General Engineering Company P.O. Box 340 916 Silver Lake Drive Portage, WI 53901

608-742-2169 (Office) 608-742-2592 (Fax) gec@generalengineering.net www.generalengineering.net

Engineers • Consultants • Inspectors

March 17, 2020

Ms. Janet DiMaggio Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Fitchburg, WI 53711

RE:

REMEDIAL DOCUMENTATION REPORT

Speaker Property 6832 US Highway 18 Mount Ida, Wisconsin BRRTs #: 03-22-178494 PECFA # 53809-9640-32

Dear Ms. DiMaggio:

General Engineering Company has completed this Remedial Documentation Report for the excavation activities performed at the former Speaker Property (Site), located at 6832 U.S. Highway 18 in the Town of Mount Ida, Wisconsin.

Please feel free to contact General Engineering Company with any questions.

Sincerely yours,

GENERAL ENGINEERING COMPANY

Brian Youngwirth Project Manager

Beth A. Erdman Project Manager

C:

Michael R. Skaife, 6832 Highway 18, Fennimore, Wisconsin 53809

General Engineering Company P.O. Box 340 916 Silver Lake Drive Portage, WI 53901

608-742-2169 (Office) 608-742-2592 (Fax) gec@generalengineering.net www.generalengineering.net

REMEDIAL DOCUMENTATION REPORT

For

SPEAKER PROPERTY

Located at

6832 U.S. HIGHWAY 18 TOWM OF MOUNT IDA, WISCONSIN

March 17, 2020

Prepared by:

GENERAL ENGINEERING COMPANY 916 Silver Lake Drive Portage, WI 53901 No.0610-133 (608) 742-2169 Client:

Mr. Michael Skaife 6832 U.S. Highway 18 Fennimore, Wisconsin 53809 GEC **General Engineering Company**

P.O. Box 340 916 Silver Lake Drive Portage, WI 53901

608-742-2169 (Office) 608-742-2592 (Fax) gec@generalengineering.net www.generalengineering.net

Page

Engineers • Consultants • Inspectors

TABLE OF CONTENTS

	rage
INTRODUCTION	1
GeneralPurposeScopeAuthorization	
SITE FEATURES AND BACKGROUND	1-5
Site FeaturesBackground	
REMEDIAL EXCAVATION FIELD ACTIVITIES	5-6
 Remedial Excavation Field Activities Site Geology Volatile Vapor Emission Screening Soil Sample Collection Procedures 	
EVALUATION AND DISCUSSION	6-7
NR 720 Soil StandardsLaboratory Soil Results	
CONCLUSION	7
GENERAL COMMENTS	7-8

General Engineering Company

P.O. Box 340 916 Silver Lake Drive Portage, WI 53901

608-742-2169 (Office) 608-742-2592 (Fax) gec@generalengineering.net www.generalengineering.net

Engineers • Consultants • Inspectors

APPENDICES

APPENDIX A

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Soil Probe, Boring and Monitoring Well Location Map
- Figure 4 Limits of Remedial Excavation and Soil Sample Locations Map
- Figure 5 Potable Well Location Map

APPENDIX B

- Table 1 Soil Boring and Probe Analytical Results
- Table 2 Groundwater Analytical Results
- Table 3 Groundwater Elevation Results
- Table 4 Vapor Sampling Results
- Table 5 Remedial Excavation Soil Sampling Results

APPENDIX C

Remedial Excavation Soil Analytical Report & Chain of Custody

APPENDIX D

• La Crosse County Landfill Soil Disposal Documentation

APPENDIX E

Monitoring Well Abandonment Forms

INTRODUCTION

General

This report presents the findings of the remedial excavation of petroleum contaminated soils from the former Speaker Property, located at 6832 U.S. Highway 18 in the Town of Mount Ida, Grant County, Wisconsin (Site). The remedial activities and this report were prepared under the authorization of Mr. Michael Skaife, the responsible party for the release and current owner of the property.

Purpose

This remedial excavation was conducted to excavate and properly dispose of petroleum contaminated soils previously identified near the location of a former tank system known to have included two underground storage tanks (USTs) and two associated dispensers.

Scope

The scope of remedial services included; performance of the remedial excavation of up to 700 tons of petroleum contaminated soils; field and laboratory testing of selected soil samples; and an analysis of the data obtained. The remedial activities were structured specifically to address the presence of petroleum contaminated soils identified during the site investigation activities performed between 2011 and 2019, which are discussed within the background section of the report.

Authorization

This "Remedial Documentation Report" has been prepared on behalf of, and exclusively for the use of Mr. Michael Skaife. The information contained in this "Remedial Documentation Report" may not be relied upon by any other parties without the written consent of General Engineering Company (GEC).

SITE FEATURES AND BACKGROUND

Site Features

The Site is located at 6832 U.S. Highway 18 in the Town of Mount Ida, Wisconsin. More specifically, the Site is located within the Northwest ¼ of the Northwest ¼ of Section 29, Township 06 North, Range 03 West, Grant County, Wisconsin. The Site is located within a rural area surrounded by primarily residential properties and wooded land. A Site Location Map is shown in Figure 1, Appendix A.

The Site is currently occupied by a residence on the southwestern portion of the property. The northeastern portion of the house is underlain by an above ground basement/garage on three sides (north, east, and west), and is below grade along the southern wall. The basement in not inhabited and appears to be utilized primarily as a storage garage. Two 500-gallon USTs reportedly containing unleaded gasoline were formerly located approximately 6 feet northwest of the southwest corner of the existing residence. A dispenser island with two dispensers was located just west of the southwest corner of the house. A rock retaining wall was present to the north/northwest of the former tanks, which dropped in elevation to the north/northwest, approximately 2 to 7.5 feet to a driveway. The driveway extends from U.S. Highway 18 toward the northeast and then east to the northwest portion of the house and basement/garage area. The height of the retaining wall increases as the driveway extends toward the basement/garage to a maximum drop of approximately 7.5 feet at the garage door. A site plan is shown on Figure 2, Appendix A.

The surrounding properties are comprised of residential properties to the west; vacant or wooded land to the north; dense wooded land followed by a residential property to the east; and US Highway 18, followed by residential properties to the south and southwest.

The Site is serviced by a potable well located on the southeast side of the house. Five other shared potable wells have also been located within 1,200 feet of the Site. GEC is currently evaluating the presence of other potable wells within 1,200 feet of the Site.

There does not appear to be the potential for impacts to threatened or endangered species; sensitive species, habitat, or ecosystems; wetlands; outstanding or exceptional resource waters; or sites of historical or archaeological significance. No immediate or interim actions have been taken, and none appear warranted at this time.

Background

An Underground Storage Tank Removal Documentation Report was provided to GEC by the WDNR on March 21, 2019. According to report, two 500-gallon USTs containing unleaded gasoline were removed from the Site on December 9, 1997, by McCutchin Crane Service. The tanks were reportedly located approximately 6 feet west of the southwest corner of the residence. The dimensions of the excavation of the tanks was 16 feet long by 12 feet wide and extended to a depth of approximately 10 feet. The removed tanks were observed to be in poor condition and obviously contaminated soils were identified near a depth of 4 feet below ground surface (bgs) and extending to the termination depth of the excavation. On December 10, 1997, a soil sample was collected in the center of the excavation at a depth of 11 feet bgs and submitted for laboratory analysis of petroleum volatile organic compounds (PVOCs) and gasoline range organics (GRO). The soil sample reported high concentrations of benzene (28,000 micrograms per kilograms (μg/kg), ethylbenzene (300,000 μg/kg), toluene (450,000 μg/kg), 1,2.4 trimethylbenzene (880,000 µg/kg), 1,3,5 trimethylbenzene (270,000 µg/kg), xylenes (1,780,000 µg/kg) and GRO (13,000 mg/kg), which exceed each compounds respective Wisconsin Administrative Code (WAC) NR 720 soil to groundwater residual contaminant level (RCL) and cancer (C) RCL, where established. The WDNR was reportedly notified of a release on December 12, 1997 and a responsible party (RP) letter was sent on December 23, 1997. The case remained idle for several years and a push action was taken by the WDNR on December 27, 2004 followed by a deed affidavit for enforcement on March 28, 2005, and an additional push action on October 9, 2009.

GEC was retained in May of 2010 to perform a soil and groundwater investigation at the site. It should be noted that GEC was not aware of the exact location of the source area of the contamination during the majority of the site investigation work performed for this case, until the tank removal information was located by the WDNR in 2019.

The site investigation activities performed to date include the advancement of 21 soil probes (GP-1 to GP-21), the installation of temporary well (TW-1), and the advancement of 11 soil borings (MW-1S to MW-11S), eleven of which were converted to monitoring wells MW-1S to MW-11S. Soil samples were submitted for laboratory analysis for the presence of PVOCs, naphthalene, and/or 1,2 dichloroethane (1,2 DCA). To date, one to fourteen rounds of groundwater samples were collected from the site monitoring wells (MW-1S to MW-11 S and TW-1) and available potable wells (Speaker PW, PW-1,Klar PW, Freymiller PW, and Jeidy PW) and submitted for laboratory analysis for the presence of volatile organic compounds (VOCs)/PVOCs, naphthalene, and/or 1,2 DCA and lead. An ambient air sample (VP-1) was collected from the basement/garage along the wall on the northwestern portion of the home, nearest the former tank locations. The sample was submitted for laboratory analysis of VOCs.

The soil probes were advanced by Kitson Environmental of Hellenville, Wisconsin and On-Site Environmental of Sun Prairie, Wisconsin under the direction of GEC. Soil samples were collected continuously with a truck-mounted or all-terrain geoprobe units by driving a 5-foot plastic sleeve within a metal sampler into undisturbed soils. The soil borings and monitoring wells were advanced by Ground Source of Green Bay, Wisconsin and Soils & Engineering Services, Inc. of Madison, Wisconsin under the direction of GEC. The borings were advance utilizing truck-mounted or all-terrain drilling rigs and soil samples were collected at selected intervals and locations utilizing a steel split spoon sampler, which was advanced ahead of the augers into undisturbed soils. Air rotary drilling techniques were utilized to advance the borings beyond the refusal depths.

Soil probes GP-1 to GP-6 were advanced on September 23, 2010, northeast of the drive (GP-1 and GP-2), southwest of the residence (GP-3 and GP-4), and southwest of the former dispensers (GP-5 and GP-6). Soil probes GP-7 to GP-13 were advanced on October 14, 2010, north of the retaining wall. Soil probes GP-14 to GP-21 were advanced on April 29, 2019, in the area of the former tanks dispensers and beyond the retaining wall to the northwest. Soil probe GP-14 was converted to temporary monitoring well TW-1. The probes were utilized to define the extent of soil contamination. The locations of the soil probes and temporary monitoring well are shown on Figure 3, Appendix A.

Soil boring MW-1S was advanced on June 3, 2011, on adjoining property to the northwest of the Site (6846 U.S. Highway 18) and converted to monitoring well MW-1S. Two additional soil monitoring wells were installed on September 2, 2011, one on-site, southwest of the residence (MW-2S) and one on the northwestern adjoining property, located at 6846 U.S. Highway 18 (MW-3). Three additional monitoring wells were installed at 6846 U.S. Highway 18 on June 30, 2016 (MW-4S), and October 11, 2016 (MW-5S and MW-6S). Two additional monitoring wells were installed near the southwest corner of the site (MW-7S) and on the southwestern portion of the property at 6846 U.S. Highway 18 (MW-8S) on June 7, 2018. On January 14 to 21 2020, subsequent to the performance of the remedial activities, monitoring wells MW-9S, MW-10S, and MW-11S were installed on the Site within the former tank area, on the southwestern adjoining property, across U.S. Highway 18 (6827 U.S. Highway 18), and on the property two properties northwest of the Site (6858 U.S. Highway 18), respectively. Refusal was encountered at the borings at depths ranging from 8 feet bgs (MW-1S and MW-3S) to 22 feet bgs at MW-4S. Refusal was not encountered to the termination depth of MW-6 at a depth of 26 feet bgs. Auger refusal was encountered on sandstone and limestone/dolomite bedrock. The borings were advanced into bedrock utilizing air rotary drilling techniques (with the exception of MW-6S) to depths ranging from 28.5 feet bgs (MW-8S) to 59 feet (MW-2S). The monitoring wells were installed to depths ranging from 22 feet bgs (MW-6S) to 58 feet bgs (MW-2S). The monitoring wells were utilized to define the relative extent of the groundwater contamination. The locations of the soil borings and monitoring wells are shown on Figure 3, Appendix A.

The soil samples collected from soil probes GP-2, GP-7, GP-8, GP-10, GP-14, GP-15, GP-16, GP-17, and MW-9 reported concentrations of PVOCs and naphthalene exceeding their respective WAC NR 720 soil to groundwater or C RCL standards. The highest concentrations were reported in the soil samples collected from GP-7, GP-14, GP-15, GP-16, GP-17, and MW-9 in the immediate vicinity of the former tanks and dispensers and just beyond them to the northwest. Those soil samples reported maximum concentrations of benzene (70,000 μ g/kg), ethylbenzene (154,000 μ g/kg), naphthalene (53,000 μ g/kg), toluene (440,000 μ g/kg), 1,2,4 trimethylbenzene (800,000 μ g/kg), 1,3,5 trimethylbenzene (291,000 μ g/kg), and xylenes (1,390,000 μ g/kg) in MW-9. The samples collected at the remaining locations either did not contain petroleum compounds or did not contain them at levels exceeding their respective adjusted reporting limit or WAC NR 720 RCL standards. None of the collected samples from the direct contact zone (upper 4 feet) contained petroleum compounds at concentrations exceeding their respective standards. The results of the chemical analyses on the soil samples are summarized on Table 1, Appendix B.

One to fourteen rounds of groundwater sampling were performed at the site monitoring wells between July 5, 2011, and February 3, 2020. The groundwater samples collected from on-site monitoring wells TW-1, MW-7S and MW-9S have reported concentrations of PVOCs, naphthalene, and 1,2 DCA exceeding the NR 140 enforcement standard (ES). Groundwater samples collected from off-site monitoring wells MW-1S, MW-3S, MW-5S, MW-6S, and MW-8S have also reported concentrations of PVOCs, naphthalene, and 1,2 DCA exceeding the NR 140 ES. The groundwater samples collected from off-site monitoring well MW-10S (installed on the southwestern adjoining property, across U.S. Highway 18 at 6827 U.S. Highway 18, subsequent to the remedial excavation), has reported benzene at a concentration exceeding the NR 140 preventive action limit (PAL). The groundwater samples collected from MW-2S and MW-4S have not reported concentrations of the tested compounds exceeding the NR 140 PAL.

The groundwater samples collected from temporary well TW-1 (abandoned during remedial excavation) and bedrock monitoring well MW-9, each located near the former tank locations have reported the highest concentrations of PVOCs, naphthalene, 1,2 DCA. At TW-1, maximum concentrations of benzene (26,900)

micrograms per liter (μ g/L)), ethylbenzene (9,200 μ g/L), toluene (66,000 μ g/L), 1,2,4 trimethylbenzene (15,500 μ g/L), 1,3,5 trimethylbenzene (4,400 μ g/L), and xylenes (66,400 μ g/L) were detected. At MW-9 maximum concentrations of benzene (12,400 micrograms per liter (μ g/L)), ethylbenzene (1,270 μ g/L), toluene (15,500 μ g/L), 1,2,4 trimethylbenzene (1,150 μ g/L), 1,3,5 trimethylbenzene (292 μ g/L), and xylenes (9,480 μ g/L) were detected.

Groundwater contamination appears to extend from the area of the former tanks in the direction of groundwater flow toward the northwest and into the U.S. Highway 18 right-of-way (ROW) and onto the off-site properties located at 6827 and 6858 U.S. Highway 18. It should be noted that an additional leaking underground storage tank case (LUST) case is on-going at the Kreyer Country Store (Lutzen Property), northwest of the site, at 6858 U.S. Highway 18 and the dynamics of the groundwater plumes and whether the releases are co-mingled is still being evaluated. The results of the groundwater analyses are summarized in Table 2 in Appendix B.

With regard to the potable well sampling, the potable well located on the Site (Speaker PW) was recently redrilled because it was reportedly dry. GEC was not aware the potable well was being re-installed. The well was re-drilled in the location of the previous potable well (southeast of the residence) to a depth of 500 feet on March 11, 2019. The well is cased to a depth of 304 feet. This well will be sampled in the future. The original Speaker PW was sampled on January 14, 2010, prior to the performance of any site investigation activities. The sample did not contain detectable concentrations of PVOCs or naphthalene.

The other known potable wells within 1,200 feet of the Site are shared wells and are identified below along with what properties share the well. An evaluation of other potable wells within 1,200 feet of the site and how each of the wells are shared is on-going.

```
Well Location – 6827 U.S. Highway 18 – 200 feet south of the Site, across U.S. Highway 18 Shared – 6819 U.S. Highway 18 (Freymiller PW)
Well Location – 6846 U.S. Highway 18 – 300 feet northwest of the Site (Klar PW) Shared – 6858 U.S. Highway 18 (PW-1)
Well Location – 6875 U.S. Highway 18 – 650 feet northwest of the Site, across U.S. Highway 18 Shared – 6861 U.S. Highway 18 (Jeidy PW) Shared – 6868 U.S. Highway 18 Shared – 6880 U.S. Highway 18
Well Location – 6770 U.S. Highway 18
Well Location – 6726 U.S. Highway 18 Possibly Shared – 6804 and 6792 U.S. Highway 18, currently being evaluated
```

Well Location – 12813 County Highway K – 1,100 feet southeast of the Site, across U.S. Highway 18 Possibly Shared – 12807 and 12821 County Highway K currently being evaluated

Groundwater samples were collected from PW-1 on June 28, 2011, and June 7, 2018, Klar PW on June 7, 2018, and Freymiller PW and Jeidy PW on December 4, 2019. None of the samples reported detectable concentrations of PVOCs, naphthalene, or 1,2 DCA. A groundwater sample was also collected during March of 2020 at 6770 U.S. Highway 18. The results of the sample are not available as of the date of this report. Potable well results are summarized on Table 2, Appendix B.

An ambient vapor sample was collected from the basement/garage area near the northwest wall of the basement nearest the former tank locations on June 7, 2018. The sample reported benzene at a concentration of 1.94J micrograms per cubic meter (µg/m³), which exceeds its residential indoor vapor action level (VAL) of 0.83 µg/m³ but is below its laboratory method adjusted reporting limit indicated by the "J" flag. No other petroleum related compounds were detected above their respective standards. Petroleum products are stored in the

basement/garage area and it appears unlikely that the sample represents vapor associated with the former tanks and contaminated soils. Vapor analytical results are summarized in Table 4 in Appendix B.

As a result of the high concentrations of petroleum contaminants detected within the soil samples collected in the area of the former tanks and dispensers, the remedial activities discussed herein were subsequently performed.

REMEDIAL EXCAVATION FIELD ACTIVITIES

Remedial Excavation Field Activities

On November 18 and 19, 2019, GEC oversaw the excavation of 658.1 tons petroleum contaminated soils. Excavation activities were performed by Wiederholt Enterprises, LLC of Cuba City, Wisconsin. Contaminated soils were transported to La Crosse County Landfill in La Crosse, Wisconsin for proper disposal. Waste disposal documentation is included in Appendix D. Soil samples were periodically field screened, utilizing a pphotoionization ddetector (PID). The limits of the remedial soil excavation are shown on Figure 4, Appendix A.

The excavation activities were performed in the area of the two former 500-gallon unleaded gasoline USTs and dispensers and beyond them to the northwest. The eastern limits of the excavation were impeded by the residence on the Site. The excavator was comfortable excavating to within about 5 feet of the house where the excavation sloped away from the house to the eastern limits of the floor of the excavation. The excavation was relatively rectangular in shape and extended approximately 50 feet northeast/southwest and 35 feet northwest and southeast. Obvious contaminated soils remained at the horizontal limits of the eastern end of the excavation below depths of about 5 feet. The depth of the excavation extended to depths of approximately 11 feet to 16 feet bgs where sandstone bedrock was encountered. Monitoring well MW-2 was damaged during the excavation activities and may not be able to be sampled in the future. GEC will further evaluate the status of monitoring well MW-2 during future sampling rounds. Groundwater was not encountered during the excavation activities.

Twenty-one soil samples were collected from the sidewalls and bottom of the excavation, which were submitted for laboratory analysis for the presence of PVOCs, naphthalene, and/or lead. With regard to the soil samples submitted for laboratory analysis, nine soil samples were collected from the sidewalls of the excavation at depths of 4 feet bgs (W-1 to W-9); nine soil samples were collected from the sidewalls of the excavation at depths of 9 to 16 feet bgs (S-1 to S-9); and three soil samples were collected from the bottom of the excavation at depths of 11 to 16 feet bgs (SB-1 to SB-3).

Subsequent to the remedial excavation, Cabeno Environmental Field Services, LLC of New Lenox, Illinois, applied 30-gallons of Oil Spill Eater II diluted in 960-gallons of fresh water in the open excavation along with 2,010 pounds of calcium peroxide (slow release oxygen) and 7.5-gallons of aerobic bacteria for enhanced bioremediation. The effectiveness of the application will be further evaluated during up-coming groundwater sampling rounds.

Subsequent to the application, the excavation was backfilled with compacted granular fill and the retaining wall was rebuilt with rip-rap.

Site Geology

During the soil probing and excavation activities performed in the area of the former tanks and dispensers, the surface of the site consisted of clayey silt and or sparse sand and gravel fill. The near surface fill was generally underlain by brown clayey silt fill with varying amounts of sand and brick extending to depths of 2 feet to 9 feet bgs (area of former tanks). The fill was underlain by natural orangish brown silty clay with varying amounts of gravel extending from depths ranging from 3 feet bgs to up to 12 feet bgs. The clay was underlain by yellowish brown silty sand and traces of sandstone at the refusal depths of 9 feet to 13.5 feet bgs. During the excavation activities, a few of the locations were able to be excavated further into weathered sandstone to maximum depths of 9 feet to 16 feet bgs. Groundwater was not encountered during the excavation activities. Water level data from the on-site monitoring wells is summarized on Table 3, Appendix B.

Volatile Vapor Emission Screening

Soil samples collected from the limits of the remedial excavation were screened for volatile organic vapor emissions with a PID. The soil samples were placed in a plastic bag and permitted to equilibrate to at least 70 degrees Fahrenheit for a period of at least 15 minutes, based upon the ambient outdoor temperature. The screening was then performed by inserting the probe in the bag and measuring the headspace. The PID is an electronic instrument that measures the relative concentration of volatile organic vapor emissions in the headspace of a container. The response of the instrument is dependent upon volatility, temperature, and the ionization potential of the compounds measured. The meter serves as one tool in selecting samples for analytical testing, as it only gives a relative indication of the presence of volatile organic vapor emission but cannot quantify concentrations of individual compounds. The soil samples collected from the limits of the excavation contained PID readings ranging from 0 to 5000+ instrument units (IU) with the higher reading being observed along the eastern wall and bottom of the excavation.

Soil Sample Collection Procedures

The soil samples for chemical analyses were selected from the excavation limits based upon location, depth, geology, the depth to groundwater, the direct contact zone, and PID results. Selected samples obtained from the excavation were submitted for laboratory analysis of PVOCs, naphthalene, and/or lead.

The soil samples submitted for laboratory analysis for the presence of PVOC and naphthalene were extracted from the soils utilizing a sterile syringe and approximately 10 to 15 grams of soil were transferred into laboratory prepared jar containing approximately 10 milliliters of methanol. The samples collected for laboratory analysis of lead were placed into a laboratory prepared 4 ounce plastic cup until no headspace remained within the container. The samples were placed on ice, and chain of custody procedures were initiated. The samples were then submitted to Synergy Environmental Laboratory in Appleton, Wisconsin, for laboratory analysis.

EVALUATION AND DISCUSSION

NR 720 Soil Standards

Chapter 720 of the NR700 series code established RCLs for soils intended to be protective of the direct contact (upper 4 feet of soil defined by human exposure to substances in soil through inhalation of particulate matter, dermal absorption, incidental ingestion, or inhalation of vapors from the soil) and soil-to-groundwater pathways. The direct contact levels are dependent on the planned use and zoning of the affected property. Although these individual RCLs have been established for a wide range of compounds, the WDNR requires that the cumulative effects of detected compounds be evaluated through use of a WDNR interactive table where individual concentrations can be entered to evaluate whether the target cancer risk has been exceeded. The individual RCLs provided by the WDNR were developed using standard default exposure assumptions. As an alternative, site specific calculations can be performed utilizing the U.S. EPA Regional Screening Level Web Calculator.

Laboratory Soil Results

The soil samples collected from W-5, W-8, S-2, S-4, S-5, SB-1, SB-2, and SB-3 reported concentrations of PVOCs and/or naphthalene at concentrations exceeding the NR 720 soil to groundwater or C RCLs. The concentrations at W-5, W-8, and S-2 were relatively low and near the estimated extent of the limits of soil contamination. Higher concentrations were detected at S-4, S-5, and SB-1 to SB-3 where the excavation was impeded by the residence along the southeastern sidewall and by sandstone bedrock at the bottom. The highest concentrations within the sidewall samples were detected at S-5 at a depth of 16 feet (on the sidewall near the refusal depth, below the location of the former tanks). The sample contained benzene (19,200 µg/kg),

ethylbenzene (94, 000 μ g/kg), naphthalene (40,000 μ g/kg), toluene (181,000 μ g/kg), 1,2,4 trimethylbenzene (307,000 μ g/kg), 1,3,5 trimethylbenzene 100,000 μ g/kg, and xylenes (642,000 μ g/kg). The highest concentrations detected within bottom soil samples SB-1 to SB-3 were detected at SB-2 at a depth of 16 feet in the central portion of the excavation toward the west end of the former tank area. The soil sample collected at SB-2 reported concentrations of benzene (18,900 μ g/kg), ethylbenzene (127,000 μ g/kg, naphthalene (32,000 μ g/kg), toluene (240,000 μ g/kg), 1,2,4 trimethylbenzene (311,000 μ g/kg), 1,3,5 trimethylbenzene (99,000 μ g/kg), and xylenes (704,000 μ g/kg), which exceed their respective WAC NR 720 soil to groundwater and/or C RCLs. The samples collected at the remaining locations either did not contain detectable concentrations of PVOCs or naphthalene or did not report them at concentrations exceeding their respective standards. None of the soil samples collected from the upper four feet of soil contained PVOCs or naphthalene exceeding their respective WAC NR 720 direct contact standards.

With regard to the lead testing within soil, lead was detected at variable concentrations ranging from 14.7 milligrams per kilogram (mg/kg) to 178 mg/kg within the remedial excavation confirmation samples. The highest concentrations were detected at W-1, W-2, W-3, W-5, S-4, S-7, and SB-1, which reported lead concentrations of 53 mg/kg, 106 mg/kg, 178 mg/kg, 151 mg/kg, 64.1 mg/kg, 84.2 mg/kg, and 52 mg/kg, respectively exceeding its NR 720 soil to groundwater RCL of 27 mg/kg or background threshold level of 52 mg/kg. However, the highest concentrations of lead were generally detected within the soil samples that reported relatively low or non-detectable concentrations of PVOCs and naphthalene. It appears unlikely that the lead concentrations are attributable to the release are indicative of locally high background concentrations.

Soil analytical results for samples collected during the remedial excavation are included in Table 5 in Appendix B and a copy of the analytical results and chain of custody are included in Appendix C. The locations of the remedial excavation soil samples are shown on Figure 4, Appendix A.

CONCLUSIONS

During the remedial excavation, 658.1 tons of highly petroleum contaminated soils were removed from the site and properly disposed. Relatively high concentrations of petroleum contamination remained along the southeastern sidewall of the excavation (S-4 and S-5) where contaminated soils could not be safely removed extending from about 5 feet from the residence and tapering wider downward to the bottom of the excavation. Highly contaminated soils also remained at the bottom of the excavation where sandstone bedrock was encountered at depths of 11 feet to 16 feet bgs (SB-1 to SB-3). Due to the known high concentrations of petroleum contamination near bedrock, a mixture of 30-gallons of Oil Spill Eater II diluted in 960-gallons of fresh water was applied in the open excavation along with 2,010 pounds of calcium peroxide (slow release oxygen) and 7.5-gallons of aerobic bacteria in an attempt to enhance bioremediation.

The vast majority of the contaminated unconsolidated soils extending to the bedrock depth have been removed and transported to a landfill for proper disposal with the exception of those that could not be removed safely along the residence. No additional excavation or other remediation is recommended at the present time. Based on the prior site investigation activities, it appears that the extent of soil and groundwater contamination has been adequately defined and that contaminant concentrations are relatively stable. In addition, none of the sampled potable wells appears to have been impacted by the release. It is recommended that the remaining potable wells within 1,200 feet of the site be sampled and that a site investigation report be submitted. It is recommended that quarterly (or an accelerated sampling schedule due to the PECFA sunset date, if approved by the WDNR) be performed to evaluate the effectiveness of the remedial excavation and enhanced bioremediation application, and further evaluate the contaminant concentrations, plume stability, and whether this release is co-mingled with the Kreyer Store case. If the contaminant concentrations remain stable and/or decreasing within the source area monitoring well (MW-9) and other impacted down-gradient monitoring wells (MW-1, MW-3, MW-5, MW-6-if located, MW-7, MW-8, MW-10, and MW-11), it is recommended that a closure request be prepared.

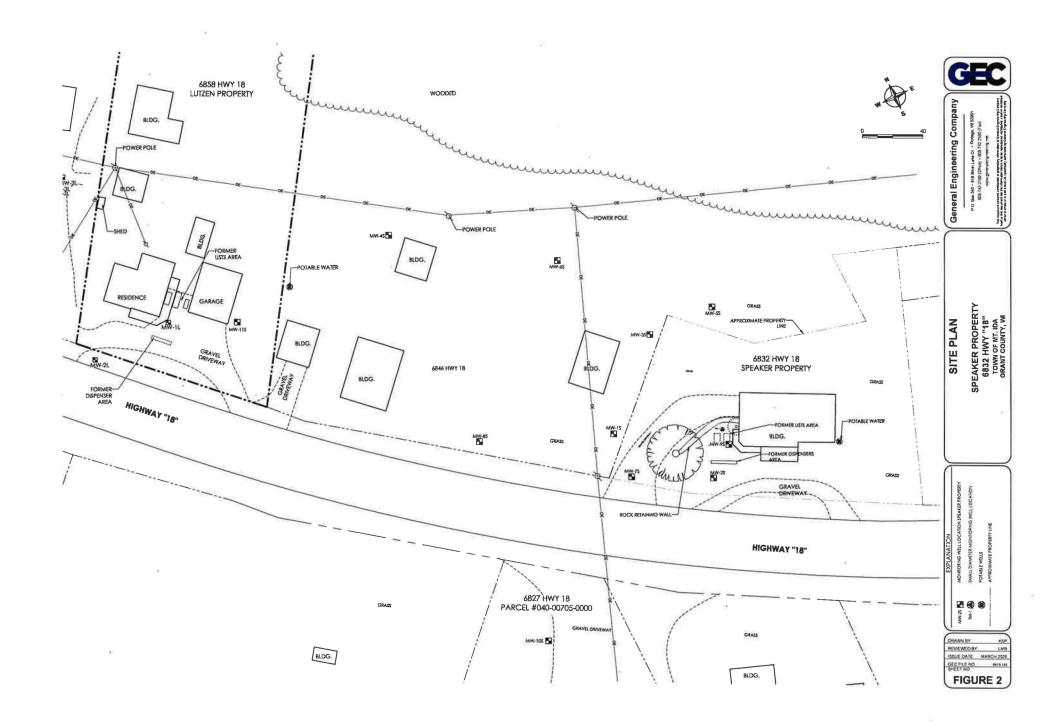
GENERAL COMMENTS

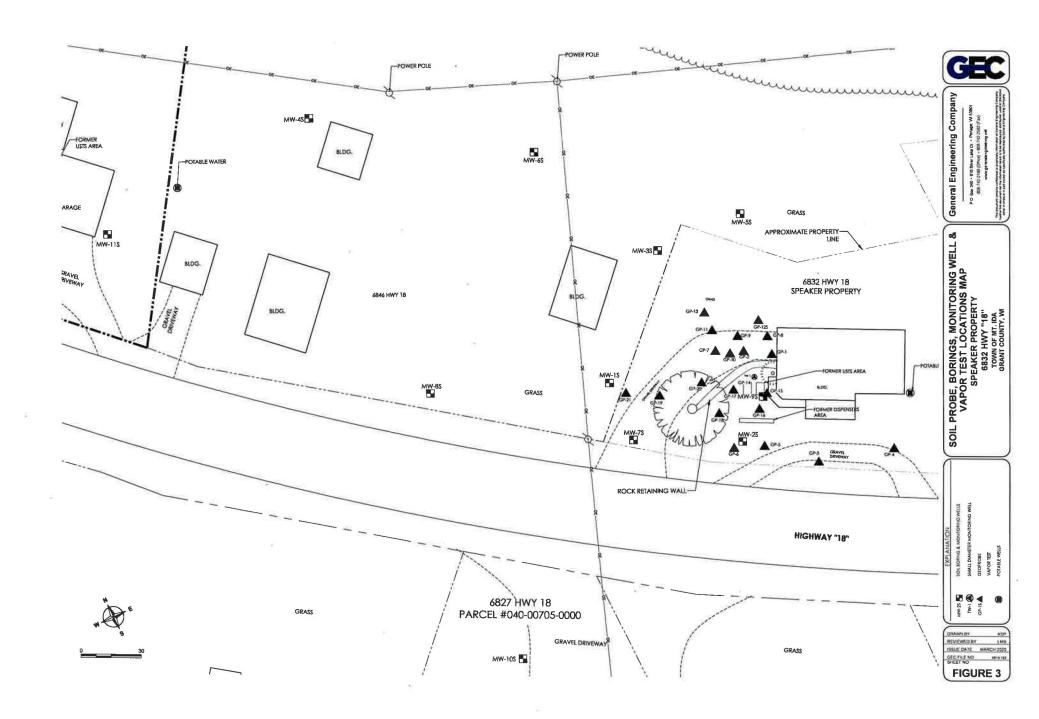
The investigative and remediation activities have been conducted in a manner consistent with that level of care ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions. The findings, recommendations and opinions contained herein have been promulgated in accordance with generally accepted practice in similar fields. No other representations expressed or implied, and no warranty or guarantee is included or intended in this report.

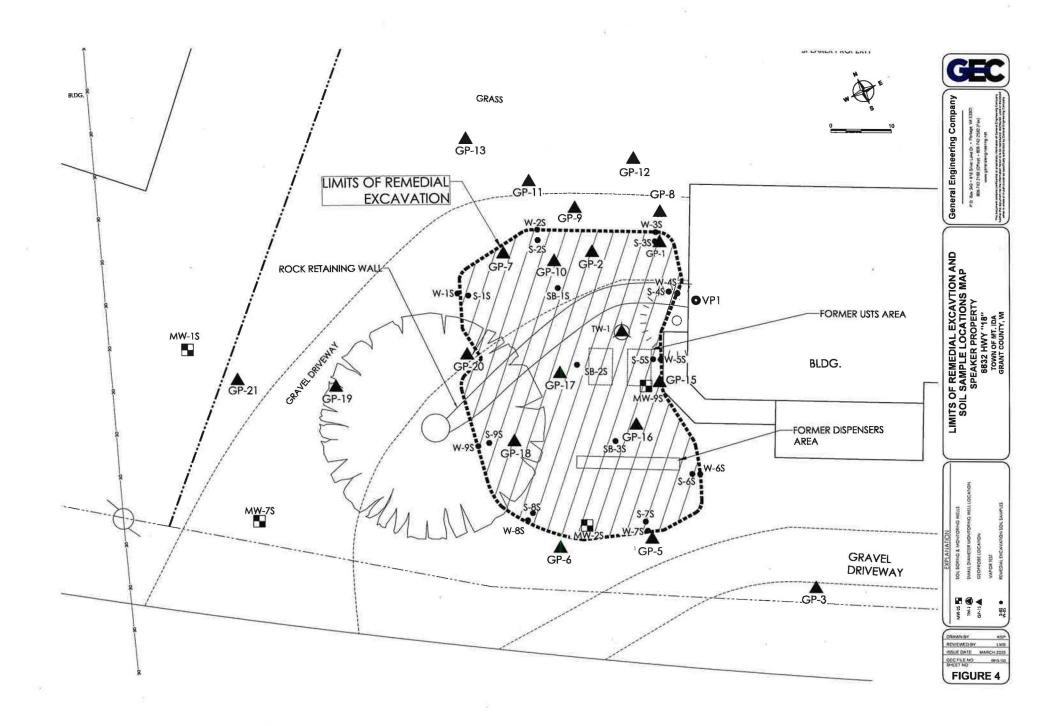
The conclusions presented in this report were formulated from the data obtained during the course of exploratory work on the site, which may result in a redirection of conclusions and interpretations where new information is obtained. The regulatory climate and interpretation may also have an effect on the outcome of the environmental investigation for this site. The information contained in this report may have an effect on the value of the property and is considered confidential. Copies of this report will be submitted to others only with authorization from the client.

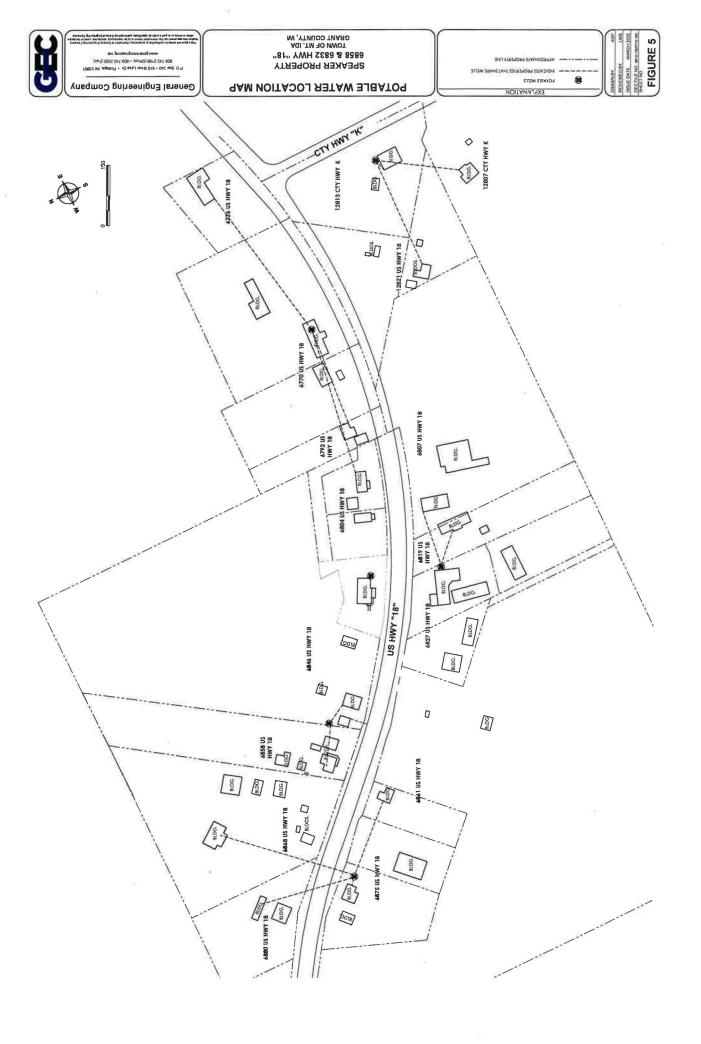
APPENDIX A FIGURES

General Engineering Company


P.O. Box 340 • 916 Silver Lake Dr. • Portage, WI 53901 608-742-2169 (Office) • 608-742-2592 (Fax) www.generalengineering net


SITE LOCATION MAP


SPEAKER PROPERTY 6832 HWY "18"


Town of Mount Ida Grant County, WI

APPENDIX B TABLES

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS SPEAKER PROPERTY 0610-133

Sample No.	NR 720 NON	NR 720	NR 720	NR 720 Soil	HS-1	GP-1	GP-2	GP-3	GP-4	GP-5	GP-6	GP-7	GP-8	GP-8	GP-9	GP-9	GP-10	GP-11	GP-12	GP-13	M	W-7	MW-8
Sampling Date	CANCER	CANCER	Direct Contact	to Groundwater	12/10/1997	09/23/10	09/23/10	09/23/10	09/23/10	09/23/10	09/23/10	10/14/10	10/14/10	10/14/10	10/14/10	10/14/10	10/14/10	10/14/10	10/14/10	10/14/10	05/21/18	05/21/18	06/07/18
Sample Depth (feet)	RCL (ug/kg)	0.1V arms, 1750.1	A SHEET STATE OF THE PARTY OF T	RCL (ug/kg)	11 (U)	6-7 (U)	9-10 (U)	3-4 (U)	13-14 (U)	11-12 (U)	11-12 (U)	13-14' (U)	3-4 (U)	8-9 (U)	3-4 (U)	8-9 (U)	9-10 (U)	9-10 (U)	9-10 (U)	9-10 (U)	7-9 (U)	11-11.5 (U)	6-8 (U)
GASOLINE RANGE ORG	ANICS (GRO)	DIESEL	RANGE OR	GANICS (DRO) (mg/kg)											71	1874						
GRO	NE	NE	NE	NE	13,000	<3.6	<3.6	<3.1	<3.5	<3.8	<3.4	1010	<3.1	<3.4	<3.0	<3.0	45.9	<3.1	<3.3	<3.6	NA	NA	NA
PETROLEUM VOLATILE	ORGANIC CO	MPOUND	S (PVOC) P	LUS NAPHTH	ALENE AN	ID 1,2 DI	CHLORO	ETHANE	(DCA) (ug/kg)													77
Benzene	106,000	1,600	1,600	5.1	28,000	<25	<25	<25	41.3J	<25	<25	1,240	<25	<25	<25	<25	<25	<25	<25	<25	<30	<30	<25
1,2 Dichloroethane	43,700	652	652	2.8	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<38	<38	<25
Ethylbenzene	4,080,000	8,020	8,020	1,570	300,000	<25	<25	<25	<25	<25	<25	27,100	<25	<25	<25	<25	1100	<25	<25	<25	<35	<35	<25
Methyl tert-butyl ether	22,100,000	63,800	63,800	27	<5,000	<25	<25	<25	<25	<25	<25	<200	<25	<25	<25	<25	<25	<25	<25	<25	<50	<50	<25
Naphthalnene	178,000	5,520	5,520	658.2	NS	<25	5,750	<25	<25	<25	<25	9,300	1,320	<25	61.7J	<25	753	<25	<25	<25	<94	<94	<25
Toluene	5,240,000	NE	818,000	1,107	450,000	<25	<25	<25	38.6J	<25	<25	8,660	<25	<25	<25	<25	<25	<25	<25	<25	<32	<32	<25
1,2,4-Trimethylbenzene	373,000	NE	219,000	1.382	880,000	<25	<25	<25	<25	<25	<25	63,300	<25	<25	<25	<25	4,600	<25	<25	<25	<25	<25	<25
1,3,5-Trimethylbenzene	339,000	NE	182,000	1,362	270,000	<25	<25	<25	<25	<25	<25	20,900	<25	<25	<25	<25	1,420	<25	<25	<25	<32	<32	<25
Xylenes, -m, -p	818,000	NE	260,000	3.960	1,780,000	<75	<75	<75	<75	<75	<75	127,800	<75	<75	<75	<75	5,154	<75	<75	<75	<116	<116	<75
Xylenes, -o	010,000	INE	200,000	3,900	1,700,000	~/5	-/5	1/3	-//5	15	~/5	127,000	-//5	-/5	~/5	-//5	3,154	-//5	-/5		1110	~110	~/5

mg/kg = milligrams per kilogram μg/kg = micrograms per kilogram RCL = Residual Contaminant Level U=Unsaturated

NS = Parameter not analyzed NE = NR 720 RCL not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation. Bold indicates analytical results exceed NR 720 RCL

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS SPEAKER PROPERTY 0610-133

Sample No.	NR 720 NON	NR 720	NR 720	NR 720 Soil	GI	2-14	G	P-15	GP	-16	GI	P-17	GI	P-18	G	P-19	GF	-20	GF	P-21
Sampling Date	CANCER	CANCER	Direct Contact	to Groundwater		29/19	04/	29/19	04/2	9/19	04/:	29/19	04/	29/19	04/	29/19	04/2	19/19	04/2	29/19
Sample Depth (feet)	RCL (ug/kg)			RCL (ug/kg)		12-13.5 (U)	2-4 (U)	12-13.5 (U)	5-7 (U)	10-12 (U)	2-4 (U)	11-13 (U)	5-7 (U)	10-12 (U)	5-7 (U)	10-11 (U)	3-5 (U)	8-9 (U)	3-5 (U)	5-7 (U)
PETROLEUM VOLATILE	ORGANIC CO	MPOUN	DS (PVOC) P	LUS NAPHTH	IALENE (μg/kg)										To the second				THE REAL PROPERTY.
Benzene	106,000	1,600	1,600	5.1	<25	63,000	90	30,400	10,500	65,000	<25	20,200	<25	<25	<25	<25	<25	<25	<25	<25
Ethylbenzene	4,080,000	8,020	8,020	1,570	<25	135,000	69	77,000	140,000	154,000	<25	101,000	<25	<25	<25	<25	<25	<25	<25	<25
Methyl tert-butyl ether	22,100,000	63,800	63,800	27	<25	<1,250	<25	<1,250	<1,250	<1,250	<25	<1,250	<25	<25	<25	<25	<25	<25	<25	<25
Naphthalnene	178,000	5,520	5,520	658.2	293	38,000	122	20,900	53,000	38,000	<25	30,900	<25	<25	<25	<25	<25	<25	<25	<25
Toluene	5,240,000	NE	818,000	1,107	34J	360,000	350	156,000	263,000	440,000	<25	67,000	<25	<25	<25	<25	<25	<25	<25	<25
1,2,4-Trimethylbenzene	373,000	NE	219,000	1,382	83	390,000	430	227,000	800,000	340,000	<25	232,000	<25	<25	<25	<25	<25	<25	<25	<25
1,3,5-Trimethylbenzene	339,000	NE	182,000	1,002	48	127,000	171	74,000	291,000	109,000	<25	80,000	<25	<25	<25	<25	<25	<25	<25	<25
Xylenes, -m, -p Xylenes, -o	818,000	NE	260,000	3,960	114	984,000	980	514,000	1,390,000	840,000	<75	499,000	<75	<75	<75	<75	<75	<75	<75	<75

mg/kg = milligrams per kilogram μg/kg = micrograms per kilogram RCL = Residual Contaminant Level U=Unsaturated

NS = Parameter not analyzed

NS = NR 720 RCL not established
J = Analyte detected above laboratory limit of detection but below limit of quantitation.
Bold indicates analytical results exceed NR 720 RCL

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS SPEAKER PROPERTY 0610-133

Sample No.	NR 720 NON	NR 720	NR 720	NR 720 Soil	MW-9	MW-10
Sampling Date	CANCER	CANCER RCL		to	01/14/20	01/14/20
Sample Depth (feet)	RCL (ug/kg)	A	Contact RCL (ug/kg)	Groundwater RCL (ug/kg)	12-13	13-14
PETROLEUM VOLATILE	ORGANIC CO	MPOUND	S (PVOC)(µ	g/kg)	w marketing	
Benzene	106,000	1,600	1,600	5.1	70,000	<30
Ethylbenzene	4,080,000	8,020	8,020	1,570	137,000	<35
Methyl tert-butyl ether	22,100,000	63,800	63,800	27	<5000	<50
Naphthalnene	178,000	5,520	5,520	658.2	NS	NS
Toluene	5,240,000	NE	818,000	1,107	420,000	<32
1,2,4-Trimethylbenzene	373,000	NE	219,000	1,382	297,000	<25
1,3,5-Trimethylbenzene	339,000	NE	182,000	1,502	89,000	<32
Xylenes, -m, -p Xylenes, -o	818,000	NE	260,000	3,960	786,000	<116

mg/kg = milligrams per kilogram

μg/kg = micrograms per kilogram

RCL = Residual Contaminant Level

U=Unsaturated

NS = Parameter not analyzed

NE = NR 720 RCL not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation.

Bold indicates analytical results exceed NR 720 RCL

Monitoring Well	NR	140							MW	-1				/-		
Sampling Date	ES	PAL	7/5/2011	11/22/2011	6/21/2012	6/4/2013	8/8/2014	2/11/2016	10/17/2016	1/18/2017	8/17/2017	1/30/2018	6/7/2018	12/5/2018	3/27/2019	12/4/2019
VOLATILE ORGANIC COM	POUNDS (VOC) (µg	/L)					3 116	MA THE		100	- 12 30	s fall sail			
Benzene	5	0.5	2540	1640	2710	1260	2490	1820	2220	1870	890	3800	2670	790	660	184
Ethylbenzene	700	140	1200	1230	454	437	1890	1370	1310	980	680	600	1660	850	690	256
Methyl tert-butyl ether	60	12	<12.2	16.1	<15.2	<7.4	<3.7	<55	<24.5	<41	<41	<14	<14	<14	<14	<14
Toluene	800	160	544	283	428	264	810	750	820	460	287	550	640	246	166	39
1,2,4 -Trimethylbenzene	480	96	973	1380	798	55.2	2870	2680	1570	1160	910	560	1500	980	750	256
1,3,5 -Trimethylbenzene	7 400	90	210	349	225	<7.1	780	700	470	291	248	143	340	197	129	42J
Xylenes, -m, -p	2000	400	4540	4189	4290	792	7720	7390	5180	4090	2740	2480	5940	3300	2219	740
Xylenes, -o	2000	400	4540	4103	4230	132	1120	7550	3100	4030	2740	2400	3340	3300	2213	740
OTHER DETECTED VOLAT	TILE ORGA	NIC CO	MPOUNDS (VOC) (µg/L)					S. F. Street					1 5 1		
Chloromethane	30	3	<4.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NE	NE	<18.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethane	5	0.5	163	NA	NA	NA	NA	<24	NA	35J	<22.5	68	42	<12.5	<12.5	<12.5
Isopropylbenzene	NE	NE	49.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA -	NA	NA	NA
Napthalene	100	10	134	207	152	17.8J	430	400	320J	150J	340J	164J	247J	370	133J	<105
n-Propylbenzene	NE	NE	171	NA	NA	NA	NA	NA ·	NA	NA	NA	NA	NA	NA	NA	NA
LEAD (μg/L)					(A) (A)						(0)10140		T.E.		THE RESERVE	
Lead	15	1.5	6.5J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

ES = Enforcement Standard

PAL = Preventive Action Limit μg/L = micrograms per liter

NA = Parameter not analyzed NE = NR 140 ES not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation. Bold indicates analytical results above NR 140 ES

Monitoring Well	NR	140							MW-2						
Sampling Date	ES	PAL	11/22/2011	6/21/2012	6/4/2013	8/8/2014	2/11/2016	10/17/2016	1/18/2017	8/17/2017	1/30/2018	6/7/2018	12/5/2018	3/27/2019	12/4/2019
VOLATILE ORGANIC COM	POUNDS (/OC) (μg	/L)								190				- WILLIAM
Benzene	5	0.5	1.3	1.7	<0.34	<0.27	<0.44	<0.46	<0.17	<0.17	<0.22	<0.22	<0.22	<0.22	Well
Ethylbenzene	700	140	<0.54	<0.41	<0.34	<0.82	<0.71	<0.73	<0.2	<0.2	<0.53	<0.53	<0.53	<0.26	Damaged
Methyl tert-butyl ether	60	12	<0.61	<0.38	<0.37	< 0.37	<1.1	<0.49	<0.82	<0.82	<0.57	<0.57	<0.57	<0.28	During
Toluene	800	160	<0.67	0.55J	<0.34	<0.8	<0.44	<0.39	<0.67	<0.67	<0.45	<0.45	<0.45	<0.19	Remedial
1,2,4 -Trimethylbenzene	480	96	<0.97	<0.43	< 0.33	<0.83	<1.6	<0.68	<1.14	<1.14	<0.73	< 0.73	<0.73	<0.8	Excavation
1,3,5 -Trimethylbenzene	400	90	<0.83	<0.40	< 0.36	<0.86	<1.5	<0.83	<0.91	<0.91	<0.75	<0.75	<0.75	< 0.63	
Xylenes, -m, -p	2000	400	<2,63	<1.25	<1.03	<2.41	<3.1	<2.06	<1.95	<1.95	<1.58	<1.58	<1.58	<0.72	
Xylenes, -o	2000	400	12,00	1,20	V1.00	12,41	\$3.1	12.00	1.55	V1.85	1,50	\1.50	V1,30	VU.72	
OTHER DETECTED VOLAT	TILE ORGA	NIC COI	MPOUNDS (V	OC) (µg/L)	-7 -011					No.					
Chloromethane	30	3	1.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
n-Butylbenzene	NE	NE	<0.93	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1,2-Dichloroethane	5	0.5	<0.36	NA	NA	NA	<0.48	NA	<0.45	NA	NA	NA	NA	NA	
Isopropylbenzene	NE	NE	<0.59	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Napthalene	100	10	<0.89	<0.40	<0.37	<1.2	<1.6	<2.6	<2.17	<2.17	NA	NA	NA	NA	
n-Propylbenzene	NE	NE	<0.81	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
LEAD (µg/L)		9			PARTY I	TO THE	SUBSTITUTE.		Charles His		lange state		10		
Lead	15	1.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

ES = Enforcement Standard

PAL = Preventive Action Limit

μg/L = micrograms per liter

NA = Parameter not analyzed

NE = NR 140 ES not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation. Bold indicates analytical results above NR 140 ES

Monitoring Well	NR	140					, -		MW-3					2	
Sampling Date	ES	PAL	########	6/21/2012	6/4/2013	8/8/2014	2/11/2016	10/17/2016	1/18/2017	8/17/2017	1/30/2018	6/7/2018	12/5/2018	3/27/2019	12/4/2019
VOLATILE ORGANIC COM	POUNDS (VOC) (µ	g/L)		- 10 m 12 m		- 46	· · · · · · · · · · · · · · · · · · ·		THE SUIT					
Benzene	5	0.5	1210	19.9	364	990	660	930	820	420	980	0.46J	297	299	360
Ethylbenzene	700	140	910	8.5	586	840	800	650	600	274	1080	<0.26	234	<2.6	297
Methyl tert-butyl ether	60	12	<15.2	1.2	7.4	<1.85	<11	<4.9	<8.2	<8.2	<2.8	<0.28	<2.8	<2.8	<2.4
Toluene	800	160	164	2.3	95.6	180	130	135	114	62	122	<0.19	39	25.7	59
1,2,4 -Trimethylbenzene	480	96	1170	31.9	1030	1550	1410	1140	1030	620	1290	<0.8	410	450	520
1,3,5 -Trimethylbenzene	400	30	241	59.3	296	440	370	307	225	150	360	< 0.63	77	115	82
Xylenes, -m, -p	2000	400	3025	114.7	2011	2815	2875	2194	1902	1203	3143	<0.72	787	953	1054
Xylenes, -o	2000	400	3023	1149	2011	2013	2073	2134	1302	1203	3143	V0.12	707	933	1034
OTHER DETECTED VOLAT	TILE ORGA	NIC CO	MPOUNDS (VOC) (µg/L)							- 100 m			India and a few	
Chloromethane	30	3	<6.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NE	NE	45.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethane	5	0.5	<9,0	NA	NA	NA	27	NA	14.3J	9.5J	11.5	1.24	6.4J	9.3	NA
Isopropylbenzene	NE	NE	63.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
Napthalene	100	10	111J	3.3	125	178	183	105	102	67J	67J	<2,1	26.2J	21.6J	62
n-Propylbenzene	NE	NE	224	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LEAD (μg/L)		LUNE N	9-24	200 No. 10	8 E - 1 L T	THE								1-1-11-11	
Lead	15	1.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

ES = Enforcement Standard

PAL = Preventive Action Limit

μg/L = micrograms per liter

NA = Parameter not analyzed

NE = NR 140 ES not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation.
Bold indicates analytical results above NR 140 ES

TABLE 2
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS
SPEAKER PROPERTY
GEC PROJECT NUMBER 0610-133

Monitoring Well	NR	140				M	W-4							MV	V-5							MW	-6		4.	
Sampling Date	ES	PAL	10/17/2016	1/18/2017	8/17/2017	1/30/2018	6/7/2018	12/5/2018	3/27/2019	12/4/2019	10/17/2016	1/18/2017	8/17/2017	1/30/2018	6/7/2018	12/5/2018	3/27/2019	12/4/2019	10/17/2016	1/18/2017	8/17/2017	1/30/2018	6/7/2018	12/5/2018	3/27/2019	12/4/201
VOLATILE ORGANIC COMI	OUNDS	voen(i)	10 -	Park Training	1. 1. 1. 1. 1.	7 18								Company Y	F-14-14-14	200 N		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F. Section	F-5148						
Benzene	5	0.5	0.79J	<0.17	<0.17	<0.22	<0.22	<0.22	<0.22	< 0.32	77	0.81	6.6	65	0.81	0.75	<0.22	< 0.32	5.6	<0.17	< 0.17	0.45J	4.2	276	135	Well
Ethylbenzene	700	140	<0.73	<0.2	<02	< 0.53	< 0.53	< 0.53	<0.26	<0.29	58	0.23J	1	72	<0.53	<0.53	<0.26	<0.29	<0.73	<02	<0.2	<0.53	< 0.53	1,02J	<0.26	Could
Methyl tert-butyl ether	60	12	<0.49	<0.82	<0.82	<0.57	<0.57	<0.57	<0.28	<0.24	<0.49	<0 B2	<0.82	< 0.57	<0.57	<0.57	<0.28	<0.24	<0.49	<0.82	<0.82	<0.57	<0.57	<0.57	<0.28	Not Be
Toluene	800	160	< 0.39	<0.67	<0.67	<0.45	<0.45	< 0.45	<0.19	<0.29	53	<0.67	<0.67	1.82	<0.45	<0.45	<0.19	<0.29	<0.39	<0.67	<0.67	<0.45	<0.45	3.5	0.37J	Located
1,2,4 -Trimethylbenzene	480	96	<0.68	<1.14	<1.14	<0.73	<0.73	< 0.73	<0.8	<0.46	31.2	<1.14	<1.14	9.1	<0.73	<0.73	<0.8	<0.46	<0.68	<1.14	<1.14	<0.73	< 0.73	2.26J	8.0>	-
1,3,5 -Trimethylbenzene	100	50	<0.83	<0.91	<0.91	<0.75	<0.75	<0.75	<0.63	<0.67	3.5	<0.91	<0.91	1 02J	<0.75	<0.75	< 0.63	<0.67	<0.83	<0.91	<0.91	<0.75	<0.75	<0.75	< 0.63	
Xylenes, -m, -p Xylenes, -o	2000	400	<2,06	<1.95	<1.95	<1.58	<1.58	<1,58	<0.72	<1.22	52 02	<1.95	<1,95	12 47	<1,58	<1.58	<0.72	<1.22	<2.06	<1,95	<1,95	<1,58	0 92J	9.1	0.41J	
OTHER DETECTED VOLAT	LEORGA	NICCO	MPOUNDS (V	OC) (Ug/L)	100	Server.			- C-1							A CONTRACT										
Chloromethane	30	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA	NA.	NA	NA.	NA	NA	NA	NA	NA.	NA.	NA	
n-Butylbenzene	NE	NE	NA	NA.	NA	NA	NA.	NA	NA.	NA.	NA	<0.45	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA.	NA	
1,2-Dichloroethane	5	0.5	NA	< 0.45	NA.	NA	NA:	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.45	NA	NA	NA.	NA	NA	
Isopropyibenzene	NE	NE	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA.	NA	
Napthalene	100	10	<26	<2 17	<2.17	NA.	NA	NA	NA.	NA.	<26	<2 17	<2 17	<2.17	NA	NA	NA	NA	<2.6	<2.17	<2.17	NA	NA	NA	NA	
n-Propylbenzene	NE	NE	NA	NA	NA	- NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
LEAD (pg/L)	3225	る時間	TANKS OF	S. O. S.	224.30	3 K.	F-37-76	200	والمطور	3. S. M. 25		F-140				PISE AS	Wester	1000	A Comment	Operation Co		in the c	N. T. C. S. A.	13. 45 p.	La Care	
Lead	15	15	NA	NA	T NA	NA	NA.	NA.	NA	NA	NA	NA	I NA	NA	NA	T NA	NA.	NA	NA	T NA	NA	NA	N/A	T NA	NA.	

ES = Enforcement Standard

PAL = Preventive Action Limit

µgL = micrograms per liter

NA = Parameter not analyzed

NE = NR 140 ES not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation,

Bold indicates analytical results above NR 140 ES

Monitoring Well	NR	140		MV	V-7			MV	V-8		TV	V-1
Sampling Date	ES	PAL	6/13/2018	12/5/2018	3/27/2019	12/4/2019	6/13/2018	12/5/2018	3/27/2019	12/4/2019	6/11/2019	11/18/2019
VOLATILE ORGANIC COMP	OUNDS (VOC) (µg	/L)				1996		Sec. Sain	2	SVENT TO THE	
Benzene	5	0.5	7.2	29.8	15.4	19.8	121	560	710	20.8	26,900	2,100
Ethylbenzene	700	140	4.2	5.7	2.73	5.5	72	710	620	4.7	9,200	1,230
Methyl tert-butyl ether	60	12	<0.28	<0.28	<0.28	<0.24	<0.28	<2.8	<2.8	<0.24	<56	<12
Toluene	800	160	0.62	0.42J	0.5J	0.76J	25.8	138	155	0.74J	66,000	7,300
1,2,4 -Trimethylbenzene	480	96	1,82J	1.26J	<0.8	1.26J	104	790	740	9.3	15,500	7,000
1,3,5 -Trimethylbenzene	400	30	1.38J	<0.63	<0.63	<0.67	25.7	77	73	< 0.67	4,400	2,380
Xylenes, -m, -p	2000	400	5.37	1.54	0.81J	<1.22	233.4	1656	1454	7.6	66,400	19,800
Xylenes, -o	2000	400	0.07	1.04	0.010	1.22	200.4	7000	7404	7.0	00,400	13,000
OTHER DETECTED VOLATION	LE ORGA	NIC COI	MPOUNDS (V	OC) (µg/L)			- 000					NO TELLINA
Chloromethane	30	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethane	5	0.5	0.9	0.52J	NA	NA	1.95	5.9J	NA	NA	610	NA
Isopropylbenzene	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Napthalene	100	10	<2.1	<2.1	NA	NA	10.6	75	NA	NA	1,970	NA
n-Propylbenzene	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LEAD (μg/L)												
Lead	15	1.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

ES = Enforcement Standard

PAL = Preventive Action Limit

μg/L = micrograms per liter

NA = Parameter not analyzed

NE = NR 140 ES not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation.

Bold indicates analytical results above NR 140 ES

Monitoring Well	NR	140	MW-9	MW	<i>I</i> -10	MW-11
Sampling Date	ES	PAL	2/3/2020	1/20/2020	2/3/2020	2/3/2020
VOLATILE ORGANIC COM	POUNDS (VOC) (µg	/L)			
Benzene	5	0.5	12,400	1.14	0.22J	54
Ethylbenzene	700	140	1,270	0.43J	<0.26	26.8
Methyl tert-butyl ether	60	12	<28	<0.28	<0.28	<0.28
Toluene	800	160	15,500	1.17	<0.19	20.8
1,2,4 -Trimethylbenzene	480	96	1,150	<0.8	<0.8	74
1,3,5 -Trimethylbenzene	460	90	292	< 0.63	<0.63	29.7
Xylenes, -m, -p	2,000	400	9,480	1.24J	-7 2	77.5
Xylenes, -o	2,000	400	9,460	1.243	<72	C.11
OTHER DETECTED VOLAT	TILE ORGA	NIC COM	MPOUNDS (/OC) (μg/L)		ASSENT
Chloromethane	30	3	NA	NA	NA	NA
n-Butylbenzene	NE	NE	NA	NA	NA	NA
1,2-Dichloroethane	5	0.5	263	NA	NA	1.18
Isopropylbenzene	NE	NE	NA	NA	NA	NA
Napthalene	100	10	213J	<2.1	<2.1	6.3J
n-Propylbenzene	NE	NE	NA	NA	NA	NA
LEAD (μg/L)						
Lead	15	1.5	. NA	NA	NA	NA

ES = Enforcement Standard

PAL = Preventive Action Limit

μg/L = micrograms per liter

NA = Parameter not analyzed

NE = NR 140 ES not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation.

Bold indicates analytical results above NR 140 ES

Monitoring Well	NR	140	SPEAKER PW	PW	<i>I</i> -1	KLAR PW	FREYMILLER PW	JEIDY PW
Sampling Date	ES	PAL	1/14/2010	6/28/2011	6/7/2018	6/7/2018	12/4/2019	12/4/2019
VOLATILE ORGANIC COMP	POUNDS (VOC) (µg	/L)			7 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Benzene	5	0.5	<0.39	<0.41	<0.22	<0.22	<0.22	<0.22
Ethylbenzene	700	140	<0.41	<0.54	<0.26	<0.26	<0.26	<0.26
Methyl tert-butyl ether	60	12	<0.38	<0.61	<0.28	<0.28	<0.28	<0.28
Toluene	800	160	<0.42	<0.67	<0.19	<0.19	<0.19	<0.19
1,2,4 -Trimethylbenzene	480	96	<0.43	<0.97	<0.8	<0.8	<0.8	<0.8
1,3,5 -Trimethylbenzene	400	90	<0.40	<0.83	<0.63	<0.63	< 0.63	<0.63
Xylenes, -m, -p	2000	400	<1.25	<2.63	<0.72	<0.72	<0.72	<0.72
Xylenes, -o	2000	400	<1.25	\2.03	\0,12	\0.72	\0.72	~0.72
OTHER DETECTED VOLAT	ILE ORGA	NIC COI	MPOUNDS (VOC)	(μg/L)	and think y	Maria Val		
Chloromethane	30	3	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NE	NE	NA	NA	NA	NA	NA	NA
1,2-Dichloroethane	5	0.5	NA	<0.36	<0.25	<0.25	<0.25	<0.25
Isopropylbenzene	NE	NE	NA	NA	NA	NA	NA	- NA
Napthalene	100	10	<0.40	<0.89	<2.1	<2.1	<2.1	<2.1
n-Propylbenzene	NE	NE	NA	NA	NA	NA	NA	NA
LEAD (μg/L)	The Late			10 x 3 = x		THE		
Lead	15	1.5	NA	NA	NA	NA	NA	NA

ES = Enforcement Standard

PAL = Preventive Action Limit

μg/L = micrograms per liter

NA = Parameter not analyzed

NE = NR 140 ES not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation.

Bold indicates analytical results above NR 140 ES

TABLE 3 WATER LEVEL DATA SPEAKER PROPERTY 0610-133

Monitoring Well Number	Top of Well Casing Elevation	Screen Interval	Date Measured	Depth to Water (Ft.)	Groundwater Elevation (Ft.)
			7/5/2011	15.87	1192.90
		1187.07	11/22/2011	16.60	1192.17
	1208.77		6/21/2012	18.95	1189,82
			6/4/2013	10.98	1197.79
		1177.07	8/8/2014	15.86	1192.91
			6/9/2015	15,40	1193.37
			2/11/2016	16,38	1192.39
MW-1			10/17/2016	16.38	1192.39
			1/18/2017	14.64	1194.13
			8/17/2017	15.89	1192.88
		1	1/30/2018	21.40	1187.37
			6/7/2018	13.94	1194,83
		1	12/5/2018	14.81	1193.96
			3/27/2019	14.30	1194,47
			12/4/2019	10.68	1198.09
			2/3/2020	17.80	1190.97
		201 202-00 20000	7/5/2011	NA NA	NA
	Special Street	1171.73	11/22/2011	38.22	1176,34
	1214.56		6/21/2012	40,50	1174.06
			6/4/2013	42.72	1171,84
		1156.73	8/8/2014	42.40	1172.16
			6/9/2015	44.22	1170.34
			2/11/2016	45.65	1168.91
MW-2			10/17/2016	48.23	1166.33
			1/18/2017	46.45	1168.11
		(4.0	8/17/2017	48.15	1166,41
			1/30/2018	41.56	1173.00
			6/7/2018	45.42	1169.14
			12/5/2018	43.47	1171.09
			3/27/2019	43.16	1171.40
			12/4/2019	Well Damaged Durin	g Excavation Backfill
			7/5/2011	NA	NA
		1180.32	11/22/2011	19.29	1188.88
	1208.17		6/21/2012	21.58	1186.59
			6/4/2013	18.51	1189.66
		1170.32	8/8/2014	21.66	1186.51
			6/9/2015	22.97	1185.20
			2/11/2016	21.24	1186.93
MW-3			10/17/2016	18.38	1189,79
			1/18/2017	17.07	1191.10
			8/17/2017	19.17	1189.00
			1/30/2018	27.59	1180.58
			6/7/2018	17,58	1190.59
			12/5/2018	17.49	1190.68
		-	3/27/2019	15.75	1192.42
			12/4/2019	12.43	1195.74
			2/3/2020	18.77	1189.40
			10/17/2016	17.72	1188,89
	45555	1179.35	1/18/2017	16.74	1189.87
	1206.61		8/17/2017	18.61	1188.00
		41415-	1/30/2018	21.93	1184,68
MW-4		1164.35	6/7/2018	17,18	1189.43
			12/5/2018	16.77	1189,84
			3/27/2019	11.65	1194.96
			12/4/2019	12.01	1194.60
			2/3/2020	NR	
			10/17/2016	16.75	1183,77
		1187.39	1/18/2017	14.25	1186.27
	1200.52		8/17/2017	18,61	1181.91
			1/30/2018	19,82	1180.70
MW-5		1172.39	6/7/2018	14.78	1185.74
			12/5/2018	13,32	1187,20
			3/27/2019	12.14	1188,38
			12/4/2019	10.08	1190.44
			2/3/2020	NR	

ft = feet

TABLE 3 WATER LEVEL DATA SPEAKER PROPERTY 0610-133

Monitoring Well	Top of Well Casing	Screen Interval	Date Measured	Depth to Water	Groundwater Elevation
Number	Elevation		Mododiod	(Ft.)	(Ft.)
×			10/17/2016	12.51	1188.25
		1189.21	1/18/2017	11.29	1189.47
54	1200.76		8/17/2017	13.95	1186.81
	MW-6		1/30/2018	17.79	1182.97
MW-6		1179.21	6/7/2018	11.62	1189.14
			12/5/2018	12.13	1188.63
			3/27/2019	11.65	1189.11
			12/4/2019	Well Cann	ot Be Located
					rea By Previous Owner
-		1195.78	6/7/2018	16.07	1198.21
.,			12/5/2018	17.07	1197.21
MW-7	1214.28		3/27/2019	17.31	1196.97
		-	12/4/2019	14.71	1199.57
		1180.78	2/3/2020	20.72	1193.56
		1198.11	6/7/2018	17.59	1194.02
			12/5/2018	17.73	1193.88
MW-8	1211.61		3/27/2019	17.21	1194.40
			12/4/2019	13.48	1198.13
		1183.11	2/3/2020	20.64	1190.97
			2/3/2020	20.15	1194.20
		1198.85			
	1214.35 MW-9				
MW-9					
		1183.85			
			2/3/2020	34.35	1181.82
	~	1195.17			
	1216.17	[
MW-10	0				
		1180.17			S.
			2/3/2020	23.65	1193.67
		1195.32			
MW-11	1217.32				
14144-11		Ļ			
		1185.32			

ft = feet NR=Not recorded

Elevations in feet in reference to Mean Seal Level.

TABLE 4 SUMMARY OF BASEMENT/GARAGE AMBIENT VAPOR ANALYTICAL RESULTS SPEAKER 0610-133

TABLE 1 REGIONAL SCREENING LEVEL SUMMARY										
Sample No.	Residential	VP-1								
Sampling Date	-	06/07/18								
	ug/m3									
VOLATILE ORGANIC CO	V	C) (ug/m3)								
Benzene	3.6	1.72								
Chloroform	1.2	<0.30								
1,1 Dichloroethane	18	<0.187								
1,1-Dichloroethene	210	<0.21								
cis-1,2-Dichloroethene	NE	<0.197								
trans-1,2-Dichloroethene	NE	<0.231								
Ethylbenzene	11	10.1								
Trichlorofluoromethane	NE	1.18								
Dichlorodifluoromethane	100	2.37								
Methylene Chloride	630	14.3								
Naphthalene	0.83	1.94J								
Tetrachloroethylene	42	<0.278								
Toluene	5200	20.4								
1,1,1-Trichloroethane	5200	<0.249								
Trichloroethylene	2.1	<0.237								
1,2,4-Trimethylbenzene	7.3	1.86								
1,3,5-Trimethylbenzene	NE	<0.232								
Vinyl chloride	1.7	<0.148								
m&p-Xylene	100	13.4								
o-Xylene	100	6.2								
TPH (GC/MS)	NE									

UG/M³⁻ Micrograms per Cubic Meter of Air Bold indicates analytical results exceed sub-slab screening level

TABLE 5 SUMMARY OF SOIL ANALYTICAL RESULTS (REMEDIAL EXCAVATION) SPEAKER PROPERTY

Sample No.	NR 720 Non	NR 720	NR 720	ì		W-1	W-2	W-3	W-4	W-5	W-6	W-7	W-8	W-9	S-1	S-2	S-3	S-4	S-5
Sampling Date	No. of the Committee of	Direct	Cancer	NR 720 Soil to	I Background I	11/18/19	11/18/19	11/18/19	11/18/19	11/19/19	11/20/19	11/20/19	11/20/19	11/20/19	11/18/19	11/18/19	11/18/19	11/18/19	11/19/19
Sample Depth (feet)	Non-	Contact	RCL Non-	Groundwater RCL	Threshold	4	4	4	4	4	4	4	4	4	9	9	9	9	16
Saturated (S)/Unsaturated (U)	Industrial	RCL	Industrial	110,2		U	U	U	U	U	U	U	U	U	U	υ	υ	U	U
LEAD (mg/kg)																			
Lead	400	400	NE	27	52	53	106	178	31.7	151	14.7	15.5	NS	NS	21.7	27	33	64.1	24.4
PETROLEUM VOLATILE ORG	PETROLEUM VOLATILE ORGANIC COMPOUNDS (PVOC) (μg/kg)																		
Benzene	106,000	1,600	1,600	5,1	NE	<25	<25	<25	<25	73	<25	<25	25.7J	<25	<25	29.9J	47J	7,100	19,200
Ethylbenzene	4,080,000	8,020	8,020	1,570	NE -	<25	<25	<25	<25	105	<25	<25	<25	<25	<25	29.4J	25,4J	45,000	94,000
Methyl tert-butyl ether	22,100,000	63,800	63,800	27	NE	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<500	<500
Naphthalnene	178,000	5,520	5,520	658	NE	125	29.3	<25	<25	77	<25	<25	<25	<25	<25	<25	<25	22,500	40,000
Toluene	5,240,000	NE	818,000	1,107	NE	<25	<25	<25	<25	410	<25	<25	62	<25	<25	79	89	8,000	181,000
1,2,4- ⁻ rimethylbenzene	373,000	NE	219,000	1,382	NE	<25	<25	<25	<25	211	<25	38J	<25	<25	<25	<25	47J	370,000	307,000
1,3,5-Trimethylbenzene	339,000	NE	182,000	1,002	INL.	<25	<25	<25	<25	99	<25	<25	<25	<25	<25	<25	<25	126,000	100,000
Xylenes, -m, -p Xylenes, -o	818,000	NE	260,000	3,960	NE	<75	<75	<75	<75	676	<75	26J	98J	31,5J	<75	133	151	505,000	642,000

mg/kg = milligrams per kilogram μg/kg = micrograms per kilogram

RCL = Residual Contaminant Level

NS = Parameter Not Sampled DCL = Direct Contact Level

NA = Parameter not analyzed

NE = NR 720 RCL not established
J = Analyte detected above laboratory limit of detection but below limit of quantitation,
Bold indicates analytical results exceed NR 720 RCL

TABLE 5 SUMMARY OF SOIL ANALYTICAL RESULTS (REMEDIAL EXCAVATION) SPEAKER PROPERTY

Sample No.	NR 720 Non	ND 720	NR 720	NR 720 Soil		S-6	S-7	S-8	S-9	SB-1	SB-2	SB-3	
Sampling Date	Cancer RCL	NR 720 Direct	Cancer	to	Background	11/20/19	11/20/19	11/20/19	11/20/19	11/19/19	11/20/19	11/20/19	
Sample Depth (feet)	Non-	Contact	RCL Non-	Groundwater	Threshold	13	13	13	11	11-12	16	13	
Saturated (S)/Unsaturated (U)	Industrial	RCL	Industrial	RCL		U	U	U	U	S	S	U	
EAD (mg/kg)													
Lead	400	400	NE	27	52	26	84.2	NS	NS	52	20.5	33.2	
PETROLEUM VOLATILE ORGANIC COMPOUNDS (PVOC) (μg/kg)													
Benzene	106,000	1,600	1,600	5.1	NE	<25	<25	<25	<25	1,200	18,900	2,700	
Ethylbenzene	4,080,000	8,020	8,020	1,570	NE	<25	<25	<25	<25	11,900	127,000	16,100	
Methyl tert-butyl ether	22,100,000	63,800	63,800	27	NE	<25	<25	<25	<25	<250	<2,500	<25	
Naphthalnene	178,000	5,520	5,520	658	NE	<25	<25	<25	<25	7,300	32,000	4,000	
Toluene	5,240,000	NE	818,000	1,107	NE	44J	38J	60	30.1J	2,590	240,000	37,000	
1,2,4-Trimethylbenzene	373,000	NE	219,000	1,382	NE	62	<25	45J	<25	62,000	311,000	35,000	
1,3,5-Trimethylbenzene	339,000	NE	182,000	1,302	IAL	25.6J	<25	<25	<25	21,000	99,000	11,300	
Xylenes, -m, -p Xylenes, -o	818,000	NE	260,000	3,960	NE	154	78.2J	64J	28.8J	67,300	704,000	82,400	

mg/kg = milligrams per kilogram

μg/kg = micrograms per kilogram

RCL = Residual Contaminant Level

NS = Parameter Not Sampled

DCL = Direct Contact Level

NA = Parameter not analyzed

NE = NR 720 RCL not established

J = Analyte detected above laboratory limit of detection but below limit of quantitation.

Bold indicates analytical results exceed NR 720 RCL

APPENDIX C REMEDIAL EXCAVATION SOIL ANALYTICAL REPORT AND CHAIN OF CUSTODY FORM

	-	8
CHAIN	OF	TODY RECORD

Lab I.D. #

QUOTE # :

Project #:

Syliergy

Environmental Lab, Inc.

www.synergy-lab.net 1990 Prospect Ct. • Appleton, WI 54914 920-830-2455 • mrsynergy@wi.twcbc.com

Chain #	No 41623
Page	of 2

Sample Handling Request

__Rush Analysis Date Required: ____(Rushes accepted only with prior authorization)

Comp Addre City S	ess State Zip			5/		A	naly	sis	Req	uest	ed		(O					Other	Analy	/sis	
Comp Addra City S	oany ess State Zip			5/									w								
Addre City S	ess State Zip		5	5/									m					13	4 1	1	- 1
City S	State Zip)(1					1		11			1 22 1	- 1	- 1	1 1		1 1	1 1		
Phon		1		1 /	_	٦							SOLIDS								
		1		4	3b 95)	96 de					LEN		ED S	5							
	ė				Š	Š Š	RITE	ı,	9	1,00	Ī		END	A 524	<u>@</u>	ALS					
Emai	1				E B	δ Ω	I	EAS	A 82	5	NAP	l u	USP	(EP,	88	MET (PID	- 1
	Filtered Y/N	No. of Containers	Sample Type (Matrix)*	Preservation	DRO (Mo	GRO (Mo	NITRATE	OIL & GF	PAH (EP	PCB	PVOC+	SULFATI	TOTAL S	VOC DW	VOC (EP	8-RCHA				1 10	
	N	3	5	I lina							X										
		1				_	+	-	Н	-	+	+		-	_	+	\vdash	-	+	_	4
	\dashv	-		-		-	+	-		+	\forall	+	-		+	+					=
							\dagger	T			11										
											T										
		V																			
-1	- }	2_		1 2/10																	
Y		7		**							4				_						
	\rightarrow			- Mara		-	+			-	-11	-		-	-	-		-			_
	1/2		()-			-	+	-	Н	-	V		L	\vdash	+	-	\vdash				_
"GW", D	_					"A",	Oil,	Sluc	ige,	etc.)	17.	21									
Y		-6	1		Tim	e			7 1	Rec										Date	
	Emailion Time An	Phone Email ion Filtered Time Y/N AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Phone Email Ion Filtered No. of Time Y/N Containers A.A. A.A. A.A. A.A. A.A. A.A. A.A. A.	Phone Email Ion Filtered No. of Type (Matrix)* A. N 3 S A. A	Phone Email Ion Filtered No. of Type (Matrix)* Ar. N 3 5 1 /// Ar. N 3 5 1 /// Ar.	And	Phone Email Ion Filtered No. of Type (Matrix) Ar. N 3 5 1/Jn An.	And	And	And	And	And	An A	An A	An A	An A	An A	An A	An A	An A	An A

CHAIN OF STODY RECORD

Lab I.D. #

QUOTE # :

Project #:

Syliergy

Environmental Lab, Inc.

www.synergy-lab.net 1990 Prospect Ct. • Appleton, WI 54914 920-830-2455 • mrsynergy@wi.twcbc.com

Chain #	No	416220
Se. 1 1 decent 1 11	140	TIULE

Page 2_of

Sample Handling Request

Rush Analysis Date Required: (Rushes accepted only with prior authorization)

Sampler: (signature)	3				920-830-	2455 • mrsy	/nergy@wi.tv	wcb	c.cor	n			~	N	orm	al I	urn	Arc	ound		
Project (Name / Loc	ation): OSpenhel	/mt.	IX	, 5					A	nalys	is R	equ	este	d						Other Ana	alysis
Reports To:		.Z:	Invoice	е То:																	
Company	7 1 1 0	0	Comp	any	1	15									Q.						
Address	VIVO PI	1	Addre	\$\$	(10	Dac		اڃا	:20					ш	SCHOS						
City State Zip	N W X	1	City S	tate Zip	1			Sep 95)	Sep 95)	l .				ALEN							
Phone	P	Ì	Phone	Ð				DRO S	ROS	RITE	щ	(Q)	(EPA 8021)	Ĭ	TE COUNDED	A 52	60	- 15)	ALS		
Email			Email					g	5 po	ENI	GREASE	¥ 88	PA	NAP	ш	EP S	A 82	AIR (TO	MET		PID/ FID
Lab I.D.	Sample I.D.	Collection	on Time	Filtered Y/N	No. of Containers	Sample Type (Matrix)*	Preservation	DRO (Mod	GRO (Mod GRO	NITRATE/NITRITE	OIL & GI	PAH (EPA 8270)	PVOC (E	PVOC	SULFATE		VOC (EPA 8260)	VOC AIF	8-RCRA METALS		
503 776 N	5.491	11/18/19/1	fung	N	3	5	1 mon			X				X							420
N	5-5 16	11 19 19	1m							X		-				1					5316
0	5 6 3'	11/2:17	in			-				X	-	-	+	H	-	-	+	-			
0	5.7 13'		AM	+	2		1735			(H	+	+	1	-	+	+	+	-		++-
R	5-9 11	-	Any		2		1 10000			+		+	+	H	\top	+	-	1			+
S	58:1 11-12	0/19/15	Am		3		J. N.A.							1							5228
T	53.) 16	LUK	RA	1	3		1.35			₹ X											
u	SB.3 13'	4	~14	1/	3	7	>	-	-	X_		+	-	V		+	-	-			1
Y	TW-)	HIGH.	F.M	N	2-	62	HLL					1		У							
Comments/Spec	 ial Instructions (*Specify g	roundwater "	GW", D	rinking V	Vater "DW", W	Vaste Water	 "WW", Soil "S	", Ai	r "A",	Oil,	Slude	ae. e	tc.)								

Sample Integrity - To be completed by ecciving lab. Method of Shipment:	Relinquished By: (sign)	Time Date 11/21/19	Received By: (sign)	Time	Date
Temp. of Temp. Blank:°C On Ice: Cooler seal Intact upon receipt: Yes No	Received in Laboratory By	Mu	Time: 9, 33	Date:	00 21/19

Synergy Environmental Lab, INC

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PORTAGE. WI 53901

Report Date 16-Dec-19

Project Name SPEAKER/MT IDA

Project #

Lab Code 5037176A
Sample ID W-1 4'
Sample Matrix Soil

Soil									
11/18/2019									
	Result	Unit	LOD	LOQ	Dil	Method Ext Date	Run Date	Analyst	Code
	79.5	%			1	5021	11/22/2019	NJC	1
	53.0	mg/Kg	0.17	0.58	1	6010B	12/10/2019	CWT	1
thalene							2		
	< 0.025	mg/kg	0.018	0.056	1	GRO95/8021	12/4/2019	CJR	1
	< 0.025	mˈg/kg	0.015	0.047	1	GRO95/8021	12/4/2019	CJR	1
er (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/8021	12/4/2019	CJR	1
	0.125	mg/kg	0.025	0.01	1	GRO95/8021	12/4/2019	CJR	1
	< 0.025	mg/kg	0.013	0.055	1	GRO95/8021	12/4/2019	CJR	1.
ene	< 0.025	mg/kg	0.015	0.048	1	GRO95/8021	12/4/2019	CJR	1
ene	< 0.025	mg/kg	0.011	0,036	1	GRO95/8021	12/4/2019	CJR	1
	< 0.05	mg/kg	0.026	0.083	1	GRO95/8021	12/4/2019	CJR	1
	< 0.025	mg/kg	0.013	0.056	1	GRO95/8021	12/4/2019	CJR	1
	11/18/2019 thalene er (MTBE)	79.5 79.5 53.0 thalene	Result Unit 79.5 % 79.5 % 53.0 mg/Kg thalene 	Result Unit LOD 79.5 % 79.5 % 53.0 mg/kg 0.17 thalene 	Result Unit LOD LOQ 79.5 % 53.0 mg/kg 0.17 0.58 thalene	Result Unit LOD LOQ Dil	Result Unit LOD LOQ Dil Method Ext Date 79.5 % 1 5021 53.0 mg/Kg 0.17 0.58 1 6010B thalene	Result Unit LOD LOQ Dil Method Ext Date Run Date	Result Unit LOD LOQ Dil Method Ext Date Run Date Analyst

Invoice # E37176

Project Name SPEAKER/MT IDA Proiect #

Lab Code Sample ID 5037176B

W-2 4'

Sample Matrix Sample Date	Soil 11/18/2019										
Sample Date	11/16/2019	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General General		74.0	07			,	5021		11/03/0010	NIO	,
Solids Percent		74.8	%			1	5021		11/22/2019	NJC	1
Inorganic Metals			6-								
Lead, Total		106	mg/Kg	0.17	0.58	1	6010B		12/10/2019	CWT	Ĩ
Organic PVOC + Naph	thalene	4									
Benzene		< 0.025	mg/kg	0.018	0.056	1	GRO95/8	8021	12/4/2019	CJR	1
Ethylbenzene		< 0.025	mg/kg	0.015	0.047	1	GRO95/8	3021	12/4/2019	CJR	1
Methyl tert-butyl eth	ner (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/8	3021	12/4/2019	CJR	1
Naphthalene		0.0293	mg/kg	0.025	0.01	1	GRO95/8	3021	12/4/2019	CJR	1
Toluene		< 0.025	mg/kg	0.013	0.055	1	GRO95/8	3021	12/4/2019	CJR	1
1,2,4-Trimethylbenz	ene	< 0.025	mg/kg	0.015	0.048	1	GRO95/8	3021	12/4/2019	CJR	1
1,3,5-Trimethylbenz	zene	< 0.025	mg/kg	0.011	0.036	1	GRO95/8	021	12/4/2019	CJR	1
m&p-Xylene		< 0.05	mg/kg	0.026	0.083	1	GRO95/8	021	12/4/2019	CJR	1
o-Xylene		< 0.025	mg/kg	0.013	0.056	1	GRO95/8	021	12/4/2019	CJR	1
Lab Code Sample ID	5037176C W-3 4'	ž									1961
Sample Matrix	Soil										
Sample Date	11/18/2019										
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General General											
Solids Percent		73.5	%			1	5021		11/22/2019	NJC	1
Inorganic Metals											
Lead, Total		178	mg/Kg	0.17	0.58	1	6010B		12/10/2019	CWT	1

	Result	Chit	LOD I	LOQ	ווע	Method Ext Date	Ruii Date A	naiysi Code	
General General Solids Percent	73.5	%			1	5021	11/22/2019 N	1JC 1	
	73.3	70			•	3021	1112212017 1	100	
Inorganic									
Metals								100	
Lead, Total	178	mg/Kg	0.17	0.58	1	6010B	12/10/2019 C	WT 1	
Organic									
PVOC + Naphthalene									
Benzene	< 0.025	mg/kg	0.018	0.056	1	GRO95/8021	12/4/2019	CJR 1	
Ethylbenzene	< 0.025	mg/kg	0.015	0.047	1	GRO95/8021	12/4/2019	CJR 1	
Methyl tert-butyl ether (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/8021	12/4/2019	CJR 1	
Naphthalene	< 0.025	mg/kg	0.025	0.01	1	GRO95/8021	12/4/2019 C	CJR 1	
Toluene	< 0.025	mg/kg	0.013	0.055	1	GRO95/8021	12/4/2019 C	CJR 1	
1,2,4-Trimethylbenzene	< 0.025	mg/kg	0.015	0.048	1	GRO95/8021	12/4/2019	JR 1	
1,3,5-Trimethylbenzene	< 0.025	mg/kg	0.011	0.036	1	GRO95/8021	12/4/2019 C	CJR 1	
m&p-Xylene	< 0.05	mg/kg	0.026	0.083	1	GRO95/8021	12/4/2019 C	CJR I	
o-Xylene	< 0.025	mg/kg	0.013	0.056	1	GRO95/8021	12/4/2019 C	JR 1	

Project Name Project #

Lab Code5037176DSample IDW-4 4'Sample MatrixSoil

SPEAKER/MT IDA

Sample Date 11/18/2019

	Result	Unit	LOD I	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General Solids Percent	78.2	%			1	5021		11/22/2019	NJC	1
Inorganic Metals Lead, Total	31.7	mg/Kg	0.17	0.58	I	6010B		12/10/2019	CWT	1
Organic PVOC + Naphthalene										
Benzene	< 0.025	mg/kg	0.018	0.056	1	GRO95/802	1	12/4/2019	CJR	1
Ethylbenzene	< 0.025	mg/kg	0.015	0.047	1	GRO95/802	1	12/4/2019	CJR	1
Methyl tert-butyl ether (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/802	1	12/4/2019	CJR	1
Naphthalene	< 0.025	mg/kg	0.025	0.01	1	GRO95/802	I	12/4/2019	CJR	1
Toluene	< 0.025	mg/kg	0.013	0.055	1	GRO95/802	Į.	12/4/2019	CJR	1
1,2,4-Trimethylbenzene	< 0.025	mg/kg	0.015	0.048	1	GRO95/8021	8	12/4/2019	CJR	1
1,3,5-Trimethylbenzene	< 0.025	mg/kg	0.011	0.036	1	GRO95/8021	l.	12/4/2019	CJR	1
m&p-Xylene	< 0.05	mg/kg	0.026	0.083	1	GRO95/8021	L	12/4/2019	CJR	1
o-Xylene	< 0.025	mg/kg	0.013	0.056	1	GRO95/8021	l,	12/4/2019	CJR	1

Lab Code5037176ESample IDW-5 4'Sample MatrixSoil

Sample Date 11/19/2019

		Result	Unit	LOD I	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code	
(General General											
	Solids Percent	80.3	%			1	5021		11/22/2019	NJC	1	
I	norganic											
	Metals											
	Lead, Total	151	mg/Kg	0.17	0.58	1	6010B		12/10/2019	CWT	1	
(Organic											
	PVOC + Naphthalene											
	Benzene	0.073	mg/kg	0.018	0.056	1	GRO95/80)21	12/4/2019	CJR	1	
	Ethylbenzene	0.105	mg/kg	0.015	0.047	1	GRO95/80)21	12/4/2019	CJR	1	
	Methyl tert-butyl ether (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/80	021	12/4/2019	CJR	1 .	
	Naphthalene	0.077	mg/kg	0.025	0.01	1	GRO95/80	021	12/4/2019	CJR	1	
	Toluene	0.41	mg/kg	0.013	0,055	1	GRO95/80	021	12/4/2019	CJR	1.	
	1,2,4-Trimethylbenzene	0.211	mg/kg	0.015	0.048	1	GRO95/80	021	12/4/2019	CJR	1	
	1,3,5-Trimethylbenzene	0.099	mg/kg	0.011	0.036	1	GRO95/80	021	12/4/2019	CJR	1	
	m&p-Xylene	0.5	mg/kg	0.026	0.083	1	GRO95/80	021	12/4/2019	CJR	1	
	o-Xylene	0.176	mg/kg	0.013	0.056	1	GRO95/80	21	12/4/2019	CJR	1	

Project #

Lab Code5037176FSample IDW-6 4'Sample MatrixSoil

Sample Date 11/20/2019

	Result	Unit	LOD	LOQ	Dil	Method Ext	Date Run Date	Analyst	Code
General General Solids Percent	77.5	%			1	5021	11/22/2019	NJC	1
Inorganic Metals Lead, Total	14.7	mg/Kg	0.17	0.58	1	6010B	12/10/2019	CWT	1
Organic PVOC + Naphthalene									
Benzene	< 0.025	mg/kg	0.018	0.056	1	GRO95/8021	12/4/2019	CJR	1
Ethylbenzene	< 0.025	mg/kg	0.015	0.047	1	GRO95/8021	12/4/2019	CJR	1
Methyl tert-butyl ether (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/8021	12/4/2019	CJR	1
Naphthalene	< 0.025	mg/kg	0.025	0.01	1	GRO95/8021	12/4/2019	CJR	1
Toluene	< 0.025	mg/kg	0.013	0.055	1	GRO95/8021	12/4/2019	CJR	1
1,2,4-Trimethylbenzene	< 0.025	mg/kg	0.015	0.048	1	GRO95/8021	12/4/2019	CJR	1
1,3,5-Trimethylbenzene	< 0.025	mg/kg	0.011	0.036	1	GRO95/8021	12/4/2019	CJR	1
m&p-Xylene	< 0.05	mg/kg	0.026	0.083	1	GRO95/8021	12/4/2019	CJR	1
o-Xylene	< 0.025	mg/kg	0.013	0.056	1	GRO95/8021	12/4/2019	CJR	1

Lab Code

5037176G

Sample ID

W-7 4'

Sample Matrix Soil

Sample Date 11/20/2019

	Result	Unit	LOD	LOQ	Dil	Method Ext Date	Run Date Analyst	Code
General General								
Solids Percent	75.9	%			1	5021	11/22/2019 NJC	1
Inorganic Metals								
Lead, Total	15,5	mg/Kg	0.17	0.58	1	6010B	12/10/2019 CWT	1
Organic PVOC + Naphthalene								
Benzene	< 0.025	mg/kg	0.018	0.056	1	GRO95/8021	12/4/2019 CJR	1
Ethylbenzene	< 0.025	mg/kg	0.015	0.047	1	GRO95/8021	12/4/2019 CJR	1
Methyl tert-butyl ether (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/8021	12/4/2019 CJR	1
Naphthalene	< 0.025	mg/kg	0.025	0.01	1	GRO95/8021	12/4/2019 CJR	1
Toluene	< 0.025	mg/kg	0.013	0.055	1	GRO95/8021	12/4/2019 CJR	1
1,2,4-Trimethylbenzene	0.038 "J"	mg/kg	0.015	0.048	1	GRO95/8021	12/4/2019 CJR	1
1,3,5-Trimethylbenzene	< 0.025	mg/kg	0.011	0.036	1	GRO95/8021	12/4/2019 CJR	1
m&p-Xylene	< 0.05	mg/kg	0.026	0.083	1	GRO95/8021	12/4/2019 CJR	1
o-Xylene	0.026 "J"	mg/kg	0.013	0,056	1	GRO95/8021	12/4/2019 CJR	1

Project Name SPEAKER/MT IDA Project #

Lab Code 5037176H Sample ID W-8 4' Sample Matrix Soil

Sample Date 11/20/2019

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General										
General										
Solids Percent	79.5	%			1	5021		11/22/2019	NJC	1
Organic										
PVOC + Naphthalene										
Benzene	0.0257 "J"	mg/kg	0.018	0.056	1	GRO95/8	021	12/4/2019	CJR	1
Ethylbenzene	< 0.025	mg/kg	0.015	0.047	1	GRO95/8	021	12/4/2019	CJR	1
Methyl tert-butyl ether (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/8	021	12/4/2019	CJŖ	1
Naphthalene	< 0.025	mg/kg	0.025	0.01	1	GRO95/8	021	12/4/2019	CJR	1
Toluene	0.062	mg/kg	0.013	0.055	1	GRO95/8	021	12/4/2019	CJR	1
1,2,4-Trimethylbenzene	< 0.025	mg/kg	0.015	0.048	1	GRO95/80	021	12/4/2019	CJR	1
1,3,5-Trimethylbenzene	< 0.025	mg/kg	0.011	0.036	1	GRO95/80	021	12/4/2019	CJR	1
m&p-Xylene	0.061 "J"	mg/kg	0.026	0.083	1	GRO95/80	021	12/4/2019	CJR	1
o-Xylene	0.037 "J"	mg/kg	0.013	0.056	1	GRO95/80	021	12/4/2019	CJR	1

Lab Code 50371761 Sample ID S-9 4' Sample Matrix Soil Sample Date 11/20/2019

m&p-Xylene

o-Xylene

Unit LOD LOQ Dil Method **Ext Date** Run Date Analyst Code Result General General Solids Percent 77.9 % 1 5021 11/22/2019 NJC 1 Organic PVOC + Naphthalene 0.018 0.056 GRO95/8021 CJR < 0.025 mg/kg 1 12/4/2019 Benzene 0.015 0.047 CJR Ethylbenzene < 0.025 1 GRO95/8021 12/4/2019 mg/kg Methyl tert-butyl ether (MTBE) < 0.025 0.014 0.045 1 GRO95/8021 12/4/2019 CJR mg/kg < 0.025 0.025 0.01 GRO95/8021 12/4/2019 CJR Naphthalene mg/kg 1 Toluene < 0.025 mg/kg 0.013 0.055 1 GRO95/8021 12/4/2019 CJR < 0.025 0.015 0.048 1 GRO95/8021 12/4/2019 CJR 1,2,4-Trimethylbenzene mg/kg 1,3,5-Trimethylbenzene < 0.025 mg/kg 0.011 0.036 1 GRO95/8021 12/4/2019 CJR

0.026

0.013

mg/kg

mg/kg

< 0.05

0.0315 "J"

0.083

0.056

1

1

GRO95/8021

GRO95/8021

12/4/2019

12/4/2019

CJR

CJR

Project Name SPEAKER/MT IDA

Project #

Lab Code

5037176J

Sample ID

S-1 9'

Sample Matrix Soil

Sample Date 11/18/2019

•	Result	Unit	LOD 1	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General										6
General										
Solids Percent	79.1	%			1	5021		11/22/2019	NJC	1
Inorganic										
Metals										
Lead, Total	21.7	mg/Kg	0.17	0,58	1	6010B		12/10/2019	CWT	1
Organic										
PVOC + Naphthalene										
Benzene	< 0.025	mg/kg	0.018	0.056	1	GRO95/80	21	12/4/2019	CJR	1
Ethylbenzene	< 0.025	mg/kg	0.015	0.047	1	GRO95/80	21	12/4/2019	CJR	1
Methyl tert-butyl ether (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/80	21	12/4/2019	CJR	1
Naphthalene	< 0.025	mg/kg	0.025	0.01	1	GRO95/80	21	12/4/2019	CJR	1
Toluene	< 0.025	mg/kg	0.013	0.055	1	GRO95/80	21	12/4/2019	CJR	1
1,2,4-Trimethylbenzene	< 0.025	mg/kg	0.015	0.048	1	GRO95/80	21	12/4/2019	CJR	1
1,3,5-Trimethylbenzene	< 0.025	mg/kg	0.011	0.036	1	GRO95/80	21	12/4/2019	CJR	1
m&p-Xylene	< 0.05	mg/kg	0.026	0.083	1	GRO95/80	21	12/4/2019	CJR	1

0.013

mg/kg

0.056

1

GRO95/8021

Lab Code

o-Xylene

5037176K

< 0.025

Sample ID

S-2 9'

Sample Matrix Soil

Sample Date

11/18/2019

~p											
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General											
General								27			
Solids Percent		80.4	%			1	5021		11/22/2019	NJC	1
Inorganic											
Metals											
Lead, Total		27.0	mg/Kg	0.17	0.58	1	6010B		12/10/2019	CWT	1
Organic											
PVOC + Naphth	alene			72							
Benzene		0.0299 "J"	mg/kg	0.018	0.056	1	GRO95/802	1	12/4/2019	CJR	1
Ethylbenzene		0.0294 "J"	mg/kg	0.015	0.047	1	GRO95/802	1	12/4/2019	CJR	1
Methyl tert-butyl ether	(MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/802	1	12/4/2019	CJR	1
Naphthalene		< 0.025	mg/kg	0.025	0.01	1	GRO95/802	1	12/4/2019	CJR	1
Toluene		0.079	mg/kg	0.013	0.055	1	GRO95/802	1	12/4/2019	CJR	1
1,2,4-Trimethylbenzen	e	< 0.025	mg/kg	0.015	0.048	1	GRO95/802	1	12/4/2019	CJR	1
1,3,5-Trimethylbenzen	e	< 0.025	mg/kg	0.011	0.036	1	GRO95/802	1	12/4/2019	CJR	1
m&p-Xylene		0.072 "J"	mg/kg	0.026	0.083	1	GRO95/802	1	12/4/2019	CJR	1
o-Xylene		0.061	mg/kg	0.013	0.056	1	GRO95/802	1	12/4/2019	CJR	1

12/4/2019 CJR

Project #

Lab Code 5037176L
Sample ID S-3 9'
Sample Matrix Soil
Sample Date 11/18/2019

	Result	Unit	LOD 1	LOQ	Dil	Method Ext Date	Run Date Analyst	Code
General General								
Solids Percent	77.6	%			1	5021	11/22/2019 NJC	1
Inorganic								
Metals	4							
Lead, Total	33,0	mg/Kg	0.17	0.58	1	6010B	12/10/2019 CWT	1
Organic								
PVOC + Naphthalene								
Benzene	0.047 "J"	mg/kg	0.018	0.056	1	GRO95/8021	12/4/2019 CJR	1
Ethylbenzene	0.0254 "J"	mg/kg	0.015	0.047	1	GRO95/8021	12/4/2019 CJR	1
Methyl tert-butyl ether (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/8021	12/4/2019 CJR	1
Naphthalene	< 0.025	mg/kg	0.025	0.01	1	GRO95/8021	12/4/2019 CJR	1
Toluene	0.089	mg/kg	0.013	0.055	1	GRO95/8021	12/4/2019 CJR	1
1,2,4-Trimethylbenzene	0.047 "J"	mg/kg	0.015	0.048	1	GRO95/8021	12/4/2019 CJR	1
1,3,5-Trimethylbenzene	< 0.025	mg/kg	0.011	0.036	1	GRO95/8021	12/4/2019 CJR	1
m&p-Xylene	0.094	mg/kg	0.026	0.083	1	GRO95/8021	12/4/2019 CJR	1
o-Xylene	0.057	mg/kg	0.013	0.056	1	GRO95/8021	12/4/2019 CJR	1

Lab Code 5037176M Sample ID S-4 9' Sample Matrix 50il Sample Date 11/18/2019

	3 0,	Result	Unit	LOD	LOQ	Dil	Method Ext	Date	Run Date	Analyst	Code	
(General General Solids Percent	70.7	%			1	5021		11/22/2019	NJC	τ	
I	norganic Metals Lead, Total	64.1	mg/Kg	0.17	0.58	1	6010B		12/10/2019	CWT	1	
(Organic PVOC + Naphthalene											
	Benzene	7.1	mg/kg	0.36	1.12	20	GRO95/8021		12/13/2019	CJR	1	
	Ethylbenzene	45	mg/kg	0.3	0.94	20	GRO95/8021		12/13/2019	CJR	1	
	Methyl tert-butyl ether (MTBE)	< 0.50	mg/kg	0.28	0.9	20	GRO95/8021		12/13/2019	CJR	1	
	Naphthalene	22.5	mg/kg	0.5	0,2	20	GRO95/8021		12/13/2019	CJR	1	
	Toluene	8.0	mg/kg	0,26	1.1	20	GRO95/8021		12/13/2019	CJR	1	
	1,2,4-Trimethylbenzene	370	mg/kg	0.3	0.96	20	GRO95/8021	*	12/13/2019	CJR	1	
	1,3,5-Trimethylbenzene	126	mg/kg	0.22	0.72	20	GRO95/8021		12/13/2019	CJR	1	
	m&p-Xylene	410	mg/kg	0.52	1.66	20	GRO95/8021		12/13/2019	CJR	1	
	o-Xylene	95	mg/kg	0.26	1.12	20	GRO95/8021		12/13/2019	CJR	1	

Project Name SPEAKER/MT IDA

Project #

Lab Code 5037176N

Sample ID S-5 16'
Sample Matrix Soil

Sample Date . 11/19/2019

		Result	Unit	LOD LO	\mathbf{OQ}	Dil	Method	Ext Date	Run Date	Analyst	Code
	al neral s Percent	84.7	%			1	5021		11/22/2019	NJC	1
	nic tals Total	24.4	mg/Kg	0.17	0.58	1	6010B		12/10/2019	CWT	1
Organ PV	ic OC + Naphthalene										
Benze	ene	19.2	mg/kg	0.36	1.12	20	GRO95/80	021	12/6/2019	CJR	1
Ethyl	benzene	94	mg/kg	0.3	0.94	20	GRO95/80	021	12/6/2019	CJR	1
Methy	yl tert-butyl ether (MTBE)	< 0.50	mg/kg	0.28	0.9	20	GRO95/80	21	12/6/2019	CJR	1
Naph	thalene	40	mg/kg	0.5	0.2	20	GRO95/80	21	12/6/2019	CJR	1
Tolue	ene	181	mg/kg	0.26	1.1	20	GRO95/80	21	12/6/2019	CJR	1
1,2,4-	-Trimethylbenzene	307	mg/kg	0.3	0.96	20	GRO95/80	21	12/6/2019	CJR	1
1,3,5-	-Trimethylbenzene	100	mg/kg	0.22	0.72	20	GRO95/80	21	12/6/2019	CJR	1
m&p-	-Xylene	470	mg/kg	0.52	1.66	20	GRO95/80	21	12/6/2019	CJR	1
o-Xyl	ene	172	mg/kg	0.26	1.12	20	GRO95/80	21	12/6/2019	CJR	1

Lab Code 5037176O Sample ID S-6 13' Sample Matrix Soil

Sample Date 11/20/2019

Sample Date 11/20	7/2017							
	Result	Unit	LOD	LOQ	Dil	Method Ext Date	Run Date Analyst	Code
General General								
Solids Percent	75.7	%			1	5021	11/22/2019 NJC	1
Inorganic Metals Lead, Total	26.0	mg/Kg	0.17	0.58	1	6010B	12/10/2019 CWT	I
Organic PVOC + Naphthalene	e							
Benzene	< 0.025	mg/kg	0.018	0.056	1	GRO95/8021	12/4/2019 CJR	Ĩ
Ethylbenzene	< 0.025	mg/kg	0.015	0.047	1	GRO95/8021	12/4/2019 CJR	1
Methyl tert-butyl ether (MTI	BE) < 0.025	mg/kg	0.014	0.045	1	GRO95/8021	12/4/2019 CJR	1
Naphthalene	< 0.025	mg/kg	0.025	0.01	1	GRO95/8021	12/4/2019 CJR	1
Toluene	0.044 "J"	mg/kg	0.013	0.055	1	GRO95/8021	12/4/2019 CJR	1
1,2,4-Trimethylbenzene	0.062	mg/kg	0.015	0.048	1	GRO95/8021	12/4/2019 CJR	1
1,3,5-Trimethylbenzene	0.0256 "J"	mg/kg	0.011	0.036	1	GRO95/8021	12/4/2019 CJR	1
m&p-Xylene	0.102	mg/kg	0.026	0.083	1	GRO95/8021	12/4/2019 CJR	1
o-Xylene	0.052 "J"	mg/kg	0.013	0.056	1	GRO95/8021	12/4/2019 CJR	1

Project #

Lab Code5037176PSample IDS-7 13'Sample MatrixSoilSample Date11/20/2019

	Result	Unit	LOD I	LOQ	Dil	Method Ext Date	Run Date Analyst	Code
General								
General								
Solids Percent	67.0	%			1	5021	11/22/2019 NJC	1
Inorganic								
Metals								
Lead, Total	84.2	mg/Kg	0.34	1,16	2	6010B	12/10/2019 CWT	1 49
Organic								
PVOC + Naphthalene								
Benzene	< 0.025	mg/kg	0.018	0,056	1	GRO95/8021	12/4/2019 CJR	1
Ethylbenzene	< 0.025	mg/kg	0.015	0.047	1	GRO95/8021	12/4/2019 CJR	1
Methyl tert-butyl ether (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/8021	12/4/2019 CJR	1
Naphthalene	< 0.025	mg/kg	0.025	0.01	1	GRO95/8021	12/4/2019 CJR	1
Toluene	0.038 "J"	mg/kg	0.013	0.055	1	GRO95/8021	12/4/2019 CJR	1
1,2,4-Trimethylbenzene	< 0.025	mg/kg	0.015	0,048	1	GRO95/8021	12/4/2019 CJR	1
1,3,5-Trimethylbenzene	< 0.025	mg/kg	0.011	0.036	1	GRO95/8021	12/4/2019 CJR	1
m&p-Xylene	0.05 "J"	mg/kg	0.026	0.083	1	GRO95/8021	12/4/2019 CJR	1
o-Xylene	0.0282 "J"	mg/kg	0.013	0.056	1	GRO95/8021	12/4/2019 CJR	1

Lab Code 5037176Q Sample ID S-8 13' Sample Matrix Soil Sample Date 11/20/2019

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General										
General		2)								
Solids Percent	65.4	%			1	5021	(a)	11/22/2019	NJC	1
Organic										
PVOC + Naphthalene										
Benzene	< 0.025	mg/kg	0,018	0.056	1	GRO95/8	021	12/5/2019	CJR	1
Ethylbenzene	< 0.025	mg/kg	0.015	0.047	1	GRO95/8	021	12/5/2019	CJR	1
Methyl tert-butyl ether (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/8	021	12/5/2019	CJR	1
Naphthalene	< 0.025	mg/kg	0.025	0.01	1	GRO95/8	021	12/5/2019	CJR	1
Toluene	0.06	mg/kg	0.013	0.055	1	GRO95/8	021	12/5/2019	CJR	1
1,2,4-Trimethylbenzene	0.045 "J"	mg/kg	0.015	0.048	. 1	GRO95/8	021	12/5/2019	CJR	1
1,3,5-Trimethylbenzene	< 0.025	mg/kg	0.011	0.036	1	GRO95/8	021	12/5/2019	CJR	1
m&p-Xylene	0.064 "J"	mg/kg	0.026	0.083	1	GRO95/8	021	12/5/2019	CJR	1
o-Xylene	< 0.025	mg/kg	0.013	0.056	1	GRO95/8	021	12/5/2019	CJR	1

Project #

Lab Code 5037176R Sample ID S-9 11' Sample Matrix Soil

Sample Date 11/20/2019

	Result	Unit	LOD	LOQ	Dil	Method Ex	kt Date	Run Date	Analyst	Code
General										
General										
Solids Percent	72.6	%			1	5021		11/22/2019	NJC	1
Organic										
PVOC + Naphthalene										
Benzene	< 0.025	mg/kg	0.018	0.056	1	GRO95/8021		12/5/2019	CJR	1
Ethylbenzene	< 0.025	mg/kg	0.015	0.047	1	GRO95/8021		12/5/2019	CJR	1
Methyl tert-butyl ether (MTBE)	< 0.025	mg/kg	0.014	0.045	1	GRO95/8021		12/5/2019	CJR	1
Naphthalene	< 0.025	mg/kg	0.025	0.01	1	GRO95/8021		12/5/2019	CJR	1
Toluene	0.0301 " J "	mg/kg	0.013	0.055	1	GRO95/8021		12/5/2019	CJR	1
1,2,4-Trimethylbenzene	< 0.025	mg/kg	0.015	0.048	1	GRO95/8021		12/5/2019	CJR	1
1,3,5-Trimethylbenzene	< 0.025	mg/kg	0.011	0.036	1	GRO95/8021		12/5/2019	CJR	1
m&p-Xylene	< 0.05	mg/kg	0.026	0.083	1	GRO95/8021		12/5/2019	CJR	I
o-Xylene	0.0288 "J"	mg/kg	0.013	0.056	1	GRO95/8021		12/5/2019	CJR	1

 Lab Code
 5037176S

 Sample ID
 SB-1 11-12

 Sample Matrix
 Soil

 Sample Date
 11/19/2019

LOD LOQ Dil Unit Method **Ext Date** Run Date Analyst Code Result General General Solids Percent % 68.5 5021 11/22/2019 NJC 1 1 Inorganic Metals Lead, Total 52.0 0.17 6010B 12/10/2019 CWT mg/Kg 0.58 1 1 Organic PVOC + Naphthalene Benzene 1.2 mg/kg 0.18 0,56 10 GRO95/8021 12/7/2019 CJR 0.47 10 GRO95/8021 Ethylbenzene 11.9 mg/kg 0.15 12/7/2019 CJR < 0.25 0.45 10 Methyl tert-butyl ether (MTBE) mg/kg 0.14 GRO95/8021 12/7/2019 CJR 7.3 0.25 0.1 10 GRO95/8021 12/7/2019 CJR Naphthalene mg/kg Toluene 2.59 mg/kg 0.13 0.55 10 GRO95/8021 12/7/2019 CJR 1,2,4-Trimethylbenzene 62 mg/kg 0.15 0.48 10 GRO95/8021 12/7/2019 CJR 1,3,5-Trimethylbenzene 21 mg/kg 0.11 0.36 10 GRO95/8021 12/7/2019 CJR m&p-Xylene 52 mg/kg 0.26 0.83 10 GRO95/8021 12/7/2019 CJR 1 10 CJR 1 o-Xylene 15.3 mg/kg 0.13 0.56 GRO95/8021 12/7/2019

Project Name SPEAKER/MT IDA

Project #

5037176T

Lab Code Sample ID

SB-2 16'

Sample Matrix Soil

Sample Date

11/20/2019

9		Result	Unit	LOD	LOQ	Dil	Method Ext Date	e Run Date A	Analyst Code
General									
General									
Solids Percent		93.6	%			1	5021	11/22/2019	NJC 1
Inorganic									
Metals									
Lead, Total		20.5	mg/Kg	0.17	0.58	1	6010B	12/10/2019	CWT 1
Organic								v	
PVOC + Naph	thalene								
Benzene		18.9	mg/kg	1.8	5.6	100	GRO95/8021	12/7/2019	CJR I
Ethylbenzene		127	mg/kg	1.5	4.7	100	GRO95/8021		CJR 1
Methyl tert-butyl eti	her (MTBE)	< 2.5	mg/kg	1.4	4.5	100	GRO95/8021	12/7/2019	CJR 1
Naphthalene		32	mg/kg	2.5	1	100	GRO95/8021	12/7/2019	CJR 1
Toluene		240	mg/kg	1.3	5.5	100	GRO95/8021	12/7/2019	CJR I
1,2,4-Trimethylbenz	zene	311	mg/kg	1.5	4.8	100	GRO95/8021	12/7/2019	CJR I
1,3,5-Trimethylbenz	zene	99	mg/kg	1.1	3.6	100	GRO95/8021	12/7/2019	CJR 1
m&p-Xylene		510	mg/kg	2.6	8.3	100	GRO95/8021	12/7/2019	CJR 1
o-Xylene		194	mg/kg	1.3	5.6	100	GRO95/8021	12/7/2019	CJR 1
Lab Code	5037176U								
Sample ID	SB-3 13'								
•									
Sample Matrix									
•	Soil	Result	Unit	LOD 1	LOQ I	Dil	Method Ext Date	Run Date A	nalyst Code
Sample Matrix Sample Date	Soil		Unit	LOD 1	LOQ I	Dil	Method Ext Date	Run Date A	nalyst Code
Sample Matrix Sample Date General	Soil		Unit	LOD 1	LOQ I	Dil	Method Ext Date	Run Date A	nalyst Code
Sample Matrix Sample Date General General	Soil	Result	Unit %	LOD 1	LOQ 1	Dil			
Sample Matrix Sample Date General General Solids Percent	Soil			LOD 1	LOQ I		Method Ext Date	Run Date A	
Sample Matrix Sample Date General General Solids Percent Inorganic	Soil	Result		LOD 1	LOQ 1				
Sample Matrix Sample Date General General Solids Percent Inorganic Metals	Soil	Result	%			1	5021	11/22/2019 N	NJC I
Sample Matrix Sample Date General General Solids Percent Inorganic Metals Lead, Total	Soil	Result		0.17	LOQ 1				NJC I
Sample Matrix Sample Date General General Solids Percent Inorganic Metals Lead, Total Organic	Soil 11/20/2019	Result	%			1	5021	11/22/2019 N	NJC I
Sample Matrix Sample Date General General Solids Percent Inorganic Metals Lead, Total Organic PVOC + Naphr	Soil 11/20/2019	79.8 33.2	% mg/Kg	0.17	0.58	1	5021 6010B	11/22/2019 N 12/10/2019 C	NJC I
Sample Matrix Sample Date General General Solids Percent Inorganic Metals Lead, Total Organic PVOC + Naphi Benzene	Soil 11/20/2019	79.8 33.2	% mg/Kg mg/kg	0.17	0.58	1	5021 6010B GRO95/8021	11/22/2019 N 12/10/2019 C	NJC I EWT 1
Sample Matrix Sample Date General General Solids Percent Inorganic Metals Lead, Total Organic PVOC + Naphr Benzene Ethylbenzene	Soil 11/20/2019 thalene	79.8 33.2 2.7 16.1	% mg/Kg mg/kg mg/kg	0.17 0.018 0.015	0.58 0.056 0.047	1 1 1	5021 6010B GRO95/8021 GRO95/8021	11/22/2019 N 12/10/2019 C 12/5/2019 C 12/5/2019 C	NJC I EWT I CJR I
Sample Matrix Sample Date General General Solids Percent Inorganic Metals Lead, Total Organic PVOC + Naphi Benzene Ethylbenzene Methyl tert-butyl eth	Soil 11/20/2019 thalene	79.8 33.2 2.7 16.1 < 0.025	% mg/kg mg/kg mg/kg	0.17 0.018 0.015 0.014	0.58 0.056 0.047 0.045	1 1 1 1	5021 6010B GRO95/8021 GRO95/8021 GRO95/8021	11/22/2019 N 12/10/2019 C 12/5/2019 C 12/5/2019 C	NJC I EWT 1 EJR I EJR I EJR I
Sample Matrix Sample Date General General Solids Percent Inorganic Metals Lead, Total Organic PVOC + Naphr Benzene Ethylbenzene Methyl tert-butyl eth	Soil 11/20/2019 thalene	79.8 33.2 2.7 16.1 < 0.025 4.0	% mg/kg mg/kg mg/kg mg/kg	0.17 0.018 0.015 0.014 0.025	0.58 0.056 0.047 0.045 0.01	1 1 1 1 1	5021 6010B GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	11/22/2019 N 12/10/2019 C 12/5/2019 C 12/5/2019 C 12/5/2019 C	NJC I CWT I CJR I CJR I CJR I CJR I
Sample Matrix Sample Date General General Solids Percent Inorganic Metals Lead, Total Organic PVOC + Naphi Benzene Ethylbenzene Methyl tert-butyl eth Naphthalene Toluene	Soil 11/20/2019 thalene ter (MTBE)	79.8 33.2 2.7 16.1 <0.025 4.0 37	% mg/kg mg/kg mg/kg mg/kg mg/kg	0.17 0.018 0.015 0.014 0.025 0.013	0.58 0.056 0.047 0.045 0.01 0.055	1 1 1 1 1	5021 6010B GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	11/22/2019 N 12/10/2019 C 12/5/2019 C 12/5/2019 C 12/5/2019 C 12/5/2019 C	NJC I EWT I CJR I CJR I CJR I CJR I CJR I
Sample Matrix Sample Date General General Solids Percent Inorganic Metals Lead, Total Organic PVOC + Naphr Benzene Ethylbenzene Methyl tert-butyl eth Naphthalene Toluene 1,2,4-Trimethylbenz	Soil 11/20/2019 thalene ter (MTBE)	79.8 33.2 2.7 16.1	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.17 0.018 0.015 0.014 0.025 0.013 0.015	0.58 0.056 0.047 0.045 0.01 0.055 0.048	1 1 1 1 1 1	5021 6010B GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	11/22/2019 N 12/10/2019 C 12/5/2019 C 12/5/2019 C 12/5/2019 C 12/5/2019 C 12/5/2019 C	NJC I EWT I CJR I CJR I CJR I CJR I CJR I CJR I
Sample Matrix Sample Date General General Solids Percent Inorganic Metals Lead, Total Organic PVOC + Naphi Benzene Ethylbenzene Methyl tert-butyl eth Naphthalene Toluene	Soil 11/20/2019 thalene ter (MTBE)	79.8 33.2 2.7 16.1 <0.025 4.0 37 35 11.3	% mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.17 0.018 0.015 0.014 0.025 0.013 0.015 0.011	0.58 0.056 0.047 0.045 0.01 0.055 0.048 0.036	1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	11/22/2019 N 12/10/2019 C 12/5/2019 C 12/5/2019 C 12/5/2019 C 12/5/2019 C 12/5/2019 C 12/5/2019 C	NJC I EWT 1 CJR I
General General Solids Percent Inorganic Metals Lead, Total Organic PVOC + Naphi Benzene Ethylbenzene Methyl tert-butyl eth Naphthalene Toluene 1,2,4-Trimethylbenz 1,3,5-Trimethylbenz	Soil 11/20/2019 thalene ter (MTBE)	79.8 33.2 2.7 16.1	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.17 0.018 0.015 0.014 0.025 0.013 0.015	0.58 0.056 0.047 0.045 0.01 0.055 0.048	1 1 1 1 1 1 1	5021 6010B GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	11/22/2019 N 12/10/2019 C 12/5/2019 C 12/5/2019 C 12/5/2019 C 12/5/2019 C 12/5/2019 C 12/5/2019 C 12/5/2019 C	NJC I EWT I CJR I CJR I CJR I CJR I CJR I CJR I

Project #

Lab Code 5037176V Sample ID TW-1 Sample Matrix Water Sample Date 11/20/2019

	Result	Unit	LOD I	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PVOC + Naphthalene										
Benzene	2100	ug/l	16	51	50	GRO95/80)21	11/27/2019	CJR	1
Ethylbenzene	1230	ug/l	14.5	47	50	GRO95/80)21	11/27/2019	CJR	1
Methyl tert-butyl ether (MTBE)	< 12	ug/l	12	39	50	GRO95/80)21	11/27/2019	CJR	1
Naphthalene	970	ug/l	65	205	50	GRO95/80	021	11/27/2019	CJR	1
Toluene	7300	ug/l	14.5	46.5	50	GRO95/80)21	11/27/2019	CJR	1
1,2,4-Trimethylbenzene	7000-	ug/l	23	73	50	GRO95/80	021	11/27/2019	CJR	1
1,3,5-Trimethylbenzene	2380	ug/l	33.5	107.5	50	GRO95/80	021	11/27/2019	CJR	1
m&p-Xylene	13700	ug/l	26	83.5	50	GRO95/80	021	11/27/2019	CJR	1
o-Xylene	6100	ug/l	35	112	50	GRO95/80	21	11/27/2019	CJR	1

[&]quot;J" Flag: Analyte detected between LOD and LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

Code	Comment
1	Laboratory QC within limits.
49	Sample diluted to compensate for matrix interference.
	CWT denotes sub contract lab - Certification #445126660

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Muchaelylal

Authorized Signature

APPENDIX D SOIL AND GROUNDWATER DISPOSAL DOCUMENTATION

1

Material Analysis Report by Material

Inbound and outbound materials for the period 11/01/2019 - 12/02/2019

Summary Report for Sites: 1, 2, 99

Accounts 50069 - 50069 Customer Types - Z Materials - ZZZZZZZZZ Material Types

Date Material Type	Customer Type	Tickets	Count	Est. vol.	Act. Vol.	Est. Wt. A	ctual Wt.	Charge
(Speaker)	Total Average	26	0	0	0	(658.10) 25.31	658.10 25.31	15,794.40 - (Speake)
(Lutzen)	Total Average	21	0	0	0 0	$\binom{531.68}{25.32}$	531.68 25.32	15,950.40 (Lutzen) 759.54
PERMITB	Total Average	9	9 1	0	0	0.00	0.00	225.00 25.00
,	Report To Report Av		9	0	0	1189.78 21.25	1189.78 21.25	31,969.80 570.89

La Crosse County Solid Waste

3200 Berlin Drive La Crosse, WI 54601 Phone: (608) 785-9572

INVOICE

Acco	ount#	
50	069	
Invo	Ice#	
13	760	
Invoice Date	Terms	
11/30/2019	Net EOM	
Current Charges	Total Due	
\$ 31,969.80	\$ 31,969.80	

total 31,744,80

Bill To: General Engineering Company

916 Silver Lake Drive Portage, WI 53901

Date	Ticket	Truck	Reference	Description	Quantity	Amount
Duto	Honor			Previous Balance		0.00
11/18/19	01-00043086	SW1019-03	151	ADC Petro Impacted S	27.25	654.00
11/18/19	01-00043086	SW1019-03	151	Permit 3 Day	1.00	25:00
1/18/19	01-00043091	SW1019-03A	110	ADC Petro Impacted S	25.69	616.56
1/18/19	01-00043091	SW1019-03A	110	Permit 3 Day	1.00	25.00 ء
1/18/19	01-00043098	SW1019-03	112	ADC Petro Impacted S	26.16	627.84
11/18/19	01-00043098	SW1019-03	112	Permit 3 Day	1.00	. 25.00
11/18/19	01-00043099	SW1019-03A	19-01	ADC Petro Impacted S	20.60	494.40
11/18/19		SW1019-03A	19-01	Permit 3 Day	1.00	- 25.00
11/18/19	01-00043100	SW1019-03B	8	ADC Petro Impacted S	21.37	512.88
1/18/19	01-00043100	SW1019-03B	8	Permit 3 Day	1.00	-25.00
11/18/19		SW1019-03C	109	ADC Petro Impacted S	25.62	614.88
1/18/19		SW1019-03C	109	Permit 3 Day	1.00	- 25.00
11/18/19	01-00043104	SW1019-03D	113	ADC Petro Impacted S	25.70	616.80
1/18/19	01-00043104	SW1019-03D	113	Permit 3 Day	1.00	25.00
11/18/19		SW1019-03	104	ADC Petro Impacted S	23.00	552.00
11/18/19	01-00043115	SW1019-03	104	Permit 3 Day	1.00	- 25.00
1/18/19		SW1019-03A	115	ADC Petro Impacted S	24.52	588.48
1/18/19	0 1 000 10	SW1019-03A	115	Permit 3 Day	1.00	- 25.00
1/18/19		SW1019-03	110	ADC Petro Impacted S	29.09	698.16
1/18/19	01-00043193	SW1019-03A	19-01	ADC Petro Impacted S	24.74	593.76
1/18/19		SW1019-03B	109	ADC Petro Impacted S	25.82	619.68
11/18/19	01-00043213	SW1019-03	113	ADC Petro Impacted S	27.01	648.24
11/19/19	01-00043221	SW1019-03	112	ADC Petro Impacted S	25.62	614.88
11/19/19		SW1019-03A	115	ADC Petro Impacted S	24.89	597.36
1/19/19		SW1019-03B	8	ADC Petro Impacted S	25.24	605.76
1/19/19	01-00043253	SW1019-03C	104	ADC Petro Impacted S	25.75	618.00
1/19/19	01-00043263	SW1019-03	151	ADC Petro Impacted S	26.97	647.28
	01-00043273		19-01	ADC Petro Impacted S	22.13	531.12
1/19/19 1/19/19	01-00043275	SW1019-03A	109	ADC Petro Impacted S	27.11	650.64
	01-00043275	SW1019-03B	113	ADC Petro Impacted S	25.29	606.96
1/19/19	01-00043285		110	ADC Petro Impacted S	24.59	590.16
1/19/19	01-00043285	SW1019-03	112	ADC Petro Impacted S	28.24	677.76
11/19/19	01-00043327	SW1019-03A	115	ADC Petro Impacted S	27.11	650.64
1/19/19	01-00043330	SW1019-03A	104	ADC Petro Impacted S	23.87	572.88
1/19/19		SW1019-03C	8	ADC Petro Impacted S	24.72	593.28
1/19/19	01-00043337	SW1019-03C	151	Biopile Pet Impact S	28.61	858.30
11/19/19	01-00043354	SW1019-02A	109	Biopile Pet Impact S	26.13	783.90
11/19/19	01-00043365	SW1019-02A	19-01	Biopile Pet Impact S	22.89	686.70
11/19/19	01-00043368	SW1019-02A	113	Biopile Pet Impact S	25.57	767.10
1/19/19	01-00043374	0 VV 10 19-02A	1'''	p		

Usb - 5 9 4

La Crosse County Solid Waste Invoice

Account #: Invoice #:

50069 1760

Total Due:

31,969.80

Date	Ticket	Truck	Reference	Description	Quantity	Amount
11/19/19 0: 11/20/19 0: 11/20/19 0: 11/20/19 0: 11/20/19 0: 11/20/19 0: 11/20/19 0: 11/20/19 0: 11/20/19 0: 11/20/19 0: 11/20/19 0: 11/20/19 0: 11/20/19 0: 11/20/19 0: 11/20/19 0: 11/20/19 0: 11/20/19 0:	11-00043379 11-00043419 11-00043420 11-00043421 11-00043437 11-00043446 11-00043451 11-00043452 11-00043499 11-00043507 11-00043531 11-00043542	SW1019-02 SW1019-02 SW1019-02A SW1019-02B SW1019-02 SW1019-02 SW1019-02 SW1019-02 SW1019-02 SW1019-02 SW1019-02 SW1019-02 SW1019-02 SW1019-02 SW1019-02 SW1019-02	110 115 8 104 112 151 19-01 109 113 110 115 104 8 112 151 19-01 109	Biopile Pet Impact S	26.95 27.69 25.18 25.91 28.56 27.68 24.57 24.67 27.53 25.01 22.67 22.68 24.51 24.94 22.21 22.75	808.50 830.70 755.40 777.30 856.80 830.40 737.10 749.10 740.10 825.90 750.30 680.10 680.40 735.30 748.20 666.30 682.50

Net weight:

1,189.78

Invoice amount excluding Finance charge Finance charge

\$ 31,969.80 0.00 \$ 31,969.80

0-29 30 - 59 60 - 89 Over 90 31,969.80 0.00 0.00 0.00

Current charges Payments received Previous Balance Due **Total Amount Due**

0.00 31,969.80

\$

225.06 Page 2 of 2 Peri

0.00

Please reference Account # 50069 and Invoice # 1760 when submitting payment.

APPENDIX E

MONITORING WELL ABANDONMENT FORMS

State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

Route to DNR Bureau:

✓ Verification Only of Fill and Seal	Drinking Water	Watershed/V	Vastewater	X Remediation/Redevelopment		
	Waste Managemer		-/			
1. Well Location Information		2. Facility / Owner In	formation			
County WI Unique Well # of Removed Well	ficap#	SPALP?	Propper	ly		
Latitude / Longitude (see instructions) Format (Code Method Code	Facility ID (FID or PWS)	19.7			
N D	Повелля	10/4				
w 🗆	License/Pednit/Monitoring #					
or Gov't Lot # NW Section 2C Town	nship Range E	Original Well Owner	ppallp-	š.		
	Present Well Dwner					
Well Street Address 6832 5TN 18		Michael	Skaile			
Well City, Village or Town	Well ZIP Code	Mailing Address of Preser				
Town Mt Ida	53809	6037 3	711 18	lou de la		
Subdivision Name	Lot#	City of Present Owner •	φ	State ZIP Code 53809		
Reason for Removal from Service WI Unique Well	# of Replacement Well	4. Pump, Liner, Scree				
Excavation		Pump and piping remov	ved?	Yes No NA		
3. Filled & Sealed Well / Drillhole / Borehole		Liner(s) removed?		Yes No W N/A		
Monitoring vveil	Date (mm/dd/yyyy)	Liner(s) perforated?		Yes No N/A		
Water Well 04/29	2019	Screen removed? Casing left in place?		Yes No N/A		
	on Report is available,	Was casing cut off belo	w surface?	Yes No N/A		
Construction Type:		Did sealing material rise to surface?				
Drilled Driven (Sandpoint)	Dug	Did material settle after 24 hours?				
Other (specify): Geology		If yes, was hole retopped?				
Formation Type:		If bentonite chips were used, were they hydrated with water from a known safe source?				
✓ Unconsolidated Formation ✓ Bedroo	with water from a known safe source? Required Method of Placing Sealing Material					
	iameter (in.)	Conductor Pipe-Gravity Conductor Pipe-Pumped				
17 C	1 2 5	Screened & Poured Other (Evoluin): Fuc A NOVIN				
Lower Drillhole Diameter (in.) Casing D	enth (ft.)	Sealing Materials	٠,٠٠٠	7-1-1-1		
- James Statistics (m.)	7 6	Neat Cement Grout	г	Concrete		
-	13.3	Sand-Cement (Cond	rete) Grout	Bentonite Chips		
Was well annular space grouted?	No Unknown	For Monitoring Wells and		<u> </u>		
If yes, to what depth (feet)? Depth to Water	(feet)	Bentonite Chips				
		Granular Bentonite	-	tonite - Sand Slurry		
5. Material Used to Fill Well / Drillhole		From (ft.) To (ft.)	No Yards Sack	s Sealant or Mix Ratio or		
WILL REMOVED DUCK > Exc	avadien	Surface 17 <	volume (circ	ivido vveigrit		
No Bentonita usol or	ANISSAY	197)				
6. Comments						
o. comments	A CONTRACTOR					
7. Supervision of Work DNR Use Only Name of Particle Pa						
Name of Person or Firm Doing Filling & Sealing License # Date of Filling & Sealing or Verification Date Received Noted By (mm/dd/yyyy)						
Street or Route						
916 5. (ver Luke Drive (608) \$42 2169						
City O State		Signature of Person Doing	Work	Date Signed		
Podesc WI	53901	12-1	\supset	3/13/20		