

608-742-2169 (Office)

Engineers • Consultants • Inspectors

December 21, 2016

Ms. Janet DiMaggio
Wisconsin Department of Natural Resources
3911 Fish Hatchery Road
Fitchburg, WI 53711

SUBJECT: STATUS UPDATE/GROUNDWATER MONITORING REPORT
Hugo Speaker Property
6832 US Highway 18
Mount Ida, Wisconsin
ARTs \#: 03-22-178494
PECFA \# 53809-9640-32

Dear Ms. DiMaggio,

Attached is a Status Update/Groundwater Monitoring Report for the Site Investigation Activity at the Hugo Speaker Property, located at 6832 US Highway 18, Mount Ida, Wisconsin.

Please feel free to contact General Engineering Company with any questions at 608-742-2169.
Sincerely yours,
GENERAL ENGINEERING COMPANY

Brian Youngwirth
Environmental Project Manager

Kory D. Anderson, P.E.
Vice President
c: Sharon Speaker

Portage - Black River Falls \quad La Crosse

General Engineering Company P.O. Box 340 916 Silver Lake Drive Portage, WI 53901

Engineers • Consultants • Inspectors

TABLE OF CONTENTS

HUGO SPEAKER PROPERTY

Page
INTRODUCTION1- General

- Purpose
- Scope
- Authorization
SITE FEATURES AND BACKGROUND 1-3
- Site Features
- Background
FIELD ACTIVITIES AND PROCEDURES 3-4
- Scope Summary
- Field Exploration
- Field Volatile Vapor Emission Screening
DESCRIPTION OF SUBSURFACE CONDITIONS 4
- General
- Soil Conditions
GROUNDWATER MONITORING ACTIVITIES 5- Monitoring Well Development- Groundwater Sampling- Groundwater Well Elevations
EVALUATION AND DISCUSSION 5-6
- Groundwater Quality Standards
- Laboratory Groundwater Results
CONCLUSIONS 6
GENERAL COMMENTS 6
Portage - Black River Falls La Crosse

General Engineering Company P.O. Box 340 916 Silver Lake Drive
Portage, WI 53901

Engineers • Consultants • Inspectors

APPENDICES

APPENDIX A

- Figure 1 - Regional Site Location Map
- Figure 2 - Site Plan Map
- Figure 3 - Soil Boring and Monitoring Well Location Map
- Figure 4 - Groundwater Elevation and Contour Map-October 17,2016

APPENDIX B

- Table 1 - Summary of Soil Analytical Results
- Table 2 - Summary of Groundwater Analytical Results
- Table 3 - Groundwater Elevation Table

APPENDIX C

- Groundwater Analytical Reports
- Chain of Custodies

APPENDIX D

- Soil Boring Logs
- Monitoring Well Construction Forms
- Monitoring Well Development Forms

INTRODUCTION

General

This report presents the findings for the subsurface investigative activities performed at the Hugo Speaker Property located at 6382 US Highway 18, Mount Ida, Grant County, Wisconsin since the most recent Status Update, which was submitted to the Wisconsin Department of Natural Resources (WDNR) on August 13, 2015. In addition, this report presents recommendations for additional work, based on the findings. The activities were performed at the request and authorization of Mrs. Sharon Speaker, the former property owner and responsible party for the release.

Purpose

The purpose of the investigation was to further evaluate the extent of petroleum affected groundwater resulting from a release from a former underground storage tank system.

Scope

The scope of the most recent site investigation activities included the advancement of three (3) soil borings; air rotary drilling; the installation of three monitoring wells, collection of two (2) rounds of groundwater samples from the monitoring wells for laboratory analysis, an analysis of the data obtained; and preparation of this report. The investigation activities were structured specifically to address the presence of constituents associated with the former USTs.

Authorization

Authorization to perform this site investigation was in the form of an acceptance copy of the Wisconsin Department of Commerce agent contract, dated May 12, 2010 and signed by Sharon Speaker on June 3, 2010. This report has been prepared on behalf of, and exclusively for the use of Sharon Speaker. The information contained in this Status Update/Groundwater Monitoring Report may not be relied upon by any other parties without the expressed written consent of General Engineering and Client, and acceptance by such parties of General Engineering's General Conditions.

SITE FEATURES AND BACKGROUND

Site Features

The project site is located at 6832 U.S. Highway 18 in Mount Ida, Wisconsin. More specifically, the property is located within the Northwest $1 / 4$ of the Northwest $1 / 4$ of Section 29, Township 06 North, Range 03 West, Grant County, Wisconsin. The site is located within a rural area surrounded by primarily residential properties and wooded land. A site location map is shown in Figure 1, Appendix A.

The subject site is currently occupied by a residence on the southwestern portion of the property. The surrounding properties are comprised of residential properties to the west; vacant or wooded land to the north; dense wooded land followed by a residential property to the east; and US Highway 18, followed by residential properties to the southwest.
Portage - Black River Falls \quad La Crosse

Background

According to Wisconsin Department of Agriculture, Trade, and Consumer Protection (DATCP) records, one (1) 500 gallon single wall tank containing unleaded gasoline and one (1) 500 gallon single wall tank containing leaded gasoline are registered to the site as closed/removed on December 9, 1997. It is understood that the tanks were formerly located to the west of the northwest corner of the building and the dispensers were located along the southwestern portion of the property, located along Hwy 18. The locations of the former USTs are shown on Figure 2, Appendix A.

The WDNR was reportedly notified of a release on December 12, 1997 and a responsible party (RP) letter was sent on December 23, 1997. The case remained idle for several years and a push action was taken by the WDNR on December 27, 2004 followed by a deed affidavit for enforcement on March 28, 2005, and an additional push action on October 9, 2009. As a result, General Engineering Company was retained in May of 2010 to perform a soil and groundwater investigation at the site.

As part of the initial site investigation activities, six (6) soil probes, designated GP-1 to GP-6, were advanced on September 23, 2010. Due to the uneven and steep terrain, an all-terrain soil probe unit advanced seven additional probes, designated GP-7 to GP-13, on October 14, 2010 to further evaluate the extent of affected soil. The probes were advanced until refusal on bedrock at depths ranging from 4 feet to 14 feet below ground surface. Petroleum affected soils were encountered west/southwest of the structure near the location of the former tank bed and beyond toward the southwest and the former dispenser area.

Due to the presence of soil contamination to the depth of bedrock, one (1) boring was advanced into bedrock on June 3, 2011. Due to the terrain, a truck-mounted drilling rig could not access the former tank or dispenser area. Therefore, soil boring MW-1 was advanced just west of the property boundary, northwest of the former tank system. The boring was blind drilled to a depth of 8 feet to auger refusal on bedrock and advanced to a depth of approximately 32 feet utilizing air rotary drilling techniques. The boring was converted to a monitoring well, designated MW-1. Due to the presence of petroleum compounds within the initial groundwater sample collected from MW-1, two additional soil borings were advanced into bedrock on September 2, 2011. One boring was advanced to the south/southeast of the former tank bed (MW-2) and one was advanced to the northeast of MW-1 beyond the subject property boundary to the west (MW-3). The borings were blind drilled to bedrock at depths of about 10 feet and 8 feet below grade, respectively. The borings were advanced utilizing air rotary drilling techniques to depths of about 59 feet and 36 feet, respectively. The locations of the soil probes, soil borings, and monitoring wells are shown on Figure 3, Appendix A.

The soils at the probe locations generally consisted of gravel or grass/topsoil underlain by variable natural soils consisting of reddish brown and brown silty clay, silty sand, and sandy silt with varying amounts of gravel extending to bedrock at depths of 4 to 14 feet below grade. Groundwater was not encountered within the soil probes. At the soil borings, groundwater was encountered within bedrock at depths ranging from about 15 to 40 feet below grade.

Petroleum odors and PID results were observed within the samples collected from GP-2, GP-4, GP-7, GP-8, GP9 , and GP-10. The highest PID levels (983 IU to $1,242 \mathrm{IU}$) were detected within the soil samples collected from GP-7 (southwest of the former tank system) and GP-10 (near the southeast corner of the former tank system) at depths of about 13 feet and 9 feet, respectively.

Soil samples were collected from each probe at depths of approximately 4 to 14 feet below grade, where bedrock was encountered. Soil samples were collected and analyzed for the presence of PVOC, naphthalene, and GRO. The soil samples collected from GP-2, GP-4, GP-7, GP-8, and GP-10 contained petroleum compounds at levels exceeding each compound's respective NR 720 cancer risk based residual contaminant level (C RCL) or soil to groundwater standards. The highest levels of petroleum compounds were detected within the sample collected from GP-7 (near the former dispensers) at a depth of 13 to 14 feet below ground surface (bgs). The sample contained benzene at a concentration of 1,240 micrograms per kilogram ($\mu \mathrm{g} / \mathrm{kg}$), ethylbenzene ($27,100 \mu \mathrm{~g} / \mathrm{kg}$), naphthalene $(9,300(\mu \mathrm{~g} / \mathrm{kg})$, toluene $(8,660 \mu \mathrm{~g} / \mathrm{kg})$, total trimethylbenzene $(84,200 \mu \mathrm{~g} / \mathrm{kg})$, and total xylenes

Consulting Engineering • Structural Engineering • Building Design • Environmental Services • Building Inspection • GIS Services Grant Procurement \& Administration • Land Surveying • Zoning Administration • Mechanical, Electrical, \& Plumbing Services
$(127,800 \mu \mathrm{~g} / \mathrm{kg})$. The detected concentrations exceed their respective NR 720 Cancer Residual Contaminant Level (C RCL) and/or soil to groundwater RCL. Soil analytical results are summarized on Table 1, Appendix A.

The samples collected at the remaining locations either did not contain petroleum compounds or did not contain them at levels exceeding their respective standards. None of the collected samples from the direct contact zone contained petroleum compounds at concentrations exceeding their respective standards. The results of the chemical analyses on the soil samples are summarized on Table 1, Appendix B.

Groundwater samples were collected from MW-1 on July 5, 2011. Groundwater samples were collected from monitoring wells MW-1 to MW-3 on November 22, 2011, June 21, 2012, June 4, 2013, and August 8, 2014. The groundwater samples collected from monitoring wells MW-1 and MW-3 have generally contained benzene, ethylbenzene, naphthalene, and trimethylbenzene, and 1,2 dichloroethane (1,2 DCA) at levels exceeding each compound's respective NR 140 ES of 5 micrograms per liter ($\mu \mathrm{g} / \mathrm{l}), 700 \mu \mathrm{~g} / \mathrm{l}, 100 \mu \mathrm{~g} / \mathrm{l}, 480 \mu \mathrm{~g} / \mathrm{l}$, and $5 \mu \mathrm{~g} / \mathrm{l}$, respectively. The highest levels were observed within the samples collected from MW-1, which contained benzene levels of $2,540 \mu \mathrm{~g} / \mathrm{l}, 1,640 \mu \mathrm{~g} / \mathrm{l}, 2,710 \mu \mathrm{~g} / \mathrm{l}, 1,260 \mu \mathrm{~g} / \mathrm{l}$, and $2,490 \mu \mathrm{~g} / \mathrm{l}$ during the sampling rounds performed. The samples collected from MW-3 contained benzene levels of $1,210 \mu \mathrm{~g} / \mathrm{l}, 19.9 \mu \mathrm{~g} / \mathrm{l}, 364 \mu \mathrm{~g} / \mathrm{l}$, and $990 \mu \mathrm{~g} / \mathrm{I}$. The samples collected from MW-2 contained benzene at levels exceeding its NR 140 PAL during the initial two sampling rounds but did not contain PVOCs or naphthalene during the June 4, 2013 and August 8, 2014 sampling rounds. The results of the groundwater analyses are summarized in Table 2 in Appendix B.

Based on the soil probes and borings/monitoring wells performed to date, it appears that the extent of soil contamination has generally been defined and is confined to the area of the former USTs and to the southwest of the former USTs (GP-2, GP-7, GP-8, and GP-10). However, it is possible that soil contamination may extend beneath the residence to the southeast of the former tanks. At the time of the most recent Status Update (August 13,2015), the house on the subject site was unoccupied. GEC recommended that a preliminary vapor sample be collected from the lowest level of the house to address concerns related to the migration of vapors into the structure. Since submittal of the August 13, 2015 Status Update, the property is under new ownership and the house is being occupied by the new owner. The vapor testing has not been performed as of the date of this report and funds to perform the testing will be requested as part of a bid deferral request, which will be submitted subsequent to this status update.

With regard to the groundwater, since groundwater samples collected from MW-1 and MW-3 contained PVOCs, naphthalene, and 1,2 DCA at concentrations exceeding the NR 140 ES, GEC recommended the installation of three additional bedrock monitoring wells the northeast, north and northwest of the former tank area, beyond MW1 and MW-3. The installation of the three additional wells and additional groundwater sampling rounds are discussed herein.

FIELD ACTIVITIES AND PROCEDURES

Scope Summary

The scope of field exploration during the most recent site investigation activities included the advancement of three (3) soil borings; air rotary drilling; installation of a monitoring well (MW-6); two bedrock monitoring wells (MW-4 and MW-5); and performance of two (2) rounds of groundwater sampling. The monitoring wells were installed to further evaluate the extent of affected groundwater and the stability of the contaminant plume.

The soil borings/monitoring wells were performed by Ground Source (MW-4) or Soils \& Engineering Services, Inc. (MW-5 and MW-6) under the direction of General Engineering. Soil samples were collected by driving a 24 -inch split spoon into undisturbed soils. Two of the borings (MW-4 and MW-5) were advanced to bedrock and were completed utilizing air rotary drilling techniques.

Since the area of affected soil appears to have been defined and no petroleum odors or PID results were detected within the samples or cutting from the soil borings, no soil samples from MW-4, MW-5, and MW-6 were submitted for laboratory analysis.
Portage - Black River Falls \quad - La Crosse

Consulting Engineering • Structural Engineering • Building Design • Environmental Services • Building Inspection • GIS Services Grant Procurement \& Administration • Land Surveying • Zoning Administration • Mechanical, Electrical, \& Plumbing Services

Field Exploration

As part of the additional site investigation activities, one (1) monitoring well (MW-6) and one (1) bedrock monitoring well (MW-4) were performed on June 30, 2016 and October 11, 2016, respectively. A bedrock monitoring well (MW-5) was also performed on October 11, 2016. Refusal was encountered within MW-4 and MW-5 at depths of 22 feet and 9 feet bgs, respectively. Refusal was not encountered at MW-6 to a depth of 26 feet. MW-4 and MW-5 were advanced utilizing air rotary drilling techniques to depths of 45.5 feet and 29 feet, respectively. The wells were installed to depths of 45 feet, 29 feet, and 22 feet, respectively. The locations of the monitoring wells are shown on Figure 3, Appendix A.

The monitoring well construction consisted of a 15-foot (MW-4 and MW-5) to 10-foot (MW-6) section of 2-inch diameter, machine slotted PVC screen placed at or near the bottom of the borehole. This was surrounded by a properly graded granular filter medium in the annular space, with un-slotted riser pipe extending from the screened section to about 6 -inches below the ground surface. A bentonite seal of approximately 2 feet, was placed above the granular filter medium. The remaining annular space was filled to the ground surface with bentonite chips. Flush mounted protective covers were used to protect the wells. Monitoring well construction forms are included within Appendix D.

Field Volatile Vapor Emission Screening

Soil samples collected from the soil borings were screened for volatile organic vapor emissions with a Photovac Photoionization Detector (PID). The soil samples were placed in a plastic bag and permitted to equilibrate to at least 70 degrees Fahrenheit for a period of at least 15 minutes, based upon the ambient outdoor temperature. The screening was then performed by inserting the probe in the bag and measuring the headspace. The PID is an electronic instrument that measures the relative concentration of volatile organic vapor emissions in the headspace of a container. The response of the instrument is dependent upon volatility, temperature, and the ionization potential of the compounds measured. The meter serves as one tool in selecting samples for analytical testing, as it only gives a relative indication of the presence of volatile organic vapor emissions, but cannot quantify concentrations of individual compounds. PID readings were not detected within the auger cutting from MW-4 or the soil samples collected from MW-5 and MW-6.

DESCRIPTION OF SUBSURFACE CONDITIONS

General

A description of the subsurface conditions encountered at the soil probe locations is shown on the soil boring logs in Appendix D. The lines of demarcation shown on the logs represent an approximate boundary between the various soil classifications, but the transition is likely to be more gradual. It must be recognized that the soil descriptions are considered representative for the specific location, and that variations may occur between and beyond the sampling intervals and probe locations. A summary of the major soil profile components is described in the following paragraphs.

Soil Conditions

The soils at the boring locations generally consisted of grass/topsoil underlain by variable natural soils consisting of reddish brown clayey silty or brown sandy silt with varying amounts of gravel to the refusal or termination depths of the borings at depths ranging from 9 feet to 26 feet bgs. Bedrock was encountered at depths of 22 feet at MW4 and 9 feet at MW-5. Groundwater was not encountered within the upper soils at MW-4 and MW-5, but was encountered at a depth of about 12 feet at MW-6. At MW-4 and MW-5, groundwater appeared to be encountered within bedrock at depths ranging from about 15 to 35 feet below grade.

No soil staining or petroleum odors were detected within the auger cutting collected at MW-4 or within the soil samples collected from MW-5 and MW-6. No PID results were detected in the collected samples.
Portage - Black River Falls - La Crosse

Consulting Engineering • Structural Engineering • Building Design • Environmental Services • Building Inspection • GIS Services Grant Procurement \& Administration • Land Surveying • Zoning Administration • Mechanical, Electrical, \& Plumbing Services

GROUNDWATER MONITORING ACTIVITIES

Monitoring Well Development

Monitoring wells MW-4 to MW-6 were developed on October 17, 2016. The monitoring wells were developed by alternately surging and purging with a bailer. The well development and other pertinent details are shown on Well Development Forms (Form 4400-113B), included in Appendix D.

Groundwater Sampling

Groundwater samples were collected from MW-1 to MW-6 on February 11, 2016 and October 17, 2016. The samples were submitted for laboratory analysis for the presence of PVOCs, naphthalene, and/or 1,2 dichloroethane (DCA).

Samples submitted for PVOC, naphthalene, or 1,2 DCA analysis where transferred into a laboratory prepared 40milliliter vials containing Hydrochloric Acid preservative. The sample containers were placed on ice and standard chain-of-custody procedures were initiated. The samples submitted for lead analysis were field filtered and transferred into laboratory prepared $250-\mathrm{mL}$ containers containing nitric acid preservative. The groundwater samples were submitted to Synergy Environmental Lab in Appleton, Wisconsin.

Groundwater Well Elevations

Depth to groundwater at the site has ranged from 12.51 feet below (TOC) at MW-6 on October 17, 2016 to 48.23 feet below TOC at MW-2 on October 17, 2016. The groundwater elevation has ranged from EL. 1166.33 at MW-2 on October 17, 2016 to EL. 1197.79 at MW-1 on June 4, 2013. Groundwater elevation data is summarized on Table 3 in Appendix B.

The depth to groundwater and groundwater elevations appear to be highly variable based on the information collected to date with over 20 feet of groundwater elevation difference between wells MW-2 (near the former tank area) and the five outlying wells (MW-2 to MW-6). However, the groundwater elevations within MW-2 to MW-6 appear to be more consistent. It is likely that the water elevations are representative of perched groundwater based on the site topography. Based on the groundwater analytical results the groundwater flow direction appears to be toward the north/northeast. A groundwater elevation contour and flow direction map, dated October 17, 2016 is included as Figure 4 in Appendix A. Additional sampling and other monitoring points would be necessary to further evaluate groundwater flow on the subject property.

EVALUATION AND DISCUSSION

Groundwater Quality Standards

The Enforcement Standards (ESs) and Preventive Action Limits (PALs) are Groundwater Quality Standards, which have been established in NR140 of the Wisconsin Administrative Code. These Standards are referenced when evaluating the need for further study or remedial activities. The PAL is the more stringent guideline, in terms of being lesser in magnitude than the ES, but will typically require less response action when exceeded. The required action is determined by DNR regulations, based on various site-specific considerations.

Laboratory Groundwater Results

Groundwater samples were collected from MW-1 to MW-3 on February 11, 2016. The samples collected from MW-1 and MW-3 contained a few PVOCs, naphthalene, and/or 1,2 DCA at concentrations exceeding their respective NR 140 ES. The concentrations detected were similar to those detected in the previous four sampling
Portage - Black River Falls \quad - La Crosse

Consulting Engineering • Structural Engineering • Building Design • Environmental Services • Building Inspection - GIS Services Grant Procurement \& Administration • Land Surveying • Zoning Administration • Mechanical, Electrical, \& Plurnbing Services
rounds. The samples collected from MW-2 did not contain detectable concentrations of PVOCs, naphthalene, or 1,2 DCA.

Groundwater samples were collected from MW-1 to MW-3 and newly installed monitoring wells MW-4 to MW-6 on October 17, 2016. The samples collected from MW-1 and MW-3 contained a few PVOCs and naphthalene at concentrations exceeding their respective NR 140 ES. Specifically, benzene was detected at concentrations of $2,220 \mu \mathrm{~g} / \mathrm{I}$ and $930 \mu \mathrm{~g} / \mathrm{l}$, respectively. The samples collected from MW-5 and MW-6 contained benzene at levels exceeding the NR 140 ES with concentrations of $77 \mu \mathrm{~g} / \mathrm{l}$ and $5.6 \mu \mathrm{~g} / \mathrm{l}$, respectively. The sample collected from MW-4 contained benzene ($0.79 \mathrm{~J} \mu \mathrm{~g} / \mathrm{I}$), which exceeds its NR 140 PAL of $0.5 \mu \mathrm{~g} / \mathrm{l}$. The sample collected from MW-2 did not contain detectable levels of PVOCs or naphthalene.

The results of the chemical analyses of the groundwater samples are summarized in Table 2 in Appendix B. Laboratory analytical results and chain of custody forms are included in the Appendix C.

CONCLUSIONS

Based on the soil probes and borings/monitoring wells performed to date, it appears that the extent of soil contamination has generally been defined and is confined to the area of the former USTs and to the southwest of the former USTs (GP-2, GP-7, GP-8, and GP-10). However, it is possible that soil contamination may extend beneath the residence to the southeast of the former tanks. Additionally, the residence has recently been purchased and is currently occupied by the new owner of the property. Therefore, it is recommended that vapor testing be performed within the residence to address concerns related to the migration of vapors into the structure. Pending the results of that testing, General Engineering will provide recommendations regarding the need for the excavation of petroleum affected soils and/or vapor mitigation systems.

With regard to the groundwater, based on the collected groundwater samples, it appears that the extent of groundwater contamination has been generally defined and extends from the area of the former tank system/dispensers toward the northeast beyond MW-5. Although benzene ($77 \mu \mathrm{~g} / \mathrm{l}$) was detected in the sample collected from MW-5, the concentration is well below the benzene concentrations of $2,220 \mu \mathrm{~g} / \mathrm{l}$ and $930 \mu \mathrm{~g} / \mathrm{l}$ detected at MW-1 and MW-3, respectively, during the most recent sampling round. In addition, there is an overhead power line and heavily wooded area beyond MW-5 to the northeast and installation of an additional monitoring well is not feasible at the present time.

GEC proposes to submit a bid deferral request, which includes the costs to perform vapor testing within the residence (specific test locations and the type of vapor tests will be included within the request), collect two rounds of groundwater samples from the site monitoring wells (MW-1 to MW-6 and the potable well), and prepare a soil and groundwater site investigation report, which includes recommendations for a remedial action and/or additional groundwater monitoring, if it appears necessary.

GENERAL COMMENTS

The investigative activities have been conducted in a manner consistent with that level of care ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions. The findings, recommendations and opinions contained herein have been promulgated in accordance with generally accepted practice in similar fields. No other representations, expressed or implied, and no warranty or guarantee is included or intended in this report.

The conclusions presented in this report were formulated from the data obtained during the course of exploratory work on the site, which may result in a redirection of conclusions and interpretations where new information is obtained. The regulatory climate and interpretation may also have an effect on the outcome of the environmental investigation for this site. The information contained in this report may have an effect on the value of the property, and is considered confidential. Copies of this report will be submitted to others only with authorization from the client.
Portage - Black River Falls \quad La Crosse

Consulting Engineering - Structural Engineering • Building Design • Environmental Services • Building Inspection • GIS Services Grant Procurement \& Administration • Land Surveying • Zoning Administration • Mechanical, Electrical, \& Plumbing Services

APPENDIX A

FIGURES

General Engineering Company P.O. E0x 340 - 916 SHVar Lake Dr. - Portege, WI 53801 609-742-2160 (Ohice) - E0日-742-2592 (Fax) www.peneralanghaeitig. het 	SITE LOCATION MAP	
	Speaker Property \&	AWNBY
	Lutzen Property (Former Kreyer County Store)	REvewed by SSUE Date
	Town of Mount Ida Grant County, WI	

epl unow to umol 8 Myodold jeyeeds $d \forall W$ JIIS

\#170	49	$\mathrm{ON}^{\text {O}}$	SNorsum

3
11
3

 	(zıols Kiunos lekory lewiol) Kıədold uəzn7
	dVN NOIIVSO7 713 M
	ONIXOLNOW 8 SNIMOg 'zgoyd

APPENDIX B

TABLES
TABLE 1
SUMMARY OF SOIL ANALYTICAL RESULTS SPEAKER PROPERTY 0610-133

$\mathrm{mg} / \mathrm{kg}=$ milligrams per kilogram
$\mu \mathrm{g} / \mathrm{kg}=$ micrograms per kilogram
$\mu \mathrm{g} / \mathrm{kg}=$ micrograms per kiogram
$\mathrm{RCL}=$ Residual Contaminant Level
SSL $=$ Soil Screening Level
DCL $=$ Direct Contact Level
NA = Parameter not analyzed
NE $=$ NR 720 RCL not established
$J=$ Analyte detected above laborato
$J=$ Analyte detected above laboratory limit of detection but below limit of quantitation.
Bold indicates analytical results exceed NR 720 RCL

Monitoring Well	NR 140		MW-1							MW-2						MW-3						MW-4	MW-5	MW-6			
Sampling Date	ES	PAL	715/2011	11/22/2011	6/21/2012	6/412013	8/8/2014	2/1/12016	10/17/2016	$611 / 22 / 2011$	6/21/2012\|	6/4/2013	8/8/2014	2/11/2016	10017/2016	\|11/22/2011	6/21/2012	6/4/2013	8/8/2014	2/11/2016	10117/2016	6 10177/2016	10117/2016	(10117/2016			
VOLATILE ORGANIC COMPOUNDS (VOC) (HgL)																											
Benzene	5	0.5	2540	1640	2710	1260	2490	1820	2220	1.3	1.7	<0.34	<0.27	<0.44	<0.46	1210	19.9	364	990	660	930	0.79J	77	5.6			
Ethylbenzene	700	140	1200	1230	454	437	1890	1370	1310	<0.54	<0.41	<0.34	<0.82	<0.71	<0.73	910	8.5	586	840	800	650	<0.73	58	<0.73			
Methyi ter--butyl ether	60	12	<12.2	16.1	<15.2	<7.4	<3.7	<55	<24.5	<0.61	<0.38	<0.37	<0.37	<1.1	<0.49	<15.2	1.2	7.4	<1.85	<11	<4.9	<0.49	<0.49	<0.49			
Toluene	1000	200	544	283	428	264	810	750	820	<0.67	0.55J	<0.34	<0.8	<0.44	<0.39	164	2.3	95.6	180	130	135	<0.39	5.3	<0.39			
1,2,4-Trimethylbenzene	480	96	973	1380	798	55.2	2870	2680	1570	<0.97	<0.43	<0.33	<0.83	<1.6	<0.68	1170	31.9	1030	1550	1410	1140	<0.68	31.2	<0.68			
1,3,5-Trimethylbenzene			210	349	225	<7.1	780	700	470	<0.83	<0.40	<0.36	<0.86	<1.5	<0.83	241	59.3	296	440	370	307	<0.83	3.5	<0.83			
Xylenes, $-\mathrm{m}, \mathrm{p}$	10000 1000		4540			792	7720	7390	5180	<2.63	<1.25	<1.03	<2.41	<3.1	<2.06	3025	114.7	2011	2815	2875	2194	<2.06	52.02	<2.06			
OTHER DETEGTED VOLATILE ORGAMCCOMPOUNDS (VOC) (pgli)																											
Chloromethane	30	3	<4.8	NA	NA	NA	NA	NA	NA	1.2	NA	NA	NA		NA	NA	<6.0	NA									
n-Buylbenzene	NE	NE	<18.6	NA	NA	NA	NA	NA	NA	<0.93	NA	NA	NA	NA	NA	45.2	NA										
1,2-Dichloroethane	5	0.5	163	NA	NA	NA	NA	<24	NA	<0.36	NA	NA	NA	<0.48	NA	<9.0	NA	NA	NA	27	NA	NA	NA	NA			
\|sopropylibenzene	NE	NE	49.1	NA	NA	NA	NA	NA	NA	<0.59	NA	NA	NA	NA	NA	63.9	NA										
Napthalene	100	10	134	207	152	17.8J	430	400	320 J	<0.89	<0.40	<0.37	<1.2	<1.6	<2.6	111J	3.3	125	178	183	105	<2.6	<2.6	<2.6			

Lead

ES $=$ Enforcement Standard
PAL = Preventive Action Limi
$\mu g / L=$ micrograms per liter
$N E=N R 140 E S$ not established
= Analyte detected above laboratory limit of detection but below limit of quantitation.
Bold indicates analytical results above NR 140 ES

TABLE 3
WATER LEVEL DATA SPEAKER PROPERTY

0610-133

APPENDIX C

SOIL AND GROUNDWATER ANALYTICAL REPORTS AND CHAIN OF CUSTODY FORMS

Synergy Environmental Lab, INC.

BRIAN YOUNGWIRTH
GENERAL ENGINEERING
916 SILVER LAKE DRIVE
PORTAGE, WI 53901

Report Date 25-Feb-16

Project Name SPEAKER/ Project \#	OUNT IDA		Invoice \# E30488								
Lab Code 5030488C											
Sample ID MW-3											
Sample Matrix Water											
Sample Date $2 / 11 / 2$											
	Result	Unit	LOD	LOQ			Method	Ext Date	Run Date	Analyst	Code
Organic											
PVOC + Naphthalene + 1,2 DCA											
Benzene	660	ug/1	4.4	14	4	10	8260B		2/20/2016	CJR	1
1,2-Dichloroethane	27	ug/l	4.8		5	10	8260B		2/20/2016	CJR	1
Ethylbenzene	800	ug/1	7.1	23	23	10	8260B		2/20/2016	CJR	1
Methyl tert-butyl ether (MTBE)	<11	ug/1	11		37	10	8260B		2/20/2016	CIR	1
Naphthalene	183	ug/	16		52	10	8260B		2/20/2016	CRR	1
Toluene	130	ug/1	4.4		4	10	8260B		2/20/2016	CJR	1
1,2,4-Trimethylbenzene	1410	ug/	16		50	10	8260B		2/20/2016	CIR	1
1,3,5-Trimethylbenzene	370	ug/1	15		48	10	8260B		2/20/2016	CIR	1
m\&p-Xylene	2600	ug/	22		69	10	8260B		2/2012016	CJR	1
o-Xylene	275	ug/1	9	29	29	10	8260B		2/20/2016	CR	1

"J" Flag: Analyte detected between LOD and LOQ
LOD Limit of Detection
LOQ Limit of Quantitation

Code Comment
 1 Laboratory QC within limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Authorized Signature

Synergy Environmental Lab, INC.

BRIAN YOUNGWIRTH
GENERAL ENGINEERING
916 SLLVER LAKE DRTVE
PORTAGE. WI 53901

Report Date 24-Oct-16

Project Name SPEAKER Proiect \#						Invoice \# E31927				
Lab Code 5031927A										
Sample ID MW-1										
Sample Matrix Water										
Sample Date 10/17/2016										
	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PVOC + Naphthalene										
Benzene	2220	ug/	23	75	50	GR095/802		10/21/2016	CJR	1
Ethylbenzene	1310	ug/1	36.5	115	50	GRO95/802		10/21/2016	CJR	1
Methyl tert-butyl ether (MTBE)	<24.5	ug/1	24.5	80	50	GRO95/802		10/21/2016	CIR	1
Naphthalene	320 "J"	ug/l	130	415	50	GRO95/802		10/21/2016	CJR	1
Toluene	820	ug/l	19.5	60	50	GRO95/802		10/21/2016	CJR	1
1,2,4-Trimethylbenzene	1570	ug/l	34	110	50	GR095/802		10/21/2016	CJR	1
1,3,5-Trimethylbenzene	470	ug/	41.5	130	50	GRO95/802		10/21/2016	CIR	1
m\&p-Xylene	4100	ug/l	70	220	50	GRO9S/802		10/21/2016	CJR	1
o-Xylene	1080	ug/	33	105	50	GRO95/802		10/21/2016	CJR	1
Lab Code 5031927B										
Sample ID MW-2										
Sample Matrix Water										
Sample Date 10/17/2016										
	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PVOC + Naphthalene										
Benzene	< 0.46	ug/	0.46	1.5	1	GRO95/802		10/20/2016	CJR	1
Ethylbenzene	<0.73	ug/	0.73	2.3	1	GRO95/802		10/20/2016	CJR	1
Methyl tert-butyl ether (MTBE)	<0.49	ug/	0.49	1.6	,	GR095/802		10/20/2016	CJR	1
Naphthalene	<2.6	ug/1	2.6	8.3	1	GRO95/802		10/20/2016	CJR	1
Toluene	<0.39	ug/	0.39	1.2	1	GR095/802		10/20/2016	CJR	1
1,2,4-Trimethylbenzene	<0.68	ug/1	0.68	2.2	,	GRO95/802		10/20/2016	CJR	1
1,3,5-Trimethylbenzene	<0.83	ug/1	0.83	2.6	1	GR095/802		10/20/2016	CJR	1
m\&p-Xylene	<1.4	ug/1	1.4	4.4	1	GR095/802		10/20/2016	CJ	1
o-Xylene	<0.66	ug/1	0.66	2.1	1	GRO95/802		10/20/2016	CJR	1

Project Name SPEAKER
Proiect \#

Lab Code	5031927 C
Sample ID	MW-3
Sample Matrix	Water
Sample Date	$10 / 17 / 2016$

Organic
PVOC + Naphthalene
Benzene
Ethylbenzene
Methyl tert-butyl ether (MTBE)
Naphthalene
Toluene
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
m\&p-Xylene
o-Xylene

Lab Code	5031927 D
Sample ID	MW-4
Sample Matrix	Water
Sample Date	$10 / 17 / 2016$

	Result	Unit	LOD	LOQ D	Dil	Method	Ext Date	Run Date	nalyst	Code
Organic										
PVOC + Naphthalene										
Benzene	0.79 "J"	ug/	0.46	1.5	1	GR095/8021		10/20/2016	CJR	1
Ethylbenzene	<0.73	ug/1	0.73	2.3	1	GRO95/8021		10/20/2016	CJR	1
Methyl tert-butyl ether (MTBE)	<0.49	ug/1	0.49	1.6	1	GRO95/8021		10/20/2016	CJR	1
Naphthalene	<2.6	ug/1	2.6	8.3	1	GR095/8021		10/20/2016	CJR	1
Toluene	<0.39	ug/l	0.39	1.2	1	GRO95/8021		10/20/2016	CJR	1
1,2,4-Trimethylbenzene	<0.68	ug/1	0.68	2.2	1	GR095/8021		10/20/2016	C.IR	1
1,3,5-Trimethylbenzene	<0.83	ug/	0.83	2.6	1	GR095/8021		10/20/2016	CJR	1
$\mathrm{m} \& \mathrm{p}$-Xylene	<1.4	ug/	1.4	4.4	1	GR095/8021		10/20/2016	CJR	1
o-Xylene	<0.66	ug/	0.66	2.1	1	GRO95/8021		10/20/2016	CJR	1

Lab Code 5031927E
Sample ID MW-5
Sample Matrix Water
Sample Date 10/17/2016

Result
Organic
PVOC + Naphthalene

Benzene	77	
Ethylbenzene	58	
Methyl tert-butyl ether (MTBE)		<0.49
Naphthalene		<2.6
Toluene	5.3	
1,2,4-Trimethylbenzene	31.2	
1,3,5-Trimethylbenzene	3.5	
m\&p-Xylene	50	
o-Xylene	2.02 "J"	

Result
Unit

930	
650	
	<4.9
105	
135	
1140	
307	
1950	
244	

Invoice \# E31927

LOD LOQ Dil
Method
Ext Date Run Date Analyst Code

ug/1	4.6	15	10	GRO95/8021
ug/1	7.3	23	10	GRO95/8021
ug/1	4.9	16	10	GRO95/8021
ug/1	26	83	10	GRO95/8021
ug/1	3.9	12	10	GRO95/8021
ug/1	6.8	22	10	GRO95/8021
ug/1	8.3	26	10	GRO95/8021
ug/1	14	44	10	GRO95/8021
ug/1	6.6	21	10	GRO95/8021

$10 / 21 / 2016$	CJR	1
$10 / 21 / 2016$	CJR	1
$10 / 21 / 2016$	CJR	1
$10 / 21 / 2016$	CJR	1
$10 / 21 / 2016$	CJR	1
$10 / 21 / 2016$	CJR	1
$10 / 21 / 2016$	CJR	1
$10 / 21 / 2016$	CJR	1
$10 / 21 / 2016$	CJR	1

Unit LOD LOQ Dil Method
Ext Date Run Date Analyst Code

Project Name SPEAKER
Invoice \# E31927
Proiect \#

Lab Code	5031927F										
Sample ID MW-6	MW-6										
Sample Matrix Water											
Sample Date 10/17/2016											
	Result		Unit	LOD	LOQ		Method	Ext Date	Run Date	Analyst	Code
Organic											
PVOC + Naphthalene											
Benzene	5.6		ug/1	0.46	1.5	1	GR095/8021		10/20/2016	CJR	1
Ethylbenzene		< 0.73	ug/1	0.73	2.3	1	GRO95/8021		10/20/2016	CJR	1
Methyl tert-butyl ether (MTBE)		<0.49	ug/	0.49	1.6	1	GR095/8021		10/20/2016	CJR	1
Naphthalene		<2.6	ug/	2.6	8.3	1	GRO95/8021		10/20/2016	CJR	1
Toluene		<0.39	ug/	0.39	1.2	1	GR095/8021		10/20/2016	CJR	1
1,2,4-Trimethylbenzere		<0.68	ug/1	0.68	2.2	1	GRO95/8021		10/20/2016	CIR	1
1,3,5-Trimethylbenzene		<0.83	ug/l	0.83	2.6	1	GRO95/8021		10/20/2016	CJR	1
m\&p-Xylene		< 1.4	ug/	1.4	4.4	1	GRO95/8021		10/20/2016	CJR	1
		<0.66	ug/l	0.66	2.1	1	GR095/8021		10/20/2016	CJR	1

"J" Flag: Analyte detected between LOD and LOQ
LOD Limit of Detection
LOQ Limit of Quantitation

Code Comment
 1 Laboratory QC within limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Authorized Signature

CHAIN OF , STUDY RECORD

Lehi.0. :	
Account No.:	
Project :	
Sampler isignaturei	Quote No.:

- Spakiof
990 Prospect Ct. Appleton, WI 54914
$920-830-2455 \cdot$ FAX $920-733-0631$
Mount Idun
Chain 402788
Synergy

Page ___ of | Sample Handling Request |
| :---: |
| Rush Analysis Date Required |
| (Rushes accepted only with prior authorization) |
| Normal Turn Around |

[^0]CHAIN OF UUSTODY RECORD
 ii, Studge ete.)
Page ___ of

Sample Handling Request
Rush Analysis Date Required.
(Rushes accepled only with prior authorization)
Normal Turn Around

APPENDIX D
MONITORING WELL ABANDONMENT FORMS

State of Wisconsin Department of Natural Resources

Route To: Solid Waste Emergency Response WastewaterHaz. Waste
Soil Boring Log Information
Form 4400-122
7-91

\square Other				Page 1 of 1
Facility / Project Name Speaker Property	License /Permit /Monitoring / GEC Project No. 0610-133		Boring Number	
Boring Drilled By (Firm name and name of crew chief) Groundsource	Drilling Method HSA/ Air Rotary	Borehole Diameter 12"		
Date Drilling Started Date Drilling Ended $6 / 30 / 2016$ $6 / 30 / 2016$	Boring Location State Plane NE - NW, Sect. 29,T06N,R03W		$\begin{aligned} & 42.972042 \\ & -90.760444 \\ & \hline \end{aligned}$	DNR County Code 20
Local Grid Location (If applicable) Feet S \quad Feet W	County Grant		Civil Town / City / Village Town of Mt. Ida	

I hereby certify that the information on this form is true and correct to the best of my knowledge

Brian Youngwirth Firm

[^1]Lines of demarcation represent approximate boundaries between soil types. Variations may occur between sampling intervals and between boring locations, and the transition may be gradual.

16. Additional comments on development
Well developed by: Person's Name and Firm
Name: \quad Brian Youngwirth
Firm \quad General Engineering Company certify that the above information is true and correct to the best of my knowledge.
Signature:

Env. Response \& Repair \square
Route To:
\square Solid Waste \square Haz. Waste \square Wastewater Underground Tanks \qquad Other \square

16. Additional comments on development
Well developed by: Person's Name and Firm
Name: \quad Brian Youngwirth
Firm \quad General Engineering Company

16. Additional comments on development
Well developed by: Person's Name and Firm
Name: \quad Brian Youngwirth
Firm \quad Signature:

Lines of demarcation represent approximate boundaries between soil types. Variations may occur between sampling intervals and between boring locations, and the transition may be gradual.

State of Wisconsin Department of Natural Resources

Route To:

Solid Waste

 Emergency Response WastewaterHaz. Waste Underground Tanks Water ResourcesOther
Page 1 of 1

Facility/Project Name Speaker Property Boring Drilled By (Firm name and name of crew chief) Soils \& Engineering Services, Inc.		License/Permit/Monitoring/ GEC Project No. 0610-133			Boring Number MW-6	
		Drilling Method HAS	Borehole Dia 12		MW-6	
$\begin{array}{\|r} \hline \text { Date Drilling Started } \\ 10 / 11 / 2016 \end{array}$	Date Drilling Ended 10/11/2016	Boring Location State Plane N, E NE - NW, Sect. 29,T06N,R03W		$\begin{array}{\|l\|l\|l\|l\|} \text { Lat } \\ \text { Long } \end{array}$	$\begin{aligned} & 42.972042 \\ & -90.760444 \\ & \hline \end{aligned}$	DNR County Code 20
Local Grid Location (If applicable) Feet S Feet W		County Grant		Civil Town / City / Village		

Lines of demarcation represent approximate boundaries between soil types. Variations may occur between sampling intervals and between boring locations, and the transition may be gradual.

State of Wisconsin Department of Natural Resources

MONITORING WELL CONSTRUCTION
Form 4400-113A Haz. Waste \square Wastewater \square Underground Tanks \square Other \square

Route To: Solid Waste \square
Env. Response \& Repair \square

Well Name

Facility/Project Name Speaker Property	Local Grid Location of Well FeetS \quad Feet W	Well Name MW-5
License/Permit/GEC Project No. 0610-133	Grid Origin Location	Wis. Unique No. N/A
Type Of Well Water Table Observation $\boxed{y y y}$ 11 Piezometer 12	Section Location of Waste/Source NW - NW, SECT. 29, T06N, R03W	Date Well Installed $10 / 11 / 2016$
Distance Well is From Waste/Source Boundary Is Well a Point of Enforcement Std. Application \square Yes \square No	Location to Well Relative to Waste/Source $\mathrm{u} \square$ Upgradient s \square Sidegradient $\mathrm{d} \square$ downgradient n \square Not Shown	Well Installed By: (Persons Name \& Firm) Soils \& Engineering Services, Inc.

Thereby certify that the information on this form is true and correct to the best of my knowledge.

[^0]: Comments/'Special Instructions ("Specify groundwater "GW", Drinking Water "DW", Waste Water "WW", Soil "S", Air "A", Oil, Sludge etc.)

[^1]: General Engineering Company 916 Silver Lake Dr., P.O. BOX 340

