General Engineering Company P.O. Box 340 916 Silver Lake Drive Portage, WI 53901

608-742-2169 (Office) 608-742-2592 (Fax) gec@generalengineering.net www.generalengineering.net

Engineers • Consultants • Inspectors

December 21, 2016

Ms. Janet DiMaggio Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Fitchburg, WI 53711

SUBJECT:

STATUS UPDATE/GROUNDWATER MONITORING REPORT

Hugo Speaker Property 6832 US Highway 18 Mount Ida, Wisconsin BRRTs #: 03-22-178494 PECFA # 53809-9640-32

Dear Ms. DiMaggio,

Attached is a Status Update/Groundwater Monitoring Report for the Site Investigation Activity at the Hugo Speaker Property, located at 6832 US Highway 18, Mount Ida, Wisconsin.

Please feel free to contact General Engineering Company with any questions at 608-742-2169.

Sincerely yours,

GENERAL ENGINEERING COMPANY

Brian Youngwirth

Environmental Project Manager

Kory D. Anderson

Kory D. Anderson, P.E.

Vice President

Sharon Speaker

General Engineering Company P.O. Box 340

916 Silver Lake Drive Portage, WI 53901

608-742-2169 (Office) 608-742-2592 (Fax) gec@generalengineering.net www.generalengineering.net

Daga

Engineers • Consultants • Inspectors

TABLE OF CONTENTS HUGO SPEAKER PROPERTY

 INTRODUCTION General Purpose Scope Authorization 	1
SITE FEATURES AND BACKGROUND	1-3
Site FeaturesBackground	
FIELD ACTIVITIES AND PROCEDURES	3-4
 Scope Summary Field Exploration Field Volatile Vapor Emission Screening 	
DESCRIPTION OF SUBSURFACE CONDITIONS	4
GeneralSoil Conditions	
GROUNDWATER MONITORING ACTIVITIES	5
 Monitoring Well Development Groundwater Sampling Groundwater Well Elevations 	
EVALUATION AND DISCUSSION	5-6
 Groundwater Quality Standards Laboratory Groundwater Results	
CONCLUSIONS	6
GENERAL COMMENTS	6

General Engineering Company P.O. Box 340 916 Silver Lake Drive Portage, WI 53901

608-742-2169 (Office) 608-742-2592 (Fax) gec@generalengineering.net www.generalengineering.net

APPENDICES

APPENDIX A

- Figure 1 Regional Site Location Map
- Figure 2 Site Plan Map
- Figure 3 Soil Boring and Monitoring Well Location Map
- Figure 4 Groundwater Elevation and Contour Map—October 17,2016

APPENDIX B

- Table 1 Summary of Soil Analytical Results
- Table 2 Summary of Groundwater Analytical Results
- Table 3 Groundwater Elevation Table

APPENDIX C

- Groundwater Analytical Reports
- Chain of Custodies

APPENDIX D

- Soil Boring Logs
- Monitoring Well Construction Forms
- Monitoring Well Development Forms

Portage

La Crosse

Speaker Property Page 1

INTRODUCTION

General

This report presents the findings for the subsurface investigative activities performed at the Hugo Speaker Property located at 6382 US Highway 18, Mount Ida, Grant County, Wisconsin since the most recent Status Update, which was submitted to the Wisconsin Department of Natural Resources (WDNR) on August 13, 2015. In addition, this report presents recommendations for additional work, based on the findings. The activities were performed at the request and authorization of Mrs. Sharon Speaker, the former property owner and responsible party for the release.

Purpose

The purpose of the investigation was to further evaluate the extent of petroleum affected groundwater resulting from a release from a former underground storage tank system.

Scope

The scope of the most recent site investigation activities included the advancement of three (3) soil borings; air rotary drilling; the installation of three monitoring wells, collection of two (2) rounds of groundwater samples from the monitoring wells for laboratory analysis, an analysis of the data obtained; and preparation of this report. The investigation activities were structured specifically to address the presence of constituents associated with the former USTs.

Authorization

Authorization to perform this site investigation was in the form of an acceptance copy of the Wisconsin Department of Commerce agent contract, dated May 12, 2010 and signed by Sharon Speaker on June 3, 2010. This report has been prepared on behalf of, and exclusively for the use of Sharon Speaker. The information contained in this Status Update/Groundwater Monitoring Report may not be relied upon by any other parties without the expressed written consent of General Engineering and Client, and acceptance by such parties of General Engineering's General Conditions.

SITE FEATURES AND BACKGROUND

Site Features

The project site is located at 6832 U.S. Highway 18 in Mount Ida, Wisconsin. More specifically, the property is located within the Northwest 1/4 of the Northwest 1/4 of Section 29, Township 06 North, Range 03 West, Grant County, Wisconsin. The site is located within a rural area surrounded by primarily residential properties and wooded land. A site location map is shown in Figure 1, Appendix A.

The subject site is currently occupied by a residence on the southwestern portion of the property. The surrounding properties are comprised of residential properties to the west; vacant or wooded land to the north; dense wooded land followed by a residential property to the east; and US Highway 18, followed by residential properties to the southwest.

La Crosse

Speaker Property Page 2

Background

According to Wisconsin Department of Agriculture, Trade, and Consumer Protection (DATCP) records, one (1) 500 gallon single wall tank containing unleaded gasoline and one (1) 500 gallon single wall tank containing leaded gasoline are registered to the site as closed/removed on December 9, 1997. It is understood that the tanks were formerly located to the west of the northwest corner of the building and the dispensers were located along the southwestern portion of the property, located along Hwy 18. The locations of the former USTs are shown on Figure 2, Appendix A.

The WDNR was reportedly notified of a release on December 12, 1997 and a responsible party (RP) letter was sent on December 23, 1997. The case remained idle for several years and a push action was taken by the WDNR on December 27, 2004 followed by a deed affidavit for enforcement on March 28, 2005, and an additional push action on October 9, 2009. As a result, General Engineering Company was retained in May of 2010 to perform a soil and groundwater investigation at the site.

As part of the initial site investigation activities, six (6) soil probes, designated GP-1 to GP-6, were advanced on September 23, 2010. Due to the uneven and steep terrain, an all-terrain soil probe unit advanced seven additional probes, designated GP-7 to GP-13, on October 14, 2010 to further evaluate the extent of affected soil. The probes were advanced until refusal on bedrock at depths ranging from 4 feet to 14 feet below ground surface. Petroleum affected soils were encountered west/southwest of the structure near the location of the former tank bed and beyond toward the southwest and the former dispenser area.

Due to the presence of soil contamination to the depth of bedrock, one (1) boring was advanced into bedrock on June 3, 2011. Due to the terrain, a truck-mounted drilling rig could not access the former tank or dispenser area. Therefore, soil boring MW-1 was advanced just west of the property boundary, northwest of the former tank system. The boring was blind drilled to a depth of 8 feet to auger refusal on bedrock and advanced to a depth of approximately 32 feet utilizing air rotary drilling techniques. The boring was converted to a monitoring well, designated MW-1. Due to the presence of petroleum compounds within the initial groundwater sample collected from MW-1, two additional soil borings were advanced into bedrock on September 2, 2011. One boring was advanced to the south/southeast of the former tank bed (MW-2) and one was advanced to the northeast of MW-1 beyond the subject property boundary to the west (MW-3). The borings were blind drilled to bedrock at depths of about 10 feet and 8 feet below grade, respectively. The borings were advanced utilizing air rotary drilling techniques to depths of about 59 feet and 36 feet, respectively. The locations of the soil probes, soil borings, and monitoring wells are shown on Figure 3, Appendix A.

The soils at the probe locations generally consisted of gravel or grass/topsoil underlain by variable natural soils consisting of reddish brown and brown silty clay, silty sand, and sandy silt with varying amounts of gravel extending to bedrock at depths of 4 to 14 feet below grade. Groundwater was not encountered within the soil probes. At the soil borings, groundwater was encountered within bedrock at depths ranging from about 15 to 40 feet below grade.

Petroleum odors and PID results were observed within the samples collected from GP-2, GP-4, GP-7, GP-8, GP-9, and GP-10. The highest PID levels (983 IU to 1,242 IU) were detected within the soil samples collected from GP-7 (southwest of the former tank system) and GP-10 (near the southeast corner of the former tank system) at depths of about 13 feet and 9 feet, respectively.

Soil samples were collected from each probe at depths of approximately 4 to 14 feet below grade, where bedrock was encountered. Soil samples were collected and analyzed for the presence of PVOC, naphthalene, and GRO. The soil samples collected from GP-2, GP-4, GP-7, GP-8, and GP-10 contained petroleum compounds at levels exceeding each compound's respective NR 720 cancer risk based residual contaminant level (C RCL) or soil to groundwater standards. The highest levels of petroleum compounds were detected within the sample collected from GP-7 (near the former dispensers) at a depth of 13 to 14 feet below ground surface (bgs). The sample contained benzene at a concentration of 1,240 micrograms per kilogram (μ g/kg), ethylbenzene (27,100 μ g/kg), naphthalene (9,300 (μ g/kg), toluene (8,660 μ g/kg), total trimethylbenzene (84,200 μ g/kg), and total xylenes

Portage • Black River Falls • La Crosse

Speaker Property Page 3

(127,800 µg/kg). The detected concentrations exceed their respective NR 720 Cancer Residual Contaminant Level (C RCL) and/or soil to groundwater RCL. Soil analytical results are summarized on Table 1, Appendix A.

The samples collected at the remaining locations either did not contain petroleum compounds or did not contain them at levels exceeding their respective standards. None of the collected samples from the direct contact zone contained petroleum compounds at concentrations exceeding their respective standards. The results of the chemical analyses on the soil samples are summarized on Table 1, Appendix B.

Groundwater samples were collected from MW-1 on July 5, 2011. Groundwater samples were collected from monitoring wells MW-1 to MW-3 on November 22, 2011, June 21, 2012, June 4, 2013, and August 8, 2014. The groundwater samples collected from monitoring wells MW-1 and MW-3 have generally contained benzene, ethylbenzene, naphthalene, and trimethylbenzene, and 1,2 dichloroethane (1,2 DCA) at levels exceeding each compound's respective NR 140 ES of 5 micrograms per liter (μ g/l), 700 μ g/l, 100 μ g/l, 480 μ g/l, and 5 μ g/l, respectively. The highest levels were observed within the samples collected from MW-1, which contained benzene levels of 2,540 μ g/l, 1,640 μ g/l, 2,710 μ g/l, 1,260 μ g/l, and 2,490 μ g/l during the sampling rounds performed. The samples collected from MW-3 contained benzene levels of 1,210 μ g/l, 19.9 μ g/l, 364 μ g/l, and 990 μ g/l. The samples collected from MW-2 contained benzene at levels exceeding its NR 140 PAL during the initial two sampling rounds but did not contain PVOCs or naphthalene during the June 4, 2013 and August 8, 2014 sampling rounds. The results of the groundwater analyses are summarized in Table 2 in Appendix B.

Based on the soil probes and borings/monitoring wells performed to date, it appears that the extent of soil contamination has generally been defined and is confined to the area of the former USTs and to the southwest of the former USTs (GP-2, GP-7, GP-8, and GP-10). However, it is possible that soil contamination may extend beneath the residence to the southeast of the former tanks. At the time of the most recent Status Update (August 13, 2015), the house on the subject site was unoccupied. GEC recommended that a preliminary vapor sample be collected from the lowest level of the house to address concerns related to the migration of vapors into the structure. Since submittal of the August 13, 2015 Status Update, the property is under new ownership and the house is being occupied by the new owner. The vapor testing has not been performed as of the date of this report and funds to perform the testing will be requested as part of a bid deferral request, which will be submitted subsequent to this status update.

With regard to the groundwater, since groundwater samples collected from MW-1 and MW-3 contained PVOCs, naphthalene, and 1,2 DCA at concentrations exceeding the NR 140 ES, GEC recommended the installation of three additional bedrock monitoring wells the northeast, north and northwest of the former tank area, beyond MW-1 and MW-3. The installation of the three additional wells and additional groundwater sampling rounds are discussed herein.

FIELD ACTIVITIES AND PROCEDURES

Scope Summary

The scope of field exploration during the most recent site investigation activities included the advancement of three (3) soil borings; air rotary drilling; installation of a monitoring well (MW-6); two bedrock monitoring wells (MW-4 and MW-5); and performance of two (2) rounds of groundwater sampling. The monitoring wells were installed to further evaluate the extent of affected groundwater and the stability of the contaminant plume.

The soil borings/monitoring wells were performed by Ground Source (MW-4) or Soils & Engineering Services, Inc. (MW-5 and MW-6) under the direction of General Engineering. Soil samples were collected by driving a 24-inch split spoon into undisturbed soils. Two of the borings (MW-4 and MW-5) were advanced to bedrock and were completed utilizing air rotary drilling techniques.

Since the area of affected soil appears to have been defined and no petroleum odors or PID results were detected within the samples or cutting from the soil borings, no soil samples from MW-4, MW-5, and MW-6 were submitted for laboratory analysis.

Portage

Black River Falls

La Crosse

Speaker Property Page 4

Field Exploration

As part of the additional site investigation activities, one (1) monitoring well (MW-6) and one (1) bedrock monitoring well (MW-4) were performed on June 30, 2016 and October 11, 2016, respectively. A bedrock monitoring well (MW-5) was also performed on October 11, 2016. Refusal was encountered within MW-4 and MW-5 at depths of 22 feet and 9 feet bgs, respectively. Refusal was not encountered at MW-6 to a depth of 26 feet. MW-4 and MW-5 were advanced utilizing air rotary drilling techniques to depths of 45.5 feet and 29 feet, respectively. The wells were installed to depths of 45 feet, 29 feet, and 22 feet, respectively. The locations of the monitoring wells are shown on Figure 3, Appendix A.

The monitoring well construction consisted of a 15-foot (MW-4 and MW-5) to 10-foot (MW-6) section of 2-inch diameter, machine slotted PVC screen placed at or near the bottom of the borehole. This was surrounded by a properly graded granular filter medium in the annular space, with un-slotted riser pipe extending from the screened section to about 6-inches below the ground surface. A bentonite seal of approximately 2 feet, was placed above the granular filter medium. The remaining annular space was filled to the ground surface with bentonite chips. Flush mounted protective covers were used to protect the wells. Monitoring well construction forms are included within Appendix D.

Field Volatile Vapor Emission Screening

Soil samples collected from the soil borings were screened for volatile organic vapor emissions with a Photovac Photoionization Detector (PID). The soil samples were placed in a plastic bag and permitted to equilibrate to at least 70 degrees Fahrenheit for a period of at least 15 minutes, based upon the ambient outdoor temperature. The screening was then performed by inserting the probe in the bag and measuring the headspace. The PID is an electronic instrument that measures the relative concentration of volatile organic vapor emissions in the headspace of a container. The response of the instrument is dependent upon volatility, temperature, and the ionization potential of the compounds measured. The meter serves as one tool in selecting samples for analytical testing, as it only gives a relative indication of the presence of volatile organic vapor emissions, but cannot quantify concentrations of individual compounds. PID readings were not detected within the auger cutting from MW-4 or the soil samples collected from MW-5 and MW-6.

DESCRIPTION OF SUBSURFACE CONDITIONS

General

A description of the subsurface conditions encountered at the soil probe locations is shown on the soil boring logs in Appendix D. The lines of demarcation shown on the logs represent an approximate boundary between the various soil classifications, but the transition is likely to be more gradual. It must be recognized that the soil descriptions are considered representative for the specific location, and that variations may occur between and beyond the sampling intervals and probe locations. A summary of the major soil profile components is described in the following paragraphs.

Soil Conditions

The soils at the boring locations generally consisted of grass/topsoil underlain by variable natural soils consisting of reddish brown clayey silty or brown sandy silt with varying amounts of gravel to the refusal or termination depths of the borings at depths ranging from 9 feet to 26 feet bgs. Bedrock was encountered at depths of 22 feet at MW-4 and 9 feet at MW-5. Groundwater was not encountered within the upper soils at MW-4 and MW-5, but was encountered at a depth of about 12 feet at MW-6. At MW-4 and MW-5, groundwater appeared to be encountered within bedrock at depths ranging from about 15 to 35 feet below grade.

No soil staining or petroleum odors were detected within the auger cutting collected at MW-4 or within the soil samples collected from MW-5 and MW-6. No PID results were detected in the collected samples.

Portage

Black River Falls

La Crosse

Speaker Property Page 5

GROUNDWATER MONITORING ACTIVITIES

Monitoring Well Development

Monitoring wells MW-4 to MW-6 were developed on October 17, 2016. The monitoring wells were developed by alternately surging and purging with a bailer. The well development and other pertinent details are shown on Well Development Forms (Form 4400-113B), included in Appendix D.

Groundwater Sampling

Groundwater samples were collected from MW-1 to MW-6 on February 11, 2016 and October 17, 2016. The samples were submitted for laboratory analysis for the presence of PVOCs, naphthalene, and/or 1,2 dichloroethane (DCA).

Samples submitted for PVOC, naphthalene, or 1,2 DCA analysis where transferred into a laboratory prepared 40milliliter vials containing Hydrochloric Acid preservative. The sample containers were placed on ice and standard chain-of-custody procedures were initiated. The samples submitted for lead analysis were field filtered and transferred into laboratory prepared 250-mL containers containing nitric acid preservative. The groundwater samples were submitted to Synergy Environmental Lab in Appleton, Wisconsin.

Groundwater Well Elevations

Depth to groundwater at the site has ranged from 12.51 feet below (TOC) at MW-6 on October 17, 2016 to 48.23 feet below TOC at MW-2 on October 17, 2016. The groundwater elevation has ranged from EL. 1166.33 at MW-2 on October 17, 2016 to EL. 1197.79 at MW-1 on June 4, 2013. Groundwater elevation data is summarized on Table 3 in Appendix B.

The depth to groundwater and groundwater elevations appear to be highly variable based on the information collected to date with over 20 feet of groundwater elevation difference between wells MW-2 (near the former tank area) and the five outlying wells (MW-2 to MW-6). However, the groundwater elevations within MW-2 to MW-6 appear to be more consistent. It is likely that the water elevations are representative of perched groundwater based on the site topography. Based on the groundwater analytical results the groundwater flow direction appears to be toward the north/northeast. A groundwater elevation contour and flow direction map, dated October 17, 2016 is included as Figure 4 in Appendix A. Additional sampling and other monitoring points would be necessary to further evaluate groundwater flow on the subject property.

EVALUATION AND DISCUSSION

Groundwater Quality Standards

The Enforcement Standards (ESs) and Preventive Action Limits (PALs) are Groundwater Quality Standards, which have been established in NR140 of the Wisconsin Administrative Code. These Standards are referenced when evaluating the need for further study or remedial activities. The PAL is the more stringent guideline, in terms of being lesser in magnitude than the ES, but will typically require less response action when exceeded. The required action is determined by DNR regulations, based on various site-specific considerations.

Laboratory Groundwater Results

Groundwater samples were collected from MW-1 to MW-3 on February 11, 2016. The samples collected from MW-1 and MW-3 contained a few PVOCs, naphthalene, and/or 1,2 DCA at concentrations exceeding their respective NR 140 ES. The concentrations detected were similar to those detected in the previous four sampling

La Crosse **Black River Falls Portage**

Speaker Property Page 6

rounds. The samples collected from MW-2 did not contain detectable concentrations of PVOCs, naphthalene, or 1,2 DCA.

Groundwater samples were collected from MW-1 to MW-3 and newly installed monitoring wells MW-4 to MW-6 on October 17, 2016. The samples collected from MW-1 and MW-3 contained a few PVOCs and naphthalene at concentrations exceeding their respective NR 140 ES. Specifically, benzene was detected at concentrations of 2,220 μ g/l and 930 μ g/l, respectively. The samples collected from MW-5 and MW-6 contained benzene at levels exceeding the NR 140 ES with concentrations of 77 μ g/l and 5.6 μ g/l, respectively. The sample collected from MW-4 contained benzene (0.79J μ g/l), which exceeds its NR 140 PAL of 0.5 μ g/l. The sample collected from MW-2 did not contain detectable levels of PVOCs or naphthalene.

The results of the chemical analyses of the groundwater samples are summarized in Table 2 in Appendix B. Laboratory analytical results and chain of custody forms are included in the Appendix C.

CONCLUSIONS

Based on the soil probes and borings/monitoring wells performed to date, it appears that the extent of soil contamination has generally been defined and is confined to the area of the former USTs and to the southwest of the former USTs (GP-2, GP-7, GP-8, and GP-10). However, it is possible that soil contamination may extend beneath the residence to the southeast of the former tanks. Additionally, the residence has recently been purchased and is currently occupied by the new owner of the property. Therefore, it is recommended that vapor testing be performed within the residence to address concerns related to the migration of vapors into the structure. Pending the results of that testing, General Engineering will provide recommendations regarding the need for the excavation of petroleum affected soils and/or vapor mitigation systems.

With regard to the groundwater, based on the collected groundwater samples, it appears that the extent of groundwater contamination has been generally defined and extends from the area of the former tank system/dispensers toward the northeast beyond MW-5. Although benzene (77 μ g/l) was detected in the sample collected from MW-5, the concentration is well below the benzene concentrations of 2,220 μ g/l and 930 μ g/l detected at MW-1 and MW-3, respectively, during the most recent sampling round. In addition, there is an overhead power line and heavily wooded area beyond MW-5 to the northeast and installation of an additional monitoring well is not feasible at the present time.

GEC proposes to submit a bid deferral request, which includes the costs to perform vapor testing within the residence (specific test locations and the type of vapor tests will be included within the request), collect two rounds of groundwater samples from the site monitoring wells (MW-1 to MW-6 and the potable well), and prepare a soil and groundwater site investigation report, which includes recommendations for a remedial action and/or additional groundwater monitoring, if it appears necessary.

GENERAL COMMENTS

The investigative activities have been conducted in a manner consistent with that level of care ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions. The findings, recommendations and opinions contained herein have been promulgated in accordance with generally accepted practice in similar fields. No other representations, expressed or implied, and no warranty or guarantee is included or intended in this report.

The conclusions presented in this report were formulated from the data obtained during the course of exploratory work on the site, which may result in a redirection of conclusions and interpretations where new information is obtained. The regulatory climate and interpretation may also have an effect on the outcome of the environmental investigation for this site. The information contained in this report may have an effect on the value of the property, and is considered confidential. Copies of this report will be submitted to others only with authorization from the client.

Portage • Black River Falls • La Crosse

General Engineering Company

P.O. Box 340 • 916 Silver Lake Dr. • Portage, WI 53801 608-742-2169 (Office) • 608-742-2592 (Fax) www.generalengineering.het

This document contains confidential or proprietary information of General Engineering Company.

Netther this document nor the information bettern is to be reproduced, distributed, used or discious either in whole or in part except as operationally authorized by General Engineering Company.

SITE LOCATION MAP

Speaker Property &

Lutzen Property (Former Kreyer County Store)

Town of Mount Ida

Grant County, Wi

APPENDIX B TABLES

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS SPEAKER PROPERTY 0610-133

						000	600	7 00	200	9.00	CP.7	GP-8	GP-8	GP-9	GP-9	GP-10	GP-11	GP-12	GP-13
Cample No			Direct	Soil to	-45 -1-	GP-Z	5-15		,		1	+	-	-	_		_	-	40144140
Sample No.	NC RCL	C RCL	Contact	Groundwater	09/23/10	09/23/10	09/23/10	09/23/10	09/23/10	09/23/10	10/14/10	10/14/10	10/14/10	10/14/10	10/14/10	10/14/10	10/14/10	UL/4/10L	2/4/20
Sampling Date	(ng/kg)	(ng/kg)	RCL	PCI (ma/kg)	_				T	90100						0.40	9-10	9-10	9-10
Sample Depth (feet)			(ng/kg)	(Suga) Tou	2-9	9-10	3-4	13-14	11-12	11-12	13-14"	3-4	6-6 6-6	40	6-6	2-10	DANGE BEST	SOCIALIDA	
CASOLINE DANCE OPCANICS (GRO) DIESEL RANGE ORGANICS (DRO) (mg/k	MICS (GRC	DIESE	RANGE	ORGANICS (I	DRO) (mg	(Kg)		SOCIETA PROPERTY.	がある		THE STATE OF THE PARTY AND ADDRESS OF THE PART	Section Control	Name of the last						
GASOLINE NAMED CAS	The same					0.0	4 67	200	72.0	/37	1010	31	<3.4	<3.0	<3.0	45.9	<3.1	<3.3	3.6
GRO	뮏	핃	N.	闄	<3.6	<3.6	7	50.0	0.0	1.0	2121		(A)	SANGED AND SECOND	100000000000000000000000000000000000000	The State of the S	STATE STATE	THE PERSON NAMED IN	おのと
DETROI FIIM VOI ATILE ORGANIC COMPOUNDS (PVOC) (µg/kg)	ORGANIC C	OMPOUN	OVA) SOV	C) (nd/kd)		SEC. 2810				DESCRIPTION OF THE PERSON OF T			PARTY NOTES						
	444 000	1 100	1 490	ري 1-	200	205	<25	41.3.1	<25	<25	1240	<25	<25	<25	<25	425	<25	475	7 22
Benzene	000,111	06+,1	Port'i	5	67	22	23			t	3	ž	200	707	7.75	1100	<25	<25	<25
Ethylbonzone	4,200,000	7,470	7,470	1,570	<25	<25	<25	<25	<25	425	27,100	3	57	3	2	3			
CulyiDenzenie	000 000 00	20 400	59 400	27	70,5	7.75	<25	<25	<25	<25	<200	<25	<25	<25	<25	4 25	²⁵	<25	2 22
Methyl tert-butyl ether	23,000,000	09,400	00t,50	1,7	77	77	2							17.70	30,	752	/2E	705	<25
Nachthalnene	188,000	5,150	5,150	658	<25	5750	<25	<25	<25	425	9300	1320	32	61.73	67/	200	7	3 3	2 2
	200 000	벌	818 000	1107	20°	<25	<25	38.6.1	<25	<25	0998	<25	<25	<25	<25	²²⁵	425	ç2	25
Toluene	0,000,000	į	200,010		77							;	r	Ę	100	4600	7,25	70.5	<25
1 2 4-Trimethylbenzene	89,800	岁	89,800	1382	<25	<25	<25	<25	<25	<25	63300	²² 2	65	57	3	4000	7		į
1 1	782 000	쀨	182.000	1382	<25	<25	<25	<25	<25	<25	20900	<25	<25	²²	425	1420	\$22 \$25	32	C7V
1,3,5-1 nmemyibenzene																	ļ	Ļ	775
Xylenes, -m, -p	890.000	¥	258,000	3940	<75	<75	<75	<75	<75	<75	127,800	<75	<75	<75	<75	5154	ç/>	٥/٧	c/>
Xylenes, -o																			

mg/kg = milligrams per kilogram

µg/kg = micrograms per kilogram

RCL = Residual Contaminant Level

SSL = Soil Screening Level

DCL = Direct Contact Level

NA = Parameter not analyzed

NE = NR 720 RCL not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation.

Bold indicates analytical results exceed NR 720 RCL

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS HUGO SPEAKER PROPERTY GEC PROJECT NUMBER 0610-133

Monitoring Well	NR	140				MW-1						MV	1-2					MV	V-3			MW-4	MW-5	MW-6
Sampling Date	ES	PAL	7/5/2011	11/22/2011	6/21/2012	6/4/2013	8/8/2014	2/11/2016	10/17/2016	11/22/2011	6/21/2012	6/4/2013	8/8/2014	2/11/2016	10/17/2016	11/22/2011	6/21/2012	6/4/2013	8/8/2014	2/11/2016	10/17/2016	10/17/2016	10/17/2016	10/17/2016
VOLATILE ORGANIC COMP	OUNDS (VOC) (µg	/L)					de de la			(2000)		ariante de la compansión de la compansió		W 11/2			0.0000000000000000000000000000000000000	sastas jaks			and the state of	acidecide do	
Benzene	5	0.5	2540	1640	2710	1260	2490	1820	2220	1,3	1.7	<0.34	<0.27	<0.44	<0.46	1210	19.9	364	990	660	930	0.79J	77	5.6
Ethylbenzene	700	140	1200	1230	454	437	1890	1370	1310	<0.54	<0.41	<0.34	<0.82	<0.71	<0.73	910	8.5	586	840	800	650	<0.73	58	<0.73
Methyl tert-butyl ether	60	12	<12.2	16.1	<15.2	<7.4	<3.7	<55	<24.5	<0.61	<0.38	<0.37	<0.37	<1.1	<0.49	<15.2	1.2	7.4	<1.85	<11	<4.9	<0.49	<0.49	<0.49
Toluene	1000	200	544	283	428	264	810	750	820	<0.67	0.55J	<0.34	<0.8	<0.44	<0.39	164	2.3	95.6	180	130	135	<0.39	5.3	<0.39
1,2,4 -Trimethylbenzene	480	96	973	1380	798	55.2	2870	2680	1570	<0.97	<0.43	<0.33	<0.83	<1.6	<0.68	1170	31.9	1030	1550	1410	1140	<0.68	31.2	<0.68
1,3,5 -Trimethylbenzene	1 400	30	210	349	225	<7.1	780	700	470	<0.83	<0.40	<0.36	<0.86	<1.5	<0.83	241	59.3	296	440	370	307	<0.83	3.5	<0.83
Xylenes, -m, -p	10000	1000	4540	4189	4290	792	7720	7390	5180	<2.63	<1.25	<1.03	<2.41	<3.1	<2.06	3025	114.7	2011	2815	2875	2194	<2.06	52.02	<2.06
Xylenes, -o	1 10000	1000	4340	4103	4230	192	7720	7390	3700	\2.03	11.20	\$1,00	~2.71	30.1	12.00	0020	11-5-1	2011	2010	2070	2101	12,00	02.02	-2.00
OTHER DETECTED VOLAT	LE ORGA	NIC CON	IPOUNDS (V	/OC) (µg/L)																				
Chloromethane	30	3	<4.8	NA	NA	NA	NA	NA	NA	1.2	NA	NA	NA	NA	NA	<6.0	NA	NA	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NE	NE	<18.6	NA	NA	NA	NA	NA	NA	<0.93	NA	NA	NA	NA	NA	45.2	NA	NA	NA	NA	NA.	NA	NA	NA
1,2-Dichloroethane	5	0.5	163	NA	NA	NA	NA	<24	NA	<0.36	NA	NA	NA	<0.48	NA	<9.0	NA	NA	NA	27	NA	NA	NA	NA
Isopropylbenzene	NE	NE	49.1	NA	NA	NA	NA	· NA	NA	<0.59	NA	NA	NA	NA	NA	63.9	NA	NA	NA	NA	NA	NA	NA	NA
Napthalene	100	10	134	207	152	17.8J	430	400	320J	<0.89	<0.40	<0.37	<1.2	<1.6	<2.6	111J	3.3	125	178	183	105	<2.6	<2.6	<2.6
n-Propylbenzene	NE	NE	171	NA	NA	NA	NA	NA	NA	<0.81	NA	NA	NA	NA	NA	224	NA	NA	NA	NA	NA	NA	NA	NA
LEAD (µg/L)															Communication									
Lead	15	1.5	6.5J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

ES = Enforcement Standard
PAL = Preventive Action Limit

µg/L = micrograms per liter
NA = Parameter not analyzed
NE = NR 140 ES not established
J = Analyte detected above laboratory limit of detection but below limit of quantitation.

Bold indicates analytical results above NR 140 ES

TABLE 3 WATER LEVEL DATA SPEAKER PROPERTY 0610-133

Monitoring Well Number	Top of Well Casing Elevation	Screen Interval	Date Measured	Depth to Water (Ft.)	Groundwater Elevation (Ft.)
			7/5/2011	15.87	1192.90
		1187.07	11/22/2011	16.60	1192.17
	1208.77		6/21/2012	18.95	1189.82
MW-1		1	6/4/2013	10.98	1197.79
		1177.07	8/8/2014	15.86	1192.91
			6/9/2015	15.40	1193.37
199			2/11/2016	16.38	1192.39
			2/11/2016	16.38	1192.39
			7/5/2011	NA	NA
		1171.73	11/22/2011	38.22	1176.34
	1214.56		6/21/2012	40.50	1174.06
MW-2			6/4/2013	42.72	1171.84
		1156.73	8/8/2014	42.40	1172.16
			6/9/2015	44.22	1170.34
			2/11/2016	45.65	1168.91
			10/17/2016	48.23	1166.33
			7/5/2011	NA	NA
		1180.32	11/22/2011	19.29	1188.88
	1208.17		6/21/2012	21.58	1186.59
MW-3			6/4/2013	18.51	1189.66
		1170.32	8/8/2014	21.66	1186.51
			6/9/2015	22.97	1185.20
			2/11/2016	21.24	1186.93
			10/17/2016	18.38	1189.79
			10/17/2016	17.72	1188.89
MW-4	1206.61	1179.35			
		1164.35			
	1200.52	1187.39	10/17/2016	16.75	1183.77
MW-5		1172.39			
	1200.76	1189.21	10/17/2016	12.51	1188.25
MW-6		1179.21	8		

APPENDIX C
SOIL AND GROUNDWATER ANALYTICAL REPORTS
AND CHAIN OF CUSTODY FORMS

Synergy Environmental Lab, INC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PORTAGE, WI 53901

Report Date 25-Feb-16

Project Name S	SPEAKER/M	IOUNT IDA					Invo	ice# E3048	38		
Lab Code Sample ID	5030488A MW-1			12							
Sample Matrix	Water										
Sample Date	2/11/2016										
		Result	Unit	LOD	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic											
PVOC + Naph	thalene + 1,2	DCA									
Benzene		1820	ug/l	22	70	50	8260B		2/20/2016	CJR	1
1,2-Dichloroethane	;	< 24	ug/l	24	75	50	8260B		2/20/2016	CJR	1
Ethylbenzene		1370	ug/l	35.5	115	50	8260B		2/20/2016	CJR	1
Methyl tert-butyl et	ther (MTBE)	< 55	ug/l	55	185	50	8260B		2/20/2016	CJR	1
Naphthalene		400	ug/I	80	260	50	8260B		2/20/2016	СJR	1
Toluene		750	ug/i	22	70	50	8260B		2/20/2016	CJR	1
1,2,4-Trimethylben	zene	2680	ug/l	80	250	50	8260B		2/20/2016	CJR	1
1,3,5-Trimethylben	izene	700	ug/l	75	240	50	8260B		2/20/2016	CJR	1
m&p-Xylene		5900	ug/l	110	345	50	8260B		2/20/2016	CJR	1
o-Xylene		1490	ug/l	45	145	50	8260B		2/20/2016	CJR	1
Lab Code	5030488B										
Sample ID	MW-2										
Sample Matrix	Water										
Sample Date	2/11/2016										
-		Result	Unit	LOD	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic											
PVOC + Naph	nthalene + 1.2	2 DCA									
Benzene		< 0.44	ug/l	0.44	1.4	1	8260B		2/19/2016	СJR	1
1,2-Dichloroethane	a.	< 0.48	ug/l	0.48		1	8260B		2/19/2016	CJR	i
Ethylbenzene	•	- < 0.71	ug/l	0.71		1	8260B		2/19/2016	CJR	1
Methyl tert-butyl e	ther (MTRE)	< 1.1	ug/l	1.1		1	8260B		2/19/2016	CJR	î
Naphthalene	mor (minus)	< 1.6	ug/l ug/l	1.6		1	8260B		2/19/2016	CJR	î
Toluene		< 0.44	ug/l ug/l	0.44		I	8260B		2/19/2016	CJR	1
1,2,4-Trimethylber	nzene	< 1.6	ug/l	1.6		1	8260B		2/19/2016	CJR	î
1,3,5-Trimethylber		< 1.5	ug/l	1.5		1	8260B		2/19/2016	CJR	1
m&p-Xylene	120110	< 2.2	ug/l	2.2		1	8260B		2/19/2016	CJR	i
o-Xylene		< 0.9	ug/l	0.9		1	8260B		2/19/2016	CJR	i
0 21,70110		~ U.7	ug/1	0.5	2.9	1	32001		2/17/2010	Core	

Project Name SPEAKER/MOUNT IDA

Project #

Lab Code 5030488C Sample ID MW-3 Sample Matrix Water Sample Date 2/11/2016

Sumple Bute	- 11, -010									
	Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
Organic										
PVOC + Naphth	alene + 1,2 DCA									
Benzene	660	ug/l	4.4	14	10	8260B		2/20/2016	CJR	1
1,2-Dichloroethane	27	ug/l	4.8	15	10	8260B		2/20/2016	СJR	1
Ethylbenzene	800	ug/l	7.1	23	10	8260B		2/20/2016	CJR	1
Methyl tert-butyl ethe	er (MTBE) < 11	ug/1	11	37	10	8260B		2/20/2016	CJR	1
Naphthalene	183	ug/l	16	52	10	8260B		2/20/2016	CJR	1
Toluene	130	ug/l	4.4	14	10	8260B		2/20/2016	CJR	1
1,2,4-Trimethylbenze	ene 1410	ug/l	16	50	10	8260B		2/20/2016	CJR	1
1,3,5-Trimethylbenze	ene 370	ug/l	15	48	10	8260B		2/20/2016	CJR	1
m&p-Xylene	2600	ug/l	22	69	10	8260B		2/20/2016	CJR	1
o-Xylene	275	ug/l	9	29	10	8260B		2/20/2016	СЛ	1

[&]quot;J" Flag: Analyte detected between LOD and LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

Invoice # E30488

Code Comment

Laboratory QC within limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Muchaelplul

Authorized Signature

Synergy Environmental Lab, INC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PORTAGE, WI 53901

Report Date 24-Oct-16

Project Name Project #	SPEAKER					Inve	pice # E319	27		
Lab Code	5031927A									
	MW-1									
Sample ID										
Sample Matrix										
Sample Date	10/17/2016									
		Result	Unit	LOD I	OQ Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PVOC + Napl	ıthalene									
Benzene		2220	ug/l	23	75 5	0 GRO95/8021		10/21/2016	CJR	1
Ethylbenzene		1310	ug/l	36.5	115 5			10/21/2016	CJR	1
Methyl tert-butyl e	ther (MTBE)	< 24.5	ug/l	24.5	80 5			10/21/2016	CJR	1
Naphthalene	(·,	320 "J"	ug/l	130	415 5			10/21/2016	CJR	1
Toluene		820	ug/l	19.5	60 5			10/21/2016	CJR	1
1,2,4-Trimethylbe	nzene	1570	ug/l	34	110 5	0 GRO95/8021		10/21/2016	CJR	1
1,3,5-Trimethylbe	nzene	470	ug/l	41.5	130 5	0 GRO95/8021		10/21/2016	CJR	1
m&p-Xylene		4100	ug/l	70	220 5	0 GRO95/8021		10/21/2016	CJR	1
o-Xylene		1080	ug/l	33	105 5	0 GRO95/8021		10/21/2016	CJR	1
Lab Code	5031927B									
Sample ID	MW-2									
Sample Matrix	Water									
Sample Date	10/17/2016	5								
		Result	Unit	LOD I	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PVOC + Napl	hthalene									
Benzene		< 0.46	ug/l	0.46	1.5	GRO95/8021		10/20/2016	CJR	1
Ethylbenzene		< 0.73	ug/l	0.73	2.3	GRO95/8021		10/20/2016	CJR	1
Methyl tert-butyl	ther (MTBE)	< 0.49	ug/l	0.49	1.6	GRO95/8021		10/20/2016	CJR	1
Naphthalene		< 2.6	ug/l	2.6		GRO95/8021		10/20/2016	CJR	1
Toluene		< 0.39	ug/l	0.39		GRO95/8021		10/20/2016	CJR	1
1,2,4-Trimethylbe		< 0.68	ug/I	0.68		GRO95/8021		10/20/2016	CJR	1
1,3,5-Trimethylbe	nzene	< 0.83	ug/l	0.83	2.6	GRO95/8021		10/20/2016	СJR	1
m&p-Xylene		< 1.4	ug/l	1.4		GRO95/8021		10/20/2016	CJR	1
o-Xylene		< 0.66	ug/l	0.66	2.1	GRO95/8021		10/20/2016	CJR	1

Project Name Project #	SPEAKER						Invoice	# E3192	27		
Lab Code Sample ID Sample Matrix Sample Date	5031927C MW-3 Water 10/17/2016		TT24	I OD I	. 00 P		25.45.3	E-4 D-4	Por Date	A I 4	C. I.
Organic		Result	Unit	LOD I	LOQ D	111	Method	Ext Date	Run Date	Analyst	Code
PVOC + Nap	hthalene										
Benzene Ethylbenzene Methyl tert-butyl Naphthalene Toluene 1,2,4-Trimethylbe 1,3,5-Trimethylbe m&p-Xylene o-Xylene	enzene	930 650 < 4.9 105 135 1140 307 1950 244	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4.6 7.3 4.9 26 3.9 6.8 8.3 14 6.6	15 23 16 83 12 22 26 44 21	10 10 10 10 10 10 10 10	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021		10/21/2016 10/21/2016 10/21/2016 10/21/2016 10/21/2016 10/21/2016 10/21/2016 10/21/2016 10/21/2016	CJR	1 1 1 1 1 1 1 1
Lab Code Sample ID Sample Matrix Sample Date	5031927D MW-4 Water 10/17/2016	5									
		Result	Unit	LOD 1	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic PVOC + Nap	hthalene										
Benzene Ethylbenzene Methyl tert-butyl Naphthalene Toluene 1,2,4-Trimethylb 1,3,5-Trimethylb m&p-Xylene o-Xylene	ether (MTBE)	0.79 "J" < 0.73 < 0.49 < 2.6 < 0.39 < 0.68 < 0.83 < 1.4 < 0.66	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.46 0.73 0.49 2.6 0.39 0.68 0.83 1.4	1.5 2.3 1.6 8.3 1.2 2.2 2.6 4.4 2.1	1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021		10/20/2016 10/20/2016 10/20/2016 10/20/2016 10/20/2016 10/20/2016 10/20/2016 10/20/2016	CJR	1 1 1 1 1 1 1 1
Lab Code	5031927E										
Sample ID Sample Matri Sample Date	MW-5 Water 10/17/2016	5									
		Result	Unit	LOD	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic PVOC + Na _I	hthalene										
Benzene Ethylbenzene Methyl tert-butyl Naphthalene Toluene 1,2,4-Trimethylb 1,3,5-Trimethylb m&p-Xylene o-Xylene	ether (MTBE)	77 58 < 0.49 < 2.6 5.3 31.2 3.5 50 2.02 "J"	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.46 0.73 0.49 2.6 0.39 0.68 0.83 1.4	1.5 2.3 1.6 8.3 1.2 2.2 2.6 4.4 2.1	1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021		10/20/2016 10/20/2016 10/20/2016 10/20/2016 10/20/2016 10/20/2016 10/20/2016 10/20/2016	CJR	

Project Name SPEAKER Invoice # E31927

Project #

Lab Code5031927FSample IDMW-6Sample MatrixWaterSample Date10/17/2016

•	Result	Unit	LOD L	oq d	il	Method	Ext Date	Run Date	Analyst	Code
Organic										
PVOC + Naphthalene										
Benzene	5.6	ug/l	0.46	1.5	1	GRO95/8021		10/20/2016	СJR	1
Ethylbenzene	< 0.73	ug/l	0.73	2.3	1	GRO95/8021		10/20/2016	CJR	1
Methyl tert-butyl ether (MTBE)	< 0.49	ug/l	0.49	1.6	1	GRO95/8021		10/20/2016	CJR	1
Naphthalene	< 2.6	ug/l	2.6	8.3	1	GRO95/8021		10/20/2016	CJR	1
Toluene	< 0.39	ug/l	0.39	1.2	1	GRO95/8021		10/20/2016	СJR	1
1,2,4-Trimethylbenzene	< 0.68	ug/l	0.68	2.2	1	GRO95/8021		10/20/2016	CJR	1
1,3,5-Trimethylbenzene	< 0.83	ug/l	0.83	2.6	1	GRO95/8021		10/20/2016	CJR	1
m&p-Xylene	< 1.4	ug/l	1.4	4.4	1	GRO95/8021		10/20/2016	CJR	1
o-Xylene	< 0.66	ug/l	0.66	2.1	1	GRO95/8021		10/20/2016	СJR	1

[&]quot;J" Flag: Analyte detected between LOD and LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

Code Comment

1 Laboratory QC within limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Michaelplul

Authorized Signature

CHAIN OF STODY RECORD

Synergy

1990 Prospect Ct. • Appleton, WI 54914 920-830-2455 • FAX 920-733-0631

Sampler: (signature)

Environmental Lab. 190.

Quote No.:

Account No. ab 1.0.#

Project #:

Chain # Nº 2786,

to Page Sample Handling Request

Rush Analysis Date Required (Rushes accepted only with prior authorization) Normal Turn Around

Other Analysis

Project (Name / Location):	cation):	O Sportor	4	1	Mount	of Idu	5			Analysis Requested	is Re	queste	P			-	Other Analysis	Analys	<u>s</u>
Reports To:	Washing and	TING	Invokee To:		1														
Company CEAPL	77	NOON	Сопрапу	, vo	0	1	(SQ					
Address 9/6 5/00/ (1/4)	27/00	Dave	Address	es.)	7	1						BN	nos					
City State Zip GA . X Q.T.	Arx WI	53901	City State Zip	ite Zip	2	5				3								-	
29/6 CM 30% anon9	5916 CH		Phone							TIAT		\$021		-	(0928	20	~~		PiD
FAX			FAX							EVAI		АчЭ	AN 4	รกร	8 49	A ME			FID
.G.1 de.1	Sample I.D.	Collection Date Time	Comp G	Erab deno	Filtered	No. of Containers	Sample Type (Matrix)*	Preservation	M) OHO	LEAD MITHAT	OIF & G	PVOC (PVOC-	JATOT	AOC (E	(HOH-8	0 (1		
5030488A	I.My	July Am			2	a	3	UCL					X			×		\exists	-
6A	T-MW				2	d							4		1	X		1	1
0	Anw - 3	* -}			2	4	4	ナ			+	1	X	1	1	×		İ	-
				1									1		1	+	‡	1	1
				1						-	-				1	-		1	-
			-	-	1						+			1			+	t	-
										-	-								-
			1	-						-	-								
											-								
SAMPLE STATES OF SAMPLES	The second second second			- 1	1	0.00	1 1 2 2	On D. C. Hearte	P A 1. P A 1	3	- Parket	, c45							
Comments/Spec	Comments/Special Instructions ("Specify groundwater "GW", Drinking Water "DW", Waste Water "WW", Soil "S", Air "A", Oil, Sludge etc.)	Specify ground:	water "G∖	M°, Drir	iking Wa	ater "DW", v	Vaste Water	~ww", Soil ≈	Air A	<u></u>	ludge	etc.)							
					7														
					1														

Received in Laboratory By:

C On Ice: Y

Temp. of Temp. Blank ethod of Shipment:

S

Cooler seaf intact upon receipt:

Sample Integrity - To be completed by receiving lab.

Time:

Date: 0.8 16

Date

Time

Received By: (sign.)

Date

Time

9.57 an

CHAIN OF CUSTODY RECORD

Quote No.:

Account No.: Lab LD. #

Project #:

Sampler: (synature)

Synergy

1990 Prospect Ct. • Appleton, WI 54914 920-830-2455 • FAX 920-733-0631

Chain # N 3133

₽ Page_

(Rushes accepted only with prior authorization) Rush Analysis Date Required Sample Handling Request Normal Turn Around

Project (Name / Location):	#joul:	She 11		-				A	Analysis Requested	9 Req	ueste	10				Other Analysis	lysis
riojeka (ivalile) Eur	The second	JUN 11-7	,														
Reports To:	Var.	do lake	Invoice To:		+	4											
Company CE	3		Сотралу		1								SOI				
Address Cil	7 17	بر	Address					-				:NE					-,
City State Zip	0,7,0	10752 LW	City State Zip	둱	2				Э		()			(-		
Phone (a)	1011	MIN.	Phone								808			8560	7W 1 =		OI A
1	0	3	FAX						_		4 4∃)	AN +	-	∀d:	IM W		正
Lab LD.	Sample I.D.	Collection	Comp Grab	Filtered	No. of Containers	Sample Type (Matrix)*	Preservation	M) ORG GRO (N	DABJ FARTIN	OIL & G	bace bace	SOUR ARJUS	JATOT JOOV	AOC (E	B-RCE.		
Car lenne	AALI	Mr. Mr.		2	d	(sw)	15.7				H	X.			+		-
3	2. (was)	-						-		-		+	+	1	+		L
U	2.N.S							1	+	+	-	-	1	1	-		
2	4-MV					-						-	1	-	+		
2	S. MW					+	-	1	-	-		1		1	-		
٦	5.W.V	7		>)	>	4	1				>		1	-		
									1	-	+	+	-	F			
			(1)	1	1 "ANT" 2500	Vocto Water	"S" IJOS "WW"	Alf A	O. S.	ludge	etc.)						
Comments/Spec	Comments/Special Instructions ("Specify groundwater "GW", Drinking Water DW, Waste Mark, Wr. 1991, 201	Specify ground	water 'Gw'			Tooler Training				h	•						
				-													

Date

Time

Received By: (sign)

Date

Time

Relinduraned By: (sign)

Sample Integrity - To be completed by receiving lab.

Received in Laboratory By:

Con los

Cooler seal intact upon receipt: XYes

Temp. of Temp. Blank Method of Shipment:

State	of Wis	sconsir	ו
Departr	ment of	Natural	Resources

Route To: Solid Waste Emergency Response Wastewater	Haz. Waste Underground Tank

Soil Boring Log InformationForm 4400-122 7-91

Page 1 of 1

Engility /	Drainet Name				Tr: (B:) (Mar-	· · · · · · · · · · · · · · · · · · ·	- D	-4.01	15				
	Project Nam (er Prope				License /Permit /Moni 0610-133	itoring / GE	.C Proje	ect No.	Boring I	Numbe	r		- 1
			e and name of crew chief)		Drilling Method	Borehole	Diamet	er	1		BALA		- 1
	Isource		•		HSA/ Air Rotary		12"				MW	<i>I</i> -4	
			-			<u> </u>							
	lling Started		Date Drilling Ended	Bor	ing Location State Pla	ne N,	E	Ĭ4	42.972	0040		DNR	County Code
(6/30/2016		6/30/2016	NE	- NW, Sect. 29,T0	6N,R03W	I	Lat Long	-90.76				20
Local Gr	rid Location ((If applic	cable)	Cor	ınty				wn / City		je		
Feet S		Feet	W	Gra	ant			Town o	f Mt. Ida				
Dept	th Below		VISUAL SOIL CI	LAS	SIFICATION	Sample	T	Graphic	Well	Blow	N	PID	
Surfac	e/Elev. (ft)		Ground Surface Elev	ation:	:	No.	uscs	Log	Diagram	Count	Value		Remarks
-			without sampling to 22.0 f			on							12
2-	-2.0	Bearo	ck. Air Rotary Drilled to 4	o.o re	et.				Ш				7
4-	4.0								Ш	li .			-
6—	-6,0 —								Ш				-
8—	-8.0								Ш				
10—	-10.0	1					1	1	Ш				
12_	-12.0								Ш				2
1 -1	-	1						1	Ш				1
14	-14.0 	1							Ш		1		
16—	-16.0 —												
18—	-18,0 —	ł											
20 —	-20.0	1											-
22-	-22.0	ł											1 4
24 —	-24.0	1]
26	-26.0 —	1											<u> </u>
28 —	-28.0 —	1											
1 4	7. 	-							F	7			1
30	-30.0	1					1		ΙĦ	1			
32—	-32,0	1							ΙĦ			1	1
34—	-34.0 —	1							IН				_
36—	-36.0	<u>f</u>							lΗ		1		i -
38 —	-38.0	-				1			ΙR				
40-	-40.0	1						1	ΙĦ				4
42	-42.0 	1						l	l 🖽]
44_	-44.0 	1						1	IB				
46	-46.0 					+	┿	↓	<u> </u>		+	₩	-
-		-	END OF BOR	≀ING	@ 45.5'								-
48—	-48.0	-										1	7
50 —	-50.0	1						1					-
52	-52.0 —	1				- 1							
54 —	-54.0-	1				1							
56 —	-56.0	7				1							
I hereby	certify that th	ne infor	mation on this form is true	and c	correct to the best of my	knowledge							
Signatu	re F	?	Clausenith	,	Brian Youngwirt	th Firm			Engine				
	U	ruin	r Goungwirth						er Lake D Portage V			10	

MONITORING WELL DEVELOPMENT State of Wisconsin Rev. 4-90 Form 4400-113B Department of Natural Resources Route To: Wastewater Haz. Waste Solid Waste Env. Response & Repair Underground Tanks Other Well Name Facility / Project Name County Name **MW-4** Grant Speaker Property **DNR Well Number** Facility License/ Permit No./GEC Project No. Wis. Unique Well Number **County Code** 0610-133 n/a 20 n/a ΠNο Before Development After Development Yes 1. Can this well be purged dry? 17.72 2. Well development method 11. Depth to water ft. surge with bailer and balled From top of well casing surged with bailer and pumped ☐ 61 42 Date 10/17/16 b. surged with block and bailed ☐ 62 ☐ 70 surged with block and pumped ☐ p.m. 11:00 10:00 p.m surge with block, bailed and pumped Time | χ | a.m. compressed air **X** 10 bailed only 12. Sediment in well 51 pumped only inches inches bottom **50** pumped slowly Other 13.Water clarity 3. Time spent developing well 60 min. X 10 10 Clear Clear 15 X 15 Turbid 4. Depth of Well (from top of casing) 45.3 ft. Turbid (Describe) (Describe) 2.00 in. Cloudy 5. Inside diameter of well 6. Volume of water in filter pack and well casing 26 gal. Fill in if fluids were used and wells is at solid waste facility: 7. Volume of water removed from well 30 gal. 14. Total suspended 8. Volume of water added (if any) 0 gal. solids N/A N/A mg/l 9. Source of water added None 15. COD N/A N/A mg/l Yes No 10. Analysis performed on water added? (If yes, attach results) 16. Additional comments on development

Well developed by: Person's Name and Firm

I hereby certify that the above information is true and correct to the best of my knowledge.

Signature:

Print Initials:

Firm General Engineering Company

Firm: General Engineering Company

State of Wisconsin MONITORING WELL DEVELOPMENT Department of Natural Resources Form 4400-113B Rev. 4-90 Route To: Haz. Waste Solid Waste Wastewater Env. Response & Repair Underground Tanks Other Facility / Project Name County Name Well Name Speaker Property **MW-5** Grant Facility License/ Permit No./GEC Project No. **County Code** Wis. Unique Well Number **DNR Well Number** 0610-133 20 n/a n/a Пио Before Development 1. Can this well be purged dry? | Yes After Development 2. Well development method 11. Depth to water 16.75 **41** surge with bailer and bailed From top of well casing surged with bailer and pumped surged with block and bailed Date 10/17/16 b. b. 62 70 20 surged with block and pumped surge with block, bailed and pumped Time 11:00 p.m c. 11:45 □ p,m. compressed air χ a.m. X 10 bailed only 51 12. Sediment in well pumped only pumped slowly **50** bottom inches inches Other 13.Water clarity 3. Time spent developing well 45 min. Clear 10 Clear 4. Depth of Well (from top of casing) 28.8 ft. Turbid X 15 Turbid (Describe) (Describe) 5. Inside diameter of well 2,00 in. Cloudy 6. Volume of water in filter pack and well casing 11.5 gal. Fill in if fluids were used and wells is at solid waste facility: 7. Volume of water removed from well 15 gal. 14. Total suspended 8. Volume of water added (if any) 0 gal. solids N/A mg/l N/A ma/l 9. Source of water added None 15. COD N/A N/A mg/l Yes No 10. Analysis performed on water added? (If yes, attach results) 16. Additional comments on development

Well developed by: Person's Name and Firm

I hereby certify that the above information is true and correct to the best of my knowledge.

Signature:

Print Initials:

Firm General Engineering Company

Firm: General Engineering Company

State of Wisconsin

MONITORING WELL DEVELOPMENT

Department of Natural Resources				Form 4	4400-113B		Re	v. 4-90
	Route To	_	_					
Env. Response & Repair		Solid Waste L Underground Tar		Waste W	Vastewater	· ·		
F-W- / P-1 - AA						line II ha		
Facility / Project Name		County Name				Well Na		
Speaker Property			Gı	rant		MW-	6	
Facility License/ Permit No./GEC Project	t No.	County	Code	Wis. Unique V	Vell Numbe	er	DNR Well Number	
0610-133			20		n/a		n/a	
			Ť				100	
1. Can this well be purged dry?	Yes	☐ No		Before Deve	elopmen	t	After Developme	ent
2. Well development method			11. Dept	th to water	12.51	ft.	a ft.	
surge with bailer and bailed	41		Fror	n top of well casing				
surged with bailer and pumped surged with block and bailed	☐ 61 ☐ 42		Date	10/17/16	b.		b.	
surged with block and pumped	☐ 62		Date	10,17,10	~.		J	
surge with block, bailed and pumped	70		Time	11:45	C.	p.m.	c. 12:15 X	p.m.
compressed air	20					X a.m		a.m.
bailed only			12 Sad	iment in well				
pumped only pumped slowly	☐ 50		-	ottom		inches	inc	hes
Other			l					3 ■ .3
			13.Wate	er clarity				
3. Time spent developing well		30 min.		Class		140	Class	X 10
4. Depth of Well (from top of casing)		25.9 ft.	1	Clear Turbid	X] 10] 15	Clear Turbid	15
,				(Describe)	7		(Describe)	
5. Inside diameter of well		2.00 in.			Cloudy		_	
6.Volume of water in filter pack and well casi	na	12.6 gal.					Į.	1
or ordine of water in lines pack and well easi	''9	12.0 gai.	Fill in it	f fluids were use	d and wells	is at soli	d waste facility:	
7. Volume of water removed from well		15 gal.	1					
O Maluras of water added (if any)		01	14 Total	al suspended				
8. Volume of water added (if any)		0 gal.		olids	N/A	mg/l	N/A mg	ı/i
9. Source of water added None			1					
			l	_				
1			15. CO	D	N/A	mg/l	N/A mg	√l .
10. Analysis performed on water added?		Yes 🔲 No						
(If yes, attach results)								
16. Additional comments on development								
Well developed by: Person's Name and Firm			I hereb	y certify that the ab	ove informat	ion is true	and correct to the best of my knowl	edge.
9.								
5: 1/			Signat	ture:				
Name: Brian Youngwirth				(A 				
			Print II	nitials:				
				-		-		
Firm General Engineering Com	pany	_						
			Firm:	-	General I	Engineeri	ng Company	
			Ī					

	Wisconsil nt of Natural	-	rces Soli	ite To: d Waste ergency Res stewater	sponse 🔲 (Haz. Waste Underground Water Resou					l Borir 1 4400-1			ormation 7-91 Page 1 of 1
Facility /	Project Nam	e			License /Per	rmit /Monito	ring / GE0	Proje	ct No.	Boring	Number	V		
	er Prope				0610-13									
			e and name of crew vices, Inc.	/ chief)	Drilling Meth HSA/ Air		Borehole I	Diamet 12"	er			ΜV	/- 5	
Date Dril	ling Started		Date Drilling End	ed Bo	ring Location	State Plane	N,	E	v.				DNR (County Code
	0/11/2016		10/11/201	6 NE	- NW, Sec	t. 29,T061	N,R03W		Lat Long	42.972 -90.76	0444			20
Local Gr Feet S	d Location (lf appli Feet			unty ant				Civil To	wn / City f Mt. Ida	/ Villag	е		
	h Below e/Elev. (ft)		VISUAL SC			N	Sample	unan	Graphic	Well Diagram	Blow	Odor	PID	Remarks
- Carrier		Black.	Ground Surfact Sandy SILT, moist		:		No.	USCS	Log		Count		-	
1-	-1.0 — -2.0 —	-,,	January 0.12.1, 1110101	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			SS-1	OL	1333			No	0	_
3_	-3.0	Reddis	sh brown,Clayey SII	LT with cobb	oles, moist		SS-2					No	0	-
4-	-4.0						SS-3	ML		Ш	1	No	0	-
5		Brown	, Sandy SILT , mois	t					HUHUH	1 H				1 7
6-	-6.0-							SM		. II				-
7-	-7.0-								HIHHH	111				-
8-	-8.0	Weath	ered Rock						XXX	111				-
9—	-9.0	Auger	Refusal at 9.0 feet,	BEDROCK	(, Air Rotary Dr	rilled to 29.0	-		X X X					1
10-	-10.0 —		Well was set at 29.0						X X X		1			_
11-	-11.0								XXX					_
12	-12.0						1		$\times \times \times$	-	4			
13-	-13.0-								X X X X X X		4	1		
14-	-14.0—						1		xxx			l		1 2
15	-15.0 -	l					1	Ιğ	xxx	l beard		i		
16—	-16.0	}					1	BEDROCK				ı		
,		}					1	🖀	XXX					ļ
17-	-17.0 —	1						l	X X X				1	
18—	-18.0-	1					1	l	X X X	ΙĦ			1	-
19 —	-19.0 —	1						1	XXX					-
20 -	-20.0	1							XXX					-
21	-21.0	1							XXX	H			1	-
22-	-22.0	1							XXX					
23—	-23.0	1						1		H	1			-
24	-24.0	}							XXX	H				-
25	-25.0 -	1						1	XXX			1	1	
26—	-26.0	1						1	X X X	48				

Signature

Brian Youngwirth
Firm

General Engineering Company
916 Silver Lake Dr., P.O. BOX 340
Portage WI 53901

END OF BORING: 29.0'

27

-27.0

State of Wisconsin
Department of Natural Resources

Route To:	
Solid Waste	Haz. Waste
Emergency Response	Underground Tanks
Wastewater	■ Water Resources
	Othor

Soil	Boring	Log	Inform	ation

Form 4400-122

7-91

Page 1 of 1

					Пошег								age 1 of 1
	roject Name				License /Permit /Mon	itoring / GE0	Proje	ct No.	Boring N	lumber	•		
	r Proper				0610-133				1				ŀ
Boring Drilled By (Firm name and name of crew chief) Soils & Engineering Services, Inc.				Borehole I	Borehole Diameter			MW-6					
Solls & E	ngineerin	g Ser	vices, Inc.		HAS		12"						
Date Drillin	ng Started		Date Drilling Ended	Borir	ng Location State Pi	ane N,	E					DNR C	ounty Code
10/	/11/2016		10/11/2016	NE -	- NW, Sect. 29,T0	6N,R03W		Lat	42.972 -90.760				20
	Location (I	f applic	able)	Cour			-	Long Civil To	wn / City		e		
Feet S		Feet		Gra	nt			1	f Mt. Ida				
D - 45	D. (T	_	VISUAL SOIL CL			Sample	II.	Graphic	_	Blow			
Depth I Surface/i			Ground Surface Eleva		MICATION	No.	uscs	Log	Diagram	Count	Odor	PID	Remarks
		Black	Sandy SILT, moist (Topso					TEXT	-			H	
1—	-1.0			360		SS-1		(22)	M	1	No	0	-
2_	-2.0						OL	1533	111				
3_	-3.0					SS-2		1333			No	۱ ، ا	
F	-	Reddis	h brown,Clayey SILT, moi	st		002	ML		111				
	4.0					SS-3	""-				No		1=
5		Brown,	, Sandy SILT , moist			33-3		KIUKI	11 1		NO	ľ	7
6	-6.0						1						1
6	-7.0					SS-4			U 11		No	0	
8—	-8.0	Brown	Sandy SILT with gravel, r	noist			i		A 11				
9—	-9.0					SS-5		MINIK	1111		No	0	=
10 —	-10.0						1		+++	1	_	\vdash	-
11—	-11.0					SS-6	l		HH	-	No	0	-
12-	-12.0	Brown	, Sandy SIL T with gravel, v	wet			-		k H		-	-	
13-	-13.0	DIOWII	, Carry Sier Willi graver,	wet		SS-7		MAN	H		No	0	
14-	-14.0 —						-						
15	-15.0					SS-8					No	0	
16	-16.0 						SM		H				
17	-17.0 					SS-9	1		ŭ Ħ	1	No	0	
18—	-18.0—						1		MH				
19—	-19.0 					SS-10		MINH	H H		No		
20	-20.0								∥ H	1			
20]	-20.0	}				SS-11			N H		No	0	-
-		1				33-11					L		_
22	-22.0-	1				20.40			-		N.	0	-
23	-23.0	1				SS-12			Ш		No	"	1
24	-24.0 —	1					1		11	1		Ι.	
25	-25.0 -	1				SS-13			M	1	No	0	
26—	-26.0 —		END OF BO	RING	G: 26.0'		\top	1	-	1		1	8
27 —	-27.0 —	}	LIND OF BO					-					-
28	-28.0	-											-
		e infor	mation on this form is true	and c	orrect to the best of m	y knowledge							
Signature	1	<i>,</i> 。	in afrague		Brian Youngw	rirth Firm	G		Engine ver Lake D	_	-		
	10	n	on andream						Portage \				

State of Wisconsin	MONITOR	RING WELL CONSTRUCTION
Department of Natural Resources	Form 4400-113	
Route To: Env. Respon		ewater
Facility / Project Name	Local Grid Location of Well	Well Name
Speaker Property	Feet S Feet W	MW-5
License /Permit /GEC Project No.	Grid Origin Location	Wis. Unique No. N/A
0610-133		
Type Of Well Water Table Observation X 11	Section Location of Waste / Source	Date Well Installed
Piezometer 12	NW - NW, SECT. 29, T06N, R03W	10/11/2016
Distance Well is From Waste/Source Boundary	Location to Well Relative to Waste/Source	Well Installed By: (Persons Name & Firm)
Is Well a Point of Enforcement Std. Application	u Dpgradient s Sidegradient	Soils & Engineering Services,
Yes No	d downgradient n Not Shown	Inc.
A. Protective pipe, top elevation	1. Cap and Lock? 2. Protective cover	· ·
B. Well casing, top elevation	a, Inside diame b. Length: C. Material	eter: 9 in 1 ft Steel⊠ 4
C. Land surface elevation	ft. MSL d. Additional p	Other
D. Surface seal, bottom ft, MSL	_ft. If yes, describe	
12. USCS Classification of soil near screen:	3. Surface seal:	Bentonite X 30 Concrete 1
GP GM GW SW	SP N N N	Concrete Other
SM SC ML CL Bedrock X	CH 4. Material betwee	n well casing and protective pipe: Bentonite 30
13.Sieve analysis attached? Yes X	No	Annular space sea Other
14. Drilling method used: Rota Hollow stem aug		
Oth		gal mud weightBentonite-sand slurry 35 al mud weightBentonite slurry 31
15. Drilling fluid used: Water 02		intoniteBentonite-cement grout 50
Drilling Mud 03 Not	ne 41 e Ft3 v. f. How installed	olume added for any of the above
16. Drilling additives used? Yes X	_	Tremie pumped 2 Gravity X 8
17. Source of water (attach analysis)	6. Bentonite seal:	
		(3/8 in, 1/2 in Bentonite pellets X 32 Other
E. Bentonite seal, topft. MSL or	0.5 ft. 7. Fine sand ma	aterial: Manufacture, product name and mesh size
F. Fine sand, topft. MSL or	12.0 ft. v. Volume adde	
G. Filter pack, topft, MSL or	13.0 ft. 8. Filter pack m a. #55 Red Fli	
H. Screen joint, top ft. MSL or	14.0 ft. v. Volume add	
I. Well bottom ft. MSL or	29.0 ft. 9.Well casing:	Flush threaded PVC schedule 40 X 23 Flush threaded PVC schedule 80 24
J. Filter pack , bottomft. MSL or	29.0 ft.	Other
K. Borehole, bottom ft. MSL or	29.0 ft. 10. screen Mat a: Screen typ	V
L. Borehole, diameter 12 in		Other
M. O.D. Well casing 2.375 in	b: Manufactu c: Slot size:	in.
N. I.D. Well casing 2.067 in	d. Slotted lei	ngth: 15 tt.

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature

| Firm | General Engineering Company 916 Silver Lake Dr., P>O> Box 340 Portage, WI 53901

11.Backfill Material:

None X Other

State of Wisconsin								L CONSTRUC	
Department of Natural Resou	ırces Route To:	Solid Waste	7	Haz. Wa	asto	Form 4400-113/	a ewater 🔲	Re	v. 4-90
	Env. Respons	_	_	Undergr			Other 🔲		
Facility / Project Name	·	Local Grid L	ocation o	of Well			Well Name		
Speaker Property		Feet S	Feet V	٧			MW-6		
License /Permit /GEC Proje	ct No.	Grid Origin L	ocation				Wis. Uniqu	e No.	
0610-133							N/A		
Type Of Well Water Table Observation	X 11	Section Loca					Date Well i		
Piezometer	12	NW - NW,	SECT.	29, T	06N,	R03W		10/11/2016	
Distance Well is From Was	te/Source Boundary			Relative	to W	aste/Source	Well Install	led By: (Persons Name	& Firm)
Is Well a Point of Enforcem	ent Std. Application	u L Upg	gradient	s	Ш	Sidegradient	Soils & E	ngineering Sen	/ices,
Yes	No	d dow	/ngradien	t n		Not Shown	Inc.		
A D						. Cap and Lock?		X Yes] No
A. Protective pipe, top elevation	9.	ft. MSL		1	// 2	2. Protective cover a. Inside diame		 9 in	
B. Well casing, top elevation		_ft, MSL	—	4/	/	b. Length:		1 <u>ft</u>	1 ,
C. Land surface elevation		ft. MSL		ľ		C. Material		Steel <u>X</u> Other] 4]
D. Surface seal, bottom	ft. MSL	ft.,	ЛП			 d. Additional pr If yes, describe 		X Yes Expandable locking] No
owned bour, bottom	R. WOL		~	[]	=		•		•
12. USCS Classification of soil	near screen:	V		VI	-	3. Surface seal:		Bentonite X Concrete] 30] 1
GP GM	GW SW	SP 🔲 🗎					Concrete	Other	i
SM X SC Bedrock	ML CL	СН			/	4. Material betweer	well casing a		_
13.Sieve analysis attached?	Yes X	No						Bentonite X Annular space seal	30
14. Drilling method used:	Rotan	y□50)		Other	1
	Hollow stem auge	==			/	5. Annular space s		a. Granular Bentonite X	4
-	Othe	' '					_	Bentonite-sand slurryBentonite slurry	35 31
15. Drilling fluid used:	Water 02 Ai	r 50 X 41						entonite-cement grout	50
Dillill	ig Mud 05 None					f. How installed:	urile added for a	any of the above] 1
16. Drilling additives used? Describe	Yes X	No						Tremie pumped Gravity X	2 8
17. Source of water (attach a	analysis)				, (6. Bentonite seal:		a. Bentonite Granules] 33
						b. 1/4 in. X	3/8 in. 1/2	in Bentonite pellets X	32
E Rontonito coal ton	4 5501	05 #			/	7 Fine sand mot	erial: Manufac	ture, product name and m	nesh size
E. Bentonite seal, top	ft. MSL or	0.5 ft.			/	a. #45-55 Red	Flint		
F. Fine sand, top	ft. MSL or	10.0 ft.	11/11/2	11111		v. Volume added		1 ft3	
G. Filter pack, top	ft. MSL or	11.0 ft.			/	 Filter pack ma a. #55 Red Flint 		cture, product name and r	
H. Screen joint, top	ft. MSL or	12.0 ft.		$\frac{1}{2}$		v. Volume added	:-	13 m	_
I. Well bottom	ft. MSL or	22.0 ft.				9.Well casing:		led PVC schedule 40 X led PVC schedule 80	23 24
J. Filter pack , bottom	ft. MSL or	26,0 ft.	N F	$ \cdot $	\	-		Other_	
K. Borehole, bottom	ft. MSL or		V_{F}		_	10. screen Mate a: Screen type		Factory Cut X	11
L. Borehole, diameter	12_in			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		2.		Continuous slot Other	1
M. O.D. Well casing	2.375 in			7	ř La	b: Manufacture c: Slot size:	e J	ohnson	n
N. I.D. Well casing	2.067 in				/	d. Slotted leng	jth:		t.
					1	11.Backfill Mate	rial:	None X Other	14