

resourceful. naturally.

engineering and environmental consultants

Technical Memorandum

To: Alex Smith, Enbridge Energy

From: Ryan Erickson and Noelle Scelina

Subject: Superior Terminal Historical Contamination -

Line 14 and Line 61 Area Pipeline Enhancement Infrastructure Excavation Activity Date: January 13, 2017 Project: 49161286

This document summarizes the field screening, analytical sampling, and waste management assistance performed by Barr in response to the discovery of historically contaminated soil encountered during excavation activities near Pipelines 14 and 61 (Lines 14 and 61) at the Enbridge Superior Terminal in Superior, Wisconsin (Figure 1).

Background

Excavation and pipeline replacement activities were conducted along a Terminal road near Line 14 and Line 61 infrastructure as part of the Superior Terminal Enhancement Project (Project) in 2014 and 2015. In this area, hydrocarbon contaminated soil was encountered by excavation contractors in in four locations (*Excavation 1, Excavation 2, Excavation 3, Excavation 4*) during this Project (Figure 1). Enbridge was notified and the nearby infrastructure was assessed for an active release. No active release was identified; therefore, Enbridge inferred that the contamination was historical. The contractors continued their excavation activities and excavated soil with evidence of hydrocarbon contamination was transported to the Terminal soil management area for characterization and off-site management.

Enbridge requested that Barr assist with environmental assessment and waste management tasks using methods described in the *Field Activities* section of *Superior Terminal Pipeline Enhancement Project Environmental Oversight Technical Memorandum*. The site specific activities and results are summarized below.

Environmental Activities and Results

Barr was onsite on multiple occasions during project activities between November of 2014 and August of 2015 to assess the environmental site conditions as they were encountered. The excavation and soil sampling locations are shown on Figure 1 and the field screening logs for the completed excavations are included in Attachment A. The analytical sampling results are summarized in Table 1 and the laboratory reports are included in Attachment B.

Excavation 1

Barr was onsite to document the conditions of *Excavation 1* on August 5 and 6 of 2014. Excavation 1 is on the southeast side of a Line 61 manifold complex (Photo 1). The final excavation approximately was 30

Barr Engineering Co. 325 South Lake Avenue, Suite 700, Duluth, MN 55802 218.529.8200 www.barr.com

feet long by 2 feet wide and up to 3.5 feet deep (Photo 2). Soil observed in the final excavation sidewalls and base consisted of sandy gravel fill and sandy clay.

Soil samples collected from the sidewalls of the final excavation had headspace readings below 2 parts per million (ppm) and no other evidence of residual soil contamination, such as odor, discoloration or sheen, were identified. A hydrocarbon sheen was observed on water within the excavation over a small 6 inch by 1 foot diameter area. Based on the field screening results and field observations, no analytical soil sample was collected.

Excavation 2

Barr was onsite to document the conditions of *Excavation 2* on September 11 and November 8 and 15 of 2014. *Excavation 2* consisted of two stormwater culvert trenches beneath the Terminal road. The November 8, 2014 field event documented conditions in the new culvert installation trench (Photos 3 and 4). The November 15, 2014 field event documented conditions in the historical culvert removal trench (Photo 5). Each trench was approximately 40 feet long by 6 feet wide by 5 feet deep. Soil in the excavation extents consisted of clay and sand fill.

In the culvert installation trench (Attachment A – 11/8/2014), the highest detected sidewall soil sample headspace reading was 1.5 ppm and no other evidence of hydrocarbon soil contamination such as odor, discoloration, or sheen were identified except for on the west end of the trench where it intersected the historical culvert. Soil with historical contamination was identified in parts of the western half of the historical culvert removal trench (Attachment A – 11/15/2014). The contaminated soil had headspace readings up to 90.6 ppm, a hydrocarbon odor, and orange discoloration. Hydrocarbon contaminated soil was not identified in the eastern half of the trench.

Barr collected two analytical samples (*Culvert-S-1* and *Culvert-S-2*) from the excavation sidewalls on November 15, 2014 to document residual contamination (Figure 1; Attachment A). Samples were sent to Legend technical Services in St. Paul, Minnesota for laboratory analysis of petroleum volatile organic compounds (PVOC) and naphthalene.

Analyte concentrations were detected in both samples; however, the concentrations were below Wisconsin Department of Natural Resources (WDNR) industrial direct contact residual contaminant levels (RCL's) and passed the Cumulative Hazard Index criteria. *Culvert-S-1* analyte concentrations were below WDNR groundwater RCLs for sample. *Culvert-S-2* analyte concentrations exceeded WDNR groundwater RCLs for multiple parameters as shown in Table 1.

Excavation 3

Barr was onsite to document the conditions of *Excavation 3* on March 6, 9, and 10 of 2015. *Excavation 3* was a pipeline tie-in excavation located in a storm water ditch on the north side of the Terminal road

n prolations we have easy as in reactions of the source sector of a present of the sector of the sec

(Photo 6; Figure 1). The final excavation was approximately 40 feet long by 32 feet wide by 10 feet deep and the soil observed in the sidewalls and bottom consisted of clay.

A small volume of free-product (less than 1-gallon) and contaminated soil was observed by contractors near the pipeline during excavation activities. Most observed hydrocarbon contamination was removed during excavation activities. Barr field screened the final excavation (Attachment A – 3/10/2015) and identified residual hydrocarbon contaminated soil with a headspace reading of 601 ppm and a trace amount of product in the northeast sidewall beneath the pipeline (Photo 7). No evidence of hydrocarbon contamination was identified in the other excavation field screening samples.

Barr collected one analytical samples (*LN61-S-1*) from beneath the northeast end of the pipeline on March 10, 2015 to document residual contamination (Figure 1). The sample was sent to Legend Technical Services for laboratory analysis of PVOC and naphthalene.

Concentrations of each analyzed parameter were detected; however, the concentrations were below WDNR industrial direct contact RCLs and passed the Cumulative Hazard Index criteria. Analyte concentrations did exceed WDNR groundwater RCLs for all of the parameters except ethyl benzene and toluene as shown in Table 1.

Excavation 4

Barr was onsite to document the conditions of *Excavation 4* on August 17 and 18 of 2015. *Excavation 4* was located around valves 22V-FV21 and 222-V-PV21 in the storm water ditch north of the Terminal road (Photo 8; Figure 1). The final excavation was approximately 15 feet long by 10 feet wide by 7 feet deep and the soil in the sidewalls consisted of clay (Photo 9).

Excavation contractors reported seeing a sheen on water within the excavation. Barr field screened soil from the final excavation sidewalls in the direct contact zone (0 - 4.5 feet below ground surface) and the headspace readings were 0.0 ppm and no other evidence of hydrocarbon contaminated soil such as odor, discoloration, or sheen were identified in the screening samples. Deeper samples could not be collected due to the steep excavation sidewalls. A slight rainbow hydrocarbon sheen was observed on water within the excavation.

Barr collected one analytical sample (*Tank21-S-1*) from the excavation sidewall on August 18, 2015 to document final environmental site conditions (Figure 1). The sample was sent to ALS Environmental in Holland, Michigan for laboratory analysis of PVOC and naphthalene.

All analyte concentrations were below method detection limits as shown in Table 1.

Sample ID	Sample Date	Sample Depth (feet)	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	Benzene	Ethyl benzene	Toluene	Total Xylenes	Naphthalene
Groundwater RCLs	<u>underlined</u>		<u>1.3821</u>	<u>1.3821</u>	<u>0.0051</u>	1.57	1.1072	<u>3.96</u>	<u>0.6582</u>
Industrial DC RCLs	No exceedances		219	182	7.41	37	818	260	26
Excavation 2									
Culvert-S-1	11/15/2014	2	0.27	0.27	<0.0036	0.022	<0.0051	0.14	0.29
Culvert-S-2	11/15/2014	4	21	<u>27</u>	<u>0.17</u>	0.55	<0.0047	<u>11</u>	<u>12</u>
Excavation 3									
LN61-S-1	3/10/2015	9	<u>5.3</u>	<u>3.4</u>	<u>3</u>	1.1	0.31	<u>15</u>	<u>3.1</u>
Excavation 4									
Tank 21-S-1	8/18/2015	2	< 0.014	< 0.015	<0.015	<0.014	<0.014	<0.043	< 0.016

TABLE 1: Analytical Soil Sample Results (all analyte concentrations in mg/kg)

BOLD = Analyte detections

<u>Underlined</u> = Analyte detections exceeding WDNR groundwater RCLs.

The project scope and presence of terminal infrastructure limited the additional remedial excavation of contaminated soil. The excavations were backfilled upon completion of the Project work with fill that had no identified contamination.

Historical Release Information

Barr reviewed the WDNR Bureau of Remediation and Redevelopment Tracking System (BRRTS) database in the vicinity of the above Project excavations. A Pump House 14 release (BRRTS# 0216176579) was identified approximately 100 feet east of the *Excavation 2* trenches that may be associated with observed impacts. However, historical release details and documentation associated with the release was not available on the BRRTS website. Other historical BRRTS sites were not identified near the other excavations. Based on the contaminated soils proximity to Terminal pipeline infrastructure and the lack of an identified ongoing release, it is likely that the contamination is associated with unreported historical releases.

Waste Management

Contaminated soil was managed off-site as described in the *Waste Management* section of the *Superior Terminal Pipeline Enhancement Project Environmental Oversight Technical Memorandum*. Contaminated water in the excavation was removed with a hydrovacuum truck, solidified with the excavated soil slurry, and managed as a solid at an off-site landfill facility.

Receptor Survey

The closest groundwater monitoring wells are *MW-6* and *MW-6B* located approximately 500 feet southwest of *Excavation 1* and wells *MW-20A* and *MW-20B* located approximately 600 feet east of *Excavation 2*. In 2015, PVOC and naphthalene analyte concentrations in these wells were below method detection limits as shown in the *Superior Terminal Pipeline Enhancement Project Environmental Oversight Technical Memorandum*.

In each excavation location, the residual impacts are below the ground surface and above the water table; therefore, no nearby surface water receptors are deemed to be at risk.

The closest structures are Tank 21 to the northwest, which has no human occupancy, two pump houses (one to the northeast and one to the southwest), and two buildings associated with the power station to the southeast. The pump houses and power station buildings have limited human occupancy, lack basements, buried storm water lines or other subsurface vapor entry points. No other potential vapor receptors were identified within 100 feet of the excavations.

Conclusion

Soil with historical hydrocarbon contamination was identified and excavated during the Line 14 and 61 Pipeline Enhancement projects. The excavated contaminated soil was managed at an approved landfill facility. Contaminated soil that could not be excavated due to the project scope and the presence of Terminal infrastructure had analyte concentrations below the WDNR industrial direct contact RCL's and passed the WDNR Cumulative Hazard Index criteria. Analyte concentrations did exceed WDNR Groundwater criteria for some analytes; however, groundwater monitoring at the Superior Terminal is conducted on a facility wide basis as part of the hydrogeologic performance standard established in the WDNR *Site Investigation and Response Action Plan (SI/RAP)* (2014). The presence of clean backfill, above ground infrastructure, and employee-awareness will help prevent direct contact exposure.

Because no definitive source for the historically contaminated soil was identified and residual contamination remains with analyte concentrations that are below the direct contact RCL's but above groundwater RCL's, the WDNR will likely add the site to the pending Terminal-wide GIS registry. Barr believes that no further remedial or investigative actions will be requested by the WDNR for this site at this time.

Attachments:

Site Photos	1 through 9
Figure 1	Site Layout
Attachment A	Enbridge Site Investigation Field Sampling and Screening Logs
Attachment B	Excavation Sample Laboratory Reports

To:Alex Smith, Enbridge EnergyFrom:Ryan Erickson and Noelle ScelinaSubject:Line 14 and Line 61 Historical ContaminationDate:January 13, 2017Page:6

Site Photos

Excavation 1

Photo 1

Photo 2

Photo 1: Excavation 1. Photo taken facing north on August 5, 2014. **Photo 2**: Excavation 1. Photo taken facing northeast on August 6, 2014.

Photo 3

Photo 4

Photo 3: Culvert installation trench. Photo taken facing east on November 8, 2014. **Photo 4:** Culvert installation trench. The west end of the historical culvert is visible in the trench sidewall in the center of the photo. Photo taken facing southeast on November 8, 2014.

Ps/Dubith/49 WT/16/49161286 Terminal Pipeline Enhancement/Worl/Files/Memol/Site Specific Attachments/B Line 61 (Includes Line 61, Line 61, Culvert, and Line 61 Tie in)/Line 61. Attachment Memo.docx To:Alex Smith, Enbridge EnergyFrom:Ryan Erickson and Noelle ScelinaSubject:Line 14 and Line 61 Historical ContaminationDate:January 13, 2017Page:7

Photo 5: Culvert removal trench. The historical culvert is visible near the bottom of the vertical hydrovacuum truck metal hose in the bottom left corner of the photo. Photo taken facing southeast on November 15, 2014.

Excavation 3

Photo 7

Photo 6: Excavation 3. Photo taken facing west on March 10, 2015.Photo 7: Northeast end of Excavation 3. Photo taken facing north on March 10, 2015.

To:Alex Smith, Enbridge EnergyFrom:Ryan Erickson and Noelle ScelinaSubject:Line 14 and Line 61 Historical ContaminationDate:January 13, 2017Page:8

Excavation 4 Fixed and the second se

Photo 8: Excavation 4. Photo taken facing west on August 18, 2015.Photo 9: Excavation 4. Photo taken facing southwest on August 18, 2015.

Attachment A

Site Investigation Field Sampling and Screening Logs

Sample ID	Depth		1		B = Bottom .	Sample ; Stoc	pile = Stockpile Sam	ple	Sam Calibration 1	Time: 12:15	BARR
Example: Stockplie-1	(FT)	Time (military)	Soli Type (USCS)	Color/ Discolor	Odor/ Sheen	Headspace Reading (ppm)	SITE SKETCH: nort borings, wells, stru	h is up; excavatio ctures, utilities, n	n extents & depths, in atural features	npacted areas,.samj 1 inch/grid =	ole locations, FEET
	4	<u>16:30</u>	a	Reddish brown	Patroleum/ Rainbow	275			.] 1	l ı	(not to
Fidewall-1	J	12:49	Parasel	brown	nonchor	2 0.0					sauc)
Sidewall -2	0.5		articl	1		1.1					7.
Sidewall-3	3		sand			0.9					N
sidenall-4	3		cant			0.2					
sidewall-5	3		sand			0.9					
sidewall-6	3		gand!			0.9					
SiderWall-7	3	:	GANAY	1	(•	0.3		1			
		5						1		6	
								6		shear (stil)	2
				,				l	6	7	Ч
				2				V	O sheen o	h sidewat	6
								ų			
		:									
		1-2-6-16-26-26-04-5									
		i	-			ж					

Excavation 2 -	Culve	rt Install	ation F	inal Exca	ation			
SITE INVESTIGAT	ON FIE	LD SAMP	LING A	ND SCREEN	NG LOG	,	Pa	ige_of_
Location: Milepost	or Facili	ty Supe	cier To	erminal Fig	eline En	hancement	- Line 61 Road Culvert	The second
Equipment used: Y		ionization ation	detecto malo tur	r with <u>11 · /</u>	_eV lamp		Background Headspace: <u>0.0</u> ppm Date: <u>1/3/14</u>	
Soil Sample Types: R	= Remov	ed Sample	; S = Side	wall Sample ;	B = Bottom	Sample ; Stoc	ckpile = Stockpile Sample Calibration Time: 92.3	ARR
	1		Soil			Headspace	SITE SKETCH: north is up; excavation extents & depths, impacted areas, sample locati	ons,
Comple ID	Depth	Time	Туре	Color/	Odor/	Reading	borings, wells, structures, utilities, natural features 1 inch/grid = 10 FEET	
Evample TK99-5-1	(FT) 	(military)	(USCS)	Baddich brown	Petroleum/	(ppm) 275	Daut	X
C I	0	Géle		Reddy h Brano	Rainbow		Torde ZC	X
5-1	2	175	i	NC	-7N	0.0	lank L	N
5%	4					0.1		
53	2			├		1.9	OBSERVED DETCH	
5-4	6	<u> </u>				0.3	Communication Communication	
5-5	2					0.0		
56	2					0.0	X ALC C	
5-7	2					0,0	OH O	
5-8	2	4				0.6	KOAD	
5-9	2	1015	*		¥	0.0	XZN	
							L FEE L O	
							A CAR O	
							5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	
							Te le	
							E NOZN	
							to I	**************************************
							BB BB	
	1							

Excavation 2 -	Culve	ert Rem	oval F	inal Exca	ation		
SITE INVESTIGATI	ON FIE	LD SAM	LING A	ND SCREEN	ING LOG	1.1	Pagel of
Fouriement used: 0	n Facili	ly <u>Juperi</u> Ionization	or erM	rwith 11 7	eV lama	ment Li	Background Headsnare: () Comm Date: 1/15/14
Sample Nomenclatu	Ire (Loc	ation - sa	mple typ	ne-#):	_cviamp		Sampler: REF DADD
Soil Sample Types: R =	= Remov	ed Sample	; \$ = Side	wall Sample ;	B = Bottom	Sample ; Stoo	kpile = Stockpile Sample Calibration Time: 930
Sample ID	Depth	Time (military)	Soil Type (USICS)	Color/ Discolor	Odor/ Sheen	Headspace Reading	SITE SKETCH: north is up; excavation extents & depths, impacted areas, sample locations, borings, wells, structures, utilities, natural features 1 inch/grid = \O FEET
Example: TK99-5-1	4	<u>16:30</u>	<u> </u>	Reddish brown	<u>Petroleum/</u> Rainbow	275	Dauti
5-1	2	945	CL	Rectolyth Brown (RB)	N/.	3.6	Tonk 20 A
5-2	3		58/cc	Brownorge	Per tenny	90.6	
5.3	2		58/cc	Biswn-	Petroleum	26.9	Ditte
5-4	2		CL	R6/_	NÍ-	0.1	
5-5	3		CL	R.B/_	N/-	0.0	
8-6	4	ł	CL	RB/-	N/-	6.0	
8-7	5	loco	CL	RB/-	N/-	5.3	
							C Ze
							C -5 - 6 51
ANALYTICAL	SAMP	155					JO Z CAL
Culvert -5-1	2	1000	CL	RB	N/-	1	
Culvert-5-2	4	1005	эР	Brown	Petroleum/	-	
-							0 95
							Official
							AD Screening ob at
							# Analyter (sempline must

	4	R.		-			
Excavation 3 - F	inal E	xcavatio	on			¥.	
SITE INVESTIGATI	ON FIE	LD SAMP	LING A	ND SCREEN	ING LOG	ر کے زیا	Page / of /
Location: Milepost	or Facili	ty Enbids	e Supe	nor Termina	1 Line	61 Tie-In	
Equipment used: P	hete -	ionization	detecto	r with 11,7	_eV lamp		Background Headspace: 0,0ppm Date: 3/10/15
Sample Nomenclati	ure (Loc	ation - sa	mple typ	le - #):	D. Dettern	Complex Sheet	Sampler: <u>Por</u> BARR
Soli Sample Types: K	= Kemov	ea sample	; 5 = 5100	waii Sample ;	B = Bottom	Sample ; Stoc	
	Donth	Time	Soil	Color/	Odor/	Headspace	SITE SKETCH: north is up; excavation extents & depths, impacted areas, sample locations,
Sample ID	(FT)	(military)	(USCS)	Discolor	Sheen	(ppm)	bonnys, wens, structures, admices, natural jeacores 2 menygna - 10 - FEET
Example: TK99-5-1	4	<u>16:30</u>	<u>CL</u>	Reddish brown	Petroleum/ Rainbow	<u>275</u>	
5-1 (9	230	CL	Redush Biown -	Fracturet	604+	entropological and the second second
5-2	3		j		Na	0.3	V IGHEZI COTWEIR BERNINGRASS
5-3	3	ŀ			1	0.1	182
5-4	3					85	
5-5	3					0.0	司, 5-6
5-6	2.	V				0,0	
5-7	Z	300	*	Y	+	0.0	
8-8	10	300	¥	¥	*	34	SHAVEL FILL
		-					
And I and							5-50 PIPELINE 6-8 B35 235-2
1 NG1-5-1	9	200	Pilac	+ Abubt	alian		B-8° Bottom ~ 10 FF BGS C 517
		000	1.000	t ryapiii	Maleple.		
							Stand Contraction of the second secon
							They will they are a second and they are a s
							5-4
							12 - 5-5
							STOREENING POINT
							O ADIAL VITICAL COMON -
							CERTARY SHITTLE
							31 60.050
							- Excavation contractors observed continuation within approximately
· · · · · · · · · · · · · · · · · · ·							I foot of the pipeline, trace amounts of product beneath pipeline

4

*

+

Excavation 4 - Final Excavation Pagel of L SITE INVESTIGATION FIELD SAMPLING AND SCREENING LOG Location: Milepost or Facility Valve Suth of Tank 21 (hydrovac excervation) Line 61 Equipment used: Phanc -ionization detector with 1.7 eV lamp Date: 8-18-15 Background Headspace: (2) (2) ppm Sample Nomenclature (Location - sample type - #): _ Sampler: NR52 BARR Soil Sample Types: R = Removed Sample ; S = Sidewall Sample ; B = Bottom Sample ; Stockpile = Stockpile Sample Calibration Time: 10.75 Soil Headspace SITE SKETCH: north is up; excavation extents & depths, impacted areas, sample locations, Odor/ Color/ 1 inch/grid = 10Depth Type Reading borings, wells, structures, utilities, natural features... FEET Time Sample ID Discolor Sheen (FT) (military) (USCS) (ppm) Petroleum/ Example: TK99-S-1 Reddish brown 4 16:30 CL 275 Rainhou TN 1020 Reddisn 5-CL rone/nac 0.0 Table of the local division of the local div 3' 5-2 0.0 2 5-3 6.0 K Tank 21 1.5 5-4 0.0 piton 0.0 5-5 25 4.5 5-6 extartion (Glopich) 0.0 Carsin nonhon Reckish 0.0 CL .5 1030 TGNK21-5-1 ,5-3 GnK21-5-1 Road Dirch 5 * = Screning point # = and third Sample

Coordinants 46.6355762, -92.0600579 EXCAVATION ~ 15 (NE-SW) × 10' (NW-SE) × 7' deep.

ranalytical Jumple

Attachment B

Excavation Sample Laboratory Reports

December 02, 2014

Mr. James E. Taraldsen Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435

Work Order Number: 1405248 RE: 49161286

Enclosed are the results of analyses for samples received by the laboratory on 11/18/14. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

WI Accreditation #998022410

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II bpham@legend-group.com

Legend Technical Services, Inc.

Barr Engineering Co.	Project:	49161286				
4700 W 77th St	Project Number:	49161286.00 004 001		Work Or	rder #: 1405248	
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldse	en	Date Re	ported: 12/02/14	
N						
	ANALTICAL	REPORT FOR SAM	IPLE5			
Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received	
Culvert-S-1_2-2		1405248-01	Soil	11/15/14 10:00	11/18/14 12:00	
Culvert-S-2_4-4		1405248-02	Soil	11/15/14 10:05	11/18/14 12:00	
F						
Shipping Container Informat	ion					
Default Cooler	Temperature (°C): 0.7					
Received on ice: Yes Received on melt water: No Custody seals: Yes	Temperature blank v Ambient: No	vas present	Received Acceptat	d on ice pack: No ble (IH/ISO only): No	2	

Case Narrative:

The dry weight correction and dilution applies to the sample result, MDL, and RL.

Ethylbenzene was present in the method blank between the MDL and RL for the BTEX analysis.

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 004 001	Work Order #:	1405248
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	12/02/14

WI(95) GRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Culvert-S-1_2-2 (1405248-01) Soil	Sampled: 11	/15/14 1	0:00 Rece	eived: 11/18/	14 12:00					
1,2,4-Trimethylbenzene	0.27	0.031	0.0033	mg/kg dry	1	B4K1907	11/19/14	11/19/14	WI(95) GRO	
1,3,5-Trimethylbenzene	0.29	0.031	0.0077	mg/kg dry	1			"		
Benzene	<0.0036	0.031	0.0036	mg/kg dry	1	"		"		
Ethylbenzene	0.022	0.031	0.0079	mg/kg dry	1				"	B-01, J
Naphthalene	0.29	0.62	0.027	mg/kg dry	1			"		J
Toluene	<0.0051	0.031	0.0051	mg/kg dry	1	"		"		
Xylenes (total)	0.14	0.093	0.018	mg/kg dry	1			"		
Surrogate: 4-Fluorochlorobenzene	103			80-150 %		"	"	n	"	
Culvert-S-2_4-4 (1405248-02) Soil	Sampled: 11	/15/14 1	0:05 Rece	eived: 11/18/	14 12:00					
1,2,4-Trimethylbenzene	21	0.29	0.031	mg/kg dry	10	B4K1907	11/19/14	11/19/14	WI(95) GRO	
1,3,5-Trimethylbenzene	27	0.29	0.072	mg/kg dry	10	"		н		
Benzene	0.17	0.029	0.0034	mg/kg dry	1	"		11/19/14		
Ethylbenzene	0.55	0.029	0.0074	mg/kg dry	1	"	"	н		
Naphthalene	12	0.58	0.025	mg/kg dry	1		"			
Toluene	<0.0047	0.029	0.0047	mg/kg dry	1			н		
Xylenes (total)	11	0.087	0.016	mg/kg dry	1	н	"		"	
Surrogate: 4-Fluorochlorobenzene	126			80-150 %		"	"	11/19/14	"	

Barr Engineering Co.		Project		49161286							
4700 W 77th St		Project	Number:	49161286	.00 004 00	1	Work Order #: 140524				
Minneapolis, MN 55435		Project	Manager:	Mr. James	E. Taralds	sen		Dat	e Reported: 1	12/02/14	
		PERCENT SOLIDS Legend Technical Services, Inc.									
Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Culvert-S-1_2-2 (1405248-01) Soil	Sampled: 11/1	15/14 10:0	0 Recei	ved: 11/18/	14 12:00						
% Solids	81			%	1	B4K2409	11/24/14	11/24/14	% calculation		
Culvert-S-2_4-4 (1405248-02) Soil	Sampled: 11/1	15/14 10:0	5 Recei	ved: 11/18/	14 12:00						
% Solids	98			%	1	B4K2409	11/24/14	11/24/14	% calculation		

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 004 001	Work Order #:	1405248
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	12/02/14

WI(95) GRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDI	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
	and Tree	1		01110	20701						
Batch B4N1907 - EPA 5035 Soll (Purge	and trap	9			-			r.			
Blank (B4K1907-BLK1)				1	Prepared	& Analyze	d: 11/19/14	1			
1,2,4-Trimethylbenzene	< 0.0027	0.025	0.0027	mg/kg wet							
1,3,5-Trimethylbenzene	< 0.0062	0.025	0.0062	mg/kg wet							
Benzene	< 0.0029	0.025	0.0029	mg/kg wet							and the second second
Ethylbenzene	0.0102	0.025	0.0064	mg/kg wet							B-02, J
Naphthalene	< 0.022	0.50	0.022	mg/kg wet							
Toluene	< 0.0041	0.025	0.0041	mg/kg wet							
Xylenes (total)	< 0.014	0.075	0.014	mg/kg wet							
Surrogate: 4-Fluorochlorobenzene	23.7			ug/L	25.0		95.0	80-150			
LCS (B4K1907-BS1)					Prepared	& Analyze	d: 11/19/14	1			
1,2,4-Trimethylbenzene	94.0			ug/L	100		94.0	80-120			
1,3,5-Trimethylbenzene	91.0			ug/L	100		91.0	80-120			
Benzene	98.9			ug/L	100		98.9	80-120			
Ethylbenzene	99.4			ug/L	100		99.4	80-120			
Naphthalene	99.6			ug/L	100		99.6	80-120			
Toluene	99.7			ug/L	100		99.7	80-120			
Xylenes (total)	301			ug/L	300		100	80-120			
Surrogate: 4-Fluorochlorobenzene	24.0			ug/L	25.0		96.0	80-150			
LCS Dup (B4K1907-BSD1)					Prepared:	11/19/14	Analyzed:	11/20/14			
1,2,4-Trimethylbenzene	96.0			ug/L	100		96.0	80-120	2.04	20	
1,3,5-Trimethylbenzene	90.8			ug/L	100		90.8	80-120	0.231	20	
Benzene	98.4			ug/L	100		98.4	80-120	0.564	20	
Ethylbenzene	97.1			ug/L	100		97.1	80-120	2.29	20	
Naphthalene	99.9			ug/L	100		99.9	80-120	0.301	20	
Toluene	98.5			ug/L	100		98.5	80-120	1.25	20	
Xylenes (total)	294			ug/L	300		97.9	80-120	2.34	20	
Surrogate: 4-Fluorochlorobenzene	24.2			ug/L	25.0		96.6	80-150			
Matrix Spike (B4K1907-MS1)	S	ource: 1	405248-	01	Prepared:	11/19/14	Analyzed:	11/20/14			
1,2,4-Trimethylbenzene	117			ug/L	100	4.44	112	80-120			
1,3,5-Trimethylbenzene	111			ug/L	100	4.67	106	80-120			
Benzene	97.8			ug/L	100	<	97.8	80-120			
Ethylbenzene	98.2			ug/L	100	0.359	97.8	80-120			
Naphthalene	121			ug/L	100	4.77	116	80-120			
Toluene	96.3			ug/L	100	<	96.3	80-120			
Xylenes (total)	299			ug/L	300	2.26	99.0	80-120			
Surrogate: 4-Fluorochlorobenzene	23.9			ug/L	25.0		95.8	80-150			

Legend Technical Services, Inc.

	PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.	
Minneapolis, MN 55435	Project Manager: Mr. James E. Taraldsen	Date Reported: 12/02/14
4700 W 77th St	Project Number: 49161286.00 004 001	Work Order #: 1405248
Barr Engineering Co.	Project: 49161286	

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4K2409 - General Preparation											
Duplicate (B4K2409-DUP1)	Source: 1405285-01				Prepared	& Analyze	d: 11/24/14	1			
% Solids	63.0			%		64.0			1.57	20	
Duplicate (B4K2409-DUP2)	Se	ource: 14	05298-04		Prepared	& Analyze	d: 11/24/14	1			
% Solids	79.0			%		78.0			1.27	20	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 004 001	Work Order #:	1405248
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	12/02/14

Notes and Definitions

- J Parameter was present between the MDL and RL and should be considered an estimated value
- B-02 Target analyte was present in the method blank between the MDL and RL.
- B-01 Analyte was present in the method blank. Sample result is less than or equal to 10 times the blank concentration.
- < Less than value listed
- dry Sample results reported on a dry weight basis
- NA Not applicable. The %RPD is not calculated from values less than the reporting limit.
- MDL Method Detection Limit
- RL Reporting Limit
- RPD Relative Percent Difference
- LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)
- MS Matrix Spike = Laboratory Fortified Matrix (LFM)

www.legend-group.com

Legend Technical Services, Inc.

March 19, 2015

Mr. James E. Taraldsen Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435

Work Order Number: 1500873 RE: 49161286

Enclosed are the results of analyses for samples received by the laboratory on 03/11/15. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

WI Accreditation #998022410

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II bpham@legend-group.com

Legend Technical Services, Inc.

Barr Engineering Co.	Project:	49161286			
4700 W 77th St	Project Number:	49161286		Work Or	der #: 1500873
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldse	en	Date Re	ported: 03/19/15
	ANALYTICAL	REPORT FOR SAM	MPLES		
Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received
LN61-S-1_9-9		1500873-01	Soil	03/10/15 15:00	03/11/15 09:35
Shipping Container Informat	ion				
Default Cooler	Temperature (°C): 3.2				
Received on ice: Yes Received on melt water: No Custody seals: No	Temperature blank v Ambient: No	was present	Received Acceptal	d on ice pack: No ble (IH/ISO only): No)

Case Narrative:

The dry weight correction and dilution applies to the sample result, MDL, and RL.

1

Ethylbenzene was present in the method blank between the MDL and RL for the BTEX analysis.

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286	Work Order #:	1500873
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	03/19/15

WI(95) GRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
LN61-S-1_9-9 (1500873-01) Soil	Sampled: 03/10	0/15 15:00	Receiv	ved: 03/11/15	9:35					
1,2,4-Trimethylbenzene	5.3	0.037	0.0040	mg/kg dry	1	B5C1103	03/11/15	03/11/15	WI(95) GRO	
1,3,5-Trimethylbenzene	3.4	0.037	0.0091	mg/kg dry	1				н	
Benzene	3.0	0.037	0.0043	mg/kg dry	1	"	"			
Ethylbenzene	1.1	0.037	0.0094	mg/kg dry	1		"		н	
Naphthalene	3.1	0.74	0.032	mg/kg dry	1		"			
Toluene	0.31	0.037	0.0060	mg/kg dry	1					
Xylenes (total)	15	0.11	0.021	mg/kg dry	1		"		н	
Surrogate: 4-Fluorochlorobenzene	116			80-150 %		"	"	"	"	

Barr Engineering Co.		Project	:	49161286	6						
4700 W 77th St		Project	Number:	49161286	6			Wo	rk Order #:	1500873	
Minneapolis, MN 55435		Project	Manager:	Mr. James	s E. Taralds	sen		Dat	e Reported:	03/19/15	
PERCENT SOLIDS Legend Technical Services, Inc.											
Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
LN61-S-1_9-9 (1500873-01) Soil	Sampled: 03/10/	15 15:00	Receive	ed: 03/11/18	5 9:35						
% Solids	68			%	1	B5C1206	03/12/15	03/12/15	% calculation		

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286	Work Order #:	1500873
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	03/19/15

WI(95) GRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDI	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Patch BEC1103 - EDA 5035 Soil (Burge	and Tran	1	DE	0.110	20101	. count	,	2			
Batch 6501103 - EFA 3033 3011 (Purge	e anu map)			Duanan	0 0	d. 00/44/	1 F			
	< 0.0007	0.025	0.0007	malkawat	repared	a Analyze	eu: 03/11/	15			
	< 0.0027	0.025	0.0027	mg/kg wet							
1,3,5-11methyldenzene	< 0.0062	0.025	0.0062	mg/kg wet							
	0.0029	0.025	0.0029	mg/kg wet							B-02 I
Nephthelene	0.0109	0.025	0.0004	mg/kg wet							B-02, J
	< 0.022	0.00	0.022	mg/kg wet							
Xvlenes (total)	< 0.0041	0.025	0.0041	ma/ka wet							
Surragata: 4 Elugrachlarahanzana	22.0	0.070	0.011	ug/l	25.0		01.8	80-150			
	22.9			uyrL	Droparad	8 Apolyza	od: 03/11/	15			
LCS (BSC1103-BS1)	05.7			ug/l	Prepareo	i & Analyze	90. 03/11/	90 120			
	95.7			ug/L	100		95.7	80-120			
Renzene	95.2			ug/L	100		90.2	80-120			
Ethylhenzene	100			ug/L	100		100	80-120			
Naphthalene	84.9			ug/L	100		84.9	80-120			
Toluene	98.2			ug/L	100		98.2	80-120			
Xylenes (total)	295			ug/L	300		98.4	80-120			
Surrogate: 4-Fluorochlorobenzene	25.7			ug/L	25.0		103	80-150			
LCS Dup (B5C1103-BSD1)					Prepared	& Analyze	ed: 03/11/	15			
1,2,4-Trimethylbenzene	99.2			ug/L	100		99.2	80-120	3.60	20	
1,3,5-Trimethylbenzene	98.8			ug/L	100		98.8	80-120	3.72	20	
Benzene	103			ug/L	100		103	80-120	6.91	20	
Ethylbenzene	106			ug/L	100		106	80-120	5.63	20	
Naphthalene	85.5			ug/L	100		85.5	80-120	0.721	20	
Toluene	105			ug/L	100		105	80-120	6.91	20	
Xylenes (total)	319			ug/L	300		106	80-120	7.79	20	
Surrogate: 4-Fluorochlorobenzene	25.1			ug/L	25.0		100	80-150			
Matrix Spike (B5C1103-MS1)	S	ource:	1500848-	01	Prepared	& Analyze	ed: 03/11/	15			
1,2,4-Trimethylbenzene	98.8			ug/L	100	0.924	97.8	80-120			
1,3,5-Trimethylbenzene	93.5			ug/L	100	<	93.5	80-120			
Benzene	94.2			ug/L	100	<	94.2	80-120			
Ethylbenzene	98.9			ug/L	100	0.611	98.3	80-120			
Naphthalene	96.3			ug/L	100	0.149	96.1	80-120			
Toluene	97.1			ug/L	100	<	97.1	80-120			
Xylenes (total)	294			ug/L	300	0.612	97.8	80-120			
Surrogate: 4-Fluorochlorobenzene	25.2			ug/L	25.0		101	80-150			

Legend Technical Services, Inc.

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286	Work Order #:	1500873
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	03/19/15

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B5C1206 - General Preparation											
Duplicate (B5C1206-DUP1)	Source: 1500880-01			Prepared & Analyzed: 03/12/15			5				
% Solids	77.0			%		75.0			2.63	20	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286	Work Order #:	1500873
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	03/19/15

Notes and Definitions

J Parameter was p	resent between the MDL and RL	and should be considered an estimated value	9
-------------------	-------------------------------	---	---

- B-02 Target analyte was present in the method blank between the MDL and RL.
- < Less than value listed
- dry Sample results reported on a dry weight basis
- NA Not applicable. The %RPD is not calculated from values less than the reporting limit.
- MDL Method Detection Limit
- RL Reporting Limit
- RPD Relative Percent Difference
- LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)
- MS Matrix Spike = Laboratory Fortified Matrix (LFM)

Chain o	f Cust	ody								Ń	lamber	of Co	ntaine	is P	reset	vati	re ⁴			1	. 1
4700 West 77	th Storet			1	500K	73				Y	hiler			-		Sill				000	. of _/
SARR Minneapolis, (952) 832-261	MN - 5543 10	3+4803			,	1 m				4									Pi M	nject lanbger <u></u> REC	
njeer Number: H91612	86										1.1							ALFR.C.	100		
roject Name: Enlindyt P	incluse E	- Hini	e men	t - Line 61	TieTA				1141	14.0	A MAN.		ī	ART - MAL	(pan	2.47	unpres. j	the Carl Mar	D D	njeet C. Contaet <u>J</u>	GT
ample Origination State 🕌	(uso two	letter	póstal st	ate abbreviation)					(pass)	NO3)	erved. rijanij	5 (N.)	CEHGA	d Must	Property in	Treed)	internation	0.78	1		
OC Number.					N	<u>0</u> 4	476	4	asouther	Metal	nge fo	1.11235	AN Day	N. 42mm	THE BR	nprest	plastic of the	and the second second	51	impled by <u>E</u>	EE
Location	Starr Depth	Stop Depth	Depth Unit (m./it. or in.)	Collection Date (sum/dd/yyyy)	Collection Time (blanm)	Watter Solt	Gunts Ounts	200 10	SVOC II	Distoland Dutal Mer	Electronic II.	Nutrice at a	VIOCA-014	结酸粉、 算罪臣	Metals ins	SWORD IN	Phoc 14	Trees Man		aboratory. Le	send
-NGI - 5-1	9	9	FT	03/10/0015	Bað	X	K										11	2	ſ	the + NHY MTB	HTIMLENI S
×																					
		2																		STHINA	eo TA
							-								1	T					
										7											
																					294-200 y X v 2004
							1			-	_								-		
											_										
),																			-	Carro or de Statute Constant	
ommon Parameter/Contair	ier - Presei	vation 1	Key 1	Relinguished Hy:		0	g 1ce?	D.	110 15-		Time Inte	Rect	dived b	y:						Date	Time
Volatile Organies = BIEX, G Semicolarde Organics = PAH Full List, Herbicide/Posticide/	RQ TPH, 8 5, PCP, Dim PGBs	269 Full ins, 8270	Liu I	Clinquistical By	_	0	n koj) N	D;	le le	101	Time	Rece		Ľ	~			,		3 Date	- 435
 -General = pH. Chloride, Flux TOS, TS, Sulfate - Natrients = COD, TOC, Pher 	vide, Alkalio iali, Ammor	uty, 735. mit	3	iamples Shipped A	/IA: 🗌 Air F	reight Y	Federa	l Exp	ness	EIS.	inpler	Air I	Bin No	anglei I	ne A I	D	2	1.9		1	

Distribution: White-Original Accompanies Shepment to Lab; Yellow - Field Copy: Pink - Lab Coordinator

25-Aug-2015

Ryan Erickson Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803

Re: Enbridge - Tank 21 (49161253.30)

Work Order: 15081087

Dear Ryan,

ALS Environmental received 2 samples on 20-Aug-2015 for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested.

Sample results are compliant with NELAP standard requirements and QC results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 12.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

Coman B. Bucan Electronically approved by: Tom Beamish

Tom Beamish Client Services Coordinator

Certificate No: WI: 399084510

Report of Laboratory Analysis

ADDRESS 3352 128th Avenue Holland, Michigan 49424-9263 | PHONE (616) 399-6070 | FAX (616) 399-6185 ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental

www.alsglobal.com

BIGHT SOLUTIONS BIGHT PARTNER

15081087-01 Tank 21-S-1

15081087-02 Trip Blank

Date: 25-Aug-15

08/20/15 09:00

08/20/15 09:00

08/18/15 10:30

08/18/15

Client: Project: Work Order:	Barr Engineering Compar Enbridge - Tank 21 (4916 15081087		Work Order S	Sample Sum	nary	
Lab Samp ID (Client Sample ID	<u>Matrix</u> Soil	<u>Tag Number</u>	<u>Collection Date</u> 08/18/15 10:30	Date Received	Hold

Soil

Soil

Date: 25-Aug-15

Client:	Barr Engineering Company	OUALIFIERS
Project:	Enbridge - Tank 21 (49161253.30)	ACDONIVMS LINITS
WorkOrder:	15081087	ACKONTNIS, UNITS

Qualifier	Description
*	Value exceeds Regulatory Limit
а	Not accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
Е	Value above quantitation range
Н	Analyzed outside of Holding Time
J	Analyte is present at an estimated concentration between the MDL and Report Limit
n	Not offered for accreditation
ND	Not Detected at the Reporting Limit
0	Sample amount is > 4 times amount spiked
Р	Dual Column results percent difference $> 40\%$
ĸ	RPD above laboratory control limit
5	Spike Recovery outside laboratory control limits
x	Analyzed out not detected above the MDL Analyte was detected in the Method Blank between the MDL and PQL, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
А	APHA Standard Methods
D	ASTM
E	EPA
SW	SW-846 Update III
Units Reported	Description
% of sample	Percent of Sample
μg/Kg	Micrograms per Kilogram
µg/Kg-dry	Micrograms per Kilogram Dry Weight

Date: 25-Aug-15

ALS Group USA, Corp

Client:	Barr Engineering Company	
Project:	Enbridge - Tank 21 (49161253.30)	Case Narrative
Work Order:	15081087	

Samples for the above noted Work Order were received on 08/20/15. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting.

With the following exceptions, all sample analyses achieved analytical criteria.

Volatile Organics: No deviations or anomalies were noted.

Wet Chemistry: No deviations or anomalies were noted.

Client:Barr Engineering CompanyProject:Enbridge - Tank 21 (49161253.30)Sample ID:Tank 21-S-1Collection Date:08/18/15 10:30 AM

Work Order: 15081087 Lab ID: 15081087-01 Matrix: SOIL

Analyses	Result	Qual	MDL	PQL	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	nod:SW8260B	<u></u>	Prep: SW503	5 / 8/20/15	Analyst: AK
1,2,4-Trimethylbenzene	ND		14	37	µg/Kg-dry	1	08/22/15 06:59
1,3,5-Trimethylbenzene	ND		15	37	µg/Kg-dry	1	08/22/15 06:59
Benzene	ND		15	37	µg/Kg-dry	1	08/22/15 06:59
Ethylbenzene	ND		14	37	µg/Kg-dry	1	08/22/15 06:59
m,p-Xylene	ND		28	74	µg/Kg-dry	1	08/22/15 06:59
Naphthalene	ND		16	120	µg/Kg-dry	1	08/22/15 06:59
o-Xylene	ND		16	37	µg/Kg-dry	1	08/22/15 06:59
Toluene	ND		14	37	µg/Kg-dry	1	08/22/15 06:59
Xylenes, Total	ND		43	110	µg/Kg-dry	1	08/22/15 06:59
Surr: 1,2-Dichloroethane-d4	97.7			70-130	%REC	1	08/22/15 06:59
Surr: 4-Bromofluorobenzene	96.6			70-130	%REC	1	08/22/15 06:59
Surr: Dibromofluoromethane	97.7			70-130	%REC	1	08/22/15 06:59
Surr: Toluene-d8	98.3			70-130	%REC	1	08/22/15 06:59
MOISTURE		Meth	nod:E160.3M				Analyst: EVB
Moisture	19		0.025	0.050	% of sample	1	08/21/15 14:45

Note: See Qualifiers page for a list of qualifiers and their definitions.

Client:Barr Engineering CompanyProject:Enbridge - Tank 21 (49161253.30)Sample ID:Trip BlankCollection Date:08/18/15

Work Order: 15081087 Lab ID: 15081087-02 Matrix: SOIL

Analyses	Result	Qual	MDL	PQL	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	nod:SW8260B		Prep: SW5	035 / 8/20/15	Analyst: AK
1,2,4-Trimethylbenzene	ND		11	30	µg/Kg	1	08/22/15 07:23
1,3,5-Trimethylbenzene	ND		12	30	µg/Kg	1	08/22/15 07:23
Benzene	ND		12	30	µg/Kg	1	08/22/15 07:23
Ethylbenzene	ND		11	30	µg/Kg	1	08/22/15 07:23
m,p-Xylene	ND		23	60	µg/Kg	1	08/22/15 07:23
Naphthalene	ND		13	100	µg/Kg	1	08/22/15 07:23
o-Xylene	ND		13	30	µg/Kg	1	08/22/15 07:23
Toluene	ND		11	30	µg/Kg	1	08/22/15 07:23
Xylenes, Total	ND		35	90	µg/Kg	1	08/22/15 07:23
Surr: 1,2-Dichloroethane-d4	95.4			70-130	%REC	1	08/22/15 07:23
Surr: 4-Bromofluorobenzene	108			70-130	%REC	1	08/22/15 07:23
Surr: Dibromofluoromethane	96.6			70-130	%REC	1	08/22/15 07:23
Surr: Toluene-d8	99.8			70-130	%REC	1	08/22/15 07:23

Note: See Qualifiers page for a list of qualifiers and their definitions.

Naphthalene

Xylenes, Total

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

o-Xylene

Toluene

Client:	Barr Engineering Company
Work Order:	15081087
Project:	Enbridge - Tank 21 (49161253.30)

QC BATCH REPORT

Date: 25-Aug-15

Batch ID: 75058	Instrument ID VMS9		I	Method:	SW8260B						
MBLK Sam	ple ID: MBLK-75058-7	75058			Ur	nits:µg/K	g	Analysis	Date: 08	3/20/15 04	4:43 PM
Client ID:		Run ID: VMS	9_15082	20A	Seq	No: 3426	6777	Prep Date: 08/20	/15	DF: 1	
					SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	MDL	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
1,2,4-Trimethylbenzene	ND	11	30								
1,3,5-Trimethylbenzene	ND	12	30								
Benzene	ND	12	30								
Ethylbenzene	ND	11	30								
m,p-Xylene	ND	23	60								
Naphthalene	ND	13	100								
o-Xylene	ND	13	30								
Toluene	ND	11	30								
Xylenes, Total	ND	35	90								
Surr: 1,2-Dichloroethane	e-d4 933	0	0	1000	0	93.3	70-130	0			
Surr: 4-Bromofluorobenz	zene 914.5	0	0	1000	0	91.4	70-130	0			
Surr: Dibromofluorometh	nant 907.5	0	0	1000	0	90.8	70-130	0			
Surr: Toluene-d8	975.5	0	0	1000	0	97.6	70-130	0			
LCS Sam	ple ID: LCS-75058-75	058			Ur	nits:µg/K	(g	Analysis	Date: 08	3/20/15 0	3:01 PM
Client ID:		Run ID: VMS	9_15082	20A	Seq	No: 3426	5775	Prep Date: 08/20	/15	DF: 1	
	. "		DO		SPK Ref		Control	RPD Ref		RPD Limit	<u> </u>
Analyte	Result	MDL	PQL	SPK Val	value	%REC	Lunut	value	%RPD	- mm	Qual
1,2,4- Trimethylbenzene	1029	11	30	1000	0	103	65-135	0			
1,3,5-Trimethylbenzene	1072	12	30	1000	0	107	65-135	0			
Benzene	993.5	12	30	1000	0	99.4	75-125	0			
Ethylbenzene	992	11	30	1000	0	99.2	75-125	0			
m,p-Xylene	2036	23	60	2000	0	102	80-125	0			

992.5

917.5

96.2

99.2

92.4

91.8

40-140

75-125

70-125

75-125

70-130

70-130

70-130

70-130

Client:Barr Engineering CompanyWork Order:15081087Project:Enbridge - Tank 21 (49161253.30)

QC BATCH REPORT

Batch ID: 75058

Instrument ID VMS9

Method: SW8260B

MS Sa	ample ID: 15	081076-09A	MS			Un	its:µg/K	g	Analysis	s Date: 08	8/25/15 12	2:06 PM
Client ID:			Run ID: VMS9_	15082	24A	Seq	No: 3430	710	Prep Date: 08/20)/15	DF: 1	
Analyte		Result	MDL	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,2,4-Trimethylbenzene		1180	25	34	1132	0	104	65-135	0			
1,3,5-Trimethylbenzene		1180	14	34	1132	0	104	65-135	0			
Benzene		1145	14	34	1132	0	101	75-125	0			
Ethylbenzene		1175	13	34	1132	0	104	75-125	0			
m,p-Xylene		2299	26	68	2264	0	102	80-125	0			
Naphthalene		1064	15	110	1132	0	94	40-140	0			
o-Xylene		1121	14	34	1132	0	99	75-125	0			
Toluene		1146	13	34	1132	0	101	70-125	0			
Xylenes, Total		3420	40	100	3397	0	101	75-125	0			
Surr: 1,2-Dichloroetha	ne-d4	1104	0	0	1132	0	97.5	70-130	0			
Surr: 4-Bromofluorobe	nzene	1213	0	0	1132	0	107	70-130	0			
Surr: Dibromofluorome	ethane	1082	0	0	1132	0	95.6	70-130	0			
Surr: Toluene-d8		1151	0	0	1132	0	102	70-130	0			
MSD Sa	ample ID: 15	081076-09A	MSD			Ur	its:µg/K	g	Analysis	s Date: 08	8/25/15 1:	2:32 PM
Client ID:			Run ID: VMS9	15082	24A	Sea	No: 3430	711	Prep Date: 08/2(0/15	DF: 1	

Analyte	Result	MDL	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,2,4-Trimethylbenzene	1138	25	34	1132	0	101	65-135	1180	3.61	30	
1,3,5-Trimethylbenzene	1166	14	34	1132	0	103	65-135	1180	1.16	30	
Benzene	1094	14	34	1132	0	96.6	75-125	1145	4.5	30	
Ethylbenzene	1115	13	34	1132	0	98.5	75-125	1175	5.19	30	
m,p-Xylene	2265	26	68	2264	0	100	80-125	2299	1.51	30	
Naphthalene	1027	15	110	1132	0	90.7	40-140	1064	3.57	30	
o-Xylene	1094	14	34	1132	0	96.6	75-125	1121	2.4	30	
Toluene	1132	13	34	1132	0	100	70-125	1146	1.19	30	
Xylenes, Total	3359	40	100	3397	0	98.9	75-125	3420	1.8	30	
Surr: 1,2-Dichloroethane-d4	1104	0	0	1132	0	97.6	70-130	1104	0.0513	30	
Surr: 4-Bromofluorobenzene	1201	0	0	1132	0	106	70-130	1213	0.985	30	
Surr: Dibromofluoromethane	1097	0	0	1132	0	96.8	70-130	1082	1.3	30	
Surr: Toluene-d8	1157	0	0	1132	0	102	70-130	1151	0.491	30	

The following samples were analyzed in this batch:

15081087-01A 15081087-02A

Client:	Barr Engineering Company
Work Order:	15081087
Project:	Enbridge - Tank 21 (49161253.30)

Batch ID:	R170180	Instrument ID MOIS	т		Method:	E160.3M						
MBLK		Sample ID: WBLKS-R170	180			ູ່ບ	nits:% of	sample	Analysi	s Date: 08	/21/15 02	2:45 PM
Client ID:			Run ID: MO	IST_150	821A	Sec	No: 3428	821	Prep Date:		DF: 1	
Analyte		Result	MDL	PQL	SPK Va	SPK Ref I Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		ND	0.025	0.050								
LCS		Sample ID: LCS-R170180				U	nits:% of	sample	Analysi	s Date: 08	/21/15 02	2:45 PM
Client ID:			Run ID: MO	IST_150	821A	Sec	1No: 3428	820	Prep Date:		DF: 1	
Analyte		Result	MDL	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		100	0.025	0.050	100	0	100 9	9.5-100.	.5 0			
DUP		Sample ID: 15081099-01E	3 DUP			U	nits:% of	sample	Analysi	s Date: 08	/21/15 02	2:45 PM
Client ID:			Run ID: MO	IST_150	821A	Sec	No: 3428	807	Prep Date:		DF: 1	
Analyte		Result	MDL	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		6.58	0.025	0.050	0	0	0		6.17	6.43	20	
DUP		Sample ID: 15081123-01A	DUP			U	nits:% of	sample	Analysi	s Date: 08	/21/15 02	2:45 PM
Client ID:			Run ID: MO	IST_150	821A	Sec	No: 3428	814	Prep Date:		DF: 1	
Analyte		Result	MDL	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		7.1	0.025	0.050	0	0	0		7.08	0.282	20	
The follo	wing samp	les were analyzed in this h	atch:	150810)87-							

The following samples were analyzed in this batch:

01B

15081081

Chain of	Cust	ody								Ļ			Nu	mbe	r of	Cont	aine	ers/	Pres	serv	ativ	ve				of	
4700 West 77th BARR Minneapolis, M (952) 832-2600	Street N 5543.	5-4803								-		Π	Wa	ter	T					S			2	╀	Project Dr	· • • • • • • • • • • • • • • • • • • •	
Project Number: 46161	153	20					·			-													まれ		Manager: <u>4</u>	<u>.</u>	
Project Name: Embridg - Tank 21											77	(EC	43	(HCI)				1#1	- 		2	pres.)	250	tainers	Project QC Contact:	TET	
Sample Origination State \mathcal{V}_{I} (use two letter postal state abbreviation)										trved) #	8 (HNC	NO ₃)	rganics)4) #4			HOaM P	reserve	rved)	rved)#	vial, un	312+	Of Cor				
COC Number:		.			N	0	4	47	25		unprese	Metal	tals (H	unge O	(H ₂ SC			X (tare	red un	uprese	unprese	plastic	E	mber	Sampled by:	RS2	
Location	Start Depth	Stop Depth	Depth Unit (m./ft. or in.)	Collection Date (mm/dd/yyyy)	Collection Time (hh:mm)	Water Z	atrix	Grab	lype dillo U		SVOCs (Dissolved	Total Me General	Diesel R	Nutrients		100-	GRO. RTF	DRO (ta	Metals (1	SVOCs (% Solids	Dava	Total Nu	Laboratory: AL	.5 Hal	10
Tank 21-51		-	2	08/18/15	1030		×	X														۱	2	3	PVOC-MITE + naptna	if The	
Trip Blank			-							X													1		•		
Tomp Blank	-	_	-		-					X																	
~ j																							·			e	
• • • • • • • • • • • • • • • • • • •									È.		Ī														Stode	~1 TA	
																	ŀ	1						╞	<u> </u>		
						<u>``</u>				 	+-							+-						╋			
•	<u> </u>										1						+	+-	-	$\frac{1}{1}$				+			
<u>.</u>											╈	$\left \right $	+														
D.											+	┝━╋	<u>.</u>			-	+		+					+			
Common Parameter/Container - Preservation Key Relinquished By: On Ice2							Da Da	Date		te Time		Received		ed by:					<u> </u>	_ ;	Date	Tim	 1e				
- Volatile Organics = BTEX, GR(- Semivolatile Organics = PAHs, J Full List, Herbicide/Pesticide/PC	2, TPH, 82 PCP, Diox Bs	260 Full 1 ins, 8270	List F	Relinquished By:	**************************************		On	Ice	?	Da	te	¢	Ti	ne	F	Receiv	Y	Ŷ.		W	M	W	d)	Date Date	Tim	Ē
- General = pH, Chloride, Fluoric TDS, TS, Sulfate - Nutrients = COD, TOC, Phenol Nitrogan, TKN	ie, Alkalin s, Ammon	ıty, TSS, via	s	Samples Shipped	VIA: Air F	reigl :	nt N	Fed	leral	Exp	ress		San	ipler	A	ir Bi	11 N	<i>F</i> ≓ umt	er:						<i> t</i>		
interest in the second se	:		Di	stribution: White-	Original Acco	mpa	nies	Shipr	nent	to]	Lab;	Yel	low	- Fie	eld (Copy;	Pin	k -	Lat	o Ca	oord	lina	tor		12	2	_

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping, Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, slong with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on

fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, nondelivery,miadelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, stitumey's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jeweky, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Sample Receipt Checklist

Client Name: BARRENG-MN			Date/Time F	Received: 2	0-Aug-18	5 09:00	
Work Order: <u>15081087</u>			Received by	/: <u>N</u>	IML		
Checklist completed by Diane Shaw eSignature	20-Aug-15 _{Date}	_ F	Reviewed by:	<i>Tom Beamic</i> eSignature	sh		20-Aug-15 Date
Matrices: <u>Soil</u> Carrier name: <u>FedEx</u>						I	
Shipping container/cooler in good condition?	Yes	\checkmark	No 🗌	Not Presen	t 🗆		
Custody seals intact on shipping container/cooler?	Yes		No 🗌	Not Presen	t 🗸		
Custody seals intact on sample bottles?	Yes		No 🗌	Not Presen	t 🗹		
Chain of custody present?	Yes	\checkmark	No 🗌				
Chain of custody signed when relinquished and received?	Yes	\checkmark	No 🗌				
Chain of custody agrees with sample labels?	Yes	\checkmark	No 🗌				
Samples in proper container/bottle?	Yes	\checkmark	No 🗌				
Sample containers intact?	Yes	\checkmark	No 🗌				
Sufficient sample volume for indicated test?	Yes	\checkmark	No 🗌				
All samples received within holding time?	Yes	✓	No 🗌				
Container/Temp Blank temperature in compliance?	Yes	\checkmark	No 🗌				
Sample(s) received on ice? Temperature(s)/Thermometer(s):	Yes 1.2/1.2	✓ c	No 🗌	SR2			
Cooler(s)/Kit(s):							
Date/Time sample(s) sent to storage:	8/20/20) <u>15 1:</u>	<u>36:45 PM</u>				
Water - VOA vials have zero headspace?	Yes		No 🗌	No VOA vials s	ubmitted	\checkmark	
Water - pH acceptable upon receipt?	Yes		No 🗌	N/A 🔽			
pH adjusted? pH adjusted by:	Yes -		No 🗌	N/A 🗹			

Login Notes:

Client Contacted:	Date Contacted:	Person Contacted:
Contacted By:	Regarding:	
Comments:		
CorrectiveAction:		

SRC Page 1 of 1