#### FINAL REPORT

# SUPPLEMENTAL SITE INVESTIGATION REPORT

DB OAK FACILITY 700 – 710 OAK STREET FORT ATKINSON, JEFFERSON COUNTY WISCONSIN

Prepared for

DEC 5 / 5001

Thomas Industries P.O. Box 29 Sheboygan, Wisconsin

December 2007



NewFields 2110 Luann Lane, Suite 101 Madison, Wisconsin 53713 (608) 442-5223 (608) 442-9013 FAX

Project No. 0451-003-800



December 21, 2007

Janet DiMaggio
Wisconsin Department of Natural Resources
3911 Fish Hatchery Road
Fitchburg, Wisconsin 53711

RE:

WDNR BRRTS No. 03-28-176509

Supplemental Hydrogeologic Investigation Report

D.B. Oak Facility, 700-710 Oak Street, Ft. Atkinson, Wisconsin

Dear Ms. DiMaggio:

On behalf of Garner Denver, please find enclosed our Supplemental Site Investigation Report for the DB Oak property in Fort Atkinson, Wisconsin. This report summarizes the scope of work presented in our July 25, 2007 Work Plan.

If you have any questions please call us at (608) 442-5223.

Sincerely,

**NewFields** 

David P. Trainor

Principal

Mark S. McColloch, P.G.

Mak & M'Collang

Senior Geologist

cc: Mr. Mark T. Chiado, Gardner Denver, Inc

NEWFIELDS 2110 LUANN LANE, SUITE 101 MADISON, WISCONSIN 53713 (608) 442-5223 (608) 442-9013 FAX www.newfields.com

# **TABLE OF CONTENTS**

| EXECUTIVE SUMMARY |                                                         |     |  |  |  |  |
|-------------------|---------------------------------------------------------|-----|--|--|--|--|
| 1.0               | INTRODUCTION                                            | 1-1 |  |  |  |  |
|                   | 1.1 SITE DESCRIPTION                                    | 1-1 |  |  |  |  |
|                   | 1.2 SITE HISTORY                                        |     |  |  |  |  |
|                   | 1.3 PURPOSE AND SCOPE                                   |     |  |  |  |  |
| 2.0               | PREVIOUSLY COMPLETED INVESTIGATION ACTIVITIES           | 2-1 |  |  |  |  |
|                   | 2.1 INITIAL SITE INVESTIGATION                          | 2-1 |  |  |  |  |
|                   | 2.2 HYDROGEOLOGIC SITE INVESTIGATIONS                   |     |  |  |  |  |
|                   | 2.2.1 Monitoring Well Installation and Well Development |     |  |  |  |  |
|                   | 2.2.2 In-Situ Hydraulic Conductivity Testing            |     |  |  |  |  |
|                   | 2.2.3 Groundwater Sample Collection                     |     |  |  |  |  |
|                   | 2.3 SOIL INVESTIGATION                                  |     |  |  |  |  |
|                   | 2.3.1 Geoprobe Soil Sample Collection                   |     |  |  |  |  |
|                   | 2.3.2 Mobile Laboratory Analysis                        |     |  |  |  |  |
| 3.0               | SUPPLEMENTAL SITE INVESTIGATION ACTIVITIES              | 3-1 |  |  |  |  |
|                   | 3.1 VERTICAL GROUNDWATER ZONE SAMPLING                  | 3_1 |  |  |  |  |
|                   | 3.2 MONITOR WELL INSTALLATION                           |     |  |  |  |  |
|                   | 3.3 GROUNDWATER SAMPLE COLLECTION                       |     |  |  |  |  |
| 4.0               | SITE INVESYIGATION RESULTS                              |     |  |  |  |  |
|                   | 4.1 GEOLOGY AND HYDROGEOLOGY                            | 4-1 |  |  |  |  |
|                   | 4.1.1 Regional Geology                                  |     |  |  |  |  |
|                   | 4.1.2 Regional Hydrogeology                             |     |  |  |  |  |
|                   | 4.1.3 Site Geology                                      |     |  |  |  |  |
|                   | 4.1.4 Site Hydrogeology                                 |     |  |  |  |  |
|                   | 4.2 CONTAMINANT CHARACTERIZATION - SOIL                 | 4-5 |  |  |  |  |
|                   | 4.2.1 Soil Sample Results                               |     |  |  |  |  |
|                   | 4.2.2 Soil Contaminant Distribution                     | 4-5 |  |  |  |  |
|                   | 4.3 CONTAMINANT CHARACTERIZATION - GROUNDWATER          |     |  |  |  |  |
|                   | 4.3.1 Groundwater Sample Results                        |     |  |  |  |  |
|                   | 4.3.2 Groundwater Contaminant Distribution              |     |  |  |  |  |
| 5.0               | SUMMARY AND CONCLUSIONS                                 | 5-1 |  |  |  |  |
| 6.0               | RECOMMENDADTIONS                                        | 6-1 |  |  |  |  |
| 7.0               | REFERENCES                                              | 7-1 |  |  |  |  |

# **List of Tables, Figures and Appendices**

## <u>Tables</u>

| Table 1 | Groundwater Elevations                                 |
|---------|--------------------------------------------------------|
| Table 2 | Summary of In-Situ Hydraulic Conductivity Test Results |
| Table 3 | September 2007 Groundwater Zone Sample Results         |
| Table 4 | October 2007 Groundwater Sample Results                |
| Table 5 | Historic Groundwater Sample Results                    |

#### **Figures**

| Figure 1  | Site Location Map                                                       |  |  |  |  |  |  |
|-----------|-------------------------------------------------------------------------|--|--|--|--|--|--|
| Figure 2  | Site Map                                                                |  |  |  |  |  |  |
| Figure 3  | Preliminary Investigation Soil Sample Results – ATEC 1995               |  |  |  |  |  |  |
| Figure 4  | Sample Locations and Summary of VOCs Detected in Groundwater            |  |  |  |  |  |  |
| Figure 5  | Lateral Extent of Soil Contamination                                    |  |  |  |  |  |  |
| Figure 6  | Groundwater Elevation and Total VOC Isoconcentration Contours for Water |  |  |  |  |  |  |
|           | Table Wells                                                             |  |  |  |  |  |  |
| Figure 6A | Groundwater Elevations and Total VOC Isoconcentration Contours for "A"  |  |  |  |  |  |  |
|           | Horizon Piezometers                                                     |  |  |  |  |  |  |
| Figure 6B | Groundwater Elevations and Total VOC Isoconcentration Contours for "B"  |  |  |  |  |  |  |
|           | Horizon Piezometers                                                     |  |  |  |  |  |  |
| Figure 7  | Cross Section A – A' Showing Groundwater Sample Results                 |  |  |  |  |  |  |
| Figure 7A | Vertical Extent of Total VOCs                                           |  |  |  |  |  |  |
| Figure 7B | Vertical Extent of PCE                                                  |  |  |  |  |  |  |
| Figure 7C | Vertical Extent of cis-1,2-Dichloroethylene                             |  |  |  |  |  |  |

## **Appendices**

| Appendix A | Soil Boring Logs, Well Construction Forms, and Well Development Forms |
|------------|-----------------------------------------------------------------------|
| Appendix B | Laboratory Reports – September 2007 Groundwater Zone Samples          |
| Appendix C | Laboratory Reports – October 2007 Groundwater Samples                 |
| Appendix D | City Well Logs for Fort Atkinson                                      |

The subject property is located at 700 to 710 Oak Street in Fort Atkinson, Wisconsin. It is currently owned by DB Oak. The southern portion of the building is currently leased by 5Alarm Fire and Safety Equipment Inc., and the remainder of the building is used as warehouse space by Carnes and Associates. The property is essentially flat, but slopes slightly to the south. An elevated active rail spur bounds the property to the east. The Lorman Iron and Metal scrap yard is located on the adjacent property east of the rail spur. Commercial properties (Maquert and 2L Lobe LLC) bound the property to the south. Oak Street bounds the property to the west, beyond which are residential homes. Undeveloped wooded land bounds the property to the north.

Residential lighting fixtures were manufactured at the facility by Moe Brothers Manufacturing beginning in 1939; Moe Brothers Manufacturing changed its name to Moe Lighting in 1939 and was acquired by Thomas Industries in 1948; Thomas Industries was acquired by Gardner Denver in 2005. Lighting fixtures continued to be manufactured at the facility until 1985 when Thomas sold the facility. The Wand Corporation (Wand) subsequently utilized the facility to manufacture storm doors and windows in 1985, but vacated the building by 1992 reportedly because of a bankruptcy filing. Two other businesses (Gross EMO and Wisconsin Packaging Corporation) occupied portions of the property between 1986 and 1994. Miller Machining began operating at a portion of the property in 1994.

Soil and groundwater contamination were initially identified at the DB Oak property near a former tetrachloroethene, or perchloroethene (PCE) storage tank during initial site assessments completed in 1994. This release was subsequently reported to the WDNR, and the Agency requested that Thomas Industries complete a site investigation to identify the lateral and vertical extent of subsurface contamination associated with the PCE release. Since December 2004. several phases of investigation have been completed. These investigations have included the installation of monitoring wells, the collection of groundwater samples, and other data to evaluate groundwater flow conditions. Investigation results were presented in reports submitted to the WDNR along with recommendations for further evaluation of the lateral and vertical extent of groundwater contamination. However, prior to additional site investigation, Thomas Industries elected to implement site remediation in two phases. Soil remediation would be performed during the first phase, followed by groundwater remediation performed later as the second phase after the effects of soil remediation on groundwater were better understood. In a letter dated September 8, 2006 an in-situ soil vapor extraction (ISVE) system (and soil conditioning) was conditionally approved as an interim remedial response by the Wisconsin Department of Natural Resources (WDNR). Soil conditioning and subsurface piping was installed in the loading dock area on the east side of the facility building between October and

### **Executive Summary**

December 2006. Final grading was completed in March 2007, and the system has operated from mid-July to the present as low water table conditions permit; the SVE system was occasionally turned off during high water table conditions.

Approval conditions for the interim remedial response for soil described in the WDNR's September 8, 2006 letter included further identification of the vertical extent of groundwater contamination at the MW-2, MW-3, and MW-7 well nests, and identification of the lateral and vertical extent of contamination in the area north of MW-7. NewFields submitted a July 25. 2007 Work Plan for zone sampling (at depth) and well installation at these well locations. Zone groundwater samples were collected to further characterize the vertical extent of groundwater contamination, and to select screen intervals for deep piezometers. Zone samples were collected and well installations were completed in September 2007; a round of groundwater samples was also collected from all site wells in October 2007. Prior to sample collection, water levels were measured in all site wells and used to calculate groundwater elevations. Based on these elevations, the direction of groundwater flow at that time was south-southeast. October 2007 groundwater elevations indicate that a small groundwater depression is located at the south side of the DB Oak facility. This shallow groundwater flow regime is likely influenced by a drainage ditch originating at a storm drain outfall near MW-2, which extends south parallel to the railway toward the MW-6 well nest. This depression likely represents a discharge zone. However, groundwater discharge in this area is limited to the shallow groundwater flow regime; this depression is not apparent in the underlying potentiometric surface.

Recently collected groundwater samples verify that groundwater quality has been impacted by chlorinated volatile organic compounds (VOCs). PCE is the primary constituent of concern that exceeds groundwater quality standards, but degradation products of PCE also exceed standards. The highest concentrations of VOCs have historically been detected in MW-3 samples indicating a source area near this well. However, elevated concentrations of PCE in MW-4 samples also indicates a source area near the former PCE tank.

PCE concentrations in zone samples collected from the MW-3C well boring and from piezometers MW-3A, MW-3B, and MW-3C on the east side of the DB Oak facility also indicate that PCE migrated vertically through the saturated zone. However, the lithology encountered at depth has likely influenced the vertical distribution of contaminants in this area. At the MW-3 nest, deep piezometers are screened in silty sands between interbedded silts and silty clays. The fine grained low permeability units may restrict the vertical migration of contaminants.

# **Executive Summary**

Elevated concentrations of VOCs were also detected in samples collected from shallow down gradient piezometers MW-2A and MW-7A, but contaminant concentrations declined with depth. VOC concentrations declined significantly below the 60 to 65 foot sample intervals at the MW-2B and MW-7B borings. Additionally, degradation products including trichloroethene (TCE), cis-1,2-dichloroethene (cis-DCE) and vinyl chloride were detected in groundwater samples collected from both down gradient and deep locations. The presence of PCE and degradation products indicate that reductive dechlorination of PCE has occurred over time in the source area and at down gradient locations. Because degradation products (TCE, cis-DCE and vinyl chloride) are also more soluble than PCE, and therefore more mobile in groundwater than PCE, a dissolved phase chlorinated VOC plume has formed down gradient from the source area.

Although deep groundwater has been encountered on the east side of the facility building, samples collected from the MW-3 well nest indicate that total VOC concentrations decline with depth with two exceptions. PCE concentrations increased with depth between MW-3A and MW-3B, and cisDCE concentrations increased between MW-3B and the 100 to 105-foot zone sample collected from the MW-3C boring.

#### 1.1 SITE DESCRIPTION

The DB Oak property is located at 700 -710 Oak Street in Fort Atkinson, Wisconsin. As shown on Figure 1, the site is located on the north side of Fort Atkinson in the west ½ of the southwest ¼ of Section 34, Township 6 north, Range 14 east. The property is relatively flat and lies at an approximate elevation of 790 feet above mean sea level (MSL). In the vicinity of the site, regional topography slopes to the east and south towards the Rock River.

The DB Oak property is a triangular shaped parcel bordered by East Cramer Street to the north, Oak Street to the west-southwest, and the Union Pacific (formerly Chicago and Northwest) rail line to the east-southeast. A large building over 180,000 square feet in size with driveways and parking lots are located on the property. A parking lot and driveway accessible from North Main Street to the west and Oak Street to the south is located on the west side of the facility building. A gravel driveway and loading dock area is located on the east side of the facility building. This loading dock area is accessible from an asphalt driveway and small parking lot area located on the south side of the property and from a gravel driveway located on the north side of the building. A wooded undeveloped area is located between the driveway on the north side of the building and East Cramer Street. A large lawn area is located between the building and Oak Street. A site map for the facility is shown on Figure 2.

The DB Oak facility is currently leased to several tenants. W & A Distribution utilizes the northern portion of the facility building as warehouse space, and 5 Alarm Fire & Safety Inc. (5 Alarm) occupies the southern portion of the facility building. The 5 Alarm portion of the building consists of offices, shop areas for outfitting emergency vehicles, and warehouse space. Residential homes are located on the west side of Oak Street and west of the DB Oaks property. The Lorman Iron and Metals Company (Lorman) is located on the east side of the DB Oaks property and the Union Pacific rail line. The DB Oaks property is accessible from the Lorman property via Lorman Drive. Properties south of the DB Oaks property include a parcel located at 600 Oak Street owned by Mr. Dale Maquert used for storage of equipment for a construction company, and property owned by 2L Lobe LLC for the storage of roll off boxes and dumpsters associated with the Lorman facility.

#### 1.2 SITE HISTORY

Residential lighting fixtures were manufactured at the facility by Moe Brothers Manufacturing beginning in 1939; Moe Brothers Manufacturing changed its name to Moe Lighting in 1939 and was acquired by Thomas Industries<sup>1</sup> in 1948. Lighting fixtures continued to be manufactured at the facility until 1985 when Thomas sold the facility. The Wand Corporation (Wand) subsequently utilized the facility to manufacture storm doors and windows in 1985, but vacated the building by 1992 reportedly because of a bankruptcy filing. Two other businesses (Gross EMO and Wisconsin Packaging Corporation) occupied portions of the property between 1986 and 1994. Miller Machining began operating at a portion of the property in 1994. The property is currently owned by DB Oak and the building is leased by 5Alarm Fire and Safety Equipment Inc. and Carnes and Associates as warehouse space.

In an August 28, 1985 letter to Wand, RMT, Inc. identified a 10,000 gallon above ground storage tank (AST) that was used to store tetrachloroethene (PCE), and an 18,000 gallon underground storage tank (UST) that held No. 2 fuel oil (see Figure 2). The Wisconsin Department of Natural Resources (WDNR) subsequently performed a generator inspection on March 27, 1986, completed at the time Wand had occupied the property. The inspection was completed by Wendell Wojner of the WDNR and described in an April 1986 memo. As described in that memo, no hazardous waste was observed during the inspection. The inspection report indicated that the site had been decontaminated prior to remodeling the building. Decontamination included the removal of all hazardous waste stored on site, and the decontamination and removal of wastewater treatment tanks and degreasers. An electroplating line had been dismantled, and a new concrete floor installed; the old concrete floor had also been removed and transported offsite for disposal. A foundation for a large AST remained on site at the rear of the building, but the tank had been removed.

During a March 16, 1994 Phase I Environmental Site Assessment (ESA), Gabriel Midwest did not find evidence of the fuel oil UST. It also observed that the AST that held PCE was absent, but confirmed that the concrete AST cradle remained on-site. In March 1995 ATEC Associates Inc. (ATEC) completed a Phase II ESA of the D.B. Oaks facility to identify potential releases from the former fuel oil UST, PCE AST, and a former 500 gallon gasoline UST; the latter was not identified in previous reports. The Phase II ESA consisted of the collection of soil and

D.B. Oak Facility.

Fort Atkinson, Wisconsin

<sup>&</sup>lt;sup>1</sup> Thomas Industries was acquired by Gardner Denver in 2006. Thomas Industries remains a wholly owned subsidiary of Gardner Denver.

groundwater samples from Geoprobe borings. Trace levels of petroleum constituents (ethylbenzene, toluene, and xylenes) along with low concentrations of metals (arsenic, barium, chromium, and lead) were detected in soil and groundwater samples at various locations on the facility property. However, PCE and associated degradation products were detected in soil and groundwater samples along the east and south sides of the facility building. These compounds were detected at concentrations several orders of magnitude above regulatory standards. ATEC described the results of this investigation in a Phase II ESA report dated April 1995.

The WDNR was subsequently notified of the release. Internal discussions between Thomas Industries and the WDNR subsequently followed. However, these discussions ended shortly thereafter, and further activity was delayed until March 2004. At that time, the WDNR issued a letter requesting an immediate site investigation. Consequently, the Agency requested that Thomas Industries complete a site investigation to identify the lateral and vertical extent of subsurface contamination associated with the PCE release. Thomas then submitted a work plan to the WDNR in November 2004, and completed an initial hydrogeologic investigation in December 2004. That investigation consisted of the installation of five water table monitoring wells (MW-1, MW-2, MW-3, MW-4, and MW-5), two piezometers (MW-2A and MW-4A), insitu permeability testing, and the collection of groundwater samples. Results of that investigation and recommendations for additional investigation were presented in a February 2005 status report.

Additional subsequent investigations included the collection of soil samples from Geoprobe borings advanced in the loading dock area on the east side of the facility building, and mobile laboratory analysis to further characterize potential contaminant source areas. These investigations also included the installation of another piezometer (MW-3A) in the source area, the installation of down gradient well nest (MW-6 and MW-6A), and the collection of groundwater samples from all site wells. NewFields completed this work between April and June 2005, and results are presented in the Site Investigation Report dated November 10, 2005.

The report results were discussed at a December 1, 2005 meeting with the Wisconsin Department of Natural Resource's (WDNR). The WDNR concurred with recommendations in that report to collect additional soil samples for TCLP analyses (to develop a waste profile) and bench scale testing to evaluate in-situ chemical oxidation (ISCO) as a potential remedial response for subsurface contamination. At that time, the WDNR also requested the installation of an additional side gradient well nest (MW-7 and MW-7A) and a deep piezometer (MW-3B) at the source area. NewFields submitted a Work Plan for a supplemental site investigation on

January 25, 2006, and the supplemental site investigation was subsequently completed in March 2006. NewFields presented results of this investigation in a May 2006 status report along with recommendations to further characterize the vertical extent of groundwater contamination beneath the source area.

Thomas Industries elected to implement site remediation in two phases. Soil remediation would be performed during the first phase followed by groundwater remediation performed later as the second phase after the effects of soil remediation on groundwater were better understood. A Design Plan for Soil Remediation was submitted to WDNR by RMT on August 15, 2006. That plan proposed the installation of an in-situ vapor extraction (ISVE) system combined with soil conditioning to enhance soil permeability and the effectiveness of the ISVE system. In a WDNR letter dated September 8, 2006 the ISVE system (and soil conditioning) was conditionally approved as an interim remedial response. Soil conditioning and subsurface piping was subsequently installed in the loading dock area on the east side of the facility building between October and December 2006. Final grading was completed in March 2007, and a construction documentation report was submitted to the WDNR on May 2, 2007. The SVE system has operated from mid-July to the present, but was occasionally turned off during high water table conditions. A SVE system quarterly progress report was submitted to WDNR on December 6. 2007 summarizing results for the first three months of operation. As described in that report effluent air sample results indicate that the SVE system is removing chlorinated VOCs from the subsurface. Effluent concentrations measured after three months of operation were approximately half the concentration detected in the effluent samples collected after system startup. Additionally, soil samples collected in October 2007 indicate that target clean up standards have been achieved at six of the seven soil sample locations.

Approval conditions for the interim remedial response described in WDNR's September 8, 2006 letter included identification of the vertical extent of groundwater contamination at the MW-2, MW-3, and MW-7 well nest locations, and identification of the lateral and vertical extent of contamination in the area north of MW-7. NewFields submitted a July 25, 2007 Work Plan for zone sampling and well installation at these locations. The site work was subsequently completed in September and October 2007, and results are presented in this report.

#### 1.3 PURPOSE AND SCOPE

The purpose of this report is to present the results of the supplemental hydrogeologic site investigation recently completed on the subject property. The first part of the investigation completed in September 2007 consisted of collection of groundwater samples from deep soil borings (zone sampling), and installation of additional down gradient monitoring wells and deep piezometers beneath the source area. The second phase of investigation consisted of the collection of groundwater samples, and measurement of groundwater elevations to identify groundwater flow conditions.

#### 2.1 INITIAL SITE INVESTIGATION

A Phase II Site Assessment was completed at the D.B. Oak property in March 1995 by ATEC Associates Inc. (ATEC). This assessment included the collection of soil and groundwater samples from 31 Geoprobe borings. Results were presented in an April 1995 report. Results of soil samples collected during the preliminary site investigation are summarized on Figure 3, and groundwater sample results are shown on Figure 4.

ATEC stated that the purpose of the assessment was "... to determine the presence or absence of contamination that may be associated with former underground storage tanks (USTs), specifically one 19,000-gallon fuel oil and one 500-gallon gasoline UST, former above ground storage tanks (ASTs), one 10,000 gallon tetrachloroethene AST, past on-site activities or operations, and adjacent leaking UST facilities." ATEC reported that petroleum constituents were detected at low concentrations below clean up standards in soil and groundwater samples. However, chlorinated hydrocarbons including tetrachloroethene (PCE), trichloroethene (TCE), 1,1-dichloroethene, total (cis and trans) 1,2-dichloroethene, and vinyl chloride were detected in soil and groundwater samples collected along the east side of the facility building. These results indicated that releases from petroleum storage tanks had not impacted soil or groundwater quality at the site, but chlorinated hydrocarbons indicated a release from the former PCE tank.

A site investigation was also completed by Lorman Iron & Metals Company following the removal of three former underground waste oil tanks in 1994. These tanks were located on the south end of the Lorman property, and the site investigation included the collection of soil samples, the installation of monitoring wells, and the collection of groundwater samples in the vicinity of the tanks. Results of the site investigation indicated that the direction of groundwater flow is to the south-southwest, and that petroleum constituents from the former waste oil tank resulted in an impact to soil and groundwater quality at the site. Site remediation consisted of the removal of contaminated soil by excavation and groundwater monitoring. Low concentrations of petroleum constituents and chlorinated VOCs were detected in groundwater samples collected from site monitoring wells. The site was closed in 2001 because concentrations of petroleum constituents and chlorinated VOCs declined after several years of groundwater monitoring. As shown on Figure 2, the Lorman property is located on the east side

of the railway adjacent to the DB Oak property; former wells<sup>2</sup> MW-1, MW-2, and MW-3 were located southeast of the existing DB Oak facility building.

#### 2.2 HYDROGEOLOGIC SITE INVESTIGATIONS

NewFields completed an initial hydrogeologic investigation at the DB Oak facility in accordance with a Work Plan dated November 8, 2004. This hydrogeologic investigation consisted of the installation of five water table observation wells, (MW-1, MW-2, MW-3, MW-4, and MW-5), two piezometers (MW-2A and MW-4A), well development, groundwater sample collection and elevation measurements, and in-situ permeability tests. The site work was completed in December 2004, and results were presented in a February 2005 status report. This report included recommendations for the installation of a down gradient well nest and an additional peizometer to further characterize the lateral and vertical extent of groundwater contamination. Additionally, the collection of soil samples to further characterize potential source areas was also recommended in the status report. Monitoring wells MW-3A, MW-6, and MW-6A were subsequently installed in April 2005, soil samples were collected and analyzed by a mobile lab in May 2005, and a second round of groundwater samples were collected in June 2005. Results were presented in the November 10, 2005 Site Investigation Report.

The Report results were discussed with the WDNR in a December 1, 2005 meeting. The WDNR concurred with recommendations in that report to collect additional soil samples for TCLP analyses and bench scale testing. The WDNR also requested the installation of an additional side gradient well nest (MW-7 and MW-7A) and a deep piezometer (MW-3B) at the source area. A Work Plan for a supplemental site investigation was submitted on January 25, 2006, and the supplemental site investigation completed in March 2006. Results were presented in May 2006 status report along with recommendations to further characterize the vertical extent of groundwater contamination at the source area.

#### 2.2.1 Monitoring Well Installation and Well Development

In December 2004, NewFields supervised the installation of five water table observation wells (MW-1, MW-2, MW-3, MW-4, and MW-5) and two piezometers (MW-2A and MW-2B) at the DB Oaks facility. Water table observation wells MW-1 and MW-2 were installed south of the

<sup>&</sup>lt;sup>2</sup> Wells MW-1, MW-2, and MW-3 were abandoned as a condition of closure.

facility building as down gradient monitoring wells. Well MW-3 and MW-4 were installed east of the facility building; well MW-3 was installed down gradient (south) from the former PCE tank adjacent to the facility building, and well MW-4 was installed in the vicinity of the former PCE tank. Well MW-5 was installed on the north side of the facility building up gradient from the former PCE tank. Piezometers MW-2A and MW-4A were installed adjacent to wells MW-2 and MW-4, respectively. In April 2005, down gradient well nest MW-6/6A was installed, and piezometer MW-3A was installed adjacent to well MW-3. In March 2006, side-gradient well nest MW-7/7A was installed near the southwest corner of the property northeast of the intersection of Oak Street and the south driveway access. At that time, MW-3B was installed adjacent to wells MW-3/MW-3A as a deep piezometer to further characterize the vertical extent of groundwater contamination beneath the source area. Well locations are shown on Figure 2.

MW-3B was installed using mud rotary drilling methods. All other wells were installed in boreholes advanced with hollow stem augers. Truck mounted rotary drill rigs provided by Badger State Drilling Company, Inc. of Stoughton, Wisconsin, were used for installing these wells. Soil samples were collected with a split-barrel sampler (split spoon), visually classified in accordance with the Unified Soil Classification System, and recorded on soil boring logs. Soil boring logs were appended to previously submitted reports.

All monitoring wells were constructed with two-inch diameter schedule 40 PVC well casings and screens. Water table observation wells MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, and MW-7 were constructed with well screens 10-feet in length. The water table was encountered between four and 12 feet below ground surface, and water table observation wells were installed at depths between 13 and 20 feet below ground surface with well screens placed between six and eight feet below the water table. Piezometers MW-2A, MW-3A, MW-4A, MW-6A, and MW-7A were constructed with well screens five-feet in length placed approximately 25 feet below the adjacent water table observation wells (between 39 and 48 feet below ground surface). Piezometer MW-3B was also constructed with a well screen five feet in length placed 32 feet below piezometer MW-3A (80 feet below ground surface). The top of screen and bottom of screen elevations are summarized in Table 1. Following well installation, monitoring wells were developed by NewFields. Well development was completed by surging and purging ten well casing volumes. Well construction and well development forms were appended to previously submitted reports.

#### 2.2.2 In-Situ Hydraulic Conductivity Testing

In December 2004, NewFields performed in-situ hydraulic conductivity tests on existing monitoring wells to determine the hydraulic conductivity of the soil unit near each well screen. These tests were performed by rapidly removing a bailer, or "slug" of water from the well. A pressure transducer in the well and data logger were then used to measure the drawdown and subsequent recovery of water elevations in the well. Because the recovery was rapid, two tests were performed at each well. The hydraulic conductivity around each well screen was then calculated using the Bouwer and Rice Method with USGS provided spreadsheet tables. Hydraulic conductivity estimates are summarized in Table 2 (in-situ hydraulic conductivity test results were included in Appendix B of the November 2005 Site Investigation Report).

Layered fine grained low permeability soils (i.e. silty clay and silt) were encountered at all well locations interbedded with permeable soil units (silty sand and sand). Water table observation wells were constructed with long (10 feet) well screens that intersect several soil units. This condition caused the high permeability soils to dominate the test. Consequently, in-situ hydraulic conductivity test results represent the permeability of the most permeable soil unit intersecting the well screen. Additionally, these results likely represent the horizontal hydraulic conductivity of the most permeable soil unit encountered. The permeability of the silt and silty clay soils encountered in the upper portion of each well boring are likely several orders of magnitude lower than the permeability of the underlying sand units.

#### 2.2.3 Groundwater Sample Collection

A round of groundwater samples was collected from all existing wells following the well installations completed in December 2004, April 2006 and March 2006. Prior to sample collection, four well casing volumes were purged from each well. Samples were collected with bailers equipped with bottom emptying devices; a bailer was dedicated to each well. Laboratory provided containers were filled, held in a cooler on ice, and shipped to a Wisconsin-certified environmental laboratory for analyses. All samples were analyzed for volatile organic compounds (VOCs) by USEPA method 8260. In accordance with WDNR guidance, one duplicate sample and a trip blank were also analyzed for VOCs. Additionally, field measurements for pH, conductivity, temperature, oxidation-reduction potential, and dissolved oxygen were made at the time of sample collection. Groundwater monitoring results are discussed in Section 4.3.

#### 2.3 SOIL INVESTIGATION

#### 2.3.1 Geoprobe Soil Sample Collection

Preliminary site investigation results and December 2004 groundwater monitoring results indicated that potential source areas were present on the east side of the facility building; contamination was encountered near the former PCE tank as well as near loading docks located adjacent to the building. Additional investigation was recommended in the February 2005 status report to further characterize the lateral and vertical extent of soil contamination. In May 2005, over 60 soil borings were advanced in a regular grid pattern at potential source areas. At each location, soil samples were collected from the borings at intervals from 0 to 2.5 feet, from 2.5 to 5 feet, and from 5 to 7.5 feet below ground surface. Soil samples were also collected from four borings (A4, A6, A8, and A10) advanced inside the building (see Figure 5). Soil samples were analyzed by a mobile laboratory, and mobile laboratory results were used to guide the investigation. Following soil sample collection, all borings were backfilled with bentonite. Geoprobe services were provided by Soil Essentials of New Glarus, Wisconsin.

#### 2.3.2 Mobile Laboratory Analysis

Mobile laboratory services were provided by Environmental Chemistry Consulting Services Inc. (ECCS) of Madison, Wisconsin. All soil samples were analyzed for benzene, toluene, PCE, trans-1,2-dichloroethene (transDCE), and degradation products of PCE including vinyl chloride, 1,1-dichloroethene (DCE), cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE). VOCs were analyzed with high-resolution gas chromatography (GC) and a mass selective detector (MSD). Following sample collection, soil samples were submitted to the mobile laboratory analyst.

#### 3.1 VERTICAL GROUNDWATER ZONE SAMPLING

Vertical groundwater "zone" sampling was completed to identify the vertical extent of groundwater contamination, and select depths for deep peizometers. Zone sampling consisted of the collection of groundwater samples as borings MW-2B, MW-3C, MW-7B, and MW-8B were advanced (see Figure 2). These soil borings were advanced using Sonic drilling methods. Sonic drilling is completed by advancing the drill stem and sampler (core barrel) vertically using vibration frequencies between about 50 and 180 Hz (hence the name sonic). At each borehole the core-barrel, which is ten feet in length, was advanced ahead of temporary casing. After the core barrel was retrieved, temporary casing was then advanced ten feet in preparation for the next core run. Continuous cores of soil were obtained when the core barrel was retrieved, and subsurface soil units were visually classified in accordance with the Unified Soil Classification System and recorded on field boring logs. Soil cuttings were placed in 55-gallon drums, and will be temporarily stored on-site until arrangements for disposal can be made. Soil boring logs are included in Appendix A.

Groundwater zone samples were collected from the soil borings with a well point sampler installed as a temporary well. A two-inch diameter well point, five feet in length, was attached to the drill rod and lowered through the temporary casing to the desired sample interval. The temporary casing was then pulled back a minimum of five feet allowing the formation to collapse around the well point. A small diameter submersible pump was inserted into the drill rod and used to purge the well for a minimum of one hour before groundwater samples were collected. Samples were collected at the 60 to 65, 80 to 85, and 95 to 100 foot intervals from the MW-2B, MW-7B, and MW-8B boring locations; a sample was also collected at the 30 to 35 foot interval from the MW-8B boring. At the MW-3C location, samples were collected at the 100 to 105, 120 to 125, and 130 to 135 foot intervals<sup>3</sup>. All samples were collected in laboratory provided containers, placed on ice, and submitted to Environmental Chemistry Consulting Services Inc. (ECCS), a Wisconsin-certified environmental laboratory, and analyzed for VOC analysis by Method 8260 within 24-hours. Results were used to select screen depths for deep piezometers MW-2B, MW-3C, MW-7B, and MW-8B as described in Section 3.2 below. Groundwater zone sampling results are summarized in Table 3, and laboratory reports are included in Appendix B.

<sup>&</sup>lt;sup>3</sup> A sample was collected from the 130 to 135 foot interval rather that the 140 to 145 foot interval because a fine grained low permeability silty clay unit was encountered between 132 and 145 feet.

#### 3.2 MONITOR WELL INSTALLATION

Groundwater zone samples were analyzed within 24-hours, and used to select screen depths for deep piezometers. VOCs were detected at elevated concentrations in samples collected from the 60 to 65 foot interval at the MW-2B and MW-7B borings, but declined significantly in samples collected from deeper horizons. Well screens for the MW-2B and MW-7B piezometers were placed between 80 and 85 feet below ground surface. No VOCs were detected in zone samples collected from the MW-8B boring. However, the well screen for the deep piezometer at this location was also placed between 80 and 85 feet below ground surface; the same horizon that well screens were placed for piezometers MW-2B, MW-3B, and MW-7B. A water table observation well (MW-8), and shallow piezometer (MW-8A) were also installed at the MW-8 well nest. The well screen for piezometer MW-8A was placed between 45 and 50 feet below ground surface; the same horizon that well screens were placed for piezometers MW-2A, MW-3A, MW-MW-4A, MW-6A, and MW-7A.

Elevated concentrations of VOCs were detected at the 100 to 105-foot interval, but declined in samples collected at deeper horizons 120 to 125 and 130 to 135 feet below ground surface. The well screen for MW-3C was placed between 125 and 130 feet below ground surface because a sand unit was encountered between 124 and 132 at this location. Fine grained low permeability silty clay units, which would likely yield little to no groundwater, were encountered above and below this sand unit.

All wells were constructed with two-inch diameter schedule PVC well casing and screen. Well MW-3B was constructed with schedule 80 PVC, and the remaining wells were constructed with schedule 40 PVC. Water table observation well MW-8 was constructed with a 10-foot well screen, and the remaining piezometers (MW-2B, MW-3C, MW-7B, MW-8A, and MW-8B) were constructed with 5-foot well screens. A sand pack was placed around each well screen as the temporary drill casing was removed, and a bentonite seal was then placed above the sand pack. Bentonite chips were used to backfill the annular space seal of MW-8 because this well was installed at a shallow depth. The annular spaces of all peizometers were backfilled with bentonite slurry tremied in place. Well MW-2B, installed in an asphalt parking lot, was encased in a flush mount protective well casing cemented in place. The remaining wells were encased in above ground (stick-up) protective well casing with locking caps. Well construction forms are included in Appendix A.

A minimum of 12 hours after well installation, each well was developed by surging and purging 10-well volumes. The reference elevation of each new was also surveyed relative to existing site datum. Well development reports are also included in Appendix A. All drilling, well abandonment, well construction, and well development was completed in accordance with Wisconsin Administrative Code NR 141 requirements.

#### 3.3 GROUNDWATER SAMPLE COLLECTION

A round of groundwater samples was collected from all existing wells following the installation of additional wells in September 2006. Prior to sample collection, four well casing volumes were purged from each well. Samples were collected with bailers equipped with bottom emptying devices; a bailer was dedicated to each well. Laboratory provided containers were filled, held in a cooler on ice, and shipped to ECCS, a Wisconsin-certified environmental laboratory for analyses. All samples were analyzed for volatile organic compounds (VOCs) by USEPA method 8260. In accordance with WDNR guidance, two duplicate samples and a trip blank were also analyzed for VOCs. Laboratory reports are included in Appendix C, and groundwater monitoring results are discussed in Section 4.3.

Static water levels prior to sample collection were also used to calculate groundwater elevations and prepare water table and potentiometric surface maps. Groundwater elevations measured on October 25, 2007 are shown on Figure 6. The potentimeteric surface for A hozizon piezometers (MW-2A, MW-3A, MW-4A, MW-6A, MW-7A, and MW-8A) is shown on Figure 6A, and the potentiometric surface of B horizon wells (MW-2B, MW-3B, MW-7B, and MW-8B) is shown on Figure 6B. Water levels were also measured on December 11, 2007<sup>4</sup>. Depth to water measurements and groundwater elevations are summarized in Table 1.

<sup>&</sup>lt;sup>4</sup> No water levels were measured at the MW-2 and MW-6 well nests on December 11; these wells were buried beneath large piles of snow.

#### 4.1 GEOLOGY AND HYDROGEOLOGY

#### 4.1.1 Regional Geology

Geology in the vicinity of Fort Atkinson consists of alluvial deposits along the Rock River underlain by Pleistocene aged glacial sediments overlying Paleozoic aged sedimentary bedrock units. Glacial deposits include ground moraine, outwash deposits, and loess deposits. Bedrock units include Ordovician aged shales, dolomites, and sandstone units overlying Cambrian aged sandstone.

Depth to bedrock beneath the DB Oak property is unknown. However, bedrock was encountered at a depth of 325 feet below the ground surface at the City of Fort Atkinson Well No. 6, and at depths of 252 and 277 feet below ground surface at City Well Nos. 3 and 4, respectively. As shown on Figure 1, well No. 6 is located approximately  $\frac{3}{4}$  mile west of the DB Oak facility, and well Nos. 3 and 4 are located approximately  $\frac{3}{4}$  miles to the south. Geologic units are shown on City well construction forms included in Appendix D.

#### 4.1.2 Regional Hydrogeology

The upper most water bearing units in the vicinity of Fort Atkinson are the unconsolidated deposits. Groundwater is typically encountered within 20 feet of the ground surface, and the direction of groundwater flow is likely towards the nearby Rock River.

The City of Fort Atkinson utilizes five wells (well Nos. 3, 4, 5, 6, and 7) to obtain water from the deep bedrock aquifer for the municipal water supply. Water supply wells are between 985 and 1,066 feet deep, and are cased to bedrock encountered at depths between 250 and 325 feet below the ground surface. The regional direction of groundwater flow in the underlying bedrock aquifers is unknown. However, groundwater flow in the vicinity of the high capacity municipal water supply wells is likely influenced by localized cones of depression surrounding each well. City well Nos. 3, 4, 5, and 6 are shown on Figure 1<sup>5</sup>.

<sup>&</sup>lt;sup>5</sup> City well No. 7 is not shown on Figure 1; records indicate that it is located on Jamesway Street, which is located south-southeast of Well No. 5 but not shown on this figure.

#### 4.1.3 Site Geology

Soil samples collected from site well borings identified shallow interbedded subsurface soil units consisting of clayey silt, silty clay, silt, clayey sand, silty sand, and sand. In general, fine grained interbedded soil units (silty clay and silt) were encountered in the upper portion of each monitoring well boring. A fine to medium grained sand unit with interbedded silt and silty clay lenses was encountered beneath these shallow interbedded units. Soil boring logs for monitoring well borings are included in Appendix A. Soil units are described in detail on soil boring logs included in Appendix A, and shown on the Geologic Cross-Section included as Figure 7.

Interbedded silty clay and sandy clay units were encountered to 25 feet bgs at the MW-8 well nest. As shown on Figure 7, shallow interbedded silty clay, silt, clayey sand, and sand unit were also encountered within 15 feet of the ground surface at the MW-1, MW-2, MW-3, MW-4, MW-5, and MW-7 borings. In the MW-2A boring, interbedded silt and silty clay lenses were encountered at depths between 17 and 28 feet bgs (this unit was also encountered at depths between 19 and 32 feet in the MW-2B boring). A clean poorly graded fine to medium grained sand was encountered beneath shallow interbedded fine grained soils at the MW-2, MW-3, and MW-4 locations. At MW-6 and MW-7, a dense fine-grained silty sand was encountered beneath the shallow interbedded soil units. This dense silty sand likely represents a glacial till deposit, while the sand encountered at depth in the remaining piezometers likely represents glacial outwash deposits.

The glacial till was encountered to the limits of exploration (41 feet bgs) at the MW-6A location, and to a depth of 28 feet bgs at MW-7A location. At the MW-7 location, the glacial till overlies outwash sand, which was encountered to the limit of exploration (100 feet bgs). This outwash sand was also encountered at depth in the MW-2, MW-3, MW-4, MW-7, and MW-8 locations. However, several fine-grained soil units were also encountered interbedded in the outwash sand unit. A two-foot thick silty clay was encountered at 93-feet bgs in the MW-2B boring. At the MW-3 well nest, silty clay was encountered between 35 and 41 feet bgs, and silt units were encountered between 48 and 51 and between 60 and 76 feet bgs. Silty clays were also encountered between 90 and 92, 100 and 125, and 132 and 145 bgs in the MW-3C boring. At the MW-8 well nest, a silty clay was encountered between 37 and 45 feet bgs, and, thin silts (one to two feet thick) were encountered at 64, 70, and at 80 feet bgs, and interbedded silt and silty clays were encountered between 84 and 114 feet bgs. No interbedded soil units were encountered in the MW-7B boring; outwash sand was encountered between 28 to 100 feet bgs at this location.

#### 4.1.4 Site Hydrogeology

Data obtained from site monitoring wells were used to evaluate site hydrogeologic conditions. As described in Sections 2 and 3 above, previously completed hydrogeologic investigations consisted of the installation of water table observation wells and in-situ permeability testing. Additional wells installed in September 2007 and groundwater elevations measured on October 25, 2007 were used to further evaluate groundwater flow conditions. The top of well casing elevation for each well and the ground surface elevation at each well location was surveyed relative to mean sea level datum. Prior to collecting October 2007 groundwater samples, static water levels were measured in all site monitoring wells. Reference elevations, ground surface elevations, depth to water measurements, and groundwater elevations are summarized in Table 1.

In October 2007, groundwater was encountered in site water table observation wells at depths between 1.5 feet bgs at MW-8 to 13 feet bgs at MW-6. On the east side of the DB Oak building, groundwater was encountered approximately 9.5-feet bgs at MW-2,  $3\frac{1}{2}$ -feet bgs at MW-3, and 5-feet bgs at well MW-4 and MW-5. Groundwater elevations across the site ranged from 792 feet mean sea level (msl) on the north end to 782 feet msl on the south end of the site. Groundwater elevations for A horizon piezometers ranged from 791 feet msl on the north end to 781 on the south end of the site, and elevations for B horizon piezometers ranged from 784 on the north end of the site to 782 on the south end of the site. Based in these elevations, the direction of groundwater flow is south-southeast. Groundwater elevations measured in site water table observation wells in October 2007 are shown on Figure 6. Groundwater elevations measured for A horizon piezometers are shown on Figure 6A, and groundwater elevations measured for B horizon piezometers are shown on Figure 6B.

As shown on Figure 6, wells MW-1, MW-2, and MW-7 are located within a small groundwater depression. The shallow groundwater flow regime in this area is likely influenced by a drainage ditch originating at a storm drain outfall near MW-2 and extending south parallel to the railway towards the MW-6 well nest. This depression likely represents a discharge zone. However, groundwater discharge in this area is limited the shallow groundwater flow regime; this depression is not apparent in the potentiometric surfaces for A and B horizon piezometers (see figure 6A and 6B).

Horizontal gradients were calculated using October 2007 groundwater elevations. The horizontal hydraulic gradient in the shallow aquifer between MW-2A and MW-4A is 0.025 ft/ft. The horizontal gradient calculated from piezometers yielded gradients of 0.018 ft/ft for A

horizon piezometers and 0.005 ft/ft for B horizon piezometers. As described in Section 2.2.2, the hydraulic conductivities in the vicinity of on-site monitoring well screens were determined from in-situ permeability tests performed on all wells. As shown in Table 2, the average hydraulic conductivity derived from water table observation wells is 3.32 x 10-3 cm/sec, and the average hydraulic conductivity derived from piezometers is 2.28 x 10-2 cm/sec. The average linear velocity of groundwater was calculated from the following equation:

$$v = \underline{ki}$$

where:

v = average linear velocity of groundwater

k = hydraulic conductivity

i = horizontal gradient

n = porosity

Assuming a porosity of 25%, a horizontal gradient of 0.025 ft/ft, the average linear velocity for shallow groundwater is 0.94 feet per day, or approximately 343 feet per year. Assuming a porosity of 25%, and horizontal gradients of 0.018 ft/ft (measured for A horizon piezometers) and 0.005 ft/ft (measured for B horizon piezometers), the average linear velocity for the underlying outwash sand unit ranges from 491 to 1,697 feet per year.

Estimated vertical gradients were also calculated between well nests. Slight downward vertical gradients were observed between water table wells and shallow (A horizon) piezometers at the MW-2/2A (0.0016 ft/ft), MW-4/4A (0.0004 ft/ft), and MW-7/7A (0.0029 ft/ft) locations. However, moderate vertical gradients were observed at MW-3/3A (0.127 ft/ft), MW-6/6A (0.173 ft/ft), and MW-8/8A (0.2 ft/ft). A similar trend was observed between water table wells and deep (B horizon) piezometers. Slight downward vertical gradients were observed at MW-2/2B (0.0021 ft/ft) and MW-7/7B (0.0013 ft/ft), but moderate vertical gradients were observed at MW-3/3B (0.07 ft/ft) and MW-8/8B (0.1 ft/ft). Very slight downward vertical gradients were also observed between A and B horizon piezometers at MW-2A/2B (0.0024 ft/ft), MW-3A/3B (0.0025 ft/ft), and MW-7A/7B (0.0002 ft/ft); no gradient was observed at MW-8A/8B.

Very slight vertical gradients between A and B horizon piezometers at MW-2A/B, MW-3A/3B, MW-7A/7B, and MW-8A/8B indicate that flow is essentially horizontal in the underlying outwash sand unit. Slight vertical gradients were also observed at well nests MW-2, MW-4, and MW-7. Well screens for both water table observation wells and piezometers intersect the

outwash sand unit at these locations, and slight vertical gradients indicate that groundwater flow is essentially horizontal in this unit. However, moderately strong downward vertical gradients observed at MW-3 and MW-8 locations indicate that the shallow interbedded fine grained soils restrict the vertical movement of groundwater between hydrogeologic units. Well screens for MW-3 and MW-8 do not intersect the underlying outwash sand unit. The moderate downward vertical gradients observed at the MW-6/MW-6A well nest also indicates a restriction of groundwater between the upper and lower portions of the glacial till; the silt and clay content increases below 24 feet at the MW-6 well nest.

#### 4.2 CONTAMINANT CHARACTERIZATION - SOIL

#### 4.2.1 Soil Sample Results

Chlorinated VOCs were detected in soil samples collected from Geoprobe borings advanced in the loading dock and driveway area on the east side of the DB Oak facility building. As with groundwater samples, PCE is the primary constituent of concern detected in soil samples, but degradation products for PCE (TCE, cis-DCE, 1,1-DCE, and vinyl chloride) were also detected in soil samples. Soil sample results and isoconcentration contours showing total VOC concentrations were presented in the November 2005 Site Investigation Report. These results were used to design the ISVE system for soil remediation described in Section 1.2 above.

#### 4.2.2 Soil Contaminant Distribution

Mobile soil sample results indicate that PCE and PCE degradation constituents are present at elevated concentrations on the east side of the DB Oak property between the facility building and the railway line. As shown on Figure 5, total VOC concentrations exceed 10,000 ppb (10 ppm) in a source area located in the vicinity of the former PCE tank near wells MW-4/MW-4A, and in source areas located adjacent to the loading dock area near wells MW-3/MW-3A. The lateral extent of total VOCs exceeding 1 ppm is also shown on Figure 5. Additional soil samples are needed to compare with pre-remediation conditions to evaluate the effectiveness of the ISVE system.

#### 4.3 CONTAMINANT CHARACTERIZATION - GROUNDWATER

#### 4.3.1 Groundwater Sample Results

Groundwater sample results for zone samples collected in September 2007 and samples collected from all monitoring wells in October 2007 verify that chlorinated volatile organic compounds (VOCs) have impacted groundwater quality on the DB Oaks property. The primary constituents of concern detected in groundwater samples are PCE and related degradation products of PCE<sup>6</sup>. September 2007 groundwater zone sampling results are summarized in Table 3, and October 2007 groundwater monitoring results are summarized in Table 4. Historic groundwater sample results are summarized on Table 5.

#### 4.3.2 Groundwater Contaminant Distribution

The lateral extent of total VOCs detected in water table wells is shown on Figure 6. No VOCs were detected in October 2007 samples collected from wells MW-1, MW-5, MW-6, and MW-8; low VOC concentration were detected in the MW-7 sample. These results indicate the lateral extent of contamination to the north, west, and southwest has been defined. However, elevated concentrations of chlorinated VOCs were detected in samples collected from wells MW-2, MW-3, and MW-4. The highest concentrations of VOCs have historically been detected in MW-3 samples indicating a source area near this well. PCE has consistently been detected at elevated concentrations in MW-3 samples indicating it was the primary compound released. Elevated PCE concentrations in MW-4 samples also indicate a source area near the former PCE tank. Well MW-2 is located down gradient from these source areas.

Groundwater samples collected at depth indicate that chlorinated VOCs have also migrated vertically on the east side of the DB Oak facility; chlorinated VOC results are summarized on Figure 7. As shown in Figure 7A, the vertical extent of total VOCs is greatest at the MW-3 well nest. Elevated concentrations of VOCs were detected in samples collected from shallow down gradient piezometers MW-2A and MW-7A, but contaminant concentrations declined with depth. VOC concentrations declined significantly below the 60 to 65 foot sample intervals at the MW-2B and MW-7B borings, but elevated VOCs were detected below 100 feet in samples collected

<sup>&</sup>lt;sup>6</sup> Degradation products, or daughter products of PCE include trichloroethene (TCE), 1,1-dichloroethene (1,1 DCE), cis-1,2-dichloroethene (cis-DCE), trans-1,2-dichloroethene (trans-DCE) and vinyl chloride.

from the MW-3C boring. No VOCs were detected in September 2007 samples collected from the MW-8B boring; October 2007 samples collected from wells MW-8, MW-8A, and MW-8B confirm these results<sup>7</sup>. Additionally, no VOCs were detected from the MW-6A sample. The lateral extent of total VOC concentrations for A and B horizon piezometers are show on Figures 6A and 6B, respectively.

PCE concentrations in zone samples collected from the MW-3C well boring and from piezometers MW-3A, MW-3B, and MW-3C indicate that PCE migrated vertically through the saturated zone. The lithology encountered at the MW-3 well nest may also influence contaminant migration and the vertical distribution of contaminants. As shown on Figure 7, piezometers MW-3A, MW-3B, and MW-3C are screened in silty sand interbedded with silty clay units. The fine grained low permeability units may restrict the vertical migration of contaminants, but PCE could be adsorbed onto the silt and silty clay soil matrix, which would then slowly diffuse into groundwater flowing through permeable sands.

Groundwater samples collected from down gradient well nests indicate that PCE is degrading to TCE and cis-DCE with distance laterally from PCE source areas. The formation of degradation products indicates that reductive dechlorination of PCE is occurring in the subsurface; PCE degrades to TCE, which degrades to cis-DCE, and then to vinyl chloride. The presence of PCE and degradation products indicate that reductive dechlorination of PCE has occurred over time in the source area and at down gradient locations. Because degradation products (TCE, cis-DCE and vinyl chloride) are also more soluble than PCE, and therefore more mobile in groundwater than PCE, a dissolved phase chlorinated VOC plume has formed down gradient from the source area. The vertical extent of PCE and cisDCE in September and October 2007 groundwater samples are shown on Figures 7B and 7C, respectively.

Although deep groundwater contamination is present beneath the east side of the facility, samples collected from the MW-3 well nest indicates that total VOC concentrations generally decline with depth. Additionally, elevated concentrations of cisDCE in MW-3, MW-3A, MW-3B, and MW-3C samples indicate that reductive dechlorination of PCE has occurred as it migrated vertically. PCE declined from 10,000 µg/l in the MW-3 sample to 2,100 µg/l in the

<sup>&</sup>lt;sup>7</sup> Low concentration of bromodichloromethane, bromoform, chloroform, and dibromochloromethane were detected in the October 2007 MW-8A sample. These results appear anomalous because these compounds were not detected in any other October samples. Additional samples will be needed to verify that these constituents are not associated with the PCE release.

MW-3A sample while cisDCE increased from 5,800  $\mu$ g/l in the MW-3 sample to 11,000  $\mu$ g/l in the MW-3A sample. In MW-3C samples, both PCE (3.2  $\mu$ g/l) and cisDCE (110  $\mu$ g/l) were detected at significantly lower concentrations. However, there are two exceptions to this declining trend. PCE concentrations increased with depth between MW-3A and MW-3B, and cisDCE concentrations increased between MW-3B and the 100 to 105-foot zone sample collected from the MW-3C boring.

A Phase I ESA completed in 1994 identified former petroleum storage tanks and a former PCE storage tank on the DB Oak property. A subsequent Phase II ESA was completed in March 1994. The Phase II ESA identified soil and groundwater contamination in the vicinity of the former petroleum and PCE tanks. Results of that preliminary investigation indicated that a release from the petroleum tanks had not occurred, but PCE and other chlorinated VOCs were detected in soil and groundwater samples. This release was subsequently reported to the WDNR, and the Agency requested that Thomas Industries complete a site investigation to identify the lateral and vertical extent of subsurface contamination associated with the PCE release.

On behalf of Thomas, NewFields submitted a work plan to the WDNR in November 2004, and completed an initial hydrogeologic investigation in December 2004. Results of that investigation and recommendations for additional investigation were presented in a February 2005 status report. Additional investigation was subsequently completed between April and June 2005. These site investigation results were presented in a November 2005 Site Investigation Report, and were discussed with the WDNR during a December 1, 2005 meeting. The WDNR concurred with recommendations in that report and requested the installation of an additional side gradient well nest (MW-7 and MW-7A) and a deep piezometer (MW-3B) at the source area. A Work Plan for a supplemental site investigation was submitted on January 25, 2006, and the supplemental site investigation completed in March 2006. Results were presented in a May 2006 status report.

Elevated concentrations of chlorinated VOCs detected in soil samples collected from Geoprobe borings advanced near the former PCE tank and loading dock areas indicate that source areas are located on the east side of the DB Oak facility building. Chlorinated VOCs were detected in soil samples collected from the saturated and unsaturated zones. Site investigation results indicate that contaminants have absorbed into the fine-grained soil matrix encountered at shallow depths in this area. Because groundwater is encountered at shallow depths, these contaminated soils are a source for groundwater contamination.

Prior to additional site investigation, Thomas Industries elected to implement site remediation in two phases. Soil remediation would be performed during the first phase, and followed by groundwater remediation performed as the second phase after the effects of soil remediation on groundwater were better understood. In a letter dated September 8, 2006 an ISVE system (and soil conditioning) was conditionally approved as an interim remedial response by the WDNR. Soil conditioning and subsurface piping was installed in the loading dock area on the east side of

the facility building between October and December 2006. Final grading was completed in March 2007, and the system operated between June and October 2007.

Approval conditions for the interim remedial response described in the WDNR's September 8, 2006 letter include further identification of the vertical extent of groundwater contamination at the MW-2, MW-3, and MW-7 well nest locations, and identification of the lateral and vertical extent of contamination in the area north of MW-7. NewFields submitted a July 25, 2007 Work Plan for zone sampling and well installation at these well locations. Zone groundwater samples were collected to further characterize the vertical extent of groundwater contamination, and to select screen intervals for deep piezometers. Zone samples and well installation was completed in September 2007; a round of groundwater samples was also collected from all site wells in October 2007.

Prior to sample collection, water levels were measured in all site wells and used to calculate groundwater elevations. Based on these elevations, the direction of groundwater flow at that time was south-southeast. October 2007 groundwater elevations indicate that a small groundwater depression is located at the south side of the DB Oak facility (see Figure 6). This shallow groundwater flow regime is likely influenced by a drainage ditch originating at a storm drain outfall near MW-2, which extends south parallel to the railway toward the MW-6 well nest. This depression likely represents a discharge zone. However, groundwater discharge in this area is limited the shallow groundwater flow regime; this depression is not apparent in potentiometric surfaces for A and B horizon piezometers (see figure 6A and 6B).

Recently collected groundwater samples verify that groundwater quality has been impacted by chlorinated VOCs. PCE is the primary constituent of concern that exceeds groundwater quality standards, but degradation products of PCE (TCE, cis-DCE, 1,1-DCE, and vinyl chloride), and trans-DCE also exceed standards. The highest concentrations of chlorinated VOCs were detected in samples collected from MW-3 located adjacent to facility loading docks, and from MW-4 located adjacent to the former PCE tank. Elevated concentrations of chlorinated VOCs were also detected in samples collected from down gradient well MW-2. However, no VOCs were detected in October 2007 samples collected from wells MW-1, MW-5, MW-6, and MW-8; only low VOC concentrations were detected in the MW-7 sample. These results indicate the lateral extent of contamination to the north, west, and southwest has been defined.

The highest concentrations of VOCs have historically been were detected in the MW-3 samples indicating a source area near this well. PCE has consistently been detected at elevated

concentrations in the MW-3 samples indicating it was the primary compound released. However, elevated concentration of PCE in the MW-4 sample also indicates a source area near the former PCE tank. PCE concentrations in zone samples collected from the MW-3C boring and from piezometers MW-3A, MW-3B, and MW-3C indicate that PCE migrated vertically through the saturated zone on the east side of the DB Oak facility. The vertical extent of total VOCs is greatest at the MW-3 well nest. Elevated concentrations of VOCs were also detected in samples collected from shallow down gradient piezometers MW-2A and MW-7A, but contaminant concentrations declined with depth. VOC concentrations declined significantly below the 60 to 65 foot sample intervals at the MW-2B and MW-7B borings, but elevated VOCs were detected below 100 feet in samples collected from the MW-3C boring.

Groundwater samples collected from down gradient well MW-2 indicate that PCE is degrading to TCE and cis-DCE with distance laterally from PCE source areas. Elevated concentrations of cisDCE in samples collected at depth and with distance from the source area indicate that reductive dechlorination of PCE has occurred as it migrated both laterally and vertically. Because degradation products (TCE, cis-DCE and vinyl chloride) are also more soluble than PCE, and therefore more mobile in groundwater than PCE, a dissolved phase chlorinated VOC plume has formed down gradient from the source area.

PCE concentrations in zone samples collected from the MW-3C boring and from piezometers MW-3A, MW-3B, and MW-3C indicate that PCE migrated vertically through the saturated zone at the east side of the DB Oak facility. The lithology encountered at the MW-3 well nest has also likely has influenced the vertical distribution of contaminants. Piezometers MW-3A, MW-3B, and MW-3C are screened in silty sands interbedded with silts and silty clays. These fine grained low permeability units may restrict the vertical migration of contaminants.

Although deep groundwater contamination is present beneath the east side of the facility, samples collected at the MW-3 well nest indicates that total VOC concentrations generally decline with depth, but there are two exceptions to this declining trend. PCE concentrations increased with depth between MW-3A and MW-3B, and cisDCE concentrations increased between MW-3B and the 100 to 105-foot zone sample collected from the MW-3C boring. These results may indicate that PCE also migrated vertically at an up gradient location, most likely the former PCE tank adjacent to the MW-4 well nest.

NewFields recommend the collection of additional data from the existing monitoring network. Water levels should be measured in all existing wells in February and April 2007 to verify groundwater flow conditions. An additional round of groundwater samples should also be collected from all existing wells in April 2007. These results will be used to evaluate potential remedial responses for groundwater, which may include the installation of additional monitoring wells.

31 ... 12 ren 2018

Phase II Environmental Site Assessment, D.B. Oak Property, 700-710 Oak Street, Fort Atkinson, Wisconsin, ATEC Project No. 74-07-95-00018. Prepared by ATEC Associates, Inc. April 26, 1995.

Work Plan for Hydrogeologic Site Investigation and Evaluation of Potential Remedial Responses. Prepared by NewFields, November 8, 2004.

Hydrogeologic Site Investigation Status Report, D.B. Oaks Facility, 700-710 Oak Street, Ft. Atkinson, Wisconsin. Prepared by NewFields, February 11, 2005.

Site Investigation Status Report, D.B. Oaks Facility, 700-710 Oak Street, Ft. Atkinson, Wisconsin. Prepared by NewFields, November 10, 2005.

Supplemental Site Investigation Status Report, D.B. Oaks Facility, 700-710 Oak Street, Ft. Atkinson, Wisconsin. Prepared by NewFields, May 3, 2006.

Design Plan for Soil Remediation System, D.B. Oaks Facility in Ft. Atkinson, Wisconsin. Prepared by RMT, August 2006.

Construction Documentation Report for Soil Remediation System, D.B. Oaks Facility in Ft. Atkinson, Wisconsin. Prepared by RMT, May 2, 2007.

Quarterly Progress Report, D.B. Oaks Facility – WDNR BRRTs #03-28-176509, Ft. Atkinson, Wisconsin. Prepared by RMT, December 6, 2007.

**Tables** 

Table 1
Groundwater Elevations
DB Oaks Facility, Fort Atkinson, Wisconsin

| Well Date Well Installed | ell Reference | Ground   | Depth to             | Depth to         | Top of              | Bottom of           | October 25, 2007    |                   | December 13, 2007        |                   |                          |
|--------------------------|---------------|----------|----------------------|------------------|---------------------|---------------------|---------------------|-------------------|--------------------------|-------------------|--------------------------|
|                          | Installed     | <b>I</b> | Surface<br>Elevation | Top of<br>Screen | Bottom<br>of Screen | Screen<br>Elevation | Screen<br>Elevation | Depth to<br>Water | Groundwater<br>Elevation | Depth to<br>Water | Groundwater<br>Elevation |
| MW-1                     | Dec. 2004     | 793.36   | 791.3                | 8                | 18                  | 783.3               | 773.3               | 11.21             | 782.15                   | 1.21              | 781.15                   |
| MW-2                     | Dec. 2004     | 791.21   | 791.5                | 5.5              | 15.5                | 786.0               | 776.0               | 9.24              | 781.97                   | (1)               | (1)                      |
| MW-2A                    | Dec. 2004     | 791.27   | 791.5                | 35               | 4                   | 756.5               | 751.5               | 9.34              | 781.93                   | (1)               | (1)                      |
| MW-2B                    | Sep. 2007     | 791.20   | 791.5                | 75               | 80                  | 716.10              | 711.1               | 9.38              | 781.82                   | (1)               | (1)                      |
| MW-3                     | Dec. 2004     | 793.20   | 790.9                | 3                | 13                  | 787.9               | 777.9               | 5.84              | 787.36                   | 6.25              | 786.95                   |
| MW-3A                    | Apr. 2005     | 793.51   | 790.9                | 43               | 48                  | 747.9               | 742.9               | 10.88             | 782.63                   | 11.66             | 781.85                   |
| MW-3B                    | Mar. 2006     | 793.50   | 791.1                | 75               | 80                  | 716.1               | 711.1               | 10.90             | 782.55                   | 11.70             | 781.75                   |
| MW-3C                    | Sep. 2007     | 793.49   | 791.0                | 125              | 130                 | 666.0               | 661.0               | 14.52             | 778.97                   | 11.75             | 781.74                   |
| MW-4                     | Dec. 2004     | 799.24   | 796.8                | 5                | 15                  | 791.8               | 781.8               | 7.65              | 791.59                   | 7.58              | 791.66                   |
| MW-4A                    | Dec. 2004     | 799.13   | 797.1                | 34               | 39                  | 763.1               | 758.1               | 7.55              | 791.58                   | 7.48              | 791.65                   |
| MW-5                     | Dec. 2004     | 798.51   | 796.2                | 4                | 14                  | 792.2               | 782.2               | 7.34              | 791.17                   | 7.03              | 791.48                   |
| MW-6                     | Apr. 2005     | 797.29   | 797.7                | 6                | 16                  | 791.7               | 781.7               | 12.47             | 784.82                   | (1)               | (1)                      |
| MW-6A                    | Apr. 2005     | 797.45   | 797.8                | 35               | 40                  | 762.8               | 757.8               | 16.60             | 780.85                   | (1)               | (1)                      |
| MW-7                     | Mar. 2006     | 794.48   | 792.0                | 10               | 20                  | 782.0               | 772                 | 12.15             | 782.33                   | 13.03             | 781.45                   |
| MW-7A                    | Mar. 2006     | 794.28   | 792.1                | 40               | 45                  | 751.1               | 747.1               | 12.03             | 782.25                   | 13.01             | 781.27                   |
| MW-7B                    | Sep. 2007     | 794.24   | 791.8                | 80               | 85                  | 711.8               | 706.8               | 12.00             | 782.24                   | 12.97             | 781.27                   |
| MW-8                     | Sep. 2007     | 795.03   | 792.8                | 10               | 20                  | 782.8               | 772.8               | 3.75              | 791.28                   | 3.76              | 791.27                   |
| MW-8A                    | Sep. 2007     | 795.17   | 792.8                | 45               | 50                  | 747.8               | 742.8               | 11.25             | 783.92                   | 11.99             | 783.18                   |
| MW-8B                    | Sep. 2007     | 795.19   | 792.7                | 80               | 85                  | 712.7               | 707.7               | 11.27             | 783.92                   | 12.01             | 783.18                   |

<sup>(1)</sup> Flush mount wells covered by large snow piles.

Note: Wells MW-1, MW-2, MW-2A, MW-3A, MW-4A, MW-4A, and MW-5 were installed in December 2004. Wells MW-3A, MW-6, and MW-6A were installed in April 2005. The remaining wells (MW-2B, MW-3C, MW-7B, MW-8A, and MW-8B) were installed in September 2007. Reference elevations surveyed by Woodman & Associates following well installation.

Table 2
Summary of In-Situ Hydraulic Conductivity Test Results
DB Oaks Facility, Fort Atkinson, Wisconsin

| Well Hydraulic Location Conductivity (cm/sec) |                         | Trial #2 Hydraulic Conductivity (cm/sec)   | Trial #3 Hydraulic Conductivity (cm/sec) | Water Table Observation Well Average Hydraulic Conductivity (cm/sec) | Piezometer Average Hydraulic Conductivity (cm/sec) |  |  |
|-----------------------------------------------|-------------------------|--------------------------------------------|------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|--|--|
| MW-1                                          | 3.53 x 10 <sup>-3</sup> | 7.06 x 10 <sup>-3</sup>                    |                                          | 5.30 x 10 <sup>-3</sup>                                              |                                                    |  |  |
| MW-2                                          | 1.06 x 10 <sup>-3</sup> | 1.06 x 10 <sup>-3</sup>                    |                                          | 1.06 x 10 <sup>-3</sup>                                              |                                                    |  |  |
| MW-2A                                         | 1.69 x 10 <sup>-2</sup> | x 10 <sup>-2</sup> 1.76 x 10 <sup>-2</sup> |                                          |                                                                      | 1.73 x 10 <sup>-2</sup>                            |  |  |
| MW-3                                          | 1.76 x 10 <sup>-3</sup> | 2.82 x 10 <sup>-3</sup>                    |                                          | 2.29 x 10 <sup>-3</sup>                                              |                                                    |  |  |
| MW-4                                          | 3.53 x 10 <sup>-3</sup> | 7.06 x 10 <sup>-3</sup>                    | ·                                        | 5.30 x 10 <sup>-3</sup>                                              | **************************************             |  |  |
| MW-4A                                         | 2.54 x 10 <sup>-2</sup> | 2.96 x 10 <sup>-2</sup>                    | 2.96 x 10 <sup>-2</sup>                  |                                                                      | 2.82 x 10 <sup>-2</sup>                            |  |  |
| MW-5                                          | 2.12 x 10 <sup>-3</sup> | 3.18 x 10 <sup>-3</sup>                    |                                          | 2.65 x 10 <sup>-3</sup>                                              |                                                    |  |  |
|                                               |                         | 1                                          | Average                                  | 3.32 x 10 <sup>-3</sup>                                              | 2.28 x 10 <sup>-2</sup>                            |  |  |

Table 3 September 2007 Zone Groundwater Sample Results – Volatile Organic Compounds (VOCs) DB Oaks Facility, Fort Atkinson, Wisconsin

| Constituent                      |       | MW-2B |         |         | MW-3C   |         |       | MW-7B |        |        | MW    | ′-8B   |         | PAL  | ES  |
|----------------------------------|-------|-------|---------|---------|---------|---------|-------|-------|--------|--------|-------|--------|---------|------|-----|
| Sample Interval (feet)           | 60-65 | 80-85 | 100-105 | 100-105 | 120-125 | 130-135 | 60-65 | 80-85 | 95-100 | 30-35  | 60-65 | 80-85  | 100-105 |      |     |
| 1,1-Dichloroethene (DCE)         | <13   | <1.0  | <0.50   | 18      | <1.5    | <20     | <5.0  | <0.50 | <0.50  | < 0.50 | <0.50 | < 0.50 | <0.50   | 0.7  | 7   |
| trans-1,2-Dichloroethene (t-DCE) | <13   | <1.7  | <1.7    | 110     | 12      | 4.1     | <5.0  | <0.50 | <0.50  | <0.50  | <0.50 | <0.50  | <0.50   | 20   | 100 |
| cis-1,2-Dichloroethene (c-DCE)   | 660   | 11    | 1.5     | 9,300   | 1,000   | 530     | 17    | <0.50 | <0.50  | < 0.50 | <0.50 | < 0.50 | <0.50   | 7    | 70  |
| Trichloreethene (TCE)            | 150   | 6.2   | 0.65    | 31      | 13      | 5.4     | 20    | 0.87  | <0.50  | < 0.50 | <0.50 | < 0.50 | <0.50   | 0.5  | 5   |
| Tetrachloroethene (PCE)          | 560   | 23    | 2.8     | 93      | 35      | 12      | 92    | 6.7   | 4.2    | <0.50  | <0.50 | < 0.50 | <0.50   | 0.5  | 5   |
| Vinyl Chloride (VC)              | <13   | <1.7  | <5      | 160     | 8.2     | 2.1     | <5.0  | <0.50 | <0.50  | <0.50  | <0.50 | < 0.50 | <0.50   | 0.02 | 0.2 |
| Total VOCs                       | 1,370 | 40.2  | 4.95    | 9,584   | 10,56.2 | 549.5   | 129   | 7.57  | 4.2    | 0      | 0     | 0      | 0       |      |     |

PAL - Preventive Action Limit per Wisconsin Admin. Code sec. NR 141.10.

ES - Enforcement Standard per Wisconsin Admin. Code sec. NR 141.10.

Concentrations exceeding the PAL are in italics. Concentrations exceeding the ES have been shaded.

<sup>&</sup>lt; - Detected below Limit of Detection.

Table 4 (Page 1 of 2) October 2007 Groundwater Sample Results - Volatile Organic Compounds (VOCs) DB Oaks Facility, Fort Atkinson, Wisconsin

| Constituent                       | MW-1   | MW-2  | MW-2A | MW-2B  | MW-3   | MW-3A  | MW-3B | MW-3B (dup 2) | MW-3C | MW-4  | MW-4A  | PAL  | ES  |
|-----------------------------------|--------|-------|-------|--------|--------|--------|-------|---------------|-------|-------|--------|------|-----|
| Bromodichloromethane (BDCM)       | < 0.50 | <25   | <25   | < 0.50 | <200   | <125   | <100  | <100          | <1.0  | <25   | < 0.50 | 0.06 | 0.6 |
| Bromoform                         | < 0.50 | <25   | <25   | < 0.50 | <200   | <125   | <100  | <100          | <1.0  | <25   | < 0.50 | 0.44 | 4.4 |
| Chloroform                        | < 0.50 | <25   | <25   | < 0.50 | <200   | <125   | <100  | <100          | <1.0  | <25   | < 0.50 | 0.6  | 6   |
| Dibromochloromethane (DBCM)       | < 0.50 | <25   | <25   | < 0.50 | <200   | <125   | <100  | <100          | <1.0  | <25   | < 0.50 | 6    | 60  |
| 1,1-Dichloroethene (DCE)          | < 0.50 | <25   | <25   | < 0.50 | <200   | <125   | <100  | <100          | <1.0  | <25   | < 0.50 | 0.7  | 7   |
| trans-1,2-Dichloroethene (t-DCE)  | < 0.50 | <25   | <25   | < 0.50 | <200   | 190 J  | <100  | <100          | 1.0 J | <25   | < 0.50 | 20   | 100 |
| cis-1,2-Dichloroethene (c-DCE)    | < 0.50 | 1,800 | 1,800 | 19     | 5,800  | 11,000 | 330   | 310 J         | 110 E | 42 J  | < 0.50 | 7    | 70  |
| Trichlorethene (TCE)              | < 0.50 | 520   | 530   | 6.2    | 3,300  | 1,500  | 1,200 | 1,100         | 1.4 J | 1,500 | 8.5    | 0.5  | 5   |
| 1,1,2-Trichloroethane (1,1,2-TCA) | < 0.50 | <25   | <25   | < 0.50 | 400 J  | <125   | <100  | 190 J         | <1.0  | <25   | < 0.50 | 0.5  | 5   |
| Tetrachloroethene (PCE)           | < 0.50 | <25   | 360   | 15     | 10,000 | 2,100  | 5,300 | 5,200         | 3.2   | 2,000 | 1.2 J  | 0.5  | 5   |
| Vinyl Chloride (VC)               | < 0.50 | 27    | <25   | < 0.50 | 710    | 520    | <100  | <100          | 2.8   | <25   | < 0.50 | 0.02 | 0.2 |
| Total VOCs                        | 0      | 2,347 | 2,690 | 40     | 20,210 | 15,310 | 6,830 | 6,800         | 118.4 | 3,542 | 9.7    |      |     |

<sup>&</sup>lt; - Detected below Limit of Detection.

J -

PAL - Preventive Action Limit per Wisconsin Admin. Code sec. NR 141.10.

ES - Enforcement Standard per Wisconsin Admin. Code sec. NR 141.10.

Concentrations exceeding the PAL are in italics. Concentrations exceeding the ES have been shaded.

## Table 4 (Page 2 of 2) October 2007 Groundwater Sample Results – Volatile Organic Compounds (VOCs) D.B Oaks Facility, Fort Atkinson, Wisconsin

| Constituent                       | MW-5   | MW-6   | MW-6A  | MW-7   | MW-7A | MW-7A<br>(dup 1) | MW-7B  | MW-8   | MW-8A  | MW-8B  | PAL  | ES  |
|-----------------------------------|--------|--------|--------|--------|-------|------------------|--------|--------|--------|--------|------|-----|
| Bromodichloromethane (BDCM)       | < 0.50 | < 0.50 | < 0.50 | < 0.50 | <5.0  | <5.0             | < 0.50 | < 0.50 | 1.1 J  | < 0.50 | 0.06 | 0.6 |
| Bromoform                         | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 5.0 | < 5.0            | < 0.50 | < 0.50 | 0.82 J | < 0.50 | 0.44 | 4.4 |
| Chloroform                        | < 0.50 | < 0.50 | < 0.50 | < 0.50 | <5.0  | <5.0             | < 0.50 | < 0.50 | 1.1 J  | < 0.50 | 0.6  | 6   |
| Dibromochloromethane (DBCM)       | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 5.0 | <5.0             | < 0.50 | < 0.50 | 1.3 J  | < 0.50 | 6    | 60  |
| 1,1-Dichloroethene (DCE)          | < 0.50 | < 0.50 | < 0.50 | < 0.50 | <5.0  | <5.0             | < 0.50 | < 0.50 | < 0.50 | < 0.50 | 0.7  | 7   |
| trans-1,2-Dichloroethene (t-DCE)  | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 5.0 | <5.0             | < 0.50 | < 0.50 | < 0.50 | < 0.50 | 20   | 100 |
| cis-1,2-Dichloroethene (c-DCE)    | < 0.50 | < 0.50 | < 0.50 | < 0.50 | <5.0  | 310              | < 0.50 | < 0.50 | < 0.50 | < 0.50 | 7    | 70  |
| Trichlorethene (TCE)              | < 0.50 | < 0.50 | < 0.50 | 0.63   | 110   | 120              | 0.87 J | < 0.50 | < 0.50 | < 0.50 | 0.5  | 5   |
| 1,1,2-Trichloroethane (1,1,2-TCA) | < 0.50 | < 0.50 | < 0.50 | < 0.50 | <5.0  | <5.0             | < 0.50 | < 0.50 | < 0.50 | < 0.50 | 0.5  | 5   |
| Tetrachloroethene (PCE)           | < 0.50 | < 0.50 | < 0.50 | 3.5    | 310   | 390              | 6.9    | < 0.50 | < 0.50 | < 0.50 | 0.5  | 5   |
| Vinyl Chloride (VC)               | < 0.50 | < 0.50 | < 0.50 | < 0.50 | <5.0  | <5.0             | < 0.50 | < 0.50 | < 0.50 | < 0.50 | 0.02 | 0.2 |
| Total VOCs                        | 0      | 0      | 0      | 4.13   | 420   | 820              | 7.77   | 0      | 4.3    | 0      |      |     |

<sup>&</sup>lt; - Detected below Limit of Detection.

J -

PAL - Preventive Action Limit per Wisconsin Admin. Code sec. NR 141.10.

ES - Enforcement Standard per Wisconsin Admin. Code sec. NR 141.10.

Concentrations exceeding the PAL are in italics. Concentrations exceeding the ES have been shaded.

Table 5 (Page 1 of 2)
Historic Groundwater Sample Results – Volatile Organic Compounds (VOCs)
D.B Oaks Facility, Fort Atkinson, Wisconsin

|                                  |      |     | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 |
|----------------------------------|------|-----|------------|----------|-----------|-----------|------------|
| Constituent                      | PAL  | ES  | MW-1       | MW-1     | MW-1      | MW-1      | MW-1       |
| 1,1-Dichloroethene (DCE)         | 0.7  | 7   | <0.24      | <0.41    | <0.15     |           | <0.50      |
| trans-1,2-Dichloroethene (t-DCE) | 20   | 100 | <0.11      | < 0.35   | <0.17     |           | <0.50      |
| cis-1,2-Dichloroethene (c-DCE)   | 7    | 70  | 0.14       | <0.40    | <0.19     |           | <0.50      |
| Trichlorethene (TCE)             | 0.5  | 5   | <0.12      | <0.25    | 0.4       |           | <0.50      |
| Tetrachloroethene (PCE)          | 0.5  | 5   | <0.13      | <0.31    | <0.16     |           | <0.50      |
| Vinyl Chloride (VC)              | 0.02 | 0.2 | <0.16      | <0.11    | <0.2      |           | <0.50      |
| Total VOCs                       |      |     | 0.14       | 0        | 0.4       |           | 0          |

|                                  |      |     | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 |
|----------------------------------|------|-----|------------|----------|-----------|-----------|------------|------------|----------|-----------|-----------|------------|------------|----------|-----------|-----------|------------|
| Constituent                      | PAL  | ES  | MW-2       | MW-2     | MW-2      | MW-2      | MW-2       | MW-2A      | MW-2A    | MW-2A     | MW-2A     | MW-2A      | MW-2B      | MW-2B    | MW-2B     | MW-2B     | MW-2B      |
| 1,1-Dichloroethene (DCE)         | 0.7  | 7   | 18         | <210     | <76       |           | <25        | <12        | <10      | 16        |           | <25        |            |          |           |           | <0.50      |
| trans-1,2-Dichloroethene (t-DCE) | 20   | 100 | 32         | 160      | <85       |           | <25        | <5.4       | <8.7     | 20        |           | <25        |            |          |           |           | <0.50      |
| cis-1,2-Dichloroethene (c-DCE)   | 7    | 70  | 5,900      | 3,800    | 6,400     |           | 1,800      | 380        | 350      | 3,800     |           | 1,800      |            |          |           |           | 19         |
| Trichlorethene (TCE)             | 0.5  | 5   | 140        | 160      | 450       | <b></b>   | 520        | 69         | 83       | 700       |           | 530        |            |          |           |           | 6.2        |
| Tetrachloroethene (PCE)          | 0.5  | 5   | 120        | <150     | 190       |           | <25        | 44         | 110      | 320       |           | 360        |            |          |           |           | 15         |
| Vinyl Chloride (VC)              | 0.02 | 0.2 | 33         | <53      | <98       |           | 27         | 29         | 36       | 91        |           | <25        |            |          |           |           | <0.50      |
| Total VOCs                       |      |     | 6,243      | 4,120    | 7,040     |           | 2,347      | 522        | 579      | 4,947     |           | 2,690      |            |          |           |           | 40.2       |

|                                  |                |     | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 | 10/25/2007 |
|----------------------------------|----------------|-----|------------|----------|-----------|-----------|------------|------------|----------|-----------|-----------|------------|------------|----------|-----------|-----------|------------|------------|
| Constituent                      | PAL            | ES  | MW-3       | MW-3     | MW-3      | MW-3      | MW-3       | MW-3A      | MW-3A    | MW-3A     | MW-3A     | MW-3A      | MW-3B      | MW-3B    | MW-3B     | MW-3B     | MW-3B      | MW-3C      |
| 1,1-Dichloroethene (DCE)         | 0.7            | 7   | <1,200     | <1,000   | <380      | <140      | <200       |            | <210     | <76       | <140      | <125       | <b></b>    |          | <76       | <71       | <100       | <1.0       |
| trans-1,2-Dichloroethene (t-DCE) | 20             | 100 | <540       | <870     | <420      | <220      | <200       |            | 250      | 190       | <220      | 190        |            |          | <85       | <110      | <100       | 1          |
| cis-1,2-Dichloroethene (c-DCE)   | 7              | 70  | 6,800      | 2,600    | 3,500     | 3,000     | 5,800      |            | 13,000   | 12,000    | 14,000    | 11,000     | <b></b>    |          | 600       | 400       | 330        | 110        |
| Trichlorethene (TCE)             | 0.5            | 5   | 17,000     | 5,500    | 7,200     | 5,100     | 3,300      |            | 2,300    | 2,900     | 1,900     | 1,500      |            |          | 2,800     | 1,800     | 1,200      | 1.4        |
| Tetrachloroethene (PCE)          | 0.5            | 5   | 34,000     | 27,000   | 28,000    | 22,000    | 10,000     |            | 3,000    | 4,200     | 1,700     | 2,100      |            |          | 17,000    | 9,700     | 5,300      | 3.2        |
| Vinyl Chloride (VC)              | 0.02           | 0.2 | <820       | <270     | <490      | 79        | 710        |            | 910      | 740       | 580       | 520        |            |          | <98       | <22       | <100       | 2.8        |
| Total VOCs                       | ' <del>'</del> |     | 57,800     | 35,100   | 38,700    | 30,179    | 19,810     |            | 19,460   | 20,030    | 18,180    | 15,310     |            |          | 20,400    | 11,900    | 6,830      | 118.4      |

|                                  |      |     | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 |
|----------------------------------|------|-----|------------|----------|-----------|-----------|------------|------------|----------|-----------|-----------|------------|
| Constituent                      | PAL  | ES  | MW-4       | MW-4     | MW-4      | MW-4      | MW-4       | MW-4A      | MW-4A    | MW-4A     | MW-4A     | MW-4A      |
| 1,1-Dichloroethene (DCE)         | 0.7  | 7   | <120       | <210     | <150      |           | <25        | <0.24      | <0.41    | <0.15     |           | <0.50      |
| trans-1,2-Dichloroethene (t-DCE) | 20   | 100 | <54        | <170     | <170      | -         | <25        | <0.11      | <0.35    | <0.17     |           | <0.50      |
| cis-1,2-Dichloroethene (c-DCE)   | 7    | 70  | <66        | <200     | <190      | -         | 42         | 0.89       | <0.40    | 0.29      |           | <0.50      |
| Trichlorethene (TCE)             | 0.5  | 5   | 10,000     | 4,700    | 38,000    | <b></b>   | 1,500      | 23         | 0.59     | 0.97      |           | 8.5        |
| Tetrachloroethene (PCE)          | 0.5  | 5   | 2,500      | 2,500    | 5,400     |           | 2,000      | 7.1        | 1.2      | 6.9       | ·         | 1.2        |
| Vinyl Chloride (VC)              | 0.02 | 0.2 | <82        | <53      | <200      |           | <25        | <0.16      | <0.11    | <0.2      |           | <0.50      |
| Total VOCs                       |      |     | 12,500     | 7,200    | 43,400    |           | 3,542      | 30.99      | 1.79     | 8.16      |           | 9.70       |

# Table 5 (Page 2 of 2) Historic Groundwater Sample Results – Volatile Organic Compounds (VOCs) D.B Oaks Facility, Fort Atkinson, Wisconsin

|                                  |      |     | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 |
|----------------------------------|------|-----|------------|----------|-----------|-----------|------------|
| Constituent                      | PAL  | ES  | MW-5       | MW-5     | MW-5      | MW-5      | MW-5       |
| 1,1-Dichloroethene (DCE)         | 0.7  | 7   | <0.24      | <0.41    | <0.15     |           | <0.50      |
| trans-1,2-Dichloroethene (t-DCE) | 20   | 100 | <0.11      | < 0.35   | <0.17     |           | <0.50      |
| cis-1,2-Dichloroethene (c-DCE)   | 7    | 70  | 0.21       | <0.40    | <0.19     | <b></b>   | <0.50      |
| Trichlorethene (TCE)             | 0.5  | 5   | 1.2        | <0.25    | 0.77      |           | <0.50      |
| Tetrachloroethene (PCE)          | 0.5  | 5   | 2.3        | <0.31    | 0.17      |           | <0.50      |
| Vinyl Chloride (VC)              | 0.02 | 0.2 | <0.16      | <0.11    | <0.2      |           | <0.50      |
| Total VOCs                       |      |     | 3.71       | 0        | 0.94      |           | 0          |

|                                  |      |     | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 |
|----------------------------------|------|-----|------------|----------|-----------|-----------|------------|------------|----------|-----------|-----------|------------|
| Constituent                      | PAL  | ES  | MW-6       | MW-6     | MW-6      | MW-6      | MW-6       | MW-6A      | MW-6A    | MW-6A     | MW-6A     | MW-6A      |
| 1,1-Dichloroethene (DCE)         | 0.7  | 7   |            | <0.41    | <0.15     |           | <0.50      |            | <0.41    | <0.14     |           | <0.50      |
| trans-1,2-Dichloroethene (t-DCE) | 20   | 100 |            | < 0.35   | <0.17     |           | <0.50      |            | < 0.35   | <0.21     |           | <0.50      |
| cis-1,2-Dichloroethene (c-DCE)   | 7    | 70  |            | <0.40    | <0.19     | •         | <0.50      |            | <0.40    | <0.34     |           | <0.50      |
| Trichlorethene (TCE)             | 0.5  | 5   |            | <0.25    | 0.35      |           | <0.50      |            | <0.25    | <0.19     |           | <0.50      |
| Tetrachloroethene (PCE)          | 0.5  | 5   | <b></b>    | <0.31    | <0.16     |           | <0.50      | '          | <0.31    | <0.16     |           | <0.50      |
| Vinyl Chloride (VC)              | 0.02 | 0.2 |            | <0.11    | <0.2      | <b></b>   | <0.50      |            | <0.11    | <0.17     | <b></b>   | <0.50      |
| Total VOCs                       |      |     |            | 0        | 0.35      |           | 0          |            | 0        | 0         |           | 0          |

|                                  |      |     | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 |
|----------------------------------|------|-----|------------|----------|-----------|-----------|------------|------------|----------|-----------|-----------|------------|------------|----------|-----------|-----------|------------|
| Constituent                      | PAL  | ES  | MW-7       | MW-7     | MW-7      | MW-7      | MW-7       | MW-7A      | MW-7A    | MW-7A     | MW-7A     | MW-7A      | MW-7B      | MW-7B    | MW-7B     | MW-7B     | MW-7B      |
| 1,1-Dichloroethene (DCE)         | 0.7  | 7   |            |          | <0.15     | <0.57     | <0.50      |            |          | <0.68     | <5.7      | <5.0       |            |          |           |           | <0.50      |
| trans-1,2-Dichloroethene (t-DCE) | 20   | 100 |            |          | <0.17     | <0.89     | <0.50      |            |          | <10       | <8.9      | <5.0       |            |          |           |           |            |
| cis-1,2-Dichloroethene (c-DCE)   | 7    | 70  |            |          | 0.89      | <0.83     | <0.50      |            |          | 270       | 290       | <5.0       |            |          |           |           | <0.50      |
| Trichlorethene (TCE)             | 0.5  | 5   |            |          | 2.9       | 1.4       | 0.63       |            |          | 200       | 180       | 110        |            |          |           |           | 0.87       |
| Tetrachloroethene (PCE)          | 0.5  | 5   |            |          | 5.4       | 4.9       | 3.5        |            |          | 850       | 560       | 310        |            |          |           |           | 6.9        |
| Vinyl Chloride (VC)              | 0.02 | 0.2 |            |          | <0.2      | <0.18     | <0.50      |            |          | <8.3      | <1.8      | <5.0       |            |          |           |           | <0.50      |
| Total VOCs                       |      |     |            |          | 9.19      | 6.3       | 4.13       |            |          | 1,320     | 1,030     | 420        |            |          |           |           | 8.64       |

|                                  |                                                |     | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 | 12/16/2004 | 6/1/2005 | 3/28/2006 | 11/2/2006 | 10/25/2007 |
|----------------------------------|------------------------------------------------|-----|------------|----------|-----------|-----------|------------|------------|----------|-----------|-----------|------------|------------|----------|-----------|-----------|------------|
| Constituent                      | PAL                                            | ES  | MW-8       | MW-8     | MW-8      | MW-8      | MW-8       | MW-8A      | MW-8A    | MW-8A     | MW-8A     | MW-8A      | MW-8B      | MW-8B    | MW-8B     | MW-8B     | MW-8B      |
| 1,1-Dichloroethene (DCE)         | 0.7                                            | 7   |            |          |           |           | <0.50      |            |          |           |           | <0.50      |            |          |           |           | <0.50      |
| trans-1,2-Dichloroethene (t-DCE) | 20                                             | 100 |            |          |           |           | <0.50      |            |          |           |           | <0.50      |            |          |           |           | <0.50      |
| cis-1,2-Dichloroethene (c-DCE)   | 7                                              | 70  |            |          |           |           | <0.50      |            |          |           |           | <0.50      |            |          |           |           | <0.50      |
| Trichlorethene (TCE)             | 0.5                                            | 5   |            |          |           |           | <0.50      |            |          |           |           | <0.50      |            |          |           |           | <0.50      |
| Tetrachloroethene (PCE)          | 0.5                                            | 5   |            |          |           |           | <0.50      |            |          |           |           | <0.50      |            |          |           |           | <0.50      |
| Vinyl Chloride (VC)              | 0.02                                           | 0.2 |            |          |           |           | <0.50      |            |          |           |           | <0.50      |            |          |           |           | <0.50      |
| Total VOCs                       | <u>,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, </u> |     | 1          |          |           |           | 0          |            |          |           |           | 0.0        |            |          |           |           | 0          |

**Figures** 









## **SAMPLE LOCATIONS AND SUMMARY**









C:\PROJECTS\THOMAS\FORTATKINSON\CADFILES\NOV2007REPORT\FIG7

**Appendices** 

#### Appendix A

Soil Boring Logs,
Well Construction Forms, and
Well Development Forms

| State of Wi                        |                 |                |                    |              |             |                  |                  |               |                |              | SOIL        |                         |                     | 0G II          | <b>NFOR</b>      | MAT              | ION                 |           |
|------------------------------------|-----------------|----------------|--------------------|--------------|-------------|------------------|------------------|---------------|----------------|--------------|-------------|-------------------------|---------------------|----------------|------------------|------------------|---------------------|-----------|
| Departmen                          | t or mat        | urai Resou     | irces              | Route To:    |             |                  | □ <sub>Haz</sub> | Waste         |                |              | F           | orm 440                 | 0-122               |                |                  |                  | 7-9                 | <b>31</b> |
|                                    |                 |                |                    | ☐ Solid W    | aste        |                  |                  | ergrour       |                | nks          |             |                         |                     |                |                  |                  |                     |           |
|                                    |                 |                |                    | ☐ Wastew     | rater       |                  |                  | er Reso       |                |              |             |                         |                     |                |                  |                  |                     |           |
|                                    |                 |                |                    | ☐ Emerge     | ency Re     | esponse          | ☐ Oth            | er            |                |              |             |                         |                     | P              | age _ 1          | of _             | 5                   |           |
| Facility / Pr                      | oject Na        | ome<br>DB C    | ak Facility, F     | ort Atkins   | son, V      | Visconsin        | Lice             | ense/Pe       | rmit/N         | /lonitor     | ing Numt    | er                      | E                   | Boring N       | lumber           | MW               | -2B                 |           |
| Boring Drill                       | ed By (I        | Firm name      | and name of cr     | ew chief)    |             |                  | Date             | Drilling      | Starte         | d            | Date        | Drilling                | Comple              | ted            | Dril             | ling Me          | thod                |           |
|                                    |                 |                | Hanson             |              |             |                  | 9                | <u>) / 2</u>  | 0 /            | 07           |             | _                       | 20 /                |                |                  | -                | tosonic             |           |
|                                    |                 |                | t Longyear, S      |              |             |                  | MM               |               | _              | YY           |             |                         |                     | YY             |                  |                  |                     |           |
| DNR Facilit                        | y Well I        |                | I Unique Well No   | 339.00       | MW-         | ell Name<br>2B   | Final            | Static V      | vater<br>eet M |              |             | ce Elevi<br>91.5        | ation<br>Feet I     | MSL            | Bor              | 6.0              | iameter<br>_ inches |           |
| Boring Loca<br>State Plane         |                 |                | N                  |              | _ E         |                  | Lá               | at —          |                | _            | Loca        | I Grid Lo               | ocation (           | If Applic      | cable)           |                  | <b>-</b> -          | Ξ         |
|                                    | of SE           | 1/4 of S       | Section 34         | т 6          | N, R        |                  |                  |               | _              | _            | <u> </u>    |                         | et 🗖                | s              |                  | Fe               | et 🗖 v              | N         |
| County                             |                 |                |                    |              |             | DNR County       |                  | 1             | Civil T        |              | City / or V | •                       |                     |                |                  |                  |                     |           |
|                                    |                 | Jefferso       | on                 |              |             | 2                | 8                |               |                | С            | ity of Fo   | ort Atk                 | inson               |                |                  |                  |                     |           |
| Sample                             | . 5             |                |                    |              |             |                  |                  |               |                |              |             |                         | Soil Pr             | opertie        | s                |                  | ŧ.                  |           |
| Number<br>Length<br>Recovered (In) | Blow Counts (N) | To a           | Soil/              | Rock De      | ecri        | ntion            |                  |               | B <sub>0</sub> | Well Diagram |             | ٦                       |                     |                |                  |                  | ROD/Comments        |           |
| Number<br>ength<br>ecovered        | ĕ               | Depth in Feet  |                    | Seologic     |             |                  |                  | ر ا           | Graphic Log    | Dia          | ₽           | Standard<br>Penetration | Moisture<br>Content |                | ပ္               |                  | Co                  |           |
| Nun<br>engt                        | <u>8</u>        | t de           |                    | ach Maj      |             |                  |                  | SSS           | Grap           | Vei          | PID/FID     | Stan                    | Nois<br>Sont        | Liquid         | Plastic<br>Limit | P 200            | 0                   |           |
| -   -                              | 100             |                | Curfoso =          | aanbalt n    | a dela e    | - lot            |                  | -             | $\vdash$       |              |             | -                       |                     | <del>-</del> - |                  | <del>  -</del> - | I.C.                |           |
| 1                                  |                 |                | Surface =          | аѕрпан р     | arking      | g iot            |                  |               |                |              |             |                         |                     |                |                  |                  |                     |           |
| '                                  |                 | _ 1            | -gravel fill       |              |             |                  |                  |               |                | 1            |             |                         |                     |                |                  |                  | 1                   |           |
|                                    |                 |                |                    |              |             |                  |                  |               |                |              |             |                         |                     |                |                  |                  | ŀ                   |           |
|                                    |                 | <u> </u>       |                    |              | <del></del> |                  |                  | _             |                | 1            |             |                         |                     |                |                  |                  |                     |           |
|                                    |                 | Ł              | CLAY, silt         |              |             |                  |                  | CL            |                |              |             |                         |                     |                | 1                |                  |                     |           |
|                                    |                 | - <sub>3</sub> | plasticity, l      | brown wit    | h gra       | y mottling.      |                  | "-            |                |              |             |                         |                     |                |                  |                  |                     |           |
|                                    |                 |                |                    |              |             |                  |                  |               |                |              |             |                         |                     |                |                  |                  |                     |           |
| :                                  |                 | - 4            |                    |              |             |                  |                  |               |                |              |             |                         |                     | i              | 1                |                  |                     |           |
|                                    | 1               |                |                    |              |             |                  |                  |               |                |              |             |                         |                     |                |                  |                  |                     |           |
|                                    |                 | 5              |                    |              |             |                  |                  |               |                | l            |             |                         |                     |                |                  |                  |                     |           |
| 2                                  | l               |                |                    |              |             |                  |                  |               |                |              |             |                         |                     |                |                  |                  |                     |           |
|                                    | 1               | <u> </u>       |                    |              |             |                  |                  |               |                |              |             |                         | 1                   | ł              |                  | 1                |                     |           |
|                                    |                 | E              | GRAVEL, r          | medium, v    | vet, d      | lark gray.       |                  | GP            |                | l            |             |                         |                     | ļ ·            |                  |                  |                     |           |
|                                    |                 | — 7            |                    |              |             |                  |                  | Ŭ.            |                |              |             |                         |                     |                |                  |                  |                     |           |
|                                    |                 | F              |                    |              |             |                  |                  |               |                |              |             |                         |                     | ŀ              |                  |                  |                     |           |
|                                    |                 | — в            |                    |              |             | low plasticit    | у,               | CL.           |                |              |             | 1                       |                     |                |                  |                  |                     |           |
|                                    | 1               | F              | brown wit          | h gray mo    | ottling     | <b>]</b> .       |                  | ML            |                |              |             | Ì                       |                     |                |                  |                  |                     |           |
|                                    | İ               | <b>—</b> 9     |                    |              |             |                  |                  | '''-          |                |              |             |                         |                     |                |                  |                  |                     |           |
|                                    |                 | F              |                    |              |             |                  |                  |               |                |              |             |                         |                     | Ì              |                  | 1                |                     |           |
|                                    |                 | 10             |                    |              |             |                  |                  |               |                |              |             |                         | ł                   | ļ              |                  | 1                |                     |           |
|                                    |                 | F              | ž                  |              |             |                  |                  |               |                |              |             |                         |                     |                |                  | 1                |                     |           |
|                                    |                 | <b>–</b> 11    | CAND               |              |             |                  | 4 1              | <del>  </del> | W              |              |             |                         |                     |                |                  | 1                |                     |           |
|                                    |                 |                | SAND, so           |              |             | rained, mois     | i, IOW           | sc            |                | •            |             |                         |                     |                |                  | 1                |                     |           |
|                                    |                 | _ 12           | piasticity II      |              | ¥11.        |                  |                  |               | 1//            |              |             |                         | ]                   |                |                  | 1                |                     |           |
|                                    |                 |                |                    |              |             | fine to medi     | um               | C.D.          |                | İ            |             |                         | İ                   | Ì              |                  |                  |                     |           |
|                                    |                 | - 13           | grained, de        | nse, very    | mois        | t, reddish       |                  | SP            |                |              |             |                         |                     | 1              |                  |                  |                     |           |
|                                    |                 |                | brown.             |              |             |                  |                  |               |                |              |             |                         |                     |                |                  |                  |                     |           |
|                                    | <u> </u>        | _ 14           | <u> </u>           |              |             |                  |                  | <u> </u>      |                |              | ]           | 1                       | <u> </u>            | <u> </u>       | <u> </u>         | <u> </u>         | <u> </u>            |           |
| I hereby cer                       |                 |                | nation on this for | m is true on | d oorre     | ct to the best o | f my kno         | owledge       | ).             |              |             |                         |                     |                |                  |                  |                     |           |
| Signature                          | ///             | IU s           | - NOU              | XC4)         | 2           |                  | Firm             |               | N              | lewF         | ields, M    | ladiso                  | n, WI               |                |                  |                  |                     |           |

This form is authorized by Chapters 144.147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$4,000 for each violation. Fines not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats

| Bori   | ng Numi                  | ber             | M                    | <u></u> -                                                                                                      |           |             |              |         |                         |                     | Р               | age _2           | of_   | 5_           |
|--------|--------------------------|-----------------|----------------------|----------------------------------------------------------------------------------------------------------------|-----------|-------------|--------------|---------|-------------------------|---------------------|-----------------|------------------|-------|--------------|
| Sam    | ple 🚊                    | <u> </u>        |                      |                                                                                                                |           |             | -            |         |                         | Soil Pr             | opertie         | s                |       | ents         |
| Number | Length<br>Recovered (In) | Blow Counts (N) | Depth in Feet        | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit                                            | nscs      | Graphic Log | Well Diagram | PID/FID | Standard<br>Penetration | Moisture<br>Content | Liquid<br>Limit | Plastic<br>Limit | P 200 | ROD/Comments |
| 3      |                          |                 | 15 16 17 18 19 19 20 | SAND, fine to medium grained, wet, brownsome coarse gravel, wet, gray  SAND and SILT, fine-grained, wet, hard, | SP        |             |              |         |                         |                     |                 |                  |       |              |
|        |                          |                 | - 21                 | non-plastic, gray.                                                                                             | SM        |             |              |         |                         |                     |                 |                  |       |              |
|        |                          |                 | - 22                 | -interbedded silt seams 21 to 22 ft.                                                                           | CL        |             |              |         |                         |                     |                 |                  |       |              |
|        |                          |                 | - 23<br>- 24         |                                                                                                                |           |             |              |         |                         |                     |                 | ,                |       |              |
|        |                          |                 | 25                   | CLAY, silty, trace very fine sand, moist, hard, low plasticity, gray.                                          |           |             |              |         |                         |                     |                 |                  |       |              |
| 4      |                          |                 | 26<br>26<br>         |                                                                                                                |           |             |              |         |                         |                     |                 |                  |       |              |
|        |                          |                 | 27<br><br>28         |                                                                                                                |           |             |              |         |                         |                     |                 |                  |       |              |
|        |                          |                 | - <sub>29</sub>      |                                                                                                                |           |             |              |         |                         |                     |                 |                  |       |              |
|        |                          |                 | - 30                 | SAND and SILT (as above).                                                                                      | SM        |             |              |         |                         |                     |                 |                  |       |              |
|        |                          |                 | – 31                 | CLAY, silty (as above)                                                                                         | CL        |             | Ì            |         |                         |                     |                 |                  |       |              |
|        |                          |                 | - 32                 | CLAY, very silty, some fine sand, moist, hard, low plasticity, gray.                                           | CL-<br>ML |             |              |         |                         |                     |                 |                  |       |              |
|        |                          |                 | - 33                 | SAND, trace fine gravel, coarse grained, wet, dense, gray.                                                     | SP        |             |              |         |                         |                     |                 |                  |       |              |
|        |                          |                 | 34                   |                                                                                                                |           |             |              |         |                         |                     |                 |                  |       |              |
| 5      |                          |                 | 35                   |                                                                                                                |           |             |              |         |                         |                     |                 |                  |       | :            |

State of Wisconsin Department of Natural Resources

|        |                          |                 | MW                                  | <i>I-</i> 2B                                                        | Form | 4400-       | -122A        | \       |                         |                     | _ | age _ 3          |            | 7-91<br>5    |
|--------|--------------------------|-----------------|-------------------------------------|---------------------------------------------------------------------|------|-------------|--------------|---------|-------------------------|---------------------|---|------------------|------------|--------------|
| Samp   | ng Numl<br>ole           |                 |                                     |                                                                     |      |             |              |         |                         | Soil Pr             |   |                  | <u> of</u> |              |
| Number | Length<br>Recovered (In) | Blow Counts (N) | Depth in Feet                       | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit | nscs | Graphic Log | Well Diagram | PID/FID | Standard<br>Penetration | Moisture<br>Content |   | Plastic<br>Limit | P 200      | ROD/Comments |
| 5      |                          |                 | 37                                  | SAND, trace fine gravel, coarse grained, wet, dense, gray.          | SP   |             |              |         |                         |                     |   |                  |            |              |
|        |                          |                 | — 39<br>-<br>-<br>- 40<br>-<br>- 41 | SAND, trace fine gravel, coarse grained, wet, dense, brown.         |      |             |              |         |                         |                     |   |                  |            |              |
|        |                          |                 | - 43                                | -medium grained, light brown                                        |      |             |              |         |                         |                     |   |                  |            |              |
|        |                          |                 | - 44                                | -medium to coarse grained, trace gravel, light grayish brown.       |      |             |              |         |                         |                     |   |                  |            |              |
|        |                          |                 | 45<br>-<br>-                        | -coarse grained, some gravel, wet, gray                             | SP   |             |              |         |                         |                     |   |                  |            |              |
| 6      |                          |                 | — 46<br>=<br>-<br>- 47              |                                                                     |      |             |              |         |                         |                     |   |                  |            |              |
|        |                          |                 | _<br>48<br>                         |                                                                     |      |             |              |         |                         |                     |   |                  |            |              |
|        |                          |                 | - 49<br>- 50                        |                                                                     |      |             |              |         |                         |                     |   |                  |            |              |
|        |                          |                 | <del>-</del> 51                     |                                                                     |      |             |              |         |                         |                     |   |                  |            | :            |
|        |                          |                 | - <sub>52</sub>                     |                                                                     |      |             |              |         |                         |                     |   |                  |            |              |
|        |                          |                 | - 53                                |                                                                     |      |             |              |         |                         |                     |   |                  |            |              |
|        |                          |                 | 54                                  |                                                                     |      |             |              |         |                         |                     | 1 |                  |            |              |
| 7      |                          |                 | 56                                  |                                                                     | SP   |             |              |         |                         |                     |   |                  |            |              |
|        |                          |                 | -<br>-<br>-<br>57                   |                                                                     |      |             |              |         |                         |                     |   |                  |            |              |
|        |                          |                 | <del>-</del> 58                     |                                                                     |      |             |              |         |                         |                     |   |                  |            |              |

| Boring | Boring NumberMW-2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |                         |                     | Р               | age _4           | of    | 5_           |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|-------------------------|---------------------|-----------------|------------------|-------|--------------|
| Sampl  | le 🕏                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (N)             |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٦            |         |                         | Soil Pr             | opertie         | s                |       | ants         |
| Number | Length<br>Recovered (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Blow Counts (N) | Depth in Feet                                                                                                                        | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit                                                                                                                                                                                                                                                                                                                                            | sosn          | Graphic Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well Diagram | PID/FID | Standard<br>Penetration | Moisture<br>Content | Liquid<br>Limit | Plastic<br>Limit | P 200 | ROD/Comments |
| 7 8 8  | Length Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon Recon | Blow (          | #### 65   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   76   77   77   77   77 | And Geologic Origin For Each Major Unit  SAND, medium grained, trace gravel, wet, light grayish brown.  -fine to medium grained -SAND and GRAVEL seam @63 to 64 ft.  -trace gravel, medium grained, brown with gray mottling  GRAVEL, with coarse sand, wet, light grayish brown.  SAND, some gravel, medium to coarse grained, wet, light grayish brown.  GRAVEL, with coarse sand, wet, light grayish brown. | SDSN SP GP SP | Gray Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control C | Well D       | PID/F   | Stand Penet             | Moist: Confie       | רושגן<br>רושגן  | Plastic          | P 200 | RODA         |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>80                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |                         | _                   |                 |                  |       |              |

|        |                         |                 | MW-2                                                                             |                                                                                                                                                                                                                                                     | Form     | 4400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -122A        |         |                         |                     |                 | _   |       | 7-91<br>     |
|--------|-------------------------|-----------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|-------------------------|---------------------|-----------------|-----|-------|--------------|
| Samp   | ng Numl                 |                 | 10100-2                                                                          | 2D_s                                                                                                                                                                                                                                                | <u> </u> | Γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |         | l                       | 0.10                |                 |     | of    | 5            |
| Number | Length<br>Recovered (N) | Blow Counts (N) | Depth in Feet                                                                    | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit                                                                                                                                                                                 | USCS     | Graphic Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well Diagram | PID/FID | Standard<br>Penetration | Moisture<br>Content | Liquid<br>Limit |     | P 200 | ROD/Comments |
| 9      | Le<br>Re                | OIB             | 80 82 84 86 88 90 92 94 94 96                                                    | Each Major Unit  SAND, trace gravel, medium grained, dense, wet, light brown.  -fine to medium grained, light brown  -fine grained, light brown  -trace gravel, fine grained, light grayish brown.  CLAY, silty, firm, low plasticity, moist, gray. | SP       | 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 July 19 Jul | 3/A          | JIG .   | Sta                     | Mo                  | LIN<br>LIN      | Pla | 2 4   | <u>α</u>     |
| 11     |                         |                 | 98 100 - 102 - 104 - 106 - 108 - 110 - 1110 - 1114 - 116 - 118 - 118 - 120 - 122 | SAND, trace gravel, fine grained, dense, wet, light grayish brown.  EOB at 100 feet bgs Installed MW-2B screen 80-85 feet bgs.                                                                                                                      | SP       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |                         |                     |                 |     |       |              |
|        |                         |                 | '                                                                                | L.,                                                                                                                                                                                                                                                 |          | Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |         |                         |                     |                 |     |       |              |

|        | of Wise                                 |                 | ! Deces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                |                 |                                                  |               |             | SOIL         | -                                       |                         | OG IN               | FORI       | ITAN             | ON                                    |              |          |
|--------|-----------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|-----------------|--------------------------------------------------|---------------|-------------|--------------|-----------------------------------------|-------------------------|---------------------|------------|------------------|---------------------------------------|--------------|----------|
| Бера   | rtment                                  | or natu         | ıral Resoui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rou                                  | te To:         |                 | □ <sub>Haz.</sub>                                | Waste         |             |              | F                                       | orm 440                 | 0-122               |            |                  |                                       | 7-9          | 91       |
|        |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Solid Waste    |                 | □ Und                                            |               |             | nks          |                                         |                         |                     |            |                  |                                       |              |          |
|        |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Wastewater     |                 | □ Wate                                           |               |             |              |                                         |                         |                     |            |                  |                                       |              |          |
|        |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Emergency Re   | esponse         | ☐ Othe                                           | er            |             |              | • • • • • • • • • • • • • • • • • • • • |                         |                     | Pa         | ge1              | of                                    | 6_           |          |
| Facili | ty / Pro                                | iect Na         | me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                |                 | Lice                                             | nse/Pe        | rmit/N      | Annitori     | ing Numb                                | er                      | l F                 | Boring Nu  | ımher            |                                       |              |          |
|        | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,000.110        | DB O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ak Facility, Fort                    | Atkinson, V    | Visconsin       | _                                                |               |             |              |                                         |                         | _                   |            |                  | MW-                                   | -3C          |          |
| Borin  | g Drille                                | d By (F         | irm name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and name of crew of                  | hief)          |                 |                                                  | Orilling:     |             |              | Date                                    | Drilling                | Comple              | ted        | Dritti           | ng Met                                | hod          |          |
|        |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hanson                               | -C-14 148      |                 |                                                  | 1 2           |             | 07           | ٠,                                      | 9 /-                    |                     | 07         | (                | 6" Rot                                | osonic       |          |
|        |                                         |                 | artinomica de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición dela composición de la composición de la composición de la composición de la composición dela composición dela composición dela composición de la composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición dela composición dela composición dela composición dela compos | Longyear, Scho                       | Common We      |                 | MM                                               | D<br>Ctatia V |             | YY           | Curt                                    | / M                     | DD                  | YY         | 1                | h - 1 - 10'                           |              |          |
| DNR    | Facility                                | Well N          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unique Well No.                      | MW-:           |                 | Final                                            | Static V      |             |              |                                         | ce Eleva<br>91.0        | Feet                | ucı.       |                  | лою DI<br>6.0                         | ameter       |          |
| Rorin  | g Locat                                 | ion             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                |                 | <del>                                     </del> |               | eet M       | ISL.         | Loca                                    | l Grid Lo               |                     | If Applica |                  |                                       | _ inches     |          |
|        | Plane                                   | _               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N                                    | E              |                 | La                                               | ıt <u>—</u>   |             | _            |                                         | . Ond Ed                |                     | N          | ubic)            |                                       |              | E        |
| NE     | 1/4 c                                   | f SE            | 1/4 of S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ection 34 T                          | 6N, R          | 14 E/W          | Lon                                              | 9             | _           |              | _]                                      | Fe                      | et 🗖                | S          |                  | Fee                                   |              |          |
| Count  | ty                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                | DNR Count       | y Code                                           | (             | Civil T     | own / C      | City / or V                             | illage                  |                     |            |                  |                                       |              |          |
|        |                                         |                 | Jefferso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n                                    |                | _2              | 8                                                |               |             | С            | ity of Fo                               | ort Atki                | nson                |            |                  |                                       |              |          |
| Samp   | ie                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                |                 |                                                  |               |             |              |                                         |                         | Soil Pr             | operties   |                  |                                       | <u>s</u>     |          |
|        | Length<br>Recovered (In)                | Blow Counts (N) | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                |                 |                                                  |               | g           | an           |                                         |                         |                     |            |                  |                                       | ROD/Comments |          |
| ĕ      | je<br>g                                 | ount            | ] g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | ck Descri      |                 |                                                  |               | 를<br>L      | )iag         |                                         | a gig                   | 흑돧                  |            | ,                |                                       | E O          |          |
| Number | oove                                    | ≽               | Depth in Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      | logic Orig     |                 |                                                  | nscs          | Graphic Log | Well Diagram | PID/FID                                 | Standard<br>Penetration | Moisture<br>Content | Liquid     | Plastic<br>Limit | 200                                   | 0            |          |
| Z      | P. E.                                   | 絽               | Det                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Eaci                                 | n Major Ui     | 11IT            |                                                  | 5             | ျပ          | <u> </u>     | <u> </u>                                | N G                     | ≥0                  | تد         | <u> </u>         | Δ.                                    | 8            |          |
|        |                                         |                 | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Surface = gra                        | vel parking    | lot             |                                                  |               |             |              |                                         |                         |                     | Soil des   | scriptic         | on for                                | 0-14 fe      | <u>a</u> |
|        |                                         |                 | ⊨₁I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                |                 |                                                  |               |             |              |                                         |                         |                     | rom bo     |                  |                                       |              | ~        |
|        |                                         |                 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                |                 |                                                  |               |             | 1            |                                         |                         |                     | nstalle    |                  |                                       |              | l        |
|        |                                         |                 | _ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CLAY, silty, g                       | ravelly fine   | e subrounde     | ed.                                              | CL            |             |              |                                         |                         | —                   |            |                  | · · · · · · · · · · · · · · · · · · · |              |          |
|        |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gravel, moist,                       |                |                 |                                                  |               |             | 1            |                                         | 1                       |                     |            |                  |                                       |              |          |
| 1      | 24                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | greenish-gray                        |                | •               | •                                                |               |             |              | 0                                       |                         | 1                   |            |                  |                                       |              |          |
|        |                                         |                 | F 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                |                 |                                                  |               |             | 1            |                                         |                         |                     |            |                  |                                       |              |          |
|        |                                         |                 | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SILT, trace fine<br>plastic, greenis |                | irm, non-       |                                                  | SM            |             |              |                                         |                         |                     |            |                  |                                       |              |          |
|        |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SILT, clayey, t                      |                | and/fine        |                                                  |               |             | ĺ            |                                         |                         |                     |            |                  |                                       |              |          |
|        |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | subrounded gr                        |                |                 |                                                  | ML            |             | :            | 17.6                                    |                         | Į.                  |            |                  |                                       |              |          |
| 2      | 19                                      |                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | plasticity, gray                     | •              |                 |                                                  |               |             | l            |                                         |                         |                     |            |                  |                                       |              |          |
|        |                                         |                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                |                 |                                                  |               |             |              |                                         |                         | ļ                   |            |                  |                                       |              |          |
|        |                                         |                 | <b>L</b> "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAND, gravell                        |                |                 | ied,                                             |               |             |              |                                         |                         | 1                   |            |                  |                                       |              |          |
|        |                                         |                 | - 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | wet, dense, po                       | orly graded    | d, gray.        |                                                  |               |             |              |                                         | j                       |                     |            |                  |                                       |              |          |
|        |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                |                 |                                                  | SP            |             |              | 32.6                                    |                         |                     |            |                  |                                       |              |          |
| 3      | 8                                       |                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                |                 |                                                  |               |             |              |                                         | 1                       |                     |            |                  |                                       |              |          |
|        |                                         |                 | F°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                |                 |                                                  |               |             |              |                                         |                         |                     |            |                  |                                       |              |          |
|        |                                         |                 | E 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                |                 |                                                  |               |             | :            |                                         |                         |                     |            |                  |                                       |              |          |
|        |                                         |                 | F "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                |                 |                                                  |               |             |              |                                         |                         | 1                   |            |                  |                                       |              |          |
|        |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                |                 |                                                  |               |             | Ī            |                                         | 1                       |                     |            |                  |                                       |              |          |
| 4      | 14                                      |                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SILT, trace ve                       | ery fine san   | d, wet, firm,   | non-                                             |               | Ш           |              | 20.4                                    |                         | Į.                  |            |                  |                                       |              |          |
|        |                                         | l               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | plastic, gray.                       |                |                 |                                                  | 1             |             |              |                                         |                         | }                   |            |                  |                                       |              |          |
|        |                                         |                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                |                 |                                                  | ML            |             |              |                                         |                         |                     |            |                  | 1                                     |              |          |
|        | ]                                       |                 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                |                 |                                                  | ""            |             |              |                                         | 1                       |                     |            |                  | l                                     |              |          |
|        |                                         |                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                |                 |                                                  |               |             |              |                                         |                         |                     |            |                  |                                       |              |          |
| 5      | 12                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                |                 |                                                  | 1             |             | Ì            | 57                                      |                         | l s                 | oil des    | criptio          | n for                                 | 13-50 fe     | eet      |
| •      | -                                       |                 | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CLAY, silty, t                       | race fine or   | avel moiet      | etiff                                            | <del> </del>  | ₩           | 4            |                                         |                         | fr                  | om boı     | ring lo          | g for I                               | MW-3A        |          |
| 1      | 20                                      | 2,8<br>8,18     | <b>F</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | low plasticity,                      |                |                 | ouii,                                            | CL            |             |              |                                         | 16                      | Lir                 | stalled    | l on 4-          | 27-05                                 | j            | _ [      |
|        | <u> </u>                                | <u>'</u>        | _ 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                |                 |                                                  | <u> </u>      |             | <b>1</b>     |                                         | <u> </u>                |                     |            | <u> </u>         |                                       |              |          |
| I here | by cer                                  | tify that       | t the inform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nation on this form is               | true and corre | ect to the best | of my kn                                         | owledge       | e.          |              |                                         |                         |                     |            |                  |                                       |              |          |

This form is authorized by Chapters 144.147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$4,000 for each violation. Fines not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats

Firm

NewFields, Madison, WI

| Borir  | ng Num                   | М               | W-3C                               |                                                                                                                                |      |             |              |         | Р                       | age _2                                 | of               | 6      |                           |
|--------|--------------------------|-----------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------|-------------|--------------|---------|-------------------------|----------------------------------------|------------------|--------|---------------------------|
| Sam    | nie                      |                 |                                    |                                                                                                                                |      |             |              |         |                         | Soil Propertie                         |                  |        |                           |
| Number | Length<br>Recovered (In) | Blow Counts (N) | Depth in Feet                      | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit                                                            | nscs | Graphic Log | Well Diagram | PID/FID | Standard<br>Penetration | Moisture<br>Content<br>Liquid<br>Limit | Plastic<br>Limit | P 200  | ROD/Comments              |
|        |                          |                 | 15<br>-<br>-<br>16                 |                                                                                                                                | CL   |             |              |         |                         | Soil de<br>from b<br>installe          | oring I          | og for | 13-50 feet<br>MW-3A<br>5. |
| 2      | 18                       | 14,15<br>13,18  | 17 18 19 20 21                     | SAND, medium grained, trace coarse angular gravel, trace coarse subrounded sand, wet, medium dense, poorly graded, light gray. | SP   |             |              |         | 28                      |                                        |                  |        |                           |
| 3      | 12                       | 13,17<br>17,17  | 23 24 25 26                        | SAND, medium grained, subrounded, trace coarse subangular sand, wet, dense, poorly graded, light grayish brown.                |      |             |              |         | 34                      |                                        |                  |        |                           |
| 4      | 8                        | 6,12<br>13,17   | 27 28 29 30 31                     | SAND, as above, medium dense.                                                                                                  | SP   |             |              |         | 25                      |                                        |                  |        |                           |
| 5      | 10                       | 13,20<br>23,32  | 32<br>- 33<br>- 34<br>- 35<br>- 36 | SAND, medium grained, little gravel, trace coarse sand, wet, dense, poorly graded, light grayish brown.                        | CL   |             |              |         | 43                      |                                        |                  |        |                           |

State of Wisconsin
Department of Natural Resources
MW-3C

| Borir  | ng Num                   | ıber            | MW                         | <u>/-3C</u>                                                                                                    | Form | -100        | 1227         | •       |                         |                     | P               | age3             | 3_ of _ | 7-91<br>6                 |
|--------|--------------------------|-----------------|----------------------------|----------------------------------------------------------------------------------------------------------------|------|-------------|--------------|---------|-------------------------|---------------------|-----------------|------------------|---------|---------------------------|
| Sam    | 10                       |                 |                            |                                                                                                                |      |             |              |         |                         | Soil Pr             | opertie         |                  |         |                           |
| Number | Length<br>Recovered (In) | Blow Counts (N) | Depth in Feet              | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit                                            | nscs | Graphic Log | Well Diagram | PID/FID | Standard<br>Penetration | Moisture<br>Content | Liquid<br>Limit | Plastic<br>Limit | P 200   | ROD/Comments              |
| 6      | 10                       | 6,9<br>12,24    | 37 38 39 40 41             | CLAY, silty, moist, very stiff, low plasticity, light grayish brown.                                           | CL   |             |              |         | 21                      | fi                  | rom b           |                  | og for  | 13-50 feet<br>MW-3A<br>5. |
| 7      | 12                       | 21,26<br>31,31  | 42 43 44 45 - 46 - 46      | SAND, fine grained, little silt, wet, poorly graded, light grayish brown.                                      | SM   |             |              |         | 57                      |                     |                 |                  |         |                           |
| 8      | 12                       | 14,12<br>12,29  | 48 - 49 50 - 51            | SILT, trace fine sand, stiff, non-plastic, wet, light grayish brown.                                           | ML   |             |              |         | 24                      |                     |                 |                  |         |                           |
| 4      | 16                       | 19,22<br>25,23  | 52 53 54 55 56 56 57 57 58 | SAND, silty, very dense, fine to medium<br>grained, little gravel, wet, poorly graded,<br>light grayish brown. | SM   |             |              |         | 47                      | fr                  | om bo           |                  | og for  | 50-80 feet<br>MW-3B       |

State of Wisconsin Department of Natural Resources

#### SOIL BORING LOG INFORMATION SUPPLEMENT

Form 4400-122A

7-91

MW-3C Page 4 of 6 Boring Number Sample Soil Properties Blow Counts (N) Length Recovered (N) Well Diagram Depth in Feet Graphic Log Soil/Rock Description Moisture Content PID/FID Number Liquid Limit Plastic Limit **And Geologic Origin For** nscs P 200 **Each Major Unit** SAND, silty, very dense, fine to medium 25,24 33,36 grained, little gravel, wet, poorly graded, SM 57 5 12 light grayish brown. 59 60 62 SILT, hard, trace fine sand, non-plastic, 63 wet, light grayish brown. ML 37, 50/6" 6 4 50+ 66 67 68 26,27 SILT, as above ML 7 4 50+ SILT, as above 18,27 8 16 48 21,13 SP-SM SAND, medium dense, fine grained, Soil description for 50-80 feet trace silt, wet, poorly graded, light 18,12 10,14 from boring log for MW-3B 9 16 22 grayish brown. installed on 3-8-06.

| Bori   | ng Numb                 | oer             | MW-3                                                                                        | BC_                                                                                    |             |             |              |         |                         |                     | P                        | age5             | of _                     | 6                              |
|--------|-------------------------|-----------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------|-------------|--------------|---------|-------------------------|---------------------|--------------------------|------------------|--------------------------|--------------------------------|
| Sam    | ple                     | Ź               |                                                                                             | ,                                                                                      |             |             | L L          |         |                         | Soil Pr             | opertie                  | 5                |                          | ants                           |
| Number | Length<br>Recovered (N) | Blow Counts (N) | Depth in Feet                                                                               | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit                    | nscs        | Graphic Log | Well Diagram | PID/FID | Standard<br>Penetration | Moisture<br>Content | Liquid<br>Limit          | Plastic<br>Limit | P 200                    | ROD/Comments                   |
|        |                         |                 | 80<br>- 82<br>- 84                                                                          | SAND, medium dense, fine grained, trace silt, wet, poorly graded, light grayish brown. | SP-<br>SM   |             |              |         |                         | fee<br>3C<br>rote   | t from<br>insta<br>osoni | i borin          | g log<br>n 9-21<br>nuous | 95-145<br>for MW-<br>-07 using |
| 1      |                         |                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                        |             |             |              |         |                         |                     | :                        |                  |                          |                                |
|        |                         |                 | -<br>- 90                                                                                   | SAND, some silt, fine grained, wet, gray.                                              | SM          |             |              |         |                         |                     |                          |                  |                          |                                |
|        |                         |                 | - 92                                                                                        | CLAY, silty, firm, plastic, wet, gray.                                                 | CL<br>ML    |             |              |         |                         |                     |                          |                  |                          |                                |
|        |                         |                 | - 94                                                                                        | SAND, trace silt, fine grained, wet, gray.                                             | SP<br>SM    |             |              |         |                         |                     |                          |                  |                          |                                |
| 2      |                         |                 | 96<br>-<br>-<br>-<br>-<br>98                                                                |                                                                                        |             |             |              |         |                         |                     |                          |                  |                          |                                |
|        |                         | -               | _ 100                                                                                       |                                                                                        |             |             |              |         |                         |                     |                          |                  |                          |                                |
|        |                         |                 | _ 102<br>- 104                                                                              |                                                                                        |             |             |              |         |                         |                     |                          |                  |                          |                                |
| 3      |                         |                 | 106<br>                                                                                     |                                                                                        |             |             |              |         |                         |                     |                          |                  |                          |                                |
|        |                         |                 | 108                                                                                         |                                                                                        |             |             |              |         |                         |                     |                          |                  |                          |                                |
|        |                         | -               | 110                                                                                         | SAND, some silt, fine grained, wet, gray.  CLAY, silty, very moist, gray               | SM<br>CL-ML |             |              |         |                         |                     |                          |                  |                          |                                |
|        |                         |                 | - 112                                                                                       | CLAY, some silt, firm, low plasticity, moist,                                          | CL          |             |              |         |                         |                     |                          |                  |                          |                                |
|        |                         |                 | 114                                                                                         | gray.<br>-silt seam, 113.5 to 113.8 feet                                               |             |             |              |         |                         |                     |                          |                  |                          |                                |
| .4     |                         |                 | 116                                                                                         | -sitt seam, 117.5 to 117.8 feet                                                        |             |             |              |         |                         |                     |                          |                  |                          |                                |
|        |                         |                 | — 118<br>-<br>-<br>-<br>-<br>120                                                            | SILT and SAND, some clay, fine grained, very moist, gray.                              | ML          |             |              |         |                         |                     |                          |                  | ·                        |                                |
|        |                         |                 | 122                                                                                         | CLAY, silty, tirm, plastic, very moist, gray.                                          | SM          |             |              |         |                         |                     |                          |                  |                          |                                |

| -      |                         |                 | MW-3                           |                                                                     | Form     | 4400        | -122A        |         |                         |                          |                           | 6                |                           | 7-91<br>C                     |
|--------|-------------------------|-----------------|--------------------------------|---------------------------------------------------------------------|----------|-------------|--------------|---------|-------------------------|--------------------------|---------------------------|------------------|---------------------------|-------------------------------|
|        | ng Numi                 |                 | 10100-0                        | <u> </u>                                                            | 1        | 1           |              | Γ       |                         |                          |                           |                  | of                        |                               |
| Number | Length<br>Recovered (N) | Blow Counts (N) | Depth in Feet                  | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit | nscs     | Graphic Log | Well Diagram | PID/FID | Standard<br>Penetration | Moisture 60<br>Content 4 | Liquid<br>Limit           | Plastic<br>Limit | P 200                     | ROD/Comments                  |
| 4      |                         |                 | -<br>123<br>- 124              | CLAY, silty, firm, low plasticity, very moist, gray.                | CL       |             |              |         |                         | fee<br>3C<br>rote        | t from<br>insta<br>osonic | borin            | g log :<br>9-21-<br>nuous | 5-145<br>for MW-<br>-07 using |
| 5      |                         |                 | -<br>126<br>-<br>-<br>-<br>128 | SAND, some silt, fine grained, wet, gray.                           | SM       |             |              |         |                         |                          |                           | , ,,,,           | <u> </u>                  |                               |
|        |                         |                 | 130                            | SAND, trace silt, fine grained, wet, gray.                          | SP<br>SM |             |              |         | :                       | :                        |                           |                  |                           |                               |
|        |                         |                 | - 132<br>- 134                 | CLAY, siity, iirm, piastic, moist, gray.                            | CL       |             |              |         |                         |                          |                           |                  |                           |                               |
| 6      |                         |                 | 136<br>138<br>138              |                                                                     |          |             |              |         |                         |                          |                           |                  |                           |                               |
|        |                         |                 | -<br>-<br>- 140                |                                                                     |          |             |              |         |                         |                          | 1                         |                  |                           |                               |
|        |                         |                 | _ 142<br>_ 144                 |                                                                     |          |             |              |         |                         |                          |                           |                  |                           |                               |
|        |                         |                 | 146<br><br>148                 | Installed MW-3C screen 125 to 130 feet bgs.                         |          |             |              |         |                         |                          |                           |                  |                           |                               |
|        |                         |                 | <br>                           | ·                                                                   |          |             |              |         |                         |                          |                           |                  |                           |                               |
|        |                         |                 | 152<br><br>154<br>             |                                                                     |          |             |              |         |                         |                          |                           | -                |                           |                               |
|        |                         |                 | 156<br>-<br>-<br>-<br>-<br>158 |                                                                     |          |             |              |         |                         |                          |                           |                  |                           |                               |
|        |                         |                 |                                |                                                                     |          |             |              |         |                         |                          |                           |                  |                           |                               |
|        |                         |                 | 162<br>-<br>164                |                                                                     |          |             |              |         |                         |                          |                           |                  |                           |                               |

|          |                          | consin          | ural Dagası       |                         |                    |                      |                  |          |                |              | SOIL             | BORI                    | NG L                | OG II    | NFOR             | MAT     | ION          |
|----------|--------------------------|-----------------|-------------------|-------------------------|--------------------|----------------------|------------------|----------|----------------|--------------|------------------|-------------------------|---------------------|----------|------------------|---------|--------------|
| Depar    | ımenı                    | or Natt         | ural Resou        | ırces                   | Route To:          |                      | □ <sub>Haz</sub> | Wast     | Δ.             |              | F                | orm 440                 | 0-122               |          |                  |         | 7-91         |
|          |                          |                 |                   |                         | ☐ Solid Waste      |                      | □ Und            |          |                | nks          |                  |                         |                     |          |                  |         |              |
|          |                          |                 |                   |                         | □ Wastewate        |                      | □ Wat            |          |                |              |                  |                         |                     |          |                  |         |              |
|          |                          |                 |                   |                         | ☐ Emergency        | Response             | ☐ Oth            | er       |                |              |                  |                         |                     | Р        | age _1           | of _    | 5            |
| Facility | y / Pro                  | ject Na         | ıme DD C          |                         | <b>5</b> (A)()     | 147                  | Lice             | ense/P   | ermit/l        | Monitor      | ing Numb         | er                      | E                   | Boring N | lumber           | 8.63.6  | . 70         |
|          |                          |                 |                   |                         | Fort Atkinson      | i, Wisconsin         |                  |          |                |              |                  |                         |                     |          |                  |         | /-7B         |
| Boring   | Drille                   | ed By (F        |                   | e and name of<br>Hanson | crew chief)        |                      |                  | Drilling |                |              | Date             | e Drilling              |                     |          | - 1              | ling Me |              |
|          |                          |                 |                   |                         | Schofield, W       | į                    | M M              | <u> </u> | <del>/</del> / | 07<br>YY     |                  | <u>9</u> /.<br>им       | <u>18</u> /         | <u> </u> |                  | 6" Ro   | tosonic      |
| DNR      | acility                  | / Well N        | 100000 AND 100000 | /I Unique Well          |                    | Well Name            | +                | Static   | _              |              |                  | ice Eleva               |                     |          | Bon              | ehole D | Diameter     |
|          |                          |                 |                   |                         |                    | N-7B                 |                  | !        | Feet M         | 1SL          | 7                | 91.8                    | _ Feet I            | MSL      | _                | 6.0     | _ inches     |
| Boring   |                          | tion            |                   | N                       | Ε                  | =                    | L                | at —     | _              |              | Loca             | I Grid Lo               |                     |          | cable)           |         |              |
| State I  |                          | . 95            |                   |                         |                    |                      | 1                |          |                |              |                  | Eo                      |                     | N        |                  | F-      | □ E          |
| County   |                          | N SE            | 1/4 01 3          | Section 34              | <u> </u>           | I, R 14 E/W          |                  | <u> </u> | Civil T        | own / C      | l<br>City / or V |                         | е                   | S        |                  | ге      | et 🗆 W       |
|          |                          |                 | Jefferso          | on                      |                    | 2                    | 8                |          |                |              | ity of F         | _                       | inson               |          |                  |         |              |
| Sample   |                          | Γ               |                   |                         | T. 1               |                      |                  |          | T              |              | 1                | I                       |                     |          |                  |         | <u> </u>     |
|          |                          | ĝ               | <u> </u>          |                         |                    |                      |                  | 1        |                | Ē            |                  |                         | Soil Pr             | opertie: | s<br>T           | Ι       | ents         |
| , l      | )<br>Pa                  | Blow Counts (N) | Depth in Feet     |                         | I/Rock Desc        |                      |                  |          | Graphic Log    | Well Diagram |                  | Standard<br>Penetration | ø                   |          |                  |         | ROD/Comments |
| Number   | gth<br>Sver              | ပို             | ŧ.                |                         | Geologic O         |                      |                  | SOSN     | aphic          | Ö            | PID/FID          | netra                   | Moisture<br>Content | Liquid   | Plastic<br>Limit | P 200   | ပို          |
| Ž        | Length<br>Recovered (In) | 윮               | De De             | l                       | Each Major         | Unit                 |                  | S        | ซื             | Š            | 붑                | ty g                    | ≱်ပိ                | 35       | 문동               | 4       | ₽            |
|          |                          |                 | E                 | Grass lav               | wn, topsoil        |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
| 1        |                          |                 | ⊨ ₁ l             |                         | ***                |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
|          |                          |                 | <b>-</b> '        |                         | plasticity, bro    | vel, moist, firm     | ١,               |          |                |              |                  |                         |                     |          |                  |         |              |
|          |                          |                 | -<br>- 2          | mottling.               |                    | wii wilii giay       |                  |          |                |              |                  |                         |                     |          |                  |         |              |
|          |                          |                 |                   |                         |                    |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
| ]        | ı                        |                 | - <sub>3</sub>    |                         |                    |                      |                  | CL       |                |              |                  |                         |                     | ļ        |                  |         |              |
|          |                          |                 | 3                 |                         |                    |                      |                  |          |                |              |                  | İ                       | İ                   | ł        |                  |         |              |
|          |                          |                 | - 4               |                         |                    |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
|          |                          |                 |                   |                         |                    |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
|          |                          |                 | _ 5               |                         |                    |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
| _        |                          |                 | = "               |                         |                    |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
| 2        |                          |                 | F 6               | -very mo                | oist               |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
|          |                          |                 | E *               |                         |                    |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
|          |                          |                 | - 7               |                         |                    |                      |                  |          |                |              |                  |                         |                     |          | ĺ                |         |              |
|          |                          |                 | =                 |                         |                    |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
|          |                          |                 | - 8               |                         |                    |                      |                  | 1        |                |              |                  |                         |                     |          |                  |         |              |
|          |                          |                 | <b>F</b>          |                         |                    |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
|          |                          |                 | -<br>- 9          |                         |                    |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
| ļ        |                          |                 | <b>-</b>          |                         |                    |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
| - 1      |                          |                 | - 10              |                         |                    |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
|          |                          |                 |                   | SAND                    | lavov some o       | ravel, fine gra      | inad             |          |                |              |                  |                         |                     |          |                  |         |              |
| i        | İ                        |                 | 11                |                         | et, low plasticit  |                      | arieu,           | sc       |                |              |                  |                         |                     |          |                  |         |              |
|          |                          |                 |                   |                         | Year Instrument    | ,, g. <del></del> /, |                  |          |                |              |                  |                         |                     |          |                  |         |              |
| ļ        |                          |                 | _ 12              |                         |                    |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
| l        |                          |                 |                   |                         |                    |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
|          |                          |                 | <b>–</b> 13       | -as above               | e, light brown     |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
|          |                          |                 |                   |                         |                    |                      |                  |          |                |              | 1                |                         |                     |          |                  |         |              |
|          |                          | <u> </u>        | _ 14              |                         |                    |                      |                  |          |                |              |                  |                         |                     |          |                  |         |              |
| I hereb  | y cert                   | ify that        | the inform        | nation on this fo       | orm is true and co | rrect to the best o  | f my kno         | owledg   | e              |              |                  |                         |                     |          |                  |         |              |
| Signat   | ure                      | Mil             | 11                | ME                      | Colle              |                      | Firm             |          | ١              | lewFi        | elds, M          | ladisor                 | n, WI               |          |                  |         |              |

This form is authorized by Chapters 144.147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$4,000 for each violation. Fines not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats

| Bori   | ng Num                   | ber             | М                                                          | W-7B                                                                                                                        | FUIII | 4400        | -122A        | •       |                         |                     | Р               | age _ 2          | of    | 7-91<br>5    |
|--------|--------------------------|-----------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------|-------------|--------------|---------|-------------------------|---------------------|-----------------|------------------|-------|--------------|
| Sam    | ole                      |                 |                                                            |                                                                                                                             |       |             | _            |         |                         | Soil Pr             |                 |                  |       |              |
| Number | Length<br>Recovered (In) | Blow Counts (N) | Depth in Feet                                              | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit                                                         | nscs  | Graphic Log | Well Diagram | PID/FID | Standard<br>Penetration | Moisture<br>Content | Liquid<br>Limit | Plastic<br>Limit | P 200 | ROD/Comments |
| 3      |                          |                 | 15<br>- 16<br>- 16<br>- 17<br>- 18<br>- 18<br>- 19<br>- 20 | SAND, fine grained, clayey, some gravel, sand, wet, low plasticity fines, light brown.  -decreasing clay content with depth | sc    |             |              |         |                         |                     |                 |                  |       |              |
|        |                          |                 | - 21<br>- 22<br>- 23<br>- 24                               |                                                                                                                             |       |             |              |         |                         |                     |                 |                  |       |              |
| 4      |                          |                 | 26 - 27 - 28 - 29 - 30 - 31                                | SAND, some fine gravel, medium to coarse grained, dense, wet, light brown.                                                  | SP    |             |              |         |                         |                     |                 |                  |       |              |
| 5      |                          |                 | - 32<br>- 33<br>- 34<br>- 35<br>- 36                       |                                                                                                                             |       |             |              |         |                         |                     |                 |                  |       |              |

State of Wisconsin Department of Natural Resources MW-7B

| Bori   | ng Num                   | ber —           | MV                                         | /-7B                                                                |      |             |              |         |                         |                     | Р               | age3             | 3 of  | 5_           |
|--------|--------------------------|-----------------|--------------------------------------------|---------------------------------------------------------------------|------|-------------|--------------|---------|-------------------------|---------------------|-----------------|------------------|-------|--------------|
| Sam    | ple                      | 2               |                                            |                                                                     |      |             | c            |         |                         | Soil Pr             |                 |                  |       |              |
| Number | Length<br>Recovered (In) | Blow Counts (N) | Depth in Feet                              | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit | nscs | Graphic Log | Well Diagram | PID/FID | Standard<br>Penetration | Moisture<br>Content | Liquid<br>Limit | Plastic<br>Limit | P 200 | ROD/Comments |
| 5      |                          |                 | 37 38 39 40 41 42 43                       | SAND, medium grained, trace fine gravel, dense, wet, light brown.   | SP   |             |              |         |                         |                     |                 |                  |       |              |
| 6      |                          |                 | 45<br>                                     | -as above - mottled gray and light brown                            | SP   |             |              |         |                         |                     |                 |                  |       |              |
| 7      |                          |                 | 55<br>- 54<br>- 55<br>- 56<br>- 57<br>- 58 | SAND, medium grained, trace fine gravel, wet, light grayish brown.  | SP   |             |              |         |                         |                     |                 |                  |       |              |

State of Wisconsin
Department of Natural Resources

#### SOIL BORING LOG INFORMATION SUPPLEMENT

orm 4400-122/

7-91

MW-7B Page 4 of 5 Boring Number Sample Soil Properties ROD/Comments Blow Counts (N) Well Diagram Depth in Feet Graphic Log Soil/Rock Description Moisture Content Liquid Limit Plastic Limit Number **And Geologic Origin For Each Major Unit** 7 SAND, medium grained, trace gravel, wet, grayish brown. SP 59 60 61 62 63 65 SAND, coarse grained, some gravel, 66 dense, wet, light grayish brown. 8 67 SP 68 69 70 -as above, trace gravel SP 74 -as above, some gravel 76 9

State of Wisconsin Department of Natural Resources

| Boring NumberMW-7B                                |                                                                                                                      |                                                                                                                                                                                                                                                                                            |         |             |              | Page 5 of 5 |                         |                     |                 |                  |       |              |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|--------------|-------------|-------------------------|---------------------|-----------------|------------------|-------|--------------|
| Sample 2                                          |                                                                                                                      |                                                                                                                                                                                                                                                                                            | ٤       |             |              |             |                         | Soil Pro            | Properties \$2  |                  |       |              |
| Number ldm Length Recovered (N) Blow Counts (N)   | Depth in Feet                                                                                                        | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit                                                                                                                                                                                                                        | nscs    | Graphic Log | Well Diagram | PID/FID     | Standard<br>Penetration | Moisture<br>Content | Liquid<br>Limit | Plastic<br>Limit | P 200 | ROD/Comments |
| Number 6 Number 10 11 Recovere Recovere Blow Coul | So   82   84     86     88     90     92     94     96       100       102         106             110           110 | And Geologic Origin For Each Major Unit  SAND, medium grained trace gravel, dense, wet, light grayish brown.  -medium to coarse grained  -coarse grained  SAND, medium grained trace gravel, dense, wet, light grayish brown.  EOB at 100 feet bgs. Installed MW-7B screen 80-85 feet bgs. | SDSN SP | Graphie     | Well Diag    | PID/FID     | Standard Penetratic     | Moisture<br>Content | Liquid          | Plastic Limit    | P 200 | ROD/Con      |
|                                                   | 118                                                                                                                  |                                                                                                                                                                                                                                                                                            |         |             |              |             |                         |                     |                 |                  |       |              |
|                                                   | 120                                                                                                                  |                                                                                                                                                                                                                                                                                            |         |             |              |             |                         |                     |                 |                  |       |              |
|                                                   | 122                                                                                                                  |                                                                                                                                                                                                                                                                                            |         |             |              |             |                         |                     |                 |                  |       |              |

| State of Wisconsin Department of Natural Resources Route To: SOIL BORING LOG INFORMATION Form 4400-122 7-91 |                                                                                    |         |                 |                             |                  |                   |              |          | ION            |              |             |                 |                     |                                                  |                  |         |              |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------|-----------------|-----------------------------|------------------|-------------------|--------------|----------|----------------|--------------|-------------|-----------------|---------------------|--------------------------------------------------|------------------|---------|--------------|
| Берапп                                                                                                      | Route To:                                                                          |         |                 |                             |                  |                   | <b>П</b> нат | Wast     |                |              | F           | orm 440         | 0-122               |                                                  |                  |         | 7-91         |
|                                                                                                             |                                                                                    |         |                 |                             | Solid Waste      |                   | Und          |          |                | nks          |             |                 |                     |                                                  |                  |         |              |
|                                                                                                             |                                                                                    |         |                 |                             | Wastewater       |                   | □ Wat        |          |                |              |             |                 |                     |                                                  |                  |         |              |
|                                                                                                             |                                                                                    |         |                 | _                           | Emergency R      |                   | ☐ Oth        |          |                |              |             |                 |                     | Р                                                | age _1           | of_     | 1            |
| Facility /                                                                                                  | Proj                                                                               | ect Na  | ıme             |                             |                  |                   | Lice         | ense/Pe  | ermit/N        | Monitori     | ing Numb    | er              | TE                  | Boring N                                         |                  |         |              |
|                                                                                                             |                                                                                    |         | DB O            | ak Facility, For            | t Atkinson, \    | Visconsin         | _            |          |                |              |             |                 | _                   |                                                  |                  | MW      | /-8          |
| Boring D                                                                                                    | Prilled                                                                            | By (F   |                 | and name of crew            | chief)           |                   |              | Drilling |                | ed           | Date        | Drilling        | Comple              | ted                                              | Dril             | ing Me  | thod         |
|                                                                                                             |                                                                                    |         |                 | Hanson<br>t Longyear        |                  |                   | <del></del>  | 1 / 1    | <del>9</del> / | 07           | -           | 9/-             |                     |                                                  |                  | 6" Ro   | tosonic      |
| DNR Fa                                                                                                      |                                                                                    | 14/2H & |                 | l Unique Well No.           | Common We        | ell Name          | Final        | Static 1 |                | Level        |             | M M<br>ce Eleva | D D                 | YY                                               | Bon              | ahola C | Diameter     |
| DNK Fa                                                                                                      |                                                                                    |         |                 |                             | MW-              |                   | ' ","        |          | eet M          |              | 1           | 92.8            | Feet                | MSI                                              |                  | 6.0     | inches       |
| Boring L                                                                                                    | *********                                                                          |         |                 |                             | !                |                   |              |          |                |              |             | l Grid Lo       |                     |                                                  | cable)           |         | _ 1101100    |
| State Pla                                                                                                   |                                                                                    | -       |                 | N                           |                  | /C/N              | La           |          |                | _            |             |                 |                     | N                                                | ,                |         | □ E          |
|                                                                                                             | /4 of                                                                              | SE      | 1/4 of S        | Section 34                  | т <u> 6</u> N, F | 14 E              | 1 Lon        |          |                |              |             | Fe              | et 🗖                | S                                                |                  | Fe      | et 🗆 W       |
| County                                                                                                      |                                                                                    |         | 1-66            | _                           |                  | DNR Count         | -            |          | Civil T        |              | City / or V | -               |                     |                                                  |                  |         |              |
|                                                                                                             |                                                                                    |         | Jefferso        | on                          |                  | 2                 | 8            |          |                | Cı           | ity of Fo   | ort Atki        | nson                |                                                  |                  |         |              |
| Sample                                                                                                      |                                                                                    | î       |                 |                             |                  |                   |              |          |                | _            |             |                 | Soil Pr             | opertie                                          | s                |         | lts.         |
|                                                                                                             | Ž                                                                                  | l) st   | e et            | Soil/Re                     | ock Descri       | ntion             |              |          | 60             | Well Diagram |             | _ 5             |                     |                                                  |                  |         | ROD/Comments |
| Number<br>ength                                                                                             | ě                                                                                  | Com     | Ë               |                             | ologic Orig      |                   |              | S        | Graphic Log    | Dia          | OF.         | dard            | Moisture<br>Content | b                                                | <u>.</u> 2       |         | Co Co        |
| Nun                                                                                                         | Soil/Rock Descriptio  Soil/Rock Descriptio  And Geologic Origin F  Each Major Unit |         |                 |                             |                  |                   |              | nscs     | Grap           | Well         | PID/FID     | Stan            | Mois                | Limit                                            | Plastic<br>Limit | P 200   | Q<br>Q       |
|                                                                                                             | +                                                                                  | ш       | <u> </u>        |                             |                  |                   |              |          | $\vdash$       |              |             |                 |                     | <del>                                     </del> | <del> </del>     | -       |              |
|                                                                                                             | - 1                                                                                |         | <b> </b>        |                             |                  |                   |              |          |                |              |             |                 |                     |                                                  |                  |         |              |
|                                                                                                             | - 1                                                                                |         | 2               | No soil sam                 | ples collecte    | ed.               |              |          |                |              |             |                 |                     |                                                  |                  |         |              |
|                                                                                                             |                                                                                    |         | ⊨ I             |                             |                  |                   |              |          |                |              |             |                 | ļ                   |                                                  |                  |         |              |
|                                                                                                             | Ì                                                                                  |         | <u></u> 3       | For soils des<br>MW-8B.     | scriptions, s    | ee boring io      | g tor        |          |                |              |             |                 |                     | ļ                                                |                  |         |              |
| 1                                                                                                           | -                                                                                  |         |                 | WWW-OD.                     |                  |                   |              |          |                |              |             |                 |                     |                                                  |                  |         |              |
| •                                                                                                           | - 1                                                                                |         | 4               | Set well MW                 | /-8 at 20 fee    | t bgs.            |              |          |                |              |             |                 |                     | 1                                                |                  |         |              |
|                                                                                                             |                                                                                    |         |                 |                             |                  |                   |              |          |                |              |             |                 |                     | .                                                | }                |         |              |
|                                                                                                             |                                                                                    |         | <u></u> 5 − 5   |                             |                  |                   |              | •        |                |              |             |                 |                     |                                                  |                  |         |              |
| İ                                                                                                           | - 1                                                                                |         |                 |                             |                  |                   |              |          |                |              |             |                 |                     | 1                                                |                  |         |              |
|                                                                                                             |                                                                                    |         | - 6             |                             |                  |                   |              |          |                |              |             |                 |                     |                                                  |                  |         |              |
|                                                                                                             |                                                                                    |         | _               |                             |                  |                   |              |          |                |              |             |                 |                     |                                                  |                  |         |              |
|                                                                                                             | - 1                                                                                |         | 7               |                             |                  |                   |              |          |                |              |             |                 |                     |                                                  | İ                |         |              |
|                                                                                                             |                                                                                    |         |                 |                             |                  |                   |              | ĺ        |                |              |             |                 |                     |                                                  | İ                |         |              |
| ļ                                                                                                           |                                                                                    |         | 8               |                             |                  |                   |              | ĺ        |                |              |             |                 |                     | İ                                                |                  |         |              |
| ļ                                                                                                           | 1                                                                                  |         |                 |                             |                  |                   |              |          |                | 1            |             |                 |                     | 1                                                |                  |         |              |
|                                                                                                             |                                                                                    |         | 9               |                             |                  |                   |              |          |                |              |             |                 |                     |                                                  |                  |         |              |
|                                                                                                             |                                                                                    |         | =               |                             |                  |                   |              |          |                |              |             |                 |                     |                                                  |                  |         |              |
|                                                                                                             |                                                                                    |         | <u> </u>        |                             |                  |                   |              |          | 1              |              |             |                 | i                   |                                                  |                  |         |              |
|                                                                                                             |                                                                                    |         |                 |                             |                  |                   |              |          |                |              |             |                 |                     |                                                  |                  | :       |              |
|                                                                                                             | ı                                                                                  |         | 11              |                             |                  |                   |              |          | 1              |              |             |                 |                     | ŀ                                                |                  |         |              |
|                                                                                                             | ı                                                                                  |         | Ι=              |                             |                  |                   |              |          |                |              |             |                 |                     |                                                  |                  |         |              |
|                                                                                                             |                                                                                    |         | 12              |                             |                  |                   |              | 1        |                |              |             |                 |                     |                                                  |                  |         |              |
|                                                                                                             |                                                                                    |         | = 40            |                             |                  |                   |              |          |                |              |             |                 |                     |                                                  |                  |         |              |
| - 13   -                                                                                                    |                                                                                    |         |                 |                             |                  |                   |              |          |                | ]            |             |                 |                     |                                                  |                  |         |              |
|                                                                                                             |                                                                                    |         | =               |                             |                  |                   |              |          | 1              |              |             |                 |                     |                                                  |                  |         |              |
|                                                                                                             |                                                                                    |         | <del>-</del> 14 | l ·                         |                  |                   |              | 1        |                |              |             |                 |                     | 1                                                | 1                | 1       |              |
|                                                                                                             |                                                                                    |         | <u> </u>        |                             |                  |                   |              |          |                |              |             |                 |                     | 1                                                | 1                | 1       |              |
| l hereby                                                                                                    | certi                                                                              | fy that | the inform      | l<br>nation on this form is | strile and corre | ect to the hest o | of my kn     | owleda   | <br>B          |              | ·           | <u>'</u>        |                     | <u> </u>                                         | <u> </u>         |         | <b>_</b>     |
| Signatur                                                                                                    |                                                                                    |         | 11 /            | MC/6                        |                  |                   | Firm         |          |                | ields        | , Madis     | on. Wi          |                     |                                                  |                  |         | ··· <u>·</u> |

This form is authorized by Chapters 144.147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$4,000 for each violation. Fines not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats

| State of Wisconsin Department of Natural Resources Route To: SOIL BORING LOG Form 4400-122 |                                                                                                                                    |          |           |                             |                  |                  |          | OG IN        | <b>IFOR</b> | MAT      |            |                         |                     |            |                  |                                              |          |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----------------------------|------------------|------------------|----------|--------------|-------------|----------|------------|-------------------------|---------------------|------------|------------------|----------------------------------------------|----------|
| Depa                                                                                       | Route To:  Solid Waste  Wastewater                                                                                                 |          |           |                             |                  |                  | □ нат    | Waste        |             |          | F          | orm 4400                | 0-122               |            |                  |                                              | 7-91     |
|                                                                                            |                                                                                                                                    |          |           |                             | Solid Waste      |                  | Und      |              |             | nks      |            |                         |                     |            |                  |                                              |          |
|                                                                                            |                                                                                                                                    |          |           |                             | Wastewater       |                  | □ Wat    |              |             |          |            |                         |                     |            |                  |                                              |          |
|                                                                                            |                                                                                                                                    |          |           |                             | Emergency R      | esponse          | ☐ Othe   | er           |             |          |            |                         |                     | Р          | age _ 1          | of _                                         | 1_       |
| Facili                                                                                     | ty / Pro                                                                                                                           | iect Na  | ıme       |                             |                  |                  | Lice     | ense/Pe      | ermit/N     | /onitori | ng Numb    | ег                      | E                   | Boring N   | lumber           |                                              |          |
|                                                                                            |                                                                                                                                    | -        | DB Oa     | k Facility, For             |                  | Wisconsin        |          |              |             |          |            |                         | -                   |            |                  |                                              | /-8A     |
| Borin                                                                                      | g Drille                                                                                                                           | d By (F  |           | and name of crew            | chief)           |                  |          | Drilling     |             |          |            | Drilling                |                     |            |                  | ling Me                                      |          |
|                                                                                            |                                                                                                                                    |          |           | lanson                      |                  |                  |          | <u> / 1</u>  | 9<br>D      | 07       |            | <del>9</del> /-         | <u>19</u> /         | <u>07</u>  |                  | 6" Ro                                        | tosonic  |
|                                                                                            | - w.                                                                                                                               |          |           | Longyear<br>Unique Well No. | Common W         | ell Name         | Final    | Static \     |             | l evel   | _          | / M<br>ce Eleva         |                     | 11         | Bor              | ehole C                                      | Diameter |
|                                                                                            | Facility                                                                                                                           |          | 40   ''_  |                             | MW-              |                  | ' ""     |              | eet M       |          |            | 92.8                    | Feet                | MSL.       |                  | 6.0                                          | inches   |
| Borin                                                                                      | g Loca                                                                                                                             | tion     |           |                             |                  |                  |          |              |             |          |            | l Grid Lo               | _                   |            | cable)           |                                              |          |
|                                                                                            | Plane                                                                                                                              | _        |           | N                           |                  | S/C/N            | La       |              | _           | _        |            |                         |                     | N          |                  |                                              | □ E      |
| SE                                                                                         | 1/4 c                                                                                                                              | f SE     | 1/4 of Se | ection 34                   | T <u>6</u> N,I   | ₹ <u>14</u> E    | Lon      |              |             |          |            | Fe                      | et 🗖                | S          |                  | Fe                                           | et 🛮 W   |
| Coun                                                                                       | ty                                                                                                                                 |          |           |                             |                  | DNR Coun         |          | - 1          | Civil T     |          | ity / or V |                         |                     |            |                  |                                              |          |
|                                                                                            |                                                                                                                                    |          | Jeffersor | 1                           |                  | 2                | 8        |              |             | Ci       | ty of Fo   | ort Atki                | nson                |            |                  |                                              |          |
| Samp                                                                                       | le                                                                                                                                 | 3        |           |                             |                  |                  |          |              |             |          |            |                         | Soil P              | ropertie   | s                |                                              | <u>۽</u> |
|                                                                                            | Soil/Rock Description And Geologic Origin F  and Halpin Description  Soil/Rock Description  And Geologic Origin F  Each Major Unit |          |           | intion                      |                  |                  | 8        | Well Diagram |             | Lo<br>Lo |            |                         |                     |            | ROD/Comments     |                                              |          |
| þer                                                                                        | - Pe                                                                                                                               | ğ        | 1 E       |                             | ologic Ori       |                  |          | ۱,,          | Graphic Log | Diaç     | ₽          | Standard<br>Penetration | Moisture<br>Content | _          | ပ္               |                                              | l 5      |
| Number                                                                                     | ugth<br>Scov                                                                                                                       |          | ŧ         |                             | h Major U        |                  |          | nscs         | Srap        | Nell     | PID/FID    | Stanc                   | Nois                | Liquid     | Plastic<br>Limit | P 200                                        | Ô        |
|                                                                                            | 2 %                                                                                                                                | <u> </u> |           |                             |                  |                  |          |              |             |          |            | " <u>"</u>              | -                   | <u>-</u> - | -                | <u>                                     </u> | <u> </u> |
|                                                                                            | No soil samples collected.  For soils descriptions, see borin MW-8B.  Set well MW-8A 50 feet bgs.  Set well mw-8A 50 feet bgs.     |          |           |                             |                  | ee boring k      | og for   |              |             |          |            |                         |                     |            |                  |                                              |          |
| Lhar                                                                                       |                                                                                                                                    | rifu tha |           | ·                           | is trife and con | rect to the hest | of my kr | nowled:      | Je.         |          |            |                         |                     |            |                  |                                              |          |

This form is authorized by Chapters 144.147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$4,000 for each violation. Fines not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats

Firm

NewFields, Madison, WI

Signature

| State of Wisconsin  Department of Natural Resources  Route To:  Haz. Waste |                                                                                                 |           |                                |                         |                                     |              | SOIL           |             |             | OG II        | <b>NFOR</b> | MAT                     | ION                 |           |                  |         |              |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------|--------------------------------|-------------------------|-------------------------------------|--------------|----------------|-------------|-------------|--------------|-------------|-------------------------|---------------------|-----------|------------------|---------|--------------|
| Depa                                                                       | ırtment                                                                                         | or Natt   | ıraı Kesot                     | irces                   |                                     | Пист         | Most           | _           |             | F            | orm 440     | 0-122                   |                     |           |                  | 7-91    |              |
|                                                                            |                                                                                                 |           |                                |                         | ☐ Solid Waste                       |              | Und            |             |             | nke          |             |                         |                     |           |                  |         |              |
|                                                                            |                                                                                                 |           |                                |                         | □ Wastewater                        |              | □ Wat          |             |             |              |             |                         |                     |           |                  |         |              |
|                                                                            |                                                                                                 |           |                                |                         | ☐ Emergency Re                      |              | ☐ Oth          |             | Jui 00.     | •            |             |                         |                     | Þ         | age _1           | of      | 5            |
|                                                                            | ity / Pro                                                                                       | :4 A1-    |                                |                         |                                     |              |                |             | :4/8        | 44           | ing Numi    |                         |                     |           |                  |         | <del>-</del> |
| Facil                                                                      | ity / Pro                                                                                       | ject Na   | DB C                           | Dak Facility, F         | ort Atkinson, V                     | Visconsin    |                |             |             |              | ng Numi     | oer<br>                 |                     | soring N  | lumber           | MW      | -8B          |
| Borir                                                                      | ng Drille                                                                                       | d By (F   |                                | and name of cr          | ew chief)                           |              |                | Drilling    |             |              | Date        | e Drilling              |                     | ted       | Dril             | ling Me | thod         |
|                                                                            |                                                                                                 |           |                                | Hanson<br>t Longyear, S | Schofiold W/I                       |              | <del>  S</del> | <u> / 1</u> | 8<br>D      | <u>07</u>    | -           | 9 /                     | <u>19</u> /         | 07        |                  | 6" Ro   | tosonic      |
| DMD                                                                        | Facility                                                                                        | . NA/aH N | annual annual sales ( village) | (I Unique Well No       | ********                            | ll Name      | +              | Static \    |             |              |             | M M<br>ace Eleva        | D D<br>ation        | YY        | Bor              | ehole D | iameter      |
| - DRK                                                                      |                                                                                                 | · —       | "                              |                         | MW-                                 |              |                |             | eet M       |              |             | 92.7                    | _ Feet I            | MSL       |                  | 6.0     | _ inches     |
|                                                                            | g Locate<br>Plane                                                                               | tion<br>  |                                | N                       | E                                   |              | La             | at —        | -           | _            | Loca        | al Grid Lo              | ,                   | If Applic | cable)           |         | ΩE           |
| NE                                                                         | 1/4 c                                                                                           | of SE     | 1/4 of \$                      | Section 34              | т <u>6</u> N, R                     | 14 E/W       | Lon            | g <u>—</u>  |             | _            |             | Fe                      |                     | S         |                  | Fe      |              |
| Coun                                                                       | ity                                                                                             | -         |                                |                         |                                     | DNR County   | y Code         | ŀ           | Civil T     | own / C      | City / or V | 'illage                 |                     |           |                  |         |              |
|                                                                            |                                                                                                 |           | Jefferso                       | on                      |                                     | 2            | 8              |             |             | Ci           | ity of F    | ort Atk                 | inson               |           |                  |         |              |
| Samp                                                                       | ole                                                                                             | _         |                                |                         |                                     |              |                |             |             |              |             | Ĭ                       | Soil Pr             | opertie   | s                |         | φ.           |
|                                                                            | Ê                                                                                               | S S       | <b>p</b>                       |                         | D                                   | 4!           |                | 1           | go.         | Well Diagram |             | Ē                       | T                   | İ         |                  |         | ROD/Comments |
| ē                                                                          | Soil/Rock Description  Soil/Rock Description  And Geologic Origin Feet  Each Major Unit         |           |                                |                         |                                     |              |                |             | Graphic Log | jagi         | □           | Standard<br>Penetration | 를 돈                 |           |                  |         | Ĕ            |
| Number                                                                     | f S                                                                                             | S<br>Š    | <del>=</del>                   |                         |                                     |              |                | nscs        | raph        | /ell [       | PID/FID     | and                     | Moisture<br>Content | Liquid    | Plastic<br>Limit | P 200   | 0/0          |
|                                                                            |                                                                                                 |           |                                |                         | iiit                                |              | خا             | ۳           | >           | <u>a</u>     | Ω ď         | ΣÓ                      | دَ دَ               | ᅙᅙ        | ۵                | 8       |              |
|                                                                            | Grass lawn, topsoil                                                                             |           |                                |                         |                                     |              |                |             |             |              |             |                         |                     |           |                  |         |              |
| 1                                                                          |                                                                                                 |           | F₁                             | OLAY -!!                | . 4                                 |              |                |             |             |              |             |                         |                     |           | 1                |         |              |
|                                                                            |                                                                                                 |           | <u> </u>                       |                         | y, trace gravel<br>lasticity, browr |              | ,              |             |             |              |             |                         | ŀ                   |           |                  |         |              |
|                                                                            |                                                                                                 |           | -<br>- 2                       | mottling.               | iasticity, brown                    | i willi gray |                |             |             |              |             |                         |                     |           |                  | 1       | Ì            |
|                                                                            |                                                                                                 |           | -                              |                         |                                     |              |                |             |             |              |             |                         |                     |           |                  |         |              |
|                                                                            |                                                                                                 |           |                                |                         |                                     |              |                | CL          |             |              |             |                         |                     |           | İ                |         |              |
|                                                                            |                                                                                                 |           | — з                            |                         |                                     |              |                |             |             |              |             |                         |                     |           |                  | 1       |              |
|                                                                            |                                                                                                 |           |                                |                         |                                     |              |                |             |             |              |             |                         |                     |           |                  |         |              |
|                                                                            |                                                                                                 |           | - 4                            |                         |                                     |              |                |             |             |              |             |                         |                     |           | ]                |         |              |
|                                                                            | 1                                                                                               |           |                                |                         |                                     |              |                |             |             |              |             |                         |                     |           |                  | İ       |              |
|                                                                            |                                                                                                 |           | 5                              | -as above               | , moist, gray.                      |              |                |             |             |              |             |                         |                     |           |                  | ]       |              |
| 2                                                                          |                                                                                                 |           | E                              |                         |                                     |              |                |             |             |              |             |                         |                     |           | 1                |         |              |
|                                                                            |                                                                                                 |           | 6                              |                         |                                     |              |                | 1           |             |              |             | İ                       |                     | 1         |                  |         |              |
|                                                                            |                                                                                                 |           | E                              |                         |                                     |              |                | 1           |             |              |             |                         |                     |           |                  |         |              |
|                                                                            |                                                                                                 |           | 7                              |                         |                                     |              |                |             |             |              |             |                         |                     |           |                  |         |              |
|                                                                            |                                                                                                 |           | F                              |                         |                                     |              |                |             |             |              |             |                         |                     |           |                  |         |              |
|                                                                            |                                                                                                 |           | <b>—</b> 8                     |                         |                                     |              |                |             |             |              |             | 1                       |                     |           |                  |         |              |
|                                                                            |                                                                                                 |           | F                              |                         |                                     |              |                |             |             |              |             |                         |                     |           |                  | ļ       |              |
|                                                                            |                                                                                                 |           | 9                              |                         |                                     |              |                |             |             |              |             |                         |                     |           |                  |         |              |
|                                                                            |                                                                                                 |           | ļ.                             |                         |                                     |              |                |             |             |              |             |                         |                     |           |                  | 1       |              |
|                                                                            |                                                                                                 |           | - 10                           |                         |                                     |              |                | 1           |             |              |             |                         | 1                   | 1         |                  |         |              |
|                                                                            |                                                                                                 |           |                                |                         |                                     |              |                | 1           |             |              | 1           |                         |                     | 1         | 1                |         |              |
|                                                                            |                                                                                                 |           | - 11                           |                         |                                     |              |                | 1           |             |              |             |                         |                     | 1         | 1                |         |              |
|                                                                            |                                                                                                 |           |                                |                         |                                     |              |                | 1           |             |              |             |                         |                     |           | 1                | İ       |              |
|                                                                            | 12 -very sandy below 12 feet.                                                                   |           |                                |                         |                                     | et.          |                |             |             | 1            |             |                         | 1                   |           |                  |         |              |
|                                                                            | -very sarrdy below 12 leet.                                                                     |           |                                |                         |                                     |              |                |             |             |              |             |                         | 1                   | 1         |                  |         |              |
|                                                                            |                                                                                                 |           |                                |                         |                                     |              |                |             |             | ]            |             |                         |                     | 1         |                  |         |              |
|                                                                            | 13                                                                                              |           |                                |                         |                                     |              |                |             |             |              |             | 1                       |                     |           |                  |         |              |
|                                                                            |                                                                                                 |           |                                |                         |                                     |              |                |             |             |              |             |                         |                     |           |                  |         |              |
| l her                                                                      | reby certify that the information on this form is true and correct to the best of my knowledge. |           |                                |                         |                                     |              |                |             |             |              |             |                         |                     |           |                  |         |              |
|                                                                            | ature                                                                                           | //        | ///                            | 1111                    | Mont                                | 2000 0       | Firm           |             |             | VewEi        | ields, N    | /adien                  | n \A/I              |           |                  |         |              |
| 9-1                                                                        |                                                                                                 | 711       | e a                            | NU                      | were                                |              |                |             |             | 40.441.      | ioius, N    | 100150                  | ı, VVI              |           |                  |         |              |

This form is authorized by Chapters 144.147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$4,000 for each violation. Fines not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats

State of Wisconsin Department of Natural Resources

#### SOIL BORING LOG INFORMATION SUPPLEMENT

Form 4400-122A

| -      |                          |                 | ıral Resou<br>M                    | rces<br>W-8B                                                                                                                               | Form     | 4400-       | ·122A        |         |                         |                     |                 | -                   |       | 7-91<br>-    |
|--------|--------------------------|-----------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|--------------|---------|-------------------------|---------------------|-----------------|---------------------|-------|--------------|
| Sam    | ng Numl                  |                 |                                    |                                                                                                                                            | <u> </u> |             |              | [       | l                       | Soil Pr             |                 |                     | of    |              |
| Number | Length<br>Recovered (In) | Blow Counts (N) | Depth in Feet                      | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit                                                                        | nscs     | Graphic Log | Well Diagram | PID/FID | Standard<br>Penetration | Moisture<br>Content | Liquid<br>Limit | Plastic<br>Limit    | P 200 | ROD/Comments |
| 3      |                          |                 | 15 16 17 18 19 19 19               | CLAY, sandy, trace fine gravel, firm, moist, gray.  SAND, fine grained, some clay, trace gravel, wet, low plasticity, light grayish brown. | CL<br>SC |             |              |         |                         |                     |                 |                     |       |              |
|        |                          |                 | - 20<br>- 21<br>- 22<br>- 23       | CLAY, silty, trace fine gravel, firm, moist, gray with some brown mottling.                                                                | CL       |             |              |         |                         |                     |                 |                     |       |              |
|        |                          |                 | - 24                               | SILT, some clay, firm, wet, light brown.                                                                                                   | ML<br>CL |             |              |         |                         |                     |                 |                     |       |              |
| 4      |                          |                 | 25<br>- 26<br>- 27<br>- 27<br>- 28 | SAND, medium to coarse grained, trace fine gravel dense, wet, light brown.                                                                 | SP       |             |              |         |                         |                     |                 |                     |       |              |
|        |                          |                 | - 29<br>- 30<br>- 31               | -coarse grained, with some gravel.                                                                                                         |          |             |              |         |                         |                     |                 |                     |       |              |
|        |                          |                 | - 32<br>- 33                       |                                                                                                                                            |          |             |              |         |                         |                     |                 |                     |       |              |
| 5      |                          |                 | 35<br>-<br>36                      | -as above                                                                                                                                  | SP       |             |              |         |                         |                     |                 | Line and the second |       |              |

State of Wisconsin
Department of Natural Resources
MW-8B

#### SOIL BORING LOG INFORMATION SUPPLEMENT

Form 4400-122A

7-9

Page 3 of 5 Boring Number Sample Soil Properties Blow Counts (N) Well Diagram Depth in Feet Graphic Log Soil/Rock Description Moisture Content Liquid Limit Plastic Limit Number And Geologic Origin For **Each Major Unit** SAND, as above SP 37 CLAY, silty, trace gravel, firm, moist, CL 40 41 SAND, medium grained, trace gravel, wet, dense, light brown. 46 6 SP 48 49 50 51 52 - 53 54 GP SAND and GRAVEL, medium grained 7 sand, wet, light brown. SAND, medium to coarse grained, trace 57 fine gravel, wet, dense, grayish brown. SP 58

State of Wisconsin Department of Natural Resources

# SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A 7-91

| Bori   | ng Numi                 | ber —           | MW-8                                               | <u>BB</u>                                                                                                            | 1 01111  |             |              |         |                         |                     | P               | age _4           | of    | 5_           |
|--------|-------------------------|-----------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------|-------------|--------------|---------|-------------------------|---------------------|-----------------|------------------|-------|--------------|
| Sam    | ple                     |                 |                                                    |                                                                                                                      |          |             | _            |         |                         | Soil Pr             | opertie         |                  |       |              |
| Number | Length<br>Recovered (N) | Blow Counts (N) | Depth in Feet                                      | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit                                                  | nscs     | Graphic Log | Well Diagram | PID/FID | Standard<br>Penetration | Moisture<br>Content | Liquid<br>Limit | Plastic<br>Limit | P 200 | ROD/Comments |
| 7      |                         |                 | 58<br>- 59<br>- 60<br>- 61<br>- 62<br>- 63<br>- 64 | SAND, medium to coarse grained, trace fine gravel, wet, dense, grayish brown.  SILT, firm, wet, light grayish brown. | SP       | ***         |              |         |                         |                     |                 |                  |       |              |
| 8      |                         |                 | 66<br>                                             | SAND and GRAVEL, coarse grained, wet, brown.  SAND, fine grained, some silt, medium dense, wet, light brown.         | GP<br>SM |             |              |         |                         |                     |                 |                  |       |              |
|        |                         |                 | 70<br>- 71<br>- 72                                 | SILT, some fine sand, firm, wet, light brown.                                                                        | ML       |             |              |         |                         |                     |                 |                  |       |              |
| 9      |                         |                 | - 73<br>- 74<br>- 75<br>- 76<br>- 77<br>- 78       | SAND, fine grained, some silt, medium dense, wet, light brown.                                                       | SM       |             |              |         |                         |                     |                 |                  |       |              |

#### SOIL BORING LOG INFORMATION SUPPLEMENT

Form 4400-122A

7-91

| Borin  | ng Numb                 | oer             | MW-8                         | BB_                                                                                                            |          |             |              |         |                         |                     | P               | age5             | of    | 5            |
|--------|-------------------------|-----------------|------------------------------|----------------------------------------------------------------------------------------------------------------|----------|-------------|--------------|---------|-------------------------|---------------------|-----------------|------------------|-------|--------------|
| Samp   | ole 🦳                   | 2               |                              |                                                                                                                |          |             |              |         |                         | Soil Pr             | opertie         | s                |       | uts.         |
| Number | Length<br>Recovered (N) | Blow Counts (N) | Depth in Feet                | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit                                            | sosn     | Graphic Log | Well Diagram | PID/FID | Standard<br>Penetration | Moisture<br>Content | Liquid<br>Limit | Plastic<br>Limit | P 200 | ROD/Comments |
| 9      |                         |                 | -<br>-<br>-<br>80            | SAND, some silt, fine grained, medium dense, wet, light brown.  SILT, some fine sand, firm, wet, light grayish | SM<br>ML |             |              |         |                         |                     |                 |                  |       |              |
|        |                         |                 | - 82                         | SAND, some silt, fine grained, medium dense, wet, gray.                                                        | SM       |             |              |         |                         |                     |                 |                  |       |              |
|        |                         |                 | 84                           | SILT, firm, wet, gray  CLAY, some silt, trace gravel, firm, moist,                                             | ML       |             |              |         |                         |                     |                 |                  | !     |              |
| 10     |                         |                 | -<br>-<br>-<br>- 88          | gray.                                                                                                          |          |             |              |         |                         |                     |                 |                  |       |              |
|        |                         |                 | - 90                         | -no gravel below 90 feet.                                                                                      | CL       |             |              |         |                         |                     |                 |                  |       |              |
|        |                         |                 | - 92                         |                                                                                                                |          |             |              |         |                         |                     |                 |                  |       |              |
|        |                         |                 | 94                           |                                                                                                                |          |             |              |         |                         |                     |                 |                  |       |              |
| 11     |                         |                 | 96<br>_<br>_<br>_<br>_       | CLAY, some silt, firm, very moist, gray                                                                        | CL       |             |              |         |                         |                     |                 |                  |       |              |
|        |                         |                 | — 98<br>-<br>-<br>-<br>- 100 | CLAY, silty, firm, very moist, gray                                                                            | ML<br>CL |             |              |         |                         |                     |                 |                  |       |              |
|        |                         | <b>:</b>        | 100                          | SILT, some clay, moist, gray                                                                                   | ML-C     |             |              |         |                         |                     |                 |                  |       |              |
|        |                         |                 | 104                          | SILT, some clay, moist, gray                                                                                   | ML<br>CL |             |              |         |                         |                     |                 |                  |       |              |
| 12     |                         |                 | 106                          | CLAY, some silt, firm, moist, gray  CLAY, silty, firm to stiff, moist, gray                                    | CL-M     |             |              |         |                         |                     |                 |                  |       |              |
|        |                         |                 | 108                          | -                                                                                                              |          |             |              |         |                         |                     |                 |                  |       |              |
|        |                         |                 | 110                          | -silt interbedded seams present below 111                                                                      |          |             |              |         | i                       |                     |                 |                  |       |              |
|        |                         |                 | - 112                        | feet                                                                                                           |          |             |              |         |                         |                     |                 |                  |       |              |
|        |                         |                 | 114                          | EOB at 115 feet bgs.                                                                                           |          |             |              |         |                         |                     |                 |                  |       |              |
|        |                         |                 | 118                          | Installed MW-8B screen 80-85 feet bgs.                                                                         |          |             |              |         |                         |                     |                 |                  |       |              |
|        |                         |                 | 120                          |                                                                                                                |          |             |              |         |                         |                     |                 |                  |       |              |
|        |                         |                 | 122                          |                                                                                                                |          |             |              |         |                         |                     |                 |                  |       |              |

|                                                                                          | olid Waste□ Haz. Waste□<br>se & Repair□ Underground T        |                                    | MONITORI<br>Form 4400-                              | ING WELL CONSTRUC                                                     | CTION<br>v. 4-90 |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|------------------|
| D 11: // 1                                                                               |                                                              | diks d Other d                     | <u> </u>                                            | TIDA KEV                                                              | . 4-50           |
| DB Oak Facility                                                                          | Local Grid Location of Wellft. □ N.                          | ft. 🗖 E.                           | Well Name M                                         | IW-2B                                                                 |                  |
| Fort Atkinson, Wisconsin                                                                 | □ S.                                                         |                                    |                                                     |                                                                       |                  |
| Facility License, Permit or Monitoring Number                                            | Grid Origin Location                                         | ong                                | Wis. Unique Well Number                             | t DNR Well Ni                                                         | umber            |
| Type of Well Water Table Observation Well □ 11 Piezometer □ 12                           | Lat I<br>St. Plane ft.                                       | N, ft. E.                          | Date Well Installed                                 | $\frac{0}{m}$ $\frac{9}{d}$ $\frac{2}{d}$ $\frac{0}{y}$ $\frac{7}{y}$ | _                |
| Distance Well Is From Waste/Source Boundary                                              |                                                              |                                    |                                                     |                                                                       |                  |
|                                                                                          | Section Location of Waste/Sou<br>NE 1/4 of SE 1/4 of Sec. 34 |                                    | Well Installed By: (Person's  Mike Hanson           | ,                                                                     |                  |
|                                                                                          | Location of Well Relative to V                               |                                    |                                                     |                                                                       |                  |
|                                                                                          | u Upgradient d Downgradient                                  | s □ Sidegradient<br>n □ Not Known  | Boart Longy                                         | ear                                                                   |                  |
| A. Protective pipe, top elevation 7 9 1 . 5 ft.                                          | MSL                                                          | 1. Cap and                         |                                                     | ■Yes □ N                                                              | No               |
| B. Well casing, top elevation $\frac{7}{9}$ $\frac{9}{1}$ . $\frac{20}{9}$ ft.           | MSL '                                                        |                                    | re cover pipe:<br>e diameter:                       | 4 0                                                                   | in               |
| C. Land surface elevation $\frac{791}{.5}$ ft.                                           | MSL                                                          | b. Leng                            |                                                     | $-\frac{4}{7}\cdot\frac{0}{0}$                                        | ft.              |
| D. Surface seal, bottom 7 8 9 . 5 ft MSL or                                              | 1.2.4.4                                                      | c. Mater                           | rial:<br>Stick up                                   | Steel                                                                 |                  |
|                                                                                          |                                                              | $\frac{1}{\sqrt{1 - \frac{1}{2}}}$ | tional protection?                                  | Other □<br>□ Yes ■                                                    |                  |
| 12. USCS classification of soil near screen: GP □ GM □ GC □ GW □ SW □ SP                 |                                                              | If yes                             | , describe:                                         |                                                                       | NO               |
| SM SC ML MH CL CH                                                                        |                                                              | 3. Surface:                        | seal:                                               | Bentonite 🗆                                                           | 3 0              |
| Bedrock □                                                                                |                                                              |                                    | Native soil                                         | Concrete                                                              | 0 1              |
| 13. Sieve analysis attached? ☐ Yes ■ N                                                   |                                                              | A Material                         | between well casing and pro                         | Other                                                                 |                  |
| 13. Sieve analysis attached. — 146 — 14                                                  | Ĭ N                                                          | 4. Materia                         | octween wen casing and pro                          | Bentonite                                                             | 3 0              |
| 14. Drilling method used: Rotary □ 5                                                     |                                                              | × ×                                | Red Flint #30                                       | Annular Space Seal □                                                  | <u> 1919/2</u>   |
| Hollow Stem Auger □ 4 Rotosonic Other ■                                                  |                                                              | ₿ — <u>-</u>                       | Rod I lift #30                                      | Other                                                                 | <u> </u>         |
|                                                                                          |                                                              | 8                                  |                                                     |                                                                       |                  |
| 15. Drilling fluid used: Water 0 2 Air 00                                                |                                                              |                                    |                                                     | Granular Bentonite 🗖                                                  |                  |
| Drilling Mud 0 3 None 9                                                                  | '                                                            |                                    | Lbs/gal mud weight I                                |                                                                       |                  |
| 16. Drilling additives used? ■ Yes □ N                                                   | o                                                            | d.                                 | Lbs/gal mud weight  Meantonite                      |                                                                       |                  |
|                                                                                          |                                                              | е                                  | Ft <sup>3</sup> volume added for                    | any of the above                                                      |                  |
| Describe:potable water                                                                   | I 🖁                                                          | f. How                             | installed:                                          | Tremie 🗖                                                              |                  |
| 17. Source of water (attached analysis):                                                 |                                                              | X                                  | 75 gallons bentonite slurry Grout up to 2 feet bgs. | Tremie pumped ■ Gravity □                                             |                  |
| `                                                                                        | l 🛭                                                          | M                                  |                                                     | •                                                                     |                  |
| Boart Longyear                                                                           |                                                              | 6. Bentoni                         | 1/4 in. ■ 3/8 in. □ 1/2 in                          | a. Bentonite granules  Bentonite chips Other                          | 3 2              |
| E. Bentonite seal, top $\frac{7}{2}$ $\frac{2}{5}$ $\frac{5}{5}$ ft MSL or $\frac{6}{5}$ | <u>6</u> . <u>0</u> ft                                       | 7. Fine san                        | nd material: Manufacturer, pr                       |                                                                       |                  |
| F. Fine sand, top $\frac{7}{2} \frac{2}{0} \cdot \frac{5}{1}$ ft MSL or $\frac{7}{1}$    | 1.0 ft                                                       | [3] / a                            | Badger Mining #4                                    |                                                                       | <u> </u>         |
| G. Filter pack, top                                                                      | 20_ft                                                        | N /                                | ack material: Manufacturer, p                       |                                                                       | œ.               |
| H. Screen joint, top                                                                     | 0.0 ft                                                       | a.<br>b. Volu                      | Red Flint #30<br>ume added 150                      | lb                                                                    | <u> </u>         |
| I. Well bottom 7 0 6 . 5 ft MSL or 8                                                     | 5.0 ft                                                       | 9. Well car                        | _                                                   | ded PVC schedule 40                                                   |                  |
| J. Filter pack, bottom 7 0 6 . 5 ft MSL or 8                                             | <u> </u>                                                     |                                    | Flush thread                                        | ded PVC schedule 80 ☐ Other ☐                                         |                  |
|                                                                                          |                                                              | 10. Screen                         |                                                     |                                                                       | <u> </u>         |
| K. Borehole, bottom $\frac{691}{5}$ ft MSL or $\frac{10}{5}$                             | 00.0 ft                                                      | a. Scre                            | een type:                                           | Continuous slot 🛘                                                     |                  |
| L. Borehole, diameter $\underline{\underline{6}} \cdot \underline{0}$ in.                |                                                              | _                                  | nufacturer Boart Lon                                |                                                                       | -                |
| M. O.D. well casing 2. 3 7 in.                                                           |                                                              | c. Slot<br>d. Slot                 | size<br>tted length:                                | 0. <u>0</u> <u>1</u> <u>5</u>                                         | 0 in.<br>0 ft.   |
| N. I.D. well casing $2 \cdot 0 \cdot 5$ in.                                              |                                                              | 11. Backf                          | ill material (below filler pack)<br>natu            | ): None ☐<br>ral collapse Other ■                                     |                  |
| T1 1 00 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1                                                  | C :. 4. 1                                                    | 4 - 41 - 1 - 4 C - 1               |                                                     |                                                                       |                  |
| I hereby certify that the information on this                                            | torm is true and correct                                     | to the best of my know             | viedge.                                             |                                                                       |                  |
| Signature M L Malle                                                                      | Firm NewFie                                                  | elds, Madison, Wiscor              | nsin                                                |                                                                       |                  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | olid Waste ☐ Haz. Waste ☐ se & Repair ☐ Underground T        |                       |                                          | FORING WELL CONSTRUCTION 400-113A Rev. 4-90                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------|------------------------------------------|-------------------------------------------------------------------------------|
| Department of Natural Resources Env. Respon<br>Facility/Project Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | anks D Other D        |                                          | 400-113A Kev. 4-90                                                            |
| DB Oak Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Local Grid Location of Well ft.   N.                         | ft. 🗖 E.              | Well Name                                | MW-3C                                                                         |
| Fort Atkinson, Wisconsin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | □ S.                                                         | □ w.                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,  |                                                                               |
| Facility License, Permit or Monitoring Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Grid Origin Location Lat L                                   | ong.                  |                                          | mber DNR Well Number                                                          |
| Type of Well Water Table Observation Well □ 11 Piezometer □ 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | St. Plane ft.                                                | N, ft. E.             | Date Well Installed                      | $\frac{0}{m} \frac{9}{m} / \frac{2}{d} \frac{2}{d} / \frac{0}{y} \frac{7}{y}$ |
| Distance Well Is From Waste/Source Boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Section Location of Waste/Sou<br>NE 1/4 of SE 1/4 of Sec. 34 |                       | Well Installed By: (Per                  | son's Name and Firm)                                                          |
| Is Well A Point of Enforcement Std. Application?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Location of Well Relative to V                               |                       | Mike Ha                                  | nson                                                                          |
| □ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | u D Upgradient d Downgradient                                | s   Sidegradient      | Boart Lo                                 | ongyear                                                                       |
| A. Protective pipe, top elevation ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | 1. Cap and            |                                          | ■ Yes □ No                                                                    |
| B. Well casing, top elevation 7 9 3 . 4 9 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . MSL                                                        | - 1 · - 2. 1 loccili  | e cover pipe:<br>diameter:               | 4 0 in                                                                        |
| C. Land surface elevation 7 9 1 0 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . MSL                                                        | b. Leng               |                                          | $-\frac{4}{7}\cdot\frac{0}{0}$ in.                                            |
| D. Surface seal, bottom 7 8 9 0 ft MSL or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              | c. Mate               | ial:<br>Stick up                         | Steel                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del>2 - u                                    </del>         | d Addi                | ional protection?                        | Other ☐ △△△                                                                   |
| 12. USCS classification of soil near screen:  GP □ GM □ GC □ GW □ SW □ SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \                                                            | If yes                | , describe:                              | □ res ■ No                                                                    |
| SM SC D MLD MHD CL D CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | 3. Surface            |                                          | Bentonite □ 3 0                                                               |
| Bedrock □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                       |                                          | Concrete □ 0 1                                                                |
| 10.01 1.10 1.10 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                            |                       | Native soil                              | Other  Other                                                                  |
| 13. Sieve analysis attached? ☐ Yes ■ N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                           | 4. Materia            | between well casing and                  |                                                                               |
| 14. Drilling method used: Rotary □ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ; o                                                          | 8                     |                                          | Bentonite □ 3 0 Annular Space Seal □ ○○○                                      |
| Hollow Stem Auger 🗖 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | N                     | Red Flint #3                             | Other 🔳 📐                                                                     |
| Rotosonic Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ****   <b> </b>                                              | N                     |                                          |                                                                               |
| 15. Drilling fluid used: Water ■ 0 2 Air □ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o 1                                                          | 5. Ann                | ular space seal:                         | a. Granular Bentonite 🗖 3 3                                                   |
| Drilling Mud □ 0 3 None □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              | b                     | Lbs/gal mud weight                       | Bentonite-sand slurry \Boxed{3} 3                                             |
| 16 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P. 10 P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , I 🖟                                                        | ß c                   | Lbs/gal mud weight                       | Bentonite slurry <b>3</b> 1                                                   |
| 16. Drilling additives used? ■ Yes □ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>™</b>                                                     | () d<br>⊗ e           |                                          | . Bentonite-cement grout <b>1</b> 5 0 d for any of the above                  |
| Describe:potable water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 🖟                                                            |                       | installed:                               | Tremic   0 1                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | ×                     | 120 gallons bentonite sl                 | urry Tremie pumped <u> </u>                                                   |
| 17. Source of water (attached analysis):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              | Š                     | Grout up to 2 feet bgs.                  | Gravity □ 0 8                                                                 |
| Boart Longyear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              | / 6. Bentoni          |                                          | a. Bentonite granules  3 3                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | b. C                  | 1/4 in. ■ 3/8 in. □ 1<br>100 lbs         | /2 in. Bentonite chips ■ 3 2  Other □ 2882                                    |
| E. Bentonite seal, top 6 7 4 . 0 ft MSL or 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>→</b> 121                                                 |                       | d material: Manufacture                  | er, product name & mesh size                                                  |
| F. Fine sand, top $\underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} $        | 22 0 ft                                                      | K1 / /                | me added 50                              | <u>lg #40/40 Title</u> <u> lb</u>                                             |
| G. Filter pack, top 6 6 8 ft MSL or 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 <u>3</u> . <u>0</u> ft                                     | 8. Filter p.          | ack material: Manufactu<br>Red Flint #30 | rer, product name & mesh size                                                 |
| H. Screen joint, top $\underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{}$      | 25.0 ft                                                      | 14 /                  | me added150                              | lb                                                                            |
| I. Well bottom $\underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \phantom{0$ | <u>30. 0</u> ft                                              | 9. Well ca            | •                                        | hreaded PVC schedule 40 □ 2 3 hreaded PVC schedule 80 ■ 2 4                   |
| J. Filter pack, bottom $\underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \phantom{0$      | 3 <u>0</u> .0 ft                                             | 10. Screen            | Sch. 8                                   | Other                                                                         |
| K. Borehole, bottom $\underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} \underline{} $      | 45.0 ft                                                      |                       | en type:                                 | Factory cut ■ 1 1 Continuous slot □ 0 1                                       |
| L. Borehole, diameter $\underline{}$ 6 . $\underline{0}$ in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              | , h. Ma               | nufacturer Boar                          | Other D V                                                                     |
| M. O.D. well casing $\underline{2}$ . $\underline{3}$ $\underline{7}$ in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 422                                                          | c. Slot               |                                          | 0. 0 1 0 in.<br>- 5 . 0 ft.                                                   |
| N. I.D. well casing $\underline{1} \cdot \underline{9} \cdot \underline{1}$ in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                       | ill material (below filler)              |                                                                               |
| T1 1 (C) 1 (1) (C) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . f                                                          |                       | .1.1                                     | Outer <u>7.47</u>                                                             |
| I hereby certify that the information on this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                       |                                          |                                                                               |
| Signature Man & M. Colley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Firm NewFie                                                  | elds, Madison, Wiscon | nsin                                     |                                                                               |

|                                                                                          | olid Waste ☐ Haz. Waste ☐<br>Se & Repair ☐ Underground T       |                                       |                                           | ORING WELL CONSTRUCTION<br>00-113A Rev. 4-90                                  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------|
| E 32. (D : 43.)                                                                          | Local Grid Location of Well                                    |                                       | Well Name                                 |                                                                               |
| DB Oak Facility                                                                          | ft. 🗖 N                                                        | ft. □ E.<br>□ W.                      |                                           | MW-7B                                                                         |
| Fort Atkinson, Wisconsin Facility License, Permit or Monitoring Number                   | □ S.                                                           | U w.                                  | Wis Unique Well Num                       | iber DNR Well Number                                                          |
|                                                                                          | Grid Origin Location Lat. L                                    | ong.                                  |                                           |                                                                               |
| Type of Well Water Table Observation Well □ 11 Piezometer □ 12                           | Lat. L<br>St. Plane ft.                                        | N, ft. E.                             | Date Well Installed                       | 0 9 / 1 8 / 0 7                                                               |
| Piezometer ■ 12                                                                          |                                                                |                                       |                                           | $\frac{0}{m} \frac{9}{m} / \frac{1}{d} \frac{8}{d} / \frac{0}{y} \frac{7}{y}$ |
|                                                                                          | Section Location of Waste/Sou                                  |                                       | Well Installed By: (Perso                 | on's Name and Firm)                                                           |
|                                                                                          | NE 1/4 of SE 1/4 of Sec. 34,<br>Location of Well Relative to W |                                       | Mike Han                                  | son                                                                           |
| □ Yes □ No                                                                               | u D Upgradient                                                 | s   Sidegradient                      | Boart Lon                                 | lovear                                                                        |
|                                                                                          | d D Downgradient                                               | n 🗖 Not Known                         |                                           |                                                                               |
| A. Protective pipe, top elevation ft.                                                    | MSL —                                                          | 1. Cap and                            |                                           | ■ Yes □ No                                                                    |
| B. Well casing, top elevation $\frac{794}{24}$ . $\frac{24}{100}$ ft.                    | MSL '                                                          | -11                                   | e cover pipe:                             | 4 . 0 in.                                                                     |
| C. Land surface elevation $\frac{791}{8}$ ft.                                            | MSL                                                            | b. Leng                               | h:                                        | $-\frac{4}{7} \cdot \frac{0}{0} \text{ in.}$                                  |
| D. Surface seal, bottom 7 8 9. 8 ft MSL or 2                                             | 2.0 ft \                                                       | c. Mater                              | ial:<br>Stick up                          | Steel  Other  Other                                                           |
| 12. USCS classification of soil near screen:                                             |                                                                | d. Addi                               | ional protection?                         | ☐ Yes ■ No                                                                    |
| GP □ GM □ GC □ GW □ SW □ SP                                                              |                                                                |                                       | , describe:                               |                                                                               |
| SM □ SC □ ML □ MH □ CL □ CH<br>Bedrock □                                                 |                                                                | 3. Surface                            | seal:                                     | Bentonite 3 0<br>Concrete 0 0 1                                               |
|                                                                                          |                                                                |                                       | Native soil                               | Other ■ 22.4.                                                                 |
| 13. Sieve analysis attached? ☐ Yes ■ No                                                  | )                                                              | 4. Material                           | between well casing and                   |                                                                               |
| 14. Drilling method used: Rotary □ 5                                                     |                                                                |                                       | D 151: 4 #30                              | Bentonite □ 3 0 Annular Space Seal □                                          |
| Hollow Stem Auger □ 4 Rotosonic Other ■                                                  |                                                                | š — <del>-</del>                      | Red Flint #30                             | Other 🔳                                                                       |
|                                                                                          |                                                                |                                       |                                           |                                                                               |
| 15. Drilling fluid used: Water ■ 0 2 Air □ 0 Drilling Mud □ 0 3 None □ 9                 |                                                                |                                       | ular space seal:                          | a. Granular Bentonite 3 3                                                     |
| Diffing Mad 10 0 3 None 19                                                               | ' I 🖟                                                          |                                       |                                           | . Bentonite-sand slurry □ 3 5 Bentonite slurry ■ 3 1                          |
| 16. Drilling additives used? ■ Yes □ N                                                   | °                                                              | ₫                                     | % Bentonite                               | Bentonite-cement grout □ 5 0                                                  |
| Describe: potable water_                                                                 | I 👸                                                            | e<br>f. How                           | installed:                                | for any of the above  Tremie   0 1                                            |
| 10.0                                                                                     | l Ø                                                            |                                       | 75 gallons bentonite slurr                | Tremie pumped <b>I</b> 0 2                                                    |
| 17. Source of water (attached analysis):                                                 |                                                                |                                       | Grout up to 2 feet bgs.                   | Gravity □ 0 8                                                                 |
| Boart Longyear_                                                                          |                                                                | / 6. Bentoni                          |                                           | a. Bentonite granules  3 3<br>2 in. Bentonite chips  3 2                      |
|                                                                                          | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                              |                                       |                                           | Other  Other                                                                  |
| E. Bentonite seal, top $\frac{7}{1}$ $\frac{1}{9}$ $\frac{8}{1}$ ft MSL or $\frac{7}{1}$ | <u>²</u> . <u>0</u> ft ∕                                       | 7. Fine san                           | d material: Manufacturer.                 | product name & mesh size                                                      |
| F. Fine sand, top                                                                        | 7.0 ft                                                         |                                       | Badger Mining                             | #40/40 fine                                                                   |
| G. Filter pack, top 7 1 3 . 8 ft MSL or 7 8                                              |                                                                | <b>K</b> Y /                          | me added50                                | lb                                                                            |
|                                                                                          |                                                                | 8. Filter pa                          | ck material: Manufacture<br>Red Flint #30 | r, product name & mesh size                                                   |
| H. Screen joint, top                                                                     | <u>0</u> . <u>0</u> ft                                         | b. Volu                               | me added 150                              | lb                                                                            |
| I. Well bottom 7 0 6 . 8 ft MSL or 8                                                     |                                                                | 9. Well cas                           | sing: Flush the                           | readed PVC schedule 40 2 3                                                    |
| I. Well bottom                                                                           | 3· <u>~</u> "                                                  |                                       | Flush the                                 | readed PVC schedule 80 🗖 2 4                                                  |
| J. Filter pack, bottom 7 0 6.8 ft MSL or 8                                               | 5.0_ft \                                                       |                                       | Sah 40                                    | Other 🗖 💆                                                                     |
| K. Borehole, bottom 6 9 1 . 8 ft MSL or 10                                               |                                                                | 10. Screen                            | material: Sch. 40<br>en type:             | Factory cut 1 1                                                               |
|                                                                                          | -`-`" \                                                        |                                       | on type.                                  | Continuous slot □ 0 1                                                         |
| L. Borehole, diameter $\underline{}$ 6. $\underline{0}$ in.                              |                                                                | h Mar                                 | ufacturer Boart I                         | Other D Other Dongyear                                                        |
| M. O.D. well casing <u>2</u> . <u>3</u> 7 in.                                            | ~\ZZ                                                           | c. Slot                               | size                                      | 0. 0 1 0 in.                                                                  |
| N. I.D. well casing 2.05 in.                                                             |                                                                |                                       | ted length:                               | <u>5.0</u> ft.                                                                |
| 1. 1.2. WOII CASING 11.                                                                  |                                                                | 11. Backf                             | ll material (below filler pa<br>n         | ack): None □ 1 4<br>atural collapse Other ■ 24 (c)                            |
| I hereby certify that the information on this                                            | form is true and some-+ +                                      | o the hest of 1                       |                                           | Culd - 2000                                                                   |
|                                                                                          |                                                                | · · · · · · · · · · · · · · · · · · · |                                           |                                                                               |
| Signature /// L Milling                                                                  | Firm NewFie                                                    | elds, Madison, Wiscor                 | isin                                      |                                                                               |

| State of Wisconsin                                |                                                       | olid Waste  Haz. Waste<br>se & Repair  Undergrour | ☐ Wastewater ☐                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ]<br>[]                     |                                          | ITORING WELL CONSTRUCTION<br>4400-113A Rev. 4-90                              |
|---------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------|-------------------------------------------------------------------------------|
| Department of Natural Re<br>Facility/Project Name | esources Env. Respon                                  | Local Grid Location of We                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Well Name                                |                                                                               |
| DB Oak Facility                                   | v                                                     | ft. $\square$ N.                                  | n<br>ft. [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | □ E.                        | Well Hallie                              | MW-8                                                                          |
| Fort Atkinson,                                    | •                                                     | □ S.                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | □ w.                        |                                          | **************************************                                        |
| Facility License, Permit or M                     | Monitoring Number                                     | Grid Origin Location Lat                          | Long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | Wis. Unique Well N                       | umber DNR Well Number                                                         |
| Type of Well Water Table                          | Observation Well 11                                   | St. Plane                                         | ft. N,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft. E.                      | Date Well Installed                      | 0 9 / 1 9 / 0 7                                                               |
| Piezometer                                        | <b>□</b> 12                                           |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                          | $\frac{0}{m} \frac{9}{m} / \frac{1}{d} \frac{9}{d} / \frac{0}{y} \frac{7}{y}$ |
| Distance Well Is From Waste                       | e/Source Boundary                                     | Section Location of Waste                         | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ■E                          | Well Installed By: (Pe                   | erson's Name and Firm)                                                        |
| Distance wents from was                           | 0,000100 20011111,                                    | NE 1/4 of SE 1/4 of Sec. 3                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                           | Mike H                                   |                                                                               |
| Is Well A Point of Enforcem                       | nent Std. Application?                                | Location of Well Relative                         | to Waste/Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                          | idiisoii                                                                      |
|                                                   | □ Yes □ No                                            | u Upgradient                                      | s □ Side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | Boart I                                  | ongyear                                                                       |
|                                                   |                                                       | d Downgradient                                    | n U Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Known                       |                                          |                                                                               |
| A. Protective pipe, top eleva                     | ation ft                                              | MSL                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ol> <li>Cap and</li> </ol> | lock?                                    | ■ Yes □ No                                                                    |
| B. Well casing, top elevatio                      | 7 9 5 0 3 ft                                          | MSL ———                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | e cover pipe:                            | 4 0 :                                                                         |
| B. Well casing, top elevatio                      | 7 9 2 8 6                                             | MCI = 1888                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a. Inside<br>b. Leng        | e diameter:                              | $\frac{4}{7} \cdot \frac{0}{0} \text{ in.}$                                   |
| C. Land surface elevation                         |                                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c. Mater                    | rial:                                    | Steel                                                                         |
| D. Surface seal, bottom                           | 7 9 1 . 8 ft MSL or                                   | <u>1.0 ft</u> ✓                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Stick up                                 | Other Other                                                                   |
| 12. USCS classification o                         | of soil near screen:                                  |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | tional protection?                       | ☐ Yes ■ No                                                                    |
| GP ☐ GM ☐ GC                                      |                                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. Surface                  | ** *                                     | Bentonite □ 3 0                                                               |
| SM □ SC ■ ML<br>Bedrock □                         | , D MH D CL D CI                                      |                                                   | 4 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3. Surface                  | seai:                                    | Concrete 0 0 1                                                                |
| Bedrock 🗖                                         |                                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Native soil                              | Other 🔳 🔀                                                                     |
| 13. Sieve analysis attache                        | ed? 🛘 Yes 🔳                                           | √o                                                | 4 B `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4. Materia                  | l between well casing a                  |                                                                               |
| 14 55 202 - 41 - 4 4                              | : Rotary 🗖                                            |                                                   | 8 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                                          | Bentonite □ 3 0 Annular Space Seal □                                          |
| 14. Drilling method used                          | Hollow Stem Auger                                     |                                                   | 8 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | Red Flint                                | #30 Other ■                                                                   |
| Rotosonic                                         | Other                                                 |                                                   | 3 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                          |                                                                               |
|                                                   |                                                       | ,                                                 | 3 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                          | Committee Designation in 1991                                                 |
| 15. Drilling fluid used: V                        | Water □ 0 2 Air □ Mud □ 0 3 None ■                    |                                                   | 8 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | ular space seal:                         | a. Granular Bentonite ■ 3 3 Bentonite-sand slurry □ 3 5                       |
| Drining                                           | Mud 🗖 0 3 None                                        | ′′                                                | 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                                          | Bentonite slurry   3 1                                                        |
| 16. Drilling additives use                        | ed? 🛘 Yes 🔳                                           | No                                                | 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d                           | % Bentonite                              | Bentonite-cement grout   5 0                                                  |
| _ ,                                               | . 11                                                  |                                                   | Ø Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e                           | Ft <sup>3</sup> volume add<br>installed: | led for any of the above  Tremie □ 0 1                                        |
| Describe:                                         | potable water                                         |                                                   | 13 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I. HOW                      | instance:                                | Tremie pumped 0 2                                                             |
| 17. Source of water (attach                       | ched analysis):                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                          | Gravity □ 0 8                                                                 |
|                                                   |                                                       |                                                   | 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , 6. Bentoni                | te seal:                                 | a. Bentonite granules  3 3                                                    |
|                                                   | Boart Longyear                                        |                                                   | 8 8 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                           |                                          | 11/2 in. Bentonite chips  3 2                                                 |
|                                                   |                                                       |                                                   | 8 8 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c                           |                                          | lbs Other 🗆 🔼                                                                 |
| E. Bentonite seal, top                            | $\frac{7}{9}$ $\frac{9}{1}$ $\frac{1}{8}$ ft MSL or _ | $\frac{1}{2} \cdot \frac{0}{2}$ ft                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. Fine sa                  | nd material: Manufacti                   | urer, product name & mesh size                                                |
| F. Fine sand, top                                 | 7 8 5 . 8 ft MSL or _                                 | 7.0 ft.                                           | 🛭 🕅 / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a                           | Badger Mir                               | ning #40/40 fine                                                              |
|                                                   |                                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b. Volu                     | ime added 50                             | lb                                                                            |
| G. Filter pack, top                               | 7 8 4 . 8 ft MSL or _                                 | 8.0 ft                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / 8. Filter p               | ack material: Manufac<br>Red Flint #     | eturer, product name & mesh size                                              |
| H. Screen joint, top                              | 7 8 2 . 8 ft MSL or _                                 | <u>0</u> . <u>0</u> ft                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b. Vol                      | ume added30                              |                                                                               |
|                                                   | 777 0                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9. Well ca                  | sing: Flus                               | h threaded PVC schedule 40 🔳 2 3                                              |
| I. Well bottom                                    | $\frac{7}{7}$ $\frac{7}{2}$ $\frac{8}{8}$ ft MSL or   | <u>4 U.U.ft</u>                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                          | h threaded PVC schedule 80 🗆 2 4                                              |
| I Tiles and better                                | 7 7 2 . 8 ft MSL or _                                 | 2006                                              | <b>海三科</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                          | Other 🗖 🚟                                                                     |
| J. Filter pack, bottom                            | T T Z . O II MISL OI                                  |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. Screen                  | n material: Sch                          | n. 40 PVC                                                                     |
| K. Borehole, bottom                               | 7 7 2 . 8 ft MSL or                                   | 20.0 ft                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | een type:                                | Factory cut 1 1                                                               |
| A. Dolchole, bottom                               |                                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                          | Continuous slot 🔲 0 1                                                         |
| L. Borehole, diameter                             | $-\frac{6}{10} \cdot \frac{0}{10}$ in.                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b Me                        | nufacturer Bo                            | Other DOther DOther                                                           |
| M. O.D. well casing                               | 2. 3 7 in.                                            |                                                   | THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P | c. Slo                      |                                          | 0. <u>0 1 0</u> i                                                             |
| wi. O.D. well casing                              |                                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d. Slo                      | otted length:                            | $\frac{1}{0}, 0$                                                              |
| N. I.D. well casing                               | $\frac{2}{2} \cdot \frac{0}{5} = in.$                 |                                                   | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11. Back                    | fill material (below fill                |                                                                               |
|                                                   |                                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                          | Other 🗆 🚟                                                                     |
| I hereby certify that t                           | the information on th                                 | s form is true and corr                           | ect to the best                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of my kno                   | wledge.                                  |                                                                               |
|                                                   |                                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                          |                                                                               |
| Signature                                         | 1 Mc Colle                                            | Firm New                                          | wFields, Madis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | son, Wisco                  | nsın                                     |                                                                               |

|                                                                                 | Solid Waste Haz. Waste onse & Repair Underground          |                                       | MONITORIN<br>Form 4400-1                               | NG WELL CONSTRUCTION 13A Rev. 4-90                                |
|---------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|
| Facility/Project Name                                                           | Local Grid Location of Well                               |                                       | Well Name                                              | W-8A                                                              |
| DB Oak Facility<br>Fort Atkinson, Wisconsin                                     | ft. N<br>S.                                               |                                       | 141                                                    | W-0A                                                              |
| Facility License, Permit or Monitoring Number                                   | Grid Origin Location                                      |                                       | Wis. Unique Well Number                                | DNR Well Number                                                   |
| Type of Well Water Table Observation Well                                       | Lat f                                                     | Long ft. E.                           | Date Well Installed                                    |                                                                   |
| Piezometer                                                                      |                                                           |                                       | $\frac{0}{m}$                                          | $\frac{9}{m} / \frac{1}{d} \frac{9}{d} / \frac{0}{y} \frac{7}{y}$ |
| Distance Well Is From Waste/Source Boundary                                     | Section Location of Waste/Se                              |                                       | Well Installed By: (Person's                           |                                                                   |
| Is Well A Point of Enforcement Std. Application?                                | NE 1/4 of SE 1/4 of Sec. 34  Location of Well Relative to |                                       | Mike Hanson                                            |                                                                   |
| Yes No                                                                          | u Upgradient d Downgradient                               | s   Sidegradient                      | Boart Longye                                           | ar                                                                |
| A. Protective pipe, top elevation                                               | ft. MSL                                                   | 1. Cap and                            | lock?                                                  | ■ Yes □ No                                                        |
| B. Well casing, top elevation $\frac{7 \ 9 \ 5}{1 \ 7}$ .                       | ft. MSL                                                   | — 1 - Z. Hotel                        | /e cover pipe:<br>e diameter:                          | 4 0 in                                                            |
| C. Land surface elevation $\frac{7}{9}$ $\frac{9}{2}$ $\frac{8}{8}$             |                                                           | b. Leng                               | th:                                                    | $\frac{}{}$ $\frac{7}{}$ $\frac{0}{}$ ft.                         |
| D. Surface seal, bottom 7 9 0. 8 ft MSL or                                      |                                                           | c. Mate                               | rial:<br>Stick up                                      | Steel ■ Other □ 2022                                              |
| 12. USCS classification of soil near screen:                                    |                                                           |                                       | tional protection?                                     | ☐ Yes ■ No                                                        |
| GP □ GM □ GC □ GW □ SW □                                                        | SP ■                                                      | 1.47                                  | s, describe:                                           |                                                                   |
| SM SC ML MH CL Bedrock                                                          | CH I                                                      | 3. Surface                            | seal:                                                  | Bentonite 3 0<br>Concrete 0 0 1                                   |
| 12.0' 1 '                                                                       | INo                                                       |                                       | Native soil                                            | Other 🔳 🗵 🗵                                                       |
| 13. Sieve analysis attached?   Yes                                              | No S                                                      | 4. Materia                            | l between well casing and prote                        | ective pipe: Bentonite  3 0                                       |
| 14. Drilling method used: Rotary                                                |                                                           | Ž                                     | Red Flint #30                                          | Annular Space Seal ☐                                              |
| Hollow Stem Auger I Rotosonic Other                                             |                                                           | <u> </u>                              | 1001                                                   | Other 🔳 📉                                                         |
| 16 Dilli Gil al Water Book Air I                                                |                                                           |                                       |                                                        | <b></b>                                                           |
| 15. Drilling fluid used: Water ■ 0 2 Air I  Drilling Mud □ 0 3 None             | 301                                                       |                                       | ular space seal: a. ( _ Lbs/gal mud weight Be          | Granular Bentonite  3 3 3 entonite-sand slurry  3 5               |
|                                                                                 |                                                           | Ĉ                                     | _Lbs/gal mud weight                                    | Bentonite slurry <b>3</b> 1                                       |
| 16. Drilling additives used? ■ Yes                                              | ¹No                                                       | d<br>e.                               | _% Bentonite Ben<br>Ft <sup>3</sup> volume added for a |                                                                   |
| Describe:potable water                                                          | I 🐰                                                       |                                       | installed:                                             | Tremie 0 1                                                        |
| 17. Source of water (attached analysis):                                        |                                                           |                                       | 25 gallons bentonite slurry<br>Grout up to 2 feet bgs. | Tremie pumped <b>1</b> 0 2 Gravity <b>1</b> 0 8                   |
| Doort I ou ou oo                                                                | 1 8                                                       | , 6. Bentoni                          | , ,                                                    | Bentonite granules  3 3                                           |
| Boart Longyear                                                                  |                                                           |                                       | 1/4 in. ■ 3/8 in. □ 1/2 in.                            | Bentonite chips <b>1</b> 3 2                                      |
| E. Bentonite seal, top 7 5 5 . 8 ft MSL or                                      | 37.0 ft _                                                 | c                                     |                                                        | Other 🗆 🔼                                                         |
| F. Fine sand, top 7 5 0 . 8 ft MSL or                                           | <b>→</b> R1                                               | a.                                    | nd material: Manufacturer, pro-<br>Badger Mining #40   |                                                                   |
|                                                                                 | <u> </u>                                                  | b. Volu                               | ime added50                                            | lb                                                                |
| G. Filter pack, top $\frac{7}{4}$ $\frac{4}{9}$ $\frac{8}{8}$ ft MSL or         |                                                           | b. Volu<br>8. Filter p<br>a.          | ack material: Manufacturer, pro<br>Red Flint #30       | oduct name & mesh size                                            |
| H. Screen joint, top $\frac{7}{4}$ , $\frac{4}{7}$ , $\frac{8}{8}$ ft MSL or    | 4 5 . 0 ft                                                |                                       | ime added150                                           | lb                                                                |
| I. Well bottom                                                                  | 5 0 . 0 ft                                                | 9. Well ca                            | •                                                      | ed PVC schedule 40 2 3 ed PVC schedule 80 2 4                     |
| J. Filter pack, bottom 7 4 2 . 8 ft MSL or                                      | 50.0 ft                                                   |                                       |                                                        | Other 🗆 🐸                                                         |
| 7.4.2.8                                                                         |                                                           | 10. Screen                            |                                                        |                                                                   |
| K. Borehole, bottom $\frac{7}{2} \cdot \frac{4}{2} \cdot \frac{8}{8}$ ft MSL or | -j-vtt                                                    | <i>a.</i> sc.                         | een type:                                              | Factory cut ■ 1 1 Continuous slot □ 0 1                           |
| L. Borehole, diameter $\underline{}$ 6. $\underline{}$ in.                      |                                                           | b. Ma                                 | nufacturer Boart Long                                  | ·                                                                 |
| M. O.D. well casing $\underline{2}$ . $\underline{3}$ $\underline{7}$ in.       |                                                           | c. Slo<br>d. Slo                      | t size<br>tted length:                                 | 0. $\frac{0}{5}$ $\frac{1}{5}$ $\frac{0}{0}$ in.                  |
| N. I.D. well casing $\underline{2} \cdot \underline{0} \cdot \underline{5}$ in. |                                                           | 11. Backi                             | ill material (below filler pack):                      |                                                                   |
| 71 1 20 4 4 1 0 2 2                                                             | :. C :                                                    | + + a + h a h + - £ 1                 | -1-4                                                   | Olive D 27.027                                                    |
| I hereby certify that the information on the                                    | 1                                                         | · · · · · · · · · · · · · · · · · · · |                                                        |                                                                   |
| Signature Mach                                                                  | Firm NewF                                                 | ields, Madison, Wiscon                | nsin                                                   |                                                                   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                         | Haz. Waste C<br>Underground       |               |                     | 1                     |                                         | IONITORING WELL<br>orm 4400-113A      |                                  | JCTION<br>ev. 4-90            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------|---------------|---------------------|-----------------------|-----------------------------------------|---------------------------------------|----------------------------------|-------------------------------|
| Facility/Project Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                         | ocation of Well                   | •             |                     |                       | Well Name                               |                                       |                                  |                               |
| DB Oak Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                         | _ft. DN                           |               | ft. 🗆 E             | Ξ.                    | Well Name                               | MW-8B                                 |                                  |                               |
| Fort Atkinson, Wisconsin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                         | □ S.                              |               | ΠW                  | ٧.                    |                                         |                                       |                                  |                               |
| Facility License, Permit or Monitoring Nur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nber                                   | Grid Origin                             | Location                          | Long          |                     | ,                     | Wis: Unique We                          | ell Number                            | DNR Well 1                       | Vumber                        |
| Type of Well Water Table Observation W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vell 🗖 11                              | St. Plane                               | f                                 | t. N.         |                     | ft. E.                | Date Well Installe                      | ed.                                   |                                  |                               |
| Piezometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>■</b> 12                            | St. 1 Idile                             |                                   |               |                     | 11. 12.               |                                         | $\frac{0}{m}\frac{9}{m}\frac{1}{d}$   | 9/0                              | 7                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                         |                                   |               |                     | ***                   |                                         | m m d                                 | <u>d</u> y                       | <u>y</u>                      |
| Distance Well Is From Waste/Source Bound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | NE 1/4 of SE                            | ion of Waste/So<br>1/4 of Sec. 34 | , T. 6        |                     | ■E<br>□ W             | •                                       | (Person's Name and<br>te Hanson       | d Firm)                          |                               |
| Is Well A Point of Enforcement Std. Applie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                         | Vell Relative to                  |               |                     |                       |                                         |                                       |                                  |                               |
| □ Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | □ No                                   | u 🛘 Upgrad<br>d 🗘 Downs                 | lient<br>gradient                 | s 🗖<br>n 🗖    | Sidegrad<br>Not Kno |                       | Boa                                     | art Longyear                          |                                  | <del></del>                   |
| A. Protective pipe, top elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ft.                                    | MSL ——                                  |                                   |               |                     | Cap and               |                                         |                                       | ■ Yes □                          | No                            |
| B. Well casing, top elevation $\frac{7}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5. 19 ft.                              | MSL -                                   | <u>' </u>                         | -  ` <u>`</u> |                     |                       | ve cover pipe:                          |                                       | 4 (                              | n ·                           |
| C. Land surface elevation 7 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del>2</del> <del>7</del> <del>0</del> | MSI ———                                 |                                   | 3300 m        |                     | a. Inside<br>b. Lengt | e diameter:                             |                                       | $-\frac{4}{7} \cdot \frac{6}{2}$ | in.                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                         | V.                                |               |                     | c. Mater              | rial:                                   |                                       | Steel                            |                               |
| D. Surface seal, bottom $\frac{7}{9}$ $\frac{9}{0}$ . $\frac{7}{1}$ ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MSL or                                 | <u>2.0</u> ft ∕                         | \ <b>\</b> 3                      |               |                     |                       | Stick                                   | up                                    | Other 🗆                          |                               |
| 12. USCS classification of soil near scre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | en.                                    |                                         | <b>/ 関</b> [                      |               | \ ,                 | d. Addit              | tional protection?                      |                                       | ☐ Yes ■                          |                               |
| GP □ GM □ GC □ GW □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                         | <u> </u>                          |               |                     | If yes                | , describe:                             |                                       |                                  |                               |
| SM ■ SC □ ML ■ MH □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                         | <b>✓</b> []                       | TK.           | 3.                  | Surface s             | seal:                                   |                                       | Bentonite 🗆                      | 3 0                           |
| Bedrock 🗖                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                         |                                   |               |                     |                       |                                         |                                       | Concrete                         |                               |
| 12 6:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>—</b> N                             | ,_                                      | Ŕ                                 | Ø             |                     |                       | Native                                  |                                       | Other                            | 1 <u>xxx</u>                  |
| 13. Sieve analysis attached?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ■ N                                    | 0                                       | S S                               | Ä             | 4.                  | Material              | l between well casir                    | ng and protective pip                 |                                  |                               |
| 14. Drilling method used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rotary 15                              | 0                                       | 8                                 | Š             |                     |                       |                                         | Annulan                               | Bentonite                        |                               |
| Hollow Stem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                         | N                                 | Ñ             |                     |                       | Red Fli                                 | int #30                               | Space Seal ☐<br>Other ■          |                               |
| Rotosonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Other                                  | <u>11/14</u>                            | Ř                                 | Ä             |                     |                       |                                         |                                       |                                  | •                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                         | Ď,                                | ×             |                     |                       |                                         |                                       |                                  |                               |
| 15. Drilling fluid used: Water 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                                         |                                   | M -           |                     | 5. Anni               |                                         | a. Granular                           |                                  |                               |
| Drilling Mud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None 🔲 9                               | , ,                                     | N N                               | X             |                     |                       |                                         | ht Bentonite-s                        |                                  |                               |
| 16. Drilling additives used?  Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | lo l                                    | Ø                                 |               |                     | c                     | Lbs/gal mud weigi                       | ht Bentonite-cen                      | nite slurry                      | 131                           |
| 10. 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                      |                                         | [ <u>8</u> ]                      | ×             |                     | е                     |                                         | added for any of the                  |                                  | 130                           |
| Describe:potable water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                         | K                                 | N/A           |                     | f. How                | installed:                              | added for any of the                  | Tremie                           | 101                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | ı                                       | N.                                | M             |                     |                       | 75 gallons bentonit                     | te slurry Trem                        | ie pumped                        |                               |
| 17. Source of water (attached analysis):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                         | N N                               |               |                     |                       | Grout up to 2 feet l                    |                                       | Gravity 🗆                        | 3 O E                         |
| Boart Longyea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                      |                                         | R                                 | M .           | . 6                 | Bentonit              | te seal:                                | a Rentonit                            | te granules 🗆                    | 1 2 2                         |
| Bourt Bongyou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                      |                                         | R                                 | M             |                     |                       |                                         | □ 1/2 in. Benton                      | nite chips                       | 1 3 2                         |
| 7 2 0 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                      |                                         | N                                 | ×             | /                   | c                     | 10                                      | 00 lbs                                | Other 🗀                          | j <u>ere</u>                  |
| E. Bentonite seal, top $\frac{7}{2} \frac{2}{0} \cdot \frac{7}{1}$ ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        | _                                       |                                   |               | / ,7.               | Fine san              | d material: Manufa                      | acturer, product name                 | e & mesh siz                     | e                             |
| F. Fine sand, top $\frac{7 \cdot 1 \cdot 5}{2 \cdot 1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} \cdot \frac{7}{1 \cdot 1} $ | MSL or 7                               | 7 0 ft                                  | $\searrow$ $\bowtie$              | ₩/            | ,                   | a                     | Badger                                  | Mining #40/40 fine                    |                                  | (4,4,6)                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | •                                       | <u> \\</u>                        |               |                     | b. Volu               | me added 50                             | lb lb                                 |                                  |                               |
| G. Filter pack, top $\frac{7}{14} \cdot \frac{7}{16}$ ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MSL or <u>7</u>                        | 8 . <u>0</u> ft ~                       |                                   |               | / 8.                | Filter pa             | ack material: Manu<br>Red Flii          | facturer, product nar                 | ne & mesh si                     | ize                           |
| H. Screen joint, top $\frac{7}{1}$ $\frac{1}{2}$ $\frac{2}{7}$ ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MSL or 8                               | $\frac{0}{}$ . $\frac{0}{}$ fi $\sim$   |                                   |               |                     | b. Volu               | me added                                | 150 lb                                |                                  |                               |
| I. Well bottom 7 0 7 . 7 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft MSL or 8                            | 5.0 ft <                                |                                   | <b></b>       | 9.                  | Well cas              |                                         | lush threaded PVC so                  |                                  |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | `                                       | <u>\</u>                          |               |                     |                       | F                                       | lush threaded PVC se                  | chedule 80 □<br>Other □          |                               |
| J. Filter pack, bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t MSL or _8                            | $\frac{5}{2}$ . $\frac{0}{2}$ ft $\sim$ |                                   | -             | 10.                 | Screen                | material:                               | Sch. 40 PVC                           |                                  | • ——                          |
| K. Borehole, bottom $\frac{6}{7}$ $\frac{7}{7}$ $\frac{7}{10}$ $\frac{7}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t MSL or 1                             | 5.0 ft _                                |                                   |               |                     |                       | een type:                               |                                       | actory cut Inuous slot           |                               |
| L. Borehole, diameter6 . 0 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in.                                    |                                         |                                   |               |                     | h Man                 | wfacturer                               | Boart Longyear                        | Other                            |                               |
| M. O.D. well casing 2. 3 7 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in,                                    |                                         | <b>√</b> ∠                        | ~             |                     | c. Slot               | size                                    | Don't Longycai                        |                                  | $\frac{1}{5} \frac{0}{0}$ in. |
| N. I.D. well casing 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in                                     |                                         |                                   | `             |                     |                       | ted length:                             |                                       |                                  | 5 . <u>0</u> ft.              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                         |                                   |               | ` 11                | . Backfi              | ill material (below f<br>Natural collan | filler pack):<br>ose, Bentonite Chips | None C                           |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                         |                                   |               |                     |                       |                                         | se, bentonic emps                     | Other                            | <u> </u>                      |
| I hereby certify that the informati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on on this                             | form is true                            | e and correct                     | to the be     | est of m            | ıy knov               | vledge.                                 |                                       |                                  |                               |
| Signature MM A MUCAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Valor.                                 | Firm                                    | NewFi                             | ields, Ma     | dison V             | Wiscon                | ısin                                    |                                       |                                  |                               |
| Now IN CARL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | w I                                    | 1                                       | • 111 /                           | ,             |                     |                       | ~~~*                                    |                                       |                                  |                               |



| WELL NAME                                           | JOB NO# <u>3410~ 153</u> 0 |  |  |  |
|-----------------------------------------------------|----------------------------|--|--|--|
| WELL DIAMETER                                       | LOCATION Fr Atkinson       |  |  |  |
| IMEASUREMENTS BELOW FROM TOP OF CASING) TOTAL DEPTH | DATE 9/22/07               |  |  |  |
| DEPTH TO WATER BEFORE DEVELOPMENT                   | DEVELOPED BY MCH           |  |  |  |
| DEPTH TO WATER AFTER DEVELOPMENT 86                 | <del></del>                |  |  |  |
|                                                     |                            |  |  |  |
| DESCRIPTION OF DEV                                  | ELOPMENT METHOD            |  |  |  |
|                                                     |                            |  |  |  |
| (CIRCLE                                             | E ONE:)                    |  |  |  |
|                                                     |                            |  |  |  |
| A. SURGED W                                         | /BAILER & BAILED           |  |  |  |
| B. SURGED W                                         | /BAILER & PUMPED           |  |  |  |
| C. SURGED W                                         | BLOCK & BAILED             |  |  |  |
| (D) SURGED W                                        | BLOCK & PUMPED             |  |  |  |
| E. OTHER                                            | <del></del>                |  |  |  |
|                                                     |                            |  |  |  |
| CAN THIS WELL BE PURGED DRY?                        |                            |  |  |  |
|                                                     |                            |  |  |  |
|                                                     |                            |  |  |  |
| VOLUME OF WATER IN FILTER PACK AND WELL CAS         |                            |  |  |  |
| VOLUME OF WATER REMOVED FROM WELL                   |                            |  |  |  |
| CLARITY OF WATER BEFORE DEVELOPMENT LIGHT BROWN     |                            |  |  |  |
| CLARITY OF WATER AFTER DEVELOPMENT CLARITY          |                            |  |  |  |
| OLUME OF WATER ADDED                                |                            |  |  |  |
| SOURCE OF WATER ADDED                               |                            |  |  |  |
| TIME SPENT FOR DEVELOPMENT 60 MIN.                  | START: END:                |  |  |  |
|                                                     | 7:30 PM 8:30 PM            |  |  |  |
|                                                     |                            |  |  |  |
| COMMENTS:                                           |                            |  |  |  |



| WELL NAME MW7B                             | JOB NO# 3416-1530           |  |  |  |
|--------------------------------------------|-----------------------------|--|--|--|
| WELL DIAMETER2"                            | LOCATION FT ATKINSON        |  |  |  |
| (MEASUREMENTS BELOW FROM TOP OF CASING)    | DATE 9-21-67                |  |  |  |
| DEPTH TO WATER BEFORE DEVELOPMENT //.2     | DEVELOPED BY MCH            |  |  |  |
| DEPTH TO WATER AFTER DEVELOPMENT           | 11.2                        |  |  |  |
|                                            |                             |  |  |  |
| DESCRIPTION OF DEV                         | ELOPMENT METHOD             |  |  |  |
|                                            |                             |  |  |  |
| (CIRCLE                                    | E ONE:)                     |  |  |  |
|                                            |                             |  |  |  |
| A. SURGED W                                | BAILER & BAILED             |  |  |  |
| B. SURGED W                                | /BAILER & PUMPED            |  |  |  |
| C. SURGED W                                | /BLOCK & BAILED             |  |  |  |
| D. SURGED W                                | / <del>BLOCK</del> & PUMPED |  |  |  |
| E. OTHER                                   |                             |  |  |  |
|                                            |                             |  |  |  |
| CAN THIS WELL BE PURGED DRY?               |                             |  |  |  |
|                                            | •                           |  |  |  |
|                                            | •                           |  |  |  |
| VOLUME OF WATER IN FILTER PACK AND WELL CA |                             |  |  |  |
| VOLUME OF WATER REMOVED FROM WELL          | <u> </u>                    |  |  |  |
| CLARITY OF WATER BEFORE DEVELOPMENT BROWN  |                             |  |  |  |
| CLARITY OF WATER AFTER DEVELOPMENT CLEAR   |                             |  |  |  |
| VOLUME OF WATER ADDED                      |                             |  |  |  |
| SOURCE OF WATER ADDED                      |                             |  |  |  |
| TIME SPENT FOR DEVELOPMENT 60 MIN          | START: END:                 |  |  |  |
|                                            | 9:15 A.M. 10:15 A.M. P.M.   |  |  |  |
|                                            |                             |  |  |  |
| COMMENTS:                                  |                             |  |  |  |





| WELL NAME MW8B JOB                               | NO# <u>3410~1530</u>  |  |  |
|--------------------------------------------------|-----------------------|--|--|
| WELL DIAMETER &2 " LOC                           | ATION FT ATKINSON     |  |  |
| (MEASUREMENTS BELOW FROM TOP OF CASING) 87./ DAT |                       |  |  |
| DEPTH TO WATER BEFORE DEVELOPMENT 10.8           | DEVELOPED BY _MCH     |  |  |
| DEPTH TO WATER AFTER DEVELOPMENT 10.85           | _                     |  |  |
|                                                  |                       |  |  |
|                                                  |                       |  |  |
| DESCRIPTION OF DEVELO                            | PMENT METHOD          |  |  |
|                                                  |                       |  |  |
| (CIRCLE ON                                       | E:)                   |  |  |
|                                                  |                       |  |  |
| A. SURGED W/BAII                                 |                       |  |  |
| B. SURGED W/BAII                                 |                       |  |  |
| C. SURGED W/BLOCK & BAILED                       |                       |  |  |
| D. SURGED W <del>BLC</del><br>೪೮                 |                       |  |  |
| E. OTHER                                         |                       |  |  |
|                                                  |                       |  |  |
| CAN THIS WELL BE PURGED DRY?                     |                       |  |  |
|                                                  |                       |  |  |
|                                                  |                       |  |  |
| VOLUME OF WATER IN FILTER PACK AND WELL CASING   |                       |  |  |
| VOLUME OF WATER REMOVED FROM WELL                | 90 G.                 |  |  |
| CLARITY OF WATER BEFORE DEVELOPMENT              | LIGHT BROWN           |  |  |
| CLARITY OF WATER AFTER DEVELOPMENT               | CLEAR                 |  |  |
| VOLUME OF WATER ADDED                            | NA                    |  |  |
| SOURCE OF WATER ADDED                            | NA                    |  |  |
| TIME SPENT FOR DEVELOPMENT 60 MIN.               | START: END:           |  |  |
|                                                  | 7:00 P.M. 8:00 (A.M.) |  |  |
|                                                  |                       |  |  |
| COMMENTS:                                        |                       |  |  |



| WELL NAME MW 8                                             | DB NO# 3410-153D    |  |
|------------------------------------------------------------|---------------------|--|
| WELL DIAMETER LO                                           | OCATION Fr ATKINGOL |  |
| (MEASUREMENTS BELOW FROM TOP OF CASING) TOTAL DEPTH 23.1 D | ATE 9/21/07         |  |
| DEPTH TO WATER BEFORE DEVELOPMENT 40                       | DEVELOPED BY MCH    |  |
| DEPTH TO WATER AFTER DEVELOPMENT 44 0                      |                     |  |
|                                                            | •                   |  |
|                                                            |                     |  |
| 7 <u>DESCRIPTION OF DEVE</u>                               | LOPMENT METHOD      |  |
|                                                            |                     |  |
| (CIRCLE                                                    | ONE:)               |  |
|                                                            |                     |  |
| A. SURGED W/B                                              | AILER & BAILED      |  |
| B. SURGED W/B                                              | AILER & PUMPED      |  |
| C. SURGED W/B                                              | SLOCK & BAILED      |  |
| D. SURGED WIRLDCK & PUMPED                                 |                     |  |
| E. OTHER                                                   |                     |  |
|                                                            |                     |  |
| CAN THIS WELL BE PURGED DRY?                               |                     |  |
|                                                            |                     |  |
|                                                            |                     |  |
| VOLUME OF WATER IN FILTER PACK AND WELL CASI               | NG7.85              |  |
| VOLUME OF WATER REMOVED FROM WELL                          | 75                  |  |
| CLARITY OF WATER BEFORE DEVELOPMENT                        | LIGHT BROWN         |  |
| CLARITY OF WATER AFTER DEVELOPMENT CLEAR                   |                     |  |
| OLUME OF WATER ADDED                                       |                     |  |
| SOURCE OF WATER ADDED                                      | 10/1                |  |
| TIME SPENT FOR DEVELOPMENTMIN.                             | START: END:         |  |
| 45                                                         | 830 PM 935 PM       |  |
|                                                            | r.ivi.              |  |
| COMMENTS                                                   |                     |  |



| WELL NAME MWSA JOH                                          | 3410-1530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| WELL DIAMETERLO                                             | CATION FF ATKINSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| (MEASUREMENTS BELOW FROM TOP OF CASING) TOTAL DEPTH 53.1 DA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| DEPTH TO WATER BEFORE DEVELOPMENT_10,7                      | DEVELOPED BY MICT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| DEPTH TO WATER AFTER DEVELOPMENT 10.8 a                     | free 45 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                             | , to land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| DESCRIPTION OF DEVELO                                       | DPMENT METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| (CIRCLE O                                                   | NE:)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| A. SURGED W/BA                                              | ILER & BAILED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| B. SURGED W/BA                                              | ILER & PUMPED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| C. SURGED W/BL                                              | OCK & BAILED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| D. SURGED W/Bg                                              | OCK & PUMPED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| E. OTHER PUMP                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| CAN THIS WELL BE PURGED DRY?                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| VOLUME OF WATER IN FILTER PACK AND WELL CASING              | 3977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| VOLUME OF WATER REMOVED FROM WELL                           | 60 GAC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| CLARITY OF WATER BEFORE DEVELOPMENT                         | Lt Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| CLARITY OF WATER AFTER DEVELOPMENT                          | CLEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| VOLUME OF WATER ADDED                                       | —— <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| SOURCE OF WATER ADDED                                       | 1013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| TIME SPENT FOR DEVELOPMENT 30 MIN.                          | START: END:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                             | 8:00 A.M. B30 A.M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                             | 1 1714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| COMMENTS                                                    | Name of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state |  |



| WELL NAME                                                              | JOB NO#_ 3410-1530                     |
|------------------------------------------------------------------------|----------------------------------------|
| WELL DIAMETER                                                          | LOCATION FT ATKINSON                   |
| (MEASUREMENTS BELOW FROM TOP OF CASING) TOTAL DEPTH                    | DATE 9/22/07                           |
| DEPTH TO WATER BEFORE DEVELOPMENT OF                                   |                                        |
| DEPTH TO WATER AFTER DEVELOPMENT 45.                                   | 6 after 2 hrs                          |
|                                                                        |                                        |
| DESCRIPTION OF DE                                                      | VELOPMENT METHOD                       |
| (CIRC                                                                  | LE ONE:)                               |
| A. SURGED N                                                            | N/BAILER & BAILED                      |
| B. SURGED N                                                            | N/BAILER & PUMPED                      |
| C. SURGED \                                                            | N/BLOCK & BAILED                       |
| D. SURGED V                                                            | N/B <del>LOCK</del> & PUMPED           |
| E. OTHER                                                               |                                        |
| CAN THIS WELL BE PURGED DRY?                                           |                                        |
| VOLUME OF WATER IN FILTER PACK AND WELL CA                             |                                        |
| VOLUME OF WATER REMOVED FROM WELL                                      | _ @ 30 Gallons                         |
| CLARITY OF WATER BEFORE DEVELOPMENT CLARITY OF WATER AFTER DEVELOPMENT | _dark brown                            |
| VOLUME OF WATER ADDED                                                  | dark brown                             |
| SOURCE OF WATER ADDED                                                  | —————————————————————————————————————— |
| TIME SPENT FOR DEVELOPMENT 98 MIN                                      | N. START: END:                         |
|                                                                        |                                        |
|                                                                        | 1:15 2.M. 2:45 AM                      |
| COMMENTS:                                                              |                                        |
|                                                                        | •                                      |
| WELL PURGED DRY four                                                   | times                                  |
| Screen set in fine will Produce water                                  | - Silty sand layer                     |
| will move water                                                        | just extrent small                     |

# Appendix B

**Laboratory Reports Groundwater Zone Samples** 



September 19, 2007

Mark McCulloch NewFields 2110 Luann Lane, Suite 101 Madison, WI 53713

re: Thomas D.B. - Fort Atkinson, WI - Project Number 0451-002-800

f Dunch

Dear Mr. McCulloch,

Enclosed you will find the analytical results for the samples collected September 17-18, 2007. Please feel free to call if you have any questions.

Sincerely,

Robert Osmundson

QA Manager

**Enclosures** 

jce

Date Analyzed: Project Name: Thomas - D.B. 09/18/07 Fort Atkinson, Wisconsin Concentration: Project Location: ug/L MW-7B (60' to 65') Sample ID: Dilution Factor: 10 Lab Sample Number: Date Collected: 09/17/07 43675

Sample Type: Water

| •                              | Reporting Detection | Quantitation |   | Sample |
|--------------------------------|---------------------|--------------|---|--------|
| Compound                       | <u>Limit</u>        | <u>Limit</u> |   | Result |
| Dichlorodifluoromethane        | 0.50                | 1.7          | < | 5.0    |
| Chloromethane                  | 1.0                 | 3.3          | < | 10     |
| Vinyl Chloride                 | 0.50                | 1.7          | < | 5.0    |
| Bromomethane                   | 5.0                 | 17           | < | 50     |
| Chloroethane                   | 5.0                 | 17           | < | 50     |
| Trichlorofluoromethane         | 0.50                | 1.7          | < | 5.0    |
| 1,1,2-Trichlorotrifluoroethane | 0.50                | 1.7          | < | 5.0    |
| 1,1-Dichloroethene             | 0.50                | 1.7          | < | 5.0    |
| Acetone                        | 20                  | 67           | < | 200    |
| Carbon Disulfide               | 0.50                | 1.7          | < | 5.0    |
| Methylene Chloride             | 2.0                 | 6.7          | < | 20     |
| Methyl-t-butyl Ether           | 0.50                | 1.7          | < | 5.0    |
| t-1,2-Dichloroethene           | 0.50                | 1.7          | < | 5.0    |
| n-Hexane                       | 0.50                | 1.7          | < | 5.0    |
| 1,1-Dichloroethane             | 0.50                | 1.7          | < | 5.0    |
| Diisopropyl Ether              | 0.50                | 1.7          | < | 5.0    |
| 2,2-Dichloropropane            | 0.50                | 1.7          | < | 5.0    |
| c-1,2-Dichloroethene           | 0.50                | 1.7          |   | 17     |
| 2-Butanone (MEK)               | 20                  | 67           | < | 200    |
| Tetrahydrofuran                | 10                  | 33           | < | 100    |
| Bromochloromethane             | 0.50                | 1.7          | < | 5.0    |
| Chloroform                     | 0.50                | 1.7          | < | 5.0    |
| 1,1,1-Trichloroethane          | 0.50                | 1.7          | < | 5.0    |
| Carbon Tetrachloride           | 0.50                | 1.7          | < | 5.0    |
| 1,1-Dichloropropene            | 0.50                | 1.7          | < | 5.0    |
| Benzene                        | 0.50                | 1.7          | < | 5.0    |
| 1,2-Dichloroethane             | 0.50                | 1.7          | < | 5.0    |
| Trichloroethene                | 0.50                | 1.7          |   | 20     |
| 1,2-Dichloropropane            | 0.50                | 1.7          | < | 5.0    |
| Dibromomethane                 | 0.50                | 1.7          | < | 5.0    |
| Bromodichloromethane           | 0.50                | 1.7          | < | 5.0    |
| c-1,3-Dichloropropene          | 0.50                | 1.7          | < | 5.0    |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

peroved by: Malet Ourl

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/18/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-7B (60' to 65')       | Dilution Factor:   | 10       |
| Date Collected:   | 09/17/07                 | Lab Sample Number: | 43675    |
| Sample Type:      | Water                    |                    |          |

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |     | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|-----|-------------------------|
| 4-Methyl-2-pentanone (MIBK) | 20                               | 67                           | <   | 200                     |
| Toluene                     | 0.50                             | 1.7                          | <   | 5.0                     |
| 1,1,2-Trichloroethane       | 0.50                             | 1.7                          | <   | 5.0                     |
| t-1,3-Dichloropropene       | 0.50                             | 1.7                          | <   | 5.0                     |
| Tetrachloroethene           | 0.50                             | 1.7                          |     | 92                      |
| 1,3-Dichloropropane         | 0.50                             | 1.7                          | · < | 5.0                     |
| 2-Hexanone                  | 20                               | 67                           | <   | 200                     |
| Dibromochloromethane        | 0.50                             | 1.7                          | <   | 5.0                     |
| 1,2-Dibromoethane           | 0.50                             | 1.7                          | <   | 5.0                     |
| Chlorobenzene               | 0.50                             | 1.7                          | <   | 5.0                     |
| 1,1,1,2-Tetrachloroethane   | 0.50                             | 1.7                          | <   | 5.0                     |
| Ethylbenzene                | 0.50                             | 1.7                          | <   | 5.0                     |
| m+p-Xylene                  | 0.50                             | 1.7                          | <   | 5.0                     |
| o-Xylene                    | 0.50                             | 1.7                          | <   | 5.0                     |
| Styrene                     | 0.50                             | 1.7                          | <   | 5.0                     |
| Bromoform                   | 0.50                             | 1.7                          | <   | 5.0                     |
| Isopropylbenzene            | 0.50                             | 1.7                          | <   | 5.0                     |
| 1,1,2,2-Tetrachloroethane   | 0.50                             | 1.7                          | <   | 5.0                     |
| Bromobenzene                | 0.50                             | 1.7                          | <   | 5.0                     |
| 1,2,3-Trichloropropane      | 1.0                              | 3.3                          | <   | 10                      |
| n-Propyl benzene            | 0.50                             | 1.7                          | <   | 5.0                     |
| 2-Chlorotoluene             | 0.50                             | 1.7                          | <   | 5.0                     |
| 1,3,5-Trimethylbenzene      | 0.50                             | 1.7                          | <   | 5.0                     |
| 4-Chlorotoluene             | 0.50                             | 1.7                          | <   | 5.0                     |
| t-Butyl benzene             | 0.50                             | 1.7                          | <   | 5.0                     |
| 1,2,4-Trimethylbenzene      | 0.50                             | 1.7                          | <   | 5.0                     |
| sec-Butyl benzene           | 0.50                             | 1.7                          | <   | 5.0                     |
| 1,3-Dichlorobenzene         | 0.50                             | 1.7                          | <   | 5.0                     |
| p-Isopropyl toluene         | 0.50                             | 1.7                          | <   | 5.0                     |
| 1,4-Dichlorobenzene         | 0.50                             | 1.7                          | <   | 5.0                     |
| n-Butyl benzene             | 0.50                             | 1.7                          | <   | 5.0                     |
| 1,2-Dichlorobenzene         | 0.50                             | 1.7                          | <   | 5.0                     |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Roclust Occursh
Date: 09/19/07

|                   | <del>-</del>             |                    |          |
|-------------------|--------------------------|--------------------|----------|
| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/18/07 |
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-7B (60' to 65')       | Dilution Factor:   | 10       |
| Date Collected:   | 09/17/07                 | Lab Sample Number: | 43675    |
| Sample Type:      | Water                    |                    |          |

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br>Result |
|-----------------------------|----------------------------------|------------------------------|---|------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 5.0              |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 20               |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 20               |
| Naphthalene                 | 5.0                              | 17                           | < | 50               |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 20               |
| Dibromofluoromethane        |                                  |                              |   | 105%             |
| Toluene-D8                  |                                  |                              |   | 95.0%            |
| 4-Bromofluorobenzene        |                                  |                              |   | 92.8%            |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Males Of 19/07

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/18/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-7B (80' to 85')       | Dilution Factor:   | 1        |
| Date Collected:   | 09/18/07                 | Lab Sample Number: | 43676    |
| Sample Type:      | Water                    |                    |          |

| Compound                       | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> | Sample<br><u>Result</u> |
|--------------------------------|----------------------------------|------------------------------|-------------------------|
| Dichlorodifluoromethane        | 0.50                             | 1.7                          | < 0.50                  |
| Chloromethane                  | 1.0                              | 3.3                          | < 1.0                   |
| Vinyl Chloride                 | 0.50                             | 1.7                          | < 0.50                  |
| Bromomethane                   | 5.0                              | 17                           | < 5.0                   |
| Chloroethane                   | 5.0                              | 17                           | < 5.0                   |
| Trichlorofluoromethane         | 0.50                             | 1.7                          | < 0.50                  |
| 1,1,2-Trichlorotrifluoroethane | 0.50                             | 1.7                          | < 0.50                  |
| 1,1-Dichloroethene             | 0.50                             | 1.7                          | < 0.50                  |
| Acetone                        | 20                               | 67                           | < 20                    |
| Carbon Disulfide               | 0.50                             | 1.7                          | < 0.50                  |
| Methylene Chloride             | 2.0                              | 6.7                          | < 2.0                   |
| Methyl-t-butyl Ether           | 0.50                             | 1.7                          | < 0.50                  |
| t-1,2-Dichloroethene           | 0.50                             | 1.7                          | < 0.50                  |
| n-Hexane                       | 0.50                             | 1.7                          | < 0.50                  |
| 1,1-Dichloroethane             | 0.50                             | 1.7                          | < 0.50                  |
| Diisopropyl Ether              | 0.50                             | 1.7                          | < 0.50                  |
| 2,2-Dichloropropane            | 0.50                             | 1.7                          | < 0.50                  |
| c-1,2-Dichloroethene           | 0.50                             | 1.7                          | < 0.50                  |
| 2-Butanone (MEK)               | 20                               | 67                           | < 20                    |
| Tetrahydrofuran                | 10                               | 33                           | < 10                    |
| Bromochloromethane             | 0.50                             | 1.7                          | < 0.50                  |
| Chloroform                     | 0.50                             | 1.7                          | < 0.50                  |
| 1,1,1-Trichloroethane          | 0.50                             | 1.7                          | < 0.50                  |
| Carbon Tetrachloride           | 0.50                             | 1.7                          | < 0.50                  |
| 1,1-Dichloropropene            | 0.50                             | 1.7                          | < 0.50                  |
| Benzene                        | 0.50                             | 1.7                          | < 0.50                  |
| 1,2-Dichloroethane             | 0.50                             | 1.7                          | < 0.50                  |
| Trichloroethene                | 0.50                             | 1.7                          | 0.87 J                  |
| 1,2-Dichloropropane            | 0.50                             | 1.7                          | < 0.50                  |
| Dibromomethane                 | 0.50                             | 1.7                          | < 0.50                  |
| Bromodichloromethane           | 0.50                             | 1.7                          | < 0.50                  |
| c-1,3-Dichloropropene          | 0.50                             | 1.7                          | < 0.50                  |
|                                |                                  |                              |                         |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Raluf Carul
Date: 09/19/07

Project Name: Thomas - D.B. Date Analyzed: 09/18/07 Fort Atkinson, Wisconsin Concentration: Project Location: ug/L MW-7B (80' to 85') Dilution Factor: Sample ID: 1 Date Collected: 09/18/07 Lab Sample Number: 43676

Sample Type: Water

| Compound                    | Reporting Detection Limit | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|---------------------------|------------------------------|---|-------------------------|
| 4-Methyl-2-pentanone (MIBK) | 20                        | 67                           | < | 20                      |
| Toluene                     | 0.50                      | 1.7                          | < | 0.50                    |
| 1,1,2-Trichloroethane       | 0.50                      | 1.7                          | < | 0.50                    |
| t-1,3-Dichloropropene       | 0.50                      | 1.7                          | < | 0.50                    |
| Tetrachloroethene           | 0.50                      | 1.7                          | • | 6.7                     |
| 1,3-Dichloropropane         | 0.50                      | 1.7                          | < | 0.50                    |
| 2-Hexanone                  | 20                        | 67                           | < | 20                      |
| Dibromochloromethane        | 0.50                      | 1.7                          | < | 0.50                    |
| 1,2-Dibromoethane           | 0.50                      | 1.7                          | < | 0.50                    |
| Chlorobenzene               | 0.50                      | 1.7                          | < | 0.50                    |
| 1,1,1,2-Tetrachloroethane   | 0.50                      | 1.7                          | < | 0.50                    |
| Ethylbenzene                | 0.50                      | 1.7                          | < | 0.50                    |
| m+p-Xylene                  | 0.50                      | 1.7                          | < | 0.50                    |
| o-Xylene                    | 0.50                      | 1.7                          | < | 0.50                    |
| Styrene                     | 0.50                      | 1.7                          | < | 0.50                    |
| Bromoform                   | 0.50                      | 1.7                          | < | 0.50                    |
| Isopropylbenzene            | 0.50                      | 1.7                          | < | 0.50                    |
| 1,1,2,2-Tetrachloroethane   | 0.50                      | 1.7                          | < | 0.50                    |
| Bromobenzene                | 0.50                      | 1.7                          | < | 0.50                    |
| 1,2,3-Trichloropropane      | 1.0                       | 3.3                          | < | 1.0                     |
| n-Propyl benzene            | 0.50                      | 1.7                          | < | 0.50                    |
| 2-Chlorotoluene             | 0.50                      | 1.7                          | < | 0.50                    |
| 1,3,5-Trimethylbenzene      | 0.50                      | 1.7                          | < | 0.50                    |
| 4-Chlorotoluene             | 0.50                      | 1.7                          | < | 0.50                    |
| t-Butyl benzene             | 0.50                      | 1.7                          | < | 0.50                    |
| 1,2,4-Trimethylbenzene      | 0.50                      | 1.7                          | < | 0.50                    |
| sec-Butyl benzene           | 0.50                      | 1.7                          | < | 0.50                    |
| 1,3-Dichlorobenzene         | 0.50                      | 1.7                          | < | 0.50                    |
| p-Isopropyl toluene         | 0.50                      | 1.7                          | < | 0.50                    |
| 1,4-Dichlorobenzene         | 0.50                      | 1.7                          | < | 0.50                    |
| n-Butyl benzene             | 0.50                      | 1.7                          | < | 0.50                    |
| 1,2-Dichlorobenzene         | 0.50                      | 1.7                          | < | 0.50                    |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Ralest Punch
Date: 09/19/07

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/18/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-7B (80' to 85')       | Dilution Factor:   | 1        |
| Date Collected:   | 09/18/07                 | Lab Sample Number: | 43676    |
| Sample Type:      | Water                    |                    |          |

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 0.50                    |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 2.0                     |
| Naphthalene                 | 5.0                              | 17                           | < | 5.0                     |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Dibromofluoromethane        |                                  |                              |   | 71.2%                   |
| Toluene-D8                  |                                  |                              |   | 92.5%                   |
| 4-Bromofluorobenzene        |                                  |                              |   | 96.6%                   |

J = Estimated.

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Rallet Oursell
Date: 09/19/57

Thomas - D.B. Project Name: Date Analyzed: 09/18/07 Fort Atkinson, Wisconsin Concentration: Project Location: ug/L MW-7B (95' to 100') Dilution Factor: Sample ID: Lab Sample Number: 43677 Date Collected: 09/18/07

Sample Type: Water

| Reporting Detection <u>Limit</u> | Quantitation <u>Limit</u>                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                        |
|----------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 0.50                             | 1.7                                                     | < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                       |
| 1.0                              | 3.3                                                     | < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0                                                                                                       |
| 0.50                             | 1.7                                                     | < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                       |
| 5.0                              | 17                                                      | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0                                                                                                       |
| 5.0                              | 17                                                      | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0 <b>M</b>                                                                                              |
| 0.50                             | 1.7                                                     | < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 <b>M</b>                                                                                              |
| 0.50                             | 1.7                                                     | < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                       |
| 0.50                             | 1.7                                                     | < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                       |
| 20                               | 67                                                      | < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 <b>M</b>                                                                                              |
| 0.50                             | 1.7                                                     | < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                       |
| 2.0                              | 6.7                                                     | < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0                                                                                                       |
| 0.50                             | 1.7                                                     | < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 <b>M</b>                                                                                              |
| 0.50                             | 1.7                                                     | < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .50                                                                                                      |
| 0.50                             | 1.7                                                     | < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .50                                                                                                      |
| 0.50                             | 1.7                                                     | < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .50                                                                                                      |
| 0.50                             | 1.7                                                     | < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .50                                                                                                      |
| 0.50                             | 1.7                                                     | < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .50                                                                                                      |
| 0.50                             | 1.7                                                     | < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .50                                                                                                      |
| 20                               | 67                                                      | < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 <b>M</b>                                                                                              |
| 10                               | 33                                                      | < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 <b>M</b>                                                                                              |
| 0.50                             | 1.7                                                     | < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .50 <b>M</b>                                                                                             |
| 0.50                             | 1.7                                                     | < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .50                                                                                                      |
| 0.50                             | 1.7                                                     | < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .50                                                                                                      |
| 0.50                             | 1.7                                                     | < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .50 <b>M</b>                                                                                             |
| 0.50                             | 1.7                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .50                                                                                                      |
| 0.50                             | 1.7                                                     | < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .50                                                                                                      |
|                                  | 1.7                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .50                                                                                                      |
| 0.50                             | 1.7                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .50                                                                                                      |
|                                  | 1.7                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .50                                                                                                      |
| 0.50                             | 1.7                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .50                                                                                                      |
| 0.50                             | 1.7                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .50                                                                                                      |
| 0.50                             | 1.7                                                     | < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .50                                                                                                      |
|                                  | Detection Limit  0.50 1.0 0.50 5.0 5.0 0.50 0.50 0.50 0 | Detection Limit         Quantitation Limit           0.50         1.7           1.0         3.3           0.50         1.7           5.0         17           5.0         17           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50         1.7           0.50 | Detection Limit         Quantitation Limit         Sample Result           0.50         1.7         < 0. |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Rocket Curel

Date: 09/19/07

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/18/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-7B (95' to 100')      | Dilution Factor:   | 1        |
| Date Collected:   | 09/18/07                 | Lab Sample Number: | 43677    |

Sample Type: Water

| <u>Compound</u>             | Reporting Detection <u>Limit</u> | Quantitation <u>Limit</u> | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|---------------------------|-------------------------|
| 4-Methyl-2-pentanone (MIBK) | 20                               | 67                        | < 20                    |
| Toluene                     | 0.50                             | 1.7                       | < 0.50                  |
| 1,1,2-Trichloroethane       | 0.50                             | 1.7                       | < 0.50                  |
| t-1,3-Dichloropropene       | 0.50                             | 1.7                       | < 0.50                  |
| Tetrachloroethene           | 0.50                             | 1.7                       | 4.2                     |
| 1,3-Dichloropropane         | 0.50                             | 1.7                       | < 0.50                  |
| 2-Hexanone                  | 20                               | 67                        | < 20                    |
| Dibromochloromethane        | 0.50                             | 1.7                       | < 0.50                  |
| 1,2-Dibromoethane           | 0.50                             | 1.7                       | < 0.50                  |
| Chlorobenzene               | 0.50                             | 1.7                       | < 0.50                  |
| 1,1,1,2-Tetrachloroethane   | 0.50                             | 1.7                       | < 0.50                  |
| Ethylbenzene                | 0.50                             | 1.7                       | < 0.50                  |
| m+p-Xylene                  | 0.50                             | 1.7                       | < 0.50                  |
| o-Xylene                    | 0.50                             | 1.7                       | < 0.50                  |
| Styrene                     | 0.50                             | 1.7                       | < 0.50                  |
| Bromoform                   | 0.50                             | 1.7                       | < 0.50                  |
| Isopropylbenzene            | 0.50                             | 1.7                       | < 0.50                  |
| 1,1,2,2-Tetrachloroethane   | 0.50                             | 1.7                       | < 0.50                  |
| Bromobenzene                | 0.50                             | 1.7                       | < 0.50 <b>M</b>         |
| 1,2,3-Trichloropropane      | 1.0                              | 3.3                       | < 1.0                   |
| n-Propyl benzene            | 0.50                             | 1.7                       | < 0.50                  |
| 2-Chlorotoluene             | 0.50                             | 1.7                       | < 0.50                  |
| 1,3,5-Trimethylbenzene      | 0.50                             | 1.7                       | < 0.50                  |
| 4-Chlorotoluene             | 0.50                             | 1.7                       | < 0.50                  |
| t-Butyl benzene             | 0.50                             | 1.7                       | < 0.50                  |
| 1,2,4-Trimethylbenzene      | 0.50                             | 1.7                       | < 0.50                  |
| sec-Butyl benzene           | 0.50                             | 1.7                       | < 0.50                  |
| 1,3-Dichlorobenzene         | 0.50                             | 1.7                       | < 0.50                  |
| p-Isopropyl toluene         | 0.50                             | 1.7                       | < 0.50                  |
| 1,4-Dichlorobenzene         | 0.50                             | 1.7                       | < 0.50                  |
| n-Butyl benzene             | 0.50                             | 1.7                       | < 0.50                  |
| 1,2-Dichlorobenzene         | 0.50                             | 1.7                       | < 0.50                  |
|                             |                                  |                           |                         |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Rochet Ownel
Date: 09/19/07

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/18/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-7B (95' to 100')      | Dilution Factor:   | 1        |
| Date Collected:   | 09/18/07                 | Lab Sample Number: | 43677    |
| Sample Type:      | Water                    |                    |          |

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 0.50                    |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 2.0                     |
| Naphthalene                 | 5.0                              | 17                           | < | 5.0                     |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Dibromofluoromethane        |                                  |                              |   | 98.8%                   |
| Toluene-D8                  |                                  |                              |   | 95.9%                   |
| 4-Bromofluorobenzene        |                                  |                              |   | 94.2%                   |

M = Matrix Spike and/or Matrix Spike Duplicate recovery was outside acceptance limits.

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S.

2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Roelet Chiral
Date: 09/9/57

|                                                     |                                                          |         | 1                |                              |                         | 1689,          | 1089, 297 A Call Faux Mond                        | SULTS TO THE MEMICE |
|-----------------------------------------------------|----------------------------------------------------------|---------|------------------|------------------------------|-------------------------|----------------|---------------------------------------------------|---------------------|
|                                                     | Environmental Chemistry                                  | al Ct   | emi              | stry                         | CHAIN OF CUSTODY        | STODY          | No 018452 %                                       | (SOP)               |
|                                                     | Consulting Services, Inc. 2525 Advance Road Madison, WIE | ervic   | Madiso           | ices, Inc. Madison, WI 53718 |                         |                | Page Of I                                         | Rush                |
| Project Number:                                     | 0451-002-800                                             |         | Mail Report To:  | ort To:                      | Mark Mc Cullage         |                | Invoice To:                                       | 187                 |
| May                                                 | D.B.                                                     |         | Company          | Non                          | Fields                  |                | Company: Samo                                     |                     |
| Project Location: Fort Atkinson                     | kinson                                                   |         | Address          |                              | ا ـ ا                   | 5ke 101        | , 1                                               |                     |
| Sampled By (Print):                                 | 7                                                        |         |                  | Ŋ                            | Medison, WI             | 53713          |                                                   |                     |
| Dave Nemella                                        | emetz                                                    |         |                  |                              |                         |                | P.O. No.: Quote No.:                              |                     |
| Sample Description                                  | Collection<br>Date Time                                  | Matrix  | Total<br>Bottles | Preserv*                     | Analysis Requested      |                | Comments                                          | Laboratory Number   |
| MW-7B (60)                                          | 6-17                                                     |         | 8                | 7                            | VOCs                    |                |                                                   | 43615               |
| MW-7B (80)                                          | 81-6                                                     | 3       | W                | 7                            | ),                      |                |                                                   | 43676               |
|                                                     | <del> </del>                                             | 3       | 3                | /                            | )/                      |                |                                                   | 43677               |
|                                                     |                                                          |         |                  |                              |                         |                |                                                   |                     |
|                                                     |                                                          |         |                  |                              |                         |                |                                                   |                     |
|                                                     |                                                          |         |                  |                              |                         |                |                                                   |                     |
|                                                     |                                                          |         |                  |                              |                         |                |                                                   |                     |
|                                                     |                                                          |         |                  |                              |                         |                |                                                   |                     |
|                                                     |                                                          |         |                  |                              |                         |                |                                                   |                     |
|                                                     |                                                          |         |                  |                              |                         |                |                                                   |                     |
|                                                     |                                                          |         |                  |                              |                         |                |                                                   |                     |
|                                                     |                                                          |         |                  |                              |                         |                |                                                   |                     |
| *Preservation Code<br>A=None B=HCL C=H2SO4          | Relinguished By                                          | A)      | . (              |                              | Date:Time:<br>9/18/07   | Received By:   | mille                                             | Date/Time:          |
| D=HNO3 E=EnCore F=Methanol G=NaOH O=Other(Indicate) | Relinguished By:                                         | X       | •                | •                            | Paterine: 11/15m        | Received By:   | Received By: Cher                                 | 9/18/11/18/1        |
| Custody Seal: Present/Absent                        | Intact/Not Intact Se                                     | Seal#'s |                  |                              |                         | Redeipt Temp:  |                                                   |                     |
|                                                     |                                                          |         |                  |                              | WHITE - REPORT COPY YEL | LOW - LABORATO | YELLOW - LABORATORY COPY PINK - SAMPLER/SUBMITTER | MITTER              |



September 20, 2007

Mark McCulloch NewFields 2110 Luann Lane, Suite 101 Madison, WI 53713

re: Thomas D.B. - Fort Atkinson, WI - Project Number 0451-002-800

Dear Mr. McCulloch,

Enclosed you will find the analytical results for the samples collected September 18, 2007. Please feel free to call if you have any questions.

Sincerely,

Robert Osmundson

QA Manager

Enclosures

jce

Project Name:Thomas - D.B.Date Analyzed:09/19/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-8B (30' to 35')Dilution Factor:1Date Collected:09/18/07Lab Sample Number:43689

Sample Type: Water

| Compound                       | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | ample<br><u>Result</u> |   |
|--------------------------------|----------------------------------|------------------------------|---|------------------------|---|
| Dichlorodifluoromethane        | 0.50                             | 1.7                          | < | 0.50                   |   |
| Chloromethane                  | 1.0                              | 3.3                          | < | 1.0                    |   |
| Vinyl Chloride                 | 0.50                             | 1.7                          | < | 0.50                   |   |
| Bromomethane                   | 5.0                              | 17                           | < | 5.0                    |   |
| Chloroethane                   | 5.0                              | 17                           | < | 5.0                    |   |
| Trichlorofluoromethane         | 0.50                             | 1.7                          | < | 0.50                   |   |
| 1,1,2-Trichlorotrifluoroethane | 0.50                             | 1.7                          | < | 0.50                   |   |
| 1,1-Dichloroethene             | 0.50                             | 1.7                          | < | 0.50                   |   |
| Acetone                        | 20                               | 67                           | < | 20                     |   |
| Carbon Disulfide               | 0.50                             | 1.7                          | < | 0.50                   |   |
| Methylene Chloride             | 2.0                              | 6.7                          | < | 2.0 N                  | M |
| Methyl-t-butyl Ether           | 0.50                             | 1.7                          | < | 0.50                   |   |
| t-1,2-Dichloroethene           | 0.50                             | 1.7                          | < | 0.50 N                 | M |
| n-Hexane                       | 0.50                             | 1.7                          | < | 0.50                   |   |
| 1,1-Dichloroethane             | 0.50                             | 1.7                          | < | 0.50                   |   |
| Diisopropyl Ether              | 0.50                             | 1.7                          | < | 0.50                   |   |
| 2,2-Dichloropropane            | 0.50                             | 1.7                          | < | 0.50                   |   |
| c-1,2-Dichloroethene           | 0.50                             | 1.7                          | < | 0.50                   |   |
| 2-Butanone (MEK)               | 20                               | 67                           | < | 20                     |   |
| Tetrahydrofuran                | 10                               | 33                           | < | 10                     |   |
| Bromochloromethane             | 0.50                             | 1.7                          | < | 0.50                   |   |
| Chloroform                     | 0.50                             | 1.7                          | < | 0.50                   |   |
| 1,1,1-Trichloroethane          | 0.50                             | 1.7                          | < | 0.50                   |   |
| Carbon Tetrachloride           | 0.50                             | 1.7                          | < | 0.50                   |   |
| 1,1-Dichloropropene            | 0.50                             | 1.7                          | < | 0.50                   |   |
| Benzene                        | 0.50                             | 1.7                          | < | 0.50                   |   |
| 1,2-Dichloroethane             | 0.50                             | 1.7                          | < | 0.50                   |   |
| Trichloroethene                | 0.50                             | 1.7                          | < | 0.50                   |   |
| 1,2-Dichloropropane            | 0.50                             | 1.7                          | < | 0.50                   |   |
| Dibromomethane                 | 0.50                             | 1.7                          | < | 0.50                   |   |
| Bromodichloromethane           | 0.50                             | 1.7                          | < | 0.50                   |   |
| c-1,3-Dichloropropene          | 0.50                             | 1.7                          | < | 0.50                   |   |
|                                |                                  |                              |   |                        |   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Date: 09/20

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/19/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-8B (30' to 35')       | Dilution Factor:   | 1        |
| Date Collected:   | 09/18/07                 | Lab Sample Number: | 43689    |

Sample Type: Water

|                             | Reporting Detection | Quantitation | Sa  | mple   |  |
|-----------------------------|---------------------|--------------|-----|--------|--|
| Compound                    | <u>Limit</u>        | <u>Limit</u> |     | Result |  |
| 4-Methyl-2-pentanone (MIBK) | 20                  | 67           | <   | 20     |  |
| Toluene                     | 0.50                | 1.7          | <   | 0.50   |  |
| 1,1,2-Trichloroethane       | 0.50                | 1.7          | <   | 0.50   |  |
| t-1,3-Dichloropropene       | 0.50                | 1.7          | <   | 0.50   |  |
| Tetrachloroethene           | 0.50                | 1.7          | <   | 0.50   |  |
| 1,3-Dichloropropane         | 0.50                | 1.7          | <   | 0.50   |  |
| 2-Hexanone                  | 20                  | 67           | <   | 20     |  |
| Dibromochloromethane        | 0.50                | 1.7          | <   | 0.50   |  |
| 1,2-Dibromoethane           | 0.50                | 1.7          | <   | 0.50   |  |
| Chlorobenzene               | 0.50                | 1.7          | . < | 0.50   |  |
| 1,1,1,2-Tetrachloroethane   | 0.50                | 1.7          | <   | 0.50   |  |
| Ethylbenzene                | 0.50                | 1.7          | <   | 0.50   |  |
| m+p-Xylene                  | 0.50                | 1.7          | <   | 0.50   |  |
| o-Xylene                    | 0.50                | 1.7          | <   | 0.50   |  |
| Styrene                     | 0.50                | 1.7          | <   | 0.50   |  |
| Bromoform                   | 0.50                | 1.7          | <   | 0.50   |  |
| Isopropylbenzene            | 0.50                | 1.7          | <   | 0.50   |  |
| 1,1,2,2-Tetrachloroethane   | 0.50                | 1.7          | <   | 0.50   |  |
| Bromobenzene                | 0.50                | 1.7          | <   | 0.50   |  |
| 1,2,3-Trichloropropane      | 1.0                 | 3.3          | <   | 1.0    |  |
| n-Propyl benzene            | 0.50                | 1.7          | <   | 0.50   |  |
| 2-Chlorotoluene             | 0.50                | 1.7          | <   | 0.50   |  |
| 1,3,5-Trimethylbenzene      | 0.50                | 1.7          | <   | 0.50   |  |
| 4-Chlorotoluene             | 0.50                | 1.7          | <   | 0.50   |  |
| t-Butyl benzene             | 0.50                | 1.7          | <   | 0.50   |  |
| 1,2,4-Trimethylbenzene      | 0.50                | 1.7          | <   | 0.50   |  |
| sec-Butyl benzene           | 0.50                | 1.7          | <   | 0.50   |  |
| 1,3-Dichlorobenzene         | 0.50                | 1.7          | <   | 0.50   |  |
| p-Isopropyl toluene         | 0.50                | 1.7          | <   | 0.50   |  |
| 1,4-Dichlorobenzene         | 0.50                | 1.7          | <   | 0.50   |  |
| n-Butyl benzene             | 0.50                | 1.7          | <   | 0.50   |  |
| 1,2-Dichlorobenzene         | 0.50                | 1.7          | <   | 0.50   |  |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Rolled Grand
Date: 09/20/57

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/19/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-8B (30' to 35')       | Dilution Factor:   | 1        |
| Date Collected:   | 09/18/07                 | Lab Sample Number: | 43689    |
| · ·               |                          |                    |          |

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 0.50                    |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 2.0                     |
| Naphthalene                 | 5.0                              | 17                           | < | 5.0                     |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Dibromofluoromethane        |                                  |                              |   | 101%                    |
| Toluene-D8                  |                                  |                              |   | 96.8%                   |
| 4-Bromofluorobenzene        |                                  |                              |   | 95.2%                   |

M = Matrix Spike, Matrix Spike Duplicate precision outside acceptance limits.

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road

Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Rahet Caryl
Date: 09/20/57

Project Name: Thomas - D.B. Date Analyzed: 09/19/07 Project Location: Fort Atkinson, Wisconsin Concentration: ug/L MW-8B (60' to 65') Sample ID: Dilution Factor: 1 Date Collected: 09/18/07 Lab Sample Number: 43690

Sample Type: Water

| Compound                       | Reporting<br>Detection<br><u>Limit</u> | Quantitation<br><u>Limit</u> |               | ample<br><u>Result</u> |
|--------------------------------|----------------------------------------|------------------------------|---------------|------------------------|
| Dichlorodifluoromethane        | 0.50                                   | 1.7                          | <             | 0.50                   |
| Chloromethane                  | 1.0                                    | 3.3                          | <             | 1.0                    |
| Vinyl Chloride                 | 0.50                                   | 1.7                          | <             | 0.50                   |
| Bromomethane                   | 5.0                                    | 17                           | <             | 5.0                    |
| Chloroethane                   | 5.0                                    | 17                           | <             | 5.0                    |
| Trichlorofluoromethane         | 0.50                                   | 1.7                          | <             | 0.50                   |
| 1,1,2-Trichlorotrifluoroethane | 0.50                                   | 1.7                          | <             | 0.50                   |
| 1,1-Dichloroethene             | 0.50                                   | 1.7                          | <             | 0.50                   |
| Acetone                        | 20                                     | 67                           | <             | 20                     |
| Carbon Disulfide               | 0.50                                   | 1.7                          | <             | 0.50                   |
| Methylene Chloride             | 2.0                                    | 6.7                          | <             | 2.0                    |
| Methyl-t-butyl Ether           | 0.50                                   | 1.7                          | <             | 0.50                   |
| t-1,2-Dichloroethene           | 0.50                                   | 1.7                          | <             | 0.50                   |
| n-Hexane                       | 0.50                                   | 1.7                          | <             | 0.50                   |
| 1,1-Dichloroethane             | 0.50                                   | 1.7                          | <             | 0.50                   |
| Diisopropyl Ether              | 0.50                                   | 1.7                          | <             | 0.50                   |
| 2,2-Dichloropropane            | 0.50                                   | 1.7                          | <             | 0.50                   |
| c-1,2-Dichloroethene           | 0.50                                   | 1.7                          | , <b>&lt;</b> | 0.50                   |
| 2-Butanone (MEK)               | 20                                     | 67                           | <             | 20                     |
| Tetrahydrofuran                | 10                                     | 33                           | <             | 10                     |
| Bromochloromethane             | 0.50                                   | 1.7                          | <             | 0.50                   |
| Chloroform                     | 0.50                                   | 1.7                          | <             | 0.50                   |
| 1,1,1-Trichloroethane          | 0.50                                   | 1.7                          | <             | 0.50                   |
| Carbon Tetrachloride           | 0.50                                   | 1.7                          | <             | 0.50                   |
| 1,1-Dichloropropene            | 0.50                                   | 1.7                          | <             | 0.50                   |
| Benzene                        | 0.50                                   | 1.7                          | <             | 0.50                   |
| 1,2-Dichloroethane             | 0.50                                   | 1.7                          | <             | 0.50                   |
| Trichloroethene                | 0.50                                   | 1.7                          | <             | 0.50                   |
| 1,2-Dichloropropane            | 0.50                                   | 1.7                          | <             | 0.50                   |
| Dibromomethane                 | 0.50                                   | 1.7                          | <             | 0.50                   |
| Bromodichloromethane           | 0.50                                   | 1.7                          | <             | 0.50                   |
| c-1,3-Dichloropropene          | 0.50                                   | 1.7                          | < '           | 0.50                   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Maluel Cuel
Date: 09/2015)

Project Name: Thomas - D.B. Date Analyzed: 09/19/07 Fort Atkinson, Wisconsin Concentration: Project Location: ug/L MW-8B (60' to 65') Dilution Factor: Sample ID: 1 Date Collected: 09/18/07 Lab Sample Number: 43690

Sample Type: Water

| •                           | Reporting Detection | Quantitation | Sam  | nle |
|-----------------------------|---------------------|--------------|------|-----|
| Compound                    | <u>Limit</u>        | <u>Limit</u> | Resi | -   |
| 4-Methyl-2-pentanone (MIBK) | 20                  | 67           | < 2  | 0   |
| Toluene                     | 0.50                | 1.7          | < 0. | 50  |
| 1,1,2-Trichloroethane       | 0.50                | 1.7          | < 0. | 50  |
| t-1,3-Dichloropropene       | 0.50                | 1.7          | < 0. | 50  |
| Tetrachloroethene           | 0.50                | 1.7          | < 0. | 50  |
| 1,3-Dichloropropane         | 0.50                | 1.7          | < 0. | 50  |
| 2-Hexanone                  | 20                  | 67           | < 2  | 0.  |
| Dibromochloromethane        | 0.50                | 1.7          | < 0. | 50  |
| 1,2-Dibromoethane           | 0.50                | 1.7          | < 0. | 50  |
| Chlorobenzene               | 0.50                | 1.7          | < 0. | 50  |
| 1,1,1,2-Tetrachloroethane   | 0.50                | 1.7          | < 0. | 50  |
| Ethylbenzene                | 0.50                | 1.7          | < 0. | 50  |
| m+p-Xylene                  | 0.50                | 1.7          | < 0. | 50  |
| o-Xylene                    | 0.50                | 1.7          | < 0. | 50  |
| Styrene                     | 0.50                | 1.7          | < 0. | 50  |
| Bromoform                   | 0.50                | 1.7          | < 0. | 50  |
| Isopropylbenzene            | 0.50                | 1.7          | < 0. | 50  |
| 1,1,2,2-Tetrachloroethane   | 0.50                | 1.7          | < 0. | 50  |
| Bromobenzene                | 0.50                | 1.7          | < 0. | 50  |
| 1,2,3-Trichloropropane      | 1.0                 | 3.3          | < 1  | .0  |
| n-Propyl benzene            | 0.50                | 1.7          | < 0. | .50 |
| 2-Chlorotoluene             | 0.50                | 1.7          | < 0. | .50 |
| 1,3,5-Trimethylbenzene      | 0.50                | 1.7          | < 0. | .50 |
| 4-Chlorotoluene             | 0.50                | 1.7          | < 0. | .50 |
| t-Butyl benzene             | 0.50                | 1.7          | < 0. | .50 |
| 1,2,4-Trimethylbenzene      | 0.50                | 1.7          | < 0. | .50 |
| sec-Butyl benzene           | 0.50                | 1.7          | < 0. | .50 |
| 1,3-Dichlorobenzene         | 0.50                | 1.7          | < 0. | .50 |
| p-Isopropyl toluene         | 0.50                | 1.7          | < 0. | .50 |
| 1,4-Dichlorobenzene         | 0.50                | 1.7          | < 0. | .50 |
| n-Butyl benzene             | 0.50                | 1.7          | < 0. | .50 |
| 1,2-Dichlorobenzene         | 0.50                | 1.7          | < 0. | .50 |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

proved by: Raluel Courl
Date: 09/20/27

Project Name: Date Analyzed: Thomas - D.B. 09/19/07 Fort Atkinson, Wisconsin Concentration: Project Location: ug/L MW-8B (60' to 65') Sample ID: Dilution Factor: 1 09/18/07 Lab Sample Number: Date Collected: 43690 Sample Type: Water

| Sample Type. | vv ater |           |
|--------------|---------|-----------|
|              |         | Reporting |
|              |         | T         |

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 0.50                    |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 2.0                     |
| Naphthalene                 | 5.0                              | 17                           | < | 5.0                     |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Dibromofluoromethane        |                                  |                              |   | 103%                    |
| Toluene-D8                  |                                  |                              |   | 94.1%                   |
| 4-Bromofluorobenzene        |                                  |                              |   | 96.8%                   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Project Name: Thomas - D.B. Date Analyzed: 09/19/07
Project Location: Fort Atkinson, Wisconsin Concentration: ug/L
Sample ID: MW-8B (80' to 85') Dilution Factor: 1
Date Collected: 09/18/07 Lab Sample Number: 43691

Sample Type: Water

| Compound                       | Reporting<br>Detection<br><u>Limit</u> | Quantitation <u>Limit</u> |     | Sample<br><u>Result</u> |
|--------------------------------|----------------------------------------|---------------------------|-----|-------------------------|
| Dichlorodifluoromethane        | 0.50                                   | 1.7                       | . < | 0.50                    |
| Chloromethane                  | 1.0                                    | 3.3                       | <   | 1.0                     |
| Vinyl Chloride                 | 0.50                                   | 1.7                       | <   | 0.50                    |
| Bromomethane                   | 5.0                                    | 17                        | <   | 5.0                     |
| Chloroethane                   | 5.0                                    | 17                        | <   | 5.0                     |
| Trichlorofluoromethane         | 0.50                                   | 1.7                       | <   | 0.50                    |
| 1,1,2-Trichlorotrifluoroethane | 0.50                                   | 1.7                       | <   | 0.50                    |
| 1,1-Dichloroethene             | 0.50                                   | 1.7                       | <   | 0.50                    |
| Acetone                        | 20                                     | 67                        | <   | 20                      |
| Carbon Disulfide               | 0.50                                   | 1.7                       | <   | 0.50                    |
| Methylene Chloride             | 2.0                                    | 6.7                       | <   | 2.0                     |
| Methyl-t-butyl Ether           | 0.50                                   | 1.7                       | <   | 0.50                    |
| t-1,2-Dichloroethene           | 0.50                                   | 1.7                       | <   | 0.50                    |
| n-Hexane                       | 0.50                                   | 1.7                       | <   | 0.50                    |
| 1,1-Dichloroethane             | 0.50                                   | 1.7                       | <   | 0.50                    |
| Diisopropyl Ether              | 0.50                                   | 1.7                       | <   | 0.50                    |
| 2,2-Dichloropropane            | 0.50                                   | 1.7                       | <   | 0.50                    |
| c-1,2-Dichloroethene           | 0.50                                   | 1.7                       | <   | 0.50                    |
| 2-Butanone (MEK)               | 20                                     | 67                        | <   | 20                      |
| Tetrahydrofuran                | 10                                     | 33                        | <   | 10                      |
| Bromochloromethane             | 0.50                                   | 1.7                       | <   | 0.50                    |
| Chloroform                     | 0.50                                   | 1.7                       | <   | 0.50                    |
| 1,1,1-Trichloroethane          | 0.50                                   | 1.7                       | <   | 0.50                    |
| Carbon Tetrachloride           | 0.50                                   | 1.7                       | <   | 0.50                    |
| 1,1-Dichloropropene            | 0.50                                   | 1.7                       | <   | 0.50                    |
| Benzene                        | 0.50                                   | 1.7                       | <   | 0.50                    |
| 1,2-Dichloroethane             | 0.50                                   | 1.7                       | <   | 0.50                    |
| Trichloroethene                | 0.50                                   | 1.7                       | <   | 0.50                    |
| 1,2-Dichloropropane            | 0.50                                   | 1.7                       | <   | 0.50                    |
| Dibromomethane                 | 0.50                                   | 1.7                       | <   | 0.50                    |
| Bromodichloromethane           | 0.50                                   | 1.7                       | <   | 0.50                    |
| c-1,3-Dichloropropene          | 0.50                                   | 1.7                       | <   | 0.50                    |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name: Thomas - D.B. Date Analyzed: 09/19/07 Project Location: Fort Atkinson, Wisconsin Concentration: ug/L Sample ID: MW-8B (80' to 85') Dilution Factor: 1 Date Collected: 09/18/07 Lab Sample Number: 43691

Sample Type: Water

|                             | Reporting Detection | Quantitation | 5   | Sample |
|-----------------------------|---------------------|--------------|-----|--------|
| Compound                    | <u>Limit</u>        | <u>Limit</u> |     | Result |
| 4-Methyl-2-pentanone (MIBK) | 20                  | 67           | <   | 20     |
| Toluene                     | 0.50                | 1.7          | <   | 0.50   |
| 1,1,2-Trichloroethane       | 0.50                | 1.7          | <   | 0.50   |
| t-1,3-Dichloropropene       | 0.50                | 1.7          | <   | 0.50   |
| Tetrachloroethene           | 0.50                | 1.7          | < ' | 0.50   |
| 1,3-Dichloropropane         | 0.50                | 1.7          | <   | 0.50   |
| 2-Hexanone                  | 20                  | 67           | <   | 20     |
| Dibromochloromethane        | 0.50                | 1.7          | <   | 0.50   |
| 1,2-Dibromoethane           | 0.50                | 1.7          | <   | 0.50   |
| Chlorobenzene               | 0.50                | 1.7          | <   | 0.50   |
| 1,1,1,2-Tetrachloroethane   | 0.50                | 1.7          | <   | 0.50   |
| Ethylbenzene                | 0.50                | 1.7          | <   | 0.50   |
| m+p-Xylene                  | 0.50                | 1.7          | <   | 0.50   |
| o-Xylene                    | 0.50                | 1.7          | <   | 0.50   |
| Styrene                     | 0.50                | 1.7          | <   | 0.50   |
| Bromoform                   | 0.50                | 1.7          | <   | 0.50   |
| Isopropylbenzene            | 0.50                | 1.7          | <   | 0.50   |
| 1,1,2,2-Tetrachloroethane   | 0.50                | 1.7          | <   | 0.50   |
| Bromobenzene                | 0.50                | 1.7          | <   | 0.50   |
| 1,2,3-Trichloropropane      | 1.0                 | 3.3          | <   | 1.0    |
| n-Propyl benzene            | 0.50                | 1.7          | <   | 0.50   |
| 2-Chlorotoluene             | 0.50                | 1.7          | <   | 0.50   |
| 1,3,5-Trimethylbenzene      | 0.50                | 1.7          | <   | 0.50   |
| 4-Chlorotoluene             | 0.50                | 1.7          | <   | 0.50   |
| t-Butyl benzene             | 0.50                | 1.7          | <   | 0.50   |
| 1,2,4-Trimethylbenzene      | 0.50                | 1.7          | <   | 0.50   |
| sec-Butyl benzene           | 0.50                | 1.7          | <   | 0.50   |
| 1,3-Dichlorobenzene         | 0.50                | 1.7          | <   | 0.50   |
| p-Isopropyl toluene         | 0.50                | 1.7          | <   | 0.50   |
| 1,4-Dichlorobenzene         | 0.50                | 1.7          | <   | 0.50   |
| n-Butyl benzene             | 0.50                | 1.7          | <   | 0.50   |
| 1,2-Dichlorobenzene         | 0.50                | 1.7          | <   | 0.50   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Rached Com

Project Name: Date Analyzed: Thomas - D.B. 09/19/07 Fort Atkinson, Wisconsin Concentration: Project Location: ug/L MW-8B (80' to 85') Sample ID: Dilution Factor: 1 Lab Sample Number: Date Collected: 09/18/07 43691 Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> | Sample<br><u>Result</u> |        |
|-----------------------------|----------------------------------|------------------------------|-------------------------|--------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < 0.50                  |        |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < 2.0                   |        |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < 2.0                   |        |
| Naphthalene                 | 5.0                              | 17                           | < 5.0                   |        |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < 2.0                   |        |
| Dibromofluoromethane        |                                  |                              | 104%                    | ,      |
| Toluene-D8                  |                                  |                              | 95.6%                   | ,<br>D |
| 4-Bromofluorobenzene        |                                  |                              | 93.8%                   | ,<br>D |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by

Date: Of Duby

43690 18-18-87 Laboratory N360 Number Date/Time: Date/Time: Rush 86% ¥. Quote No. 018453 Comments Turn Around (circle one) ر ا Report Due: Invoice To: Company: Page\_ P.O. No.: Address: ار کا Madison, WI 53718 + Deve 608-770-5794 Receipt Temp: Temp Blank Received By Call with result \*\* CHAIN OF CUSTODY Mark Mc Cullock Requested 9386.1 Analysis Albhuann Lene, Madison, WD NewsFields VCCS VMCS Preserv\* FAX 608-221-4889 **Environmental Chemistry**( Mail Report To: Consulting Services, Inc. Company: Address: Bottles Total MW-8B (60-65) 978 3:00 6W MW-8B (30-35) 19-18 1:00 6W MM-8B (80-851) 9-1814:35 6W Matrix Seal #'s Phone 608-221-8700 Time 2525 Advance Road 045/- 002-800 Collection Relinquished By: intact/Not Intact Sampled By (Print): Dave Nemet 2 Fort Atkinson Date Thomas-DB D=HNO3 E=EnCore F=Methanol **Present/Absent** C=H2SO4 Sample Description \*Preservation Code G=NaOH O=Other(Indicate) A=None B=HCL Project Location: Project Number: Project Name: Custody Seal: Shipped Via:

WHITE - REPORT COPY YELLOW - LABORATORY COPY PINK - SAMPLER/SUBMITTER



September 21, 2007

Mark McCulloch NewFields 2110 Luann Lane, Suite 101 Madison, WI 53713

re: Thomas D.B. - Fort Atkinson, WI - Project Number 0451-002-800

Dear Mr. McCulloch,

Enclosed you will find the analytical results for the samples collected September 19-20, 2007. Please feel free to call if you have any questions.

Sincerely,

Robert Osmundson

Robert Osmalu

QA Manager

**Enclosures** 

jce

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/20/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-8B (100-105')         | Dilution Factor:   | 1        |
| Date Collected:   | 09/19/07                 | Lab Sample Number: | 43724    |

Water Sample Type:

| Compound                       | Reporting<br>Detection<br><u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|--------------------------------|----------------------------------------|------------------------------|---|-------------------------|
| Dichlorodifluoromethane        | 0.50                                   | 1.7                          | < | 0.50                    |
| Chloromethane                  | 1.0                                    | 3.3                          | < | 1.0                     |
| Vinyl Chloride                 | 0.50                                   | 1.7                          | < | 0.50                    |
| Bromomethane                   | 5.0                                    | 17                           | < | 5.0                     |
| Chloroethane                   | 5.0                                    | 17                           | < | 5.0                     |
| Trichlorofluoromethane         | 0.50                                   | 1.7                          | < | 0.50                    |
| 1,1,2-Trichlorotrifluoroethane | 0.50                                   | 1.7                          | < | 0.50                    |
| 1,1-Dichloroethene             | 0.50                                   | 1.7                          | < | 0.50                    |
| Acetone                        | 20                                     | 67                           | < | 20                      |
| Carbon Disulfide               | 0.50                                   | 1.7                          | < | 0.50                    |
| Methylene Chloride             | 2.0                                    | 6.7                          | < | 2.0                     |
| Methyl-t-butyl Ether           | 0.50                                   | 1.7                          | < | 0.50                    |
| t-1,2-Dichloroethene           | 0.50                                   | 1.7                          | < | 0.50                    |
| n-Hexane                       | 0.50                                   | 1.7                          | < | 0.50                    |
| 1,1-Dichloroethane             | 0.50                                   | 1.7                          | < | 0.50                    |
| Diisopropyl Ether              | 0.50                                   | 1.7                          | < | 0.50                    |
| 2,2-Dichloropropane            | 0.50                                   | 1.7                          | < | 0.50                    |
| c-1,2-Dichloroethene           | 0.50                                   | 1.7                          | < | 0.50                    |
| 2-Butanone (MEK)               | 20                                     | 67                           | < | 20                      |
| Tetrahydrofuran                | 10                                     | 33                           | < | 10                      |
| Bromochloromethane             | 0.50                                   | 1.7                          | < | 0.50                    |
| Chloroform                     | 0.50                                   | 1.7                          | < | 0.50                    |
| 1,1,1-Trichloroethane          | 0.50                                   | 1.7                          | < | 0.50                    |
| Carbon Tetrachloride           | 0.50                                   | 1.7                          | < | 0.50                    |
| 1,1-Dichloropropene            | 0.50                                   | 1.7                          | < | 0.50                    |
| Benzene                        | 0.50                                   | 1.7                          | < | 0.50                    |
| 1,2-Dichloroethane             | 0.50                                   | 1.7                          | < | 0.50                    |
| Trichloroethene                | 0.50                                   | 1.7                          | < | 0.50                    |
| 1,2-Dichloropropane            | 0.50                                   | 1.7                          | < | 0.50                    |
| Dibromomethane                 | 0.50                                   | 1.7                          | < | 0.50                    |
| Bromodichloromethane           | 0.50                                   | 1.7                          | < | 0.50                    |
| c-1,3-Dichloropropene          | 0.50                                   | 1.7                          | < | 0.50                    |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: M. Linkens
Date: 9/2/107

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/20/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-8B (100-105')         | Dilution Factor:   | 1        |
| Date Collected:   | 09/19/07                 | Lab Sample Number: | 43724    |

Sample Type: Water

| <u>Compound</u>             | Reporting Detection <u>Limit</u> | Quantitation <u>Limit</u> | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|---------------------------|-------------------------|
| 4-Methyl-2-pentanone (MIBK) | 20                               | 67                        | < 20                    |
| Toluene                     | 0.50                             | 1.7                       | < 0.50                  |
| 1,1,2-Trichloroethane       | 0.50                             | 1.7                       | < 0.50                  |
| t-1,3-Dichloropropene       | 0.50                             | 1.7                       | < 0.50                  |
| Tetrachloroethene           | 0.50                             | 1.7                       | < 0.50                  |
| 1,3-Dichloropropane         | 0.50                             | 1.7                       | < 0.50                  |
| 2-Hexanone                  | 20                               | 67                        | < 20                    |
| Dibromochloromethane        | 0.50                             | 1.7                       | < 0.50                  |
| 1,2-Dibromoethane           | 0.50                             | 1.7                       | < 0.50                  |
| Chlorobenzene               | 0.50                             | 1.7                       | < 0.50                  |
| 1,1,1,2-Tetrachloroethane   | 0.50                             | 1.7                       | < 0.50                  |
| Ethylbenzene                | 0.50                             | 1.7                       | < 0.50                  |
| m+p-Xylene                  | 0.50                             | 1.7                       | < 0.50                  |
| o-Xylene                    | 0.50                             | 1.7                       | < 0.50                  |
| Styrene                     | 0.50                             | 1.7                       | < 0.50                  |
| Bromoform                   | 0.50                             | 1.7                       | < 0.50                  |
| Isopropylbenzene            | 0.50                             | 1.7                       | < 0.50                  |
| 1,1,2,2-Tetrachloroethane   | 0.50                             | 1.7                       | < 0.50                  |
| Bromobenzene                | 0.50                             | 1.7                       | < 0.50                  |
| 1,2,3-Trichloropropane      | 1.0                              | 3.3                       | < 1.0                   |
| n-Propyl benzene            | 0.50                             | 1.7                       | < 0.50                  |
| 2-Chlorotoluene             | 0.50                             | 1.7                       | < 0.50                  |
| 1,3,5-Trimethylbenzene      | 0.50                             | 1.7                       | < 0.50                  |
| 4-Chlorotoluene             | 0.50                             | 1.7                       | < 0.50                  |
| t-Butyl benzene             | 0.50                             | 1.7                       | < 0.50                  |
| 1,2,4-Trimethylbenzene      | 0.50                             | 1.7                       | < 0.50                  |
| sec-Butyl benzene           | 0.50                             | 1.7                       | < 0.50                  |
| 1,3-Dichlorobenzene         | 0.50                             | 1.7                       | < 0.50                  |
| p-Isopropyl toluene         | 0.50                             | 1.7                       | < 0.50                  |
| 1,4-Dichlorobenzene         | 0.50                             | 1.7                       | < 0.50                  |
| n-Butyl benzene             | 0.50                             | 1.7                       | < 0.50                  |
| 1,2-Dichlorobenzene         | 0.50                             | 1.7                       | < 0.50                  |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: M. Luribans
Date: 9/a//07

Project Name: Thomas - D.B. Date Analyzed: 09/20/07
Project Location: Fort Atkinson, Wisconsin Concentration: ug/L
Sample ID: MW-8B (100-105') Dilution Factor: 1
Date Collected: 09/19/07 Lab Sample Number: 43724

Sample Type: Water

| <u>Compound</u>             | Reporting<br>Detection<br><u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                                   | 1.7                          | < | 0.50                    |
| 1,2,4-Trichlorobenzene      | 2.0                                    | 6.7                          | < | 2.0                     |
| Hexachlorobutadiene         | 2.0                                    | 6.7                          | < | 2.0                     |
| Naphthalene                 | 5.0                                    | 17                           | < | 5.0                     |
| 1,2,3-Trichlorobenzene      | 2.0                                    | 6.7                          | < | 2.0                     |
| Dibromofluoromethane        |                                        |                              |   | 104%                    |
| Toluene-D8                  |                                        |                              |   | 96.0%                   |
| 4-Bromofluorobenzene        |                                        |                              |   | 95.8%                   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Date:

9/21/07

Date Analyzed: Project Name: Thomas - D.B. 09/20/07 Fort Atkinson, Wisconsin Concentration: **Project Location:** ug/L Sample ID: MW-2B (60-65') Dilution Factor: 25 Date Collected: Lab Sample Number: 09/20/07 43725

Sample Type: Water

| Compound                       | Reporting Detection Limit | Quantitation<br><u>Limit</u> |   | Sample<br>Result |
|--------------------------------|---------------------------|------------------------------|---|------------------|
|                                |                           |                              | _ |                  |
| Dichlorodifluoromethane        | 0.50                      | 1.7                          | < |                  |
| Chloromethane                  | 1.0                       | 3.3                          | < |                  |
| Vinyl Chloride                 | 0.50                      | 1.7                          | < |                  |
| Bromomethane                   | 5.0                       | 17                           | < |                  |
| Chloroethane                   | 5.0                       | 17                           | < |                  |
| Trichlorofluoromethane         | 0.50                      | 1.7                          | < |                  |
| 1,1,2-Trichlorotrifluoroethane | 0.50                      | 1.7                          | < |                  |
| 1,1-Dichloroethene             | 0.50                      | 1.7                          | < |                  |
| Acetone                        | 20                        | 67                           | < |                  |
| Carbon Disulfide               | 0.50                      | 1.7                          | < |                  |
| Methylene Chloride             | 2.0                       | 6.7                          | < |                  |
| Methyl-t-butyl Ether           | 0.50                      | 1.7                          | < |                  |
| t-1,2-Dichloroethene           | 0.50                      | 1.7                          | < |                  |
| n-Hexane                       | 0.50                      | 1.7                          | < |                  |
| 1,1-Dichloroethane             | 0.50                      | 1.7                          | < |                  |
| Diisopropyl Ether              | 0.50                      | 1.7                          | < |                  |
| 2,2-Dichloropropane            | 0.50                      | 1.7                          | < |                  |
| c-1,2-Dichloroethene           | 0.50                      | 1.7                          |   | 660              |
| 2-Butanone (MEK)               | 20                        | 67                           | < |                  |
| Tetrahydrofuran                | 10                        | 33                           | < |                  |
| Bromochloromethane             | 0.50                      | 1.7                          | < | 13               |
| Chloroform                     | 0.50                      | 1.7                          | < | 13               |
| 1,1,1-Trichloroethane          | 0.50                      | 1.7                          | < | 13               |
| Carbon Tetrachloride           | 0.50                      | 1.7                          | < | 13               |
| 1,1-Dichloropropene            | 0.50                      | 1.7                          | < | 13               |
| Benzene                        | 0.50                      | 1.7                          | < | 13               |
| 1,2-Dichloroethane             | 0.50                      | 1.7                          | < | 13               |
| Trichloroethene                | 0.50                      | 1.7                          |   | 150              |
| 1,2-Dichloropropane            | 0.50                      | 1.7                          | < | 13               |
| Dibromomethane                 | 0.50                      | 1.7                          | < | 13               |
| Bromodichloromethane           | 0.50                      | 1.7                          | < | 13               |
| c-1,3-Dichloropropene          | 0.50                      | 1.7                          | < | 13               |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, Wi 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: M. Finishers.

Date: 9/27/07

Date Analyzed: Project Name: Thomas - D.B. 09/20/07 **Project Location:** Fort Atkinson, Wisconsin Concentration: ug/L MW-2B (60-65') Sample ID: Dilution Factor: 25 Lab Sample Number: Date Collected: 09/20/07 43725

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation <u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|---------------------------|---|-------------------------|
| 4-Methyl-2-pentanone (MIBK) | 20                               | 67                        | < | 500                     |
| Toluene                     | 0.50                             | 1.7                       | < | 13                      |
| 1,1,2-Trichloroethane       | 0.50                             | 1.7                       | < | 13                      |
| t-1,3-Dichloropropene       | 0.50                             | 1.7                       | < | 13                      |
| Tetrachloroethene           | 0.50                             | 1.7                       |   | 560                     |
| 1,3-Dichloropropane         | 0.50                             | 1.7                       | < | 13                      |
| 2-Hexanone                  | 20                               | 67                        | < | 500                     |
| Dibromochloromethane        | 0.50                             | 1.7                       | < | 13                      |
| 1,2-Dibromoethane           | 0.50                             | 1.7                       | < | 13                      |
| Chlorobenzene               | 0.50                             | 1.7                       | < | 13                      |
| 1,1,1,2-Tetrachloroethane   | 0.50                             | 1.7                       | < | 13                      |
| Ethylbenzene                | 0.50                             | 1.7                       | < | 13                      |
| m+p-Xylene                  | 0.50                             | 1.7                       | < | 13                      |
| o-Xylene                    | 0.50                             | 1.7                       | < | 13                      |
| Styrene                     | 0.50                             | 1.7                       | < | 13                      |
| Bromoform                   | 0.50                             | 1.7                       | < | 13                      |
| Isopropylbenzene            | 0.50                             | 1.7                       | < | 13                      |
| 1,1,2,2-Tetrachloroethane   | 0.50                             | 1.7                       | < | 13                      |
| Bromobenzene                | 0.50                             | 1.7                       | < | 13                      |
| 1,2,3-Trichloropropane      | 1.0                              | 3.3                       | < | 25                      |
| n-Propyl benzene            | 0.50                             | 1.7                       | < | 13                      |
| 2-Chlorotoluene             | 0.50                             | 1.7                       | < | 13                      |
| 1,3,5-Trimethylbenzene      | 0.50                             | 1.7                       | < | 13                      |
| 4-Chlorotoluene             | 0.50                             | 1.7                       | < | 13                      |
| t-Butyl benzene             | 0.50                             | 1.7                       | < | 13                      |
| 1,2,4-Trimethylbenzene      | 0.50                             | 1.7                       | < | 13                      |
| sec-Butyl benzene           | 0.50                             | 1.7                       | < | 13                      |
| 1,3-Dichlorobenzene         | 0.50                             | 1.7                       | < | 13                      |
| p-Isopropyl toluene         | 0.50                             | 1.7                       | < | 13                      |
| 1,4-Dichlorobenzene         | 0.50                             | 1.7                       | < | 13                      |
| n-Butyl benzene             | 0.50                             | 1.7                       | < | 13                      |
| 1,2-Dichlorobenzene         | 0.50                             | 1.7                       | < | 13                      |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: M. Linshens
Date: 9/27/87

Project Name:Thomas - D.B.Date Analyzed:09/20/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-2B (60-65')Dilution Factor:25Date Collected:09/20/07Lab Sample Number:43725

Sample Type: Water

| <u>Compound</u>             | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 13                      |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 50                      |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 50                      |
| Naphthalene                 | 5.0                              | 17                           | < | 125                     |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 50                      |
| Dibromofluoromethane        |                                  |                              |   | 101%                    |
| Toluene-D8                  |                                  |                              |   | 96.8%                   |
| 4-Bromofluorobenzene        |                                  |                              |   | 91.7%                   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

m. Jinsken

Project Name: Thomas - D.B. Date Analyzed: 09/20/07 **Project Location:** Fort Atkinson, Wisconsin Concentration: ug/L Sample ID: MW-2B (80-85') Dilution Factor: 2 Date Collected: 09/20/07 Lab Sample Number: 43726

Sample Type: Water

|                                | Reporting Detection | Quantitation |   | Sample |
|--------------------------------|---------------------|--------------|---|--------|
| Compound                       | <u>Limit</u>        | <u>Limit</u> |   | Result |
| Dichlorodifluoromethane        | 0.50                | 1.7          | < | 1.0    |
| Chloromethane                  | 1.0                 | 3.3          | < | 2.0    |
| Vinyl Chloride                 | 0.50                | 1.7          | < | 1.0    |
| Bromomethane                   | 5.0                 | 17           | < | 10     |
| Chloroethane                   | 5.0                 | 17           | < | 10     |
| Trichlorofluoromethane         | 0.50                | 1.7          | < | 1.0    |
| 1,1,2-Trichlorotrifluoroethane | 0.50                | 1.7          | < | 1.0    |
| 1,1-Dichloroethene             | 0.50                | 1.7          | < | 1.0    |
| Acetone                        | 20                  | 67           | < | 40     |
| Carbon Disulfide               | 0.50                | 1.7          | < | 1.0    |
| Methylene Chloride             | 2.0                 | 6.7          | < | 4.0    |
| Methyl-t-butyl Ether           | 0.50                | 1.7          | < | 1.0    |
| t-1,2-Dichloroethene           | 0.50                | 1.7          | < | 1.0    |
| n-Hexane                       | 0.50                | 1.7          | < | 1.0    |
| 1,1-Dichloroethane             | 0.50                | 1.7          | < | 1.0    |
| Diisopropyl Ether              | 0.50                | 1.7          | < | 1.0    |
| 2,2-Dichloropropane            | 0.50                | 1.7          | < | 1.0    |
| c-1,2-Dichloroethene           | 0.50                | 1.7          |   | 11     |
| 2-Butanone (MEK)               | 20                  | 67           | < | 40     |
| Tetrahydrofuran                | 10                  | 33           | < | 20     |
| Bromochloromethane             | 0.50                | 1.7          | < | 1.0    |
| Chloroform                     | 0.50                | 1.7          | < | 1.0    |
| 1,1,1-Trichloroethane          | 0.50                | 1.7          | < | 1.0    |
| Carbon Tetrachloride           | 0.50                | 1.7          | < | 1.0    |
| 1,1-Dichloropropene            | 0.50                | 1.7          | < | 1.0    |
| Benzene                        | 0.50                | 1.7          | < | 1.0    |
| 1,2-Dichloroethane             | 0.50                | 1.7          | < | 1.0    |
| Trichloroethene                | 0.50                | 1.7          |   | 6.2    |
| 1,2-Dichloropropane            | 0.50                | 1.7          | < | 1.0    |
| Dibromomethane                 | 0.50                | 1.7          | < | 1.0    |
| Bromodichloromethane           | 0.50                | 1.7          | < | 1.0    |
| c-1,3-Dichloropropene          | 0.50                | 1.7          | < | 1.0    |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: M. Lindlers
Date: 9/17/07

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/20/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-2B (80-85')           | Dilution Factor:   | 2        |
| Date Collected:   | 09/20/07                 | Lab Sample Number: | 43726    |

Sample Type: Water

| <u>Compound</u>             | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br>Result |
|-----------------------------|----------------------------------|------------------------------|---|------------------|
| 4-Methyl-2-pentanone (MIBK) | 20                               | 67                           | < | 40               |
| Toluene                     | 0.50                             | 1.7                          | < | 1.0              |
| 1,1,2-Trichloroethane       | 0.50                             | 1.7                          | < | 1.0              |
| t-1,3-Dichloropropene       | 0.50                             | 1.7                          | < | 1.0              |
| Tetrachloroethene           | 0.50                             | 1.7                          |   | 23               |
| 1,3-Dichloropropane         | 0.50                             | 1.7                          | < | 1.0              |
| 2-Hexanone                  | 20                               | 67                           | < | 40               |
| Dibromochloromethane        | 0.50                             | 1.7                          | < | 1.0              |
| 1,2-Dibromoethane           | 0.50                             | 1.7                          | < | 1.0              |
| Chlorobenzene               | 0.50                             | 1.7                          | < | 1.0              |
| 1,1,1,2-Tetrachloroethane   | 0.50                             | 1.7                          | < | 1.0              |
| Ethylbenzene                | 0.50                             | 1.7                          | < | 1.0              |
| m+p-Xylene                  | 0.50                             | 1.7                          | < | 1.0              |
| o-Xylene                    | 0.50                             | 1.7                          | < | 1.0              |
| Styrene                     | 0.50                             | 1.7                          | < | 1.0              |
| Bromoform                   | 0.50                             | 1.7                          | < | 1.0              |
| Isopropylbenzene            | 0.50                             | 1.7                          | < | 1.0              |
| 1,1,2,2-Tetrachloroethane   | 0.50                             | 1.7                          | < | 1.0              |
| Bromobenzene                | 0.50                             | 1.7                          | < | 1.0              |
| 1,2,3-Trichloropropane      | 1.0                              | 3.3                          | < | 2.0              |
| n-Propyl benzene            | 0.50                             | 1.7                          | < | 1.0              |
| 2-Chlorotoluene             | 0.50                             | 1.7                          | < | 1.0              |
| 1,3,5-Trimethylbenzene      | 0.50                             | 1.7                          | < | 1.0              |
| 4-Chlorotoluene             | 0.50                             | 1.7                          | < | 1.0              |
| t-Butyl benzene             | 0.50                             | 1.7                          | < | 1.0              |
| 1,2,4-Trimethylbenzene      | 0.50                             | 1.7                          | < | 1.0              |
| sec-Butyl benzene           | 0.50                             | 1.7                          | < | 1.0              |
| 1,3-Dichlorobenzene         | 0.50                             | 1.7                          | < | 1.0              |
| p-Isopropyl toluene         | 0.50                             | 1.7                          | < | 1.0              |
| 1,4-Dichlorobenzene         | 0.50                             | 1.7                          | < | 1.0              |
| n-Butyl benzene             | 0.50                             | 1.7                          | < | 1.0              |
| 1,2-Dichlorobenzene         | 0.50                             | 1.7                          | < | 1.0              |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889 Approved by: m. firsters.

Date: 9/27/62

Project Name: Thomas - D.B. Date Analyzed: 09/20/07 Fort Atkinson, Wisconsin Concentration: Project Location: ug/L Sample ID: MW-2B (80-85') Dilution Factor: 2 Date Collected: 09/20/07 Lab Sample Number: 43726 Water

Sample Type: Reporting Quantitation Detection Sample Compound Limit Limit Result 1,2-Dibromo-3-chloropropane 1.7 0.50 1.0 < 1,2,4-Trichlorobenzene 2.0 6.7 < 4.0 Hexachlorobutadiene 2.0 6.7 < 4.0 Naphthalene 5.0 17 < 10 6.7 1,2,3-Trichlorobenzene 2.0 4.0 Dibromofluoromethane 103% Toluene-D8 97.8%

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

4-Bromofluorobenzene

Approved by: M. Lindres.

Date: 9/17/87

93.3%

Project Name:Thomas - D.B.Date Analyzed:09/20/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-2B (100-105')Dilution Factor:1Date Collected:09/20/07Lab Sample Number:43727

Sample Type: Water

| Compound                       | Reporting Detection Limit | Quantitation<br><u>Limit</u> |   | ample<br>Result |   |
|--------------------------------|---------------------------|------------------------------|---|-----------------|---|
| Dichlorodifluoromethane        | 0.50                      | 1.7                          | < | 0.50            |   |
| Chloromethane                  | 1.0                       | 3.3                          | < | 1.0             |   |
| Vinyl Chloride                 | 0.50                      | 1.7                          | < | 0.50            |   |
| Bromomethane                   | 5.0                       | 17                           | < | 5.0             |   |
| Chloroethane                   | 5.0                       | 17                           | < | 5.0             |   |
| Trichlorofluoromethane         | 0.50                      | 1.7                          | < | 0.50            |   |
| 1,1,2-Trichlorotrifluoroethane | 0.50                      | 1.7                          | < | 0.50            |   |
| 1,1-Dichloroethene             | 0.50                      | 1.7                          | < | 0.50            |   |
| Acetone                        | 20                        | 67                           | < | 20              |   |
| Carbon Disulfide               | 0.50                      | 1.7                          | < | 0.50            |   |
| Methylene Chloride             | 2.0                       | 6.7                          | < | 2.0             |   |
| Methyl-t-butyl Ether           | 0.50                      | 1.7                          | < | 0.50            |   |
| t-1,2-Dichloroethene           | 0.50                      | 1.7                          | < | 0.50            |   |
| n-Hexane                       | 0.50                      | 1.7                          | < | 0.50            |   |
| 1,1-Dichloroethane             | 0.50                      | 1.7                          | < | 0.50            |   |
| Diisopropyl Ether              | 0.50                      | 1.7                          | < | 0.50            |   |
| 2,2-Dichloropropane            | 0.50                      | 1.7                          | < | 0.50            |   |
| c-1,2-Dichloroethene           | 0.50                      | 1.7                          |   | 1.5             | J |
| 2-Butanone (MEK)               | 20                        | 67                           | < | 20              |   |
| Tetrahydrofuran                | 10                        | 33                           | < | 10              |   |
| Bromochloromethane             | 0.50                      | 1.7                          | < | 0.50            |   |
| Chloroform                     | 0.50                      | 1.7                          | < | 0.50            |   |
| 1,1,1-Trichloroethane          | 0.50                      | 1.7                          | < | 0.50            |   |
| Carbon Tetrachloride           | 0.50                      | 1.7                          | < | 0.50            |   |
| 1,1-Dichloropropene            | 0.50                      | 1.7                          | < | 0.50            |   |
| Benzene                        | 0.50                      | 1.7                          | < | 0.50            |   |
| 1,2-Dichloroethane             | 0.50                      | 1.7                          | < | 0.50            |   |
| Trichloroethene                | 0.50                      | 1.7                          |   | 0.65            | J |
| 1,2-Dichloropropane            | 0.50                      | 1.7                          | < | 0.50            |   |
| Dibromomethane                 | 0.50                      | 1.7                          | < | 0.50            |   |
| Bromodichloromethane           | 0.50                      | 1.7                          | < | 0.50            |   |
| c-1,3-Dichloropropene          | 0.50                      | 1.7                          | < | 0.50            |   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889 Approved by: M. Jundans
Date: 9/27/67

Project Name:Thomas - D.B.Date Analyzed:09/20/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-2B (100-105')Dilution Factor:1Date Collected:09/20/07Lab Sample Number:43727

Sample Type: Water

|                             | Reporting Detection | Quantitation |   | Sample |
|-----------------------------|---------------------|--------------|---|--------|
| Compound                    | <u>Limit</u>        | <u>Limit</u> |   | Result |
| 4-Methyl-2-pentanone (MIBK) | 20                  | 67           | < | 20     |
| Toluene                     | 0.50                | 1.7          | < | 0.50   |
| 1,1,2-Trichloroethane       | 0.50                | 1.7          | < | 0.50   |
| t-1,3-Dichloropropene       | 0.50                | 1.7          | < | 0.50   |
| Tetrachloroethene           | 0.50                | 1.7          |   | 2.8    |
| 1,3-Dichloropropane         | 0.50                | 1.7          | < | 0.50   |
| 2-Hexanone                  | 20                  | 67           | < | 20     |
| Dibromochloromethane        | 0.50                | 1.7          | < | 0.50   |
| 1,2-Dibromoethane           | 0.50                | 1.7          | < | 0.50   |
| Chlorobenzene               | 0.50                | 1.7          | < | 0.50   |
| 1,1,1,2-Tetrachloroethane   | 0.50                | 1.7          | < | 0.50   |
| Ethylbenzene                | 0.50                | 1.7          | < | 0.50   |
| m+p-Xylene                  | 0.50                | 1.7          | < | 0.50   |
| o-Xylene                    | 0.50                | 1.7          | < | 0.50   |
| Styrene                     | 0.50                | 1.7          | < | 0.50   |
| Bromoform                   | 0.50                | 1.7          | < | 0.50   |
| Isopropylbenzene            | 0.50                | 1.7          | < | 0.50   |
| 1,1,2,2-Tetrachloroethane   | 0.50                | 1.7          | < | 0.50   |
| Bromobenzene                | 0.50                | 1.7          | < | 0.50   |
| 1,2,3-Trichloropropane      | 1.0                 | 3.3          | < | 1.0    |
| n-Propyl benzene            | 0.50                | 1.7          | < | 0.50   |
| 2-Chlorotoluene             | 0.50                | 1.7          | < | 0.50   |
| 1,3,5-Trimethylbenzene      | 0.50                | 1.7          | < | 0.50   |
| 4-Chlorotoluene             | 0.50                | 1.7          | < | 0.50   |
| t-Butyl benzene             | 0.50                | 1.7          | < | 0.50   |
| 1,2,4-Trimethylbenzene      | 0.50                | 1.7          | < | 0.50   |
| sec-Butyl benzene           | 0.50                | 1.7          | < | 0.50   |
| 1,3-Dichlorobenzene         | 0.50                | 1.7          | < | 0.50   |
| p-Isopropyl toluene         | 0.50                | 1.7          | < | 0.50   |
| 1,4-Dichlorobenzene         | 0.50                | 1.7          | < | 0.50   |
| n-Butyl benzene             | 0.50                | 1.7          | < | 0.50   |
| 1,2-Dichlorobenzene         | 0.50                | 1.7          | < | 0.50   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889 Approved by: M. Linebane
Date: 9/20/07

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/20/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-2B (100-105')         | Dilution Factor:   | 1        |
| Date Collected:   | 09/20/07                 | Lab Sample Number: | 43727    |

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 0.50                    |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 2.0                     |
| Naphthalene                 | 5.0                              | 17                           | < | 5.0                     |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Dibromofluoromethane        |                                  |                              |   | 103%                    |
| Toluene-D8                  |                                  |                              |   | 96.0%                   |
| 4-Bromofluorobenzene        |                                  |                              |   | 93.3%                   |

J = Estimated.

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: My findrens
Date: 9/27/67

9/2010753/M Call Done 770-57944 results H3705 43736 Har has air bobbe 43724 Laboratory Date/Time: WHITE - REPORT COPY YELLOW - LABORATORY COPY PINK - SAMPLER/SUBMITTER Turn Around (circle one) Normal (Rush Vials jabelithrat has extr bother るるので ON W Quote No. 018447 7500 STAP 7 Dea 5/2 e . م Report Due: Invoice To: Page\_\_\_ Company ار ا P.O. No.: Address Temp Blank Y N Received By: Receipt Temp: Received By: **CHAIN OF CUSTODY** Date/Time: 8/20/07 5:08 p.m. 3386. A Requested Analysis VOCS MCS VO Cs Madison, WI 53718 Preserv\* FAX 608-221-4889 Mail Report To: **Environmental Chemistry** Consulting Services, Inc. Company Address: Bottles  $\Im$ Total  $\omega$ MN-2B (60-65') 9-20 12:35 (20) MW-8B (100-105) 9-19 10;15 6W MW-2B(80-85) 9-20 | 2:25 | 6W| MW-2B (100-105) 19-20 14:25 60) Matrix Seal #'s Phone 608-221-8700 Time Sampled By (Print): Dave Newettz 2525 Advance Road Collection Relinquished By: Intact/Not Intact Project Number: 045/-002-900Date D=HNO3 E=EnCore F=Methanol Present/Absent C=H2SO4 Sample Description Preservation Code G=NaOH O=Other(Indicate) A=None B=HCL Project Location: Project Name: Custody Seal: Shipped Via:



September 24, 2007

Mark McCulloch NewFields 2110 Luann Lane, Suite 101 Madison, WI 53713

re: Thomas D.B. - Fort Atkinson, WI - Project Number 0451-002-800

Dear Mr. McCulloch,

Enclosed you will find the analytical results for the samples collected September 21, 2007. Please feel free to call if you have any questions.

Sincerely,

Robert Osmundson

QA Manager

Enclosures

jce

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/22/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-3C (100-105')         | Dilution Factor:   | 5, 500   |
| Date Collected:   | 09/21/07                 | Lab Sample Number: | 43735    |

| Sample | Type: | Water |
|--------|-------|-------|
|--------|-------|-------|

| Compound                       | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | ample<br><u>Result</u> |   |
|--------------------------------|----------------------------------|------------------------------|---|------------------------|---|
| Dichlorodifluoromethane        | 0.50                             | 1.7                          | < | 2.5                    |   |
| Chloromethane                  | 1.0                              | 3.3                          | < | 5.0                    |   |
| Vinyl Chloride                 | 0.50                             | 1.7                          |   | 160                    |   |
| Bromomethane                   | 5.0                              | 17                           | < | 25                     | M |
| Chloroethane                   | 5.0                              | 17                           | < | 25                     |   |
| Trichlorofluoromethane         | 0.50                             | 1.7                          | < | 2.5                    |   |
| 1,1,2-Trichlorotrifluoroethane | 0.50                             | 1.7                          | < | 2.5                    |   |
| 1,1-Dichloroethene             | 0.50                             | 1.7                          |   | 18                     |   |
| Acetone                        | 20                               | 67                           | < | 100                    |   |
| Carbon Disulfide               | 0.50                             | 1.7                          | < | 2.5                    |   |
| Methylene Chloride             | 2.0                              | 6.7                          | < | 10                     |   |
| Methyl-t-butyl Ether           | 0.50                             | 1.7                          | < | 2.5                    |   |
| t-1,2-Dichloroethene           | 0.50                             | 1.7                          |   | 110                    |   |
| n-Hexane                       | 0.50                             | 1.7                          | < | 2.5                    |   |
| 1,1-Dichloroethane             | 0.50                             | 1.7                          | < | 2.5                    |   |
| Diisopropyl Ether              | 0.50                             | 1.7                          | < | 2.5                    |   |
| 2,2-Dichloropropane            | 0.50                             | 1.7                          | < | 2.5                    |   |
| c-1,2-Dichloroethene           | 0.50                             | 1.7                          |   | 9300                   | M |
| 2-Butanone (MEK)               | 20                               | 67                           | < | 100                    |   |
| Tetrahydrofuran                | 10                               | 33                           | < | 50                     |   |
| Bromochloromethane             | 0.50                             | 1.7                          | < | 2.5                    |   |
| Chloroform                     | 0.50                             | 1.7                          | < | 2.5                    |   |
| 1,1,1-Trichloroethane          | 0.50                             | 1.7                          | < | 2.5                    |   |
| Carbon Tetrachloride           | 0.50                             | 1.7                          | < | 2.5                    |   |
| 1,1-Dichloropropene            | 0.50                             | 1.7                          | < | 2.5                    |   |
| Benzene                        | 0.50                             | 1.7                          | < | 2.5                    |   |
| 1,2-Dichloroethane             | 0.50                             | 1.7                          | < | 2.5                    |   |
| Trichloroethene                | 0.50                             | 1.7                          |   | 31                     |   |
| 1,2-Dichloropropane            | 0.50                             | 1.7                          | < | 2.5                    |   |
| Dibromomethane                 | 0.50                             | 1.7                          | < | 2.5                    |   |
| Bromodichloromethane           | 0.50                             | 1.7                          | < | 2.5                    |   |
| c-1,3-Dichloropropene          | 0.50                             | 1.7                          | < | 2.5                    |   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Raluf Curl
Date: 09/24/07

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/22/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-3C (100-105')         | Dilution Factor:   | 5, 500   |
| Date Collected:   | 09/21/07                 | Lab Sample Number: | 43735    |
| Sample Type:      | Water                    |                    |          |

| <u>Compound</u>             | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|
| 4-Methyl-2-pentanone (MIBK) | 20                               | 67                           | < | 100                     |
| Toluene                     | 0.50                             | 1.7                          | < | 2.5                     |
| 1,1,2-Trichloroethane       | 0.50                             | 1.7                          | < | 2.5                     |
| t-1,3-Dichloropropene       | 0.50                             | 1.7                          | < | 2.5                     |
| Tetrachloroethene           | 0.50                             | 1.7                          |   | 93                      |
| 1,3-Dichloropropane         | 0.50                             | 1.7                          | < | 2.5                     |
| 2-Hexanone                  | 20                               | 67                           | < | 100                     |
| Dibromochloromethane        | 0.50                             | 1.7                          | < | 2.5                     |
| 1,2-Dibromoethane           | 0.50                             | 1.7                          | < | 2.5                     |
| Chlorobenzene               | 0.50                             | 1.7                          | < | 2.5                     |
| 1,1,1,2-Tetrachloroethane   | 0.50                             | 1.7                          | < | 2.5                     |
| Ethylbenzene                | 0.50                             | 1.7                          | < | 2.5                     |
| m+p-Xylene                  | 1.0                              | 3.3                          | < | 5.0                     |
| o-Xylene                    | 0.50                             | 1.7                          | < | 2.5                     |
| Styrene                     | 0.50                             | 1.7                          | < | 2.5                     |
| Bromoform                   | 0.50                             | 1.7                          | < | 2.5                     |
| Isopropylbenzene            | 0.50                             | 1.7                          | < | 2.5                     |
| 1,1,2,2-Tetrachloroethane   | 0.50                             | 1.7                          | < | 2.5                     |
| Bromobenzene                | 0.50                             | 1.7                          | < | 2.5                     |
| 1,2,3-Trichloropropane      | 1.0                              | 3.3                          | < | 5.0                     |
| n-Propyl benzene            | 0.50                             | 1.7                          | < | 2.5                     |
| 2-Chlorotoluene             | 0.50                             | 1.7                          | < | 2.5                     |
| 1,3,5-Trimethylbenzene      | 0.50                             | 1.7                          | < | 2.5                     |
| 4-Chlorotoluene             | 0.50                             | 1.7                          | < | 2.5                     |
| t-Butyl benzene             | 0.50                             | 1.7                          | < | 2.5                     |
| 1,2,4-Trimethylbenzene      | 0.50                             | 1.7                          | < | 2.5                     |
| sec-Butyl benzene           | 0.50                             | 1.7                          | < | 2.5                     |
| 1,3-Dichlorobenzene         | 0.50                             | 1.7                          | < | 2.5                     |
| p-Isopropyl toluene         | 0.50                             | 1.7                          | < | 2.5                     |
| 1,4-Dichlorobenzene         | 0.50                             | 1.7                          | < | 2.5                     |
| n-Butyl benzene             | 0.50                             | 1.7                          | < | 2.5                     |
| 1,2-Dichlorobenzene         | 0.50                             | 1.7                          | < | 2.5                     |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Rolleh Curl
Date: 09/14/57

|                   | -                        |                    |          |
|-------------------|--------------------------|--------------------|----------|
| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/22/07 |
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-3C (100-105')         | Dilution Factor:   | 5, 500   |
| Date Collected:   | 09/21/07                 | Lab Sample Number: | 43735    |
| Sample Type:      | Water                    |                    |          |

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 2.5                     |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 10                      |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 10                      |
| Naphthalene                 | 5.0                              | 17                           | < | 25                      |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 10                      |
| Dibromofluoromethane        |                                  |                              |   | 103%                    |
| Toluene-D8                  |                                  |                              |   | 96.2%                   |
| 4-Bromofluorobenzene        |                                  |                              |   | 96.6%                   |

M = Matrix Spike and/or Matrix Spike Duplicate recovery was outside acceptance limits.

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Rolet Church
Date: 09/24/07

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/22/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-3C (120-125')         | Dilution Factor:   | 3, 40    |
| Date Collected:   | 09/21/07                 | Lab Sample Number: | 43736    |
| Sample Type:      | Water                    |                    |          |

| Compound                       | Reporting Detection Limit | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|--------------------------------|---------------------------|------------------------------|---|-------------------------|
| Dichlorodifluoromethane        | 0.50                      | 1.7                          | < | 1.5                     |
| Chloromethane                  | 1.0                       | 3.3                          | < | 3.0                     |
| Vinyl Chloride                 | 0.50                      | 1.7                          |   | 8.2                     |
| Bromomethane                   | 5.0                       | 17                           | < | 15                      |
| Chloroethane                   | 5.0                       | 17                           | < | 15                      |
| Trichlorofluoromethane         | 0.50                      | 1.7                          | < | 1.5                     |
| 1,1,2-Trichlorotrifluoroethane | 0.50                      | 1.7                          | < | 1.5                     |
| 1,1-Dichloroethene             | 0.50                      | 1.7                          | < | 1.5                     |
| Acetone                        | 20                        | 67                           | < | 60                      |
| Carbon Disulfide               | 0.50                      | 1.7                          | < | 1.5                     |
| Methylene Chloride             | 2.0                       | 6.7                          | < | 6.0                     |
| Methyl-t-butyl Ether           | 0.50                      | 1.7                          | < | 1.5                     |
| t-1,2-Dichloroethene           | 0.50                      | 1.7                          |   | 12                      |
| n-Hexane                       | 0.50                      | 1.7                          | < | 1.5                     |
| 1,1-Dichloroethane             | 0.50                      | 1.7                          | < | 1.5                     |
| Diisopropyl Ether              | 0.50                      | 1.7                          | < | 1.5                     |
| 2,2-Dichloropropane            | 0.50                      | 1.7                          | < | 1.5                     |
| c-1,2-Dichloroethene           | 0.50                      | 1.7                          |   | 1000                    |
| 2-Butanone (MEK)               | 20                        | 67                           | < | 60                      |
| Tetrahydrofuran                | 10                        | 33                           | < | 30                      |
| Bromochloromethane             | 0.50                      | 1.7                          | < | 1.5                     |
| Chloroform                     | 0.50                      | 1.7                          | < | 1.5                     |
| 1,1,1-Trichloroethane          | 0.50                      | 1.7                          | < | 1.5                     |
| Carbon Tetrachloride           | 0.50                      | 1.7                          | < | 1.5                     |
| 1,1-Dichloropropene            | 0.50                      | 1.7                          | < | 1.5                     |
| Benzene                        | 0.50                      | 1.7                          | < | 1.5                     |
| 1,2-Dichloroethane             | 0.50                      | 1.7                          | < | 1.5                     |
| Trichloroethene                | 0.50                      | 1.7                          |   | 13                      |
| 1,2-Dichloropropane            | 0.50                      | 1.7                          | < | 1.5                     |
| Dibromomethane                 | 0.50                      | 1.7                          | < | 1.5                     |
| Bromodichloromethane           | 0.50                      | 1.7                          | < | 1.5                     |
| c-1,3-Dichloropropene          | 0.50                      | 1.7                          | < | 1.5                     |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Rolut Court
Date: 09/24/07

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/22/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-3C (120-125')         | Dilution Factor:   | 3, 40    |
| Date Collected:   | 09/21/07                 | Lab Sample Number: | 43736    |
| Sample Type:      | Water                    | _                  |          |

| Compound water              | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |     | ample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|-----|------------------------|
| 4-Methyl-2-pentanone (MIBK) | 20                               | 67                           | <   | 60                     |
| Toluene                     | 0.50                             | 1.7                          | <   | 1.5                    |
| 1,1,2-Trichloroethane       | 0.50                             | 1.7                          | <   | 1.5                    |
| t-1,3-Dichloropropene       | 0.50                             | 1.7                          | <   | 1.5                    |
| Tetrachloroethene           | 0.50                             | 1.7                          |     | 35                     |
| 1,3-Dichloropropane         | 0.50                             | 1.7                          | <   | 1.5                    |
| 2-Hexanone                  | 20                               | 67                           | <   | 60                     |
| Dibromochloromethane        | 0.50                             | 1.7                          | <   | 1.5                    |
| 1,2-Dibromoethane           | 0.50                             | 1.7                          | <   | 1.5                    |
| Chlorobenzene               | 0.50                             | 1.7                          | <   | 1.5                    |
| 1,1,1,2-Tetrachloroethane   | 0.50                             | 1.7                          | <   | 1.5                    |
| Ethylbenzene                | 0.50                             | 1.7                          | <   | 1.5                    |
| m+p-Xylene                  | 1.0                              | 3.3                          | <   | 3.0                    |
| o-Xylene                    | 0.50                             | 1.7                          | <   | 1.5                    |
| Styrene                     | 0.50                             | 1.7                          | < - | 1.5                    |
| Bromoform                   | 0.50                             | 1.7                          | <   | 1.5                    |
| Isopropylbenzene            | 0.50                             | 1.7                          | <   | 1.5                    |
| 1,1,2,2-Tetrachloroethane   | 0.50                             | 1.7                          | <   | 1.5                    |
| Bromobenzene                | 0.50                             | 1.7                          | <   | 1.5                    |
| 1,2,3-Trichloropropane      | 1.0                              | 3.3                          | <   | 3.0                    |
| n-Propyl benzene            | 0.50                             | 1.7                          | <   | 1.5                    |
| 2-Chlorotoluene             | 0.50                             | 1.7                          | <   | 1.5                    |
| 1,3,5-Trimethylbenzene      | 0.50                             | 1.7                          | <   | 1.5                    |
| 4-Chlorotoluene             | 0.50                             | 1.7                          | <   | 1.5                    |
| t-Butyl benzene             | 0.50                             | 1.7                          | <   | 1.5                    |
| 1,2,4-Trimethylbenzene      | 0.50                             | 1.7                          | <   | 1.5                    |
| sec-Butyl benzene           | 0.50                             | 1.7                          | <   | 1.5                    |
| 1,3-Dichlorobenzene         | 0.50                             | 1.7                          | <   | 1.5                    |
| p-Isopropyl toluene         | 0.50                             | 1.7                          | <   | 1.5                    |
| 1,4-Dichlorobenzene         | 0.50                             | 1.7                          | <   | 1.5                    |
| n-Butyl benzene             | 0.50                             | 1.7                          | <   | 1.5                    |
| 1,2-Dichlorobenzene         | 0.50                             | 1.7                          | <   | 1.5                    |
|                             |                                  |                              |     |                        |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Ralial Curil
Date: 09/24/07

|                   | •                        |                    |          |
|-------------------|--------------------------|--------------------|----------|
| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/22/07 |
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-3C (120-125')         | Dilution Factor:   | 3, 40    |
| Date Collected:   | 09/21/07                 | Lab Sample Number: | 43736    |
| Sample Type:      | Water                    |                    |          |

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 1.5                     |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 6.0                     |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 6.0                     |
| Naphthalene                 | 5.0                              | 17                           | < | 15                      |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 6.0                     |
| Dibromofluoromethane        |                                  |                              |   | 108%                    |
| Toluene-D8                  |                                  |                              |   | 97.1%                   |
| 4-Bromofluorobenzene        |                                  |                              |   | 94.7%                   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Ralief Church
Date: 09/24/57

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/22/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-3C (130-135')         | Dilution Factor:   | 1, 25    |
| Date Collected:   | 09/21/07                 | Lab Sample Number: | 43737    |
| Sample Type:      | Water                    |                    |          |

| Compound                       | Reporting<br>Detection<br><u>Limit</u> | Quantitation<br><u>Limit</u> |     | mple<br>esult |
|--------------------------------|----------------------------------------|------------------------------|-----|---------------|
| Dichlorodifluoromethane        | 0.50                                   | 1.7                          | <   | 0.50          |
| Chloromethane                  | 1.0                                    | 3.3                          | <   | 1.0           |
| Vinyl Chloride                 | 0.50                                   | 1.7                          |     | 2.1           |
| Bromomethane                   | 5.0                                    | 17                           | <   | 5.0           |
| Chloroethane                   | 5.0                                    | 17                           | <   | 5.0           |
| Trichlorofluoromethane         | 0.50                                   | 1.7                          | <   | 0.50          |
| 1,1,2-Trichlorotrifluoroethane | 0.50                                   | 1.7                          | <   | 0.50          |
| 1,1-Dichloroethene             | 0.50                                   | 1.7                          | <   | 0.50          |
| Acetone                        | 20                                     | 67                           | <   | 20            |
| Carbon Disulfide               | 0.50                                   | 1.7                          | <   | 0.50          |
| Methylene Chloride             | 2.0                                    | 6.7                          | <   | 2.0           |
| Methyl-t-butyl Ether           | 0.50                                   | 1.7                          | <   | 0.50          |
| t-1,2-Dichloroethene           | 0.50                                   | 1.7                          |     | 4.1           |
| n-Hexane                       | 0.50                                   | 1.7                          | <   | 0.50          |
| 1,1-Dichloroethane             | 0.50                                   | 1.7                          | <   | 0.50          |
| Diisopropyl Ether              | 0.50                                   | 1.7                          | <   | 0.50          |
| 2,2-Dichloropropane            | 0.50                                   | 1.7                          | <   | 0.50          |
| c-1,2-Dichloroethene           | 0.50                                   | 1.7                          |     | 530           |
| 2-Butanone (MEK)               | 20                                     | 67                           | <   | 20            |
| Tetrahydrofuran                | 10                                     | 33                           | <   | 10            |
| Bromochloromethane             | 0.50                                   | 1.7                          | <   | 0.50          |
| Chloroform                     | 0.50                                   | 1.7                          | <   | 0.50          |
| 1,1,1-Trichloroethane          | 0.50                                   | 1.7                          | <   | 0.50          |
| Carbon Tetrachloride           | 0.50                                   | 1.7                          | <   | 0.50          |
| 1,1-Dichloropropene            | 0.50                                   | 1.7                          | <   | 0.50          |
| Benzene                        | 0.50                                   | 1.7                          | <   | 0.50          |
| 1,2-Dichloroethane             | 0.50                                   | 1.7                          | <   | 0.50          |
| Trichloroethene                | 0.50                                   | 1.7                          |     | 5.4           |
| 1,2-Dichloropropane            | 0.50                                   | 1.7                          | <   | 0.50          |
| Dibromomethane                 | 0.50                                   | 1.7                          | <   | 0.50          |
| Bromodichloromethane           | 0.50                                   | 1.7                          | < 1 | 0.50          |
| c-1,3-Dichloropropene          | 0.50                                   | 1.7                          | <   | 0.50          |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Robert Court

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/22/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-3C (130-135')         | Dilution Factor:   | 1, 25    |
| Date Collected:   | 09/21/07                 | Lab Sample Number: | 43737    |
| Sample Type:      | Water                    |                    |          |

|                             | Reporting Detection | Quantitation | S | ample         |
|-----------------------------|---------------------|--------------|---|---------------|
| Compound                    | <u>Limit</u>        | <u>Limit</u> |   | <u>Result</u> |
| 4-Methyl-2-pentanone (MIBK) | 20                  | 67           | < | 20            |
| Toluene                     | 0.50                | 1.7          | < | 0.50          |
| 1,1,2-Trichloroethane       | 0.50                | 1.7          | < | 0.50          |
| t-1,3-Dichloropropene       | 0.50                | 1.7          | < | 0.50          |
| Tetrachloroethene           | 0.50                | 1.7          |   | 12            |
| 1,3-Dichloropropane         | 0.50                | 1.7          | < | 0.50          |
| 2-Hexanone                  | 20                  | 67           | < | 20            |
| Dibromochloromethane        | 0.50                | 1.7          | < | 0.50          |
| 1,2-Dibromoethane           | 0.50                | 1.7          | < | 0.50          |
| Chlorobenzene               | 0.50                | 1.7          | < | 0.50          |
| 1,1,1,2-Tetrachloroethane   | 0.50                | 1.7          | < | 0.50          |
| Ethylbenzene                | 0.50                | 1.7          | < | 0.50          |
| m+p-Xylene                  | 1.0                 | 3.3          | < | 1.0           |
| o-Xylene                    | 0.50                | 1.7          | < | 0.50          |
| Styrene                     | 0.50                | 1.7          | < | 0.50          |
| Bromoform                   | 0.50                | 1.7          | < | 0.50          |
| Isopropylbenzene            | 0.50                | 1.7          | < | 0.50          |
| 1,1,2,2-Tetrachloroethane   | 0.50                | 1.7          | < | 0.50          |
| Bromobenzene                | 0.50                | 1.7          | < | 0.50          |
| 1,2,3-Trichloropropane      | 1.0                 | 3.3          | < | 1.0           |
| n-Propyl benzene            | 0.50                | 1.7          | < | 0.50          |
| 2-Chlorotoluene             | 0.50                | 1.7          | < | 0.50          |
| 1,3,5-Trimethylbenzene      | 0.50                | 1.7          | < | 0.50          |
| 4-Chlorotoluene             | 0.50                | 1.7          | < | 0.50          |
| t-Butyl benzene             | 0.50                | 1.7          | < | 0.50          |
| 1,2,4-Trimethylbenzene      | 0.50                | 1.7          | < | 0.50          |
| sec-Butyl benzene           | 0.50                | 1.7          | < | 0.50          |
| 1,3-Dichlorobenzene         | 0.50                | 1.7          | < | 0.50          |
| p-Isopropyl toluene         | 0.50                | 1.7          | < | 0.50          |
| 1,4-Dichlorobenzene         | 0.50                | 1.7          | < | 0.50          |
| n-Butyl benzene             | 0.50                | 1.7          | < | 0.50          |
| 1,2-Dichlorobenzene         | 0.50                | 1.7          | < | 0.50          |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Ralet Caul
Date: 09/24/57

| Project Name:     | Thomas - D.B.            | Date Analyzed:     | 09/22/07 |
|-------------------|--------------------------|--------------------|----------|
| Project Location: | Fort Atkinson, Wisconsin | Concentration:     | ug/L     |
| Sample ID:        | MW-3C (130-135')         | Dilution Factor:   | 1, 25    |
| Date Collected:   | 09/21/07                 | Lab Sample Number: | 43737    |
| Sample Type:      | Water                    |                    |          |

| <u>Compound</u>             | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 0.50                    |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 2.0                     |
| Naphthalene                 | 5.0                              | 17                           | < | 5.0                     |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Dibromofluoromethane        |                                  |                              |   | 105%                    |
| Toluene-D8                  |                                  |                              |   | 97.2%                   |
| 4-Bromofluorobenzene        |                                  |                              |   | 94.3%                   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, Wi 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Ralist Christ

Date: 012467

|                                                           |                                | serek (all Dest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (H&)                 |
|-----------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Environmental Chemistry                                   | CHAIN OF CUSTODY               | DY No. 018448 * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45                   |
| Consulting Services, Inc.                                 | 3386.3                         | Page / of / Turn Around (circle one) Normal Rush                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
| Mail Report To:                                           | Mark Mc Cullock                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| Thomas DB Company Ne                                      | Œ                              | Company: Am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| Project Location: Tort Atkinson Address: 21/C             | 110 Luannhame, Ste 101         | Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                     | Madison, WI 53713              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                           |                                | P.O. No.: Quote No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
| Sample Description Date Time Matrix Bottles Preserv*      | Analysis Requested             | Labor Comments Nur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Laboratory<br>Number |
| MW-3C/100-105/19-21/2015/6W/3                             | VOCs                           | 43.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                   |
| 120-17519-21 4:00 6W                                      | LOCS                           | 1373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7<br>2               |
| 12-6/3                                                    | LBS.                           | 43737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 737                  |
| 1                                                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                           | i                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Preservation Code Refinancished By:  A=None B=HCL C=H2SO4 | PaterTime; 7:30pm Received By: | Color of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of Sta | 730 PM               |
| E=EnCore                                                  | Date/Time: Rece                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ле:                  |
| G=NaOH O=Other(Indicate)                                  | a da                           | Receint Term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| ווומכנוואסו וווומכנ                                       | Tem                            | Temp Blank Y N / N P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
|                                                           | WHITE - REPORT COPY YELLOW - I | ATORY COPY PINK - SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |

# **Appendix C**

Laboratory Reports
October 2007 Groundwater Samples



November 2, 2007

Mark McCulloch NewFields 2110 Luann Lane, Suite 101 Madison, WI 53713

re: DB Oak - Fort Atkinson, WI - Project Number 0451-003-800

Dear Mr. McCulloch,

Enclosed you will find the analytical results for the samples collected October 25 and October 26, 2007. Please feel free to call if you have any questions.

Sincerely,

Robert Osmundson

QA Manager

**Enclosures** 

jll

Project Name: Project Location: DB Oak

Date Analyzed:

10/30/07

Sample ID:

MW-1

Fort Atkinson, Wisconsin Concentration: Dilution Factor: ug/L 1

Date Collected:

10/25/07

Lab Sample Number:

0710055-01

Sample Type:

Water

| Compound                       | Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |     | Sample Result |  |  |
|--------------------------------|------------------------|------------------------------|-----|---------------|--|--|
| Dichlorodifluoromethane        | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| Chloromethane                  | 1.0                    | 3.3                          | < 1 | 0.1           |  |  |
| Vinyl Chloride                 | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| Bromomethane                   | 5.0                    | 17                           | < 5 | 5.0           |  |  |
| Chloroethane                   | 5.0                    | 17                           | < 5 | 5.0           |  |  |
| Trichlorofluoromethane         | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| 1,1,2-Trichlorotrifluoroethane | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| 1,1-Dichloroethene             | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| Acetone                        | 20                     | 67                           | < / | 20            |  |  |
| Carbon Disulfide               | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| Methylene Chloride             | 2.0                    | 6.7                          | < 2 | 2.0           |  |  |
| Methyl-t-butyl Ether           | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| t-1,2-Dichloroethene           | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| n-Hexane                       | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| 1,1-Dichloroethane             | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| Diisopropyl Ether              | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| 2,2-Dichloropropane            | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| c-1,2-Dichloroethene           | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| 2-Butanone (MEK)               | 20                     | 67                           | <   | 20            |  |  |
| Tetrahydrofuran                | 10                     | 33                           | <   | 10            |  |  |
| Bromochloromethane             | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| Chloroform                     | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| 1,1,1-Trichloroethane          | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| Carbon Tetrachloride           | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| 1,1-Dichloropropene            | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| Benzene                        | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| 1,2-Dichloroethane             | 0.50                   | 1.7                          | < 0 | .50           |  |  |
| Trichloroethene                | 0.50                   | 1.7                          | < 0 | 0.50          |  |  |
| 1,2-Dichloropropane            | 0.50                   | 1.7                          | < ( | 0.50          |  |  |
| Dibromomethane                 | 0.50                   | 1.7                          | < 0 | 0.50          |  |  |
| Bromodichloromethane           | 0.50                   | 1.7                          | < ( | ).50          |  |  |
| c-1,3-Dichloropropene          | 0.50                   | 1.7                          | < ( | ).50          |  |  |
|                                |                        |                              |     |               |  |  |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name: Project Location: DB Oak

Date Analyzed:

10/30/07

Sample ID:

MW-1

Fort Atkinson, Wisconsin Concentration: Dilution Factor: ug/L 1

Date Collected:

10/25/07

Lab Sample Number:

0710055-01

Sample Type:

Water

| Re | eporting |
|----|----------|

| Compound                    | Reporting Detection Limit | Quantitation<br><u>Limit</u> |   | ample<br><u>Result</u> |  |
|-----------------------------|---------------------------|------------------------------|---|------------------------|--|
| 4-Methyl-2-pentanone (MIBK) | 20                        | 67                           | < | 20                     |  |
| Toluene Toluene             | 0.50                      | 1.7                          | < | 0.50                   |  |
| 1,1,2-Trichloroethane       | 0.50                      | 1.7                          | < | 0.50                   |  |
| t-1,3-Dichloropropene       | 0.50                      | 1.7                          | < | 0.50                   |  |
| Tetrachloroethene           | 0.50                      | 1.7                          | < | 0.50                   |  |
| 1,3-Dichloropropane         | 0.50                      | 1.7                          | < | 0.50                   |  |
| 2-Hexanone                  | 20                        | 67                           | < | 20                     |  |
| Dibromochloromethane        | 0.50                      | 1.7                          | < | 0.50                   |  |
| 1,2-Dibromoethane           | 0.50                      | 1.7                          | < | 0.50                   |  |
| Chlorobenzene               | 0.50                      | 1.7                          | < | 0.50                   |  |
| 1,1,1,2-Tetrachloroethane   | 0.50                      | 1.7                          | < | 0.50                   |  |
| Ethylbenzene                | 0.50                      | 1.7                          | < | 0.50                   |  |
| m+p-Xylene                  | 1.0                       | 3.3                          | < | 1.0                    |  |
| o-Xylene                    | 0.50                      | 1.7                          | < | 0.50                   |  |
| Styrene                     | 0.50                      | 1.7                          | < | 0.50                   |  |
| Bromoform                   | 0.50                      | 1.7                          | < | 0.50                   |  |
| Isopropylbenzene            | 0.50                      | 1.7                          | < | 0.50                   |  |
| 1,1,2,2-Tetrachloroethane   | 0.50                      | 1.7                          | < | 0.50                   |  |
| Bromobenzene                | 0.50                      | 1.7                          | < | 0.50                   |  |
| 1,2,3-Trichloropropane      | 1.0                       | 3.3                          | < | 1.0                    |  |
| n-Propyl benzene            | 0.50                      | 1.7                          | < | 0.50                   |  |
| 2-Chlorotoluene             | 0.50                      | 1.7                          | < | 0.50                   |  |
| 1,3,5-Trimethylbenzene      | 0.50                      | 1.7                          | < | 0.50                   |  |
| 4-Chlorotoluene             | 0.50                      | 1.7                          | < | 0.50                   |  |
| t-Butyl benzene             | 0.50                      | 1.7                          | < | 0.50                   |  |
| 1,2,4-Trimethylbenzene      | 0.50                      | 1.7                          | < | 0.50                   |  |
| sec-Butyl benzene           | 0.50                      | 1.7                          | < | 0.50                   |  |
| 1,3-Dichlorobenzene         | 0.50                      | 1.7                          | < | 0.50                   |  |
| p-Isopropyl toluene         | 0.50                      | 1.7                          | < | 0.50                   |  |
| 1,4-Dichlorobenzene         | 0.50                      | 1.7                          | < | 0.50                   |  |
| n-Butyl benzene             | 0.50                      | 1.7                          | < | 0.50                   |  |
| 1,2-Dichlorobenzene         | 0.50                      | 1.7                          | < | 0.50                   |  |
|                             |                           |                              |   |                        |  |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name: DB Oak Date Analyzed: 10/30/07
Project Location: Fort Atkinson, Wisconsin Concentration: ug/L
Sample ID: MW-1 Dilution Factor: 1
Date Collected: 10/25/07 Lab Sample Number: 0710055-01

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 0.50                    |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 2.0                     |
| Naphthalene                 | 5.0                              | 17                           | < | 5.0                     |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Dibromofluoromethane        |                                  |                              |   | 102%                    |
| Toluene-D8                  |                                  |                              |   | 102%                    |
| 4-Bromofluorobenzene        |                                  |                              |   | 101%                    |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

J

Project Name:DB OakDate Analyzed:10/30/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-2Dilution Factor:50

Date Collected: 10/26/07 Lab Sample Number: 0710055-14

Sample Type: Water

| Compound                       | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br>Result |
|--------------------------------|----------------------------------|------------------------------|---|------------------|
| Dichlorodifluoromethane        | 0.50                             | 1.7                          | < | 25               |
| Chloromethane                  | 1.0                              | 3.3                          | < | 50               |
| Vinyl Chloride                 | 0.50                             | 1.7                          |   | 27               |
| Bromomethane                   | 5.0                              | 17                           | < | 250              |
| Chloroethane                   | 5.0                              | 17                           | < | 250              |
| Trichlorofluoromethane         | 0.50                             | 1.7                          | < | 25               |
| 1,1,2-Trichlorotrifluoroethane | 0.50                             | 1.7                          | < | 25               |
| 1,1-Dichloroethene             | 0.50                             | 1.7                          | < | 25               |
| Acetone                        | 20                               | 67                           | < | 1000             |
| Carbon Disulfide               | 0.50                             | 1.7                          | < | 25               |
| Methylene Chloride             | 2.0                              | 6.7                          | < | 100              |
| Methyl-t-butyl Ether           | 0.50                             | 1.7                          | < | 25               |
| t-1,2-Dichloroethene           | 0.50                             | 1.7                          | < | 25               |
| n-Hexane                       | 0.50                             | 1.7                          | < | 25               |
| 1,1-Dichloroethane             | 0.50                             | 1.7                          | < | 25               |
| Diisopropyl Ether              | 0.50                             | 1.7                          | < | 25               |
| 2,2-Dichloropropane            | 0.50                             | 1.7                          | < | 25               |
| c-1,2-Dichloroethene           | 0.50                             | 1.7                          |   | 1800             |
| 2-Butanone (MEK)               | 20                               | 67                           | < | 1000             |
| Tetrahydrofuran                | 10                               | 33                           | < | 500              |
| Bromochloromethane             | 0.50                             | 1.7                          | < | 25               |
| Chloroform                     | 0.50                             | 1.7                          | < | 25               |
| 1,1,1-Trichloroethane          | 0.50                             | 1.7                          | < | 25               |
| Carbon Tetrachloride           | 0.50                             | 1.7                          | < | 25               |
| 1,1-Dichloropropene            | 0.50                             | 1.7                          | < | 25               |
| Benzene                        | 0.50                             | 1.7                          | < | 25               |
| 1,2-Dichloroethane             | 0.50                             | 1.7                          | < | 25               |
| Trichloroethene                | 0.50                             | 1.7                          |   | <b>520</b>       |
| 1,2-Dichloropropane            | 0.50                             | 1.7                          | < | 25               |
| Dibromomethane                 | 0.50                             | 1.7                          | < | 25               |
| Bromodichloromethane           | 0.50                             | 1.7                          | < | 25               |
| c-1,3-Dichloropropene          | 0.50                             | 1.7                          | < | 25               |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

0710055-14

Project Name: DB Oak Date Analyzed: 10/30/07 Fort Atkinson, Wisconsin Concentration: Project Location: ug/L Sample ID: 50 MW-2 Dilution Factor: Lab Sample Number:

Sample Type: Water

10/26/07

Date Collected:

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|-------------------------|
| 4-Methyl-2-pentanone (MIBK) | 20                               | 67                           | < 1000                  |
| Toluene                     | 0.50                             | 1.7                          | < 25                    |
| 1,1,2-Trichloroethane       | 0.50                             | 1.7                          | < 25                    |
| t-1,3-Dichloropropene       | 0.50                             | 1.7                          | < 25                    |
| Tetrachloroethene           | 0.50                             | 1.7                          | < 25                    |
| 1,3-Dichloropropane         | 0.50                             | 1.7                          | < 25                    |
| 2-Hexanone                  | 20                               | 67                           | < 1000                  |
| Dibromochloromethane        | 0.50                             | 1.7                          | < 25                    |
| 1,2-Dibromoethane           | 0.50                             | 1.7                          | < 25                    |
| Chlorobenzene               | 0.50                             | 1.7                          | < 25                    |
| 1,1,1,2-Tetrachloroethane   | 0.50                             | 1.7                          | < 25                    |
| Ethylbenzene                | 0.50                             | 1.7                          | < 25                    |
| m+p-Xylene                  | 1.0                              | 3.3                          | < 50                    |
| o-Xylene                    | 0.50                             | 1.7                          | < 25                    |
| Styrene                     | 0.50                             | 1.7                          | < 25                    |
| Bromoform                   | 0.50                             | . 1.7                        | < 25                    |
| Isopropylbenzene            | 0.50                             | 1.7                          | < 25                    |
| 1,1,2,2-Tetrachloroethane   | 0.50                             | 1.7                          | < 25                    |
| Bromobenzene                | 0.50                             | 1.7                          | < 25                    |
| 1,2,3-Trichloropropane      | 1.0                              | 3.3                          | < 50                    |
| n-Propyl benzene            | 0.50                             | 1.7                          | < 25                    |
| 2-Chlorotoluene             | 0.50                             | 1.7                          | < 25                    |
| 1,3,5-Trimethylbenzene      | 0.50                             | 1.7                          | < 25                    |
| 4-Chlorotoluene             | 0.50                             | 1.7                          | < 25                    |
| t-Butyl benzene             | 0.50                             | 1.7                          | < 25                    |
| 1,2,4-Trimethylbenzene      | 0.50                             | 1.7                          | < 25                    |
| sec-Butyl benzene           | 0.50                             | 1.7                          | < 25                    |
| 1,3-Dichlorobenzene         | 0.50                             | 1.7                          | < 25                    |
| p-Isopropyl toluene         | 0.50                             | 1.7                          | < 25                    |
| 1,4-Dichlorobenzene         | 0.50                             | 1.7                          | < 25                    |
| n-Butyl benzene             | 0.50                             | 1.7                          | < 25                    |
| 1,2-Dichlorobenzene         | 0.50                             | 1.7                          | < 25                    |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Project Name: DB Oak Date Analyzed: 10/30/07
Project Location: Fort Atkinson, Wisconsin Concentration: ug/L
Sample ID: MW-2 Dilution Factor: 50
Date Collected: 10/26/07 Lab Sample Number: 0710055-14

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 25                      |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 100                     |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 100                     |
| Naphthalene                 | 5.0                              | 17                           | < | 250                     |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 100                     |
| Dibromofluoromethane        |                                  |                              |   | 104%                    |
| Toluene-D8                  |                                  |                              |   | 103%                    |
| 4-Bromofluorobenzene        |                                  |                              |   | 101%                    |

J = Estimated.

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name:DB OakDate Analyzed:10/30/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-2ADilution Factor:50

Date Collected: 10/26/07 Lab Sample Number: 0710055-15

Sample Type: Water

| Compound                       | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | ample<br>Result |
|--------------------------------|----------------------------------|------------------------------|---|-----------------|
| Dichlorodifluoromethane        | 0.50                             | 1.7                          | < | 25              |
| Chloromethane                  | 1.0                              | 3.3                          | < | 50              |
| Vinyl Chloride                 | 0.50                             | 1.7                          | < | 25              |
| Bromomethane                   | 5.0                              | 17                           | < | 250             |
| Chloroethane                   | 5.0                              | 17                           | < | 250             |
| Trichlorofluoromethane         | 0.50                             | 1.7                          | < | 25              |
| 1,1,2-Trichlorotrifluoroethane | 0.50                             | 1.7                          | < | 25              |
| 1,1-Dichloroethene             | 0.50                             | 1.7                          | < | 25              |
| Acetone                        | 20                               | 67                           | < | 1000            |
| Carbon Disulfide               | 0.50                             | 1.7                          | < | 25              |
| Methylene Chloride             | 2.0                              | 6.7                          | < | 100             |
| Methyl-t-butyl Ether           | 0.50                             | 1.7                          | < | 25              |
| t-1,2-Dichloroethene           | 0.50                             | 1.7                          | < | 25              |
| n-Hexane                       | 0.50                             | 1.7                          | < | 25              |
| 1,1-Dichloroethane             | 0.50                             | 1.7                          | < | 25              |
| Diisopropyl Ether              | 0.50                             | 1.7                          | < | 25              |
| 2,2-Dichloropropane            | 0.50                             | 1.7                          | < | 25              |
| c-1,2-Dichloroethene           | 0.50                             | 1.7                          |   | 1800            |
| 2-Butanone (MEK)               | 20                               | 67                           | < | 1000            |
| Tetrahydrofuran                | 10                               | 33                           | < | 500             |
| Bromochloromethane             | 0.50                             | 1.7                          | < | 25              |
| Chloroform                     | 0.50                             | 1.7                          | < | 25              |
| 1,1,1-Trichloroethane          | 0.50                             | 1.7                          | < | 25              |
| Carbon Tetrachloride           | 0.50                             | 1.7                          | < | 25              |
| 1,1-Dichloropropene            | 0.50                             | 1.7                          | < | 25              |
| Benzene                        | 0.50                             | 1.7                          | < | 25              |
| 1,2-Dichloroethane             | 0.50                             | 1.7                          | < | 25              |
| Trichloroethene                | 0.50                             | 1.7                          |   | 530             |
| 1,2-Dichloropropane            | 0.50                             | 1.7                          | < | 25              |
| Dibromomethane                 | 0.50                             | 1.7                          | < | 25              |
| Bromodichloromethane           | 0.50                             | 1.7                          | < | 25              |
| c-1,3-Dichloropropene          | 0.50                             | 1.7                          | < | 25              |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

0710055-15

Project Name: DB Oak Date Analyzed: 10/30/07 Project Location: Fort Atkinson, Wisconsin Concentration: ug/L Sample ID: MW-2A Dilution Factor: 50 Lab Sample Number:

Sample Type: Water

10/26/07

Date Collected:

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br>Result |
|-----------------------------|----------------------------------|------------------------------|---|------------------|
| 4-Methyl-2-pentanone (MIBK) | 20                               | 67                           | < | 1000             |
| Toluene                     | 0.50                             | 1.7                          | < | 25               |
| 1,1,2-Trichloroethane       | 0.50                             | 1.7                          | < | 25               |
| t-1,3-Dichloropropene       | 0.50                             | 1.7                          | < | 25               |
| Tetrachloroethene           | 0.50                             | 1.7                          |   | 360              |
| 1,3-Dichloropropane         | 0.50                             | 1.7                          | < | 25               |
| 2-Hexanone                  | 20                               | 67                           | < | 1000             |
| Dibromochloromethane        | 0.50                             | 1.7                          | < | 25               |
| 1,2-Dibromoethane           | 0.50                             | 1.7                          | < | 25               |
| Chlorobenzene               | 0.50                             | 1.7                          | < | 25               |
| 1,1,1,2-Tetrachloroethane   | 0.50                             | 1.7                          | < | 25               |
| Ethylbenzene                | 0.50                             | 1.7                          | < | 25               |
| m+p-Xylene                  | 1.0                              | 3.3                          | < | 50               |
| o-Xylene                    | 0.50                             | 1.7                          | < | 25               |
| Styrene                     | 0.50                             | 1.7                          | < | 25               |
| Bromoform                   | 0.50                             | 1.7                          | < | 25               |
| Isopropylbenzene            | 0.50                             | 1.7                          | < | 25               |
| 1,1,2,2-Tetrachloroethane   | 0.50                             | 1.7                          | < | 25               |
| Bromobenzene                | 0.50                             | 1.7                          | < | 25               |
| 1,2,3-Trichloropropane      | 1.0                              | 3.3                          | < | 50               |
| n-Propyl benzene            | 0.50                             | 1.7                          | < | 25               |
| 2-Chlorotoluene             | 0.50                             | 1.7                          | < | 25               |
| 1,3,5-Trimethylbenzene      | 0.50                             | 1.7                          | < | 25               |
| 4-Chlorotoluene             | 0.50                             | 1.7                          | < | 25               |
| t-Butyl benzene             | 0.50                             | 1.7                          | < | 25               |
| 1,2,4-Trimethylbenzene      | 0.50                             | 1.7                          | < | 25               |
| sec-Butyl benzene           | 0.50                             | 1.7                          | < | 25               |
| 1,3-Dichlorobenzene         | 0.50                             | 1.7                          | < | 25               |
| p-Isopropyl toluene         | 0.50                             | 1.7                          | < | 25               |
| 1,4-Dichlorobenzene         | 0.50                             | 1.7                          | < | 25               |
| n-Butyl benzene             | 0.50                             | 1.7                          | < | 25               |
| 1,2-Dichlorobenzene         | 0.50                             | 1.7                          | < | 25               |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name:DB OakDate Analyzed:10/30/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-2ADilution Factor:50

Date Collected: 10/26/07 Lab Sample Number: 0710055-15

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 25                      |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 100                     |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 100                     |
| Naphthalene                 | 5.0                              | 17                           | < | 250                     |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 100                     |
| Dibromofluoromethane        |                                  |                              |   | 105%                    |
| Toluene-D8                  |                                  |                              |   | 99.8%                   |
| 4-Bromofluorobenzene        |                                  |                              |   | 102%                    |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name:DB OakDate Analyzed:10/30/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-2BDilution Factor:1

Date Collected: 10/26/07 Lab Sample Number: 0710055-16

Sample Type: Water

| Compound                       | Reporting Detection Limit | Quantitation<br><u>Limit</u> | Sample<br><u>Result</u> |
|--------------------------------|---------------------------|------------------------------|-------------------------|
| Dichlorodifluoromethane        | 0.50                      | 1.7                          | < 0.50                  |
| Chloromethane                  | 1.0                       | 3.3                          | < 1.0                   |
| Vinyl Chloride                 | 0.50                      | 1.7                          | < 0.50                  |
| Bromomethane                   | 5.0                       | 17                           | < 5.0                   |
| Chloroethane                   | 5.0                       | 17                           | < 5.0                   |
| Trichlorofluoromethane         | 0.50                      | 1.7                          | < 0.50                  |
| 1,1,2-Trichlorotrifluoroethane | 0.50                      | 1.7                          | < 0.50                  |
| 1,1-Dichloroethene             | 0.50                      | 1.7                          | < 0.50                  |
| Acetone                        | 20                        | 67                           | < 20                    |
| Carbon Disulfide               | 0.50                      | 1.7                          | < 0.50                  |
| Methylene Chloride             | 2.0                       | 6.7                          | < 2.0                   |
| Methyl-t-butyl Ether           | 0.50                      | 1.7                          | < 0.50                  |
| t-1,2-Dichloroethene           | 0.50                      | 1.7                          | < 0.50                  |
| n-Hexane                       | 0.50                      | 1.7                          | < 0.50                  |
| 1,1-Dichloroethane             | 0.50                      | 1.7                          | < 0.50                  |
| Diisopropyl Ether              | 0.50                      | 1.7                          | < 0.50                  |
| 2,2-Dichloropropane            | 0.50                      | 1.7                          | < 0.50                  |
| c-1,2-Dichloroethene           | 0.50                      | 1.7                          | 19                      |
| 2-Butanone (MEK)               | 20                        | 67                           | < 20                    |
| Tetrahydrofuran                | 10                        | 33                           | < 10                    |
| Bromochloromethane             | 0.50                      | 1.7                          | < 0.50                  |
| Chloroform                     | 0.50                      | 1.7                          | < 0.50                  |
| 1,1,1-Trichloroethane          | 0.50                      | 1.7                          | < 0.50                  |
| Carbon Tetrachloride           | 0.50                      | 1.7                          | < 0.50                  |
| 1,1-Dichloropropene            | 0.50                      | 1.7                          | < 0.50                  |
| Benzene                        | 0.50                      | 1.7                          | < 0.50                  |
| 1,2-Dichloroethane             | 0.50                      | 1.7                          | < 0.50                  |
| Trichloroethene                | 0.50                      | 1.7                          | 6.2                     |
| 1,2-Dichloropropane            | 0.50                      | 1.7                          | < 0.50                  |
| Dibromomethane                 | 0.50                      | 1.7                          | < 0.50                  |
| Bromodichloromethane           | 0.50                      | 1.7                          | < 0.50                  |
| c-1,3-Dichloropropene          | 0.50                      | 1.7                          | < 0.50                  |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name: Project Location: DB Oak

Date Analyzed:

10/30/07

Sample ID:

Fort Atkinson, Wisconsin Concentration:

ug/L

Date Collected:

MW-2B

Dilution Factor:

Sample Type:

10/26/07

Lab Sample Number:

0710055-16

Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation <u>Limit</u> | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|---------------------------|-------------------------|
| 4-Methyl-2-pentanone (MIBK) | 20                               | 67                        | < 20                    |
| Toluene                     | 0.50                             | 1.7                       | < 0.50                  |
| 1,1,2-Trichloroethane       | 0.50                             | 1.7                       | < 0.50                  |
| t-1,3-Dichloropropene       | 0.50                             | 1.7                       | < 0.50                  |
| Tetrachloroethene           | 0.50                             | 1.7                       | 15                      |
| 1,3-Dichloropropane         | 0.50                             | 1.7                       | < 0.50                  |
| 2-Hexanone                  | 20                               | 67                        | < 20                    |
| Dibromochloromethane        | 0.50                             | 1.7                       | < 0.50                  |
| 1,2-Dibromoethane           | 0.50                             | 1.7                       | < 0.50                  |
| Chlorobenzene               | 0.50                             | 1.7                       | < 0.50                  |
| 1,1,1,2-Tetrachloroethane   | 0.50                             | 1.7                       | < 0.50                  |
| Ethylbenzene                | 0.50                             | 1.7                       | < 0.50                  |
| m+p-Xylene                  | 1.0                              | 3.3                       | < 1.0                   |
| o-Xylene                    | 0.50                             | 1.7                       | < 0.50                  |
| Styrene                     | 0.50                             | 1.7                       | < 0.50                  |
| Bromoform                   | 0.50                             | 1.7                       | < 0.50                  |
| Isopropylbenzene            | 0.50                             | 1.7                       | < 0.50                  |
| 1,1,2,2-Tetrachloroethane   | 0.50                             | 1.7                       | < 0.50                  |
| Bromobenzene                | 0.50                             | 1.7                       | < 0.50                  |
| 1,2,3-Trichloropropane      | 1.0                              | 3.3                       | < 1.0                   |
| n-Propyl benzene            | 0.50                             | 1.7                       | < 0.50                  |
| 2-Chlorotoluene             | 0.50                             | 1.7                       | < 0.50                  |
| 1,3,5-Trimethylbenzene      | 0.50                             | 1.7                       | < 0.50                  |
| 4-Chlorotoluene             | 0.50                             | 1.7                       | < 0.50                  |
| t-Butyl benzene             | 0.50                             | 1.7                       | < 0.50                  |
| 1,2,4-Trimethylbenzene      | 0.50                             | 1.7                       | < 0.50                  |
| sec-Butyl benzene           | 0.50                             | 1.7                       | < 0.50                  |
| 1,3-Dichlorobenzene         | 0.50                             | 1.7                       | < 0.50                  |
| p-Isopropyl toluene         | 0.50                             | 1.7                       | < 0.50                  |
| 1,4-Dichlorobenzene         | 0.50                             | 1.7                       | < 0.50                  |
| n-Butyl benzene             | 0.50                             | 1.7                       | < 0.50                  |
| 1,2-Dichlorobenzene         | 0.50                             | 1.7                       | < 0.50                  |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name: DB Oak Date Analyzed: 10/30/07
Project Location: Fort Atkinson, Wisconsin Concentration: ug/L
Sample ID: MW-2B Dilution Factor: 1
Date Collected: 10/26/07 Lab Sample Number: 0710055-16

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br>Result |
|-----------------------------|----------------------------------|------------------------------|---|------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 0.50             |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0              |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 2.0              |
| Naphthalene                 | 5.0                              | 17                           | < | 5.0              |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0              |
| Dibromofluoromethane        |                                  |                              |   | 103%             |
| Toluene-D8                  |                                  |                              |   | 101%             |
| 4-Bromofluorobenzene        |                                  |                              |   | 105%             |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

10/30/07

ug/L

400

Project Name: DB Oak Date Analyzed:
Project Location: Fort Atkinson, Wisconsin Concentration:
Sample ID: MW-3 Dilution Factor:

Date Collected: 10/26/07 Lab Sample Number: 0710055-18

Sample Type: Water

| Compound                       | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | ample<br><u>Result</u> |
|--------------------------------|----------------------------------|------------------------------|---|------------------------|
| Dichlorodifluoromethane        | 0.50                             | 1.7                          | < | 200                    |
| Chloromethane                  | 1.0                              | 3.3                          | < | 400                    |
| Vinyl Chloride                 | 0.50                             | 1.7                          |   | 710                    |
| Bromomethane                   | 5.0                              | 17                           | < | 2000                   |
| Chloroethane                   | 5.0                              | 17                           | < | 2000                   |
| Trichlorofluoromethane         | 0.50                             | 1.7                          | < | 200                    |
| 1,1,2-Trichlorotrifluoroethane | 0.50                             | 1.7                          | < | 200                    |
| 1,1-Dichloroethene             | 0.50                             | 1.7                          | < | 200                    |
| Acetone                        | 20                               | 67                           | < | 8000                   |
| Carbon Disulfide               | 0.50                             | 1.7                          | < | 200                    |
| Methylene Chloride             | 2.0                              | 6.7                          | < | 800                    |
| Methyl-t-butyl Ether           | 0.50                             | 1.7                          | < | 200                    |
| t-1,2-Dichloroethene           | 0.50                             | 1.7                          | < | 200                    |
| n-Hexane                       | 0.50                             | 1.7                          | < | 200                    |
| 1,1-Dichloroethane             | 0.50                             | 1.7                          | < | 200                    |
| Diisopropyl Ether              | 0.50                             | 1.7                          | < | 200                    |
| 2,2-Dichloropropane            | 0.50                             | 1.7                          | < | 200                    |
| c-1,2-Dichloroethene           | 0.50                             | 1.7                          |   | 5800                   |
| 2-Butanone (MEK)               | 20                               | 67                           | < | 8000                   |
| Tetrahydrofuran                | 10                               | 33                           | < | 4000                   |
| Bromochloromethane             | 0.50                             | 1.7                          | < | 200                    |
| Chloroform                     | 0.50                             | 1.7                          | < | 200                    |
| 1,1,1-Trichloroethane          | 0.50                             | 1.7                          | < | 200                    |
| Carbon Tetrachloride           | 0.50                             | 1.7                          | < | 200                    |
| 1,1-Dichloropropene            | 0.50                             | 1.7                          | < | 200                    |
| Benzene                        | 0.50                             | 1.7                          | < | 200                    |
| 1,2-Dichloroethane             | 0.50                             | 1.7                          | < | 200                    |
| Trichloroethene                | 0.50                             | 1.7                          |   | 3300                   |
| 1,2-Dichloropropane            | 0.50                             | 1.7                          | < | 200                    |
| Dibromomethane                 | 0.50                             | 1.7                          | < | 200                    |
| Bromodichloromethane           | 0.50                             | 1.7                          | < | 200                    |
| c-1,3-Dichloropropene          | 0.50                             | 1.7                          | < | 200                    |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name:

DB Oak

Date Analyzed:

10/30/07

Project Location: Sample ID:

Fort Atkinson, Wisconsin Concentration: MW-3

Dilution Factor:

ug/L

400

Date Collected:

10/26/07

Lab Sample Number:

0710055-18

| Date Conected.     | 10/20/07   |                                        | Lao Sample Number.           | U | /10055-1         | o |
|--------------------|------------|----------------------------------------|------------------------------|---|------------------|---|
| Sample Type:       | Water      |                                        |                              |   |                  |   |
| Compound           |            | Reporting<br>Detection<br><u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br>Result |   |
| 4-Methyl-2-pentan  | one (MIBK) | 20                                     | 67                           | < | 8000             |   |
| Toluene            |            | 0.50                                   | 1.7                          | < | 200              |   |
| 1,1,2-Trichloroeth | ane        | 0.50                                   | 1.7                          |   | 400              | J |
| t-1,3-Dichloroprop | ene        | 0.50                                   | 1.7                          | < | 200              |   |
| Tetrachloroethene  |            | 0.50                                   | 1.7                          |   | 10000            |   |
| 1,3-Dichloropropa  | ne         | 0.50                                   | 1.7                          | < | 200              |   |
| 2-Hexanone         |            | 20                                     | 67                           | < | 8000             |   |
| Dibromochlorome    | thane      | 0.50                                   | 1.7                          | < | 200              |   |
| 1,2-Dibromoethan   | e          | 0.50                                   | 1.7                          | < | 200              |   |
| Chlorobenzene      |            | 0.50                                   | 1.7                          | < | 200              |   |
| 1,1,1,2-Tetrachlor | oethane    | 0.50                                   | 1.7                          | < | 200              |   |
| Ethylbenzene       |            | 0.50                                   | 1.7                          | < | 200              |   |
| m+p-Xylene         |            | 1.0                                    | 3.3                          | < | 400              |   |
| o-Xylene           |            | 0.50                                   | 1.7                          | < | 200              |   |
| Styrene            |            | 0.50                                   | 1.7                          | < | 200              |   |
| Bromoform          |            | 0.50                                   | 1.7                          | < | 200              |   |
| Isopropylbenzene   |            | 0.50                                   | 1.7                          | < | 200              |   |
| 1,1,2,2-Tetrachlor | oethane    | 0.50                                   | 1.7                          | < | 200              |   |
| Bromobenzene       |            | 0.50                                   | 1.7                          | < | 200              |   |
| 1,2,3-Trichloropro | opane      | 1.0                                    | 3.3                          | < | 400              |   |
| n-Propyl benzene   |            | 0.50                                   | 1.7                          | < | 200              |   |
| 2-Chlorotoluene    |            | 0.50                                   | 1.7                          | < | 200              |   |

0.50

0.50

0.50

0.50 0.50

0.50

0.50

0.50

0.50

0.50

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

4-Chlorotoluene

t-Butyl benzene

sec-Butyl benzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

p-Isopropyl toluene

n-Butyl benzene

Approved by

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

<

<

<

<

<

<

<

<

<

<

200

200

200

200

200

200

200

200

200

200

Project Name:DB OakDate Analyzed:10/30/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-3Dilution Factor:400Date Collected:10/26/07Lab Sample Number:0710055-18

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br>Result |
|-----------------------------|----------------------------------|------------------------------|---|------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 200              |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 800              |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 800              |
| Naphthalene                 | 5.0                              | 17                           | < | 2000             |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 800              |
| Dibromofluoromethane        |                                  |                              |   | 105%             |
| Toluene-D8                  |                                  |                              |   | 100%             |
| 4-Bromofluorobenzene        |                                  |                              |   | 99.9%            |

J = Estimated.

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

#### REVISED REPORT

Project Name:

DB Oak

Date Analyzed:

10/30/07

Project Location:

Fort Atkinson, Wisconsin Concentration:

ug/L

Sample ID: Date Collected:

MW-3A

Dilution Factor:

250

Sample Type:

10/26/07 Water

Lab Sample Number:

0710055-19

Reporting

|                                | Reporting    | 0 414 41     | ~        | _             |   |
|--------------------------------|--------------|--------------|----------|---------------|---|
|                                | Detection    | Quantitation |          | ample         |   |
| Compound                       | <u>Limit</u> | <u>Limit</u> | <u> </u> | <u>Result</u> |   |
| Dichlorodifluoromethane        | 0.50         | 1.7          | <        | 125           |   |
| Chloromethane                  | 1.0          | 3.3          | <        | 250           |   |
| Vinyl Chloride                 | 0.50         | 1.7          |          | <b>520</b>    |   |
| Bromomethane                   | 5.0          | 1.7          | <        |               |   |
| Chloroethane                   | 5.0          | 17           | <        | 1250<br>1250  |   |
| Trichlorofluoromethane         | 0.50         | 1.7          | <        | 1250          |   |
| 1,1,2-Trichlorotrifluoroethane | 0.50         | 1.7          | <        | 125           |   |
| 1,1-Dichloroethene             | 0.50         | 1.7          | <        | 125           |   |
| Acetone                        | 20           | 67           | <        |               |   |
| Carbon Disulfide               | 0.50         | 1.7          | <        | 5000<br>125   |   |
|                                | 2.0          | 6.7          |          |               |   |
| Methylene Chloride             |              |              | <        | 500           |   |
| Methyl-t-butyl Ether           | 0.50         | 1.7          | <        | 125           | * |
| t-1,2-Dichloroethene           | 0.50         | 1.7          |          | 190           | J |
| n-Hexane                       | 0.50         | 1.7          | <        | 125           |   |
| 1,1-Dichloroethane             | 0.50         | 1.7          | <        | 125           |   |
| Diisopropyl Ether              | 0.50         | 1.7          | <        | 125           |   |
| 2,2-Dichloropropane            | 0.50         | 1.7          | <        | 125           |   |
| c-1,2-Dichloroethene           | 0.50         | 1.7          |          | 11000         |   |
| 2-Butanone (MEK)               | 20           | 67           | <        | 5000          |   |
| Tetrahydrofuran                | 10           | 33           | <        | 2500          |   |
| Bromochloromethane             | 0.50         | 1.7          | <        | 125           |   |
| Chloroform                     | 0.50         | 1.7          | <        | 125           |   |
| 1,1,1-Trichloroethane          | 0.50         | 1.7          | <        | 125           |   |
| Carbon Tetrachloride           | 0.50         | 1.7          | <        | 125           |   |
| 1,1-Dichloropropene            | 0.50         | 1.7          | <        | 125           |   |
| Benzene                        | 0.50         | 1.7          | <        | 125           |   |
| 1,2-Dichloroethane             | 0.50         | 1.7          | <        | 125           |   |
| Trichloroethene                | 0.50         | 1.7          |          | 1500          |   |
| 1,2-Dichloropropane            | 0.50         | 1.7          | <        | 125           |   |
| Dibromomethane                 | 0.50         | 1.7          | <        | 125           |   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

#### **REVISED REPORT**

Project Name:DB OakDate Analyzed:10/30/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-3ADilution Factor:250

Date Collected: 10/26/07 Lab Sample Number: 0710055-19

Sample Type: Water

| Smilpro 2)por               | Reporting    |              | _      |
|-----------------------------|--------------|--------------|--------|
|                             | Detection    | Quantitation | Sample |
| Compound                    | <u>Limit</u> | <u>Limit</u> | Result |
| Bromodichloromethane        | 0.50         | 1.7          | < 125  |
| c-1,3-Dichloropropene       | 0.50         | 1.7          | < 125  |
| 4-Methyl-2-pentanone (MIBK) | 20           | 67           | < 5000 |
| Toluene                     | 0.50         | 1.7          | < 125  |
| 1,1,2-Trichloroethane       | 0.50         | 1.7          | < 125  |
| t-1,3-Dichloropropene       | 0.50         | 1.7          | < 125  |
| Tetrachloroethene           | 0.50         | 1.7          | 2100   |
| 1,3-Dichloropropane         | 0.50         | 1.7          | < 125  |
| 2-Hexanone                  | 20           | 67           | < 5000 |
| Dibromochloromethane        | 0.50         | 1.7          | < 125  |
| 1,2-Dibromoethane           | 0.50         | 1.7          | < 125  |
| Chlorobenzene               | 0.50         | 1.7          | < 125  |
| 1,1,1,2-Tetrachloroethane   | 0.50         | 1.7          | < 125  |
| Ethylbenzene                | 0.50         | 1.7          | < 125  |
| m+p-Xylene                  | 1.0          | 3.3          | < 250  |
| o-Xylene                    | 0.50         | 1.7          | < 125  |
| Styrene                     | 0.50         | 1.7          | < 125  |
| Bromoform                   | 0.50         | 1.7          | < 125  |
| Isopropylbenzene            | 0.50         | 1.7          | < 125  |
| 1,1,2,2-Tetrachloroethane   | 0.50         | 1.7          | < 125  |
| Bromobenzene                | 0.50         | 1.7          | < 125  |
| 1,2,3-Trichloropropane      | 1.0          | 3.3          | < 250  |
| n-Propyl benzene            | 0.50         | 1.7          | < 125  |
| 2-Chlorotoluene             | 0.50         | 1.7          | < 125  |
| 1,3,5-Trimethylbenzene      | 0.50         | 1.7          | < 125  |
| 4-Chlorotoluene             | 0.50         | 1.7          | < 125  |
| t-Butyl benzene             | 0.50         | 1.7          | < 125  |
| 1,2,4-Trimethylbenzene      | 0.50         | 1.7          | < 125  |
| sec-Butyl benzene           | 0.50         | 1.7          | < 125  |
| 1,3-Dichlorobenzene         | 0.50         | 1.7          | < 125  |
| p-Isopropyl toluene         | 0.50         | 1.7          | < 125  |
|                             |              |              |        |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

#### REVISED REPORT

Project Name:DB OakDate Analyzed:10/30/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-3ADilution Factor:250Date Collected:10/26/07Lab Sample Number:0710055-19

Sample Type: Water

|                             | Reporting    |              |   |        |
|-----------------------------|--------------|--------------|---|--------|
|                             | Detection    | Quantitation |   | Sample |
| Compound                    | <u>Limit</u> | <u>Limit</u> |   | Result |
| 1,4-Dichlorobenzene         | 0.50         | 1.7          | < | 125    |
| n-Butyl benzene             | 0.50         | 1.7          | < | 125    |
| 1,2-Dichlorobenzene         | 0.50         | 1.7          | < | 125    |
| 1,2-Dibromo-3-chloropropane | 0.50         | 1.7          | < | 125    |
| 1,2,4-Trichlorobenzene      | 2.0          | 6.7          | < | 500    |
| Hexachlorobutadiene         | 2.0          | 6.7          | < | 500    |
| Naphthalene                 | 5.0          | 17           | < | 1250   |
| 1,2,3-Trichlorobenzene      | 2.0          | 6.7          | < | 500    |
| Dibromofluoromethane        |              |              |   | 108%   |
| Toluene-D8                  |              |              |   | 98.0%  |
| 4-Bromofluorobenzene        |              |              |   | 99.7%  |

J = Estimated.

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name:DB OakDate Analyzed:10/31/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-3BDilution Factor:200Date Collected:10/26/07Lab Sample Number:0710055-20

Sample Type: Water

| Compound                       | Reporting<br>Detection<br><u>Limit</u> | Quantitation<br><u>Limit</u> |   | ample<br><u>Result</u> |
|--------------------------------|----------------------------------------|------------------------------|---|------------------------|
| Dichlorodifluoromethane        | 0.50                                   | 1.7                          | < | 100                    |
| Chloromethane                  | 1.0                                    | 3.3                          | < | 200                    |
| Vinyl Chloride                 | 0.50                                   | 1.7                          | < | 100                    |
| Bromomethane                   | 5.0                                    | 17                           | < | 1000                   |
| Chloroethane                   | 5.0                                    | 17                           | < | 1000                   |
| Trichlorofluoromethane         | 0.50                                   | 1.7                          | < | 100                    |
| 1,1,2-Trichlorotrifluoroethane | 0.50                                   | 1.7                          | < | 100                    |
| 1,1-Dichloroethene             | 0.50                                   | 1.7                          | < | 100                    |
| Acetone                        | 20                                     | 67                           | < | 4000                   |
| Carbon Disulfide               | 0.50                                   | 1.7                          | < | 100                    |
| Methylene Chloride             | 2.0                                    | 6.7                          | < | 400                    |
| Methyl-t-butyl Ether           | 0.50                                   | 1.7                          | < | 100                    |
| t-1,2-Dichloroethene           | 0.50                                   | 1.7                          | < | 100                    |
| n-Hexane                       | 0.50                                   | 1.7                          | < | 100                    |
| 1,1-Dichloroethane             | 0.50                                   | 1.7                          | < | 100                    |
| Diisopropyl Ether              | 0.50                                   | 1.7                          | < | 100                    |
| 2,2-Dichloropropane            | 0.50                                   | 1.7                          | < | 100                    |
| c-1,2-Dichloroethene           | 0.50                                   | 1.7                          |   | 330                    |
| 2-Butanone (MEK)               | 20                                     | 67                           | < | 4000                   |
| Tetrahydrofuran                | 10                                     | 33                           | < | 2000                   |
| Bromochloromethane             | 0.50                                   | 1.7                          | < | 100                    |
| Chloroform                     | 0.50                                   | 1.7                          | < | 100                    |
| 1,1,1-Trichloroethane          | 0.50                                   | 1.7                          | < | 100                    |
| Carbon Tetrachloride           | 0.50                                   | 1.7                          | < | 100                    |
| 1,1-Dichloropropene            | 0.50                                   | 1.7                          | < | 100                    |
| Benzene                        | 0.50                                   | 1.7                          | < | 100                    |
| 1,2-Dichloroethane             | 0.50                                   | 1.7                          | < | 100                    |
| Trichloroethene                | 0.50                                   | 1.7                          |   | 1200                   |
| 1,2-Dichloropropane            | 0.50                                   | 1.7                          | < | 100                    |
| Dibromomethane                 | 0.50                                   | 1.7                          | < | 100                    |
| Bromodichloromethane           | 0.50                                   | 1.7                          | < | 100                    |
| c-1,3-Dichloropropene          | 0.50                                   | 1.7                          | < | 100                    |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name: DB Oak Date Analyzed: 10/31/07
Project Location: Fort Atkinson, Wisconsin Concentration: ug/L
Sample ID: MW-3B Dilution Factor: 200
Date Collected: 10/26/07 Lab Sample Number: 0710055-20

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation <u>Limit</u> |   | ample<br><u>Result</u> |
|-----------------------------|----------------------------------|---------------------------|---|------------------------|
| 4-Methyl-2-pentanone (MIBK) | 20                               | 67                        | < | 4000                   |
| Toluene                     | 0.50                             | 1.7                       | < | 100                    |
| 1,1,2-Trichloroethane       | 0.50                             | 1.7                       | < | 100                    |
| t-1,3-Dichloropropene       | 0.50                             | 1.7                       | < | 100                    |
| Tetrachloroethene           | 0.50                             | 1.7                       |   | 5300                   |
| 1,3-Dichloropropane         | 0.50                             | 1.7                       | < | 100                    |
| 2-Hexanone                  | 20                               | 67                        | < | 4000                   |
| Dibromochloromethane        | 0.50                             | 1.7                       | < | 100                    |
| 1,2-Dibromoethane           | 0.50                             | 1.7                       | < | 100                    |
| Chlorobenzene               | 0.50                             | 1.7                       | < | 100                    |
| 1,1,1,2-Tetrachloroethane   | 0.50                             | 1.7                       | < | 100                    |
| Ethylbenzene                | 0.50                             | 1.7                       | < | 100                    |
| m+p-Xylene                  | 1.0                              | 3.3                       | < | 200                    |
| o-Xylene                    | 0.50                             | 1.7                       | < | 100                    |
| Styrene                     | 0.50                             | 1.7                       | < | 100                    |
| Bromoform                   | 0.50                             | 1.7                       | < | 100                    |
| Isopropylbenzene            | 0.50                             | 1.7                       | < | 100                    |
| 1,1,2,2-Tetrachloroethane   | 0.50                             | 1.7                       | < | 100                    |
| Bromobenzene                | 0.50                             | 1.7                       | < | 100                    |
| 1,2,3-Trichloropropane      | 1.0                              | 3.3                       | < | 200                    |
| n-Propyl benzene            | 0.50                             | 1.7                       | < | 100                    |
| 2-Chlorotoluene             | 0.50                             | 1.7                       | < | 100                    |
| 1,3,5-Trimethylbenzene      | 0.50                             | 1.7                       | < | 100                    |
| 4-Chlorotoluene             | 0.50                             | 1.7                       | < | 100                    |
| t-Butyl benzene             | 0.50                             | 1.7                       | < | 100                    |
| 1,2,4-Trimethylbenzene      | 0.50                             | 1.7                       | < | 100                    |
| sec-Butyl benzene           | 0.50                             | 1.7                       | < | 100                    |
| 1,3-Dichlorobenzene         | 0.50                             | 1.7                       | < | 100                    |
| p-Isopropyl toluene         | 0.50                             | 1.7                       | < | 100                    |
| 1,4-Dichlorobenzene         | 0.50                             | 1.7                       | < | 100                    |
| n-Butyl benzene             | 0.50                             | 1.7                       | < | 100                    |
| 1,2-Dichlorobenzene         | 0.50                             | 1.7                       | < | 100                    |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by

Project Name: DB Oak Date Analyzed: 10/31/07
Project Location: Fort Atkinson, Wisconsin Concentration: ug/L
Sample ID: MW-3B Dilution Factor: 200
Date Collected: 10/26/07 Lab Sample Number: 0710055-20

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br>Result |
|-----------------------------|----------------------------------|------------------------------|---|------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 100              |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 400              |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 400              |
| Naphthalene                 | 5.0                              | 17                           | < | 1000             |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 400              |
| Dibromofluoromethane        |                                  |                              |   | 105%             |
| Toluene-D8                  |                                  |                              |   | 104%             |
| 4-Bromofluorobenzene        |                                  |                              |   | 102%             |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name:

DB Oak

Date Analyzed:

10/31/07

Project Location:

Fort Atkinson, Wisconsin Concentration:

ug/L

Sample ID: Date Collected: MW-3C

Dilution Factor:

10/26/07

Lab Sample Number:

0710055-21

Sample Type:

Water

| Compound                       | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | mple<br>esult |              |
|--------------------------------|----------------------------------|------------------------------|---|---------------|--------------|
| Dichlorodifluoromethane        | 0.50                             | 1.7                          | < | 1.0           |              |
| Chloromethane                  | 1.0                              | 3.3                          | < | 2.0           |              |
| Vinyl Chloride                 | 0.50                             | 1.7                          |   | 2.8           |              |
| Bromomethane                   | 5.0                              | 17                           | < | 10            |              |
| Chloroethane                   | 5.0                              | 17                           | < | 10            | *            |
| Trichlorofluoromethane         | 0.50                             | 1.7                          | < | 1.0           |              |
| 1,1,2-Trichlorotrifluoroethane | 0.50                             | 1.7                          | < | 1.0           |              |
| 1,1-Dichloroethene             | 0.50                             | 1.7                          | < | 1.0           |              |
| Acetone                        | 20                               | 67                           | < | 40            |              |
| Carbon Disulfide               | 0.50                             | 1.7                          | < | 1.0           |              |
| Methylene Chloride             | 2.0                              | 6.7                          | < | 4.0           |              |
| Methyl-t-butyl Ether           | 0.50                             | 1.7                          | < | 1.0           |              |
| t-1,2-Dichloroethene           | 0.50                             | 1.7                          |   | 1.0           | J            |
| n-Hexane                       | 0.50                             | 1.7                          | < | 1.0           |              |
| 1,1-Dichloroethane             | 0.50                             | 1.7                          | < | 1.0           |              |
| Diisopropyl Ether              | 0.50                             | 1.7                          | < | 1.0           |              |
| 2,2-Dichloropropane            | 0.50                             | 1.7                          | < | 1.0           |              |
| c-1,2-Dichloroethene           | 0.50                             | 1.7                          |   | 110           | $\mathbf{E}$ |
| 2-Butanone (MEK)               | 20                               | 67                           | < | 40            |              |
| Tetrahydrofuran                | 10                               | 33                           | < | 20            |              |
| Bromochloromethane             | 0.50                             | 1.7                          | < | 1.0           |              |
| Chloroform                     | 0.50                             | 1.7                          | < | 1.0           |              |
| 1,1,1-Trichloroethane          | 0.50                             | 1.7                          | < | 1.0           |              |
| Carbon Tetrachloride           | 0.50                             | 1.7                          | < | 1.0           |              |
| 1,1-Dichloropropene            | 0.50                             | 1.7                          | < | 1.0           |              |
| Benzene                        | 0.50                             | 1.7                          | < | 1.0           |              |
| 1,2-Dichloroethane             | 0.50                             | 1.7                          | < | 1.0           |              |
| Trichloroethene                | 0.50                             | 1.7                          |   | 1.4           | J            |
| 1,2-Dichloropropane            | 0.50                             | 1.7                          | < | 1.0           |              |
| Dibromomethane                 | 0.50                             | 1.7                          | < | 1.0           |              |
| Bromodichloromethane           | 0.50                             | 1.7                          | < | 1.0           |              |
| c-1,3-Dichloropropene          | 0.50                             | 1.7                          | < | 1.0           |              |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name: DB Oak Date Analyzed: 10/31/07
Project Location: Fort Atkinson, Wisconsin Concentration: ug/L
Sample ID: MW-3C Dilution Factor: 2

Date Collected: 10/26/07 Lab Sample Number: 0710055-21

Sample Type: Water

|                             | Reporting Detection | Quantitation | Sample |
|-----------------------------|---------------------|--------------|--------|
| Compound                    | <u>Limit</u>        | <u>Limit</u> | Result |
| 4-Methyl-2-pentanone (MIBK) | 20                  | 67           | < 40   |
| Toluene                     | 0.50                | 1.7          | < 1.0  |
| 1,1,2-Trichloroethane       | 0.50                | 1.7          | < 1.0  |
| t-1,3-Dichloropropene       | 0.50                | 1.7          | < 1.0  |
| Tetrachloroethene           | 0.50                | 1.7          | 3.2    |
| 1,3-Dichloropropane         | 0.50                | 1.7          | < 1.0  |
| 2-Hexanone                  | 20                  | 67           | < 40   |
| Dibromochloromethane        | 0.50                | 1.7          | < 1.0  |
| 1,2-Dibromoethane           | 0.50                | 1.7          | < 1.0  |
| Chlorobenzene               | 0.50                | 1.7          | < 1.0  |
| 1,1,1,2-Tetrachloroethane   | 0.50                | 1.7          | < 1.0  |
| Ethylbenzene                | 0.50                | 1.7          | < 1.0  |
| m+p-Xylene                  | 1.0                 | 3.3          | < 2.0  |
| o-Xylene                    | 0.50                | 1.7          | < 1.0  |
| Styrene                     | 0.50                | 1.7          | < 1.0  |
| Bromoform                   | 0.50                | 1.7          | < 1.0  |
| Isopropylbenzene            | 0.50                | 1.7          | < 1.0  |
| 1,1,2,2-Tetrachloroethane   | 0.50                | 1.7          | < 1.0  |
| Bromobenzene                | 0.50                | 1.7          | < 1.0  |
| 1,2,3-Trichloropropane      | 1.0                 | 3.3          | < 2.0  |
| n-Propyl benzene            | 0.50                | 1.7          | < 1.0  |
| 2-Chlorotoluene             | 0.50                | 1.7          | < 1.0  |
| 1,3,5-Trimethylbenzene      | 0.50                | 1.7          | < 1.0  |
| 4-Chlorotoluene             | 0.50                | 1.7          | < 1.0  |
| t-Butyl benzene             | 0.50                | 1.7          | < 1.0  |
| 1,2,4-Trimethylbenzene      | 0.50                | 1.7          | < 1.0  |
| sec-Butyl benzene           | 0.50                | 1.7          | < 1.0  |
| 1,3-Dichlorobenzene         | 0.50                | 1.7          | < 1.0  |
| p-Isopropyl toluene         | 0.50                | 1.7          | < 1.0  |
| 1,4-Dichlorobenzene         | 0.50                | 1.7          | < 1.0  |
| n-Butyl benzene             | 0.50                | 1.7          | < 1.0  |
| 1,2-Dichlorobenzene         | 0.50                | 1.7          | < 1.0  |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

|                   |                          | · · · · · · · · · · · · · · · · · · · |            |
|-------------------|--------------------------|---------------------------------------|------------|
| Project Name:     | DB Oak                   | Date Analyzed:                        | 10/31/07   |
| Project Location: | Fort Atkinson, Wisconsin | Concentration:                        | ug/L       |
| Sample ID:        | MW-3C                    | Dilution Factor:                      | 2          |
| Date Collected:   | 10/26/07                 | Lab Sample Number:                    | 0710055-21 |

Sample Type: Water

| Compound                    | Reporting<br>Detection<br><u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                                   | 1.7                          | < | 1.0                     |
| 1,2,4-Trichlorobenzene      | 2.0                                    | 6.7                          | < | 4.0                     |
| Hexachlorobutadiene         | 2.0                                    | 6.7                          | < | 4.0                     |
| Naphthalene                 | 5.0                                    | 17                           | < | 10                      |
| 1,2,3-Trichlorobenzene      | 2.0                                    | 6.7                          | < | 4.0                     |
| Dibromofluoromethane        |                                        |                              |   | 107%                    |
| Toluene-D8                  |                                        |                              |   | 101%                    |
| 4-Bromofluorobenzene        |                                        |                              |   | 99.4%                   |

J = Estimated.

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

E = Estimated, exceeds calibration range.

Project Name:

DB Oak

Date Analyzed:

10/31/07

Project Location: Sample ID:

Fort Atkinson, Wisconsin Concentration:

Dilution Factor:

ug/L

Date Collected:

Trip Blank 10/26/07

Lab Sample Number:

Sample Type:

Water

0710055-22

| <u>Compound</u>                | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> | Sample<br><u>Result</u> |
|--------------------------------|----------------------------------|------------------------------|-------------------------|
| Dichlorodifluoromethane        | 0.50                             | 1.7                          | < 0.50                  |
| Chloromethane                  | 1.0                              | 3.3                          | < 1.0                   |
| Vinyl Chloride                 | 0.50                             | 1.7                          | < 0.50                  |
| Bromomethane                   | 5.0                              | 17                           | < 5.0                   |
| Chloroethane                   | 5.0                              | 17                           | < 5.0                   |
| Trichlorofluoromethane         | 0.50                             | 1.7                          | < 0.50                  |
| 1,1,2-Trichlorotrifluoroethane | 0.50                             | 1.7                          | < 0.50                  |
| 1,1-Dichloroethene             | 0.50                             | 1.7                          | < 0.50                  |
| Acetone                        | 20                               | 67                           | < 20                    |
| Carbon Disulfide               | 0.50                             | 1.7                          | < 0.50                  |
| Methylene Chloride             | 2.0                              | 6.7                          | < 2.0                   |
| Methyl-t-butyl Ether           | 0.50                             | 1.7                          | < 0.50                  |
| t-1,2-Dichloroethene           | 0.50                             | 1.7                          | < 0.50                  |
| n-Hexane                       | 0.50                             | 1.7                          | < 0.50                  |
| 1,1-Dichloroethane             | 0.50                             | 1.7                          | < 0.50                  |
| Diisopropyl Ether              | 0.50                             | 1.7                          | < 0.50                  |
| 2,2-Dichloropropane            | 0.50                             | 1.7                          | < 0.50                  |
| c-1,2-Dichloroethene           | 0.50                             | 1.7                          | < 0.50                  |
| 2-Butanone (MEK)               | 20                               | 67                           | < 20                    |
| Tetrahydrofuran                | 10                               | 33                           | < 10                    |
| Bromochloromethane             | 0.50                             | 1.7                          | < 0.50                  |
| Chloroform                     | 0.50                             | 1.7                          | < 0.50                  |
| 1,1,1-Trichloroethane          | 0.50                             | 1.7                          | < 0.50                  |
| Carbon Tetrachloride           | 0.50                             | 1.7                          | < 0.50                  |
| 1,1-Dichloropropene            | 0.50                             | 1.7                          | < 0.50                  |
| Benzene                        | 0.50                             | 1.7                          | < 0.50                  |
| 1,2-Dichloroethane             | 0.50                             | 1.7                          | < 0.50                  |
| Trichloroethene                | 0.50                             | 1.7                          | < 0.50                  |
| 1,2-Dichloropropane            | 0.50                             | 1.7                          | < 0.50                  |
| Dibromomethane                 | 0.50                             | 1.7                          | < 0.50                  |
| Bromodichloromethane           | 0.50                             | 1.7                          | < 0.50                  |
| c-1,3-Dichloropropene          | 0.50                             | 1.7                          | < 0.50                  |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S.

2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name:DB OakDate Analyzed:10/31/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:Trip BlankDilution Factor:1

Date Collected: 10/26/07 Lab Sample Number: 0710055-22

Sample Type: Water

| Compound                    | Reporting Detection Limit | Quantitation<br><u>Limit</u> | Sample<br><u>Result</u> |  |
|-----------------------------|---------------------------|------------------------------|-------------------------|--|
| 4-Methyl-2-pentanone (MIBK) | 20                        | 67                           | < 20                    |  |
| Toluene Toluene             | 0.50                      | 1.7                          | < 0.50                  |  |
| 1,1,2-Trichloroethane       | 0.50                      | 1.7                          | < 0.50                  |  |
| t-1,3-Dichloropropene       | 0.50                      | 1.7                          | < 0.50                  |  |
| Tetrachloroethene           | 0.50                      | 1.7                          | < 0.50                  |  |
| 1,3-Dichloropropane         | 0.50                      | 1.7                          | < 0.50                  |  |
| 2-Hexanone                  | 20                        | 67                           | < 20                    |  |
| Dibromochloromethane        | 0.50                      | 1.7                          | < 0.50                  |  |
| 1,2-Dibromoethane           | 0.50                      | 1.7                          | < 0.50                  |  |
| Chlorobenzene               | 0.50                      | 1.7                          | < 0.50                  |  |
| 1,1,1,2-Tetrachloroethane   | 0.50                      | 1.7                          | < 0.50                  |  |
| Ethylbenzene                | 0.50                      | 1.7                          | < 0.50                  |  |
| m+p-Xylene                  | 1.0                       | 3.3                          | < 1.0                   |  |
| o-Xylene                    | 0.50                      | 1.7                          | < 0.50                  |  |
| Styrene                     | 0.50                      | 1.7                          | < 0.50                  |  |
| Bromoform                   | 0.50                      | 1.7                          | < 0.50                  |  |
| Isopropylbenzene            | 0.50                      | 1.7                          | < 0.50                  |  |
| 1,1,2,2-Tetrachloroethane   | 0.50                      | 1.7                          | < 0.50                  |  |
| Bromobenzene                | 0.50                      | 1.7                          | < 0.50                  |  |
| 1,2,3-Trichloropropane      | 1.0                       | 3.3                          | < 1.0                   |  |
| n-Propyl benzene            | 0.50                      | 1.7                          | < 0.50                  |  |
| 2-Chlorotoluene             | 0.50                      | 1.7                          | < 0.50                  |  |
| 1,3,5-Trimethylbenzene      | 0.50                      | 1.7                          | < 0.50                  |  |
| 4-Chlorotoluene             | 0.50                      | 1.7                          | < 0.50                  |  |
| t-Butyl benzene             | 0.50                      | 1.7                          | < 0.50                  |  |
| 1,2,4-Trimethylbenzene      | 0.50                      | 1.7                          | < 0.50                  |  |
| sec-Butyl benzene           | 0.50                      | 1.7                          | < 0.50                  |  |
| 1,3-Dichlorobenzene         | 0.50                      | 1.7                          | < 0.50                  |  |
| p-Isopropyl toluene         | 0.50                      | 1.7                          | < 0.50                  |  |
| 1,4-Dichlorobenzene         | 0.50                      | 1.7                          | < 0.50                  |  |
| n-Butyl benzene             | 0.50                      | 1.7                          | < 0.50                  |  |
| 1,2-Dichlorobenzene         | 0.50                      | 1.7                          | < 0.50                  |  |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name: DB Oak Date Analyzed: 10/31/07
Project Location: Fort Atkinson, Wisconsin Concentration: ug/L
Sample ID: Trip Blank Dilution Factor: 1
Date Collected: 10/26/07 Lab Sample Number: 0710055-22

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> | 1 | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 0.50                    |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 2.0                     |
| Naphthalene                 | 5.0                              | 17                           | < | 5.0                     |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Dibromofluoromethane        |                                  |                              |   | 99.0%                   |
| Toluene-D8                  |                                  |                              |   | 101%                    |
| 4-Bromofluorobenzene        |                                  |                              |   | 97.6%                   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S.

2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889 Approved by:

Project Name: Date Analyzed: DB Oak 10/30/07 Project Location: Fort Atkinson, Wisconsin Concentration: ug/L Sample ID: MW-4 Dilution Factor: 50

Date Collected: Lab Sample Number: 10/25/07 0710055-12

Sample Type: Water

| Compound                       | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | ample<br>Result | ٠ |
|--------------------------------|----------------------------------|------------------------------|---|-----------------|---|
| Dichlorodifluoromethane        | 0.50                             | 1.7                          | < | 25              |   |
| Chloromethane                  | 1.0                              | 3.3                          | < | 50              |   |
| Vinyl Chloride                 | 0.50                             | 1.7                          | < | 25              |   |
| Bromomethane                   | 5.0                              | 17                           | < | 250             |   |
| Chloroethane                   | 5.0                              | 17                           | < | 250             |   |
| Trichlorofluoromethane         | 0.50                             | 1.7                          | < | 25              |   |
| 1,1,2-Trichlorotrifluoroethane | 0.50                             | 1.7                          | < | 25              |   |
| 1,1-Dichloroethene             | 0.50                             | 1.7                          | < | 25              |   |
| Acetone                        | 20                               | 67                           | < | 1000            |   |
| Carbon Disulfide               | 0.50                             | 1.7                          | < | 25              |   |
| Methylene Chloride             | 2.0                              | 6.7                          | < | 100             |   |
| Methyl-t-butyl Ether           | 0.50                             | 1.7                          | < | 25              |   |
| t-1,2-Dichloroethene           | 0.50                             | 1.7                          | < | 25              |   |
| n-Hexane                       | 0.50                             | 1.7                          | < | 25              |   |
| 1,1-Dichloroethane             | 0.50                             | 1.7                          | < | 25              |   |
| Diisopropyl Ether              | 0.50                             | 1.7                          | < | 25              |   |
| 2,2-Dichloropropane            | 0.50                             | 1.7                          | < | 25              |   |
| c-1,2-Dichloroethene           | 0.50                             | 1.7                          |   | 42              | J |
| 2-Butanone (MEK)               | 20                               | 67                           | < | 1000            |   |
| Tetrahydrofuran                | 10                               | 33                           | < | 500             |   |
| Bromochloromethane             | 0.50                             | 1.7                          | < | 25              |   |
| Chloroform                     | 0.50                             | 1.7                          | < | 25              |   |
| 1,1,1-Trichloroethane          | 0.50                             | 1.7                          | < | 25              |   |
| Carbon Tetrachloride           | 0.50                             | 1.7                          | < | 25              |   |
| 1,1-Dichloropropene            | 0.50                             | 1.7                          | < | 25              |   |
| Benzene                        | 0.50                             | 1.7                          | < | 25              |   |
| 1,2-Dichloroethane             | 0.50                             | 1.7                          | < | 25              |   |
| Trichloroethene                | 0.50                             | 1.7                          |   | 1500            |   |
| 1,2-Dichloropropane            | 0.50                             | 1.7                          | < | 25              |   |
| Dibromomethane                 | 0.50                             | 1.7                          | < | 25              |   |
| Bromodichloromethane           | 0.50                             | 1.7                          | < | 25              |   |
| c-1,3-Dichloropropene          | 0.50                             | 1.7                          | < | 25              |   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Date: [[/

Project Name: Project Location: DB Oak

Date Analyzed:

10/30/07

MW-4

Fort Atkinson, Wisconsin Concentration:

ug/L

50

Sample ID: Date Collected:

10/25/07

Dilution Factor:

0710055-12

Sample Type:

Water

Lab Sample Number:

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | ample<br>Result |
|-----------------------------|----------------------------------|------------------------------|---|-----------------|
| 4-Methyl-2-pentanone (MIBK) | 20                               | 67                           | < | 1000            |
| Toluene                     | 0.50                             | 1.7                          | < | 25              |
| 1,1,2-Trichloroethane       | 0.50                             | 1.7                          | < | 25              |
| t-1,3-Dichloropropene       | 0.50                             | 1.7                          | < | 25              |
| Tetrachloroethene           | 0.50                             | 1.7                          |   | 2000            |
| 1,3-Dichloropropane         | 0.50                             | 1.7                          | < | 25              |
| 2-Hexanone                  | 20                               | 67                           | < | 1000            |
| Dibromochloromethane        | 0.50                             | 1.7                          | < | 25              |
| 1,2-Dibromoethane           | 0.50                             | 1.7                          | < | 25              |
| Chlorobenzene               | 0.50                             | 1.7                          | < | 25              |
| 1,1,1,2-Tetrachloroethane   | 0.50                             | 1.7                          | < | 25              |
| Ethylbenzene                | 0.50                             | 1.7                          | < | 25              |
| m+p-Xylene                  | 1.0                              | 3.3                          | < | 50              |
| o-Xylene                    | 0.50                             | 1.7                          | < | 25              |
| Styrene                     | 0.50                             | 1.7                          | < | 25              |
| Bromoform                   | 0.50                             | 1.7                          | < | 25              |
| Isopropylbenzene            | 0.50                             | 1.7                          | < | 25              |
| 1,1,2,2-Tetrachloroethane   | 0.50                             | 1.7                          | < | 25              |
| Bromobenzene                | 0.50                             | 1.7                          | < | 25              |
| 1,2,3-Trichloropropane      | 1.0                              | 3.3                          | < | 50              |
| n-Propyl benzene            | 0.50                             | 1.7                          | < | 25              |
| 2-Chlorotoluene             | 0.50                             | 1.7                          | < | 25              |
| 1,3,5-Trimethylbenzene      | 0.50                             | 1.7                          | < | 25              |
| 4-Chlorotoluene             | 0.50                             | 1.7                          | < | 25              |
| t-Butyl benzene             | 0.50                             | 1.7                          | < | 25              |
| 1,2,4-Trimethylbenzene      | 0.50                             | 1.7                          | < | 25              |
| sec-Butyl benzene           | 0.50                             | 1.7                          | < | 25              |
| 1,3-Dichlorobenzene         | 0.50                             | 1.7                          | < | 25              |
| p-Isopropyl toluene         | 0.50                             | 1.7                          | < | 25              |
| 1,4-Dichlorobenzene         | 0.50                             | 1.7                          | < | 25              |
| n-Butyl benzene             | 0.50                             | 1.7                          | < | 25              |
| 1,2-Dichlorobenzene         | 0.50                             | 1.7                          | < | 25              |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Project Name: DB Oak Date Analyzed: 10/30/07 Fort Atkinson, Wisconsin Concentration: Project Location: ug/L MW-4 Sample ID: Dilution Factor: 50 Lab Sample Number: Date Collected: 10/25/07 0710055-12

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> | ; | Sample<br><u>Result</u> | , |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|---|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 25                      |   |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 100                     |   |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 100                     |   |
| Naphthalene                 | 5.0                              | 17                           | < | 250                     |   |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 100                     |   |
| Dibromofluoromethane        |                                  |                              |   | 99.7%                   | , |
| Toluene-D8                  |                                  |                              |   | 102%                    |   |
| 4-Bromofluorobenzene        |                                  |                              |   | 101%                    |   |

J = Estimated.

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S.

2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: A Date: ((/1/5)

Project Name:DB OakDate Analyzed:10/30/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-4ADilution Factor:1

Date Collected: 10/25/07 Lab Sample Number: 0710055-13

Sample Type: Water

| Compound                       | Reporting<br>Detection<br><u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|--------------------------------|----------------------------------------|------------------------------|---|-------------------------|
| Dichlorodifluoromethane        | 0.50                                   | 1.7                          | < | 0.50                    |
| Chloromethane                  | 1.0                                    | 3.3                          | < | 1.0                     |
| Vinyl Chloride                 | 0.50                                   | 1.7                          | < | 0.50                    |
| Bromomethane                   | 5.0                                    | 17                           | < | 5.0                     |
| Chloroethane                   | 5.0                                    | 17                           | < | 5.0                     |
| Trichlorofluoromethane         | 0.50                                   | 1.7                          | < | 0.50                    |
| 1,1,2-Trichlorotrifluoroethane | 0.50                                   | 1.7                          | < | 0.50                    |
| 1,1-Dichloroethene             | 0.50                                   | 1.7                          | < | 0.50                    |
| Acetone                        | 20                                     | 67                           | < | 20                      |
| Carbon Disulfide               | 0.50                                   | 1.7                          | < | 0.50                    |
| Methylene Chloride             | 2.0                                    | 6.7                          | < | 2.0                     |
| Methyl-t-butyl Ether           | 0.50                                   | 1.7                          | < | 0.50                    |
| t-1,2-Dichloroethene           | 0.50                                   | 1.7                          | < | 0.50                    |
| n-Hexane                       | 0.50                                   | 1.7                          | < | 0.50                    |
| 1,1-Dichloroethane             | 0.50                                   | 1.7                          | < | 0.50                    |
| Diisopropyl Ether              | 0.50                                   | 1.7                          | < | 0.50                    |
| 2,2-Dichloropropane            | 0.50                                   | 1.7                          | < | 0.50                    |
| c-1,2-Dichloroethene           | 0.50                                   | 1.7                          | < | 0.50                    |
| 2-Butanone (MEK)               | 20                                     | 67                           | < | 20                      |
| Tetrahydrofuran                | 10                                     | 33                           | < | 10                      |
| Bromochloromethane             | 0.50                                   | 1.7                          | < | 0.50                    |
| Chloroform                     | 0.50                                   | 1.7                          | < | 0.50                    |
| 1,1,1-Trichloroethane          | 0.50                                   | 1.7                          | < | 0.50                    |
| Carbon Tetrachloride           | 0.50                                   | 1.7                          | < | 0.50                    |
| 1,1-Dichloropropene            | 0.50                                   | 1.7                          | < | 0.50                    |
| Benzene                        | 0.50                                   | 1.7                          | < | 0.50                    |
| 1,2-Dichloroethane             | 0.50                                   | 1.7                          | < | 0.50                    |
| Trichloroethene                | 0.50                                   | 1.7                          |   | 8.5                     |
| 1,2-Dichloropropane            | 0.50                                   | 1.7                          | < | 0.50                    |
| Dibromomethane                 | 0.50                                   | 1.7                          | < | 0.50                    |
| Bromodichloromethane           | 0.50                                   | 1.7                          | < | 0.50                    |
| c-1,3-Dichloropropene          | 0.50                                   | 1.7                          | < | 0.50                    |

Method Reference: Modified 8260

WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by

Project Name: DB Oak Date Analyzed: 10/30/07
Project Location: Fort Atkinson, Wisconsin Concentration: ug/L
Sample ID: MW-4A Dilution Factor: 1

Date Collected: 10/25/07 Lab Sample Number: 0710055-13

Sample Type: Water

| Compound                                       | Reporting Detection Limit | Quantitation<br><u>Limit</u> |   | ample<br>Result |   |
|------------------------------------------------|---------------------------|------------------------------|---|-----------------|---|
| 4-Methyl-2-pentanone (MIBK)                    | 20                        | 67                           | < | 20              | , |
| Toluene                                        | 0.50                      | 1.7                          | < | 0.50            |   |
|                                                | 0.50                      | 1.7                          | < | 0.50            |   |
| 1,1,2-Trichloroethane<br>t-1,3-Dichloropropene | 0.50                      | 1.7                          | < | 0.50            |   |
| Tetrachloroethene                              | 0.50                      | 1.7                          |   | 1.2             | T |
|                                                | 0.50                      | 1.7                          | < | 0.50            | J |
| 1,3-Dichloropropane 2-Hexanone                 | 20                        | 67                           | < | 20              |   |
| ,                                              | 0.50                      | 1.7                          | < | 0.50            |   |
| Dibromochloromethane                           | 0.50                      | 1.7                          | < | 0.50            |   |
| 1,2-Dibromoethane                              | 0.50                      | 1.7                          | < | 0.50            |   |
| Chlorobenzene                                  | 0.50                      | 1.7                          | < | 0.50            |   |
| 1,1,1,2-Tetrachloroethane                      | 0.50                      | 1.7                          | < | 0.50            |   |
| Ethylbenzene m.h. Yulong                       | 1.0                       | 3.3                          | < | 1.0             |   |
| m+p-Xylene                                     | 0.50                      | 1.7                          | < | 0.50            |   |
| o-Xylene                                       | 0.50                      | 1.7                          | < | 0.50            |   |
| Styrene<br>Bromoform                           | 0.50                      | 1.7                          | < | 0.50            |   |
| Isopropylbenzene                               | 0.50                      | 1.7                          | < | 0.50            |   |
|                                                | 0.50                      | 1.7                          | < | 0.50            |   |
| 1,1,2,2-Tetrachloroethane<br>Bromobenzene      | 0.50                      | 1.7                          | < | 0.50            |   |
| 1,2,3-Trichloropropane                         | 1.0                       | 3.3                          | < | 1.0             |   |
| n-Propyl benzene                               | 0.50                      | 1.7                          | < | 0.50            |   |
| 2-Chlorotoluene                                | 0.50                      | 1.7                          | < | 0.50            |   |
| 1,3,5-Trimethylbenzene                         | 0.50                      | 1.7                          | < | 0.50            |   |
| 4-Chlorotoluene                                | 0.50                      | 1.7                          | < | 0.50            |   |
| t-Butyl benzene                                | 0.50                      | 1.7                          | < | 0.50            |   |
| 1,2,4-Trimethylbenzene                         | 0.50                      | 1.7                          | < | 0.50            |   |
| sec-Butyl benzene                              | 0.50                      | 1.7                          | < | 0.50            |   |
| 1,3-Dichlorobenzene                            | 0.50                      | 1.7                          | < | 0.50            |   |
| p-Isopropyl toluene                            | 0.50                      | 1.7                          | < | 0.50            |   |
| 1,4-Dichlorobenzene                            | 0.50                      | 1.7                          | < | 0.50            |   |
| n-Butyl benzene                                | 0.50                      | 1.7                          | < | 0.50            |   |
| 1,2-Dichlorobenzene                            | 0.50                      | 1.7                          | < | 0.50            |   |
| .,- 210111010001110110                         | 2.20                      |                              |   |                 |   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road

Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889 Approved by:

Project Name: DB Oak Date Analyzed: 10/30/07
Project Location: Fort Atkinson, Wisconsin Concentration: ug/L
Sample ID: MW-4A Dilution Factor: 1
Date Collected: 10/25/07 Lab Sample Number: 0710055-13

Sample Type: Water

| Compound                    | Reporting Detection Limit | Quantitation<br><u>Limit</u> |   | ample<br>Result |
|-----------------------------|---------------------------|------------------------------|---|-----------------|
| 1,2-Dibromo-3-chloropropane | 0.50                      | 1.7                          | < | 0.50            |
| 1,2,4-Trichlorobenzene      | 2.0                       | 6.7                          | < | 2.0             |
| Hexachlorobutadiene         | 2.0                       | 6.7                          | < | 2.0             |
| Naphthalene                 | 5.0                       | 17                           | < | 5.0             |
| 1,2,3-Trichlorobenzene      | 2.0                       | 6.7                          | < | 2.0             |
| Dibromofluoromethane        |                           |                              |   | 103%            |
| Toluene-D8                  |                           |                              |   | 102%            |
| 4-Bromofluorobenzene        | •                         |                              |   | 103%            |

J = Estimated.

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name:

DB Oak

Date Analyzed:

10/30/07

Project Location: Sample ID:

MW-5

Fort Atkinson, Wisconsin Concentration: Dilution Factor: ug/L

1

Date Collected:

10/25/07

Lab Sample Number:

0710055-02

Sample Type:

Water

Reporting

| Compound                       | Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |     | mple<br>esult |
|--------------------------------|------------------------|------------------------------|-----|---------------|
| Dichlorodifluoromethane        | 0.50                   | 1.7                          | <   | 0.50          |
| Chloromethane                  | 1.0                    | 3.3                          | <   | 1.0           |
| Vinyl Chloride                 | 0.50                   | 1.7                          | <   | 0.50          |
| Bromomethane                   | 5.0                    | 17                           | <   | 5.0           |
| Chloroethane                   | 5.0                    | 17                           | <   | 5.0           |
| Trichlorofluoromethane         | 0.50                   | 1.7                          | <   | 0.50          |
| 1,1,2-Trichlorotrifluoroethane | 0.50                   | 1.7                          | <   | 0.50          |
| 1,1-Dichloroethene             | 0.50                   | 1.7                          | <   | 0.50          |
| Acetone                        | 20                     | 67                           | <   | 20            |
| Carbon Disulfide               | 0.50                   | 1.7                          | <   | 0.50          |
| Methylene Chloride             | 2.0                    | 6.7                          | <   | 2.0           |
| Methyl-t-butyl Ether           | 0.50                   | 1.7                          | <   | 0.50          |
| t-1,2-Dichloroethene           | 0.50                   | 1.7                          | <   | 0.50          |
| n-Hexane                       | 0.50                   | 1.7                          | <   | 0.50          |
| 1,1-Dichloroethane             | 0.50                   | 1.7                          | <   | 0.50          |
| Diisopropyl Ether              | 0.50                   | 1.7                          | <   | 0.50          |
| 2,2-Dichloropropane            | 0.50                   | 1.7                          | <   | 0.50          |
| c-1,2-Dichloroethene           | 0.50                   | 1.7                          | <   | 0.50          |
| 2-Butanone (MEK)               | 20                     | 67                           | <   | 20            |
| Tetrahydrofuran                | 10                     | 33                           | <   | 10            |
| Bromochloromethane             | 0.50                   | 1.7                          | <   | 0.50          |
| Chloroform                     | 0.50                   | 1.7                          | <   | 0.50          |
| 1,1,1-Trichloroethane          | 0.50                   | 1.7                          | <   | 0.50          |
| Carbon Tetrachloride           | 0.50                   | 1.7                          | <   | 0.50          |
| 1,1-Dichloropropene            | 0.50                   | 1.7                          | <   | 0.50          |
| Benzene                        | 0.50                   | 1.7                          | <   | 0.50          |
| 1,2-Dichloroethane             | 0.50                   | 1.7                          | <   | 0.50          |
| Trichloroethene                | 0.50                   | 1.7                          | <   | 0.50          |
| 1,2-Dichloropropane            | 0.50                   | 1.7                          | <   | 0.50          |
| Dibromomethane                 | 0.50                   | 1.7                          | <   | 0.50          |
| Bromodichloromethane           | 0.50                   | 1.7                          | <   | 0.50          |
| c-1,3-Dichloropropene          | 0.50                   | 1.7                          | < . | 0.50          |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Project Name:DB OakDate Analyzed:10/30/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-5Dilution Factor:1

Date Collected: 10/25/07 Lab Sample Number: 0710055-02

Sample Type: Water

| Compound                    | Reporting Detection Limit | Quantitation<br><u>Limit</u> | Sample<br><u>Result</u> |
|-----------------------------|---------------------------|------------------------------|-------------------------|
| 4-Methyl-2-pentanone (MIBK) | 20                        | 67                           | < 20                    |
| Toluene                     | 0.50                      | 1.7                          | < 0.50                  |
| 1,1,2-Trichloroethane       | 0.50                      | 1.7                          | < 0.50                  |
| t-1,3-Dichloropropene       | 0.50                      | 1.7                          | < 0.50                  |
| Tetrachloroethene           | 0.50                      | 1.7                          | < 0.50                  |
| 1,3-Dichloropropane         | 0.50                      | 1.7                          | < 0.50                  |
| 2-Hexanone                  | 20                        | 67                           | < 20                    |
| Dibromochloromethane        | 0.50                      | 1.7                          | < 0.50                  |
| 1,2-Dibromoethane           | 0.50                      | 1.7                          | < 0.50                  |
| Chlorobenzene               | 0.50                      | 1.7                          | < 0.50                  |
| 1,1,1,2-Tetrachloroethane   | 0.50                      | 1.7                          | < 0.50                  |
| Ethylbenzene                | 0.50                      | 1.7                          | < 0.50                  |
| m+p-Xylene                  | 1.0                       | 3.3                          | < 1.0                   |
| o-Xylene                    | 0.50                      | 1.7                          | < 0.50                  |
| Styrene                     | 0.50                      | 1.7                          | < 0.50                  |
| Bromoform                   | 0.50                      | 1.7                          | < 0.50                  |
| Isopropylbenzene            | 0.50                      | 1.7                          | < 0.50                  |
| 1,1,2,2-Tetrachloroethane   | 0.50                      | 1.7                          | < 0.50                  |
| Bromobenzene                | 0.50                      | 1.7                          | < 0.50                  |
| 1,2,3-Trichloropropane      | 1.0                       | 3.3                          | < 1.0                   |
| n-Propyl benzene            | 0.50                      | 1.7                          | < 0.50                  |
| 2-Chlorotoluene             | 0.50                      | 1.7                          | < 0.50                  |
| 1,3,5-Trimethylbenzene      | 0.50                      | 1.7                          | < 0.50                  |
| 4-Chlorotoluene             | 0.50                      | 1.7                          | < 0.50                  |
| t-Butyl benzene             | 0.50                      | 1.7                          | < 0.50                  |
| 1,2,4-Trimethylbenzene      | 0.50                      | 1.7                          | < 0.50                  |
| sec-Butyl benzene           | 0.50                      | 1.7                          | < 0.50                  |
| 1,3-Dichlorobenzene         | 0.50                      | 1.7                          | < 0.50                  |
| p-Isopropyl toluene         | 0.50                      | 1.7                          | < 0.50                  |
| 1,4-Dichlorobenzene         | 0.50                      | 1.7                          | < 0.50                  |
| n-Butyl benzene             | 0.50                      | 1.7                          | < 0.50                  |
| 1,2-Dichlorobenzene         | 0.50                      | 1.7                          | < 0.50                  |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Date: 11/2/5

Date Analyzed: Project Name: DB Oak 10/30/07 Project Location: Fort Atkinson, Wisconsin Concentration: ug/L Sample ID: Dilution Factor: MW-5 Lab Sample Number: 0710055-02 10/25/07 Date Collected:

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br>Result |
|-----------------------------|----------------------------------|------------------------------|---|------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 0.50             |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0              |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 2.0              |
| Naphthalene                 | 5.0                              | 17                           | < | 5.0              |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0              |
| Dibromofluoromethane        |                                  |                              |   | 102%             |
| Toluene-D8                  |                                  |                              |   | 101%             |
| 4-Bromofluorobenzene        |                                  |                              |   | 103%             |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: R Child

Project Name:

DB Oak

Date Analyzed:

10/30/07

Project Location: Sample ID:

MW-6

Fort Atkinson, Wisconsin Concentration:

ug/L

Date Collected:

10/25/07

Dilution Factor:

1

Sample Type:

Water

| Lah | Sample | e Mun | her.  |
|-----|--------|-------|-------|
| Lab | Sample | e mun | iber. |

0710055-03

| 71 |           |
|----|-----------|
|    | Donouting |
|    | Reporting |
|    |           |
|    | Detection |

| Compound |                                | Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |   |  |
|----------|--------------------------------|------------------------|------------------------------|---|-------------------------|---|--|
|          | Dichlorodifluoromethane        | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | Chloromethane                  | 1.0                    | 3.3                          | < | 1.0                     |   |  |
|          | Vinyl Chloride                 | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | Bromomethane                   | 5.0                    | 17                           | < | 5.0                     | M |  |
|          | Chloroethane                   | 5.0                    | 17                           | < | 5.0                     | M |  |
|          | Trichlorofluoromethane         | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | 1,1,2-Trichlorotrifluoroethane | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | 1,1-Dichloroethene             | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | Acetone                        | 20                     | 67                           | < | 20                      |   |  |
|          | Carbon Disulfide               | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | Methylene Chloride             | 2.0                    | 6.7                          | < | 2.0                     |   |  |
|          | Methyl-t-butyl Ether           | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | t-1,2-Dichloroethene           | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | n-Hexane                       | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | 1,1-Dichloroethane             | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | Diisopropyl Ether              | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | 2,2-Dichloropropane            | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | c-1,2-Dichloroethene           | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | 2-Butanone (MEK)               | 20                     | 67                           | < | 20                      |   |  |
|          | Tetrahydrofuran                | 10                     | 33                           | < | 10                      |   |  |
|          | Bromochloromethane             | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | Chloroform                     | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | 1,1,1-Trichloroethane          | 0.50                   | 1.7                          | < | 0.50                    | * |  |
|          | Carbon Tetrachloride           | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | 1,1-Dichloropropene            | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | Benzene                        | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | 1,2-Dichloroethane             | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | Trichloroethene                | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | 1,2-Dichloropropane            | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | Dibromomethane                 | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | Bromodichloromethane           | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          | c-1,3-Dichloropropene          | 0.50                   | 1.7                          | < | 0.50                    |   |  |
|          |                                |                        |                              |   |                         |   |  |

Method Reference: Modified 8260

WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Project Name: DB Oak Date Analyzed: 10/30/07
Project Location: Fort Atkinson, Wisconsin Concentration: ug/L
Sample ID: MW-6 Dilution Factor: 1

Date Collected: 10/25/07 Lab Sample Number: 0710055-03

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |  |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|--|
| 4-Methyl-2-pentanone (MIBK) | 20                               | 67                           | < | 20                      |  |
| Toluene                     | 0.50                             | 1.7                          | < | 0.50                    |  |
| 1,1,2-Trichloroethane       | 0.50                             | 1.7                          | < | 0.50                    |  |
| t-1,3-Dichloropropene       | 0.50                             | 1.7                          | < | 0.50                    |  |
| Tetrachloroethene           | 0.50                             | 1.7                          | < | 0.50                    |  |
| 1,3-Dichloropropane         | 0.50                             | 1.7                          | < | 0.50                    |  |
| 2-Hexanone                  | 20                               | 67                           | < | 20                      |  |
| Dibromochloromethane        | 0.50                             | 1.7                          | < | 0.50                    |  |
| 1,2-Dibromoethane           | 0.50                             | 1.7                          | < | 0.50                    |  |
| Chlorobenzene               | 0.50                             | 1.7                          | < | 0.50                    |  |
| 1,1,1,2-Tetrachloroethane   | 0.50                             | 1.7                          | < | 0.50                    |  |
| Ethylbenzene                | 0.50                             | 1.7                          | < | 0.50                    |  |
| m+p-Xylene                  | 1.0                              | 3.3                          | < | 1.0                     |  |
| o-Xylene                    | 0.50                             | 1.7                          | < | 0.50                    |  |
| Styrene                     | 0.50                             | 1.7                          | < | 0.50                    |  |
| Bromoform                   | 0.50                             | 1.7                          | < | 0.50                    |  |
| Isopropylbenzene            | 0.50                             | 1.7                          | < | 0.50                    |  |
| 1,1,2,2-Tetrachloroethane   | 0.50                             | 1.7                          | < | 0.50                    |  |
| Bromobenzene                | 0.50                             | 1.7                          | < | 0.50                    |  |
| 1,2,3-Trichloropropane      | 1.0                              | 3.3                          | < | 1.0                     |  |
| n-Propyl benzene            | 0.50                             | 1.7                          | < | 0.50                    |  |
| 2-Chlorotoluene             | 0.50                             | 1.7                          | < | 0.50                    |  |
| 1,3,5-Trimethylbenzene      | 0.50                             | 1.7                          | < | 0.50                    |  |
| 4-Chlorotoluene             | 0.50                             | 1.7                          | < | 0.50                    |  |
| t-Butyl benzene             | 0.50                             | 1.7                          | < | 0.50                    |  |
| 1,2,4-Trimethylbenzene      | 0.50                             | 1.7                          | < | 0.50                    |  |
| sec-Butyl benzene           | 0.50                             | 1.7                          | < | 0.50                    |  |
| 1,3-Dichlorobenzene         | 0.50                             | 1.7                          | < | 0.50                    |  |
| p-Isopropyl toluene         | 0.50                             | 1.7                          | < | 0.50                    |  |
| 1,4-Dichlorobenzene         | 0.50                             | 1.7                          | < | 0.50                    |  |
| n-Butyl benzene             | 0.50                             | 1.7                          | < | 0.50                    |  |
| 1,2-Dichlorobenzene         | 0.50                             | 1.7                          | < | 0.50                    |  |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by

Date: 11/2/5

Date Analyzed: DB Oak Project Name: 10/30/07 Project Location: Fort Atkinson, Wisconsin Concentration: ug/L Dilution Factor: Sample ID: MW-6 1 Lab Sample Number: 10/25/07 0710055-03

Date Collected:

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 0.50                    |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 2.0                     |
| Naphthalene                 | 5.0                              | 17                           | < | 5.0                     |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Dibromofluoromethane        |                                  |                              |   | 103%                    |
| Toluene-D8                  |                                  |                              |   | 101%                    |
| 4-Bromofluorobenzene        |                                  |                              |   | 101%                    |

M = Matrix Spike and/or Matrix Spike Duplicate recovery was outside acceptance limits.

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S.

2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Lab Sample Number:

0710055-04

Project Name:DB OakDate Analyzed:10/30/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-6ADilution Factor:1

Sample Type: Water

10/25/07

Date Collected:

| Compound water                 | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | ample<br><u>Result</u> |
|--------------------------------|----------------------------------|------------------------------|---|------------------------|
| Dichlorodifluoromethane        | 0.50                             | 1.7                          | < | 0.50                   |
| Chloromethane                  | 1.0                              | 3.3                          | < | 1.0                    |
| Vinyl Chloride                 | 0.50                             | 1.7                          | < | 0.50                   |
| Bromomethane                   | 5.0                              | 17                           | < | 5.0                    |
| Chloroethane                   | 5.0                              | 17                           | < | 5.0                    |
| Trichlorofluoromethane         | 0.50                             | 1.7                          | < | 0.50                   |
| 1,1,2-Trichlorotrifluoroethane | 0.50                             | 1.7                          | < | 0.50                   |
| 1,1-Dichloroethene             | 0.50                             | 1.7                          | < | 0.50                   |
| Acetone                        | 20                               | 67                           | < | 20                     |
| Carbon Disulfide               | 0.50                             | 1.7                          | < | 0.50                   |
| Methylene Chloride             | 2.0                              | 6.7                          | < | 2.0                    |
| Methyl-t-butyl Ether           | 0.50                             | 1.7                          | < | 0.50                   |
| t-1,2-Dichloroethene           | 0.50                             | 1.7                          | < | 0.50                   |
| n-Hexane                       | 0.50                             | 1.7                          | < | 0.50                   |
| 1,1-Dichloroethane             | 0.50                             | 1.7                          | < | 0.50                   |
| Diisopropyl Ether              | 0.50                             | 1.7                          | < | 0.50                   |
| 2,2-Dichloropropane            | 0.50                             | 1.7                          | < | 0.50                   |
| c-1,2-Dichloroethene           | 0.50                             | 1.7                          | < | 0.50                   |
| 2-Butanone (MEK)               | 20                               | 67                           | < | 20                     |
| Tetrahydrofuran                | 10                               | 33                           | < | 10                     |
| Bromochloromethane             | 0.50                             | 1.7                          | < | 0.50                   |
| Chloroform                     | 0.50                             | 1.7                          | < | 0.50                   |
| 1,1,1-Trichloroethane          | 0.50                             | 1.7                          | < | 0.50                   |
| Carbon Tetrachloride           | 0.50                             | 1.7                          | < | 0.50                   |
| 1,1-Dichloropropene            | 0.50                             | 1.7                          | < | 0.50                   |
| Benzene                        | 0.50                             | 1.7                          | < | 0.50                   |
| 1,2-Dichloroethane             | 0.50                             | 1.7                          | < | 0.50                   |
| Trichloroethene                | 0.50                             | 1.7                          | < | 0.50                   |
| 1,2-Dichloropropane            | 0.50                             | 1.7                          | < | 0.50                   |
| Dibromomethane                 | 0.50                             | 1.7                          | < | 0.50                   |
| Bromodichloromethane           | 0.50                             | 1.7                          | < | 0.50                   |
| c-1,3-Dichloropropene          | 0.50                             | 1.7                          | < | 0.50                   |
|                                |                                  |                              |   |                        |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Date: 11/2/5

Project Name:

DB Oak

Date Analyzed:

10/30/07

Project Location:

Fort Atkinson, Wisconsin Concentration:

ug/L

Sample ID:

MW-6A

Dilution Factor:

Date Collected:

10/25/07

Lab Sample Number:

0710055-04

Sample Type:

Water

| Reporting |
|-----------|
| Detection |

| Compound                                       | Detection<br>Limit | Quantitation<br><u>Limit</u> |     | ample<br><u>Result</u> |
|------------------------------------------------|--------------------|------------------------------|-----|------------------------|
|                                                | 20                 | 67                           | <   | 20                     |
| 4-Methyl-2-pentanone (MIBK) Toluene            | 0.50               | 1.7                          | <   | 0.50                   |
|                                                | 0.50               | 1.7                          | <   | 0.50                   |
| 1,1,2-Trichloroethane<br>t-1,3-Dichloropropene | 0.50               | 1.7                          | <   | 0.50                   |
| Tetrachloroethene                              | 0.50               | 1.7                          | <   | 0.50                   |
|                                                | 0.50               | 1.7                          | <   | 0.50                   |
| 1,3-Dichloropropane 2-Hexanone                 | 20                 | 67                           | <   | 20                     |
| Dibromochloromethane                           | 0.50               | 1.7                          | <   | 0.50                   |
|                                                | 0.50               | 1.7                          | <   | 0.50                   |
| 1,2-Dibromoethane Chlorobenzene                | 0.50               | 1.7                          | <   | 0.50                   |
|                                                | 0.50               | 1.7                          | <   | 0.50                   |
| 1,1,1,2-Tetrachloroethane                      | 0.50               | 1.7                          | <   | 0.50                   |
| Ethylbenzene                                   | 1.0                | 3.3                          | <   | 1.0                    |
| m+p-Xylene                                     | 0.50               | 1.7                          | <   | 0.50                   |
| o-Xylene                                       | 0.50               | 1.7                          | <   | 0.50                   |
| Styrene<br>Bromoform                           | 0.50               | 1.7                          | <   | 0.50                   |
|                                                | 0.50               | 1.7                          | <   | 0.50                   |
| Isopropylbenzene                               | 0.50               | 1.7                          | <   | 0.50                   |
| 1,1,2,2-Tetrachloroethane<br>Bromobenzene      | 0.50               | 1.7                          | <   | 0.50                   |
|                                                | 1.0                | 3.3                          | <   | 1.0                    |
| 1,2,3-Trichloropropane                         | 0.50               | 1.7                          | <   | 0.50                   |
| n-Propyl benzene 2-Chlorotoluene               | 0.50               | 1.7                          | <   | 0.50                   |
|                                                | 0.50               | 1.7                          | <   | 0.50                   |
| 1,3,5-Trimethylbenzene 4-Chlorotoluene         | 0.50               | 1.7                          | <   | 0.50                   |
|                                                | 0.50               | 1.7                          | <   | 0.50                   |
| t-Butyl benzene 1,2,4-Trimethylbenzene         | 0.50               | 1.7                          | <   | 0.50                   |
| sec-Butyl benzene                              | 0.50               | 1.7                          | <   | 0.50                   |
| 1,3-Dichlorobenzene                            | 0.50               | 1.7                          | <   | 0.50                   |
| p-Isopropyl toluene                            | 0.50               | 1.7                          | <   | 0.50                   |
| 1,4-Dichlorobenzene                            | 0.50               | 1.7                          | <   | 0.50                   |
| n-Butyl benzene                                | 0.50               | 1.7                          | <   | 0.50                   |
| 1,2-Dichlorobenzene                            | 0.50               | 1.7                          | · < | 0.50                   |
| 1,4-Dichiolognzene                             | 0.50               | 1.7                          | `   | 0.50                   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: R. C. C. C. Date: (1/2/57)

Lab Sample Number:

0710055-04

Project Name: DB Oak Date Analyzed: 10/30/07 Fort Atkinson, Wisconsin Concentration: Project Location: ug/L Dilution Factor: Sample ID: MW-6A

Date Collected: Sample Type: Water

10/25/07

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 0.50                    |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 2.0                     |
| Naphthalene                 | 5.0                              | 17                           | < | 5.0                     |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Dibromofluoromethane        |                                  |                              |   | 103%                    |
| Toluene-D8                  |                                  |                              |   | 103%                    |
| 4-Bromofluorobenzene        |                                  |                              |   | 103%                    |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Project Name: DB Oak Date Analyzed: 10/30/07
Project Location: Fort Atkinson, Wisconsin Concentration: ug/L
Sample ID: MW-7 Dilution Factor: 1

Date Collected: 10/25/07 Lab Sample Number: 0710055-05

Sample Type: Water

| Compound                       | Reporting<br>Detection<br><u>Limit</u> | Quantitation <u>Limit</u> |   | mple<br>esult |   |
|--------------------------------|----------------------------------------|---------------------------|---|---------------|---|
| Dichlorodifluoromethane        | 0.50                                   | 1.7                       | < | 0.50          |   |
| Chloromethane                  | 1.0                                    | 3.3                       | < | 1.0           |   |
| Vinyl Chloride                 | 0.50                                   | 1.7                       | < | 0.50          |   |
| Bromomethane                   | 5.0                                    | 17                        | < | 5.0           |   |
| Chloroethane                   | 5.0                                    | 17                        | < | 5.0           |   |
| Trichlorofluoromethane         | 0.50                                   | 1.7                       | < | 0.50          |   |
| 1,1,2-Trichlorotrifluoroethane | 0.50                                   | 1.7                       | < | 0.50          |   |
| 1,1-Dichloroethene             | 0.50                                   | 1.7                       | < | 0.50          |   |
| Acetone                        | 20                                     | 67                        | < | 20            |   |
| Carbon Disulfide               | 0.50                                   | 1.7                       | < | 0.50          |   |
| Methylene Chloride             | 2.0                                    | 6.7                       | < | 2.0           |   |
| Methyl-t-butyl Ether           | 0.50                                   | 1.7                       | < | 0.50          |   |
| t-1,2-Dichloroethene           | 0.50                                   | 1.7                       | < | 0.50          |   |
| n-Hexane                       | 0.50                                   | 1.7                       | < | 0.50          |   |
| 1,1-Dichloroethane             | 0.50                                   | 1.7                       | < | 0.50          |   |
| Diisopropyl Ether              | 0.50                                   | 1.7                       | < | 0.50          |   |
| 2,2-Dichloropropane            | 0.50                                   | 1.7                       | < | 0.50          |   |
| c-1,2-Dichloroethene           | 0.50                                   | 1.7                       | < | 0.50          |   |
| 2-Butanone (MEK)               | 20                                     | 67                        | < | 20            |   |
| Tetrahydrofuran                | 10                                     | 33                        | < | 10            |   |
| Bromochloromethane             | 0.50                                   | 1.7                       | < | 0.50          |   |
| Chloroform                     | 0.50                                   | 1.7                       | < | 0.50          |   |
| 1,1,1-Trichloroethane          | 0.50                                   | 1.7                       | < | 0.50          |   |
| Carbon Tetrachloride           | 0.50                                   | 1.7                       | < | 0.50          |   |
| 1,1-Dichloropropene            | 0.50                                   | 1.7                       | < | 0.50          |   |
| Benzene                        | 0.50                                   | 1.7                       | < | 0.50          |   |
| 1,2-Dichloroethane             | 0.50                                   | 1.7                       | < | 0.50          |   |
| Trichloroethene                | 0.50                                   | 1.7                       |   | 0.63          | J |
| 1,2-Dichloropropane            | 0.50                                   | 1.7                       | < | 0.50          |   |
| Dibromomethane                 | 0.50                                   | 1.7                       | < | 0.50          |   |
| Bromodichloromethane           | 0.50                                   | 1.7                       | < | 0.50          |   |
| c-1,3-Dichloropropene          | 0.50                                   | 1.7                       | < | 0.50          |   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by

Project Name:DB OakDate Analyzed:10/30/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-7Dilution Factor:1

Date Collected: 10/25/07 Lab Sample Number: 0710055-05

Sample Type: Water

|                             | Reporting Detection | Quantitation |   | Sample |
|-----------------------------|---------------------|--------------|---|--------|
| Compound                    | <u>Limit</u>        | <u>Limit</u> |   | Result |
| 4-Methyl-2-pentanone (MIBK) | 20                  | 67           | < | 20     |
| Toluene                     | 0.50                | 1.7          | < | 0.50   |
| 1,1,2-Trichloroethane       | 0.50                | 1.7          | < | 0.50   |
| t-1,3-Dichloropropene       | 0.50                | 1.7          | < | 0.50   |
| Tetrachloroethene           | 0.50                | 1.7          |   | 3.5    |
| 1,3-Dichloropropane         | 0.50                | 1.7          | < | 0.50   |
| 2-Hexanone                  | 20                  | 67           | < | 20     |
| Dibromochloromethane        | 0.50                | 1.7          | < | 0.50   |
| 1,2-Dibromoethane           | 0.50                | 1.7          | < | 0.50   |
| Chlorobenzene               | 0.50                | 1.7          | < | 0.50   |
| 1,1,1,2-Tetrachloroethane   | 0.50                | 1.7          | < | 0.50   |
| Ethylbenzene                | 0.50                | 1.7          | < | 0.50   |
| m+p-Xylene                  | 1.0                 | 3.3          | < | 1.0    |
| o-Xylene                    | 0.50                | 1.7          | < | 0.50   |
| Styrene                     | 0.50                | 1.7          | < | 0.50   |
| Bromoform                   | 0.50                | 1.7          | < | 0.50   |
| Isopropylbenzene            | 0.50                | 1.7          | < | 0.50   |
| 1,1,2,2-Tetrachloroethane   | 0.50                | 1.7          | < | 0.50   |
| Bromobenzene                | 0.50                | 1.7          | < | 0.50   |
| 1,2,3-Trichloropropane      | 1.0                 | 3.3          | < | 1.0    |
| n-Propyl benzene            | 0.50                | 1.7          | < | 0.50   |
| 2-Chlorotoluene             | 0.50                | 1.7          | < | 0.50   |
| 1,3,5-Trimethylbenzene      | 0.50                | 1.7          | < | 0.50   |
| 4-Chlorotoluene             | 0.50                | 1.7          | < | 0.50   |
| t-Butyl benzene             | 0.50                | 1.7          | < | 0.50   |
| 1,2,4-Trimethylbenzene      | 0.50                | 1.7          | < | 0.50   |
| sec-Butyl benzene           | 0.50                | 1.7          | < | 0.50   |
| 1,3-Dichlorobenzene         | 0.50                | 1.7          | < | 0.50   |
| p-Isopropyl toluene         | 0.50                | 1.7          | < | 0.50   |
| 1,4-Dichlorobenzene         | 0.50                | 1.7          | < | 0.50   |
| n-Butyl benzene             | 0.50                | 1.7          | < | 0.50   |
| 1,2-Dichlorobenzene         | 0.50                | 1.7          | < | 0.50   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Date: {{/

Project Name:DB OakDate Analyzed:10/30/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-7Dilution Factor:1Date Collected:10/25/07Lab Sample Number:0710055-05

Sample Type: Water

| <u>Compound</u>             | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < 0.50                  |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < 2.0                   |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < 2.0                   |
| Naphthalene                 | 5.0                              | 17                           | < 5.0                   |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < 2.0                   |
| Dibromofluoromethane        |                                  |                              | 101%                    |
| Toluene-D8                  |                                  |                              | 99.9%                   |
| 4-Bromofluorobenzene        |                                  |                              | 101%                    |

J = Estimated.

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by

Date: 【【/】

Project Name: DB Oak Date Analyzed: 10/31/07
Project Location: Fort Atkinson, Wisconsin Concentration: ug/L
Sample ID: MW-7A Dilution Factor: 10

Date Collected: 10/25/07 Lab Sample Number: 0710055-06

Sample Type: Water

| Compound                       | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> | Sample<br><u>Result</u> |  |
|--------------------------------|----------------------------------|------------------------------|-------------------------|--|
| Dichlorodifluoromethane        | 0.50                             | 1.7                          | < 5.0                   |  |
| Chloromethane                  | 1.0                              | 3.3                          | < 10                    |  |
| Vinyl Chloride                 | 0.50                             | 1.7                          | < 5.0                   |  |
| Bromomethane                   | 5.0                              | 17                           | < 50                    |  |
| Chloroethane                   | 5.0                              | 17                           | < 50                    |  |
| Trichlorofluoromethane         | 0.50                             | 1.7                          | < 5.0                   |  |
| 1,1,2-Trichlorotrifluoroethane | 0.50                             | 1.7                          | < 5.0                   |  |
| 1,1-Dichloroethene             | 0.50                             | 1.7                          | < 5.0                   |  |
| Acetone                        | 20                               | 67                           | < 200                   |  |
| Carbon Disulfide               | 0.50                             | 1.7                          | < 5.0                   |  |
| Methylene Chloride             | 2.0                              | 6.7                          | < 20                    |  |
| Methyl-t-butyl Ether           | 0.50                             | 1.7                          | < 5.0                   |  |
| t-1,2-Dichloroethene           | 0.50                             | 1.7                          | < 5.0                   |  |
| n-Hexane                       | 0.50                             | 1.7                          | < 5.0                   |  |
| 1,1-Dichloroethane             | 0.50                             | 1.7                          | < 5.0                   |  |
| Diisopropyl Ether              | 0.50                             | 1.7                          | < 5.0                   |  |
| 2,2-Dichloropropane            | 0.50                             | 1.7                          | < 5.0                   |  |
| c-1,2-Dichloroethene           | 0.50                             | 1.7                          | < 5.0                   |  |
| 2-Butanone (MEK)               | 20                               | 67                           | < 200                   |  |
| Tetrahydrofuran                | 10                               | 33                           | < 100                   |  |
| Bromochloromethane             | 0.50                             | 1.7                          | < 5.0                   |  |
| Chloroform                     | 0.50                             | 1.7                          | < 5.0                   |  |
| 1,1,1-Trichloroethane          | 0.50                             | 1.7                          | < 5.0                   |  |
| Carbon Tetrachloride           | 0.50                             | 1.7                          | < 5.0                   |  |
| 1,1-Dichloropropene            | 0.50                             | 1.7                          | < 5.0                   |  |
| Benzene                        | 0.50                             | 1.7                          | < 5.0                   |  |
| 1,2-Dichloroethane             | 0.50                             | 1.7                          | < 5.0                   |  |
| Trichloroethene                | 0.50                             | 1.7                          | 110                     |  |
| 1,2-Dichloropropane            | 0.50                             | 1.7                          | < 5.0                   |  |
| Dibromomethane                 | 0.50                             | 1.7                          | < 5.0                   |  |
| Bromodichloromethane           | 0.50                             | 1.7                          | < 5.0                   |  |
| c-1,3-Dichloropropene          | 0.50                             | 1.7                          | < 5.0                   |  |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name: DB Oak Date Analyzed: 10/31/07 Project Location: Fort Atkinson, Wisconsin Concentration: ug/L Sample ID: MW-7A Dilution Factor: 10

Lab Sample Number: Date Collected: 10/25/07 0710055-06

Sample Type: Water

| Compound                    | Reporting Detection Limit | Quantitation <u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|---------------------------|---------------------------|---|-------------------------|
| 4-Methyl-2-pentanone (MIBK) | 20                        | 67                        | < | 200                     |
| Toluene                     | 0.50                      | 1.7                       | < | 5.0                     |
| 1,1,2-Trichloroethane       | 0.50                      | 1.7                       | < | 5.0                     |
| t-1,3-Dichloropropene       | 0.50                      | 1.7                       | < | 5.0                     |
| Tetrachloroethene           | 0.50                      | 1.7                       |   | 310                     |
| 1,3-Dichloropropane         | 0.50                      | 1.7                       | < | 5.0                     |
| 2-Hexanone                  | 20                        | 67                        | < | 200                     |
| Dibromochloromethane        | 0.50                      | 1.7                       | < | 5.0                     |
| 1,2-Dibromoethane           | 0.50                      | 1.7                       | < | 5.0                     |
| Chlorobenzene               | 0.50                      | 1.7                       | < | 5.0                     |
| 1,1,1,2-Tetrachloroethane   | 0.50                      | 1.7                       | < | 5.0                     |
| Ethylbenzene                | 0.50                      | 1.7                       | < | 5.0                     |
| m+p-Xylene                  | 1.0                       | 3.3                       | < | 10                      |
| o-Xylene                    | 0.50                      | 1.7                       | < | 5.0                     |
| Styrene                     | 0.50                      | 1.7                       | < | 5.0                     |
| Bromoform                   | 0.50                      | 1.7                       | < | 5.0                     |
| Isopropylbenzene            | 0.50                      | 1.7                       | < | 5.0                     |
| 1,1,2,2-Tetrachloroethane   | 0.50                      | 1.7                       | < | 5.0                     |
| Bromobenzene                | 0.50                      | 1.7                       | < | 5.0                     |
| 1,2,3-Trichloropropane      | 1.0                       | 3.3                       | < | 10                      |
| n-Propyl benzene            | 0.50                      | 1.7                       | < | 5.0                     |
| 2-Chlorotoluene             | 0.50                      | 1.7                       | < | 5.0                     |
| 1,3,5-Trimethylbenzene      | 0.50                      | 1.7                       | < | 5.0                     |
| 4-Chlorotoluene             | 0.50                      | 1.7                       | < | 5.0                     |
| t-Butyl benzene             | 0.50                      | 1.7                       | < | 5.0                     |
| 1,2,4-Trimethylbenzene      | 0.50                      | 1.7                       | < | 5.0                     |
| sec-Butyl benzene           | 0.50                      | 1.7                       | < | 5.0                     |
| 1,3-Dichlorobenzene         | 0.50                      | 1.7                       | < | 5.0                     |
| p-Isopropyl toluene         | 0.50                      | 1.7                       | < | 5.0                     |
| 1,4-Dichlorobenzene         | 0.50                      | 1.7                       | < | 5.0                     |
| n-Butyl benzene             | 0.50                      | 1.7                       | < | 5.0                     |
| 1,2-Dichlorobenzene         | 0.50                      | 1.7                       | < | 5.0                     |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Date: ((/2/5)

Project Name: DB Oak Date Analyzed: 10/31/07 Fort Atkinson, Wisconsin Concentration: Project Location: ug/L Sample ID: Dilution Factor: MW-7A 10 Lab Sample Number: 10/25/07 Date Collected: 0710055-06

Sample Type: Water

| <u>Compound</u>             | Reporting<br>Detection<br><u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br>Result |
|-----------------------------|----------------------------------------|------------------------------|---|------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                                   | 1.7                          | < | 5.0              |
| 1,2,4-Trichlorobenzene      | 2.0                                    | 6.7                          | < | 20               |
| Hexachlorobutadiene         | 2.0                                    | 6.7                          | < | 20               |
| Naphthalene                 | 5.0                                    | 17                           | < | 50               |
| 1,2,3-Trichlorobenzene      | 2.0                                    | 6.7                          | < | 20               |
| Dibromofluoromethane        |                                        |                              |   | 104%             |
| Toluene-D8                  |                                        |                              |   | 102%             |
| 4-Bromofluorobenzene        |                                        |                              |   | 104%             |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Date: I(/1/5)

Project Name: DB Oak Fort Atkinson, Wisconsin Concentration: Project Location: Sample ID: MW-7B

Date Analyzed: 10/30/07 ug/L Dilution Factor: 1

Date Collected:

Sample Type:

10/25/07 Water

Lab Sample Number: 0710055-07

| Compound                       | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | ample<br><u>Result</u> |   |
|--------------------------------|----------------------------------|------------------------------|---|------------------------|---|
| Dichlorodifluoromethane        | 0.50                             | 1.7                          | < | 0.50                   |   |
| Chloromethane                  | 1.0                              | 3.3                          | < | 1.0                    |   |
| Vinyl Chloride                 | 0.50                             | 1.7                          | < | 0.50                   |   |
| Bromomethane                   | 5.0                              | 17                           | < | 5.0                    |   |
| Chloroethane                   | 5.0                              | 17                           | < | 5.0                    |   |
| Trichlorofluoromethane         | 0.50                             | 1.7                          | < | 0.50                   |   |
| 1,1,2-Trichlorotrifluoroethane | 0.50                             | 1.7                          | < | 0.50                   |   |
| 1,1-Dichloroethene             | 0.50                             | 1.7                          | < | 0.50                   |   |
| Acetone                        | 20                               | 67                           | < | 20                     |   |
| Carbon Disulfide               | 0.50                             | 1.7                          | < | 0.50                   |   |
| Methylene Chloride             | 2.0                              | 6.7                          | < | 2.0                    |   |
| Methyl-t-butyl Ether           | 0.50                             | 1.7                          | < | 0.50                   |   |
| t-1,2-Dichloroethene           | 0.50                             | 1.7                          | < | 0.50                   |   |
| n-Hexane                       | 0.50                             | 1.7                          | < | 0.50                   |   |
| 1,1-Dichloroethane             | 0.50                             | 1.7                          | < | 0.50                   |   |
| Diisopropyl Ether              | 0.50                             | 1.7                          | < | 0.50                   |   |
| 2,2-Dichloropropane            | 0.50                             | 1.7                          | < | 0.50                   |   |
| c-1,2-Dichloroethene           | 0.50                             | 1.7                          | < | 0.50                   |   |
| 2-Butanone (MEK)               | 20                               | 67                           | < | 20                     |   |
| Tetrahydrofuran                | 10                               | 33                           | < | 10                     |   |
| Bromochloromethane             | 0.50                             | 1.7                          | < | 0.50                   |   |
| Chloroform                     | 0.50                             | 1.7                          | < | 0.50                   |   |
| 1,1,1-Trichloroethane          | 0.50                             | 1.7                          | < | 0.50                   |   |
| Carbon Tetrachloride           | 0.50                             | 1.7                          | < | 0.50                   |   |
| 1,1-Dichloropropene            | 0.50                             | 1.7                          | < | 0.50                   |   |
| Benzene                        | 0.50                             | 1.7                          | < | 0.50                   |   |
| 1,2-Dichloroethane             | 0.50                             | 1.7                          | < | 0.50                   |   |
| Trichloroethene                | 0.50                             | 1.7                          |   | 0.87                   | J |
| 1,2-Dichloropropane            | 0.50                             | 1.7                          | < | 0.50                   |   |
| Dibromomethane                 | 0.50                             | 1.7                          | < | 0.50                   |   |
| Bromodichloromethane           | 0.50                             | 1.7                          | < | 0.50                   |   |
| c-1,3-Dichloropropene          | 0.50                             | 1.7                          | < | 0.50                   |   |
|                                |                                  |                              |   |                        |   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Date: ((/4/57)

Project Name:

DB Oak

Date Analyzed:

10/30/07

Project Location:

Fort Atkinson, Wisconsin Concentration:

Sample ID:

MW-7B

Dilution Factor:

ug/L 1

Date Collected:

10/25/07

Sample Type:

Water

Lab Sample Number:

0710055-07

| 7.                          | Reporting Detection | Quantitation | Sample |
|-----------------------------|---------------------|--------------|--------|
| Compound                    | <u>Limit</u>        | <u>Limit</u> | Result |
| 4-Methyl-2-pentanone (MIBK) | 20                  | 67           | < 20   |
| Toluene                     | 0.50                | 1.7          | < 0.50 |
| 1,1,2-Trichloroethane       | 0.50                | 1.7          | < 0.50 |
| t-1,3-Dichloropropene       | 0.50                | 1.7          | < 0.50 |
| Tetrachloroethene           | 0.50                | 1.7          | 6.9    |
| 1,3-Dichloropropane         | 0.50                | 1.7          | < 0.50 |
| 2-Hexanone                  | 20                  | 67           | < 20   |
| Dibromochloromethane        | 0.50                | 1.7          | < 0.50 |
| 1,2-Dibromoethane           | 0.50                | 1.7          | < 0.50 |
| Chlorobenzene               | 0.50                | 1.7          | < 0.50 |
| 1,1,1,2-Tetrachloroethane   | 0.50                | 1.7          | < 0.50 |
| Ethylbenzene                | 0.50                | 1.7          | < 0.50 |
| m+p-Xylene                  | 1.0                 | 3.3          | < 1.0  |
| o-Xylene                    | 0.50                | 1.7          | < 0.50 |
| Styrene                     | 0.50                | 1.7          | < 0.50 |
| Bromoform                   | 0.50                | 1.7          | < 0.50 |
| Isopropylbenzene            | 0.50                | 1.7          | < 0.50 |
| 1,1,2,2-Tetrachloroethane   | 0.50                | 1.7          | < 0.50 |
| Bromobenzene                | 0.50                | 1.7          | < 0.50 |
| 1,2,3-Trichloropropane      | 1.0                 | 3.3          | < 1.0  |
| n-Propyl benzene            | 0.50                | 1.7          | < 0.50 |
| 2-Chlorotoluene             | 0.50                | 1.7          | < 0.50 |
| 1,3,5-Trimethylbenzene      | 0.50                | 1.7          | < 0.50 |
| 4-Chlorotoluene             | 0.50                | 1.7          | < 0.50 |
| t-Butyl benzene             | 0.50                | 1.7          | < 0.50 |
| 1,2,4-Trimethylbenzene      | 0.50                | 1.7          | < 0.50 |
| sec-Butyl benzene           | 0.50                | 1.7          | < 0.50 |
| 1,3-Dichlorobenzene         | 0.50                | 1.7          | < 0.50 |
| p-Isopropyl toluene         | 0.50                | 1.7          | < 0.50 |
| 1,4-Dichlorobenzene         | 0.50                | 1.7          | < 0.50 |
| n-Butyl benzene             | 0.50                | 1.7          | < 0.50 |
| 1,2-Dichlorobenzene         | 0.50                | 1.7          | < 0.50 |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Approved by: Date: (1/45)

Project Name: DB Oak Date Analyzed: 10/30/07 Project Location: Fort Atkinson, Wisconsin Concentration: ug/L Sample ID: MW-7B Dilution Factor: Date Collected: 10/25/07 Lab Sample Number: 0710055-07

Sample Type: Water

| Compound                    | Reporting<br>Detection<br><u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                                   | 1.7                          | < | 0.50                    |
| 1,2,4-Trichlorobenzene      | 2.0                                    | 6.7                          | < | 2.0                     |
| Hexachlorobutadiene         | 2.0                                    | 6.7                          | < | 2.0                     |
| Naphthalene                 | 5.0                                    | 17                           | < | 5.0                     |
| 1,2,3-Trichlorobenzene      | 2.0                                    | 6.7                          | < | 2.0                     |
| Dibromofluoromethane        |                                        |                              |   | 103%                    |
| Toluene-D8                  |                                        |                              |   | 101%                    |
| 4-Bromofluorobenzene        |                                        |                              |   | 98.8%                   |

J = Estimated.

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Date: ((/1/5)

Project Name:

DB Oak

Date Analyzed:

10/30/07

Project Location:

Fort Atkinson, Wisconsin Concentration:

ug/L

Sample ID:

MW-8

Dilution Factor:

1

Date Collected:

10/25/07

Lab Sample Number:

0710055-08

Sample Type:

Water

Reporting

| Compound                       | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> | Samp<br><u>Resu</u> |    |
|--------------------------------|----------------------------------|------------------------------|---------------------|----|
| Dichlorodifluoromethane        | 0.50                             | 1.7                          | < 0.5               | 0  |
| Chloromethane                  | 1.0                              | 3.3                          | < 1.0               | )  |
| Vinyl Chloride                 | 0.50                             | 1.7                          | < 0.5               | 0  |
| Bromomethane                   | 5.0                              | 17                           | < 5.0               | С  |
| Chloroethane                   | 5.0                              | 17                           | < 5.0               | C  |
| Trichlorofluoromethane         | 0.50                             | 1.7                          | < 0.5               | 0  |
| 1,1,2-Trichlorotrifluoroethane | 0.50                             | 1.7                          | < 0.5               | 0  |
| 1,1-Dichloroethene             | 0.50                             | 1.7                          | < 0.5               | 0  |
| Acetone                        | 20                               | 67                           | < 20                | )  |
| Carbon Disulfide               | 0.50                             | 1.7                          | < 0.5               | 0  |
| Methylene Chloride             | 2.0                              | 6.7                          | < 2.0               | 0  |
| Methyl-t-butyl Ether           | 0.50                             | 1.7                          | < 0.5               | 0  |
| t-1,2-Dichloroethene           | 0.50                             | 1.7                          | < 0.5               | 0  |
| n-Hexane                       | 0.50                             | 1.7                          | < 0.5               | 0  |
| 1,1-Dichloroethane             | 0.50                             | 1.7                          | < 0.5               | 0  |
| Diisopropyl Ether              | 0.50                             | 1.7                          | < 0.5               | 0  |
| 2,2-Dichloropropane            | 0.50                             | 1.7                          | < 0.5               | 0  |
| c-1,2-Dichloroethene           | 0.50                             | 1.7                          | < 0.5               | 0  |
| 2-Butanone (MEK)               | 20                               | 67                           | < 20                | )  |
| Tetrahydrofuran                | 10                               | 33                           | < 10                | )  |
| Bromochloromethane             | 0.50                             | 1.7                          | < 0.5               | 0  |
| Chloroform                     | 0.50                             | 1.7                          | < 0.5               | 0  |
| 1,1,1-Trichloroethane          | 0.50                             | 1.7                          | < 0.5               | 0  |
| Carbon Tetrachloride           | 0.50                             | 1.7                          | < 0.5               | 90 |
| 1,1-Dichloropropene            | 0.50                             | 1.7                          | < 0.5               | 50 |
| Benzene                        | 0.50                             | 1.7                          | < 0.5               | 50 |
| 1,2-Dichloroethane             | 0.50                             | 1.7                          | < 0.5               | 50 |
| Trichloroethene                | 0.50                             | 1.7                          | < 0.5               | 50 |
| 1,2-Dichloropropane            | 0.50                             | 1.7                          | < 0.5               | 50 |
| Dibromomethane                 | 0.50                             | 1.7                          | < 0.5               | 50 |
| Bromodichloromethane           | 0.50                             | 1.7                          | < 0.5               | 50 |
| c-1,3-Dichloropropene          | 0.50                             | 1.7                          | < 0.5               | 50 |

Method Reference: Modified 8260

WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Project Name:DB OakDate Analyzed:10/30/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-8Dilution Factor:1

Date Collected: 10/25/07 Lab Sample Number: 0710055-08

Sample Type: Water

|                             | Reporting Detection | Quantitation | Sample |   |
|-----------------------------|---------------------|--------------|--------|---|
| Compound                    | <u>Limit</u>        | <u>Limit</u> | Result |   |
| 4-Methyl-2-pentanone (MIBK) | 20                  | 67           | < 20   |   |
| Toluene                     | 0.50                | 1.7          | < 0.50 | ) |
| 1,1,2-Trichloroethane       | 0.50                | 1.7          | < 0.50 | ) |
| t-1,3-Dichloropropene       | 0.50                | 1.7          | < 0.50 | ) |
| Tetrachloroethene           | 0.50                | 1.7          | < 0.50 | ) |
| 1,3-Dichloropropane         | 0.50                | 1.7          | < 0.50 | ) |
| 2-Hexanone                  | 20                  | 67           | < 20   |   |
| Dibromochloromethane        | 0.50                | 1.7          | < 0.50 | ) |
| 1,2-Dibromoethane           | 0.50                | 1.7          | < 0.50 | ) |
| Chlorobenzene               | 0.50                | 1.7          | < 0.50 | ) |
| 1,1,1,2-Tetrachloroethane   | 0.50                | 1.7          | < 0.50 | ) |
| Ethylbenzene                | 0.50                | 1.7          | < 0.50 | ) |
| m+p-Xylene                  | 1.0                 | 3.3          | < 1.0  |   |
| o-Xylene                    | 0.50                | 1.7          | < 0.50 | ) |
| Styrene                     | 0.50                | 1.7          | < 0.50 | ) |
| Bromoform                   | 0.50                | 1.7          | < 0.50 | ) |
| Isopropylbenzene            | 0.50                | 1.7          | < 0.50 | ) |
| 1,1,2,2-Tetrachloroethane   | 0.50                | 1.7          | < 0.50 | ) |
| Bromobenzene                | 0.50                | 1.7          | < 0.50 | ) |
| 1,2,3-Trichloropropane      | 1.0                 | 3.3          | < 1.0  |   |
| n-Propyl benzene            | 0.50                | 1.7          | < 0.50 | ) |
| 2-Chlorotoluene             | 0.50                | 1.7          | < 0.50 | ) |
| 1,3,5-Trimethylbenzene      | 0.50                | 1.7          | < 0.50 | ) |
| 4-Chlorotoluene             | 0.50                | 1.7          | < 0.50 | ) |
| t-Butyl benzene             | 0.50                | 1.7          | < 0.50 | ) |
| 1,2,4-Trimethylbenzene      | 0.50                | 1.7          | < 0.50 | ) |
| sec-Butyl benzene           | 0.50                | 1.7          | < 0.50 | ) |
| 1,3-Dichlorobenzene         | 0.50                | 1.7          | < 0.50 | ) |
| p-Isopropyl toluene         | 0.50                | 1.7          | < 0.50 | ) |
| 1,4-Dichlorobenzene         | 0.50                | 1.7          | < 0.50 | ) |
| n-Butyl benzene             | 0.50                | 1.7          | < 0.50 | ) |
| 1,2-Dichlorobenzene         | 0.50                | 1.7          | < 0.50 | ) |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by

Date Analyzed: Project Name: DB Oak 10/30/07 Fort Atkinson, Wisconsin Concentration: ug/L Project Location: Dilution Factor: Sample ID: MW-8

Lab Sample Number: Date Collected: 10/25/07 0710055-08

Sample Type: Water

| Compound                    | Reporting<br>Detection<br><u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                                   | 1.7                          | < | 0.50                    |
| 1,2,4-Trichlorobenzene      | 2.0                                    | 6.7                          | < | 2.0                     |
| Hexachlorobutadiene         | 2.0                                    | 6.7                          | < | 2.0                     |
| Naphthalene                 | 5.0                                    | 17                           | < | 5.0                     |
| 1,2,3-Trichlorobenzene      | 2.0                                    | 6.7                          | < | 2.0                     |
| Dibromofluoromethane        |                                        |                              |   | 105%                    |
| Toluene-D8                  |                                        |                              |   | 101%                    |
| 4-Bromofluorobenzene        |                                        |                              |   | 102%                    |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Mand

Project Name:DB OakDate Analyzed:10/30/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:MW-8ADilution Factor:1

Date Collected: 10/25/07 Lab Sample Number: 0710055-09

Sample Type: Water

| Compound                       | Reporting Detection <u>Limit</u> | Quantitation <u>Limit</u> |   | ample<br><u>Result</u> |   |
|--------------------------------|----------------------------------|---------------------------|---|------------------------|---|
| Dichlorodifluoromethane        | 0.50                             | 1.7                       | < | 0.50                   |   |
| Chloromethane                  | 1.0                              | 3.3                       | < | 1.0                    |   |
| Vinyl Chloride                 | 0.50                             | 1.7                       | < | 0.50                   | , |
| Bromomethane                   | 5.0                              | 17                        | < | 5.0                    |   |
| Chloroethane                   | 5.0                              | 17                        | < | 5.0                    |   |
| Trichlorofluoromethane         | 0.50                             | 1.7                       | < | 0.50                   |   |
| 1,1,2-Trichlorotrifluoroethane | 0.50                             | 1.7                       | < | 0.50                   |   |
| 1,1-Dichloroethene             | 0.50                             | 1.7                       | < | 0.50                   |   |
| Acetone                        | 20                               | 67                        | < | 20                     |   |
| Carbon Disulfide               | 0.50                             | 1.7                       | < | 0.50                   |   |
| Methylene Chloride             | 2.0                              | 6.7                       | < | 2.0                    |   |
| Methyl-t-butyl Ether           | 0.50                             | 1.7                       | < | 0.50                   |   |
| t-1,2-Dichloroethene           | 0.50                             | 1.7                       | < | 0.50                   |   |
| n-Hexane                       | 0.50                             | 1.7                       | < | 0.50                   |   |
| 1,1-Dichloroethane             | 0.50                             | 1.7                       | < | 0.50                   |   |
| Diisopropyl Ether              | 0.50                             | 1.7                       | < | 0.50                   |   |
| 2,2-Dichloropropane            | 0.50                             | 1.7                       | < | 0.50                   |   |
| c-1,2-Dichloroethene           | 0.50                             | 1.7                       | < | 0.50                   |   |
| 2-Butanone (MEK)               | 20                               | 67                        | < | 20                     |   |
| Tetrahydrofuran                | 10                               | 33                        | < | 10                     |   |
| Bromochloromethane             | 0.50                             | 1.7                       | < | 0.50                   |   |
| Chloroform                     | 0.50                             | 1.7                       |   | 1.1                    | J |
| 1,1,1-Trichloroethane          | 0.50                             | 1.7                       | < | 0.50                   |   |
| Carbon Tetrachloride           | 0.50                             | 1.7                       | < | 0.50                   |   |
| 1,1-Dichloropropene            | 0.50                             | 1.7                       | < | 0.50                   |   |
| Benzene                        | 0.50                             | 1.7                       | < | 0.50                   |   |
| 1,2-Dichloroethane             | 0.50                             | 1.7                       | < | 0.50                   |   |
| Trichloroethene                | 0.50                             | 1.7                       | < | 0.50                   |   |
| 1,2-Dichloropropane            | 0.50                             | 1.7                       | < | 0.50                   |   |
| Dibromomethane                 | 0.50                             | 1.7                       | < | 0.50                   |   |
| Bromodichloromethane           | 0.50                             | 1.7                       |   | 1.1                    | J |
| c-1,3-Dichloropropene          | 0.50                             | 1.7                       | < | 0.50                   |   |
|                                |                                  |                           |   |                        |   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name: Date Analyzed: DB Oak 10/30/07 Project Location: Fort Atkinson, Wisconsin Concentration: ug/L Sample ID: MW-8A Dilution Factor:

Date Collected: 10/25/07 Lab Sample Number: 0710055-09

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | ample<br>Result |   |
|-----------------------------|----------------------------------|------------------------------|---|-----------------|---|
| 4-Methyl-2-pentanone (MIBK) | 20                               | 67                           | < | 20              |   |
| Toluene                     | 0.50                             | 1.7                          | < | 0.50            |   |
| 1,1,2-Trichloroethane       | 0.50                             | 1.7                          | < | 0.50            |   |
| t-1,3-Dichloropropene       | 0.50                             | 1.7                          | < | 0.50            |   |
| Tetrachloroethene           | 0.50                             | 1.7                          | < | 0.50            |   |
| 1,3-Dichloropropane         | 0.50                             | 1.7                          | < | 0.50            |   |
| 2-Hexanone                  | 20                               | 67                           | < | 20              |   |
| Dibromochloromethane        | 0.50                             | 1.7                          |   | 1.3             | J |
| 1,2-Dibromoethane           | 0.50                             | 1.7                          | < | 0.50            |   |
| Chlorobenzene               | 0.50                             | 1.7                          | < | 0.50            |   |
| 1,1,1,2-Tetrachloroethane   | 0.50                             | 1.7                          | < | 0.50            |   |
| Ethylbenzene                | 0.50                             | 1.7                          | < | 0.50            |   |
| m+p-Xylene                  | 1.0                              | 3.3                          | < | 1.0             |   |
| o-Xylene                    | 0.50                             | 1.7                          | < | 0.50            |   |
| Styrene                     | 0.50                             | 1.7                          | < | 0.50            |   |
| Bromoform                   | 0.50                             | 1.7                          |   | 0.82            | J |
| Isopropylbenzene            | 0.50                             | 1.7                          | < | $0.50^{\circ}$  |   |
| 1,1,2,2-Tetrachloroethane   | 0.50                             | 1.7                          | < | 0.50            |   |
| Bromobenzene                | 0.50                             | 1.7                          | < | 0.50            |   |
| 1,2,3-Trichloropropane      | 1.0                              | 3.3                          | < | 1.0             |   |
| n-Propyl benzene            | 0.50                             | 1.7                          | < | 0.50            |   |
| 2-Chlorotoluene             | 0.50                             | 1.7                          | < | 0.50            |   |
| 1,3,5-Trimethylbenzene      | 0.50                             | 1.7                          | < | 0.50            |   |
| 4-Chlorotoluene             | 0.50                             | 1.7                          | < | 0.50            |   |
| t-Butyl benzene             | 0.50                             | 1.7                          | < | 0.50            |   |
| 1,2,4-Trimethylbenzene      | 0.50                             | 1.7                          | < | 0.50            |   |
| sec-Butyl benzene           | 0.50                             | 1.7                          | < | 0.50            |   |
| 1,3-Dichlorobenzene         | 0.50                             | 1.7                          | < | 0.50            |   |
| p-Isopropyl toluene         | 0.50                             | 1.7                          | < | 0.50            |   |
| 1,4-Dichlorobenzene         | 0.50                             | 1.7                          | < | 0.50            |   |
| n-Butyl benzene             | 0.50                             | 1.7                          | < | 0.50            |   |
| 1,2-Dichlorobenzene         | 0.50                             | 1.7                          | < | 0.50            |   |
|                             |                                  |                              |   |                 |   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: All All All Date: U(145)

Project Name: Date Analyzed: DB Oak 10/30/07 Project Location: Fort Atkinson, Wisconsin Concentration: ug/L Sample ID: MW-8A Dilution Factor: Lab Sample Number: Date Collected: 10/25/07 0710055-09

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 0.50                    |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 2.0                     |
| Naphthalene                 | 5.0                              | 17                           | < | 5.0                     |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 2.0                     |
| Dibromofluoromethane        |                                  |                              |   | 103%                    |
| Toluene-D8                  |                                  |                              |   | 101%                    |
| 4-Bromofluorobenzene        |                                  |                              |   | 98.2%                   |

J = Estimated.

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Mall

Project Name: DB Oak Date Analyzed: 10/30/07 Project Location: Fort Atkinson, Wisconsin Concentration: ug/L Sample ID: MW-8B Dilution Factor:

Date Collected: Lab Sample Number: 10/25/07 0710055-10

Sample Type: Water

| Compound                       | Reporting<br>Detection<br><u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br>Result |
|--------------------------------|----------------------------------------|------------------------------|---|------------------|
| Dichlorodifluoromethane        | 0.50                                   | 1.7                          | < | 0.50             |
| Chloromethane                  | 1.0                                    | 3.3                          | < | 1.0              |
| Vinyl Chloride                 | 0.50                                   | 1.7                          | < | 0.50             |
| Bromomethane                   | 5.0                                    | 17                           | < | 5.0              |
| Chloroethane                   | 5.0                                    | 17                           | < | 5.0              |
| Trichlorofluoromethane         | 0.50                                   | 1.7                          | < | 0.50             |
| 1,1,2-Trichlorotrifluoroethane | 0.50                                   | 1.7                          | < | 0.50             |
| 1,1-Dichloroethene             | 0.50                                   | 1.7                          | < | 0.50             |
| Acetone                        | 20                                     | 67                           | < | 20               |
| Carbon Disulfide               | 0.50                                   | 1.7                          | < | 0.50             |
| Methylene Chloride             | 2.0                                    | 6.7                          | < | 2.0              |
| Methyl-t-butyl Ether           | 0.50                                   | 1.7                          | < | 0.50             |
| t-1,2-Dichloroethene           | 0.50                                   | 1.7                          | < | 0.50             |
| n-Hexane                       | 0.50                                   | 1.7                          | < | 0.50             |
| 1,1-Dichloroethane             | 0.50                                   | 1.7                          | < | 0.50             |
| Diisopropyl Ether              | 0.50                                   | 1.7                          | < | 0.50             |
| 2,2-Dichloropropane            | 0.50                                   | 1.7                          | < | 0.50             |
| c-1,2-Dichloroethene           | 0.50                                   | 1.7                          | < | 0.50             |
| 2-Butanone (MEK)               | 20                                     | 67                           | < | 20               |
| Tetrahydrofuran                | 10                                     | 33                           | < | 10               |
| Bromochloromethane             | 0.50                                   | 1.7                          | < | 0.50             |
| Chloroform                     | 0.50                                   | 1.7                          | < | 0.50             |
| 1,1,1-Trichloroethane          | 0.50                                   | 1.7                          | < | 0.50             |
| Carbon Tetrachloride           | 0.50                                   | 1.7                          | < | 0.50             |
| 1,1-Dichloropropene            | 0.50                                   | 1.7                          | < | 0.50             |
| Benzene                        | 0.50                                   | 1.7                          | < | 0.50             |
| 1,2-Dichloroethane             | 0.50                                   | 1.7                          | < | 0.50             |
| Trichloroethene                | 0.50                                   | 1.7                          | < | 0.50             |
| 1,2-Dichloropropane            | 0.50                                   | 1.7                          | < | 0.50             |
| Dibromomethane                 | 0.50                                   | 1.7                          | < | 0.50             |
| Bromodichloromethane           | 0.50                                   | 1.7                          | < | 0.50             |
| c-1,3-Dichloropropene          | 0.50                                   | 1.7                          | < | 0.50             |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Date: (1/2/5)

Project Name:

DB Oak

Date Analyzed:

10/30/07

Project Location:

Fort Atkinson, Wisconsin Concentration:

ug/L

Sample ID:

MW-8B

Dilution Factor:

1

Date Collected:

10/25/07

Lab Sample Number:

0710055-10

Sample Type:

Water

| Re | por | tin | g |
|----|-----|-----|---|
|    |     |     |   |

|                             | Detection    | Quantitation | Sample   |        |
|-----------------------------|--------------|--------------|----------|--------|
| Compound                    | <u>Limit</u> | <u>Limit</u> | <u>]</u> | Result |
| 4-Methyl-2-pentanone (MIBK) | 20           | 67           | <        | 20     |
| Toluene                     | 0.50         | 1.7          | <        | 0.50   |
| 1,1,2-Trichloroethane       | 0.50         | 1.7          | <        | 0.50   |
| t-1,3-Dichloropropene       | 0.50         | 1.7          | <        | 0.50   |
| Tetrachloroethene           | 0.50         | 1.7          | <        | 0.50   |
| 1,3-Dichloropropane         | 0.50         | 1.7          | <        | 0.50   |
| 2-Hexanone                  | 20           | 67           | <        | 20     |
| Dibromochloromethane        | 0.50         | 1.7          | <        | 0.50   |
| 1,2-Dibromoethane           | 0.50         | 1.7          | <        | 0.50   |
| Chlorobenzene               | 0.50         | 1.7          | <        | 0.50   |
| 1,1,1,2-Tetrachloroethane   | 0.50         | 1.7          | <        | 0.50   |
| Ethylbenzene                | 0.50         | 1.7          | <        | 0.50   |
| m+p-Xylene                  | 1.0          | 3.3          | <        | 1.0    |
| o-Xylene                    | 0.50         | 1.7          | <        | 0.50   |
| Styrene                     | 0.50         | 1.7          | <        | 0.50   |
| Bromoform                   | 0.50         | 1.7          | <        | 0.50   |
| Isopropylbenzene            | 0.50         | 1.7          | <        | 0.50   |
| 1,1,2,2-Tetrachloroethane   | 0.50         | 1.7          | <        | 0.50   |
| Bromobenzene                | 0.50         | 1.7          | <        | 0.50   |
| 1,2,3-Trichloropropane      | 1.0          | 3.3          | <        | 1.0    |
| n-Propyl benzene            | 0.50         | 1.7          | <        | 0.50   |
| 2-Chlorotoluene             | 0.50         | 1.7          | <        | 0.50   |
| 1,3,5-Trimethylbenzene      | 0.50         | 1.7          | <        | 0.50   |
| 4-Chlorotoluene             | 0.50         | 1.7          | • <      | 0.50   |
| t-Butyl benzene             | 0.50         | 1.7          | <        | 0.50   |
| 1,2,4-Trimethylbenzene      | 0.50         | 1.7          | <        | 0.50   |
| sec-Butyl benzene           | 0.50         | 1.7          | <        | 0.50   |
| 1,3-Dichlorobenzene         | 0.50         | 1.7          | <        | 0.50   |
| p-Isopropyl toluene         | 0.50         | 1.7          | <        | 0.50   |
| 1,4-Dichlorobenzene         | 0.50         | 1.7          | <        | 0.50   |
| n-Butyl benzene             | 0.50         | 1.7          | <        | 0.50   |
| 1,2-Dichlorobenzene         | 0.50         | 1.7          | <        | 0.50   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Lab Sample Number:

0710055-10

Project Name: DB Oak Date Analyzed: 10/30/07
Project Location: Fort Atkinson, Wisconsin Concentration: ug/L
Sample ID: MW-8B Dilution Factor: 1

Sample Type: Water

10/25/07

Date Collected:

| Compound                    | Reporting<br>Detection<br><u>Limit</u> | Quantitation<br><u>Limit</u> | ; | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------------|------------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                                   | 1.7                          | < | 0.50                    |
| 1,2,4-Trichlorobenzene      | 2.0                                    | 6.7                          | < | 2.0                     |
| Hexachlorobutadiene         | 2.0                                    | 6.7                          | < | 2.0                     |
| Naphthalene                 | 5.0                                    | 17                           | < | 5.0                     |
| 1,2,3-Trichlorobenzene      | 2.0                                    | 6.7                          | < | 2.0                     |
| Dibromofluoromethane        |                                        |                              |   | 103%                    |
| Toluene-D8                  |                                        |                              |   | 102%                    |
| 4-Bromofluorobenzene        |                                        |                              |   | 101%                    |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S.

2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name:

DB Oak

Date Analyzed:

10/30/07

Project Location:

Fort Atkinson, Wisconsin Concentration:

ug/L

Sample ID: Date Collected: Dup-1

Dilution Factor:

10

Sample Type:

10/25/07

Lab Sample Number:

0710055-11

Water

| <u>Compound</u>                | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> | Sample<br><u>Result</u> |
|--------------------------------|----------------------------------|------------------------------|-------------------------|
| Dichlorodifluoromethane        | 0.50                             | 1.7                          | < 5.0                   |
| Chloromethane                  | 1.0                              | 3.3                          | < 10                    |
| Vinyl Chloride                 | 0.50                             | 1.7                          | < 5.0                   |
| Bromomethane                   | 5.0                              | 17                           | < 50                    |
| Chloroethane                   | 5.0                              | 17                           | < 50                    |
| Trichlorofluoromethane         | 0.50                             | 1.7                          | < 5.0                   |
| 1,1,2-Trichlorotrifluoroethane | 0.50                             | 1.7                          | < 5.0                   |
| 1,1-Dichloroethene             | 0.50                             | 1.7                          | < 5.0                   |
| Acetone                        | 20                               | 67                           | < 200                   |
| Carbon Disulfide               | 0.50                             | 1.7                          | < 5.0                   |
| Methylene Chloride             | 2.0                              | 6.7                          | < 20                    |
| Methyl-t-butyl Ether           | 0.50                             | 1.7                          | < 5.0                   |
| t-1,2-Dichloroethene           | 0.50                             | 1.7                          | < 5.0                   |
| n-Hexane                       | 0.50                             | 1.7                          | < 5.0                   |
| 1,1-Dichloroethane             | 0.50                             | 1.7                          | < 5.0                   |
| Diisopropyl Ether              | 0.50                             | 1.7                          | < 5.0                   |
| 2,2-Dichloropropane            | 0.50                             | 1.7                          | < 5.0                   |
| c-1,2-Dichloroethene           | 0.50                             | 1.7                          | 310                     |
| 2-Butanone (MEK)               | 20                               | 67                           | < 200                   |
| Tetrahydrofuran                | 10                               | 33                           | < 100                   |
| Bromochloromethane             | 0.50                             | 1.7                          | < 5.0                   |
| Chloroform                     | 0.50                             | 1.7                          | < 5.0                   |
| 1,1,1-Trichloroethane          | 0.50                             | 1.7                          | < 5.0                   |
| Carbon Tetrachloride           | 0.50                             | 1.7                          | < 5.0                   |
| 1,1-Dichloropropene            | 0.50                             | 1.7                          | < 5.0                   |
| Benzene                        | 0.50                             | 1.7                          | < 5.0                   |
| 1,2-Dichloroethane             | 0.50                             | 1.7                          | < 5.0                   |
| Trichloroethene                | 0.50                             | 1.7                          | 120                     |
| 1,2-Dichloropropane            | 0.50                             | 1.7                          | < 5.0                   |
| Dibromomethane                 | 0.50                             | 1.7                          | < 5.0                   |
| Bromodichloromethane           | 0.50                             | 1.7                          | < 5.0                   |
| c-1,3-Dichloropropene          | 0.50                             | 1.7                          | < 5.0                   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: ADDA

Project Name:

DB Oak

Date Analyzed:

10/30/07

Project Location:

Fort Atkinson, Wisconsin Concentration:

ug/L

Sample ID: Date Collected:

Dup-1 10/25/07 Dilution Factor:

10

Sample Type:

Water

Lab Sample Number:

0710055-11

Reporting

|                             | Detection    | Quantitation | -     | Sample   |  |  |
|-----------------------------|--------------|--------------|-------|----------|--|--|
| Compound                    | <u>Limit</u> | <u>Limit</u> | Resu  | <u> </u> |  |  |
| 4-Methyl-2-pentanone (MIBK) | 20           | 67           | < 20  | 0        |  |  |
| Toluene                     | 0.50         | 1.7          | < 5.0 | 0        |  |  |
| 1,1,2-Trichloroethane       | 0.50         | 1.7          | < 5.0 | 0        |  |  |
| t-1,3-Dichloropropene       | 0.50         | 1.7          | < 5.0 | 0        |  |  |
| Tetrachloroethene           | 0.50         | 1.7          | 39    | 0        |  |  |
| 1,3-Dichloropropane         | 0.50         | 1.7          | < 5.  | 0        |  |  |
| 2-Hexanone                  | 20           | 67           | < 20  | 0        |  |  |
| Dibromochloromethane        | 0.50         | 1.7          | < 5.  | 0        |  |  |
| 1,2-Dibromoethane           | 0.50         | 1.7          | < 5.  | 0        |  |  |
| Chlorobenzene               | 0.50         | 1.7          | < 5.  | 0        |  |  |
| 1,1,1,2-Tetrachloroethane   | 0.50         | 1.7          | < 5.  | 0        |  |  |
| Ethylbenzene                | 0.50         | 1.7          | < 5.  | 0        |  |  |
| m+p-Xylene                  | 1.0          | 3.3          | < 10  | 0        |  |  |
| o-Xylene                    | 0.50         | 1.7          | < 5.  | 0        |  |  |
| Styrene                     | 0.50         | 1.7          | < 5.  | 0        |  |  |
| Bromoform                   | 0.50         | 1.7          | < 5.  | 0        |  |  |
| Isopropylbenzene            | 0.50         | 1.7          | < 5.  | 0        |  |  |
| 1,1,2,2-Tetrachloroethane   | 0.50         | 1.7          | < 5.  | 0        |  |  |
| Bromobenzene                | 0.50         | 1.7          | < 5.  | 0        |  |  |
| 1,2,3-Trichloropropane      | 1.0          | 3.3          | < 10  | 0        |  |  |
| n-Propyl benzene            | 0.50         | 1.7          | < 5.  | 0        |  |  |
| 2-Chlorotoluene             | 0.50         | 1.7          | < 5.  | 0        |  |  |
| 1,3,5-Trimethylbenzene      | 0.50         | 1.7          | < 5.  | 0        |  |  |
| 4-Chlorotoluene             | 0.50         | 1.7          | < 5.  | .0       |  |  |
| t-Butyl benzene             | 0.50         | 1.7          | < 5.  | .0       |  |  |
| 1,2,4-Trimethylbenzene      | 0.50         | 1.7          | < 5.  | .0       |  |  |
| sec-Butyl benzene           | 0.50         | 1.7          | < 5.  | .0       |  |  |
| 1,3-Dichlorobenzene         | 0.50         | 1.7          | < 5.  | .0       |  |  |
| p-Isopropyl toluene         | 0.50         | 1.7          | < 5.  | .0       |  |  |
| 1,4-Dichlorobenzene         | 0.50         | 1.7          | < 5.  | .0       |  |  |
| n-Butyl benzene             | 0.50         | 1.7          | < 5.  | .0       |  |  |
| 1,2-Dichlorobenzene         | 0.50         | 1.7          | < 5.  | .0       |  |  |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by: Male Approved by: Date: [(45]

Project Name: DB Oak
Project Location: Fort Atkinson, W

Fort Atkinson, Wisconsin Concentration:

Date Analyzed: 10/30/07 Concentration: ug/L Dilution Factor: 10

Sample ID:
Date Collected:

Dup-1 10/25/07

Lab Sample Number:

0710055-11

Sample Type:

Water

| <u>Compound</u>             | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> |   | Sample<br>Result |
|-----------------------------|----------------------------------|------------------------------|---|------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                             | 1.7                          | < | 5.0              |
| 1,2,4-Trichlorobenzene      | 2.0                              | 6.7                          | < | 20               |
| Hexachlorobutadiene         | 2.0                              | 6.7                          | < | 20               |
| Naphthalene                 | 5.0                              | 17                           | < | 50               |
| 1,2,3-Trichlorobenzene      | 2.0                              | 6.7                          | < | 20               |
| Dibromofluoromethane        |                                  |                              |   | 106%             |
| Toluene-D8                  |                                  |                              |   | 100%             |
| 4-Bromofluorobenzene        |                                  |                              |   | 101%             |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by

Project Name:

DB Oak

Date Analyzed:

10/30/07

Project Location:

Fort Atkinson, Wisconsin Concentration:

ug/L

Sample ID: Date Collected: Dup-2

Dilution Factor:

200

Sample Type:

10/26/07

Lab Sample Number:

0710055-17

Water

| Sample Type: Water             | Reporting<br>Detection | Quantitation | S   | ample  |   |
|--------------------------------|------------------------|--------------|-----|--------|---|
| Compound                       | <u>Limit</u>           | <u>Limit</u> |     | Result |   |
| Dichlorodifluoromethane        | 0.50                   | 1.7          | <   | 100    |   |
| Chloromethane                  | 1.0                    | 3.3          | <   | 200    |   |
| Vinyl Chloride                 | 0.50                   | 1.7          | <   | 100    |   |
| Bromomethane                   | 5.0                    | 17           | <   | 1000   |   |
| Chloroethane                   | 5.0                    | 17           | <   | 1000   |   |
| Trichlorofluoromethane         | 0.50                   | 1.7          | <   | 100    |   |
| 1,1,2-Trichlorotrifluoroethane | 0.50                   | 1.7          | <   | 100    |   |
| 1,1-Dichloroethene             | 0.50                   | 1.7          | <   | 100    |   |
| Acetone                        | 20                     | 67           | <   | 4000   |   |
| Carbon Disulfide               | 0.50                   | 1.7          | <   | 100    |   |
| Methylene Chloride             | 2.0                    | 6.7          | <   | 400    |   |
| Methyl-t-butyl Ether           | 0.50                   | 1.7          | <   | 100    |   |
| t-1,2-Dichloroethene           | 0.50                   | 1.7          | <   | 100    |   |
| n-Hexane                       | 0.50                   | 1.7          | <   | 100    |   |
| 1,1-Dichloroethane             | 0.50                   | 1.7          | <   | 100    |   |
| Diisopropyl Ether              | 0.50                   | 1.7          | <   | 100    |   |
| 2,2-Dichloropropane            | 0.50                   | 1.7          | <   | 100    |   |
| c-1,2-Dichloroethene           | 0.50                   | 1.7          |     | 310    | J |
| 2-Butanone (MEK)               | 20                     | 67           | . < | 4000   |   |
| Tetrahydrofuran                | 10                     | 33           | <   | 2000   |   |
| Bromochloromethane             | 0.50                   | 1.7          | <   | 100    |   |
| Chloroform                     | 0.50                   | 1.7          | <   | 100    |   |
| 1,1,1-Trichloroethane          | 0.50                   | 1.7          | <   | 100    |   |
| Carbon Tetrachloride           | 0.50                   | 1.7          | <   | 100    |   |
| 1,1-Dichloropropene            | 0.50                   | 1.7          | <   | 100    |   |
| Benzene                        | 0.50                   | 1.7          | <   | 100    |   |
| 1,2-Dichloroethane             | 0.50                   | 1.7          | <   | 100    |   |
| Trichloroethene                | 0.50                   | 1.7          |     | 1100   |   |
| 1,2-Dichloropropane            | 0.50                   | 1.7          | <   | 100    |   |
| Dibromomethane                 | 0.50                   | 1.7          | <   | 100    |   |
| Bromodichloromethane           | 0.50                   | 1.7          | <   | 100    |   |
| c-1,3-Dichloropropene          | 0.50                   | 1.7          | <   | 100    |   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

10/30/07

200

Date Analyzed: Project Name: DB Oak Fort Atkinson, Wisconsin Concentration: Project Location: ug/L Dilution Factor: Sample ID: Dup-2

Lab Sample Number: Date Collected: 10/26/07 0710055-17

Sample Type: Water

| Compound                    | Reporting Detection <u>Limit</u> | Quantitation<br><u>Limit</u> | Sample<br><u>Result</u> |   |
|-----------------------------|----------------------------------|------------------------------|-------------------------|---|
| 4-Methyl-2-pentanone (MIBK) | 20                               | 67                           | < 4000                  |   |
| Toluene                     | 0.50                             | 1.7                          | < 100                   | • |
| 1,1,2-Trichloroethane       | 0.50                             | 1.7                          | 190                     | J |
| t-1,3-Dichloropropene       | 0.50                             | 1.7                          | < 100                   |   |
| Tetrachloroethene           | 0.50                             | 1.7                          | 5200                    |   |
| 1,3-Dichloropropane         | 0.50                             | 1.7                          | < 100                   |   |
| 2-Hexanone                  | 20                               | 67                           | < 4000                  |   |
| Dibromochloromethane        | 0.50                             | 1.7                          | < 100                   |   |
| 1,2-Dibromoethane           | 0.50                             | 1.7                          | < 100                   |   |
| Chlorobenzene               | 0.50                             | 1.7                          | < 100                   |   |
| 1,1,1,2-Tetrachloroethane   | 0.50                             | 1.7                          | < 100                   |   |
| Ethylbenzene                | 0.50                             | 1.7                          | < 100                   |   |
| m+p-Xylene                  | 1.0                              | 3.3                          | < 200                   |   |
| o-Xylene                    | 0.50                             | 1.7                          | < 100                   |   |
| Styrene                     | 0.50                             | 1.7                          | < 100                   |   |
| Bromoform                   | 0.50                             | 1.7                          | < 100                   |   |
| Isopropylbenzene            | 0.50                             | 1.7                          | < 100                   |   |
| 1,1,2,2-Tetrachloroethane   | 0.50                             | 1.7                          | < 100                   |   |
| Bromobenzene                | 0.50                             | 1.7                          | < 100                   |   |
| 1,2,3-Trichloropropane      | 1.0                              | 3.3                          | < 200                   |   |
| n-Propyl benzene            | 0.50                             | 1.7                          | < 100                   |   |
| 2-Chlorotoluene             | 0.50                             | 1.7                          | < 100                   |   |
| 1,3,5-Trimethylbenzene      | 0.50                             | 1.7                          | < 100                   |   |
| 4-Chlorotoluene             | 0.50                             | 1.7                          | < 100                   |   |
| t-Butyl benzene             | 0.50                             | 1.7                          | < 100                   |   |
| 1,2,4-Trimethylbenzene      | 0.50                             | 1.7                          | < 100                   |   |
| sec-Butyl benzene           | 0.50                             | 1.7                          | < 100                   |   |
| 1,3-Dichlorobenzene         | 0.50                             | 1.7                          | < 100                   |   |
| p-Isopropyl toluene         | 0.50                             | 1.7                          | < 100                   |   |
| 1,4-Dichlorobenzene         | 0.50                             | 1.7                          | < 100                   |   |
| n-Butyl benzene             | 0.50                             | 1.7                          | < 100                   |   |
| 1,2-Dichlorobenzene         | 0.50                             | 1.7                          | < 100                   |   |
|                             |                                  |                              |                         |   |

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

Project Name:DB OakDate Analyzed:10/30/07Project Location:Fort Atkinson, WisconsinConcentration:ug/LSample ID:Dup-2Dilution Factor:200Date Collected:10/26/07Lab Sample Number:0710055-17

Sample Type: Water

| Compound                    | Reporting<br>Detection<br><u>Limit</u> | Quantitation <u>Limit</u> | ; | Sample<br><u>Result</u> |
|-----------------------------|----------------------------------------|---------------------------|---|-------------------------|
| 1,2-Dibromo-3-chloropropane | 0.50                                   | 1.7                       | < | 100                     |
| 1,2,4-Trichlorobenzene      | 2.0                                    | 6.7                       | < | 400                     |
| Hexachlorobutadiene         | 2.0                                    | 6.7                       | < | 400                     |
| Naphthalene                 | 5.0                                    | 17                        | < | 1000                    |
| 1,2,3-Trichlorobenzene      | 2.0                                    | 6.7                       | < | 400                     |
| Dibromofluoromethane        |                                        |                           |   | 102%                    |
| Toluene-D8                  |                                        |                           |   | 103%                    |
| 4-Bromofluorobenzene        |                                        |                           |   | 100%                    |

J = Estimated.

Method Reference: Modified 8260 WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: (608)221-8700 Fax: (608)221-4889

Approved by:

| 94/2055 | No. 018307 ★                   | Page / of 3      | Turn Around (circle one) (Normal) Rush | Report Due:        | " " " |
|---------|--------------------------------|------------------|----------------------------------------|--------------------|-------|
| 140     | CHAIN OF CUSTODY               |                  |                                        |                    |       |
|         | al Chemistry                   | ervices, Inc.    | Madison, WI 53718                      | FAX 608-221-4889   |       |
|         | <b>Environmental Chemistry</b> | Consulting Servi | 2525 Advance Road                      | Phone 608-221-8700 |       |
|         |                                | しくし              |                                        |                    |       |

|                                                       | 2525 Advance hoad | D Auvaince nodu |          | Madisoli, 441 337 1 | 74 4880  |                              |           |                          | Report Due. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|-------------------------------------------------------|-------------------|-----------------|----------|---------------------|----------|------------------------------|-----------|--------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Project Number 045/-003                               | 30                | 77-000          |          | Mail Report To.     | 1 "      | Mark McColloch               | (( ء د لا |                          | Invoice To: | Mark McCollock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Poch        |
|                                                       |                   |                 |          | Company             |          | 11.                          |           |                          | Company:    | New F. elds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| TIL.                                                  | 3                 | -               |          | Address:            | 4        | 2110 Lunn                    | L~ 5te 1  | 101                      | Address:    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| <br>₽                                                 | ) 3               |                 |          |                     | 1        | 700                          | 21/53 12  | 113                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Develo Czellner                                       | ellne             |                 | <b>1</b> |                     |          | -                            |           |                          | P.O. No.:   | Quote No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                                                       | S                 | Collection      |          | Total               | í        |                              | Analysis  |                          |             | of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th | Laboratory  |
| Sample Description                                    | Date              | Time            | +        | Bottles             | Preserv  | ,                            | Kednested |                          |             | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| 1 - mh/                                               | 10/22/01          | 0060            | 9W       | d                   | HC.      | VOCs                         | ०१८४      |                          | 07          | 07/10055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10          |
| Mm. S                                                 |                   | 0420            |          | d                   |          |                              |           |                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -03         |
| MW - 6                                                |                   | 0280            |          | 7                   |          |                              |           |                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 03        |
| MW- 6 A                                               |                   | 2815            |          | Y                   |          |                              |           |                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ħQ-         |
| A8-1                                                  |                   | (230            |          | 4                   |          |                              |           | -                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -05         |
| MW-7A                                                 |                   | 1200            |          | 4                   |          |                              |           |                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>9</b> Q- |
| MW-78                                                 |                   | Shel            |          | 4                   |          |                              |           |                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -07         |
| MW.8                                                  |                   | 1040            |          | R                   |          |                              |           |                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -08         |
| AW-84                                                 |                   | 0201            |          | 7                   |          |                              |           |                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -09         |
| 58-MW                                                 |                   | 1020            |          | 8                   |          |                              |           |                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0/-         |
| Dupl                                                  |                   |                 |          | 8                   |          |                              |           |                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1) _        |
| 4-44                                                  | <del>-&gt;</del>  | 1400            | <b>→</b> | d                   | <b>→</b> | <b>→</b>                     |           |                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -100        |
| *Preservation Code                                    | Relinquished By:  | A See By        | 10       | 1                   | ì        | Date/Time:<br>/ b / 26 / 0 T | (530      | Received By:             | H           | LUMERA L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date/Time:  |
| D=HNO3 E=EnCore F=Methanol                            | Relinquished By:  | ed By:          | - 88-2   |                     |          | Date/Time:                   |           | Received By:             | <i>!</i>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Time:  |
| G=NaOH O≃Other(Indicate) Custody Seal: Present/Absent | Intact/Not Intact |                 | Seal #'s |                     |          |                              |           | Receipt Temp:            | Onio        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| l                                                     |                   |                 | - 1      |                     |          |                              | -         | Temp Blank Y             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                       |                   |                 |          |                     |          | WHITE - REPORT COPY          |           | YELLOW - LABORATORY COPY |             | PINK - SAMPLER/SUBMITTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ITER        |

| No. 018308 *            | Turn Around (circle one) (Normal Rush Report Due:                       | Invoice To: Mark AcColloch | Company: Sure | Address:             |       | P.O. No.: Quote No.: | Laboratory | 7 74 4              | 110-5500110            | 7 - 4              | 7-15    | 9/-    |       | 1 -18  | 6/-    | JE-1    | 16-<br>)   | - S.S.      | Date/Time | 1831 TODUNG 1830                       | Date/Time:                  | mi se                      | Y N<br>TORY COPY PINK - SAMPLER/SUBMITTER                         |
|-------------------------|-------------------------------------------------------------------------|----------------------------|---------------|----------------------|-------|----------------------|------------|---------------------|------------------------|--------------------|---------|--------|-------|--------|--------|---------|------------|-------------|-----------|----------------------------------------|-----------------------------|----------------------------|-------------------------------------------------------------------|
| CHAIN OF CUSTODY        | 18                                                                      | Hark Ac Colloch            | New Felds     | 2110 turn in Ste 101 | ازيء  |                      |            |                     | VOCS 8260              |                    |         |        |       |        |        |         |            | ->          |           | 10/26/17 530 (Ann                      | Date/Time: Received By:     | Receipt Temp:              | (T) PANTANANAN SANANAN IN WHITENFRORTGOPY YEHLAW, LARGERTORY COPY |
| Environmental Chemistry | 2525 Advance Road Madison, WI 53718 Phone 608-221-8700 FAX 608-221-4889 |                            |               | 138 WI               | , , , | Collner              | Total      | lime Matrix Bottles | 10/15/07 1430 GW 2 HCI | 10/16/07 0830 12 1 | 2 0080  | 0000   | 4     | 0930 2 | 630 3  | C 5460  | V & V 002) | <b>&gt;</b> |           | Relinquished By Meller                 | Relinquished By:            | Intact/Not Intact Seal #'s | (1) Entrutonom. Sharla                                            |
|                         |                                                                         | Project Number: 0451- 60   |               | n: F.,               | (j.   | Dende                |            | Sample Description  | MW-4A                  | AW-2               | 12 - 2A | Mw. 28 | Du0-2 | 8-MW   | AW- 3A | MW - 3B | AW - 3C    | Trip Blank  |           | Preservation Code A=None B=HCL C=H2SO4 | D=HNO3 E=EnCore (F=Methanol | =Other(Indicate)           | Shipped Via: Drop off                                             |

 $\mathfrak{D}$ 

0770055

# **Appendix D**

City Well Construction Logs for Fort Atkinson

| _               |                 |                         | Q <i>UE WELL</i><br>PROJECT K |                    |                            |                   | В      | F999                        |                  | State of Wi-Private W<br>Department Of Natur<br>Madison, WI 53707 | al Resources, I                 | Box 7921 (                            | Form 3300<br>Rev 02/02 | ?)bw                   |
|-----------------|-----------------|-------------------------|-------------------------------|--------------------|----------------------------|-------------------|--------|-----------------------------|------------------|-------------------------------------------------------------------|---------------------------------|---------------------------------------|------------------------|------------------------|
| Propert         | y FOF           | RT ATKINSO              | N, CITY OF                    |                    |                            | Tele<br>Nun       | phone  | 920 -563                    | 3 <b>–</b> 7775  | 1. Well Location                                                  | <b>1</b>                        | Dept                                  | th 1066                | FT                     |
|                 | g 37 N          | WATER ST                |                               |                    |                            | Null              | ioci   |                             |                  | T=Town C=City V<br>C of FORT AT                                   | KINSON                          |                                       | ire#                   |                        |
| City            |                 | ATKINSON                |                               |                    | State V                    | /I Zip            | Code   | 53                          | 538              | Street Address or Ro<br>N WATER ST #3 V                           |                                 | Number                                |                        |                        |
| County<br>28    |                 | ell Location<br>FFERSON |                               | Co Wel<br>W        | ll Permit No               | W                 |        | mpletion Da<br>July 17, 198 |                  | Subdivision Name                                                  |                                 | Lot#                                  | Block #                |                        |
| Well C          | onstru<br>T, AR |                         |                               | <u> </u>           | License #                  | Facility<br>12801 |        | ublic)                      |                  | Gov't Lot <b>or</b> SE                                            | 1/4 of <b>NE</b> 1/4<br>Deg. 42 | of Section 4 Min. 55                  |                        | R <b>14 E</b><br>33.97 |
| Addres          | SS              |                         |                               |                    |                            | Public            | Well F | lan Approv                  | al#              | Longitude                                                         | •                               | Min. 50                               |                        | 22.22                  |
| City            |                 |                         | St                            | tate 2             | Zip Code                   | Date 0<br>01/01/  |        | roval                       |                  | 2. Well Type                                                      | ,                               | e item 12 belov                       | () Lat/Lo<br>83        | ng Method              |
| Hicap 8007      |                 | nent Well#              | Co                            | mmon \             | Well#                      | Specifi<br>14.9   | _      | acity<br>gpm/ft             |                  | 1=New 2=Rep<br>of previous unique                                 |                                 |                                       | d in <u>1931</u>       | _                      |
| 3. Well         |                 |                         | omes and or                   | at abum            | ah sahaal is               | <u></u>           | 1      | High Capac<br>Well?         | ity:             | Reason for replaced                                               | or reconstructe                 | ed Well?                              |                        |                        |
| M=Munio         |                 | M N=NonCom P=           | Private Z=Other X             | ≖NonPot            | A=Anode L=L                | oop H=Dril        | lhole  | Property?                   |                  | 1 1=Drilled 2=Dri                                                 |                                 |                                       |                        |                        |
|                 |                 |                         |                               |                    |                            |                   |        | mination sou<br>vnspout/ Ya |                  | ading those on neighbor                                           |                                 | s?<br>'astewater Sumr                 |                        |                        |
| Distance        |                 |                         | ?<br>nearest: (inclu          | ding pro           | oposed)                    |                   | 0. Pri | -                           | io ily ululi     | •                                                                 |                                 | ived Animal Ba                        |                        |                        |
|                 |                 | . Landfill              | )hana                         |                    |                            | 1                 | 1. Fou | undation Dra                | ain to Clea      | rwater                                                            | 19. <b>A</b> ı                  | nimal Yard or S                       | helter                 |                        |
|                 | 3               | . Building C<br>1=Sept  | ic 2= Holding                 | Tank               |                            | 1                 | 2. Fou | undation Dra                | ain to Sewe      | er                                                                | 20. Si                          | lo                                    |                        |                        |
|                 | _               | -                       | bsorption Unit                |                    |                            | 1                 | 3. Bu  | ilding Drain                |                  | ic 2=Other                                                        | 21. Ba                          | arn Gutter                            |                        |                        |
|                 |                 | . Nonconfor             | •                             | -                  |                            | 1                 | 4. Bu  |                             |                  | vity 2=Pressure                                                   | 22. M                           | anure Pipe 1=<br>1=Cast iron          | =Gravity 2             |                        |
|                 |                 |                         | me Heating O                  | il Tank            | ς                          |                   |        |                             |                  | Plastic 2=Other                                                   | 23. O                           | ther manure Sto                       |                        | Ouici                  |
|                 | 7               | . Buried Pet            | roleum Tank                   |                    |                            | 1                 | 5. Co  | llector Sewe                | er: unit         | ts in . diam.                                                     | 24. D                           |                                       |                        |                        |
|                 | 8               | . 1=Shor                | eline 2= Swin                 | nming l            | Pool                       | 1                 | 6. Cle | arwater Sur                 | np               |                                                                   | 25. O                           | ther NR 812 Wa                        | iste Source            |                        |
| 5. Drill        | hole D<br>Fro   |                         | d Construction                | n Metho            | od<br>Drillhole            | Lowe              | er Ope | n Bedrock                   | Geology<br>Codes | 8.<br>Type, Caving/No                                             | Geology                         | r Hardness etc                        | From<br>(ft.)          | To<br>(ft.)            |
| Dia.(in.        |                 |                         |                               |                    | d Circulation              | ı                 |        | -                           | K I              |                                                                   | nouving, colo                   | i, imianos, etc                       | 0                      | 5 🛋                    |
| 20.0            | c-              | 252                     | - 2. Rotar                    | •                  |                            |                   |        | -                           |                  | GRAVEL @ SAND                                                     |                                 |                                       | 5                      | 30                     |
| 20.0            | surfac          | e 252                   |                               | •                  | and Foam  -<br>gh Casing H |                   |        |                             |                  | CLAY                                                              |                                 |                                       | 30                     | 135                    |
| 19.0            | 25              | 52 261                  | 5. Reve                       | •                  | •                          |                   |        |                             |                  | SAND @ GRAVEL                                                     |                                 |                                       | 135                    | 220                    |
| 15.0            | 26              | 61 1066                 | 6. Cable                      |                    | •                          | dia<br>in. d      |        |                             | G_ML             |                                                                   |                                 | <del>и</del>                          | 220                    | 230                    |
| 15.0            |                 | 1000                    | 7. Temp<br>Rem                | p. Outer<br>loved? | casing                     | m. a              | ıa     | depth ft.                   |                  | GRAVEL @ SAND                                                     |                                 |                                       | 230                    | 252                    |
|                 |                 |                         | Other                         |                    |                            |                   |        |                             |                  | SANDSTONE FRAN                                                    | ICONIAN                         |                                       | 252                    | 345                    |
| 6. Casi         | ing Li          |                         | laterial, Weight              |                    |                            |                   | om     | To                          |                  | SANDSTONE EAU                                                     |                                 |                                       | 345                    | 440                    |
| <u>Dia. (</u> 1 |                 |                         | ufacturer & Me                | thod of            | Assembly                   | (ft               |        | (ft.)                       |                  | SHALE EAU CLAIR                                                   |                                 |                                       | 440                    | 455                    |
| 2               | 0.0             | OD DRIVE                | PIPE                          |                    |                            | surfa             | ace    | 252                         | <del></del>      | SANDSTONE EAU                                                     |                                 | · · · · · · · · · · · · · · · · · · · | 455                    | 595                    |
| 1               | 6.0             | G W I PIPE              | <b>=</b>                      |                    |                            |                   | 0      | 261                         |                  | SANDSTONE MTS                                                     |                                 |                                       | 595                    | 965                    |
|                 |                 |                         |                               |                    |                            |                   |        |                             |                  | SANDSTONE MT                                                      |                                 |                                       | 965                    | 1025                   |
| 1               | 2.0             | LINER(198               | 37)                           |                    |                            |                   | 0      | 269                         |                  | Water Level                                                       |                                 | 11. Well Is:                          | 0 in.                  | Grade                  |
|                 | 1               |                         |                               |                    |                            |                   | - 1    |                             | 0.0              | feet B ground s                                                   |                                 |                                       | <b>U</b> 111.          | A=Above                |
|                 |                 |                         |                               |                    |                            |                   |        |                             | 10. Pum          |                                                                   | B=Below                         | Developed?                            |                        | B=Below                |
| Dia             | .(in.)          | Screen                  | type, material &              | & slot s           | ize                        | Fro               | m      | To                          |                  |                                                                   | . below surface                 | Disinfected?                          |                        |                        |
|                 |                 |                         |                               |                    |                            |                   |        |                             |                  | ping at 1250.0 GP N                                               |                                 |                                       |                        |                        |
| 7. Gro          | ut or (         | Other Sealing           | Material                      |                    |                            |                   |        | #                           |                  | you notify the owner over the country?                            | f the need to p                 | ermanently aba                        | ndon and fi            | ll all                 |
|                 | lethod          |                         | -                             |                    |                            | From              | То     | Sacks                       | If no, ex        |                                                                   |                                 |                                       |                        |                        |
|                 |                 | Kind of S               | ealing Material               | <u> </u>           | ······                     | (ft.)             | (ft.)  | ) Cement                    | 13. Initia       | ls of Well Constructor                                            | or Supervisor                   | y Driller                             | Date Si                | gned                   |
|                 |                 | GRO                     | UT(1987)                      |                    |                            | surface           | 269    | 0.0                         | Initials -       | of Drill Rig Operator (                                           | Mandatae: v=1                   | acc cama ca al -                      | va) Dec 6              | amad                   |
|                 |                 |                         |                               |                    |                            |                   |        | T                           | minais 0         | v rum vog Oberstot (                                              | vianuawiy ufil                  | Coo Saine as a00                      | ve, Date Si            | Rued                   |

|                                                                                           | ISIN UNIQUE WELL I<br>E: SWAP PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                          |                          | BG00                                  | 00                                                                                                                          | State of Wi-Priva Department Of N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Natural Resou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   | 21                                              |                                                        | 3300-77 <i>‡</i><br>12/00)                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Property F(                                                                               | ORT ATKINSON, CIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y OF Tel                                                                                                                                                                                                 | lephone 920              | - 563                                 | 7775                                                                                                                        | Madison, WI 5:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | Dep                                             | oth 103                                                | 30 FT                                                                                                                                                                                                                                                                                         |
| Owner<br>Mailing 07                                                                       | Z NINA TED OT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nu                                                                                                                                                                                                       | mber 920                 | _ 505 -                               | - 1113                                                                                                                      | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T=Town C=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   | lage I                                          | Fire#                                                  |                                                                                                                                                                                                                                                                                               |
| Address 37                                                                                | 7 N WATER ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | in.                                                                                                                                                                                                      | <del>- 1a. a .</del>     |                                       |                                                                                                                             | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RT ATKINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |                                                 |                                                        |                                                                                                                                                                                                                                                                                               |
| City F                                                                                    | ORT ATKINSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | State WI                                                                                                                                                                                                 | Zip Cod                  | <sup>le</sup> 5353                    | 38                                                                                                                          | Street Address of N WATER S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e and Num                                         | ber                                             |                                                        |                                                                                                                                                                                                                                                                                               |
|                                                                                           | Well Location 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Co Well Permit No<br>W                                                                                                                                                                                   | 1 " " " "                | ompletion l                           |                                                                                                                             | Subdivision Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lot#                                              | T                                               | Block #                                                |                                                                                                                                                                                                                                                                                               |
| 28                                                                                        | JEFFERSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                          |                          | nuary 1, 1                            | 1946                                                                                                                        | Gov't Lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SW 1/4                                            | 4 of N                                          | <b>N</b> 1/4                                           | of                                                                                                                                                                                                                                                                                            |
| Well Cons<br>LAYN                                                                         | structor<br>E CHRISTENSEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | License # 582                                                                                                                                                                                            | Facility ID (<br>1280103 |                                       |                                                                                                                             | Section 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T 5 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r <b>14</b>                                       | E                                               | .,                                                     |                                                                                                                                                                                                                                                                                               |
| Address                                                                                   | N5005 DUPLAIN\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                                                                        | Public Well              | Plan Appr                             | roval#                                                                                                                      | Latitude I<br>Longitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Deg. 42<br>Deg 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min. 59<br>Min. 5                                 |                                                 | ∞. 33.03<br>ec. 3.99                                   |                                                                                                                                                                                                                                                                                               |
| City                                                                                      | Stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e Zip Code                                                                                                                                                                                               | Date Of Ap               |                                       |                                                                                                                             | 2. Well Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1=Ne                                              | ew                                              |                                                        | ng Method                                                                                                                                                                                                                                                                                     |
| PEWA<br>Hican Pern                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53072<br>mon Well #                                                                                                                                                                                      | 10/24/19                 | 45                                    |                                                                                                                             | 2=Replacen<br>3=Reconstru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | See item 12                                       | ! below)                                        | 83                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                         |
| 80072                                                                                     | COME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mon won "                                                                                                                                                                                                | 197                      |                                       | gpm/ft                                                                                                                      | of previous uniqu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ue well #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |                                                 | 0                                                      |                                                                                                                                                                                                                                                                                               |
| 3. Well Serve                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                          | Ĭ                        | High Cap                              | pacity:                                                                                                                     | Reason for repl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | laced or reco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nstructed W                                       | Veli?                                           |                                                        |                                                                                                                                                                                                                                                                                               |
| es M=M                                                                                    | eg: barn, restau)<br>Munic O=OTM N=NonCom P=P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rant, church, school, i                                                                                                                                                                                  | industry, etc.)          | Well?                                 |                                                                                                                             | 4 1 7 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                 |                                                        |                                                                                                                                                                                                                                                                                               |
| X=N                                                                                       | IonPot A=Anode L=Loop H=Dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rillhole                                                                                                                                                                                                 |                          | Property                              |                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d 2=Driven Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                 | 4=Other                                         |                                                        |                                                                                                                                                                                                                                                                                               |
|                                                                                           | ell located upslope or sideslop<br>ted in floodplain?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e and not downslope                                                                                                                                                                                      |                          | amination so<br>Downspout/            |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | erties?<br>7. Wastewate                           | er Sumn                                         |                                                        |                                                                                                                                                                                                                                                                                               |
| Distance in                                                                               | n feet from well to nearest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :(including proposed)                                                                                                                                                                                    |                          | Privy                                 | •                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. Wastewati<br>8. Paved Ani                      | •                                               | Pen                                                    |                                                                                                                                                                                                                                                                                               |
|                                                                                           | 1. Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                          | 11.                      | Foundation                            | Drain to (                                                                                                                  | Clearwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9. Animal Y                                       | ard or Shel                                     | lter                                                   |                                                                                                                                                                                                                                                                                               |
|                                                                                           | <ol> <li>Building Overhang</li> <li>1=Septic 2= Holdin</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g Tank                                                                                                                                                                                                   | 12.                      | Foundation                            | Drain to S                                                                                                                  | Sewer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0. Silo                                           |                                                 |                                                        |                                                                                                                                                                                                                                                                                               |
|                                                                                           | 4. Sewage Absorption Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                        | 13.                      | Building D                            |                                                                                                                             | ic 2=Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ol> <li>Barn Gutte</li> <li>Manure Pi</li> </ol> | _                                               |                                                        | • •                                                                                                                                                                                                                                                                                           |
|                                                                                           | 5. Nonconforming Pit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          | 14.                      | Building Se                           |                                                                                                                             | ic 2=Other<br>1=Gravity 2=Press                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | :Cast iron o                                    | -                                                      | 2=Pressure<br>2=Other                                                                                                                                                                                                                                                                         |
| 6                                                                                         | 6. Buried Home Heating (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oil Tank                                                                                                                                                                                                 | 16                       |                                       |                                                                                                                             | Plastic 2=Other units in dian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ol><li>Other mar</li></ol>                       |                                                 |                                                        | 2 Outor                                                                                                                                                                                                                                                                                       |
| 7                                                                                         | 7. Buried Petroleum Tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                                                                                                                                                                                                        | 13.                      | Conector 5                            | sewer:                                                                                                                      | units in . diam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4. Ditch                                          |                                                 | _                                                      |                                                                                                                                                                                                                                                                                               |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                          |                          |                                       |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 Other NR                                        | XI2 Waste                                       | e Source                                               |                                                                                                                                                                                                                                                                                               |
|                                                                                           | 8. 1=Shoreline 2= Sw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          | 16.                      | Clearwater                            | Sump                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5. Other NR                                       | . 812 Waste                                     | e Source                                               |                                                                                                                                                                                                                                                                                               |
| 5. Drillhole                                                                              | Dimensions and Constr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | uction Method                                                                                                                                                                                            | ······                   | -                                     | Geology                                                                                                                     | 8. Type Caving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Geolo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gy                                                |                                                 | Fr                                                     | om To                                                                                                                                                                                                                                                                                         |
| 5. Drillhole                                                                              | Point To Upper Enlarg<br>(ft) (ft) -1. Rota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uction Method<br>ed Drillhole<br>ary - Mud Circulation                                                                                                                                                   | Lower Ope                | -                                     | Geology<br>Codes                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gy                                                |                                                 | Fr<br>(f                                               | om To t.) (ft.)                                                                                                                                                                                                                                                                               |
| 5. Drillhole<br>Dia.(in.)                                                                 | From To Upper Enlarg<br>(ft) (ft) -1. Rota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | uction Method<br>ed Drillhole<br>ary - Mud Circulation<br>ary - Air                                                                                                                                      | Lower Ope                | -                                     | Geology<br>Codes                                                                                                            | Type, Caving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Geolo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gy                                                |                                                 | Fr<br>(f                                               | t.) (ft.)                                                                                                                                                                                                                                                                                     |
| 5. Drillhole<br>Dia.(in.)                                                                 | From To Upper Enlarg (ft) (ft) -1. Rota urface 15 -3. Rota -4. Dri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uction Method<br>ed Drillhole<br>ary - Mud Circulation                                                                                                                                                   | Lower Ope                | -                                     | Geology<br>Codes<br>FP                                                                                                      | Type, Caving<br>FILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Geolo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gy                                                |                                                 | Fr<br>(f                                               | (ft.) (ft.)                                                                                                                                                                                                                                                                                   |
| 5. Drillhole<br>Dia.(in.)                                                                 | Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property  | uction Method ed Drillhole ary - Mud Circulation ary - Air ary - Air and Foam Il-Through Casing Ha verse Rotary                                                                                          | Lower Ope                | -                                     | Geology CodesFP _AGC_                                                                                                       | Type, Caving<br>FILL<br>GRAVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Geolo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gy                                                |                                                 | Fr<br>(f                                               | (ft.) (ft.)<br>0 12<br>2 68<br>8 212                                                                                                                                                                                                                                                          |
| 5. Drillhole Dia.(in.) ( 48.0 su 26.0                                                     | Dimensions and Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Cons | uction Method ed Drillhole ary - Mud Circulation ary - Air ary - Air and Foam                                                                                                                            | Lower Ope                | n Bedrock                             | Geology CodesFP _AGC_                                                                                                       | Type, Caving FILL GRAVEL CLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Geolo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gy                                                |                                                 | Fr. (f. 1                                              | (ft.) (ft.)<br>0 12<br>2 68<br>8 212<br>2 235                                                                                                                                                                                                                                                 |
| 5. Drillhole Dia.(in.) ( 48.0 su 26.0                                                     | Dimensions and Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Construction   Cons | uction Method ed Drillhole ary - Mud Circulation ary - Air ary - Air and Foam Il-Through Casing Ha verse Rotary                                                                                          | Lower Ope                | -                                     | Geology<br>Codes<br>_FP<br>_AG_<br>_C_<br>_PG                                                                               | Type, Caving<br>FILL<br>GRAVEL<br>CLAY<br>HARDPAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Geolo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gy                                                | <del></del>                                     | Fr<br>(f<br>1<br>6<br>21                               | (ft.) (ft.)<br>0 12<br>2 68<br>8 212<br>2 235<br>5 268                                                                                                                                                                                                                                        |
| 5. Drillhole Dia.(in.) (48.0 su 26.0 15.0 2                                               | Dimensions and Construction   From To   Upper Enlarge   (ft)   (ft)   -1. Rota   -2. Rota   -3. Rota   -4. Drii   -5. Rev   -6. Cat   -7. Ten   Rev   Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uction Method ed Drillhole nry - Mud Circulation nry - Air nry - Air and Foam ll-Through Casing Haverse Rotary ble-tool Bit in. np. Outer Casing moved ?                                                 | Lower Ope                | n Bedrock depth ft.                   | Geology<br>Codes<br>_FP<br>_AG_<br>_C_<br>_PG<br>_AG_                                                                       | Type, Caving FILL GRAVEL CLAY HARDPAN GRAVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Geolog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gy                                                | <del></del>                                     | Fr<br>(f<br>1<br>6<br>21<br>23                         | ft.)     (ft.)       0     12       2     68       8     212       2     235       5     268       8     277                                                                                                                                                                                  |
| 5. Drillhole Dia.(in.) ( 48.0 su 26.0 15.0 2                                              | Dimensions and Construction   Prom To   Upper Enlarge   -1   Rota   -2   Rota   -3   Rota   -4   Drii   -5   Rev   -6   Cat   -7   Ten   Rer   Other   Inter Screen   Material, Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uction Method ed Drillhole nry - Mud Circulation nry - Air nry - Air and Foam ll-Through Casing Ha verse Rotary ble-tool Bit in. np. Outer Casing moved ?                                                | Lower Ope                | n Bedrock                             | Geology<br>Codes<br>_FP<br>_AG_<br>_C_<br>_PG<br>_AG_<br>_PG                                                                | Type, Caving FILL GRAVEL CLAY HARDPAN GRAVEL HARDPAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Geology/Noncaving, of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gy                                                | <del></del>                                     | Fr<br>(f<br>1<br>6<br>21<br>23<br>26                   | t.)     (ft.)       0     12       2     68       .8     212       2     235       .5     268       .8     277       .7     320                                                                                                                                                               |
| 5. Drillhole Dia.(in.) ( 48.0 su 26.0 15.0 2 6. Casing Li Dia. (in.)                      | Dimensions and Construction   Prom To   Upper Enlarge   -1   Rota   -2   Rota   -3   Rota   -4   Drii   -5   Rev   -6   Cat   -7   Ten   Rer   Other   Inter Screen   Material, Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uction Method ed Drillhole nry - Mud Circulation nry - Air nry - Air and Foam ll-Through Casing Haverse Rotary ble-tool Bit in. np. Outer Casing moved ?                                                 | Lower Ope                | n Bedrock  depth ft.                  | Geology<br>Codes<br>_FP<br>_AG_<br>_C<br>_PG<br>_AG_<br>_PG<br>_PG<br>_G_NL                                                 | Type, Caving FILL GRAVEL CLAY HARDPAN GRAVEL HARDPAN SANDSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Geology/Noncaving, 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gy                                                | <del></del>                                     | Fr<br>(f<br>1<br>6<br>21<br>23<br>26<br>27             | ft.)     (ft.)       0     12       2     68       8     212       2     235       5     268       68     277       7     320       10     355                                                                                                                                                |
| 5. Drillhole Dia.(in.) ( 48.0 su 26.0 15.0 2                                              | Dimensions and Construction   Prom To   Upper Enlarge   -1   Rota   -2   Rota   -3   Rota   -4   Drii   -5   Rev   -6   Cat   -7   Ten   Rer   Other   Inter Screen   Material, Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uction Method ed Drillhole nry - Mud Circulation nry - Air nry - Air and Foam ll-Through Casing Ha verse Rotary ble-tool Bit in. np. Outer Casing moved ?                                                | Lower Ope                | n Bedrock                             | Geology Codes _FP _AGCPG _AGPG _AGPG _NIL I_N_                                                                              | Type, Caving FILL GRAVEL CLAY HARDPAN GRAVEL HARDPAN SANDSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Geology/Noncaving, 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gy                                                | <del></del>                                     | 11 66 21 23 26 27 32                                   | t.)     (ft.)       0     12       2     68       8     212       2     235       5     268       8     277       7     320       10     355       35     370                                                                                                                                 |
| 5. Drillhole Dia.(in.) ( 48.0 su 26.0 15.0 2 6. Casing Li Dia. (in.) 48.0                 | Dimensions and Construction   Prom To   Upper Enlarge   -1   Rota   -2   Rota   -3   Rota   -4   Drii   -5   Rev   -6   Cat   -7   Ten   Rer   Other   Inter Screen   Material, Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uction Method ed Drillhole nry - Mud Circulation nry - Air nry - Air and Foam ll-Through Casing Ha verse Rotary ble-tool Bit in. np. Outer Casing moved ?                                                | Lower Ope                | n Bedrock depth ft.  To (ft.)         | Geology Codes _FP _AGCPG _AGPG _PG _INL _I_N_                                                                               | Type, Caving FILL GRAVEL CLAY HARDPAN GRAVEL HARDPAN SANDSTONE SANDSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Geology/Noncaving, of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the prop | gy                                                | <del></del>                                     | 1<br>6<br>21<br>23<br>26<br>27<br>32<br>35             | a.)         (ft.)           0         12           2         68           8         212           2         235           5         268           8         277           7         320           90         355           35         370           70         375                            |
| 5. Drillhole Dia.(in.) ( 48.0 su 26.0 15.0 2 6. Casing Li Dia. (in.)                      | Dimensions and Construction   Prom To   Upper Enlarge   -1   Rota   -2   Rota   -3   Rota   -4   Drii   -5   Rev   -6   Cat   -7   Ten   Rer   Other   Inter Screen   Material, Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uction Method ed Drillhole nry - Mud Circulation nry - Air nry - Air and Foam ll-Through Casing Ha verse Rotary ble-tool Bit in. np. Outer Casing moved ?                                                | Lower Ope                | n Bedrock  depth ft.                  | Geology Codes _FP _AGCPG _AGPG _G_NL _I_NHML _NNL _HML                                                                      | Type, Caving FILL GRAVEL CLAY HARDPAN GRAVEL HARDPAN SANDSTONE SANDSTONE SANDSTONE SILTSTONE SHALE EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Geology/Noncaving, of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the prop | gy                                                | <del></del>                                     | Fr (t)  1  6  21  23  26  27  32  35  37               | (t)         (ft.)           0         12           2         68           8         212           2         235           15         268           18         277           7         320           20         355           35         370           70         375           75         400 |
| 5. Drillhole Dia.(in.) ( 48.0 su 26.0 15.0 2 6. Casing Li Dia. (in.) 48.0                 | Dimensions and Construction   Prom To   Upper Enlarge   -1   Rota   -2   Rota   -3   Rota   -4   Drii   -5   Rev   -6   Cat   -7   Ten   Rer   Other   Inter Screen   Material, Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uction Method ed Drillhole nry - Mud Circulation nry - Air nry - Air and Foam ll-Through Casing Ha verse Rotary ble-tool Bit in. np. Outer Casing moved ?                                                | Lower Ope                | n Bedrock depth ft.  To (ft.)         | Geology Codes _FP _AGCPG _AGPG _NL _N_ I_NHML _NNL _HM 9. Stati                                                             | Type, Caving FILL GRAVEL CLAY HARDPAN GRAVEL HARDPAN SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Geology/Noncaving, of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the prop | Color, Hardn                                      | <del></del>                                     | 1<br>6<br>21<br>23<br>26<br>27<br>32<br>35<br>37       | (t.)         (ft.)           0         12           2         68           8         212           2         235           15         268           8         277           7         320           10         355           35         370           75         400                          |
| 5. Drillhole Dia.(in.) ( 48.0 su 26.0 15.0 2 6. Casing Li Dia. (in.) 48.0                 | Dimensions and Construction   Prom To   Upper Enlarge   -1   Rota   -2   Rota   -3   Rota   -4   Drii   -5   Rev   -6   Cat   -7   Ten   Rer   Other   Inter Screen   Material, Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uction Method ed Drillhole nry - Mud Circulation nry - Air nry - Air and Foam ll-Through Casing Ha verse Rotary ble-tool Bit in. np. Outer Casing moved ?                                                | Lower Ope                | n Bedrock depth ft.  To (ft.)         | Geology Codes _FP _AGCPG _AGPG _G_NL _I_NHML _NNL _HML                                                                      | Type, Caving FILL GRAVEL CLAY HARDPAN GRAVEL HARDPAN SANDSTONE SANDSTONE SANDSTONE SILTSTONE SANDSTONE SHALE EC ic Water Level feet B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Geology/Noncaving, of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the prop | Color, Hardner                                    | ess, etc                                        | 1<br>6<br>21<br>23<br>26<br>27<br>32<br>35<br>37<br>40 | (a)         (ft.)           0         12           2         68           8         212           2         235           55         268           68         277           77         320           65         370           75         400           90         455                         |
| 5. Drillhole Dia.(in.) ( 48.0 su 26.0 15.0 2  6. Casing Li Dia. (in.) 48.0 16.0           | Dimensions and Construction   Prom To   Upper Enlarge   1. Rota   -2. Rota   -3. Rota   -4. Drii   -5. Rev   -6. Cat   -7. Ten   Rer   Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uction Method ed Drillhole nry - Mud Circulation nry - Air nry - Air and Foam ll-Through Casing Ha verse Rotary ble-tool Bit in. np. Outer Casing moved ?  ht, Specification ethod of Assembly           | Lower Ope                | n Bedrock depth ft.  To (ft.)  15 280 | Geology Codes _FP _AGCPG _AGPG _NL _N_ I_NHML _NNL _HM 9. Stati 0.0                                                         | Type, Caving FILL GRAVEL CLAY HARDPAN GRAVEL HARDPAN SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE GRAVEL GRAVEL GRAVEL HARDPAN SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SAND | Geology/Noncaving, of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the prop | Color, Hardner  face ow Devel                     | ess, etc  Well Is:  O in. loped?                | 1<br>6<br>21<br>23<br>26<br>27<br>32<br>35<br>37<br>40 | 1.) (ft.) 0 12 2 68 8 212 2 235 15 268 18 277 17 320 10 355 15 370 17 375 17 400 10 455 16 Grade                                                                                                                                                                                              |
| 5. Drillhole Dia.(in.) ( 48.0 su 26.0 15.0 2 6. Casing Li Dia. (in.) 48.0                 | Dimensions and Construction   Prom To   Upper Enlarge   -1   Rota   -2   Rota   -3   Rota   -4   Drii   -5   Rev   -6   Cat   -7   Ten   Rer   Other   Inter Screen   Material, Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uction Method ed Drillhole nry - Mud Circulation nry - Air nry - Air and Foam ll-Through Casing Ha verse Rotary ble-tool Bit in. np. Outer Casing moved ?  ht, Specification ethod of Assembly           | Lower Ope                | n Bedrock depth ft.  To (ft.)         | Geology Codes FP AG C PG AG PG AG IN IN IN HML NNL HM 9. State 0.0                                                          | Type, Caving FILL GRAVEL CLAY HARDPAN GRAVEL HARDPAN SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SHALE EC ic Water Level feet B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Geology/Noncaving, of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the prop | face ow Devel Disin                               | Well Is:  O in. loped?                          | 1<br>6<br>21<br>23<br>26<br>27<br>32<br>35<br>37<br>40 | 1.) (ft.) 0 12 2 68 8 212 2 235 15 268 18 277 17 320 10 355 15 370 17 375 17 400 10 455 16 Grade                                                                                                                                                                                              |
| 5. Drillhole Dia.(in.) ( 48.0 su 26.0 15.0 2 6. Casing Li Dia. (in.) 48.0 16.0            | e Dimensions and Construction From To Upper Enlarge (ft) (ft) -1. Rota -1. Rota -2. Rota -3. Rota -4. Drii -5. Rev -6. Cat -7. Ten Rer Other  iner Screen Material, Weigh Manufacturer & M  Screen type, material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | uction Method ed Drillhole nry - Mud Circulation nry - Air nry - Air and Foam ll-Through Casing Ha verse Rotary ble-tool Bit in. np. Outer Casing moved ?  ht, Specification ethod of Assembly           | Lower Ope                | n Bedrock depth ft.  To (ft.)  15 280 | Geology Codes FP AG_ C_ PG AG_ PG AG_ IN IN IN IN IN IN IN IN IN IN IN IN IN                                                | Type, Caving FILL GRAVEL CLAY HARDPAN GRAVEL HARDPAN SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SHALE EC ic Water Level feet B up Test ping at 1200.GP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Geology/Noncaving, of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the prop | face ow Devel Disin Capp                          | Well Is:  O in. loped?  ufected?                | 1<br>6<br>21<br>23<br>26<br>27<br>32<br>35<br>37<br>40 | 1.) (ft.) 0 12 2 68 8 212 2 235 5 268 8 277 7 320 0 355 6 370 7 375 7 400 0 455  Grade we B=Belov                                                                                                                                                                                             |
| 5. Drillhole Dia.(in.) ( 48.0 su 26.0 15.0 2 6. Casing Li Dia. (in.) 48.0 16.0  Dia.(in.) | e Dimensions and Construction From To Upper Enlarg (ft) (ft)1. Rota2. Rota3. Rota4. Dri5. Rev6. Cat7. Ten Rer Other  iner Screen Material, Weigh Manufacturer & M  Screen type, material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uction Method ed Drillhole nry - Mud Circulation nry - Air nry - Air and Foam ll-Through Casing Ha verse Rotary ble-tool Bit in. np. Outer Casing moved ?  ht, Specification ethod of Assembly           | Lower Ope                | n Bedrock depth ft.  To (ft.)  15 280 | Geology Codes FP AG_ C_ PG AG_ PG AG_ IN IN IN IN IN IN IN IN IN IN IN IN IN                                                | Type, Caving FILL GRAVEL CLAY HARDPAN GRAVEL HARDPAN SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SHALE EC ic Water Level feet B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Geology/Noncaving, of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need | face ow Devel Disin Capp                          | Well Is:  O in. loped?  ufected?                | 1<br>6<br>21<br>23<br>26<br>27<br>32<br>35<br>37<br>40 | 1.) (ft.) 0 12 2 68 8 212 2 235 5 268 8 277 7 320 0 355 6 370 7 375 7 400 0 455  Grade we B=Belov                                                                                                                                                                                             |
| 5. Drillhole Dia.(in.) ( 48.0 su 26.0 15.0 2 6. Casing Li Dia. (in.) 48.0 16.0            | e Dimensions and Construction From To Upper Enlarg (ft) (ft)1. Rota2. Rota3. Rota4. Dri5. Rev6. Cat7. Ten Rer Other  iner Screen Material, Weigh Manufacturer & M  Screen type, material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uction Method ed Drillhole  rry - Mud Circulation  rry - Air  rry - Air and Foam  Ill-Through Casing Ha  verse Rotary  ble-tool Bit in.  np. Outer Casing  moved ?  ht, Specification  ethod of Assembly | Lower Ope                | n Bedrock depth ft.  To (ft.)  15 280 | Geology Codes FP AG C PG AG PG AG IN IN IN IN IN HM 9. Stati 0.0 -10. Pump Pump Pump 12. Did unused v                       | Type, Caving FILL GRAVEL CLAY HARDPAN GRAVEL HARDPAN SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SHALE EC ic Water Level feet B ing 1200,GP1 you notify the own wells on this proper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Geology/Noncaving, of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need of the need | face ow Devel Disin Capp                          | Well Is:  O in. loped?  ufected?                | 1<br>6<br>21<br>23<br>26<br>27<br>32<br>35<br>37<br>40 | 1.) (ft.) 0 12 2 68 8 212 2 235 5 268 8 277 7 320 0 355 6 370 7 375 7 400 0 455  Grade we B=Belov                                                                                                                                                                                             |
| 5. Drillhole Dia.(in.) ( 48.0 su 26.0 15.0 2 6. Casing Li Dia. (in.) 48.0 16.0  Dia.(in.) | e Dimensions and Construction From To Upper Enlarg (ft) (ft)1. Rota2. Rota3. Rota4. Dri5. Rev6. Cat7. Ten Rer Other  iner Screen Material, Weigh Manufacturer & M  Screen type, material d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | uction Method ed Drillhole  rry - Mud Circulation  rry - Air  rry - Air and Foam  Ill-Through Casing Ha  verse Rotary  ble-tool Bit in.  np. Outer Casing  moved ?  ht, Specification  ethod of Assembly | Lower Ope                | n Bedrock depth ft.  To (ft.)  15 280 | Geology Codes FP AG C PG AG AG PG AG IN IN IN HML HM 9. Stati 0.0  10. Pump Pump Pump Pump Pump I 2. Did unused v If no, er | Type, Caving FILL GRAVEL CLAY HARDPAN GRAVEL HARDPAN SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SHALE EC ic Water Level feet B ing 1200,GP1 you notify the own wells on this proper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Geology/Noncaving, of the property?  FRANCO DRESB EC EC FRANCO DRESB EC FRANCO DRESB EC FRANCO TO THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY | face ow Devel Coe Disin Cappel to permaner        | Well Is:  O in. loped? ifected? ed? ntly abando | 1<br>6<br>21<br>23<br>26<br>27<br>32<br>35<br>37<br>40 | 1.) (ft.) 0 12 2 68 8 212 2 235 5 268 8 277 7 320 0 355 5 370 0 375 7 400 0 455  Grade we B=Below all                                                                                                                                                                                         |
| 5. Drillhole Dia.(in.) ( 48.0 su 26.0 15.0 2 6. Casing Li Dia. (in.) 48.0 16.0  Dia.(in.) | e Dimensions and Construction From To Upper Enlarg (ft) (ft)1. Rota2. Rota3. Rota4. Dri5. Rev6. Cat7. Ten Rer Other  iner Screen Material, Weigh Manufacturer & M  Screen type, material d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | uction Method ed Drillhole  rry - Mud Circulation  rry - Air  rry - Air and Foam  Ill-Through Casing Ha  verse Rotary  ble-tool Bit in.  np. Outer Casing  moved ?  ht, Specification  ethod of Assembly | Lower Ope                | n Bedrock depth ft.  To (ft.)  15 280 | Geology Codes FP AG C PG AG AG PG AG IN IN IN HML HM 9. Stati 0.0  10. Pump Pump Pump Pump Pump I 2. Did unused v If no, er | Type, Caving FILL GRAVEL CLAY HARDPAN GRAVEL HARDPAN SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SHALE EC ic Water Level feet B ing at 1200.GP) you notify the own wells on this proper xplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Geology/Noncaving, of the property?  FRANCO DRESB EC EC FRANCO DRESB EC FRANCO DRESB EC FRANCO TO THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY | face ow Devel Coe Disin Cappel to permaner        | Well Is:  O in. loped? ifected? ed? ntly abando | 1 6 21 23 26 27 32 35 37 40 . A=Abov                   | 1.) (ft.) 0 12 2 68 8 212 2 235 5 268 8 277 7 320 0 355 5 370 0 375 7 400 0 455  Grade we B=Below all                                                                                                                                                                                         |

| Source                                                | e: SWAP PR                                                                                          | JE WELL NUM<br>OJECT KEYEI                                                                                                                                               |                                                                            | I                                  | 3G001                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | State of Wi-Private V<br>Department Of Natur<br>Madison, WI 53707                                                                                                                                                                                                                                | ral Resources,                                                 | Box 7921                                        | Form 3300<br>(Rev 02/02                                                                       |                              |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------|
| Property<br>Owner FO                                  | ORT ATKINSON,                                                                                       | CITY OF                                                                                                                                                                  |                                                                            | Telepho<br>Number                  | <sup>ne</sup> 920 <b>-</b> 56                       | 3 <b></b> 7775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1. Well Location                                                                                                                                                                                                                                                                                 | <b></b>                                                        | ·                                               | th 1030                                                                                       | FT                           |
|                                                       | 7 N WATER ST                                                                                        |                                                                                                                                                                          |                                                                            |                                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T=Town C=City V<br>C of FORT ATI                                                                                                                                                                                                                                                                 | KINSON                                                         |                                                 | Fire#                                                                                         |                              |
| City<br>FOR                                           | T ATKINSON                                                                                          |                                                                                                                                                                          | State<br>WI                                                                | Zip Co                             | de<br>53                                            | 3538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Street Address or Ro<br>JONES PARK #5                                                                                                                                                                                                                                                            | ad Name and I                                                  | Number                                          |                                                                                               |                              |
| •                                                     | Well Location                                                                                       | Co Wel                                                                                                                                                                   | l Permit No                                                                |                                    | Completion Da                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Subdivision Name                                                                                                                                                                                                                                                                                 | -                                                              | Lot#                                            | Block#                                                                                        |                              |
| 28 J<br>Well Const                                    | EFFERSON<br>truston                                                                                 |                                                                                                                                                                          | License #                                                                  | Facility ID                        | January 1, 1                                        | 952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gov't Lot or SE                                                                                                                                                                                                                                                                                  | 1/4 of SE 1/4                                                  | A of Section A                                  | T 5 N                                                                                         | D 44 E                       |
| -                                                     | CHRISTENSEN C                                                                                       | OMPANY                                                                                                                                                                   | 582                                                                        | 12801030                           | , ,                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                | Deg. 42                                                        | 4 of Section 4<br>Min. 55                       |                                                                                               | 7.43                         |
| Address<br>W229 N50                                   | 005 DUPLAINVI                                                                                       |                                                                                                                                                                          |                                                                            | Public Wel                         | l Pian Approv                                       | val#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Longitude                                                                                                                                                                                                                                                                                        | •                                                              | Min. 50                                         |                                                                                               | 21.81                        |
| City                                                  |                                                                                                     |                                                                                                                                                                          | Zip Code                                                                   | Date Of Ap                         | -                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. Well Type                                                                                                                                                                                                                                                                                     | 1 (S                                                           | ee item 12 belov                                | ,                                                                                             | ng Method                    |
| PEWAUK<br>Hicap Pem                                   | EE nanent Well#                                                                                     | WI<br>Common \                                                                                                                                                           | 53072<br>Vell #                                                            | 01/01/195<br>Specific Ca           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1=New 2=Rep                                                                                                                                                                                                                                                                                      | olacement 3=                                                   | Reconstruction                                  | 83                                                                                            |                              |
| 80072                                                 |                                                                                                     | 5                                                                                                                                                                        |                                                                            | 11.2                               | gpm/ft                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of previous unique                                                                                                                                                                                                                                                                               | well #                                                         | constructe                                      | d in <u>O</u>                                                                                 | -                            |
| 3. Well Ser                                           | ves # of hom                                                                                        | es and or                                                                                                                                                                |                                                                            |                                    | High Capac                                          | city:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reason for replaced                                                                                                                                                                                                                                                                              | or reconstruct                                                 | ted Well?                                       |                                                                                               |                              |
| M<br>Makuria Ord                                      | ` •                                                                                                 | rn, restaurant, churc<br>vate Z=Other X=NonPot                                                                                                                           |                                                                            | • • • •                            | Well? Property?                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1=Drilled 2=Dri                                                                                                                                                                                                                                                                                | iven Point 2=I                                                 | etted 4-Other                                   |                                                                                               |                              |
|                                                       |                                                                                                     |                                                                                                                                                                          |                                                                            | ·                                  |                                                     | urces, inclu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | iding those on neighbo                                                                                                                                                                                                                                                                           |                                                                |                                                 |                                                                                               |                              |
|                                                       |                                                                                                     | arest: (including pro                                                                                                                                                    |                                                                            | 9. D                               | ownspout/Ya                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                | 17. W                                                          | Vastewater Sump                                 |                                                                                               |                              |
|                                                       | 1. Landfill                                                                                         |                                                                                                                                                                          |                                                                            | 10. P                              | 'rıvy<br>Toundation Dr                              | ain to Clea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rwater                                                                                                                                                                                                                                                                                           |                                                                | aved Animal Ba<br>Inimal Yard or S              |                                                                                               |                              |
|                                                       | 2. Building Ove                                                                                     | _                                                                                                                                                                        |                                                                            |                                    | oundation Dr                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                  | 20. Si                                                         |                                                 | neiter                                                                                        |                              |
|                                                       | <ol> <li>1=Septic</li> <li>Sewage Absorption</li> </ol>                                             | 2= Holding Tank                                                                                                                                                          |                                                                            | 13. E                              | Building Drain                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                  | 21. B                                                          | arn Gutter                                      |                                                                                               |                              |
|                                                       | 5. Nonconformi                                                                                      | -                                                                                                                                                                        |                                                                            | 14 F                               |                                                     | on or Plasti<br>er l≕Grav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ic 2=Other<br>vity 2=Pressure                                                                                                                                                                                                                                                                    | 22. M                                                          |                                                 | l=Gravity 2                                                                                   |                              |
|                                                       |                                                                                                     | Heating Oil Tank                                                                                                                                                         | :                                                                          |                                    | 1≕Ca                                                | ast Iron or F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Plastic 2=Other                                                                                                                                                                                                                                                                                  | 23. O                                                          | l=Cast iron<br>Other manure Sto                 |                                                                                               | =Other                       |
|                                                       | 7. Buried Petrol                                                                                    | eum Tank                                                                                                                                                                 |                                                                            | 15. C                              | Collector Sew                                       | er: unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s in . diam.                                                                                                                                                                                                                                                                                     | 24. D                                                          |                                                 |                                                                                               |                              |
|                                                       | 8. 1=Shoreli                                                                                        | ne 2= Swimming l                                                                                                                                                         | Pool                                                                       | 16. 0                              | Clearwater Sur                                      | mp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  | 25. O                                                          | other NR 812 W                                  | aste Source                                                                                   |                              |
|                                                       | Dimensions and Crom To                                                                              | Construction Metho                                                                                                                                                       | d                                                                          | Lower                              | en Bedrock                                          | Geology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.                                                                                                                                                                                                                                                                                               | Geology                                                        |                                                 | From                                                                                          | 70-                          |
|                                                       |                                                                                                     | Unner Enlarged 1                                                                                                                                                         | Drillhole                                                                  | rower of                           | DCII DCIIOCK                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type, Caving/No                                                                                                                                                                                                                                                                                  | ncaving Colo                                                   | or Hardness etc                                 |                                                                                               |                              |
|                                                       | ft) (ft)                                                                                            | Upper Enlarged I 1. Rotary - Mud                                                                                                                                         | Circulation                                                                |                                    |                                                     | Codes<br>Y_TL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Type, Caving/No                                                                                                                                                                                                                                                                                  | oncaving, Colo                                                 | or, Hardness, etc                               | (ft.)                                                                                         | (ft.)                        |
| 34.0 surf                                             |                                                                                                     | 1. Rotary - Mud<br>2. Rotary - Air                                                                                                                                       | Circulation                                                                |                                    |                                                     | Codes<br>Y_TL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                  | ncaving, Colo                                                  | or, Hardness, etc                               | (ft.)                                                                                         | (ft.)                        |
|                                                       | face 40                                                                                             | 1. Rotary - Mud<br>2. Rotary - Air<br>3. Rotary - Air a<br>4. Drill-Throug                                                                                               | Circulation  and Foam th Casing Ha                                         |                                    |                                                     | Codes Y_TLG_ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TIL                                                                                                                                                                                                                                                                                              | oncaving, Colo                                                 | or, Hardness, etc                               | (ft.)<br>0                                                                                    | (ft.)                        |
| 34.0 surf                                             |                                                                                                     | 1. Rotary - Mud<br>2. Rotary - Air<br>3. Rotary - Air a<br>4. Drill-Throug<br>5. Reverse Rot                                                                             | Circulation  and Foam  th Casing Ha  ary                                   | mmer                               |                                                     | Codes Y_TLG_ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TIL<br>GRAVEL                                                                                                                                                                                                                                                                                    | oncaving, Colo                                                 | or, Hardness, etc                               | (ft.)<br>0<br>10                                                                              | (ft.)<br>10 📤<br>60          |
| 28.0                                                  | face 40                                                                                             | 1. Rotary - Mud 2. Rotary - Air 3. Rotary - Air a 4. Drill-Throug 5. Reverse Rot 6. Cable-tool B 7. Temp. Outer                                                          | Circulation  and Foam  ch Casing Ha  ary  it in. d                         |                                    |                                                     | Codes Y_TLG_ (X_ ( G_CT (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TIL<br>GRAVEL<br>CLAY @ SAND                                                                                                                                                                                                                                                                     | oncaving, Colo                                                 | or, Hardness, etc                               | (ft.)<br>0<br>10<br>60                                                                        | (ft.) 10 📤 60 90             |
| 28.0                                                  | face 40<br>40 257                                                                                   | 1. Rotary - Mud 2. Rotary - Air 3. Rotary - Air a 4. Drill-Throug 5. Reverse Rot 6. Cable-tool B 7. Temp. Outer Removed?                                                 | Circulation  and Foam  ch Casing Ha  ary  it in. d                         | mmer                               |                                                     | Codes Y_TLG_ (X_ ( G_CT (Y_ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TIL<br>GRAVEL<br>CLAY @ SAND<br>CLAY @ TILL                                                                                                                                                                                                                                                      | oncaving, Colo                                                 | or, Hardness, etc                               | (ft.)<br>0<br>10<br>60<br>90                                                                  | (ft.) 10 ▲ 60 90 220         |
| 28.0                                                  | face 40<br>40 257<br>257 1030                                                                       | 1. Rotary - Mud 2. Rotary - Air 3. Rotary - Air a 4. Drill-Throug 5. Reverse Rot 6. Cable-tool B 7. Temp. Outer Removed?                                                 | and Foam th Casing Haary it in. d Casing                                   | mmer<br>liain. dia                 | depth ft.                                           | Codes Y_TL  _G  ( _X (  G_CT (  _Y (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _)   _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _NL (  _ | TIL GRAVEL CLAY @ SAND CLAY @ TILL SAND @ GRAVEL                                                                                                                                                                                                                                                 | oncaving, Colo                                                 | or, Hardness, etc                               | (ft.)<br>0<br>10<br>60<br>90<br>220                                                           | (ft.) 10 4 60 90 220 260     |
| 28.0<br>16.0                                          | face 40 40 257 257 1030 Liner Screen Mate                                                           | 1. Rotary - Mud 2. Rotary - Air 3. Rotary - Air a 4. Drill-Throug 5. Reverse Rot 6. Cable-tool B 7. Temp. Outer Removed?                                                 | and Foam — th Casing Ha arry it in. d Casing                               | mmer                               |                                                     | Codes Y_TLG(X( G_CT_(Y)NL_( I_NL_(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TIL<br>GRAVEL<br>CLAY @ SAND<br>CLAY @ TILL<br>SAND @ GRAVEL<br>SANDSTONE FRAN                                                                                                                                                                                                                   | ICONIAN                                                        | or, Hardness, etc                               | (ft.)<br>0<br>10<br>60<br>90<br>220<br>260                                                    | (ft.) 10 	 60 90 220 260 310 |
| 28.0                                                  | face 40 40 257 257 1030 Liner Screen Mate                                                           | 1. Rotary - Mud 2. Rotary - Air 3. Rotary - Air a 4. Drill-Throug 5. Reverse Rot 6. Cable-tool B 7. Temp. Outer Removed? Other                                           | and Foam — th Casing Ha arry it in. d Casing                               | mmer lia in. dia                   | depth ft.                                           | Codes Y_TL  _G_ (  _X_ (  G_CT (  _Y_ (  _NL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL (  _NNL ( | TIL GRAVEL CLAY @ SAND CLAY @ TILL SAND @ GRAVEL SANDSTONE FRAN SANDSTONE DRES                                                                                                                                                                                                                   | ICONIAN                                                        | or, Hardness, etc                               | (ft.)<br>0<br>10<br>60<br>90<br>220<br>260<br>310                                             | (ft.) 10                     |
| 28.0 16.0 6. Casing I Dia. (in.) 18.0                 | face 40 40 257 257 1030 Liner Screen Mate                                                           | 1. Rotary - Mud 2. Rotary - Air 3. Rotary - Air a 4. Drill-Throug 5. Reverse Rot 6. Cable-tool B 7. Temp. Outer Removed? Other                                           | and Foam — th Casing Ha arry it in. d Casing                               | mmer liain. dia From (ft.) surface | To (ft.)                                            | Codes Y_TL _G_ ( _X_ ( G_CT ( _Y_ ( _NL ( _NNL ( E_HL (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TIL GRAVEL CLAY @ SAND CLAY @ TILL SAND @ GRAVEL SANDSTONE FRAN SANDSTONE DRES                                                                                                                                                                                                                   | ICONIAN                                                        | or, Hardness, etc                               | (ft.)<br>0<br>10<br>60<br>90<br>220<br>260<br>310<br>365                                      | (ft.) 10                     |
| 28.0 16.0 2 6. Casing I Dia. (in.)                    | face 40 40 257 257 1030 Liner Screen Mate                                                           | 1. Rotary - Mud 2. Rotary - Air 3. Rotary - Air a 4. Drill-Throug 5. Reverse Rot 6. Cable-tool B 7. Temp. Outer Removed? Other                                           | and Foam — th Casing Ha arry it in. d Casing                               | mmer lia in. dia From (ft.)        | depth ft.                                           | Codes Y_TL _G_ ( _X_ ( G_CT ( _Y_ ( I_NL ( NNL ( NNL ( NNL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL | TIL  GRAVEL  CLAY @ SAND  CLAY @ TILL  SAND @ GRAVEL  SANDSTONE FRAN  SANDSTONE DRES  SANDSTONE EAU (  SHALE EC  SANDSTONE EC  DOLOMITE EC                                                                                                                                                       | ICONIAN                                                        | or, Hardness, etc                               | (ft.)<br>0<br>10<br>60<br>90<br>220<br>260<br>310<br>365<br>435<br>445                        | (ft.) 10                     |
| 28.0 16.0 6. Casing I Dia. (in.) 18.0                 | face 40 40 257 257 1030 Liner Screen Mate                                                           | 1. Rotary - Mud 2. Rotary - Air 3. Rotary - Air a 4. Drill-Throug 5. Reverse Rot 6. Cable-tool B 7. Temp. Outer Removed? Other                                           | and Foam — th Casing Ha arry it in. d Casing                               | mmer liain. dia From (ft.) surface | To (ft.)                                            | Codes Y_TL _G_ ( _X_ ( G_CT ( _Y_ ( I_NL ( NNL ( NNL ( NNL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL ( I_NL | TIL  GRAVEL  CLAY @ SAND  CLAY @ TILL  SAND @ GRAVEL  SANDSTONE FRAN  SANDSTONE DRES  SANDSTONE EAU (  SHALE EC  SANDSTONE EC  DOLOMITE EC  SANDSTONE EC                                                                                                                                         | ICONIAN                                                        |                                                 | (ft.)<br>0<br>10<br>60<br>90<br>220<br>260<br>310<br>365<br>435<br>445<br>450<br>460          | (ft.) 10                     |
| 28.0 16.0 6. Casing I Dia. (in.) 18.0                 | face 40 40 257 257 1030 Liner Screen Mate                                                           | 1. Rotary - Mud 2. Rotary - Air 3. Rotary - Air a 4. Drill-Throug 5. Reverse Rot 6. Cable-tool B 7. Temp. Outer Removed? Other                                           | and Foam — th Casing Ha arry it in. d Casing                               | mmer liain. dia From (ft.) surface | To (ft.)                                            | Codes Y_TL _G_ ( _X_ ( G_CT ( _Y_ ( _NL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( N) ( N) ( N) ( N) ( N) ( N) ( N) ( N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TIL  GRAVEL  CLAY @ SAND  CLAY @ TILL  SAND @ GRAVEL  SANDSTONE FRAN  SANDSTONE DRES  SANDSTONE EAU (  SHALE EC  SANDSTONE EC  DOLOMITE EC                                                                                                                                                       | ICONIAN<br>BBACH<br>CLAIRE                                     | or, Hardness, etc                               | (ft.)<br>0<br>10<br>60<br>90<br>220<br>260<br>310<br>365<br>435<br>445                        | (ft.) 10                     |
| 28.0 16.0 6. Casing I Dia. (in.) 18.0                 | face 40 40 257 257 1030 Liner Screen Mate                                                           | 1. Rotary - Mud 2. Rotary - Air 3. Rotary - Air a 4. Drill-Throug 5. Reverse Rot 6. Cable-tool B 7. Temp. Outer Removed? Other                                           | and Foam — th Casing Ha arry it in. d Casing                               | mmer liain. dia From (ft.) surface | To (ft.)                                            | Codes Y_TL G_ (X_ ( G_CT (Y_ (NL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TIL  GRAVEL  CLAY @ SAND  CLAY @ TILL  SAND @ GRAVEL  SANDSTONE FRAN  SANDSTONE DRES  SANDSTONE EAU (  SHALE EC  SANDSTONE EC  DOLOMITE EC  SANDSTONE EC  Water Level  feet B ground st  A=Above                                                                                                 | ICONIAN BBACH CLAIRE                                           |                                                 | (ft.)<br>0<br>10<br>60<br>90<br>220<br>260<br>310<br>365<br>435<br>445<br>450<br>460          | (ft.) 10                     |
| 28.0 16.0 6. Casing I Dia. (in.) 18.0                 | face 40 40 257 257 1030  Liner Screen Mate Manufa                                                   | 1. Rotary - Mud 2. Rotary - Air 3. Rotary - Air a 4. Drill-Throug 5. Reverse Rot 6. Cable-tool B 7. Temp. Outer Removed? Other                                           | and Foam — th Casing Ha ary it in. d Casing                                | mmer liain. dia From (ft.) surface | To (ft.)                                            | Codes Y_TL  _G_ ( _X_ ( G_CT ( _Y_ ( _NL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _NNL ( _ | TIL  GRAVEL  CLAY @ SAND  CLAY @ TILL  SAND @ GRAVEL  SANDSTONE FRAN  SANDSTONE DRES  SANDSTONE EAU (  SHALE EC  SANDSTONE EC  DOLOMITE EC  SANDSTONE EC  Water Level  feet B ground s  A=Above                                                                                                  | ICONIAN BBACH CLAIRE                                           | 11. Well Is: Developed?                         | (ft.)<br>0<br>10<br>60<br>90<br>220<br>260<br>310<br>365<br>435<br>445<br>450<br>460          | (ft.)  10                    |
| 28.0 16.0 6. Casing I Dia. (in.) 18.0 16.0            | face 40 40 257 257 1030  Liner Screen Mate Manufa                                                   | 1. Rotary - Mud 2. Rotary - Air 3. Rotary - Air a 4. Drill-Throug 5. Reverse Rot 6. Cable-tool B 7. Temp. Outer Removed? Other  erial, Weight, Specificturer & Method of | and Foam — th Casing Ha ary it in. d Casing                                | From (ft.) surface                 | To (ft.) 257 265                                    | Codes Y_TL  _G_ ( _X_ ( G_CT ( _Y_ ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( N) ( NNL ( N) ( NNL ( N) ( N) ( NNL ( N) ( N) ( N) ( N) ( N) ( N) ( N) ( N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TIL  GRAVEL  CLAY @ SAND  CLAY @ TILL  SAND @ GRAVEL  SANDSTONE FRAN  SANDSTONE DRES  SANDSTONE EAU O  SHALE EC  SANDSTONE EC  DOLOMITE EC  SANDSTONE EC  Water Level  feet B ground so  A=Above  Test  ing at 1200.0 GP M                                                                       | ICONIAN BBACH CLAIRE  urface B=Below  below surface [ 12.0 Hrs | Developed? Disinfected? Capped?                 | (ft.)<br>0<br>10<br>60<br>90<br>220<br>260<br>310<br>365<br>435<br>445<br>450<br>0 in.        | (ft.)  10                    |
| 28.0  16.0  6. Casing I  Dia. (in.)  18.0  Dia.(in.)  | face 40 40 257 257 1030  Liner Screen Mate Manufa                                                   | 1. Rotary - Mud 2. Rotary - Air 3. Rotary - Air a 4. Drill-Throug 5. Reverse Rot 6. Cable-tool B 7. Temp. Outer Removed? Other erial, Weight, Specificturer & Method of  | and Foam — th Casing Ha ary it in. d Casing                                | From (ft.) surface                 | To (ft.) 257 265                                    | Codes Y_TL G_ (X_ ( G_CT (Y_ (NL (NNL (NNL (NNL (NNL (NNL (NNL (NNL (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (Nn_ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TIL  GRAVEL  CLAY @ SAND  CLAY @ TILL  SAND @ GRAVEL  SANDSTONE FRAN  SANDSTONE DRES  SANDSTONE EAU ( SHALE EC  SANDSTONE EC  DOLOMITE EC  SANDSTONE EC  Water Level feet B ground st A=Above  Test ag level 107.0 ft. ing at 1200.0 GP M  Tou notify the owner of                               | ICONIAN BBACH CLAIRE  urface B=Below  below surface [ 12.0 Hrs | Developed? Disinfected? Capped?                 | (ft.)<br>0<br>10<br>60<br>90<br>220<br>260<br>310<br>365<br>435<br>445<br>450<br>0 in.        | (ft.)  10                    |
| 28.0  16.0  6. Casing I  Dia. (in.)  18.0  Dia.(in.)  | face 40 40 257 257 1030  Liner Screen Mate Manufa  Screen typ  Control of the Sealing Manufa        | 1. Rotary - Mud 2. Rotary - Air 3. Rotary - Air a 4. Drill-Throug 5. Reverse Rot 6. Cable-tool B 7. Temp. Outer Removed? Other erial, Weight, Specificturer & Method of  | circulation and Foam — th Casing Ha ary it in. d Casing                    | From (ft.)  From                   | To (ft.) 257 265 To #                               | Codes Y_TL  _G_ ( _X_ ( G_CT ( _Y_ ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( N) ( NNL ( NNL ( NNL ( N) ( NNL ( N) ( NNL ( N) ( NNL ( N) ( NNL ( N) ( N) ( NNL ( N) ( N) ( NNL ( N) ( N) ( N) ( NNL ( N) ( N) ( N) ( N) ( N) ( N) ( N) ( N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TIL  GRAVEL  CLAY @ SAND  CLAY @ TILL  SAND @ GRAVEL  SANDSTONE FRAN  SANDSTONE DRES  SANDSTONE EAU ( SHALE EC  SANDSTONE EC  DOLOMITE EC  SANDSTONE EC  Water Level feet B ground st A=Above  Test ag level 107.0 ft. ing at 1200.0 GP M  Tou notify the owner of ells on this property?        | ICONIAN BBACH CLAIRE  urface B=Below  below surface [ 12.0 Hrs | Developed? Disinfected? Capped?                 | (ft.)<br>0<br>10<br>60<br>90<br>220<br>260<br>310<br>365<br>435<br>445<br>450<br>0 in.        | (ft.)  10                    |
| 28.0 16.0 6. Casing I Dia. (in.) 18.0 16.0  Dia.(in.) | face 40 40 257 257 1030  Liner Screen Mate Manufa  Screen type of Other Sealing Mod Kind of Sealing | 1. Rotary - Mud 2. Rotary - Air 3. Rotary - Air a 4. Drill-Throug 5. Reverse Rot 6. Cable-tool B 7. Temp. Outer Removed? Other  erial, Weight, Specificturer & Method of | Circulation and Foam — th Casing Ha ary it in. d Casing — ication Assembly | From (ft.)  From (ft.)             | depth ft.  To (ft.)  257  265  To  Sacks A.) Cement | Codes Y_TL G_G X_G G_CT Y_S NL NNL NNL S E_HL S O_LM N S G_LM O 10. Pump Pumpin Pumpin Pumpin Pumpin Pumpin Pumpin Pumpin Pump 12. Did y unused w If no, ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TIL  GRAVEL  CLAY @ SAND  CLAY @ TILL  SAND @ GRAVEL  SANDSTONE FRAN  SANDSTONE DRES  SANDSTONE EAU ( SHALE EC  SANDSTONE EC  DOLOMITE EC  SANDSTONE EC  Water Level feet B ground st A=Above  Test ag level 107.0 ft. ing at 1200.0 GP M  Tou notify the owner of ells on this property?        | urface B=Below below surface [ 12.0 Hrs                        | Developed? Disinfected? Capped? Dermanently aba | (ft.)<br>0<br>10<br>60<br>90<br>220<br>260<br>310<br>365<br>435<br>445<br>450<br>0 in.        | (ft.)  10                    |
| 28.0 16.0 6. Casing I Dia. (in.) 18.0 16.0  Dia.(in.) | face 40 40 257 257 1030  Liner Screen Mate Manufa  Screen typ  Tother Sealing Mod                   | 1. Rotary - Mud 2. Rotary - Air 3. Rotary - Air a 4. Drill-Throug 5. Reverse Rot 6. Cable-tool B 7. Temp. Outer Removed? Other  erial, Weight, Specificturer & Method of | Circulation and Foam — th Casing Ha ary it in. d Casing — ication Assembly | From (ft.)  From (ft.)             | To (ft.) 257 265 To #                               | Codes Y_TL  _G_ ( _X_ ( G_CT ( _Y_ ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( NNL ( N) ( NNL ( NNL ( N) ( NNL ( N) ( NNL ( N) ( N) ( NNL ( N) ( N) ( NNL ( N) ( N) ( N) ( N) ( N) ( N) ( N) ( N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TIL  GRAVEL  CLAY @ SAND  CLAY @ TILL  SAND @ GRAVEL  SANDSTONE FRAN  SANDSTONE DRES  SANDSTONE EAU O  SHALE EC  SANDSTONE EC  DOLOMITE EC  SANDSTONE EC  Water Level  feet B ground so A=Above  Test ng level 107.0 ft. ing at 1200.0 GP M  ou notify the owner of ells on this property? plain | urface B=Below below surface [ 12.0 Hrs f the need to p        | Developed? Disinfected? Capped? ermanently aba  | (ft.)<br>0<br>10<br>60<br>90<br>220<br>260<br>310<br>365<br>435<br>445<br>450<br>460<br>0 in. | (ft.)  10                    |

|                 |                      |                              |                          | ELL NUM                       |                  | _                 | В               | G002                |               | State of Wi-Private V<br>Department Of Natur<br>Madison, WI 53707 | ral Resources,     |                                     | Form 330<br>(Rev 02/0 |                    |
|-----------------|----------------------|------------------------------|--------------------------|-------------------------------|------------------|-------------------|-----------------|---------------------|---------------|-------------------------------------------------------------------|--------------------|-------------------------------------|-----------------------|--------------------|
| Proper          | ty FOR               | T ATKINS                     |                          |                               |                  | Tele              | phone           | 920 =563            | 3=7775        | 1. Well Location                                                  | <u></u>            | Dep                                 | th 1015               | FT                 |
|                 | <sup>1g</sup> 37 N   | WATER S                      |                          |                               |                  | Nun               | noer            |                     |               | T=Town C=City \ C of FORT AT                                      |                    |                                     | Fire#                 |                    |
| City            |                      | ATKINSON                     |                          |                               | State W          | Zig               | Code            | 53                  | 538           | Street Address or Ro<br>CLOUTE HILL #6                            | ad Name and        | Number                              |                       |                    |
| Count           | y of We              | Il Location                  |                          |                               | ll Permit No     | - w               | ell Co          | mpletion Da         | ite           | Subdivision Name                                                  |                    | Lot#                                | Block#                |                    |
| 28              | -                    | FERSON                       |                          | w                             |                  |                   |                 | nuary 1, 19         | 958           | Gov't Lot Or                                                      |                    |                                     |                       |                    |
|                 | Construction         | tor<br>RISTENSEI             | N COMPA                  | NY                            | License #<br>582 | Facility<br>12801 |                 | ublic)              |               | Gov't Lot or SE                                                   |                    |                                     |                       |                    |
| Addre           | ss                   |                              |                          | <del> </del>                  | <u></u>          | Public            | Well I          | lan Approv          | al#           | Latitude Longitude                                                | Deg. 42<br>Deg 88  | Min. 56<br>Min. 50                  | Sec.<br>Sec.          | 9.78<br>55.40      |
| W229<br>City    | N5005                | DUPLAIN                      | VI                       | State                         | Zip Code         | Date O            | f App           | mval                |               | 2. Well Type                                                      |                    | ee item 12 belo                     | <b>—</b>              | ong Method         |
| •               | AUKEE                | !                            |                          | WI                            | 53072            | 04/29/            |                 | Ovar                |               | 1=New 2=Re                                                        | • `                |                                     | " l 83                | -                  |
| Hicap<br>8007   |                      | ent Well#                    |                          | Common '                      | Well#            | Specifi           | -               | ·                   |               | of previous unique                                                |                    |                                     |                       |                    |
|                 |                      |                              |                          |                               |                  | 97                |                 | gpm/ft              |               | Reason for replaced                                               |                    |                                     | -                     |                    |
| 3. Well         | l Serve:<br>Mi       |                              | omes and<br>r: barn, res | or<br>taurant, chur           | ch. school. in   | dustry.           | etc.)           | High Capac<br>Well? | city:         |                                                                   |                    |                                     |                       |                    |
|                 |                      |                              | •                        | Other X=NonPot                |                  |                   | 1               | Property?           |               | 1 1=Drilled 2=Dr                                                  | iven Point 3=J     | etted 4=Other                       |                       |                    |
|                 |                      |                              |                          |                               |                  |                   |                 |                     |               | uding those on neighb                                             |                    |                                     | -                     |                    |
| Well<br>Distanc | located<br>e in feet | in floodplai<br>from well to | n?<br>o nearest: (       | (including pro                | oposed)          |                   | . Dov<br>0. Pri | vnspout/Ya<br>vv    | rd Hydrant    | ŧ                                                                 |                    | Vastewater Sum<br>aved Animal Ba    | •                     |                    |
|                 |                      | Landfill                     |                          |                               |                  |                   |                 | undation Dra        | ain to Clear  | rwater                                                            |                    | aved Amiliai Da<br>Animal Yard or S |                       |                    |
|                 |                      | Building (                   | _                        |                               |                  | 1                 | 2. Fo           | undation Dra        | ain to Sewe   | er                                                                | 20. S              |                                     |                       |                    |
|                 | 3.<br>1              | 1=Sep<br>Sewage A            |                          | olding Tank                   |                  | 1                 | 3. Bu           | ilding Drain        |               |                                                                   | 21. E              | Barn Gutter                         |                       |                    |
|                 |                      | Nonconfo                     | _                        |                               |                  | 1                 | 4. Bu           |                     |               | ic 2=Other<br>vity 2=Pressure                                     | 22. N              |                                     | l=Gravity 2           |                    |
|                 |                      |                              | •                        | ing Oil Tanl                  | c                |                   |                 | -                   |               | Plastic 2=Other                                                   | 23. C              | 1=Cast iron<br>Other manure Sto     |                       | =Other             |
|                 |                      | Buried Pe                    |                          | _                             |                  | 1                 | 5. Co           | llector Sewe        | er: unit      | ts in . diam.                                                     | 24. I              | Ditch                               |                       |                    |
|                 | 8.                   | 1=Sho                        | reline 2=                | Swimming                      | Pool             | 1                 | 6. Cle          | arwater Sur         | mp            |                                                                   | 25. C              | Other NR 812 W                      | aste Source           | ;                  |
| 5. Drill        |                      |                              | nd Constr                | uction Metho<br>per Enlarged  | od<br>Drillhola  | Lowe              | er Ope          | n Bedrock           | Geology       | 8.<br>Type, Caving/No                                             | Geology            | or Unrelnace at                     | Fron                  |                    |
| Dia.(in         | Froi                 | n To<br>(ft)                 | 1.                       | Rotary - Mu                   | i Circulation    |                   |                 | -                   | Codes<br>G_SM |                                                                   | oncaving, Con      | or, mardness, eu                    | (ft.)<br>0            | (ft.)<br>15 ▲      |
| 48.0            | surface              | 15                           |                          | Rotary - Air                  |                  |                   |                 |                     |               | GRAVEL                                                            |                    | **                                  | 15                    | 130                |
| -10.0           | Surface              | , 13                         |                          | Rotary - Air<br>Drill-Throu   |                  |                   |                 |                     |               | SAND @ GRAVEL                                                     |                    |                                     | 130                   | 155                |
| 32.0            | 1:                   | 5 40                         |                          | Reverse Ro                    | •                | <b></b> .         |                 | i                   |               | CLAY @ GRAVEL                                                     | <del></del>        | <del></del> -                       | 155                   | 280                |
| 28.0            | 4                    | 0 322                        |                          | Cable-tool B<br>Temp. Outer   | •                | dia<br>in. d      |                 | depth ft.           |               | TIL @ GRAVEL                                                      | <del> </del>       |                                     | 280                   | 320                |
|                 | 20                   |                              | 1                        | Removed?                      |                  |                   |                 |                     | G_CL (        |                                                                   | <del></del>        |                                     | 320                   | 325                |
| 15.3            | 32:                  | 10.0                         | <u> </u>                 | her                           |                  |                   | -               |                     | P_NL          | SANDSTONE FRAM                                                    | 100                |                                     | 325                   | 370                |
|                 |                      |                              |                          | Veight, Specia<br>& Method of |                  | Fn<br>(ft         | om<br>)         | To<br>(ft.)         | G_N_          | SANDSTONE GALE                                                    | SV                 |                                     | 370                   | 410                |
| _ Dia. (        | 18.0                 |                              | nulacturer               | & Mediod of                   | Assembly         | surfa             |                 | 322                 | NL            | SANDSTONE EC                                                      |                    |                                     | 4,10                  | 475                |
|                 |                      |                              |                          |                               |                  | Suite             |                 | · ·                 | _HM_          | SILTSTONE EC                                                      |                    |                                     | 475                   | 515                |
| •               | 16.0                 |                              |                          |                               |                  | 3                 | 10              | 367                 | G_N_          | SANDSTONE EC                                                      |                    |                                     | 515                   | 625                |
|                 |                      |                              |                          |                               |                  |                   |                 |                     | N             | SANDSTONE MT                                                      | SIMON              |                                     | 625                   | 1015 🕶             |
|                 | l                    |                              |                          |                               |                  | 1                 |                 |                     |               | Water Level                                                       |                    | 11. Well Is:                        | 0 in.                 | Grade              |
|                 |                      |                              |                          |                               |                  | 1                 |                 |                     | 91.0          |                                                                   | surface<br>B=Below | J119                                |                       | A=Above<br>B=Below |
|                 |                      | Caman                        | tuma mat                 | erial & slot s                |                  | <br>              | _               | To                  | 10. Pump      |                                                                   | . below surfac     | Developed?  e Disinfected?          |                       | D=Below            |
| Dia             | a.(in.)              | Screen                       | і туре, шас              | citat & Siot S                | IZÇ              | From              | <b>™</b>        | 10                  | -             | oing at 1170.0 GP N                                               |                    |                                     |                       |                    |
|                 |                      |                              |                          |                               |                  |                   |                 |                     |               | you notify the owner of                                           |                    |                                     | indon and f           | ill all            |
|                 |                      | ther Sealin                  | g Materia                |                               |                  | From              | То              | #<br>Sacks          | unused w      | ells on this property?                                            | •                  | •                                   |                       |                    |
| V               | <b>Method</b>        | Kind of 9                    | Sealing Ma               | nterial                       |                  | (ft.)             | (ft.)           |                     | If no, ex     | kplain<br>Is of Well Constructor                                  | or Supervisor      | v Driller                           | Date S                | igned              |
|                 |                      |                              | EMENT                    |                               |                  | surface           | 322             | .0                  |               |                                                                   | pot 1501           |                                     |                       |                    |
|                 |                      | <del></del>                  |                          | ***                           |                  |                   |                 | <del></del>         | Initials o    | of Drill Rig Operator (                                           | Mandatory un       | less same as abo                    | ove) Date S           | igned              |

| WISCONSIN UNIQUE WELL NUMBER Source: SWAP PROJECT KEYED  BG003                                                                                                                                                                                                                      |                                                                          |                   |                      |                      |                              |                                    | State of Wi-Private Wat<br>Department Of Natural<br>Madison, WI 53707                   |                         |                                        | Form 3300<br>(Rev 02/0 |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------|----------------------|----------------------|------------------------------|------------------------------------|-----------------------------------------------------------------------------------------|-------------------------|----------------------------------------|------------------------|--------------------|
|                                                                                                                                                                                                                                                                                     |                                                                          |                   |                      |                      |                              | -7775 1. Well Location Dep         |                                                                                         |                         |                                        | th <b>985</b>          | FT                 |
| Mailing 37 N WATER ST Address                                                                                                                                                                                                                                                       |                                                                          |                   |                      |                      |                              |                                    | T=Town C=City V=\ C of FORT ATKIN                                                       |                         |                                        | Fire#                  |                    |
| City FORT ATKINSON State W                                                                                                                                                                                                                                                          |                                                                          |                   |                      | Zip Code             | 53                           | 538                                | Street Address or Road<br>JAMESWAY ST #7                                                | Name and l              | Number                                 |                        | <u>-</u> ·         |
| County of Well Location Co Well Permit No                                                                                                                                                                                                                                           |                                                                          |                   |                      | Well Completion Date |                              |                                    | Subdivision Name                                                                        |                         | Lot#                                   | Block#                 |                    |
| 28 JEFFERSON W                                                                                                                                                                                                                                                                      |                                                                          |                   |                      |                      | May 25, 196                  | 67                                 | Gov't Lot Or SE 1/4                                                                     | - C SE 1/               | 1 . 6 0                                |                        | n 44 5             |
| Well Const                                                                                                                                                                                                                                                                          | tructor<br>ER WELL @ PUMP CO INC                                         | # Facil<br>1280   | 1119 ID (1<br>010300 | Public)              |                              | Gov't Lot <b>or</b> SE 1/4         |                                                                                         | of Section 4  Min. 55   |                                        | ;R <b>14 E</b><br>7.43 |                    |
| Address<br>20950 ENTERPRISE AVE                                                                                                                                                                                                                                                     |                                                                          |                   |                      | ic Well I<br>768     | Plan Approv                  | al#                                | Longitude De                                                                            | -                       | Min. 50                                |                        | 7.43<br>21.81      |
| City State Zip Code                                                                                                                                                                                                                                                                 |                                                                          |                   |                      | Of App               | roval                        |                                    | 2. Well Type                                                                            | 1 (Se                   | e item 12 belov                        | v) Lat/Lo              | ong Method         |
| BROOKFIELD WI 53045 Hicap Permanent Well # Common Well #                                                                                                                                                                                                                            |                                                                          |                   |                      | 4/1966               | •                            |                                    | 1=New 2=Replace                                                                         | ement 3=                | Reconstruction                         | 83                     |                    |
| Hicap Permanent Well # Common Well # 80075 7                                                                                                                                                                                                                                        |                                                                          |                   | 127                  | ific Cap             | gpm/ft                       |                                    | of previous unique wel                                                                  | 11#                     | constructe                             | d in <u>0</u>          | <del>_</del>       |
| 3. Well Serves # of homes and or                                                                                                                                                                                                                                                    |                                                                          |                   |                      | High Capacity        |                              |                                    | Reason for replaced or reconstructed Well?                                              |                         |                                        |                        |                    |
| M (eg: barn, restaurant, church, school, in                                                                                                                                                                                                                                         |                                                                          |                   |                      | - 1 I                |                              |                                    |                                                                                         |                         |                                        |                        |                    |
|                                                                                                                                                                                                                                                                                     | OTM N=NonCom P=Private Z=Other X                                         |                   |                      |                      |                              |                                    |                                                                                         |                         |                                        | <u>-</u> .             |                    |
| 4. Is the well located upslope or sideslope and not downslope from any contamination sources, including those on neighboring properties?  Well located in floodplain?  9. Downspout/ Yard Hydrant  17. Wastewater Sump  Distance in feet from well to nearest: (including proposed) |                                                                          |                   |                      |                      |                              |                                    |                                                                                         |                         |                                        |                        |                    |
| Distance in feet from well to nearest: (including proposed)  1. Landfill                                                                                                                                                                                                            |                                                                          |                   |                      | 10. Pri              | vy                           |                                    | 18. Paved Animal Barn Pen                                                               |                         |                                        |                        |                    |
| 2. Building Overhang                                                                                                                                                                                                                                                                |                                                                          |                   |                      |                      | undation Dra                 |                                    |                                                                                         |                         | nimal Yard or S                        | helter                 |                    |
| 3. 1=Septic 2= Holding Tank                                                                                                                                                                                                                                                         |                                                                          |                   |                      |                      | undation Dra<br>ilding Drain |                                    | er                                                                                      | 20. Si                  |                                        |                        |                    |
| 4. Sewage Absorption Unit                                                                                                                                                                                                                                                           |                                                                          |                   |                      |                      | 1=Cast In                    | on or Plasti                       | ic 2=Other                                                                              |                         | arn Gutter<br>Ianure Pipe              | l=Gravity 2            | =Pressure          |
| •                                                                                                                                                                                                                                                                                   | 5. Nonconforming Pit                                                     |                   | 14. Bu               | _                    |                              | vity 2=Pressure<br>Plastic 2=Other |                                                                                         | 1=Cast iron             | or Plastic2                            |                        |                    |
|                                                                                                                                                                                                                                                                                     | <ol> <li>Buried Home Heating O</li> <li>Buried Petroleum Tank</li> </ol> |                   | 15. Co               |                      |                              | is in . diam.                      | 23. O<br>24. D                                                                          | ther manure Sto<br>itch | nage                                   |                        |                    |
|                                                                                                                                                                                                                                                                                     | 8. 1=Shoreline 2= Swin                                                   | oming Pool        |                      | 16. Cle              | earwater Sur                 | np                                 |                                                                                         |                         | ther NR 812 W                          | aste Source            |                    |
| 5. Drillhole                                                                                                                                                                                                                                                                        | Dimensions and Construction                                              |                   | T a.                 |                      | n Dadmak                     | Geology                            | 8.                                                                                      | Geology                 | ······································ | From                   | то То              |
| From To Upper Enlarged Drillhole Dia.(in.) (ft) (ft) -1. Rotary - Mud Circulation                                                                                                                                                                                                   |                                                                          |                   |                      | Lower Open Dedices   |                              |                                    | Type, Caving/Nonc                                                                       | aving, Čolo             | r, Hardness, etc                       | (/                     | (ft.)              |
| -2. Rotary - Air                                                                                                                                                                                                                                                                    |                                                                          |                   |                      |                      | -                            |                                    | SAND @ GRAVEL                                                                           |                         |                                        | 225                    | 225 📤              |
| 30.0 surface 100 3. Rotary - Air and Foam                                                                                                                                                                                                                                           |                                                                          |                   |                      |                      |                              |                                    | DOLOMITE TREMP                                                                          |                         |                                        |                        | 265                |
| 26.0 100 235 - 5. Reverse Rotary                                                                                                                                                                                                                                                    |                                                                          |                   |                      |                      |                              |                                    | SHALE FRANCO         265         280           SANDSTONE FRANCO         280         320 |                         |                                        |                        |                    |
| 25.0                                                                                                                                                                                                                                                                                | - 6. Cable-tool Bit in 6                                                 |                   |                      |                      | <br>depth ft.                |                                    | SANDSTONE IRONTON                                                                       |                         |                                        |                        | 375                |
|                                                                                                                                                                                                                                                                                     | Rem                                                                      | oved?             | 111.                 | dia                  | асриги.                      | $\vdash$                           | SANDSTONE GALES                                                                         | <del></del>             |                                        | 320<br>375             | 450                |
| 17.0 344 935 Other                                                                                                                                                                                                                                                                  |                                                                          |                   |                      |                      |                              |                                    |                                                                                         |                         |                                        |                        | 470                |
| 6. Casing I<br>Dia. (in.)                                                                                                                                                                                                                                                           | Liner Screen Material, Weight<br>Manufacturer & Me                       |                   | From To (ft.)        |                      |                              | SHALE EC 470                       |                                                                                         |                         |                                        | 475                    |                    |
| 30.0                                                                                                                                                                                                                                                                                | STEEL                                                                    | AHOU OF FRIDONION |                      | rface                | 100                          | G_L_                               | DOLOMITE EC                                                                             |                         |                                        | 475                    | 500                |
|                                                                                                                                                                                                                                                                                     |                                                                          |                   |                      |                      |                              | N_                                 | SANDSTONE MT SIM                                                                        | ON                      |                                        | 500                    | 850                |
| 26.0 STEEL                                                                                                                                                                                                                                                                          |                                                                          |                   |                      | 0                    | 235                          | A_                                 | CONGLOMERATE MT SIM ON 850 915                                                          |                         |                                        |                        |                    |
| 18.0                                                                                                                                                                                                                                                                                | STEL                                                                     | STEL              |                      | 0                    | 344                          |                                    | SANDSTONE MT SIM                                                                        | ON                      |                                        | 915                    | 985 🕶              |
|                                                                                                                                                                                                                                                                                     |                                                                          |                   |                      |                      |                              | 9. Static                          | Water Level<br>feet B ground surf                                                       | ace                     | 11. Well Is:                           | 0 in.                  | Grade              |
|                                                                                                                                                                                                                                                                                     |                                                                          |                   |                      | ļ                    |                              | 10. Pump                           | A=Above B=                                                                              |                         | Developed?                             |                        | A=Above<br>B=Below |
| Dia.(in.)                                                                                                                                                                                                                                                                           | Dia.(in.) Screen type, material & slot size                              |                   | F                    | From To              |                              |                                    |                                                                                         | low surface             | Disinfected?                           |                        |                    |
|                                                                                                                                                                                                                                                                                     |                                                                          |                   |                      |                      |                              |                                    | Pumping at 1268.0 GP M 24.0 Hrs Capped?                                                 |                         |                                        |                        |                    |
| 7. Grout or Other Sealing Material # unused wells on this property?                                                                                                                                                                                                                 |                                                                          |                   |                      |                      |                              |                                    |                                                                                         |                         |                                        | ndon and fi            | ll all             |
| Metho                                                                                                                                                                                                                                                                               | -                                                                        |                   | From To Sacks        |                      |                              | plain                              | · .                                                                                     |                         |                                        |                        |                    |
| Kind of Sealing Material                                                                                                                                                                                                                                                            |                                                                          |                   | (ft.)                | (ft.)                |                              | 13. Initial                        | s of Well Constructor or                                                                | Supervisor              | y Driller                              | Date Si                | gned               |
| CEMENT                                                                                                                                                                                                                                                                              |                                                                          |                   |                      | e 344                | 0.0                          | Initials o                         | f Drill Rig Operator (Ma                                                                | ndatory unl             | ess same as aho                        | ve) Dota C:            | oned               |
|                                                                                                                                                                                                                                                                                     |                                                                          |                   |                      | 1                    | 1                            |                                    | 1-9 oberator (1410                                                                      |                         |                                        | · +, Date St           | Paren .            |