

May 3, 2006

Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Madison, Wisconsin 53711

Attn: Mr. Hank Kuehling

RE: NewFields Project No. 0451-002-800

WDNR BRRTs No. 03-28-176509

Supplemental Hydrogeologic Site Investigation Status Report D.B. Oak Facility, 700-710 Oak Street, Ft. Atkinson, Wisconsin

Dear Mr. Kuehling:

NewFields has prepared this status report summarizing the results of the supplemental hydrogeologic site investigation recently completed at the above referenced facility. These activities were completed in accordance with our January 25, 2006 Work Plan. This report includes a description of completed activities, site investigation results, and recommendations for additional site characterization.

1.0 COMPLETED SITE ACTIVITIES

The supplemental hydrogeologic investigation consisted of the installation of one well nest (including a water table well and a deeper piezometer), installation of a second piezometer at a separate location, the collection of soil samples for vertical contaminant characterization and waste profile/disposition evaluation, well development, collection of one round of groundwater samples for volatile organic compound (VOC) analysis and groundwater elevation measurements. A description of these completed activities follows.

Monitoring Wells Installation and Well Development

NewFields coordinated the installation of one water table observation well and two piezometers at the D.B. Oaks facility between March 6 and 8, 2006. Water table observation well MW-7 and piezometer MW-7A were installed at the southwest corner of the property northeast of the intersection of Oak Street and the south driveway access to the facility building. Piezometer MW-3B was installed adjacent to wells MW-3 and MW-3A on the east side of the facility building. Well locations are shown on Figure 1.

Monitoring wells MW-7 and MW-7A were installed in boreholes advanced with hollow stem augers utilizing a truck mounted rotary drill rig. MW-3B was installed in a boring advanced with mud rotary drilling methods. Badger State Drilling Company, Inc. of Stoughton, Wisconsin, provided drilling services. Soil samples were collected with a split-barrel sampler (split spoon), visually classified in accordance with the Unified Soil Classification System, and recorded on soil boring logs. Soil boring logs are included in

NewFields
2110 Luann Lane, Suite 101
Madison, Wisconsin 53713
(608) 442-5223
(608) 442-9013 FAX
www.newfields.com

Mr. Hank Kuehling Wisconsin Department of Natural Resources May 3, 2006 Page 2 of 6

Appendix A.

Monitoring wells were constructed with two-inch diameter schedule 40 PVC well casings and screens. Well MW-7 was installed at a depth of 20-feet below ground level with a well screen 10-feet in length intersecting the water table at a depth of approximately eight feet below the water table surface. Both piezometers were constructed with well screens five-feet in length. The well screen for MW-7A was placed 25 feet below well MW-7 approximately 45 feet below ground surface. Piezometer MW-3B was installed at a depth 80 feet below ground surface, approximately 32 feet below adjacent piezometer MW-3A. The top of screen and bottom of screen elevations are summarized in Table 1, and well construction forms are also included in Attachment A.

Following well installation monitoring wells were developed by NewFields. Well development was completed by surging and purging ten well casing volumes. Well development forms are included in Appendix A.

Groundwater Elevations

The top of each well casing and ground surface elevations at each well were surveyed relative to mean sea level (MSL) datum. Prior to collecting groundwater samples, static water levels were measured in all site monitoring wells. Reference elevations, ground surface elevations, depth to water measurements, and groundwater elevations are summarized in Table 1. Groundwater elevations measured at water table observation wells are shown on Figure 1, and groundwater elevations measured at piezometers are shown on Figure 2.

Groundwater Sample Collection

Groundwater samples were collected on March 28, 2006. Prior to sample collection, four well casing volumes were purged from each well. Groundwater samples were collected with dedicated bailers equipped with bottom emptying devices; a bailer was dedicated to each well. Laboratory provided containers were filled, held in a cooler on ice, and shipped to a Wisconsin-certified environmental laboratory for analyses. All samples were analyzed for volatile organic compounds (VOCs) by USEPA method 8260. In accordance with WDNR guidance, one duplicate sample and a trip blank were also analyzed for VOCs. Laboratory services were provided by Northern Lakes Service, Inc. of Crandon, Wisconsin. Groundwater monitoring results are summarized in Table 2. Laboratory reports are included in Appendix B.

Groundwater samples were also analyzed for geochemical indicator parameters; field measurements for pH, conductivity, temperature, oxidation-reduction potential, and dissolved oxygen were also made at the time of sample collection. Geochemical indicator parameter results and field measurements are summarized in Table 2.

Mr. Hank Kuehling Wisconsin Department of Natural Resources May 3, 2006 Page 3 of 6

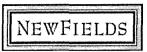
Soil Sample Collection

Concurrent with well installation, four shallow soil borings (SB-1 through SB-4) were advanced on the east side of the facility building and soil samples were collected from these borings to identify the vertical extent of soil contamination. Five samples collected from below 10 feet were analyzed for VOCs by USEPA method 8260. Two other samples from these borings were analyzed for waste profile parameters and toxicity characteristic leaching potential (TCLP) as part of the evaluation options review for disposition of source materials. Laboratory services were provided by NLS. Soil sample results are summarized in Table 4, and laboratory reports are included in Attachment C.

2.0 SITE INVESTIGATION RESULTS

A brief description of the hydrogeologic site investigation results follows.

Site Geology


Soil samples collected from a previous site investigation identified a surficial fine-grained soil unit consisting of interbedded clays, silts and clayey sand. This unit extends from the surface to depths varying from approximately 10 feet on the north side of the property (the MW-4 well nest) to about 30 feet on the south side (the MW-2 well nest). This fine-grained soil is in turn underlain by highly permeable outwash sand across the site. At MW-3A, the 50-foot maximum depth of the earlier investigation, this outwash sand was found underlain by interbedded clays/silts and silty sand at a depth of approximately 40 feet.

During this most recent investigation, additional data was collected at the MW-7 and MW-3 well nest locations. At MW-7, the surficial fine-grained units were encountered to a depth of 13 feet, underlain by silty sand to a depth of 27 feet, and outwash to the 45-foot maximum depth. This silty sand comprises a till that thickens to the southwest of the property. It was previously encountered at MW-6 (located several hundred feet southwest of the site) underlying the surficial fine-grained unit from about 10 feet to the maximum depth of 40 feet at that well nest. At MW-3, the interbedded clay/silt and silty sand described earlier was encountered from 40 to 61 feet, underlain by silt to 77 feet, and slightly silty sand to the maximum depth of 80 feet. Monitoring well 3B was installed with the screen intersecting the contact between the silt and the deeper sand from 75 to 80 feet. The site geologic conditions showing this latest information are shown on Geologic Cross Section A – A' on Figure 3.

Groundwater Flow Conditions

As with previous measurements, March 2006 groundwater elevations indicate that the direction of groundwater flow across the site is to the south-southwest. Flow measured at the deep piezometers show this flow is uniform across the entire well network. However, these latest measurements also indicate that

¹ In accordance with the January 2006 work plan, this evaluation will be submitted with a forthcoming Site Investigation and Evaluation of Remedial Options Report

Mr. Hank Kuehling Wisconsin Department of Natural Resources May 3, 2006 Page 4 of 6

groundwater flow at the water table is influenced by a drainage ditch in the vicinity of down gradient well MW-6, off site to the south. The flow direction of the water table at this well nest is to the north, similar to findings made during the previous measurements during August 2005. This drainage ditch is located between the rail line and the east side of the 2L Lobe property immediately south of the site. Groundwater elevations measured in water table observations wells are shown on Figure 1, and groundwater elevations measured in piezometers are shown on Figure 2

Groundwater Quality

As with previous groundwater samples, March 2006 groundwater sample results indicate that tetrachlorothene (PCE) has impacted groundwater quality on the D.B. Oaks property. Although the primary constituent of concern detected in groundwater samples is PCE, degradation, or daughter products of PCE were also detected in groundwater samples. Daughter products of PCE include trichloroethene (TCE), 1,1-dichloroethene (1,1 DCE), cis- and trans- 1,2-dichloroethene (cis DCE and trans DCE), and vinyl chloride. (Other constituents, including benzene, dichlorofluoromethane, and toluene were also detected at low concentrations in previous samples, but not in the March 2006 samples.)

As shown on Figures 1 and 2, the highest concentrations of total VOCs were detected in samples collected from water table well MW-3 located adjacent to the loading dock, and water table well MW-4 located adjacent to the former PCE tank. Elevated concentrations of VOCs were also detected in samples collected from down gradient water table well MW-2. Low concentrations of total VOCs were detected at piezometer MW-4A, but elevated VOCs were detected in samples collected from piezometers MW-3A and MW-3B, and in samples collected from down gradient piezometers MW-2A, and MW-7A.

MW-3A sample results indicate that daughter product concentrations increase with depth, but PCE concentrations decline with depth. These increasing concentrations of TCE and other daughter products indicate that PCE is degrading with depth. However, MW-3B results indicate that elevated PCE concentrations are present at greater depths at the MW-3 well nest. Data collected from the earlier investigation confirmed that PCE product is likely trapped in the fine grained soils within 15 feet of the ground surface at the MW-3 and MW-4 locations. MW-3B sample results indicate that PCE may also be trapped in the silt encountered between 61 and 77 feet at the MW-3 well nest, and may influence the contaminant distribution pattern at depth. The lateral extent of this silt unit is unknown.

Soil Sample Results

Soil samples were collected from soil borings SB-1, SB-2, SB-3, and SB-4. Samples collected from within nine feet of the ground surface at the SB-2 and SB-4 locations were submitted for laboratory analysis to establish a waste disposal profile. Samples collected from below nine feet at these boring locations were analyzed for VOCs to further characterize the vertical extent of contamination.

Sample results indicate that the soil is not classified as a hazardous waste by the characteristics of reactivity, ignitibility, or corrosivity. However, the samples yield total VOC concentrations above 700 µg/l from the

Mr. Hank Kuehling Wisconsin Department of Natural Resources May 3, 2006 Page 5 of 6

TCLP test as shown in Table 4, specifying hazardous classification of the soil per characteristic by this test.²

3.0 RECOMMENDATIONS

NewFields recommends that additional investigation be completed at the DB Oak site to further define the vertical extent of PCE. A cone penetrometer³ or Geoprobe should be used to identify the lateral extent of the deep silt layer encountered at the MW-3B boring. Additional groundwater samples should be collected as "grab" samples below MW-3B to identify the vertical extent of PCE and geologic conditions at this location. Additional samples should be collected from borings advanced adjacent to MW-1, MW-2, and MW-4. At these later three locations, groundwater "grab" samples should be collected at depths of 60, 80 and 100 feet. Sample results will then be used to select locations for additional permanent piezometers.

The results from this proposed investigation as well as historic data should be presented in a Site Investigation and Evaluation of Remedial Options Report for submittal to the WDNR. The comprehensive investigation results should be used to evaluate potential remedial responses for shallow and deep source zones, including, but not limited to, source removal (i.e. excavation), in-situ treatment (i.e., oxidation, electrical methods), and/or source control (i.e. groundwater extraction, ozone sparging).

Please contact us at (608) 442-5223 should you have any questions.

Sincerely,

NewFields

Mark S. McColloch, P.G.

Mak I M'Colloch

Senior Geologist

David P. Trainor, P.E., P.G.

Sail of Trainer

Principal

² WDNR adopted EPA's "contained out" rule for media contaminated with hazardous waste to be alternatively handled as solid waste if concentrations fall below health based levels. Guidance issued during December 2005 established threshold values for PCE at 33 mg/kg, TCE at 14 mg/kg, and vinyl chloride at 0.87 mg/kg for this "contained out" rule. Because analyses results exceed these thresholds, the soil will require classification as hazardous waste if removed from the site.

² A modified Geoprobe that can identify soil type as the probe is advanced.

Mr. Hank Kuehling
Wisconsin Department of Natural Resources
May 3, 2006
Page 6 of 6

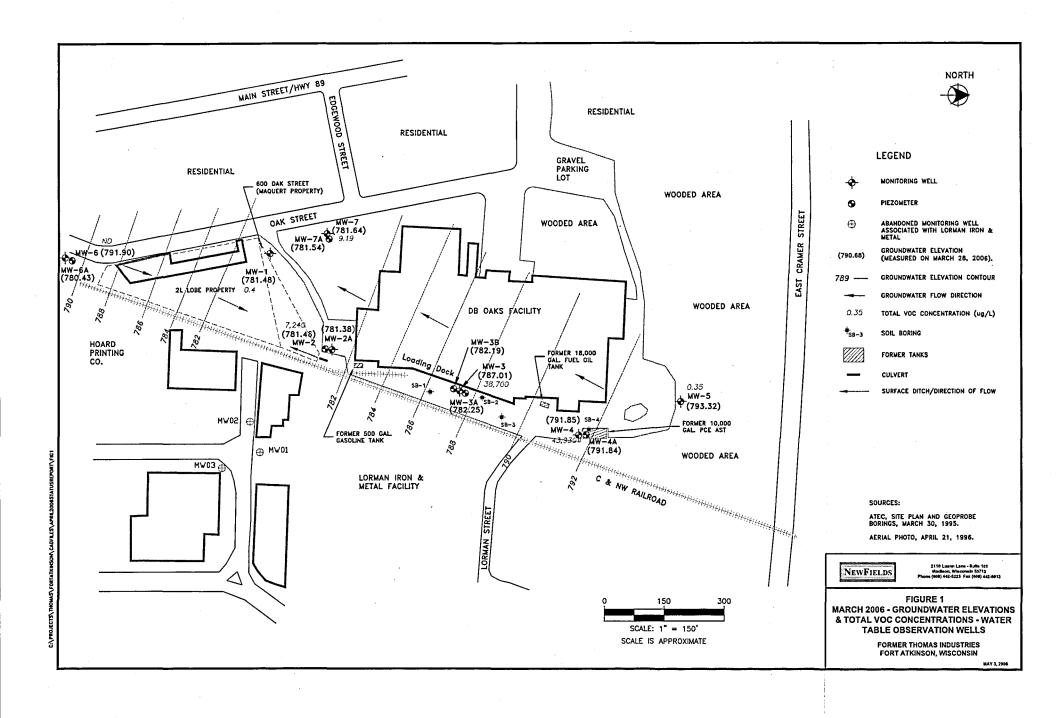
cc:

Mr. Mark Chiado

Attachments

Figure 1 Figure 2 Figure 3	Site Map – Shallow Water Groundwater Elevation and Total VOC Concentrations Site Map – Piezometer Groundwater Elevation and Total VOC Concentrations Geologic Cross-Section and Total VOC Concentrations
Table 1	Groundwater Elevations
Table 2	March 2005 Groundwater Sample Results - VOCs
Table 3	March 2005 Groundwater Sample Results – Geochemical Indicator Parameters and Field Measurements
Table 4	Laboratory Analytical Results - Soil
Attachment A	Soil Boring Logs, Well Construction Forms, and Well Development Forms
Attachment B	Laboratory Reports – March 2006 Groundwater Samples
Attachment C	Laboratory Reports - Soil Samples Borings SB-1 Through SB-4

Newfields\Thomas_Fort_Atkinson_Status_Report#2


FIGURES

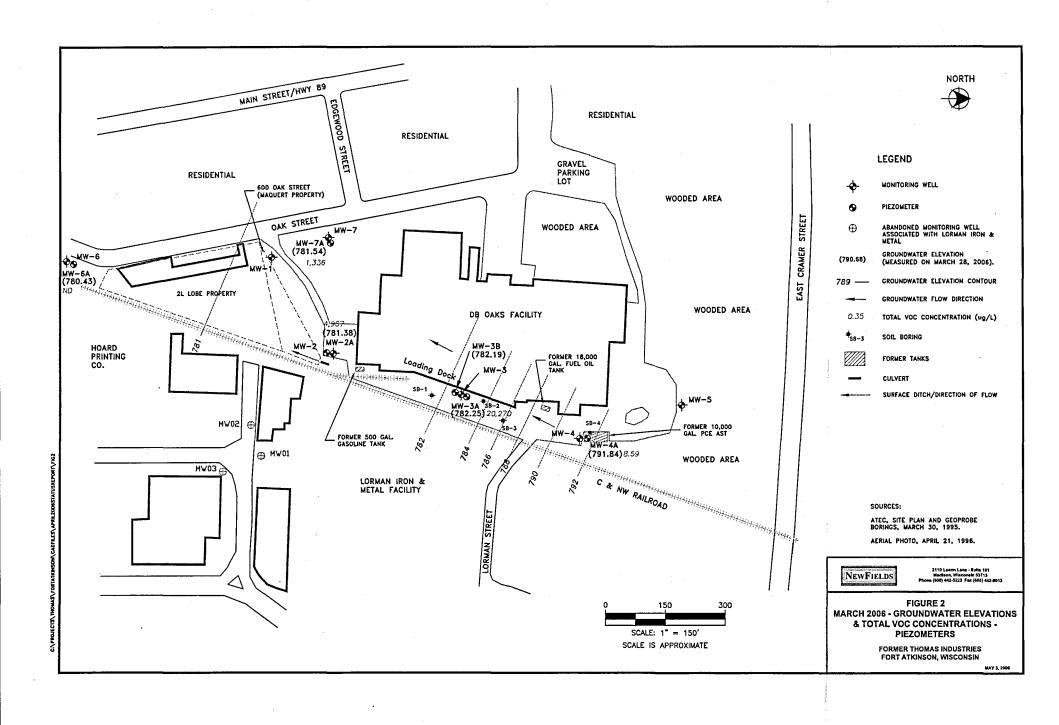

TABLES

Table 1
Groundwater Elevations
D.B Oak Facility, Fort Atkinson, Wisconsin

			Top of	Depth to	Top of	Depth to	Decem	ber 16, 2004	Jun	ie 1, 2005	Marc	ch 28, 2006
Well Location	Reference Elevation	Ground Elevation	Screen Elevation	Top of Screen	Screen Elevation	Top of Screen	Depth to Water	Groundwater Elevation	Depth to Water	Groundwater Elevation	Depth to Water	Groundwater Elevation
MW-1	793.36	791.3	783.30	8.00	773.30	18.00	12.77	780.59	11.77	781.59	11.88	781.48
MW-2	791.21	791.5	786.00	5.50	776.00	15.50	10.59	780.62	7.01	784.20	9.75	781.46
MW-2A	791.27	791.5	756.50	35.00	751.50	40.00	10.76	780.51	9.83	781.44	9.89	781.38
MW-3	793.20	790.9	787.90	3.00	<i>777.</i> 90	13.00	7.09	786.11	6.49	786.71	6.19	787.01
MW-3A	793.51	790.9	747.90	43.00	742.90	48.00			11.37	782.14	11.26	782.25
MW-3B	793.45	791.1	716.10	75.00	711.10	80.00				***	11.26	782.19
MW-4	799.24	796.8	791.80	5.00	781.80	15.00	8.11	791.13	8.09	791.15	7.39	791.85
MW-4A	799.13	797.1	763.10	34.00	758.10	39.00	7.99	791.14	7.99	791.14	7.29	791.84
MW-5	798.51	796.2	792.20	4.00	782.20	14.00	7.83	790.68	6.48	792.03	5.19	793.32
MW-6	797.29	797.7	791.70	6.00	781.70	16.00		-	11.78	785.51	5.39	791.90
MW-6A	797.45	797.8	762.80	35.00	757.80	40.00			17.16	780.29	17.02	780.43
MW-7	794.48	792.0	782.00	10.00	772.00	20.00			11.78	782.70	12.84	781.64
MW-7A	794.28	792.1	752.10	40.00	747.10	45.00			17.16	777.12	12.74	781.54

All elevations relative to feet mean sea level.

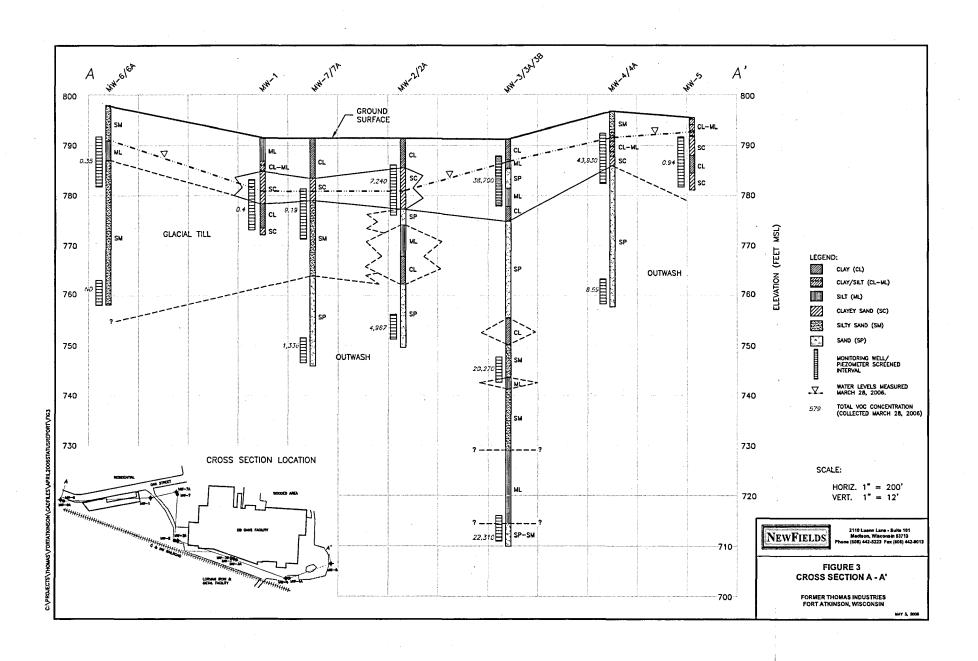


Table2

March 2006 Groundwater Sample Results – Volatile Organic Compounds (VOCs) and Field Measurements

D.B Oak Facility, Fort Atkinson, Wisconsin

Parameter	Units	MW-1	MW-2	MW-2A	MW-3	MW-3A	MW-3A DUP-1	MW-3B	MW-4	MW-4A	MW-5	MW-6	MW-6A	MW-7	MW-7A	PAL	ES
	VOCs																
1,1-Dichloroethane	ug/L	<0.19	<97	<9.7	<480	<97	<190	<97	<190	<0.19	<0.19	<0.19	<0.21	<0.19	<10		
1,1-Dichloroethene	ug/L	<0.15	<76	16J	<380	<76	<150	<76	<150	<0.15	<0.15	<0.15	<0.14	<0.15	<6.8	0.7	7
Benzene	ug/L	<0.2	<98	<9.8	<490	<98	<200	<98	<200	<0.2	<0.2	<0.2	<0.21	<0.2	<10	0.5	5
cis-1,2-Dichloroethylene	ug/L	<0.19	6,400	3,800	3,500	12,000	14,000	600	<190	0.29J	< 0.19	<0.19	<0.34	0.89	270	7	_ 70
Dichlorodifluoromethane	ug/L	< 0.17	<84	<8.4	<420	<84	<170	<84	<170	0.43J	<0.17	<0.17	<0.26	<0.17	<13		
Methylene Chloride	ug/L	< 0.36	200J	20J	<900	240J	<360	260Ј	530J	<0.36	< 0.36	<0.36	<0.3	<0.36	16J		
Tetrachloroethylene (PCE)	ug/L	<0.16	190J	320	28,000	4,200	4,300	17,000	5,400	6.9	0.17J	<0.16	<0.16	5.4	850	0.5	5
Toluene	ug/L	<0.19	<96	<9.6	<480	<96	<190	<96	<190	<0.19	<0.19	<0.19	<0.17	<0.19	<8.5	200	1000
Trans-1,2- Dichloroethene	ug/L	<0.17	<85	20J	<420	190Ј	210J	<85	<170	<0.17	<0.17	<0.17	<0.21	<0.17	<10	20	100
Trichloroethylene (TCE)	ug/L	0.4J	450J	700	7200	2,900	3,000	2,800	38,000	0.97J	0.77J	0.35J	<0.19	2.9	200	0.5	5
Vinyl Chloride	ug/L	<0.2	<98	91	<490	740	800	<98	<200	<0.2	<0.2	<0.2	<0.17	<0.2	<8.3	0.02	2
Total VOCs	ug/L	0.4	7,240	4,967	38,700	20,270	22,310	20,660	43,930	8.59	0.94	0.35	0	9.19	1,336		

PAL - Preventive Action Limit per Wisconsin Admin. Code sec. NR 141.10.

ES - Enforcement Standard per Wisconsin Admin. Code sec. NR 141.10.

J - Detected above Limit of Detection, but below Limit of Quantification (Estimated)

Concentrations exceeding the ES have been shaded.

Concentrations exceeding the PAL are in italics.

<- Detected below Limit of Detection.

Table 3

March 2006 Groundwater Sample Results – Geochemical Indicator Parameters and Field Measurements

D.B Oak Facility, Fort Atkinson, Wisconsin

Parameter	Units	MW-1	MW-2	MW-2A	MW-3	MW-3A	MW-3B	MW-4	MW-4A	MW-5	MW-6	MW-6A	MW-7	MW-7A	PAL	ES
						Geochemic	al Indicator	Parameters								
Alkalinity, Total (AS Caco3)	mg/L	500	410	390	320	420	360	280	330	610	260	430	500	370		
Nitrogen, Nitrate (As N)	mg/L	0.33	0.16	<0.025	<0.025	0.029J	<0.025	0.79	<0.025	0.087	6.4	0.037J	0.3	1.4		
Iron, Total (As Fe)	mg/L	7.3	41	1.5	3.3	12	1.2	9.6	2.4	5.1	14	6.4	9.5	0.074J		
Manganese, Total	ug/L	250	660	100	99	440	110	200	37	200	210	250	200	4.8		
Sulfate, Total (As So4)	mg/L	45	97	130	56	72	63	65	48	270	25	57	27	54		
			•			Fiel	d Measuren	ents								
pН	pH Units	6.77	7.07	7.12	7.28	6.91	7.24	7.5	7.6	6.67	7.2	7.5	7.2	7.04		
Specific Conductance	μmhos/cm	818	793	738	589	742	572	564	567	1,129	876	669	704	724	-	_
Temperature	C°	7.8	7.8	7.8	7.5	8.5	9.9	6.1	6.8	6.1	7.4	10.6	7.9	8.5	-	_
Oxidation Reduction Potential	mV	69	2	-30	-22	-39	27	-47		14	-5	19	31	-1		
Dissolved Oxygen	mg/L	2.86	0.62	2.55	0.46	3.45	2.13	6.74	1.09	0.73	8.3	2.35	4.27	0.41		-

Table 4
Laboratory Analytical Results - Soil
D.B Oak Facility, Fort Atkinson, Wisconsin

Parameter	Units	SB-2 0 – 8 ft.	SB-4 5 – 9 ft.	SB-1 9 – 11 ft.	SB-2 12 – 14 ft.	SB-3 9 – 11 ft.	SB-4 9 – 11 ft.	SB-4 11 – 13 ft.
Waste Pr	ofile Samp	les			Soil	Boring Sam	ples	
Percent Chlorine	Percent	0.034	0.071					
Cyanide, reactive	mg/kg	<0.12	<0.12			<u></u>		
pH, lab	pH Units	7.9	8.1					
Sulfide, reactive	mg/kg	<130	<130				<u></u>	
Water, Free EPA 9095	mL/100 g	<1.0	<1.0				- -	
Flash Point	F°	> 210	> 210					
Specific Gravity		2.21	1.73					
TCLP -	VOCs 82	50						
Tetrachloroethene	μg/L	7,000	15,000					
Trichloroethene	μg/L	590	340				ŀ	
TCLI	P - Metals				•		-	.
Arsenic	μg/L	3.9	5.7				-	
Barium	mg/L	0.78	0.34				-	
Cadmium	mg/L	<0.0098	<0.0098		-		•	
Chromium	mg/L	<0.021	<0.021				-	
Copper	mg/L	0.036	<0.0068		. 			
Lead	mg/L	<0.18	<0.18					
Mercury	μg/L	<0.050_	< 0.050				<u></u>	
Nickel	mg/L	< 0.030	<0.030					
Selenium	mg/L	<2.4	<2.4					
Silver	mg/L	<0.013	<0.013					
Zinc	mg/L	< 0.0064	0.0064					
TCLP Phenols	mg/L	< 0.067	<0.067					
TCLP – SVOCs 8260	μg/L	ND	ND					
			VOCs 8	260				
cis-1,2-Dichloroethene	μg/kg			<450	<2,300	1,900	<1,800	<2,800
trans-1,2-Dichloroethene	μg/kg			<490	<2,400	120	<1,900	<2,500
Tetrachloroethene	μg/kg			28,000	120,000	120	82,000	120,000
Trichloroethene	μg/kg			840	24,000	<21	110,000	33,000
Solids, total	Percent	84.1	85.6	83.4	88.1	90.9	89.2	91.7

"Contained-out" determinations for contaminated soil in Wisconsin.

PCE

33,000

TCE

14,000

Vinyl Chloride

870

ATTACHMENT A

SOIL BORING LOGS, WELL CONSTRUCTION FORMS, AND WELL DEVELOPMENT FORMS

	State of Wisconsin Department of Natural Resources							SOIL BORING LOG INFORMATION Form 4400-122 7-9										
рерапт	ent (or natt	ıraı Kesou	rces R	oute To:		□ Haz	Wasti	۵.		F	orm 440	0-122				7-	91
					Solid Waste			ergrou		nks								
					Wastewater		☐ Wat	er Res	ource	s					_			
					Emergency R	esponse	☐ Oth	er						Р	age1	of _	3_	
Facility /	Proj	ect Na	me DB C	ak Facility, Fo	rt Atkinson,	Wisconsin	Lice	ense/Pe	ermit/l	Monitori	ing Numl	er	E	Boring N	lumber	MW	-3B	
Boring D	rilled	d Bv (F		and name of crev				Drilling	Starte	ed ee	Date	Drilling	Comple	eted	Dril	ing Me	thod	
J			Alex	Plummer				$\frac{3}{1} / \frac{7}{7}$		06	Ι.	3 /	8	06		6" mu	ıd rotary	
				er State Drillin		m http://e	MM	D Static \	D '	YY		M M	DD .	YY	-		split s	poon
DNR Fac	cility	Well N	lo. W	'I Unique Well No.	Common W MW-		Finai		vvater Feet N		1	ice Eleva 91.1	πion Feet	MSI	Bon	6.0	iameter inches	
Boring Lo	ocati	ion			<u></u>				CCLI	, OL		l Grid Lo	_		able)	0.0	_ inches	
State Pla		_		N		S/C/N	"		_					I N		.		
NE 1.	/4 of	f SE	1/4 of S	Section 34	т <u> 6 </u>	NR Cour	Lon oty Code		CiviLT	own / C	L — City / or V		et 🗖	I S		Fe	et 🗖	w
County	Jefferson						8	- 1	011111		ity of F	•	nson					
Sample	ample						<u> </u>		Т			<u> </u>		roperties	,			
									p	an			1	T T	<u>, </u>		ROD/Comments	
ا <u>ا</u>	Soil/Rock Description								Graphic Log	Well Diagram	Ω	Standard Penetration	를 달		,		mo;	
Number	Soil/Rock Description Soil/Rock Description And Geologic Origin F Each Major Unit							nscs	raph	Vell [PID/FID	tand	Moisture Content	Liquid Limit	Plastic Limit	P 200	000	
								-	0		<u>-</u>	S d	20			<u>-</u>	œ.	
	Surface = gravel drive																	
	-		1				•											
			L	No soil samp														
			2 	feet, see bor for soil descr		W-3 and M	IW-3A	l		1		l	ł	ł				
l			 	lor son descr	iptions.													
	1		3															
			E_{λ}															
			F '												ŀ			
- [
ŀ			5															
			L 6										ļ ·					
			_ `											ļ				
ł	1		7							1 1					ł			
			-												l			
.			8															
-			_					l										
ļ			— 9 —															
	ı		_															
1	-		10												ļ			
	١							1										
l																		
- 1	_ 12														}			
J			<u> </u>															
]	= 13																	
	14											<u> </u>			<u> </u>			
I hereby certify that the information on this form is true and correct to the best of my knowledge.																		
Signature	9					Firm	N	ewF	ields	Madi	on M	/1						

NewFields, Madison, WI

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A 7-91

Dep	artment	of Natu	ral Resou		Form	4400	-122A						7-91	
	ng Num	ı —	MW-31	<u> </u>						_			of _	3
Number	Length a	Blow Counts (N)	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	nscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture © Content	Liquid Limit	Plastic Limit	P 200	ROD/Comments
1	22	6,9 12,24	37 38 39 40 41	No soil samples collected from 0-38.5 feet, see boring log for MW-3 and MW-3A for soil descriptions. CLAY, silty, very stiff, moist, low plasticity, light grayish brown	CL				21					
2	12	28,36 50/4"	42 43 44 45 45 46	SAND, very dense, little silt, fine grained, wet, poorly graded, light grayish brown	SM				50+					
3	16	19,19 19,23	48 49 50	SILT, hard, trace fine sand, non-plastic, wet, light grayish brown	ML				38					
4	16	19,22 25,23	52 53 54 55 56 57 58	SAND, silty, very dense, fine to medium grained, little gravel, wet, poorly graded, light grayish brown	SM				47					

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A 7-91

			irai Resou MW-3I		Form	4400	-122A	1	7-91 Page 3 of 3 Soil Properties					
Bori	ng Num nle	I	10171-01	og lam						Soil Pr			<u> 01_</u>	
Number	Length Recovered (N)	Blow Counts (N)	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	nscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid	Plastic Limit	P 200	ROD/Comments
5	12	25,24 33,36	59	SAND, silty, very dense, fine to medium grained, little gravel, wet, poorly graded, light grayish brown	SM				57					
	And the second s		63	SILT, hard, trace fine sand, non-plastic, wet, light grayish brown	ML									
6	4	37, 50/6*	65 66 67 68		WIL				50+					•.
7	4	26,27 50/6"	70 - 71 - 72	SILT, as above	ML				50+					
8	16	18,27 21,13	73	SILT, as above	ML				48					
9	16	18,12 10,14	78 - 78 - 79	SAND, medium dense, fine grained, trace silt, wet, poorly graded, light grayish brown	SP- SM			EC 80	OB at 8 feet.	1 feet	BGS,	set w	ell MV	V-3B at

	Solid Waste□ Haz. Wastel		MONITOR Form 4400	ING WELL CONSTRU	JCTION ev. 4-90
Facility/Project Name	Local Grid Location of Wel		Well Name		
DB Oak Facility	ft. N.		Well Name N	1W-3B	
Fort Atkinson, Wisconsin	□ S.	w.	ļ		
Facility License, Permit or Monitoring Number	Grid Origin Location	•	Wis: Unique Well Numbe	er DNR Well 1	Number
Type of Well Water Table Observation Well	Lat	Long ft. N, ft. F	Date Well Installed		لتحصيص
Piezometer 11	2	. II. II, II. I	1 _	$\frac{0}{1} \frac{3}{m} / \frac{0}{d} \frac{8}{d} / \frac{0}{y} = \frac{6}{3}$	<u>6</u>
	_				у
Distance Well Is From Waste/Source Boundary	Section Location of Waste/SE 1/4 of SE 1/4 of Sec. 34	Source	Well Installed By: (Person Alex Plumme		
Is Well A Point of Enforcement Std. Application?	Location of Well Relative t		***************************************		
☐ Yes ☐ No	u Upgradient d Downgradient	s 🗖 Sidegradient n 🗖 Not Known	Badger State 1	Drilling	
A. Protective pipe, top elevation 7 9 3 . 7	ft MSI.	1. Cap and	l lock?	■ Yes □	No
		2. Protecti	ve cover pipe:		
B. Well casing, top elevation $\frac{793}{200} \cdot \frac{3}{100} \cdot \frac{4}{100}$		l I I	e diameter:	$-\frac{4}{7}\cdot\frac{0}{6}$	0 in.
C. Land surface elevation $\frac{7}{9}$ $\frac{9}{1}$ $\frac{1}{1}$	ft. MSL	b. Leng c. Mate			
D. Surface seal, bottom 7 9 0 . 1 ft MSL or	_10_n \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Stick up	Other 🗆	5555
12. USCS classification of soil near screen:		d. Addi	tional protection?	☐ Yes■	
GP □ GM □ GC □ GW □ SW □ S	SP ■		s, describe:		
SM SC ML MH CL C	ж 🗆 📗 📈	3. Surface	seal:	Bentonite□	
Bedrock □			Native soil	Concrete C	0 1 888
13. Sieve analysis attached? Yes	No	A Materia	l between well casing and pro		- <u></u>
			a common mon casa gama par	Bentonite□	3 0
14. Drilling method used: Rotary			Ohio #5 sand	Annular Space Seal□	
Hollow Stem Auger □ Other			Onto #5 said	Other	<u> </u>
	' ——				
15. Drilling fluid used: Water 0 2 Air	0 1	5. Ann		. Granular Bentonite	
Drilling Mud ■ 0 3 None	199	b	_ Lbs/gal mud weight Lbs/gal mud weight	Bentonite-sand slurry□	35
16. Drilling additives used? ☐ Yes	No		_ Los/gar mud weight Be		
		e	Ft³volume added for	any of the above	
Describe:		f. How	installed:	Tremie ☐ Tremie pumped ■	
17. Source of water (attached analysis):			80 lbs. gel with 50 gals water	• •	
	l K		· .		
	- 	/ 6. Bentoni	ite seal: 1/4 in. = 3/8 in. = 1/2 ir	a. Bentonite granules	
				Othe	
E. Bentonite seal, top	→		nd material: Manufacturer, p		ze
F. Fine sand, top	71.5 ft		Ohio #4000 ime added 25	1b	. <u>18308.</u>
G. Filter pack, top	72.5 ft	b. Volu 8. Filter p a	ack material: Manufacturer,	product name & mesh s	ize
H. Screen joint, top 7 1 6 1 ft MSL or	7 5 .0 ft	a. b. Volu	Ohio #5 sand ume added 150	1b	8. <u>8180.</u>
I. Well bottom 7 1 1 .1 ft MSL or	8 <u>0</u> . <u>0</u> ft	9. Well ca		ded PVC schedule 40 ded PVC schedule 80□	_
J. Filter pack, bottom 7 1 0 .1 ft MSL or	8 1 0 ft		Trush thea	Other	
<u> </u>		10. Screen			initerior •
K. Borehole, bottom 7 1 0 .1 ft MSL or	<u>8 i . U ft</u>	a. Scre	een type:	Factory cut ■ Continuous slot□	
L. Borehole, diameter8 0_ in.		h Ma	nufacturer Monoflex	Other 🗖	
M. O.D. well casing $\frac{2 \cdot 37}{100}$ in.		c. Slot		0. 0 1	1 0 in.
N. I.D. well casing <u>2</u> . <u>0</u> <u>6</u> in.			ill material (below fille pack)		
		11. Backi		Other	
I hereby certify that the information on th	is form is true and correc	et to the best of my know	vledge.		
Signature	Firm NewF	Fields, Madison, Wiscon	ısin		

Please complete both sides of this form and return to the appropriate DNR office listed at the top of this fm as required by chs. 144, 147 and 160, Wis. Stats., and ch. NR 141, Wis. Ad. Code. In accordance with ch. 144, Wis. Stats., failure to file this form may result in a forfeiture of not lessthan \$10, nor more than \$5000 for each day of violation. In accordance with ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$1000 for each day of violation. NOTE: shaded areas are for DNR use only. See instruction for more information including where the completed form should be sent.

		Haz. Waste □ Wastewater □ Underground Tanks □ Other □		MONITORING WI Form 4400-113B	ELL CONSTRUCTION Rev. 4-90
Facility/Project Name DB Oak Facility, Fort Atkins	County Name	Jefferson	Well Name	MW-3B	
Facility License, Permit or Monitoring Nu		Wis. Unique Well Number		DNR Well Number	
					
1. Can this well be purged dry?	☐ Yes ■ No			Before Development	After Development
•		11. Depth to Water (from top of we	ell casing)	a1_00_0_ft.	_1_0_0_0 _{ft.}
Well development method surged with bailer and bailed surged with bailer and pumped surged with block and bailed surged with block and pumped	□ 4 1 ■ 6 1 □ 4 2 □ 6 2	Date	b		$\frac{3}{m} \frac{10}{m} \frac{8}{d} \frac{10}{d} \frac{6}{y} \frac{6}{y}$
surged with block, bailed and pump compressed air bailer only pumped only	ed	Time		□ a.m. c. <u>1 5 : 3 0</u> ■ p.m.	□ a.m. 17:00 ■ p.m.
pumped slowly Other	□ 5 0 □ 20000	12. Sediment in well bottom		inches	inches
3. Time spent developing well 4. Depth of well (from top of well casing)	9 0 min.	13. Water clarity	T	Clear □ 1 0 Turbid ■ 1 5	Clear □ 2 0 Turbid ■ 2 5
5. Inside diameter of well			- - - -	Describe) Light brown Moderate turbidity No odor	(Describe) Clear Low turbidity No odor
6. Volume of waters in filter pack and wel casing	1 <u>1 2</u> . <u>5</u> gal.	Fill in if drilling fluids were usedand	d well is at so	olid waste facility.	
7. Volume of water removed from well	$\frac{1}{2} \frac{2}{5} \cdot \frac{0}{9}$ gal	l.			
8. Volume of water added (if any)	gal	14. Total suspended solids		mg/l	ng/l
9. Source of water added		15. COD	-	mg/l	mg/l
10. Analysis performed on water added? (If yes, attach results)	☐ Yes ■ No				
16. Additional comments on development	t:	· · · · · · · · · · · · · · · · · · ·	·		
Surged bailer and pum	ped with submersible pump.				
Total removed = 125 g	allons				
Well developed by: Person's Name and Fi	irm	I hereby certify that the above i of my knowledge.		is true and correct	
Name: Mark McColloch		Signature:			
. NewFields		Print Initials: M S M	son Wisson	ncin	
Firm:		Firm: NewFields, Madi		113111	

	State of Wisconsin Department of Natural Resources									SOIL			0G II	NFOR	MAT	ION	
Departmen	i oi ivali	urai Kesot	Ro	ute To:		□ Haz	z. Waste	e		. F	orm 440	0-122					7-91
				Solid Waste			dergrou		nks								
				Wastewater			ter Res		s								
				Emergency R	esponse	☐ Oth	er						P	age1	of _	1_	
Facility / Pr	oject Na	DB C	Dak Facility, For	t Atkinson,	Wisconsin	Lic —	ense/Pe	ermit/l	Monitori	ing Numb	er — —	_	Boring N	lumber	MW	'-7	
Boring Drill	ed By (f		e and name of crew	chief)			Drilling			Date	Drilling			Dril	ling Me	thod	······································
			Plummer ger State Drilling	1		 	_ /	<u>6</u> /	06 YY	-	<u>з</u> /-	$\frac{6}{DD}$	<u>06</u> YY		4 1/4	" ID H	ISA
DNR Facilit	v Well I		/I Unique Well No.	Common W	ell Name		Static \			_	ce Eleva	ation		Bor	ehole D	iamete	r
				MW-	7		i	Feet N	ISL	7	92.0	Feet	MSL	_	8.3	_ inche	
Boring Loca			Ñ.	F.S	J/C/N	1 L	at		_	Loca	l Grid Lo	•		cable)			
State Plane SE_1/4		1/4 of 9				Lor					Fe		I _N Is		Fe] W
County	01_01	1/4 01 3	Section 04	<u> </u>	DNR Coun			Civil T	own / 0	City / or V							
,	Jefferson 2				2	8	- 1		Ci	ity of Fo	ort Atki	inson					
Sample					<u> </u>		Γ.				1	Soil Pr	opertie	s		<u>ر</u>	
								D _D	Tam				T			ROD/Comments	
e e	Soil/Rock Description And Geologic Origin For Each Major Unit							ic L	Diag	₽	lard	e t		l _o		Ē	
Number ength ecovered	§	Soil/Rock Description And Geologic Origin For Each Major Unit					uscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid	Plastic Limit	P 200	ğ	
	面			Each Major Chit				-		а.	, o, ii	20		1 1	<u> </u>	ď.	
l		L 1					1						:				
		_ ₂	No soil samp	les collecte	ed. For soil	ls	ł										
ľ	•	E	descriptions,	see boring	log for MV		1										
}.	1	3	Set well MW	-7 at 20 fee	t BGS.		j						ļ ·			ļ	
		E															
		4										ľ					
		⁵							1		İ			i			
Ì							l	l			1		l	i			
		6															
		_	-														
		F 7												1			
	ĺ	=					1										
		- 8											Ï				
		 															
		9 															
	1	<u> </u>															
		Ε ".					ļ	1						ļ ,			
		Ε															
	ļ	<u> </u>															
		_ 12															
	= "																
	13						ł						1				
ļ		=															
		14															
		=															
	15																
I hereby cert	ify that	the inform	ation on this form is	true and corre	ct to the best	of my kno	owledge). -									

Firm

NewFields, Madison, WI

	Solid Waste□ Haz. V nse & Repair□ Unde				NITORING WEL n 4400-113A		JCTION ev. 4-90
			- Omer		114400-1137	100	
Facility/Project Name DB Oak Facility	Local Grid Location	of Well	АП. Б	Well Name	MW-7		
Fort Atkinson, Wisconsin	ft. 🗆	N S.	n. 🗖 E.		1,1,,		
Facility License, Permit or Monitoring Number	Grid Origin Location	on I area		Wis. Unique Well P. I. 3. 7. 8		DNR Well l	Number
Type of Well Water Table Observation Well	Lat	ft. N.		Date Well Installed			
Piezometer 12					$\frac{0}{3} / \frac{0}{1}$	$\frac{6}{d}$ / $\frac{0}{y}$	<u>-</u>
Distance Well Is From Waste/Source Boundary		17 . /0		Well Installed By: (<u>v</u>
	Section Location of V NE 1/4 of SE 1/4 of	Sec. 34 , T. 6	N, R. 14 🗆 W	i .	Person's Name an lummer	id Firm)	
Is Well A Point of Enforcement Std. Application? ☐ Yes ☐ No	Location of Well Rel		Source Sidegradient				
a res	d Downgradient	n	Not Known	Badger	r State Drilling		
A. Protective pipe, top elevation 7 9 4 . 7			1. Can and	lock?		■ Yes □	No
	_	╼╫┯┑╠		ve cover pipe:			
B. Well casing, top elevation 7 9 4 . 5	ft. MSL			e diameter:		$-\frac{4}{2} \cdot \frac{0}{2}$)_ in.
C. Land surface elevation 7 9 2 . 0	ft. MSL		b. Leng			<u>7.ō</u>	
D. Surface seal, bottom 7 9 0 .0 ft MSL or _	2 .0 ft	[8] [8]	c. Mate	nal: Stick up		Steel Other	
		W	d. Addi	tional protection?		Other ■	No
12. USCS classification of soil near screen: GP □ GM □ GC □ GW □ SW □ S	ы			, describe:		□ 1C3 =	110
SM SC ML MH CL C		√∛ ¥	3. Surface			Bentonite□	3.0
Bedrock □	_					Concrete	-
		N N	\	Native soil		Othe∎	: <u>::::}</u>
13. Sieve analysis attached? Yes	No		4. Materia	l between well casing	and protective pig	•	
14. Drilling method used: Rotary □	5.0				Annular	Bentonite□ Space Seal□	
Hollow Stem Auger		N N		Ohio #5 sand	Aillulai	Other	
Other				· · · · · · · · · · · · · · · · · · ·			بنداست.
15. Drilling fluid used: Water □ 0 2 Air □ Drilling Mud □ 0 3 None			——— 5. Ann	ular space seal:	a. Granular	Bentonite□	3 3
Diming Mud L 0 3 None		B B	p,	Lbs/gal mud weight Lbs/gal mud weight.	Bentonite-s	and slurryL	33
16. Drilling additives used? ☐ Yes ■	No	8 8	d.	% Bentonite	Bentonite-cer	ment grout□	5 0
		81 18	e	Ft³volume ade			
Describe:			f. How	installed:		Tremie	
17. Source of water (attached analysis):		81 13		200 lbs.	Tremi	ie pumped ☐ Gravity ■	
17. Bouree of water (attached analysis).		81 13		200 lbs.		Gravny	U o
		B 8	/ 6. Bentoni		a. Bentoni	te granules□	3 3
				1/4 in. 🔳 3/8 in. 🗖			
E. Bentonite seal, top 7 9 0 .0 ft MSL or	2 0 ғ.		/ · ··			Otnet	
			7. Fine san	d material: Manufact Ohio #400		e & mesh siz	e
F. Fine sand, top	_′3ft		, ,	me added 25	lb		<u></u>
G. Filter pack, top	_80_ ft		8. Filter pa	ick material: Manufac		me & mesh si	
H. Screen joint, top	$\frac{1}{2} \cdot \frac{0}{1} \cdot \frac{0}{1} \cdot \frac{0}{1}$		b. Volu	Ohio #5 sa me added 50			
I. Well bottom	0 0 ft	+	9. Well cas		h threaded PVC so		2 3
J. Filter pack, bottom 771.5 ft MSL or 2	2 0 .5 ft		· 	Trusi		Other	
		TITE TO THE PERSON OF THE PERS	10. Screen	material: Sch	. 40 PVC	actory cut	000 1 1
K. Borehole, bottom 771.5 ft MSL or	2 <u>0</u> .3_ n		a. Scie	en type:		inuous slot□	
L. Borehole, diameter					edrich	Other D	<u> </u>
M. O.D. well casing $2 \cdot 37$ in.			c. Slot d. Slot	size ted length:			$\frac{1}{0}$ in. $\frac{0}{0}$ ft.
N. I.D. well casing $\underline{2} \cdot \underline{0} \cdot \underline{6}$ in.			11. Backfi	ll material (below fille	r pack):	None	
		· ·		******		Other	<u> </u>
I hereby certify that the information on this	form is true and c	orrect to the	best of my know	ledge.			_
Signature	Firm	NewFields N	Madison, Wiscon	sin			

Please complete both sides of this form and return to the appropriate DNR office listed at the top of this fm as required by chs. 144, 147 and 160, Wis. Stats., and ch. NR 141, Wis. Ad. Code. In accordance with ch. 144, Wis. Stats., failure to file this form may result in a forfeiture of not lessthan \$10, nor more than \$5000 for each day of violation. In accordance with ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$1000 for each day of violation. NOTE: shaded areas are for DNR use only. See instruction for more information including where the completed form should be sent.

State of Wisconsin Department of Natural Resources	Route to: Solid Waste Env. Response & Repair	☐ Haz. Waste ☐ Wastewater ☐ ☐ Underground Tanks ☐ Other ☐ _		MONITORING WI Form 4400-113B	ELL CONSTRUCTION Rev. 4-90
Facility/Project Name DB Oak Facility, Fort Atkit	nson, WI	me Jefferson	Well Name	MW-7	
Facility License, Permit or Monitoring N		de Wis Unique Well Number		DNR Well Number	
1. Can this well be purged dry?	Yes 🗆 1	No 11. Depth to Water (from top of		Before Developmentft.	After Development
2. Well development method surged with bailer and bailed surged with bailer and pumped surged with block and pumped surged with block, bailed and pum compressed air bailer only pumped only pumped slowly Other	## 4 1	Date Time 12. Sediment in well bottom	b.	$\frac{3}{m} \frac{1}{m} \frac{0}{d} \frac{7}{d} \frac{0}{d} \frac{6}{y} \frac{6}{y}$ $\frac{1}{2} \frac{5}{3} = \frac{1}{2} \frac{5}{3} = \frac{1}{2$	□ a.m. 16 :4 5 ■ p.m.
3. Time spent developing well4. Depth of well (from top of well casing	$-\frac{90}{190}$	13. Water clarity	Tu	ear I 0 urbid I 5 escribe) Light brown	Clear □ 2 0 Turbid ■ 2 5 (Describe) Light brown
5. Inside diameter of well	<u>2</u> . <u>0</u> 6	in.		high turbidity	Low turbidity
Volume of waters in filter pack and we casing Volume of water removed from well	= 4 .5 3 5 0	Fill in if drilling fluids were use	edand well is at sol	id waste facility.	
8. Volume of water added (if any)		14. Total suspended solids		mg/l	
9. Source of water added		- 15. COD	_	mg/l	mg/l
10. Analysis performed on water added? (If yes, attach results)	☐ Yes ■ 1	Jo			
16. Additional comments on developme	nt:		<u> </u>		
Surged bailer and bai Total removed = 35 g					
Well developed by: Person's Name and	Firm	I hereby certify that the above of my knowledge.	ve information	is true and correct	to the best
Name: Mark McColloch	·	Signature:			
Firm:NewFields		Print Initials:	Madison, Wiscon	sin	

State of Wis		mal Danas								SOIL			OG IN	IFOR	MAT	ON	
Department	of Nati	ıraı Kesol	ırces F	Route To:	•	□ _{Haz}	- Most			F	orm 440	0-122					7-91
			Г	Solid Waste		Unc			nks								
				3 Wastewater		□ Wat											
			. [Emergency R		□ Oth							Pa	age 1	of _	3_	
Facility / Pro	iect Na	me				Lice	ense/Pe	ermit/N	Monitor	ing Numb	er ·	E	Boring N	umber			
	,	DB C	oak Facility, Fo	ort Atkinson, \	Wisconsin	_				· <u> </u>		_	· · · · · · · · · · · · · · · · · · ·		MW	-7A	
Boring Drille	d By (F		e and name of cre	w chief)			Drilling		ed	Date	Drilling	Comple	ted	Drill	ing Met	hod	
			Plummer				3_/_		05	_	<u>3</u> /	6_/	05_		4" mu		
			er State Drillin		- U A1	MM	Static \	D .	YY	'	M M ce Eleva	D D	YY	_			spoon
DNR Facility	Well N	lo. W	/I Unique Well No.	Common We		Final					92.1	Feet I	401		ehole D 6.0		
Boring Locat	ion							eet M	ISL		Grid Lo				0.0	_ inche	es
State Plane			N	ES	/C/N	La	at —	_		Luca	i Grid Lo	•	ii Applic	autej			JΕ
SE_ 1/4 o	f SE	_ 1/4 of \$	Section 34	т <u>6</u> N, F	R <u>14</u> E/W	Lon	ıg <u>—</u>	_	_	 	Fe		s		Fe		J W
County					DNR County	y Code		Civil T	own / C	City / or V	ïllage						
		Jefferso	on		2	8	ł		Ci	ity of Fo	ort Atki	nson					
Sample					I 		Γ'				1	Soil Pr	operties			<i>r</i> 0	
	Blow Counts (N)	- F					1	9	ш			<u> </u>	1			ROD/Comments	
ا قط ا قط	unts	Depth in Feet		ock Descri				Graphic Log	Well Diagram	٥	Standard Penetration	ը 뉴	·			חשמ	
Number ength ecovered	ပိ ×	Ē Ë		eologic Orig	•		nscs	aphi		PID/FID	anda netr	Moisture Content	Liquid Limit	Plastic Limit	P 200	D/C	
Number Length Recovered (N)	Bo	De D	Ea	ch Major U	nit		22	Ö	>	₹	13 g	žŏ	ا ڈڈا	ַ בֿ צֿ	д.	8	
		E	Surface = gra							Note	drilled	with 4	4 ½" IE) hollo	w ste	m	
		Ε.	Topsoil, dark	brown silty loa	am					auge	r to 30	feet, s	witche	ed to 4	l" mud	ď	
		F '	• • • • • • • • • • • • • • • • • • • •				1				from						
		_ ₂								1/4"	hollov	v stem	auge	r at 45	feet.		
		F 1															
		F															
li		F 3															
		F															
		- ⁴	CLAY, silty,	stiff, some sa	nd, little gra	vel,	CL										
1 18	4,5 10,8		moist, low pl		brown with		"-				15		1 1				
	,-	7 5	grayish brow	n mottling							,						
		F 6															
i i		<u> </u>					ľ						1				
		-															
		8					├										
		F															
		9															
1 . 1	5 40	F					ĺ		ŀ								
2 12	5,10 8,11	_ 10	SAND, claye	y, medium de	ense, trace		sc				18		ľ				
	·		gravel, very	moist, poorly	graded, ligh	ıt			:								
		11	prown								:						
		<u> </u>	٠														
		12					1										
		<u> -</u>															
		_ 13															
		_ '3					SM										
		14															
I hereby certif	fy that	the inform	ation on this form	is true and corre	ct to the best of	my kno	wledge				<u> </u>		Ц				
Signature					-	Firm			lewFi	elds, M	adison	. Wisc	onsin				

NewFields, Madison, Wisconsin

SOIL BORING LOG INFORMATION SUPPLEMENT

Form 4400-122A

IVICIVI

MW-7A Page 2 of 3 Boring Number Sample Soil Properties ROD/Comments Blow Counts (N) Length Recovered (N) Well Diagram Depth in Feet Graphic Log Standard Penetration Soil/Rock Description Moisture Content Liquid Limit Plastic Limit P 200 And Geologic Origin For **Each Major Unit** 6,8 16,17 3 12 SAND, silty, medium dense, trace gravel, 24 SM wet, poorly graded, light brown 16 7,10 17,18 16 SAND, silty, as above 27 SM 21 24 6 SAND, silty, medium dense, trace gravel, 31 SM wet, poorly graded, light brown 27 45, 50/1" 6 12 SAND, very dense, trace fine gravel, 50+ SP medium grained, wet, poorly graded, light 30 32 38, 50/6" 7 Very poor recovery 50+ 35 SP 36

Bori	ng Num	ber	MW-	7A				_			Р	age 3	of	3_
Sam	ple	2					_			Soil Pr	opertie	S		ints
Number	Length Recovered (N)	Blow Counts (N)	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	nscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	ROD/Comments
			- - - - - - - - 38											, N (100 and 100 a
8	14	43,38 50/2"	39 40 41 41 42	SAND, very dense, trace fine gravel, medium grained, wet, poorly graded, light brown	SP				50+					
9	5	50/5 "	43	SAND, very dense, trace fine gravel, medium grained, wet, poorly graded, light brown EOB at 45.5 feet BGS, set well MW-7A at 45 feet.	SP				50+					
			47 											
			52 											
			55 											

	Solid Waste□ H nse & Repair□ U	Iaz. Waste	Wastewater	.п		MONITORING Form 4400-113	WELL CONSTRU	CTION ev. 4-90
Department of Natural Resources Env. Responsacional Env. Responsaciona Env. Responsaci	1		anks Other		W-11 N	. 101111 1100 110		
DB Oak Facility	Local Grid Local		θП	E	Well Name	MW	/-7A	
Fort Atkinson, Wisconsin		. □ S.		w.]			
Facility License, Permit or Monitoring Number	Grid Origin Lo	cation			Wis. Unique P 1 3 7	Well Number	DNR Well?	Vumber
Type of Well Water Table Observation Well 11	Lat St. Plane	— — "L	ong	ft. E		talled		
Piezometer	St. Plaile	11.	14,	11. 12	1	0 3	$\frac{3}{d} / \frac{0}{d} \frac{6}{d} / \frac{0}{y} \frac{6}{y}$	5
								<u>y</u>
Distance Well Is From Waste/Source Boundary	Section Location NE 1/4 of SE 1/					By: (Person's Na Alex Plummer	ame and Firm)	
Is Well A Point of Enforcement Std. Application?	Location of Wel							
☐ Yes ☐ No	u Upgradien d Downgrad	t dient	s 🗆 Sideg n 🗖 Not K	radient Inown		Badger State Drill	ling	
A. Protective pipe, top elevation 7 9 4 . 6	n. MSL			l. Cap and	lock?	,	■ Yes □	No
			$\frac{1}{1}$. Protectiv	e cover pipe:			
B. Well casing, top elevation $\frac{794}{3}$.			1		diameter:		$-\frac{4}{3}\cdot\frac{0}{2}$)_ in.
C. Land surface elevation $\frac{792}{.1}$	ft. MSL	188		b. Lengt			<u></u>	
D. Surface seal, bottom 7 9 0 .1 ft MSL or	2 .0 ft .		II X	c. Mater	nai:	ick up	Steel Other	
		WII	劉 \	d. Addit	ional protection	n?	Other ■	
12. USCS classification of soil near screen: GP □ GM □ GC □ GW □ SW □ SI	· ·	<u> </u>	1 <i>1</i> 7 \	If yes	, describe:			
SM SC ML MH CL C	100	111		Surface s			Bentonite□	3 0
Bedrock□							Concrete	
	1	[8]			Native soil		Othe	8 <u>758</u> 5
13. Sieve analysis attached?	No	K)	` '	4. Material	l between well o	casing and protec		• •
14. Drilling method used: Rotary□	5.0	×	X			۸.	Bentonite□ □ nular Space Seal	
Hollow Stem Auger		N N	Ø		Ohio #5 sa	and Al	Other	
Other		N N	M				011101	<u></u>
		矧	X					
15. Drilling fluid used: Water \Box 0 2 Air \Box		K	1	- 5. Annı	ular space seal:	a. Gt	ranular Bentonite□	3 3
Drilling Mud ■ 0 3 None □	99	K	M .	b	Lbs/gal mud v	veight Bent	tonite-sand slurry	3 5
16. Drilling additives used? □ Yes ■	No	Na la		c	Lbs/gal mud w	veight	. Bentonite slurry□ nite-cement grout□	3 I 5 O
10. Dinning additives used.		N N	×			me added for any		5 0
Describe:		∑			installed:	,	Tremie□	0 1
		Na 19					Tremie pumped	
17. Source of water (attached analysis):		. ISI	X		500 lbs.		Gravity 	0 8
·		K	1 / 0	5. Bentonit	te seal:	a. B	Bentonite granules	3 3
		KI .		ъ. 🛘	1/4 in. 3 /8		Bentonite chips	
		Ø	\mathbb{A} /	с			Othe	2 <u>22,24</u>
E. Bentonite seal, top	2 .0 ft	K	M /	7 Fine san	d material: Ma	mufacturer produ	ict name & mesh siz	re
F. Fine sand, top	36.3 6	- Ki			Ohio		iot manno de micom diz	, Kak
r. Fine sand, top				b. Volu	me added	25	_lb	
G. Filter pack, top $\frac{7}{5} \frac{5}{4} \cdot \frac{6}{6}$ ft MSL or $\frac{3}{5}$	37.5 ft			8. Filter pa		lanufacturer, prod b #5 sand	luct name & mesh s	ize
H. Screen joint, top	1 0 .0 ft			b. Volu	me added	100	_ 1b	1221
I. Well bottom 7 4 7 . 1 ft MSL or 4	. 5 O A	₩		9. Well cas	sing:		PVC schedule 40■	
I. Well bottom $\frac{7}{4}$ $\frac{4}{1}$ $\frac{1}{1}$ ft MSL or $\frac{4}{1}$: <u>-</u>		-1 /			Flush threaded	PVC schedule 80□	
J. Filter pack, bottom 7 4 6 .6 ft MSL or	1 5 .5 ft		<u> </u>	0. Screen	motoriol:	Sch. 40 PVC	Other	900 900
K. Borehole, bottom 7 4 6 .6 ft MSL or 4	4 5 5 A	/////////////////////////////////////	·到 '		en type:		Factory cut	
R. Borenote, bottom		<i>[///</i>					Continuous slot□	0 1
L. Borehole, diameter8 3_ in.		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		h Man	ufacturer	Diedrich	Other□	<u> </u>
M. O.D. well casing <u>2</u> . <u>3</u> 7 in.		~~~	4	c. Slot		Dieurien		1 0 in.
N. I.D. well casing <u>2</u> . <u>0</u> <u>6</u> in.					-	nur 611 m c 1-1		:
				II. Backii	II material (belo	ow mer pack):	None ■ Other □	
I hereby certify that the information on this	form is true a	nd correct to	the best of	my know	vledge.			
Signature	Firm		ds. Madison		-			

Please complete both sides of this form and return to the appropriate DNR office listed at the top of this fm as required by chs. 144, 147 and 160, Wis. Stats., and ch. NR 141, Wis. Ad. Code. In accordance with ch. 144, Wis. Stats., failure to file this form may result in a forfeiture of not lesshan \$10, nor more than \$5000 for each day of violation. In accordance with ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$1000 for each day of violation. NOTE: shaded areas are for DNR use only. See instruction for more information including where the completed form should be sent.

		Haz. Waste □ Wastewater □ Underground Tanks □ Other □		MONITORING WI Form 4400-113B	ELL CONSTRUCTION Rev. 4-90
Facility/Project Name DB Oak Facility, Fort Atkinson, WI	County Name	Jefferson	Well Name	MW-7A	
Facility License, Permit or Monitoring Number	County Code 2 8	Wis. Unique Well Number		DNR Well Number	
1. Can this well be purged dry?	☐ Yes ■ No	11. Depth to Water (from top of we		Before Development a ft.	After Development ft.
Well development method surged with bailer and bailed surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air	□ 4 1 ■ 6 1 □ 4 2 □ 6 2 □ 7 0 □ 2 0	Date Time		$\frac{3}{m} \frac{7}{0} \frac{0}{0} \frac{7}{0} \frac{6}{0} \frac{6}{y} \frac{1}{y}$ $\frac{\square}{0} \text{ a.m.}$ $\frac{1}{0} \frac{5}{0} \frac{0}{0} \boxed{\blacksquare} \text{ p.m.}$	$\frac{3}{m} \frac{/0.7}{d} \frac{/0.6}{d} \frac{7}{y} \frac{/0.6}{y}$ a.m. $1.6 : 3.0 \blacksquare p.m.$
bailer only pumped only pumped slowly Other	0 1 0 0 5 1 0 5 0 0 2000	12. Sediment in well bottom	·	inches	inches
Time spent developing well Depth of well (from top of well casing)	9 0 min. 4_45 ft.	. 13. Water clarity	Τι	lear 1 0 urbid 1 5 Describe) Light brown Moderate turbidity	Clear 2 0 Turbid 2 5 (Describe) Clear Low turbidity
5. Inside diameter of well			~	Widdelate turbidity	Low turbidity
Volume of waters in filter pack and well casing Volume of water removed from well	8 . 5 gal.	Fill in if drilling fluids were usedand	d well is at sol	id waste facility.	
8. Volume of water added (if any)	gal	14. Total suspended solids		mg/l	mg/l
9. Source of water added	-	15. COD	_	mg/l	mg/l
10. Analysis performed on water added? (If yes, attach results)	□ Yes ■ No				
16. Additional comments on development:					
Surged bailer and pumped with	submersible pump.				
Total removed = 60 gallons					
Well developed by: Person's Name and Firm		I hereby certify that the above is of my knowledge.	nformation	is true and correct	to the best
Name: Mark McColloch		Signature:		·	
Firm:NewFields		Print Initials: M S M Firm: NewFields, Madi	ison, Wiscon	sin	

State o				uroos								BORI		OG II	NFOR	MAT	
Берап	пеп	OI Nati	ural Resou	Ro	ute To:		□ _{Haz}	Wast	e		F	orm 440	0-122				7-91
					Solid Waste		□ Und			nks							
					Wastewater	1		ter Res									
					Emergency R	esponse	☐ Oth	er						F	Page	1 of_	1
Facility	/ Pro	ject Na	DB C	Dak Facility, For	t Atkinson, '	Wisconsin	Lice	ense/P	ermit/N	Monitor	ing Numl	ber	_ ['	Boring I	Number	SB	-1
Boring	Drille	ed By (I		e and name of crew	chief)			Drilling		ed	Date	e Drilling	Comple	eted	Dri	lling Me	
				Plummer			l	3 / <u> </u>	7 /	06	-	3 M M	7	<u>/ 06</u> YY			" ID HSA
				ger State Drilling VI Unique Well No.	Common We	oll Name	_	Static '		Lovel	_	M M ace Eleva		YY	Por		t Spoon Diameter
DNR F	acility	/ vveii r	No. ''		Continion vvi	cii ivaine	I mai		Feet M		June	ace Lieva	Feet	MSL		8.3	inches
Boring	Loca	tion									Loca	al Grid Lo		_	cable)		
State P	Plane	-		N		S/C/N	I La		_	_				1 N			□ E
		of SE	1/4 of	Section 34	r <u>6</u> N, F	14 E	Lon		<u> </u>				et 🗖	1 S		F	eet 🗖 W
County			Jeffers	on		DNR County			CIVII		City / or V	-	innon				
			Teners	J			8	\perp		U	ity of F	UIL ALK					
Sample		Ź.								۶			Soil P	ropertie	s		suts
_	Z Z	nts (eet	Soil/Ro	ck Descri	ption			Graphic Log	Well Diagram		F ic	0				ROD/Comments
Number	vere	S	ïË		logic Orig			တ္သ	phic	≡ Dis	PID/FID	Standard Penetration	Moisture Content	Ę į	it sti	8	O/Co
N Pue	Recovered (N)	Blow Counts (N)	Depth in Feet	Eacl	h Major U	nit		nscs	Gra	We	₽	Stal	Q Q	Liquid Limit	Plastic Limit	P 200	RO
	_	_	- 0	Surface = gra	vel drivewa	av			Н								
			F	J Cantalog gire		,											
			F 1						1					-			
			E 2	CLAY, silty, w		nd wood											
			F 2	fragments, bla	ICK												
			E														
			F 3														
1	18	4,8	E 4	CLAY, silty, st yellowish brov		w plasticity,	dark	CL-				17					
1		9,10		yellowish blov	VII			ML									
			5														
	20	8,12	– 6	-as above								26					
2 2	20	14,15	5									20					*
			7														
			F '	SAND, loose,			,										
		2.3	_ 8	wet, poorly gra	aded, browr	1									1		
3	20	2,3 5,3						SP				8					
- 1			9														
ł			=														
		4,5	- 10	-medium dens	se, as above	Э									1		
4	20	8,9										13					- 34
			11														
			=														
			12	EOB at 11 fee	t BGS. aba	ndoned with											
			= "	bentonite chip													
			- 13	The T													
			=												1		
		N	<u> -</u> 14														
I hereby	v cert	ify that	the inform	nation on this form is	true and corre	ect to the best of	f my kno	wleda	9								

Firm

NewFields, Madison, WI

Route To:	State of W Departmer			ırces							SOIL			OG II	NFOR	MAT		7.04
Water Resources Water Reso	Боранны			Roi	ute To:		□ Haz	. Wast	е		,	orm 440	0-122					7-91
Emergency Response							□ Und	dergrou	nd Tai	nks								
Pacific Project Name Discharge Boring Number SB-2																		
DB Control Political By (Firm James and anne of crow wheth Alex Plummer Alex Plum				·	Emergency R	esponse								F	Page	1 of_	1_	
Alex Plummer Badger State Drilling Sal T OB S T OB S S T OB S S S S S S S S S	Facility / P	roject N	DB C	Dak Facility, Fort	Atkinson,	Wisconsin	Lice	ense/P	ermit/N	/lonitori	ng Numb	er _	_	Boring I	Number	SB-	2	
Badger State Drilling	Boring Drif	led By (chief)						Date				Dri	-		
Substitution Subs					ì		MM	<u>-</u>	/ /		;	$\frac{3}{4M}$ /-	$\frac{7}{DD}$	/ <u>06</u>	-			
Some County Some	DND Fooil	ty Moll I				eli Name	Final	Static	Water		Surfa	ce Flev	ation		Bor			
Solidade Part Part Solidade Part Par	DINKFacili	ty vveii i	10.			V 7 1.5.11.0								MSL				.
No. 1/4 of SE 1/4 of Section 34 T 6 N.R 14 E Long Feet D.N Feet			21000			10.01	1 1				Loca	I Grid Lo			cable)			
Dark County Code City of Fort Alkinson City of F			- :									Fo				E		
Soli/Rock Description Soli		of <u>SE</u>	1/4 of 3	Section 34	<u> </u>				Civil T	own / C	ity / or V			1 5			et 🔟	w
Soli/Rock Description Soli			Jefferso	on		1	-						inson					
Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geol	Sample	Τ.	T			<u> </u>				1		1	_	mnertie	s		,,	
Surface = gravel driveway Sand and gravel fill CLAY, silty, stiff, moist, low plasticity, dark yellowish brown CL 2 24 5.7 - as above -as above -as above -as above -as above CL 15 16 4.5 - 11 - as above -as above		- ĝ	=			_			ام	au			T	1	Ť	$\overline{}$	nen	
Surface = gravel driveway Sand and gravel fill CLAY, silty, stiff, moist, low plasticity, dark yellowish brown CL 2 24 5.7 - as above -as above -as above -as above -as above CL CLAY, silty, stiff, moist, low plasticity, dark yellowish brown CL -as above	ig g	tun	, š						일	iagr	Δ	ation	말날		l		E C	
Surface = gravel driveway Sand and gravel fill CLAY, silty, stiff, moist, low plasticity, dark yellowish brown CL 2 24 5.7 - as above 3 20 6.3 - 7 - as above 4 20 2.5 - 9 - as above 5 16 4.5 - 11 - as above CL CLAY, silty, stiff, moist, low plasticity, dark yellowish brown CL EDB at 14 feet BGS, abandoned with bentonite chips.	lumt agth cove	υž	를 iż					SSS	raph	J lel	D/FI	and	onte	i dig	astic	, S	20	
1 20 2.3 5.6 3 3 CLAY, silty, stiff, moist, low plasticity, dark yellowish brown CL -as above 15 3 20 6.3 7 7 -as above -sand lens at 9 feet 10 5 16 4.5 11 12 -as above 15 18 7.8 8.8 14 EOB at 14 feet BGS, abandoned with bentonite chips.		l m						Š	l ^o	5	_ □	ω ď.	≥ 0	133	<u> </u>	Δ.	2	
Sand and gravel fill CLAY, silty, stiff, moist, low plasticity, dark yellowish brown CL 2 24 5.7 5 -as above			F°	Surface = gra	vel drivewa	ıy								ŀ		ļ		
1 20 2.3			F- 1				<u> </u>	<u> </u>	↓	l						1		
1 20 2,3 5,6 3 CLAY, silfy, stiff, moist, low plasticity, dark yellowish brown CL 2 24 5,7 8,12 5 -as above 3 20 6,3 7 7 -as above 4 20 2,5 7 9 -as above -as above 5 16 10,6 11 -as above 6 18 7,8 13 13 -as above 6 18 8,8 14 EOB at 14 feet BGS, abandoned with bentonite chips.			E	Sand and grav	el fill					l								
1 20 2.3	1	1	2					 		l					ł	ł	}	
1 20 2.3			t	CLAY, silty, st	iff, moist, lo	w plasticity,	dark	İ				8						
2 24 5.7 - as above	1 20		- з	yellowish brow	/n													
2 24 5.7 8.12 -as above 15 -as above 15 -as above 8 -as above -as above -as above -sand lens at 9 feet 10 -as above 16 18 7.8 8.8 7.8 8.8 14 -as above 16 -as above 17 -as above 17 -as above 18 -as above 18 -as above 19 -as above			A .					CL					1					
2 24 8.12 5			F															
2 24 8,12 5 6 -as above 3 20 6,3 5,6 7 -as above -sand lens at 9 feet 10 10 15 16 4,5 11 -as above -sand lens at 9 feet 15 16 4,5 11 -as above 16 18 8,8 14 16 EOB at 14 feet BGS, abandoned with bentonite chips.		5,7	E_	-as above						1		15	ĺ	Ĭ		İ		
3 20 6,3 7 -as above 4 20 2,5 5,8 10 -as above 5 16 4,5 11 10,6 11 -as above 6 18 7,8 8,8 13 14 Feet BGS, abandoned with bentonite chips.	2 24	8,12	5									'`			1			
3 20 6,3 7 -as above 4 20 2,5 5,8 10 -as above 5 16 4,5 11 10,6 11 -as above 6 18 7,8 8,8 13 14 Feet BGS, abandoned with bentonite chips.										į		ļ						
3 20 5,6 7 8 4 20 5,8 9 -as above -sand lens at 9 feet 5 16 4,5 11 12 -as above 6 18 7,8 8,8 14 -as above 16 EOB at 14 feet BGS, abandoned with bentonite chips.			r °															
3 20 5,6 4 20 2,5 5,8 -as above -sand lens at 9 feet 5 16 4,5 10,6 -as above 6 18 8,8 -as above -as above CL 10 EOB at 14 feet BGS, abandoned with bentonite chips.		63	7	-as above]		- 1				ļ		Ì		
4 20 5,8 - 9 -as above -sand lens at 9 feet 5 16 10,6 - 11 -as above 6 18 8,8 14 - 13 - 13 - 13 - 14 - 15 - 16 - 16 - 16 - 17 - 17 - 18 - 18 - 18 - 18 - 18 - 18	3 20	5,6										l °			İ			
4 20 2,5 5,8 9 -sand lens at 9 feet 5 16 10,6 -as above CL 15 EOB at 14 feet BGS, abandoned with bentonite chips.	ľ		8										-					
4 20 2,5 5,8 9 -sand lens at 9 feet 5 16 10,6 -as above CL 15 EOB at 14 feet BGS, abandoned with bentonite chips.			F	as above										1				
4 20 5,8 10 -as above CL 15		25	– 9) feet									1				
5 16 4,5 11 -as above	4 20	5,8						1		- 1		10		l	1	ł		
5 16 4,5 11 12 -as above 15 16 18 7,8 8,8 14 14 Feet BGS, abandoned with bentonite chips.			10															
5 16 4,5 11 12 -as above 16 18 7,8 abandoned with bentonite chips.			F	-as above				CL										
6 18 7,8 abandoned with bentonite chips.	_	4,5		45 455 15								45			1			
-as above EOB at 14 feet BGS, abandoned with bentonite chips.	5 16	10,6										'2		-				
6 18 7,8 13 abandoned with bentonite chips.			12					1		ſ								
6 18 7,8 13 abandoned with bentonite chips.			E	-as above									E	OB at	14 fee	t BGS	5.	
6 18 8,8 14 16 chips.		7,8	13									16	ab	ando				
	0 18	8,8										'°	ch	ips.				
	I horeby co	difu that		nation on this farm !-	taua and sacra	at to the best -	f my les		<u> </u>	L		<u> </u>		L		Ц		

Firm

NewFields, Madison, WI

State of Wisconsin Department of Natu	ırat Resou	ırces _							SOIL	BORI		OG II	NFOR	MAT	ION 7-91	
•			ute To:		□ Haz	z. Wast	e,		•						1-51	
			Solid Waste		□ Und	-										
			Wastewater		□ Wa			3 ,							4	
		. 0	Emergency R	esponse	☐ Oth								age1	of _	1	
Facility / Project Na	DB C	ak Facility, For	t Atkinson,	Wisconsin	Lice	ense/Po	ermit/N	/lonitori	ng Numb	er — —	_ [Boring N	lumber	SB-	3	
Boring Drilled By (F		and name of crew	chief)		1	Drilling	_			Drilling			Dril	ling Me		
		Plummer er State Drilling	•		1 -3	_ /	<u>7</u> /	06 YY	-	<u>3</u> /-	/	<u>, 06</u>			'ID HSA Spoon	
Supreme West Walley		I Unique Well No.	Common We	oll Name	Final	Static '			Surfa	ce Eleva	D D	<u> </u>	Bor		lameter	
DNR Facility Well N	10. ''		Common TV	Cil Mairio	' "''		Feet M		00110	CO LICVE	Feet I	MSL		8.3	inches	
Boring Location State Plane		N	ES	J/C/N	ا ا ا ا				Loca	I Grid Lo	cation (If Applie	cable)			
NE 1/4 of SE	1/4 05 5			R 14 E	Lon	ıg				Fe		l N ! S		Fe	et 🗆 W	
County	1/4 01 3	section _ O-	I IV, F	DNR Count	y Code	Ť	Civil T	own / C	ity / or V							_
	Jefferso	on		2	8			Ci	ty of Fo	ort Atki	nson					
Sample								آ ۽			Soil Pr	opertie	s		ıts	_
(S) Str	ee	Soil/Ro	ck Descri	ntion		ļ	3	Well Diagram		_ 5					1 iii	
Number ength ecovered low Cour	ë		logic Orig			ဟ္ပ	Graphic Log	Dia	PID/FID	ndard	sture tent	.⊒	₽	o O	Š	
Number Length Recovered (N) Blow Counts (N)	Depth in Feet		h Major U			nscs	Gra	Wei	<u>P</u>	Standard Penetration	Moisture Content	Liquid	Plastic Limit	P 200	ROD/Comments	
	- 0	Surface = gra	vel drivewa	nv			\Box				 	 		 		
	F	g.s				ł										
	F 1					 	1									
	F .	CLAY, silty, w	ith gravel, b	olack												
1 1	2 -					1	1 1				1	l	l	l		
	⊨ I															
	3		****			1										
1 20 8 10	F .	CLAY, silty, ve	ery stiff, mo	ist, low plas	ticity,	CL				21						
1 20 8,10 11,10	- 4	dark yellowish	prown													
	5					ļ								l		
9,8	F	-as above	k			1										
2 20 7,12	— е					1				15				ŀ		
						1										
	F 7													ſ		
	F .	-as above														
3 6 8,10	8									23						
													Ì			
	- 9 -			•												
	E	-as above										1				
4 8 7,11	T 10	•								23						
4 8 13,10									•	20						
	_ 11					1	1111									
	12	EOD -3 44 5	4 DOC - 5			1						ļ	ļ	l		
	 - ''	EOB at 11 fee bentonite chip		ndoned with	1 .	1										
	[=,	Dentering only	. .													
	— 13 —															
	<u> </u>															
I hereby certify that		ation on this form is	true and corre	ct to the best o	f my kno	owleda	`' 3.	·L			-				I	_

Firm

NewFields, Madison, WI

Facility	/ Pro	of Natu	DB C firm name Alex Badg	Roi	chief)	esponse Wisconsin	Unc War Oth Lice Date	Drilling 3 / Static '	ources ermit/M Starte 7 D	Monitoring de de de de de de de de de de de de de	ng Numb	Drilling	0-122 Comple 7 D D	Boring Neted	rage	SB-	1 4 thod "ID H	on r
Boring I State PI NE	lane	_	1/4 of \$	N Section <u>34</u> 1	Es r <u>6</u> n, r		Lon	g <u> </u>	_	<u> </u>		l Grid Lo		I S I N		Fe] K
County			Jefferso	on		DNR County	y Code 8		Civil T		ity/or/ y of Fo	^{illage} ort Atki	nson			·		
Sample		5]									Soil Pr	opertie	s	-	şţ	
Number Length	Recovered (N)	Blow Counts (N)	Depth in Feet	And Geo	ck Descri logic Oriç h Major U	jin For		nscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	ROD/Comments	
3 4	24	6,7 7,12 9,8 10,8 10,6 19,10 2,8 10,10	10	Surface = grades Sand and graves Sand and graves Sand and graves Sand Sand Sand Sand Sand Sand Sand Sand	rel fill iff, moist, lovn above n dense, fin	w plasticity,	n	CL SP				14 18 25						
15		E , Al	<u> </u>	EOB at 13 fee bentonite chip	s.	•										·		

Firm

NewFields, Madison, WI

ATTACHMENT B

LABORATORY REPORTS MARCH 2006 GROUNDWATER SAMPLES

ANALYTICAL REPORT

NORTHERN LAKE SERVICE, INC. Analytical Laboratory and Environmental Services 400 North Lake Avenue - Crandon, WI 54520

Ph: (715)-478-2777 Fax: (715)-478-3060

Client:

NewFields Companies LLC Attn: Mark S McColloch PG

2110 Luann Lane #101 Madison.WI 53713 3098

WDNR Laboratory ID No. 721026460 WDATCP Laboratory Certification No. 105-330

EPA Laboratory ID No. WI00034

Page 1 of 4

NLS Project:

97066

NLS Customer:

93437

Fax: 608 442 9013

Printed: 04/12/06 Code: S

Phone: 608 442 5223

Project: 0451-002-800								
MW-1 NLS ID: 400968								
Ref. Line 1 COC 84998 MW-1 Matrix: GW								
Collected: 03/28/06 09:25 Received: 03/29/06 Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed	Method	Lab
Alkalinity, tot. as CaCO3 (unfiltered)	500	mg/L	Bildiloii	5.0	10		EPA 310.1	721026460
ron, tot, recoverable as Fe by ICP-Trace	7.3	mg/L	1	0.033	0.10		SW846 6010	721026460
Manganese, tot. recoverable as Mn by ICP-Trace	250	ug/L	1	1.0*	2.0	04/05/06	SW846 6010	721026460
Nitrate as N, uncorr. for NO2 (unfilt)	0.33	mg/L	1	0.025	0.075	03/31/06	EPA 353.2	721026460
Sulfate, as SO4 (unfiltered)	45	mg/L	10	2.5	5.0	03/30/06	SW846 9056	721026460
Metals digestion - tot. recov.ICP	ves	mg/L	10	2.0	0.0	04/03/06	SW846 3005M	721026460
VOCs (water) by EPA 8260	see attached					04/05/06	SW846 8260	721026460
MW-2 NLS ID: 400969								
Ref. Line 2 COC 84998 MW-2 Matrix: GW								
Collected: 03/28/06 13:00 Received: 03/29/06								
Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed	Method	Lab
Alkalinity, tot, as CaCO3 (unfiltered)	410	mg/L	5	5.0	10	03/31/06	EPA 310.1	721026460
Iron, tot. recoverable as Fe by ICP-Trace	41	mg/L	1	0.033	0.10	04/05/06	SW846 6010	721026460
Manganese, tot. recoverable as Mn by ICP-Trace	660	ug/L	1	1.0*	2.0	04/05/06	SW846 6010	721026460
Nitrate as N, uncorr. for NO2 (unfilt)	0.16	mg/L	1	0.025	0.075	03/31/06	EPA 353.2	721026460
Sulfate, as SO4 (unfiltered)	97	mg/L	10	2.5	5.0	03/30/06	SW846 9056	721026460
Metals digestion - tot. recov.ICP	yes					04/03/06	SW846 3005M	721026460
VOCs (water) by EPA 8260	see attached					04/04/06	SW846 8260	721026460
MW-2A NLS ID: 400970								
Ref. Line 3 COC 84998 MW-2A Matrix: GW								
Collected: 03/28/06 12:45 Received: 03/29/06								
Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed	Method	Lab
Alkalinity, tot. as CaCO3 (unfiltered)	390	mg/L	5	5.0	10	03/31/06	EPA 310.1	721026460
Iron, tot. recoverable as Fe by ICP-Trace	1.5	mg/L	1	0.033	0.10	04/05/06	SW846 6010	721026460
Manganese, tot. recoverable as Mn by ICP-Trace	100	ug/L	1	1.0*	2.0	04/05/06	SW846 6010	721026460
Nitrate as N, uncorr. for NO2 (unfilt)	ND	mg/L	1	0.025	0.075	03/31/06	EPA 353.2	721026460
Sulfate, as SO4 (unfiltered)	130	mg/L	20	5.0	10	03/30/06	SW846 9056	721026460
Metals digestion - tot. recov.ICP	yes					04/03/06	SW846 3005M	721026460
VOCs (water) by EPA 8260	see attached					04/05/06	SW846 8260	721026460
MW-3 NLS ID: 400971			i					
Ref. Line 4 COC 84998 MW-3 Matrix: GW								
Collected: 03/28/06 14:30 Received: 03/29/06								
Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed	Method	Lab
Alkalinity, tot. as CaCO3 (unfiltered)	320	mg/L	5	5.0	10		EPA 310.1	721026460
Iron, tot. recoverable as Fe by ICP-Trace	3.3	mg/L	1	0.033	0.10	04/05/06	SW846 6010	721026460
Manganese, tot. recoverable as Mn by ICP-Trace	99	ug/L	1	1.0*	2.0	04/05/06	SW846 6010	721026460
Nitrate as N, uncorr. for NO2 (unfilt)	ND	mg/L	1	0.025	0.075		EPA 353.2	721026460
Sulfate, as SO4 (unfiltered)	56	mg/L	20	5.0	10	03/30/06	SW846 9056	721026460
	56 yes	mg/L	20	5.0	10	03/30/06	SW846 9056 SW846 3005M	721026460 721026460

ANALYTICAL REPORT

NORTHERN LAKE SERVICE, INC. Analytical Laboratory and Environmental Services 400 North Lake Avenue - Crandon, WI 54520

Ph: (715)-478-2777 Fax: (715)-478-3060

Client:

NewFields Companies LLC Attn: Mark S McColloch PG

2110 Luann Lane #101 Madison,WI 53713 3098 WDNR Laboratory ID No. 721026460

WDATCP Laboratory Certification No. 105-330

NLS Customer:

EPA Laboratory ID No. WI00034

Printed: 04/12/06 Code: S

Page 2 of 4

NLS Project:

97066 93437

Fax: 608 442 9013	Phone: 608 442 5223

Project: 0451-002-800								
MW-3A NLS ID: 400972								
Ref. Line 5 COC 84998 MW-3A Matrix: GW								
Collected: 03/28/06 14:15 Received: 03/29/06								
Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed		Lab
Alkalinity, tot. as CaCO3 (unfiltered)	420	mg/L	5	5.0	10	03/31/06	EPA 310.1	721026460
Iron, tot. recoverable as Fe by ICP-Trace	12	mg/L	11	0.033	0.10		SW846 6010	721026460
Manganese, tot. recoverable as Mn by ICP-Trace	440	ug/L	1	1.0*	2.0		SW846 6010	721026460
Nitrate as N, uncorr. for NO2 (unfilt)	[0.029]	mg/L	11	0.025	0.075		EPA 353.2	721026460
Sulfate, as SO4 (unfiltered)	72	mg/L	10	2.5	5.0		SW846 9056	721026460
Metals digestion - tot. recov.ICP	yes						SW846 3005M	721026460
VOCs (water) by EPA 8260	see attached					04/05/06	SW846 8260	721026460
MW-3B NLS ID: 400973			·					
Ref. Line 6 COC 84998 MW-3B Matrix: GW			•					
Collected: 03/28/06 14:00 Received: 03/29/06							•	
Parameter	Result	Units	Dilution	LOD	LOQ		Method	Lab
Alkalinity, tot. as CaCO3 (unfiltered)	360	mg/L	5	5.0	10		EPA 310.1	721026460
Iron, tot. recoverable as Fe by ICP-Trace	1.2	mg/L	1	0.033	0.10		SW846 6010	721026460
Manganese, tot. recoverable as Mn by ICP-Trace	110	ug/L	1	1.0*	2.0		SW846 6010	721026460
Nitrate as N, uncorr. for NO2 (unfilt)	ND	mg/L	1	0.025	0.075		EPA 353.2	721026460
Sulfate, as SO4 (unfiltered)	63	mg/L	20	5.0	10	03/30/06	SW846 9056	721026460
Metals digestion - tot, recov.ICP	yes					04/03/06	SW846 3005M	721026460
VOCs (water) by EPA 8260	see attached				-	04/05/06	SW846 8260	721026460
MW-4 NLS ID: 400974	,		· · · · · · · · · · · · · · · · · · ·					
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW								
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06	Result	Units	Dilution	LOD	100	Analyzed	Method	lab
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter	Result	Units mg/	Dilution 5	LOD 5.0	LOQ	Analyzed		Lab 721026460
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered)	280	mg/L	Dilution 5	5.0	10	03/31/06	EPA 310.1	721026460
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace	280 9.6	mg/L mg/L		5.0 0.033	10 0.10	03/31/06 04/05/06	EPA 310,1 SW846 6010	721026460 721026460
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace Manganese, tot. recoverable as Mn by ICP-Trace	280 9.6 200	mg/L mg/L ug/L		5.0 0.033 1.0*	10 0.10 2.0	03/31/06 04/05/06 04/05/06	EPA 310.1 SW846 6010 SW846 6010	721026460 721026460 721026460
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace Manganese, tot. recoverable as Mn by ICP-Trace Nitrate as N, uncorr. for NO2 (unfilt)	280 9.6 200 0.79	mg/L mg/L ug/L mg/L	5 1 1	5.0 0.033 1.0* 0.025	10 0.10 2.0 0.075	03/31/06 04/05/06 04/05/06 03/31/06	EPA 310.1 SW846 6010 SW846 6010 EPA 353.2	721026460 721026460 721026460 721026460
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace Manganese, tot. recoverable as Mn by ICP-Trace Nitrate as N, uncorr. for NO2 (unfilt) Sulfate, as SO4 (unfiltered)	280 9.6 200 0.79 65	mg/L mg/L ug/L		5.0 0.033 1.0*	10 0.10 2.0	03/31/06 04/05/06 04/05/06 03/31/06 03/30/06	EPA 310.1 SW846 6010 SW846 6010 EPA 353.2 SW846 9056	721026460 721026460 721026460 721026460 721026460
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace Manganese, tot. recoverable as Mn by ICP-Trace Nitrate as N, uncorr. for NO2 (unfilt) Sulfate, as SO4 (unfiltered) Metals digestion - tot. recov.ICP	280 9.6 200 0.79 65 yes	mg/L mg/L ug/L mg/L	5 1 1	5.0 0.033 1.0* 0.025	10 0.10 2.0 0.075	03/31/06 04/05/06 04/05/06 03/31/06 03/30/06 04/03/06	EPA 310.1 SW846 6010 SW846 6010 EPA 353.2 SW846 9056 SW846 3005M	721026460 721026460 721026460 721026460 721026460 721026460
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace Manganese, tot. recoverable as Mn by ICP-Trace Nitrate as N, uncorr. for NO2 (unfilt) Sulfate, as SO4 (unfiltered) Metals digestion - tot. recov.ICP VOCs (water) by EPA 8260	280 9.6 200 0.79 65	mg/L mg/L ug/L mg/L	5 1 1	5.0 0.033 1.0* 0.025	10 0.10 2.0 0.075	03/31/06 04/05/06 04/05/06 03/31/06 03/30/06 04/03/06	EPA 310.1 SW846 6010 SW846 6010 EPA 353.2 SW846 9056	721026460 721026460 721026460 721026460 721026460
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace Manganese, tot. recoverable as Mn by ICP-Trace Nitrate as N, uncorr. for NO2 (unfilt) Sulfate, as SO4 (unfiltered) Metals digestion - tot. recov.ICP VOCs (water) by EPA 8260 MW-4A NLS ID: 400975	280 9.6 200 0.79 65 yes	mg/L mg/L ug/L mg/L	5 1 1	5.0 0.033 1.0* 0.025	10 0.10 2.0 0.075	03/31/06 04/05/06 04/05/06 03/31/06 03/30/06 04/03/06	EPA 310.1 SW846 6010 SW846 6010 EPA 353.2 SW846 9056 SW846 3005M	721026460 721026460 721026460 721026460 721026460 721026460
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace Manganese, tot. recoverable as Mn by ICP-Trace Nitrate as N, uncorr. for NO2 (unfilt) Sulfate, as SO4 (unfiltered) Metals digestion - tot. recov.ICP VOCs (water) by EPA 8260 MW-4A NLS ID: 400975 Ref. Line 8 COC 84998 MW-4A Matrix: GW	280 9.6 200 0.79 65 yes	mg/L mg/L ug/L mg/L	5 1 1	5.0 0.033 1.0* 0.025	10 0.10 2.0 0.075	03/31/06 04/05/06 04/05/06 03/31/06 03/30/06 04/03/06	EPA 310.1 SW846 6010 SW846 6010 EPA 353.2 SW846 9056 SW846 3005M	721026460 721026460 721026460 721026460 721026460 721026460
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace Manganese, tot. recoverable as Mn by ICP-Trace Nitrate as N, uncorr. for NO2 (unfilt) Sulfate, as SO4 (unfiltered) Metals digestion - tot. recov.ICP VOCs (water) by EPA 8260 MW-4A NLS ID: 400975 Ref. Line 8 COC 84998 MW-4A Matrix: GW Collected: 03/28/06 11:30 Received: 03/29/06	280 9.6 200 0.79 65 yes see attached	mg/L mg/L ug/L mg/L mg/L	5 1 1 1 20	5.0 0.033 1.0* 0.025 5.0	10 0.10 2.0 0.075 10	03/31/06 04/05/06 04/05/06 03/31/06 03/31/06 04/03/06 04/05/06	EPA 310.1 SW846 6010 SW846 6010 EPA 353.2 SW846 9056 SW846 3005M SW846 8260	721026460 721026460 721026460 721026460 721026460 721026460 721026460
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace Manganese, tot. recoverable as Mn by ICP-Trace Nitrate as N, uncorr. for NO2 (unfilt) Sulfate, as SO4 (unfiltered) Metals digestion - tot. recov.ICP VOCs (water) by EPA 8260 MW-4A NLS ID: 400975 Ref. Line 8 COC 84998 MW-4A Matrix: GW Collected: 03/28/06 11:30 Received: 03/29/06 Parameter	280 9.6 200 0.79 65 yes see attached	mg/L mg/L ug/L mg/L mg/L	5 1 1 20	5.0 0.033 1.0* 0.025 5.0	10 0.10 2.0 0.075 10	03/31/06 04/05/06 04/05/06 03/31/06 03/30/06 04/03/06 04/05/06	EPA 310.1 SW846 6010 SW846 6010 EPA 353.2 SW846 9056 SW846 3005M SW846 8260	721026460 721026460 721026460 721026460 721026460 721026460 721026460
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace Manganese, tot. recoverable as Mn by ICP-Trace Nitrate as N, uncorr. for NO2 (unfilt) Sulfate, as SO4 (unfiltered) Metals digestion - tot. recov.ICP VOCs (water) by EPA 8260 MW-4A NLS ID: 400975 Ref. Line 8 COC 84998 MW-4A Matrix: GW Collected: 03/28/06 11:30 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered)	280 9.6 200 0.79 65 yes see attached	mg/L mg/L ug/L mg/L mg/L	5 1 1 1 20	5.0 0.033 1.0* 0.025 5.0 LOD	10 0.10 2.0 0.075 10	03/31/06 04/05/06 04/05/06 03/31/06 03/30/06 04/03/06 04/05/06 Analyzed	EPA 310.1 SW846 6010 SW846 6010 EPA 353.2 SW846 9056 SW846 3005M SW846 8260 Method EPA 310.1	721026460 721026460 721026460 721026460 721026460 721026460 721026460
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace Manganese, tot. recoverable as Mn by ICP-Trace Nitrate as N, uncorr. for NO2 (unfilt) Sulfate, as SO4 (unfiltered) Metals digestion - tot. recov.ICP VOCs (water) by EPA 8260 MW-4A NLS ID: 400975 Ref. Line 8 COC 84998 MW-4A Matrix: GW Collected: 03/28/06 11:30 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace	280 9.6 200 0.79 65 yes see attached Result 330 2.4	mg/L mg/L ug/L mg/L mg/L mg/L	5 1 1 20	5.0 0.033 1.0* 0.025 5.0 LOD 5.0 0.033	10 0.10 2.0 0.075 10 LOQ 10 0.10	03/31/06 04/05/06 04/05/06 03/31/06 03/33/06 04/03/06 04/05/06 Analyzed 03/31/06 04/05/06	EPA 310.1 SW846 6010 SW846 6010 EPA 353.2 SW846 9056 SW846 3005M SW846 8260 Method EPA 310.1 SW846 6010	721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) ron, tot. recoverable as Fe by ICP-Trace Wanganese, tot. recoverable as Mn by ICP-Trace Nitrate as N, uncorr. for NO2 (unfilt) Sulfate, as SO4 (unfiltered) Wetals digestion - tot. recov.ICP VOCs (water) by EPA 8260 MW-4A NLS ID: 400975 Ref. Line 8 COC 84998 MW-4A Matrix: GW Collected: 03/28/06 11:30 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) ron, tot. recoverable as Fe by ICP-Trace Wanganese, tot. recoverable as Mn by ICP-Trace	280 9.6 200 0.79 65 yes see attached Result 330 2.4 37	mg/L mg/L ug/L mg/L mg/L mg/L mg/L mg/L ug/L ug/L	5 1 1 20	5.0 0.033 1.0* 0.025 5.0 LOD 5.0 0.033 1.0*	10 0.10 2.0 0.075 10 LOQ 10 0.10 2.0	03/31/06 04/05/06 04/05/06 03/31/06 03/31/06 04/03/06 04/05/06 Analyzed 03/31/06 04/05/06	EPA 310.1 SW846 6010 SW846 6010 EPA 353.2 SW846 9056 SW846 3005M SW846 8260 Method EPA 310.1 SW846 6010 SW846 6010	721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace Manganese, tot. recoverable as Mn by ICP-Trace Nitrate as N, uncorr. for NO2 (unfilt) Sulfate, as SO4 (unfiltered) Metals digestion - tot. recov.ICP VOCs (water) by EPA 8260 MW-4A NLS ID: 400975 Ref. Line 8 COC 84998 MW-4A Matrix: GW Collected: 03/28/06 11:30 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace Manganese, tof. recoverable as Mn by ICP-Trace Nitrate as N, uncorr. for NO2 (unfilt)	280 9.6 200 0.79 65 yes see attached Result 330 2.4 37 ND	mg/L mg/L ug/L mg/L mg/L mg/L units mg/L ug/L ug/L	5 1 1 20 Dilution 5 1 1	5.0 0.033 1.0* 0.025 5.0 5.0 0.033 1.0* 0.025	10 0.10 2.0 0.075 10 LOQ 10 0.10 2.0 0.075	03/31/06 04/05/06 04/05/06 03/31/06 03/30/06 04/03/06 04/05/06 04/05/06 04/05/06 04/05/06 04/05/06 03/31/06	EPA 310.1 SW846 6010 SW846 6010 EPA 353.2 SW846 9056 SW846 3005M SW846 8260 Method EPA 310.1 SW846 6010 SW846 6010 EPA 353.2	721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace Manganese, tot. recoverable as Mn by ICP-Trace Nitrate as N, uncorr. for NO2 (unfilt) Sulfate, as SO4 (unfiltered) Metals digestion - tot. recov.ICP VOCs (water) by EPA 8260 MW-4A NLS ID: 400975 Ref. Line 8 COC 84998 MW-4A Matrix: GW Collected: 03/28/06 11:30 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace Manganese, tof. recoverable as Mn by ICP-Trace Nitrate as N, uncorr. for NO2 (unfilt) Sulfate, as SO4 (unfiltered)	280 9.6 200 0.79 65 yes see attached Result 330 2.4 37 ND 48	mg/L mg/L ug/L mg/L mg/L mg/L mg/L mg/L ug/L ug/L	5 1 1 20	5.0 0.033 1.0* 0.025 5.0 LOD 5.0 0.033 1.0*	10 0.10 2.0 0.075 10 LOQ 10 0.10 2.0	03/31/06 04/05/06 04/05/06 03/31/06 03/30/06 04/03/06 04/05/06 04/05/06 04/05/06 04/05/06 03/31/06 03/31/06 03/30/06	EPA 310.1 SW846 6010 SW846 6010 EPA 353.2 SW846 9056 SW846 3005M SW846 8260 Method EPA 310.1 SW846 6010 SW846 6010 EPA 353.2 SW846 9056	721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460
MW-4 NLS ID: 400974 Ref. Line 7 COC 84998 MW-4 Matrix: GW Collected: 03/28/06 11:45 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered) Iron, tot. recoverable as Fe by ICP-Trace Manganese, tot. recoverable as Mn by ICP-Trace Nitrate as N, uncorr. for NO2 (unfilt) Sulfate, as SO4 (unfiltered) Metals digestion - tot. recov.ICP VOCs (water) by EPA 8260 MW-4A NLS ID: 400975 Ref. Line 8 COC 84998 MW-4A Matrix: GW Collected: 03/28/06 11:30 Received: 03/29/06 Parameter Alkalinity, tot. as CaCO3 (unfiltered)	280 9.6 200 0.79 65 yes see attached Result 330 2.4 37 ND	mg/L mg/L ug/L mg/L mg/L mg/L units mg/L ug/L ug/L	5 1 1 20 Dilution 5 1 1	5.0 0.033 1.0* 0.025 5.0 5.0 0.033 1.0* 0.025	10 0.10 2.0 0.075 10 LOQ 10 0.10 2.0 0.075	03/31/06 04/05/06 04/05/06 03/31/06 03/30/06 04/03/06 04/05/06 04/05/06 04/05/06 03/31/06 04/05/06 03/31/06 03/31/06 04/05/06 03/31/06 04/05/06	EPA 310.1 SW846 6010 SW846 6010 EPA 353.2 SW846 9056 SW846 3005M SW846 8260 Method EPA 310.1 SW846 6010 SW846 6010 EPA 353.2	721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460 721026460

NORTHERN LAKE SERVICE, INC. Analytical Laboratory and Environmental Services 400 North Lake Avenue - Crandon, WI 54520

Ph: (715)-478-2777 Fax: (715)-478-3060

Client:

NewFields Companies LLC Attn: Mark S McColloch PG

2110 Luann Lane #101 Madison,WI 53713 3098

WDNR Laboratory ID No. 721026460 WDATCP Laboratory Certification No. 105-330 EPA Laboratory ID No. WI00034

Printed: 04/12/06 Code: S

Page 3 of 4

NLS Project:

97066

NLS Customer:

93437

Fax: 608 442 9013 Phone: 608 442 5223

Project: 0451-002-800								
MW-5 NLS ID: 400976							-	
Ref. Line 9 COC 84998 MW-5 Matrix: GW								
Collected: 03/28/06 11:00 Received: 03/29/06								
Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed	Method	Lab
Alkalinity, tot. as CaCO3 (unfiltered)	610	mg/L	5	5.0	10	03/31/06	EPA 310.1	721026460
Iron, tot. recoverable as Fe by ICP-Trace	5.1	mg/L	1	0.033	0.10		SW846 6010	721026460
Manganese, tot, recoverable as Mn by ICP-Trace	200	ug/L	1	1.0*	2.0	04/05/06	SW846 6010	721026460
Nitrate as N, uncorr. for NO2 (unfilt)	0.087	mg/L	1	0.025	0.075	03/31/06	EPA 353.2	721026460
Sulfate, as SO4 (unfiltered)	270	mg/L	50	13	25	04/03/06	SW846 9056	721026460
Metals digestion - tot. recov.ICP	ves	0				04/03/06	SW846 3005M	721026460
VOCs (water) by EPA 8260	see attached						SW846 8260	721026460
MW-6 NLS ID: 400977								
Ref. Line 1 COC 84999 MW-6 Matrix: GW								
Collected: 03/28/06 08:25 Received: 03/29/06								
Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed		Lab
Alkalinity, tot. as CaCO3 (unfiltered)	260	mg/L	5	5.0	10		EPA 310.1	721026460
Iron, tot. recoverable as Fe by ICP-Trace	14	mg/L	1	0.033	0.10	04/05/06	SW846 6010	721026460
Manganese, tot. recoverable as Mn by ICP-Trace	210	ug/L	1	1.0*	2.0	04/05/06	SW846 6010	721026460
Nitrate as N, uncorr. for NO2 (unfilt)	6.4	mg/L	5 .	0.13	0.38	03/31/06	EPA 353.2	721026460
Sulfate, as SO4 (unfiltered)	25	mg/L	10	2.5	5.0	03/30/06	SW846 9056	721026460
Metals digestion - tot. recov.ICP	yes					04/03/06	SW846 3005M	721026460
VOCs (water) by EPA 8260	see attached				. ×	04/06/06	SW846 8260	721026460
MW-6A NLS ID: 400978		4-11						
Ref. Line 2 COC 84999 MW-6A Matrix: GW								
Collected: 03/28/06 08:30 Received: 03/29/06								
Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed	Method	Lab
Alkalinity, tot. as CaCO3 (unfiltered)	430	mg/L	5	5.0	10	03/31/06	EPA 310.1	721026460
Iron, tot. recoverable as Fe by ICP-Trace	6.4	mg/L	1	0.033	0.10	04/05/06	SW846 6010	721026460
Manganese, tot. recoverable as Mn by ICP-Trace	250	ug/L	1	1.0*	2.0	04/05/06	SW846 6010	721026460
Nitrate as N, uncorr. for NO2 (unfilt)	[0.037]	mg/L	1	0.025	0.075	03/31/06	EPA 353.2	721026460
Sulfate, as SO4 (unfiltered)	57	mg/L	10	2.5	5.0	03/30/06	SW846 9056	721026460
Metals digestion - tot. recov.ICP	yes	mg/L	10	2.5	5.0	04/03/06	SW846 3005M	721026460
VOCs (water) by EPA 8260	see attached					04/05/06	SW846 8260	721026460
	see allached					04/05/06	500846 8260	721026460
MW-7 NLS ID: 400979								
Ref. Line 3 COC 84999 MW-7 Matrix: GW								
Collected: 03/28/06 10:00 Received: 03/29/06								
Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed	Method	Lab
Alkalinity, tot. as CaCO3 (unfiltered)	500	mg/L	5	5.0	10	03/31/06	EPA 310.1	721026460
Iron, tot. recoverable as Fe by ICP-Trace	9.5	mg/L	1	0.033	0.10	04/05/06	SW846 6010	721026460
Manganese, tot. recoverable as Mn by ICP-Trace	200	ug/L	1	1.0*	2.0	04/05/06	SW846 6010	721026460
Nitrate as N, uncorr. for NO2 (unfilt)	0.30	mg/L	1	0.025	0.075	03/31/06	EPA 353.2	721026460
Sulfate, as SO4 (unfiltered)	27	mg/L	10	2.5	5.0	03/30/06	SW846 9056	721026460
Metals digestion - tot. recov.ICP	ves		- 1'-		0.0	04/03/06	SW846 3005M	721026460
VOCs (water) by EPA 8260	see attached							721026460
VOCs (water) by EPA 8260	see attached					04/06/06	SW846 8260	72102646

NORTHERN LAKE SERVICE, INC. Analytical Laboratory and Environmental Services 400 North Lake Avenue - Crandon, WI 54520

Ph: (715)-478-2777 Fax: (715)-478-3060

0451-002-800

Client:

Project:

NewFields Companies LLC Attn: Mark S McColloch PG

2110 Luann Lane #101 Madison.WI 53713 3098

WDNR Laboratory ID No. 721026460 WDATCP Laboratory Certification No. 105-330

EPA Laboratory ID No. WI00034

Printed: 04/12/06 Code: S

Page 4 of 4

NLS Project:

97066

NLS Customer:

93437

Fax: 608 442 9013 Phone: 608 442 5223

MW-7A NLS ID: 400980								
Ref. Line 4 COC 84999 MW-7A Matrix; GW								*
Collected: 03/28/06 10:10 Received: 03/29/06								
Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed		Lab
Alkalinity, tot. as CaCO3 (unfiltered)	370	mg/L	5	5.0	10		EPA 310.1	721026460
Iron, tot. recoverable as Fe by ICP-Trace	[0.074]	mg/L	1	0.033	0.10		SW846 6010	721026460
Manganese, tot. recoverable as Mn by ICP-Trace	4.8	ug/L	1	1.0*	2.0		SW846 6010	721026460
Nitrate as N, uncorr. for NO2 (unfilt)	1.4	mg/L	1	0.025	0.075		EPA 353.2	721026460
Sulfate, as SO4 (unfiltered)	54	mg/L	10	2.5	5.0		SW846 9056	721026460
Metals digestion - tot. recov.ICP	yes						SW846 3005M	721026460
VOCs (water) by EPA 8260	see attached					04/05/06	SW846 8260	721026460
Dup #1 NLS ID: 400981 Ref. Line 5 COC 84999 Dup #1 Matrix: GW Collected: 03/28/06 00:00 Received: 03/29/06 Parameter VOCs (water) by EPA 8260 Trip Blank NLS ID: 400982	Result see attached	Units	Dilution	LOD	Loq	Analyzed		Lab 721026460

Values in brackets represent results greater than or equal to the LOD but less than the LOQ and are within a region of "Less-Certain Quantitation". Results greater than or equal to the LOQ are considered to be in the region of "Certain Quantitation". LOD and/or LOQ tagged with an asterisk(*) are considered Reporting Limits. All LOD/LOQs adjusted to reflect dilution.

LOD = Limit of Detection

LOQ = Limit of Quantitation

ND = Not Detected

1000 ug/L = 1 mg/L

Authorized by:

DWB = Dry Weight Basis

NA = Not Applicable

R. T. Krueger

MCL = Maximum Contaminant Levels for Drinking Water Samples

%DWB = (mg/kg DWB) / 10000

Reviewed by: -

President

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Sat 2000R)

Customer: NewFields Companies LLC NLS Project: 97066

Project Description: 0451-002-800

Project Title:

Sample: 400978 MW-6A	Collected: 03/28/06	Analyze	d: 04/05/06 -				
ANALYTE NAME	RE	SULT	UNITS	DIL	LOD	LOQ	
Benzene		ND	ug/L	1	0.21	0.73	
Bromobenzene		AD.	ug/L	1	0.23	0.80	
Bromochloromethane		ND	ug/L	1	0.24	0.87	
Bromodichloromethane		4D	ug/L	1	0.23	0.83	
Bromoform		ND	ug/L	1	0.17	0.59	
Bromomethane		ND	ug/L	1	0.34	1.2	
n-Butylbenzene		ND	ug/L	1	0.16	0.58	
sec-Butylbenzene		ND	ug/L	1	0.19	0.66	
tert-Butylbenzene		ND	ug/L	1	0.19	0.68	
Carbon Tetrachloride		ND	ug/L	1	0.19	0.66	
Chlorobenzene		ND	ug/L	1	0.22	0.79	
Chloroethane		ND	ug/L	1	2.0	6.9	
Chloroform		ND	ug/L	1	0.20	0.72	
Chloromethane		ND	ug/L	1	0.24	0.84	
2-Chlorotoluene		ND	ug/L	1	0.20	0.70	
4-Chlorotoluene		ND	ug/L		0.19	0.67	
Dibromochloromethane		ND	ug/L	1	0.24	0.85	
1,2-Dibromo-3-Chloropropane		ND	ug/L	1	0.42	1.5	
1,2-Dibromoethane		ND	ug/L	i	0.20	0.71	
Dibromomethane		ND	ug/L	1	0.23	0.80	:
1,2-Dichlorobenzene		ND	ug/L	1	0.20	0.71	:
1,3-Dichlorobenzene		ND	ug/L		0.20	0.71	
1.4-Dichlorobenzene		ND	ug/L		0.24	0.85	
Dichlorodifluoromethane		ND	ug/L	i	0.26	0.91	
1.1-Dichloroethane		ND	ug/L	i	0.21	0.74	
1.2-Dichloroethane		ND	ug/L	i	0.21	0.75	
1.1-Dichloroethene		ND	ug/L		0.14	0.48	
cis-1.2-Dichloroethene		ND	ug/L	i	0.34	1.2	
trans-1,2-Dichloroethene		ND	ug/L	<u> </u>	0.21	0.73	
1,2-Dichloropropane		ND	ug/L	- i	0.24	0.86	
1,3-Dichloropropane		ND	ug/L	- i	0.22	0.77	
2,2-Dichloropropane		ND	ug/L	i	0.19	0.66	
1.1-Dichloropropene		ND	ug/L	<u>i</u>	0.40	1.4	
cis-1,3-Dichloropropene		ND	ug/L	i	0.20	0.70	
trans-1,3-Dichloropropene		ND	ug/L	<u>i</u>	0.20	0.72	
Ethylbenzene		ND	ug/L	<u>i</u>	0.20	0.70	
Hexachlorobutadiene		ND	ug/L	- i -	0.35	1.2	
Isopropylbenzene		ND -	ug/L	 i	0.19	0.69	
p-Isopropyltoluene		ND	ug/L		0.20	0.70	
Methylene chloride		ND	ug/L		0.30	1.1	
Naphthalene		ND	ug/L		0.31	1.1	· · · · · · · · · · · · · · · · · · ·
n-Propylbenzene		ND	ug/L	i	0.17	0.60	
ortho-Xylene		ND	ug/L ug/L		0.17	0.75	
Styrene		ND ND	ug/L ug/L	'	0.21	0.75	
1,1,1,2-Tetrachloroethane		ND		¦	0.20	0.77	-
1.1.2.2-Tetrachloroethane		ND ND	ug/L	1	0.19	0.66	
		ND ND	ug/L	1	0.19	0.56	<u>:</u> :
Tetrachloroethene			ug/L				
Toluene		ND	ug/L	1	0.17	0.60	

Page 1 of 4

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Sat 2000R) panies LLC NLS Project: 97066

Customer: NewFields Companies LLC
Project Description: 0451-002-800
Project Title: Ten

Template: SATRW Printed: 04/12/2006 06:58

Sample: 400978 MW-6A	Collected: 03/28/06 Analyz	ed: 04/05/06 -		-		
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	1	0.39	1.4	
1,2,4-Trichlorobenzene	ND	ug/L	1	0.37	1.3	
1,1,1-Trichloroethane	ND	ug/L	1	0.19	0.66	
1,1,2-Trichloroethane	ND	ug/L	1	0.21	0.75	
Trichloroethene	ND	ug/L	1	0.19	0.66	
Trichlorofluoromethane	ND	ug/L	1	0.17	0.59	
1,2,3-Trichloropropane	ND	ug/L	1	0.24	0.85	
1,2,4-Trimethylbenzene	ND	ug/L	1	0.20	0.72	
1,3,5-Trimethylbenzene	ND	ug/L	1	0.20	0.70	
Vinyl chloride	ND	ug/L	1	0.17	0.59	1
meta,para-Xylene	ND	ug/L	1	0.41	1.4	
MTBE	ND	ug/L	1	0.20	0.72	
Isopropyl Ether	ND	ug/L	1	0.20	0.71	
Dibromofluoromethane (SURR**)	111%					
Toluene-d8 (SURR**)	121%					
1-Bromo-4-Fluorobenzene (SURR**)	118%					

Check standard recovery was outside QC limits for Bromomethane at 31%.

Page 2 of 4

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Sat 2000R)

Customer: NewFields Companies LLC NLS Project: 97066

Project Description: 0451-002-800

Project Title:

Sample: 400980 MW-7A	Collected: 03/28/06	Analyze	ed: 04/05/06 -				
ANALYTE NAME	RE	SULT	UNITS	DIL	LOD	LOQ	
Benzene		ND	ug/L	50	10	37	
Bromobenzene		ND	ug/L	50	11	40	
Bromochloromethane		ND	ug/L	50	12	43	,
Bromodichloromethane		ND	ug/L	50	12	41	
Bromoform		ND	ug/L	50	8.3	29	
Bromomethane		ND	ug/L	50	17	59	
n-Butylbenzene		ND	ug/L	50	8.2	29	į.
sec-Butylbenzene		ND	ug/L	50	9.4	33	
tert-Butylbenzene		ND	ug/L	50	9.6	34	1.
Carbon Tetrachloride		ND	ug/L,	50	9.3	33	i
Chlorobenzene		ND	ug/L	50	11	39	
Chloroethane		ND	ug/L	50	98	350	
Chloroform		ND	ug/L	50	10	36	
Chloromethane		ND	ug/L	50	12	42	
2-Chlorotoluene		ND	ug/L	50	9.9	35	
4-Chlorotoluene		ND	ug/L	50	9.5	34	
Dibromochloromethane	······································	ND	ug/L	50	12	42	
1,2-Dibromo-3-Chloropropane		ND	ug/L	50	21	74	
1,2-Dibromoethane		ND	ug/L	50	10	36	
Dibromomethane		ND	ug/L	50	11	40	•
1,2-Dichlorobenzene		ND	ug/L	50	10	35	,
1,3-Dichlorobenzene		ND	ug/L	50	10	35	
1.4-Dichlorobenzene		ND	ug/L	50	12	43	
Dichlorodifluoromethane		ND	ug/L	50	13	45	
1.1-Dichloroethane		ND	ug/L	50	10	37	
1.2-Dichloroethane		ND	ug/L	50	11	38	
1.1-Dichloroethene		ND	ug/L	50	6.8	24	
cis-1,2-Dichloroethene		270	ug/L	50	17	60	
trans-1.2-Dichloroethene		ND	ug/L	50	10	36	
1,2-Dichloropropane		ND	ug/L	50	12	43	
1,3-Dichloropropane		ND	ug/L	50	-11	39	
2,2-Dichloropropane		ND	ug/L	50	9.3	33	
1,1-Dichloropropene		ND	ug/L	50	20	71	
cis-1,3-Dichloropropene		ND	ug/L	50	9.9	35	
trans-1,3-Dichloropropene		ND	ug/L	50	10	36	
Ethylbenzene		ND	ug/L	50	10	35	
Hexachlorobutadiene		ND	ug/L	50	18	62	· · · · · · · · · · · · · · · · · · ·
Isopropylbenzene		ND	ug/L	50	9.7	34	
p-Isopropyltoluene		ND	ug/L	50	9.9	35	i i
Methylene chloride		16]	uğ/L	50	15	54	
Naphthalene		ND	ug/L	50	16	55	
n-Propylbenzene		ND	ug/L	50	8.5	30	
ortho-Xylene	——————————————————————————————————————	ND	ug/L	50	11	38	
Styrene		ND	ug/L	50	10	35	
1,1,1,2-Tetrachloroethane		ND	ug/L	50	11	38	
1,1,2,2-Tetrachloroethane		ND	ug/L	50	9.3	33	
Tetrachloroethene		350	ug/L	50	8.1	28	
Toluene		ND	ug/L	50	8.5	30	

Page 3 of 4

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Sat 2000R) panies LLC NLS Project: 97066

Customer: NewFields Companies LLC Project Description: 0451-002-800

Project Title:

Template: SATRW Printed: 04/12/2006 06:58

Sample: 400980 MW-7A	Collected: 03/28/06 Analyz	ed: 04/05/06 -					
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	<u> </u>	
1,2,3-Trichlorobenzene	ND	ug/L	50	19	69	· · · · · · · · · · · · · · · · · · ·	
1,2,4-Trichlorobenzene	ND	ug/L	50	19	66		
1,1,1-Trichloroethane	ND	ug/L	50	9.4	33		
1,1,2-Trichloroethane	ND	ug/L	50	11	37		
Trichloroethene	200	ug/L	50	9.3	33	*	
Trichlorofluoromethane	ND	ug/L	50	8.3	29		
1,2,3-Trichloropropane	ND	ug/L	50	12	42	1	
1,2,4-Trimethylbenzene	ND	ug/L	50	10	36		
1,3,5-Trimethylbenzene	ND	ug/L	50	9.9	35		
Vinyl chloride	ND	ug/L	50	8.3	29		
meta,para-Xylene	ND	ug/L	50	20	72		
MTBE	ND	ug/L	50	10	36		
Isopropyl Ether	ND ·	ug/L	50	10	35	:	
Dibromofluoromethane (SURR**)	111%						
Toluene-d8 (SURR**)	121%						
1-Bromo-4-Fluorobenzene (SURR**)	116%						

Check standard recovery was outside QC limits for Bromomethane at 31%.

Page 4 of 4

^{**} Surrogates are used to evaluate a method's Quality Control.

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000)
panies LLC NLS Project: 97066

Customer: NewFields Companies LLC
Project Description: 0451-002-800
Project Title: Tem

Template: SATW Printed: 04/12/2006 06:58

Sample: 400968 MW-1	Collected: 03/28/06 A	nalyzed: 04/05/06 -			
ANALYTE NAME	RESU	T UNITS	DIL LO	D LOQ	
Benzene	ND	ug/L,	1 0.2		
Bromobenzene	ND	ug/L	1 0.2		
Bromochloromethane	ND	ug/L	1 0.2		
Bromodichloromethane	ND	ug/L	1 0.1		
Bromoform	ND	ug/L	1 0.1	4 0.50	
Bromomethane	ND	ug/L	1 0.4		
n-Butylbenzene	ND	ug/L	1 0.2		
sec-Butylbenzene	ND	ug/L	1 0.3	30 1.0	
tert-Butylbenzene	ND	ug/L	1 0.1	9 0.68	
Carbon Tetrachloride	· ND	ug/L	1 0.2		:
Chlorobenzene	ND	ug/L	1 0.1	7 0.59	
Chloroethane	ND	ug/L	1 1.	7 5.9	
Chloroform	ND	ug/L	1 0.2	21 0.73	
Chloromethane	ND	ug/L	1 0.2		
2-Chlorotoluene	. ND	ug/L	1 0.1		
4-Chlorotoluene	ND	ug/L	1 0.1		
Dibromochloromethane	ND	ug/L	1 0.1		
1,2-Dibromo-3-Chloropropane	ND	ug/L	1 0.2	25 0.87	
1,2-Dibromoethane	ND	ug/L	1 0.1	0.57	
Dibromomethane	ND	ug/L	1 0.1	7 0.60	
1,2-Dichlorobenzene	ND	ug/L	1 0.3	34 1.2	
1,3-Dichlorobenzene	ND	ug/L	1 0.2	26 0.91	
1.4-Dichlorobenzene	ND	. ug/L	1 0.2	24 0.84	
Dichlorodifluoromethane	ND	ug/L	1 0.1	7 0.59	
1.1-Dichloroethane	ND	ug/L	1 0.1	9 0.68	
1.2-Dichloroethane	ND	ug/L	1 0.1	9 0.69	· · · · · · · · · · · · · · · · · · ·
1.1-Dichloroethene	ND	ug/L	1 0.1		-
cis-1.2-Dichloroethene	ND	ug/L	1 0.1	9 0.68	
trans-1,2-Dichloroethene	ND	ug/L	1 0.1	7 0.60	
1,2-Dichloropropane	ND	ug/L	1 0.1	0.64	· · ·
1,3-Dichloropropane	ND	ug/L	1 0.1	9 0.68	
2,2-Dichloropropane	ND	ug/L	1 0.1	8 0.65	
1,1-Dichloropropene	ND	ug/L	1 0.3	35 1.2	
cis-1,3-Dichloropropene	ND	ug/L	1 0.2	20 0.69	
trans-1,3-Dichloropropene	ND	ug/L	1 0.3	32 1,1	
Ethylbenzene	ND	ug/L	1 0.1	9 0.68	
Hexachlorobutadiene	ND	ug/L	1 0.2	26 0.91	
Isopropylbenzene	ND	ug/L	1 0.1	0.64	
p-Isopropyltoluene	ND	ug/L	1 0.2		:
Methylene chloride	ND	ug/L	1 0.3	36 1.3	
Naphthalene	ND	ug/L	1 0.3		
n-Propylbenzene	ND	ug/L	1 0.1		
ortho-Xylene	ND	ug/L	1 0.1		
Styrene	ND	ug/L	1 0.2		
1.1.1.2-Tetrachloroethane	ND	ug/L	1 0.1		
1.1,2,2-Tetrachloroethane	ND	ug/L	1 0.1		
Tetrachloroethene	ND	ug/L	1 0.1		
Toluene	ND	ug/L	1 0.1		

Page 1 of 26

Project Title: Template: SATW Printed: 04/12/2006 06:58

Sample: 400968 MW-1	Collected: 03/28/06 Analyze	ed: 04/05/06 -				· · · · · · · · · · · · · · · · · · ·
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	1	0.32	1.1	
1,2,4-Trichlorobenzene	ND	ug/L	1	0.26	0.91	
1,1,1-Trichloroethane	ND	ug/L	1	0.19	0.66	,
1,1,2-Trichloroethane	ND	ug/L	1	0.17	0.60	
Trichloroethene	[0.40]	ug/L	1	0.30	1.0	
Trichlorofluoromethane	ND	ug/L	1	0.17	0.59	
1,2,3-Trichloropropane	ND	ug/L	1	0.14	0.50	
1,2,4-Trimethylbenzene	ND	ug/L	1	0.31	1.1	:
1,3,5-Trimethylbenzene	ND	ug/L	1	0.16	0.58	
Vinyl chloride	ND	ug/L	1	0.20	0.69	
meta,para-Xylene	ND	ug/L	1	0.38	1.3	
MTBE	ND	ug/L	1	0.19	0.67	
Isopropyl Ether	ND	ug/L	1	0.18	0.63	
Dibromofluoromethane (SURR**)	112%					
Toluene-d8 (SURR**)	125%					
1-Bromo-4-Fluorobenzene (SURR**)	123%					······

Page 2 of 26

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000)

Customer: NewFields Companies LLC NLS Project: 97066

Project Description: 0451-002-800

Project Title:

iample: 400969 MW-2	Collected: 03/28/06	Analyze	1: 04/04/06 -				
ANALYTE NAME	F	RESULT	UNITS	DIL	LOD	LOQ	:
Benzene		ND	ug/L	500	98	350	*
Bromobenzene		ND	ug/L	500	100	360	
Bromochloromethane		ND	ug/L	500	100	370	
Bromodichloromethane		ND	ug/L	500	86	300	
Bromoform		ND	ug/L	500	71	250	
Bromomethane		ND	ug/L	500	230	800	
n-Butylbenzene		ND	ug/L	500	120	440	
sec-Butvlbenzene		ND	ug/L	500	150	520	
ert-Butylbenzene		ND	ug/L	500	96	340	
Carbon Tetrachloride		ND	ug/L	500	120	410	
Chlorobenzene		ND	ug/L	500	84	300	
Chloroethane		ND	ug/L	500	830	2900	
Chloroform		ND	ug/L	500	100	370	
Chloromethane		ND	ug/L	500	100	350	
2-Chlorotoluene		ND	ug/L	500	94	330	
-Chlorotoluene		ND	ug/L	500	92	320	
Dibromochloromethane		ND	ug/L	500	96	340	
,2-Dibromo-3-Chloropropane	· · · · · · · · · · · · · · · · · · ·	ND	ug/L	500	120	440	
.2-Dibromoethane		ND	ua/L	500	80	280	
Dibromomethane		ND	ug/L	500	85	300	
,2-Dichlorobenzene		ND	ug/L	500	170	600	
,3-Dichlorobenzene		ND	ug/L	500	130	450	
.4-Dichlorobenzene		ND	ug/L	500	120	420	
Dichlorodifluoromethane		ND	ug/L	500	84	300	
.1-Dichloroethane		ND	ug/L	500	97	340	
.2-Dichloroethane		ND	ug/L	500	97	340	
1,1-Dichloroethene		ND	ug/L	500	76	270	
cis-1.2-Dichloroethene		6400	ug/L	500	95	340	•
rans-1,2-Dichloroethene		ND	ug/L	500	85	300	
,2-Dichloropropane		ND	ug/L	500	90	320	······· <u>·</u> ·····
1,3-Dichloropropane		ND	ug/L	500	96	340	
2,2-Dichloropropane		ND	ug/L	500	91	320	
,1-Dichloropropene		ND	ug/L	500	170	610	
is-1.3-Dichloropropene		ND	ug/L	500	98	350	
rans-1,3-Dichloropropene		ND	ug/L	500	160	560	· · · · · · · · · · · · · · · · · · ·
thylbenzene		ND	ug/L	500	96	340	
lexachlorobutadiene		ND	ug/L	500	130	460	
sopropylbenzene		ND	ug/L	500	90	320	
o-Isopropyltoluene		ND	ug/L	500	140	490	
Methylene chloride		[200]	ug/L	500	180	640	······································
Naphthalene		ND	ug/L	500	190	680	• •
-Propylbenzene		ND	ug/L	500	94	330	-
rtho-Xylene		ND	ug/L	500	76	270	
Styrene		ND	ug/L	500	100	370	
.1.1.2-Tetrachloroethane		ND	ug/L	500	87	310	
1.1.2.2-Tetrachloroethane		ND	ug/L	500	80	280	· · · · · · · · · · · · · · · · · · ·
etrachloroethene		[190]	ug/L	500	81	290	<u> </u>
oluene		ND	ug/L	500	96	340	

Page 3 of 26

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000)
panies LLC NLS Project: 97066

Customer: NewFields Companies LLC
Project Description: 0451-002-800
Project Title: Ten

Template: SATW Printed: 04/12/2006 06:58

Sample: 400969 MW-2	Collected: 03/28/06 Analyze	d: 04/04/06 -				:
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	1
1,2,3-Trichlorobenzene	ND	ug/L	500	160	560	
1,2,4-Trichlorobenzene	ND	ug/L	500	130	460	
1,1,1-Trichloroethane	ND	ug/L	500	94	330	
1,1,2-Trichloroethane	ND	ug/L	500	85	300	
Trichloroethene	[450]	ug/L	500	150	520	
Trichlorofluoromethane	ND	ug/L	500	83	290	
1,2,3-Trichloropropane	ND	ug/L	500	70	250	
1,2,4-Trimethylbenzene	ND	ug/L	500	160	550	
1,3,5-Trimethylbenzene	ND	ug/L	500	82	290	1
Vinyl chloride	ND	ug/L	500	98	350	
meta,para-Xylene	ND	ug/L	500	190	670	
MTBE	ND	ug/L	500	95	340	
Isopropyl Ether	ND	ug/L	500	89	320	
Dibromofluoromethane (SURR**)	113%		-			
Toluene-d8 (SURR**)	110%					
1-Bromo-4-Fluorobenzene (SURR**)	105%					

Methylene Chloride result is presumed to be laboratory contamination.

Page 4 of 26

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000)
panies LLC NLS Project: 97066

Customer: NewFields Companies LLC
Project Description: 0451-002-800
Project Title: Ten Template: SATW Printed: 04/12/2006 06:58

Sample: 400970 MW-2A	Collected: 03/28/06	Analyze	ed: 04/04/06 -				
ANALYTE NAME	R	ESULT	UNITS	DIL	LOD	LOQ	
Benzene		ND	ug/L	50	9.8	35	
Bromobenzene		ND	ug/L	50	10	36	
Bromochloromethane		ND	ug/L	50	10	37	
Bromodichloromethane		ND	ug/L	50	8.6	30	
Bromoform		ND	ug/L	50	7.1	25	
Bromomethane		ND	ug/L	50	23	80	
n-Butylbenzene		ND	ug/L	50	12	44	
sec-Butylbenzene		ND	ug/L	50	15	52	
tert-Butylbenzene		ND	ug/L	50	9.6	34	
Carbon Tetrachloride		ND	ug/L	50	12	41	
Chlorobenzene		ND	ug/L	50	8.4	30	
Chloroethane		ND	ug/L	50	83	290	
Chloroform		ND	ug/L	50	10	37	
Chloromethane		ND	ug/L	50	10	35	
2-Chlorotoluene		ND	ug/L	50	9.4	33	
4-Chlorotoluene		ND	ug/L	50	9.2	32	
Dibromochloromethane		ND	ug/L	50	9.6	34	
1.2-Dibromo-3-Chloropropane		ND	ug/L	50	12	44	
1,2-Dibromoethane		ND	ug/L	50	8.0	28	
Dibromomethane		ND	ug/L	50	8.5	30	
1.2-Dichlorobenzene		ND	ug/L	50	17	60	
1.3-Dichlorobenzene		ND	ug/L	50	13	45	
1.4-Dichlorobenzene		ND	ug/L	50	12	42	······································
Dichlorodifluoromethane		ND	ug/L	50	8.4	30	
1.1-Dichloroethane		ND	ug/L	50	9.7	34	
1.2-Dichloroethane		ND	ug/L	50	9.7	34	
1.1-Dichloroethene		[16]	ug/L	50	7.6	27	
cis-1.2-Dichloroethene		3800	ug/L	400	7.0	270	····
trans-1,2-Dichloroethene		1201	ug/L	50	8.5	30	
1,2-Dichloropropane		ND	ug/L	50	9.0	32	
1,3-Dichloropropane	•	ND	ug/L	50	9.6	34	
2,2-Dichloropropane		ND	ug/L	50	9.1	32	
1,1-Dichloropropene		ND	ug/L	50	17	61	
cis-1,3-Dichloropropene		ND	ug/L	50	9.8	35	
trans-1,3-Dichloropropene		ND	ug/L	50	16	56	
Ethylbenzene		ND	ug/L	50	9.6	34	
Hexachlorobutadiene		ND	ug/E	50	13	46	
Isopropylbenzene	· · · · · · · · · · · · · · · · · · ·	ND	ug/L	50	9.0	32	<u> </u>
p-Isopropyltoluene		ND	ug/L	50	14	49	<u> </u>
Methylene chloride		[20]	ug/L	50	18	64	
Naphthalene		ND		50	19	68	····
n-Propylbenzene		ND ON	ug/L	50	9.4	33	
		ND UND	ug/L				
ortho-Xylene		ND ND	ug/L	50	7.6	27	
Styrene		ND UN	ug/L	50	10	37	<u> </u>
1,1,1,2-Tetrachloroethane			ug/L	50	8.7	31	· · · · · · · · · · · · · · · · · · ·
1,1,2,2-Tetrachloroethane		ND	ug/L	50	8.0	28	
Tetrachloroethene	·	320	ug/L	50	8.1	29	
Toluene		ND	ug/L	50	9.6	34	

Page 5 of 26

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000)

Customer: NewFields Companies LLC NLS Project: 97066

Project Description: 0451-002-800

Project Title:

Template: SATW Printed: 04/12/2006 06:58

Sample: 400970 MW-2A	Collected: 03/28/06 Analy	zed: 04/04/06 -				
ANALYTE NAME	RESULT	UNITS	DIL.	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	50	16	56	
1,2,4-Trichlorobenzene	ND	ug/L	50	13	46	 •
1,1,1-Trichloroethane	ND	ug/L	50	9.4	33	
1,1,2-Trichloroethane	ND	ug/L	- 50	8.5	30	
Trichloroethene	700	ug/L	50	15	52	•
Trichlorofluoromethane	ND	ug/L	50	8.3	29	
1,2,3-Trichloropropane	ND	ug/L	50	7.0	25	 •
1,2,4-Trimethylbenzene	ND	ug/L	50	16	55	
1,3,5-Trimethylbenzene	ND	ug/L	50	8.2	29	
Vinyl chloride	91	ug/L	50	9.8	35	
meta,para-Xylene	ND	ug/L	50	19	67	 •
MTBE	ND	ug/L	50	9.5	34	
Isopropyl Ether	ND	ug/L	50	8.9	32	
Dibromofluoromethane (SURR**)	104%					
Toluene-d8 (SURR**)	108%					
1-Bromo-4-Fluorobenzene (SURR**)	107%	·			· · · · · · · · · · · · · · · · · · ·	

Methylene Chloride result is presumed to be laboratory contamination.

Page 6 of 26

Customer: NewFields Companies LLC NLS Project: 97066

Project Description: 0451-002-800

Project Title: Template: SATW Printed: 04/12/2006 06:58

Collected: 03/28/06 Sample: 400971 MW-3 Analyzed: 04/05/06 -RESULT UNITS ANALYTE NAME DIL LOD LOQ ND 2500 490 1700 ug/L Benzene Bromobenzene ND ug/L 2500 510 1800 2500 520 1800 ND Bromochloromethane ug/L 1500 2500 430 Bromodichloromethane ND ug/L ND 2500 360 1300 Bromoform ug/L ND 2500 1100 4000 Bromomethane ug/L ND 2500 620 2200 n-Butylbenzene ug/L 2600 ND 2500 740 sec-Butylbenzene ug/L 480 tert-Butylbenzene ND ug/L 2500 1700 ND Carbon Tetrachloride ug/L 2500 580 2000 Chlorobenzene ИD ug/L 2500 420 1500 ND 2500 4200 15000 Chloroethane ug/L ND 2500 520 1800 Chloroform ug/L ND 2500 1800 Chloromethane 500 ug/L ND 2500 470 1700 2-Chlorotoluene ug/L 4-Chlorotoluene ND ug/L 2500 460 1600 ND 2500 480 1700 Dibromochloromethane ug/L 2200 1,2-Dibromo-3-Chloropropane ND 2500 610 ug/L ND 2500 400 1400 1,2-Dibromoethane ug/L ND 2500 420 1500 Dibromomethane ug/L 1,2-Dichlorobenzene ND 2500 840 3000 ug/L 1.3-Dichlorobenzene ND ug/L 2500 640 2300 ND 2500 600 2100 1,4-Dichlorobenzene ug/L Dichlorodifluoromethane ND ug/L 2500 420 1500 ND 2500 480 1700 1.1-Dichloroethane ug/L 480 1,2-Dichloroethane ND 2500 1700 ug/L ND 2500 380 1300 1.1-Dichloroethene ug/L 3500 2500 480 1700 cis-1.2-Dichloroethene ug/L trans-1.2-Dichloroethene ND ug/L 2500 420 1500 1,2-Dichloropropane ND 2500 450 1600 ug/L 1,3-Dichloropropane ND 2500 480 1700 ug/L 2,2-Dichloropropane ND 2500 460 1600 ug/L 1,1-Dichloropropene ND 2500 870 3100 ug/L cis-1,3-Dichloropropene ND 2500 490 1700 ug/L trans-1,3-Dichloropropene ND ug/L 2500 790 2800 ND Ethylbenzene ug/L 2500 480 1700 Hexachlorobutadiene ND ug/L 2500 650 2300 ND 2500 450 Isopropylbenzene 1600 ug/L p-Isopropyltoluene ND ug/L 2500 700 2500 Methylene chloride 2500 3200 ND 900 ug/L Naphthalene ND 950 ug/L 2500 3400 n-Propylbenzene ND ug/L 2500 470 1700 ortho-Xylene ND 2500 380 1300 ug/L Styrene ND 2500 520 1800 ug/L 1,1,1,2-Tetrachloroethane ND 2500 1500 440 ug/L ND 1.1.2.2-Tetrachloroethane ug/L 2500 400 1400 Tetrachloroethene 28000 2500 410 1400 ug/L Toluene ND 2500 480 1700 ug/L

Page 7 of 26

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000)

Customer: NewFields Companies LLC NLS Project: 97066

Project Description: 0451-002-800

Project Title:

Sample: 400971 MW-3	Collected: 03/28/06 Analyze	d: 04/05/06 -				
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	2500	790	2800	:
1,2,4-Trichlorobenzene	ND	ug/L	2500	640	2300	
1,1,1-Trichloroethane	ND	ug/L	2500	470	1700	
1,1,2-Trichloroethane	ND	ug/L	2500	430	1500	
Trichloroethene	7200	ug/L	2500	740	2600	
Trichlorofluoromethane	ND	ug/L	2500	420	1500	
1,2,3-Trichloropropane	ND	ug/L	2500	350	1200	
1,2,4-Trimethylbenzene	ND	ug/L	2500	780	2800	
1,3,5-Trimethylbenzene	ND	ug/L	2500	410	1500	i
Vinyl chloride	ND	ug/L	2500	490	1700	1
meta,para-Xylene	ND	ug/L	2500	940	3300	
MTBE	ND	ug/L	2500	470	1700	
Isopropyl Ether	ND	ug/L	2500	450	1600	
Dibromofluoromethane (SURR**)	115%					
Toluene-d8 (SURR**)	125%					
1-Bromo-4-Fluorobenzene (SURR**)	114%					

Matrix spike percent recovery exceeded control limits for Tetrachloroethene.

Page 8 of 26

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000)

Customer: NewFields Companies LLC NLS Project: 97066

Project Description: 0451-002-800

Project Title:

Sample: 400972 MW-3A	Collected: 03/28/06	Analyzed: 04/04/	06 -			
ANALYTE NAME	RE	SULT UNITS	DIL	LOD	LOQ	
Benzene	· · · · · · · · · · · · · · · · · · ·	ND ug/L	500	98	350	
Bromobenzene		ND ug/L	500	100	360	
Bromochloromethane		ND ug/L	500	100	370	
Bromodichloromethane		ND ug/L	500	86	300	·
Bromoform		ND ug/L	500	71	250	
Bromomethane		ND ug/E	500	230	800	
n-Butylbenzene		ND ug/L	500	120	440	
sec-Butylbenzene		ND ug/L	500	150	520	
tert-Butylbenzene		VD ug/L	500	96	340	
Carbon Tetrachloride		ND ug/L	500		410	
Chlorobenzene		ND ug/L	500	84	300	
Chloroethane		ND ug/L	500	830	2900	
Chloroform		ND ug/L	500	100	370	
Chloromethane		ND ug/L	500	100	350	
2-Chlorotoluene		ND ug/L	500	94	330	
4-Chlorotoluene		VD ug/L	500	92	320	· · · · · · · · · · · · · · · · · · ·
Dibromochloromethane		ND ug/L	500	96	340	·····
1.2-Dibromo-3-Chloropropane		ND ug/L	500	120	440	
1,2-Dibromoethane		ND ug/L	500		280	
Dibromomethane		ND ug/L	500		300	
1,2-Dichlorobenzene		ND ug/L	500	170	600	
1,3-Dichlorobenzene		ND ug/L	500	130	450	
1.4-Dichlorobenzene		ND ug/L	500	120	420	
Dichlorodifluoromethane		ND ug/L	500	84	300	· · · · · · · · · · · · · · · · · · ·
1.1-Dichloroethane		ND ug/L	500	97	340	
1,2-Dichloroethane		ND ug/L	500		340	· · · · · · · · · · · · · · · · · · ·
1.1-Dichloroethene		ND ug/L	500		270	
cis-1,2-Dichloroethene		000 ug/L	1250		840	
trans-1,2-Dichloroethene		90] ug/L	500	85	300	
1,2-Dichloropropane		ND ug/L	500	90	320	
1,3-Dichloropropane		ND ug/L	500	96	340	· · · · · · · · · · · · · · · · · · ·
2,2-Dichloropropane		ND ug/L	500	91	320	
1,1-Dichloropropene		ND ug/L	500	170	610	· · · · · · · · · · · · · · · · · · ·
cis-1,3-Dichloropropene		ND ug/L	500	98	350	
trans-1,3-Dichloropropene		ND ug/L	500	160	560	· · · · · · · · · · · · · · · · · · ·
Ethylbenzene		ND ug/L	500	96	340	
Hexachlorobutadiene		ND ug/L	500	130	460	
Isopropylbenzene		ND ug/L	500	90	320	
p-Isopropyltoluene		ND ug/L	500	140	490	· · · · · · · · · · · · · · · · · · ·
Methylene chloride		40] ug/L	500	180	640	
Naphthalene		ND ug/L	500	190	680	
n-Propylbenzene		ND ug/L	500	94	330	
ortho-Xvlene		ND ug/L	500	76	270	· · · · · · · · · · · · · · · · · · ·
Styrene		ND ug/L	500	100	370	
1,1,1,2-Tetrachloroethane		ND ug/L	500	87	370	
1.1.2.2-Tetrachloroethane			500	80	280	
Tetrachloroethene						· · · · · · · · · · · · · · · · · · ·
			500	81	290	:
Toluene		ID ug/L	500	96	340	r

Page 9 of 26

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000) panies LLC NLS Project: 97066

Customer: NewFields Companies LLC

Project Description: 0451-002-800

Project Title:

Template: SATW Printed: 04/12/2006 06:58

Sample: 400972 MW-3A	Collected: 03/28/06 Analyz	ed: 04/04/06 -					
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ		
1,2,3-Trichlorobenzene	ND	ug/L	500	160	560		
1,2,4-Trichlorobenzene	ND	ug/L	500	130	460		
1,1,1-Trichloroethane	ND	ug/L	500	94	330		
1,1,2-Trichloroethane	ND	ug/L	500	85	300		
Trichloroethene	2900	ug/L	500	150	520		
Trichlorofluoromethane	ND	ug/L	500	83	290		
1,2,3-Trichloropropane	ND	ug/L	500	70	250		
1,2,4-Trimethylbenzene	ND	ug/L	500	160	550		
1,3,5-Trimethylbenzene	ND	ug/L	500	82	290		
Vinyl chloride	740	ug/L	500	98	350		
meta,para-Xylene	ND	ug/L	500	190	670		
MTBE	ND	ug/L	500	95	340		
Isopropyl Ether	ND	ug/L	500	89	320		
Dibromofluoromethane (SURR**)	104%						
Toluene-d8 (SURR**)	108%						
1-Bromo-4-Fluorobenzene (SURR**)	107%				·····		

Methylene Chloride result is presumed to be laboratory contamination.

Page 10 of 26

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000)

Customer: NewFields Companies LLC NLS Project: 97066

Project Description: 0451-002-800

Project Title:

Sample: 400973 MW-3B	Collected: 03/28/06 A	nalyzed: 04/04/06	•			
ANALYTE NAME	RESUL	T UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	500	98	350	
Bromobenzene	ND	ug/L	500	100	360	
Bromochloromethane	ND	ug/L	500	100	370	
Bromodichloromethane	ND	ug/L	500	86	300	
Bromoform	ND	ug/L	500	71	250	
Bromomethane	ND	ug/L	500	230	800	
n-Butylbenzene	ND	ug/L	500	120	440	
sec-Butylbenzene	ND	ug/L	500	150	520	
tert-Butylbenzene	ND	ug/L	500	96	340	
Carbon Tetrachloride	ND	ug/L	500	120	410	
Chlorobenzene	ND	ug/L	500	84	300	
Chloroethane	ND	ug/L	500	830	2900	
Chloroform	ND	ug/L	500	100	370	
Chloromethane	ND	ug/L	500	100	350	
2-Chlorotoluene	ND	ug/L	500	94	330	
f-Chlorotoluene	ND	ug/L	500	92	320	
Dibromochloromethane	ND	ug/L	500	96	340	
1.2-Dibromo-3-Chloropropane	ND -	ug/L	500	120	440	
1.2-Dibromoethane	ND	ug/L	500	80	280	
Dibromomethane	ND	ug/L	500	85	300	
.2-Dichlorobenzene	ND	ug/L	500	170	600	
1.3-Dichlorobenzene	ND	ug/L	500	130	450	
.4-Dichlorobenzene	ND	ug/L	500	120	420	
Dichlorodifluoromethane	ND	ug/L	500	84	300	
1.1-Dichloroethane	ND	ug/L	500	97	340	· · · · · · · · · · · · · · · · · · ·
1.2-Dichloroethane	ND	ug/L	500	97	340	
1.1-Dichloroethene	ND	ug/L	500	76	270	· · · · · · · · · · · · · · · · · · ·
cis-1.2-Dichloroethene	600	ua/L	500	95	340	
rans-1.2-Dichloroethene	ND	ug/L	500	85	300	
1,2-Dichloropropane	ND	ug/L	500	90	320	
1,3-Dichloropropane	ND	ug/L	500	96	340	· · · · · · · · · · · · · · · · · · ·
2,2-Dichloropropane	ND	ug/L	500	91	320	
1,1-Dichloropropene	ND	ug/L	500	170	610	
cis-1,3-Dichloropropene	ND ND	ug/L	500	98	350	· · · · · · · · · · · · · · · · · · ·
rans-1,3-Dichloropropene	ND	ug/L	500	160	560	
Ethylbenzene	ND ND	ug/L	500	96	340	
Hexachlorobutadiene	ND	ug/L	500	130	460	
sopropylbenzene	ND ND	ug/L	500	90	320	
o-Isopropyltoluene	ND	ug/L	500	140	490	
Methylene chloride	[260]	ug/L	500	180	640	
Naphthalene	ND ND	ug/L	500	190	680	:
n-Propylbenzene	ND	ug/L	500	94	330	
ortho-Xylene	ND ND	ug/L	500	76	270	
Styrene	ND ND	ug/L	500	100	370	· · · · · · · · · · · · · · · · · · ·
1.1.1.2-Tetrachloroethane	ND ND	ug/L	500	87	310	
1.1.2.2-Tetrachloroethane	ND ND	ug/L	500	80	280	
Tetrachloroethene	17000	ug/L	1250	200	720	
Toluene	ND ND	ug/L	500	96	340	

Page 11 of 26

Page 12 of 26

NLS Project: 97066

Customer: NewFields Companies LLC
Project Description: 0451-002-800
Project Title: Ten Template: SATW Printed: 04/12/2006 06:58

Sample: 400973 MW-3B	Collected: 03/28/06 Analyz	zed: 04/04/06 -				
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	i
1,2,3-Trichlorobenzene	ND	ug/L	500	160	560	
1,2,4-Trichlorobenzene	ND	ug/L	500	130	460	
1,1,1-Trichloroethane	ND	ug/L	500	94	330	
1,1,2-Trichloroethane	ND	ug/L	500	85	300	
Trichloroethene	2800	ug/L	500	150	520	
Trichlorofluoromethane	ND	ug/L	500	83	290	
1,2,3-Trichloropropane	ND	ug/L	500	70	250	
1,2,4-Trimethylbenzene	ND	ug/L	500	160	550	
1,3,5-Trimethylbenzene	ND	ug/L	500	82	290	
Vinyl chloride	ND	ug/L	500	98	350	
meta,para-Xylene	ND	ug/L	500	190	670	· · · · · · · · · · · · · · · · · · ·
MTBE	ND	ug/L	500	95	340	
Isopropyl Ether	ND	ug/L	500	89	320	
Dibromofluoromethane (SURR**)	107%					
Toluene-d8 (SURR**)	115%					
1-Bromo-4-Fluorobenzene (SURR**)	106%				· · · · · · · · · · · · · · · · · · ·	

Methylene Chloride result is presumed to be laboratory contamination.

Matrix spike percent recovery exceeded control limits for Tetrachloroethene.

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000)

Customer: NewFields Companies LLC NLS Project: 97066

Project Description: 0451-002-800

Project Title:

Sample: 400974 MW-4	Collected: 03/28/06	Analyzed	: 04/04/06 -				
ANALYTE NAME	R	ESULT	UNITS	DIL	LOD	LOQ	
Benzene		ND	ug/L	1000	200	700	
Bromobenzene		ND	ug/L	1000	200	720	
Bromochloromethane		ND	ug/L	1000	210	740	
Bromodichloromethane		ND	ug/L	1000	170	610	
Bromoform		ND	ug/L	1000	140	500	
Bromomethane		ND	ug/L	1000	450	1600	
n-Butylbenzene		ND	ug/L	1000	250	870	
sec-Butylbenzene		ND	ug/L	1000	300	1000	
tert-Butylbenzene		ND	ug/L	1000	190	680	
Carbon Tetrachloride		ND	ug/L	1000	230	820	
Chlorobenzene		ND	ug/L	1000	170	590	
Chloroethane		ND	ug/L	1000	1700	5900	
Chloroform		ND	ug/L	1000	210	730	
Chloromethane		ND	ug/L	1000	200	700	
2-Chlorotoluene		ND	ug/L	1000	190	670	
4-Chlorotoluene		ND	ug/L	1000	180	650	
Dibromochloromethane		ND	ug/L	1000	190	680	
1,2-Dibromo-3-Chloropropane		ND	ug/L	1000	250	870	
1.2-Dibromoethane	<u></u>	ND	ug/L	1000	160	570	
Dibromomethane	····	ND	ug/L	1000	170	600	
1.2-Dichlorobenzene		ND	ug/L	1000	340	1200	
1,3-Dichlorobenzene		ND	ug/L	1000	260	910	
1.4-Dichlorobenzene		ND	ug/L	1000	240	840	
Dichlorodifluoromethane		ND	ug/L	1000	170	590	
1.1-Dichloroethane		ND	ug/L	1000	190	680	
1.2-Dichloroethane		ND	ug/L	1000	190	690	
1,1-Dichloroethene		ND	ug/L	1000	150	540	
cis-1.2-Dichloroethene		ND :	ug/L	1000	190	680	
trans-1,2-Dichloroethene		ND	ug/L	1000	170	600	
1,2-Dichloropropane		ND	ug/L	1000	180	640	
1,3-Dichloropropane		ND	ug/L	1000	190	680	
2,2-Dichloropropane		ND	ug/L	1000	180	650	
1,1-Dichloropropene		ND	ug/L	1000	350	1200	
cis-1,3-Dichloropropene		ND	ug/L	1000	200	690	
trans-1,3-Dichloropropene		ND	ug/L	1000	320	1100	
Ethylbenzene		ND	ug/L	1000	190	680	
Hexachlorobutadiene		ND	ug/L	1000	260	910	
Isopropylbenzene		ND	ug/L	1000	180	640	
p-Isopropyltoluene		ND	ug/L	1000	280	990	
Methylene chloride		[530]	ug/L	1000	360	1300	
Naphthalene		ND	ug/L	1000	380	1400	
n-Propylbenzene		ND	ug/L	1000	190	660	<u> </u>
ortho-Xylene		ND	ug/L	1000	150	540	<u> </u>
Styrene		ND	ug/L	1000	210	730	
1.1.1.2-Tetrachloroethane		ND	ug/L	1000	170	620	
1.1.2.2-Tetrachloroethane		ND	ug/L	1000	160	570	
Tetrachloroethene		5400	ug/L	1000	160	570	
Toluene		ND -	ug/L ug/L	1000	190	680	· · · · · · · · · · · · · · · · · · ·
Totale		IAD	uy/L	1000	190	000	

Page 13 of 26

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000) panies LLC NLS Project: 97066

Customer: NewFields Companies LLC Project Description: 0451-002-800

Project Title: Template: SATW Printed: 04/12/2006 06:58

Sample: 400974 MW-4	Collected: 03/28/06 Analyze	d: 04/04/06 -		-			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ		-
1,2,3-Trichlorobenzene	ND	ug/L	1000	320	1100		
1,2,4-Trichlorobenzene	ND	ug/L	1000	260	910		
1,1,1-Trichloroethane	ND	ug/L	1000	190	660		
1,1,2-Trichloroethane	ND	ug/L	1000	170	600		
Trichloroethene	38000	ug/L	4000	1200	4200		
Trichlorofluoromethane	ND	ug/L	1000	170	590		
1,2,3-Trichloropropane	ND	ug/L	1000	140	500		
1,2,4-Trimethylbenzene	ND	ug/L	1000	310	1100		
1,3,5-Trimethylbenzene	ND	ug/L	1000	160	580	:	
Vinyl chloride	ND	ug/L	1000	200	690		
meta,para-Xylene	ND	ug/L	1000	380	1300		
MTBE	ND	ug/L	1000	190	670	-	
Isopropyl Ether	ND	ug/L	1000	180	630		-
Dibromofluoromethane (SURR**)	103%						
Toluene-d8 (SURR**)	104%						
1-Bromo-4-Fluorobenzene (SURR**)	111%						

Methylene Chloride result is presumed to be laboratory contamination.

Page 14 of 26

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000) panies LLC NLS Project: 97066

Customer: NewFields Companies LLC
Project Description: 0451-002-800
Project Title: Ten Template: SATW Printed: 04/12/2006 06:58

Sample: 400975 MW-4A	Collected: 03/28/06 Analyz	zed: 04/05/06 -				:
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	:
Benzene	ND	ug/L	1	0.20	0.70	:
Bromobenzene	ND	ug/L	1	0.20	0.72	
Bromochloromethane	ND	ug/L	1	0.21	0.74	1
Bromodichloromethane	ND	ug/L	1	0.17	0.61	
Bromoform	ND	ug/L	1	0.14	0.50	
Bromomethane	ND	ug/L	1	0.45	1.6	
n-Butylbenzene	ND	ug/L	1	0.25	0.87	
sec-Butylbenzene	ND	ug/L	1	0.30	1.0	
tert-Butylbenzene	ND	ug/L	1	0.19	0.68	
Carbon Tetrachloride	ND	ug/L	1	0.23	0.82	
Chlorobenzene	ND	ug/L	1	0.17	0.59	
Chloroethane	ND	ug/L	1	1.7	5.9	
Chloroform	ND	ug/L	1	0.21	0.73	
Chloromethane	ND	ug/L	1	0.20	0.70	
2-Chlorotoluene	ND	ug/L	1	0.19	0.67	
4-Chlorotoluene	ND	ug/L	1	0.18	0.65	
Dibromochloromethane	ND	ug/L	1	0.19	0.68	
1,2-Dibromo-3-Chloropropane	ND	ug/L	1	0.25	0.87	
1.2-Dibromoethane	ND	ug/L	i	0.16	0.57	
Dibromomethane	ND	ug/L	i	0.17	0.60	
1,2-Dichlorobenzene	ND	ug/L	—— <u>i</u>	0.34	1.2	
1,3-Dichlorobenzene	ND	ug/L	i	0.26	0.91	
1.4-Dichlorobenzene	ND	ug/L	i	0.24	0.84	
Dichlorodifluoromethane	[0.43]	ug/L	- i	0.17	0.59	
1.1-Dichloroethane	ND ND	ug/L	i	0.19	0.68	
1,2-Dichloroethane	ND	ug/L	- i -	0.19	0.69	
1.1-Dichloroethene	ND	ug/L	i -	0.15	0.54	
cis-1.2-Dichloroethene	[0.29]	ug/L	i -	0.19	0.68	
trans-1,2-Dichloroethene	ND ND	ug/L	- i -	0.17	0.60	
1,2-Dichloropropane	ND .	ug/L	- i -	0.18	0.64	
1,3-Dichloropropane	ND ND	ug/L		0.19	0.68	
2,2-Dichloropropane	ND ND	ug/L	i	0.18	0.65	
1,1-Dichloropropene	ND	ug/L	i	0.35	1.2	
cis-1,3-Dichloropropene	ND ND	ug/L	i	0.20	0.69	
trans-1,3-Dichloropropene	ND	ug/L	- i -	0.32	1.1	
Ethylbenzene	ND ND	ug/L	i -	0.19	0.68	
Hexachlorobutadiene	ND ND	ug/L	i	0.26	0.91	
Isopropylbenzene	ND ND	ug/L ug/L		0.18	0.64	
p-Isopropyltoluene	ND ND	ug/L		0.18	0.99	110,
Methylene chloride	ND ND	ug/L	;	0.36	1.3	
Naphthalene	ND ND	ug/L		0.38	1.4	
n-Propylbenzene	ND ND	ug/L ug/L	··	0.38	0.66	
ortho-Xylene	ND ND			0.19	0.54	
Styrene	ND ND	ug/L	- 1 -	0.15	0.54	
1,1,1,2-Tetrachloroethane	ND ND	ug/L				!
1,1,2,2-Tetrachloroethane	ND ND	ug/L	<u>I</u>	0.17	0.62	
		ug/L	11	0.16	0.57	
Tetrachloroethene	6.9	ug/L	1	0.16	0.57	
Toluene	ND	ug/L	1	0.19	0.68	

Page 15 of 26

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000)
Customer: NewFields Companies LLC NLS Project: 97066

Project Description: 0451-002-800
Project Title:

Template: SATW Printed: 04/12/2006 06:58

Sample: 400975 MW-4A	Collected: 03/28/06 Analyz	zed: 04/05/06 -				1
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	1	0.32	1.1	· · · · · · · · · · · · · · · · · · ·
1,2,4-Trichlorobenzene	ND	ug/L	1	0.26	0.91	
1,1,1-Trichloroethane	ND	ug/L	1	0.19	0.66	
1,1,2-Trichloroethane	ND	ug/L	1	0.17	0.60	
Trichloroethene	[0.97]	ug/L	1	0.30	1.0	
Trichlorofluoromethane	ND	ug/L	1	0.17	0.59	
1,2,3-Trichloropropane	ND	ug/L	1	0.14	0.50	******
1,2,4-Trimethylbenzene	ND	ug/L	1	0.31	1.1	
1,3,5-Trimethylbenzene	ND	ug/L	1	0.16	0.58	
Vinyl chloride	ND	ug/L	1	0.20	0.69	
meta,para-Xylene	ND	ug/L	1	0.38	1.3	·· · ····
MTBE	ND	ug/L	1	0.19	0.67	
Isopropyl Ether	ND	ug/L	- 1	0.18	0.63	
Dibromofluoromethane (SURR**)	110%					
Toluene-d8 (SURR**)	119%					
1-Bromo-4-Fluorobenzene (SURR**)	117%				······································	•

Matrix spike percent recovery exceeded control limits for Tetrachloroethene.

Page 16 of 26

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000)
panies LLC NLS Project: 97066

Customer: NewFields Companies LLC
Project Description: 0451-002-800
Project Title: Ten Template: SATW Printed: 04/12/2006 06:58

Sample: 400976 MW-5	Collected: 03/28/06	Analyze	d: 04/05/06 -	_			
ANALYTE NAME		RESULT	UNITS	DIL	LOD	LOQ	
Benzene		ND	ug/L	1	0.20	0.70	
Bromobenzene		ND	ug/L	1	0.20	0.72	
Bromochloromethane		ND	ug/L	1	0.21	0.74	
Bromodichloromethane		ND	ug/L	1	0.17	0.61	
Bromoform		ND	ug/L	1	0.14	0.50	
Bromomethane		ND	ug/L	1 -	0.45	1.6	
n-Butylbenzene		ND	ug/L	1	0.25	0.87	
sec-Butylbenzene		ND	ug/L	1	0.30	1.0	
tert-Butylbenzene		ND	ug/L	1	0.19	0.68	
Carbon Tetrachloride		ND	ug/L	1	0.23	0.82	
Chlorobenzene		ND	ug/L	i	0.17	0.59	
Chloroethane		ND	ug/L	i	1.7	5.9	
Chloroform		ND	ug/L	1	0.21	0.73	:
Chloromethane		ND	ug/L	i	0.20	0.70	
2-Chlorotoluene		ND	ug/L	 i	0.19	0.67	
4-Chlorotoluene		ND	ug/L	- i	0.18	0.65	
Dibromochloromethane		ND	ug/L	- i	0.19	0.68	
1,2-Dibromo-3-Chloropropane		ND-	ug/L	- i	0.25	0.87	
1,2-Dibromoethane		ND	ug/L	<u> </u>	0.16	0.57	
Dibromomethane		ND	ug/L	i	0.17	0.60	
1.2-Dichlorobenzene		ND	ug/L	_ i	0.34	1.2	
1,3-Dichlorobenzene		ND	ug/L	i	0.26	0.91	
1.4-Dichlorobenzene		ND	ug/L	- i	0.24	0.84	
Dichlorodifluoromethane		ND	ug/L	i	0.17	0.59	
1.1-Dichloroethane		ND	ug/L		0.17	0.68	
1,2-Dichloroethane		ND	ug/L		0.19	0.69	
1.1-Dichloroethene	<u></u>	ND	ug/L		0.15	0.54	
cis-1.2-Dichloroethene		ND	ug/L	- ¦	0.19	0.68	
trans-1.2-Dichloroethene		ND	ug/L ug/L	- i -	0.13	0.60	
1,2-Dichloropropane		ND	ug/L		0.17	0.64	
1,3-Dichloropropane		ND	ug/L		0.19	0.68	
2,2-Dichloropropane		ND	ug/L	;	0.19	0.65	
1,1-Dichloropropene		ND .	ug/L ug/L		0.18	1.2	
cis-1,3-Dichloropropene		ND	ug/L		0.33	0.69	
trans-1,3-Dichloropropene		ND	ug/L ug/L		0.32	1.1	· · · · · · · · · · · · · · · · · · ·
Ethylbenzene		ND	ug/L ug/L		0.32	0.68	
Hexachlorobutadiene		ND ND	ug/L ug/L	- 1	0.19	0.86	
Isopropylbenzene		ND			0.26	0.64	
p-Isopropyltoluene		ND	ug/L ug/L	1	0.18	0.64	
Methylene chloride		ND ND			0.28		
Naphthalene		ND ND	ug/L	1	0.36	1.3	
		ND ND	ug/L			1.4	
n-Propylbenzene		ND .	ug/L	1	0.19	0.66	
ortho-Xylene	·	ND .	ug/L		0.15	0.54	
Styrene			ug/L		0.21	0.73	
1,1,1,2-Tetrachloroethane		ND	ug/L		0.17	0.62	
1,1,2,2-Tetrachloroethane		ND	ug/L	1	0.16	0.57	!
Tetrachloroethene		[0.17]	ug/L	1	0.16	0.57	
Toluene		ND	ug/L	1	0.19	0.68	

Page 17 of 26

Customer: NewFields Companies LLC NLS Project: 97066

Project Description: 0451-002-800

Project Title: Template: SATW Printed: 04/12/2006 06:58

Sample: 400976 MW-5 Collected: 03/28/06 Analyzed: 04/05/06 -RESULT UNITS DIL LOD LOQ ANALYTE NAME ND ug/L 1.2.3-Trichlorobenzene 0.32 1.1 1.2.4-Trichlorobenzene ND ug/L 0.26 0.91 1.1.1-Trichloroethane ND ua/L 0.19 0.66 1.1.2-Trichloroethane ND 0.17 0.60 ug/L Trichloroethene 10.771 ua/L 0.30 1.0 Trichlorofluoromethane ND ug/L 0.17 0.59 0.50 1,2,3-Trichloropropane ND ug/L 0.14 1.2.4-Trimethylbenzene ND 0.31 1.1 ug/L 1.3.5-Trimethylbenzene ND 0.16 0.58 ug/L Vinyl chloride ND 0.69 ug/L 0.20 meta,para-Xylene ND ug/L 0.38 1.3 MTBE ND ug/L 0.19 0.67 Isopropyl Ether ND ug/L 0.18 0.63 Dibromofluoromethane (SURR**) 105% Toluene-d8 (SURR**)
1-Bromo-4-Fluorobenzene (SURR**) 122% 118%

Matrix spike percent recovery exceeded control limits for Tetrachloroethene.

Page 18 of 26

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000)

Customer: NewFields Companies LLC NLS Project: 97066

Project Description: 0451-002-800

Project Title:

Sample: 400977 MW-6	Collected: 03/28/06	nalyzed: 04/06/06 -			i i
ANALYTE NAME	RESU	JLT UNITS	DIL LOD	LOQ	
Benzene	ND	ug/L	1 0.20	0.70	
Bromobenzene	ND	ug/L	1 0.20	0.72	
Bromochloromethane	ND	ug/L	1 0.21	0.74	
Bromodichloromethane	ND		1 0.17	0.61	
Bromoform	ND		1 0.14	0.50	· · · · · · · · · · · · · · · · · · ·
Bromomethane	ND	ug/L	1 0.45	1.6	
n-Butylbenzene	ND	ug/L	1 0.25	0.87	:
sec-Butylbenzene	ND		1 0.30		· · · · · · · · · · · · · · · · · · ·
tert-Butylbenzene	ND		1 0.19	0.68	
Carbon Tetrachloride	ND		1 0.23		
Chlorobenzene	ND	ug/L	1 0.17		
Chloroethane	ND		1 1.7	5.9	
Chloroform	ND		1 0.2		
Chloromethane	ND		1 0.20		· · · · · · · · · · · · · · · · · · ·
2-Chlorotoluene	ND		1 0.19		
4-Chlorotoluene	ND		1 0.18		
Dibromochloromethane	ND		1 0.19		
1,2-Dibromo-3-Chloropropane	ND		1 0.25		
1,2-Dibromoethane	No.		1 0.16		
Dibromomethane	ND		1 0.17		· · · · · · · · · · · · · · · · · · ·
1,2-Dichlorobenzene	ND		1 0.34		
1,3-Dichlorobenzene	ND		1 0.26		· · · · · · · · · · · · · · · · · · ·
1.4-Dichlorobenzene	ND		1 0.24		
Dichlorodifluoromethane	ND		1 0.17		
1.1-Dichloroethane	ND ND		1 0.19		
1,2-Dichloroethane	ND ND		1 0.19		·
1.1-Dichloroethene	ND		1 0.18		
cis-1.2-Dichloroethene	ND		1 0.19		
trans-1,2-Dichloroethene	ND		1 0.13		· · · · · · · · · · · · · · · · · · ·
1,2-Dichloropropane	N		1 0.18		
1,3-Dichloropropane	ND		1 0.19		
2.2-Dichloropropane	ND		1 0.18		
1,1-Dichloropropene	ND		1 0.35		
cis-1,3-Dichloropropene	ND		1 0.20		·
trans-1,3-Dichloropropene	ND		1 0.32		
Ethylbenzene	ND		1 0.19		
Hexachlorobutadiene	ND		1 0.18		
Isopropylbenzene	ND		1 0.18		
p-Isopropyltoluene	מא		1 0.18		
Methylene chloride	ND		1 0.36		:
Naphthalene	ND		1 0.36		* <u>*</u>
n-Propylbenzene	ND ND		1 0.38		
ortho-Xylene	ND ND		1 0.15		· · · · · · · · · · · · · · · · · · ·
Styrene	ND ND				<u>'</u>
1.1.1.2-Tetrachloroethane	ND ND				-
1,1,2-Tetrachioroethane	ND ND		1 0.17		<u> </u>
			1 0.16		
Tetrachloroethene	ND		1 0.16		· · · · · · · · · · · · · · · · · · ·
Toluene	ND ND	ug/L	1 0.19	0.68	1

Page 19 of 26

Customer: NewFields Companies LLC NLS Project: 97066

Project Description: 0451-002-800

Project Title: Template: SATW Printed: 04/12/2006 06:58

Sample: 400977 MW-6	Collected: 03/28/00	6 Analyze	d: 04/06/06 -				:
ANALYTE NAME		RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene		DO	ug/L	1	0.32	1.1	1
1,2,4-Trichlorobenzene		ND	ug/L	1	0.26	0.91	
1,1,1-Trichloroethane		ND	ug/L	1	0.19	0.66	
1,1,2-Trichloroethane		ND	ug/L	1	0.17	0.60	· · · · · · · · · · · · · · · · · · ·
Trichloroethene		[0.35]	ug/L	1	0.30	1.0	
Trichlorofluoromethane		ND	ug/L	1	0.17	0.59	, , , , , , , , , , , , , , , , , , , ,
1,2,3-Trichloropropane		ND	ug/L	1	0.14	0.50	
1,2,4-Trimethylbenzene		ND	ug/L	1	0.31	1.1	1
1,3,5-Trimethylbenzene	,	ND	ug/L	1	0.16	0.58	
Vinyl chloride		ND	ug/L	1	0.20	0.69	
meta,para-Xylene		ND	ug/L	1	0.38	1.3	
MTBE		ND	ug/L	1	0.19	0.67	
Isopropyl Ether		ND	ug/L	1	0.18	0.63	
Dibromofluoromethane (SURR**)		105%					
Toluene-d8 (SURR**)		115%					
1-Bromo-4-Fluorobenzene (SURR**)		99%	-				

Laboratory control spike recoveries for Trans-1,2-Dichloroethene, 2,2-Dichloropropane, Trans-1,3-Dichloropropene, and Styrene were below OC limits.

All matrix spike and matrix spike duplicate recoveries were within QC limits.

Page 20 of 26

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000) panies LLC NLS Project: 97066

Customer: NewFields Companies LLC
Project Description: 0451-002-800
Project Title: Ten

Template: SATW Printed: 04/12/2006 06:58

Sample: 400979 MW-7	Collected: 03/28/06	Analyzed	: 04/06/06 -				
ANALYTE NAME	RE	SULT	UNITS	DIL	LOD	LOQ	
Benzene		ND.	ug/L	1	0.20	0.70	i
Bromobenzene .		ND	ug/L	1	0.20	0.72	
Bromochloromethane		ND	ug/L	1	0.21	0.74	
Bromodichloromethane		ND	ug/L	1	0.17	0.61	
Bromoform		ND	ug/L	1	0.14	0.50	
Bromomethane		ND	ug/L	1	0.45	1.6	
n-Butylbenzene		ND	ug/L	1	0.25	0.87	
sec-Butylbenzene		ND	ug/L	1	0.30	1.0	
tert-Butylbenzene		ND	ug/L	1	0.19	0.68	
Carbon Tetrachloride		ND	ug/L	1	0.23	0.82	:
Chlorobenzene		ND	ug/L	1	0.17	0.59	
Chloroethane		ND	ug/L	1	1.7	5.9	
Chloroform		ND	ug/L	1	0.21	0.73	
Chloromethane		ND	ug/L	1	0.20	0.70	
2-Chlorotoluene		ND	ug/L	1	0.19	0.67	
4-Chlorotoluene		ND	ug/L		0.18	0.65	
Dibromochloromethane		ND	ug/L	1	0.19	0.68	
1,2-Dibromo-3-Chloropropane		ND	ug/L	i	0.25	0.87	
1,2-Dibromoethane		ND	ug/L	i	0.16	0.57	
Dibromomethane		ND	ug/L	i	0.17	0.60	
1.2-Dichlorobenzene		ND	ug/L	i	0.34	1.2	
1,3-Dichlorobenzene		ND	ug/L	- i	0.26	0.91	
1.4-Dichlorobenzene		ND	ug/L	i	0.24	0.84	
Dichlorodifluoromethane		ND	ug/L	- i	0.17	0.59	
1.1-Dichloroethane		ND	ug/L	i	0.19	0.68	
1.2-Dichloroethane		ND	ug/L	<u>i </u>	0.19	0.69	
1.1-Dichloroethene		ND	ug/L	i	0.15	0.54	
cis-1,2-Dichloroethene		0.89	ug/L	i	0.19	0.68	
trans-1,2-Dichloroethene		ND -	ug/L	i	0.17	0.60	
1.2-Dichloropropane		ND	ug/L	i	0.18	0.64	,
1,3-Dichloropropane		ND	ug/L	—- i	0.19	0.68	
2,2-Dichloropropane		ND	ug/L		0.18	0.65	
1,1-Dichloropropene		ND	ug/L	- i	0.35	1.2	
cis-1,3-Dichloropropene		ND	ug/L	- i	0.20	0.69	
trans-1,3-Dichloropropene		ND	ug/L		0.32	1.1	
Ethylbenzene		ND -	ug/L		0.19	0.68	-
Hexachlorobutadiene		ND -	ug/L		0.26	0.91	
Isopropylbenzene		ND	ug/L		0.18	0.64	· ·
p-Isopropyltoluene		ND	ug/L	- i -	0.10	0.99	· · · · · · · · · · · · · · · · · · ·
Methylene chloride		ND	ug/L		0.36	1.3	
Naphthalene		ND	ug/L		0.38	1.4	
n-Propylbenzene		ND	ug/L ug/L	- 1	0.38	0.66	
ortho-Xylene		ND	ug/L ug/L		0.19	0.54	
Styrene		ND			0.15	0.73	
		ND	ug/L	1	0.21		
1,1,1,2-Tetrachloroethane		ND ND	ug/L			0.62	
1,1,2,2-Tetrachloroethane			ug/L	<u>-</u>	0.16	0.57	
Tetrachloroethene		5.4 ND	ug/L	<u></u>	0.16 0.19	0.57	1
Toluene		חאו	ug/L	1	0,19	0.68	

Page 21 of 26

Customer: NewFields Companies LLC

NLS Project: 97066

Project Description: 0451-002-800

Project Title:

Template: SATW Printed: 04/12/2006 06:58

Sample: 400979 MW-7	Collected: 03/28/06 Analyze	ed: 04/06/06 -				
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	:
1,2,3-Trichlorobenzene	ND	ug/L	1	0.32	1.1	1
1,2,4-Trichlorobenzene	ND	ug/L	1	0.26	0.91	
1,1,1-Trichloroethane	ND	ug/L	1	0.19	0.66	
1,1,2-Trichloroethane	ND	ug/L	1	0.17	0.60	
Trichloroethene	2.9	ug/L	1	0.30	1.0	
Trichlorofluoromethane	ND	ug/L	1	0.17	0.59	
1,2,3-Trichloropropane	ND	ug/L	1	0.14	0.50	
1,2,4-Trimethylbenzene	ND	ug/L	1	0.31	1.1	
1,3,5-Trimethylbenzene	ND	ug/L	1	0.16	0.58	
Vinyl chloride	ND	ug/L	1	0.20	0.69	
meta,para-Xylene	ND	ug/L	1	0.38	1.3	
MTBE	ND	ug/L	1	0.19	0.67	
Isopropyl Ether	ND	ug/L	1	0.18	0.63	
Dibromofluoromethane (SURR**)	108%					
Toluene-d8 (SURR**)	115%					
1-Bromo-4-Fluorobenzene (SURR**)	113%				· • • • • • • • • • • • • • • • • • • •	

Laboratory control spike recoveries for Trans-1,2-Dichloroethene, 2,2-Dichloropropane, Trans-1,3-Dichloropropene, and Styrene were below QC limits.

All matrix spike and matrix spike duplicate recoveries were within QC limits.

Page 22 of 26

Customer: NewFields Companies LLC NLS Project: 97066

Project Description: 0451-002-800

Project Title: Template: SATW Printed: 04/12/2006 06:58

Sample: 400981 Dup #1 Collected: 03/28/06 Analyzed: 04/06/06 -**ANALYTE NAME** RESULT UNITS DIL LOD LOQ ND ug/L 1000 200 700 Benzene ИD ug/L 1000 200 720 Bromobenzene Bromochloromethane ND ug/L 1000 210 740 Bromodichloromethane ND 1000 170 610 ug/L ND 140 1000 500 Bromoform ug/L 1600 1000 450 Bromomethane ND ug/L n-Butylbenzene ND 1000 250 870 ug/L ND 1000 300 1000 sec-Butylbenzene ug/L 1000 190 tert-Butylbenzene ND 680 ug/L Carbon Tetrachloride ND 1000 230 820 ug/L ND 1000 170 590 Chlorobenzene ug/L 5900 ND 1000 1700 Chloroethane ug/L Chloroform ND ug/L 1000 210 730 Chloromethane ND ug/L 1000 200 700 ND 1000 190 670 2-Chlorotoluene ug/L 1000 180 650 4-Chlorotoluene ND ug/L Dibromochloromethane ND ug/L 1000 190 680 ND 1000 250 1,2-Dibromo-3-Chloropropane 870 ug/L 1.2-Dibromoethane ND. ug/L 1000 160 570 Dibromomethane ND 1000 170 600 ug/L 1,2-Dichlorobenzene ND 1000 340 1200 ug/L ND 1000 260 910 1.3-Dichlorobenzene ug/L ND 240 1.4-Dichlorobenzene 1000 840 ug/L Dichlorodifluoromethane ИD 1000 170 590 ug/L 1.1-Dichloroethane ND ug/L 1000 190 680 1.2-Dichloroethane ND ug/L 1000 190 690 1,1-Dichloroethene ND 1000 150 540 ug/L cis-1,2-Dichloroethene 14000 ug/L 1000 190 680 trans-1,2-Dichloroethene [210] ug/L 1000 170 600 ND ug/L 1000 180 640 1,2-Dichloropropane ND 1000 190 680 1,3-Dichloropropane ug/L 2,2-Dichloropropane ND ug/L 1000 180 650 1,1-Dichloropropene ND 1000 350 1200 ug/L cis-1,3-Dichloropropene ND 1000 200 ug/L 690 trans-1,3-Dichloropropene ND 1000 320 1100 ug/L Ethylbenzene ND 1000 190 680 ug/L ND 260 Hexachlorobutadiene 1000 910 ug/L Isopropylbenzene ND ug/L 1000 180 640 p-Isopropyltoluene ND 1000 280 990 ug/L Methylene chloride ND ug/L 1000 360 1300 ND Naphthalene 1000 380 1400 ug/L n-Propylbenzene ND 1000 190 660 ug/L ND 1000 150 540 ortho-Xylene ug/L ND Styrene ug/L 1000 210 730 1,1,1,2-Tetrachloroethane ND ug/L 1000 170 620 1,1,2,2-Tetrachloroethane ND 1000 160 570 ug/L Tetrachloroethene 4300 1000 160 570 ug/L ND 1000 190 680 Toluene ug/L

Page 23 of 26

Customer: NewFields Companies LLC NLS Project: 97066

Project Description: 0451-002-800

Project Title: Template: SATW Printed: 04/12/2006 06:58

Sample: 400981 Dup #1	Collected: 03/28/06 Analyz	ed: 04/06/06 -				
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/L	1000	320	1100	<u> </u>
1,2,4-Trichlorobenzene	ND	ug/L	1000	260	910	
1,1,1-Trichloroethane	ND	ug/L	1000	190	660	· · · · · · · · · · · · · · · · · · ·
1,1,2-Trichloroethane	ND	ug/L	1000	170	600	
Trichloroethene	3000	ug/L	1000	300	1000	
Trichlorofluoromethane	ND	ug/L	1000	170	590	
1,2,3-Trichloropropane	ND	ug/L	1000	140	500	
1,2,4-Trimethylbenzene	ND	ug/L	1000	310	1100	
1,3,5-Trimethylbenzene	ND	ug/L	1000	160	580	
Vinyl chloride	800	ug/L	1000	200	690	
meta,para-Xylene	ND	ug/L	1000	380	1300	
MTBE	ND	ug/L	1000	190	670	
Isopropyl Ether	ND	ug/L	1000	180	630	
Dibromofluoromethane (SURR**)	104%					
Toluene-d8 (SURR**)	113%					
1-Bromo-4-Fluorobenzene (SURR**)	108%					

Laboratory control spike recoveries for Trans-1,2-Dichloroethene, 2,2-Dichloropropane, Trans-1,3-Dichloropropene, and Styrene were below QC limits.

All matrix spike and matrix spike duplicate recoveries were within QC limits.

Page 24 of 26

ANALYTICAL RESULTS: VOC's by EPA 8260 - Water - (Saturn 2000) panies LLC NLS Project: 97066

Customer: NewFields Companies LLC
Project Description: 0451-002-800
Project Title: Tem Template: SATW Printed: 04/12/2006 06:58

Sample: 400982 Trip Blank	Collected: 03/28/06 Ana	Collected: 03/28/06 Analyzed: 04/06/06 -				
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	1
Benzene	ND	ug/L	1	0.20	0.70	
Bromobenzene	ND	· ug/L	1	0.20	0.72	
Bromochloromethane	ND	ug/L	1	0.21	0.74	
Bromodichloromethane	ND	ug/L	1	0.17	0.61	
Bromoform	ND	ug/L	1	0.14	0.50	
Bromomethane	ND	ug/L	1	0.45	1.6	
n-Butylbenzene	ND	ug/L	1	0.25	0.87	
sec-Butylbenzene	ND	ug/L	1	0.30	1.0	
tert-Butylbenzene	ND	ug/L	1	0.19	0.68	
Carbon Tetrachloride	ND	ug/L	· 1	0.23	0.82	
Chlorobenzene	ND	ug/L	1	0.17	0.59	
Chloroethane	ND	ug/L	1	1.7	5.9	
Chloroform	ND	ug/L	1	0.21	0.73	
Chloromethane	ND	ug/L	1	0.20	0.70	
2-Chlorotoluene	ND	ug/L	1	0.19	0.67	
4-Chlorotoluene	ND	ug/L	1	0.18	0.65	· · · · · · · · · · · · · · · · · · ·
Dibromochloromethane	ND	ug/L	1	0.19	0.68	
1,2-Dibromo-3-Chloropropane	ND	ug/L	1	0.25	0.87	
1,2-Dibromoethane	ND	ug/L	1	0.16	0.57	· · · · · · · · · · · · · · · · · · ·
Dibromomethane	ND	ug/L	1	0.17	0.60	•
1,2-Dichlorobenzene	ND	ug/L	1	0.34	1.2	~
1,3-Dichlorobenzene	ND	ug/L	1	0.26	0.91	
1.4-Dichlorobenzene	ND	ug/L	1	0.24	0.84	
Dichlorodifluoromethane	ND	ug/L	1	0.17	0.59	
1,1-Dichloroethane	ND	ug/L	1	0.19	0.68	
1,2-Dichloroethane	ND	ug/L	1	0.19	0.69	
1.1-Dichloroethene	ND	ug/L	1	0.15	0.54	
cis-1.2-Dichloroethene	ND	ug/L	1	0.19	0.68	
trans-1,2-Dichloroethene	ND	ug/L	1	0.17	0.60	
1,2-Dichloropropane	ND	ug/L	1	0.18	0.64	
1,3-Dichloropropane	ND	ug/L	1	0.19	0.68	
2,2-Dichloropropane	ND	ug/L	1	0.18	0.65	
1,1-Dichloropropene	ND	ug/L	1	0.35	1.2	
cis-1,3-Dichloropropene	ND	ug/L	1	0.20	0.69	<u> </u>
trans-1,3-Dichloropropene	ND	ug/L	1	0.32	1.1	
Ethylbenzene	ND	ug/L	1	0.19	0.68	
Hexachlorobutadiene	ND	ug/L	1	0.26	0.91	
Isopropylbenzene	ND	ug/L	1	0.18	0.64	
p-Isopropyltoluene	ND	ug/L	1	0.28	0.99	
Methylene chloride	ND	ug/L	1	0.36	1.3	
Naphthalene	ND	ug/L	i	0.38	1.4	
n-Propylbenzene	ND	ug/L		0.19	0.66	:
ortho-Xylene	ND	ug/L	i -	0.15	0.54	
Styrene	ND	ug/L	- i -	0.21	0.73	
1.1.1.2-Tetrachloroethane	ND	ug/L	i	0.17	0.62	
1,1,2,2-Tetrachloroethane	ND ND	ug/L	- i -	0.16	0.57	
Tetrachloroethene	ND	ug/L	i	0.16	0.57	
Toluene	ND ND	ug/L	- i	0.10	0.68	

Page 25 of 26

Customer: NewFields Companies LLC

NLS Project: 97066

Project Description: 0451-002-800

Project Title:

Template: SATW Printed: 04/12/2006 06:58

Sample: 400982 Trip Blank	Collected: 03/28/06 Ana	lyzed: 04/06/06	ò -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	1
1,2,3-Trichlorobenzene	ND	ug/L	1 -	0.32	1.1	
1,2,4-Trichlorobenzene	ND	ug/L	1	0.26	0.91	:
1,1,1-Trichloroethane	ND	ug/L	1	0.19	0.66	
1,1,2-Trichloroethane	ND	ug/L	1	0.17	0.60	
Trichloroethene	ND	ug/L	1	0.30	1.0	
Trichlorofluoromethane	ND -	ug/L	1	0.17	0.59	
1,2,3-Trichloropropane	ND	ug/L	1	0.14	0.50	
1,2,4-Trimethylbenzene	ND	ug/L	1	0.31	1.1	
1,3,5-Trimethylbenzene	ND ND	ug/L	1	0.16	0.58	
Vinyl chloride	ND	ug/L	1	0.20	0.69	
meta,para-Xylene	ND	ug/L	1	0.38	1.3	
MTBE	ND	ug/L	1	0.19	0.67	
Isopropyl Ether	ND	ug/L	1	0.18	0.63	
Dibromofluoromethane (SURR**)	107%					
Toluene-d8 (SURR**)	111%					
1-Bromo-4-Fluorobenzene (SURR**)	106%					

Laboratory control spike recoveries for Trans-1,2-Dichloroethene, 2,2-Dichloropropane, Trans-1,3-Dichloropropene, and Styrene were below QC limits.

Page 26 of 26

All matrix spike and matrix spike duplicate recoveries were within QC limits.

^{**} Surrogates are used to evaluate a method's Quality Control.

ATTACHMENT C

LABORATORY REPORTS SOIL SAMPLES BORINGS SB-1 THROUGH SB-4

NORTHERN LAKE SERVICE, INC. Analytical Laboratory and Environmental Services 400 North Lake Avenue - Crandon, WI 54520

Ph: (715)-478-2777 Fax: (715)-478-3060

Client:

NewFields Companies LLC
Attn: Mark S McColloch PG

2110 Luann Lane #101 Madison,WI 53713 3098 WDNR Laboratory ID No. 721026460

WDATCP Laboratory Certification No. 105-330

EPA Laboratory ID No. WI00034

Printed: 04/07/06 Code: S

Page 1 of 3

NLS Project:

NLS Customer:

96561 93437

Fax: 608 442 9013

Phone: 608 442 5223

PO#

0451-002

Project: DB Oak Fort Atkinson							PO#	0431-002
Soil, SB-01 9-11' NLS ID: 399131 Ref. Line 1 COC 84390 Soil, SB-01 9-11' Matrix: SO Collected: 03/07/06 09:30 Received: 03/08/06								
Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed		Lab
Solids, total on solids	83.4	%	1	0.10*			ASTM D2216	721026460
VOCs (solid) by EPA 8260	see attached					03/15/06	SW846 8260	721026460
Soil, SB-02 2-8' NLS ID: 399132 Ref. Line 2 COC 84390 Soil, SB-02 2-8' Matrix: SO Collected: 03/07/06 13:30 Received: 03/08/06								
Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed		Lab
Percent Chlorine (Parr Bomb)	0.034			0.0050	0.016		ASTM D808	241249360
Cyanide, reactive	ND	mg/Kg DWB	1	0.12*	0.36		EPA 9014 & Ch 7	632021390
pH, lab (soil/sludge)	7.9	s.u. pHw	1				SW846 9045	721026460
Solids, total on solids	84.1	%	1	0.10*			ASTM D2216	721026460
Sulfide, reactive	ND	mg/Kg DWB	1	130*	400		EPA 9034 & Ch 7	632021390
Water, Free EPA 9095	ND	mL/100g	1	1.0*			SW846 9095	721026460
TCLP Extraction	yes						SW846 1311	721026460
TCLP Zero Head Space Extraction	yes						SW846 1311	721026460
Flashpoint	>210	Deg. F				03/10/06		241249360
Specific gravity	2.21					03/09/06	SM 2710F	721026460
Collected: 03/07/06 13:45 Received: 03/08/06 Parameter Solids. total on solids	Result 88.1	Units %	Dilution	LOD 0.10*	LOQ	Analyzed	Method ASTM D2216	Lab 721026460
VOCs (solid) by EPA 8260	see attached	/0		0.10	-		SW846 8260	721026460
	see attached					03/13/00	50040 0200	721020400
Soil, SB-03 9-11' NLS ID: 399134 Ref. Line 4 COC 84390 Soil, SB-03 9-11' Matrix: SO Collected: 03/07/06 12:30 Received: 03/08/06								
Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed		Lab
Solids, total on solids	90.9	%	1	0.10*			ASTM D2216	721026460
VOCs (solid) by EPA 8260	see attached					03/15/06	SW846 8260	721026460
	ood attached							
Soil, SB-04 9-11' NLS ID: 399135 Ref. Line 5 COC 84390 Soil, SB-04 9-11' Matrix: SO Collected: 03/07/06 11:45 Received: 03/08/06								
Ref. Line 5 COC 84390 Soil, SB-04 9-11' Matrix: SO Collected: 03/07/06 11:45 Received: 03/08/06 Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed		Lab
Ref. Line 5 COC 84390 Soil, SB-04 9-11' Matrix: SO Collected: 03/07/06 11:45 Received: 03/08/06 Parameter Solids, total on solids	Result 89.2	Units %	Dilution	LOD 0.10*	LOQ	Analyzed 03/09/06	ASTM D2216	721026460
Ref. Line 5 COC 84390 Soil, SB-04 9-11' Matrix: SO Collected: 03/07/06 11:45 Received: 03/08/06 Parameter Solids, total on solids	Result		Dilution		LOQ	Analyzed 03/09/06		
Ref. Line 5 COC 84390 Soil, SB-04 9-11' Matrix: SO Collected: 03/07/06 11:45 Received: 03/08/06 Parameter Soil, stal on solids VOCs (solid) by EPA 8260 Soil, SB-04 11-13' NLS ID: 399136 Ref. Line 6 COC 84390 Soil, SB-04 11-13' Matrix: SO Collected: 03/07/06 11:50 Received: 03/08/06 Parameter	Result 89.2 see attached Result	% Units	Dilution 1	0.10* LOD	LOQ	Analyzed 03/09/06 03/15/06 Analyzed	ASTM D2216 SW846 8260 Method	721026460 721026460 Lab
Ref. Line 5 COC 84390 Soil, SB-04 9-11' Matrix: SO Collected: 03/07/06 11:45 Received: 03/08/06 Parameter Solids, total on solids VOCs (solid) by EPA 8260 Soil, SB-04 11-13' NLS ID: 399136 Ref. Line 6 COC 84390 Soil, SB-04 11-13' Matrix: SO Collected: 03/07/06 11:50 Received: 03/08/06	Result 89.2 see attached	%	1	0.10*		Analyzed 03/09/06 03/15/06 Analyzed 03/09/06	ASTM D2216 SW846 8260	721026460 721026460

NORTHERN LAKE SERVICE, INC. Analytical Laboratory and Environmental Services 400 North Lake Avenue - Crandon, WI 54520

Ph: (715)-478-2777 Fax: (715)-478-3060

Client:

NewFields Companies LLC
Attn: Mark S McColloch PG

2110 Luann Lane #101 Madison,Wi 53713 3098

Project: DB Oak Fort Atkinson

WDNR Laboratory ID No. 721026460

WDATCP Laboratory Certification No. 105-330

EPA Laboratory ID No. WI00034

Printed: 04/07/06 Code: S

Page 2 of 3

NLS Project:

96561 93437

Fax: 608 442 9013

Phone: 608 442 5223

PO#

NLS Customer:

0451-002

Project: DB Oak Fort Atkinson							
Soil, SB-04 5-9' NLS ID: 399137							
Ref. Line 7 COC 84390 Soil, SB-04 5-9' Matrix: SO			•				
Collected: 03/07/06 11:30 Received: 03/08/06	<u> </u>						.
Parameter	Result	Units	ilution LOD	LOQ	Analyzed		Lab
Percent Chlorine (Parr Bomb)	0.071		0.0050	0.016		ASTM D808	241249360
Cyanide, reactive	ND	mg/Kg DWB	1 0.12*	0.35		EPA 9014 & Ch 7	632021390
pH, lab (soil/sludge)	8.1	s.u. pHw	1	_		SW846 9045	721026460
Solids, total on solids	85.6	%	1 0.10*			ASTM D2216	721026460
Sulfide, reactive	ND	mg/Kg DWB	1 130*	390		EPA 9034 & Ch 7	632021390
Water, Free EPA 9095	ND	m∐/100g	1 1.0*			SW846 9095	721026460
TCLP Extraction	yes			İ		SW846 1311	721026460
TCLP Zero Head Space Extraction	yes				03/15/06	SW846 1311	721026460
Flashpoint	>210	Deg. F		1	03/10/06		241249360
Specific gravity	1.73	H		ii .	03/09/06	SM 2710F	721026460
Collected: 03/16/06 04:00 Received: 03/08/06 Parameter Arsenic, tot. recoverable on extract as As by furnace AAS	Result 3.9	Units ug/L	Dilution LOD	LOQ 3.7	Analyzed 03/21/06	Method SW846 7060	Lab 721026460
Barium, tot. recoverable on extract as As by lumace AAS	0.78	mg/L	1 0.0050*	0.010		SW846 6010	721026460
Cadmium, tot. recoverable on extract as Cd by ICP	ND ND	mg/L	1 0.0098	0.036		SW846 6010	721026460
Chromium, tot. recoverable on extract as Cd by ICP	ND ND	mg/L	1 0.0098	0.036		SW846 6010	721026460
Copper, tot. recoverable on extract as Cr by ICP	0.036	mg/L	1 0.0068	0.075		SW846 6010	721026460
Lead, tot. recoverable on extract as Pb by ICP	ND ND	mg/L	1 0.0008	0.67		SW846 6010	721026460
Mercury as Hg on extract	ND ND	ug/L	2 0.050*	0.07		245.7M/ 1631M	721026460
Nickel, tot. recoverable on extract as Ni by ICP	ND ND	mg/L	1 0.030	0.10		SW846 6010	721026460
Phenois (distillation)	ND	mg/L	1 0.050	0.11		SW846 9065	721026460
Selenium, tot. recoverable on extract as Se by furnace	ND	ug/L	1 2.4	8.5		SW846 7740	721026460
Silver, tot. recoverable on extract as Se by ldmace	ND ND	mg/L	1 0.013	0.042		SW846 6010	721026460
Zinc, tot. recoverable on extract as Ag by ICP	0.080	mg/L	1 0.0064	0.042		SW846 6010	721026460
Metals digestion - tot. recov.ICP	Ves	ing/L	0.0004	0.024		SW846 3005M	721026460
Metals digestion - tot. recov. GF	ves			 -		SW846 3050M	721026460
TCLP VOCs - EPA 8260	see attached					SW846 8260	721026460
8270 Acid/Base Extraction by 3510C	Ves	· · · · · · · · · · · · · · · · · · ·	 			SW846 3510	721026460
Semi-Vol TCLP by EPA 8270	see attached					SW846 8270	721026460
Delin-Vol TOLF by EFA 0270	pee allacheu				03/20/00	DVV040 0270	r 2 1020400

NORTHERN LAKE SERVICE, INC. **Analytical Laboratory and Environmental Services** 400 North Lake Avenue - Crandon, WI 54520

Ph: (715)-478-2777 Fax: (715)-478-3060

Client:

NewFields Companies LLC Attn: Mark S McColloch PG

2110 Luann Lane #101 Madison,WI 53713 3098

Project: DB Oak Fort Atkinson

WDNR Laboratory ID No. 721026460

WDATCP Laboratory Certification No. 105-330

EPA Laboratory ID No. WI00034

Printed: 04/07/06 Code: S

Page 3 of 3

NLS Project:

NLS Customer:

96561

93437

Fax: 608 442 9013

Phone: 608 442 5223

0451-002 PO#

TCLP/SB-04 5-9' NLS ID: 399140				······································		:	
Ref. Line COC 84390 TCLP/SB-04 5-9' Matrix: EX Collected: 03/16/06 04:00 Received: 03/08/06							
Parameter	Result	Units Dilution	LOD	LOQ	Analyzed	Method	Lab
Arsenic, tot. recoverable on extract as As by furnace AAS	5.7	ug/L 1	1.0	3.7	03/21/06	SW846 7060	721026460
Barium, tot. recoverable on extract as Ba by ICP	0.34	mg/L 1	0.0050*	0.010	03/22/06	SW846 6010	721026460
Cadmium, tot. recoverable on extract as Cd by ICP	ND	mg/L 1	0.0098	0.036	03/21/06	SW846 6010	721026460
Chromium, tot. recoverable on extract as Cr by ICP	ND	mg/L 1	0.021	0.075	03/21/06	SW846 6010	721026460
Copper, tot. recoverable on extract as Cu by ICP	ND	mg/L 1	0.0068	0.025	03/21/06	SW846 6010	721026460
Lead, tot. recoverable on extract as Pb by ICP	ND	mg/L 1	0.18	0.67	03/23/06	SW846 6010	721026460
Mercury as Hg on extract	ND	ug/L 2	0.050*	0.10	03/21/06	245.7M/ 1631M	721026460
Nickel, tot. recoverable on extract as Ni by ICP	ND	mg/L 1	0.030	0.11	03/21/06	SW846 6010	721026460
Phenols (distillation)	ND	mg/L 1	0.067*	0.20	03/22/06	SW846 9065	721026460
Selenium, tot. recoverable on extract as Se by furnace	ND	ug/L 1	2.4	8.5	03/22/06	SW846 7740	721026460
Silver, tot. recoverable on extract as Ag by ICP	ND	mg/L 1	0.013	0.042	03/22/06	SW846 6010	721026460
Zinc, tot. recoverable on extract as Zn by ICP	[0.0064]	mg/L 1	0.0064	0.024	03/21/06	SW846 6010	721026460
Metals digestion - tot. recov.ICP	yes				03/20/06	SW846 3005M	721026460
Metals digestion - tot. recov. GF	yes				03/20/06	SW846 3050M	721026460
TCLP VOCs - EPA 8260	see attached				03/17/06	SW846 8260	721026460
8270 Acid/Base Extraction by 3510C	yes				03/17/06	SW846 3510	721026460
Semi-Vol TCLP by EPA 8270	see attached				03/28/06	SW846 8270	721026460

Values in brackets represent results greater than or equal to the LOD but less than the LOQ and are within a region of "Less-Certain Quantitation". Results greater than or equal to the LOQ are considered to be in the region of "Certain Quantitation". LOD and/or LOQ tagged with an asterisk(*) are considered Reporting Limits. All LOD/LOQs adjusted to reflect dilution.

LOD = Limit of Detection

LOQ = Limit of Quantitation

ND = Not Detected

1000 ug/L = 1 mg/L

Authorized by:

DWB = Dry Weight Basis

NA = Not Applicable

%DWB = (mg/kg DWB) / 10000

R. T. Krueger President

MCL = Maximum Contaminant Levels for Drinking Water Samples

Reviewed by:

Customer: NewFields Companies LLC
Project Description: DB Oak Fort Atkinson

Project Title: Template: SATS Printed: 04/07/2006 06:57

Sample: 399131 Soil, SB-01 9-11'	Collected: 03/07/06	Analyzed: 0	3/15/06 -			:
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	:
Benzene	ND	ug/kg	25	420	1500	
Bromobenzene	ND	ug/kg	25	480	1700	
Bromochloromethane	ND	ug/kg	25	410	1400	
Bromodichloromethane	ND	ug/kg	25	520	1900	
Bromoform	ND	ug/kg	25	410	1400	
Bromomethane	ND	ug/kg	25	440	1600	
n-Butylbenzene	ND	ug/kg	25	570	2000	
sec-Butylbenzene	ND	ug/kg	25	570	2000	
tert-Butylbenzene	ND	ug/kg	25	600	2100	
Carbon Tetrachloride	ND	ug/kg	25	580	2100	
Chlorobenzene	ND	ug/kg	25	610	2100	
Chloroethane	ND	ug/kg	25	1400	5100	
Chloroform	ND	ug/kg	25	390	1400	
Chloromethane	ND	ug/kg	25	510	1800	
2-Chlorotoluene	ND ND	ug/kg	25	510	1800	
4-Chlorotoluene	ND	ug/kg	25	540	1900	
Dibromochloromethane	ND	ug/kg	25	450	1600	
1,2-Dibromo-3-Chloropropane	ND	ug/kg	25	510	1800	
1,2-Dibromoethane	ND	ug/kg	25	440	1600	
Dibromomethane	ND ND	ug/kg	25	510	1800	
1.2-Dichlorobenzene	ND	ug/kg	25	530	1900	
1,3-Dichlorobenzene	ND ND	ug/kg	25	580	2100	
1.4-Dichlorobenzene	ND ND	ug/kg	25	580	2000	·
Dichlorodifluoromethane	ND ND	ug/kg	25	470	1700	
1.1-Dichloroethane	ND ND	ug/kg ug/kg	25	450	1600	
1,2-Dichloroethane	, ND	ug/kg	25	470	1600	
1,1-Dichloroethene	ND ND	ug/kg ug/kg	25	460	1600	
cis-1,2-Dichloroethene	ND ND		25	450	1600	
trans-1.2-Dichloroethene	ND ND	ug/kg		490	1700	
	ND ND	ug/kg	25 25	480		
1,2-Dichloropropane 1,3-Dichloropropane	ND ND	ug/kg		390	1700 1400	
1,3-Dichioropropane		ug/kg	25			
2,2-Dichloropropane	ND	ug/kg	25	430	1500	
1,1-Dichloropropene	ND	ug/kg	25	490	1700	
cis-1,3-Dichloropropene	ND	ug/kg	25	560	1900	
trans-1,3-Dichloropropene	ND	ug/kg	25	510	1800	
Ethylbenzene	ND	ug/kg	25	500	1800	
Hexachlorobutadiene	ND	ug/kg	25	420	1500	'
Isopropylbenzene	ND	ug/kg	25	450	1600	
p-Isopropyltoluene	ND	ug/kg	25	580	2100	
Methylene chloride	ND	ug/kg	25	460	1600	!
Naphthalene	ND	ug/kg	25	600	2100	
n-Propylbenzene	ND	ug/kg	25	560	2000	
ortho-Xylene	ND	ug/kg	25	530	1900	:
Styrene	ND	ug/kg	25	400	1400	
1,1,1,2-Tetrachloroethane	ND	ug/kg	25	450	1600	
1,1,2,2-Tetrachloroethane	ND	ug/kg	25	560	2000	
Tetrachloroethene	28000	ug/kg	25	570	2000	
Toluene	ND	ug/kg	25	500	1800	

Page 1 of 10

ANALYTICAL RESULTS: VOC's by EPA 8260 - Methanol - (Saturn 2000)

Customer: NewFields Companies LLC NLS Project: 96561 PO # 0451-002

Project Description: DB Oak Fort Atkinson

Project Title: Template: SATS Printed: 04/07/2006 06:57

Sample: 399131 Soil, SB-01 9-11'	Collected: 03/07/06	Analyzed: 0	3/15/06 -			:	
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ		
1,2,3-Trichlorobenzene	ND	ug/kg	25	430	1500	1	7
1,2,4-Trichlorobenzene	ND	ug/kg	25	450	1600		
1,1,1-Trichloroethane	ND	ug/kg	25	490	1700		1
1,1,2-Trichloroethane	ND	ug/kg	25	360	1300		1
Trichloroethene	[840]	ug/kg	25	530	1900		1
Trichlorofluoromethane	ND	ug/kg	25	570	2000		1
1,2,3-Trichloropropane	ND	ug/kg	25	580	2100		
1,2,4-Trimethylbenzene	ND	ug/kg	25	500	1800		
1,3,5-Trimethylbenzene	ND	ug/kg	25	520	1800		7.
Vinyl chloride	ND	ug/kg	25	470	1700		1
meta,para-Xylene	ND	ug/kg	25	930	3300		7
MTBE	ND	ug/kg	25	420	1500		7
Isopropyl Ether	ND	ug/kg	25	420	1500	 	7
Dibromofluoromethane (SURR**)	106%						7
Toluene-d8 (SURR**)	118%						1
1-Bromo-4-Fluorobenzene (SURR**)	108%						1

Page 2 of 10

ANALYTICAL RESULTS: VOC's by EPA 8260 - Methanol - (Saturn 2000)

Customer: NewFields Companies LLC NLS Project: 96561 PO # 0451-002

Project Description: DB Oak Fort Atkinson

Project Title: Template: SATS Printed: 04/07/2006 06:57

Sample: 399133 Soil, SB-02 12-14 Collected: 03/07/06 Analyzed: 03/15/06 -RESULT UNITS LOD ANALYTE NAME DIL LOO 2100 Benzene ND ug/kg 125 7400 ND ug/kg 125 2400 8400 Bromobenzene Bromochloromethane ND ug/kg 125 2000 7200 Bromodichloromethane ND 125 2600 9300 ug/kg Bromoform ND 125 2000 7200 ua/ka 2200 Bromomethane ND ug/kg 125 7800 2900 10000 n-Butvlbenzene ND ug/kg 125 sec-Butylbenzene ND 125 2800 10000 ug/kg ND 125 3000 11000 tert-Butvlbenzene ug/kg ND 125 2900 10000 Carbon Tetrachloride ua/ka Chlorobenzene ND ug/kg 125 3000 11000 Chloroethane ND ug/kg 125 7200 25000 Chloroform ND ua/ka 125 2000 7000 125 2600 9000 Chloromethane ND ug/kg 2-Chlorotoluene ND 125 2600 9000 ua/ka 4-Chlorotoluene ND 125 2700 9600 ug/kg Dibromochloromethane ND 125 2300 8000 ug/kg 2600 9100 1,2-Dibromo-3-Chloropropane מא ug/kg 125 1.2-Dibromoethane מעד ug/kg 125 2200 7800 9100 Dibromomethane ND ug/kg 125 2600 1.2-Dichlorobenzene ND 125 2600 9300 ua/ka 1.3-Dichlorobenzene ND 125 2900 10000 ug/kg 1.4-Dichlorobenzene ND 125 2900 10000 ua/ka Dichlorodifluoromethane ND ug/kg 125 2400 8400 ND 1.1-Dichloroethane ug/kg 125 2200 7900 ug/kg 1.2-Dichloroethane ND 125 2300 8200 1.1-Dichloroethene ND 2300 ug/kg 125 8200 cis-1,2-Dichloroethene ND ug/kg 125 2300 8000 trans-1,2-Dichloroethene ND 125 2400 8600 ug/kg ND 8500 1.2-Dichloropropane 125 2400 ug/kg 1.3-Dichloropropane 'ND ug/kg 125 2000 6900 2,2-Dichloropropane ND 125 2200 7600 ug/kg 1,1-Dichloropropene ND 2400 125 8600 ug/kg cis-1,3-Dichloropropene 'ND 125 2800 9700 ug/kg trans-1,3-Dichloropropene ND 125 2500 9000 ug/kg Ethylbenzene ND 125 2500 8900 ug/kg Hexachlorobutadiene ND 2100 ug/kg 125 7500 Isopropylbenzene ND ug/kg 125 2200 8000 p-Isopropyltoluene ND ug/kg 125 2900 10000 Methylene chloride ND ug/kg 125 2300 8100 Naphthalene ND 125 3000 11000 ug/kg n-Propylbenzene ND ug/kg 125 2800 9900 ortho-Xylene ND ug/kg 125 2700 9400 Styrene ND 125 2000 7000 ug/kg 1,1,1,2-Tetrachloroethane ND 125 ug/kg 2300 8000 1.1.2.2-Tetrachloroethane ND 125 2800 ug/kg 9900 Tetrachloroethene 120000 125 2800 10000 ug/kg Toluene ND ug/kg 125 2500 8900

Page 3 of 10

Project Description: DB Oak Fort Atkinson

Project Title: Template: SATS Printed: 04/07/2006 06:57

Sample: 399133 Soil, SB-02 12-14'	Collected: 03/07/06	Analyzed:	03/15/06 -			:
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
1,2,3-Trichlorobenzene	ND	ug/kg	125	2200	7500	!
1,2,4-Trichlorobenzene	ND	ug/kg	125	2200	7900	
1,1,1-Trichloroethane	ND	ug/kg	125	2400	8600	
1,1,2-Trichloroethane	ND	ug/kg	125	1800	6300	
Trichloroethene	24000	ug/kg	125	2600	9300	
Trichlorofluoromethane	ND	ug/kg	125	2900	10000	
1,2,3-Trichloropropane	ND	ug/kg	125	2900	10000	
1,2,4-Trimethylbenzene	ND	ug/kg	125	2500	8800	-
1,3,5-Trimethylbenzene	ND	ug/kg	125	2600	9200	
Vinyl chloride	ND	ug/kg	125	2400	8400	
meta,para-Xylene	ND	ug/kg	125	4700	17000	
MTBE	ND	ug/kg	125	2100	7400	
Isopropyl Ether	ND	ug/kg	125	2100	7500	
Dibromofluoromethane (SURR**)	110%					
Toluene-d8 (SURR**)	120%					
1-Bromo-4-Fluorobenzene (SURR**)	109%					

Page 4 of 10

Customer: NewFields Companies LLC
Project Description: DB Oak Fort Atkinson
Project Title: Template Template: SATS Printed: 04/07/2006 06:57

Sample: 399134 Soil, SB-03 9-11'	Collected: 03/07/06	Analyzed: 0	3/15/06 -	<u></u>		
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/kg	1	17	59	;
Bromobenzene	ND	ug/kg	1	19	67	
Bromochloromethane	ND	ug/kg	1	16	58	
Bromodichloromethane	ND	ug/kg	1	21	74	
Bromoform	ND	ug/kg	1	16	58	
Bromomethane	ND	ug/kg	1	18	62	
n-Butylbenzene	ND	ug/kg	1	23	81	
sec-Butylbenzene	ND	ug/kg	1	23	80	
tert-Butylbenzene	ND	ug/kg	1	24	85	
Carbon Tetrachloride	ND	ug/kg	1	23	82	
Chlorobenzene	ND	ug/kg	1	24	86	
Chloroethane	ND	ug/kg	1	57	200	
Chloroform	ND	ug/kg	. 1	16	56	
Chloromethane	ND	ug/kg	1	20	72	
2-Chlorotoluene	ND	ug/kg	1	20	72	
4-Chlorotoluene	ND	ug/kg	1	22	77	
Dibromochloromethane	ND	ug/kg	1	18	64	
1,2-Dibromo-3-Chloropropane	ND	ug/kg	1	20	72	
1,2-Dibromoethane	ND	ug/kg	1	18	62	
Dibromomethane	ND	ug/kg	1	21	73	
1.2-Dichlorobenzene	ND	ug/kg	1	21	75	
1,3-Dichlorobenzene	ND	ug/kg	1	23	82	W. C. C. C. C. C. C. C. C. C. C. C. C. C.
1.4-Dichlorobenzene	ND	ug/kg	1	23	81	
Dichlorodifluoromethane	ND	ug/kg	1	19	67	
1,1-Dichloroethane	ND	ug/kg	1	18	63	
1,2-Dichloroethane	ND	ug/kg		19	66	
1,1-Dichloroethene	ND	ug/kg	1	19	66	***
cis-1.2-Dichloroethene	1900	ug/kg	1	18	64	
trans-1,2-Dichloroethene	120	ug/kg	1	19	69	
1,2-Dichloropropane	ND	ug/kg	1	19	68	
1,3-Dichloropropane	ND	ug/kg	1	16	55	
2,2-Dichloropropane	ND	ug/kg	1	17	61	
1,1-Dichloropropene	ND	ug/kg	1	19	69	
cis-1,3-Dichloropropene	ND	ug/kg	1	23	78	
trans-1,3-Dichloropropene	ND	ug/kg	1	20	72	
Ethylbenzene	ND	ug/kg	1	20	71	
Hexachlorobutadiene	ND	ug/kg	1	17	60	
Isopropylbenzene	ND	ug/kg	1	18	64	
p-Isopropyltoluene	ND	ug/kg	1	23	82	
Methylene chloride	ND	ug/kg	1	18	65	
Naphthalene	ND	ug/kg	i	24	85	
n-Propylbenzene	ND	ug/kg	- i	22	80	
ortho-Xylene	ND	ug/kg	i	21	75	
Styrene	ND ND	ug/kg	i	16	56	
1,1,1,2-Tetrachloroethane	ND ND	ug/kg	. i	18	64	
1.1.2.2-Tetrachloroethane	ND ND	ug/kg	i	22	79	
Tetrachloroethene	120	ug/kg		23	80	
Toluene	ND	ug/kg		20	71	

Page 5 of 10

Customer: NewFields Companies LLC
Project Description: DB Oak Fort Atkinson

Project Title: Template: SATS Printed: 04/07/2006 06:57

Sample: 399134 Soil, SB-03 9-11'	Collected: 03/07/06	Analyzed: 0	3/15/06 -				
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ		
1,2,3-Trichlorobenzene	ND	ug/kg	1 1	17	60	ī	
1,2,4-Trichlorobenzene	ND	ug/kg	1	18	63		
1,1,1-Trichloroethane	ND	ug/kg	1	20	69		
1,1,2-Trichloroethane	ND	ug/kg	1	14	51	· ·	
Trichloroethene	ND	ug/kg	1	21	75		
Trichlorofluoromethane	ND	ug/kg	1	23	81		
1,2,3-Trichloropropane	ND	ug/kg	1	23	82		
1,2,4-Trimethylbenzene	ND	ug/kg	1	20	70		
1,3,5-Trimethylbenzene	ND	ug/kg	1	21	74		
Vinyl chloride	ND	ug/kg	1	19	67		
meta,para-Xylene	ND	ug/kg	1	37	130		
MTBE	ND	ug/kg	1	17	59		•
Isopropyl Ether	ND	ug/kg	1	17	60		
Dibromofluoromethane (SURR**)	103%						
Toluene-d8 (SURR**)	114%						
1-Bromo-4-Fluorobenzene (SURR**)	108%					* * ,	

Page 6 of 10

Sample: 399135 Soil, SB-04 9-11'	Collected: 03/07/06	Analyzed: 0	3/15/06 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/kg	100	1700	5900	
Bromobenzene	ND	ug/kg	100	1900	6700	
Bromochloromethane	ND	ug/kg	100	1600	5800	*
Bromodichloromethane	ND	ug/kg	100	2100	7400	
Bromoform	ND	ug/kg	100	1600	5800	
Bromomethane	ND	ug/kg	100	1800	6200	
n-Butylbenzene	ND	ug/kg	100	2300	8100	
sec-Butylbenzene	ND	ug/kg	100	2300	8000	
tert-Butvlbenzene	ND	ug/kg	100	2400	8500	
Carbon Tetrachloride	ND	ug/kg	100	2300	8200	
Chlorobenzene	ND	ug/kg	100	2400	8600	
Chloroethane	ND	ug/kg	100	5700	20000	
Chloroform	ND	ug/kg	100	1600	5600	
Chloromethane	ND	ug/kg	100	2000	7200	
2-Chlorotoluene	ND	ug/kg	100	2000	7200	
4-Chlorotoluene	ND	ug/kg	100	2200	7700	
Dibromochloromethane	ND	ug/kg	100	1800	6400	
1,2-Dibromo-3-Chloropropane	ND	ug/kg	100	2000	7200	
1,2-Dibromoethane	ND	ug/kg	100	1800	6200	
Dibromomethane	ND	ug/kg	100	2100	7300	
1.2-Dichlorobenzene	ND	ug/kg	100	2100	7500	
1.3-Dichlorobenzene	ND	ug/kg	100	2300	8200	
1,4-Dichlorobenzene	ND	ug/kg	100	2300	8100	
Dichlorodifluoromethane	ND	ug/kg	100	1900	6700	
1.1-Dichloroethane	ND	ug/kg	100	1800	6300	
1,2-Dichloroethane	ND	ug/kg	100	1900	6600	
1,1-Dichloroethene	ND ND	ug/kg	100	1900	6600	
cis-1,2-Dichloroethene	ND	ug/kg	100	1800	6400	
trans-1.2-Dichloroethene	ND	ug/kg	100	1900	6900	
1,2-Dichloropropane	ND	ug/kg	100	1900	6800	
1,3-Dichloropropane	ND	ug/kg	100	1600	5500	
2,2-Dichloropropane	ND	ug/kg	100	1700	6100	· · · · · · · · · · · · · · · · · · ·
1,1-Dichloropropene	ND	ug/kg	100	1900	6900	
cis-1,3-Dichloropropene	ND	ug/kg	100	2300	7800	
trans-1.3-Dichloropropene	ND	ug/kg	100	2000	7200	
Ethylbenzene	ND ND	ug/kg	100	2000	7100	
Hexachlorobutadiene	ND	ug/kg	100	1700	6000	
Isopropylbenzene	ND	ug/kg	100	1800	6400	
p-Isopropyltoluene	ND	ug/kg	100	2300	8200	
Methylene chloride	ND ND	ug/kg	100	1800	6500	
Naphthalene	ND	ug/kg	100	2400	8500	
n-Propylbenzene	ND	ug/kg	100	2200	8000	
ortho-Xylene	ND	ug/kg	100	2100	7500	
Styrene	ND ND	ug/kg	100	1600	5600	
1.1.1.2-Tetrachloroethane	ND	ug/kg	100	1800	6400	
1.1.2.2-Tetrachloroethane	ND ND	ug/kg ug/kg	100	2200	7900	
Tetrachloroethene	82000	ug/kg ug/kg	100	2300	8000	
Toluene	ND		100	2000	7100	
roluctio .	ND	ug/kg	100	2000	7 100	

Page 7 of 10

Customer: NewFields Companies LLC
Project Description: DB Oak Fort Atkinson

Project Title: Template: SATS Printed: 04/07/2006 06:57

Sample: 399135 Soil, SB-04 9-11'	Collected: 03/07/06	Analyzed: 0	3/15/06 -				
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ		
1,2,3-Trichlorobenzene	ND	ug/kg	100	1700	6000		
1,2,4-Trichlorobenzene	ND	ug/kg	100	1800	6300		7
1,1,1-Trichloroethane	ND	ug/kg	100	2000	6900		
1,1,2-Trichloroethane	ND	ug/kg	100	1400	5100		
Trichloroethene	110000	ug/kg	100	2100	7500	· · · · · · · · · · · · · · · · · · ·	
Trichlorofluoromethane	ND	ug/kg	100	2300	8100		
1,2,3-Trichloropropane	ND	ug/kg	100	2300	8200		
1,2,4-Trimethylbenzene	ND	ug/kg	100	2000	7000		
1,3,5-Trimethylbenzene	ND	ug/kg	100	2100	7400		
Vinyl chloride	ND	ug/kg	100	1900	6700		
meta,para-Xylene	ND	ug/kg	100	3700	13000		
MTBE	ND	ug/kg	100	1700	5900		
Isopropyl Ether	ND	ug/kg	100	1700	6000		-
Dibromofluoromethane (SURR**)	108%						•
Toluene-d8 (SURR**)	118%			-			
1-Bromo-4-Fluorobenzene (SURR**)	106%						-

Page 8 of 10

ANALYTICAL RESULTS: VOC's by EPA 8260 - Methanol - (Saturn 2000)

Customer: NewFields Companies LLC NLS Project: 96561 PO # 0451-002

Project Description: DB Oak Fort Atkinson

Project Title: Template: SATS Printed: 04/07/2006 06:57

Sample: 399136 Soil, SB-04 11-13'	Collected: 03/07/06	Analyzed:	03/15/06 -			
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	1
Benzene	ND	ug/kg	125	2100	7400	
Bromobenzene	ND	ug/kg	125	2400	8400	
3romochloromethane	ND	ug/kg	125	2000	7200	
Bromodichloromethane	ND	ug/kg	125	2600	9300	
Bromoform	ND	ug/kg	125	2000	7200	
Bromomethane	ND	ug/kg	125	2200	7800	
-Butylbenzene	ND	ug/kg	125	2900	10000	
sec-Butylbenzene	ND	ug/kg	125	2800	10000	
ert-Butylbenzene	ND	ug/kg	125	3000	11000	
Carbon Tetrachloride	ND	ug/kg	125	2900	10000	
Chlorobenzene	ND	ug/kg	125	3000	11000	
Chloroethane	ND	ug/kg	125	7200	25000	
Chloroform	ND	ug/kg	125	2000	7000	
Chloromethane	ND	ug/kg	125	2600	9000	
2-Chlorotoluene	ND	ug/kg	125	2600	9000	
4-Chlorotoluene	ND	ug/kg	125	2700	9600	
Dibromochloromethane	ND	ug/kg	125	2300	8000	-
1,2-Dibromo-3-Chloropropane	ND	ug/kg	125	2600	9100	
,2-Dibromoethane	ND	ug/kg	125	2200	7800	
Dibromomethane	ND	ug/kg	125	2600	9100	
.2-Dichlorobenzene	ND	ug/kg	125	2600	9300	
.3-Dichlorobenzene	ND ND	ug/kg	125	2900	10000	
.4-Dichlorobenzene	ND	ug/kg	125	2900	10000	
Dichlorodifluoromethane	ND	ug/kg	125	2400	8400	
,1-Dichloroethane	ND	ug/kg	125	2200	7900	
.2-Dichloroethane	ND	ug/kg	125	2300	8200	
.1-Dichloroethene	ND	ug/kg	125	2300	8200	
cis-1.2-Dichloroethene	ND	ug/kg	125	2300	8000	
rans-1,2-Dichloroethene	ND	ug/kg	125	2400	8600	
,2-Dichloropropane	ND	ug/kg	125	2400	8500	
.3-Dichloropropane	ND	ug/kg	125	2000	6900	
2,2-Dichloropropane	ND	ug/kg	125	2200	7600	
.1-Dichloropropene	ND	ug/kg	125	2400	8600	
is-1,3-Dichloropropene	ND	ug/kg	125	2800	9700	:
rans-1.3-Dichloropropene	ND	ug/kg	125	2500	9000	
thylbenzene	ND	ug/kg	125	2500	8900	
lexachlorobutadiene	ND	ug/kg	125	2100	7500	
sopropylbenzene	ND	ug/kg	125	2200	8000	-
-Isopropyltoluene	ND ND	ug/kg	125	2900	10000	
Methylene chloride	ND	ug/kg	125	2300	8100	
Naphthalene	ND ND	ug/kg	125	3000	11000	
n-Propylbenzene	ND	ug/kg	125	2800	9900	
ortho-Xylene	ND	ug/kg	125	2700	9400	i
Styrene	ND	ug/kg	125	2000	7000	
1.1.1.2-Tetrachloroethane	ND ND	ug/kg ug/kg	125	2300	8000	
.1.2.2-Tetrachloroethane	ND ND	ug/kg ug/kg	125	2800	9900	
etrachloroethene	120000		125	2800		
CHACHIOIOEHEIR	ND	ug/kg	125	∠ou∪	10000	•

Page 9 of 10

Customer: NewFields Companies LLC Project Description: DB Oak Fort Atkinson

Project Title: Template: SATS Printed: 04/07/2006 06:57

Sample: 399136 Soil, SB-04 11-13'	Collected: 03/07/06	Analyzed: (03/15/06 -				
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ		- :
1,2,3-Trichlorobenzene	ND	ug/kg	125	2200	7500		
1,2,4-Trichlorobenzene	ND	ug/kg	125	2200	7900		1
1,1,1-Trichloroethane	ND	ug/kg	125	2400	8600		
1,1,2-Trichloroethane	ND	ug/kg	125	1800	6300	•	:
Trichloroethene	33000	ug/kg	125	2600	9300		
Trichlorofluoromethane	ND	ug/kg	125	2900	10000		
1,2,3-Trichloropropane	ND	ug/kg	125	2900	10000		
1,2,4-Trimethylbenzene	ND	ug/kg	125	2500	8800		
1,3,5-Trimethylbenzene	ND	ug/kg	125	2600	9200		
Vinyl chloride	ND	ug/kg	125	2400	8400		
meta,para-Xylene	ND	ug/kg	125	4700	17000		
MTBE	ND	ug/kg	125	2100	7400		-
Isopropyl Ether	ND	ug/kg	125	2100	7500		
Dibromofluoromethane (SURR**)	117%						
Toluene-d8 (SURR**)	115%						
1-Bromo-4-Fluorobenzene (SURR**)	110%						

^{**} Surrogates are used to evaluate a method's Quality Control.

Page 10 of 10

ANALYTICAL RESULTS: Semi-Volatile Organic TCLP Compounds by EPA 8270C

Customer: NewFields Companies LLC NLS Project: 96561 PO # 0451-002

Project Description: DB Oak Fort Atkinson

Project Title: Template: 8270TCLP Printed: 04/07/2006 06:57

Sample: 399139 TCLP/SB-02 2-8'	Collected: 03/16/06	Analyzed: 0	3/28/06 -			:	
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ		
Pyridine	ND	ug/L	4	2.3	7.6		
2-Methylphenol (o-Cresol)	ND	ug/L	4	5.0	17		- i
3 & 4-Methylphenol (m/p-Cresol)	ND	ug/L	4	7.1	24		
Nitrobenzene	ND	ug/L	4	3.7	12		
1,4-Dichlorobenzene	ND	ug/L	4	5.7	19		
2,4,6-Trichlorophenol	ND	ug/L	4	6.0	20		-
2.4,5-Trichlorophenol	ND	ug/L	4	4.2	14		
2,4-Dinitrotoluene	ND	ug/L	4	4.5	15		
Hexachlorobutadiene	ND	ug/L	4	5.6	19		
Hexachloroethane	ND	ug/L,	4	4.1	13		
Hexachlorobenzene	ND	ug/L	4	4.2	14		
Pentachlorophenol	ND	ug/L	4	3.1	9.9		
2-Fluorophenol (SURR**)	41%						
Phenol-d5 (SURR**)	25%						
Nitrobenzene-d5 (SURR**)	72%						
2-Fluorobiphenyl (SURR**)	88%		-			· · · · · · · · · · · · · · · · · · ·	
2,4,6-Tribromophenol (SURR**)	84%					· · · · · · · · · · · · · · · · · · ·	
Terphenyl-d14 (SURR**)	61%						

Sample was diluted due to a high level of Tetrachloroethene.

Sample: 399140 TCLP/SB-04 5-9'	Collected: 03/16/06	Analyzed: 0	3/28/06 -				
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ		
Pyridine	ND	ug/L	10	5.7	19		٦
2-Methylphenol (o-Cresol)	ND	ug/L	10	13	42		7
3 & 4-Methylphenol (m/p-Cresol)	ND	ug/L	10	18	59		7
Nitrobenzene	ND	ug/L	10	9.1	30		
1,4-Dichlorobenzene	ND ND	ug/L	10	14	48		
2,4,6-Trichlorophenol	ND	ug/L	10	15	50		
2,4,5-Trichlorophenol	ND	ug/L	10	10	35		1
2,4-Dinitrotoluene	ND	ug/L	10	11	38		
Hexachlorobutadiene	ND	ug/L	10	14	47		٠ .
Hexachloroethane	ND	ug/L	10	10	32		
Hexachlorobenzene	ND	ug/L	10	10	35	· · · · · · · · · · · · · · · · · · ·	
Pentachlorophenol	ND	ug/L	10	7.8	25		
2-Fluorophenol (SURR**)	46%					*	1
Phenol-d5 (SURR**)	27%						=
Nitrobenzene-d5 (SURR**)	77%						7
2-Fluorobiphenyl (SURR**)	89%						7
2,4,6-Tribromophenol (SURR**)	66%						7
Terphenyl-d14 (SURR**)	59%						1

Sample was diluted due to a high level of Tetrachloroethene.

Page 1 of 1

^{**} Surrogates are used to evaluate a method's Quality Control.

Sample: 399139 TCLP/SB-02 2-8'	Collected: 03/16/06	Analyzed: 0	3/16/06 -				
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	-	
Benzene	ND	ug/L	50	9.8	35		
Carbon Tetrachloride	ND	ug/L	50	12	41		
Chlorobenzene	ND	ug/L	50	8.4	30		
Chloroform	ND	ug/L	50	10	37		
1,4-Dichlorobenzene	ND	ug/L	50	12	42		
1,2-Dichloroethane	ND .	ug/L	50	9.7	34		
1,1-Dichloroethene	ND	ug/L	50	7.6	27		
Tetrachloroethene	7000	ug/L	800	130	460		
Trichloroethene	590	ug/L	50	15	52		
Vinyl chloride	ND	ug/L	50	9.8	35		
Methyl ethyl ketone	ND	ug/L	50	35	120		
Dibromofluoromethane (SURR**)	109%						
Toluene-d8 (SURR**)	115%						
1-Bromo-4-Fluorobenzene (SURR**)	111%						

Sample: 399140 TCLP/SB-04 5-9'	Collected: 03/16/06	Analyzed: 03/16/06 -				· · · · · ·
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	
Benzene	ND	ug/L	50	9.8	35	
Carbon Tetrachloride	ND	ug/L	50	12	41	
Chlorobenzene	ND	ug/L	50	8.4	30	
Chloroform	ND	ug/L	50	10	37	
1,4-Dichlorobenzene	ND	ug/L.	50	12	42	
1,2-Dichloroethane	ND	ug/L	50	9.7	34	
1,1-Dichloroethene	ND	ug/L	50	7.6	27	
Tetrachloroethene	15000	ug/L	2000	320	1100	
Trichloroethene	340	ug/L	50	15	52	
Vinyl chloride	ND	ug/L	50	9.8	35	
Methyl ethyl ketone	ND	ug/L	50	35	120	
Dibromofluoromethane (SURR**)	114%					
Toluene-d8 (SURR**)	112%	-	•			
1-Bromo-4-Fluorobenzene (SURR**)	104%					
** Currents and used to surfluete a method's Quality Cont	had					

^{**} Surrogates are used to evaluate a method's Quality Control.

Page 1 of 1