
]		- 2	CLAY, silty, gravelly, fin			CL									
1	24			gravel, moist, firm, medi	um plasticity	',	OL			0						
	- '		3	grayish-green												
				SILT, trace fine sand, wet,	firm. non-plast	ic.										
			4	greenish gray			SM									
	ł			SILT, clayey, trace fine sa			B. 41									
2	19		- 5	subrounded gravel, wet, t	firm, low		ML		1	17.6						
_				plasticity, gray				ЩЩ								
			F 6	CAND grouply fine to m												
			F	SAND, gravelly, fine to m wet, dense, poorly grade		ea,										
			7	grade	~, g.uj											
^							SP			32.6						
3	8		8							J2.0						
			-										1			
			_ _ 9													
			t i													
			- 10										1			
4	14			SILT, trace very fine san	d. wet. firm	non-	ML			20.4						
			<u>L</u>	plastic, gray	,,											
			— 11 —	- ,												
			F													
			- 12				ML									
5	12						1411			57				1		
-			13													
			_									l				
			<u> </u>				-	ЩЩ						1		
			_	EOB at 14 feet BGS, set	well MW/-3									1		
			15	L	••••			<u> </u>					<u> </u>]	<u> </u>	
I here	by cert	ify that	the inform	nation on this form is true and corre	ct to the best of	my kno	wledge	€.								

Firm

NewFields, Madison, WI

Signature

		sconsin	ı tural Resou	rces							BORI		OG II	NFOR	MAT	
Depa	a1 1111C11	. or Nat	urai NCSOU	Route To:	1	O Haz	. Wast	e		F	orm 440	0-122				7-91
				☐ Solid Waste		_	wasi lergrou		nks							
				□ Wastewater	1		ter Res									
				☐ Emergency Re	esponse 1	Oth	er						P	age1	of _	3_
Facil	ity / Pr	oject N	ame DB O	ak Facility, Fort Atkinson, V	Misconsin	Lice	ense/P	ermit/f	Monitori	ng Numl	per	E	Boring N	Number	MW	/-3A
Borir	na Drill	ed By (and name of crew chief)	VISCOLISILI	Date.	Drilling	Starte	<u> </u>	— Dat	e Drilling	— Comple	atad	Dril	ling Me	
20	.g 2	ou <i>D</i> , (Alex	Plummer		ı		27	05	Dat	4 <i>i</i>	27	, <u>05</u>	Dill		ud rotary
	<u></u> .			er State Drilling		ММ		<u>, D</u> /	YY		мм /	DD '	YY			O split spoon
DNR	Facilit	y Well I		Unique Well No. Common We		Final	Static '	Water	Level	1	ace Elev			Bor		Diameter
Poris	g Loca		•	P_I_2_2_9_ MW-	3A	<u> </u>		Feet N	ISL		90.9	Feet			6.0	inches
	Plane			N E S	/C/N	La	at —	- —		Loca	al Grid Lo		(If Applic)	cable)		0 E
NE	1/4	of SE	1/4 of S	Section <u>34</u> T <u>6</u> N, R	14 E/W	Lon	g		_]	Fe		s		Fe	eet 🗆 W
Coun	ity				DNR County	y Code		Civil T	own / C	City / or \	/illage					
			Jefferso	on	_2	8			Ci	ty of F	ort Atk	inson				
Samp	ole	. 2										Soil Pi	ropertie	s		lts
	Length Recovered (N)	Blow Counts (N)	i i	Soil/Rock Descri	ntion			_og	Well Diagram		5					ROD/Comments
Number	ve e	Sol	Depth in Feet	And Geologic Orig			S	Graphic Log	Diaç	윤	Standard Penetration	Moisture Content	-	<u>.</u> 2		Col
Ž	eng eco	Slow	l ptt	Each Major Ur			USCS	Grap	Well	PID/FID	Stan	Mois Cont	Liquid	Plastic Limit	P 200	QO (OD
	1		╪┈┤	Surface = gravel drive				+			 	 	1	 	 	
			F	3												
			F 1													
			F	No soil samples collected		feet,										
			²	see boring log for MW-3 descriptions.	for soil											
			-	descriptions.												
			3	Drilled with 6 1/4" ID hollo	w stem aug	er to										
			F . I	10 feet BGS, switched to	6" mud rota	ary					ļ					
			↑	below 10 feet.												
	ĺ		 						:				1			
			F 5										}			
			F 6													
		1					1									
			7													
			-													
			- ⁸													
			 												1	
		ŀ	- º												ŀ	
		ł	=												İ	
			10									1				
			=									İ				
		İ	- 11									ļ				
		1	[= 4,												ļ	
			12 12				l									
			-												l	
1	20	2,8	13	CLAY, silty, trace fine gra	avel, moist	stiff										
•	20	8,18	.	low plasticity, grayish bro		-un,	CL				16					
L berr	by co	tify that	t the infor-	w.w		6 1				L	1	1	<u> </u>	.I	<u> </u>	<u> </u>
Signa		ury ura	t the morm	ation on this form is true and corre	ci to the best of		wieag		1	-1-1	A = -1"	- 144		-		
OIGH IS	atul C					Firm		- 1	uew⊦i	eide N	/ladiso	n Wie	consir	1		

Firm

NewFields, Madison, Wisconsin

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A 7-91

			rai Resol MW-		Form	4400	-122A	\					7-91
Sam	ng Num ple			<u> </u>	I	1	г		1			2_of_	
Number	Length Recovered (N)	Blow Counts (N)	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	nscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	P 200	ROD/Comments
			15		CL								
2	18	14,15 13,18	20 	SAND, medium grained, trace coarse angular gravel, trace coarse subrounded sand, wet, medium dense, poorly graded, light gray	SP				28				
3	12	13,17 17,17	22 23 23 24 25 25 26	SAND, medium grained, subrounded, trace coarse subangular sand, wet, dense, poorly graded, light grayish brown					34				
4	8	6,12 13,17	29 30 31	SAND, as above, medium dense	SP				25				
5	10	13,20 23,32	32 33 33 33 34 34 35 36	SAND, medium grained, little gravel, trace coarse sand, wet, dense, poorly graded, light grayish brown	CL				43				

Borin	ng Num	ber	MW-	<u>3A</u>							P	age _ 3	3 of	7-91 3
Samp	ole 2	Ê								Soil Pr				
Number	Length Recovered (N)	Blow Counts (N)	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	nscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	ROD/Comments
6	10	6,9 12,24	37 38 39 40 - 41	CLAY, silty, moist, very stiff, low plasticity, light grayish brown	CL				21					
7	12	21,26 31,31	45 46 	SAND, fine grained, little silt, wet, poorly graded, light grayish brown	SM				57					
8	12	14,12 12,29	47 	SILT, trace fine sand, stiff, non-plastic, wet, light grayish brown EOB at 50 feet BGS, set well MW-3A at 48 feet.	ML				24					

		sconsin	ı ural Resou	Ircas								SOIL	BORI	NG L	OG I	NFOR	MAT	ION	
БСРС	ar ar ice in	COLINAL	diai Nesou	1003	Rou	ute To:	1	□ Haz	. Waste			F	orm 440	0-122				7-9) 1
						Solid Waste			vvasti Iergroui		nks								
						Wastewater		_	ter Res										
						Emergency Re	esponse (□ Oth							F	age _1	of	1	
Facil	lity / Pro	oject Na	ame			- Island		Lice	ense/Pe	ermit/	Monitor	ring Numl	per		Boring I	Number			
				oak Facility, F			Visconsin							_			MW	<i>I</i> -4	
Borir	ng Drille	ed By (and name of cr		chief)			Drilling			Date	e Drilling	Compl	eted	Dril	ling Me		
				n McCumber jer State Drill				<u></u>	12 /_			. -	12 /		<u> 04</u>			" ID HSA	ī
DNR	Facilit	y Well I		/I Unique Well N		Common We	ell Name		Static \	D Mater	YY		M M	D D	YY	Por		t Spoon Diameter	
	_ <u></u>			P_P_4_9_2		MW-		1		eet N			96.8	Feet	MSI	1 501	8.3	inches	
	ng Loca							<u> </u>		000			al Grid Lo			cable)	0.0	mones	
	Plane			N		E S/		La		_					N	,		O 6	Ξ.
Coun		of SE	1/4 of S	Section 34	T	6 N, R	14 E	Lon						et C	s		Fe	et 🗆 y	<u>v</u>
Couri	ıty		Jefferso	nn.			DNR County		- 1	Civil 1		City / or V	_						
			Jenersc) 				8		,	C	ity of F	ort Atki	inson					
Samp	ole	î									l _			Soil P	ropertie	s		gg gg	
_	Z	ıts (eet	Soil/	Ro	ck Descri	ntion			ő	Well Diagram		5	ļ				i je	
Number	re vere	3	Ë			logic Orig			S	Graphic Log	Dia	윤	dard	ture	9	ပ္		5	
ž	Length Recovered (N)	Blow Counts (N)	Depth in Feet			Major Ur			nscs	Grag	Me Me	PID/FID	Standard Penetration	Moisture Content	Liquid	Plastic Limit	P 200	ROD/Comments	
	F	 	1						 	\vdash	 -	 		 	 	 	<u> </u>	-	
													ļ	1					
			_ 2	No soil sa	ımp	les collecte	d. For soils												
		ŀ		descriptio	ns,	see boring	log for MW-	4A.											
			<u></u> 3	Set well M	/IVV-	-4 at 15.5 fe	et BGS.												
			L 4																
			_ 5											ĺ					
	l																		
			6						ŀ	i									
		·	_																
			7																
			_																
			- 8											•				ŀ	
			=											ļ					
			9																
			 																
			10																
			 																
			- ₁₁																
		İ	=																
			12															:	
			=																
			13																
			 																
			₁₄												1				
			=								[1				
		<u> </u>	<u> </u>								<u> </u>			<u> </u>		<u>L</u>			
I here	by cert	tify that	the inform	ation on this forr	n is	true and correc	ct to the best of	my kno	wledge										
Signa	ature							Firm	Ν	lewF	ields	, Madis	on, WI						

		sconsin	ıral Resou	irres						SOIL			OG II	NFOR	TAMS	TION
Бере	21 (111011	Corract	irai Nesoc	Route To:		□ _{Haz.}	Waste			F	orm 440	0-122				7-91
				☐ Solid Waste		Und			nks							
				□ Wastewater		□ Wat										
				☐ Emergency R									F	age	1_ of	3_
Facil	ity / Pr	oject Na	me							ing Numb				Number		
				Dak Facility, Fort Atkinson, \	Visconsin							_			MW	V-4A
Borir	ng Drill	ed By (F		e and name of crew chief)			Drilling		ed	Date	e Drilling	Comple	eted	Dri	lling Me	ethod
				n McCumber ger State Drilling		1	2 /	<u>8</u> /	_04_	-	<u>12</u> /		<u> 04</u>			" ID HSA
DND	Engilit	y Well N		/I Unique Well No. Common We	oll Mamo	1			YY		M M '	DD	YY	+		t spoon
UNK	. Facilit	y weii n	io. "	PP493 MW-		rinai	Static V				97.1			Bor	rehole E 8.3	Diameter
Borin	g Loca	ation				<u> </u>		eet M	ISL			Feet		<u> _</u>	0.3	inches
	Plane		· · · ·	N E S	/C/N	La	ıt ——	_	_	100	il Grid Lo		JI N	cable		ΟE
_NE	1/4	of SE	1/4 of S	Section <u>34</u> T <u>6</u> N, F	R <u>14</u> E/W	l Long	—		_	1	Fe		ıs		Fe	eet 🗆 W
Coun	ty			-	DNR County	y Code	1	Civil T	own / C	City / or V	'illage		,		***	
			Jefferso	on	2	8			Ci	ty of Fe	ort Atk	inson				
Samp		\Box							Ï		Ī	Soil Pr	ropertie	•		Ι,,
	Ê	S S	#					6	٤		<u> </u>	T	T	Ť	Т	- tr
)ec	Length Recovered (N)	Blow Counts (N)	Depth in Feet	Soil/Rock Descri				Graphic Log	Well Diagram	0	Standard Penetration	ہے ق				ROD/Comments
Number	ove See	§	th ir	And Geologic Orig			nscs	aplic	□	PID/FID	netr netr	Moisture Content	Liquid Limit	Plastic Limit	P 200	Ŏ
	P &	욻	Det	Each Major Ui	nit		Š	ত	۶	ձ	χ, g	≱ပိ	55	뿚	2	2
			E	Surface = native soil												
			<u> </u>									İ	1			
			_ 1													
			_ 2	SAND, silty, trace fine gr			SM									
			- 2	grained, slightly moist, do (FILL)	ense, brown	1										
1	16	4,7 4,6		(MLL)						430	11			ľ		
		14,0	3	-moist												
			4													
	Ì		I	SILT, clayey, slightly moi												
2	20	3,6	- 5	plasticity, light yellowish t mottles	prown with r	ust			İ	2900	14	1				
_		8,9		mottes			ML-									
							CL									
			F	-as above, increasing cla	y content,				l							
			– 7	medium plasticity, moist								ľ				
2	20	4,6								3180	17					
3	22	11,13	8							50	''					
			_													
			_ 9	CLAY, sandy, trace fine s		Ţ										
	1		ţ.	gravel, wet, firm, medium	plasticity, lig	ght	sc									
		4,7	- 10	brown												
4	16	12,10	10	SAND, fine to medium gra	ninad raus d	lad				28.3	1				1	
			_ 11	wet, medium dense, brow		ieu,			- 1			1			1	
			F ''	,a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.	•••				- 1			1				
			12	-as above, slight odor			SP		1							
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \													
- 5	12	2,5 11,22								0	16		1			
		' ',22	13 	-Driller reports sand heav	ina into aug	ere			į				1			
			7	very poor sample recover		J. J.									1	
l bee	by a s	1 '	14 J					<u> </u>			<u> </u>	ı	<u> </u>		<u>L</u>	
ı nere	by cer	ury that	ine inform	ation on this form is true and corre	ct to the best of	my kno	wledge	•								

Firm

NewFields, Madison, Wisconsin

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A 7-91

Borir	ng Num	ber	MW-	4A	1 01111			•			P	age _2	of	3
Samp	olo.									Soil Pr				
Number	Length Recovered (N)	Blow Counts (N)	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	nscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	ROD/Comments
6	0	26, 50/0	15 - 16	-no recovery	SP				50+					
7	10	11,13 17,22	17 18 18 19 20 21 22 23 23 25 26 26	SAND, as above, very poor recovery SAND, fine to medium grained, rounded, wet, medium dense, grayish-brown	SP				30					
			20											

Boring Number MW-4A Page 3 of 3														
Sam	Ja I					Γ				Soil Pr	opertie			
Number	Length Recovered (N)	Blow Counts (N)	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	nscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Límit	P 200	ROD/Comments
9	12		37 - 38 - 39 - 40 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 48 - 48 - 49 - 50 - 51 - 52 - 53 - 54 - 55 - 55 - 55 - 55 - 55 - 56 - 57 - 58	SAND, medium grained, gravelly (fine subrounded gravel), poorly graded, wet, dense, brown EOB at 40 feet BGS, set well MW-4A.	SP									

		consin	ural Resou	ireas								BORII		OG IN	NFOR	MAT	ION	
Бере	ii di ii Ci ii	OI Hall	urai resoc	Rou	ıte To:		□ Haz	. Wast	_		F	orm 440	0-122				7-91	
				0	Solid Waste		_	lergrou		nks								
					Wastewater			ter Res										
					Emergency R	esponse	☐ Oth	er						Р	age1	of _	1_	
Facil	ity / Pro	oject Na	DB C	Dak Facility, Fort	Atkinson, \	Visconsin	Lice	ense/Pe	ermit/N	Monitori	ng Numl	oer	_ E	Boring N	lumber	MW	7-5	
Borir	ng Drille	ed By (f		e and name of crew of	chief)		Date	Drilling	Starte	ed	Date	e Drilling	Comple	eted	Dril	ling Me		
				n McCumber ger State Drilling			11	<u>12</u> /	8 /	04 YY	-	12 /-	8 /	04			ID HSA	
DNP	Eacility	/ Well 1		VI Unique Well No.	Common We	ell Name		Static \			+	M M /	DD .	YY	Bor		Spoon Piameter	_
DININ	raciii;	у • • • • •	NO. .	P_P_4_9_1	MW-		Titiai		rvalei Feet M		1	96.2	Feet I	MSI	Boil	8.3	inches	
	g Loca										+	l Grid Lo			cable)			
	Plane			N		/C/N	La		_			_		N		_	ΩE	
Coun		of SE	1/4 of	Section 34 T	6 N, F	NR Count	Lon-		Civil T			Fe	et 🗀	S		Fe	et 🗆 W	
Court	ty		Jeffers	on		DNR Count	ty Code 8		CIVII		ity / or V	-						
		r	T	J		<u> </u>		<u> </u>	, 	<u> </u>	ty or F	ort Atki	nson				1	
Samp		ĝ	1							ا ۽ ا			Soil Pr	opertie	s	Т	ants	
6	Length Recovered (N)	Blow Counts (N)	Depth in Feet	Soil/Ro	ck Descri	ption			Graphic Log	Well Diagram		Standard Penetration	•			1	ROD/Comments	
Number	S e	Ş	ج آE		logic Orig			၂ ဗ	phic	Θ	PID/FID	ndar	Moisture Content	ᇢᇎ	stic	8) လို	
ž	8	Bo	Dept	Each	n Major U	nit		nscs	ပြီ	We	₽	Sta	કેંડે	Liquid	Plastic Limit	P 200	<u>8</u>	
			E 1	Surface = nat	ive soil							1						
			E.	SILT, moist, f	irm with ro	ots non-ola	astic	ML								1		
		5,6	2	very dark bro			, , , , , , , , , , , , , , , , , , ,									1		
1	10	8,9	3	CLAY, trace fi	no cond m	oiot firm					0	14						
	ŀ		E	medium plasti			ottles	CL								ļ		
			E.		,, g			~_										
			4	CAND some of	day malat											•		
		6,4	- 5	SAND, some of fie grained, lov				sc			0	11						
2	12	7,6		brown	. [,						U	''			i	ŀ		
			<u> </u>													ļ		
			F															
			7														:	
2	47	4,5 8,17		CLAY, trace fine	sand, wet, s	soft, high plas	sticity,	CL			0	13						
3	17	8,17	8	SAND, mediun	n grained	some fine					-							
			F	rounded grave				GP										
			F 9	-											1	1		
			F	CLAY, trace fir												1		
4	18	7,6 6,8	- 10	subrounded gr plasticity, gray	avel, wet, s	oft to firm, I	high	CL			0	13			1			
4	'0	0,0		piasticity, gray				-			U	'3						
			<u> </u>	SAND, clayey,														
			F	gravel, wet, me	ed dense, g	ıray												
			- 12					22										
5	20	4,6		1				sc			0	12				1		
J	ا ۔ ّ	6,7	13								J	'-						
			_															
			14		····			 										
			-	EOB at 14 fee	et BGS, set	well MW-5												
	<u>. </u>	<u> </u>	15	nation on this form is				<u> </u>	<u> </u>			I	ı	1	<u> </u>	1	<u> </u>	

This form is authorized by Chapters 144.147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$4,000 for each violation. Fines not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats

Firm

NewFields, Madison, WI

Signature

	state of Wisconsin Department of Natural Resources Route To:									SOIL			.OG II	NFOR	MAT	ION		
				Ro	oute To:	ı	O Haz	. Waste	_		F	orm 440	0-122					7-91
					Solid Waste			lergrou		nks								
					Wastewater			ter Res										
				0	Emergency Re	esponse I	☐ Oth	er	<u> </u>					F	age1	of _	1_	
Facil	ity / Pro	oject Na	DB C	Dak Facility, For	t Atkinson, \	Visconsin	Lice	ense/Po	ermit/l	Monitor	ing Numb	oer		Boring I	Number	MW	/-6	
Borir	ng Drille	ed By (i		e and name of crew	chief)		Date	Drilling	Starte	ed	Date	Drilling	Compl	eted	Drii	ling Me	thod	
				Plummer	_		4	1 / 2			-		26		-	4 1/4	" ID HS	SA
DAID	Carlle			ger State Drilling /I Unique Well No.	Common We	all Mamo	M M	Static \	D .	YY	+	M M	DD	YY	-		N 4 -	
		y Well I		P_I_2_2_8_	MW-		Finai		eet N		7	e Eleva 197.7	Feet	MSL	<u> </u>	8.3	Diameter inches	3
	ng Loca Plane			N	E \$	/C/N	į la	at	_	_	Loca	l Grid Lo		(If Appli	cable)		О	E
SE	1/4 (of SE	1/4 of 3	Section 34	T <u> 6 </u> N, F	R <u>14</u> E	Lon	g <u>—</u>	_			Fe] S		Fe		w
Coun	ity					DNR County	y Code		Civil T	own / (City / or V	'illage					***	
			Jeffers	o n		_ 2	8			С	ity of Fo	ort Atki	inson					
Samp	ole		-		γ			<u> </u>	T				Soil F	ropertie	s		_s	
	Length Recovered (N)	Blow Counts (N)	1 5						g	ä		_	T	1		Γ	ROD/Comments	
ber	e e	in o	E C		ock Descri			i	i L	Siagr	□	ard	阜世				j j	
Number	acov	§	Depth in Feet		ologic Orig h Major Uı			nscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	ğ	
	عَدَا	<u> </u>		Luo	······································			-	10		<u> </u>	SP	20		<u> </u>	<u> </u>	ă.	
	ļ		E 1											1		ŀ	=	
	Ì		E 2	No soil samp	oles collecte	d. For soils	i							ŀ				
			F	descriptions	, see boring	log for MW-												
			<u></u> 3	Set well MW	/-6 at 16.5 fe	eet BGS.												
			F											·				
	ł		F 4															
			=											·				
			<u> </u>															
	1		=															
			<u></u> 6															
			⊨ ĭ											÷				
			_ 7															
			<u> </u>						İ									
	į		<u> </u>															
	i		_ ~											į	İ			
			_ 。															
						•												
]		10															
			<u> </u>	:														
			-															
			<u> </u>															
			= ₄₀							1						İ		
			12															
			<u> </u>	:														
			13															
		1	_															
		1	 14	·												1		
			_									1				1	1	
l bass	hu sari	l tifu += -	the inform	action on this family		-44-41-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				<u> </u>	l	<u> </u>	I		<u> </u>	1	1	. ***
		ury (nat	une intorn	nation on this form is	true and corre	ct to the best of				, .								
Signa	ature						Firm	1	lew F	-ields	, Madis	on, WI						

This form is authorized by Chapters 144.147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$4,000 for each violation. Fines not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats

		sconsin	ural Resou	irces							SOIL	BORI	NG L	OG IN	IFOR	MAT	ION	
БСР		Oinal	urai Nesot	Ro	ute To:		O Haz	Wast	2		F	orm 440	0-122					7-91
				0	Solid Waste			ergrou		nks								
					Wastewater		_	er Res										
				0	Emergency Re	esponse	☐ Oth	er						P	age _ 1	of _	3_	
Facili	ty / Pro	oject Na	ame				Lice	ense/Pe	ermit/l	Monitor	ing Numl	oer	E	Boring N	umber			···
				Dak Facility, For	· · · · · · · · · · · · · · · · · · ·	Visconsin										MW	-6A	
Borin	ig Drille	ed By (F		e and name of crew Plummer	chief)		1	Drilling		_	Date	e Drilling	•			ing Met		
				ger State Drilling	נ		MM	_ /—	$\frac{6}{D}$ /	05 YY		<u>4</u> /-	<u>26</u> /	05 YY			d rota	ry spoon
DNR	Facilit	y Well N	10000	/I Unique Well No.	Common We	ell Name	 	Static \	_			ace Eleva			-		iameter	
	-			P1227_	MW-	6A		F	eet N	ISL	7	97.8	Feet	MSL	1 '	6.0	inche	
	g Loca			M	F.0	(O/N)					Loca	l Grid Lo						
	Plane			N		/C/N	La			_		_		N				Ε
Coun		of SE	1/4 of	Section 34	T <u>6</u> N, F	DNR County	Lon						et 🗆	S		Fe	et 🗖	W
Coun	L.y		Jeffers	n n		2			CIVII I		City / or V	•						
		1	1	1			8	<u> </u>	1	·	ity of F	or Atki	nson					
Samp		ĵ.								_		<u> </u>	Soil Pr	operties			at S	
_	2	ınts	i iii	Soil/Ro	ck Descri	ption			Log	Well Diagram		_ 5					e u	
Number	re se	ខ្ម	Ë	And Geo	ologic Orig	in For		χ	Graphic Log	l Dia	윤	dard	sture tent	בַ בַּ	t tic	Q	/Cor	
ž	Length Recovered (N)	Blow Counts (N)	Depth in Feet		h Major Ui			nscs	Gra	Wel	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	ROD/Comments	
	<u> </u>		-	Surface = gras	· e				+-					<u> </u>				
		i		Topsoil, dark b		m					1	: drilled r to 10					f	
			<u> </u>									y at 10		SVVICCIN	sa to t	mac	-	
			=								· '		I	<u> </u>				
			<u></u> 2															
			-															
			3									:						
			F															
			4	SAND, fine gr	ained, some	silt, little		SM										
1	20	6,10 12,15		gravel, moist,	medium der	nse, dark ye	llow					22						
			5	brown														
			F 6															
			<u></u> 7															
			<u></u>									:						
			8									į						
			<u> </u> _												:			
		İ	e —	CILT come for														
0	20	7 12		SILT, some fir very stiff, non-				ML-								,		
2	20	7,12 18,24	- 10	l vory oun, non	piastio, aari	v yellow blo	**11	SM				30						
			11															
			ĮΞ															
			12															
			F	SAND, fine gra	ained some	eilt littla		SM								.		
			13	subrounded gr			, dark											
3	6	12,33		yellowish brow		•						76						
		43,52	_ 14	L								. ,	1	<u> </u>				
		tify that	the inforn	nation on this form is	true and corre	ct to the best of	my kno	wledge) .									
Signa	ture						Firm		١	l ewFi	elds, M	ladisor	n, Wisc	onsin				

This form is authorized by Chapters 144.147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$4,000 for each violation. Fines not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats

State of Wisconsin
Department of Natural Resources

SOIL BORING LOG INFORMATION SUPPLEMENT

Borin amp	g Num le		MW-		T	Τ	П		ſ	0-110		age <u>2</u>	<u>of</u>	
Number	Length Recovered (N)	Blow Counts (N)	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	nscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	ROD/Comments
4	16	19,28 41,48	18 - - 19 -	SAND, fine grained, some silt, little subrounded gravel, moist, very dense, dark yellowish brown SAND, as above	SM				69					
5	22	15,23 25,26	20 21 22 23 24 24 25 25	-decreasing silt and gravel content with depth SAND, fine grained, some silt, trace rounded gravel, wet, very dense, poorly graded, yellowish brown					48					
6	12	11,17 33,25	26 27 28 29 30	SAND, fine grained, some silt, trace clay, little rounded gravel, wet, very dense, poorly graded, light grayish brown	SM				50					
7	1	50/4"	31 32 33 33 34	SAND, as above	SM				50+				:	

_Bori	ng Num	ıber	MW-	6A							F	age3	3 of	7-91 3
Sam	ple	ĵ.			"		Γ			Soil Pr	opertie			
Number	Length Recovered (N)	Blow Counts (N)	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	nscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	ROD/Comments
8	0	37,22 18,19	_ 38	No recovery					40					
9	12	16,12 30,14	39 - 40 - 41	SAND, fine grained, some silt, trace clay, wet, dense, poorly graded, light grayish brown	SM				42					
			42	EOB at 41 feet BGS, set well MW-2A at 40 feet.										
			57 - - - 58			,								

State of Wisconsin Department of Natural Resources		olid Waste□ se & Repair□							TTORING 14400-113A	WELL CONST	TRUCTION Rev. 4-90
Facility/Project Name		Local Grid Loc					Well Nan				
DB Oak Facility			_ft. 🗆 N		ft. DE.		Well Ival	iic	MW-	-1	
Fort Atkinson, Wisconsin			□ <u>S</u> .		□ W.		l	-,· , , , , , , , , , , , , , , , , , ,			
Facility License, Permit or Monitoring 1		Grid Origin I Lat.		Long.			P	nique Well N P 4 8	lumber 9	DNR W	ell Number
Type of Well Water Table Observation		St. Plane	f	t. N,		ft. E.	Date We	ll Installed	1 2	. 0 9 . 4	
Piezometer	□ 12								1 2	$-\frac{0}{d} \frac{8}{d} \frac{0}{y}$	
Distance Well Is From Waste/Source Bo	undary	e t	CM + /C			•		11 1 D (D			<u> </u>
		Section Location SE 1/4 of SE			N R 14		Well llist	aned By: (Pe	erson s Nan	ne and Firm)	
Is Well A Point of Enforcement Std. Ap	nlication?	Location of W				<u> </u>	1	Kevin M	1cCumber		
□ Yes	□ No	n 🗆 Unamdi	ant	۰. ٦	Cidaamadi	ent		D. 4	C4.4. D. 111		
		d Downg	radient	n O	Not Know	vn	 	Badger	State Drillin	ıg ————	
A. D	0 1 6 0		,				1001-0				
A. Protective pipe, top elevation7				- 71+0-1		Cap and				■ Yes	s □ No
B. Well casing, top elevation $\frac{7}{2}$	9 <u>3</u> .4ft	MSL -	- ' -				e cover pi			4	<u>4</u> . <u>0</u> in.
C. Land surface elevation 7				3337		. Lengti				$-\frac{1}{\epsilon}$	$\frac{1}{6} \cdot \frac{0}{0}$ ft.
			1 1	X		. Materi				Stee	
D. Surface seal, bottom 7 9 0 3	ft MSL or	<u> </u>	<u> </u>	1	انت			Stick up			er 🗆 🔯
12. USCS classification of soil near se					\ d.		ional prote				s No
GP GM GC GW G	SW - SP	<u> </u>		11/							
SM □ SC ■ ML□ MH□	CL CH		<i>∠</i> Й		3. S	urface s	eal:				e□ 3 0
Bedrock □		İ	×				Nativ	e Soil			e 🛛 0 1
13. Sieve analysis attached?	es 🔳 N	io	×		\ \ -	fatamia1			. 4 4 4 .		r 🔳 🔯
		Ĭ	×		4. N	viatenai	between v	vell casing a	na protectiv		te□ 3 0
14. Drilling method used:	Rotary 🗆 5		×						Ann	ular Space Sea	
Hollow Ste	em Auger 🔳 4	1	×		_		Ohio	#5 sand			r ■ 🚃
	Other 🗀 🖸	OKEQ	×								
15. Drilling fluid used: Water 0	2 Air 🗆 (. 1	Ø			- 4.			6		
Drilling Mud 0			×		5	o. Annu S	ılar space s	seal: and weight	a. Gran	nular Bentonite nite-sand slurr	;∐ 33
	_		×							Bentonite slurr	
16. Drilling additives used?	es 🔳 N	lo l	×		d	1	% Bentoni	ite	Bentoni	te-cement grou	ıt □ 5 0
D			×	Ø	e	e	Ft ³	volume adde			
Describe:		—— I	×	×	f	f. How i	installed:		_		e □ 0 1
17. Source of water (attached analysis):	İ	×						7	Fremie pumpe	
, , , , , , , , , , , , , , , , , , , ,	,-		×							Gravit	ty■ 0 8
			×			Bentonite				ntonite granule	
			×		/		l/4 in. ■			Bentonite chips	
E. Bentonite seal, top $\frac{790}{100}$.	ft MSL or	1 0 6.	Ø		/ c.	·		330 lb	os	Other	r 🗆 🔯
			. 🛭		/ 7. F	ine sand	d material:	Manufactur	er, product	name & mesh	size
F. Fine sand, top	_ ft MSL or	<u>6</u> . <u>0</u> ft_	\searrow	₿/	/ a.			#40/60 Badg			<u>0.0000</u>
7 8 4 2				- 🕸 /	/ b.	. Volun	ne added _	50	l	lb	
G. Filter pack, top $\frac{7 \cdot 8 \cdot 4}{2 \cdot 10^{-10}} \cdot \frac{3}{2}$	ft MSL or	<u>/</u> . <u>0</u> ft ∕	<u> </u>	8 /	/ 8. F	ilter pac				t name & mes	h size
H. Screen joint, top 7 8 3 3	A MSI or	8 0 4 -		17/	/ a.			Ohio #5 san			<u> </u>
11. Scieen joint, top	It MSL or	<u> </u>			/ b	. Volun	me added ₋	300	<u> </u>	lb	
I. Well bottom	e ver 1	8 0 0		<u> </u>	9. W	Vell casi	ing:	Flush	threaded P	VC schedule 40	0 🛮 2 3
1. Well bottom	_πMSL or	и /		-1/			C	Flush	threaded PV	VC schedule 80	0 🗆 2 4
J. Filter pack, bottom 7 7 3 . 3	ft MSL or 1	8 0 a			_					Other	
					- 10	Screen n	naterial:	Sch.	40 PVC		(CCC)
K. Borehole, bottom $\frac{7}{2}$ $\frac{7}{2}$ $\frac{2}{3}$	ft MSL or 1	9 0 n				a. Scree	_			Factory cu	t ■ 1 1
		-·-·" <u> </u>					J P •-		(Continuous slo	
L. Borehole, diameter 8 3	in.	`	\\ \ <u>\</u>								
				<i>[[</i> []			ufacturer_	Time	20		
M. O.D. well casing $2 \cdot 37$	_ in.					c. Slot s	size ed length:				$\frac{0}{1} \frac{1}{0} \frac{0}{0} \text{ in.}$
N. I.D. well casing $2 \cdot 0$	6 in.			`						_	1 0 . 0 ft.
	_				11.	Backfill	1 material	(below filler	pack):		ne ■ 1 4
	· · · · · · · · · · · · · · · · · · ·									Other	
I hereby certify that the informa	tion on this	form is true	and correct	to the be	st of my	know	ledge.				
Signature	*****	Firm		elds, Mac					***		
		l	TACMILE	-143, IVIA	1130II, W	1500118	2111				

State of Wisconsin Department of Natural Resources		olid Waste ☐ Haz. Waste ☐ se & Repair ☐ Underground ☐			MONITORING Form 4400-113A	WELL CONSTRI	UCTION ev. 4-90
Facility/Project Name		Local Grid Location of Well	Tanks D Other G	137, 1137			.cv. 4-30
DB Oak Facility Fort Atkinson, Wisconsin			ft. □ E.	Well Na	MW-	-2	
Facility License, Permit or Monitoring 1	Number	Grid Origin Location		XXXX 36 YO	Unique Well Number P 4 8 7	DNR Well	Number
Type of Well Water Table Observation	well 11	Lat L St. Plane ft.	ong	Date W	ell Installed	<u> </u>	
Piezometer	□ 12	St. Plane ft.	N, ft	. E. Date W	1 2 m m	$-\frac{0}{d} \frac{9}{d} \frac{9}{y}$	4 v
Distance Well Is From Waste/Source Bo	undary	Section Location of Waste/Sou SE1/4 of SE 1/4 of Sec. 34		E Well Ins	stalled By: (Person's Nar		
Is Well A Point of Enforcement Std. Ap	plication?	Location of Well Relative to V		<u>"</u>	Kevin McCumber		
□ Yes	. □ No	u D Upgradient d D Downgradient	s 🗖 Sideamdient		Badger State Drillin	ng	
A. Protective pipe, top elevation7		MSL TE	1. Cap		¥.4.	■ Yes □) No
B. Well casing, top elevation $\frac{7}{2}$	9 <u>1</u> .2_ft.	MSL		ective cover p side diamete		9	O :
C. Land surface elevation7			1000	ength:	1.	$-\frac{9}{1}$.	on. Oft.
D. Surface seal, bottom $\frac{7}{9}$ $\frac{9}{0}$. $\frac{5}{2}$	ft MSL or	1 0 # \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	C. M	laterial:	Flush mount	Steel	
12. USCS classification of soil near se			$\frac{1}{A}$ b $\frac{1}{A}$	dditional pro		Other□ □Yes ■	
GP GM GC GW					2:		110
SM O SC O MLO MHC	CL CH		3. Surfa			Bentonite □	3 0
Bedrock 🗆						Concrete	
13. Sieve analysis attached?	es 🔳 N	· 🛭	4. Mate	erial between	well casing and protective	Other C	
14 Drilling method used:	Dotom: □ €					Bentonite □	
14. Drilling method used: Hollow Ste	Rotary 🗆 5 em Auger 🔳 4	1 l 🛭		Ohio	Anr o #5 sand	ular Space Seal	
	Other		—			Other	XXX
15. Drilling fluid used: Water 0	2 Air 🗆 0	.					
Drilling Mud 0			5. A	Annular space	e seal: a. Grai mud weight Bento	nular Bentonite	3 3
			0 c.	Lbs/gal	mud weight Bento	Bentonite slurry	3 3
16. Drilling additives used?	es 🗆 N	lo 🛛	d	% Bento	nite Bentoni	te-cement grout	
Describe: Water				F low installed:	t ³ volume added for any o	f the above Tremie □	0.1
17.6				iow mstanca.		Fremie pumped □	
17. Source of water (attached analysis	,					Gravity	
Water truck	·	🛚	/ 6. Bent	onite seal:	a. Be	ntonite granules 🗆	1 3 3
			* XI /	□ 1/4 in.	■ 3/8 in. □ 1/2 in. E		
E. Bentonite seal, top	ft MSL or	<u>1</u> . <u>0</u> ft	c	sand materia	100 lbs 1: Manufacturer, product	name & mesh siz	
F. Fine sand, top		\ \ \\	a	olume added	1	b	<u> </u>
G. Filter pack, top		2/	8. Filte a.	r pack materi	ial: Manufacturer, produc Ohio #5 sand	et name & mesh si	ze
H. Screen joint, top	ft MSL or	<u>5</u> . <u>5</u> ft	b. V	olume added		lb	لينين
I. Well bottom $\frac{7}{2} \cdot \frac{7}{2} \cdot \frac{6}{2} \cdot \frac{0}{2}$	_ ft MSL or _1	5.5 ft	9. Well	casing:	Flush threaded P' Flush threaded P'	VC schedule 80 🗆	2 4
J. Filter pack, bottom	ft MSL or _1	6.0 ft	10 Sar	en material:	Sch. 40 PVC	Other [
	_ft MSL or _1	6.0 ft	* 4654	Screen type:		Factory cut	
L. Borehole, diameter8 . 3			<u>Б. 1</u>	Manufacturer		Other	
M. O.D. well casing $\frac{2}{2}$	_ in.			Slot size Slotted length	ı:	0.0	1 0 in. 5 0 ft.
N. 1.D. well casing <u>2</u> . <u>0</u>	<u>6</u> in.				l (below filler pack):	None ■ Other □	1 4
I hereby certify that the informa	tion on this	form is true and correct to	the best of my br	owledge	78-7-	Oulci L	<u> </u>
Signature Signature	V	T					
		l newFiel	ds, Madison, Wisc	OHSIN			

State of Wisconsin Department of Natural Resources		olid Waste ☐ Haz. Wa se & Repair ☐ Undergr				MONITORING W Form 4400-113A		JCTION ev. 4-90
Facility/Project Name		Local Grid Location of '			Well Na			
DB Oak Facility Fort Atkinson, Wisconsin				ft. □ E. □ W.	Well Na	MW-2	2A	
Facility License, Permit or Monitoring	Number	Grid Origin Location			Wis. U	Jnique Well Number P 4 8 8	DNR Well	Number
Type of Well Water Table Observation Piezometer	n Well □ 11 ■ 12	Lat St. Plane	ft. N,	ft.	E. Date W	ell Installed 1 2 m m	$\frac{0}{d} \frac{9}{d} \frac{0}{y}$	4 v
Distance Well Is From Waste/Source Bo	undary	Section Location of Was SE 1/4 of SE 1/4 of Sec				talled By: (Person's Name		7
Is Well A Point of Enforcement Std. Ap	plication?	Location of Well Relati	ve to Waste/Sou	rce Sidegradient		Kevin McCumber Badger State Drilling		
-		d Downgradient	n 🗆	Not Known		Bauger State Diming		
A. Protective pipe, top elevation $\underline{}$			#	1. Cap a			■ Yes □	No
B. Well casing, top elevation7	9 <u>1</u> . <u>3</u> _ ft.	MSL -			tive cover p		9	0 in
C. Land surface elevation	9 <u>1</u> . <u>5</u> ft.	MSL		b. Le		•	$-\frac{9}{1} \cdot \frac{9}{1}$) ft.
D. Surface seal, bottom 7 9 0 . 5		1 0 0 .		c. Ma	terial:	Flush mount	Steel	
				~	ditional pro		Other □ □ Yes ■	
12. USCS classification of soil near so GP ☐ GM ☐ GC ☐ GW ☐						:		i No
SM O SC O MLO MHC				3. Surfac			Bentonite □	3.0
Bedrock □							Concrete	
13. Sieve analysis attached?	es ■N			\ . 			Other	<u> </u>
13. Sieve analysis attached?	es = N	•		4. Mater	rial between	well casing and protective		1 2 0
14. Drilling method used:	Rotary 🗆 5					Annu	Bentonite ☐ lar Space Seal ☐	
	em Auger 🔳 4				Ohio	#5 sand	Other	
	Other 🗆 🖸							
15. Drilling fluid used: Water 0	2 Air 🗆 0	1		——— 5 A	nnular snace	e seal: a. Granu	ılar Bentonite 🗆	3 3
Drilling Mud 🛭 0	3 None = 9	9				mud weight Bentoni		
16 Duilling additions and 42 W	п.			c	Lbs/gal 1	mud weight Bo	entonite slurry 🗆	3 1
16. Drilling additives used? ■ Y	es 🗆 N	10		d		nite Bentonite		5 0
Describe: Water					For installed:	t ³ volume added for any of	the above Tremie □	1 0 1
				1. 110	ow msamea.		remie pumped	
17. Source of water (attached analysis	s):						Gravity	0 8
Water truck				, 6 Rento	nite seal:	a Ront	onite granules	1 2 2
						■ 3/8 in. □ 1/2 in. Be 400 lbs	ntonite chipsOther	3 2
E. Bentonite seal, top $\frac{790}{3}$				7. Fine s	and materia	l: Manufacturer, product n	ame & mesh siz	e
F. Fine sand, top $\frac{759}{.5}$	_	\		a b. Vo	lume added	Badger Mining #40/60 si 50 lb		<u> </u>
G. Filter pack, top 7 5 8 0				8. Filter	pack materi	al: Manufacturer, product Ohio #5 sand	name & mesh si	ze
H. Screen joint, top			44/		olume added			
I. Well bottom 7 5 1 . 5				9. Well	casing:	Flush threaded PV Flush threaded PV	C schedule 80 □	2 4
J. Filter pack, bottom 7 _ 5 _ 1 5	ft MSL or _4	$\frac{0}{2} \cdot \frac{0}{2}$ ft			en material:	Sch. 40 PVC	Other [<u> </u>
K. Borehole, bottom	ft MSL or 4	$\frac{2}{2} \cdot \frac{0}{1}$ ft			creen type:	C	Factory cut	
L. Borehole, diameter 8.3				b. M	lanufacturer		Other	
M. O.D. well casing $2 \cdot 3 \cdot 3$				c. SI	ot size lotted length		00	$\frac{1}{5} \cdot \frac{0}{0} \text{ ft.}$
N. I.D. well casing $2 \cdot 0$	<u>6</u> in.			11. Baci	kfill materia	l (below filler pack):	None Other	1 4
I hereby certify that the informa	tion on this	form is true and cor	rect to the be	st of my kno	owledge.			
Signature		Firm Ne	wFields, Mac	lison Wise	nsin			
		I NC	··· icido, iviac		7119111			

State of Wisconsin Department of Natural Resources		olid Waste□ Haz. Waste nse & Repair □ Undergrou				MONITORING Form 4400-113	WELL CONSTRU	UCTION .ev. 4-90
Facility/Project Name		Local Grid Location of We			Well Name			
DB Oak Facility			ft.	□ E.	Well Name	MW	'-3	
Fort Atkinson, Wisconsin		□ S.		□ w.	<u> </u>			
Facility License, Permit or Monitoring N		Grid Origin Location Lat.	Long.		P P	que Well Number 4 9 0	DNR Well 1	Number
Type of Well Water Table Observation Piezometer	n Well ■ 11	LatSt. Plane	ft. N,	ft. E.	Date Well 1		$-\frac{1}{d}\frac{0}{d}\frac{9}{d}\frac{0}{y}$	4
Distance Well Is From Waste/Source Bo	undanı				<u> </u>			<u>y</u>
Distance Well is From Waster Source Do	undary	Section Location of Waste/ NE ₁ /4 of SE 1/4 of Sec.	Source	#E	Well Install	ed By: (Person's Na	me and Firm)	
Is Well A Point of Enforcement Std. Ap	nlication?	Location of Well Relative		17 U W		Kevin McCumber		
☐ Yes	□ No	u Dupgradient d Downgradient	- G 6:1	gradient Known		Badger State Drilli	ing	
A. Protective pipe, top elevation 7	9 4 . <u>0</u> ft			1. Cap and	lock?		■ Yes □	No
B. Well casing, top elevation 7	$\frac{9}{2}$. $\frac{3}{2}$. ft	. MSL			e cover pipe	:	4	0.
C. Land surface elevation 7				a. Inside b. Lengt	diameter:		$-\frac{4}{6}\cdot\frac{6}{6}$	Jin. T⊕
D. Surface seal, bottom 7 8 9 . 9		1 1001		c. Mater	rial:		Steel =	
		<u> </u>				Stick up	Other 🛛	
12. USCS classification of soil near so GP GM GM GC GM GW G SM GM SC ML MH GM	SW 🗆 SP			If yes		ion?	☐ Yes ■	
Bedrock 🗆	CL LI CE			3. Surface s	seal:		Bentonite ☐ Concrete ☐	
					Native S	Soil	Other	
13. Sieve analysis attached?	es 🔳 N	lo		4. Material	between we	Il casing and protecti		
14. Drilling method used:	Rotary □ 5	,					Bentonite □	
Hollow Ste	m Auger 🔳 4	1			Ohio #5		nular Space Seal ☐ Other ■	
	Other □□		3 × 3			· · · · · · · · · · · · · · · · · · ·	Other	<u> </u>
15. Drilling fluid used: Water 0	2 Air □ 0							
Drilling Mud 0	3 None ■ 9			5. Annı	ular space sea	nl: a. Gra I weight Bento	nular Bentonite	3 3
						l weight Bento		
16. Drilling additives used?	es 🔳 N	lo			% Bentonite	Benton	ite-cement grout 🛘	
Describe:		l 8		e		olume added for any o		
				I. How	installed:		Tremie ☐ Tremie pumped ☐	
17. Source of water (attached analysis):						Gravity	
		1 8		6. Bentonit	a can1:	a. Be	· ····································	2.2
						a. Be 8 in. □1/2 in. 1	entonite granules Bentonite chips	3 3
E. Bentonite seal, top	ft MSL or	1.0 ft		c		50 lbs	Other 🗆	
F. Fine sand, top	ft MSL or	f \		a.		Manufacturer, product	t name & mesh size	
		<u> </u>			ne added		lb .	
	ft MSL or	4		8. Filter pa	ck material:	Manufacturer, produ- hio #5 sand	ct name & mesh siz	ze
H. Screen joint, top $\frac{7 \cdot 8}{2 \cdot 10^{-5}} \cdot \frac{9}{2 \cdot 10^{-5}}$	ft MSL or	$\frac{3}{2} \cdot \frac{0}{2}$ ft			me added	300	lb	ليمتيمت
I. Well bottom	ft MSL or _1	3.0 ft		9. Well cas	ing:		VC schedule 40 VC schedule 80 C	2 4
J. Filter pack, bottom $\frac{7}{2}$ $\frac{7}{2}$ $\frac{7}{2}$ $\frac{9}{2}$	ft MSL or 1	3 . <u>0</u> ft		10.0		Sch. 40 PVC	Other [
K. Borehole, bottom	ft MSL or 1	4.0 ft		10. Screen i			Factory cut Continuous slot	1 1
L. Borehole, diameter8 . 3	_ in.			1 3.5	C		Other	
M. O.D. well casing 2. 3 7	_ in.	\u03b4		c. Slot		Timco		1 0 in.
N. I.D. well casing 2.0	in.				ed length:) <u>. 0</u> ft.
	_		`	II. Backfil	I material (be	elow filler pack):	None ■ Other □	
I hereby certify that the informa	tion on this	form is true and correc	t to the best of	my know	ledge			
Signature		T-:-						
		New P	Fields, Madisor	n, Wiscons	sin 			

	olid Waste Haz. Waste Wastewater see & Repair Underground Tanks Other	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 4-90
Facility/Project Name DB Oak Facility Fort Atkinson, Wisconsin	Local Grid Location of Well ft. □ Nft. □ E. □ S. □ W.	Well Name MW-3A
Facility License, Permit or Monitoring Number	Grid Origin Location	Wis. Unique Well Number DNR Well Number P I 2 2 9
Type of Well Water Table Observation Well □ 11 Piezometer □ 12	Lat. Long. St. Plane ft. N, ft. E.	
Distance Well Is From Waste/Source Boundary	Section Location of Waste/Source	Well Installed By: (Person's Name and Firm)
Is Well A Point of Enforcement Std. Application?	NE 1/4 of SE 1/4 of Sec. 34 , T. 6 N, R. 14 W Location of Well Relative to Waste/Source	Alex Plummer
□ Yes □ No	u Dupgradient s Sidegradient d Downgradient n Not Known	Badger State Drilling
A. Protective pipe, top elevation 7 _ 9 _ 3 8 ft.	11 Id /	
B. Well casing, top elevation 7 9 3 . 5 ft C. Land surface elevation 7 9 0 . 9 ft D. Surface seal, bottom 7 8 9 . 9 ft MSL or 12. USCS classification of soil near screen: GP □ GM □ GC □ GW □ SW □ SP SM ■ SC □ ML □ MH □ CL □ CH Bedrock □	a. Inside b. Leng c. Mater d. Addir If yes	rial: Stick up Other □ Other □ No tional protection? □ Yes ■ No s, describe: seal: Bentonite □ 3 0 Concrete □ 0 1
13. Sieve analysis attached? ☐ Yes ■ N	lo 4. Materia	Native soil Other ■ Other ■ between well casing and protective pipe:
14. Drilling method used: Rotary 5 Hollow Stem Auger 4 Other	0 1	Bentonite□ 3 0 Annular Space Seal□ Ohio #5 sand Other ■
15. Drilling fluid used: Water	b c d	Ft³ volume added for any of the above installed: Tremie □ 0 1 Tremie pumped □ 0 2
17. Source of water (attached analysis):		750 lbs. Gravity ■ 0 8 te seal: a. Bentonite granules □ 3 3 1/4 in. ■ 3/8 in. □ 1/2 in. Bentonite chips ■ 3 2
E. Bentonite seal, top 7 8 9 9 ft MSL or		50 lbs Other
F. Fine sand, top $\frac{7 \cdot 5 \cdot 2}{2 \cdot 9}$ ft MSL or $\frac{3}{2}$	8 5 ft. 7. Fine san	d material: Manufacturer, product name & mesh size Ohio #4000 me added 50 lb
G. Filter pack, top 7 5 0 . 9 ft MSL or 4	10 00	ack material: Manufacturer, product name & mesh size
H. Screen joint, top	2 . <u>0</u> ft a. b. Volu	Ohio #5 sand
I. Well bottom		
J. Filter pack, bottom		Other Description Sch. 40 PVC
K. Borehole, bottom 7 4 2 . 9 ft MSL or 4	8 . 0 ft 10. Screen a. Screen	en type: Factory cut ■ 1 1
L. Borehole, diameter60 in.		Continuous slot 0 1 Other 0
M. O.D. well casing2	c. Slot	
N. I.D. well casing $2 \cdot 0 \cdot 6$ in.		ted length: $\underline{5.0}$ ft. Il material (below filler pack): None \blacksquare 1 4
		Other 🗆 🔯
	form is true and correct to the best of my know	
Signature	Firm NewFields, Madison, Wiscon	sin

State of Wisconsin Department of Natural Resources		olid Waste ☐ Haz. Waste I nse & Repair ☐ Underground		0			ORING WELL CONST	RUCTION Rev. 4-90
Facility/Project Name DB Oak Facility		Local Grid Location of Well	l ft. C	E.	Well Na		MW-4	
Fort Atkinson, Wisconsin Facility License, Permit or Monitoring N	lumber	Grid Origin Location		l w	Wis. U	nique Well Nur	nber DNR We	ll Number
Type of Well Water Table Observation Piezometer	Well 11	Lat St. Plane	Long ft. N,	ft. E.	Date We	P 4 9 2	$\frac{1}{m} \frac{2}{m} / \frac{1}{d} \frac{0}{d} / \frac{0}{y}$	<u>4</u>
Distance Well Is From Waste/Source Bo	undary	Section Location of Waste/S		■E	Well Inst	alled By: (Pers	on's Name and Firm)	<u></u>
Is Well A Point of Enforcement Std. App	olication?	NE1/4 of SE 1/4 of Sec. 3 Location of Well Relative to Upgradient d Downgradient	Waste/Source	4:4	 	Kevin Mcc Badger Sta		<u> </u>
A. Protective pipe, top elevation 7	9 9 . 5 ft.			nown l. Cap and	l lock?		■ Yes	
B. Well casing, top elevation 7 9 C. Land surface elevation 7 9 D. Surface seal, bottom 7 9 5 8 12. USCS classification of soil near sc GP GM GC GW GSM SM SC ML MH GH	9 9 2 ft. 9 6 8 ft ft MSL or reen: SW SP	MSL . 0 ft		a. Inside b. Leng c. Mater	ve cover pi e diameter th: rial: tional protes, describe: seal:	Stick up	4	. 0 in. . 0 ft. . No
13. Sieve analysis attached?	s E N	lo 📗		1. Materia			protective pipe:	
14. Drilling method used: Hollow Ste	Rotary 0 5 m Auger 1 4 Other 0	1 I 🕅			Ohio	#5 sand	Bentonite Annular Space Seal Other	
15. Drilling fluid used: Water 0 Drilling Mud 0 0 16. Drilling additives used?	3 None 9	9 9 No		b c d e	Lbs/gal n Lbs/gal n % Benton	nud weight nud weight ite	Tremie pumped	□ 3 5 □ 3 1 □ 5 0 □ 0 1
				b. □		3/8 in. □ 1/2 50 lbs	a. Bentonite granules 2 in. Bentonite chips Other	□ 3 3 ■ 3 2 □ ☑ ☑ ☑
E. Bentonite seal, top	ft MSL or	ft		. Fine san	nd material		product name & mesh s	
G. Filter pack, top 7 9 3 . 8				a		Ohio #5 sand	r, product name & mesh	size
H. Screen joint, top 7 9 1 8				b, Volu D. Well cas	ime added	250 Flush the	lb readed PVC schedule 40	2 2 2
I. Well bottom 7 8 1 8		<u> </u>		. Won cas	sing.		readed PVC schedule 80	_
J. Filter pack, bottom 7 8 1 8			1	0. Screen		Sch. 40	PVC	2222
	ft MSL or _1	5.5 ft		a. Scre	en type:		Factory cut Continuous slot	□ 01
L. Borehole, diameter 8.3					ufacturer_	Timco		
M. O.D. well casing 2. 3.7				c. Slot d. Slot	size ted length:			$\frac{0}{0} \cdot \frac{1}{0} \cdot \frac{0}{0} \text{ ft.}$
N. I.D. well casing 2.06	<u>'</u> in.			11. Backfi	ll material	(below filler pa		■ 1 4 □ <u>□</u>
I hereby certify that the informa	tion on this		to the best of	my know	vledge.			
Signature		Firm NewFi	ields, Madison	Wiscon	sin			

State of Wisconsin Department of Natural Resources		olid Waste Haz. Waste Case & Repair Underground				MONITORING W Form 4400-113A		CTION ev. 4-90
Facility/Project Name		Local Grid Location of Well			Well Name		\ - \-	
DB Oak Facility		ft. □ N) E.	Well Name	MW-4	4 A	
Fort Atkinson, Wisconsin		□ S.		w.				
Facility License, Permit or Monitoring N	lumber	Grid Origin Location	Long	•	Wis. Unique P P 4	Well Number 9 3	DNR Well N	lumber
Type of Well Water Table Observation	Well 🗆 11	Lat St. Plane	f N		Date Well Insta			· <u></u>
Piezometer	■ 12	ot. Fidile		R. E.		$\frac{1}{m}\frac{2}{m}$	$\frac{\sqrt{0}}{d} \frac{8}{d} \frac{\sqrt{0}}{y} \frac{4}{y}$	<u>y</u>
Distance Well Is From Waste/Source Bo	undary	Section Location of Waste/S NE1/4 of SE 1/4 of Sec. 34		■E	Well Installed I	By: (Person's Name	e and Firm)	
Is Well A Point of Enforcement Std. App	liantian?			17 U W	K	Levin McCumber		
☐ Yes	□ No	Location of Well Relative to u D Upgradient Downgradient	s 🗆 Sideg	radient Cnown	В	adger State Drilling	3	
A. Protective pipe, top elevation 7	9 9 . 4 ft.			1. Cap and	lock?	· · · · · · · · · · · · · · · · · · ·	■ Yes □	No
B. Well casing, top elevation 7 9	9 1 6	MSI			e cover pipe:			
					diameter:		$-\frac{4}{3}\cdot\frac{0}{3}$	in.
C. Land surface elevation 7 9		Volati VSSI I		b. Leng c. Mater			$\frac{-6}{6}$. $\overline{0}$	_ ft.
D. Surface seal, bottom 7 9 6 . 1	ft MSL or	1.0 ft \		c. Mate	Stic	ck up	Steel Other	2000
12. USCS classification of soil near so	reen:			d. Addi	ional protection?	?	☐ Yes ■	
GP GM GC GW								110
SM O SC O MLO MHO			K \	3. Surface			Bentonite 🗆	3.0
Bedrock □							Concrete	
12.6					Native Soil		Other	XXX
13. Sieve analysis attached? Ye	s \blacksquare N	o	_ ∅ _ ` ·	4. Materia	between well ca	sing and protective	pipe:	
14. Drilling method used:	Rotary 05	, I 🔉	×				Bentonite □	
I -	m Auger ■ 4		N N		Ohio #5 sar		lar Space Seal	
	Other		\boxtimes				Other	DOOR
15. Drilling fluid used: Water 0				- 5. Ann	ular space seal:	a. Grant	ılar Bentonite 🗆	3 3
Drilling Mud 0	3 None 9	' 9	×	Ь	Lbs/gal mud we	eight Benton	ite-sand slurry 🔲	3 5
16. Drilling additives used?	es 🗆 N	lo 🏻 💢	Ø	c	Lbs/gal mud we	eightB	entonite slurry	3 1
				а е.		Bentonite added for any of		5 0
Describe: Water		🛛			installed:	ic added for any of	Tremie	0.1
17. Common of market (144-11-11-11-11-11-11-11-11-11-11-11-11-			×			T	remie pumped 🗆	
17. Source of water (attached analysis)):		×				Gravity 🖪	0 8
Water truck				6. Bentonii	e seal·	a. Bent	onite granules	3 3
						n. □ 1/2 in. Be		
				c		250 lbs	Other 🗆	2000
E. Bentonite seal, top $\frac{795}{1}$.	ft MSL or	2.0 ft \		7. Fine san	d material · Man	ufacturer, product n	ame & mesh size	
F. Fine sand, top $\frac{7 \cdot 6 \cdot 5}{1} \cdot \frac{1}{1}$	ft MSL or 3	2.0 ft.		a		er Mining #40/60 si		(XXXX)
			⊠/ /	b. Volu	me added	1b		
G. Filter pack, top $\frac{7 \cdot 6 \cdot 3}{2 \cdot 8} \cdot \frac{8}{2 \cdot 10^{-5}}$				8. Filter pa	ck material: Ma	nufacturer, product #5 sand	name & mesh siz	re Evvvi
H. Screen joint, top $\frac{7}{6} \frac{6}{3} \cdot \frac{1}{1}$	ft MSL or _3_	4. <u>0</u> ft		b. Volu	me added	150 1	b	ليقق
I. Well bottom $\frac{7}{2} \cdot \frac{5}{2} \cdot \frac{8}{2} \cdot \frac{1}{2}$	ft MSL or _3	9.0 ft		9. Well cas	ing:	Flush threaded PV Flush threaded PV		
J. Filter pack, bottom 7 5 8 1	ft MSL or _3	9.0 ft	7 Maria 100 Mari			C. I. AO DVC	Other 🗆	<u> </u>
K. Borehole, bottom	ft MSL or _3	9.5 ft		10. Screen a. Scre		Sch. 40 PVC	Factory cut	
L. Borehole, diameter8 . 3	in.						ontinuous slot Other	
M. O.D. well casing 2. 3 7	_ in.			c. Slot		Timco	00_1	
N. I.D. well casing 2.06	in			d. Slott	ed length:		5	<u>0</u> ft.
2. 1.2. Well cashing 2	· 111.		`	 Backfi 	ll material (belov	v filler pack):	None 🔳	
							Other	<u> </u>
I hereby certify that the informa	tion on this	form is true and correct	to the best of	my know	ledge.			
Signature		Firm NewFi	elds, Madison	Wiscon	sin			
		1	, 1114415011	,	~***			

	Solid Waste ☐ Haz. Waste ☐ Wastewater ☐ nse & Repair ☐ Underground Tanks ☐ Other ☐	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 4-90
Facility/Project Name	Local Grid Location of Well	Well Name
DB Oak Facility	ft. ONft. O E.	MW-5
Fort Atkinson, Wisconsin	□ S. □ W.	
Facility License, Permit or Monitoring Number	Grid Origin Location	Wis. Unique Well Number DNR Well Number P P 4 9 1
Type of Well Water Table Observation Well ■ 11	Lat Long Ft. Plane ft. N, ft. E.	Date Well Installed
Piezometer		$\frac{1}{m} \frac{2}{m} \frac{0}{d} \frac{8}{d} \frac{0}{y} \frac{4}{y}$
Distance Well Is From Waste/Source Boundary	Section Location of Waste/Source	Well Installed By: (Person's Name and Firm)
•	NE1/4 of SE 1/4 of Sec. 34 , T. 6 N, R. 14 DW	
Is Well A Point of Enforcement Std. Application?	Location of Well Relative to Waste/Source	Kevin McCumber
□ Yes □ No	u □ Upgradient s □ Sidegradient	Badger State Drilling
_	d Downgradient n Not Known	
A. Protective pipe, top elevation 7 9 8 . 8 ft	. MSL 1. Cap and	i lock? ■ Yes □ No
B. Well casing, top elevation 7 9 8 . 5 ft	MSI — 2. Protecti	ve cover pipe:
C. Land surface elevation 7 9 6 2 ft	[] [T a. IIISIU	the diameter:
	VERNESSE BSV 101 o Moto	erial: Steel
D. Surface seal, bottom 7 9 0 . 3 ft MSL or _		Stick up Other Other
12. USCS classification of soil near screen:	1 1 19 1	itional protection?
GP□GM□GC□GW□SW□SF SM□SC■ML□MH□CL■CF		seal: Bentonite □ 3 0
Bedrock Bedrock	3. Surface	Seal: Bentonite 3 0 Concrete 0 0 1
		Native Soil Other ■ ○
13. Sieve analysis attached?	No 4. Materia	al between well casing and protective pipe:
14. Drilling method used: Rotary □ 5	50 🛭 🕅	Bentonite 3 0
Hollow Stem Auger		Ohio #5 sand Annular Space Seal ☐ Other ■ Other ■
Other 🗆		
15. Drilling fluid used: Water □ 0 2 Air □ 0	0.1	wiles many such
Drilling Mud		nular space seal: _ Lbs/gal mud weight Bentonite-sand slurry □ 3 5
		_ Lbs/gal mud weight Bentonite slurry □ 3 1
16. Drilling additives used? ☐ Yes ■ 1	No d	_% Bentonite Bentonite-cement grout □ 5 0
Describe:	e	Ft ³ volume added for any of the above vinstalled: Tremie 0 1
		Tremie pumped 0 2
17. Source of water (attached analysis):		Gravity ■ 0 8
	, 6. Benton	ite seal: a. Bentonite granules \(\sigma\) 3 3
		1/4 in. ■ 3/8 in. □ 1/2 in. Bentonite chips ■ 3 2
E. Bentonite seal, top 7 9 0 . 3 ft MSL or		100 lbs Other □
		nd material: Manufacturer, product name & mesh size
F. Fine sand, top	$-\frac{2}{2} \cdot \frac{0}{1}$ ft $\frac{a}{b} \cdot \frac{v_{ol}}{v_{ol}}$	Badger Mining #40/60 silica www. Badger Mining #40/60 silica blb
G. Filter pack, top	3 0 6	
G. Filter pack, top	8. Filter p	ack material: Manufacturer, product name & mesh size Ohio #5 sand
H. Screen joint, top	4.0 ft b. Vol	ume added 300 lb
7.7.A.A	9. Well ca	ising: Flush threaded PVC schedule 40 ■ 2 3
I. Well bottom	1 4 . 0 ft	Flush threaded PVC schedule 80 \(\sigma\) 2 4
J. Filter pack, bottom 7 7 3 . 3 ft MSL or 1		Other 🗆 🚟
J. Priter pack, bottom	10. Screen	material: Sch. 40 PVC
K. Borehole, bottom $\frac{7}{2}$ $\frac{7}{2}$ $\frac{2}{3}$ ft MSL or		een type: Factory cut ■ 1 1
		Continuous slot ☐ 0 1
L. Borehole, diameter8 . 3 in.	<u> </u>	Other Dimoo
M. O.D. well casing $\underline{2} \cdot \underline{3} \cdot \underline{7}$ in.	c. Slo	t size 0. 0 1 0 in.
N. I.D. well casing 2. 0 6 in.		tted length: $\frac{1}{0}, \frac{0}{0}$ ft.
	11. Backi	fill material (below filler pack): None ■ 1 4 Other □ □
I hereby certify that the information on this	s form is true and correct to the best of my kno	wledge.
Signature	Firm NewFields, Madison, Wiscon	nsin
	<u> </u>	

State of Wisconsin Department of Natural Resources	Route to: S Env. Respon	olid Waste ☐ Haz. Waste Case & Repair ☐ Underground	☐ Wastewater ☐		MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 4-90			
Facility/Project Name	<u> </u>	Local Grid Location of Well				10th 1100 11571 RCV. 4-50		
DB Oak Facility		ft. \(\square\) N.		E	Well Name	MW-6		
Fort Atkinson, Wisconsin		S.				NIV U		
Facility License, Permit or Monitoring	Number	Grid Origin Location		i -i	Wis. Unique P I 2	Well Number DNR Well Number 2 8		
Type of Well Water Table Observation	Well 11	Lat St. Plane	Long.		Date Well Insta			
Piezometer	1 2	St. Flane	п. N,	n. e.	Dute Well histo	$\frac{0}{m} \frac{4}{m} / \frac{2}{d} \frac{6}{d} / \frac{0}{y} \frac{5}{y}$		
Distance Well Is From Waste/Source Bo	undary	Section Location of Waste/S SE 1/4 of SE 1/4 of Sec. 34		■E	Well Installed E	By: (Person's Name and Firm)		
Is Well A Point of Enforcement Std. Ap	nlication?	Location of Well Relative to			A A	lex Plummer		
□ Yes	□ No	u Dupgradient d Downgradient		dient own	В	adger State Drilling		
A. Protective pipe, top elevation	9_77ft.		1.	Cap and		■ Yes □ No		
B. Well casing, top elevation	97.3 ft.	MSL ———	2.		e cover pipe:			
C. Land surface elevation 7		11	3000		diameter:	$\frac{9}{100} \cdot \frac{0}{100}$ in.		
		1 1884		b. Lengtc. Mater		$\frac{1}{6} \cdot \frac{0}{1} \cdot \frac{0}{1}$ ft.		
D. Surface seal, bottom	ft MSL or	1.0 f \ L	IAJ	c. Mater	Flus	sh mount Steel ■ Other □		
12. USCS classification of soil near so GP □ GM □ GC □ GW □	creen:				ional protection?	Yes ■ No		
SM ■ SC □ ML □ MH □	CL CH		1 3	Surface s		Bentonite □ 3 0		
Bedrock □				Surface	cui.	Concrete 0 1		
1.0.0.	_				concrete	Other		
13. Sieve analysis attached?	es 🔳 N	· 🐰	4.	Material	between well ca	sing and protective pipe:		
14. Drilling method used:	Р. 4 П. 5					Bentonite □ 3 0		
*	Rotary D 5 m Auger = 4				Ohio #5 san	Annular Space Seal		
			⊠		Onio #3 san	Other Description		
	_ outer DE							
15. Drilling fluid used: Water 0	2 Air 🗆 0	1	———	5 Ann	lar cross sools	a. Granular Bentonite ☐ 3 3		
Drilling Mud □ 0	3 None 9	9 🔯		<i>ъ. г</i> ашк Ъ.	ilai space seat. Ths/gal mud we	ight Bentonite-sand slurry \square 3 5		
	_		X			ight Bentonite slurry □ 3 1		
16. Drilling additives used?	es 🔳 N	io 📗 🔯	Ø	d.	% Bentonite	Bentonite-cement grout 5 0		
Describe:			8	e		ne added for any of the above		
Describe:		— I 🛭	×	f. How	installed:	Tremie □ 0 1		
17. Source of water (attached analysis)·					Tremie pumped \Box 0 2		
and the second of water (attached disappoint	<i>)</i> .		Ø		100 lbs.	Gravity 2 0 8		
			/ 6.	Bentonit	e seal:	a. Bentonite granules □ 3 3		
				b. 🗆 1	/4 in. 3/8 ir	n. □ 1/2 in. Bentonite chips ■ 3 2		
				c		50 lbs Other Other		
E. Bentonite seal, top 7 9 6 . 7	ft MSL or	<u>1</u> . <u>0</u> ft ∕	\otimes / , $_{7}$	Fine can	I material: Man	ufacturer, product name & mesh size		
F. Fine sand, top <u>7 9 3 .7</u>	ft MSL or	4 0 g 🚫		a.	Ohio #	#4000		
	_ 10 100 500		ᢂ/ /	b. Volur		25 lb		
G. Filter pack, top $\frac{7 \ 9 \ 2}{2} \cdot \frac{7}{2}$	ft MSL or	5 . <u>0</u> ft	7.	Filter pa		nufacturer, product name & mesh size		
H. Screen joint, top	ft MSL or	6.0 ft	7 /	a	ne added	#5 sand		
			H			10		
I. Well bottom	ft MSL or 1_	<u>6</u> . <u>0</u> ft	9.	Well cas	_	Flush threaded PVC schedule 40 2 3 Flush threaded PVC schedule 80 2 4		
J. Filter pack, bottom 7 8 1 . 7	ft MSL or 1	6.0 ft				Sch. 40 PVC		
K. Borehole, bottom	ft MSL or _1	$\frac{6}{5}$ ft	10.	Screen 1		Factory cut 1 1		
L. Borehole, diameter8 . 3	in.					Continuous slot □ 0 1 Other □ □		
M. O.D. well casing 2. 3 7	_ in.			b. Man	ufacturersize	Monoflex 0. 0 1 0 in.		
N. I.D. well casing 2.06					ed length:	$\underline{1} \underline{0} \underline{0} \underline{0} \mathbf{ft}.$		
			` 11	. Backfil	l material (below	· /		
T1 1 20 .1 . 1 . 2			· · · · · · · · · · · · · · · · · · ·			Other 🗆 🔯		
I hereby certify that the informa	tion on this	form is true and correct	to the best of m	y know	ledge.			
Signature		Firm NewFi	elds, Madison,	Wiscons	sin			
		1						

State of Wisconsin Department of Natural Resources	Route to: S Env. Respor	olid Waste□ Haz. Waste se & Repair □ Undergrour	☐ Wastewater ☐		MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 4-90			
Facility/Project Name						JIII 4400-113A	Kev. 4-90	
DB Oak Facility		Local Grid Location of We		-	Well Name	MW-6A		
Fort Atkinson, Wisconsin		ft. ON S.		o e. Ow.		1V1 VV - U/A		
Facility License, Permit or Monitoring 1		Grid Origin Location			Wis. Unique We	dl Number DNR Wel	l Number	
Type of Well Water Table Observation	Wall 0 11	Lat St. Plane	Long		Date Well Installe	<u> </u>	<u> </u>	
Piezometer	■ 12	St. Plane	ft. N,	ft. E.	Date Well Installe	$\frac{0}{m} \frac{4}{m} / \frac{2}{d} \frac{6}{d} / \frac{0}{y}$	5	
Distance Well Is From Waste/Source Bo	undary	Section Location of Waste/		■E	Well Installed By:	(Person's Name and Firm)	<u> </u>	
Is Well A Point of Enforcement Std. Ap		SE 1/4 of SE 1/4 of Sec. 3 Location of Well Relative t	o Waste/Source		Alex	Plummer		
☐ Yes	□ No	u Downgradient d Downgradient	s □ Side n □ Not	gradient Known	Bada	ger State Drilling		
A. Protective pipe, top elevation7	9 7. 8 ft.	MSL —	· H_~ /	1. Cap and		■ Yes	□ No	
B. Well casing, top elevation 7	9 7 . 4 _ ft.	MSL -			e cover pipe:	0	٥.	
C. Land surface elevation 7	978 n	MSI - SSSS	5000	a. Inside b. Lengt	diameter:	<u> </u>	$\frac{0}{0}$ in.	
		1884		c. Mater		— 1 Steel I		
D. Surface seal, bottom 7 _ 9 _ 6 . 8	ft MSL or	1.0 ft \			Flush	mannet		
12. USCS classification of soil near so GP □ GM □ GC □ GW □	SW 🗆 SP				ional protection? , describe:	☐ Yes I		
SM ■ SC □ ML □ MH □	CL 🗆 CH		K '	3. Surface s	eal:	Bentonite	□ 3 O	
Bedrock □						Concrete		
13. Sieve analysis attached? ☐ Ye	= N	.			concrete			
13. Sieve analysis attached?	es I N	°	` 🛭 🖺	4. Material	between well casin	g and protective pipe:		
14. Drilling method used:	Rotary 5					Bentonite		
	m Auger 4		Ø		Ohio #5 sand	Annular Space Seal		
					Onio #3 build	Other		
15. Drilling fluid used: Water 0			×	— 5. Annı	ılar snace seal·	a. Granular Bentonite [7 2 2	
Drilling Mud 1 0	3 None □ 9	9		b.	Lbs/gal mud weigh	t Bentonite-sand slurry		
16 Politica ed 450 - 10 - 5 xc		.				t Bentonite slurry		
16. Drilling additives used?	es 🔳 N	lo			% Bentonite	Bentonite-cement grout		
Describe:				е	Ft³ volume a	dded for any of the above		
Describe.				f. How	installed:	Tremie [
17. Source of water (attached analysis):				(00.11.	Tremie pumped l		
, , , , , , , , , , , , , , , , , , , ,	,-				600 lbs.	Gravity	0 8	
			 	6. Bentonit	e seal:	a. Bentonite granules l	□ 3 3	
				ъ. 🗆 1	/4 in. 3/8 in.	☐ 1/2 in. Bentonite chips	3 2	
E. Bentonite seal, top 7 9 6 . 8	# MCL or	1 0 6		c	50	lbsOther (
F. Fine sand, top 7 6 6 8	_	-			l material: Manufa Ohio #40	eturer, product name & mesh si		
				a b. Volur		lb	<u> </u>	
G. Filter pack, top $\frac{7 \cdot 6 \cdot 5}{2 \cdot 2 \cdot 2} \cdot \frac{8}{2 \cdot 2}$	ft MSL or _3	_2. <u>0</u> ft		8. Filter pa		acturer, product name & mesh		
H. Screen joint, top $\frac{7 \cdot 6 \cdot 2}{2 \cdot 8}$.	ft MSL or $\frac{3}{2}$	5. 0 ft	1 /	a b. Volui	Ohio #5	250 lb	<u> </u>	
I. Well bottom	ft MSL or 4	<u>0</u> . <u>0</u> ft		9. Well cas	-	ish threaded PVC schedule 40 l ish threaded PVC schedule 80 l		
J. Filter pack, bottom 7 _ 5 _ 6 8	ft MSL or _4	1.0 ft						
K. Borehole, bottom	ft MSL or _4	10_ft		10. Screen i a. Scree	11ateriai	Eh. 40 PVC Factory cut	<u> </u>	
L. Borehole, diameter6 . 0						Continuous slot (
M. O.D. well casing 2. 3 7				b. Man		Ionoflex	1 0 in.	
N. I.D. well casing 2. 0 6				d. Slotte	ed length:	_	$\frac{1}{5}$. $\frac{0}{0}$ ft.	
	_ 141.			11. Backfil	l material (below fil	• '	■ 1 4 □ ② ◎◎	
I hereby certify that the informa	tion on this	form is true and correct	t to the boot of	my lma	ladaa	Other (<u></u>	
Signature		ra:		···				
~-Printer.		Firm NewF	ields, Madison	ı, Wiscons	sin			

State of Wisconsin Department of Natural Resources	Route to: So Env. Respons	lid Waste□ se & Repair □	Haz. Waste □ Wastewater □ Underground Tanks □ Other □		MONITORING WI Form 4400-113B	ELL CONSTRUCTION Rev. 4-90
Facility/Project Name DB Oak Facility, Fort A	10	County Name	Jefferson	Well Name		100.100
Facility License, Permit or Monitoring		County Code	Wis Unique Well Number P P 4 8 9		DNR Well Number	
				<u> 2000000000000000000000000000000000000</u>		
1. Can this well be purged dry?	0	Yes ■ No			Before Development	After Development
			11. Depth to Water (from top of we	ell casing)	a 1 2 . 8 3 ft.	ft.
2. Well development method				<i>G</i>)		
surged with bailer and bailed surged with bailer and pumped		4 1 6 1	Date	ŧ	$\frac{1}{m} \frac{2}{m} / \frac{0}{d} \frac{9}{d} / \frac{0}{y} \frac{4}{y}$	$\frac{1}{m} \frac{2}{m} \frac{1}{d} \frac{0}{d} \frac{0}{y} \frac{4}{y}$
surged with block and bailed	0	4 2			mm dd y y	mmddyy
surged with block and pumped surged with block, bailed and pu		6 2 7 0			□ a.m.	□ a.π
compressed air bailer only		2 0	Time	•	c. $\underline{1} \underline{5} : \underline{0} \underline{0} \blacksquare p.m.$	_1 <u>2</u> : <u>0</u> <u>0</u> ■ p.m
pumped only		1 0 5 1				
pumped slowly Other		5 0	12.5			
Other	U	254335	12. Sediment in well bottom		inches	inches
2 12 12 13		120.				
3. Time spent developing well	_	$\frac{1}{2}$ $\frac{2}{2}$ $\frac{0}{2}$ min.	13. Water clarity		Clear 🗆 1 0	Clear 20
A Donah of mall (form to a fine)	`	2 1 2 0	To Water clairly	7	urbid 15	Turbid 📮 2 5
4. Depth of well (from top of well casi	ng)	$\frac{2}{1} \cdot \frac{1}{3}$ ft.		(Describe) Brown	(Describe) Light gray
5. Inside diameter of well		2 0 6:		-	High turbidity	Low turbidity
5. Histor diameter of well		$\frac{2}{2} \cdot \frac{0}{6}$ in.				
6. Volume of waters in filter pack and	11					
casing	wen	1 . 4 gal.		-		
			Fill in if drilling fluids were used an	d well is at so	lid waste facility.	
7. Volume of water removed from wel	·	$\frac{5}{2} \cdot \frac{5}{2} \cdot \frac{0}{2}$ gal.				
			14. Total suspended solids		mg/l	mg
8. Volume of water added (if any)	_	gal.				
9. Source of water added			15. COD		mg/l	mg/
10. Analysis performed on water added	19 П	Yes No				
(If yes, attach results)	1!	res n o	1			

16. Additional comments on developm	nent:					
Surged, then bailed	l 20 gallons					
Pumped 25 gallons						
Total removed = 55	5 gallons					
Well developed by: Person's Name an	d Firm		I hereby certify that the above i	nformation	is true and correct	to the best
,y o x millo mil			of mary law arrival and a second			
Name: Derek Zoellner	· · · · · · · · · · · · · · · · · · ·		Signature:			
			Print Initials: D D Z			
NewFields, Ma	dison, WI		NowEiglds Mod	igon W:	agin.	
Firm: New Teles, Ma			Firm: NewFields, Mad	ISON, WISCOI	เรเน	33
			1			

Department of Natural Resources	Route to: Soli Env. Response		Haz. Waste □ Wastewater □ Underground Tanks □ Other □	ŀ	MONITORING W Form 4400-113B	ELL CONSTRUCTION Rev. 4-90
Facility/Project Name	- c	ounty Name		Well Na		
DB Oak Facility, Fort Atki	umber C	ounty Code	Jefferson Wis Unique Well Number P P 4 8 7		DNR Well Number	
1. Can this well be purged dry?	Y	es ■ No			Before Development	After Development
Well development method			11. Depth to Water (from top of	well casing)	a. <u>1 0</u> . <u>5 4</u> ft.	ft.
surged with bailer and bailed surged with bailer and pumped surged with block and bailed	□ 4 ■ 6 □ 4	1 2	Date		b. $\frac{1}{m} \frac{2}{m} / \frac{1}{d} \frac{0}{d} / \frac{0}{y} \frac{4}{y}$	$\frac{1}{m} \frac{2}{m} \frac{1}{d} \frac{0}{d} \frac{0}{y} \frac{4}{y}$
surged with block and pumped surged with block, bailed and pumped compressed air bailer only	□ 2 □ 1	0 0 0	Time		c. <u>0 9</u> : <u>0 0</u> □ p.m.	
pumped only pumped slowly Other	<u></u>		12. Sediment in well bottom		inches	inches
3. Time spent developing well	1	2 0 min.	13. Water clarity		Clear □1 0	Clear 2 0
4. Depth of well (from top of well casing		1 5.2 ft.	·		Turbid ■ 1 5 (Describe) Brown-orange	Turbid 2 2 5 (Describe) Light orange
5. Inside diameter of well		2 . <u>0 6</u> in.			High turbidity	Low turbidity
Volume of waters in filter pack and we casing	·li					
7. Volume of water removed from well		5 0 . 0 gal.	Fill in if drilling fluids were used a	and well is a	t solid waste facility.	
8. Volume of water added (if any)		<u></u> gal.	14. Total suspended solids		ng/l	n
9. Source of water added			15. COD		mg/l	mg
10. Analysis performed on water added? (If yes, attach results)	ОΥ	es 🖪 No				
16. Additional comments on developmen	nt:				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>
Surged, then bailed 20 Pumped 30 gallons) gallons					
Total removed = 50 g	allons					
Well developed by: Person's Name and I	- Pirm		I hereby certify that the above of my knowledge.	e informat	ion is true and correc	t to the best
Name: Derek Zoellner			G:			
Firm: NewFields, Madi	son, WI		Print Initials: D D Z Firm: NewFields, Ma	dison, Wis	consin	

Department of Natural Resources	Env Response &		Haz. Waste □ Wastewater □ Underground Tanks □ Other □		MONITORING WI Form 4400-113B	ELL CONSTRUCTION
Facility/Project Name		nty Name	Chiderground Taliks B. Other L.			Rev. 4-90
DB Oak Facility, Fort Atl	cinson, WI	nty Name	Jefferson	Well Nam	MW-2A	L
Facility License, Permit or Monitoring	Number Cour	nty Code	Wis Unique Well Number PP488		DNR Well Number	
Can this well be purged dry?	□ Yes	■ No			Before Development	After Development
			11. Depth to Water (from top of	well casing)	a. <u>1 0 . 7 1 ft.</u>	ft.
Well development method surged with bailer and bailed surged with bailer and pumped surged with block and bailed	□ 4 1 ■ 6 1 □ 4 2		Date		b. $\frac{1}{m} \frac{2}{m} / \frac{1}{d} \frac{0}{d} / \frac{0}{y} \frac{4}{y}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
surged with block and pumped surged with block, bailed and pur compressed air bailer only pumped only	mped		Time		c. <u>0 9 : 1 5 p.m.</u>	
pumped slowly Other	D <u></u>		12. Sediment in well bottom		inches	inches
3. Time spent developing well	 -	2 <u>0</u> min.	13. Water clarity		Clear 10 Turbid 15	Clear 20 Turbid 25
4. Depth of well (from top of well casin5. Inside diameter of well		9.9 ft.	·		(Describe) Grayish-brown High turbidity	(Describe) Light gray Low turbidity
Volume of waters in filter pack and v casing	vell 	4 . 7 gal.				
7. Volume of water removed from well	7	5 . 0 gal.	Fill in if drilling fluids were used	and well is at	solid waste facility.	
8. Volume of water added (if any)		gal.	14. Total suspended solids		mg/l	mg
9. Source of water added			15. COD		mg/l	mg/
10. Analysis performed on water added (If yes, attach results)	?	■ No				
16. Additional comments on developm	ent:					
Surged, then bailed Pumped 72 gallons Bailed 3 gallons	2 gallons					
Total removed = 75	gallons					
Well developed by: Person's Name and	l Firm		I hereby certify that the above of my knowledge.	e information	on is true and correct	to the best
Name: Derek Zoellner			Signature:			
Firm: NewFields, Mac	dison, WI		Print Initials: D D Z Firm: NewFields, Ma	- adison, Wisc	onsin	

Facility/Project Name		Env. Respor	ise & Repair 🗖 🛚	Underground Tanks □ Other □		Form 4400-113B	ELL CONSTRUCTION Rev. 4-90
DB Oal	k Facility, Fort Atki		County Name		Well Name	MW-3	
Facility License, Perm			County Code 2 8	Wis Unique Well Number P P 4 9 0		DNR Well Number	
1. Can this well be pu	urged dry?] Yes ■ No			Before Development	After Development
				11. Depth to Water (from top of well	casing) a	<u>6</u> . <u>9</u> <u>4</u> ft.	ft.
Well development surged with bai surged with bai surged with blo surged with blo	iler and bailed iler and pumped ock and bailed		1 4 1 1 6 1 1 4 2 1 6 2	Date	b	$\frac{1}{m} \frac{2}{m} / \frac{1}{d} \frac{0}{d} / \frac{0}{y} \frac{4}{y}$	$\frac{1}{m} \frac{2}{m} \frac{1}{d} \frac{0}{d} \frac{0}{y} \frac{4}{y}$
surged with blo compressed air bailer only pumped only	ock, bailed and pum	ped C C C	170 120 110 151	Time	c	■ a.m. . <u>0 9</u> : <u>0 0</u> □ p.m.	a.m
pumped slowly Other			5 0	12. Sediment in well bottom		inches	inches
3. Time spent develop	oing well	_	1 2 0 min.	13. Water clarity	C	lear □10	Clear □ 2 0
4. Depth of well (from	n top of well casing	_	1 5 . 3 ft.	,	To	urbid ■ 1 5 Describe) Grayish-brown High turbidity	Turbid 2 5 (Describe) Light gray Low turbidity
5. Inside diameter of	well	-	2 . <u>0 6</u> in.			Trigil turbidity	Low turbidity
6. Volume of waters i casing	in filter pack and we	ell —	1 . 3 gal.		_		
7. Volume of water re	emoved from well	-	6 0 . 0 gal.	Fill in if drilling fluids were used and	well is at sol	id waste facility.	
8. Volume of water ad	lded (if any)	-	gal.	14. Total suspended solids	-	mg/l	mg
9. Source of water add	ded			15. COD	-	mg/l	ng/
10. Analysis performe (If yes, attach resu			Yes ■ No				
16. Additional comm	ents on developmen	nt:					<u> </u>
	arged, then bailed 1 amped 50 gallons	0 gallons		,			
To	otal removed = 60 g	gallons					
Well developed by: P	erson's Name and l	Firm		I hereby certify that the above in of my knowledge.		is true and correct	
Name: B	jorn Halvorsen			Signature:			
Firm: B	adger State Dri	lling		Print Initials: D D Z Firm: NewFields, Madison	on, Wiscon	sin	

			Haz. Waste □ Wastewater □ Underground Tanks □ Other □		MONITORING WI Form 4400-113B	ELL CONSTRUCTION
Facility/Project Name	Zirr. reopoi	County Name	Chargeonia Tanks L. Otter L.	 		Rev. 4-90
DB Oak Facility, Fort Atkins			Jefferson	Well Nan	ne MW-3A	L
Facility License, Permit or Monitoring Nu	mber	County Code 2 8	Wis Unique Well Number P 1 2 2 9		DNR Well Number	
	<u> </u>			-		
1. Can this well be purged dry?		Yes ■ No			Before Development	After Development
			11. Depth to Water (from top of we	ell casing)	a. <u>1 1 . 0 5 ft.</u>	ft.
Well development method surged with bailer and bailed] 4]	.			
surged with bailer and pumped		6 1	Date		b. $\frac{5}{m} \frac{5}{m} / \frac{1}{d} \frac{8}{d} / \frac{0}{y} \frac{5}{y}$	$\frac{5}{m} \frac{1}{m} \frac{8}{d} \frac{0}{4} \frac{5}{v}$
surged with block and bailed surged with block and pumped		142 162				
surged with block, bailed and pumper compressed air		1 ₇₀	Time		c. 1 4: 0 0 = p.m.	□ a.m 15;30 = p.m
bailer only		020 010	1		c. <u>1 1 . o o e p.m.</u>	<u> p.m</u>
pumped only pumped slowly		15 1 15 0				
Other		1 2 0	12. Sediment in well bottom		inches	inches
3. Time spent developing well		9 0 min.				
			13. Water clarity		Clear □1 0	Clear □ 2 0
4. Depth of well (from top of well casing)		5 0 . 6 ft.			Turbid ■ 1 5 (Describe)	Turbid 2 5 (Describe)
-	_				Grayish-brown	Gray
5. Inside diameter of well	_	2.06 in.			High turbidity	High turbidity
6. Volume of waters in filter pack and well						
casing		$-\frac{6}{2} \cdot \frac{5}{2}$ gal.				
7. Volume of water removed from well	_	1 0 5. 0 gal.	Fill in if drilling fluids were used and	d well is at	solid waste facility.	
8. Volume of water added (if any)	_	gal.	14. Total suspended solids		ng/l	ng
0.0						
9. Source of water added			15. COD		mg/l	mg/
Analysis performed on water added? (If yes, attach results)	0	Yes No				
16. Additional comments on development	<u> </u>					
10. Madiaona comments on acvelopment	•					
Surged for 20 minutes, Pumped 100 gallons wi						
Total removed = 105 g	allone	•				
Total telloved – 105 g.	anons					
Well developed by: Person's Name and Fir	rm		I hereby certify that the above i	nformatio	on is true and correct	to the best
	_		of my knowledge.			
Name: Derek Zoellner			Signature:			
			Print Initials: D D Z			
Firm: NewFields			NowEigldo Madi	son Wa-	onsin	
1 31411.			Firm: NewFields, Madi	SOII, WISC	UHSHI	
						•

	State of Wisconsin Department of Natural Resources		Solid Waste□ 1 onse & Repair□ U	laz. Waste □ Wa: Inderground Tanks			MONITORING WI Form 4400-113B	ELL CONSTRUCTION Rev. 4-90
L	Facility/Project Name DB Oak Facility, Fort Atk		County Name	Jefferson		Well Name		161.130
	Facility License, Permit or Monitoring N		County Code	Wis Unique We	ll Number	<u> </u>	DNR Well Number	
			2 8	PP	4 9 2			<u> </u>
	1. Can this well be purged dry?		☐ Yes ■ No			_	Before Development	After Development
				11. Depth to V	Vater (from top of w	ell casing)	a7.9_3 ft.	ft.
	Well development method surged with bailer and bailed surged with bailer and pumped surged with block and bailed		□ 4 1 ■ 6 1 □ 4 2	Date			b. $\frac{1}{m} \frac{2}{m} / \frac{1}{d} \frac{0}{d} / \frac{0}{y} \frac{4}{y}$	$ \frac{1}{m} \frac{2}{m} \frac{1}{d} \frac{0}{d} \frac{0}{y} \frac{4}{y} $
	surged with block and pumped surged with block, bailed and pum compressed air bailer only	nped	□ 6 2 □ 7 0 □ 2 0 □ 1 0	Time			c. $\underline{0} \ \underline{8} : \underline{3} \ \underline{0} \square p.m.$	a.m.
	pumped only pumped slowly Other		□ 5 1 □ 5 0 □ □	12. Sediment	in well bottom		inches	inches
	3. Time spent developing well		1 <u>2 0</u> min.	13. Water clar	ity		Clear □10 Turbid ■15	Clear
	4. Depth of well (from top of well casing	g)					Turbid ■ 1 5 (Describe) Brownish-gray High turbidity	Turbid 2 5 (Describe) Light gray Low turbidity
	5. Inside diameter of well		26 in.					
	Volume of waters in filter pack and w casing	ell ell	<u>1</u> . <u>4</u> gal.					
	7. Volume of water removed from well		<u>5 0</u> .0 gal.	Fill in if drillin	g fluids were used a	nd well is at s	solid waste facility.	
	8. Volume of water added (if any)		gal.	14. Total susp	ended solids		mg/l	mg.
	9. Source of water added			15. COD			ng/l	mg/
	10. Analysis performed on water added? (If yes, attach results)	?	□ Yes ■ No					
	16. Additional comments on developme	ent:	·					<u>i</u>
	Surged, then bailed Pumped 40 gallons	10 gallons						
	Total removed = 50	gallons						
	Well developed by: Person's Name and	Firm		I hereby certif		informatio	on is true and correct	to the best
	Name: Kevin McCumb	er		Signature:				
	Firm: Badger State Dr	illing		Print Initials: Firm:	D D Z NewFields, Mac	dison, Wisco	onsin	
				\ 				7-477

State of Wisconsin Department of Natural Resources	Route to: Solid Wa Env. Response & Re		az. Waste □ Wastewater □ aderground Tanks □ Other □		MONITORING WI Form 4400-113B	ELL CONSTRUCTION Rev. 4-90
Facility/Project Name DB Oak Facility, Fort Atkin	County	y Name	Jefferson	Well Nam		707
Facility License, Permit or Monitoring N		y Code 8	Wis Unique Well Number P P 4 9 3	,	DNR Well Number	
1. Can this well be purged dry?	☐ Yes	■ No			Before Development	After Development
0.00			11. Depth to Water (from top of	of well casing)	a7.7_8 ft.	ft.
Well development method surged with bailer and bailed surged with bailer and pumped surged with block and bailed surged with block and pumped	□ 4 1 ■ 6 1 □ 4 2 □ 6 2		Date		b. $\frac{1}{m} \frac{2}{m} / \frac{1}{d} \frac{0}{d} / \frac{0}{y} \frac{4}{y}$	$\frac{1}{m} \frac{2}{m} \frac{1}{d} \frac{0}{d} \frac{0}{y} \frac{4}{y}$
surged with block, bailed and pump compressed air bailer only pumped only			Time		c. 0 8: 4 0 p.m.	
pumped slowly Other	0 5 0		12. Sediment in well bottom		inches	inches
3. Time spent developing well	_ 1 2	<u>0</u> min.	13. Water clarity		Clear □10	Clear ■ 2 0
4. Depth of well (from top of well casing)	_41	. <u>0</u> ft.			Turbid 1 5 (Describe) Brownish-gray	Turbid 2 5 (Describe) Clear
5. Inside diameter of well		0 <u>6</u> in.			High turbidity	Very low turbidity
Volume of waters in filter pack and we casing	11 1	. 4 gal.	F.W. 10.1W. 4.14			
7. Volume of water removed from well	_ 5 0	. <u>0</u> gal.	Fill in if drilling fluids were us	ed and well is at	solid waste facility.	
8. Volume of water added (if any)		gal.	14. Total suspended solids		mg/l	mg
9. Source of water added			15. COD		mg/l	mg/
10. Analysis performed on water added? (If yes, attach results)	□ Yes (■ No				
16. Additional comments on developmen	nt:					
Surged, then bailed 10 Pumped 40 gallons) gallons					
Total removed = 50 g	allons					
Well developed by: Person's Name and F	irm		I hereby certify that the about of my knowledge.	ove information	on is true and correct	to the best
Name: Kevin McCumbe	r		G.			
Firm:Badger State Dril	ling		Print Initials: D D Z Firm: NewFields,	 Madison, Wisc	onsin	
		}				

State of Wisconsin Department of Natural Resour			Waste□ Haz. Waste□ Wastewater□ & Repair□ Underground Tanks□ Other□				MONITORING WELL CONSTRUCTION Form 4400-113B Rev. 4-90		
Facility/Project Name DB Oak Facility, Fo		County Name	Jefferson		Well Na	ıme	MW-5		
Facility License, Permit or Monit		County Code 2 8	Wis Unique W	ell Number 4 9 1			DNR Well Number		
1. Can this well be purged dry?		■ Yes □ No			_	В	efore Development	After Development	
			11. Depth to V	Water (from top of w	ell casing)	a . ,	8.09 ft.	· ft.	
Well development method surged with bailer and baile surged with bailer and pum surged with block and baile surged with block and pum	ped xd	□ 4 1 ■ 6 1 □ 4 2 □ 6 2	Date			b	$\frac{1}{m}\frac{2}{m}\frac{0}{d}\frac{9}{d}\frac{9}{y}\frac{4}{y}$	$\frac{1}{m}\frac{2}{m}\frac{1}{d}\frac{0}{d}\frac{0}{y}\frac{4}{y}$	
surged with block, bailed an compressed air bailer only pumped only	nd pumped	□ 7 0 □ 2 0 □ 1 0 □ 5 1	Time			c. ₋	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
pumped slowly Other		□ 5 0 □ <u>□ □</u>	12. Sediment	in well bottom			inches	inches	
3. Time spent developing well		1_5_0 min.	13. Water clar	rity		Clea	ır 🗆10	Clear 20	
4. Depth of well (from top of well	casing)	<u>1_46_</u> ft.				`	oid ■ 1 5 scribe) Dark brown High turbidity	Turbid 2 5 (Describe) Grayish-brown Moderate	
5. Inside diameter of well		26 in.						turbidity	
6. Volume of waters in filter pack casing	and well	1 . 1_ gal.							
7. Volume of water removed from	ı well	<u>5_0</u> . <u>0</u> _gal.	Fill in if drillir	ng fluids were used a	nd well is a	ıt solid	waste facility.	·	
8. Volume of water added (if any)		gal.	14. Total susp	ended solids			mg/l	ng/l	
9. Source of water added			15. COD				mg/l	ng/l	
10. Analysis performed on water a	added?	□ Yes ■ No							
16. Additional comments on deve	elopment:	1							
Surged, then b Pumped 30 ga Bailed 5 gallo									
Total removed	1 = 50 gallons								
Well developed by: Person's Nan	ne and Firm		I hereby certif of my knowle	fy that the above dge.			true and correct		
Name: Bjorn Halv	orsen		Signature:						
Firm: Badger Sta	te Drilling		Print Initials: Firm:	NewFields, Mac	lison, Wis	consi	1		

State of Wisconsin Department of Natural Resources			Haz. Waste □ Wastewater □ Underground Tanks □ Other □		MONITORING WI Form 4400-113B	ELL CONSTRUCTION Rev. 4-90
Facility/Project Name DB Oak Facility, Fort A		County Name	Jefferson	Well Nam	e MW-6	
Facility License, Permit or Monitorin		County Code	Wis Unique Well Number P I 2 2 8		DNR Well Number	
		2 8	0.000			<u> </u>
1. Can this well be purged dry?		■ Yes □ No			Before Development	After Development
			11. Depth to Water (from top of	well casing)	a1_1_7_4_ft.	ft.
Well development method surged with bailer and bailed		4 1				5 10 05
surged with bailer and pumped surged with block and bailed		□ 6 1 □ 4 2	Date		$b. \ \ \frac{5}{m} \frac{1}{m} \frac{9}{d} \frac{0}{d} \frac{5}{y} \frac{5}{y}$	$\frac{3}{m}$ $\frac{1}{d}$ $\frac{9}{d}$ $\frac{0}{y}$
surged with block and pumped surged with block, bailed and p		□ 6 2 □ 7 0			■ a.m.	o a.n
compressed air bailer only	-	□ 2 0 □ 1 0	Time		c. <u>0 7</u> : <u>0</u> <u>0</u> p.m.	$\underline{14}:\underline{0} \ \underline{0} \blacksquare \ \mathbf{p.n}$
pumped only pumped slowly		5 1				
Other		□ 5 0 □ <u></u>	12. Sediment in well bottom		inches	inches
		1 2 0				
3. Time spent developing well		$-\frac{1}{2}\frac{2}{0}$ min.	13. Water clarity		Clear 🗆 1 0	Clear 🖸 2 0
4. Depth of well (from top of well car	sing)	<u>1_5</u> .5_ft.	,		Turbid 1 5 (Describe)	Turbid 2 : (Describe)
					Brown High turbidity	Brown High turbidity
5. Inside diameter of well						
6. Volume of waters in filter pack and	d well	0 (
casing		$\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ gal.	Fill in if drilling fluids were used	and well is at s	olid waste facility	
7. Volume of water removed from we	ell	$-\frac{6}{} \cdot \frac{0}{}$ gal.				
8. Volume of water added (if any)		gal.	14. Total suspended solids		mg/l	
9. Source of water added						
7. Source of water added	<u></u>		15. COD		ng/l	mg
10. Analysis performed on water add (If yes, attach results)	ed?	□ Yes ■ No	I			
16. Additional comments on develop	oment:					
Surged for 30 mi Bailed 1.5 gallon Bailed 1 gallon (Bailed 1 gallon (s (dry) dry)	gallons (dry)				
Total removed =	6.0 gallons					
Well developed by: Person's Name a	and Firm		I hereby certify that the above	e informatio	on is true and correct	to the best
Name Derek Zoellne	ar.		1		· · · · · · · · · · · · · · · · · · ·	
Name: Derek Zoeline	JI		Signature:			
NewFields			Print Initials: D D Z	_		
Firm:	<u>-</u>		Firm: NewFields, Ma	adison, Wisco	onsin	

State of Wisconsin Department of Natural Resources			Haz. Waste □ Wastewater □ Jnderground Tanks □ Other □	:	MONITORING WI Form 4400-113B	ELL CONSTRUCTION Rev. 4-90
Facility/Project Name DB Oak Facility, Fort Atl	1	County Name	Jefferson	Well Nam	ne MW-6A	
Facility License, Permit or Monitoring		County Code 2 8	Wis. Unique Well Number P 1 2 2 7		DNR Well Number	
Can this well be purged dry?		Yes No		<u>-</u>	Before Development	After Development
Well development method			11. Depth to Water (from top of w	ell casing)	a <u>1 6</u> . <u>9 8</u> ft.	ft.
surged with bailer and bailed surged with bailer and pumped surged with block and bailed surged with block and pumped	1	□ 4 1 ■ 6 1 □ 4 2 □ 6 2	Date		b. $\frac{5}{m} \frac{5}{m} / \frac{1}{d} \frac{9}{d} / \frac{0}{y} \frac{5}{y}$	$\frac{5}{m} \frac{1}{m} \frac{9}{d} \frac{0}{d} \frac{5}{y} \frac{5}{y}$
surged with block, bailed and pur compressed air bailer only	mped ໃ ໃ	□ 7 0 □ 2 0 □ 1 0	Time		c. $0 7 : 0 0 \square p.m$.	
pumped only pumped slowly Other	ĺ	□ 5 1 □ 5 0 □ □	12. Sediment in well bottom		inches	inches
3. Time spent developing well	-	1 6 0 min.	13. Water clarity		Clear 10	Clear 20
4. Depth of well (from top of well casin	ng)	<u>3_9</u> .7_ft.			Turbid 1 5 (Describe) Gray High turbidity	Turbid 2 5 (Describe) Gray High turbidity
5. Inside diameter of well		26 in.			- Ingliturbidity	- Ingii tulotuty
6. Volume of waters in filter pack and casing	well	<u>3</u> . <u>7</u> gal.	WH			
7. Volume of water removed from well		2_40 gal.	Fill in if drilling fluids were used a	nd well is at	solid waste facility.	
8. Volume of water added (if any)	-	gal.	14. Total suspended solids		mg/l	ng
9. Source of water added			15. COD		mg/1	ng
10. Analysis performed on water added (If yes, attach results)	1?	□ Yes ■ No				
16. Additional comments on developm	nent:			·		1
Surged for 30 minu Pumped dry at 12 p			pumped dry at 2 gallons, pumped dry at	2 gallons,		
Total removed = 2	4 gallons					
Well developed by: Person's Name an	d Firm		I hereby certify that the above	informati	ion is true and correc	t to the best
Name: Derek Zoellner			of my knowledge. Signature:		***************************************	
NewFields			Print Initials: D D Z	-		
Firm:			Firm: NewFields, Ma	uison, Wis	COHSIII	

Appendix B

In-Situ Hydraulic Conductivity

Test Results

	WELL ID	: DB OAKS, FORT ATKINSON	_	Reduced Data	
	INPUT	Local ID: MW-1 (trial #1)	. .	Time,	Water
Construction:	INPUI	Date: 12/16/2004	Entry	Hr:Min:Sec	Level
	<u> </u>	Time: 0:00	1	0:00:26.6	6.5
Casing dia. (d _c)	2 Inch -		2	0:00:32.6	7.04
Annulus dia. (d _w)	8.25 Inch	ψ → ← d₀	3	0:00:38.6	7.09
Screen Length (L)	8.58 Feet	DTW A	4	0:00:44.6	7.12
D 4b - 4		↑ ↑ ↑ ↑ ↑	5	0:00:50.6	7.14
Depths to:	40 33 E		6	0:00:56.6	7.16
water level (DTW)	12.77 Feet	DTB TB	7	0:01:02.6	7.17
top of screen (TOS)	12.77 Feet		8	0:01:08.6	7.18
Base of Aquifer (DTB)	22 Feet		9	0:01:14.6	7.20
] d _w	10	0:01:20.6	7.20
Annular Fill:		Base of Aquifer	11	0:01:26.6	7.21
across screen 1		and or Adular	12	0:01:32.7	7.22
above screen B	Bentonite	Adjust slave of line to entire to 15	13	0:01:38.7	7.23
		Adjust slope of line to estimate K	14	0:01:44.7	7.24
Aquifer Material F	ine Sand		15	0:01:50.7	7.25
		R	16	0:01:56.7	7.25
	OMPUTED	. 1	17	0:02:02.7	7.26
Lwetted	8.58 Feet	 	18	0:02:08.7	7.26
D =	9.23 Feet		19	0:02:14.7	7.27
H =	8.58 Feet	1 4	20	0:02:20.7	7.28
L/r _w =	24.96	} <u> </u>	21	0:02:26.7	7.28
Y0-DISPLACEMENT =	0.86 Feet	b	22	0:02:32.7	7.29
y _{0-SLUG} =	0.84 Feet	*	23	0:02:38.7	7.29
rom look-up table using	L/r _w	* \ ` \ ` \ \ ` \ \ \ \ \ \ \ \ \ \ \ \	24	0:02:44.7	7.30
Partial penetrate A =	2.363	\	25	0:02:50.7	7.30
B =	0.383	1 1	26	0:02:56.7	7.30
_	*****	1 1	27	0:03:02.7	7.31
In(Re/rw) =	2.240		28	0:03:08.7	7.31
Re =	3.23 Feet		29	0:03:14.7	7.32
			30	0:03:20.7	7.32
Slope = (0.074636552 log ₁₀ /sec		31	0:03:26.7	7.32
t _{90%} recovery =	13 sec		32	0:03:32.7	7.32
put is consistent.			33	0:03:38.7	7.33
			34	0:03:44.7	7.33
K =	10.00 Feet/Day	0.10	35	0:03:50.7	7.33
K =	1.16E-04 Feet/sec	00:00 00:09 00:17 00:26 00:35 00:43	36	0:03:56.8	7.34
K =	3.53E-03 cm/sec	TIME, Minute:Second	37	0:04:02.8	7.34
			38	0:04:08.8	7.34
			39	0:04:14.8	7.34
EMARKS:		Bouwer and Rice analysis of slug test, WRR 1976	40	0:04:20.8	7.34
B Oaks Facility, Fort Atki	nson, Wisconsin,		41	0:04:26.8	7.35
W-1 (trial #1)			42	0:04:32.8	7.35
ompleted by NewFields o	on 12/16/2004		43	0:04:38.8	7.35
			44	0:04:44.8	7.35
			45	0:04:50.8	7.35

	WELL ID	: DB OAKS, FORT ATKINSON		Reduced Data	
	INDUT	Local ID: MW-1 (trial #2)		Time,	Water
Construction:	INPUT	Date: 12/16/2004	Entry	Hr:Min:Sec	Level
Casing dia. (d _c)) 2 Inch	Time: 0:00	1	0:00:27.0	6.18
, , ,			2	0:00:33.1	7.01
Annulus dia. (d _w)	8.25 Inch		3	0:00:39.1	7.08
Screen Length (L)	8.58 Feet	↑ ntw ↑	4	0:00:45.1	7.11
		↑ <u> </u>	5	0:00:51.1	7.13
Depths to:	40 == 0	TOS	6	0:00:57.1	7.15
water level (DTW)		DTB T	7	0:01:03.1	7.17
top of screen (TOS)			8	0:01:09.1	7.18
Base of Aquifer (DTB)	22 Feet		9	0:01:15.1	7.19
Annulas Elli]	10	0:01:21.1	7.20
Annular Fill: across screen	Medium Sond	Base of Aquifer	11	0:01:27.1	7.21
above screen		ACC 100 100 100 100 100 100 100 100 100 1	12	0:01:33.1	7.22
above serecti =	Dentonite	Adjust slope of line to estimate K	13 14	0:01:39.1	7.23
Aquifer Material	Fine Sand	1.00 @	15	0:01:45.1 0:01:51.1	7.24 7.24
······		' P	16	0:01:57.1	7.24
	COMPUTED	1	17	0:02:03.1	7.26
Lwetted	8.58 Feet	. 11	18	0:02:03.1	7.26
D =	9.23 Feet		19	0:02:09.1	7.20 7.27
. H=	8.58 Feet		20	0:02:13.1	7.27
L/r _w =	24.96	1	21	0:02:27.1	7.28
Yo-displacement =	1,23 Feet	9	22	0:02:27.1	
yo-stug =	1.13 Feet	.			7.28
From look-up table using		×× /	23	0:02:39.1	7.29
Partial penetrate A =	2.363	[P	24	0:02:45.1	7.29
B=	0.383		25	0:02:51.1	7.30
5-	0.505		26 27	0:02:57.2	7.30
In(Re/rw) =	2.240	1 000	28	0:03:03.2 0:03:09.2	7.31
Re =	3.23 Feet		29	0:03:09.2	7.31 7.31
		• q	30	0:03:21.2	7.32
Slope =	0.098097335 log ₁₀ /sec		31	0:03:27.2	7.32
t _{90%} recovery =	10 sec		32	0:03:33.2	7.32
Input is consistent.			33	0:03:39.2	7.33
			34	0:03:45.2	7.33
K =	20.00 Feet/Day	0.10	35	0:03:51,2	7.33
K =	2.31E-04 Feet/sec	00:00 00:09 00:17 00:26 00:35 00:43	36	0:03:57.2	7.33
K =	7.06E-03 cm/sec	TIME, Minute:Second	37	0:04:03.2	7.34
			38	0:04:09.2	7.34
			39	0:04:15.2	7.34
REMARKS:		Bouwer and Rice analysis of slug test, WRR 1976	40	0:04:21.2	7.35
DB Oaks Facility, Fort Atk	kinson, Wisconsin.		41	0:04:27.2	7.35
/IW-1 (trial #2)			42	0:04:33.2	7.35
Completed by NewFields	on 12/16/2004		43 44	0:04:39.2 0:04:45.2	7.35 7.35
			45	0:04:51.2	7.35 7.36
				J.J. 7.0 1.2.	7.50

WELL ID: DB OAKS, FORT ATKINSON INPUT Construction: Casing dia. (d_c) 2 Inch Annulus dia. (dw) 8.25 Inch Screen Length (L) 4.59 Feet Depths to: water level (DTW) 10.59 Feet top of screen (TOS) 10.59 Feet Base of Aquifer (DTB) 16 Feet Annular Fill: across screen -- Medium Sand above screen -- Bentonite Aquifer Material - Fine Sand COMPUTED 4.59 Feet Lwetted D= 5.41 Feet H= 4.59 Feet $L/r_w =$ 13.35 0.49 Feet Yo-DISPLACEMENT = Yo-slug = 0.56 Feet From look-up table using L/rw Partial penetrate A = 2.011 B = 0.299 ln(Re/rw) =1.682

7170	Adjust slope of line to estimate K	
'	00:00 00:43 01:26 02:10 TIME, Minute:Second	02:53

Local ID:

Time:

Date: 12/16/2004

MW-2 (trial #1)

0:00

Base of Aquifer

	Reduced Data	
	Time,	Water
Entry 1	Hr:Min:Sec 0:00:23.8	Level
		3.98
2	0:00:26.8	4.29
3	0:00:29.8	4.32
4 5	0:00:32.8	4.34
5 6	0:00:35.8	4.35
7	0:00:38.8 0:00:41.8	4.35 4.36
8	0:00:44.8	4.36
9	0:00:47.8	4.37
10	0:00:50.8	4.37
11	0:00:53.8	4.37
12	0:00:56.8	4.38
13	0:00:59.8	4.38
14	0:01:02.8	4.39
15	0:01:05.8	4.39
16	0:01:08.8	4.40
17	0:01:11.8	4.40
18	0:01:14.8	4.41
19	0:01:17.8	4.41
20	0:01:20.8	4.42
21	0:01:23.8	4.42
22	0:01:26.8	4.42
23	0:01:29.8	4.42
24	0:01:32.8	4.43
25	0:01:35.8	4.43
26	0:01:38.8	4.43
27 28	0:01:41.8	4.44
28 29	0:01:44.8 0:01:47.8	4.44 4.44
30	0:01:50.8	4.44 4.44
31	0:01:53.8	4.44
32	0:01:56.8	
33	0:01:50.8	4.45
34	0:02:02.8	4.45 4.45
35	0:02:05.8	4.45
36	0:02:08.8	4.45
.37	0:02:11.8	4.45
38	0:02:14.8	4.46
39	0:02:17.9	4.46
40	0:02:20.9	4.46
41	0:02:23.9	4.46
42	0:02:26.9	4.46
43	0:02:29.9	4.46
44 45	0:02:32.9 0:02:35.9	4.46
40	0:02:35.9	4.46

		RKS:
- rc	MIVI	KND:

Bouwer and Rice analysis of slug test, WRR 1976

DB Oaks Facility, Fort Atkinson, Wisconsin. MW-2 (trial #1) Completed by NewFields on 12/16/2004

Re =

K =

K =

K =

t_{90%} recovery =

input is consistent.

1.85 Feet

99 sec

3.47E-05 Feet/sec

1.06E-03 cm/sec

3.00 Feet/Day

Slope = $0.010077614 \log_{10}/\text{sec}$

WELL ID: DB OAKS, FORT ATKINSON Local ID: MW-2 (trial #2) INPUT Date: 12/16/2004 Construction: Time: 0:00 Casing dia. (d_c) 2 Inch Annulus dia. (dw) 8.25 Inch Screen Length (L) 4.59 Feet Depths to: water level (DTW) 10.59 Feet top of screen (TOS) 10.59 Feet Base of Aquifer (DTB) 16 Feet Annular Fill: Base of Aquifer across screen -- Medium Sand above screen -- Bentonite Adjust slope of line to estimate K Aquifer Material -- Fine Sand COMPUTED 4.59 Feet Lwetted D= 5.41 Feet H= 4.59 Feet L/r_w = 13.35 Y0-DISPLACEMENT = 0.83 Feet Yo-slug = 0.84 Feet ×. From look-up table using L/rw Partial penetrate A = 2.011 B = 0.299 In(Re/rw) = 1.682 Re = 1.85 Feet Slope = $0.010129738 \log_{10}/\text{sec}$ t_{90%} recovery = 99 sec input is consistent. K = 3.00 Feet/Day K = 3.47E-05 Feet/sec 00:00 00:43 01:26 02:10 1.06E-03 cm/sec K = TIME, Minute: Second REMARKS: Bouwer and Rice analysis of slug test, WRR 1976 DB Oaks Facility, Fort Atkinson, Wisconsin. MW-2 (trial #2) Completed by NewFields on 12/16/2004

	Reduced Data	
	Time,	Water
Entry	Hr:Min:Sec	Level
1	0:00:24.2	3.65
2	0:00:27.2	4.28
3	0:00:30.2	4.34
4	0:00:33.2	4.36
5	0:00:36.2	4.36
6	0:00:39.2	4.37
7	0:00:42.2	4.38
8	0:00:45.2	4.38
9	0:00:48.2	4.39
10 11	0:00:51.2	4.40
12	0:00:54.2 0:00:57.2	4.41
13	0:01:00.2	4.41 4.42
14	0:01:03.2	4.42
15	0:01:06.2	4.43
16	0:01:09.2	4.43
17	0:01:12.2	4.43
18	0:01:15.2	4.43
19	0:01:18.2	4.44
20	0:01:21.2	4.44
21	0:01:24.2	4.45
22	0:01:27.2	4.45
23	0:01:30.2	4.45
24	0:01:33.2	4.45
25	0:01:36.2	4.46
26	0:01:39.2	4.46
27	0:01:42.2	4.46
28	0:01:45.2	4.46
29 30	0:01:48.2	4.46
30 31	0:01:51.2 0:01:54.2	4.46
32	0:01:57.2	4.46
32 33	0:02:00.2	4.46
34	0:02:00.2	4.47
35	0:02:05.2	4.47 4.47
36	0:02:09.2	4.47 4.47
37	0:02:09.2	4.47 4.47
38	0:02:15.2	4.47
39	0:02:18.2	4.47
10	0:02:18.2	4.47 4.47
	V.VA.L 1.L	7.71

MW-2A (Trial #1)

0:00

Reduced Data

Water

Level

21.88

22.24

22.55

22.61

22.63

22.64

22.64

22.64

22.64

22.64

22.64

Time,

Hr:Min:Sec

0:00:23.5

0:00:26.5

0:00:29.5

0:00:32.5

0:00:35.5

0:00:38.5

0:00:41.5

0:00:44.5

0:00:47.5

0:00:50.5

0:00:53.5

Entry

2

3

5

6

7

8

9

10

11

WELL ID: DB OAKS, FORT ATKINSON

	Base of Aquifer	
1.00	Adjust slope of line to estimate K	
1.00	9	
	1 %	
0.10	b	
Š	[
0.01	<u> </u>	
	\	

COMPUTED 8 Feet Lwetted D = 34.24 Feet H= 29.19 Feet $L/r_w =$ 23.27 0.76 Feet Yo-DISPLACEMENT = 0.70 Feet yo-slug = From look-up table using L/rw Partial penetrate A = 2.312 B = 0.371 In(Re/rw) = 2.565 Re = 4.47 Feet 0.16071 log₁₀/sec Slope = t_{90%} recovery = 6 sec Input is consistent.

above screen - Bentonite Aquifer Material - Medium Sand

К =	40 Feet/Day
K =	5.56E-04 Feet/sec
K =	1.69E-02 cm/sec

REMARKS:

Bouwer and Rice analysis of slug test, WRR 1976

00:17

TIME, Minute: Second

00:26

00:35

00:09

0.00 00:00

IDB Oaks Facility, Fort Atkinson, Wisconsin. MW-2A (trial #1) Completed by NewFields on 12/16/2004

Slug_Bouwer-Rice	_MW-2A(TRIAL_1)
------------------	-----------------

WELL ID: DB OAKS, FORT ATKINSON

INPUT

Construction:	
Casing dia. (d _c)	2 Inch
Annulus dia. (d _w)	8.25 Inch
Screen Length (L)	8 Feet

Depths to:

water level (DTW)	10.76 Feet
top of screen (TOS)	31.95 Feet
Base of Aguifer (DTB)	45 Feet

Annular Fill:

across screen -- Coarse Sand above screen -- Bentonite

Aquifer Material -- Medium Sand

COMPUTED

Lwetted	8 Feet
D =	34.24 Feet
H =	29.19 Feet

L/r_w = 23.27

Yo-DISPLACEMENT = 1.02 Feet

0.84 Feet Yo-slug =

From look-up table using L/r_w

Partial penetrate A = 2.312 B = 0.371

> ln(Re/rw) =2.565 Re = 4.47 Feet

Slope = $0.204807 \log_{10}/\text{sec}$

t_{90%} recovery = 5 sec

Input is consistent.

REMARKS:

	K	=	50 Feet/Day
	K	=	5.79E-04 Feet/sec
i	K	=	1.76E-02 cm/sec

Local ID: MW-2A (Trial #2)

Date: 12/16/2004 Time: 0:00

Bouwer and Rice analysis of slug test, WRR 1976

	IDB Oaks Facility, Fort Atkinson, Wisconsin.
	MW-2A (trial #2)
į	Completed by NewFields on 12/16/2004

	Reduced Data	
	Time,	Water
Entry	Hr:Min:Sec	Level
1	0:00:23.6	21.62
2	0:00:26.6	22.42
3	0:00:29.6	22.58
4	0:00:32.6	22.62
5	0:00:35.6	22.64
6	0:00:38.6	22.64
7	0:00:41.6	22.64

		Local ID: MW-3 (trial #1)
· · · · · · · · · · · · · · · · · · ·	INPUT	Date: 12/16/2004
Construction: Casing dia. (d _c)		Time: 0:00
Annulus dia. (d _w)		
Screen Length (L)	8.3 Feet	1 DTW
Depths to:		тоз
water level (DTW)	7.09 Feet	DTB T
top of screen (TOS)	7.09 Feet	Ĭ P
Base of Aquifer (DTB)		
Annular Fill:		d.,
across screen	Medium Sand	Base of Aquifer
above screen	Bentonite	
Aquifer Materia!	Fine Sand	Adjust slope of line to estimate K
	COMPUTED	
Lwetted	8.3 Feet	
D =	8.91 Feet	19
H =	8.3 Feet	
L/r _w =	24.15	1 3
Y0-DISPLACEMENT =	0.53 Feet	1 3
Yo-slug =	0.56 Feet	ž 9000
rom look-up table using	g L/r _w	× 10000000
Partial penetrate A =	2.339	1 0000000000000000000000000000000000000
B =	0.378	\$ 000000000000000000000000000000000000
1.75 ()		
In(Re/rw) = Re =	2.216 3.15 Feet	
1/4 -	3.15 Feet	
Siope =	0.025440598 log ₁₀ /sec	
t _{90%} recovery =	39 sec	į
put is consistent.		
K =	5.00 Feet/Day	0.10
K =	5.79E-05 Feet/sec	00:00 00:17 00:35 00:52 01:09 01:26
<u>K = </u>	1.76E-03 cm/sec	TIME, Minute:Second
EMARKS:		Bouwer and Rice analysis of slug test, WRR 197
B Oaks Facility, Fort Atl	kinson, Wisconsin.	
W-3 (trial #1)		

7	0:01:02.1	7.30
8	0:01:14.1	7.30
9	0:01:20.2	7.31
10	0:01:26.2	7.31
11	0:01:32.2	7.32
12	0:01:38.2	7.32
13	0:01:44.2	7.32
14	0:01:50.2	7.33
15	0:01:56.2	7.33
16	0:02:02.2	7.33
17	0:02:08.2	7.33
18	0:02:14.2	7.33
19	0:02:20.2	7.34
20	0:02:26.2	7.34
21	0:02:32.2	7.34
22	0:02:38.2	7.34
23	0:02:44.2	7.35
24	0:02:50.2	7.35
25	0:02:56.2	7.35
26	0:03:02.2	7.35
27	0:03:08.2	7.35
28	0:03:14.2	7.35
29 30	0:03:20.2 0:03:26.2	7.35
31		7.35
32	0:03:32.2	7.36
33	0:03:38.2	7.36
33 34	0:03:44.3 0:03:50.3	7.36
35	0:03:50.3	7.37 7.37
36	0:03:56.3	7.37 7.37
37	0:04:08.3	7.37
38	0:04:14,3	7.37
39	0:04:20.3	7.37
40	0:04:26.3	7.37
41	0:04:32.3	7.37
42	0:04:38.3	7.37
43	0:04:44.3	7.37
44	0:04:50.3	7.37
45	0:04:56.3	7.37

Reduced Data Time,

0:00:32.1

0:00:38.1

0:00:44.1

0:00:50.1

0:00:56.1

0:01:02.1

Entry Hr:Min:Sec

2

3

5

6

Water

Level

6.94

7.22

7.26

7.28

7.29

7.30

	WELLID	DB OAKS, FORT ATKINSON Local ID: MW-3 (trial #2)		Reduced Data	
	INPUT	(4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	_	Time,	Water
Construction:	INCUI	Date: 12/16/2004 Time: 0:00	Entry	Hr:Min:Sec	Level
Casing dia. (d _c)	2 Inch	Time: 0:00	1	0:00:32.9	5.59
- ` *'			2	0:00:38.9	7.03
Annulus dia. (d _w)	8.25 Inch	V → ← d _c	3	0:00:44.9	7.15
Screen Length (L)	8.3 Feet	A. DTW A	4	0:00:50.9	7.18
		\uparrow	5	0:00:56.9	7.20
Depths to:		TOS	6	0:01:02.9	7.22
water level (DTW)	7.09 Feet	DTB T	7	0:01:08.9	7.23
top of screen (TOS)	7.09 Feet		8	0:01:14.9	7.23
Base of Aquifer (DTB)	16 Feet		9	0:01:20.9	7.24
			10	0:01:27.0	7.25
Annular Fill:		Base of Aquifer	11	0:01:33.0	7.25
across screen		exact of Adults	12	0:01:39.0	7.25
above screen	Bentonite	Adjust slope of line to estimate K	13	0:01:45.0	7.26
Aquifer Material	Fine Sand	1.00 @	14	0:01:51.0	7.26
Aquioi material	I III Oaliu	.i	15	0:01:57.0	7.27
ı	COMPUTED		16	0:02:03.0	7.27
	8.3 Feet	-	17	0:02:09.0	7.27
L _{wetted}	8.91 Feet		18	0:02:15.0	7.28
H =	8.3 Feet		19	0:02:21.0	7.28
L/r _w =			20	0:02:27.0	7.29
-	24.15		21	0:02:33.0	7.29
Yo-DISPLACEMENT =	1.90 Feet		22	0:02:39.0	7.29
yo-slug =	1.69 Feet	<u>*</u> 9	23	0:02:45.0	7.29
From look-up table using	J L/r _w	> \	24	0:02:51.0	7.29
Partial penetrate A =	2.339		25	0:02:57.0	7.30
B =	0.378		26	0:03:03.0	7.30
		9	27	0:03:09.0	7.30
in(Re/rw) =	2.216		28	0:03:15.0	7.30
Re =	3.15 Feet	[%	29	0:03:21.0	7.31
Člana –	0.044000007 log /	1. 100	30	0:03:27.0	7.31
·-	0.044320235 log ₁₀ /sec	6 °00000	31	0:03:33.0	7.31
t _{90%} recovery =	23 sec	0,10	32	0:03:39.0	7.31
nput is consistent.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	33	0:03:45.0	7.32
V	000 5 1/0		34	0:03:51.1	7.32
K =	8.00 Feet/Day		35	0:03:57.1	7.32
K =	9.26E-05 Feet/sec 2.82E-03 cm/sec	00:00 00:17 00:35 00:52 01:09 01:26	36	0:04:03.1	7.32
	2.02E-U3 CITI/SeC	TIME, Minute:Second	37	0:04:09.1	7.32
			38	0:04:15.1	7.32
REMARKS:		Person and Discountries of the AssA MADD 4070	39	0:04:21.1	7.32
		Bouwer and Rice analysis of slug test, WRR 1976	40	0:04:27.1	7.33
B Oaks Facility, Fort Atk	inson, Wisconsin.		41 42	0:04:33.1 0:04:39.1	7.33
/W-3 (trial #2)	404400004		42 43	0:04:39.1	7,33 7,33
completed by NewFields	on 12/16/2004		44	0:04:51.1	7.33
			45	0:04:57.1	7.34
					7.54

WELL ID: DB OAKS, FORT ATKINSON

Local ID:

Time:

INF	PUT	
Construction:		
Casing dia. (d _c)	2 Inch	
Annulus dia. (dw)	8.25 Inch	
Screen Length (L)	9.04 Feet	
Depths to:		
water level (DTW)	8.11 Feet	
top of screen (TOS)	8.11 Feet	
Base of Aquifer (DTB)	18 Feet	
Annular Fill:		
across screen Med	ium Sand	
above screen Beni	tonite	
Aquifer Material Fine Sand		

COMPUTED	
Lwetted	9.04 Feet
D =	9.89 Feet
H =	9.04 Feet
L/r _w =	26.30
Yo-DISPLACEMENT =	0.72 Feet
Yo-sLug ⁼	0.84 Feet
From look-up table using L/rw	
Partial penetrate A =	2.401
B =	0.392

In(Re/rw) =	2.266
Re =	3.32 Feet

Slope =	0.067602041	log ₁₀ /sec
t _{90%} recovery =	15	sec

input is consistent.

Κ =	10.00 Feet/Day
K =	1.16E-04 Feet/sec
K =	3.53E-03 cm/sec

Date: 12/16/2004

MW-4 (trial #1)

0:00

	Time,	Water
Entry	Hr:Min:Sec	Level
1	0:00:34.3	7.66
2	0:00:37.4	8.11
3	0:00:40.4	8.25
4	0:00:43.4	8.30
5	0:00:46.4	8.33
6	0:00:49.4	8.34
7	0:00:52.4	8.35
8	0:00:55.4	8.36
9	0:00:58.4	8.36
10	0:01:01.4	8.36
11	0:01:04.4	8.37
12 13	0:01:07.4 0:01:10.4	8.37 8.37
14	0:01:10.4	8.37 8.37
15	0:01:16.4	8.37
16	0:01:10.4	8.37
17	0:01:22.4	8.37
18	0:01:25.4	8.37
19	0:01:28.4	8.37
20	0:01:31.4	8.37
21	0:01:34.4	8.37
22	0:01:37.4	8.37
23	0:01:40.4	8.37
24	0:01:43.4	8.37
25	0:01:46.4	8.37
26	0:01:49.4	8.37
27	0:01:52.4	8.37
28	0:01:55.4	8.37
29	0:01:58.4	8.37
30	0:02:01.4	8.37
31	0:02:04.4	8.37
32	0:02:07.4	8.37
33	0:02:10.4	8.37
34	0:02:13.4	8.37
35	0:02:16.4	8.37

Reduced Data

REMARKS:

Bouwer and Rice analysis of slug test, WRR 1976

DB Oaks Facility, Fort Atkinson, Wisconsin. MW-4 (trial #1) Completed by NewFields on 12/16/2004

WELL ID: DB OAKS, FORT ATKINSON Local ID: MW-4 (trial #2)

***************************************	INPUT
Construction:	
Casing dia. (d _c)	2 Inch
Annulus dia. (d _w)	8.25 Inch
Screen Length (L)	9.04 Feet
Depths to:	
water level (DTW)	8.11 Feet
top of screen (TOS)	8.11 Feet
Base of Aquifer (DTB)	18 Feet
Annular Fill:	
across screen	Medium Sand
above screen	Bentonite
Aquifer Material	Fine Sand

COMI	COMPUTED		
Lwetted	9.04 Feet		
D =	9.89 Feet		
H =	9.04 Feet		
L/r _w =	26.30		
Yo-DISPLACEMENT =	1.13 Feet		
y _{0-SLUG} =	0.98 Feet		
From look-up table using L/r _w			
Partial penetrate A =	2 401	•	

Partial penetrate A =	2.401
B =	0.392
In(Re/rw) =	2.266
Re =	3.32 Feet

Slope =	0.129960317 log ₁₀ /sec
t _{90%} recovery =	8 sec

input is consistent.

Κ	=	20.00	Feet/Day
Κ	=	2.31E-04	Feet/sec
K	=	7.06E-03	cm/sec

Date: 12/16/2004

	. todadoca Data	
	Time,	Water
Entry	Hr:Min:Sec	Level
1	0:00:34.6	7.2
2	0:00:37.6	8.00
3	0:00:40.6	8.22
4	0:00:43.6	8.30
5	0:00:46.6	8.32
6	0:00:49.6	8.34
7	0:00:52.6	8.35
8	0:00:55.6	8.36
9	0:00:58.6	8.36
10	0:01:01.6	8.36
11 12	0:01:04.6	8.36
13	0:01:07.6 0:01:10.6	8.37 8.37
14	0:01:10.6	8.37 8.37
15	0:01:16.6	8.37
16	0:01:19.6	8.37
17	0:01:22.6	8.37
18	0:01:25.6	8.37
19	0:01:28.6	8.37
20	0:01:31.6	8.37
21	0:01:34.6	8.37
22	0:01:37.6	8.37
23	0:01:40.6	8.37
24	0:01:43.6	8.37
25	0:01:46.6	8.37
26	0:01:49.6	8.37
27	0:01:52.6	8.37
28	0:01:55.6	8.38
29	0:01:58.6	8.37
30	0:02:01.6	8.37
31	0:02:04.6	8.37
32	0:02:07.6	8.37
33	0:02:10.6	8.37
34	0:02:13.6	8.37
35	0:02:16.6	8.37

Reduced Data

REMARKS:

Bouwer and Rice analysis of slug test, WRR 1976

DB Oaks Facility, Fort Atkinson, Wisconsin.
MW-4 (trial #2)
Completed by NewFields on 12/16/2004

Completed by NewFields on 12/16/2004

	Reduced Data Time,	Water
Entry	Hr:Min:Sec	Level
1	0:00:35.3	27.43
2	0:00:38.3	28.57
3	0:00:41.3	28.63
4	0:00:44.3	28.63
5 6	0:00:47.3	28.64
7	0:00:50.3 0:00:53.3	28.64 28.64
8	0:00:56.3	28.64
9	0:00:59.3	28.64
10	0:01:02.3	28.64
11 12	0:01:05.3 0:01:08.3	28.64 28.64
13	0:01:11.3	28.64
14	0:01:14.3	28.64
15	0:01:17.3	28.65

WELL ID: DB OAKS, FORT ATKINSON

	Reduced Data Time,	Water
Entry	Hr:Min:Sec	Level
1	0:00:35.4	27.58
2	0:00:36.4	27.89
3	0:00:37.4	28.33
4	0:00:38.4	28.56
5	0:00:39.4	28.64
6	0:00:40.4	28.66
7	0:00:41.4	28.66
8	0:00:42.4	28.66
9	0:00:43.4	28.66
10	0:00:44.4	28.66
11	0:00:45.4	28.66
12	0:00:46.4	28.67
13	0:00:47.4	28.67
14	0:00:48.4	28.66
15	0:00:49.4	28.67
16	0:00:50.4	28.67
17	0:00:51.4	28.67
18	0:00:52.4	28.67
19	0:00:53.4	28.67
20	0:00:54.4	28.67
21	0:00:55.4	28.67
22	0:00:56.4	28.67
23	0:00:57.4	28.67
24	0:00:58.4	28.67
25	0:00:59.4	28.67
26	0:01:00.4	28.67
27	0:01:01.4	28.67

Bouwer and Rice analysis of slug test, WRR 1976

IDB Oaks Facility, Fort Atkinson, Wisconsin. MW-4A (trial #2) Completed by NewFields on 12/16/2004

	Reduced Data Time,	Water
٠	Hr:Min:Sec	
ıtry I	0:00:35.5	Level 27.57
2	0:00:36.5	28.11
3	0:00:37.5	28.46
ļ	0:00:38.5	28.61
,	0:00:39.5	28.66
i	0:00:40.5	28.66
	0:00:41.5	28.66
	0:00:42.5	28.66
	0:00:43.5	28.66
)	0:00:44.5	28.66
	0:00:45.5	28.66
2	0:00:46.5 0:00:47.5	28.67
) [0:00:47.5	28.66 28.67
;	0:00:49.5	28.67
	0:00:50.5	28.67
•	0:00:51.5	28.67
	0:00:52.5	28.67
	0:00:53.5	28.67
	0:00:54.5	28.67
	0:00:55.5	28.67
	0:00:56.5	28.67
	0:00:57.5	28.67
	0:00:58.5	28.67
	0:00:59.5	28.67
	0:01:00.5	28.67
	0:01:01.5	28.68
	0:01:02.5	28.67
	0:01:03.5	28.67
	0:01:04.5	28.68

Water

Level

7.58

7.79 7.89

7.95

7.98

8.00

8.02

8.04

8.05

8.06

8.07

8.08

8.08

8.09

8.09

8.10

8.10

8.10

8.11

8.11

8.12

8.12

8.12

8.13

8.13

8.13

8.13

8.13

8.13

8.14

8.14

8.14

8.14

8.14

8.14

8.15

8.15

8.15

8.15

8.15

8.15

8.15

8.15

8.16

8.15

	WELL ID	: DB OAKS, FORT ATKINSON Local ID: MW-5 (trial #1)	_	Reduced Data Time,
1	NPUT	Date: 12/16/2004	Entry	Hr:Min:Sec
Construction:		Time: 0:00	1	0:00:28.1
Casing dia. (d _c)	2 Inch		2	0:00:31.1
Annulus dia. (d _w)	8.25 Inch		3	0:00:34.1
Screen Length (L)	6.77 Feet	A DTW A	4	0:00:37.1
5 4 6		1 1 Tos 1 1	5	0:00:40.1
Depths to: water level (DTW)	7.83 Feet	<u> </u>	6 7	0:00:43.1 0:00:46.1
` .		DTB	-	
top of screen (TOS)	7.83 Feet		8 9	0:00:49.2 0:00:52.2
Base of Aquifer (DTB)	16 Feet	d _w	9 10	0:00:52.2
Annular Fill:		V	11	0:00:58.2
across screen M	fedium Sand	Base of Aquifer	12	0:01:01.2
above screen B	entonite		13	0:01:04.2
		Adjust slope of line to estimate K	14	0:01:07.2
Aquifer Material F	ine Sand	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	15	0:01:10.2
С	OMPUTED		16 17	0:01:13.2 0:01:16.2
Lwetted	6.77 Feet	· K	18	0:01:19.2
D =	8.17 Feet		19	0:01:22.2
H =	6.77 Feet		20	0:01:25.2
L/r _w =	19.69	9	21	0:01:28.2
Yo-DISPLACEMENT =	0.62 Feet	1 2	22	0:01:31.2
y _{0-SLUG} =	0.56 Feet	ž d	23	0:01:34.2
From look-up table using	L/r _w	·	24	0:01:37.2
Partial penetrate A =	2.191	·	25	0:01:40.2
B =	0.343	\ <u>\</u> 0	26	0:01:43.2
1-45-4-1	4.004		27	0:01:46.2
In(Re/rw) = Re =	1.981 2.49 Feet	000	28 29	0:01:49.2 0:01:52.2
1/6 -	2.49 1 661	900	30	0:01:55.2
Slope = 0	0.027262156 log ₁₀ /sec	0.10 0.10	31	0:01:58.2
t _{90%} recovery =	37 sec	900	32	0:02:01.2
nput is consistent.		∞_{∞}	33	0:02:04.2
		-0	34	0:02:07.2
K =	6.00 Feet/Day	0.10	35	0:02:10.2
K =	6.94E-05 Feet/sec		36 27	0:02:13.2
K =	2.12E-03 cm/sec	TIME, Minute: Second	37 38	0:02:16.2
			36 39	0:02:19.2 0:02:22.2
REMARKS:		Bouwer and Rice analysis of slug test, WRR 1976		0:02:25.2
		250mo, and 1005 analysis of slug tost, 17101 1870	41	0:02:28.2
B Oaks Facility, Fort Atkin	nson, Wisconsin.		42	0:02:31.2
1W-5 (trial #1)	- 12/16/200 <i>4</i>		43	0:02:34.2
completed by NewFields o	011 12/10/2004		44	0:02:37.2
			45	0:02:40.2

	WELL ID:	DB OAKS, FORT ATKINSON		Reduced Data	
		Local ID: MW-5 (trial #2)		Time,	Water
İ	NPUT	Date: 12/16/2004	Entry	Hr:Min:Sec	Level
Construction:		Time: 0:00	1	0:00:28.5	6.12
Casing dia. (d _c)	2 Inch		2	0:00:31.5	7.37
Annulus dia. (d _w)	8.25 Inch	ψ → ← α _c	3	0:00:34.5	7.68
Screen Length (L)	6.77 Feet	A DTW A	4	0:00:37.5	7.80
			5	0:00:40.5	7.85
Depths to:		TOS I	6	0:00:43.5	7.89
water level (DTW)	7.83 Feet	DTB	7	0:00:46.5	7.92
top of screen (TOS)	7.83 Feet		8	0:00:49.5	7.94
Base of Aquifer (DTB)	16 Feet	N_18	9	0:00:52.5	7.96
			10	0:00:55.5	7.98
Annular Fill:		Base of Aquifer	11	0:00:58.5	7.99
across screen N			12	0:01:01.5	8.01
above screen E	Bentonite	Adjust slope of line to estimate K	13	0:01:04.5	8.02
		1.00 Q	14	0:01:07.5	8.03 8.04
Aquifer Material F	ine Sand	· · · · · · · · · · · · · · · · · · ·	15 16	0:01:10.5 0:01:13.5	8.05
_	01/01/755				
	COMPUTED		17	0:01:16.5	8.06
L _{wetted}	6.77 Feet	Q	18	0:01:19.5	8.07
D =	8.17 Feet	[4	19	0:01:22.5	8.07
H =	6.77 Feet	1	20	0:01:25.5	8.08
L/r _w =	19.69	٩	21	0:01:28.5	8.08
Yo-displacement =	2.09 Feet	0.10	22	0:01:31.5	8.09
Yo-slug =	1.83 Feet	* Coo	23	0:01:34.5	8.10
From look-up table using	∐r _w	0.10	24	0:01:37.5	8.10
Partial penetrate A =	2.191	0.10	25	0:01:40.5	8.10
B =	0.343		26	0:01:43.5	8.11
			27	0:01:46.5	8.11
in(Re/rw) =	1.981	1 2000000	28	0:01:49.5	8.11
Re =	2.49 Feet		29	0:01:52.5	8.12
		<u> </u>	30	0:01:55.5	8.12
Slope =	0.042438272 log ₁₀ /sec		31	0:01:58.5	8.12
t _{90%} recovery =	24 sec	}	32	0:02:01.5	8.13
Input is consistent.			33	0:02:04.5	8.13
			34	0:02:07.5	8.13
K =	9.00 Feet/Day	0.01	35	0:02:10.5	8.13
K =	1.04E-04 Feet/sec	00:00 00:17 00:35 00:52 01:09 01:26	36	0:02:13.5	8.13
K =	3.18E-03 cm/sec	TIME, Minute:Second	37	0:02:16.5	8.14
			38	0:02:19.5	8.14
			39	0:02:22.5	8.14
REMARKS:		Bouwer and Rice analysis of slug test, WRR 1976	40	0:02:25.5	8.14
	innon Wisconsin		41	0:02:28.5	8.15
DB Oaks Facility, Fort Atk	inson, wisconsin.		42	0:02:31.5	8.15
MW-5 (trial #2) Completed by NewFields	on 12/16/2004		43	0:02:34.5	8.15
Completed by NewFields	OII 12/10/2007		44 45	0:02:37.5	8.15 8.15
			45	0:02:40.5	0.15

Appendix C

Laboratory Reports
December 2004 Groundwater Samples

NORTHERN LAKE SERVICE, INC.

Analytical Laboratory and Environmental Services

400 North Lake Avenue - Crandon, WI 54520 Ph: (715)-478-2777 Fax: (715)-478-3060

Client:

NewFields Companies LLC

Attn: Mark S McColloch PG

2110 Luann Lane #101 Madison,WI 53713 3098

ANALYTICAL REPORT

WDNR Laboratory ID No. 721026460

WDATCP Laboratory Certification No. 105-330

EPA Laboratory ID No. WI00034

Printed: 12/30/04 Code: S

Page 1 of 2

NLS Project: NLS Customer: 86494 93437

Fax: 608 442 9013	Phone:	608	442	5223
-------------------	--------	-----	-----	------

Madison,WI 53/13 3098									
Project: Thomas Ft. Atkinson 0451-002									
MW-1 NLS ID: 358934 Ref. Line 1 COC 73938 MW-1 Matrix: GW Collected: 12/16/04 10:00 Received: 12/17/04 Parameter VOCs (water) by EPA 8260	Result see attached	Units	ságt r	Dilution	LOD	LOQ	Analyzed 12/28/04	Method SW846 8260	Lab 721026460
MW-2 NLS ID: 358935 Ref. Line 2 COC 73938 MW-2 Matrix: GW Collected: 12/16/04 09:00 Received: 12/17/04 Parameter VOCs (water) by EPA 8260	Result see attached	Units		Dilution	LOD	LOQ	Analyzed 12/24/04	Method SW846 8260	Lab 721026460
MW-2A NLS ID: 358936 Ref. Line 3 COC 73938 MW-2A Matrix: GW Collected: 12/16/04 09:15 Received: 12/17/04 Parameter VOCs (water) by EPA 8260	Result see attached	Units		Dilution	LOD	LOQ.	Analyzed 12/24/04	Method SW846 8260	Lab 721026460
MW-3 NLS ID: 358937 Ref. Line 4 COC 73938 MW-3 Matrix: GW Collected: 12/16/04 10:15 Received: 12/17/04 Parameter VOCs (water) by EPA 8260	Result see attached	Units	· · · · · · · · · · · · · · · · · · ·	Dilution	LOD	LOQ	Analyzed 12/28/04	Method SW846 8260	Lab 721026460
MW-4 NLS ID: 358938 Ref. Line 5 COC 73938 MW-4 Matrix: GW Collected: 12/16/04 11:00 Received: 12/17/04 Parameter VOCs (water) by EPA 8260	Result see attached	Units		Dilution	LOD	LOQ	Analyzed 12/28/04	Method SW846 8260	Lab 721026460
MW-4A NLS ID: 358939 Ref. Line 6 COC 73938 MW-4A Matrix: GW Collected: 12/16/04 10:45 Received: 12/17/04 Parameter VOCs (water) by EPA 8260	Result see attached	Units		Dilution	LOD	LOQ	Analyzed 12/28/04	Method SW846 8260	Lab 721026460
MW-5 NLS ID: 358940 Ref. Line 7 COC 73938 MW-5 Matrix: GW Collected: 12/16/04 08:00 Received: 12/17/04 Parameter VOCs (water) by EPA 8260	Result see attached	Units		Dilution	LOD	LOQ	Analyzed 12/28/04		Lab 721026460
Dup-1 NLS ID: 358941 Ref. Line 8 COC 73938 Dup-1 Matrix: GW Collected: 12/16/04 11:30 Received: 12/17/04 Parameter VOCs (water) by EPA 8260	Result see attached	Units		Dilution	LOD	LOQ	Analyzed 12/29/04	Method SW846 8260	Lab 721026460
Trip Blank NLS ID: 358942 Ref. Line 9 COC 73938 Trip Blank Matrix: TB Collected: 12/16/04 00:00 Received: 12/17/04 Parameter VOCs (water) by EPA 8260	 Result see attached	Units		Dilution	LOD	LOQ	Analyzed 12/24/04	Method SW846 8260	Lab 721026460

NORTHERN LAKE SERVICE, INC.

Analytical Laboratory and Environmental Services

400 North Lake Avenue - Crandon, WI 54520 Ph: (715)-478-2777 Fax: (715)-478-3060

Client:

NewFields Companies LLC

Attn: Mark S McColloch PG

MCL = Maximum Contaminant Levels for Drinking Water Samples

2110 Luann Lane #101 Madison,WI 53713 3098 ANALYTICAL REPORT

WDNR Laboratory ID No. 721026460

WDATCP Laboratory Certification No. 105-330

EPA Laboratory ID No. WI00034

Printed: 12/30/04 Code: S

Page 2 of 2

NLS Project:

86494

NLS Customer:

93437

Project: Thomas Ft. Atkinson 0451-002

Values in brackets represent results greater than or equal to the LOD but less than the LOQ and are within a region of "Less-Certain Quantitation". Results greater than or equal to the LOQ are considered to be in the region of "Certain Quantitation". LOD and/or LOQ tagged with an asterisk(*) are considered Reporting Limits. All LOD/LOQs adjusted to reflect dilution.

LOD = Limit of Detection DWB = Dry Weight Basis LOQ = Limit of Quantitation

NA = Not Applicable

ND = Not Detected

%DWB = (mg/kg DWB) / 10000

1000 ug/L = 1 mg/L

Authorized by: R. T. Krueger

President

Page 1 of 18

Customer: NewFields Companies LLC
Project Description: Thomas Ft. Atkinson
Project Title: 0451-002

Template: SAT2W Printed: 12/30/2004 09:14

Sample: 358934 MW-1	Collected: 12/16/04	Analyzed: 1	2/28/04 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	1	0.12	0.38	
Bromobenzene	ND	ug/L	1	0.13	0.42	
Bromochloromethane	ND	ug/L	1	0.11	0.37	
Bromodichloromethane	ND	ug/L	1	0.19	0.70	
Bromoform	ND	ug/L	1	0.10	0.34	
Bromomethane	ND	ug/L	1	0.32	1.0	and a second
n-Butylbenzene	ND	ug/L	1	0.19	0.70	*
sec-Butylbenzene	·ND	ug/L	1	0.16	0.52	
tert-Butylbenzene	· ND	ug/L	1	0.14	0.47	
Carbon Tetrachloride	· ND	ug/L	1	0.15	0.51	
Chlorobenzene	ND	ug/L	1	0.19	0.68	· · · · · · · · · · · · · · · · · · ·
Chloroethane	ND	ug/L	1	0.68	2.5	w
Chloroform	ND	ug/L	1	0.12	0.41	
Chloromethane	ND.:	ug/L	1	0.12	0.41	
2-Chlorotoluene	ND	ug/L	1	0.13	0.42	DAIII.
4-Chlorotoluene	ND	ug/L	1	0.13	0.44	
Dibromochloromethane	ND .	ug/L	1	0.16	0.55	
1,2-Dibromo-3-Chloropropane	ND	ug/L	1	0.25	0.83	
1,2-Dibromoethane	. ND	ug/L	1	0.16	0.54	
Dibromomethane	· · · ND	ug/L	1	0.16	0.57	
1,2-Dichlorobenzene	ND	ug/L	1	0.13	0.46	
1,3-Dichlorobenzene	ND .	ug/L	1	0.10	0.34	
1,4-Dichlorobenzene	ND	ug/L	1	0.19	0.64	
Dichlorodifluoromethane	ND	ug/L	1	0.15	0.51	
1,1-Dichloroethane	ND	ug/L	1	0.13	0.44	
1,2-Dichloroethane	ND	ug/L	1	0.13	0.44	
1,1-Dichloroethene	ND	ug/L	1	0.24	0.88	
cis-1,2-Dichloroethene	[0.14]	ug/L	1	0.13	0.44	
rans-1,2-Dichloroethene	ND	ug/L	1	0.11	0.36	
1,2-Dichloropropane	· ND	ug/L	1	0.13	0.42	
1,3-Dichloropropane	ND	ug/L	1 .	0.15	0.49	
2,2-Dichloropropane	ND	ug/L	1	0.16	0.55	
1,1-Dichloropropene	ND	ug/L	1	0.17	0.57	
cis-1,3-Dichloropropene	ND	ug/L	1	0.21	0.78	
trans-1,3-Dichloropropene	ND	ug/L	1	0.15	0.49	
Ethylbenzene	ND	ug/L	1	0.14	0.47	.,
Hexachlorobutadiene	ND	ug/L	1	0.23	0.88	
sopropylbenzene	ND	ug/L	1	0.12	0.41	
o-Isopropyltoluene	ND	ug/L	1	0.12	0.39	
Methylene chloride	ND	ug/L	1	0.10	0.34	
Naphthalene	ND	ug/L	1	0.16	0.60	
n-Propylbenzene	ND	ug/L	1	0.17	0.56	
ortho-Xylene	ND	ug/L	1	0.13	0.44	
Styrene	ND	ug/L	1	0.14	0.47	
1,1,1,2-Tetrachloroethane	ND	ug/L	1	0.16	0.55	
1,1,2,2-Tetrachloroethane	ND	ug/L	1	0.20	0.67	·
Tetrachloroethene	ND	ug/L	1	0.13	0.45	
Toluene	ND	ug/L	1	0.20	0.77	

Customer: NewFields Companies LLC

NLS Project: 86494

Project Description: Thomas Ft. Atkinson

Project Title: 0451-002

Template: SAT2W Printed: 12/30/2004 09:14

Sample: 358934 MW-1 Collected: 12/16/04 Analyzed: 12/28/04 -**ANALYTE NAME** RESULT UNITS DIL LOD LOQ 1,2,3-Trichlorobenzene ND 0.17 0.64 ug/L 1,2,4-Trichlorobenzene ND ug/L 0.11 0.37 1,1,1-Trichloroethane ND ug/L 0.14 0.48 1,1,2-Trichloroethane ND ug/L 0.14 0.46 Trichloroethene ND ug/L 0.12 0.39 Trichlorofluoromethane ND ug/L 0.15 0.49 1,2,3-Trichloropropane ND ug/L 0.23 0.76 1,2,4-Trimethylbenzene ND ug/L 0.14 0.48 1,3,5-Trimethylbenzene ND ug/L 0.12 0.41 Vinyl chloride ND ug/L 0.16 0.61 meta,para-Xylene ND ug/L 0.26 0.88 MTBE ND ug/L 0.14 0.48 Isopropyl ether ND ug/L 0.13 0.45 Dibromofluoromethane (SURR**) 98% Toluene-d8 (SURR**) 105% 1-Bromo-4-Fluorobenzene (SURR**) 96%

Check standard recovery was outside QC limits for Bromomethane at 72%.

Page 2 of 18

Customer: NewFields Companies LLC NLS Project: 86494

Project Description: Thomas Ft. Atkinson Project Title: 0451-002 Template: SAT2W Printed: 12/30/2004 09:14

Sample: 358935 MW-2	Collected: 12/16/04	Analyzed: 1	2/24/04 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	50	5.8	19	,
Bromobenzene	ND	ug/L	50	6.4	21	
Bromochloromethane	ND	ug/L	50	5.5	18	
Bromodichloromethane	ND	ug/L	50	9.5	35	
Bromoform	ND	ug/L	50	5.1	17	
Bromomethane	ND	ug/L	50	16	50	
-Butylbenzene	ND	ug/L	50	9.3	35	
ec-Butylbenzene	ND	ug/L	50	7.9	26	
ert-Butylbenzene	· ND	ug/L	50	7.0	23	
Carbon Tetrachloride	· ND	ug/L	50	7.7	26	
Chlorobenzene	ND	ug/L	50	9.5	34	
Chloroethane	ND	ug/L	50	34	120	
Chloroform	· ND	ug/L	50	6.1	20	
Chloromethane	ND .	ug/L	50	6.1	20	***************************************
-Chlorotoluene	ND .	ug/L	50	6.3	21	
-Chlorotoluene -Chlorotoluene	ND .	ug/L	50	6.6	22	
-Chlorotoluene Dibromochloromethane	ND	ug/L	50	8.2	27	
,2-Dibromo-3-Chloropropane	, ND	ug/L	50	12	42	
,2-Dibromo-3-Chloropropane ,2-Dibromoethane	ND	ug/L	50	8.1	27	
,2-Dibromoethane Dibromomethane	ND.	ug/L	50	7.8	29	
AND ADDRESS OF THE PARTY OF THE	ND ND	ug/L	50	6.3	23	
,2-Dichlorobenzene	ND	ug/L	50	5.2	17	
,3-Dichlorobenzene	ND	ug/L	50	9.7	32	
,4-Dichlorobenzene	ND ND		50	7.7	26	
Dichlorodifluoromethane	ND ND	ug/L	50	6.6	22	
,1-Dichloroethane		ug/L	50	6.6	22	
,2-Dichloroethane	ND	ug/L	50	12	44	
,1-Dichloroethene	[18]	ug/L		66	220	
sis-1,2-Dichloroethene	5900	ug/L	500			
rans-1,2-Dichloroethene	32	ug/L	50	5.4	18	
,2-Dichloropropane	ND	ug/L	50	6.3	21	
,3-Dichloropropane	ND	ug/L	50	7.4	25	
2,2-Dichloropropane	ND ND	ug/L	50	8.2	27	
,1-Dichloropropene	ND	ug/L	50	8.6	29	
sis-1,3-Dichloropropene	ND	ug/L	50	10	39	
rans-1,3-Dichloropropene	ND	ug/L	50.	7.3	24	
thylbenzene	ND	ug/L	50	7.1	23	
lexachlorobutadiene	ND	ug/L	50	12	44	name navember
sopropylbenzene	ND	ug/L	50	6.1	20	
o-Isopropyltoluene	ND	ug/L	50	5.8	19	AMERICAN
Methylene chloride	ND	ug/L	50	5.2	17	andrew to the State Co.
laphthalene	ND	ug/L	50	8.2	30	
-Propylbenzene	ND	ug/L	50	8.5	28	
rtho-Xylene	ND	ug/L	50	6.7	22	
Styrene	ND	ug/L	50	7,0	23	
,1,1,2-Tetrachloroethane	ND	ug/L	50	8.2	27	
,1,2,2-Tetrachloroethane	ND	ug/L	50	10	33	
etrachloroethene	120	ug/L	50	6.7	22	
Foluene	ND	ug/L	50	10	39	

Page 3 of 18

Customer: NewFields Companies LLC NLS Project: 86494

Project Description: Thomas Ft. Atkinson Project Title: 0451-002

Sample: 358935 MW-2	Collected: 12/16/04	Analyzed: 1	2/24/04 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	50	8.7	32	
1,2,4-Trichlorobenzene	ND	ug/L	50	5.3	19	THE RESERVE OF THE RESERVE OF THE PARTY OF T
1,1,1-Trichloroethane	ND	ug/L	50	7.2	24	
1,1,2-Trichloroethane	ND	ug/L	50	6.9	23	
Trichloroethene	140	ug/L	50	5.9	19	
Trichlorofluoromethane	ND	ug/L	50	7.3	24	
1,2,3-Trichloropropane	ND	ug/L	50	11	38	THE PERSON NAMED IN COLUMN TO PERSON NAMED I
1,2,4-Trimethylbenzene	· ND	ug/L	50	7.2	24	THE REPORT OF CONTRACT CONTRACT OF CONTRACT CONT
1,3,5-Trimethylbenzene	ND	ug/L	50	6.1	20	
Vinyl chloride	33	ug/L	50	8.2	30	
meta,para-Xylene	ND	ug/L	50	13	44	
MTBE	ND	ug/L	50	7.2	24	
Isopropyl ether	ND	ug/L	50	6.7	22	1 Add File 1 at 1 at 1 at 1 at 1 at 1 at 1 at 1 a
Dibromofluoromethane (SURR**)	105%					
Toluene-d8 (SURR**)	108%					100
1-Bromo-4-Fluorobenzene (SURR**)	98%				The second secon	

Page 4 of 18

Customer: NewFields Companies LLC

NLS Project: 86494

Project Description: Thomas Ft. Atkinson Project Title: 0451-002

Template: SAT2W Printed: 12/30/2004 09:14

Sample: 358936 MW-2A	Collected: 12/16/04	Analyzed:	12/24/04			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	50	5.8	19	
Bromobenzene	ND	ug/L	50	6.4	21	enadelikis i fakusukki kualif ca a 11 a 15a i 16a i 16a i 16a i 16a i 16a i 16a i 16a i 16a i 16a i 16a i 16a i
Bromochloromethane	ND	ug/L	50	5.5	18	***************************************
Bromodichloromethane	ND	ug/L	50	9.5	35	THE STATE OF THE PARTY OF THE P
Bromoform	ND	ug/L	50	5.1	17	
Bromomethane	ND	ug/L	50	16	50	
n-Butylbenzene	ND	ug/L	50	9.3	35	
sec-Butylbenzene	· ND	ug/L	50	7.9	26	
tert-Butylbenzene	ND	ug/L	50	7.0	23	
Carbon Tetrachloride	ND	ug/L	50	7.7	26	
Chlorobenzene	ND	ug/L	50	9.5	34	
Chloroethane	. ND	ug/L	50	34	120	
Chloroform	ND	ug/L	50	6.1	20	
Chloromethane	ND	ug/L	50	6.1	20	
2-Chlorotoluene	ND	ug/L	50	6.3	21	
4-Chlorotoluene	ND	ug/L	50	6.6	22	
Dibromochloromethane	ND	ug/L	50	8.2	27	
1,2-Dibromo-3-Chloropropane	ND	ug/L	50	12	42	The second control of the second control of
1,2-Dibromoethane	ND	ug/L	50	8.1	27	
Dibromomethane	ND	ug/L	50	7.8	29	
,2-Dichlorobenzene	·· ND	ug/L	50	6.3	23	
,3-Dichlorobenzene	ND	ug/L	50	5.2	17	
1,4-Dichlorobenzene	ND	ug/L	50	9.7	32	
Dichlorodifluoromethane	ND	ug/L	50	7.7	26	
I,1-Dichloroethane	ND .	ug/L	50	6.6	22	
1,2-Dichloroethane	ND	ug/L	50	6.6	22	
1,1-Dichloroethene	ND	ug/L	50	12	44	
	380	ug/L	50	6.6	22	
cis-1,2-Dichloroethene	ND ND	ug/L ug/L	50	5.4	18	
rans-1,2-Dichloroethene	ND ND		50	6.3	21	
1,2-Dichloropropane		ug/L	50	7.4	25	
1,3-Dichloropropane	ND ND	ug/L ug/L	50	8.2	27	Manager Commence of the Commen
2,2-Dichloropropane			50	8.6	29	
1,1-Dichloropropene	ND ND	ug/L	50	10	39	
cis-1,3-Dichloropropene	ND ND	ug/L ug/L	50	7.3	24	
rans-1,3-Dichloropropene			50	7.3 7.1	23	
Ethylbenzene	ND ND	ug/L	50	12	44	
-lexachlorobutadiene	ND	ug/L		Savienti de la compania de la compania de la compania de la compania de la compania de la compania de la compa		
sopropylbenzene	ND	ug/L	50	6.1	20	
o-Isopropyltoluene	ND	ug/L	50	5.8	19	
Methylene chloride	ND	ug/L	50	5.2	17 30	,
Naphthalene	ND ND	ug/L	50	8.2		
n-Propylbenzene	ND	ug/L	50	8.5	28	
ortho-Xylene	ND	ug/L	50 50	6.7	22	
Styrene	ND	ug/L	50	7.0	23	
1,1,1,2-Tetrachloroethane	ND	ug/L	50	8.2	27	A. D. Martin and A. C. Control of the Control of th
1,1,2,2-Tetrachloroethane	ND .	ug/L	50	10	33	
Tetrachloroethene	44	ug/L	50	6.7	22	
Toluene	ND	ug/L	50	10	39	

Page 5 of 18

Customer: NewFields Companies LLC NLS Project: 86494

Project Description: Thomas Ft. Atkinson Project Title: 0451-002 Template: SAT2W Printed: 12/30/2004 09:14

Sample: 358936 MW-2A	Collected: 12/16/04	Analyzed:				
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	50	8.7	32	1 of 1 of 6 of 100 on 1
1,2,4-Trichlorobenzene	ND	ug/L	50	5.3	19	
1,1,1-Trichloroethane	ND	ug/L	50	7.2	24	
1,1,2-Trichloroethane	ND	ug/L	50	6.9	23	PH. Hells de hills de hells de hells de hells de service
Trichloroethene	69	ug/L	50	5.9	19	
Trichlorofluoromethane	ND	ug/L	50	7.3	24	The state of the s
1,2,3-Trichloropropane	ND "	ug/L	50	11	38	
1,2,4-Trimethylbenzene	.ND	ug/L	50	7.2	24	The state of the s
1,3,5-Trimethylbenzene	, ND	ug/L	50	6.1	20	
Vinyl chloride	[29]	ug/L	50	8.2	30	
meta,para-Xylene	ND ND	ug/L	50	13	44	THE PARTY OF THE P
MTBE	ND	ug/L	50	7.2	24	
sopropyl ether	ND	ug/L	50	6.7	22	
Dibromofluoromethane (SURR**)	102%			1190		N. T. C. C. C. C. C. C. C. C. C. C. C. C. C.
oluene-d8 (SURR**)	108%				The second secon	
-Bromo-4-Fluorobenzene (SURR**)	100%			1,100		

Page 6 of 18

Page 7 of 18

Customer: NewFields Companies LLC
Project Description: Thomas Ft. Atkinson
Project Title: 0451-002

NLS Project: 86494

Template: SAT2W Printed: 12/30/2004 09:14

Sample: 358937 MW-3	Collected: 12/16/04	Analyzed:	12/28/04 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	5000	580	1900	
Bromobenzene	ND	ug/L	5000	640	2100	
Bromochloromethane	ND	ug/L	5000	550	1800	
Bromodichloromethane	ND	ug/L	5000	950	3500	
Bromoform	ND	ug/L -	5000	510	1700	
Bromomethane	ND	ug/L	5000	1600	5000	
n-Butylbenzene	ND	ug/L	5000	930	3500	
sec-Butylbenzene	ND	ug/L	5000	790	2600	
tert-Butylbenzene	ND	ug/L	5000	700	2300	
Carbon Tetrachloride	ND	ug/L	5000	770	2600	
Chlorobenzene	ND	ug/L	5000	950	3400	
Chloroethane	. ND	ug/L	5000	3400	12000	
Chloroform	. ND	ug/L	5000	610	2000	•
Chloromethane	ND	ug/L	5000	610	2000	
2-Chlorotoluene	ND	ug/L	5000	630	2100	
4-Chlorotoluene	ND	ug/L	5000	660	2200	
Dibromochloromethane	ND	ug/L	5000	820	2700	
1,2-Dibromo-3-Chloropropane	· ND	ug/L	5000	1200	4200	
1,2-Dibromoethane	. ND	ug/L	5000	810	2700	
Dibromomethane	ND	ug/L	5000	780	2900	
1.2-Dichlorobenzene	ND	ug/L	5000	630	2300	
I,3-Dichlorobenzene	ND	ug/L	5000	520	1700	
I.4-Dichlorobenzene	ND	ug/L	5000	970	3200	
Dichlorodifluoromethane	ND	ug/L	5000	770	2600	***********
1.1-Dichloroethane	ND	ug/L	5000	660	2200	
1.2-Dichloroethane	ND	ug/L	5000	660	2200	,
1,1-Dichloroethene	ND ND	ug/L	5000	1200	4400	
cis-1,2-Dichloroethene	6800	ug/L	5000	660	2200	***************************************
rans-1,2-Dichloroethene	ND ND	ug/L	5000	540	1800	
	ND ND	ug/L	5000	630	2100	
1,2-Dichloropropane	ND ND	ug/L	5000	740	2500	
1,3-Dichloropropane	ND ND	ug/L	5000	820	2700	
2,2-Dichloropropane		ug/L		860	2900	
1,1-Dichloropropene	ND ND	ug/L	5000 5000	1000	3900	
sis-1,3-Dichloropropene	ND ND	ug/L	5000	730	2400	
rans-1,3-Dichloropropene	ND ND	ug/L	and the second s	710	2300	************
Ethylbenzene	ND ND	ug/L	5000	1200	4400	
-lexachlorobutadiene	ND	ug/L	5000			
sopropylbenzene	ND	ug/L	5000	610	2000	
o-Isopropyltoluene	ND.	ug/L	5000	580	1900	
Methylene chloride	ND	ug/L	5000	520	1700	
Naphthalene	ND ND	ug/L	5000	820	3000	
n-Propylbenzene	ND	ug/L	5000	850	2800	
ortho-Xylene	ND.	ug/L	5000	670	2200	
Styrene	ND	ug/L	5000	700	2300	
1,1,1,2-Tetrachloroethane	ND	ug/L	5000	820	2700	
,1,2,2-Tetrachloroethane	ND ND	ug/L	5000	1000	3300	
etrachloroethene	34000	ug/L	5000	670	2200	
Foluene	ND	ug/L	5000	1000	3900	

Customer: NewFields Companies LLC
Project Description: Thomas Ft. Atkinson
Project Title: 0451-002

NLS Project: 86494

Template: SAT2W Printed: 12/30/2004 09:14

Sample: 358937 MW-3	Collected: 12/16/04	Analyzed:	12/28/04 -		,	
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	5000	870	3200	
1,2,4-Trichlorobenzene	ND	ug/L	5000	530	1900	
1,1,1-Trichloroethane	ND	ug/L	5000	720	2400	Mad 95. 1.1.1
1,1,2-Trichloroethane	ND	ug/L	5000	690	2300	The state of the s
Trichloroethene	17000	ug/L	5000	590	1900	
Trichlorofluoromethane	ND	ug/L	5000	730	2400	Harma Million II. I. I. I. I. I. I. I. I. I. I. I. I.
1,2,3-Trichloropropane	, ND	ug/L	5000	1100	3800	
1,2,4-Trimethylbenzene	ND	ug/L	5000	720	2400	
1,3,5-Trimethylbenzene	ND	ug/L	5000	610	2000	The second secon
Vinyl chloride	ND	ug/L	5000	820	3000	
meta,para-Xylene	ND	ug/L	5000	1300	4400	2 C T T T T T T T T T T T T T T T T T T
MTBE	ND	ug/L	5000	720	2400	
Isopropyl ether	ND	ug/L	5000	670	2200	
Dibromofluoromethane (SURR**)	102%	The second section of the section of the sect				
Toluene-d8 (SURR**)	105%					
1-Bromo-4-Fluorobenzene (SURR**)	100%			The second secon		

Check standard recovery was outside QC limits for Bromomethane at 72%.

Page 8 of 18

Customer: NewFields Companies LLC
Project Description: Thomas Ft. Atkinson
Project Title: 0451-002

NLS Project: 86494

Template: SAT2W Printed: 12/30/2004 09:14

Sample: 358938 MW-4	Collected: 12/16/04	Analyzed: 12/28/04 -			•	
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	500	58	190	
Bromobenzene	ND	ug/L	500	64	210	
Bromochloromethane	ND	ug/L	500	55	180	
Bromodichloromethane	ND	ug/L	500	95	350	
Bromoform	ND	ug/L	500	51	170	
Bromomethane	ND	ug/L	500	160	500	
n-Butylbenzene	ND	ug/L	500	93	350	ATTICON TO THE PARTY OF THE PAR
sec-Butylbenzene	ND	ug/L	500	79	260	
tert-Butylbenzene	ND	ug/L	500	70	230	
Carbon Tetrachloride	ND	ug/L	500	77	260	
Chlorobenzene	ND	ug/L	500	95	340	
Chloroethane	ND	ug/L	500	340	1200	1-17
Chloroform	. ND	ug/L	500	61	200	
Chloromethane	ND	ug/L	500	61	200	****
Chlorotoluene	· ND	ug/L	500	63	210	
2-Chlorotoluene 4-Chlorotoluene	ND	ug/L	500	66	220	
Dibromochloromethane	ND	ug/L	500	82	270	
1,2-Dibromo-3-Chloropropane	ND ND	ug/L	500	120	420	
	ND ND	ug/L	500	81	270	
1,2-Dibromoethane	, ND		500	78	290	
Dibromomethane	ND ND	ug/L	500	63	230	
1,2-Dichlorobenzene		ug/L	500	52	170	
1,3-Dichlorobenzene	ND ND	ug/L	500	97	320	
1,4-Dichlorobenzene		ug/L			260	
Dichlorodifluoromethane	ND ND	ug/L	500 500	77 66	220	
1,1-Dichloroethane	. ND	ug/L				
1,2-Dichloroethane	ND	ug/L	500	66	220	
1,1-Dichloroethene	ND	ug/L	500	120	440	
cis-1,2-Dichloroethene	ND	ug/L	500	66	220	
trans-1,2-Dichloroethene	ND .	ug/L	500	54	180	
1,2-Dichloropropane	ND	ug/L	500	63	210	
1,3-Dichloropropane	ND	ug/L	500	74	250	
2,2-Dichloropropane	ND	ug/L	500	82	270	
1,1-Dichloropropene	ND	ug/L	500	86	290	
cis-1,3-Dichloropropene	ND	ug/ L	500	100	390	W
trans-1,3-Dichloropropene	, ND	ug/L	500	73	240	
Ethylbenzene	ND	ug/L	500	71	230	
Hexachlorobutadiene	ND	ug/L	500	120	440	
sopropylbenzene	ND	ug/L	500	61	200	
p-Isopropyltoluene	ND	ug/L	500	58	190	
Methylene chloride	ND	ug/L	500	52	170	
Naphthalene	ND	ug/L	500	82	300	
n-Propylbenzene	ND	ug/L	500	85	280	
ortho-Xylene	ND	ug/L	500	67	220	
Styrene	ND	ug/L	500	70	230	
1,1,1,2-Tetrachloroethane	ND	ug/L	500	82	270	
1,1,2,2-Tetrachloroethane	ND	ug/L	500	100	330	
Tetrachloroethene	2500	ug/L	500	67	220	
Toluene	ND	ug/L	500	100	390	

Page 9 of 18

Customer: NewFields Companies LLC NLS Project: 86494

Project Description: Thomas Ft. Atkinson
Project Title: 0451-002 Template: SAT2W Printed: 12/30/2004 09:14

Sample: 358938 MW-4	Collected: 12/16/04	Analyzed:	12/28/04 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	500	87	320	
1,2,4-Trichlorobenzene	ND	ug/L	500	53	190	
1,1,1-Trichloroethane	ND	ug/L	500	72	240	
1,1,2-Trichloroethane	ND	ug/L	500	69	230	
Trichloroethene	10000	ug/L	500	59	190	
Trichlorofluoromethane	ND	ug/L	500	73	240	
1,2,3-Trichloropropane	ND	ug/L	500	110	380	
1,2,4-Trimethylbenzene	ND	ug/L_	500	72	240	
1,3,5-Trimethylbenzene	ND	ug/L	500	61	200	
Vinyl chloride	ŅD	ug/L	500	82	300	
meta,para-Xylene	- ND	ug/L	500	130	440	
MTBE	: ND	ug/L	500	72	240	
Isopropyl ether	· · · ND	ug/L	500	67	220	
Dibromofluoromethane (SURR**)	100%	The state of the s				
Toluene-d8 (SURR**)	96%	Name of the Party	Control of the Contro	The second section of the second seco		
1-Bromo-4-Fluorobenzene (SURR**)	92%					

Check standard recovery was outside QC limits for Bromomethane at 72%.

Page 10 of 18

Page 11 of 18

Customer: NewFields Companies LLC
Project Description: Thomas Ft. Atkinson
Project Title: 0451-002

Template: SAT2W Printed: 12/30/2004 09:14

ample: 358939 MW-4A	Collected: 12/16/04	Analyzed:	12/28/04	-		
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	6.0	ug/L	1	0.12	0.38	
Bromobenzene	ND	ug/L	1	0.13	0.42	
Bromochloromethane	ND	ug/L	1	0.11	0.37	
Bromodichloromethane	ND	ug/L	1	0.19	0.70	
Bromoform	ND	ug/L	1	0.10	0.34	
Bromomethane	ND	ug/L	1	0.32	1.0	
n-Butylbenzene	· ND	ug/L	1	0.19	0.70	
sec-Butylbenzene	ND	ug/L	1	0.16	0.52	
ert-Butylbenzene	. ND	ug/L	1	0.14	0.47	
Carbon Tetrachloride	. ND	ug/L	1	0.15	0.51	
Chlorobenzene	ND	ug/L	1	0.19	0.68	
Chloroethane	· ND	ug/L	1	0.68	2.5	
Chloroform	ND .	ug/L	1	0.12	0.41	
Chloromethane	ND	ug/L	1	0.12	0.41	
2-Chlorotoluene	ND	ug/L	1	0.13	0.42	
l-Chlorotoluene	ND.	ug/L	1	0.13	0.44	
Dibromochloromethane	ND	ug/L	1	0.16	0.55	
1,2-Dibromo-3-Chloropropane	ND	ug/L	1	0.25	0.83	
I,2-Dibromoethane	ND.	ug/L	1	0.16	0.54	
Dibromomethane	ND	ug/L	1	0.16	0.57	
,2-Dichlorobenzene	ND	ug/L	1	0.13	0.46	
.3-Dichlorobenzene	ND	ug/L	1	0.10	0.34	M
.4-Dichlorobenzene	ND	ug/L	1	0.19	0.64	
Dichlorodifluoromethane	[0.49]	ug/L	1	0.15	0.51	
.1-Dichloroethane	ND	ug/L	1	0.13	0.44	
I.2-Dichloroethane	ND	ug/L	1	0.13	0.44	
1.1-Dichloroethene	ND	ug/L	1	0.24	0.88	***************************************
cis-1,2-Dichloroethene	0.89	ug/L	1	0.13	0.44	
rans-1,2-Dichloroethene	ND	ug/L	1	0.11	0.36	
1,2-Dichloropropane	ND	ug/L	1	0.13	0.42	
I,3-Dichloropropane	ND	ug/L	1	0.15	0.49	
2,2-Dichloropropane	ND	ug/L	1	0.16	0.55	
l,1-Dichloropropene	ND	ug/L	1	0.17	0.57	
cis-1,3-Dichloropropene	. ND	ug/L	1	0.21	0.78	
rans-1,3-Dichloropropene	ND	ug/L	1	0.15	0.49	
Ethylbenzene	ND	ug/L	1	0.14	0.47	
Hexachlorobutadiene	ND	ug/L	1	0.23	0.88	
sopropylbenzene	ND	ug/L	1	0.12	0.41	***************************************
sopropyloenzene p-Isopropyltoluene	ND	ug/L	1	0.12	0.39	
Methylene chloride	ND	ug/L	1	0.10	0.34	
	ND	ug/L	1	0.16	0.60	
Naphthalene	ND	ug/L	1	0.17	0.56	
n-Propylbenzene	ND	ug/L		0.17	0.44	
ortho-Xylene	ND ND	ug/L	1	0.13	0.47	
Styrene	ND ND	ug/L ug/L	1	0.14	0.55	
,1,1,2-Tetrachloroethane	ND ND	ug/L ug/L	1	0.10	0.67	
,1,2,2-Tetrachloroethane	7.1	ug/L	1	0.20	0.45	
Fetrachloroethene Foluene	[0.25]	ug/L ug/L	1	0.13	0.43	

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2) panies LLC NLS Project: 86494

Customer: NewFields Companies LLC

Project Description: Thomas Ft. Atkinson Project Title: 0451-002

Template: SAT2W Printed: 12/30/2004 09:14

Sample: 358939 MW-4A	Collected: 12/16/04	Analyzed: 12/28/04 -				
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	1	0.17	0.64	
1,2,4-Trichlorobenzene	ND	ug/L	1	0.11	0.37	
1,1,1-Trichloroethane	ND	ug/L	1	0.14	0.48	
1,1,2-Trichloroethane	ND	ug/L	1	0.14	0.46	
Trichloroethene	23	ug/L	2	0.23	0.78	
Trichlorofluoromethane	ND	ug/L	1	0.15	0.49	The second secon
1,2,3-Trichloropropane	ND	ug/L	1	0.23	0.76	
1,2,4-Trimethylbenzene	ND	ug/L	1	0.14	0.48	
1,3,5-Trimethylbenzene	ND	ug/L	1	0.12	0.41	
Vinyl chloride	ND	ug/L	1	0.16	0.61	
meta,para-Xylene	· ND	ug/L	1	0.26	0.88	
MTBE	ND	ug/L	1	0.14	0.48	
Isopropyl ether	· · · ND	ug/L	1	0.13	0.45	PERSONAL PROPERTY AND ASSESSMENT OF THE PERSON OF THE PERS
Dibromofluoromethane (SURR**)	98%				7974 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	
Toluene-d8 (SURR**)	101%					The state of the s
1-Bromo-4-Fluorobenzene (SURR**)	96%				Property and the state of the s	

Check standard recovery was outside QC limits for Bromomethane at 72%.

Page 12 of 18

NLS Project: 86494 **Customer: NewFields Companies LLC**

Project Description: Thomas Ft. Atkinson Project Title: 0451-002 Template: SAT2W Printed: 12/30/2004 09:14

Sample: 358940 MW-5	Collected: 12/16/04	Analyzed: 1	2/28/04 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	1	0.12	0.38	
Bromobenzene	ND	ug/L	1	0.13	0.42	
Bromochloromethane	ND	ug/L	1	0.11	0.37	
Bromodichloromethane	ND	ug/L	1	0.19	0.70	
Bromoform	ND	ug/L	1	0.10	0.34	
Bromomethane	ND	ug/L	1	0.32	1.0	
n-Butylbenzene	ND	ug/L	1	0.19	0.70	
sec-Butylbenzene	ND	ug/L	1	0.16	0.52	
tert-Butylbenzene	ND	ug/L	1	0.14	0.47	
Carbon Tetrachloride	ND	ug/L	1	0.15	0.51	
Chlorobenzene	ND	ug/L	1	0.19	0.68	
Chloroethane	ND	ug/L	1	0.68	2.5	2
Chloroform	ND	ug/L	1	0.12	0.41	
Chloromethane	ND	ug/L	1	0.12	0.41	
2-Chlorotoluene	ND	ug/L	1	0.13	0.42	
4-Chlorotoluene	ND .	ug/L	1	0.13	0.44	
Dibromochloromethane	ND	ug/L	1	0.16	0.55	
1,2-Dibromo-3-Chloropropane	ND	ug/L	1	0.25	0.83	
1,2-Dibromoethane	ND	ug/L	1	0.16	0.54	A ARAVII
Dibromomethane	· · · ND	ug/L	1	0.16	0.57	
1,2-Dichlorobenzene	ND	ug/L	1	0.13	0.46	
1,3-Dichlorobenzene	ND	ug/L	1	0.10	0.34	AND THE RESIDENCE OF THE PARTY
1,3-Dichlorobenzene	ND ND	ug/L	1	0.19	0.64	
Dichlorodifluoromethane	ND ND	ug/L	1	0.15	0.51	1
the state of the s	ND ND	ug/L	1	0.13	0.44	
1,1-Dichloroethane	ND ND	ug/L	1	0.13	0.44	-
1,2-Dichloroethane	ND ND		1	0.13	0.88	
1,1-Dichloroethene	[0.21]	ug/L ug/L	1	0.24	0.66	
cis-1,2-Dichloroethene			Annex Commence Borrows	0.13	0.36	
trans-1,2-Dichloroethene	ND ND	ug/L	1			
1,2-Dichloropropane	ND	ug/L	1	0.13	0.42	
1,3-Dichloropropane	ND	ug/L	1	0.15	0.49	
2,2-Dichloropropane	ND ND	ug/L	1	0.16	0.55	
1,1-Dichloropropene	ND ND	ug/L	1	0.17	0.57	
cis-1,3-Dichloropropene	ND	ug/L	1	0.21	0.78	
trans-1,3-Dichloropropene	ND	ug/L	11	0.15	0.49	
Ethylbenzene	ND	ug/L	1	0.14	0.47	
Hexachlorobutadiene	ND	ug/L	1	0.23	0.88	
Isopropylbenzene	ND	ug/L	1	0.12	0.41	
p-Isopropyltoluene	ND	ug/L	1	0.12	0.39	
Methylene chloride	ND	ug/L	. 1	0.10	0.34	
Naphthalene	ND	ug/L	1	0.16	0.60	
n-Propylbenzene	ND	ug/L	11	0.17	0.56	
ortho-Xylene	ND	ug/L	1	0.13	0.44	
Styrene	ND	ug/L	1	0.14	0.47	
1,1,1,2-Tetrachloroethane	ND	ug/L	1	0.16	0.55	
1,1,2,2-Tetrachloroethane	ND	ug/L	1	0.20	0.67	
Tetrachloroethene	2.3	ug/L	1	0.13	0.45	
Toluene	ND	ug/L	1	0.20	0.77	

Page 13 of 18

Customer: NewFields Companies LLC NLS Project: 86494

Project Description: Thomas Ft. Atkinson Project Title: 0451-002 Template: SAT2W Printed: 12/30/2004 09:14

Sample: 358940 MW-5 ANALYTE NAME	Collected: 12/16/04	Analyzed: 1	2/28/04 -			
	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	1	0.17	0.64	1,195,000
1,2,4-Trichlorobenzene	ND	ug/L	1	0.11	0.37	
1,1,1-Trichloroethane	ND	ug/L	1	0.14	0.48	
1,1,2-Trichloroethane	. ND	ug/L	1	0.14	0.46	
Trichloroethene	1.2	ug/L	1	0.12	0.39	
Trichlorofluoromethane	ND	ug/L	1	0.15	0.49	
1,2,3-Trichloropropane	ND	ug/L	1	0.23	0.76	
1,2,4-Trimethylbenzene	ND	ug/L	1	0.14	0.48	
1,3,5-Trimethylbenzene	· ND	ug/L	1	0.12	0.41	
Vinyl chloride	ND	ug/L	1	0.16	0.61	The second secon
meta,para-Xylene	· ND	ug/L	1	0.26	0.88	
MTBE	, ND	ug/L	1	0.14	0.48	
Isopropyl ether	ND	ug/L	1	0.13	0.45	The state of the s
Dibromofluoromethane (SURR**)	102%	The state of the s				M1.11.777
Toluene-d8 (SURR**)	107%					The state of the s
1-Bromo-4-Fluorobenzene (SURR**)	99%					

Check standard recovery was outside QC limits for Bromomethane at 72%.

Page 14 of 18

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2) panies LLC NLS Project: 86494 Page 15 of 18

Customer: NewFields Companies LLC
Project Description: Thomas Ft. Atkinson
Project Title: 0451-002 Template: SAT2W Printed: 12/30/2004 09:14

Sample: 358941 Dup-1	Collected: 12/16/04	Analyzed:	12/29/04 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	500	58	190	
Bromobenzene	ND	ug/L	500	64	210	
Bromochloromethane	ND	ug/L	500	55	180	
Bromodichloromethane	ND	ug/L	500	95	350	
Bromoform	ND	ug/L	500	51	170	
Bromomethane	ND	ug/L	500	160	500	
n-Butvlbenzene	· ND	ug/L	500	93	350	
sec-Butylbenzene	·ND	ug/L	500	79	260	
tert-Butylbenzene	ND	ug/L	500	70	230	
Carbon Tetrachloride	ND	ug/L	500	77	260	
Chlorobenzene	ND	ug/L	500	95	340	
Chloroethane	ND .	ug/L	500	340	1200	
Chloroform	ND .	ug/L	500	61	200	
Chloromethane	ND ND	ug/L	500	61	200	
Unioromethane 2-Chlorotoluene	ND ND	ug/L	500	63	210	
Marine Ma	· ND	ug/L	500	66	220	
4-Chlorotoluene	ND ND	ug/L	500	82	270	
Dibromochloromethane	ND	ug/L	500	120	420	
1,2-Dibromo-3-Chloropropane	ND	ug/L	500	81	270	.,
1,2-Dibromoethane	ND ND	ug/L	500	78	290	
Dibromomethane	ND ND	ug/L	500	63	230	
1,2-Dichlorobenzene	ND ND	ug/L	500	52	170	
1,3-Dichlorobenzene	ND ND	ug/L	500	97	320	
1,4-Dichlorobenzene			500	77	260	
Dichlorodifluoromethane	ND ND	ug/L	500	66	220	
1,1-Dichloroethane	ND	ug/L			220	
1,2-Dichloroethane	ND	ug/L	500	66		
1,1-Dichloroethene	: ND	ug/L	500	120	440	
cis-1,2-Dichloroethene	ND	ug/L	500	66	220	
trans-1,2-Dichloroethene	ND	ug/L	500	54	180	
1,2-Dichloropropane	ND.	ug/L	500	63	210	
1,3-Dichloropropane	ND	ug/L	500	74	250	
2,2-Dichloropropane	ND	ug/L	500	82	270	
1,1-Dichloropropene	ND	ug/L	500	86	290	
cis-1,3-Dichloropropene	ND	ug/L	500	100	390	
rans-1,3-Dichloropropene	ND	ug/L	500	73	240	***************************************
Ethylbenzene	ND	ug/L	500	71	230	
Hexachlorobutadiene	ND	ug/L	500	120	440	
sopropylbenzene	ND	ug/L	500	61	200	
p-Isopropyltoluene	ND	ug/L	500	58	190	
Methylene chloride	ND	ug/L	500	52	170	
Naphthalene	ND	ug/L	500	82	300	
n-Propylbenzene	ND	ug/L	500	85	280	
ortho-Xylene	ND	ug/L	500	67	220	
Styrene	ND	ug/L	500	70	230	
1,1,1,2-Tetrachloroethane	. ND	ug/L	500	82	270	
1,1,2,2-Tetrachloroethane	ND	ug/L	500	100	330	
Tetrachloroethene	2300	ug/L	500	67	220	
Toluene	ND	ug/L	500	100	390	

Customer: NewFields Companies LLC NLS Project: 86494

Project Description: Thomas Ft. Atkinson Project Title: 0451-002

Sample: 358941 Dup-1	Collected: 12/16/04	Analyzed:	12/29/04 -	0.5		
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	500	87	320	The state of the second
1,2,4-Trichlorobenzene	ND	ug/L	500	53	190	
1,1,1-Trichloroethane	ND	ug/L	500	72	240	
1,1,2-Trichloroethane	ND	ug/L	500	69	230	
Trichloroethene	8900	ug/L	500	59	190	
Trichlorofluoromethane	ND	ug/L	500	73	240	
1,2,3-Trichloropropane	ND	ug/L	500	110	380	
1,2,4-Trimethylbenzene	ND	ug/L	500	72	240	
1,3,5-Trimethylbenzene	. ND	ug/L	500	61	200	100000000000000000000000000000000000000
Vinyl chloride	ND	ug/L	500	82	300	
meta,para-Xylene	ND	ug/L	500	130	440	
MTBE	ND	ug/L	500	72	240	The state of the s
Isopropyl ether	ND	ug/L	500	67	220	trock a base do a colo PE III or and consider to sales at a consecutive of
Dibromofluoromethane (SURR**)	100%					
Toluene-d8 (SURR**)	101%	and the control of the state of	M. J. L			
1-Bromo-4-Fluorobenzene (SURR**)	94%					

Page 16 of 18

Customer: NewFields Companies LLC NLS Project: 86494

Project Description: Thomas Ft. Atkinson

Sample: 358942 Collected: 12/16/04 Trip Blank Analyzed: 12/24/04 -ANALYTE NAME RESULT UNITS DIL LOD LOQ ND 1 0.12 0.38 Benzene ug/L ND 0.13 0.42 Bromobenzene ug/L Bromochloromethane ND ug/L 0.11 0.37 Bromodichloromethane ND 0.19 0.70 ug/L Bromoform ND 0.10 0.34 ug/L Bromomethane ND ug/L 0.32 1.0 ND n-Butylbenzene ug/L 0.19 0.70 sec-Butylbenzene ND 0.16 0.52 ug/L tert-Butylbenzene ND 0.14 0.47 ug/L ND Carbon Tetrachloride ug/L 0.15 0.51 Chlorobenzene ND ug/L 0.19 0.68 Chloroethane ND ug/L 0.68 2.5 Chloroform ND ug/L 0.12 0.41 Chloromethane ND 0.41 ug/L 0.12 2-Chlorotoluene ND ug/L 0.13 0.42 4-Chlorotoluene ND 0.13 0.44 ug/L Dibromochloromethane ND ug/L 0.16 0.55 1,2-Dibromo-3-Chloropropane ND 0.25 0.83 ug/L 1,2-Dibromoethane ND 0.54 0.16 ug/L Dibromomethane ND ug/L 0.16 0.57 ND 1.2-Dichlorobenzene ug/L 1 0.13 0.46 ND ug/L 1,3-Dichlorobenzene 0.10 0.34 1.4-Dichlorobenzene ND ug/L 0.19 0.64 Dichlorodifluoromethane ND 0.15 0.51 ug/L 1.1-Dichloroethane ND ug/L 0.13 0.44 ND 1.2-Dichloroethane ug/L 1 0.13 0.44 ND 0.24 0.88 1,1-Dichloroethene ug/L cis-1,2-Dichloroethene ND ug/L 0.13 0.44 ND trans-1.2-Dichloroethene 0.11 0.36 ug/L 1,2-Dichloropropane ND 0.13 0.42 ug/L 1,3-Dichloropropane ND ug/L 0.15 0.49 2,2-Dichloropropane ND ug/L 0.16 0.55 1,1-Dichloropropene ND 0.17 0.57 ug/L cis-1,3-Dichloropropene ND 0.21 0.78 ug/L trans-1,3-Dichloropropene ND 0.15 0.49 ug/L Ethylbenzene ND 0.14 0.47 ug/L Hexachlorobutadiene ND ug/L 0.23 0.88 Isopropylbenzene ND 0.12 0.41 ug/L p-Isopropyltoluene ND 0.12 0.39 ug/L Methylene chloride ND ug/L 0.10 0.34 Naphthalene ND 1 0.16 0.60 ug/L n-Propylbenzene ND ug/L 0.17 0.56 ND ortho-Xylene ug/L 1 0.13 0.44 ND 1 0.14 0.47 Styrene ug/L 1,1,1,2-Tetrachloroethane ND ug/L 1 0.16 0.55 ND ug/L 1 0.20 0.67 1.1.2.2-Tetrachloroethane ND 0.13 0.45 Tetrachloroethene ug/L ND 0.20 0.77 Toluene ug/L

Page 17 of 18

Customer: NewFields Companies LLC

NLS Project: 86494

Project Description: Thomas Ft. Atkinson Project Title: 0451-002

Template: SAT2W Printed: 12/30/2004 09:14

Page 18 of 18

Sample: 358942 Trip Blank	Collected: 12/16/04	Analyz	ed: 12/24	/04 -		
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	1	0.17	0.64	
1,2,4-Trichlorobenzene	ND	ug/L	1	0.11	0.37	
1,1,1-Trichloroethane	ND	ug/L	1	0.14	0.48	A State of the Sta
1,1,2-Trichloroethane	ND	ug/L	1	0.14	0.46	
Trichloroethene	ND	ug/L	1	0.12	0.39	100 t 1
Trichlorofluoromethane	ND	ug/L	1	0.15	0.49	
1,2,3-Trichloropropane	ND	ug/L	1	0.23	0.76	
1,2,4-Trimethylbenzene	ND	ug/L	1	0.14	0.48	
1,3,5-Trimethylbenzene	ND	ug/L	1	0.12	0.41	ere control to the control of the co
Vinyl chloride	ND	ug/L	1	0.16	0.61	
meta,para-Xylene	ND	ug/L	1	0.26	0.88	
MTBE	ND	ug/L	1	0.14	0.48	*. 141111
Isopropyl ether	ND	ua/L	1	0.13	0.45	
Dibromofluoromethane (SURR**)	98%					
Toluene-d8 (SURR**)	104%					
1-Bromo-4-Fluorobenzene (SURR**)	97%					

Surrogates are used to evaluate a method's Quality Control.

SAMPLE COLLECTION AND CHAIN OF CUSTODY RECORD NORTHERN LAKE SERVICE, INC. Wisconsin Lab Cert. No. 721026460 Analytical Laboratory and Environmental Services CLIENT Now Fields WI DATCP 105-000330 400 North Lake Avenue • Crandon, WI 54520-1298 ADDRESS Tel: (715) 478-2777 • Fax: (715) 478-3060 CITY USE BOXES BELOW: Indicate Y or N if GW Sample is field filtered. ANALYZE PER ORDER OF ANALYSIS MATRIX: PROJECT DESCRIPTION / NO. SW = surface water Indicate G or C If WW Sample is Grab or Composite. how-s-Ft.Atkinson GW = groundwater DNR FID # DNR LICENSE # DW = drinking water TIS = tissue CONTACT PHONE AIR = air SOIL = soil PURCHASE ORDER NO. SED = sediment PROD = product NO. 73938 SL = sludge OTHER COLLECTION REMARKS (i.e. DNR Well ID #) COLLECTION MATRIX SAMPLE ID NO. LAB. NO. DATE (See above) TIME 00 GW 0.50 0900 0915 015 1100 045 0800 1130 10. COLLECTED BY (signature) CUSTODY SEAL NO. (IF ANY) DATE/TIME REPORT TO Mark M. Collock RELINQUISHED BY (signature) RECEIVED BY (signature) DATE/TIME & Knresi **DISPATCHED BY (signature)** METHOD OF TRANSPORT DATE/TIME INVOICE TO RECEIVED AT NLS BY (signature) DATE/TIME CONDITION TEMP. 12/17/04 onke 5 acres REMARKS & OTHER INFORMATION COOLER# PRESERVATIVE: N = nitric acid WDNR FACILITY NUMBER E-MAIL ADDRESS $NP = no preservative \stackrel{?}{\longleftarrow} Z = zinc acetate$ HA hydrochloric & ascorbic acid

S = sulfuric acid
IMPORTANT:

- 1. TO MEET REGULATORY REQUIREMENTS, THIS FORM MUST BE COMPLETED IN DETAIL AND INCLUDED IN THE COOLER CONTAINING THE SAMPLES DESCRIBED.
- 2. PLEASE USE ONE LINE PER SAMPLE, NOT PER BOTTLE.
- 3. RETURN THIS FORM WITH SAMPLES CLIENT MAY KEEP PINK COPY.
- 4. PARTIES COLLECTING SAMPLE, LISTED AS REPORT TO AND LISTED AS INVOICE TO AGREE TO STANDARD TERMS & CONDITIONS ON REVERSE.

Appendix D

Laboratory Reports

June 2005 Groundwater Samples

NORTHERN LAKE SERVICE, INC.

Analytical Laboratory and Environmental Services 400 North Lake Avenue - Crandon, WI 54520

Ph: (715)-478-2777 Fax: (715)-478-3060

Client:

NewFields Companies LLC Attn: Mark S McColloch PG

2110 Luann Lane #101 Madison,WI 53713 3098 **ANALYTICAL REPORT**

WDNR Laboratory ID No. 721026460

WDATCP Laboratory Certification No. 105-330 EPA Laboratory ID No. WI00034

Printed: 06/07/05 Code: S

Page 1 of 2

89941

NLS Project:

NLS Customer: 93437

Fax: 608 442 9013

Phone: 608 442 5223

PO# 0451-002-800

Project: DB Oak-Thomas Ind						PO # 0451-002-800			
MW-1 NLS ID: 372646 Ref. Line 1 COC 79956 MW-1 Matrix: GW Collected: 06/01/05 09:00 Received: 06/02/05 Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed	Method	Lab	
VOCs (water) by EPA 8260	see attached		5.,01,5,1		204	06/05/05	SW846 8260	721026460	
MW-2 NLS ID: 372647 Ref. Line 2 COC 79956 MW-2 Matrix: GW Collected: 06/01/05 09:55 Received: 06/02/05 Parameter VOCs (water) by EPA 8260	Result see attached	Units	Dilution	LOD	LOQ	Analyzed 06/05/05	Method SW846 8260	L ab 721026460	
MW-2A NLS ID: 372648 Ref. Line 3 COC 79956 MW-2A Matrix: GW Coilected: 06/01/05 10:15 Received: 06/02/05 Parameter VOCs (water) by EPA 8260	Result see attached	Units	Dilution	LOD	LOQ	Analyzed 06/06/05		Lab 721026460	
MW-3 NLS ID: 372649 Ref. Line 4 COC 79956 MW-3 Matrix: GW Collected: 06/01/05 11:10 Received: 06/02/05 Parameter VOCs (water) by EPA 8260	Result see attached	Units	Dilution	LOD	LOQ	Analyzed 06/06/05	Method SW846 8260	Lab 721026460	
Ref. Line 5 COC 79956 MW-3A Matrix: GW Collected: 06/01/05 11:30 Received: 06/02/05 Parameter VOCs (water) by EPA 8260	Result see attached	Units	Dilution	LOD	LOQ	Analyzed 06/06/05	Method SW846 8260	Lab 721026460	
MW-4 NLS ID: 372651 Ref. Line 6 COC 79956 MW-4 Matrix: GW Collected: 06/01/05 10:35 Received: 06/02/05 Parameter VOCs (water) by EPA 8260	Result see attached	Units	Dilution	LOD	LOQ	Analyzed 06/05/05	Method SW846 8260	Lab 721026460	
MW-4A NLS ID: 372652 Ref. Line 7 COC 79956 MW-4A Matrix: GW Collected: 06/01/05 10:40 Received: 06/02/05 Parameter VOCs (water) by EPA 8260	Result see attached	Units	Dilution	LOD	LOQ	Analyzed 06/06/05	Method SW846 8260	Lab 721026460	
MW-5 NLS ID: 372653 Ref. Line 8 COC 79956 MW-5 Matrix: GW Collected: 06/01/05 09:25 Received: 06/02/05 Parameter VOCs (water) by EPA 8260	Result see attached	Units	Dilution	LÐD	LOQ	Analyzed 06/05/05	Method SW846 8260	Lab 721026460	
MW-6 NLS ID: 372654 Ref. Line 9 COC 79956 MW-6 Matrix: GW Collected: 06/01/05 08:25 Received: 06/02/05 Parameter VOCs (water) by EPA 8260	Result see attached	Units	Dilution	LOD	LOQ		Method SW846 8260	Lab 721026460	

NORTHERN LAKE SERVICE, INC.
Analytical Laboratory and Environmental Services

NewFields Companies LLC

Attn: Mark S McColloch PG

400 North Lake Avenue - Crandon, WI 54520 Ph: (715)-478-2777 Fax: (715)-478-3060

ANALYTICAL REPORT

WDNR Laboratory ID No. 721026460

WDATCP Laboratory Certification No. 105-330

EPA Laboratory ID No. WI00034

Printed: 06/07/05 Code: S

Page 2 of 2

NLS Project:

89941 93437

NLS Customer:

Fax: 608 442 9013

Phone: 608 442 5223

PO# 0451-002-800

Project: DB

Client:

DB Oak-Thomas Ind

2110 Luann Lane #101

Madison,WI 53713 3098

MW-6A NLS ID: 372655 Ref. Line 10 COC 79956 MW-6A Matrix: GW Collected: 06/01/05 08:30 Received: 06/02/05 Parameter VOCs (water) by EPA 8260	Result Units see attached	Dilution	LOD	LOQ	Analyzed 06/06/05	Method SW846 8260	Lab 721026460
Dup-1 NLS ID: 372656 Ref. Line 1 COC 79957 Dup-1 Matrix: GW Collected: 06/01/05 09:55 Received: 06/02/05 Parameter VOCs (water) by EPA 8260	Result Units see attached	Dilution	LOD	LOQ	Analyzed 06/06/05	Method SW846 8260	L ab 721026460
Trip blank NLS ID: 372657 Ref. Line COC 79957 Trip blank Matrix: TB Collected: 06/01/05 00:00 Received: 06/02/05 Parameter VOCs (water) by EPA 8260	Result Units see attached	Dilution	LÓD	LOQ	Analyzed 06/06/05	Method SW846 8260	L ab 721026460

Values in brackets represent results greater than or equal to the LOD but less than the LOQ and are within a region of "Less-Certain Quantitation". Results greater than or equal to the LOQ are considered to be in the region of "Certain Quantitation". LOD and/or LOQ tagged with an asterisk(*) are considered Reporting Limits. All LOD/LOQs adjusted to reflect dilution.

LOD = Limit of Detection DWB = Dry Weight Basis LOQ = Limit of Quantitation NA = Not Applicable

MCL = Maximum Contaminant Levels for Drinking Water Samples

ND = Not Detected

1000 ug/L = 1 mg/L

%DWB = (mg/kg DWB) / 10000

Reviewed by:

Authorized by: R. T. Krueger

R. T. Krueger President Customer: NewFields Companies LLC Project Description: DB Oak-Thomas Ind

Project Title: Template: SATW Printed: 06/07/2005 08:55

Sample: 372646 MW-1	Collected: 06/01/05	Analyzed: 06/	04/05 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	1	0.29	0.97	
Bromobenzene	ND	ug/L	1	0.10	0.37	
Bromochloromethane	ND	ug/L	1	0.27	0.89	**************************************
Bromodichloromethane	ND	ug/L	1	0.32	1.1	
Bromoform	ND	ug/L	1	0.28	0.92	
Bromomethane	ND	ug/L	1	0.39	1.3	
n-Butylbenzene	ND	ug/L	1	0.31	1.0	
sec-Butylbenzene	ND	ug/L	1	0.33	1.1	
tert-Butylbenzene	ND	ug/L	1	0.31	1.0	
Carbon Tetrachloride	ND	ug/L	1	0.30	0.98	
Chlorobenzene	ND	ug/L	1	0.21	0.70	
Chloroethane	ND	ug/L	1	1.7	5.7	COMMISSION OF THE PROPERTY AND PROPERTY OF THE
Chloroform	ND	ug/L	1	0.30	0.99	
Chloromethane	ND	ug/L	1	0.24	0.75	
2-Chlorotoluene	ND	ug/L	1	0.39	1.3	-
4-Chlorotoluene	ND	ug/L	1	0.37	1.2	
Dibromochloromethane	ND	ug/L	1	0.29	0.97	
1,2-Dibromo-3-Chloropropane	ND	ug/L	1	0.33	1.1	
1,2-Dibromoethane	ND	ug/L	1	0.30	1.0	
Dibromomethane	ND	ua/L	1	0.32	1.1	mandon minimum
1,2-Dichlorobenzene	ND	ug/L	1	0.28	0.93	
1,3-Dichlorobenzene	ND	ug/L	1	0.24	0.79	
1,4-Dichlorobenzene	ND	ug/L	1	0.23	0.78	
Dichlorodifluoromethane	ND	ug/L	1 .	0.18	0.63	
1.1-Dichloroethane	ND ND	ug/L	1	0.30	0.99	ar which disciplishes and the con-constitutions are constitutions ended the constitution has been
1,2-Dichloroethane	ND	ug/L	1	0.34	1.1	CONTRACTOR DE LA CONTRA
1,1-Dichloroethene	ND	ug/L	1	0.41	1.4	
cis-1,2-Dichloroethene	ND	ug/L	1	0.40	1.3	
trans-1.2-Dichloroethene	ND	ug/L	1	0.35	1.2	
1,2-Dichloropropane	. ND	ug/L	1	0.35	1.2	TO THE PERSON OF
1,3-Dichloropropane	ND	ug/L	1	0.34	1.1	PINCER PARAMETERS IN A STATE OF THE STATE OF
2,2-Dichloropropane	ND	ug/L	1	0.44	1.5	and the same of the same and th
1,1-Dichloropropene	ND	ug/L	1	0.32	1.1	
cis-1,3-Dichloropropene	ND	ug/L	1	0.27	0.89	rentante de la companya de la companya de la companya de la companya de la companya de la companya de la compa
trans-1,3-Dichloropropene	ND	ug/L	1	0.32	1.1	
Ethylbenzene	ND	ug/L	1	0.26	0.87	erritor nonemento en encontrata con entre en encontrata de entre en entre en entre en entre en entre en entre e
Hexachlorobutadiene	ND	ug/L	1	0.41	1.4	
Isopropylbenzene	ND	ug/L	1	0.36	1.2	
p-Isopropyltoluene	ND	ug/L	1 .	0.30	1.0	·
Methylene chloride	ND	ug/L	1	0.43	1.4	
Naphthalene	ND	ug/L	<u> </u>	0.39	1.3	
n-Propylbenzene	ND	ug/L	1	0.34	1.1	مدخل مشد الشاه مليد مد مد مواسيق به او و ايه پرسپاندي و موسود در موسود موسود موسود موسود و به و بادو
ortho-Xylene	ND	ug/L	1	0.27	0.89	
Styrene	ND	ug/L	1	0.32	1.1	
1,1,1,2-Tetrachloroethane	ND ND	ug/L	1	0.32	0.94	
1,1,2,1 etrachioroethane	ND ND	ug/L	1	0.33	1.1	
Tetrachloroethene	ND ND	ug/L ug/L	1	0.33	1.0	
	ND ND	ug/L		0.34	1.1	
Toluene	טא	ug/∟	1	0.34	1.1	

Page 1 of 24

Customer: NewFields Companies LLC Project Description: DB Oak-Thomas Ind NLS Project: 89941 PO # 0451-002-800

Project Title: Template: SATW Printed: 06/07/2005 08:55

Sample: 372646 MW-1	6 MW-1 Collected: 06/01/05		04/05 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	1	0.36	1.2	processing the second s
1,2,4-Trichlorobenzene	ND	ug/L	1	0.37	1.2	
1,1,1-Trichloroethane	ND	ug/L	1	0.27	0.88	
1,1,2-Trichloroethane	ND	ug/L	1	0.42	1.4	
Trichloroethene	ND	ug/L	1	0.25	0.82	
Trichlorofluoromethane	ND	ug/L	1	0.38	1.3	
1,2,3-Trichloropropane	ND	ug/L	1	0.44	1.5	
1,2,4-Trimethylbenzene	ND	ug/L	1	0.31	1.0	
1,3,5-Trimethylbenzene	ND	ug/L	1	0.39	1.3	
Vinyl chloride	ND	ug/L	1	0.11	0.38	
meta,para-Xylene	ND	ug/L	1	0.62	2.1	
MTBE	ND	ug/L	1	0.31	1.0	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Isopropyl Ether	ND	ug/L	1	0.35	1.2	
Dibromofluoromethane (SURR**)	105%					
Toluene-d8 (SURR**)	116%					
1-Bromo-4-Fluorobenzene (SURR**)	112%				A change of a change of the ch	ALL DE SALARIMAN AND AND AND AND AND AND AND AND AND A

Page 2 of 24

Customer: NewFields Companies LLC Project Description: DB Oak-Thomas Ind NLS Project: 89941 PO # 0451-002-800

Project Title: Template: SATW Printed: 06/07/2005 08:55

Sample: 372647 MW-2	Collected: 06/01/05	Analyzed: 06/04/05 -				
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	500	150	480	A LANGE WILLIAM CO. CO. CO. CO. CO. CO. CO. CO. CO. CO.
Bromobenzene	ND	ug/L	500	52	180	Maria (ball and) and a second of the secon
Bromochloromethane	ND	ug/L	500	130	440	
Bromodichloromethane	ND	ug/L	500	160	530	
Bromoform	ND	ug/L	500	140	460	
Bromomethane	ND	ug/L	500	190	650	History and the second
n-Butylbenzene	ND ·	ug/L	500	160	520	
sec-Butylbenzene	ND	ug/L	500	160	550	
tert-Butylbenzene	ND	ug/L	500	150	520	
Carbon Tetrachloride	ND	ug/L	500	150	490	
Chlorobenzene	ND	ug/L	500	100	350	
Chloroethane	ND	ug/L	500	850	2800	
Chloroform	ND .	ug/L	500	150	490	
Chloromethane	ND	ug/L	500	120	380	
2-Chlorotoluene	ND	ug/L	500	200	660	
4-Chlorotoluene	ND	ug/L	500	180	610	terrorenen eran demonsteller och met er demonstelle med eran er er er er er er er er er er er er er
Dibromochloromethane	ND	ug/L	500	150	490	
1,2-Dibromo-3-Chloropropane	ND	ug/L	500	170	550	Transfer transfer of Publish small one work to be a visited to the contract of
1,2-Dibromoethane	ND	ug/L	500	150	500	
Dibromomethane	ND	ug/L	500	160	530	
1,2-Dichlorobenzene	ND	ug/L	500	140	460	
1,3-Dichlorobenzene	ND	ug/L	500	120	390	
1,4-Dichlorobenzene	ND	ug/L	500	120	390	
Dichlorodifluoromethane	ND	ug/L	500	89	320	
1.1-Dichloroethane	ND	ug/L	500	150	500	
1,2-Dichloroethane	ND	ug/L	500	170	570	
1,1-Dichloroethene	ND	ug/L	500	210	680	
cis-1.2-Dichloroethene	3600	ug/L	500	200	670	The second secon
trans-1.2-Dichloroethene	ND	ug/L	500	170	580	**************************************
1,2-Dichloropropane	ND	ug/L	500	170	580	
1,3-Dichloropropane	ND	ug/L	500	170	560	THE RESERVE OF THE PROPERTY OF
2,2-Dichloropropane	ND	ug/L	500	220	730	
1,1-Dichloropropene	ND ND	ug/L	500	160	540	
cis-1,3-Dichloropropene	ND	ug/L	500	130	450	altario de la companya del la companya de la compan
trans-1,3-Dichloropropene	ND	ug/L	500	160	540	
Ethylbenzene	ND	ug/L	500	130	430	
Hexachlorobutadiene	ND ND	ug/L	500	210	690	
Isopropylbenzene	ND	ug/L	500	180	610	THE RESIDENCE SERVICES AND THE PROPERTY OF THE
p-Isopropyltoluene	ND	ug/L	500	150	510	
Methylene chloride	ND	ug/L	500	210	710	
Naphthalene	ND	ug/L	500	200	650	
n-Propylbenzene	ND	ug/L	500	170	560	
ortho-Xylene	ND	ug/L	500	130	440	
Styrene	ND	ug/L	500	160	530	m Principality (1904)
1,1,1,2-Tetrachloroethane	ND ND	ug/L	500	140	470	
1,1,2,2-Tetrachloroethane	ND	ug/L	500	160	550	
	ND	ug/L	500	150	510	
Tetrachloroethene	Kil I					

Page 3 of 24

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000) panies LLC NLS Project: 89941 PO # 0451-002-800

Customer: NewFields Companies LLC Project Description: DB Oak-Thomas Ind

Template: SATW Printed: 06/07/2005 08:55 Project Title:

Sample: 372647 MW-2	Collected: 06/01/05	Analyzed: 06/	04/05 -			-
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	500	180	610	
1,2,4-Trichlorobenzene	ND	ug/L	500	180	610	- hander of the second of the
1,1,1-Trichloroethane	ND	ug/L	500	130	440	
1,1,2-Trichloroethane	ND	ug/L	500	210	700	and the second s
Trichloroethene	[170]	ug/L	500	120	410	
Trichlorofluoromethane	ND	ug/L	500	190	640	
1,2,3-Trichloropropane	ND	ug/L	500	220	730	
1,2,4-Trimethylbenzene	ND	ug/L	500	150	510	THE COLUMN TWO IS NOT THE WAY TO SEE THE COLUMN THE COL
1,3,5-Trimethylbenzene	ND	ug/L	500	200	650	
Vinyl chloride	ND	ug/L	500	53	190	
meta,para-Xylene	ND	ug/L	500	310	1000	
MTBE	ND	ug/L	500	150	510	
Isopropyl Ether	ND .	ug/L	500	180	590	
Dibromofluoromethane (SURR**)	107%					
Toluene-d8 (SURR**)	113%					4-,1
1-Bromo-4-Fluorobenzene (SURR**)	102%				And the state of t	

Page 4 of 24

Page 5 of 24

Customer: NewFields Companies LLC Project Description: DB Oak-Thomas Ind

Template: SATW Printed: 06/07/2005 08:55 Project Title:

Sample: 372648 MW-2A	Collected: 06/01/05	Analyzed: 06	6/06/05 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	25	7.3	24	
Bromobenzene	ND	ug/L	25	2.6	9.2	
Bromochloromethane	ND	ug/L	25	6.7	22	
Bromodichloromethane	ND	ug/L	25	8.0	27	
Bromoform	ND	ug/L	25	6.9	23	
Bromomethane	ND	ug/L	25	9.7	32	
n-Butylbenzene	ND	ug/L	25	7.8	26	
sec-Butylbenzene	ND	ug/L	25	8.2	27	
tert-Butylbenzene	ND	ug/L	25	7.7	26	
Carbon Tetrachloride	ND	ug/L	25	7.4	25	
Chlorobenzene	ND	ug/L	25	5.2	17	
Chloroethane	ND	ug/L	25	43	140	
Chloroform	ND	ug/L	25	7.4	25	
Chloromethane	ND	ug/L	25	5.9	19	TO THE RESIDENCE OF THE PROPERTY OF THE PROPER
2-Chlorotoluene	ND	ug/L	25	9.8	33	
4-Chlorotoluene	ND	ug/L	25	9.2	31	
Dibromochloromethane	· ND	ug/L	25	7.3	24	
1,2-Dibromo-3-Chloropropane	, ND	ug/L	25	8.3	28	
1.2-Dibromoethane	ND	ug/L	25	7.5	25	THE RESERVE OF THE PROPERTY OF
Dibromomethane	ND	ug/L	25	8.0	27	
1,2-Dichlorobenzene	ND	ug/L	25	6.9	23	
1,3-Dichlorobenzene	ND ND	ug/L	25	5.9	20	
1,4-Dichlorobenzene	ND	ug/L	25	5.8	19	
Dichlorodifluoromethane	. : ND	ug/L	25	4.5	16	
1,1-Dichloroethane	ND	ug/L	25	7.5	25	
1,2-Dichloroethane	ND	ug/L	25	8.5	28	
1,1-Dichloroethene	ND	ug/L	25	10	34	
cis-1,2-Dichloroethene	350	ug/L	25	10	33	
trans-1,2-Dichloroethene	ND	ug/L	25	8.7	29	
1,2-Dichloropropane	ND	ug/L	25	8.7	29	Marie Committee
1,3-Dichloropropane	ND	ug/L	25	8.4	28	
2,2-Dichloropropane	ND	ug/L		11	37	***************************************
1,1-Dichloropropene	ND	ug/L	25	8.0	27	
cis-1,3-Dichloropropene	ND	ug/L	25	6.7	22	
trans-1,3-Dichloropropene	ND	ug/L	25	8.1	27	
Ethylbenzene	ND	ug/L	25	6.5	22	
Hexachlorobutadiene	ND	ug/L	25	10	35	
Isopropylbenzene	ND	ug/L	25	9.1	30	C. I ATTICADE A NAME OF THE EARTH WITH A STORY THE A NAME OF THE ANALYSIS AND AND A STORY WAS ARRESTED FROM THE
p-Isopropyltoluene	ND	ug/L	25	7.6	25	
Methylene chloride	ND	ug/L	25	11	35	Management of the state of the
Naphthalene	ND ND	ug/L	25	9.8	33	
n-Propylbenzene	ND ND	ug/L	25	8.4	28	
ortho-Xylene	ND ND	ug/L	25	6.7	22	
	ND	ug/L	25	8.0	27	the state of the s
Styrene 1.1.1.2-Tetrachloroethane	ND ND	ug/L	25	7.0	23	
1,1,2,2-Tetrachloroethane	ND ND	ug/L	25 25	8.2	27	
Tetrachloroethene	110	ug/L	25	7.7	26	
	ND ND	ug/L	25 25	8.4	28	
Toluene	IND	ug/L	<u> </u>	0.4	20	

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000)

Customer: NewFields Companies LLC NLS Project: 89941 PO # 0451-002-800

Project Description: DB Oak-Thomas Ind

Project Title: Template: SATW Printed: 06/07/2005 08:55

Sample: 372648 MW-2A	Collected: 06/01/05	Analyzed: 06	6/06/05 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	25	9.1	30	
1,2,4-Trichlorobenzene	ND	ug/L	25	9.1	30	
1,1,1-Trichloroethane	ND	ug/L	25	6.6	22	THE RESIDENCE OF THE PROPERTY
1,1,2-Trichloroethane	ND	ug/L	25	10	35	
Trichloroethene	83	ug/L	25	6.2	21	
Trichlorofluoromethane	ND	ug/L	25	9.6	32	
1,2,3-Trichloropropane	ND	ug/L	25	11	36	The state of the s
1,2,4-Trimethylbenzene	ND	ug/L	25	7.6	25	The second secon
1,3,5-Trimethylbenzene	ŅD	ug/L	25	9.8	33	
Vinyl chloride	36	ug/L	25	2.7	9.4	The second secon
meta,para-Xylene	ND	ug/L	25	15	52	
MTBE	ND .	ug/L	25	7.6	25	
Isopropyl Ether	ND	ug/L	25	8.8	29	<u> </u>
Dibromofluoromethane (SURR**)	104%					THE PARTY OF THE P
Toluene-d8 (SURR**)	120%					
1-Bromo-4-Fluorobenzene (SURR**)	102%					And the second s

Page 6 of 24

Customer: NewFields Companies LLC Project Description: DB Oak-Thomas Ind NLS Project: 89941 PO # 0451-002-800

Project Title: Template: SATW Printed: 06/07/2005 08:55

Sample: 372649 MW-3	Collected: 06/01/05	Analyzed: 06/	706/05 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	2500	730	2400	
Bromobenzene	ND	ug/L	2500	260	920	
Bromochloromethane	ND	ug/L	2500	670	2200	
Bromodichloromethane	ND	ug/L	2500	800	2700	
Bromoform	ND	ug/L	2500	690	2300	
Bromomethane	ND	ug/L	2500	970	3200	SEC. A. PER LEGIS VI VI VI VI VI VI VI VI VI VI VI VI VI
n-Butylbenzene	ND	ug/L	2500	780	2600	
sec-Butylbenzene	ND	ug/L	2500	820	2700	
tert-Butylbenzene	ND	ug/L	2500	770	2600	
Carbon Tetrachloride	ND	ug/L	2500	740	2500	
Chlorobenzene	ND	ug/L	2500	520	1700	
Chloroethane	· ND	ug/L	2500	4300	14000	
Chloroform	ND	ug/L	2500	740	2500	
Chloromethane	ND	ug/L	2500	590	1900	
2-Chlorotoluene	ND	ug/L	2500	980	3300	
4-Chlorotoluene	ND	ug/L	2500	920	3100	
Dibromochloromethane	ND	ug/L	2500	730	2400	
1,2-Dibromo-3-Chloropropane	ND	ug/L	2500	830	2800	
1,2-Dibromoethane	ND	ug/L	2500	750	2500	, A
Dibromomethane	ND	ug/L	2500	800	2700	
1.2-Dichlorobenzene	ND ND	ug/L	2500	690	2300	
1,3-Dichlorobenzene	ND ND	ug/L	2500	590	2000	
1.4-Dichlorobenzene	ND	ug/L	2500	580	1900	
Dichlorodifluoromethane	ND	ug/L	2500	450	1600	The state of the s
1,1-Dichloroethane	ND ND	ug/L	2500	750	2500	
1,2-Dichloroethane	ND	ug/L	2500	850	2800	
1.1-Dichloroethene	ND	ug/L	2500	1000	3400	
cis-1,2-Dichloroethene	[2600]	ug/L	2500	1000	3300	al aglas construences del constituire del formation de constituire
trans-1.2-Dichloroethene	ND ND	ug/L	2500	870	2900	·
1,2-Dichloropropane	ND ND	ug/L	2500	870	2900	
1,3-Dichloropropane	ND	ug/L	2500	840	2800	
2,2-Dichloropropane	ND ND	ug/L	2500	1100	3700	
1,1-Dichloropropene	ND ND	ug/L	2500	800	2700	
	ND ND		2500	670	2200	
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND	ug/L ug/L	2500	810	2700	
	ND ND		2500	650	2200	
Ethylbenzene	ND ND	ug/L ug/L	2500	1000	3500	
Hexachlorobutadiene	ND		2500	910	3000	
Isopropylbenzene	ND ND	ug/L ug/L	2500	760	2500	
p-Isopropyltoluene	ND		2500	1100	3500	
Methylene chloride	ND ND	ug/L	2500	980	3300	
Naphthalene	ND ND	ug/L	2500	840	2800	
n-Propylbenzene	ND	ug/L	2500	670	2200	
ortho-Xylene	ND	ug/L	2500	800	2700	
Styrene	ND ND	ug/L ug/L	2500	700	2300	
1,1,1,2-Tetrachloroethane	ND ND	ug/L ug/L	2500	820	2700	
1,1,2,2-Tetrachloroethane	27000		2500	770	2600	
Tetrachloroethene		ug/L	2500	840		
Toluene	ND	ug/L	∠500	040	2800	

Page 7 of 24

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000) panies LLC NLS Project: 89941 PO # 0451-002-800

Customer: NewFields Companies LLC Project Description: DB Oak-Thomas Ind

Project Title: Template: SATW Printed: 06/07/2005 08:55

Sample: 372649 MW-3	649 MW-3 Collected: 06/01/05		Analyzed: 06/06/05 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	2500	910	3000	
1,2,4-Trichlorobenzene	ND	ug/L	2500	910	3000	THE STREET SERVICE WAS AN ALL CONTROL OF THE STREET OF THE
1,1,1-Trichloroethane	ND	ug/L	2500	660	2200	
1,1,2-Trichloroethane	ND	ug/L	2500	1000	3500	
Trichloroethene	5500	ug/L	2500	620	2100	
Trichlorofluoromethane	ND	ug/L	2500	960	3200	
1,2,3-Trichloropropane	ND	ug/L	2500	1100	3600	
1,2,4-Trimethylbenzene	ND	ug/L	2500	760	2500	
1,3,5-Trimethylbenzene	ND	ug/L	2500	980	3300	
Vinyl chloride	ND	ug/L	2500	270	940	TO THE SAME PROPERTY OF THE SA
meta,para-Xylene	ND	ug/L	2500	1500	5200	
MTBE	ND	ug/L	2500	760	2500	
Isopropyl Ether	ND	ug/L	2500	880	2900	
Dibromofluoromethane (SURR**)	102%					
Toluene-d8 (SURR**)	115%					
1-Bromo-4-Fluorobenzene (SURR**)	105%					

Page 8 of 24

Customer: NewFields Companies LLC Project Description: DB Oak-Thomas Ind NLS Project: 89941 PO # 0451-002-800

Project Title: Template: SATW Printed: 06/07/2005 08:55

Sample: 372650 MW-3A	Collected: 06/01/05	Analyzed: 06	/04/05 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	500	150	480	
Bromobenzene	ND	ug/L	500	52	180	#F
Bromochloromethane	ND	ug/L	500	130	440	
Bromodichloromethane	ND	ug/L	500	160	530	
Bromoform	ND	ug/L	500	140	460	
Bromomethane	ND	ug/L	500	190	650	
n-Butylbenzene	ND	ug/L	500	160	520	
sec-Butylbenzene	ND	ug/L	500	160	550	
tert-Butylbenzene	ND	ug/L	500	150	520	
Carbon Tetrachloride	ND	ug/L	500	150	490	
Chlorobenzene	ND	ug/L	500	100	350	
Chloroethane	ND	ug/L	500	850	2800	- The state of the
Chloroform	ND	ug/L	500	150	490	
Chloromethane	ND	ug/L	500	120	380	
2-Chlorotoluene	ND	ug/L	500	200	660	
4-Chlorotoluene	ND	ug/L	500	180	610	
Dibromochloromethane	ND	ug/L	500	150	490	
1,2-Dibromo-3-Chloropropane	ND	ug/L	500	170	550	
1.2-Dibromoethane	ND	ug/L	500	150	500	
Dibromomethane	. ND	ug/L	500	160	530	a talandahini ay harah gayatirahay ay arah daga 14 1 1 13 daga da saha 1990 dibi, dila 1991 adamba karah dibinadi sahabi bilik dibin
1,2-Dichlorobenzene	ND	ug/L	500	140	460	
1,3-Dichlorobenzene	· ND	ug/L	500	120	390	TO A BASE MANAGEMENT OF COMMENT OF COMMENT OF THE STATE OF COMMENT
1,4-Dichlorobenzene	ND ·	ug/L	500	120	390	
Dichlorodifluoromethane	ND	ug/L	500	89	320	
1,1-Dichloroethane	ND	ug/L	500	150	500	
1,2-Dichloroethane	ND	ug/L	500	170	570	M.
1.1-Dichloroethene	ND	ug/L	500	210	680	And the state of t
cis-1,2-Dichloroethene	13000	ug/L	1250	500	1700	
trans-1,2-Dichloroethene	[250]	ug/L	500	170	580	
1.2-Dichloropropane	ND	ug/L	500	170	580	
1,3-Dichloropropane	ND	ug/L	500	170	560	10 H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,2-Dichloropropane	ND	ug/L	500	220	730	
1,1-Dichloropropene	ND	ug/L	500	160	540	
cis-1,3-Dichloropropene	ND	ug/L	500	130	450	
trans-1,3-Dichloropropene	ND	ug/L	500	160	540	
Ethylbenzene	ND	ug/L	500	130	430	
Hexachlorobutadiene	ND	ug/L	500	210	690	
Isopropylbenzene	ND	ug/L	500	180	610	
p-Isopropyltoluene	ND	ug/L	500	150	510	
Methylene chloride	ND	ug/L	500	210	710	
Naphthalene	ND	ug/L	500	200	650	
n-Propylbenzene	ND	ug/L	500	170	560	
ortho-Xylene	ND	ug/L	500	130	440	The second secon
Styrene	ND	ug/L	500	160	530	
1.1.1.2-Tetrachloroethane	ND	ug/L	500	140	470	
1.1.2.2-Tetrachloroethane	ND	ug/L	500	160	550	
Tetrachloroethene	3000	ug/L	500	150	510	
					560	

Page 9 of 24

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000) panies LLC NLS Project: 89941 PO # 0451-002-800

Customer: NewFields Companies LLC Project Description: DB Oak-Thomas Ind

Project Title: Template: SATW Printed: 06/07/2005 08:55

Sample: 372650 MW-3A	Collected: 06/01/05	Analyzed: 06	6/04/05 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	500	180	610	
1,2,4-Trichlorobenzene	ND	ug/L	500	180	610	
1,1,1-Trichloroethane	ND	ug/L	500	130	440	THE PROPERTY OF THE PROPERTY O
1,1,2-Trichloroethane	ND	ug/L	500	210	700	The state of the s
Trichloroethene	2300	ug/L	500	120	410	
Trichlorofluoromethane	ND	ug/L	500	190	640	And the second s
1,2,3-Trichloropropane	ND	ug/L	500	220	730	
1,2,4-Trimethylbenzene	ND	ug/L	500	150	510	
1,3,5-Trimethylbenzene	ND	ug/L	500	200	650	
Vinyl chloride	910	ug/L	500	53	190	
meta,para-Xylene	ND	ug/L	500	310	1000	
MTBE	ND	ug/L	500	150	510	
Isopropyl Ether	ND	ug/L	500	180	590	
Dibromofluoromethane (SURR**)	106%		The state of the s	halders a white wife is a half a whole was a second as a consideration of the second as a second as a second as		
Toluene-d8 (SURR**)	113%					
1-Bromo-4-Fluorobenzene (SURR**)	104%				The second secon	

Page 10 of 24

Customer: NewFields Companies LLC Project Description: DB Oak-Thomas Ind

Project Title: Template: SATW Printed: 06/07/2005 08:55

Sample: 372651 MW-4	Collected: 06/01/05	Analyzed: 06/	04/05 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	500	150	480	
Bromobenzene	ND	ug/L	500	52	180	The state of the s
Bromochloromethane	ND	ug/L	500	130	440	
Bromodichloromethane	ND	ug/L	500	160	530	
Bromoform	ND	ug/L	500	140	460	
Bromomethane	ND	ug/L	500	190	650	(
n-Butylbenzene	ND	ug/L	500	160	520	
sec-Butylbenzene	ND	ug/L	500	160	550	
tert-Butylbenzene	ND	ug/L.	500	150	520	
Carbon Tetrachloride	ND	ug/L	500	150	490	
Chlorobenzene	·ND	ug/L	500	100	350	
Chloroethane	ND	ug/L	500	850	2800	
Chloroform	ND.	ug/L	500	150	490	
Chloromethane	ND	ua/L	500	120	380	
2-Chlorotoluene	·ND	ug/L	500	200	660	- 1
4-Chlorotoluene	ND	ug/L	500	180	610	
Dibromochloromethane	ND	ug/L	500	150	490	
1,2-Dibromo-3-Chloropropane	ND	ug/L	500	170	550	
1.2-Dibromoethane	ND	ug/L	500	150	500	
Dibromomethane	ND	ug/L	500	160	530	
1.2-Dichlorobenzene	ND	ug/L	500	140	460	
1,3-Dichlorobenzene	ND	ug/L	500	120	390	
1,4-Dichlorobenzene	. ND	ug/L	500	120	390	
Dichlorodifluoromethane	ND	ug/L	500	89	320	
1.1-Dichloroethane	ND	ug/L	500	150	500	
1.2-Dichloroethane	ND	ug/L	500	170	570	
1.1-Dichloroethene	ND	ug/L	500	210	680	
cis-1,2-Dichloroethene	ND	ug/L	500	200	670	
trans-1,2-Dichloroethene	ND	ug/L	500	170	580	
1,2-Dichloropropane	ND	ug/L	500	170	580	
1,3-Dichloropropane	ND	ug/L	500	170	560	
2,2-Dichloropropane	ND	ug/L	500	220	730	
1,1-Dichloropropene	ND	ug/L	500	160	540	
cis-1,3-Dichloropropene	ND	ug/L	500	130	450	POPULITY ALL I THE POPULATION AND THE POPULATION AND ADMINISTRATION AN
trans-1,3-Dichloropropene	ND	ug/L	500	160	540	
Ethylbenzene	ND	ug/L	500	130	430	
Hexachlorobutadiene	ND	ug/L	500	210	690	
Isopropylbenzene	ND	ug/L	500	180	610	The second secon
p-Isopropyltoluene	ND	ug/L	500	150	510	
Methylene chloride	ND	ug/L	500	210	710	The state of the s
Naphthalene	ND	ug/L	500	200	650	
n-Propylbenzene	ND	ug/L	500	170	560	
ortho-Xylene	ND	ug/L	500	130	440	THE RESIDENCE OF THE PROPERTY
Styrene	ND	ug/L	500	160	530	
1,1,1,2-Tetrachloroethane	ND	ug/L	500	140	470	
1.1.2.2-Tetrachloroethane	ND	ug/L	500	160	550	
Tetrachloroethene	2500	ug/L	500	150	510	
Toluene	ND	ug/L	500	170	560	
	ND	uy/L	JJU	110		

Page 11 of 24

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000)

Customer: NewFields Companies LLC NLS Project: 89941 PO # 0451-002-800

Project Description: DB Oak-Thomas Ind

Project Title: Template: SATW Printed: 06/07/2005 08:55

Sample: 372651 MW-4	Collected: 06/01/05	Analyzed: 06/	04/05 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	500	180	610	
1,2,4-Trichlorobenzene	ND	ug/L	500	180	610	
1,1,1-Trichloroethane	ND	ug/L	500	130	440	
1,1,2-Trichloroethane	ND	ug/L	500	210	700	
Trichloroethene	4700	ug/L	500	120	410	
Trichlorofluoromethane	ND	ug/L	500	190	640	
1,2,3-Trichloropropane	ND	ug/L	500	220	730	
1,2,4-Trimethylbenzene	ND ND	ug/L	500	150	510	
1,3,5-Trimethylbenzene	ND	ug/L	500	200	650	
Vinyl chloride	ND	ug/L	500	53	190	
meta,para-Xylene	ND ND	ug/L	500	310	1000	
MTBE	ND	ug/L	500	150	510	
Isopropyl Ether	ND ·	ug/L	500	180	590	
Dibromofluoromethane (SURR**)	105%					
Toluene-d8 (SURR**)	118%					
1-Bromo-4-Fluorobenzene (SURR**)	110%					

Page 12 of 24

NLS Project: 89941 PO # 0451-002-800

Customer: NewFields Companies LLC
Project Description: DB Oak-Thomas Ind
Project Title: Templa Template: SATW Printed: 06/07/2005 08:55

Sample: 372652 MW-4A	Collected: 06/01/05	Analyzed: 06	5/06/05 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	1	0.29	0.97	
Bromobenzene	ND	ug/L	1	0.10	0.37	
Bromochloromethane	ND	ug/L	1	0.27	0.89	
Bromodichloromethane	ND	ug/L	1	0.32	1.1	
Bromoform	ND	ug/L	1	0.28	0.92	
Bromomethane	ND	ug/L	1	0.39	1.3	
n-Butylbenzene	, ND	ug/L	1	0.31	1.0	HARRY TO COMMENT OF THE PARTY O
sec-Butylbenzene	ND	ug/L	1	0.33	1.1	and the second s
tert-Butylbenzene	ND	ug/L	1	0.31	1.0	
Carbon Tetrachloride	ND	ug/L	1	0.30	0.98	
Chlorobenzene	ND	ug/L	1	0.21	0.70	
Chloroethane	ND	ug/L	1	1.7	5.7	
Chloroform	ND	ug/L	<u> </u>	0.30	0.99	
Chloromethane	ND	ug/L	1	0.24	0.75	
2-Chlorotoluene	ND	ug/L	1	0.39	1.3	
4-Chlorotoluene	ND	ug/L	1	0.37	1.2	n
Dibromochloromethane	ND	ug/L	<u> </u>	0.29	0.97	
1,2-Dibromo-3-Chloropropane	ND	ug/L	1	0.33	1.1	
1,2-Dibromoethane	ND	ug/L	<u> </u>	0.30	1.0	**************************************
Dibromomethane	ND	ug/L	1	0.32	1.1	MA MILLIAN TO MANAGEMENT AND STREET
1.2-Dichlorobenzene	ND	ug/L	1	0.28	0.93	
1.3-Dichlorobenzene	ND	ug/L	1	0.24	0.79	
1.4-Dichlorobenzene	ND	ug/L	1	0.23	0.78	
Dichlorodifluoromethane	[0.50]	ug/L	1	0.18	0.63	
1.1-Dichloroethane	ND	ug/L	<u> </u>	0.30	0.99	
1.2-Dichloroethane	ND	ug/L	1	0.34	1.1	
1.1-Dichloroethene	ND	ug/L	1	0.41	1.4	
cis-1,2-Dichloroethene	ND	ug/L	1	0.40	1.3	
trans-1,2-Dichloroethene	ND ND	ug/L	<u> </u>	0.35	1.2	
1,2-Dichloropropane	ND	ug/L	1	0.35	1.2	
1,3-Dichloropropane	ND	ug/L	1	0.34	1.1	
2,2-Dichloropropane	ND	ug/L	1	0.44	1.5	
1,1-Dichloropropene	ND ND	ug/L	_	0.32	1.1	
cis-1,3-Dichloropropene	ND	ug/L	1	0.27	0.89	
trans-1,3-Dichloropropene	ND	ug/L	1	0.32	1.1	
Ethylbenzene	ND ND	ug/L	1	0.26	0.87	to the West Section and Control of the Control of t
Hexachlorobutadiene	ND ND	ug/L	1	0.20	1.4	
Isopropylbenzene	ND ND	ug/L	1	0.36	1.2	Managaran and at the construction and the con-
p-Isopropyltoluene	ND ND	ug/L	1	0.30	1.0	
Methylene chloride	ND	ug/L		0.30	1.4	
Naphthalene	ND ND	ug/L ug/L	1	0.39	1.3	
n-Propylbenzene	ND	ug/L	1	0.34	1.1	
ortho-Xylene	ND ND	ug/L	1	0.34	0.89	
Styrene	ND .	ug/L	1	0.27	1.1	
1.1.1.2-Tetrachloroethane	ND ND	ug/L	1	0.32	0.94	
1,1,2,2-Tetrachloroethane	ND ND	ug/L ug/L	1	0.28	1.1	d blok drown as a combal selv slove and a company of
Tetrachloroethene	1.2	ug/∟ ug/L	1	0.33		AND DESCRIPTION OF THE PROPERTY OF THE PROPERT
renacinoroentene	ND	ug/L	1	0.31	1.0 1.1	

Page 13 of 24

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000) panies LLC NLS Project: 89941 PO # 0451-002-800

Customer: NewFields Companies LLC

Project Description: DB Oak-Thomas Ind

Project Title: Template: SATW Printed: 06/07/2005 08:55

Sample: 372652 MW-4A ANALYTE NAME	Collected: 06/01/05	Analyzed: 06	/06/05 -			***
	NAME RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	1	0.36	1.2	
1,2,4-Trichlorobenzene	ND	ug/L	1	0.37	1.2	
1,1,1-Trichloroethane	ND	ug/L	1	0.27	0.88	
1,1,2-Trichloroethane	ND	ug/L	1	0.42	1.4	
Trichloroethene	[0.59]	ug/L	1	0.25	0.82	
Trichlorofluoromethane	ND	ug/L	1	0.38	1.3	
1,2,3-Trichloropropane	ND	ug/L	1	0.44	1.5	
1,2,4-Trimethylbenzene	ND	ug/L	1	0.31	1.0	
1,3,5-Trimethylbenzene	ND	ug/L	1	0.39	1.3	
Vinyl chloride	ND	ug/L	1	0.11	0.38	
meta,para-Xylene	ND	ug/L	1	0.62	2.1	
MTBE	ND	ug/L	1	0.31	1.0	Accession to the second
Isopropyl Ether	ND	ug/L	1	0.35	1.2	
Dibromofluoromethane (SURR**)	104%	4/3				
Toluene-d8 (SURR**)	110%					· martine and in the control of the
1-Bromo-4-Fluorobenzene (SURR**)	105%	***************************************				

Page 14 of 24

Customer: NewFields Companies LLC Project Description: DB Oak-Thomas Ind NLS Project: 89941 PO # 0451-002-800

Project Title: Template: SATW Printed: 06/07/2005 08:55

Sample: 372653 MW-5	Collected: 06/01/05	Analyzed: 06/0	04/05 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	1	0.29	0.97	And the first control of the control
Bromobenzene	ND	ug/L	1	0.10	0.37	
Bromochloromethane	ND	ug/L	1	0.27	0.89	terrent to the fermion of the second state of
Bromodichloromethane	ND	ug/L	1	0.32	1.1	· · · · · · · · · · · · · · · · · · ·
Bromoform	ND	ug/L	1	0.28	0.92	
Bromomethane	ND	ug/L	1	0.39	1.3	
n-Butylbenzene	ND	ug/L	1	0.31	1.0	
sec-Butylbenzene	ND	ug/L	1	0.33	1.1	
tert-Butylbenzene	ND	ug/L	1	0.31	1.0	
Carbon Tetrachloride	ND	ug/L	1	0.30	0.98	
Chlorobenzene	ND	ug/L	1	0.21	0.70	
Chloroethane	ND	ug/L	1	1.7	5.7	
Chloroform	ND	ug/L	1	0.30	0.99	
Chloromethane	· ND	ug/L	1	0.24	0.75	
2-Chlorotoluene	ND	ug/L	1	0.39	1.3	· · · · · · · · · · · · · · · · · · ·
4-Chlorotoluene	ND	ug/L	1	0.37	1.2	
Dibromochloromethane	ND	ug/L	1	0.29	0.97	
1.2-Dibromo-3-Chloropropane	ND	ug/L	1	0.33	1.1	to the Assistance of the Assis
1,2-Dibromoethane	ND	ug/L	1	0.30	1.0	
Dibromomethane	ND	ug/L	1	0.32	1.1	
1.2-Dichlorobenzene	ND	ug/L	1	0.28	0.93	
1,3-Dichlorobenzene	ND	ug/L	1	0.24	0.79	
1,4-Dichlorobenzene	ND	ug/L	1	0.23	0.78	
Dichlorodifluoromethane	ND ND	ug/L	1	0.18	0.63	
1,1-Dichloroethane	ND ND	ug/L	1	0.30	0.99	
1,2-Dichloroethane	ND	ug/L	1	0.34	1.1	
1,1-Dichloroethene	ND	ug/L	1	0.41	1.4	
cis-1.2-Dichloroethene	ND	ug/L	1	0.40	1.3	
trans-1.2-Dichloroethene	ND	ug/L	1	0.35	1.2	
1,2-Dichloropropane	ND	ug/L	1	0.35	1.2	
1,3-Dichloropropane	ND	ug/L	1	0.34	1.1	and a supplementation of a specific recording programmer and approximation of
2,2-Dichloropropane	ND	ug/L	1	0.44	1.5	
1,1-Dichloropropene	ND	ug/L	1	0.32	1.1	
cis-1,3-Dichloropropene	ND	ug/L	1	0.27	0.89	
trans-1,3-Dichloropropene	ND	ug/L	1	0.32	1,1	Make Make Deske state Mari Michille Hertelska skar etalle elektriska kanner (a. n. 6. celebra ar veresko
Ethylbenzene	ND	ug/L	1	0.26	0.87	- Horse III cilian Habitan
Hexachlorobutadiene	ND	ug/L	1	0.41	1.4	
Isopropylbenzene	ND	ug/L	1	0.36	1.2	
p-Isopropyltoluene	ND	ug/L	1	0.30	1.0	Home white many the same and th
Methylene chloride	ND	ug/L	1	0.43	1.4	
Naphthalene	ND	ug/L	1	0.39	1.3	
n-Propylbenzene	ND	ug/L	1	0.34	1.1	
ortho-Xylene	ND	ug/L	1	0.27	0.89	
Styrene	ND	ug/L	1	0.32	1.1	
1,1,1,2-Tetrachloroethane	ND	ug/L	1	0.28	0.94	
1,1,2,2-Tetrachloroethane	ND	ug/L	1	0.33	1.1	THE PARTY OF THE P
Tetrachloroethene	ND	ug/L	1	0.31	1.0	
Toluene	ND	ug/L	1	0.34	1.1	
I VIVVIIV		~2'-				Action (Action

Page 15 of 24

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000) panies LLC NLS Project: 89941 PO # 0451-002-800

Customer: NewFields Companies LLC
Project Description: DB Oak-Thomas Ind
Project Title: Templa

Template: SATW Printed: 06/07/2005 08:55

Sample: 372653 MW-5	V-5 Collected: 06/01/05					
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	1	0.36	1.2	
1,2,4-Trichlorobenzene	ND	ug/L	1	0.37	1.2	
1,1,1-Trichloroethane	ND	ug/L	1	0.27	0.88	
1,1,2-Trichloroethane	ND	ug/L	1	0.42	1.4	
Trichloroethene	ND	ug/L	1	0.25	0.82	
Trichlorofluoromethane	NĎ	ug/L	1	0.38	1.3	
1,2,3-Trichloropropane	ND	ug/L	1	0.44	1.5	OL TAXABLE PROPERTY OF THE PRO
1,2,4-Trimethylbenzene	ND	ug/L	1	0.31	1.0	
1,3,5-Trimethylbenzene	ND	ug/L	1	0.39	1.3	
Vinyl chloride	ND	ug/L	1	0.11	0.38	
meta,para-Xylene	ND	ug/L	1	0.62	2.1	A STATE OF THE STA
MTBE	. ND	ug/L	1	0.31	1.0	
Isopropyl Ether	ND	ug/L	1	0.35	1.2	
Dibromofluoromethane (SURR**)	88%				N. C. C. C. C. C. C. C. C. C. C. C. C. C.	
Toluene-d8 (SURR**)	· 107%		THE REAL PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COL			
1-Bromo-4-Fluorobenzene (SURR**)	100%					

Page 16 of 24

NLS Project: 89941 PO # 0451-002-800

Customer: NewFields Companies LLC
Project Description: DB Oak-Thomas Ind
Project Title: Templa Template: SATW Printed: 06/07/2005 08:55

Sample: 372654 MW-6	Collected: 06/01/05	Analyzed: 06/	06/05 -		· · · · · · · · · · · · · · · · · · ·	
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	1	0.29	0.97	Statistical of the continuous section and the co
Bromobenzene	ND	ug/L	1	0.10	0.37	
Bromochloromethane	ND	ug/L	1	0.27	0.89	
Bromodichloromethane	ND	ug/L	1	0.32	1.1	
Bromoform	ND	ug/L	1	0.28	0.92	
Bromomethane	ND	ug/L	1	0.39	1.3	
n-Butylbenzene	ND	ug/L	1	0.31	1.0	Company of the Compan
sec-Butylbenzene	ND	ug/L	1	0.33	1.1	
tert-Butylbenzene	ND	ug/L	1	0.31	1.0	
Carbon Tetrachloride	ND ND	ug/L	1	0.30	0.98	
Chlorobenzene	ND	ug/L	1	0.21	0.70	
Chloroethane	ND	ug/L	1	1.7	5.7	
Chloroform	ND	ug/L	1	0.30	0.99	
Chloromethane	ND	ug/L	1	0.24	0.75	
2-Chlorotoluene	· ND	ug/L	1	0.39	1.3	
4-Chlorotoluene	ND	ug/L	1	0.37	1.2	
Dibromochloromethane	ND	ug/L	1	0.29	0.97	
1,2-Dibromo-3-Chloropropane	ND	ug/L	1	0.33	1.1	N. 11. (11. (11. (11. (11. (11. (11. (11
1,2-Dibromoethane	ND	ug/L	1	0.30	1.0	
Dibromomethane	ND	ug/L	1	0.32	1.1	
1,2-Dichlorobenzene	ND	ug/L	1	0.28	0.93	
1,3-Dichlorobenzene	ND	ug/L	1	0.24	0.79	THE RESERVE OF THE PROPERTY OF
1,4-Dichlorobenzene	ND	ug/L	1	0.23	0.78	
Dichlorodifluoromethane	ND	ug/L	1	0.18	0.63	
1,1-Dichloroethane	ND	ug/L	1	0.30	0.99	
1,2-Dichloroethane	ND	ug/L	1	0.34	1.1	
1,1-Dichloroethene	. ND	ug/L	1	0.41	1.4	
cis-1,2-Dichloroethene	ND	ug/L	1	0.40	1.3	The state of the s
trans-1,2-Dichloroethene	ND	ug/L	1	0.35	1.2	
1,2-Dichloropropane	ND	ug/L	1	0.35	1.2	
1,3-Dichloropropane	ND	ug/L	1	0.34	1.1	The continuous articles and the continuous c
2,2-Dichloropropane	ND	ug/L	1	0.44	1.5	
1,1-Dichloropropene	ND	ug/L	1	0.32	1.1	
cis-1,3-Dichloropropene	ND	ug/L	1	0.27	0.89	
trans-1,3-Dichloropropene	ND	ug/L	1	0.32	1.1	
Ethylbenzene	ND	ug/L	1	0.26	0.87	
Hexachlorobutadiene	ND	ug/L	1	0.41	1.4	
Isopropylbenzene	ND	ug/L	<u> </u>	0.36	1.2	
p-isopropyltoluene	ND	ug/L	1	0.30	1.0	
Methylene chloride	ND	ug/L	1	0.43	1.4	
Naphthalene	ND	ug/L	<u> </u>	0.39	1.3	
n-Propylbenzene	ND	ug/L	<u> </u>	0.34	1.1	
ortho-Xylene	ND	ug/L	1	0.27	0.89	
Styrene	ND	ug/L	1	0.32	1.1	
1,1,1,2-Tetrachloroethane	ND	ug/L	 i	0.28	0.94	
1,1,2,2-Tetrachloroethane	ND	ug/L	i	0.33	1.1	
Tetrachloroethene	ND	ug/L	1	0.31	1.0	
Toluene	ND	ug/L	1	0.34	1.1	
				~. ~ !		

Page 17 of 24

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000)

Customer: NewFields Companies LLC
Project Description: DB Oak-Thomas Ind
Project Title: Templa NLS Project: 89941 PO # 0451-002-800

Template: SATW Printed: 06/07/2005 08:55

Sample: 372654 MW-6	72654 MW-6 Collected: 06/01/05 Ar		Analyzed: 06/06/05 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	1	0.36	1.2	
1,2,4-Trichlorobenzene	ND	ug/L	1	0.37	1.2	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
1,1,1-Trichloroethane	ND	ug/L	1	0.27	0.88	
1,1,2-Trichloroethane	ND	ug/L	1	0.42	1.4	
Trichloroethene	ND	ug/L	1	0.25	0.82	
Trichlorofluoromethane	ND	ug/L	1	0.38	1.3	7,-9,411,7,440,98111111111111111111111111111111111111
1,2,3-Trichloropropane	ND	ug/L	1	0.44	1.5	
1,2,4-Trimethylbenzene	ND	ug/L	1	0.31	1.0	
1,3,5-Trimethylbenzene	ND	ug/L	1	0.39	1.3	
Vinyl chloride	- ND	ug/L	1	0.11	0.38	The second secon
meta,para-Xylene	ND ND	ug/L	1	0.62	2.1	The state of the s
MTBE	ND	ug/L	1	0.31	1.0	
Isopropyl Ether	ND	ug/L	1	0.35	1.2	
Dibromofluoromethane (SURR**)	103%					
Toluene-d8 (SURR**)	11.8%		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
1-Bromo-4-Fluorobenzene (SURR**)	113%					

Page 18 of 24

Customer: NewFields Companies LLC Project Description: DB Oak-Thomas Ind

Project Title: Template: SATW Printed: 06/07/2005 08:55

Sample: 372655 MW-6A	Collected: 06/01/05	Analyzed: 06	6/06/05 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	•
Benzene	ND	ug/L	1	0.29	0.97	
Bromobenzene	ND	ug/L	1	0.10	0.37	AND THE PERSON AND TH
Bromochloromethane	ND	ug/L	1	0.27	0.89	
Bromodichloromethane	ND	ug/L	1	0.32	1.1	With the second
Bromoform	ND	ug/L	1	0.28	0.92	
Bromomethane	ND	ug/L	1	0.39	1.3	
n-Butylbenzene	ND	ug/L	1	0.31	1.0	4,000,0,000,0,000,000,000
sec-Butylbenzene	ND	ug/L	1	0.33	1.1	
tert-Butylbenzene	ND	ug/L	1	0.31	1.0	w
Carbon Tetrachloride	ND	ug/L	1	0.30	0.98	
Chlorobenzene	ND	ug/L	1	0.21	0.70	
Chloroethane	ND	ug/L	1	1.7	5.7	RAMBIN VARIABLES AND DESCRIPTION OF THE PROPERTY OF THE PROPER
Chloroform	ND	ug/L	1	0.30	0.99	
Chloromethane	· ND	ug/L	1	0.24	0.75	
2-Chlorotoluene	· ND	ug/L	1	0.39	1.3	
4-Chlorotoluene	ND	ug/L	1	0.37	1.2	
Dibromochloromethane	ND ND	ug/L	<u> </u>	0.29	0.97	
1,2-Dibromo-3-Chloropropane	ND ND	ug/L	1	0.33	1.1	The second control of the second control of
1,2-Dibromoethane	ND ND	ug/L	1	0.30	1.0	
Dibromomethane	ND	ug/L	1	0.32	1.1	
	ND ND	ug/L ug/L	1	0.32	0.93	**************************************
1,2-Dichlorobenzene	ND ND		1	0.24	0.93	
1,3-Dichlorobenzene	ND ND	ug/L	1	0.23	0.79	
1,4-Dichlorobenzene	ND ND	ug/L	1	0.23	0.63	
Dichlorodifluoromethane	ND	ug/L	<u>'</u> 1	0.30	0.99	
1,1-Dichloroethane		ug/L	<u>'</u> 1			
1,2-Dichloroethane	ND	ug/L		0.34	1.1	
1,1-Dichloroethene	ND ND	ug/L	11	0.41	1.4	
cis-1,2-Dichloroethene	ND	ug/L		0.40	1.3	
trans-1,2-Dichloroethene	ND	ug/L		0.35	1.2	
1,2-Dichloropropane	ND	ug/L	1	0.35	1.2	
1,3-Dichloropropane	ND	ug/L	11	0.34	1.1	
2,2-Dichloropropane	ND ND	ug/L	1	0.44	1.5	
1,1-Dichloropropene	ND	ug/L	1	0.32	1.1	
cis-1,3-Dichloropropene	ND	ug/L	11	0.27	0.89	
trans-1,3-Dichloropropene	ND	ug/L	1	0.32	1.1	
Ethylbenzene	ND ND	ug/L	1	0.26	0.87	
Hexachlorobutadiene	ND	ug/L	1	0.41	1.4	
isopropylbenzene	ND	ug/L	1	0.36	1.2	
p-Isopropyltoluene	ND	ug/L	1	0.30	1.0	
Methylene chloride	ND	ug/L	1	0.43	1.4	
Naphthalene	ND	ug/L	1	0.39	1.3	
n-Propylbenzene	ND	ug/L	1	0.34	1.1	
ortho-Xylene	ND	ug/L	1	0.27	0.89	
Styrene	ND	ug/L	1	0.32	1.1	
1,1,1,2-Tetrachloroethane	ND	ug/L	1	0.28	0.94	
1,1,2,2-Tetrachloroethane	ND	ug/L	1	0.33	1.1	
Tetrachloroethene	ND	ug/L	1	0.31	1.0	
Toluene	ND	ug/L	1	0.34	1.1	

Page 19 of 24

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000) panies LLC NLS Project: 89941 PO # 0451-002-800

Customer: NewFields Companies LLC Project Description: DB Oak-Thomas Ind

Project Title: Template: SATW Printed: 06/07/2005 08:55

Sample: 372655 MW-6A	Collected: 06/01/05	Analyzed: 06	/06/05 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	1	0.36	1.2	The second secon
1,2,4-Trichlorobenzene	ND	ug/L	1	0.37	1.2	
1,1,1-Trichloroethane	ND	ug/L	1	0.27	0.88	
1,1,2-Trichloroethane	ND	ug/L	1	0.42	1.4	
Trichloroethene	ND	ug/L	1	0.25	0.82	· · · · · · · · · · · · · · · · · · ·
Trichlorofluoromethane	ND	ug/L	1	0.38	1.3	
1,2,3-Trichloropropane	ND	ug/L	1	0.44	1.5	
1,2,4-Trimethylbenzene	. ND	ug/L	1	0.31	1.0	
1,3,5-Trimethylbenzene	ND	ug/L	1	0.39	1.3	
Vinyl chloride	ND	ug/L	1	0.11	0.38	
meta,para-Xylene	ND	ug/L	1	0.62	2.1	
MTBE	, ND	ug/L	1	0.31	1.0	
Isopropyl Ether	. ND	ug/L	1	0.35	1.2	
Dibromofluoromethane (SURR**)	103%	- Company Comp			O CONTRACTOR OF STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET,	
Toluene-d8 (SURR**)	112%		Park III I I I I I I I I I I I I I I I I I			
1-Bromo-4-Fluorobenzene (SURR**)	107%					anne anne anne anne anne anne anne anne

Page 20 of 24

Customer: NewFields Companies LLC Project Description: DB Oak-Thomas Ind NLS Project: 89941 PO # 0451-002-800

Project Title: Template: SATW Printed: 06/07/2005 08:55

Sample: 372656 Dup-1	Collected: 06/01/05	Analyzed: 06	nalyzed: 06/06/05 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	500	150	480	
Bromobenzene	ND	ug/L	500	52	180	
Bromochloromethane	ND	ug/L	500	130	440	
Bromodichloromethane	ND	ug/L	500	160	530	
Bromoform	ND	ug/L	500	140	460	
Bromomethane	ND	ug/L	500	190	650	
n-Butylbenzene	ND	ug/L	500	160	520	
sec-Butylbenzene	ND	ug/L	500	160	550	
tert-Butylbenzene	ND	ug/L	500	150	520	
Carbon Tetrachloride	ND	ug/L	500	150	490	
Chlorobenzene	ND	ug/L	500	100	350	
Chloroethane	ND	ug/L	500	850	2800	
Chloroform	ND	ug/L	500	150	490	
Chloromethane	ND	ug/L	500	120	380	
2-Chlorotoluene	ND	ug/L	500	200	660	
4-Chlorotoluene	ND ND	ug/L	500	180	610	
Dibromochloromethane	ND ND	ug/L	500	150	490	
1,2-Dibromo-3-Chloropropane	ND	ug/L	500	170	550	
1,2-Dibromoethane	ND	ug/L	500	150	500	
Dibromomethane	ND	ug/L	500	160	530	
1.2-Dichlorobenzene	ND ND	ug/L	500	140	460	
1.3-Dichlorobenzene	ND ND	ug/L	500	120	390	
1,4-Dichlorobenzene	ND ND	ug/L	500	120	390	er i star Mattala antiqua Managari (Alamana de Cara de Alamana de Cara de Cara de Cara de Cara de Cara de Cara
Dichlorodifluoromethane	ND		500	89	320	
1,1-Dichloroethane	ND ND	ug/L ug/L	500	150	500	*****
1,2-Dichloroethane	ND ND		500	170	570	91011911/85000 91: 1800000000000000000000000000000000000
1,1-Dichloroethene	ND ND	ug/L	500	210		
cis-1.2-Dichloroethene	3800	ug/L	500	200	680 670	The state of the s
trans-1.2-Dichloroethene	ND	ug/L	500	170	580	
1,2-Dichloropropane	ND ND	ug/L	500	170		
1,2-Dichloropropane		ug/L			580	accepts delicible. The expension of the second of the seco
1,3-Dichloropropane	ND	ug/L	500	170	560	
2,2-Dichloropropane	ND ND	ug/L	500	220	730	
1,1-Dichloropropene	ND	ug/L	500	160	540	
cis-1,3-Dichloropropene	ND.	ug/L	500	130	450	
trans-1,3-Dichloropropene	ND	ug/L	500	160	540	Professional Company of the Company
Ethylbenzene	ND ND	ug/L	500	130	430	
Hexachlorobutadiene	ND ND	ug/L	500	210	690	Walter Commence
Isopropylbenzene	ND	ug/L	500	180	610	
p-Isopropyltoluene	ND	ug/L	500	150	510	
Methylene chloride	ND	ug/L	500	210	710	
Naphthalene .	ND	ug/L	500	200	650	
n-Propylbenzene	ND	ug/L	500	170	560	
ortho-Xylene	ND.	ug/L	500	130	440	
Styrene	ND	ug/L	500	160	530	
1,1,1,2-Tetrachloroethane	ND	ug/L	500	140	470	
1,1,2,2-Tetrachloroethane	ND	ug/L	500	160	550	PARTITION OF THE PARTIT
Tetrachloroethene	[160]	ug/L	500	150	510	
Toluene	ND	ug/L	500	170	560	

Page 21 of 24

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000) panies LLC NLS Project: 89941 PO # 0451-002-800

Customer: NewFields Companies LLC Project Description: DB Oak-Thomas Ind

Project Title: Template: SATW Printed: 06/07/2005 08:55

500 500 500 500	180 180 180 130	LOQ 610 610	91.01
500 500	180	610	W.W.
500			
CONTRACTOR OF THE PERSON NAMED OF THE PERSON N	130		Mark 100 - 1
500		440	
	210	700	
500	120	410	
500	190	640	
500	220	730	
500	150	510	
500	200	650	
500	53	190	THE PERSON OF THE PERSON OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PE
500	310	1000	Withhall commence with the second
500	150	510	AND THE PARTY OF T
500	180	590	
		4. 1867	
			The second secon
	500 500 500 500 500	500 150 500 200 500 53 500 310 500 150	500 150 510 500 200 650 500 53 190 500 310 1000 500 150 510

Page 22 of 24

Customer: NewFields Companies LLC Project Description: DB Oak-Thomas Ind NLS Project: 89941 PO # 0451-002-800

Project Title: Template: SATW Printed: 06/07/2005 08:55

Sample: 372657 Trip blank	Collected: 06/01/05	Analyzed:	06/06/05	•		
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	· ND	ug/L	1	0.29	0.97	
Bromobenzene	ND	ug/L	1	0.10	0.37	
Bromochloromethane	ND	ug/L	1	0.27	0.89	
Bromodichloromethane	ND	ug/L	1	0.32	1.1	WITH THE COLOR OF THE PARTY OF
Bromoform	ND	ug/L	1	0.28	0.92	
Bromomethane	ND	ug/L	1	0.39	1.3	AND ASSESSMENT OF THE PROPERTY
n-Butylbenzene	ND	ug/L	1	0.31	1.0	
sec-Butylbenzene	ND	ug/L	1	0.33	1.1	
tert-Butylbenzene	ND	ug/L	1	0.31	1.0	
Carbon Tetrachloride	ND	ug/L	1	0.30	0.98	
Chlorobenzene	ND	ug/L	1	0.21	0.70	
Chloroethane	ND	ug/L	1	1.7	5.7	AW-19 to bella de la communicación de la commu
Chloroform	ND	ug/L	1	0.30	0.99	
Chloromethane	ND	ug/L	1	0.24	0.75	THE RESERVE OF THE PROPERTY OF
2-Chlorotoluene	ND	ug/L	1	0.39	1.3	The second secon
4-Chlorotoluene	ND	ug/L	1	0.37	1.2	
Dibromochloromethane	ND	ug/L	1	0.29	0.97	
1,2-Dibromo-3-Chloropropane	ND	ug/L	1	0.33	1.1	
1,2-Dibromoethane	ND	ug/L	1	0.30	1.0	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT
Dibromomethane	ND	ug/L	1	0.32	1.1	
1,2-Dichlorobenzene	ND ND	ug/L	1	0.28	0.93	
1,3-Dichlorobenzene	ND	ug/L	1	0.24	0.79	
1,4-Dichlorobenzene	ND	ug/L	1	0.23	0.78	
Dichlorodifluoromethane	ND	ug/L	1	0.18	0.63	***************************************
1,1-Dichloroethane	ND	ug/L	1	0.30	0.99	
1,2-Dichloroethane	· ND	ug/L	1	0.34	1.1	THE RESERVE OF THE PERSON OF T
1,1-Dichloroethene	ND	ug/L	1	0.41	1.4	
cis-1,2-Dichloroethene	ND	ug/L	1	0.40	1.3	Marie Company (physic) (property of the company o
trans-1,2-Dichloroethene	ND	ug/L	1	0.35	1.2	
1,2-Dichloropropane	ND ND	ug/L	1	0.35	1.2	
1,3-Dichloropropane	ND	ug/L	1	0.34	1.1	The second secon
2,2-Dichloropropane	ND	ug/L	1	0.44	1.5	A CONTRACTOR OF THE PROPERTY O
1,1-Dichloropropene	ND	ug/L	1	0.32	1.1	
cis-1,3-Dichloropropene	ND	ug/L	1	0.27	0.89	
trans-1,3-Dichloropropene	ND	ug/L	1	0.32	1.1	
Ethylbenzene	ND	ug/L	1	0.26	0.87	MAN MANAGEMENT OF THE PARTY OF
Hexachlorobutadiene	ND	ug/L	1	0.41	1.4	
Isopropylbenzene	ND	ug/L	1	0.36	1.2	The state of the s
p-Isopropyltoluene	ND	ug/L	1	0.30	1.0	
Methylene chloride	ND	ug/L	1	0.43	1.4	
Naphthalene	ND	ug/L	1	0.39	1.3	
n-Propylbenzene	ND	ug/L	1	0.34	1.1	
ortho-Xylene	ND '	ug/L	1	0.27	0.89	
Styrene	ND	ug/L	1	0.32	1.1	MARKET SAN THE
1,1,1,2-Tetrachloroethane	ND	ug/L	1	0.28	0.94	
1,1,2,2-Tetrachloroethane	ND	ug/L	1	0.33	1.1	
Tetrachloroethene	ND	ug/L	1	0.31	1.0	
Toluene	ND	ug/L	1	0.34	1.1	

Page 23 of 24

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000) panies LLC NLS Project: 89941 PO # 0451-002-800

Customer: NewFields Companies LLC Project Description: DB Oak-Thomas Ind

Project Title: Template: SATW Printed: 06/07/2005 08:55

Sample: 372657 Trip blank	Collected: 06/01/05	Analyzed:	06/06/05	•		
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	1	0.36	1.2	
1,2,4-Trichlorobenzene	ND	ug/L	1	0.37	1.2	
1,1,1-Trichloroethane	ND	ug/L	1	0.27	0.88	
1,1,2-Trichloroethane	ND	ug/L	1	0.42	1.4	
Trichloroethene	ND	ug/L	1	0.25	0.82	
Trichlorofluoromethane	ND	ug/L	1	0.38	1.3	
1,2,3-Trichloropropane	ND	ug/L	1	0.44	1.5	
1,2,4-Trimethylbenzene	ND	ug/L	1	0.31	1.0	
1,3,5-Trimethylbenzene	ND	ug/L	1	0.39	1.3	
Vinyl chloride	ND	ug/L	1	0.11	0.38	
meta,para-Xylene	ND	ug/L	1	0.62	2.1	777
MTBE	ND	ug/L	1	0.31	1.0	
Isopropyl Ether	ND	ug/L	1	0.35	1.2	
Dibromofluoromethane (SURR**)	95%					
Toluene-d8 (SURR**)	98%					The second secon
1-Bromo-4-Fluorobenzene (SURR**)	92%	ACCOUNTS OF THE PROPERTY OF TH			ar valletiment of the same of	WARRY WITH LEFT AND A REAL PROPERTY AND A STATE OF THE ST

^{**} Surrogates are used to evaluate a method's Quality Control.

Page 24 of 24

SAMPLE COLLECTION AND CHAIN OF CUSTODY RECORD NORTHERN LAKE SERVICE, INC. Analytical Laboratory and Environmental Services Wisconsin Lab Cert. No. 721026460 NOUFIELDS WI DATCP 105-000330 400 North Lake Avenue • Crandon, WI 54520-1298 Tel: (715) 478-2777 • Fax: (715) 478-3060 ZIJO LUNNE LANE STATE MADIEN USE BOXES BELOW: Indicate Y or N If GW Sample is field filtered. MATRIX: SW = surface water Indicate G or C if WW Sample is Grab or Composite. QUOTATION NO. PROJECT DESCRIPTION / NO. DB OMK - THOMS TUD WW = waste water GW = groundwater DNR FID # **DNR LICENSE #** DW = drinking water TIS = tissue CONTACT MCCOLLON PHONE AIR = air 603/492-5223 SOIL = soil PURCHASE ORDER NO. SED = sediment 6031492.943 PROD = product NO. 79957 SL = sludgeOTHER COLLECTION REMARKS (i.e. DNR Well ID #) COLLECTION MATRIX ITEM NLS LAB. NO. SAMPLE ID (See above) NO. DATE TIME 2 מש TRIP BUNK W Control 5. 6. 7. 8. €9. 10. DATE/TIME REPORT TO **COLLECTED BY (signature)** CUSTODY SEAL NO. (IF ANY)

RELINQUISHED BY (signature)	RECEIVED BY (signature)	DATE/TIME
DISPATCHED BY (signature)	METHOD OF TRANSPORT	DATE/TIME
RECEIVED AT NLS BY (signature)	DATE/VIME/	CONDITION TEMP.
The state of the s	REMARKS & OTHER INFORMATION	Don Var

Same	
.	
•	
INVOICE TO	

SAME

PRESERVATIVE:

N = altric acid

NP = no preservative

Z = zinc acetate

HA = sydrochloric & acid

S = sulfuric acid

M = methanol

H = sydrochloric acid

1. TO MEET REGULATORY REQUIREMENTS, THIS FORM MUST BE COMPLETED IN DETAIL AND INCLUDED IN THE COOLER CONTAINING THE SAMPLES DESCRIBED.

2. PLEASE USE ONE LINE PER SAMPLE, NOT PER BOTTLE.

IMPORTANT:

3. RETURN THIS FORM WITH SAMPLES - CLIENT MAY KEEP PINK COPY.

4. PARTIES COLLECTING SAMPLE, LISTED AS REPORT TO AND LISTED AS INVOICE TO AGREE TO STANDARD TERMS & CONDITIONS ON REVERSE.

DUDLICATE CODY

SAMPLE COLLECTION AND CHAIN OF CUSTODY RECORD NORTHERN LAKE SERVICE. INC. Wisconsin Lab Cert. No. 721026460 Analytical Laboratory and Environmental Services NEWFIELDS WI DATCP 105-000330 400 North Lake Avenue • Crandon, WI 54520-1298 **ADDRESS** Tel: (715) 478-2777 • Fax: (715) 478-3060 2110 LUAUN LANE USE BOXES BELOW: Indicate Y or N if GW Sample is field filtered. MADISON 53714 MATRIX: PROJECT DESCRIPTION / NO. QUOTATION NO. SW = surface water Indicate G or C if WW Sample is Grab or Composite. ANALYZE PEH <u>ORDER OF ANALYS</u> DB OAK- THOMAS TUD WW = waste water GW = groundwater DNR FID # **DNR LICENSE #** DW = drinking water TIS = tissue CONTACT PHONE MARK M'COLLOCH 6081442-5223 SOIL = soil PURCHASE ORDER NO. SED = sediment 15081 442 - 7013 PROD = product NO. 79956 SL = sludgeOTHER MATRIX COLLECTION REMARKS COLLECTION ITEM NLS LAB, NO SAMPLE ID (i.e. DNR Well ID # (See above) DATE TIME 900 6/1105 600 MW.1 * slought VOLS MW-Z 2 1015 MW.ZA Slowbod UCCS lost Sayl #10 2 1130 1035 2 2 825 B30 CUSTODY SEAL NO. (IF ANY) COLLECTED BY (signature) MARK MEGILOCH BECEIVED BY (signature) RELINQUISHED BY (signature) Junhom Express O NOWFIELDS METHOD OF TRANSPORT DISPATCHED BY (signature) INVOICE TO SWE REMARKS & OTHER INFORMATION

S = sulfuric acid IMPORTANT:

PRESERVATIVE:

NP no preservative

N = nitric acid

Z = zinc acetate

1. TO MEET REGULATORY REQUIREMENTS, THIS FORM MUST BE COMPLETED IN DETAIL AND INCLUDED IN THE COOLER CONTAINING THE SAMPLES DESCRIBED.

E-MAIL ADDRESS

2. PLEASE USE ONE LINE PER SAMPLE, NOT PER BOTTLE.

HA = Aydrochloric & ascorbic acid

OH = sodium hydroxide

H = hydrochloric acid

3. RETURN THIS FORM WITH SAMPLES - CLIENT MAY KEEP PINK COPY.

4. PARTIES COLLECTING SAMPLE, LISTED AS REPORT TO AND LISTED AS INVOICE TO AGREE TO STANDARD TERMS & CONDITIONS ON REVERSE.

WDNR FACILITY NUMBER

Appendix E

Mobile Laboratory Reports Soil Sample Results

May 31, 2005

Mark McColloch NewFields 2110 Luann Lane Suite 101 Madison, WI. 53713

Dear Mr. McColloch,

Enclosed are the Technical Memorandum for work recently performed at the former D.B. Oaks Site in Ft. Atkinson, Wisconsin. If you have any questions concerning this information, give me a call.

Sincerely,

Bruce Gallant

Enclosure

TECHNICAL MEMORANDUM

May 31, 2005

To: Mark McColloch

NewFields

From: Bruce Gallant

ECCS

Re: Volatile Organic Compound (VOC) Field Analytical Methods

Former D.B. Oaks Facility

Ft. Atkinson, WI

Introduction

This Technical Memorandum provides documentation of the field analytical test methods used to analyze soil samples collected on 5/16/05 thru 5/19/05 during the investigation at the former D.B. Oaks facility in Ft. Atkinson WI. The soil samples were analyzed for the VOCs – Vinyl chloride,1,1-Dichloroethene,trans-1,2-Dichloroethene, cis-1,2-Dichloroethene, Benzene, Trichloroethene, Toluene and Tetrachloroethene. These VOCs were measured with high-resolution gas chromatography (GC) using a mass selective detector (MSD). The MSD provides for selective detection of the VOCs by extracting specific target ions for quantitation from the total ion chromatogram. All soil samples received were analyzed by methanol extraction and direct injection into a Hewlett-Packard 5971 GC/MS system. All samples were analyzed by a High level analysis to determine sample constituents above 1.0 ppm in the soil. The calibration range for the High level analysis was 1 – 200 ppm of target analytes.

Samples which had target compounds present at less than 5.0 ppm or were non detected for the analytes were analyzed by direct injection SIM analysis providing a calibration range of 50 - 10,000 ug/Kg (ppb).

Narrative

Ten grams (10 g) of the soil sample was weighed into a glass scintillation vial and ten milliliters of methanol added. The sample extracts shaken for 5 minutes, or sufficient time to break up the soil clumps to facilitate extraction, and centrifuged. One milliliter of each extract was then placed into each of two auto sampler vials and spiked with surrogate and internal standard solutions depending on the method to be run, either high level VOC or low level VOC.

All extracts were analyzed by the high level VOC method and spiked with 20 ul of a 1250 ug/ml IS/SS mix. Sample extracts that required low level VOC analysis were spiked with 20 ul of a 62.5 ug/ml IS/SS solution. Only high level samples were analyzed as MS/MSD and ere spiked with 20 ul of a 500 ug/ml spike solution. LCS samples were spiked with 10 ul of this spike solution.

The test results for High Level samples are listed in Table 1 and the test results for Low Level sample analysis are listed in Table 2.

VOC Method Summary

The soil samples were provided by the client to the field lab. The soil samples were collected in 4 oz. glass jars. 2 ul of soil extract was injected into the GC/MS system operated in the split mode.

GC/MSD Procedure:

Identification of target compounds was done by matching retention times and mass spectra of peaks found in samples to those found in a VOC calibration standard. The calibration standards were prepared from a certified solution of VOCs in methanol. For the high level method an eight point calibration curve was analyzed to calibrate for the target compounds. The levels used for this calibration were 1.0, 2.5,5.0 10,25,50 100 and 200 ppm. The low level method was calibrated using eight calibration standards at levels of 10 ppm, 5.0 ppm, 2.5 ppm, 1.25 ppm, 0.5 ppm, 0.25 ppm, 0.125 ppm and 0.05 ppm.

A Hewlett-Packard 5890 gas chromatograph with a 30m x 0.32mm, Rtx-624 capillary column interfaced to a Hewlett-Packard 5972 MSD was used. The GC/MSD was operated in the split mode. The split ratio was 10:1. The data system included a Hewlett-Packard Enviroquant chromatography workstation for data handling.

Quality control consisted of the following items:

- Initial calibration of GC/MSD with eight levels of calibration standard with a minimum resulting linearity of $0.98 (r^2)$.
- Continuing Calibration Verification standards analyzed at a frequency of every ten samples
- Blank sample analysis at a minimum, frequency of one in every 20 samples
- Matrix spike and Matrix Spike Duplicate sample analysis for High Level Analysis
- Laboratory Control Spikes
- Information documented in Field Logbook 16 pages 154-156.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-001 C5-2.5'		2203-002 C5-5'	:	2203-003 C5-7.5'		2203-004 D5-2.5'		2203-005 D5-5'		2203-006 D5-7.5'		2203-007 E5-2.5'		2203-008 E5-5'	}
Vinyl chloride	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	50	U
1,1-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	50	U
trans-1,2-Dichloroethene	1	1	U	1	U	1	C	1	C	1	U	1	U	1	U	50	U
cis-1,2-Dichloroethene	1	1	U	1	U	1	U	1.5		1	U	1	U	1.6		50	U
Benzene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	50	U
Trichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	50	U
Toluene	1	1	U	1	C	1	U	1	U	1	U	1	U	1	U	50	U
Tetrachloroethene	1	2.7		4.3		5.4		5.1		9.8		8.2		1	U	930	
Dibromofluoromethane	%	85.1		87.7		84.4		85.6		85.0		83.6		84.0		86.8	
Toluene-d8	%	88.9	ŀ	90.6		89.1		88.8		89.7		90.8		90.3		90.4	
4-Bromofluorobenzene	%	88.6		90.8		87.0		88.7		86.2		89.2		85.6		90.5	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-009 E5-7.5')	2203-010 E6-2.5'		2203-011 E6-5'		2203-012 E6-7.5'		2203-013 D6-2.5'	;·	2203-014 D6-5'		2203-015 D6-7.5'		2203-016 C7-2.5'	į
Vinyl chloride	1	1	υ	1	C	1	U	1	C	1	U	1	U	1	U	1	U
1,1-Dichloroethene	1	1	U	1	C	1	Ų	1	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	U	1	C	1	U	1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	1	3.1		1	U	1	U	2.3		1	U	1	U	1	U	2.2	
Benzene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Trichloroethene	1	1.2		1	U	1	U	1	U	1	U	1	U	1.0		1.3	
Toluene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	1	35		1	C	1	C	1	U	1	U	1.5		3.0		1	U
Dibromofluoromethane	%	83.1		84.8		84.7		91.1		81.0		84.1		85.2		87.6	
Toluene-d8	%	90.7		90.5		91.1		91.6		89.6		90.9		90.2		90.7	
4-Bromofluorobenzene	%	87.4		85.9		86.9		91.2		85.2		87.4		87.9		87.2	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-017 C7-5'		2203-018 C7-7.5'		2203-019 D7-2.5'		2203-020 D7-5'		2203-021 D7-7.5'		2203-022 E7-2.5'		2203-023 E7-5'		2203-024 E7-7.5'	
Vinyl chloride	1	1	U	1	U	1	C	1	U	1	U	1	U	1	U	1	U
1,1-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	U	1	C	1	U	1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	1	5.3		5.9		1	U	6.2		1	U	1.6		1	U	1.0	
Benzene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Trichloroethene	1	11		13		1	U	7.8	-	11		5.3		1	U	1	U
Toluene	1	1	U	1	C	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	1	4.2		39		1	U	22		390	D	3.2		1	U	1.7	
Dibromofluoromethane	%	84.0		80.9		84.8		85.0		84.8		92.8		86.2		85.6	
Toluene-d8	%	89.2		88.8		89.2		88.2		90.7		92.4		92.0		91.5	
4-Bromofluorobenzene	%	85.2		84.3		86.9		84.9		85.0		91.8		88.2		86.3	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-025 C4-2.5'	,	2203-026 C4-5'		2203-027 C4-7.5'		2203-028 D4-2.5'		2203-029 D4-4'		2203-030 D4-8'		2203-031 E4-2.5'		2203-032 E4-5'	?
Vinyl chloride	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	U	1	U	1	U	1	C	1	U	1	U	1	U
cis-1,2-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	C	1.5		1.4	
Benzene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Trichloroethene	1	1	U	1	U	1	U	1.1		1	U	. 1	U	3.4		3.1	
Toluene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	1	1	U	1	U	1.0		5.9	Ì	1.8		17		4.9		20	
Dibromofluoromethane	%	82.4		91.3		82.8		83.8		83.7		81.9		81.2		80.1	
Toluene-d8	%	88.7		93.2		89.6		89.1		90.5		89.4		89.1		87.1	
4-Bromofluorobenzene	%	84.4		93.0		86.2		82.1		85.4		86.1		83.1		82.7	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-033 E4-7.5'		2203-034 C16-2.5'		2203-035 C16-5'		2203-036 C16-7.5'		2203-037 D16-2.5'		2203-038 D16-5'		2203-039 D16-7.5'		2203-040 C15-2.5'	
Vinyl chloride	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	C
1,1-Dichloroethene	1	1	U	1	C	1	U	1	C	1	C	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	C	1	U	1	C	1	С	1	C	1	U	1	U
cis-1,2-Dichloroethene	1	1	U	1	C	1	C	1	С	1	U	1	С	1	U	1	U
Benzene	1	1	U	1	C	1	C	1	C	1	U	1	U	1	U	1	U
Trichloroethene	1	1	U	10		14		81		1	U	1	U	11		1.3	
Toluene	1	1	U	1	C	1	C	1	Ų	1	U	1	U	1	U	1	U
Tetrachloroethene	1	21		4.7		4.2		98		1	U	1	U	13		3.0	
Dibromofluoromethane	%	81.1		83.0		88.8		88.7		77.8		87.9		82.0		79.7	
Toluene-d8	%	88.2		90.1		91.6		91.4		87.8		91.8		90.1		89.5	
4-Bromofluorobenzene	%	84.0		86.0		90.2		91.3		82.6		91.4		86.0		86.3	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-041 C15-5'		2203-042 C15-7.5'		2203-043 A8-2.5'		2203-044 A8-5'		2203-045 A8-7.5'		2203-046 A8-10'		2203-047 A4-2.5'		2203-048 A4-5'	
Vinyl chloride	1	1	U	1	U	1	U	1	С	1	C	1	U	1	U	1	U
1,1-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	1	1	U	1	U	1	U	. 1	U	1	U	2.2		1	U	1	U
Benzene	1	1	U	1	U	1	U	1.2		1	U	1	U	1	U	1	U
Trichloroethene	1	3.4		2.7		1	U	1	U	1	U	1	U	1	U	1	U
Toluene	1	1	U	1	U	1	U	75		1	U	1	U	1	U	1	U
Tetrachloroethene	1	4.3		5.6		1	U	1	U	1	U	2.4		1	U	1	U
Dibromofluoromethane	%	92.7		83.3		83.6		82.0		92.2		83.7		79.5		90.2	
Toluene-d8	%	92.3		90.2		88.4		89.6		93.5		90.4		88.4		92.7	
4-Bromofluorobenzene	%	94.0		86.1		84.5		87.2		93.5		86.7		80.9	,	92.8	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-049 A4-7.5'		2203-050 A4-10'		2203-051 C8-2.5'		2203-052 C8-5'		2203-053 C8-7.5'		2203-054 D8-2.5'		2203-055 D8-5'		2203-056 D8-7.5'	
Vinyl chloride	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1-Dichloroethene	1	1	U	1	C	1	U	1	C	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	C	· 1	U	1	C	1	C	1	C	1	U	1	U
cis-1,2-Dichloroethene	1	1	U	1	C	2.1		3.5		3.1		9.4		1	U	1.3	
Benzene	1	16		1	C	1	C	1	U	1	C	1	U	1	Ų	. 1	U
Trichloroethene	1	1	U	1	С	3.5		180		1200	D	1.6		2.2		160	
Toluene	1	1	U	1	U	1	Ų	1	C	1	U	1	C	1	U	1	U
Tetrachloroethene	1	1	U	1	U	3.1		2100	D	6400	D	1.6		35		1600	D
Dibromofluoromethane	%	235		81.0		90.2		82.6		80.5		81.4		81.3		80.7	
Toluene-d8	%	41.4		88.2		92.4		89.8		88.8		91.8		89.6		90.2	
4-Bromofluorobenzene	%	83.2		83.6		92.9		81.3		82.7		85.0		84.8		86.2	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-057 E8-2.5'		2203-058 E8-5'		2203-059 E8-7.5'		2203-060 C9-2.5'		2203-061 C9-5'		2203-062 C9-7.5'		2203-063 D9-2.5'	ı	2203-064 D9-5'	‡
Vinyl chloride	1	1	U	1	C	1	U	1	U	1	C	1	U	1	U	1	U
1,1-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	C	1	C	1	U	. 1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	1	4.9		1	C	1.3		3.2		1.9		2.5		1	U	1	U
Benzene	1	1	Ų	1	U	1	U	1	U	1	U	1	U	. 1	U	1	U
Trichloroethene	1	1	U	1.6		1.7		1.3		14		120		2.3		2.5	
Toluene	1	1	U	1	C	1	C	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	1	1.3		6.6		6.9		3.2		76		980	D	27		26	
Dibromofluoromethane	%	78.6		79.8		79.8		80.2		79.8		80.8		80.1		79.2	
Toluene-d8	%	89.2		88.9		88.4		89.2		89.5		89.0		89.2		89.9	
4-Bromofluorobenzene	%	84.4		84.0		82.4		83.6		83.9		83.1		85.0		83.5	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-065 D9-7.5'	5	2203-066 E9-2.5'	;	2203-067 E9-5'		2203-068 E9-7.5'		2203-069 D10-2.5'	2203-070 D10-5'		2203-071 D10-7.5'		2203-072 C10-2.5'	_
Vinyl chloride	1	1	C	1	U	1	U	1	υ	1	1	U	1	U	1	U
1,1-Dichloroethene	1	1	U	1	U	1	U	1	C	1	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	U	1	U	1	U	1	1	U	1	U	1	U
cis-1,2-Dichloroethene	. 1	1	U	1	U	1.0		1	U	1	1.4		1	U	4.1	-
Benzene	1	1	U	1	U	1	U	1	U	1	1	U	1	U	1	U
Trichloroethene	1	3.6		1	U	1	C	1.1		1	1	U	1	U	1.1	
Toluene	1	1	U	1	U	1	U	1	U	1	1	U	1	U	1	U
Tetrachloroethene	1	26		1	U	1.4		2.5		1	1	U	1	υ	1.5	
Dibromofluoromethane	%	80.4		81.6		82.4		89.2		80.6	81.8		83.1		79.6	
Toluene-d8	%	89.8		90.9		92.6		92.9		91.7	90.5		91.3		91.2	
4-Bromofluorobenzene	%	93.5		92.5		84.7		91.9		84.5	86.3		87.8		83.7	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-073 C10-5'		2203-074 C10-7.5'		2203-075 B16-2.5'		2203-076 B16-5'		2203-077 B16-7.5'		2203-078 B17-2.5'		2203-079 B17-5'		2203-080 B17-7.5'	
Vinyl chloride	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	C	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	U	1.	U	1	U	1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	1	10		8.7		1	U	1	U	1	U	1	С	1	U	1	U
Benzene	1	1	U	1	U	1	C	1	U	1	U	1	U	1	U	1	U
Trichloroethene	1	7.7		12		1	U	1.6		7.2		1	U	1	U	31	
Toluene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	1	4.7		1	U	1.4		5.9		13		11		3.6		530	D
Dibromofluoromethane	%	81.3		82.7		81.1		82.2		79.8		80.0		80.2		81.3	
Toluene-d8	%	91.4		90.4		91.8		91.1		91.7		90.2		89.6		91.8	
4-Bromofluorobenzene	%	83.5		84.8		84.2		85.4		86.6		84.8		82.0		85.4	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-081 D17-2.5'		2203-082 D17-5'		2203-083 D17-7.5'	i	2203-084 D18-2.5'		2203-085 D18-5'		2203-086 D18-7.5'		2203-087 D19-2.5'		2203-088 D19-7.5'	
Vinyl chloride	1	1	Ω	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	C	1	U	1	U	1	С	1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	1	1	U	1	С	1	U	1	U	1	U	1	U	1	U	1	U
Benzene	1	1	U	1	U	1	U	1	U	1	U	1	C	1	U	1	U
Trichloroethene	1	1	U	1	С	5.1		1	U	1	U	1	U	1	U	1	U
Toluene	1	1	U	1	U	1	U	1 .	U	1	C	1	U	1	U	1	U
Tetrachloroethene	1	1	U	1.1		38		1	U	1	U	19		1	U	1	U
Dibromofluoromethane	%	80.4		81.8		89.4		79.0		89.2		78.3		80.7		78.0	
Toluene-d8	%	90.9		90.6		91.2		89.6		91.3		89.5		89.0		91.3	
4-Bromofluorobenzene	%	81.6		85.1		90.8		81.9		92.4		80.9		84.0		83.9	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-089 B19-2.5'		2203-090 B19-5'		2203-091 B19-7.5'		2203-092 C19-2.5'		2203-093 C19-5'		2203-094 C19-7.5'		2203-095 B18-2.5'	*	2203-096 B18-5'	
Vinyl chloride	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1-Dichloroethene	1	1	U	11	U	1	U	1	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	- 1	U	1	U	1	U
cis-1,2-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Benzene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Trichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Toluene	1	1	U	1	U	1	U	1	U	1	C	1	U	1	U	1	U
Tetrachloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Dibromofluoromethane	%	80.6		82.0		79.2		90.5		77.9		88.4	·	77.9		79.7	
Toluene-d8	%	91.1		90.6		88.0		92.1		88.7		92.0		89.6		89.5	
4-Bromofluorobenzene	%	82.8		85.6		83.0		92.6		-83.4		89.8		83.5		84.8	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-097 B18-7.5'		2203-098 C17-2.5'		2203-099 C17-5'		2203-100 C17-7.5'		2203-101 B15-2.5'		2203-102 B15-5'		2203-103 B15-7.5'		2203-104 D15-2.5'	
Vinyl chloride	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1-Dichloroethene	1	1	U	.1	C	1	U	1	U	1	C	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	U	1	C	1	U	1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	1	1	U	1	U.	1	C	1	С	1	С	1	C	1	U	1	U
Benzene	1	1	U	1	U	1	U	1	С	1	С	1	С	1	U	1	U
Trichloroethene	1	1	U	1	U	1	C	3.2		1	C	1	С	1	U	1	U
Toluene	1	1	U	1	U	1	U	1	С	1	U	1	С	1	U	1	U
Tetrachloroethene	1	1	U	1	U	1	U	2.5		1	U	1.0		3.0		1	U
Dibromofluoromethane	%	79.2		79.8		82.3		78.4		81.2		79.2		80.9		80.2	
Toluene-d8	%	88.1	ĺ	88.1		91.4		90.2		90.7		89.6		90.1		90.1	
4-Bromofluorobenzene	%	84.8		83.5		90.6		82.4		83.4		80.4		83.9		83.1	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-105 D15-5'		2203-106 D15-7.5'		2203-107 D14-2.5'		2203-108 D14-5'		2203-109 D14-7.5'		2203-110 C14-2.5'		2203-111 C14-5'		2203-112 C14-7.5'	
Vinyl chloride	1	1	U	1	U	1	U	1	U	1	C	1	U	1	U	1	U
1,1-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	U	1	U	1	U	1	C	1	С	1	U	1	U
cis-1,2-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Benzene	1	1	U	1	U	1	U	1	С	1	U	1	U	1	U	1	U
Trichloroethene	1	1	U	1.5		1	U	1	U	1	U	1	U	1	U	1	U
Toluene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	1	1	U	1.8		1	U	1	C	1	U	1.3		1.9		1.8	
Dibromofluoromethane	%	81.6		78.1		81.8		80.8		80.9		81.2		79.8		81.5	
Toluene-d8	%	90.6		90.4		89.5		90.4		89.6		91.0		89.5		89.4	
4-Bromofluorobenzene	%	85.6		84.7		83.2		85.7		89.4		86.7		84.7		88.4	

U = Non detect.

TABLE 1 Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-113 B14-2.5'		2203-114 B14-5'		2203-115 B14-7.5'		2203-116 D3-2.5'		2203-117 D3-5'		2203-118 D3-7.5'		2203-119 D2-2.5'		2203-120 D2-5'	
Vinyl chloride	1	1	U	1	U	1	U	1	C	1	C	1	U	1	U	1	U
1,1-Dichloroethene	1	1	U	1	U	1	U	1	U	1	C	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	C	1	U	1	U
cis-1,2-Dichloroethene	1	1	U	1	C	1	C	1	C	1	U	1	U	1	U	1	U
Benzene	1	1	U	1	C	1	C	1	C	1	U	1	U	1	U	1	U
Trichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Toluene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	1	3.3		1	U	1	U	2.2		2.5		1.3		3.0		1.3	
Dibromofluoromethane	%	82.2		81.1		82.1		81.3		81.6		83.6		86.6		83.3	
Toluene-d8	%	89.7		89.8		90.4		92.3		90.4		91.5		91.5		91.3	
4-Bromofluorobenzene	%	87.4	ĺ	84.7		88.1		84.9		84.8		86.1		89.2		85.6	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-121 D2-7.5'		2203-122 E2-2.5'		2203-123 E2-5'		2203-124 E2-7.5'		2203-125 E3-2.5'		2203-126 E3-5'		2203-127 E3-7.5'		2203-128 E10-2.5'	
Vinyl chloride	1	1	U	1	U	1	U	1	C	1	U	1	U	1	Ü	1	U
1,1-Dichloroethene	1	1 .	U	1	U	1	U	1	C	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	U	1	U	1	C	1	U	1	С	1	U	1	U
cis-1,2-Dichloroethene	1	1	U	7.2		1	U	1	U	1	U	1	U	1	U	2.4	
Benzene	1	1	U	1	Ü	1	U	1	U	1	U	1	C	1	U	1	U
Trichloroethene	1	1	U	31		1	U	1	U	1.8		1	U	1	U	3.9	
Toluene	1	1	U	1	U	1	C	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	1	1	U	94		3.8		1.5		15		1.1		1.0		5.3	
Dibromofluoromethane	%	82.9		86.2		81.7		82.3		86.6		79.0		81.0		78.6	
Toluene-d8	%	91.1		91.8		92.0		89.2		92.2		89.9		90.6		89.3	
4-Bromofluorobenzene	%	86.0		89.2		85.0		82.4		90.5		79.8		84.8		81.8	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-129 E10-5'		2203-130 E10-7.5'		2203-131 D11-2.5'		2203-132 D11-5'		2203-133 D11-7.5'		2203-134 D12-2.5'		2203-135 D12-5'		2203-136 D12-7.5'	
Vinyl chloride	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1-Dichloroethene	1	1	U	1	Ų	1	U	1	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	C	1	C	1	C	1	U	1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	1	1	C	2.0		1	C	1	U	1	Ų	2.2		1	U	1	U
Benzene	1	1	C	1	C	1	U	1	C	1	U	1	U	1	U	1	U
Trichloroethene	1	1.3		7.5		1	U	1	C	1	U	1	C	1	U	1	U
Toluene	1	1	U	1	C	1	C	1	C	1	U	1	C	1	U	1	U
Tetrachloroethene	1	4.5		4.5		1	C	5.4		1.1		1	C	1.0		1	U
Dibromofluoromethane	%	78.4		82.2		80.2		81.8		82.6		82.0		81.6		82.5	
Toluene-d8	%	89.9		91.6		89.9		90.8		90.0		88.7		88.9		89.2	
4-Bromofluorobenzene	%	83.4		86.2		84.2		83.9		85.2		84.9		86.0		85.4	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-137 C13-2.5'		2203-138 C13-5'		2203-139 C13-7.5'	-	2203-140 B13-2.5'		2203-141 B13-7.5'		2203-142 B13-5'		2203-143 A13-2.5'		2203-144 A13-5'	
Vinyl chloride	1	1	U	1	U	1	U	1	C	. 1	U	1	U	1	U	1	U
1,1-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	U	1	U	1	U	- 1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	1	1	υ	1	U	1	U	1	Ų	1	U	5.4		1	U	1	U
Benzene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Trichloroethene	1	1	U	1	U	1	U	1	U	1.4		36		1	U	1	U
Toluene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	1	1.8		1.6		1.6		1	U	1	U	1	U	1	U	1	U
Dibromofluoromethane	%	80.6		78.1		323		81.8		87.5		88.5		79.0		82.6	
Toluene-d8	%	89.9		89.4		91.6		88.9		91.3		91.8		89.4		91.8	
4-Bromofluorobenzene	%	81.3		81.2		90.4		84.0		89.4		91.3		82.4		85.6	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-145 A13-7'		2203-146 X13-2.5'		2203-147 X13-5'		2203-148 X13-7.5'		2203-149 A6-2.5'		2203-150 A6-5'		2203-151 A6-7.5'		2203-152 A6-10'	
Vinyl chloride	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	Ū	1	U
trans-1,2-Dichloroethene	1	1	U	1	U	1	U	1	U	. 1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1.6		2.0	
Benzene	1	1	U	1	C	1	C	1	U	1	U	1	C	1	U	1	U
Trichloroethene	1	1	U	1	C	1	U	1	U	1	U	1	C	1	U	1	U
Toluene	1	1	U	1	C	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	1	1	U	1	U	1	U	1	U	2.5		1	С	1	U	8.3	
Dibromofluoromethane	%	80.8		79.0		83.4		87.3		82.3		81.3		78.5		85.4	
Toluene-d8	%	89.9		89.2		90.0		93.1		89.7		88.8		88.4		91.2	
4-Bromofluorobenzene	%	84.6		81.9		85.3		91.6		87.4		82.2		86.6		89.3	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-153 A10-2.5'		2203-154 A10-5'	٠	2203-155 A10-7.5'		2203-156 A10-10'		2203-157 D1-2.5'		2203-158 D1-5'		2203-159 D1-7.5'		2203-160 E1-2.5'	
Vinyl chloride	1	1	U	.1	U	1	U	1	U	1	U	1	U	1	U	1	C
1,1-Dichloroethene	1	1	U	1	U	1	U	1	C	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	U	1	C	1	U	1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	1	1	U	1	U	1.0		2.3		1	U	2.2		1	U	1	U
Benzene	1	1	U	1	С	1	U	1	C	1	U	1	U	1	U	1	U
Trichloroethene	1	1	U	1	U	1	C	2.9		1	C	1	U	1	U	1	U
Toluene	1	1	U	1	U	1	U	1	С	1	U	1	U	1	U	1	U
Tetrachloroethene	1	4.0		1.7		1.2		28		1.8		4.4		1	C	1	U
Dibromofluoromethane	%	77.8		89.3		89.8		78.1		79.2		89.0		78.5		79.3	
Toluene-d8	%	88.8		92.9		92.8		89.4		89.5		93.9		89.6		90.0	
4-Bromofluorobenzene	%	83.3		91.5		93		84.2		85.6		93.0		82.8		84.7	

U = Non detect.

TABLE 1 Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-161 E1-5'		2203-162 E1-7.5'		2203-163 E0-2.5'		2203-164 E0-5'		2203-165 E0-7.5'		2203-166 D13-2.5'		2203-167 D13-5'		2203-168 D13-7.5'	
Vinyl chloride	1	1	U	1	U	1	U	1	U	1	C	1	Ü	1	U	1	U
1,1-Dichloroethene	1	1	U	1	U	1	U	1	C	1	C	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	C	1	U	1	C	1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	1 .	1	U	1	C	1	U	1	C	1	C	1	C	1	U	1	U
Benzene	1	1	U	1	U	1	U	1	С	1	C	1	C	1 -	U	1	U
Trichloroethene	1	1	U	1	U	1	U	1	U	1	С	1	С	1	U	1	U
Toluene	1	1	U	1	C	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	1	1.4		1	U	-1	U	1	U	1	U	1	U	1	U	1	U
Dibromofluoromethane	%	78.2		78.6		87.0		78.5		80.0		84.0		79.1		87.6	
Toluene-d8	%	90.0		90.3		92.2		90.6		89.4		92.5		89.4		92.1	
4-Bromofluorobenzene	%	81.5		83.5		88.7		82.3		83.0		89.8		83.2		91.8	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-169 Y13-2.5'		2203-170 Y13-5'		2203-171 Y13-7.5'		2203-172 E11-2.5'		2203-173 E11-5'		2203-174 E11-7.5'		2203-175 A15-2.5'	···	2203-176 A15-5'	
Vinyl chloride	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1-Dichloroethene	1	1	U	1	C	1	U	1	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	1	1	U	1	U	1	C	3.0		1	U	1	U	1	U	1	U
Benzene	1	1	U	1	С	1	U	1	U	1	U	1	U	1	U	1	U
Trichloroethene	1	1	U	1.8		1.3		2.1		1.2		2.8		1	U	1	U
Toluene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	1	1	U	3.2		3.0		1	U	5.0		9.8		1	U	1	U
Dibromofluoromethane	%	75.7		85.4		130	-	82.7		89.0		78.2		88.7		79.2	
Toluene-d8	%	88.0		91.7		92.4		91.8		92.4		89.9		92.9		90.2	
4-Bromofluorobenzene	%	80.9		91.2		90.8		86.6		92.1		85.6		91.4		82.3	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin High Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit mg/kg	2203-177 A15-7.5'		2203-178 A16-2.5'		2203-179 A16-5'		2203-180 A16-7.5'		2203-181 A17-2.5'		2203-182 A17-5'		2203-183 A17-7.5'		·
Vinyl chloride	, 1	1	U	1	U	1	U	1	U	1	C	1	U	1	U	
1,1-Dichloroethene	1	1	U	1	C	1	U	1	C	1	С	1	U	1	U	
trans-1,2-Dichloroethene	1	1	U	1	С	1	U	1	C	1	C	1	U	1	U	
cis-1,2-Dichloroethene	1	1	U	1	C	1	U	1	C	1	C	1	U	1	U	
Benzene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	
Trichloroethene	1	1	U	1	С	1	C	1	U	1	С	1	U	1	U	
Toluene	1	1	U	1	U	1	Ù	1	U	1	U	1	U	1	U	
Tetrachloroethene	1	1	U	2.5		2.2		1.6		1.7		1.3		1	U	
Dibromofluoromethane	%	80.8		77.3		78.6		76.2		79.0		79.8		88.6		
Toluene-d8	%	89.4		89.5		89.9		89.4		88.8		89.5		92.7		
4-Bromofluorobenzene	%	83.0		83.6		83.4		82.4		81.7		83.8		90.8		

U = Non detect.

TABLE 2 Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin Low Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit ug/kg	2203-001 C5-2.5'		2203-002 C5-5'		2203-006 D5-7.5'		2203-007 E5-2.5'		2203-010 E6-2.5'		2203-011 E6-5'		2203-012 E6-7.5'		2203-013 D6-2.5'	
Vinyl chloride	50	170		50	U	50	U	50	U	50	U	50	С	440		94	
1,1-Dichloroethene	50	50	U	50	C	50	U	50	U	50	U	50	U	50	U	50	U
trans-1,2-Dichloroethene	50	50	U	50	U	50	U	78		50	U	50	U	50	U	50	U
cis-1,2-Dichloroethene	50	280		110		150		3400		50	U	50	С	4200		230	
Benzene	50	50	U	50	U	50	U	50	U	50	U	50	C	50	U	50	U
Trichloroethene	50	50	U	450		440		480		50	U	50	U	430		50	U
Toluene	50	50	U	50	U	50	C	50	U	50	U	50	U	50	U	50	U
Tetrachloroethene	50	3300		2700		50	С	860		50	U	50	U	75		68	
Dibromofluoromethane	%	78.8		118		75.4		78.3		123		89.3		96.0		118	
Toluene-d8	%	94.7		97.7		91.9		92.9		97.4		96.9		98.3		93.1	
4-Bromofluorobenzene	%	96.1		105		95.1		91.9		106		102		107		91.3	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin Low Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit ug/kg	2203-014 D6-5'		2203-015 D6-7.5'		2203-016 C7-2.5'		2203-019 D7-2.5'		2203-023 E7-5'		2203-024 E7-7.5'		2203-025 C4-2.5'		2203-026 C4-5'	
Vinyl chloride	50	54		81		190		330		84		140		52		50	U
1,1-Dichloroethene	50	50	U	70		50	U	100		50	U	50	C	50	U	50	C
trans-1,2-Dichloroethene	50	50	U	50	C	50	U	170		50	Ų	66		50	U	50	U
cis-1,2-Dichloroethene	50	160		710		50	U	50	U	50	U	830		50	U	50	U
Benzene	50	50	U	50	C	50	U	65		50	U	50	U	50	U	50	U
Trichloroethene	50	500		50	Ç	1800		50	U	540		50	U	50	U	50	U
Toluene	50	50	U	50	U	50	Ų	280		50	U	50	U	50	U	50	U
Tetrachloroethene	50	1400		3100		50	U	51		590		910		240	-	50	U
Dibromofluoromethane	%	81.8		92.0		94.3		97.3		116		116		80.1		81.6	
Toluene-d8	%	93.3		98.0		98.3		98.1		102		116		92.6		92.8	
4-Bromofluorobenzene	%	96.8		106		105		106		97.0		103		95.5		94.7	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin Low Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit ug/kg	2203-027 C4-7.5'		2203-029 D4-4'		2203-030 D4-8'		2203-031 E4-2.5'		2203-037 D16-2.5'		2203-038 D16-5'		2203-040 C15-2.5'		2203-041 C15-5'	
Vinyl chloride	50	50	U	50	U	50	U	50	U	50	U	61		52		50	U
1,1-Dichloroethene	50	50	U	50	C	50	U	50	U	50	U	50	C	50	U	50	U
trans-1,2-Dichloroethene	50	50	U	50	C	50	U	50	U	50	U	50	U	50	U	50	U
cis-1,2-Dichloroethene	50	50	U	55		110		1400		50	U	50	U	50	U	50	U
Benzene	50	50	U	50	C	50	C	50	С	50	U	50	U	50	U	50	U
Trichloroethene	50	50	U	50	С	330		3300		220		200		50	U	3400	
Toluene	50	50	U	50	C	50	C	50	U	50	U	50	U	50	U	50	U
Tetrachloroethene	50	570		750		18000		3300		280		350		2300		2300	
Dibromofluoromethane	%	86.8		89.1		117		116		83.6		116		78.0		91.1	
Toluene-d8	%	95.7		98.5		90.0		96.9		91.5		92.0		93.3		96.8	
4-Bromofluorobenzene	%	99.7		103		95.0		105		96.7		94.1		93.4		101	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin Low Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit ug/kg	2203-043 A8-2.5'		2203-046 A8-10'		2203-047 A4-2.5'		2203-048 A4-5'		2203-050 A4-10'		2203-051 C8-2.5'		2203-057 E8-2.5'		2203-060 C9-2.5'	
Vinyl chloride	50	50	U	500		50	U	88		50	U	190		50	U	730	***************************************
1,1-Dichloroethene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
trans-1,2-Dichloroethene	50	50	U	50	U	50	U	50	Ü	50	U	50	U	110		50	U
cis-1,2-Dichloroethene	50	50	U	1700		50	C	50	C	50	С	1700		4900		3400	
Benzene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
Trichloroethene	50	50	U	50	U	50	C	50	C	50	C	3500		50	U	50	U
Toluene	50	50	U	50	U	50	C	50	U	50	U	50	U	50	U	140	
Tetrachloroethene	50	450		1900		50	U	140		50	U	1900		960		1000	
Dibromofluoromethane	%	120		75.2		116		117		119		119		79.1		92.4	
Toluene-d8	%	93.0		94.7		92.3		93.3		91.9		99.8		93.5		102	
4-Bromofluorobenzene	%	94.9		94.3		98.3		93.1		96.0		105		94.9		108	

Ú = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin Low Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit ug/kg	2203-066 E9-2.5'		2203-067 E9-5'		2203-068 E9-7.5'		2203-069 D10-2.5'		2203-070 D10-5'		2203-072 C10-2.5'		2203-075 B16-2.5'		2203-079 B17-5'	
Vinyl chloride	50	50	U	50	U	50	U	50	U	50	U	710		81		50	U
1,1-Dichloroethene	50	50	U	50	U	50	U	50	C	50	С	580		50	U	50	U
trans-1,2-Dichloroethene	50	50	U	50	C	50	U	50	Ú	50	C	490		50	U	50	U
cis-1,2-Dichloroethene	50	560		630		540		50	U	1000		50	C	50	U	50	U
Benzene	50	50	U	50	C	50	U	50	Ω	50	C	50	C	50	U	50	U
Trichloroethene	50	50	U	550		1000		50	C	50	U	1100		220		50	U
Toluene	50	- 50	U	50	U	50	U	50	С	50	U	50	U	50	C	50	U
Tetrachloroethene	50	62		1200		1300		72		72		750		1100		2300	
Dibromofluoromethane	%	82.0		75.7		89.0		120		78.0		88.8		77.5		116	
Toluene-d8	%	93.4		93.3		99.6		94.7		92.9		97.1		95.5		97.2	
4-Bromofluorobenzene	%	97.5		91.4		102		92.3		92.7		101		. 93.6		104	-

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin Low Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit ug/kg	2203-081 D17-2.5'		2203-082 D17-5'		2203-084 D18-2.5'		2203-085 D18-5'		2203-087 D19-2.5'		2203-088 D19-7.5'		2203-089 B19-2.5'		2203-090 B19-5'	ļ
Vinyl chloride	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
1,1-Dichloroethene	50	50	U	50	U	50	U	94		50	U	50	U		U	50	U
trans-1,2-Dichloroethene	50	50	U	50	C	50	U	50	C	50	U	50	U	50	U	50	U
cis-1,2-Dichloroethene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
Benzene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
Trichloroethene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
Toluene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
Tetrachloroethene	50	170		400		50	U	250		50	U	50	U	50	U	50	U
Dibromofluoromethane	%	97.3		92.5		119		120		92.0		118		93.1		92.9	
Toluene-d8	%	97.3		98.1		98.3		97.4		97.1		97.7		97.4		97.9	
4-Bromofluorobenzene	%	102		104		103		104		101		103		103		104	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin Low Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit	2203-091 B19-7.5'		2203-092 C19-2.5'		2203-093 C19-5'		2203-094 C19-7.5'		2203-095 B18-2.5'		2203-096 B18-5'		2203-097 B18-7.5'		2203-098 C17-2.5'	
	ug/kg		 				 -	50		50							
Vinyl chloride	50	50		50	U	50	U	50	Ų	50	U	50	U	50	<u>U</u>	50	U
1,1-Dichloroethene	50	50	U	50	U	50	U	.50	U	50	U	50	U	50	U	50	U
trans-1,2-Dichloroethene	50	50	U	50	U	50	Ų	50	U	50	U	50	C	50	U	50	U
cis-1,2-Dichloroethene	50	50	U	50	U	50	U	50	U	50	U	50	С	50	U	50	C
Benzene	50	50	U	50	U	50	U	50	C	50	U	50	C	50	U	50	Ü
Trichloroethene	50	290		50	C	50	U	380		50	U	50	U	50	U	150	
Toluene	50	50	U	50	C	50	U	50	U	50	U	50	С	50	U	50	U
Tetrachloroethene	50	50	U	50	C	50	U	69		50	U	80		120		50	C
Dibromofluoromethane	%	89.4		92.4		91.5		116		89.8		87.7		89.4		91.0	
Toluene-d8	%	97.7		98.1		98.3		97.0		98.6		97.0		98.7		98.1	
4-Bromofluorobenzene	%	103		103		103		102		103		101		103		103	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin Low Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit ug/kg	2203-099 C17-5'		2203-100 C17-7.5'		2203-101 B15-2.5'	,	2203-102 B15-5'		2203-103 B15-7.5'		2203-104 D15-2.5'		2203-105 D15-5'		2203-106 D15-7.5'	
Vinyl chloride	50	77		75		50	U	50	U	52	,	60		50	U	53	
1,1-Dichloroethene	50	50	U	50	U	50	U	50	U	50	C	50	C	50	U	50	U
trans-1,2-Dichloroethene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	C
cis-1,2-Dichloroethene	50	50	U	50	U	50	Ü	50	U	50	U	50	U	50	U	50	C
Benzene	50	50	U	50	U	50	C	50	U	50	U	50	U	50	U	50	U
Trichloroethene	50	690		3600		140		180		890		50	U	50	U	1500	
Toluene	50	50	U	50	U	50	U	50	U	50	U	50	C	50	U	50	U
Tetrachloroethene	50	480		2300		180		690		3000		78		50	U	1400	
Dibromofluoromethane	%	78.8		77.8		91.6		77.8		78.9		77.9		90.5		79.3	
Toluene-d8	%	93.0		94.1		98.6		93.9		92.0		93.8		97.4		92.7	
4-Bromofluorobenzene	%	92.6		97.3		102		93.1		94.1	·	94.0		103		93.6	

U = Non detect.

TABLE 2 Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin Low Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit ug/kg	2203-107 D14-2.5'		2203-108 D14-5'		2203-109 D14-7.5'		2203-110 C14-2.5'		2203-111 C14-5'		2203-112 C14-7.5'	İ	2203-113 B14-2.5'		2203-114 B14-5'	ł
Vinyl chloride	50	50	U	50	U	50	U	68		50	U	50	U	50	U	50	U
1,1-Dichloroethene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
trans-1,2-Dichloroethene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
cis-1,2-Dichloroethene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
Benzene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
Trichloroethene	50	50	U	50	J	50	C	480		520		350		510		180	
Toluene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
Tetrachloroethene	50	50	U	150		50	U	930		1600		1500		3100		400	
Dibromofluoromethane	%	91.1		79.5		88.9		77.7		78.8		77.0		81.0		87.5	
Toluene-d8	%	97.5		92.5		98.0		93.9		93.3		94.6		93.7		93.5	
4-Bromofluorobenzene	%	102		94.4		102		93.7		93.2		93.3		97.1		99.6	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin Low Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit ug/kg	2203-115 B14-7.5'		2203-116 D3-2.5'		2203-117 D3-5'		2203-118 D3-7.5'		2203-119 D2-2.5'		2203-120 D2-5'		2203-123 E2-5'		2203-124 E2-7.5'	
Vinyl chloride	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
1,1-Dichloroethene	50	50	U	50	U	50	U	50	U	50	U	50	C	50	U	50	U
trans-1,2-Dichloroethene	50	50	U	50	U	50	С	50	C	50	U	50	U	50	U	50	U
cis-1,2-Dichloroethene	50	50	U	50	C	50	IJ	50	U	320		50	U	50	U	50	U
Benzene	50	50	U	50	C	50	C	50	C	50	U	50	U	50	U	50	U
Trichloroethene	50	100		170		53		50	U	50	U	50	U	460		70	
Toluene	50	50	U	50	C	50	С	50	U	50	U	50	U	50	U	50	U
Tetrachloroethene	50	180		1800		2400		940		2300		1000		3500		1400	
Dibromofluoromethane	%	117		79.8	-	77.5		78.7		87.8	Ī	80.1		79.8		77.4	
Toluene-d8	%	97.7		93.3		93.4		92.2		95.4		93.9		93.8		92.7	
4-Bromofluorobenzene	%	103		97.8		95.0		93.2		101		95.9		93.9		94.1	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin Low Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit	2203-126 E3-5'		2203-127 E3-7.5'		2203-129 E10-5'		2203-131 D11-2.5'		2203-133 D11-7.5'		2203-134 D12-2.5'		2203-135 D12-5'		2203-136 D12-7.5'	
Vinyl chloride	ug/kg 50	50	- 11	50		50	U	50	U	50	U	50	U	50	1.1	97	-
	50	50	~~	50 50		50		92	러	87	ᅴ	50					
1,1-Dichloroethene	50	50				50	U	92		01		50	U	50		54	
trans-1,2-Dichloroethene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	77	
cis-1,2-Dichloroethene	50	50	U	50	U	50	U	500		2300		2300		130		2900	
Benzene	50	50	U	50	U	50	C	50	U	50	U	50	U	50	U	50	U
Trichloroethene	50	50	U	50	U	1300		50	U	50	U	110		290		50	U
Toluene	50	50	U	50	U	50	C	50	U	50	U	50	U	50	U	50	U
Tetrachloroethene	50	660		620		4400		50	U	430		50	U	680		50	U
Dibromofluoromethane	%	79.9		80.0		79.2		82.0		89.4		119		76.8		88.9	
Toluene-d8	%	91.7		92.2		93.3		96.3		97.2		98.6		92.8		95.9	
4-Bromofluorobenzene	%	93.6		94.5		93.5		97.0		103		104		95.7		104	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin Low Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit ug/kg	2203-137 C13-2.5'		2203-138 C13-5'		2203-139 C13-7.5'		2203-141 B13-7.5'		2203-143 A13-2.5'		2203-144 A13-5'		2203-145 A13-7.5'		2203-146 X13-2.5'	
Vinyl chloride	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
1,1-Dichloroethene	50	50	U	50	U	50	U	50	U	50	U	50	U	100		50	U
trans-1,2-Dichloroethene	50	50	U	50	C	50	C	53		50	U	50	U	50	U	50	U
cis-1,2-Dichloroethene	50	50	U	50	C	50	U	210		50	U	50	U	50	U	50	U
Benzene	50	50	U	50	U	50	\Box	50	U	50	U	50	U	50	U	50	U
Trichloroethene	50	560		390		290		1400		50	U	50	U	50	U	50	U
Toluene	50	50	U	50	C	50	U	50	U	50	U	50	U	50	U	50	U
Tetrachloroethene	50	1600		1300		750		50	U	51		50	U	50	U	110	
Dibromofluoromethane	%	81.0		77.8		88.3		84.3		80.9		90.9		118		81.8	
Toluene-d8	%	91.9		93.2		97.0		94.4		94.9		96.7		97.4		92.9	
4-Bromofluorobenzene	%	94.0		92.8		103		97.6		94.9		105		106		93.7	

U = Non detect.

TABLE 2 Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin Low Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit ug/kg	2203-147 X13-5'		2203-148 X13-7.5'		2203-149 A6-2.5'		2203-150 A6-5'		2203-151 A6-7.5'		2203-153 A10-2.5'		2203-154 A10-5'		2203-155 A10-7.5'	
Vinyl chloride	50	50	U	50	U	50	U	50	U	160		50	U	1200		260	
1,1-Dichloroethene	50	50	U	50	U	50	C	50	U	50	Ú	50	U	50	U	520	_
trans-1,2-Dichloroethene	50	50	U	50	Ú	50	U	50	U	50	C	50	U	50	U	50	U
cis-1,2-Dichloroethene	50	50	U	50	U	57		870		1600		50	U	490		1200	
Benzene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
Trichloroethene	50	50	U	50	U	50	U	56		50	U	62		50	U	50	U
Toluene	50	50	U	50	U	50	U	50	U	50	U	50	U	89		50	U
Tetrachloroethene	50	50	U	50	U	2300		120		50	U	4300		1300		540	
Dibromofluoromethane	%	91.5		82.0		78.4		80.6		91.6		75.6		77.6		94.4	
Toluene-d8	%	97.2		94.3		92.9		92.5		97.4		91.5		92.8		96.0	
4-Bromofluorobenzene	%	102		98.6		98.3		91.0		98.4		94.5		96.3		105	

U = Non detect.

TABLE 2 Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin Low Level Results Soil Samples

Sample Description

VOLATILES	Reporting Limit ug/kg	2203-156 A10-10'		2203-157 D1-2.5'		2203-158 D1-5'		2203-159 D1-7.5'		2203-160 E1-2.5'		2203-161 E1-5'		2203-162 E1-7.5'		2203-163 E0-2.5'	
Vinyl chloride	50	79		50	C	50	U	58		59		61		50	U	58	
1,1-Dichloroethene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
trans-1,2-Dichloroethene	50	50	U	50	C	50	U	50	U	50	·U	50	U	50	U	50	U
cis-1,2-Dichloroethene	50	1900		1000		1700		56		50	U	50	C	50	U	50	U
Benzene	50	420		50	U	50	U	50	U	50	U	50	U	50	U	50	U
Trichloroethene	50	3200		270		50	U	50	U	50	U	160		50	U	240	
Toluene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
Tetrachloroethene	50	25000		1100		3800		370		50	U	1100		220		490	
Dibromofluoromethane	%	81.0		80.3		80.4		76.9		80.8		77.5		90.2		78.2	
Toluene-d8	%	93.9		95.1		92.7		91.3		92.0		93.5		97.9		93.1	
4-Bromofluorobenzene	%	93.2		93.9		96.9		91.8		96.4		94.0		103		92.0	

U = Non detect.

Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin Low Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit ug/kg	2203-164 E0-5'		2203-165 E0-7.5'		2203-166 D13-2.5'		2203-167 D13-5'		2203-168 D13-7.5'		2203-169 Y13-2.5'		2203-170 Y13-5'		2203-172 E11-2.5'	
Vinyl chloride	50	50	U	97		64		- 55		57		50	U	50	U	50	U
1,1-Dichloroethene	50	50	U	50	C	50	U	50	U	50	U	50	U	50	U	50	U
trans-1,2-Dichloroethene	50 ·	50	U	50	C	50	U	50	U	50	U	50	U	50	U	50	U
cis-1,2-Dichloroethene	50	50	U	50	U	50	U	50	U	50	U	200		96		50	U
Benzene	50	50	U	50	C	50	C	50	U	50	U	50	U	50	U	50	U
Trichloroethene	50	50	U	50	U	50	U	50	U	50	U	270		2000		1200	
Toluene	50	50	U	50	C	50	U	50	U	50	U	50	U	50	U	50	U
Tetrachloroethene	50	93		190		170		110		260		260		2800		1500	
Dibromofluoromethane	%	93.7		76.0		77.6		78.5		79.0		85.9		78.4		91.3	\Box
Toluene-d8	%	97.0		92.1		94.5		93.9		94.4		95.1		94.5		96.0	\Box
4-Bromofluorobenzene	%	105		93.5		94.1		93.8		95.7		106		94.5		103	

U = Non detect.

TABLE 2 Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin Low Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit ug/kg	2203-173 E11-5'		2203-175 A15-2.5'		2203-176 A15-5'		2203-177 A15-7.5'		2203-178 A16-2.5'		2203-179 A16-5'		2203-180 A16-7.5'		2203-181 A17-2.5'	
Vinyl chloride	50	50	U	50	U	82		50	U	50	U	50	U	50	U	50	U
1,1-Dichloroethene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
trans-1,2-Dichloroethene	50	460		50	U	50	U	50	U	50	U	50	U	50	U	50	U
cis-1,2-Dichloroethene	50	3000		50	U	50	U	50	U	110		50	U	50	U	61	\neg
Benzene	50	50	U	50	C	50	U	50	U	50	U	50	U	50	U	50	U
Trichloroethene	50	2200		50	U	50	С	50	U	1300		50	U	50	U	280	
Toluene	50	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
Tetrachloroethene	50	170		50	U	58		50	U	3500		1300		1500		1100	
Dibromofluoromethane	%	93.3		92.4		78.2		86.6		111		95.4		77.9		79.6	
Toluene-d8	%	95.4		97.8		94.2		96.8		96.5		96.6		91.9		93.3	\neg
4-Bromofluorobenzene	%	103		105		93.5		101		106		105		96.6		96.9	

U = Non detect.

TABLE 2 Former Oaks D.B. Facility - Ft. Atkinson, Wisconsin Low Level Results Soil Samples Sample Description

VOLATILES	Reporting Limit	2203-183 A17-7.5'						
	ug/kg				<u> </u>			
Vinyl chloride	50	50	U					<u></u>
1,1-Dichloroethene	50	50	U	_	1		 	
trans-1,2-Dichloroethene	50	50	U					
cis-1,2-Dichloroethene	50	50	U			·		
Benzene	50	50	U					
Trichloroethene	50	50	U					
Toluene	50	50	U					
Tetrachloroethene	50	180						
Dibromofluoromethane	%	93.2						
Toluene-d8	%	98.1						
4-Bromofluorobenzene	%	104						

U = Non detect.