midwest engineering services, inc.

geotechnical • environmental • materials engineers

205 Wilmont Drive Waukesha, WI 53189-7959 262-521-2125 FAX 262-521-2471 www.midwesteng.com

October 19, 2004

MPL Realty c/o Mr. William Puchner W302 N6015 Spence Road Hartland, WI 53029

Subject: ERP Site Assessment Report

Former Wire and Metal Specialties 4021 South Kinnickinnic Avenue

St. Francis, Wisconsin MES Project No. 7-21058-2 BRRTS #: 02-41-184461

FID #: 241039920

Dear Mr. Puchner,

In accordance with your request, Midwest Engineering Services, Inc. (MES) has completed an Environmental Repair Program (ERP) Site Assessment at the above referenced property. Two (2) copies of the report summarizing the activities and test results are enclosed.

Should you have any questions regarding the contents of this report, or if we could be of any further assistance on this or other projects, please call at any time. Midwest Engineering appreciates the opportunity to be of service.

Very truly yours,

MIDWEST ENGINEERING SERVICES, INC.

Michael W. Rehfeldt

Project Geologist

Patrick J. Patterson, P.E., P.G.

Department Mánager Environmental Services

James M. Becco, P.E.

Region Manager

cc: Mr. Andrew Boettcher (WDNR - Southeast Region)

ERP SITE ASSESSMENT REPORT

Former Wire and Metal Specialties
4021 South Kinnickinnic Avenue
St. Francis, Wisconsin

Prepared for
MPL Realty
W302 N6015 Spence Road
Hartland, Wisconsin 53029

MES Project No. 7-21058-2 October 19, 2004

T	'ABI	_E	0	F	C	0	N	T	EI	V	T	S	

	<u>PAGE</u>
INTRODUCTION General Purpose Scope Authorization	1
SITE LOCATION AND DESCRIPTION	2
 PROJECT BACKGROUND Southern Adjacent Property LUST Site Investigation 1996 Phase I and Limited Phase II Environmental Site Assessments 1999 Phase I Environmental Site Assessment 1999 Limited Phase II Environmental Site Assessment 1999 Site Investigation 2000 Additional Site Investigation Activities 2002 Environmental Records Review 	3
 EXPLORATION AND FIELD PROCEDURES Scope Summary Field Exploration Equipment Cleaning Procedures Field Volatile Vapor Emission Screening Soil Analysis Monitoring Well and Piezometer Installation Well and Piezometer Development Groundwater Sampling Ground Surface and Groundwater Well Elevations 	9
 DESCRIPTION OF SUBSURFACE CONDITIONS General Soil Conditions Groundwater Observations USGS Water-Table Map Of Milwaukee County 	12
 FIELD AND ANALYTICAL TESTING Field Volatile Vapor Emission Screening NR746 Risk Screening Criteria for Closure NR720 Generic Soil RCLs Laboratory Soil Analysis Results Groundwater Quality Standards Laboratory Groundwater Analysis Results 	14

TABLE OF CONTENTS (Continued)

	<u>PAGE</u>
 CONCLUSIONS Chlorinated Solvent Affected Soil and Groundwater Petroleum Affected Soil and Groundwater 	17
RECOMMENDATIONS	19
GENERAL COMMENTS	20
Appendix	
 Figure 1: Site Location Map (1) Figure 2: Site and Surrounding Property Features Diagram (1) Figure 3: Soil Boring and Groundwater Monitoring Well Locations (1) Figure 4: Approximate Extent of Chlorinated Solvent Affected Soils (1) Figure 5: Approximate Extent of Groundwater Affected above NR140	

INTRODUCTION

General

This report presents the findings and conclusions of the ERP Site Assessment (Assessment) performed at the property located at 4021 South Kinnickinnic Avenue, in the City of St. Francis, Wisconsin. This Assessment was performed for MPL Realty (MPL), at the request and authorization of Mr. William Puchner (MPL) and Mr. Andrew Morris (MPL).

Purpose

The purpose of this ERP Site Assessment was to further evaluate the nature and extent of affected soil and groundwater within the subject property (and beyond, as necessary). The affected soil and groundwater was previously identified during subsurface exploration and investigative activities performed and reported by Key Engineering Group, Inc. (Key) and HSI GeoTrans, Inc. (HSI).

<u>Scope</u>

The scope of services for this Site Assessment included the performance of six (6) soil borings, the installation of two (2) groundwater monitoring wells and one (1) piezometer on the subject property, and the performance of two (2) soil borings and installation of one (1) groundwater monitoring well on a neighboring vacant lot owned by WE Energies (WE). The services also included field screening of the soil samples obtained from the borings; laboratory analysis of selected soil samples and groundwater samples; an analysis of the data obtained; and the preparation of this report. This Site Assessment was structured specifically to address the presence of constituents, which were previously encountered on these properties. It is not intended to be, nor should it be construed as, an all-inclusive search for hazardous substances. The soil and groundwater samples were obtained and analyzed in general accordance with WDNR guidelines existing at the time.

<u>Authorization</u>

Authorization to perform this Site Assessment was in the form of a signed acceptance copy of MES Proposal No. 7-2239, signed on June 19, 2002, and the extended scope and cost estimate dated February 3, 2004, signed on February 15,2004. The general conditions for the performance of the work were referenced in the proposal and subsequent extended scope and cost estimate. This Site Assessment report has been prepared on behalf of, and exclusively for the use of MPL Realty. The information contained in this Site Assessment report may not be relied upon by any other party without the express written consent of MES and MPL Realty, and acceptance by such parties of MES' General Conditions.

SITE LOCATION AND DESCRIPTION

The subject site is the former Wire and Metal Specialties Company property, located at 4021 South Kinnickinnic, in St. Francis, Wisconsin. The site is currently owned by MPL Realty Property (MPL) and occupied by the Badger Plating Company (Badger). It is situated within the Northeast ¼ of the Northeast ¼ of Section 22, Township 6 North, and Range 22 East of Milwaukee County. The location of the subject site is indicated on the attached Figure 1, and in the enclosed environmental reports.

The subject site is currently occupied by a 15,171 square foot, slab-on-grade structure that is occupied and utilized by Badger Plating Company for the assembly and storage of metal parts and components. It is understood that no metal plating activities are performed at the subject site. In addition, the property is zoned M1 (light manufacturing) which does not allow for metal plating operations. The primary activities performed at the subject site are buffing, storage and assembly of metal parts. It is understood that the current tenant (Badger) intends to purchase the property, and the intended future use and zoning of the site will remain unchanged. The site and surrounding properties are serviced with natural gas and electric utilities, and municipal water and wastewater systems. No known storage tanks for petroleum products or chlorinated solvent products are currently present within the subject site.

The topography of the subject site appears relatively level. As indicated on Figure 1, the ground surface elevation of the site is approximately 670 feet above mean sea level. Also, as indicated on Figure 2 in the Appendix, the subject site is occupied by the main facility, two storage sheds (slab-on-grade structures), paved driveway and parking lot, and paved loading dock area. A small grass covered area and landscape feature is present within the northeast portion of the site.

No public or private water wells are indicated to be located within 1,000 feet of the site, and no rivers, creeks, ponds, lakes, or wetlands are located nearby. A railroad right-of-way and associated buried signal lines are located immediately adjacent to the west of the subject property. Other utilities located within the area of the railroad right-of-way include: buried high-pressure natural gas pipeline, buried communications cable, and tower mounted high power electric lines. This adjoining railroad and utility right-of-way is also moderately wooded and overgrown with vegetation, and is generally inaccessible to standard vehicles.

The northern adjoining property (at 4005 South Kinnickinnic Avenue) is currently zoned M-1, however, the property is occupied by an apparent single-family residence and garage. Additionally, the current occupant utilizes the property for vehicle storage and appears to use the garage for vehicle maintenance activities. The garage and vehicles are located about five to ten feet beyond the northwest portion of the subject site. South Kinnickinnic Avenue is located immediately adjacent to the east of the site. A Citgo service station (and former LUST site) is located immediately adjacent to the south, at 4045 South Kinnickinnic Avenue.

Based on a review of a recent property survey map of the subject site, the existing north property boundary of the subject site extends approximately 5 feet beyond the existing building. Also, the west property boundary line is located about 2 feet beyond the west wall of the building. It should be recognized that the west side of the subject and the adjoining railroad right-of-way property is wooded and slopes down steeply about 10 to 12 feet towards a drainage ditch and utility right-of-way corridor. Also, the opposite side of the drainage ditch and utility corridor slopes steeply up about 10 to 15 feet to the railroad track bed.

Access to this western adjoining railroad right-of-way property to perform any additional soil or groundwater sampling (if deemed necessary) is not possible with standard subsurface exploration equipment. In addition, a request to access this property to perform any additional exploration (if necessary) was submitted to the railroad owner (Union Pacific). However, Union Pacific's requirements for access approval included a substantial financial commitment (beyond the total cost of any likely project work) and an adverse liability risk exposure. As such, access to the railroad right-of-way was not performed during this Assessment.

During the Assessment activities reported herein, MES was able to access the northern portion of the subject site. However, access with standard subsurface exploration equipment was substantially limited, and it was necessary for MES to negotiate approval for limited access rights onto the northern adjacent property in order to access the north portion of the subject site.

PROJECT BACKGROUND

Southern Adjacent Property LUST Site Investigation

An existing Citgo service station, located immediately adjacent to the south of the subject property, is the site of the former Badger Tire and Auto (BTA) gas station, which is listed in the WDNR LUST database as a LUST case. The WDNR approved closure of this LUST site in January 1998. The WDNR activity number for this LUST site is 03-41-002088, and the WDNR FID number is 241781870.

Based on an MES review of WDNR records, it is understood that the owner of the BTA site contracted K. Singh & Associates, Inc. (KSA) in 1992 to provide environmental consulting services for the LUST site activities. According to the reviewed KSA reports, the BTA site appears to have been the source of subsurface petroleum impacts that migrated northward from the BTA site onto the southern portion of the subject Wire and Metal Specialties site. From 1993 to 1998, KSA reported the groundwater flow direction to have been towards the north (and towards the subject site). On this basis, groundwater flow was indicated by KSA to be the primary transport mechanism by which petroleum impacts migrated onto the subject site.

As part of the previous BTA site remediation activities conducted by KSA, an area was excavated from within the south and southeast portions of the subject site (former Wire and Metal Specialties) to a depth of about 15 to 16 feet. This remedial excavation area was approximately 50 feet wide and extended about 60 feet onto the subject site. KSA estimated that approximately 950 tons of affected soil were removed from this excavation area and disposed at a landfill (uncontaminated soils were separated and replaced). KSA also reported that eight soil confirmation samples were collected from the excavation area and laboratory analysis indicated that seven of these samples were found to contain residual petroleum compounds. Three of these samples contained benzene concentrations that exceeded the residual contaminant level (RCL) for soil established by the Wisconsin Department of Natural Resources (WDNR) NR720. In general, the sample locations that exceed the benzene RCL were along the north and west sidewalls, and from base of the excavation. Further excavation activities were not performed on the subject site due to the proximity of the structural footings and foundations of the existing storage sheds.

Two (2) groundwater monitoring wells (MW-7 and MW-8) were installed on the subject site by KSA as part of the former BTA site investigation activities. Well MW-7 is positioned closest to the northern extent of the previous remedial soil excavation area. MW-8 was formerly located in a grass covered area on the northeast portion of the subject site. However, MW-8 is no longer present and a landscape feature is present over the former location. The location of MW-7 is indicated on Figure 2 in the Appendix. The former location of MW-8 was in the general vicinity of the recently installed MW-11, indicated on Figure 2.

KSA reports indicate that groundwater was sampled from MW-7 and MW-8 between 1993 and 1998. Benzene concentrations detected at well MW-7 during these samplings have previously exceeded the WDNR Preventive Action Limit (PAL) and Enforcement Standard (ES) established under NR140. However, subsequent sample analyses performed from June 2000 through August 2004 indicated no detectable benzene concentrations at MW-7. Additionally, from 1995 to 2000, no significant VOC concentrations were reported within samples collected from the former MW-8.

VOC analysis of groundwater samples from these wells was performed by other consultants from 1999 to 2000, and by MES from 2002 to 2004. The laboratory analyses results are presented in following sections of this report. In addition, groundwater analysis results are summarized on Table 1, located in the Appendix.

1996 Phase I and Limited Phase II Environmental Site Assessments

In 1996, Key Environmental Group, Ltd. (KEY) was contracted by a prospective buyer to perform a Phase I Environmental Site Assessment (ESA) of the subject Wire and Metal Specialties site. The results of the Phase I ESA identified an apparent spill within the southwest portion of the property. As a result, KEY performed a limited Phase II ESA in the vicinity of the apparent spill. KEY reported that laboratory analysis of soil samples indicated that an area of soils was impacted with volatile organic compounds (VOCs). KEY reported

that the VOCs were representative of constituents that are typically associated with both chlorinated solvents and petroleum products.

In February 1998, KEY coordinated remedial actions to remove the chlorinated solvent affected soils. In a KEY report to the WDNR titled, "Notification of Spill and Case Closure Request", dated March 26, 1998, it was indicated that a total of approximately 13 tons of impacted soil was excavated and removed from the subject site to a depth of about 5.5 feet below ground surface (bgs). KEY indicated that the relatively shallow depth of the soil impact suggested that groundwater (identified by KEY as being approximately 8 to 9 feet bgs) had not likely been impacted by this spill. As such, the WDNR issued a site closure letter for this spill site on October 29, 1998. The approximate location and extent of the spill and excavation area is indicated on Figure 2, located in the Appendix.

1999 Phase I Environmental Site Assessment

In 1999, KEY was contracted by another prospective purchaser to perform another Phase I ESA at the subject site and to re-evaluate the previously mentioned environmental conditions on and near the subject site. According to KEY's 1999 Phase I ESA report, chlorinated solvents were used on the site to clean fabricated metal parts, and the waste solvent material was then collected for off-site disposal. In addition, KEY concluded the subject site had been impacted by contaminants from the apparent spill (discussed in the previous section of this report), and from the previously mentioned southern adjacent LUST site. KEY reported that the on-site spill had been successfully remediated. KEY also reported that residual petroleum affected soil and groundwater (from the BTA site) remained on-site and contained benzene at levels above the WDNR NR720Residual Contaminant Level (RCL) of 5.5 micrograms per kilogram (ug/kg). It was KEY's opinion that the residual soil and groundwater impacts were related to contaminant migration onto the site from the southern adjacent property via groundwater.

1999 Limited Phase II Environmental Site Assessment

Based on the results of the January 1999 Phase I ESA, in March 1999 KEY performed a limited Phase II ESA to evaluate the potential for residual subsurface impacts at the subject site. This limited Phase II ESA included the performance of four soil probes, collection of selected soil samples, laboratory chemical analysis of the soil samples, and evaluation of the data. Additionally, groundwater samples were collected from the existing on-site monitoring well MW-7.

The laboratory results of soil samples collected from the site indicated the presence of VOCs that are typically associated with petroleum and chlorinated solvent products in two of the four samples. The detected VOC concentrations were below State standards, where established at the time.

The analytical results of a groundwater sample from MW-7 indicated that Benzene and chlorinated VOCs were detected in this well. The detected concentration of benzene and

Trichloroethane (TCE) exceeded their respective NR140 Enforcement Standard (ES). The detected concentrations of 1,2-Dichloroethane (DCA), 1,1-Dichloroethene (DCE), and 1,1,1-Trichloroethane (TCA) exceeded their respective NR140 Preventive Action Limits (PALs). KEY concluded that chlorinated solvent constituents found in the groundwater were generally consistent with those detected in on-site soils and known to be historically used at the site. KEY recommended that additional exploration be performed to evaluate and define the extent of the chlorinated compounds.

1999 Site Investigation

In July 1999, HSI GeoTrans, Inc. (HSI) was contracted by MPL Realty Property to further define the nature and extent of the reported VOC impacts to both soil and groundwater at the site. The site investigation consisted of advancing 20 soil probe borings (GP1 through GP-20) across the site and the installation and sampling of two new monitoring wells (MW-101 and MW-102). These activities are described in an HSI report dated September 9, 1999. Also, the locations of these boreholes and wells are indicated on the HSI Figure 2-2 (dated 9/7/99), located in the Appendix.

HSI reported that the analytical results of soil samples indicated the detected VOC constituents in soil were associated with chlorinated solvents. The results indicated that 1,1,1-TCA, Tetrachloroethene (PCE) and TCE were the primary constituents that were detected, in concentrations ranging up to 5,100 ug/kg, 13,100 ug/kg (PCE), and 29,000 ug/kg (TCE). The approximate lateral extent of soils affected by PCE, TCE and 1,1,1-TCA is indicated on HSI Figures 5-1, 5-2 and 5-3 (respectively), located in the Appendix. Additionally, HSI reported that the breakdown products of these compounds (Dichloroethanes [DCA] and Dichloroethanes [DCE]) were also present at comparatively lower concentrations in some samples. Also, some residual petroleum related compounds were detected at relatively low concentrations in samples collected from GP-1, GP-7, GP-15, GP-16, GP-19, and GP-20. Each of these six boreholes were located near or below a shed located within the south portion of the site (near the former LUST site excavation associated with the BTA site).

HSI reported that the laboratory results indicated only one soil sample contained compounds that exceeded an established NR720 RCL for VOCs. This sample was collected from GP-20 (8 to 10 foot interval), where 1,2-DCA (a former gasoline additive) was detected at a level which exceeded its RCL of 4.9 ug/kg.

Based on the analytical results, HSI indicated that the greatest VOC concentrations detected in soils were located within the southwest portion of the site, between the main building and the two sheds. The primary zone of impacted soil was detected from 0 to 6 feet bgs.

Additional soil samples were collected at GP-20 from interval depths of 0-2 feet, 8-10 feet, and 18-20 feet to further evaluate the vertical extent of the affected area. The greatest VOC concentrations in the sample collected from GP-20 were detected at a depth of 8 to 10 feet (40 ug/kg of 1,1-DCA and 160 ug/kg of 1,1,1-TCA).

During this site investigation, HSI installed two new temporary monitoring wells (MW-101 and MW-102) and collected groundwater samples from these two new wells and the previously existing MW-7 and MW-8. MW-101 was installed at a downgradient location, and MW-102 was located within the affected soil zone. The laboratory analysis results of the groundwater samples indicated the presence of both chlorinated solvent and petroleum VOC constituents within water samples collected from the site. Detected concentrations of benzene (at MW-102) and TCE (at MW-7 and MW-102) exceeded their established WDNR NR140 ESs. Also, at MW-7 and MW-102, detected concentrations of 1,2-DCA, 1,1-DCE, PCE, 1,1,1-TCA and naphthalene exceeded their PALs. HSI reported that the apparent shallow groundwater flow within the area of the site was initially in an easterly direction, however, subsequent monitoring indicated a north to northwest flow direction.

2000 Additional Site Investigation Activities

In 2000, HSI expanded the scope of previous investigative activities at the subject site to include additional soil probe sampling, installation of two additional monitoring wells (MW-103 and MW-104), and soil and groundwater sample collection and analysis. MW-103 was installed in a sidegradient location, and MW-104 was located downgradient. These activities are described in an HSI report dated November 13, 2000. Also, the locations of these boreholes and wells are indicated on the HSI Figure 2-2 (dated 11-9-00), located in the Appendix.

The depth at which groundwater was encountered varied across the site from about 8 to 10 feet bgs. Although HSI indicated that the observed shallow groundwater flow beneath the site at that time was towards the west-northwest, previous observations indicated an easterly groundwater flow direction. On this basis, HSI suggested that there are likely some seasonal fluctuations present in the near surface groundwater flow conditions. No significant expansion of the plume was apparent at that time, and it appeared likely that the presence of the existing building and paved surface over most of the site area had served as an effective impermeable barrier cap to reduce surface water infiltration.

According to HSI, the primary area of affected soil at the subject site is situated within the southwest portion of the site, extending from near the ground surface to approximately 8 feet bgs. It is located in an area that extends from beneath the metal sheds to beneath the southern portion of the facility. HSI indicated that the greatest VOC concentrations in soil were detected beneath the asphalt paved area between the metal sheds and the main building. Also, a secondary area of chlorinated solvent related impact to soil was detected in an area located approximately 20 feet north of the primary area of impact, situated beneath the west-central portion of the main building. This is reported to be in the general vicinity of a former degreaser operation.

2002 Environmental Records Review

In 2002, MPL Realty contracted MES to perform a review of the environmental records (summarized in the previous sections) for the past activities at the subject site. It is

understood that, at that time, MPL believed that the regulatory status of the subject site was considered by the WDNR to be an unresolved, or "open" Environmental Repair Program (ERP) case. In addition, it is understood that a proposed property transaction with the current tenant was contingent on the resolution of the previously reported environmental concerns and the WDNR providing closure of the ERP case. As such, MPL requested MES to review the previous records, collect and analyze groundwater samples from the previously existing monitoring wells at the subject site, and provide recommendations to achieve WDNR closure of the ERP case.

Based on the reviewed reports from KSA, KEY, HSI and the available WDNR records, it was apparent that the WDNR opened an ERP case for the subject site on March 1, 1998. This ERP case was opened based on the presence of chlorinated solvent contaminated shallow soils that were encountered within the southwest portion of the property in 1996 and 1997, and reported to the WDNR in 1998. These shallow chlorinated contaminated soils were reportedly excavated and removed from the subject site in February 1998. In a letter dated October 29, 1998, the WDNR closed the ERP case at the subject site with no further action required. At the time of MES's record review, no additional WDNR information was available regarding the status or activities at the subject site after October 29,1998.

Considering the apparent lack of WDNR records after October 1998, MES contacted a WDNR representative (Mr. Andrew Boettcher). According to Mr. Boettcher, no reports or correspondence regarding the subsurface assessment and site investigation activities performed at the subject site after October 1998 were submitted to the WDNR. As such, at that time, the WDNR was not aware of the activities performed in 1999 and 2000, and the status of the ERP case for subject site at that time remained closed with no further action required. MPL was informed of the WDNR status, and considering that the proposed property transaction was contingent on the resolution of the environmental concerns at the subject site, MPL directed MES to provide the 1999 and 2000 reports to the WDNR, and requested that the WDNR re-open the ERP case in order to review the previous findings and then consider the ERP case for closure.

On October 7, 2002, MES provided the WDNR with a letter report titled, "Supplemental ERP – Spill Case Closure Review" (MES Project No. 7-21058). Copies of the previous KEY and HSI reports were attached. Subsequently, the WDNR opened the ERP case, reviewed the reports, and requested that additional rounds of groundwater monitoring and sample analysis be performed to further evaluate the current subsurface conditions. Also, the WDNR requested that additional groundwater monitoring wells and piezometers be installed and sampled to further evaluate the northern and western extent of chlorinated compounds in the groundwater. The field and laboratory procedures and results of these ERP Site Assessment activities are described in the following sections of this report.

EXPLORATION AND FIELD PROCEDURES

Scope Summary

A total of four (4) soil borings were performed on the subject property (designated B-1 through B-4), and two (2) soil borings were performed on a neighboring vacant lot located north of the subject site (designated B-5 and B-6). Soil borings B-1, B-2 and B-3 were converted to groundwater monitoring wells (designated MW-9, MW-10 and MW-11, respectively), and boring B-4 was converted to a groundwater monitoring piezometer (PZ-1). Also, boring B-5 performed on the neighboring northern vacant lot, was converted to a groundwater monitoring well (MW-12). Soil boring B-6 was planned to be converted to a piezometer (designated as PZ-2), and was located near ("nested" with) groundwater monitoring well MW-12 (B-5). However, no groundwater was encountered at the location of B-6 (PZ-2), and the boring was properly abandoned upon completion. These borings, wells and piezometer were installed to obtain the field and laboratory data utilized in the analysis and evaluation of the groundwater conditions in the vicinity of the subject site. The locations and depths of the wells and piezometer were generally based upon information from previous borings and wells completed by KEY and HSI, and the additional groundwater information requested by the WDNR.

Considering the previously reported information regarding the soil conditions at the subject site, the borings for MW-9, MW-10 and MW-12 were advanced without collection of soil samples in order to expedite the construction of the monitoring wells. However, at boring locations for MW-11(B-3), PZ-1(B-4) and PZ-2(B-6) soil samples were secured at continuous intervals by split-spoon sampling methods and screened in the field with a Photoionization Detector (PID) for indications of the presence of volatile organic vapor emissions. Companion soil samples were obtained and submitted to a laboratory for analysis to document the observed soil conditions. Based upon the previous analytical test results of soil samples, the selected soil samples collected during this Assessment were subjected to analysis for the presence of VOCs. Additionally, MES re-developed three (3) previously existing groundwater monitoring wells at the subject site (designated MW-7, MW-102 and MW-103), and developed the recently installed wells and piezometer. Subsequently, groundwater samples were collected from each of these wells and piezometer, and submitted to a laboratory for analysis of VOCs.

Field Exploration

The six (6) borings were completed during separate phases of this Assessment performed on August 7, 2003, January 8, 2004, February 26, 2004 and July 26, 2004. In general, most of the borings were completed to depths of 15 to 19 feet below ground surface (bgs), and piezometer PZ-1 was completed at 27 feet bgs. However, B-6 (PZ-2) located on the vacant WE Energies lot to the north of the subject property was terminated at approximately 45 feet bgs, due to the lack of a groundwater aquifer encountered in clay soils 30 feet below the depth of MW-12 (B-5). Three (3) groundwater monitoring wells were installed at the subject site in boring locations B-1, B-2 and B-3, and one (1) piezometer was installed on the subject site in B-4. Also, one (1) groundwater monitoring well was installed on a vacant WE Energies

property, located about 100 feet northwest of the subject property. The locations are shown on Figures 2 and 3 located in the Appendix.

The borings were performed by Midwest Engineering Associates, Inc. (MES), of Waukesha, Wisconsin, utilizing a truck or track-mounted rig to advance the holes. Where necessary, soil representative samples were obtained by split-spoon method continuously to the completion depth of the borings. All soil samples were visually classified in general accordance with the Unified Soil Classification System (ASTM D-2488-75). The monitoring wells were also installed by MES with a truck or track-mounted drilling rig utilizing 4½-inch I.D. hollow stem augers to advance the boreholes.

Equipment Cleaning Procedures

The sampling tools were cleaned with an Alconox and potable water wash in between each sample interval. The cleaning of the auger was performed with a high pressure, hot water (HPHW) sprayer prior to beginning the field operations, and clean augers were used at each borehole location. These procedures were performed to reduce the potential for cross-contamination between borings and sample locations.

Field Volatile Vapor Emission Screening

Soil samples collected during the drilling activities were screened for volatile organic vapor emissions in the field with an Hnu 11.7 eV Model PI-101 Photoionization Detector (PID). The PID is an electronic instrument that measures the relative concentration of volatile organic vapor emissions in the headspace of a container. The response of the instrument is dependent upon volatility, temperature, and the ionization potential of the compounds measured. The meter serves as one tool in selecting samples for analytical testing and estimating zones of more highly affected soil, as it only gives a relative indication of the presence of volatile vapor emissions. It cannot quantify concentrations of individual compounds.

Each soil sample was placed in a clean jar; the jar was then covered with a foil layer, and sealed with a Teflon cap. Subsequently, the sample was screened with the PID. Prior to the PID screening, the PID was calibrated in the field using Hnu Systems, Inc. span gas. The date of the latest factory calibration of the PID is October 21, 2003. The soil samples were permitted to equilibrate to at least 70 degrees Fahrenheit for a period of at least 15 minutes, based upon the ambient outdoor temperature. The screening was then performed by inserting the probe through the foil seal and measuring the headspace. The results of the vapor emission screening are shown on the individual boring logs, located in the Appendix.

Soil Analysis

The companion soil samples for chemical analyses were selected from the borings based upon visual and olfactory observations, and the PID screenings, to document the encountered

soil conditions. The samples were subjected to laboratory analysis for the presence of Volatile Organic Compounds (VOCs).

The samples for the VOC analyses were weighed in the field with a small digital scale, and approximately 25 to 35 grams of soil were transferred into clean, laboratory prepared jars. The jars for VOC analysis also contained 25 milliliters of methanol preservative. The analytical samples were placed on ice, chain of custody procedures were initiated, and the samples were submitted to Great Lakes Analytical of Oak Creek, Wisconsin.

Monitoring Well and Piezometer Installation

The groundwater monitoring wells and piezometer were installed in general accordance with NR141. The well and piezometer construction consisted of sections of 2 inch diameter, Schedule 40 PVC screen with 0.010 inch factory cut slots, and 2 inch diameter Schedule 40 PVC flush threaded riser pipe extending to ground level (for flush mount cover) or about 3 feet above the ground surface (for stick-up casing). Locking, expandable caps were used to seal the top of the PVC, and steel flush-mount or stick-up protective casings (as appropriate) were placed over the top of the PVC riser pipe, and secured with locks.

Clean coarse sand backfill was utilized as a filter medium around the screened PVC to a level about one foot above the top of the screened section. The sand backfill was placed into the annular space between the auger and PVC during progressive withdrawal of the auger. A one foot layer of fine sand was placed above the sand filter medium. A seal of bentonite chips filled the annular space above the fine sand, and was used to seal the surface around the stick-up covers, and concrete was used around the flush-mount covers. The well construction and other related details are shown on the Monitoring Well Construction Forms (Form 4400-113A), located in Appendix A.

Well and Piezometer Development

The monitoring wells and piezometer were developed after construction by alternately surging and purging with separate disposable Teflon[®] bailers. The well development data and other pertinent details are shown on Well Development Forms 4400-113B, included in Appendix A.

Groundwater Sampling

Subsequent to development, and after allowing the groundwater in the wells to recover, groundwater samples were collected utilizing a separate, single-use disposable Teflon® bailer at each monitoring well and piezometer. The samples for VOC analysis were placed in laboratory prepared 40 milliliter vials containing Hydrochloric Acid preservative. The sample containers were placed on ice and standard chain of custody procedures were utilized. The groundwater samples from the monitoring wells and piezometer were tested by Great Lakes Analytical, of Oak Creek, Wisconsin.

Ground Surface and Groundwater Well Elevations

Ground surface elevations at each of the well locations, and the elevation of the top of each monitoring well PVC riser pipe were determined by MES personnel using conventional leveling techniques. The northern bolt on the bottom flange of the fire hydrant located east of the subject property (across South Kinnickinnic Avenue), was used as a benchmark, with an assigned reference elevation of 100.00 feet. These relative elevations are shown in the Groundwater Observations section of this report.

Groundwater levels in the boreholes were noted during drilling operations when possible, and measurements were taken in the monitoring wells and piezometer prior to development and sampling. The measurements are shown in the Groundwater Observations section of this report, and on the boring logs and well development forms.

DESCRIPTION OF SUBSURFACE CONDITIONS

General

A description of the subsurface conditions encountered at the boring locations is shown on the logs in the Appendix. The lines of demarcation shown on the logs represent an approximate boundary between the various soil classifications, but the transition is likely to be more gradual. It must be recognized that the soil descriptions are considered representative for the specific location, and that variations may occur between and beyond the sampling intervals and boring locations. A summary of the major soil profile components is described in the following paragraphs.

Soil Conditions

The ground surface at the majority of boring locations was generally covered with 2 to 4 inches of topsoil. However, MW-10 (B-2) was installed within a concrete paved walkway (about 6 inches thick) along the west side of the facility. In general, the underlying soils were comprised of approximately 3 to 10 feet (from east to west) of fill and possible fill soils, generally consisting of silt and clayey silt to silty clay, with a little to some sand and gravel. Typically, the underlying natural soils are brownish-gray silty clay to gray clay, with some silt or sand seams, to the termination depth of the boring. However, at PZ-1(B-4), buried topsoil was encountered at about 5-1/2 to 7-1/2 feet bgs, and silty sand and gravel was observed from 25 feet bgs to the termination depth of the boring at 27 feet bgs. Strong to moderate petroleum odors were encountered at PZ-1(B-4) from about 9-1/2 feet bgs to approximately 16-1/2 feet bgs. No obvious petroleum odors were encountered at PZ-1 (B-4) in samples collected from below about 16-1/2 feet bgs. Also, no petroleum or chemical related odors were readily apparent during the performance of the other borings that MES completed.

Groundwater Observations

Water level measurements were obtained at the monitoring wells and piezometer prior to development and subsequent to sampling. These measurements are indicated below:

ELEVATIONS	NAVA / 7	NAVA 402	MM/ 102	MANA/ O	M/M/ 10	D7 1
ELEVATIONS	MW-7	MW-102	MW-103	MW-9	MW-10	PZ-1
Ground Surface	106.28	105.95	106.78	107.24	106.82	107.22
Top of Casing	105.72	105.46	106.64	106.75	106.36	106.67
Top of Screen	95.72	95.46	96.64	96.75	96.36	84.67
Bottom of Screen	91.15	87.72	89.46	87.21	86.81	79.67
Groundwater						
6-27-02	95.38	94.61	97.25	N/A	N/A	N/A
8-14-03	94.74	94.01	96.64	89.35	N/A	N/A
1-20-04	93.98	94.28	96.31	89.10	93.13	N/A
8-3-04	95.64	95.72	97.29	89.68	94.47	88.44

Due to slow groundwater development within MW-11 and MW-12, groundwater measurements are pending at the time of this report, and the results will be provided as an addendum. Based on the available measurements obtained after development and field observations, it appears that the shallow, perched groundwater aquifer at the subject property generally flows towards the west and northwest. The locations of the groundwater monitoring wells and piezometer are indicated on Figure 2 and 3, in the Appendix. It should be noted that groundwater levels and gradients can fluctuate with seasonal precipitation and changes in lateral drainage patterns.

USGS Water-Table Map Of Milwaukee County

Based on a review of the United States Geological Survey (USGS) Water-Table Map of Milwaukee County, dated May 1979, the regional water-table level in the general vicinity of the subject site is approximately 600 to 620 feet above mean sea level. As such, based on the USGS topographic map of the ground surface elevation at the subject site, the regional natural water table in the area of the subject site is approximately 50 to 70 feet below the ground surface elevation in this area. On this basis, it appears that the observed groundwater levels at the subject site are indicative of a shallow, perched aguifer of limited extent.

FIELD AND ANALYTICAL TESTING

Field Volatile Vapor Emission Screening

Selected soil samples from borings MW-11(B-3), PZ-1(B-4) and PZ-2(B-6) were collected during the soil boring activities and screened for volatile organic vapor emissions in the field with an Hnu 11.7 eV Model PI-101 Photoionization Detector (PID). No volatile organic vapor emissions were detected in the samples collected from MW-10 and PZ-2. However, at PZ-1, PID instrument units ranging from 35 to >500 were detected in samples collected from depths between 8 and 16 feet bgs. The results of the vapor screening of the soil samples collected from the borings are shown on the boring logs located in the Appendix.

NR746 Risk Screening Closure Criteria

Chapter 746 of the NR700 series code establishes closure evaluation requirements based on several risk criteria outlined in NR746.06 and COMM 47.337(3). These risk criteria include an evaluation of environmental factors listed in COMM 47.337(3) as follows: (1) documented expansion of the plume margin; (2) verified contaminant concentrations in a private or public potable well that exceeds the preventive action limit; (3) contamination within bedrock or within 1 meter of bedrock; (4) verified free product with a thickness of at least 0.01 feet; and (5) documented contamination discharges to a surface water or wetland. In addition to the above mentioned criteria, the following Soil Screening Levels (SSL) and Direct-Contact Soil Contaminant Concentrations (DCL) for contamination within 4 feet of the ground surface, are considered on sites with residual soil contamination.

Contaminant	<u>SSL</u>	<u>DCL</u>
Benzene 1,2-Dichloroethane Ethylbenzene Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Total Xylenes	8,500 ug/kg 600 ug/kg 4,600 ug/kg 2,700 ug/kg 38,000 ug/kg 83,000 ug/kg 11,000 ug/kg 42,000 ug/kg	1,100 ug/kg 540 ug/kg
-	• •	

ug/kg = micrograms per kilogram

In addition, it is recognized that NR746.07(1)(d) states that sites (such as the subject site) where groundwater contaminant concentrations equal or exceed the ES within permeable material, and which meet the risk screening criteria defined in NR746.06(2), shall be closed upon compliance with any State required deed restriction, deed notice, and/or Geographic Information System (GIS) registry.

WDNR Generic Soil Standards

Chapter 720 of the NR700 series code establishes soil cleanup standards, along with criteria for categorizing sites where releases have occurred. For soils with saturated hydraulic conductivity (k) of greater than 10⁻⁶ cm/sec, typical of the nature of soils observed at the subject site, a GRO or DRO level in soil of 100 milligrams per kilogram (mg/kg) would be utilized. In addition to the GRO/DRO Standard, the WDNR is currently utilizing the following residual contaminant levels (RCL) for the below-listed VOCs in soils:

Benzene	5.5 ug/kg
Toluene	1500 ug/kg
Ethylbenzene	2900 ug/kg
Xylenes	4100 ug/kg

Note:

ug/kg = micrograms per kilogram = parts per billion (ppb)

As currently applied, soils with GRO or DRO levels less than 100 mg/kg, and residual contamination levels below the given RCL concentrations, would not require further action or remediation.

Laboratory Soil Analysis Results

The laboratory analysis results indicated the presence of several petroleum and chlorinated VOCs in the soil samples collected from piezometer borings (PZ-1 and PZ-2) performed for this Assessment. However, only the Total Xylenes concentration of 6,540 micrograms per kilogram (ug/kg) that was detected in the sample collected from 10-12 feet bgs at PZ-1 exceeded the NR720 Generic RCLs. In addition, only the Naphthalene concentration of 10,700 ug/kg detected in the same sample was at a level above the NR746 Soil Screening Level (SSL).

No soil standard is currently established for chlorinated solvent compounds in soil. However, it should be noted that elevated concentrations of the chlorinated compounds PCE and TCE were detected in soil samples collected from PZ-1, at sample depths of 18 to 20 feet and 25 to 27 feet bgs. In general, the detected PCE and TCE concentration levels were substantially below the concentrations that were previously detected within the south and southwest portion of the subject property.

It should be recognized that detected concentrations of Methylene Chloride were indicated on the laboratory report to be characteristic of a laboratory artifact. As such, the Methylene Chloride should not be considered to be present within the soil at the subject site. The results of the laboratory soil analyses are summarized on Tables 2 in the Appendix. Also, the complete laboratory analytical reports and chain-of-custody forms are included in the Appendix.

Groundwater Quality Standards

The Enforcement Standards (ESs) and Preventive Action Limits (PALs) are Groundwater Quality Standards, which have been established in NR140 of the Wisconsin Administrative Code. These Standards are referenced when evaluating the need for further study or remedial activities. The PAL is the more stringent guideline, in terms of being lesser in magnitude than the ES, but will typically require less response action when exceeded. The required action is determined by WDNR regulations, based on various site specific considerations.

Laboratory Groundwater Analysis Results

Groundwater samples were collected and submitted to a laboratory for VOC analysis by MES from the previously existing monitoring wells MW-7, MW-102 and MW-103 during four (4) separate monitoring events performed between June 2002 and August 2004. The installation of monitoring wells MW-9, MW-10, MW-11, MW-12 and piezometer PZ-1 was performed by MES during separate events conducted between August 2003 and July 2004. As such, groundwater samples were collected and submitted to a laboratory for VOC analysis by MES during three (3) events at MW-9, twice at MW-10, and one event at PZ-1. Due to slow development of groundwater within MW-11 and MW-12, sample collection is pending and the future analysis results will be provided as a separate addendum to this report.

In general, the results of the laboratory analyses of groundwater samples collected by MES indicate that chlorinated and petroleum related VOCs were detected in samples from MW-7, MW-102, MW-9, and MW-10. The greatest concentrations were detected within samples from MW-9. In addition, during the August 3, 2004 sampling event, approximately seven (7) inches of apparent petroleum free product was observed above the groundwater column within MW-9. This free product was sampled, removed, and contained for disposal. No free product was previously observed in MW-9 during the two previous sample events, or within any of the other monitoring wells at the subject site (including those present since 1993).

At MW-7, only very low level concentrations (below WDNR standards) of the petroleum related VOC Methyl tert-butyl ether (MTBE) were detected within three of the four samples collected. No petroleum related VOCs were present in any of the samples from MW-103, and only one of the four samples collected from MW-103 indicated the presence of the chlorinated compound Trichloroethene (TCE), at a concentration below the ES. At PZ-1, only chlorinated VOCs were detected in the one sample collected.

During this Assessment, petroleum related VOC concentrations that exceeded the NR140 Preventive Action Limit (PAL) within samples collected since June 2002, were detected at MW-102 (Benzene), MW-10 (Benzene), and MW-9 (Toluene and Total Xylenes). However, as mentioned above, free petroleum product was encountered within MW-9 during the most recent sample event. Also, at MW-9 the concentrations for Benzene, Ethylbenzene,

Napthalene and Total Trimethylbenzenes were detected above the Enforcement Standards (ES) within the collected groundwater samples.

Chlorinated VOCs were detected at concentrations in excess of the PAL during this Assessment at monitoring wells MW-7 (1,2-DCA, 1,1-DCE, PCE, and 1,1,1-TCA), MW-102 (1,2-DCA and cis-1,2-DCE), MW-9 (1,1-DCE and trans-1,2-DCE), MW-10 (1,1-DCE and 1,1,1-TCA), and at piezometer PZ-1 (PCE). In addition, chlorinated VOCs at concentrations in excess of the ES were detected at monitoring wells MW-7 (1,1-DCE and TCE), MW-102 (TCE), MW-9 (cis-1,2-DCE, PCE, TCE and Vinyl Chloride), MW-10 (1,1-DCE and 1,1,1-TCA), and at piezometer PZ-1 (1,1-DCE, cis-1,2-DCE, 1,1,1-TCA, TCE and Vinyl Chloride).

The overall results of the laboratory analysis during this Assessment indicated a general trend of decreasing or stable concentrations. Although apparent petroleum free product was present at MW-9 during the most recent sample event, it should be recognized that the analysis results of the underlying groundwater sample indicated a significant decreasing trend in the concentrations of chlorinated compounds relative to the previous sample results. A summary of the laboratory groundwater sample analysis results is provided on Table 1 in the Appendix. The laboratory analytical reports and chain-of-custody are also included in the Appendix.

CONCLUSIONS

Chlorinated Solvent Affected Soil and Groundwater

The results of the laboratory analysis and field observations performed during this Assessment, and during past investigative activities, indicate that chlorinated solvent affected soils and groundwater are present at the subject site. Based on the previously reported information from HSI, it appears that the primary area of chlorinated affected soil at the subject site is situated within the southwest portion of the property. This affected area reportedly extends vertically from near the ground surface to a depth of approximately 8 feet bgs, and extends laterally from beneath the metal sheds near the southwest property boundary to beneath the southern portion of the facility. The HSI reports indicated that the greatest chlorinated solvent VOC concentrations in the soil were detected beneath the asphalt paved area between the metal sheds and the main building. Also, a secondary area of chlorinated solvent impact to soil was identified by HSI to be located approximately 20 feet north of the primary area, and situated beneath the west-central portion of the main building. This area of the building is reported to be in the general vicinity of a former degreaser operation. In addition, during this recent Assessment, chlorinated solvent VOCs were detected in soil samples that were collected by MES from the north side of the building (within the boring for piezometer PZ-1). The concentration levels at this sample location were below the levels detected within the primary area of impact.

The laboratory analysis results of groundwater samples collected during this Assessment indicated that chlorinated VOCs were detected at concentrations in excess of the PAL and ES

at monitoring wells MW-7, MW-102, MW-9, MW-10, and at piezometer PZ-1. The greatest concentrations were detected at MW-9 and nearby PZ-1 (both located near the north boundary of the subject site). It appears likely that the impact to the groundwater at MW-9 and PZ-1 is related to the nearby secondary area of soil impact discussed above, and may also have been affected by migration from the primary area of soil impact located further south. In addition, the vertical extent of the chlorinated VOC impact within the north portion of the site extends to the screened interval sample depth of 22 to 27 feet at PZ-1. However, no underlying groundwater aquifer was encountered during the performance of soil boring B-6 (proposed PZ-2) to a depth of about 45 feet bgs (approximately 28 feet below PZ-1).

In general, the laboratory groundwater sample analysis results indicate an overall trend of decreasing or stable chlorinated VOC concentration levels. It is understood that no metal plating activities are currently, or were previously performed at the subject site. The primary activities performed at the subject site are buffing, storage and assembly of metal parts. In addition, the property is zoned M1 (light manufacturing) which does not allow for metal plating operations.

The impacted groundwater appears to be a shallow, perched. The historical trend of this shallow groundwater flow direction appears to be primarily toward the northwest. No utility conduits or other potential migration pathways are present within, or immediately adjacent to the affected area. In addition, no public or private water wells are indicated to be located within 1,000 feet of the site, and no rivers, creeks, ponds, lakes, or wetlands are located nearby. Further, the area of the subject site and surrounding properties is serviced with municipal water and wastewater systems.

Petroleum Affected Soil and Groundwater

Residual petroleum contaminated soils that are affected in excess of the WDNR residual contaminant levels (RCLs) are present within the south and southwest portion of the subject site. The source of the residual petroleum contamination of these soils is known to be the existing southern adjacent BTA gasoline station property (a previously closed LUST case). According to WDNR records, approximately 950 tons of petroleum affected soil was reportedly removed from within the subject site during past remedial excavation activities. However, further excavation and removal could not be accomplished due to the proximity of the structural footings and foundations of the existing storage sheds. As such, these residual petroleum contaminated soils remain within the southwest portion of the subject site, and are likely contributing as a secondary source of groundwater contamination.

Petroleum affected soil was encountered near the north boundary of the subject site during the recent installation of piezometer PZ-1. Based on the field observations and laboratory results it appears that soils affected by petroleum compounds in excess of WDNR standards are present in the vicinity of PZ-1 (and nearby MW-9) at depths between approximately 8 feet and 15 feet bgs.

During this Assessment, and previous sampling events, the laboratory results of the groundwater samples collected from MW-7, MW-102 and MW-10 have indicated the presence of some petroleum related groundwater contamination. MW-7, MW-102 and MW-10 are within the primary area of chlorinated VOC impact on the south portion of the property, near the previously mentioned area of petroleum VOC impact from the southern adjacent LUST site. In addition, the laboratory analysis of samples collected from the MW-9, located near the north boundary of the subject site, indicate the presence of petroleum related VOCs in excess of the WDNR PAL and ES. Also, as mentioned previously, about 7-inches of petroleum product ("free product") was observed, sampled and removed from within MW-9 during the most recent August 2004 sampling event. However, no substantial petroleum related contamination was detected within the groundwater sample collected from the nearby PZ-1 at a screened interval sample depth between about 22 and 27 feet bgs. The screened interval sample depth of MW-9 is between approximately 9 and 19.5 feet bgs.

It should be recognized that no known petroleum storage tanks are currently present at the subject site, and no petroleum storage tanks are known to have previously been located within the subject site. In addition, no substantial quantities of petroleum products are currently used or stored at the subject site, or were previously used or stored at the subject site. As such, it appears likely that the presence of the petroleum related compounds (and the free product) in the vicinity of MW-9 and PZ-1 are the result of an off-site source. The northern adjoining property is utilized for the storage of numerous vehicles, and the garage is utilized for vehicle maintenance activities. The garage and vehicles are located about five to ten feet north beyond the northwest portion of the subject site. Considering the apparent lack of a potential source for a petroleum release at the subject site, the apparent use of the northern adjoining property, and the known past petroleum migration from the southern property, it appears that the northern adjoining property, and/or residual effects from the southern BTA site are a likely source for the detected petroleum impact within the northwest portion of the subject site.

RECOMMENDATIONS

The source of the residual soil and groundwater impacted by petroleum compounds within the southern portion of the subject site is known to be from the southern adjacent property. As such, no regulatory responsibility, action or financial obligation is required by MPL (or any future owner of the subject site) with regard to the petroleum affected soil and groundwater within the south portion of the property. Therefore, no further action regarding the petroleum impact to soil and groundwater within the south portion of the subject site is necessary or warranted at this time.

The source of the petroleum related impact to the soil and groundwater that was encountered during this Assessment near the northwest boundary of the subject site may be attributable to the northern adjoining property, or to residual effects from the southern BTA's site. No petroleum storage tanks are known or recorded to have been located on the subject property, no substantial quantities of petroleum products are used or stored at the subject site, and no other obvious evidence of a potential source for a petroleum release within the subject site is

known or was observed. Therefore, it appears likely that the petroleum impact is from an off-site source. On this basis, it appears that the owner of the subject site (or future owner) should not be subject to regulatory responsibility, action or financial obligation for any associated investigative activities or remedial actions associated with the petroleum impact. It is therefore recommended that MPL Realty submit an application to the WDNR to request approval for an off-site exemption from Spill Law requirements related to the presence of the petroleum compounds within the northern portion of the subject site.

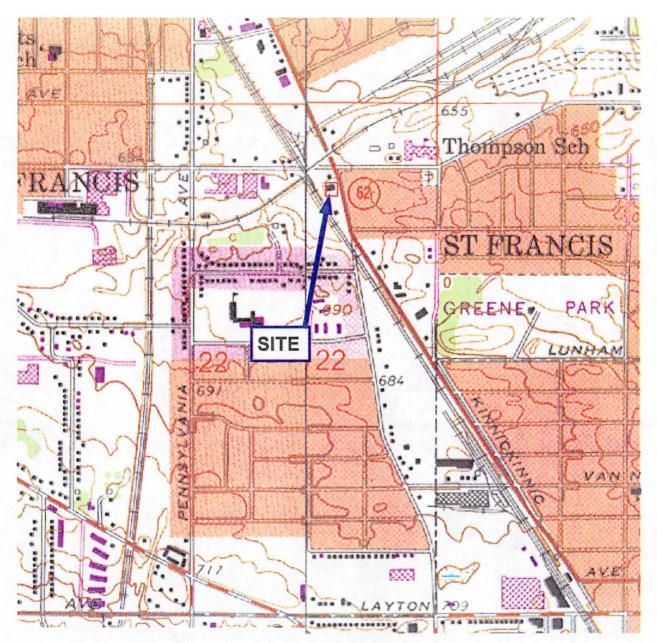
Based on the previous reports, it is understood that the source of the chlorinated solvent impact to the soil and groundwater at the subject site is the result of a past release (or releases) at the subject site. As mentioned, it appears that two areas of impact to the soil are present, and the extent of the impacted soils have been substantially defined within the subject site. The impacted soil zone does not appear to extend significantly beyond the boundaries of the subject site. Therefore, it does not appear that any further subsurface exploration to evaluate the extent of chlorinated solvent impact within the soil is necessary or warranted at this time.

With regard to the chlorinated solvent VOC impact to the groundwater, it appears that the affected groundwater is substantially contained within the west portion of the subject property, situated below the existing structures and paved surfaces. The northern extent of the affected plume appears to have migrated slightly beyond the north boundary of the subject property. As such, it is recommended that the northern adjoining property owner be notified of the likely presence of chlorinated VOCs in the groundwater. In addition, considering the relatively high concentrations of the VOCs (including Vinyl Chloride) detected at MW-9 and PZ-1, the WDNR will likely require that additional subsurface assessment activities be performed within the northern adjacent property to further define and evaluate the northern extent of the chlorinated impact.

It should be recognized that the Assessment results to date indicate that the subsurface conditions are not currently suitable to allow the WDNR to grant closure of the subject site at this time. As such, it is recommended that the scope of this Assessment be expanded to include the performance of two (2) additional soil borings within the northern adjacent property (in the vicinity of the existing residence), including the collection and laboratory analysis of soil samples, and that the borings be completed as a groundwater monitoring well and piezometer. Subsequently, additional groundwater monitoring and sample analysis would be performed at all of the wells and piezometers. It is also recommended that that monitoring of geophysical parameters be performed within the wells and piezometers to evaluate the potential for effective natural attenuation processes to occur.

GENERAL COMMENTS

This assessment has been conducted in a manner consistent with that level of care ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions. The findings, recommendations and opinions contained herein have been


promulgated in accordance with generally accepted practice in similar fields. No other representations, expressed or implied, and no warranty or guarantee is included or intended in this report.

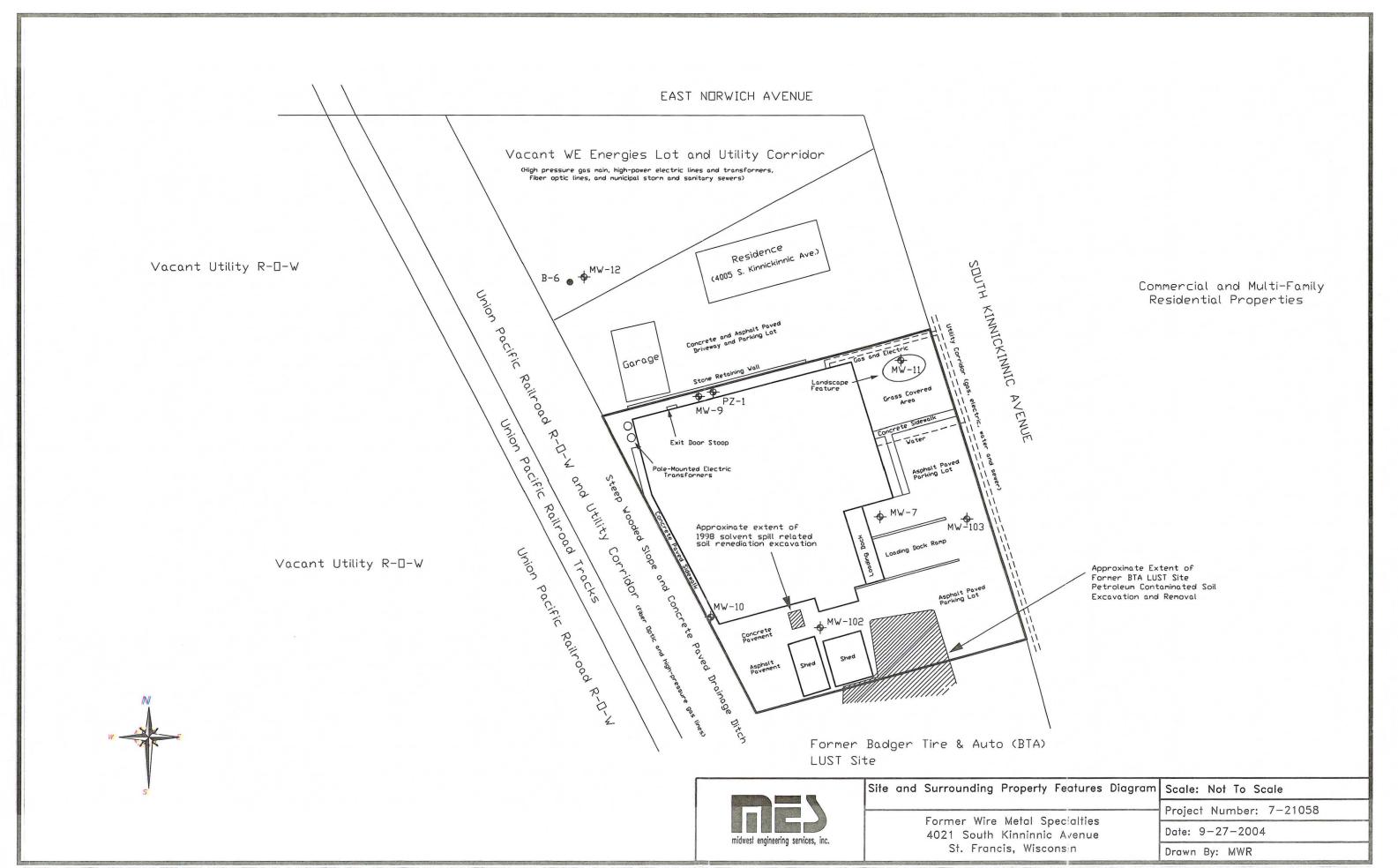
The conclusions presented in this report were formulated from the data obtained during the course of exploratory work on the site, and work performed by previous consultants, which may result in a redirection of conclusions and interpretations where new information is obtained. The regulatory climate and interpretation may also have an effect on the outcome of the environmental assessment for this site. The information contained in this report may have an effect on the value of the property, and is considered confidential. However, it should be recognized that information submitted to the WDNR, and any additional information requested by the WDNR will be public record. Copies of this report will be submitted to others only with authorization from the client.

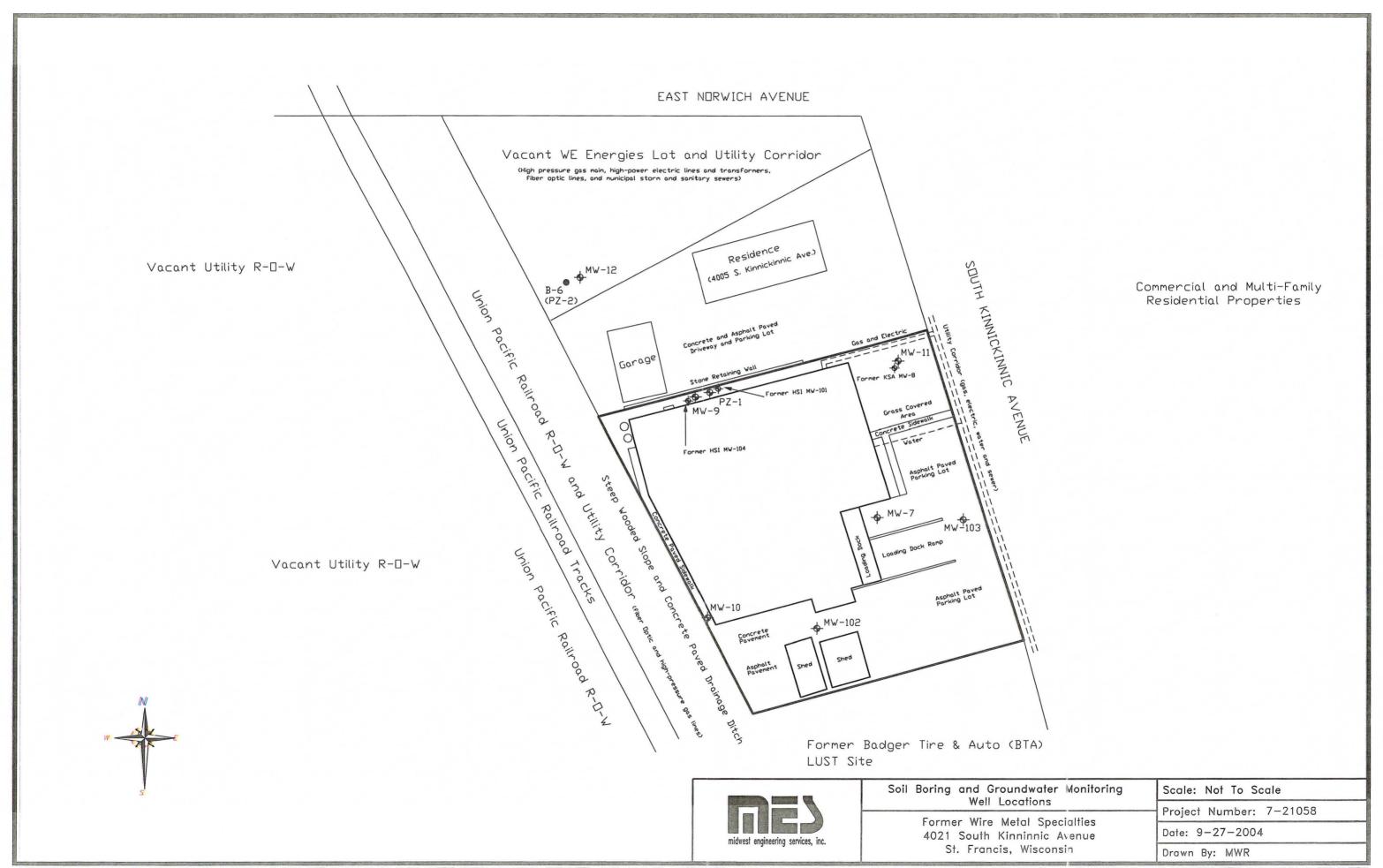
APPENDIX

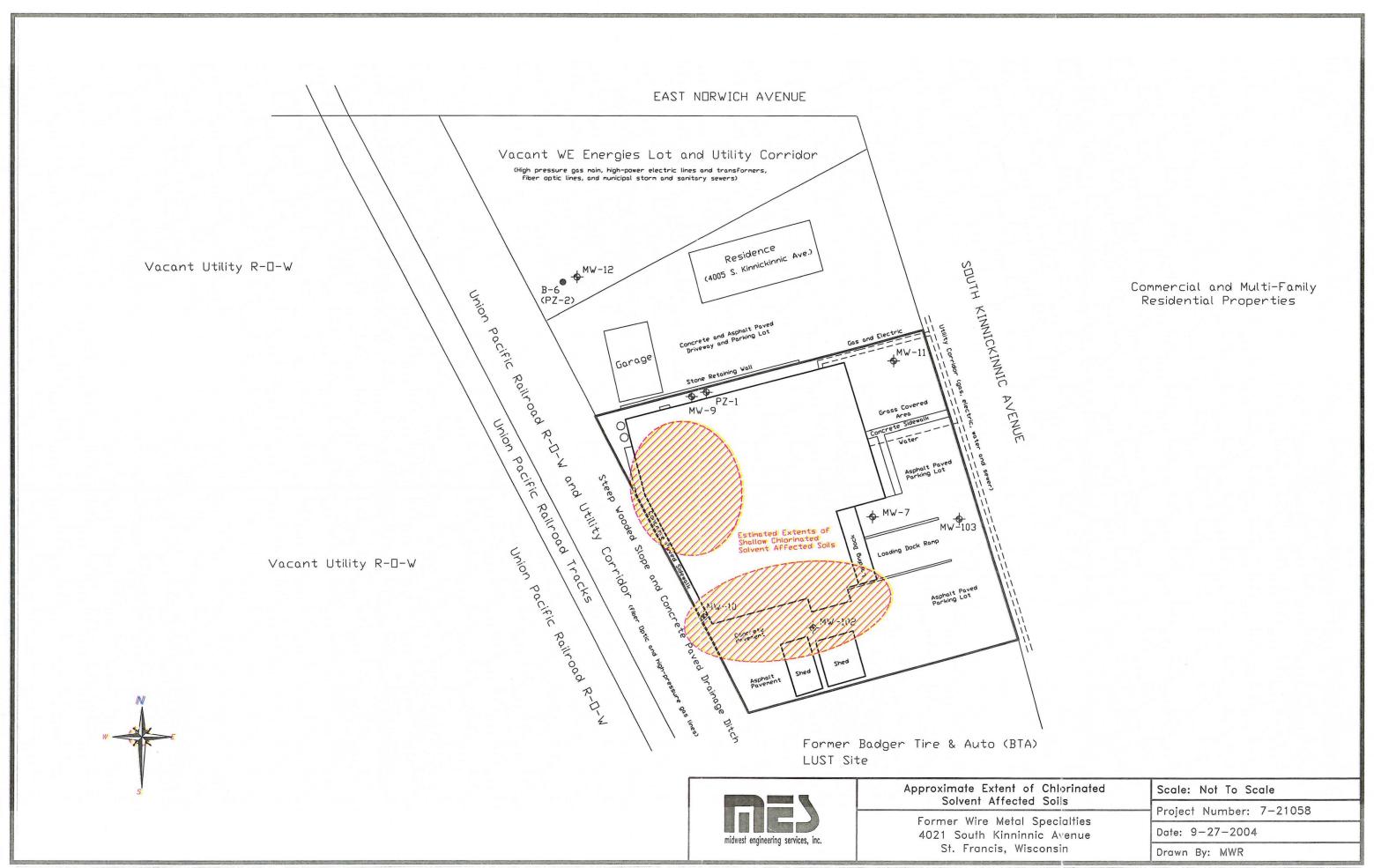
- Figure 1: Site Location Map (1)
- Figure 2: Site and Surrounding Property Features Diagram (1)
- Figure 3: Soil Boring and Groundwater Monitoring Well Locations (1)
- Figure 4: Approximate Extent of Chlorinated Solvent Affected Soils (1)
- Figure 5: Approximate Extent of Groundwater Affected above NR140
- PALs and/or ESs (1)
- HSI Figure 2-2 (dated 9/7/99): Site Layout and Sample Locations (1)
- HSI Figure 5-1: Tetrachloroethene in Soil (1)
- HSI Figure 5-2: Trichloroethene in Soil (1)
- HSI Figure 5-3: 1,1,1-Trichloroethane in Soil (1)
- HSI Figure 2-2 (dated 11-9-00): Site Layout and Sample Locations (1)
- Table 1: Groundwater Laboratory Analysis Results (3)
- Table 2: Summary of Piezometer Boring Soil Sample Results (1)
- Table 3: Summary of Previous Soil Sample Results (2)
- Laboratory Analytical Test Results and Chain-of-Custodies (86)
- Soil Boring Logs (2)
- Borehole Abandonment Form (3300-5B) (1)
- Monitoring Well Construction Forms (4400-113A) (5)
- Monitoring Well Development Forms (4400-113B) (3)

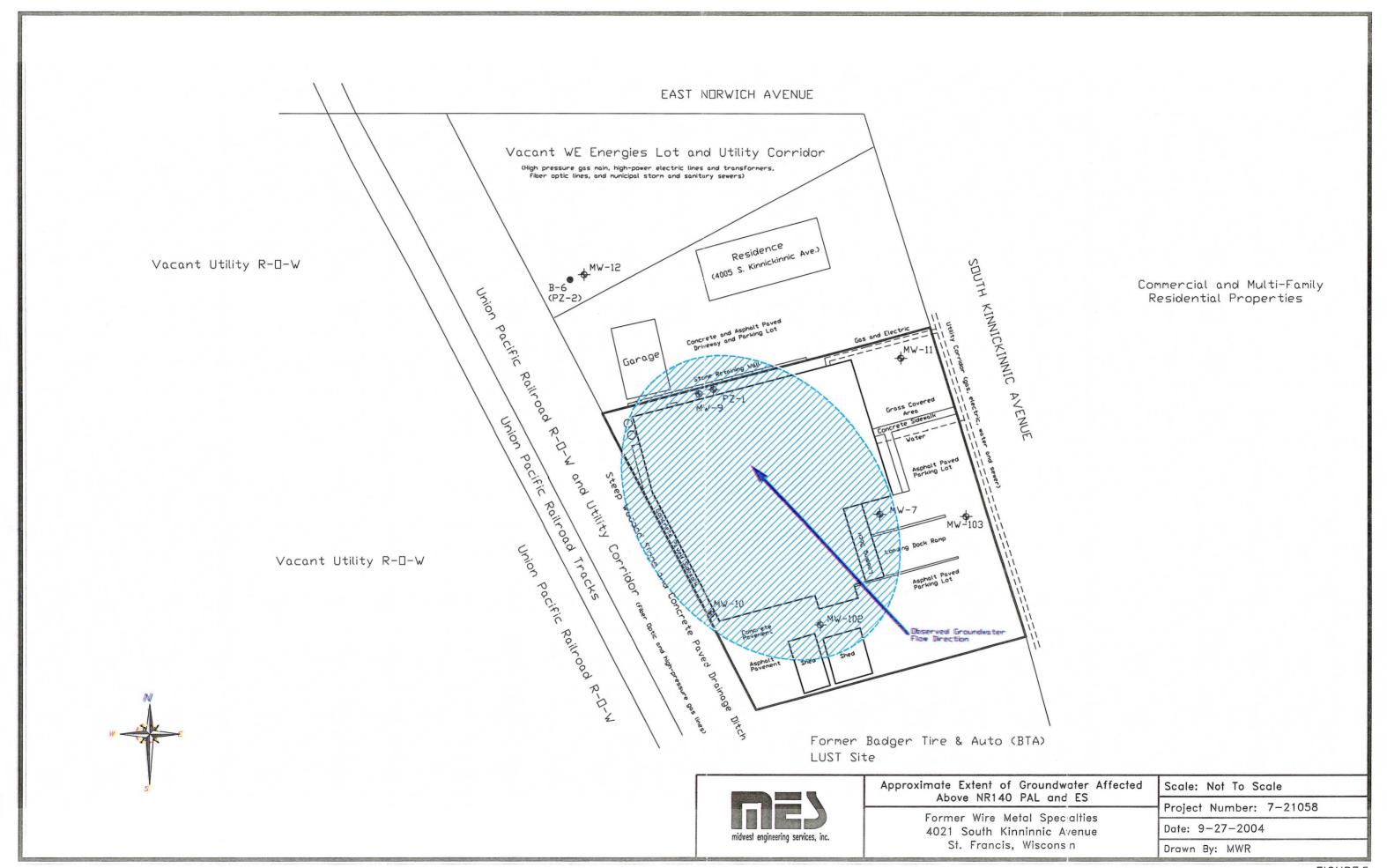
Northeast $\frac{1}{4}$ of the Northeast $\frac{1}{4}$ of Section 22, Township 6 North, Range 22 East of Milwaukee County

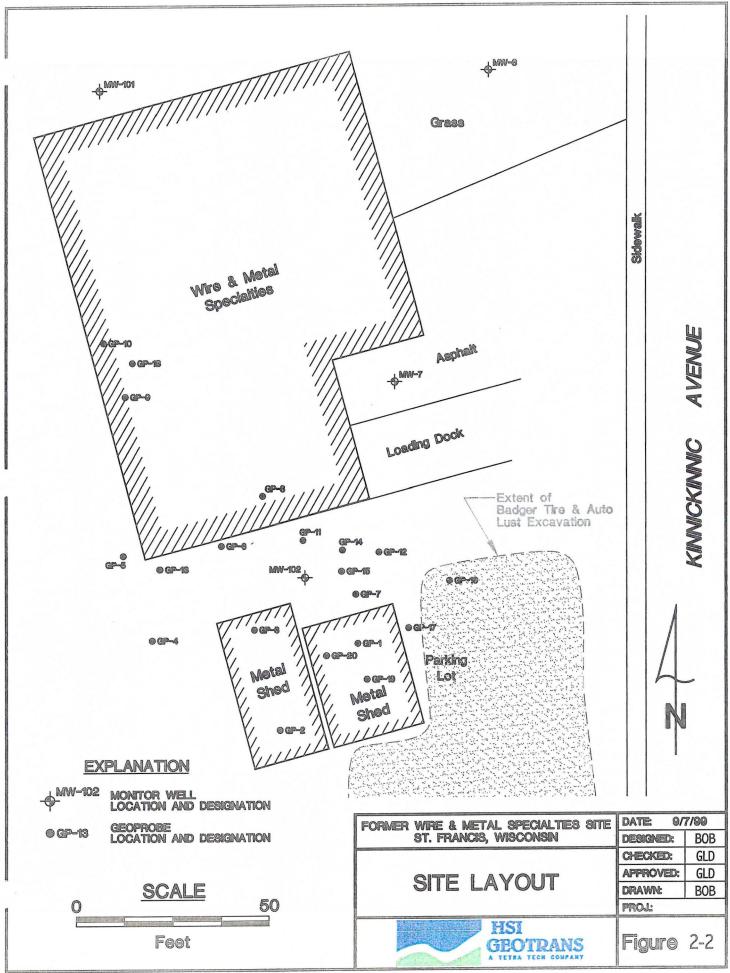
Source: USGS, 7.5 Minute Topographic—South Milwaukee Quadrangle Map, Dated 1994

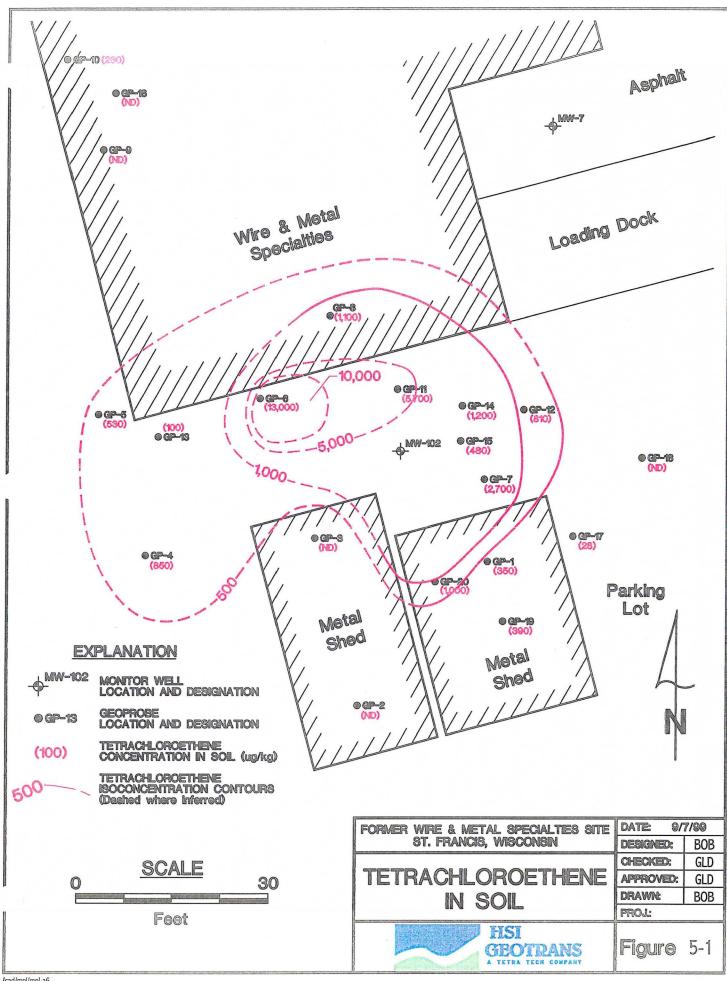

Former Wire & Metal Specialties 4021 South Kinnickinnic Avenue St. Francis, Wisconsin

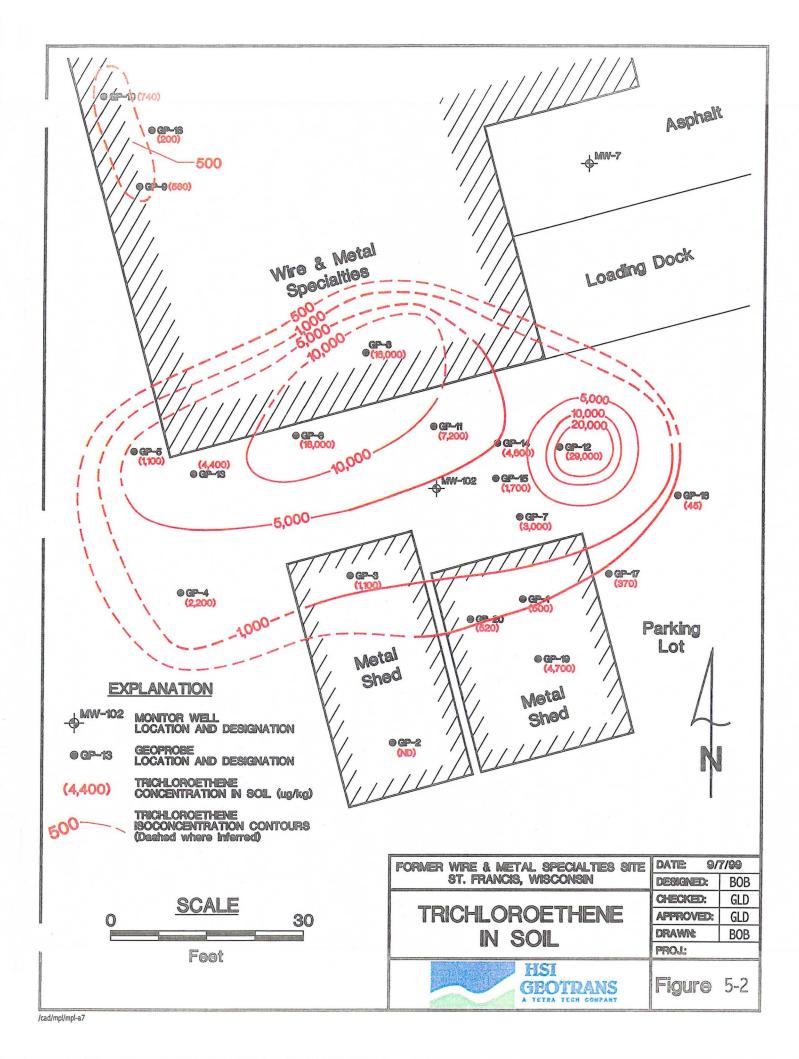

SITE LOCATION MAP

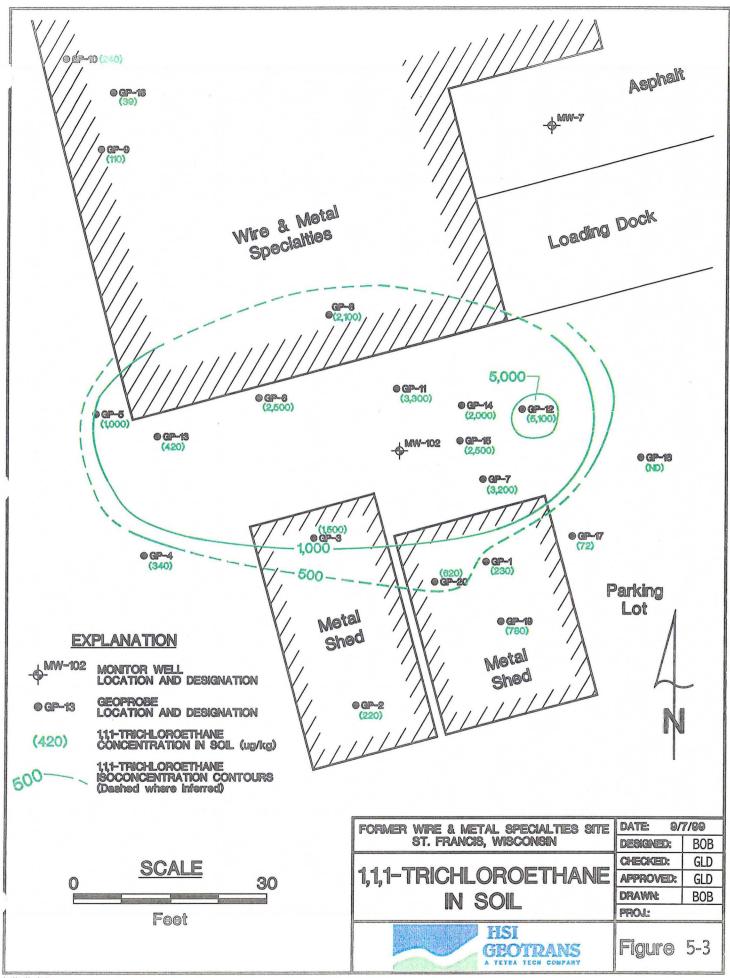

Scale: 1" = 1000' ±

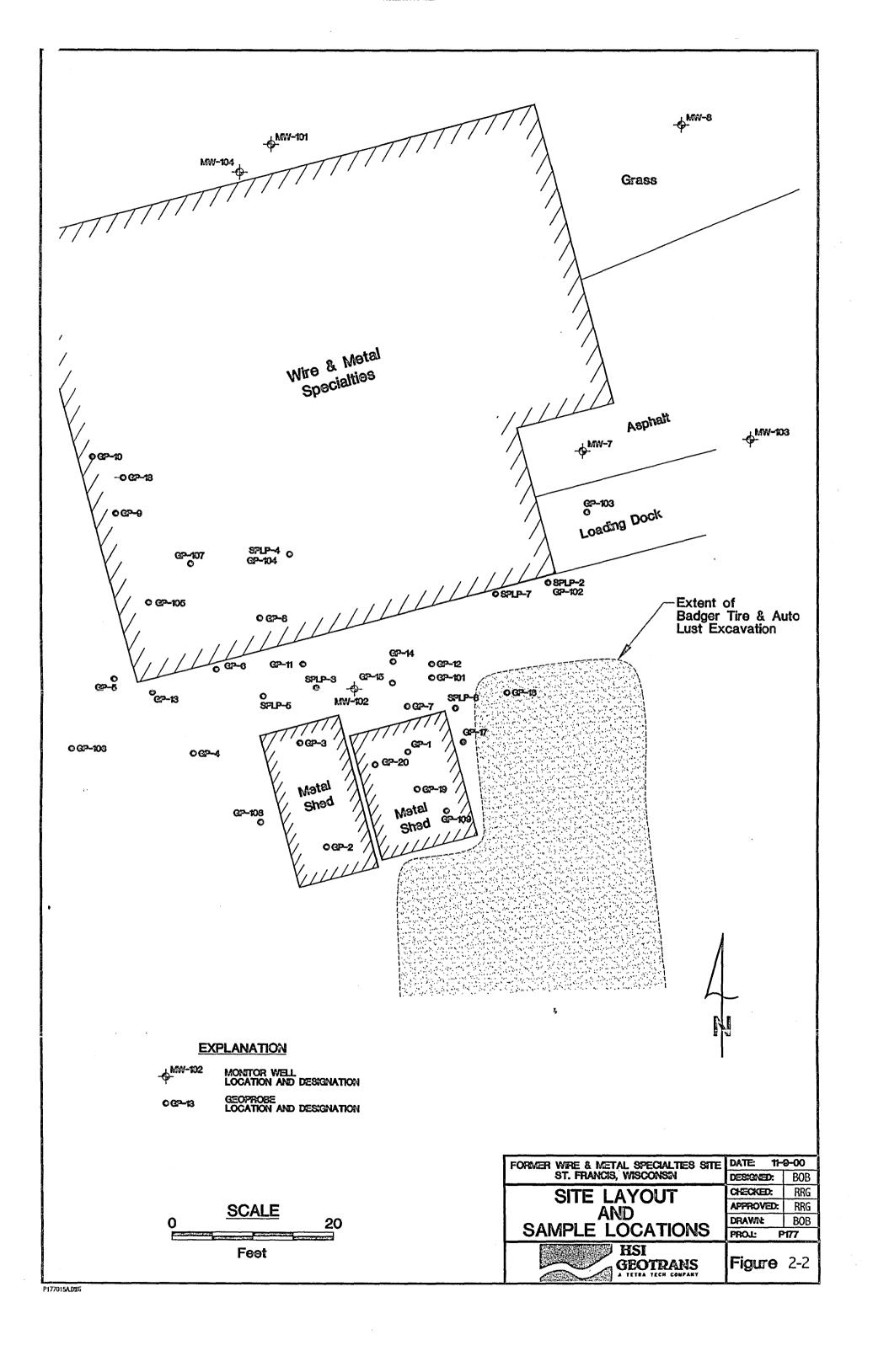

Project No.: 7-21058


Date: 10-4-02









A C

Former Wire & Wetal Specialties Company Site MES Project Number 7-21058 Summary of Groundwater Sample Results

			·-				Labor	atory A	nalysi	s Resu	lts - Vo	olatile (Organic	Comp	ounds	(ug/L)				
Well ID	Date Collected	Benzene	Bromodichloromethane	Chloromethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Ethylbenzene	Methyl tert-butyl ether	Naphthalene	Tetrachloroethene	Toluene	I,1,1-Trichloroethane	Trichloroethene	1,2,4-Trimethylbenzene	,3,5-Trimethylbenzene	Vinyl Chloride	Total Xylenes
	7/16/93*	24	na	na	na	na	na	na	na	7	<23	na	na	8	na	na	na	na	na	5
	8/16/93*	<0.7	_na_	na	<u>na</u>	<u>na</u>	na	na	na	na	na	na	na	na	na	na	na	na	na	na
	5/12/94*	5.9	na	na	na l	na	na	na	na	na	<u>na</u>	na	na	na	na	na	na	na	na	na
].	11/22/95* 7/10/96*	6 2.1	na na	na na	na na	na_	na na	na na	na	na na	na na	na	na na	na na	na	na	na na	na	na	na
	2/10/97*	0.31	na	na	na	na na	na	na	na na	na	na	na na	na	na	na na	na na	na na	na na	na na	na na
	5/13/97*	0.74	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MW-7	8/28/97*	5.2	na	na	na	na	na	na	na na	na	na	na	na	na	na	na	na	na	na	na
[3/10/99**	10			4.1	2.3	2.2	1.1	2.9				2.7		120	110				
	7/16/99***	0.51			6.3	1.4	2	0.68			2.1		2.2		120	110				
	6/30/00***				17		18	4.1					6.5		220	150				
	6/27/02					3.88	1.71	0.538			0.993		1.64		73.8	83.4				
]	8/14/03	<0.5		9.29		2.26	1.87	0.621	<0.5	<0.5	1.53	<2.0	2.38	<0.5	76.6	72.0	<1.0	<1.0	<0.17	<0.5
ļ	1/20/04 8/3/04	<0.5 <0.5				1.93	<0.5	<5.0	<5.0 <5.0	<5.0	1.09	<8.0	1.64	<5.0	27	50	<5.0	<5.0	<0.65	<5.0
				<0.44		<0.5	10.8	<5.0		<5.0	<0.29	<8.0	2.39	<5.0	35.6	79.7	<5.0	<5.0	<0.21	<5.0
	9/7/93* 5/12/94*	<0.5 1.3	na	na	na	na	na na	na	na	<0.5 <1.0	<3.0 <1.0	na	na	10 3.7	na	na	na	na	na	<1.0
	11/22/95*	<0.5	na na	na na	na na	na na	na na	na na	na na	<1.0	<1.0	na na	na na	<1.0	na na	na	na	na	na	<3.0 <3.0
MW-8	7/10/96*	<0.5	na	na	na	na	na na	na	na	<1.0	<1.0	na	na	<1.0	na	na na	na na	na na	na na	<3.0
14144-0	2/10/97*	<0.13	na	na	na	na	na	na	na	<0.22	<0.16	na	na	1.0	na	na	na	na	na	<0.23
	7/16/99***																			
	6/30/00***									0.51										
(abandoned)	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
DNR	PAL	0.5	0.06	0.3	85	0.5	0.7	7	20	140	12	8	0.5	200	40	0.5	9	6	0.02	1,000
DNR	ES	5	0.6	3	850	5	7	70	100	700	60	40	5	1,000	200	5	4	80	0.2	10,000

NOTES:

DNR PAL = NR140 Preventive Action Limit DNR ES = NR140 Enforcement Standard

- = no standard established

--- = Not Detected

na = Not Analyzed or lab analysis results Not Available

ug/L = Micrograms per Liter = Parts Per Billion
Bold number indicates concentration exceeds the DNR PAL
Shaded and bold number indicates concentration exceeds the DNR ES

* = Results from K. Singh & Associates

** = Results from KEY Engineering Group

*** = Results from HSI Geotrans

TAE

Former Wire & Metal Specialties Company Site MES Project Number 7-21058 Summary of Groundwater Sample Results

							La	borato	ry Anal	ysis Resu	lts - Vo	olatile Or	ganic (Compo	unds (เ	ıg/L)				
Well ID	Date Collected	Benzene	Chloroethane	Chloromethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Ethylbenzene	Methyl tert-butyl ether	Naphthalene	Tetrachloroethene	Toluene	1,1,1-Trichloroethane	Trichloroethene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Vinyl Chloride	Total Xylenes
MW-101	7/16/99***									27		28		0.4			318			158.6
(abandoned)	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
	7/16/99***	14				2.5		1.7	0.66	7.3	8			0.9	16	140	0.56			0.92
	6/30/00***	5.5			5.8	0.84	2.4	5.2		14	5.4			0.56	43	59				3.5
MW-102	6/27/02	2.38			1.02	0.672		11.9	1.28	8.79	2.55				1.88	24.2				1.37
11111	8/14/03	1.76				0.611		14.7	1.16	1.87	1.77				3.5	16				
	1/20/04	1.3	<5.0	<0.92		1.44	<0.5	14.2	<5.0	<5.0	1.27	<8.0	<0.5	<5.0	<5.0	12.8	<5.0	<5.0	<0.65	<5.0
	8/3/04	1.3	<5.0	<0.44	<5.0	<0.5	<0.5	11.3	<5.0	<5.0	<.29	<8.0	<0.5	<5.0	<5.0	11.1	<5.0	<5.0	<0.21	<5.0
	06/30/00***										1.9									
	6/27/02																			
MW-103	8/14/03																			
	1/22/04	<0.5	<5.0	14.7	<5.0	<0.5	<0.5	<5.0	<5.0	<5.0	<0.38	<8.0	<0.5	<5.0	<5.0	0.72	<5.0	<5.0	<0.65	<5.0
	8/3/04	<0.5	<5.0	<0.44	<5.0	<0.5	<0.5	<5.0	<5.0	<5.0	<0.29	<8.0	<0.5	<5.0	<5.0	<0.5	<5.0	<5.0	<0.21	<5.0
MW-104	6/30/00***												7.6			1.1				
(abandoned)	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
	8/14/03	11.4	3.86	3.68	47.7		28.7	832	42.5	229				99.2	30.4	2,050	250		272	835
MW-9	1/20/04	14.6	122	18.1	<50.0	<5.0	6.3	432	<50.0	829	<3.81	<80.0	<5.0	219	<50.0	168	1,1		336	2,440
	8/3/04	3.92	<5.0	<0.44	<5.0	<0.5	2.79	182	<5.0	896	<0.29	166	<0.5	9.56	<5.0	76.5	1,6		68.2	2,310
Free Product >	8/3/04	<500	<5000			<500		<5000	<5000	1,290,000		536,000	630	<5000	<5000	<500	2,695	, <u> </u>	<217	1,180,000
MW-10	1/20/04	1.04	<5.0	<0.92		<0.5	3.34	<5.0	<5.0	<5.0	<0.38	<8.0	21	<5.0	34.2	64.4	<5.0		4.06	<5.0
	8/3/04	<0.5	<5.0	<0.44	5.06	<0.5	5.29	<5.0	<5.0	<5.0	<0.29	<8.0	49.2	<5.0	87.6	147	<5.0	<5.0	<.21	<5.0
DNR	PAL	0.5	80	0.3	85	0.5	0.7	7	20	140	12	8	0.5	200	40	0.5	9	6	0.02	1,000
DNR	ES	5	400	3	850	5	7	· 70	100	700	60	40	5	1,000	200	5	48	30	0.2	10,000

NOTES:

DNR PAL = NR140 Preventive Action Limit DNR ES = NR140 Enforcement Standard

- = no standard established

--- = Not Detected

na = Not Analyzed or lab analysis results Not Available

ug/L = Micrograms per Liter = Parts Per Billion
Bold number indicates concentration exceeds the DNR PAL
Shaded and bold number indicates concentration exceeds the DNR ES

^{* =} Results from K. Singh & Associates

^{** =} Results from KEY Engineering Group

^{*** =} Results from HSI Geotrans

TABLE 1
Former Wire & Metal Specialties Company Site
MES Project Number 7-21058
Summary of Groundwater Sample Results

						Lab	orato	ry Ana	ılysis l	Result	s - Vol	atile O	rgani	c Com	oound	s (ug/L	.)			
Well ID	Date Collected	Benzene	Bromodichloromethane	Chloromethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Ethylbenzene	Methyl tert-butyl ether	Naphthalene	Tetrachloroethene	Toluene	1,1,1-Trichloroethane	Trichloroethene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Vinyl Chloride	Total Xylenes
PZ-1	8/3/04	<0.5	4.57	<0.44	50.1	<0.5	108	128	<5.0	<5.0	<0.29	<8.0	4.2	<5.0	304	405	<5.0	<5.0	15.1	<5.0
MW-11	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MW-12	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
DNR	PAL	0.5	0.06	0.3	85	0.5	0.7	7	20	140	12	8	0.5	200	40	0.5	9	6	0.02	1,000
DNR	ES	5	0.6	3	850	5	7	70	100	700	60	40	5	1,000	200	5	48	30	0.2	10,000

NOTES:

DNR PAL = NR140 Preventive Action Limit DNR ES = NR140 Enforcement Standard

- = no standard established
- --- = Not Detected

na = Not Analyzed or lab analysis results Not Available

ug/L = Micrograms per Liter = Parts Per Billion
Bold number indicates concentration exceeds the DNR PAL
Shaded and bold number indicates concentration exceeds the DNR ES

- * = Results from K. Singh & Associates
- ** = Results from KEY Engineering Group
- *** = Results from HSI Geotrans

TABLE 2 Former Wire and Metal Specialties
Summary of Piezometer Borings Soil Sample Results

					-		2				Vo	latile C	rganic Co	ompour	nds (u	g/kg)							
Boring	Depth (ft)	Date	Benzene	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	1,1 Dichloroethane	cis 1,2 Dichloroethene	Ethylbenzene	Isopropylbenzene	p-Isopropyl toluene	Methylene Chloride	Naphthalene	n-Propyl benzene	Tetrachloroethene	Toluene	1,1,1 Tri Chloroethane	1,1,2 Tri Chloroethane	Trichloroethene	1,2,4 Tri Methylbenzene	1,3,5 Tri Methylbenzene	Vinyl Chloride	Total Xylenes
PZ-1	10 - 12	7/26/04	<25	7,060	<25	1,240	<25	<25	358	2,870	7,840	760	10,700	7,290	<25	<25	<25	<25	<25	67,000	4,250	<25	6,540
PZ-1	18 - 20	7/26/04	<25	<25	<25	<25	<25	90.5	<25	<25	<25	<100	<25	<25	56	<25	499	<25	2,600	27	<25	<25	<25
PZ-1	25 - 27	7/26/04	<25	<25	<25	<25	73.1	137	62.5	<25	<25	<100	104	116	251	<25	636	<25	3,490	748	169_	<25	210
PZ-2	43 - 45	7/26/04	<25	<25	40	<25	<25	<25	<25	<25	<25	694	60.5	<25	<25	<25	<25	<25	<25	57.5	<25	<25	<25
NR720 G	eneric RCLs	3	5.5	-		-		_	2,900		-	_	-	-		1,500		_	_	_	_		4,100
NR746 S	SLs		8,500	-	_	-	-	-	4,600		-		2,700	_		38,000	_		-	83,000	11,000	-	42,000

NOTES:

ug/kg = micrograms per kilogram = parts per billion

- = No standards established

Bold indicates concentrations above NR720 Generic Residual Contaminant Levels (GRCLs) Italic and bold concentrations exceed NR746 Soil Screening Levels (SSLs)

...31 F

Former Wire and Metal Specialties Summary of Previous Soil Sample Results

						T	T	1		v	olatile Orga	anic Compo	ounds (ug/k	g)		r		1	·		
Boring	Depth (ft)	Date	n-Butylbenzene	sec-Butylbenzene	1,1 Dichloroethane	1,2 Dichloroethane	1,1 Dichloroethene	cis 1,2 Dichloroethene	Ethylbenzene	p-Isopropyl toluene	Naphthalene	n-Propyl benzene	Tetrachioroethene	Toluene	1,1,1 Tri Chloroethane	1,1,2 Tri Chloroethane	Trichloroethene	Trichlorofluoromethane	1,2,4 Tri Methylbenzene	1,3,5 Tri Methylbenzene	Total Xylenes
GP-1*	3-5	03/10/99	<25	na	<25	na	na	na	<25	<25	na	<25	<25	<25	<25	na	<25	na	<	50	<25
GP-2*	7-9	03/10/99	25	na	<25	na	na	na	<25	<25	na	<25	<25	<25	<25	na	<25	na	<	50	<25
GP-3*	1-3	03/10/99	22000	na	1900	na	na	na	1900	1700	na	6900	4200	<500	26000	na	7500	na	20	900	1500
GP-4*	3-5	03/10/99	<25	na	<25	na	na	na	<25	<25	na	<25	150	34	220	na	1100	na	<	50	<25
GP-1^	0-2	07/07/99	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	350	<25	230	<25	500	<25	<25	<25	34
GP-2^	0-2	07/07/99	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	44	220	<25	<25	<25	<25	<25	<75
GP-3^	4-6	07/07/99	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	1500	<25	1100	<25	<25	<25	<75
GP-4^	4-6	07/07/99	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	850	<25	360	<25	2200	<25	<25	<25	<75
GP-5^	4-6	07/07/99	<250	<25	<25	<25	<25	<25	<25	<25	<25	<25	530	<25	1000	<25	5300	<25	<25	<25	<750
GP-6^	2-4	07/07/99	<25	<25	<25	<25	<25	120	<25	<25	<25	<25	13000	83	2500	32	18000	28(J)	<25	<25	<75
GP-7^	0-2	07/07/99	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	2700	3200	<25	3000	<25	<25	<25	125
GP-8^	4-6	07/07/99	<25	<25	32	<25	<25	61	<25	<25	<25	<25	1100	<25	2100	<25	16000	<25	<25	<25	<75
GP-9 [^] .	4-6	07/07/99	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	110	<25	560	<25	<25	<25	<75
GP-10^	4-6	07/07/99	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	260	<25	240	<25	740	<25	<25	<25	<75
GP-11^	0-2	07/07/99	<25	<25	130	<25	<25	75	<25	<25	<25	<25	5700	<25	3300	39	7200	<25	<25	<25	<75
GP-12^	0-2	07/07/99	<25	<25	53	<25	<25	<25	<25	<25	<25	<25	810	110	5100	57	29000	<25	<25	<25	<75
GP-13^	4-6	07/07/99	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	100	<25	420	<25	4400	<25	<25	<25	<75
GP-14^	0-2	07/07/99	<25	<25	220	<25	35	33	<25	<25	<25	<25	1200	<25	2000	<25	4600	<25	<25	<25	<75
GP-15^	0-2	07/07/99	62	31	310	<25	56	<25	<25	30	<25	54	480	<25	2500	<25	1700	<25	65	110	<75
GP-16^	0-2	07/07/99	<25	48	<25	<25	<25		<25	<25	170	<25	<25	<25	<25	<25	45	<25	<25	<25	<75
GP-17^	6-8	07/07/99	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	28	<25	72	<25	370	<25	<25	<25	<75
GP-18^	4-6	07/07/99	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	39	<25	200	<25	<25	<25	<75
GP-19 [^]	0-2	07/07/99	<25	66	<25	<25	<25	<25	<25	<25	27	<25	390	60	780	<25	4700	72	60	47	<75
NR720 G	eneric RCLs			-	-	4.9	-	-	2900	-	-		-	1500	-	_	_	-	-	-	4100

NOTES:

^{* =} Results from key Environmental

^{^ =} Results from HIS Geotrans

^{- =} No standards established

J = Estimated by laboratory

TABLE 3
Former Wire and Metal Specialties
Summary of Previous Soil Sample Results

					· · · · · · · · · · · · · · · · · · ·					V	olatile Orga	nic Compo	unds (ug/k	g)				,			
Boring	Depth (ft)	Date	n-Butylbenzene	sec-Butylbenzene	1,1 Dichloroethane	1,2 Dichloroethane	1,1 Dichloroethene	cis 1,2 Dichloroethene	Ethylbenzene	p-Isopropyl toluene	Naphthalene	n-Propyl benzene	Tetrachioroethene	Toluene	1,1,1 Tri Chloroethane	1,1,2 Tri Chloroethane	Trichloroethene	Trichlorofluoromethane	1,2,4 Tri Methylbenzene	1,3,5 Tri Wethylbenzene	Total Xylenes
GP-20^	0-2	07/08/99	<25	<25	120	<25	<25	26	37	<25	<25	<25	1000	<25	620	<25	520	45(J)	34	<25	1220
GP-20^	8-10	07/08/99	<25	<25	<25	<u>40</u>	<25	<25	<25	<25	<25	<25	<25	<25	160	<25	<25	<25	<50	<25	<75
GP-6^	2-4	07/08/99	<25	<25	<25	<25	<25	120	<25	<25	<25	<25	13000	83	2500	32	18000	28(J)	<50	<25	<75
GP-103 [^]	2	06/27/00	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	73	<25	81	<25	<50	<25	<75
GP-101 [^]	2	06/27/00	<25	<25	74	<25	<25	<25	<25	<25	<25	<25	450	<25	5000	<25	37000	<25	<50	<25	<75
GP-101 [^]	20	06/27/00	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	160	<25	<50	<25	<75
GP-101 [^]	30	06/27/00	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<50	<25	<75
GP-102 [^]	2	06/27/00	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	72	<25	35	<25	<50	<25	<75
GP-109^	2	06/27/00	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	58	<25	1900	<25	<50	<25	<75
GP-109^	8	06/27/00	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	84	<25	920	<25	<50	<25	<75
GP-104 [^]	3	06/28/00	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	160	<25	170	<25	850	<25	<50	<25	<75
GP-104 [^]	8	06/28/00	<25	<25	<25	<25	<25	32	<25	<25	<25	<25	100	<25	450	<25	1900	<25	<50	<25	<75
GP-105^	3	06/28/00	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	35	<25	<50	<25	<75
GP-105^	8	06/28/00	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	80	<25	<50	<25	<75
GP-107^	3	06/28/00	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	59	32	<25	43	<25	<50	<25	<75
GP-107^	8	06/28/00	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	31	<25	68	<25	<50	<25	<75
GP-106^	2	06/28/00	330	36	<25	<25	<25	<25	49	<25	<25	<25	290	920	530	<25	410	<25	610	650	1340
GP-108 [^]	2	06/28/00	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	190	85	220	<25	100	<25	<50	25	230
NR720 G	eneric RCLs		•	**	-	4.9		-	2900	-	-	-	_	1500	-	-	-	-	-	-	4100

NOTES

* = Results from key Environmental

^ = Results from HIS Geotrans

- = No standards established

ug/kg = microç ug/kg = microç ug/kg = micrograms per kilogram = parts per billion na = Lab Analı na = Lab Analı na = Lab Analysis Results not available - reported as No Detect J = Estimated by laboratory

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

Project: MPL Realty

205 Wilmont Dr. Waukesha, WI 53189 Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/20/04 09:52

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-10	W408044-01	Water	08/03/04 00:00	08/04/04 12:52
MW-102	W408044-02	Water	08/03/04 00:00	08/04/04 12:52
MW-103	W408044-03	Water	08/03/04 00:00	08/04/04 12:52
MW-7	W408044-04	Water	08/03/04 00:00	08/04/04 12:52
PZ-1	W408044-05	Water	08/03/04 00:00	08/04/04 12:52
MW-9	W408044-06	Water	08/03/04 00:00	08/04/04 12:52
MW-9 (Free Product)	W408044-07	Water	08/03/04 00:00	08/04/04 12:52

Sample Receipt Notes

Please note that the chain of custody (COC) included with this report is considered part of the report. The data user should review any comments or notes made on the COC. Any receipt issues found by the laboratory that are not noted on the COC will be stated below.

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

Project: MPL Realty

205 Wilmont Dr. Waukesha, WI 53189 Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260

Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-10 (W408044-01) Water	Sampled: 08/03/04 00:00	Received	: 08/04/04	12:52					QC
Benzene	ND	0.500	ug/l	1	4080054	08/14/04	08/16/04	EPA 8260B	
Bromobenzene	ND	5.00	#	**	"	**	**	"	
Bromodichloromethane	ND	0.391	tt	**	"	**	"	"	
n-Butylbenzene	ND	5.00	#	**	**	"	"	**	
sec-Butylbenzene	ND	5.00	Ħ	**	"	"	**	"	
tert-Butylbenzene	ND	5.00	Ħ	**	"	"	**	rr ·	
Carbon tetrachloride	ND	0.372	**	**	"	*	**	**	
Chlorobenzene	ND	5.00	"	**	"	11	tt	**	
Chloroethane	ND	5.00	"	11	"	11	**	Ħ	
Chloroform	ND	0.316	**	11	"	11	Ħ	11	
Chloromethane	ND	0.448	11	11	"	"	#1	11	
2-Chlorotoluene	ND	5.00	"	11	"	"	Ħ	11	
4-Chlorotoluene	ND	5.00	**	"	n	"	**	n .	
Dibromochloromethane	ND	5.00	H	"	n	tt	**	"	
1,2-Dibromo-3-chloropropane	ND	0.264	11	**	**	**	••	"	
1,2-Dibromoethane	ND	0.251	11	**	tt	n		**	
7,2-Dichlorobenzene	ND	5.00	Ħ	**	11	u	**	**	
7,3-Dichlorobenzene	ND	5.00	**	**	"	**	**	H	
1,4-Dichlorobenzene	ND	5.00	**	"	**	n	**	n	
Dichlorodifluoromethane	ND	5.00	**	**	11	n	**	н	
1,1-Dichloroethane	5.06	5.00	11	**	**	tr	**	11	
1,2-Dichloroethane	ND	0.500	11	**	"	**	**	n	
1,1-Dichloroethene	5.29	0.500	11	**	**	"	**	n .	
=;-1,2-Dichloroethene	ND	5.00	н	11	n	**	**	tr	
trans-1,2-Dichloroethene	ND	5.00	*1	**	н	**	"		
1,2-Dichloropropane	ND	0.500	19	tr	**	H	"	"	
1,3-Dichloropropane	ND	5.00	**	17	**	"		"	
2,2-Dichloropropane	ND	5.00	11	11	**	"	"	11	
Di-isopropyl ether	ND	5.00	**	11	**	н		н	
Ethylbenzene	ND	5.00	97	11	**	"	,,	II	G13
Hexachlorobutadiene	ND	10.0		**	**	"	**	11	01.
Isopropylbenzene	ND	5.00	II		"	"	11	11	
p-Isopropyltoluene	ND	5.00	Ħ	**	11	"	**	"	
Methylene chloride	ND	0.386	tt.	**	**	"	11	**	
Methyl tert-butyl ether	ND ND	0.290	**	**	**	"	II.	n	
Naphthalene	ND ND	8.00	H	**	н	"	**	"	
n-Propylbenzene	ND	5.00	11		H	"	"	11	
1,1,2,2-Tetrachloroethane	ND	0.331	"	"	**	"	11	"	
Tetrachloroethene	49.2	0.500	**	**	**	**	"	n	
Toluene	49.2 ND	5.00	11	11	"	**	,,	н	
1,2,3-Trichlorobenzene	ND ND	10.0	"	11	**	"	11	,,	
			,,	"	**	"		"	
1,2,4-Trichlorobenzene	ND	10.0	"	**	.7	"		••	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MIA

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: MPL Realty

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260

Great Lakes Analytical--Oak Creek Reporting Result Limit Dilution Batch Prepared Analyzed Method Notes Analyte Units MW-10 (W408044-01) Water Sampled: 08/03/04 00:00 Received: 08/04/04 12:52 QC ug/l EPA 8260B 1.1.1-Trichloroethane 87.6 5.00 4080054 08/14/04 08/16/04 1,1,2-Trichloroethane ND 0.145 08/19/04 G20 Trichloroethene 5.00 10 147 Trichlorofluoromethane 5.00 08/16/04 ND 1,2,4-Trimethylbenzene ND 5.00 1,3,5-Trimethylbenzene ND 5.00 Vinyl chloride G14 ND 0.217 Total Xylenes ND 5.00 Surrogate: Dibromofluoromethane 89.6 % 82.1-117 Surrogate: 1,2-Dichloroethane-d4 93.2 % 70.2-131 Surrogate: Toluene-d8 104% 74.1-125 Surrogate: 4-Bromofluorobenzene 95.6% 88.5-103

MW-102 (W408044-02) Water	Sampled: 08/03/04 00:00	Received: 08/04/04 12:52		G21, QC
---------------------------	-------------------------	--------------------------	--	---------

1.30	0.500	ug/l	1	4080054	08/14/04	08/19/04	EPA 8260B
ND	5.00	"	11	Ħ	"	11	n .
ND	0.391	11	**	н	"	11	
ND	5.00	"	11	п	"	**	H
ND	5.00	**	11	**	"	"	"
ND	5.00	**	11	**	11	"	"
ND	0.372	Ħ	#	**	"	n	"
ND	5.00	**	Ħ	"	n	**	"
ND	5.00	**	11	"	11	"	"
ND	0.316	**	"	"	11	"	
ND	0.448	H	"	**	n	"	"
ND	5.00	"	**	**	н	"	"
ND	5.00	**	"	**	II	**	"
ND	5.00	**	"	11	n	**	11
ND	0.264	**	"	"	"	"	11
ND	0.251	"	"	11	н	**	11
ND	5.00	11	**	11	"	**	11
ND	5.00	н	"	78	Ħ	"	**
ND	5.00	11	"	11 .	"	11	11
ND	5.00	*	"	11	"	H	#
ND	5.00	**	**	11	"	n	**
ND	0.500	"	"	**	. "	n n	**
ND ·	0.500	"	**	11	"	· ·	n
11.3	5.00	11	"	11	"	"	n
ND	5.00	**	**	"	"	**	ır
ND	0.500	"	"	11	"	**	IT
ND	5.00	H .	"	11	"	11	н
ND	5.00	"	"	"	"	11	. "
	ND N	ND 5.00 ND 0.391 ND 5.00 ND 5.00 ND 5.00 ND 5.00 ND 5.00 ND 0.316 ND 0.448 ND 5.00 ND 0.500 ND 5.00 ND <td>ND 5.00 " ND 0.391 " ND 5.00 " ND 0.316 " ND 0.448 " ND 5.00 " ND 0.264 " ND 0.251 " ND 5.00 " ND 0.500 " ND 0.500 " ND 5.00 " ND 5.00 " ND 5.00 "</td> <td>ND 5.00 " " " ND 0.391 " " ND 5.00 " " " ND 5.00 " " " " " ND 5.00 " " " " " " " " " " " " " " " " " "</td> <td>ND 5.00 " " " " " ND 0.391 " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " " " ND 5.00 " " " " " " " " " " " " " " " " " "</td> <td>ND 5.00 " " " " " " ND 5.00 " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " " ND 5.00 " " " " " " " " ND 5.00 " " " " " " " " " ND 5.00 " " " " " " " " " " ND 5.00 " " " " " " " " " " " ND 5.00 " " " " " " " " " " " " " " " " " "</td> <td>ND 5.00 " " " " " " " " " " ND 5.00 " " " " " " " " " " " " " " " " " "</td>	ND 5.00 " ND 0.391 " ND 5.00 " ND 0.316 " ND 0.448 " ND 5.00 " ND 0.264 " ND 0.251 " ND 5.00 " ND 0.500 " ND 0.500 " ND 5.00 " ND 5.00 " ND 5.00 "	ND 5.00 " " " ND 0.391 " " ND 5.00 " " " ND 5.00 " " " " " ND 5.00 " " " " " " " " " " " " " " " " " "	ND 5.00 " " " " " ND 0.391 " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " " " ND 5.00 " " " " " " " " " " " " " " " " " "	ND 5.00 " " " " " " ND 5.00 " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " ND 5.00 " " " " " " " " ND 5.00 " " " " " " " " ND 5.00 " " " " " " " " " ND 5.00 " " " " " " " " " " ND 5.00 " " " " " " " " " " " ND 5.00 " " " " " " " " " " " " " " " " " "	ND 5.00 " " " " " " " " " " ND 5.00 " " " " " " " " " " " " " " " " " "

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

My A

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260

Great Lakes Analytical--Oak Creek

		Reporting						36.1.1	
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note:
MW-102 (W408044-02) Water	Sampled: 08/03/04 00:00	Receive	d: 08/04/	04 12:52					G21, Q0
Di-isopropyl ether	ND	5.00	ug/l	1	4080054	08/14/04	08/19/04	EPA 8260B	
Ethylbenzene	ND	5.00	"	**	**	11	"	Ħ	
Hexachlorobutadiene	ND	10.0	**	Ħ	,,	"	•	**	
Isopropylbenzene	ND	5.00	**	#	"	"	"	n	
p-Isopropyltoluene	ND	5.00	**	11	"	"	**	19	
Methylene chloride	ND	0.386	11	"	**	"	**	"	
Methyl tert-butyl ether	ND	0.290	"	11	H	н	19	11	
Naphthalene	ND	8.00	"	**	"	ti	**	**	
n-Propylbenzene	ND	5.00	**	**	11	**	19	**	
1,1,2,2-Tetrachloroethane	ND	0.331	**	, ,	"	"	10	**	
Tetrachloroethene	ND	0.500	**	Ħ	"	"	"	**	
Toluene	ND	5.00	"	11	**	"	**	n	
1,2,3-Trichlorobenzene	ND	10.0	11	"	11	"	**	n	
1,2,4-Trichlorobenzene	ND	10.0	Ħ	"	н	"	10	11	
1,1,1-Trichloroethane	ND	5.00	11	**	H	17	"	11	
1,1,2-Trichloroethane	ND	0.145	"	**	н	"	10		
Trichloroethene	11.1	0.500	11	**	**	. "	**	"	
Trichlorofluoromethane	ND	5.00	"	"	"		**	"	
1,2,4-Trimethylbenzene	ND	5.00	"	**	11	Ħ	11	"	
1,3,5-Trimethylbenzene	ND	5.00	"	"	**	11	"	**	
Vinyl chloride	ND	0.217	"	*1	"	11	"	"	G1-
Total Xylenes	ND	5.00	**	11	H		H		
Surrogate: Dibromofluoromethan	e	80.8 %	82.1	'-117	"	"	n	"	L
Surrogate: 1,2-Dichloroethane-d4		71.0 %	70.2	?-131	"	"	n .	"	
Surrogate: Toluene-d8		102 %	74.1	'-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	2	99.4 %	88 4	5-103	"	"	"	"	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MIA

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260

Great Lakes Analytical--Oak Creek

Analyte	Result	Leporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-103 (W408044-03) Water	Sampled: 08/03/04 00:00	Receive	d: 08/04/0	04 12:52					QC
Benzene	ND	0.500	ug/l	1	4080054	08/14/04	08/16/04	EPA 8260B	
Bromobenzene	ND	5.00	11	11	**	"	"	"	
Bromodichloromethane	ND	0.391	"	"	н	*	**	n	
n-Butylbenzene	ND	5.00	**	**	u .	If	**	"	
sec-Butylbenzene	ND	5.00	**	**	"		11	n	
tert-Butylbenzene	ND	5.00	**	**	"	#	**	H	
Carbon tetrachloride	ND	0.372	Ħ	n	"	11	**	n	
Chlorobenzene	ND	5.00	11	Ħ	**	**	**	**	
Chloroethane	ND	5.00	11	11	n	**	**	"	
Chloroform	ND	0.316	11	11	H	"	"	"	
Chloromethane	ND	0.448	***		11	Ħ	"	rr .	
2-Chlorotoluene	ND	5.00	"	"	17	**	**	n	
4-Chlorotoluene	ND	5.00	n	**	11	**	"	n	
Dibromochloromethane	ND	5.00	**	",	11	"	"	11	
1,2-Dibromo-3-chloropropane	ND	0.264	11	n	**	11	**	n	
1,2-Dibromoethane	ND	0.251	Ħ	н	17	"	11	n	
1,2-Dichlorobenzene	ND	5.00	11	11	"	**	11	n	
1,3-Dichlorobenzene	ND	5.00	11	#	"	"	11	11	
1,4-Dichlorobenzene	ND	5.00	11	н	**	- #	**	11	
Dichlorodifluoromethane	ND	5.00	11		H		"	**	
1,1-Dichloroethane	ND	5.00	"	"	н	**	"	**	
1,2-Dichloroethane	ND	0.500	11	"	н	**	**	11	
1,1-Dichloroethene	ND	0.500	11	11	H	**	**	"	
‡is-1,2-Dichloroethene	ND	5.00	"	11		**		"	
trans-1,2-Dichloroethene	ND ND	5.00	**		"	"	**	n	
1,2-Dichloropropane	ND	0.500	**	**		"	11	**	
1,3-Dichloropropane	ND	5.00	**	"		**		•	
2,2-Dichloropropane	ND ND	5.00	**	11	"	tr	. "	"	
Di-isopropyl ether	ND ND	5.00	**	n	"	tt.		H.	
Ethylbenzene	ND ND	5.00	п	11	,,	n .		n	G1:
Hexachlorobutadiene	ND ND	10.0	н	11	,,	ti .	"	"	Gi.
Isopropylbenzene	ND ND	5.00	11	n	"	н	**	н	
* **			,,	"	17	11	11	n	
p-Isopropyltoluene	ND	5.00	,,		H	11	**	11	
Methylene chloride	ND	0.386	,,	"		,,	"	n	
Methyl tert-butyl ether	ND	0.290	"		"		11		
Naphthalene	ND	8.00	"		"	"	"	 H	
n-Propylbenzene	ND	5.00			"	"	11		
1,1,2,2-Tetrachloroethane	ND	0.331	"	"					
Tetrachloroethene	ND	0.500	tt .	"	,,	"		"	
Toluene	ND	5.00	Ħ	**	"	**	**	"	
d,2,3-Trichlorobenzene	ND	10.0	11	Ħ	"	n	**	"	
1,2,4-Trichlorobenzene	ND	10.0		"	**	"	11	n .	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Mal

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260

Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
MW-103 (W408044-03) Water	Sampled: 08/03/04 00:0	0 Receive	d: 08/04/	04 12:52		· -			(
1,1,1-Trichloroethane	ND	5.00	ug/l	1	4080054	08/14/04	08/16/04	EPA 8260B	
1,1,2-Trichloroethane	ND	0.145	н		"	"	**	"	
Trichloroethene	ND	0.500	11	**	**	"	"	tt	
Trichlorofluoromethane	ND	5.00	11	**	"	**	••	**	
1,2,4-Trimethylbenzene	ND	5.00	**	**	11	**	"	11	
1,3,5-Trimethylbenzene	ND	5.00	**	**	u	"	"	11	
Vinyl chloride	ND	0.217	Ħ	u	**	"	**	**	G
Total Xylenes	ND	5.00	н	**	**	"	11	"	
Surrogate: Dibromofluoromethan	e	65.8 %	82.1	'-117	"	"	"	"	L
Surrogate: 1,2-Dichloroethane-d4		74.4 %	70.2	?-131	"	n	"	"	
Surrogate: Toluene-d8		104 %		-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	?	92.4 %		5-103	"	"	"	"	
 MW-7 (W408044-04) Water S:	ampled: 08/03/04 00:00	Received:	08/04/04	12:52					Ç
Benzene	ND	0.500	ug/l	1	4080054	08/14/04	08/17/04	EPA 8260B	
Bromobenzene	ND	5.00	11	**	u	н .	"	"	
Bromodichloromethane	0.900	0.391	u	**	**	"	**	#	
n-Butylbenzene	ND	5.00	н	"	II	11	••	**	
ec-Butylbenzene	ND	5.00	Ħ	tt	**	**	**	n	
ert-Butylbenzene	ND	5.00	11	n	n	**	••	"	
Carbon tetrachloride	ND	0.372	11	11	11	"	"	n	
Chlorobenzene	ND	5.00	11	11	"	"	"	**	
Chloroethane	ND	5.00	11	n	"	**	**	"	
	ND	0.316	**	11	"	**	"	**	
Chloromethane	ND	0.448	**	**	11	. 41	**	11	
2-Chlorotoluene	ND	5.00	**	**	**	н	11	**	
1-Chlorotoluene	ND	5.00	11	"	**	n	н	**	
Dibromochloromethane	ND	5.00	19	**	**	11	"	"	
1,2-Dibromo-3-chloropropane	ND	0.264	19	11	Ħ	"	••	••	
,2-Dibromoethane	ND	0.251	**	"	н	**	"	"	
,2-Dichlorobenzene	ND	5.00	Př	11	11	"	"	"	
1,3-Dichlorobenzene	ND	5.00	н		**	n	**	11	
1,4-Dichlorobenzene	ND	5.00	н	"	**	n .	n	**	
Dichlorodifluoromethane	ND	5.00	#	n	n	n	н	**	
1,1-Dichloroethane	ND	5.00	11	,,	"	11	11	11	
1,2-Dichloroethane	ND	0.500	,,	**	н	"	11	**	
I,1-Dichloroethene	10.8	0.500	,,	**	н	"	**	"	
is-1,2-Dichloroethene	ND	5.00	**	"	11	"	**		
	ND	5.00	11	**	11	n	"		
trans-1 7-Dichloroethene	110	2.00							
trans-1,2-Dichloroethene 1 2-Dichloropropane		0.500	**	"	**	11	*	**	
trans-1,2-Dichloroethene 1,2-Dichloropropane 1,3-Dichloropropane	ND ND	0.500 5.00	"	"	"	"	"	n tr	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

My A

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260

Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-7 (W408044-04) Water	Sampled: 08/03/04 00:00	Received:	08/04/04	12:52					Q
Di-isopropyl ether	ND	5.00	ug/l	1	4080054	08/14/04	08/17/04	EPA 8260B	
Ethylbenzene	ND	5.00	**	"	" .	**	"	11	
Hexachlorobutadiene	ND	10.0	11	"	"	tt	H	11	
Isopropylbenzene	ND	5.00	n	"	Ħ	II .	"	**	
⇒-Isopropyltoluene	ND	5.00	**	Ħ	11	11	"	"	
Methylene chloride	ND	0.386	10	**	"	11	**	**	
Methyl tert-butyl ether	ND	0.290	"	"	"	"	**	**	
Naphthalene	ND	8.00	"	"	"	**	**	n	
¬-Propylbenzene	ND	5.00	**	Ħ	n	Ħ	er er	Ħ	
,1,2,2-Tetrachloroethane	ND	0.331	"	н	"	II	**	n	
Tetrachloroethene	2.39	0.500	"	11	н	11	**	"	
Toluene	ND	5.00	"	**	**	11	#	"	
■,2,3-Trichlorobenzene	ND	10.0	#	"	"	"	n	ıı	
■,2,4-Trichlorobenzene	ND	10.0	Ħ	"	"	"	**	H	
1,1,1-Trichloroethane	35.6	5.00	Ħ	**	n	**	"	**	
■,1,2-Trichloroethane	ND	0.145	11	**	n	11	**	H	
T richloroethene	79.7	0.500	11	11	**	tt	**	Ħ	
Trichlorofluoromethane	ND	5.00	11	11	11	II	**	11	
1,2,4-Trimethylbenzene	ND	5.00	"	11	"	Ħ	**	11	
,3,5-Trimethylbenzene	ND	5.00	**	***	"	11	**	11	
√inyl chloride	ND	0.217	**	"	"	11	"	11	G1-
Total Xylenes	ND	5.00	**		"	11	rr	"	
∃urrogate: Dibromofluorometh	ane	77.0 %	82.1	-117	"	"	"	"	L
Jurrogate: 1,2-Dichloroethane-		73.8 %	70.2	-131	"	"	"	"	
Surrogate: Toluene-d8		96.8 %	74.1		"	"	"	"	
Şurrogate: 4-Bromofluorobenze	ene	96.2 %	88.5		"	"	"	"	

-Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: MPL Realty

Project Number: 7-21058 Project Manager: Mike Rehfeldt

Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260

Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
PZ-1 (W408044-05) Water	Sampled: 08/03/04 00:00	Received: 0	8/04/04	12:52					Q
Benzene	ND	0.500	ug/l	1	4080054	08/14/04	08/17/04	EPA 8260B	
Bromobenzene	ND	5.00	'n		н	11	**	н	
Bromodichloromethane	4.57	0.391	н	11	11	**		11	*
n-Butylbenzene	ND	5.00	н	п	"	n	"	n	
sec-Butylbenzene	ND	5.00	19	"	11	11	**	11	
tert-Butylbenzene	ND	5.00	11	11	"	11	"	n ·	
Carbon tetrachloride	ND	0.372	11	"	"	11	**	11	
Chlorobenzene	ND .	5.00	**	n	"	11	**	"	
Chloroethane	ND	5.00	**	11	Ħ	"	**	"	
Chloroform	ND	0.316	tt	11	н	**	**	"	
Chloromethane	ND	0.448	n	"	н	**	**		
2-Chlorotoluene	ND	5.00	н	"	н	**	91	"	
4-Chlorotoluene	ND	5.00	н	"	**	**	**	"	
Dibromochloromethane	. ND	5.00	**	"	**	"	**	**	
1,2-Dibromo-3-chloropropane	e ND	0.264	11	"	Ħ	**	**	"	
1,2-Dibromoethane	ND	0.251	Ħ	**	**	**	**	"	
1,2-Dichlorobenzene	ND	5.00	**	11	**	**	**	"	
1,3-Dichlorobenzene	ND	5.00	н	**	H	11	**	"	
1,4-Dichlorobenzene	ND	5.00	"	**	u	**	**	"	
Dichlorodifluoromethane	ND	5.00	**	"	и	"	**	и	
1,1-Dichloroethane	50.1	5.00	**	"	н	**	**	11	
1,2-Dichloroethane	ND	0.500	н	**	n	**	**	**	
1,1-Dichloroethene	108	0.500	Ħ	"		**	**	11	
cis-1,2-Dichloroethene	128	5.00	**	**		**	n	п	
trans-1,2-Dichloroethene	ND	5.00	н	"	u	**		Ħ	
1,2-Dichloropropane	ND	0.500	**	**		**	••	н	
1,3-Dichloropropane	ND	5.00	**	**	n	11	••	н	
2,2-Dichloropropane	ND	5.00	**	H		**	**	Ħ	
Di-isopropyl ether	ND	5.00	"	11		**		п	
Ethylbenzene	ND	5.00	"	н	н	•		п	GI
Hexachlorobutadiene	ND	10.0	11	11	и	"		**	O.
Isopropylbenzene	ND ND	5.00	"	Ħ	н	**	н	**	
p-Isopropyltoluene	ND	5.00	"	11	H	**	"	n	
Methylene chloride	ND	0.386	**	11		**		**	
Methyl tert-butyl ether	ND	0.290	"	11		**	••	n	
Naphthalene	ND	8.00	"	n	u	**	**	н	
n-Propylbenzene	ND	5.00	"	IT	n n	11	•	"	
1,1,2,2-Tetrachloroethane	ND	0.331	"	n	н	**	**	n	
Tetrachloroethene	4.20	0.500	**	11	11	**		**	
Toluene	4.20 ND	5.00	"	11	11	••	**	tt .	
1,2,3-Trichlorobenzene	ND ND	10.0	"	11	11	**	**	n	
1,2,4-Trichlorobenzene	ND ND	10.0	**		**		H	н	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21058 Project Manager: Mike Rehfeldt Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260

Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PZ-1 (W408044-05) Water	Sampled: 08/03/04 00:00	Received: 0	8/04/04 1	12:52					QC
1,1,1-Trichloroethane	304	100	ug/l	20	4080054	08/14/04	08/19/04	EPA 8260B	G20
1,1,2-Trichloroethane	ŃД	0.145	**	1	"	"	08/17/04	Ħ	
Trichloroethene	405	10.0	11	20	"	"	08/19/04	"	G20
Trichlorofluoromethane	ND	5.00	"	1	H	11	08/17/04	"	
1,2,4-Trimethylbenzene	ND	5.00	"	"	Ħ	"	"	" .	
1,3,5-Trimethylbenzene	ND	5.00	**	**	11		"	**	
Vinyl chloride	15.1	0.217	**	H		'H	**		G14
Total Xylenes	ND	5.00	It				**		
Surrogate: Dibromofluorome		83.6 %		-117	"	"	"	n	
Surrogate: 1,2-Dichloroethan	ne-d4	78.8 %		?-131	"	"	"	"	
Surrogate: Toluene-d8		101 %		-125	"	"	"	"	
Surrogate: 4-Bromofluoroben	nzene	96.8 %	88.5	5-103	"	"	"	"	
MW-9 (W408044-06) Water	Sampled: 08/03/04 00:00	Received:	08/04/04	12:52					G21, QC
Benzene	3.92	0.500	ug/l	1	4080054	08/14/04	08/19/04	EPA 8260B	
Bromobenzene	ND	5.00	**	"	11	**	"	**	
Bromodichloromethane	ND	0.391	**	**	"	11	11	**	
n-Butylbenzene	32.2	5.00	"	11		"	"	**	
sec-Butylbenzene	ND	5.00	"	**	11	"	**	**	
tert-Butylbenzene	6.13	5.00	**	lt.	**	**	**	**	
Carbon tetrachloride	ND	0.372	14	11	11	"	**	**	
Chlorobenzene	ND	5.00	**	**	"	"	**	**	
Chloroethane	ND	5.00	"	11	••	"	"	"	
Chloroform	ND	0.316	"	"	"	"	11	**	
Chloromethane	ND	0.448	**	**	**	"	**	"	
2-Chlorotoluene	ND	5.00	"	**	"	"	11	**	
4-Chlorotoluene	ND	5.00	**	**	н	**	11	**	
Dibromochloromethane	ND	5.00	11		п	II .	11	n	
1,2-Dibromo-3-chloropropane	e ND	0.264	**	"	11	If	**	**	
1,2-Dibromoethane	ND	0.251	**	н	н	Ü	***	11	
1,2-Dichlorobenzene	ND	5.00	11	16		11	**	11	
1,3-Dichlorobenzene	ND	5.00	**	11		"	**	17	
1,4-Dichlorobenzene	ND	5.00	**	11	19	11	**	11	
Dichlorodifluoromethane	ND	5.00	11	**	**	11	••	19	
1,1-Dichloroethane	ND	5.00	"	"	**	11	"	n	
1,2-Dichloroethane	ND	0.500	••	**	"	11	n	"	
1,1-Dichloroethene	2.79	0.500	"	"	Ħ	"	'n	. "	
⊇is-1,2-Dichloroethene	182	50.0	tt	10	"	"	08/19/04	"	
trans-1,2-Dichloroethene	ND	5.00	Ħ	1	n	, "	08/19/04	"	
1,2-Dichloropropane	ND	0.500	Ħ	tt	**	"	11	**	
					11	11	11		
■,3-Dichloropropane	ND	5.00	11	17		•	••		

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

My A

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: MPL Realty

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260

Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-9 (W408044-06) Water	Sampled: 08/03/04 00:00	Received:	08/04/04	12:52					G21, QC
Di-isopropyl ether	ND	5.00	ug/l	1	4080054	08/14/04	08/19/04	EPA 8260B	
Ethylbenzene	896	50.0	11	10	" .	н	08/19/04	11	
Hexachlorobutadiene	ND	10.0	11	1	**	11	08/19/04	11	
Isopropylbenzene	61.6	5.00	н	"	**	11	"	11	
Isopropyltoluene	59.8	5.00	11	**	**	11	**	11	
Methylene chloride	ND	0.386	**	"	"	н	n	11	
Methyl tert-butyl ether	ND	0.290	"	"	Ħ	11	11	11	
Naphthalene	166	80.0	**	10	**	11	08/19/04	11	
1-Propylbenzene	104	5.00	**	1	n	**	08/19/04	"	
1,1,2,2-Tetrachloroethane	ND	0.331	**	н	Ħ	**	**	"	
Tetrachloroethene	ND	0.500	**	11	"	**	11	11	
F oluene	9.56	5.00	"	11	tt	**	"	**	
,2,3-Trichlorobenzene	ND	10.0	**	11	"	**	**	"	
1,2,4-Trichlorobenzene	ND	10.0		17	11	"	11	**	
1,1,1-Trichloroethane	ND	5.00	**	"	11	11	11	**	
1,1,2-Trichloroethane	ND	0.145	**	"	**	11	**	**	
Frichloroethene	76.5	0.500	"	**	**	71	**	**	
Trichlorofluoromethane	ND	5.00	**	11	**	11	**	ar .	
1,2,4-Trimethylbenzene	1310	50.0	"	10	**	**	08/19/04	11	
,3,5-Trimethylbenzene	352	50.0	**	**	**	11	**	**	
Vinyl chloride	68.2	0.217	**	1	**	11	08/19/04	11	G14
Total Xylenes	2310	50.0	n	10	н	11	08/19/04	**	
Surrogate: Dibromofluoromethe	nne	95.4 %	82.1	-117	"	"	08/19/04	"	
Surrogate: 1,2-Dichloroethane-		93.2 %		2-131	"	n	"	"	
Surrogate: Toluene-d8		99.2 %		-125	"	"	"	"	
Surrogate: 4-Bromofluorobenze	ne	96.8 %		5-103	"	"	"	"	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21058 Project Manager: Mike Rehfeldt Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260

Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-9 (Free Product) (W408044-07) Water	Sampled	: 08/03/04 00	:00 Rec	eived: 08/0	04/04 12:5	52			QC
Benzene	ND	500	ug/l	1000	4080054	08/14/04	08/17/04	EPA 8260B	
Bromobenzene	ND	5000	11	tt	"	H	**	**	
Bromodichloromethane	ND	391	11	н	11	11	**	17	
n-Butylbenzene	83700	5000	**	**	11	11	11	**	
sec-Butylbenzene	ND	5000	**	"	11	"	H	**	
ert-Butylbenzene	51200	5000	11	"	11	"	**	**	
Carbon tetrachloride	NĐ	372	**	"	11	"		п .	
Chlorobenzene	ND	5000	**	n	"	"	**	Ħ	
Chloroethane	ND	5000	н	n	**	"	**	**	
Chloroform	ND	316	н	**	"	H	**	11	
Chloromethane	ND	448	Ħ	**	n	н	19	**	
2-Chlorotoluene	ND	5000	**	"	н	u	11	"	
4-Chlorotoluene	ND	5000	11	"	n	11	**	"	
Dibromochloromethane	ND	5000	11	"	н	n	**	**	
1,2-Dibromo-3-chloropropane	ND	264	"		н	11	10	"	
1,2-Dibromoethane	ND	251		**	н	H	**	**	
1,2-Dichlorobenzene	ND	5000	**		11	H		**	
1,3-Dichlorobenzene	ND	5000	**	**	11	и	**		
1,4-Dichlorobenzene	ND	5000	11	**	н	U	"		
Dichlorodifluoromethane	ND	5000	**	**	н	H	**	"	
,1-Dichloroethane	ND	5000	**	**	н	u	**	"	÷
1,2-Dichloroethane	ND	500	**	**	Ħ	u u	**	**	
1,1-Dichloroethene	ND	500	**	"	tt	**	11	11	
is-1,2-Dichloroethene	ND	5000	**	"	н	"	10	**	
rans-1,2-Dichloroethene	ND	5000	**	**	н	**	11	n	
1,2-Dichloropropane	ND	500	**	**	u	**	19	**	
1,3-Dichloropropane	ND	5000	**	**	н	п	**	"	
2,2-Dichloropropane	ND	5000	**	"	н	u		"	
Di-isopropyl ether	ND	5000	"	"	11	II.	**	"	
• • • • • • • • • • • • • • • • • • • •	290000	50000	n	10000	n	H	08/18/04	"	G13, G20
Hexachlorobutadiene	ND	10000	п	1000	11	Ħ	08/17/04	11	015, 020
•	135000	5000	19	11	19	н	"	**	G20
	280000	100000	11	20000	11	II .	08/19/04	,,	020
Methylene chloride	ND	386	**	1000	11	н	08/17/04		
Methyl tert-butyl ether	ND	290	11	1000	11	н	11	"	
	536000	80000	**	10000	11		08/18/04	"	G20
=	911000	50000	,,	10000	11	**	00/10/04 #	**	G20
1,1,2,2-Tetrachloroethane	ND	331	**	1000	"	н	08/17/04	**	020
Tetrachloroethene	630	500		1000		**	U0/17/U4 "	"	
Toluene	ND	5000	"	.11	**	, 11	**	"	
1,2,3-Trichlorobenzene	ND ND	10000	11	"	11	,	"	,,	
1,2,4-Trichlorobenzene	ND ND	10000		11	H		**	**	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Mal

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189

Project: MPL Realty

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260

Great Lakes Analytical--Oak Creek

										
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method		Notes
MW-9 (Free Product) (W408044-07) V	Vater Sampled	1: 08/03/04 00	:00 Red	ceived: 08/0	04/04 12:5	2				QC
1,1,1-Trichloroethane	ND	5000	ug/l	1000	4080054	08/14/04	08/17/04	EPA 8260B		
1,1,2-Trichloroethane	ND	145	н	**	**	**	**	"		
Trichloroethene	ND	500	**	"	**	**	•	"		
Trichlorofluoromethane	ND	5000	11	**	**	**		H		
1 ,2,4-Trimethylbenzene	2060000	100000	**	20000	"	**	08/19/04	н .		G 20
■,3,5-Trimethylbenzene	635000	100000	**	"	••	**	"	**		G20
Vinyl chloride	ND	217	"	1000	**	"	08/17/04	**		G14
Total Xylenes	1180000	100000	*	20000	"	н	08/19/04	11		G20
Surrogate: Dibromofluoromethane		87800 %	82.1	'-117	"	"	08/17/04	"	Н	
Surrogate: 1,2-Dichloroethane-d4		85400 %	70.2	?-131	"	"	"	"	H	
Surrogate: Toluene-d8		96800 %	74.1	-125	"	"	"	"	Н	
Surrogate: 4-Bromofluorobenzene		80800 %	88.5	5-103	"	"	"	"	Н	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4080054 - EPA 5030B (P/T)										-
Blank (4080054-BLK1)	•			Prepared:	08/14/04	Analyzed	: 08/16/04			
Benzene	ND	0.500	ug/l			· · · · · · ·				
Bromobenzene	ND	5.00	"							
Bromodichloromethane	ND	0.391	"							
n-Butylbenzene	ND	5.00	"							
sec-Butylbenzene	ND	5.00	"							
zert-Butylbenzene	ND	5.00	"							
Carbon tetrachloride	ND	0.372	"							
Chlorobenzene	ND	5.00	"							
□hloroethane	ND	5.00	**							
□ hloroform	ND	0.316	"							
Chloromethane	ND	0.448								
2-Chlorotoluene	ND	5.00								•
⊐- Chlorotoluene	ND	5.00	"							
Dibromochloromethane	ND	5.00	"							
,2-Dibromo-3-chloropropane	ND	0.264	11						•	
,2-Dibromoethane	ND	0.251	"							
1,2-Dichlorobenzene	ND	5.00	11							
■,3-Dichlorobenzene	ND	5.00	n							
,4-Dichlorobenzene	ND	5.00	Ħ							
Dichlorodifluoromethane	ND	5.00	**							
1,1-Dichloroethane	ND	5.00	**							
1,2-Dichloroethane	ND	0.500	**							
1,1-Dichloroethene	ND	0.500	**							
çis-1,2-Dichloroethene	ND	5.00	**							
rans-1,2-Dichloroethene	ND	5.00	**							
1,2-Dichloropropane	ND	0.500	"							
1,3-Dichloropropane	ND	5.00	н				٠			
⊇,2-Dichloropropane	ND	5.00	"							
Di-isopropyl ether	ND	5.00	"							
Ethylbenzene	ND	5.00	**							
Hexachlorobutadiene	ND	10.0	**							
	ND	5.00	••							
p-lsopropyltoluene	ND	5.00								
Methylene chloride	ND	0.386								

Great Lakes Analytical--Oak Creek

Methyl tert-butyl ether

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Mil

ND

0.290

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4080054 - EPA 5030B (P/T)								,		
Blank (4080054-BLK1)				Prepared:	08/14/04	Analyzed	l: 08/16/04			
Naphthalene	ND	8.00	ug/l							
n-Propylbenzene	ND	5.00	**							
1,1,2,2-Tetrachloroethane	ND	0.331	"							
Tetrachloroethene	ND	0.500	**							
Toluene	ND	5.00	**							
1,2,3-Trichlorobenzene	ND	10.0	**							
1,2,4-Trichlorobenzene	ND	10.0	n							
1,1,1-Trichloroethane	ND	5.00	h							
1,1,2-Trichloroethane	ND	0.145	11							
Trichloroethene	ND	0.500	**							
Trichlorofluoromethane	ND	5.00	11							
1,2,4-Trimethylbenzene	ND	5.00	**							
1,3,5-Trimethylbenzene	ND	5.00	**							
Vinyl chloride	ND	0.217	*							
Total Xylenes	ND	5.00	11							
Surrogate: Dibromofluoromethane	43.5		"	50.0		87.0	82.1-117			
Surrogate: 1,2-Dichloroethane-d4	41.9		"	50.0		83.8	70.2-131			
Surrogate: Toluene-d8	52.0		"	50.0		104	74.1-125			
Surrogate: 4-Bromofluorobenzene	46.1		"	50.0		92.2	88.5-10 3		-	
LCS (4080054-BS1)				Prepared:	08/14/04	Analyzed	l: 08/17/04			
Benzene	17.9	0.500	ug/l	20.0		89.5	70-130			
Bromobenzene	19.3	5.00	**	20.0		96.5	70-130			
Bromodichloromethane	20.4	0.391	н	20.0		102	70-130			
n-Butylbenzene	16.8	5.00	н	20.0		84.0	70-130			
sec-Butylbenzene	18.1	5.00	Ħ	20.0		90.5	70-130			
tert-Butylbenzene	18.6	5.00	"	20.0		93.0	70-130			
Carbon tetrachloride	7.65	0.372	••	20.0		38.2	70-130			L
Chlorobenzene	17.5	5.00	**	20.0		87.5	70-130			
Chloroethane	ND	5.00	Ħ	20.0			70-130			L
Chloroform	18.7	0.316	11	20.0		93.5	70-130			
Chloromethane	4.00	0.448	41	20.0		20.0	70-130			L
2-Chlorotoluene	19.1	5.00	**	20.0		95.5	70-130			
4-Chlorotoluene	18.3	5.00	11	20.0		91.5	70-130			
Dibromochloromethane	18.8	5.00	"	20.0		94.0	70-130			
1,2-Dibromo-3-chloropropane	20.0	0.264	**	20.0		100	70-130			

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

/// //

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %	6REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4080054 - EPA 5030B (P/T)									
LCS (4080054-BS1)				Prepared:	08/14/04 Ar	nalyzed	: 08/17/04			
1,2-Dibromoethane	18.4	0.251	ug/1	20.0		92.0	70-130		<u> </u>	
1,2-Dichlorobenzene	18.2	5.00	"	20.0		91.0	70-130			
□,3-Dichlorobenzene	17.7	5.00	"	20.0		88.5	70-130			
7,4-Dichlorobenzene	17.4	5.00	"	20.0		87.0	70-130			
Dichlorodifluoromethane	11.7	5.00	"	20.0		58.5	70-130			L
□,1-Dichloroethane	15.9	5.00	"	20.0		79.5	70-130			
☐,2-Dichloroethane	19.5	0.500	"	20.0		97.5	70-130			
1,1-Dichloroethene	22.9	0.500	"	20.0		114	70-130			
⊃is-1,2-Dichloroethene	18.3	5.00	H	20.0		91.5	70-130			
rans-1,2-Dichloroethene	15.1	5.00	11	20.0		75.5	70-130			
1,2-Dichloropropane	20.0	0.500	**	20.0		100	70-130			
1,3-Dichloropropane	19.2	5.00	"	20.0		96.0	70-130			
2,2-Dichloropropane	3.81	5.00	**	20.0		19.0	70-130			L
Di-isopropyl ether	16.8	5.00	11	20.0		84.0	70-130			
Ethylbenzene	18.3	5.00	"	20.0		91.5	70-130			
Hexachlorobutadiene	15.2	10.0	"	20.0		76.0	70-130			
Sopropylbenzene	17.7	5.00	**	20.0		88.5	70-130			
p-Isopropyltoluene	17.6	5.00	"	20.0		88.0	70-130			
Methylene chloride	24.0	0.386	11	20.0		120	70-130			
Methyl tert-butyl ether	9.18	0.290	11	20.0		45.9	70-130			L
Naphthalene	20.9	8.00	**	20.0		104	70-130			
n-Propylbenzene	20.7	5.00	••	20.0		104	70-130			
1,1,2,2-Tetrachloroethane	20.9	0.331		20.0		104	70-130			
Tetrachloroethene	17.8	0.500	**	20.0		89.0	70-130			
Toluene	19.6	5.00	**	20.0		98.0	70-130			
1,2,3-Trichlorobenzene	17.1	10.0	11	20.0		85.5	70-130			
1,2,4-Trichlorobenzene	16.6	10.0	m	20.0		83.0	70-130			
1,1,1-Trichloroethane	12.2	5.00	**	20.0		61.0	70-130			L
1,1,2-Trichloroethane	21.4	0.145	**	20.0		107	70-130			
Trichloroethene	18.8	0.500	**	20.0		94.0	70-130			
Trichlorofluoromethane	54.7	5.00	и	20.0		274	70-130			Н
☐,2,4-Trimethylbenzene	23.6	5.00	**	20.0		118	70-130			••
1,3,5-Trimethylbenzene	18.8	5.00	**	20.0		94.0	70-130			
Vinyl chloride	30.6	0.217	"	20.0		153	70-130			Н
∵otal Xylenes	53.6	5.00		60.0		89.3	70-130			••

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MIA

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21058 Project Manager: Mike Rehfeldt

Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4080054 - EPA 5030B (P/T)										
LCS (4080054-BS1)				Prepared:	08/14/04	Analyzed	1: 08/17/04			
Surrogate: Dibromofluoromethane	46.8		ug/l	50.0		93.6	82.1-117			
Surrogate: 1,2-Dichloroethane-d4	45.4		"	50.0		90.8	70.2-131			
Surrogate: Toluene-d8	46.3		"	50.0		92.6	74.1-125			
Surrogate: 4-Bromofluorobenzene	44.4		"	50.0		88.8	88.5-103			
Matrix Spike (4080054-MS1)	So	urce: W4080.	31-01	Prepared:	08/14/04	Analyzed	1: 08/17/04			
∃enzene	14.7	0.500	ug/l	20.0	ND	73.5	71.3-120			
∃romobenzene	15.4	5.00	**	20.0	ND	77.0	71.1-118			
Bromodichloromethane	17.5	0.391	**	20.0	ND	87.5	70.3-135			
■-Butylbenzene	14.1	5.00	11	20.0	'ND	70.5	55.4-128			
ec-Butylbenzene	14.8	5.00	41	20.0	ND	74.0	64.2-120			
tert-Butylbenzene	14.9	5.00	11	20.0	ND	74.5	54.9-126			
Carbon tetrachloride	13.7	0.372	11	20.0	ND	68.5	52.7-138			
⊇hlorobenzene	14.5	5.00	"	20.0	ND	72.5	73.1-111			L
Chloroethane	7.49	5.00	Ħ	20.0	ND	37.4	47.7-133			L
	15.6	0.316	**	20.0	ND	78.0	69.1-126			
±hloromethane	28.1	0.448	**	20.0	ND	140	50.7-120			Н
2-Chlorotoluene	14.7	5.00	"	20.0	ND	73.5	63.4-119			
†-Chlorotoluene	14.8	5.00	**	20.0	ND	74.0	65.9-126			
Dibromochloromethane	18.1	5.00		20.0	ND	90.5	67.4-116			
1,2-Dibromo-3-chloropropane	20.5	0.264	**	20.0	ND	102	56.6-138			
1,2-Dibromoethane	19.2	0.251	"	20.0	ND	96.0	69.2-114			
1,2-Dichlorobenzene	15.8	5.00	**	20.0	ND	79.0	70.7-124			
7,3-Dichlorobenzene	14.7	5.00	**	20.0	ND	73.5	71.1-119			
4-Dichlorobenzene, لـ	15.0	5.00	**	20.0	ND	75.0	69.6-115			
Dichlorodifluoromethane	3.63	5.00	**	20.0	ND	18.2	53.1-124			L
,1-Dichloroethane	16.3	5.00	**	20.0	ND	81.5	68.6-131			
1,2-Dichloroethane	17.3	0.500	**	20.0	ND	86.5	63.1-125			
,1-Dichloroethene	8.65	0.500	**	20.0	ND	43.2	59.5-115			L
is-1,2-Dichloroethene	16.2	5.00	"	20.0	ND	81.0	66.6-131			
trans-1,2-Dichloroethene	14.6	5.00	**	20.0	ND	73.0	57.2-132			
,2-Dichloropropane	16.4	0.500	**	20.0	ND	82.0	76.4-120			
,3-Dichloropropane	18.4	5.00	**	20.0	ND	92.0	72.3-111			
2,2-Dichloropropane	13.6	5.00	11	20.0	ND	68.0	57.9-117			
Di-isopropyl ether	31.1	5.00	11	20.0	ND	156	59.2-122			Н
∃thylbenzene	14.2	5.00	11	20.0	ND	71.0	64.7-130			

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: MPL Realty

Project Number: 7-21058 Project Manager: Mike Rehfeldt Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4080054 - EPA 5030B (P/T)										
Matrix Spike (4080054-MS1)	Soi	urce: W40803	31-01	Prepared:	08/14/04	Analyzed	d: 08/17/04			
Hexachlorobutadiene	14.3	10.0	ug/l	20.0	ND	71.5	63.3-127			-
Isopropylbenzene	14.1	5.00	н	20.0	ND	70.5	55.1-132			
□-Isopropyltoluene	14.4	5.00	**	20.0	ND	72.0	54.8-128			
Methylene chloride	7.47	0.386	11	20.0	ND	37.4	62.8-130			L
Methyl tert-butyl ether	35.7	0.290	**	20.0	ND	178	54.5-125			Н
Naphthalene	19.2	8.00	11	20.0	ND	96.0	48.5-135			
¬-Propylbenzene	15.7	5.00	**	20.0	ND	78.5	64.6-125			
1,1,2,2-Tetrachloroethane	18.8	0.331	11	20.0	ND	94.0	67.8-125			
[Fetrachloroethene	14.1	0.500	**	20.0	ND	70.5	66.8-110			
Toluene	14.5	5.00	**	20.0	ND	72.5	72.5-108			
1,2,3-Trichlorobenzene	16.8	10.0	**	20.0	ND	84.0	57.4-135			
■,2,4-Trichlorobenzene	15.8	10.0	**	20.0	ND	79.0	56.9-124			
■,1,1-Trichloroethane	14.6	5.00	"	20.0	ND	73.0	59.8-129			
7,1,2-Trichloroethane	19.2	0.145	••	20.0	ND	96.0	74.5-115			
Trichloroethene	14.5	0.500	11	20.0	ND	72.5	68.1-116			
Trichlorofluoromethane	14.9	5.00	**	20.0	ND	74.5	57.4-150			
1 ,2,4-Trimethylbenzene	17.6	5.00	**	20.0	ND	88.0	57-126			
1,3,5-Trimethylbenzene	15.6	5.00	11	20.0	ND	78.0	56.2-126			
▼inyl chloride	4.14	0.217	11	20.0	ND	20.7	59.4-139			L
Total Xylenes	43.5	5.00	11	60.0	ND	72.5	66.9-119			
Surrogate: Dibromofluoromethane	48.4		"	50.0		96.8	82.1-117			
Surrogate: 1,2-Dichloroethane-d4	47.3		"	50.0		94.6	70.2-131			
Surrogate: Toluene-d8	47.4		n	50.0		94.8	74.1-125			
Surrogate: 4-Bromofluorobenzene	44.6		"	50.0		89.2	88.5-103			
Matrix Spike Dup (4080054-MSD1)	Sou	urce: W40803	31-01	Prepared:	08/14/04	Analyzed	1: 08/17/04			
Benzene	17.1	0.500	ug/l	20.0	ND	85.5	71.3-120	15.1	23.7	
Bromobenzene	17.3	5.00	"	20.0	ND	86.5	71.1-118	11.6	26.7	
Bromodichloromethane	20.5	0.391	**	20.0	ND	102	70.3-135	15.8	26	
n-Butylbenzene	16.6	5.00	11	20.0	ND	83.0	55.4-128	16.3	38.2	
sec-Butylbenzene	17.3	5.00	11	20.0	ND	86.5	64.2-120	15.6	35.2	
zert-Butylbenzene	17.7	5.00	17	20.0	ND	88.5	54.9-126	17.2	30.6	
□arbon tetrachloride	16.7	0.372	**	20.0	ND	83.5	52.7-138	19.7	29.5	
Chlorobenzene	16.6	5.00	**	20.0	ND	83.0	73.1-111	13.5	23.1	
Chloroethane	8.24	5.00	"	20.0	ND	41.2	47.7-133	9.54	28.6	L
≅hloroform	17.9	0.316	**	20.0	ND	89.5	69.1-126	13.7	22.7	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

My

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21058 Project Manager: Mike Rehfeldt

Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4080054 - EPA 5030B (P/T)	_									
■ Matrix Spike Dup (4080054-MSD1)	So	urce: W40803	1-01	Prepared:	08/14/04	Analyzed	: 08/17/04			
Chloromethane	10.4	0.448	ug/l	20.0	ND	52.0	50.7-120	91.9	40	Н
2-Chlorotoluene	17.1	5.00	Ħ	20.0	ND	85.5	63.4-119	15.1	25.6	
¬- Chlorotoluene	16.8	5.00	rr	20.0	ND	84.0	65.9-126	12.7	26.3	
Dibromochloromethane	20.0	5.00	н	20.0	ND	100	67.4-116	9.97	27.4	
1,2-Dibromo-3-chloropropane	20.3	0.264	n	20.0	ND	102	56.6-138	0.980	38.9	
■,2-Dibromoethane	20.5	0.251	IT	20.0	ND	102	69.2-114	6.55	20.7	
■,2-Dichlorobenzene	17.4	5.00	IT	20.0	ND	87.0	70.7-124	9.64	25.4	
1,3-Dichlorobenzene	16.4	5.00	#	20.0	ND	82.0	71.1-119	10.9	25.6	
4.4-Dichlorobenzene	16.6	5.00	н	20.0	ND	83.0	69.6-115	10.1	26	
Dichlorodifluoromethane	11.9	5.00	н	20.0	ND	59.5	53.1-124	107	25.5	Н
1,1-Dichloroethane	19.0	5.00	Ħ	20.0	ND	95.0	68.6-131	15.3	22.1	
■,2-Dichloroethane	18.8	0.500	**	20.0	ND	94.0	63.1-125	8.31	25.5	
1,1-Dichloroethene	17.2	0.500	11	20.0	ND	86.0	59.5-115	66.2	23.3	Н
cis-1,2-Dichloroethene	18.4	5.00	**	20.0	ND	92.0	66.6-131	12.7	27.4	
trans-1,2-Dichloroethene	16.6	5.00	••	20.0	ND	83.0	57.2-132	12.8	26.4	
,2-Dichloropropane	18.7	0.500	**	20.0	ND	93.5	76.4-120	13.1	23.3	
1,3-Dichloropropane	20.3	5.00	**	20.0	ND	102	72.3-111	9.82	23	
_2,2-Dichloropropane	16.0	5.00	**	20.0	ND	80.0	57.9-117	16.2	25.1	
Di-isopropyl ether	34.2	5.00	n	20.0	ND	171	59.2-122	9.49	28.6	Н
Ethylbenzene	16.5	5.00	н	20.0	ND	82.5	64.7-130	15.0	25.7	
Hexachlorobutadiene	17.1	10.0	" .	20.0	ND	85.5	63.3-127	17.8	40	
¶sopropylbenzene	16.4	5.00	**	20.0	ND	82.0	55.1-132	15.1	28.5	
p-Isopropyltoluene	17.2	5.00	**	20.0	ND	86.0	54.8-128	17.7	35.3	
Methylene chloride	20.0	0.386	**	20.0	ND	100	62.8-130	91.2	23.7	Н
Methyl tert-butyl ether	37.4	0.290	"	20.0	ND	187	54.5-125	4.65	40	Н
Naphthalene	20.3	8.00	**	20.0	ND	102	48.5-135	5.57	40	
n-Propylbenzene	18.3	5.00	**	20.0	ND	91.5	64.6-125	15.3	34.7	
■,1,2,2-Tetrachloroethane	19.2	0.331	"	20.0	ND	96.0	67.8-125	2.11	22.5	
■ etrachloroethene	17.3	0.500	"	20.0	ND	86.5	66.8-110	20.4	24.6	
Toluene	17.4	5.00	"	20.0	ND	87.0	72.5-108	18.2	23.1	
■,2,3-Trichlorobenzene	19.0	10.0	"	20.0	ND	95.0	57.4-135	12.3	31.8	
■,2,4-Trichlorobenzene	17.7	10.0	"	20.0	ND	88.5	56.9-124	11.3	31.2	
1,1,1-Trichloroethane	17.3	5.00	"	20.0	ND	86.5	59.8-129	16.9	. 21.8	
■,1,2-Trichloroethane	20.6	0.145	**	20.0	ND	103	74.5-115	7.04	23.7	
■ Trichloroethene	17.2	0.500	**	20.0	ND	86.0	68.1-116	17.0	25.5	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21058 Project Manager: Mike Rehfeldt Reported: 08/20/04 09:52

WDNR Volatile Organic Compounds by Method 8260 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4080054 - EPA 5030B (P/T)										
Matrix Spike Dup (4080054-MSD1)	Sou	ırce: W4080.	31-01	Prepared:	08/14/04	Analyzed	i: 08/17/04			
Trichlorofluoromethane	44.0	5.00	ug/l	20.0	ND	220	57.4-150	98.8	29.4	НН
1,2,4-Trimethylbenzene	18.4	5.00	"	20.0	ND	92.0	57-126	4.44	28.7	
■,3,5-Trimethylbenzene	17.7	5.00	**	20.0	ND	88.5	56.2-126	12.6	31	
Vinyl chloride	21.7	0.217	н	20.0	ND	108	59.4-139	136	34.5	Н
Total Xylenes	50.1	5.00	"	60.0	ND	83.5	66.9-119	14.1	24.3	
Surrogate: Dibromofluoromethane	47.8		"	50.0		95.6	82.I-117	***************************************		
Surrogate: 1,2-Dichloroethane-d4	48.1		"	50.0		96.2	70.2-131			
Surrogate: Toluene-d8	48.7		"	50.0		97.4	74.1-125			
Surrogate: 4-Bromofluorobenzene	43.1		"	50.0		86.2	88.5-103		1	L

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

Project: MPL Realty

205 Wilmont Dr.

Waukesha, WI 53189

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/20/04 09:52

Notes and Definitions

- G14 The recovery of this analyte in the check standard is above the method specified acceptance criteria.
- G20 This analyte was initially analyzed within holdtime; however, reanalysis at a dilution was performed outside the method specified holdtime.
- G21 This analyte was initially analyzed within holdtime; however, due to instrument interference, the sample was reanalyzed outside the method specified holdtime to confirm the interference.
- QC The result for one or more quality control measurements associated with this sample did not meet the laboratory and/or source method acceptance criteria.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- L This quality control measurement is below the laboratory established limit.
- H This quality control measurement is above the laboratory established limit.
- * The laboratory is not NELAP accredited for this analyte.
- ** The State of Illinois Accrediting Authority does not offer NELAP accreditation for this analyte.

Note: All analytes, by matrix and method, are accredited following current NELAP standards unless specifically noted by way of a qualifier listed above.

Great Lakes Analytical--Buffalo Grove, IL Wisconsin DNR Certification Lab ID: 999917160

Great Lakes Analytical--Buffalo Grove, IL NELAP Primary Accreditation: Illinois #100261

Great Lakes Analytical--Buffalo Grove, IL NELAP Secondary Accreditation: New Jersey #IL001

Great Lakes Analytical--Oak Creek, WI Wisconsin DNR Certification Lab ID: 341000330

Great Lakes Analytical--Oak Creek, WI NELAP Primary Accreditation: Illinois #100307

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE RECORD TO MAKE

1380 Busch Parkway Buffalo Grove, IL 60089-4505 (847) 808-7766 FAX (847) 808-7772 140 E. Ryan Road Oak Creek, WI 53154 (414) 570-9460 FAX (414) 570-9461

Client: MUNST EMINECLUR	Sel	Whi	Les (Bill To:		(~ I	C)	nt						TAT:	STD.) 41	DAY .	3 DAY	2 DA	Y 1 DAY	< 24 HRS.
Address: 205 William Bi	7.			Addres											Ž\YI	ES - TA	AT is ci	ritical t critics	ıl	DA	ITE RESULTS NE	EEDED:
Report to: MILC Phone #: (E-mail: penfe at 1 10 Fax #: (Addies											Rece	eived:	13 110	ic	e Frigarata	Tel	ethod:	ceipt: 7 P
Report to:)			State & Progra	2 1.7	; [] .	70.	<u> </u>	Pho	one f : #:	#: ()			Deliv	erable	Pack	age:	Delive	<u>∏</u> ∍ry Με	ethod:	
E-mail: pelife lat Fax #: (,	Progra	m: U				Fax	#:	_(,_),	,,	, -		STD		her	GLA X	Clier	nt Shipped	☐ Courier ☐
Project Name: 1/1//L 1//2 // PRA		_/		/	,			Bottl	Used					/ ,	/ /	/ /	' /		SAM CONT		/	
Project #/PO#: 1-21055		7 4480	121,5 July 370,0	2/4	. <i>F</i>	77	7	7 /	7 7 7				/ /	/ /				/ ,	/ Ja	; /		
Sampler: Wellineyek	/.	43			* /z/	/ _Š /	/s /	/ * />	/4/3		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				/ /	/ /	/ /			,/	LABORA'	TORY
FIELD ID, LOCATIÓN	/ <	28	/ 🛚 🖔	SAMPLE MATHER			\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ 3 /3		<u> </u>		/_/				858 858 758			ID NUM	BER
1 MW-10 PID:	83	ii	pm	1		X			3		,	+								V	14680	144-01
2 11/1W-107- PID:						K			3			1								1		-62
3 11111-103	1-1				1-1-		+-								\dashv		-					
PID:						1			3													-03
4 Mul-7	- 1					V			3		,											704
5 <i>P</i> 2-1									3			<u> </u>		_	_		 	1		1		,
PID:	$\perp \perp$			<u> </u>	ļļ.	14									_ _					_		705
6 Mut 9 PID:	+1								3			-								1		716
7 11/1/9	1	,			1	V	1		5			1								\top		
8 FIZEE ProducT DID:	<u>"</u>		<u> </u>	1		X		-	7			1					-	-		A	<u>/</u>	107
PID:	-																					
9							1															
PID:													_									
10	_		1 1				/					7										
PID: REUNOUISHED JULIANUS	RECE	J.	Lei)	I	8/	eff.	04	REL	INQUIE	HED	on h		1/8/	14/	07	REC	EIVEI D L			. /2	Jaran	8/4/4
RELINQUISHED	RECE			-7	<i>I</i> ,	<u>/ - C</u>	1 04	REL	INQUIS	HED	مابريد	-60	/		زر	REC	CEIVE	D	gen	<u>~</u> c	jarun	1636
						,															· · · · · · · · · · · · · · · · · · ·	
COMMENTS:																						
																			PAGE		(OF

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: MPL Realty

Project Number: 7-21050

Project Manager: Mike Rehfeldt

Reported: 08/13/04 12:36

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix		Date Sampled	Date Received
PZ-1/10'-12'	W407306-01	Soil	1	07/26/04 09:15	07/27/04 14:00
PZ-1/18'-20'	W407306-02	Soil		07/26/04 09:35	07/27/04 14:00
PZ-1/25'-27'	W407306-03	Soil		07/26/04 09:45	07/27/04 14:00
PZ-2/43'-45'	W407306-04	Soil		07/26/04 15:00	07/27/04 14:00

Sample Receipt Notes

Please note that the chain of custody (COC) included with this report is considered part of the report. The data user should review any comments or notes made on the COC. Any receipt issues found by the laboratory that are not noted on the COC will be stated below.

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21050 Project Manager: Mike Rehfeldt Reported: 08/13/04 12:36

Percent Solids

Great Lakes Analytical--Oak Creek

Analyte	Re Result	eporting Limit	Units	Dilution	Batch-	Prepared	Analyzed	Method	Notes
PZ-1/10'-12' (W407306-01) Soil	Sampled: 07/26/04 09:15	Receive	ed: 07/27	7/04 14:00					
% Solids	83.2	0.200	%	1	4070108	07/28/04	08/02/04	5035 7.5	
PZ-1/18'-20' (W407306-02) Soil	Sampled: 07/26/04 09:35	Receive	ed: 07/27	7/04 14:00					
% Solids	87.3	0.200	%	1	4070108	07/28/04	08/02/04	5035 7.5	 -
PZ-1/25'-27' (W407306-03) Soil	Sampled: 07/26/04 09:45	Receive	ed: 07/27	7/04 14:00					
% Solids	85.9	0.200	%	1	4070108	07/28/04	08/02/04	5035 7.5	
PZ-2/43'-45' (W407306-04) Soil	Sampled: 07/26/04 15:00	Receive	ed: 07/27	7/04 14:00					
% Solids	96.4	0.200	%	1	4070108	07/28/04	08/02/04	5035 7.5	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

140 East Ryan Road Oak Creek, Wisconsin <u>53154</u> Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21050
Project Manager: Mike Rehfeldt

Reported: 08/13/04 12:36

WDNR Volatile Organic Compounds by Method 8260B Great Lakes Analytical--Buffalo Grove

Analyte	F Result	leporting Limit		Dilution	Batch	Prepared	Analyzed	Method	Notes
PZ-1/10'-12' (W407306-01) Soil	Sampled: 07/26/04 09:15	Recei	ved: 07/27/	04 14:00					
Benzene	ND		ug/kg wet	50	4080161	08/09/04	08/10/04	EPA 8260B	
Bromobenzene	ND	25.0	. "	"	"	**	"	"	
Bromodichloromethane	, ND	25.0	**	11	"	"	"	"	
n-Butylbenzene	7060	25.0	"	11	"	"	n	n	
sec-Butylbenzene	ND	25.0	"	'n	11	"	"	"	
tert-Butylbenzene	1240	25.0	"	**	11	11	"	"	
-Carbon tetrachloride	ND	25.0	"	Ħ	"	11	**	**	
Chlorobenzene	ND	25.0	tt	"	"	"	"	H	
Chlorodibromomethane	ND	250	11	"	11	" .	**	11	
Chloroethane	ND	25.0	"	**	**	**	"	11	
-Chloroform	ND	25.0	n	11	"	Ħ	"	**	
Chloromethane	ND	25.0	н	**	"	"	n	**	
2-Chlorotoluene	ND	25.0	"	**	"	**	"	Ħ	
4-Chlorotoluene	· ND	25.0	"	.11	71	**	11	"	
1,2-Dibromo-3-chloropropane	ND	25.0	**	Ħ	"	Ħ	**	"	
1,2-Dibromoethane	ND	25.0	Ħ	"	"	n	••	**	
1,2-Dichlorobenzene	ND	25.0	n	"	"	ii .	"	n	
1,3-Dichlorobenzene	ND	25.0	и .	"	"	"	н	n	
1,4-Dichlorobenzene	ND	25.0	**	11	**	"	11	11	
Dichlorodifluoromethane	ND	25.0	tt	11	n	H	•	"	
∃,1-Dichloroethane	ND	25.0	Ħ	11	"	n	**	"	
7,2-Dichloroethane	ND	25.0	H	**	"	н	••	**	
1,1-Dichloroethene	ND	25.0	н	"	**	**	"	**	
⊐is-1,2-Dichloroethene	ND	25.0	11	"	**	11	**	**	
rans-1,2-Dichloroethene	ND	25.0	**	n	**	"	n	"	
1,2-Dichloropropane	ND	25.0		Ħ	n	"	**	**	
1,3-Dichloropropane	ND	25.0	11	"	11	**	**	Ħ	
⊉,2-Dichloropropane	ND	25.0	**	"	11	н	**	"	•
Di-isopropyl ether	ND	25.0	"	**	**	11	n	n	
Ethylbenzene	358	25.0		"	tt	"	н	"	
Hexachlorobutadiene	ND ·	25.0	"	"	n	**	**	11	
I sopropylbenzene	2870	25.0	11	"	**	"	"	**	
p-Isopropyltoluene	7840	25.0		11	**	11	н		
Methylene chloride	760	100	**	**	**	"	tt .	н	A, B
Methyl tert-butyl ether	ND	25.0	**	11	n		**	**	11, 12
Naphthalene	10700	25.0	n	"	11		"	"	
n-Propylbenzene	7290	25.0	11	**	**	"	u	н	
■,1,2,2-Tetrachloroethane	ND	25.0		"	**	н		11	
Tetrachloroethene	ND ND	25.0		**	tr	11	n	**	
Toluene	ND ND	25.0		"	11		11	**	
1,2,3-Trichlorobenzene	ND ND	25.0			**	er e	"	11	
,2,4-Trichlorobenzene				"		#			
,4,4-1 richiorobenzene	ND	25.0		"	"	••			

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MIA

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21050
Project Manager: Mike Rehfeldt

Reported: 08/13/04 12:36

WDNR Volatile Organic Compounds by Method 8260B Great Lakes Analytical--Buffalo Grove

Analyte	Result	Limit		Dilution	Batch	Prepared	Analyzed	Method	Note
PZ-1/10'-12' (W407306-01) Soil	Sampled: 07/26/04 09:15	Recei	ved: 07/27/	04 14:00			•		
1,1,1-Trichloroethane	ND	25.0	ug/kg wet	50	4080161	08/09/04	08/10/04	EPA 8260B	
1,1,2-Trichloroethane	ND	25.0		"	11	11	"	*	
Trichloroethene	ND	25.0	**	11	"	**		•	
Trichlorofluoromethane	ND	25.0	"	**	"	H	"	"	
1,2,4-Trimethylbenzene	67000	250	n	500	Ħ	H	08/12/04	IT .	
1,3,5-Trimethylbenzene	4250	25.0	н	50	**	11	08/10/04	n	
Vinyl chloride	ND	25.0	11	11	"	"	11	."	
Total Xylenes	6540	25.0	**	11	H .	11	11		
Surrogate: 1,2-Dichloroethane-d4		109 %	32-1	79	"	"	· "	"	
Surrogate: Dibromofluoromethane	i ·	104 %	23.1-	173	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		132 %	29.2-	152	"	"	"	"	
Surrogate: Toluene-d8		120 %	32.1-	175	"	"	Λ	n	
PZ-1/18'-20' (W407306-02) Soil	Sampled: 07/26/04 09:35	Recei	ved: 07/27/0	04 14:00		_			
Benzene	ND	25.0	ug/kg wet	50	4080161	08/09/04	08/11/04	EPA 8260B	
Bromobenzene	ND	25.0	**	**	11	H	"	n	
Bromodichloromethane	ND	25.0		**	11	11	"	11	
n-Butylbenzene	ND	25.0	n	Ħ	**	11	11	11	
sec-Butylbenzene	ND	25.0	11	**	"	"	n	11	
ert-Butylbenzene	ND	25.0	**	11	tt	17	It	**	
Carbon tetrachloride	ND	25.0	n	17	n	n	10	Ħ	
Chlorobenzene	ND	25.0	H	"	n	n	11	tr	
Chlorodibromomethane	ND	250	n .	"	11	n	•	#	
Chloroethane	ND	25.0	11	Ħ	**	**	"	n	
Chloroform	ND	25.0	**	и.,	**	**	n	"	
Chloromethane	MD								
	ND	25.0	11	**	Ħ	rr ·	11	**	
2-Chlorotoluene	ND ND	25.0 25.0	11	**	H	n n	"	tt H	
2-Chlorotoluene 4-Chlorotoluene								11 11	
*`	ND	25.0	"	**	н	**	"	11 11 11	
4-Chlorotoluene	ND ND	25.0 25.0	n n	11	11	"	99 89	11 11 11 11 11	
4-Chlorotoluene 1,2-Dibromo-3-chloropropane	ND ND ND	25.0 25.0 25.0	11 11	" "	11 11	11 11	17 17	11 11 11 11 11 11	
4-Chlorotoluene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	ND ND ND ND	25.0 25.0 25.0 25.0	n n n	11	11 11	11 11 11	" "	11 11 11 11 11 11 11	
4-Chlorotoluene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene	ND ND ND ND ND	25.0 25.0 25.0 25.0 25.0	# # # # # # # # # # # # # # # # # # #	11	11 11 11	11 11 11	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11	
4-Chlorotoluene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND ND ND ND ND	25.0 25.0 25.0 25.0 25.0 25.0	n n n	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	11 11 11	11 11 11 11 11 11 11 11	
4-Chlorotoluene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND ND ND ND ND ND ND	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	n n n n	" " " " " " " " " " " " " " " " " " " "	n n n	11 11 11 11	11 11 11 11	" " " " " " " " " " " " " "	
4-Chlorotoluene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	n n n n	" " " " " " " " " " " " " " " " " " " "	n n n	11 11 11 11	11 11 11 11	" " " " " " " " " " " " " " " " " "	
4-Chlorotoluene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane	ND	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	n n n n	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " " " " " " " " "	
4-Chlorotoluene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene	ND N	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	n n n n n n n n n n n n n n n n n n n	" " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " " " " " " " " "	
4-Chlorotoluene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethene is-1,2-Dichloroethene	ND N	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	n n n n n n n n n n n n n n n n n n n	"" "" "" "" "" "" "" "" "" "" "" "" ""	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11		
4-Chlorotoluene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene is-1,2-Dichloroethene trans-1,2-Dichloroethene	ND N	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	n n n n n n n n n n n n n n n n n n n	" " " " " " " " " " " "	0 0 0 0 0 0 0	" " " " " " " " " " " " " " "	17 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19		
4-Chlorotoluene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethene is-1,2-Dichloroethene	ND N	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	n n n n n n n n n n n n n n n n n n n	# # # # # # # # # # # # # # # # # # #		11 11 11 11 11 11 11 11 11 11 11 11 11	17 17 17 18 18 19 19 19 19 19		

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

My A

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21050
Project Manager: Mike Rehfeldt

Reported: 08/13/04 12:36

WDNR Volatile Organic Compounds by Method 8260B Great Lakes Analytical--Buffalo Grove

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PZ-1/18'-20' (W407306-02) Soil	Sampled: 07/26/04 09:35	Receiv	ed: 07/27/	04 14:00					
Di-isopropyl ether	ND	25.0	ug/kg wet	50	4080161	08/09/04	08/11/04	EPA 8260B	
Ethylbenzene	ND	25.0		. 11	**	11	••	"	
Hexachlorobutadiene	ND	25.0	**	**		"	**	**	
Isopropylbenzene	ND	25.0	**	"	**	"	11	**	
p-Isopropyltoluene	ND	25.0	**	in	11	"	**	"	
Methylene chloride	ND	100	11	**	11	**	**	"	
Methyl tert-butyl ether	ND	25.0	"	n	"	**	"	**	
Naphthalene	ND	25.0	**	**	n	"	11	11	
n-Propylbenzene	ND	25.0	**	11	· u	. "	**	15	
1,1,2,2-Tetrachloroethane	ND	25.0	11	"	n	H	**	"	
Tetrachloroethene	56.0	25.0	11	11	**	n	"		
Toluene	ND	25.0	**	n	"	ır	••	**	
1,2,3-Trichlorobenzene	ND	25.0	"	"	"	**	"	**	
1,2,4-Trichlorobenzene	ND	25.0	"	"	н	**	"	rr .	
1,1,1-Trichloroethane	499	25.0	**	"	11	**	**	**	
1,1,2-Trichloroethane	ND	25.0	11	"	н	11	n	**	
Trichloroethene	2600	25.0	**		**	"	11	**	
Trichlorofluoromethane	ND	25.0	11 '	**	**	H.	11	•	
1,2,4-Trimethylbenzene	27.0	25.0	11		**	**	11	"	
1,3,5-Trimethylbenzene	ND	25.0	**	"	"	11	••	"	
Vinyl chloride	ND	25.0	11	**	"	11	,		
Total Xylenes	ND	25.0	"	п	н	n	"	**	
Surrogate: 1,2-Dichloroethane-d4		96.0 %	32-1	79	"	"	"	"	
Surrogate: Dibromofluoromethane		93.6 %	23.1-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	29.2-		"	"	"	"	
Surrogate: Toluene-d8		109 %	32.1-		"	"	"	"	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Mil

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: MPL Realty

Project Number: 7-21050 Project Manager: Mike Rehfeldt Reported: 08/13/04 12:36

WDNR Volatile Organic Compounds by Method 8260B Great Lakes Analytical--Buffalo Grove

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		-				Treputed	- I IIIII J E CU		110103
PZ-1/25'-27' (W407306-03) Soil				04 14:00					·
Benzene	ND	25.0		50	4080161	08/09/04	08/11/04	EPA 8260B	
Bromobenzene	ND	25.0	'n	**	н	n	**	н	
Bromodichloromethane	ND	25.0	"	"	**	H	11	"	
n-Butylbenzene	ND	25.0	"		"	11	**	"	
sec-Butylbenzene	ND	25.0	**	11	"	11	"	**	
tert-Butylbenzene	ND	25.0	**	11	"	"	"	и	
Carbon tetrachloride	ND	25.0	"	**	**	"	H	"	
Chlorobenzene	ND	25.0	"	**	**	"	11	"	
Chlorodibromomethane	ND	250	"	**	**	11	"	"	
Chloroethane	ND	25.0	"	**	"	"	**	"	
Chloroform	ND	25.0	11	11	"	11	* 11	II	
Chloromethane	ND	25.0	11	**	11	n	**	11	
_2-Chlorotoluene	ND	25.0	"	**	11	"	"	"	
-4-Chlorotoluene	ND	25.0	н	н	"	".	**	"	
1,2-Dibromo-3-chloropropane	ND	25.0	tt	11	**	11	"	**	
1,2-Dibromoethane	ND	25.0	U	**	"	11	"	n	
1,2-Dichlorobenzene	ND	25.0	11	11	"	11	**	n	
1,3-Dichlorobenzene	ND	25.0	11	11	H	"	11	11	
1,4-Dichlorobenzene	ND	25.0	"	11	**	**	11	"	
Dichlorodifluoromethane	ND	25.0	"	**	n	•	н	"	
1,1-Dichloroethane	73.1	25.0	**	n	**	**	••	"	
1,2-Dichloroethane	ND	25.0	**	**	"	n	••	n	
1,1-Dichloroethene	ND	25.0	**	11	"	н	••	H	
cis-1,2-Dichloroethene	137	25.0	#	11	"	n	••	n	
■ rans-1,2-Dichloroethene	ND	25.0	n	11	"	11	**	n	
1,2-Dichloropropane	ND	25.0	17	**	H	11	"	n	
1,3-Dichloropropane	ND	25.0	"	**	11	**	**	Ħ	
2,2-Dichloropropane	ND	25.0	11		"	**	**	11	
Di-isopropyl ether	ND	25.0	**	н	"	"	"	11	
Ethylbenzene	62.5	25.0	W.	.,	,,	II		н	
Hexachlorobutadiene	ND	25.0	ıı	11	"	11	**	н	
Jsopropylbenzene	ND	25.0	11	**	11	**	**	11	
p-Isopropyltoluene	ND	25.0	**	**	11	**	**	"	
Methylene chloride	ND	100	**	**	**	**	**	n	
■Methyl tert-butyl ether	ND	25.0	11	tr	**	n	**	"	
Naphthalene	104	25.0	R	н	,,	"	**	11	
n-Propylbenzene	116	25.0	*	**	"	н		н	
☐,1,2,2-Tetrachloroethane	ND	25.0	Ħ		"	Ħ	"	н	
Tetrachloroethene		25.0	11	,,	**	"	"	11	
Toluene	251 ND	25.0	"	#	"	"	**	11	
1,2,3-Trichlorobenzene			**	11		 n	"		
	ND ND	25.0	**			,,	**	"	
1,2,4-Trichlorobenzene	ND	25.0	п	"	"	"		••	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

My A

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: MPL Realty

Project Number: 7-21050

Project Manager: Mike Rehfeldt

Reported: 08/13/04 12:36

WDNR Volatile Organic Compounds by Method 8260B Great Lakes Analytical--Buffalo Grove

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PZ-1/25'-27' (W407306-03) Soil	Sampled: 07/26/04 09:45	Recei	ved: 07/27/	04 14:00					
1,1,1-Trichloroethane	636	25.0	ug/kg wet	50	4080161	08/09/04	08/11/04	EPA 8260B	
1,1,2-Trichloroethane	ND	25.0			11	**	**	II .	
Trichloroethene	3490	25.0	**	Ħ	"	**	11	**	
Trichlorofluoromethane	ND	25.0	n	"	**	"	**	"	
1,2,4-Trimethylbenzene	748	25.0	"	it	"	"	**	"	
1,3,5-Trimethylbenzene	169	25.0	**	**	"	u	Ħ	"	
Vinyl chloride	ND	25.0	Ħ	**	"	. "	Ħ		
Total Xylenes	210	25.0	11	11	**	t1	11	"	
Surrogate: 1,2-Dichloroethane-d4		93.2 %	32-1	79	"	n	"	"	
_Surrogate: Dibromofluoromethane		88.8 %	23.1-	173	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.6 %	29.2-	152	"	n	"	"	
_Surrogate: Toluene-d8		98.8 %	32.1-	175	"	n	"	"	
PZ-2/43'-45' (W407306-04) Soil	Sampled: 07/26/04 15:00	Recei	ved: 07/27/	04 14:00					
Benzene	ND	25.0	ug/kg wet	50	4080161	08/09/04	08/10/04	EPA 8260B	
Bromobenzene	ND	25.0	"	"	"		"	n	
Bromodichloromethane	ND	25.0	н .	"	"	"	"	11	
n-Butylbenzene	ND	25.0	*	**	"	"	**	H	
sec-Butylbenzene	39.5	25.0	**	**	**	"	"	u	
ert-Butylbenzene	ND	25.0	**	"	11	**	"	n	
Carbon tetrachloride	ND	25.0	"	"	**	"	"	rt .	
Chlorobenzene	ND	25.0	"	**	**	**	"	н	
■Chlorodibromomethane	ND	250	"	**	t)	"	"	tt.	
■ Chloroethane	ND	25.0	H	"	11	11	n	**	
Chloroform	ND	25.0	"	"	#	"	"	"	
-Chloromethane	ND	25.0	"		**	"	**	"	
2-Chlorotoluene	ND					"	**	**	
	ND	25.0	**	"	**	"			
-4-Chlorotoluene	ND ND	25.0 25.0	"	"	11	,,			
-4-Chlorotoluene 1,2-Dibromo-3-chloropropane									
	ND	25.0		"	11	**	"		
1,2-Dibromo-3-chloropropane	ND ND	25.0 25.0	11	11	11	# #	"	n n	
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene	ND ND ND	25.0 25.0 25.0	# #	11 11	11 11	# #	" "	11 11	
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	ND ND ND ND	25.0 25.0 25.0 25.0	n n	11 11	11 11 11	" " "	" " " "	п п п	
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND ND ND ND ND	25.0 25.0 25.0 25.0 25.0	u u u	11 11 11	11 11 11 11	11 11 11 11	" " " " " " " " " " " " " " " " " " " "	n n n	
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND ND ND ND ND ND	25.0 25.0 25.0 25.0 25.0 25.0 25.0	0 0 0 11	11 11 11 11	11 11 11 11 11 11	11 11 11 11	" " " " " " " " " " " " " " " " " " " "	n n n n	
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND ND ND ND ND ND ND	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 7,1-Dichloroethane	ND ND ND ND ND ND ND ND	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11 11 11 11 11 11 11 11 11 11 11 11 11	n n n n n n n n n n n n n n n n n n n	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11	
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene	ND	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11 11 11 11 11 11 11 11 11 11 11 11 11	n n n n n n n n n n n n n n n n n n n	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11		11 11 11 11 11 11 11 11 11	
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethene is-1,2-Dichloroethene	ND N	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11		11 11 11 11 11 11 11 11 11 11 11 11 11	
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene is-1,2-Dichloroethene trans-1,2-Dichloroethene	ND N	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11		11 11 11 11 11 11 11 11 11 11 11 11 11	
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethene is-1,2-Dichloroethene	ND N	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " " " " "		11 11 11 11 11 11 11 11 11 11 11 11 11	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

My A

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

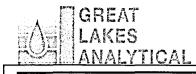
Waukesha, WI 53189

Project: MPL Realty

Project Number: 7-21050

Project Manager: Mike Rehfeldt

Reported: 08/13/04 12:36


WDNR Volatile Organic Compounds by Method 8260B

Great Lakes Analytical--Buffalo Grove

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PZ-2/43'-45' (W407306-04) Soil	Sampled: 07/26/04 15:00	Receiv	ed: 07/27/	04 14:00					
Di-isopropyl ether	ND	25.0	ug/kg wet	50	4080161	08/09/04	08/10/04	EPA 8260B	
Ethylbenzene	ND	25.0	. 11	н	"	**	"	tt	
Hexachlorobutadiene	ND	25.0	**	11	"	#	Ħ	11	
Isopropylbenzene	ND	25.0	11	11	"	"	"	11	
p-Isopropyltoluene	ND	25.0	19	11	"	. "	Ħ	11	
Methylene chloride	694	100	**	11	"	**	"	"	A, E
Methyl tert-butyl ether	ND	25.0	"	"	**	**	Ħ	**	
Naphthalene	60.5	25.0	"	11	"	"	H	"	
n-Propylbenzene	ND	25.0	"	•	n	"	u	"	
1,1,2,2-Tetrachloroethane	ND	25.0	"	••	H	tt	Ħ	**	
Tetrachloroethene	ND	25.0	"		н	n	ii	"	
Toluene	ND	25.0	"	"	#	n	11	"	
1,2,3-Trichlorobenzene	ND	25.0	"	. "	**	***	"	**	
1,2,4-Trichlorobenzene	ND	25.0	"	**	Ħ	11	11	**	
1,1,1-Trichloroethane	ND	25.0	**	**	н	11	11	**	
1,1,2-Trichloroethane	ND	25.0	**	"	н	Ħ	11	11	
Trichloroethene	ND	25.0	"	"	n	11	11	11	
Trichlorofluoromethane	ND	25.0	н ,	"	н	11	11	11	
1,2,4-Trimethylbenzene	57.5	25.0	**	n	n	Ħ	11	11	
1,3,5-Trimethylbenzene	ND	25.0	**	**	H	Ħ	Ħ	**	
Vinyl chloride	ND	25.0	**	**	н	н	Ħ	H .	
Total Xylenes	ND	25.0	"	**	Ħ	**	Ħ	н	
Surrogate: 1,2-Dichloroethane-d4	/ / / / / / / / / / / / / / / / / / / /	89.6 %	32-1	79	"	"	"	"	***************************************
Surrogate: Dibromofluoromethane		94.0 %	23.1-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	29.2-		"	"	"	"	
Surrogate: Toluene-d8		120 %	32.1-		"	"	. "	"	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: MPL Realty

Project Number: 7-21050

Project Manager: Mike Rehfeldt

Reported:

08/13/04 12:36

Percent Solids - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4070108 - Percent Solids										
Blank (4070108-BLK1)				Prepared:	07/28/04	Analyzed	: 08/02/04			
% Solids	ND	0.200	%							
Duplicate (4070108-DUP1)	Son	Source: W407292-01			07/28/04	Analyzed	: 08/02/04			
% Solids	97.2	0.200	%		0.00				20	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21050 Project Manager: Mike Rehfeldt **Reported:** 08/13/04 12:36

WDNR Volatile Organic Compounds by Method 8260B - Quality Control Great Lakes Analytical--Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4080161 - EPA 5035B [P/T]						,				
Blank (4080161-BLK1)				Prepared:	08/09/04	Analyzed	: 08/10/04			
Benzene	ND	25.0	ug/kg wet							
Bromobenzene	ND	25.0	Ħ							
_Bromodichloromethane	ND	25.0	11							
■n-Butylbenzene	ND	25.0	"							
sec-Butylbenzene	ND	25.0	Ħ							
≢ert-Butylbenzene	ND	25.0	Ħ							
Carbon tetrachloride	ND	25.0	11							
Chlorobenzene	ND	25.0	**							
-Chlorodibromomethane	ND	250	"							
Chloroethane	ND	25.0	Ħ							
Chloroform	ND	25.0	н							
Chloromethane	ND	25.0	11							
⊇-Chlorotoluene	ND	25.0	**							
∹ -Chlorotoluene	ND	25.0								
1,2-Dibromo-3-chloropropane	ND	25.0	Ħ							
□,2-Dibromoethane	ND	25.0	**							
□,2-Dichlorobenzene	ND	25.0	н							
1,3-Dichlorobenzene	ND	25.0								
□,4-Dichlorobenzene	ND	25.0	ti							
Dichlorodifluoromethane	ND	25.0	11							
1,1-Dichloroethane	ND	25.0	"							
1,2-Dichloroethane	ND	25.0	"							
1,1-Dichloroethene	ND	25.0	н							
cis-1,2-Dichloroethene	ND	25.0	Ħ							
■rans-1,2-Dichloroethene	ND	25.0	11							
☐,2-Dichloropropane	ND	25.0	•							
1,3-Dichloropropane	ND	25.0	"							
⊇,2-Dichloropropane	ND	25.0	n							
Di-isopropyl ether	ND	25.0	m .							
Ethylbenzene	ND	25.0	н							
Hexachlorobutadiène	ND	25.0	**							
sopropylbenzene	ND	25.0	**							
p-Isopropyltoluene	ND	25.0	**							
Methylene chloride	257	100	**							
Methyl tert-butyl ether	ND	25.0								

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

My A

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21050 Project Manager: Mike Rehfeldt Reported: 08/13/04 12:36

WDNR Volatile Organic Compounds by Method 8260B - Quality Control Great Lakes Analytical--Buffalo Grove

Analyte .	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4080161 - EPA 5035B [P/T]										
Blank (4080161-BLK1)				Prepared:	08/09/04	Analyzed	l: 08/10/04			
Naphthalene	ND	25.0	ug/kg wet							
n-Propylbenzene	ND	25.0	11							
1,1,2,2-Tetrachloroethane	ND	25.0	"							
Tetrachloroethene	ND	25.0	"							
Toluene	ND	25.0	"							
1,2,3-Trichlorobenzene	ND	25.0	Ħ							
1,2,4-Trichlorobenzene	ND	25.0	**							
1,1,1-Trichloroethane	ND	25.0	Ħ							
1,1,2-Trichloroethane	ND	25.0	**							
Trichloroethene	ND	25.0	••							
Trichlorofluoromethane	ND	25.0	••							
1,2,4-Trimethylbenzene	ND	25.0	**							
☐,3,5-Trimethylbenzene	ND	25.0	".							
Vinyl chloride	ND	25.0								
Total Xylenes	ND	25.0	H.			•				
Surrogate: 1,2-Dichloroethane-d4	2420		"	2500		96.8	32-179			
Surrogate: Dibromofluoromethane	2380		"	2500		95.2	23.1-173			
Surrogate: 4-Bromofluorobenzene	2580		"	2500		103	29.2-152			
Surrogate: Toluene-d8	2880		"	2500		115	<i>32.1-175</i>			
LCS (4080161-BS1)				Prepared:	08/09/04	Analyzed	1: 08/10/04			
Benzene	1960	25.0	ug/kg wet	2500		78.4	51.3-149			
Bromobenzene	1970	25.0	**	2500		78.8	46.9-140			
Bromodichloromethane	2180	25.0	**	2500		87.2	42.1-179			
n-Butylbenzene	1970	25.0	"	2500		78.8	40.2-144			
sec-Butylbenzene	1930	25.0	"	2500		77.2	40.1-146			
■ert-Butylbenzene	1990	25.0	H	2500		79.6	42.1-150			
Carbon tetrachloride .	2280	25.0	**	2500		91.2	27.5-165			
■ Chlorobenzene	2090	25.0	н	2500		83.6	53.6-138			
Chlorodibromomethane	2350	250	н	2500		94.0	80-120			
Chloroethane	772	25.0	"	2500		30.9	10-188			
Chloroform	1750	25.0	"	2500		70.0	52.5-159			
Chloromethane	1650	25.0	"	2500		66.0	14.2-142			
2-Chlorotoluene	1940	25.0	11	2500		77.6	48.8-143			
∃-Chlorotoluene	2050	25.0	11	2500		82.0	49.3-142			
■,2-Dibromo-3-chloropropane	2300	25.0	#	2500		92.0	19.3-152			

Great Lakes Analytical--Oak Creek

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21050
Project Manager: Mike Rehfeldt

Reported: 08/13/04 12:36

WDNR Volatile Organic Compounds by Method 8260B - Quality Control Great Lakes Analytical--Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4080161 - EPA 5035B [P/T]								·		
LCS (4080161-BS1)			•	Prepared:	08/09/04	Analyzed	1: 08/10/04			
1,2-Dibromoethane	2030	25.0	ug/kg wet	2500		81.2	46.5-141			
1,2-Dichlorobenzene	2040	25.0	н	2500		81.6	48.9-135			
1,3-Dichlorobenzene	2070	25.0	11	2500		82.8	50-136			
1,4-Dichlorobenzene	2020	25.0	"	2500		80.8	45.6-133			
Dichlorodifluoromethane	1190	25.0	**	2500		47.6	10-118			
1,1-Dichloroethane	1880	25.0	Ħ	2500		75.2	41.9-151			
1,2-Dichloroethane	1880	. 25.0	10	2500		75.2	34.5-170			
1,1-Dichloroethene	1660	25.0	"	2500		66.4	33.1-157			
cis-1,2-Dichloroethene	1910	25.0	н	2500		76.4	48.2-161			
≒rans-1,2-Dichloroethene	1840	25.0	**	2500		73.6	29.7-173			
1,2-Dichloropropane	2060	25.0	н	2500		82.4	50-158			
1,3-Dichloropropane	2040	25.0	11	2500		81.6	50.4-138			
□2,2-Dichloropropane	2160	25.0	**	2500		86.4	21.4-175			
Di-isopropyl ether	1840	25.0	H ,	2500		73.6	13.8-210			
Ethylbenzene	2090	25.0	Ħ	2500		83.6	47.5-142			
Hexachlorobutadiene	2050	25.0	11	2500		82.0	28.8-148			
∃sopropylbenzene	2140	25.0	11	2500		85.6	43-149			
p-Isopropyltoluene	2010	25.0	"	2500		80.4	39-149			
■Methylene chloride	2320	100	11	2500		92.8	44.2-154			
■Methyl tert-butyl ether	2090	25.0	**	2500		83.6	43.9-169			
Naphthalene	1750	25.0	н	2500		70.0	12.8-157			
n-Propylbenzene	2010	25.0	10	2500		80.4	43.9-148			
1,1,2,2-Tetrachloroethane	1650	25.0	π	2500		66.0	10-164			
Tetrachloroethene	2120	25.0	**	2500		84.8	34.1-150			
Toluene	2060	25.0	н	2500		82.4	46.5-152			
1,2,3-Trichlorobenzene	1960	25.0	n	2500		78.4	16.8-150			
1,2,4-Trichlorobenzene	2000	25.0	"	2500		80.0	26.5-145			
1,1,1-Trichloroethane	1980	25.0	**	2500		79.2	42-166			
1,1,2-Trichloroethane	1980	25.0	**	2500		79.2	46.7-156			
Trichloroethene	2160	25.0	н	2500		86.4	40.3-187			
[Trichlorofluoromethane	1220	25.0	11	2500		48.8	10-181			
1,2,4-Trimethylbenzene	2030	25.0	•	2500		81.2	46.4-141			
1,3,5-Trimethylbenzene	1980	25.0	**	2500		79.2	44.9-146			
Vinyl chloride	1720	25.0	H	2500		68.8	21.3-149			
☐otal Xylenes	6270	25.0	11	7500		83.6	47.9-138			

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

My A

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21050
Project Manager: Mike Rehfeldt

Reported: 08/13/04 12:36

WDNR Volatile Organic Compounds by Method 8260B - Quality Control Great Lakes Analytical--Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4080161 - EPA 5035B [P/T]	resuit	Limit	Oms	Devel		70ICEC			AJIIIII.	110103
LCS (4080161-BS1)				Prepared:	08/09/04	Analyzed	I: 08/10/04			
Surrogate: 1,2-Dichloroethane-d4	2370		ug/kg wet	2500		94.8	32-179			
Surrogate: Dibromofluoromethane	2280		"	2500		91.2	23.1-173			
Surrogate: 4-Bromofluorobenzene	2700		"	2500		108	29.2-152			
Surrogate: Toluene-d8	2590		"	2500		104	32.1-175			
LCS Dup (4080161-BSD1)				Prepared:	08/09/04	Analyzed	1: 08/10/04			
Benzene	1970	25.0	ug/kg wet	2500		78.8	51.3-149	0.509	28.3	
Bromobenzene	2000	25.0	**	2500		80.0	46.9-140	1.51	28.2	
Bromodichloromethane	2180	25.0	n	2500		87.2	42.1-179	0.00	37	
n-Butylbenzene	2060	25.0	11	2500		82.4	40.2-144	4.47	30.6	
_sec-Butylbenzene	1950	25.0	"	2500		78.0	40.1-146	1.03	31.3	
tert-Butylbenzene	2000	25.0	H	2500		80.0	42.1-150	0.501	31	
-Carbon tetrachloride	2320	25.0	17	2500		92.8	27.5-165	1.74	28.4	
-Chlorobenzene	2090	25.0	**	2500		83.6	53.6-138	0.00	30.1	
Chlorodibromomethane	2350	250	**	2500		94.0	80-120	0.00	20	
-Chloroethane	834	25.0	**	2500		33.4	10-188	7.72	87.6	
Chloroform	1720	25.0	**	2500		68.8	52.5-159	1.73	29	
Chloromethane	1550	25.0	11	2500		62.0	14.2-142	6.25	58.6	
2-Chlorotoluene	1940	25.0	n	2500		77.6	48.8-143	0.00	28.6	
-4-Chlorotoluene	2090	25.0	11	2500		83.6	49.3-142	1.93	27	
1,2-Dibromo-3-chloropropane	2410	25.0	**	2500		96.4	19.3-152	4.67	56.1	
1,2-Dibromoethane	2060	25.0	"	2500		82.4	46.5-141	1.47	52.6	
1,2-Dichlorobenzene	2090	25.0	n	2500		83.6	48.9-135	2.42	24.2	
1,3-Dichlorobenzene	2110	25.0	19	2500		84.4	50-136	1.91	24.5	
1,4-Dichlorobenzene	2070	25.0	"	2500		82.8	45.6-133	2.44	24.2	
Dichlorodifluoromethane	1200	25.0	**	2500		48.0	10-118	0.837	59.8	
1,1-Dichloroethane	1830	25.0	H	2500		73.2	41.9-151	2.70	29.5	
1,2-Dichloroethane	1850	25.0	**	2500		74.0	34.5-170	1.61	46.8	
1,1-Dichloroethene	1610	25.0		2500		64.4	33.1-157	3.06	35.9	
cis-1,2-Dichloroethene	1880	25.0	••	2500		75.2	48.2-161	1.58	27	
trans-1,2-Dichloroethene	1810	25.0	**	2500		72.4	29.7-173	1.64	30.1	
1,2-Dichloropropane	2050	25.0	н	2500		82.0	50-158	0.487	35.1	
1,3-Dichloropropane	2060	25.0	**	2500		82.4	50.4-138	0.976	50.5	
2,2-Dichloropropane	2120	25.0	"	2500		84.8	21.4-175	1.87	53.5	
Di-isopropyl ether	1800	25.0	#	2500		72.0	13.8-210	2.20	32.8	
Ethylbenzene	2080	25.0	11	2500		83.2	47.5-142		32.4	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

My A

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21050 Project Manager: Mike Rehfeldt Reported: 08/13/04 12:36

WDNR Volatile Organic Compounds by Method 8260B - Quality Control Great Lakes Analytical--Buffalo Grove

Analyte	Result	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD ·	RPD Limit	Notes
Batch 4080161 - EPA 5035B [P/T]										-
LCS Dup (4080161-BSD1)				Prepared:	08/09/04	Analyzed	1: 08/10/04			•
Hexachlorobutadiene	2170	25.0	ug/kg wet	2500		86.8	28.8-148	5.69	56.9	
Isopropylbenzene	2160	25.0	tt	2500		86.4	43-149	0.930	38.2	
p-Isopropyltoluene	2040	25.0	"	2500		81.6	39-149	1.48	29.8	
Methylene chloride	2280	100	TI .	2500		91.2	44.2-154	1.74	33.4	
Methyl tert-butyl ether	2060	25.0	"	2500		82.4	43.9-169	1.45	57.2	
Naphthalene	1950	25.0	#	2500		78.0	12.8-157	10.8	59.1	
■-Propylbenzene	2050	25.0	11	2500		82.0	43.9-148	1.97	31.8	
1,1,2,2-Tetrachloroethane	1660	25.0	u	2500		66.4	10-164	0.604	87.3	
Tetrachloroethene	2120	25.0	n	2500		84.8	34.1-150	0.00	38.2	
Toluene	2050	25.0	11	2500		82.0	46.5-152	0.487	37.6	
1,2,3-Trichlorobenzene	2180	25.0	**	2500		87.2	16.8-150	10.6	66	
1,2,4-Trichlorobenzene	2230	25.0	n	2500		89.2	26.5-145	10.9	50.6	
1,1,1-Trichloroethane	1940	25.0	n	2500		77.6	42-166	2.04	26	
☐,1,2-Trichloroethane	2020	25.0	n ·	2500		80.8	46.7-156	2.00	48	
Trichloroethene	2170	25.0	11	2500		86.8	40.3-187	0.462	35	
Trichlorofluoromethane	988	25.0	**	2500		39.5	10-181	21.0	119	
1,2,4-Trimethylbenzene	2040	25.0	**	2500		81.6	46.4-141	0.491	27.1	
1,3,5-Trimethylbenzene	2020	25.0	n.	2500		80.8	44.9-146	2.00	29.8	
Vinyl chloride	1680	25.0	#	2500		67.2	21.3-149	2.35	69.1	
Total Xylenes	6320	25.0	n	7500		84.3	47.9-138	0.794	35.6	
Surrogate: 1,2-Dichloroethane-d4	2360		"	2500		94.4	32-179			
-Surrogate: Dibromofluoromethane	2270		"	2500		90.8	23.1-173			
Surrogate: 4-Bromofluorobenzene	2710		"	2500		108	29.2-152			
Surrogate: Toluene-d8	2630		"	2500		105	32.1-175			

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

M) 1

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: MPL Realty

Project Number: 7-21050
Project Manager: Mike Rehfeldt

Reported: 08/13/04 12:36

Notes and Definitions

A The concentration of the analyte detected in the sample is characteristic of a laboratory artifact.

B The method blank associated with this sample contains 257 ug/Kg of this analyte.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

L This quality control measurement is below the laboratory established limit.

H This quality control measurement is above the laboratory established limit.

* The laboratory is not NELAP accredited for this analyte.

** The State of Illinois Accrediting Authority does not offer NELAP accreditation for this analyte.

Note: All analytes, by matrix and method, are accredited following current NELAP standards unless specifically noted by way of a qualifier listed above.

Great Lakes Analytical--Buffalo Grove, IL Wisconsin DNR Certification Lab ID: 999917160

Great Lakes Analytical--Buffalo Grove, IL NELAP Primary Accreditation: Illinois #100261

Great Lakes Analytical--Buffalo Grove, IL NELAP Secondary Accreditation: New Jersey #IL001

Great Lakes Analytical--Oak Creek, WI Wisconsin DNR Certification Lab ID: 341000330

Great Lakes Analytical--Oak Creek, WI NELAP Primary Accreditation: Illinois #100307

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Michael Laupan For Andrea Stathas, Project Manager

OF BUSINESS SERVICE

1380 Busch Parkway Buffalo Grove, IL 60089-4505 (847) 808-7766 FAX (847) 808-7772 140 E. Byan Road Oak Creek, WI 53154 (414) 570-9460 FAX (414) 570-9461

Client: M, E.S,		Bill To:	1	Cr	NO	1						TAT:	(STD)	4 DA	AY 3 <u>1</u>	DAY 2	DAY	1 DAY	< 24 HRS	
200 - I work Doubt		Address										☐ YE	S - TAT	is criti	ical			RESULTS N		
		Address	5.									Recei			<u>L</u> ice		Temp.	. Upon F	receipti uc	켔
Report to:		State &				Īρ	hone	#• /	1			☐ am Delive			refrig	erator Delixery	Metho	<u> </u>	<u></u>	坩
Report to: E-mail: Methers 7-21058/Mo: Rahmy		Progran	^{4:} 072	1/4	J8 T	Fa	ax #:	(<u>)</u>		l	□ ST	D [Othe	er G	LA D	Client [Shipped	I ☐ Courier	
Hojectivanie. 4 Plant Part Ranking	/	/	,	/ #	of Bot ervativ	tles	. /:	\$ /x			//	/ /			/ /	SAMPLI	E /			
Project #/PO#:	₽ /	& / W	<i>/</i> -	7 /	7 /	7 7				/\$			/ /	/ /	/ /	CONTRO	7			İ
Sampler: MIKE RESTERANT / M. &			[/2/	\ \\		/ /4 /		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			/ ,	/ #/				:/\$\ !\\$\alpha\	LA	BOR/	ATORY	
Project #/PO#: Sampler: Mixe Restrict FIELD ID, LOCATION	ON STATE OF THE ST	SAMPLE VATE			18/8		1 (E) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S			?/ /	/ /		/ ,	/ /				D NUN		}
11 $\hat{\mathbf{D}}$ and $\hat{\mathbf{A}}$ $\hat{\mathbf{A}}$ $\hat{\mathbf{A}}$ $\hat{\mathbf{A}}$			1			1 7		7	C/X							1	N4	073	106-6	7
	0935	İ	2			1 Z	,		XX										-0	
	3945		1			1 2		,	< /										~Q	
4 DZ MIN PID:														_		- Ki	12 l	✓	, management	
5 PZ-2/43'-45' PID: ND	1500	1	1			1 2	2	7	< *							1	140	 730k	n- 01	<u> </u>
6																				
PID:															_					
7										1	Ì									
PID: 8										+-+			+							
PID:																				
9																				\neg
PID:																				
10	į																			
RELINQUISHED 2-27-C4 RECEIVED		8/X.		11:40		LINQU	IISHEL			11,	7/27	lou •	RECE	IVED	1	Ster	~		7/27/2	<i></i>
REL NQUISHED RECEIVED	7 /					LINGU	IISHEL)					RECE			<u> </u>	- 			
COMMENTS:							· · · · · · · · · · · · · · · · · · ·						-						<u> </u>	T
	<u></u> -						·								P	4GF	7		OF 1	7

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported: 01/23/04 16:29

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-10	W401194-01	Water	01/20/04 00:00	01/20/04 11:40
MW-102	W401194-02	Water	01/20/04 00:00	01/20/04 11:40
MW-103	W401194-03	Water	01/20/04 00:00	01/20/04 11:40
MW-7	W401194-04	Water	01/20/04 00:00	01/20/04 11:40
MW-9	W401194-05	Water	01/20/04 00:00	01/20/04 11:40

Great Lakes Analytical--Oak Creek

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported: 01/23/04 16:29

WDNR Volatile Organic Compounds by Method 8260

Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
L					Datch	гтерагеа	Analyzed		
MW-10 (W401194-01) Water	Sampled: 01/20/04 00:00			11:40					Q
Benzene	1.04	0.500	ug/l	1	4010083	01/20/04	01/23/04	EPA 8260B	
Bromobenzene	ND	5.00	"	"	**	**	II .	"	
Bromodichloromethane	ND	0.359	"	n	"	11	s ##	lt .	
n-Butylbenzene	ND	5.00	"	17	**	11	#	#	
sec-Butylbenzene	ND	5.00	"	"	"	11	Ħ	**	
tert-Butylbenzene	ND	5.00	"	**	"	**	#	#	
Carbon tetrachloride	ND	0.592	**	**	"	н	**	"	
Chlorobenzene	ND	5.00	"	**	**	#	п .	11	
Chloroethane	ND	5.00	11	**	**	**	Ħ	11	
Chloroform	ND	0.463	**	"	**	**	"	11	
Chloromethane	ND	0.920	"	"	11	**	er e	"	
2-Chlorotoluene	ND	5.00	"	"	n	**	11	**	
4-Chlorotoluene	ND	5.00	"	"	**	"	"	u	
Dibromochloromethane	ND	5.00	"	"	**	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.629	**		11	n	**		
1,2-Dibromoethane	ND	0.329	11	**	11	Ħ	**	"	
1,2-Dichlorobenzene	ND	5.00	11	**	**	11	"	"	
1,3-Dichlorobenzene	ND	5.00	"	**	1.00	11	**	"	
1,4-Dichlorobenzene	ND	5.00	"	"	**	"	Ħ	**	
Dichlorodifluoromethane	ND	5.00	**	"	**	"	"	**	
1,1-Dichloroethane	ND	5.00	**	**	**	11	11	••	
1,2-Dichloroethane	ND	0.500	**	**	**	**	n	**	
1,1-Dichloroethene	3.34	0.500	**	11	"	**	n	**	
cis-1,2-Dichloroethene	ND	5.00	**	11	**	n	"		•
trans-1,2-Dichloroethene	ND	5.00	н	11	**	n	n	**	
1,2-Dichloropropane	ND	0.500	n	11	11	н	n	n .	
1,3-Dichloropropane	ND	5.00	**	11	••	n	11	n	
2,2-Dichloropropane	ND	5.00	**	"		11	**	**	
Di-isopropyl ether	ND	5.00	**	"		**	Ħ	**	
Ethylbenzene	ND	5.00	**	**	11	**	n	"	
Hexachlorobutadiene	ND	10.0	**	**	**	11	**	11	
Isopropylbenzene	ND	5.00	н	**	**	**	n	"	
o-Isopropyltoluene	ND ND	5.00	**	"	**	"	#	n,	
Methylene chloride	ND .	0.641		"	**	"	**	.,,	
Methyl tert-butyl ether	ND ND	0.381	**	**	11	"	"	, ,	
Naphthalene	ND ND	8.00	**	**	11		**	"	
naphthalene 1-Propylbenzene	ND ND	5.00	17	11	11		11	**	
	ND ND					"	#	**	•
1,1,2,2-Tetrachloroethane		0.422			,,	"		" "	
Tetrachloroethene	21.0 ND	0.500	**		" .	,,	 #	"	
Foluene	ND	5.00	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	10.0		"			#		
/ 4- I mchiorobenzene	ND	10.0	"	17	17	11	17	11	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andrea Stathas, Project Manager

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported: 01/23/04 16:29

WDNR Volatile Organic Compounds by Method 8260 Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-10 (W401194-01) Water	Sampled: 01/20/04 00:00	Received	01/20/04	11:40					QC
1,1,1-Trichloroethane	34.2	5.00	ug/l	1	4010083	01/20/04	01/23/04	EPA 8260B	· · ·
1,1,2-Trichloroethane	ND	0.347	"	"	11	17	n	11	
Trichloroethene	64.4	0.500	**	"	"	"	**	11	
Trichlorofluoromethane	ND	5.00	n	n	**	"	n	"	
1,2,4-Trimethylbenzene	ND	5.00	"	11	' #	"	"	H.	
1,3,5-Trimethylbenzene	ND	5.00	II .	11	**	"	**	"	
Vinyl chloride	4.06	0.652	"	11	Ħ	"	"	n	
Total Xylenes	ND ND	5.00	"	"		. "		n	
Surrogate: Dibromofluorometha	ne	85.6 %	70-	130	"	"	"	"	
Surrogate: 1,2-Dichloroethane-a	14	84.4 %	70-	130	"	"	"	"	
Surrogate: Toluene-d8		109 %	70-	130	"	"	"	"	
Surrogate: 4-Bromofluorobenzer	пе	94.0 %	70-	130	"	"	"	"	
MW-102 (W401194-02) Water	Sampled: 01/20/04 00:00	Receive	1: 01/20/0	04 11:40					QC
Benzene	1.30	0.500	ug/1	1	4010083	01/20/04	01/22/04	EPA 8260B	
Bromobenzene	ND	5.00	**	**	**	11	"	11	
Bromodichloromethane	ND	0.359	"	**	"	"	"	"	
n-Butylbenzene	ND	5.00	**	"	**	"	**	11	
sec-Butylbenzene	ND	5.00	"	H	"	"	n	"	
tert-Butylbenzene	ND	5.00	**	"	**	"	11	"	
Carbon tetrachloride	ND	0.592	**	"	**	"	**	n	
Chlorobenzene	ND	5.00	**	**	**	"	**	"	
Chloroethane	ND	5.00	**	11	"	"	**	"	
Chloroform	ND	0.463	**	"	tt	"	11	**	
Chloromethane	ND	0.920	**	"	11	**	11	n	
2-Chlorotoluene	ND	5.00	"	n.	11	n	"	11	
4-Chlorotoluene	ND	5.00	**	**	"	**	н	11	
Dibromochloromethane	ND	5.00	11	n	"	**	n	19	
1,2-Dibromo-3-chloropropane	ND	0.629	**	**	"	11	**	11	
1,2-Dibromoethane	ND	0.329	"	**	**	"	**	"	
1,2-Dichlorobenzene	ND	5.00	"	"	**	"	n	n .	
1,3-Dichlorobenzene	ND	5.00	"	"	"	"	**	n	
1,4-Dichlorobenzene	ND	5.00	"	"	"	**	11	rr ·	
Dichlorodifluoromethane	ND	5.00	"	"	**	"	11	**	
1,1-Dichloroethane	ND	5.00	11	"	11	**	"	**	
1,2-Dichloroethane	1.44	0.500	"	"	**	"	•	n	
1,1-Dichloroethene	ND	0.500	"	**	**	17	"	n	
cis-1,2-Dichloroethene	14.2	5.00	"	11		"	n	n	
trans-1,2-Dichloroethene	ND	5.00	11	n		17	n	н	
1,2-Dichloropropane	ND	0.500		**	tt	11	n	"	
1,3-Dichloropropane	ND	5.00		**	**	**	***	. "	
2,2-Dichloropropane	112	5.00			**				

Great Lakes Analytical--Oak Creek

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported: 01/23/04 16:29

WDNR Volatile Organic Compounds by Method 8260

Great Lakes Analytical--Oak Creek

Analyte	. Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-102 (W401194-02) Water	Sampled: 01/20/04 00:00	Received	1: 01/20/0	04 11:40		<u> </u>			QC
Di-isopropyl ether	ND	5.00	ug/l	1	4010083	01/20/04	01/22/04	EPA 8260B	
Ethylbenzene	ND	5.00	11	11	u u	"	**	**	
Hexachlorobutadiene	ND	10.0	11	**	11	11	"	n	
Isopropylbenzene	ND	5.00	**	n	"	**	u	**	
p-Isopropyltoluene	ND ND	5.00	11	"	н	11	"	n	
Methylene chloride	ND	0.641		H	**	**	W	n	
Methyl tert-butyl ether	1.27	0.381	n	**	**	"	*	**	
Naphthalene	ND	8.00	n	"	**	11	"	n	
n-Propylbenzene	ND	5.00		11	**	**	"	11	
1,1,2,2-Tetrachloroethane	ND	0.422	n	**	m .	n	17		
Tetrachloroethene	ND	0.500			"	m	11	**	
Toluene	ND .	5.00	"	**	n	11	11	**	
1,2,3-Trichlorobenzene	ND	10.0	**	**	n		**	n	
1,2,4-Trichlorobenzene	ND	10.0	n	11	**	"	"	"	
1,1,1-Trichloroethane	ND	5.00	**	"	11	II.	**	**	
1,1,2-Trichloroethane	ND	0.347	"	"	"	"	**	**	
Trichloroethene	12.8	0.500	"	**	n	"	111	"	
Trichlorofluoromethane	ND	5.00	**	"	#	"	n	"	
1,2,4-Trimethylbenzene	ND	5.00	11	**	**	11	11	"	
1,3,5-Trimethylbenzene	ND	5.00	**	"	**	"	"	•	
Vinyl chloride	ND	0.652		"	"	n	Ħ	**	
Total Xylenes	ND	5.00	**	n	**	**	11	**	
Surrogate: Dibromofluoromethan		111%	70-	130	,,	,,	"	"	
Surrogate: 1,2-Dichloroethane-d4		109 %	70-1	-	"	"	"	"	
Surrogate: Toluene-d8		114%	70-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.6 %	70-1	=	"	"	"	"	

Great Lakes Analytical--Oak Creek

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported: 01/23/04 16:29

WDNR Volatile Organic Compounds by Method 8260

Great Lakes Analytical-Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-103 (W401194-03) Water	Sampled: 01/20/04 00:00	Receive	d: 01/20/0	4 11:40					QC
Benzene	ND	0.500	ug/l	1	4010083	01/20/04	01/22/04	EPA 8260B	
Bromobenzene	ND	5.00	**	"	"	ñ	**	**	
Bromodichloromethane	ND	0.359	и .	11	· n	"	"	**	
n-Butylbenzene	ND	5.00	11	"	11	"	. **	n	
sec-Butylbenzene	ND	5.00		"	11	11	"	"	
tert-Butylbenzene	ND	5.00		"	**	11	11	u u	
Carbon tetrachloride	ND	0.592	Ħ	**	11	11	"	"	
Chlorobenzene	ND	5.00	11	tt .	**	"	"	11	
Chloroethane	ND	5.00	11	11	n	"	"	11	
Chloroform	ND	0.463	"	**	"	n	11	"	
Chloromethane	14.7	0.920	"	"	**	" .	"	"	
2-Chlorotoluene	ND	5.00	**	#	**	n	. "	**	
4-Chlorotoluene	ND	5.00	**	**	11	"	**	17	
Dibromochloromethane	ND	5.00	**	"	11	H	**	"	
1,2-Dibromo-3-chloropropane	ND	0.629	"	"	"	**	**	"	
1,2-Dibromoethane	ND	0.329	"	**		11	**	11	
1,2-Dichlorobenzene	ND	5.00	**	11	**	**	**	н	
1,3-Dichlorobenzene	ND	5.00	**	**	**	**	**	н	
1,4-Dichlorobenzene	ND	5.00	H	Ħ	**	11	11	**	
Dichlorodifluoromethane	ND	5.00	11	H	tt	**	"	n	
1,1-Dichloroethane	ND	5.00	**	11	n	"	"	**	
1,2-Dichloroethane	ND	0.500	#	11	**	**	••	11	
1,1-Dichloroethene	ND	0.500	**	11	n	**	••	n	
cis-1,2-Dichloroethene	ND	5.00	Ħ	11	**	11	"	11	
trans-1,2-Dichloroethene	ND	5.00	11	11	Ħ	**	"	18	
1,2-Dichloropropane	ND	0.500	n	11	н	"	"	11	
1,3-Dichloropropane	ND	5.00			**	Ħ	**	11	
2,2-Dichloropropane	ND	5.00		**	**	. н	**	11	
Di-isopropyl ether	ND	5.00	11	**	"	n	11	**	
Ethylbenzene	ND	5.00	n	**	"	11		**	
Hexachlorobutadiene	ND	10.0	**	H	"	11	**	**	
Isopropylbenzene	ND	5.00	"	*	n	"	"	н	
p-Isopropyltoluene	ND	5.00	"	11	11		,,	11	
Methylene chloride	ND	0.641	"	11	"			tt	
Methyl tert-butyl ether	ND	0.381	"	**	"	"	.,	11	
Naphthalene	ND	8.00	11	**	"	"	,,	11	
n-Propylbenzene	ND	5.00	"		"	. "	н	n	
1,1,2,2-Tetrachloroethane	ND	0.422	11	"	"	**	11	"	
Tetrachloroethene	ND	0.500	11	н	"	11	**	"	
Toluene	ND	5.00	"	11	11	"	11		
1,2,3-Trichlorobenzene	ND ND	10.0		"	**	"	**	H	
1,2,4-Trichlorobenzene	ND ND	10.0	п	**	**	ii .		11	
1,2,1 THOMOTOUCHZONG	·	10.0							

Great Lakes Analytical--Oak Creek

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported: 01/23/04 16:29

WDNR Volatile Organic Compounds by Method 8260 Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-103 (W401194-03) Water	Sampled: 01/20/04 00:00	Receive	d: 01/20/(04 11:40					QC
1,1,1-Trichloroethane	ND	5.00	ug/l	1	4010083	01/20/04	01/22/04	EPA 8260B	
1,1,2-Trichloroethane	ND	0.347	"	n	11	. "	"	• .	
Trichloroethene	0.720	0.500	11	**	"	11	"	"	
Trichlorofluoromethane	ND	5.00	"	**	"	11	"	"	
1,2,4-Trimethylbenzene	ND	5.00	"	"	H	"	**	**	
1,3,5-Trimethylbenzene	ND	5.00	"	"	**	11	**	Ħ	
Vinyl chloride	ND	0.652	**	11	"	**	**	"	
Total Xylenes	ND	5.00	11	"	"	"	. 11	"	
Surrogate: Dibromofluoromethan	1e	97.6 %	70-	130	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d	4	98.6 %	70	130	"	"	"	"	
Surrogate: Toluene-d8		113%	70	130	"	"	"	"	
Surrogate: 4-Bromofluorobenzen	e	90.0 %	70	130	"	"	"	"	
MW-7 (W401194-04) Water S	ampled: 01/20/04 00:00 J	Received:	01/20/04	11:40					QC
Benzene	ND	0.500	ug/l	1	4010083	01/20/04	01/22/04	EPA 8260B	· .
Bromobenzene	ND	5.00	"	11	**	**	**	"	
Bromodichloromethane	ND	0.359	"	11	"	**	•	"	
n-Butylbenzene	ND	5.00		**	**	11	**	"	
sec-Butylbenzene	ND	5.00	н	**	11	"	,,	"	
tert-Butylbenzene	ND	5.00	17	"	11	"	"	H	
Carbon tetrachloride	ND	0.592	"	н	**		**	**	
Chlorobenzene	ND	5.00	,,	**	**		"	11	
Chloroethane	ND	5.00	17	**	**		n	, n	
Chloroform	ND	0.463	"	**	н		11	Ħ	
Chloromethane	9.41	0.920	**	"	"	**	**	18	
2-Chlorotoluene	ND	5.00		**	**	11	"		+
4-Chlorotoluene	ND	5.00	11	**	"	"		"	
Dibromochloromethane	ND	5.00	**	**	**		**	**	
1,2-Dibromo-3-chloropropane	ND	0.629	11	**	"	ır	n	**	
1,2-Dibromoethane	ND	0.329	н	**	**	17	n	n	
1,2-Dichlorobenzene	ND	5.00	n			**	**	•	
1,3-Dichlorobenzene	ND	5.00	11	"	**	**	**	**	
1,4-Dichlorobenzene	ND	5.00	11	**	11	"	"	11	
Dichlorodifluoromethane	ND	5.00	"	11	11	"	**	11	
1,1-Dichloroethane	ND ND	5.00	"	11	**	11	"		
1,1-Dichloroethane		0.500	**	,,	**	**	n	11	
1,1-Dichloroethene	1.93 ND	0.500	ni .	,,	**	11	n		
cis-1,2-Dichloroethene	ND ND	5.00				11	"	u u	
	ND		11	,,		.,	"	"	
trans-1,2-Dichloroethene		5.00	#	"	,,	. "	" n		
1,2-Dichloropropane	ND	0.500	,,	11	"	"	" "	"	
1,3-Dichloropropane	ND	5.00				"	" "	"	•
2,2-Dichloropropane	ND	5.00	"	"	11	"	••	**	

Great Lakes Analytical--Oak Creek

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

Project: 7-21058

205 Wilmont Dr. Waukesha, WI 53189 Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 01/23/04 16:29

WDNR Volatile Organic Compounds by Method 8260

Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-7 (W401194-04) Water Sa	ampled: 01/20/04 00:00	Received:	01/20/04	11:40			<u> </u>		QO
Di-isopropyl ether	ND	5.00	ug/l	1	4010083	01/20/04	01/22/04	EPA 8260B	
Ethylbenzene	ND	5.00	"	**	**	"	**	n	
Hexachlorobutadiene	ND	10.0	"	**	"	"	••	11	
Isopropylbenzene	ND	5.00	**	"	n	**	11	"	
p-Isopropyltoluene	ND	5.00	11	**	**	"	**	"	
Methylene chloride	ND	0.641	"	. "	11	**	**	"	
Methyl tert-butyl ether	1.09	0.381	"	"	"	11		19	
Naphthalene	ND	8.00	11	11	17	11	**	11	
n-Propylbenzene	ND	5.00	"	11	17	"	**	17	
1,1,2,2-Tetrachloroethane	ND	0.422	n	**	11	n	n	Ħ	
Tetrachloroethene	1.64	0.500	**	n	11	n	H	Ħ	
Toluene	ND	5.00	**	11	H	11	**	п	
1,2,3-Trichlorobenzene	ND	10.0	"	"	**	"	**	п	
1,2,4-Trichlorobenzene	ND	10.0			н	"	"	H.	
1,1,1-Trichloroethane	27.0	5.00	"	**	11	"	"	**	
1,1,2-Trichloroethane	ND	0.347	n	n	"	**	"	et	
Trichloroethene	50.0	0.500	11	"	**	Ħ	11	n	
Trichlorofluoromethane	ND	5.00	**	"	H	"	**	11	
1,2,4-Trimethylbenzene	ND	5.00	"	*	11		**	n	
1,3,5-Trimethylbenzene	ND	5.00	**	**	11	"	"	"	
Vinyl chloride	ND	0.652	**	11	"	n	••	n	
Total Xylenes	ND	5.00	•	**	"	•	"	4	
Surrogate: Dibromofluoromethans	?	78.4 %	70-	130	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		81.8 %		130	"	"	"	"	
Surrogate: Toluene-d8		113 %		130	"	"	"	<i>"</i>	
Surrogate: 4-Bromojluorobenzene		91.2 %		130	"	"	"	"	

Great Lakes Analytical--Oak Creek

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported: 01/23/04 16:29

WDNR Volatile Organic Compounds by Method 8260 Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-9 (W401194-05) Water	Sampled: 01/20/04 00:00						,		QC
		5.00			4010083	01/20/04	01/23/04	EPA 8260B	
Benzene Bromobenzene	14.6 ND	50.0	ug/l "	10	4010063	01/20/04	01/23/04	EFA 8200B	
Bromodichloromethane	ND ND	3.59	**	"		**		,,	
n-Butylbenzene	ND	50.0	"	**	H		"	tt	
sec-Butylbenzene	ND ND	50.0	**	**	n	u	n	tt	
tert-Butylbenzene	ND	50.0	**	**	"	n	н	**	
Carbon tetrachloride	ND	5.92	tt	**	91	11	11	.,	
Chlorobenzene	ND	50.0	"		"	11	**	"	
Chloroethane	122	50.0	**	**	lt .	"	"		
Chloroform	ND	4.63	"	**	n	"	"	**	
Chloromethane	18.1	9.20	**	**	**	"	**	**	
2-Chlorotoluene	ND	50.0	"	**	11	**	"	**	
4-Chlorotoluene	ND	50.0	**	**	**	**	n	"	
Dibromochloromethane	ND	50.0	*1	**	**	"	•	"	
1,2-Dibromo-3-chloropropane	ND	6.29	11	**		**	"		
1,2-Dibromoethane	ND	3.29	,,	"	H	"	"	**	•
1,2-Dichlorobenzene	ND	50.0	,,	**	"	"	"	n	
1,3-Dichlorobenzene	ND	50.0	**	**	n	"	n	**	
1,4-Dichlorobenzene	ND	50.0	**	"	**	**	n	**	
Dichlorodifluoromethane	ND	50.0	*1	**	17	n	"	**	
1,1-Dichloroethane	ND	50.0	**	11		"	"		
1,2-Dichloroethane	ND	5.00	#	11	**	**	"		
1,1-Dichloroethene	6.30	5.00	**	11	**	"	"	"	
cis-1,2-Dichloroethene	432	50.0	11	#1	"	"	"	11	
trans-1,2-Dichloroethene	ND	50.0	**	11	"	"	"	11	
1,2-Dichloropropane	ND	5.00	"	"	**		**	11	
1,3-Dichloropropane	ND	50.0	**	"	n	**	"	17	
2,2-Dichloropropane	ND	50.0	**	"	*	*	"	**	
Di-isopropyl ether	ND	50.0	**	n	17	It	"	**	
Ethylbenzene	829	50.0	**	IT	"	"	"	"	
Hexachlorobutadiene	ND	100	"	11	"	"	"	"	
Isopropylbenzene	52.3	50.0	н	"	**	"	"	"	
p-Isopropyltoluene	ND	50.0	11	"	n	**	ıı	11	
Methylene chloride	ND	6.41	11	"	**	n	"	۳.,	
Methyl tert-butyl ether	ND	3.81	0	"	**	"	"	# .	
Naphthalene	ND	80.0	n	u .	n	**	"	n	
n-Propylbenzene	ND	50.0	**	**	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	4.22	11	17	n	**	11	11	
Tetrachloroethene	ND	5.00	**	**	11	n	ıı	**	•
Toluene	219	50.0	11	11	n	11	" .	**	
1,2,3-Trichlorobenzene	ND	100	11	"	**	"	•		
1,2,4-Trichlorobenzene	ND	100	••	**	**	"	"	н	,
-,-,-		100							•

Great Lakes Analytical--Oak Creek

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported: 01/23/04 16:29

WDNR Volatile Organic Compounds by Method 8260

Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-9 (W401194-05) Water	Sampled: 01/20/04 00:00	Received:	01/20/04	11:40					QC
1,1,1-Trichloroethane	ND	50.0	ug/l	10	4010083	01/20/04	01/23/04	EPA 8260B	
1,1,2-Trichloroethane	ND	3.47	**	"	"	11	**	н	
Trichloroethene	168	5.00	"	tt.	**	"	"	rr ·	
Trichlorofluoromethane	ND	50.0	11	11	11	"	"	n	
1,2,4-Trimethylbenzene	863	50.0	11	"	**	н	**	m	
1,3,5-Trimethylbenzene	253	50.0	**		**	Ħ	"	n	
Vinyl chloride	336	6.52	**	u u		n	**	n	
Total Xylenes	2440	500	"	100	"	· ·	01/23/04		
Surrogate: Dibromofluorometh	ane	93.8 %	70-	-130	"	"	01/23/04	"	
Surrogate: 1,2-Dichloroethane	-d4	92.0 %	70-	-130	"	n	"	n	
Surrogate: Toluene-d8		110 %	70-	-130	"	"	"	"	
Surrogate: 4-Bromofluorobenza	ene	103 %	70-	-130	"	"	"	"	

Great Lakes Analytical--Oak Creek

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported: 01/23/04 16:29

WDNR Volatile Organic Compounds by Method 8260 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010083 - EPA 5030B (P/T)	,									
Blank (4010083-BLK1)				Prepared:	01/20/04	Analyzed	: 01/22/04			
Benzene	ND	0.500	ug/l							
Bromobenzene	ND	5:00	"							
Bromodichloromethane	ND	0.359	**						٠	
n-Butylbenzene	ND	5.00	"							
sec-Butylbenzene	ND	5.00	**							
tert-Butylbenzene	ND	5.00	11							
Carbon tetrachloride	ND	0.592	"							
Chlorobenzene	ND	5.00								
Chloroethane	ND	5.00	"							
Chloroform	ND	0.463	"							
Chloromethane	ND	0.920	n							
2-Chlorotoluene	ND	5.00	•							
4-Chlorotoluene	ND	5.00	n							
Dibromochloromethane	ND	5.00	11							
1,2-Dibromo-3-chloropropane	ND	0.629								
1,2-Dibromoethane	ND	0.329	n							
1,2-Dichlorobenzene	ND	5.00	11							
1,3-Dichlorobenzene	ND	5.00	"							
1,4-Dichlorobenzene	ND	5.00	**							
Dichlorodifluoromethane	ND	5.00	11							
1,1-Dichloroethane	ND	5.00	"					•	•	
1,2-Dichloroethane	ND	0.500	**							
1,1-Dichloroethene	ND	0.500	"							
cis-1,2-Dichloroethene	ND	5.00	"							
trans-1,2-Dichloroethene	ND	5.00	11							
1,2-Dichloropropane	ND	0.500	**							
1,3-Dichloropropane	ND	5.00	"							
2,2-Dichloropropane	ND	5.00	"							
Di-isopropyl ether	ND	5.00	**							
Ethylbenzene	ND	5.00	•							
Hexachlorobutadiene	ND	10.0	n							
Isopropylbenzene	ND	5.00	"							
p-Isopropyltoluene	ND	5.00	**							
Methylene chloride	ND	0.641	"							
Methyl tert-butyl ether	ND	0.381	"							

Great Lakes Analytical--Oak Creek

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: 7-21058

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 01/23/04 16:29

WDNR Volatile Organic Compounds by Method 8260 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010083 - EPA 5030B (P/T)										
Blank (4010083-BLK1)				Prepared:	01/20/04	Analyzed	: 01/22/04			
Naphthalene	ND	8.00	ug/l	***************************************				•		
n-Propylbenzene	ND	5.00	11							
1,1,2,2-Tetrachloroethane	ND	0.422	**							
Tetrachloroethene	ND	0.500	**							
Toluene	ND	5.00	n				•			
1,2,3-Trichlorobenzene	ND	10.0	**							
1,2,4-Trichlorobenzene	ND	10.0	**							
1,1,1-Trichloroethane	ND	5.00	**					•		
1,1,2-Trichloroethane	ND	0.347	"							
Trichloroethene	ND	0.500	"							
Trichlorofluoromethane	ND	5.00	"							
1,2,4-Trimethylbenzene	ND	5.00	"							
1,3,5-Trimethylbenzene	ND	5.00	"							
Vinyl chloride	ND	0.652	**							
Total Xylenes	ND	5.00	H							
Surrogate: Dibromofluoromethane	38.9		"	50.0		77.8	70-130			
Surrogate: 1,2-Dichloroethane-d4	40.3		"	50.0		80.6	70-130			• .
Surrogate: Toluene-d8	56.8		"	50.0		114	70-130			
Surrogate: 4-Bromofluorobenzene	45.7		"	50.0		91.4	70-130			
LCS (4010083-BS1)				Prepared:	01/20/04	Analyzed	: 01/22/04			
Benzene	10.5	0.500	ug/l	10.0		105	70-130			
Bromobenzene	9.61	5.00	"	10.0		96.1	70-130			
Bromodichloromethane	10.2	0.359	"	10.0		102	70-130			
n-Butylbenzene	9.82	5.00	**	10.0		98.2	70-130			
sec-Butylbenzene	8.96	5.00	"	10.0		89.6	70-130			
ert-Butylbenzene	9.14	5.00	**	10.0		91.4	70-130			
Carbon tetrachloride	12.1	0.592	n	10.0		121	70-130			
Chlorobenzene	9.18	5.00	H	10.0		91.8	70-130		,	•
Chloroethane	7.87	5.00	*	10.0		78.7	70-130			
Chloroform	9.10	0.463	**	10.0		91.0	70-130			
Chloromethane	7.93	0.920	n	10.0		79.3	70-130			
2-Chlorotoluene	9.26	5.00	**	10.0		92.6	70-130		•	
1-Chlorotoluene	9.27	5.00	"	10.0		92.7	70-130			
Dibromochloromethane	10.0	5.00	"	10.0		100	70-130		. '	
1,2-Dibromo 3-chloropropane	9.61	0.629	**	10.0		96.1	70-130			

Great Lakes Analytical--Oak Creek

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported: 01/23/04 16:29

WDNR Volatile Organic Compounds by Method 8260 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010083 - EPA 5030B (P/T)									
LCS (4010083-BS1)				Prepared:	01/20/04 Analyzed	: 01/22/04			
1,2-Dibromoethane	9.09	0.329	ug/l	10.0	90.9	70-130		<u> </u>	
1,2-Dichlorobenzene	9.52	5.00	11	10.0	95.2	70-130			
1,3-Dichlorobenzene	9.32	5.00	"	10.0	93.2	70-130			
1,4-Dichlorobenzene	8.97	5.00	"	10.0	89.7	70-130			
Dichlorodifluoromethane	7.19	5.00	11	10.0	71.9	70-130		•	
1,1-Dichloroethane	8.79	5.00	**	10.0	87.9	70-130			
1,2-Dichloroethane	8.80	0.500	11	10.0	88.0	70-130			
1,1-Dichloroethene	8.26	0.500	11	10.0	82.6	70-130			
cis-1,2-Dichloroethene	9.31	5.00	•	10.0	93.1	70-130			
trans-1,2-Dichloroethene	8.84	5.00	"	10:0	88.4	70-130			
1,2-Dichloropropane	9.77	0.500	**	10.0	97.7	70-130			
1,3-Dichloropropane	9.63	5.00	Ħ	10.0	96.3	70-130			
2,2-Dichloropropane	9.25	5.00	**	10.0	92.5	70-130			
Di-isopropyl ether	8.27	5.00	11	10.0	82.7	70-130			
Ethylbenzene	8.95	5.00	**	10.0	89.5	70-130			
Hexachlorobutadiene	10.0	10.0	**	10.0	100	70-130			
Isopropylbenzene	9.81	5.00	"	10.0	98.1	70-130			
p-Isopropyltoluene	9.37	5.00	"	10.0	93.7	70-130			
Methylene chloride	8.46	0.641	"	10.0	84.6	70-130			
Methyl tert-butyl ether	8.40	0.381	"	10.0	84.0	70-130			
Naphthalene	8.99	8.00	"	10.0	89.9	70-130			
n-Propylbenzene	9.24	5.00	**	10.0	92.4	70-130			
1,1,2,2-Tetrachloroethane	9.03	0.422	"	10.0	90.3	70-130			
Tetrachloroethene	9.52	0.500	"	10.0	95.2	70-130			
Toluene	9.15	5.00	**	10.0	91.5	70-130			
1,2,3-Trichlorobenzene	9.81	9.81	"	10.0	98.1	70-130			
1,2,4-Trichlorobenzene	10.1	10.0	"	10.0	101	70-130			
1,1,1-Trichloroethane	9.79	5.00	**	10.0	97.9	70-130			
1,1,2-Trichloroethane	9.38	0.347	"	10.0	93.8	70-130			
Trichloroethene	9.29	0.500	"	10.0	92.9	70-130			
Trichlorofluoromethane	9.44	5.00	n	10.0	94.4	70-130			
1,2,4-Trimethylbenzene	9.12	5.00	11	10.0	91.2	70-130			
1,3,5-Trimethylbenzene	9.03	5.00	"	10.0	90.3	70-130			
Vinyl chloride	11.6	0.652	"	10.0	116	70-130			
Total Xylenes	28.7	5.00	**	30.0	95.7	70-130			

Great Lakes Analytical--Oak Creek

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha, WI 53189

Project: 7-21058

Project Number: 7-21058 Project Manager: Mike Rehfeldt

Reported: 01/23/04 16:29

WDNR Volatile Organic Compounds by Method 8260 - Quality Control Great Lakes Analytical-Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010083 - EPA 5030B (P/T)										
LCS (4010083-BS1)				Prepared:	01/20/04	Analyzed	: 01/22/04			
Surrogate! Dibromofluoromethane	50.9		ug/l	50.0		102	70-130			· · · · · · · · · · · · · · · · · · ·
Surrogate: 1,2-Dichloroethane-d4	52.2		"	50.0		104	70-130			
Surrogate: Toluene-d8	53.5		"	50.0		107	70-130			
Surrogate: 4-Bromosluorobenzene	47.0		"	50.0		94.0	70-130			•
Matrix Spike (4010083-MS1)	So	urce: W4011.	34-01	Prepared:	01/20/04	Analyzed	: 01/22/04			
Benzene	20.0	0.500	ug/l	20.0	ND	100	70-130			
Bromobenzene	20.9	5.00	"	20.0	ND	104	70-130			
Bromodichloromethane	22.5	0.359	**	20.0	ND	112	70-130			
n-Butylbenzene	19.6	5.00	11	20.0	ND	98.0	70-130			· . ·
sec-Butylbenzene	20.2	5.00	"	20.0	ND	101	70-130			
tert-Butylbenzene	20.7	5.00	"	20.0	ND	104	70-130			
Carbon tetrachloride	18.0	0.592	"	20.0	ND	90.0	70-130			
Chlorobenzene	20.0	5.00		20.0	ND	100	70-130			
Chloroethane	15.3	5.00	· ·	20.0	ND	76.5	70-130			
Chloroform	19.1	0.463	n	20.0	ND	95.5	70-130			
Chloromethane	11.9	0.920	11	20.0	ND	59.5	70-130			L
2-Chlorotoluene	20.2	5.00	17	20.0	ND	101	70-130			•
4-Chlorotoluene	20.5	5.00	11	20.0	ND	102	70-130			
Dibromochloromethane	21.9	5.00	"	20.0	ND	110	70-130			
1,2-Dibromo-3-chloropropane	22.4	0.629	n	20.0	ND	112	70-130			
1,2-Dibromoethane	20.1	0.329	11	20.0	ND	100	70-130			
1,2-Dichlorobenzene	21.7	5.00	**	20.0	ND	108	70-130			
1,3-Dichlorobenzene	20.3	5.00	n	20.0	ND	102	70-130			
1,4-Dichlorobenzene	19.8	5.00	"	20.0	ND	99.0	70-130			
Dichlorodifluoromethane	7.12	5.00	**	20.0	ND	35.6	70-130			· L
1,1-Dichloroethane	18.8	5.00	11	20.0	ND	94.0	70-130			
1,2-Dichloroethane	17.8	0.500	11	20.0	ND	89.0	70-130			
1,1-Dichloroethene	17.7	0.500	**	20.0	ND	88.5	70-130			
cis-1,2-Dichloroethene	20.2	5.00	"	20.0	ND	101	70-130			
trans-1,2-Dichloroethene	18.6	5.00	"	20.0	ND	93.0	70-130			
1,2-Dichloropropane	22.3	0.500	**	20.0	ND	112	70-130			
1,3-Dichloropropane	20.1	5.00	•	20.0	ND	100	70-130			
2,2-Dichloropropane	17.6	5.00		20.0	ND	88.0	70-130			

Great Lakes Analytical--Oak Creek

17.8

19.7

5.00

5.00

20.0

20.0

ND

ND

Di-isopropyl ether

_Ethylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

70-130

70-130

89.0

98.5

Andrea Stathas, Project Manager

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: 7-21058

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 01/23/04 16:29

WDNR Volatile Organic Compounds by Method 8260 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010083 - EPA 5030B (P/T)										
Matrix Spike (4010083-MS1)	So	urce: W40113	4-01	Prepared:	01/20/04	Analyzed	: 01/22/04			
Hexachlorobutadiene	20.8	10.0	ug/l	20.0	ND	104	70-130			
Isopropylbenzene	17.7	5.00	Ħ	20.0	ND	88.5	70-130			
p-Isopropyltoluene	20.0	5.00	11	20.0	ND	100	70-130			
Methylene chloride	19.3	0.641	**	20.0	ND	96.5	70-130			
Methyl tert-butyl ether	19.2	0.381	11	20.0	ND	96.0	70-130			
Naphthalene	22.1	8.00	. "	20.0	ND	110	70-130			
n-Propylbenzene	20.5	5.00	**	20.0	ND	102	70-130			
1,1,2,2-TetrachIoroethane	19.8	0.422	**	20.0	ND	99.0	70-130			
Tetrachloroethene	18.8	0.500	Ħ	20.0	ND	94.0	70-130			
Toluene	19.2	5.00	и :	20.0	ND	96.0	70-130			
1,2,3-Trichlorobenzene	22.3	10.0	H	20.0	ND	112	70-130	•		
1,2,4-Trichlorobenzene	21.3	10.0	"	20.0	ND	106	70-130			
1,1,1-Trichloroethane	19.7	5.00	"	20.0	ND	98.5	70-130		•	
1,1,2-Trichloroethane	21.4	0.347	"	20.0	ND	107	70-130			
Trichloroethene	21.2	0.500	"	20.0	ND	106	70-130			
Trichlorofluoromethane	18.2	5.00	n	20.0	ND	91.0	70-130			•
1,2,4-Trimethylbenzene	20.8	5.00	"	20.0	ND	104	70-130		*	
1,3,5-Trimethylbenzene	20.0	5.00	11	20.0	ND	100	70-130			
Vinyl chloride	16.6	0.652	11	20.0	ND	83.0	70-130			
Total Xylenes	62.1	5.00	**	60.0	ND	104	70-130			
Surrogate: Dibromofluoromethane	47.3		"	50.0		94.6	70-130			
Surrogate: 1,2-Dichloroethane-d4	46.6		"	50.0		93.2	70-130			
Surrogate: Toluene-d8	51.8		"	50.0		104	70-130			
Surrogate: 4-Bromofluorobenzene	46.1		"	50.0		92.2	70-130			
Matrix Spike Dup (4010083-MSD1)	Sou	urce: W40113	4-01	Prepared:	01/20/04	Analyzed	: 01/22/04			
Benzene	24.6	0.500	ug/l	20.0	ND	123	70-130	20.6	20	H
Bromobenzene	22.0	5.00	**	20.0	ND	110	70-130	5.13	20	
Bromodichloromethane	24.1	0.359	11	20.0	ND	120	70-130	6.87	20	÷
n-Butylbenzene	20.5	5.00	"	20.0	ND	102	70-130	4.49	20	
ec-Butylbenzene	21.4	5.00	11	20.0	ND	107	70-130	5.77	20	
ert-Butylbenzene	22.1	5.00	Ħ	20.0	ND	110	70-130	6.54	20	
Carbon tetrachloride	26.1	0.592	"	20.0	ND	130	70-130	36.7	20	ŀ
Chlorobenzene	21.1	5.00	"	20.0	ND	106	70-130	5.35	20	
Chloroethane	17.8	5.00	**	20.0	ND	89.0	70-130	15.1	20	
Chloroform'	22.2	0.463	"	20.0	ND	111	70-130	15.0	20 .	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Cendrea Starthan

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported: 01/23/04 16:29

WDNR Volatile Organic Compounds by Method 8260 - Quality Control Great Lakes Analytical--Oak Creek

Matrix Spike Dup (4010083-MSD1)	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Chloromethane	Batch 4010083 - EPA 5030B (P/T)										
2-Chlorotoluene	Matrix Spike Dup (4010083-MSD1)	So	urce: W4011	34-01	Prepared:	01/20/04	Analyzed	: 01/22/04			
4-Chlorotoluene	Chloromethane	14.2	0.920	ug/l	20.0	ND	71.0	70-130	17.6	20	
Dibromochloromethane 22.6 5.00 " 20.0 ND 113 70-130 3.15 20 20 20 20 20 20 20 2	2-Chlorotoluene	21.8	5.00	"	20.0	ND	109	70-130	7.62	20	
1,2-Dibromo-3-chloropropane 24.2 0,629 " 20.0 ND 121 70-130 7.73 20 1.2-Dibromoethane 20.8 0,329 " 20.0 ND 104 70-130 3,42 20 1.2-Dibromoethane 22.4 5.00 " 20.0 ND 112 70-130 3,17 20 1.2-Dichlorobenzene 21.2 5.00 " 20.0 ND 112 70-130 3,17 20 1.3-Dichlorobenzene 21.2 5.00 " 20.0 ND 106 70-130 4,34 20 1.4-Dichlorobenzene 20.3 5.00 " 20.0 ND 106 70-130 4,34 20 1.4-Dichlorobenzene 20.3 5.00 " 20.0 ND 106 70-130 4,34 20 1.4-Dichlorobenzene 20.3 5.00 " 20.0 ND 106 70-130 4,34 20 1.4-Dichlorobenzene 20.1 5.00 " 20.0 ND 106 70-130 4,34 20 1.4-Dichlorobenzene 20.1 5.00 " 20.0 ND 108 70-130 14.3 20 1.4-Dichlorobenzene 20.1 5.00 " 20.0 ND 108 70-130 14.3 20 1.4-Dichlorobenzene 20.4 0,500 " 20.0 ND 99.5 70-130 11.1 20 1.4-Dichlorobenzene 20.4 0,500 " 20.0 ND 102 70-130 11.2 20 1.4-Dichlorobenzene 20.8 5.00 " 20.0 ND 105 70-130 11.2 20 1.4-Dichloropropane 23.9 0,500 " 20.0 ND 104 70-130 11.2 20 1.4-Dichloropropane 23.9 0,500 " 20.0 ND 104 70-130 13.0 20 1.4-Dichloropropane 23.9 0,500 " 20.0 ND 104 70-130 13.0 20 1.4-Dichloropropane 23.9 0,500 " 20.0 ND 106 70-130 13.0 20 1.4-Dichloropropane 23.9 0,500 " 20.0 ND 106 70-130 13.6 20 1.4-Dichloropropane 23.9 0,500 " 20.0 ND 106 70-130 13.6 20 1.4-Dichloropropane 23.9 0,500 " 20.0 ND 106 70-130 13.6 20 1.4-Dichloropropane 23.9 0,500 " 20.0 ND 106 70-130 13.6 20 1.4-Dichloropropane 23.9 0,500 " 20.0 ND 104 70-130 13.6 20 1.4-Dichloropropane 23.9 5.00 " 20.0 ND 104 70-130 13.6 20 1.4-Dichloropropane 23.9 5.00 " 20.0 ND 104 70-130 13.6 20 1.4-Dichloropropane 23.9 5.00 " 20.0 ND 104 70-130 13.6 20 1.4-Dichloropropane 23.9 5.00 " 20.0 ND 104 70-130 13.6 20 1.4-Dichloropropane 23.9 5.00 " 20.0 ND 104 70-130 13.6 20 1.4-Dichloropropane 23.9 5.00 " 20.0 ND 104 70-130 13.6 20 1.4-Dichloropropane 23.9 5.00 " 20.0 ND 104 70-130 13.6 20 1.4-Dichloropropane 23.9 5.00 " 20.0 ND 104 70-130 13.6 20 1.4-Dichloropropane 23.9 5.00 " 20.0 ND 104 70-130 13.6 20 1.4-Dichloropropane 23.9 5.00 " 20.0 ND 104 70-130 13.6 20 1.4-Dichloropropane 23.9 5.00 " 20.0 ND 104 70-130 13.6 20 1.4-Dichloropropane 23	4-Chlorotoluene	21.6	5.00	"	20.0	ND	108	70-130	5.23	20	
1,2-Dichloromoethane 20.8 0.329 " 20.0 ND 104 70-130 3.42 20 1,2-Dichlorobenzene 21.4 5.00 " 20.0 ND 112 70-130 3.17 20 1,3-Dichlorobenzene 21.2 5.00 " 20.0 ND 106 70-130 4.34 20 1,3-Dichlorobenzene 20.3 5.00 " 20.0 ND 106 70-130 4.34 20 1,3-Dichlorobenzene 20.3 5.00 " 20.0 ND 102 70-130 2.11 20 1,4-Dichlorobenzene 21.7 5.00 " 20.0 ND 108 70-130 21.1 20 1,4-Dichlorocethane 21.7 5.00 " 20.0 ND 108 70-130 14.3 20 1,4-Dichlorocethane 21.7 5.00 " 20.0 ND 108 70-130 14.3 20 1,4-Dichlorocethane 21.7 5.00 " 20.0 ND 108 70-130 14.2 20 1,4-Dichlorocethane 20.4 0.500 " 20.0 ND 102 70-130 14.2 20 1,4-Dichlorocethane 23.0 5.00 " 20.0 ND 102 70-130 14.2 20 1,4-Dichlorocethane 23.0 5.00 " 20.0 ND 104 70-130 13.0 20 1,4-Dichlorocethane 23.0 5.00 " 20.0 ND 104 70-130 13.0 20 1,4-Dichlorocethane 23.9 5.00 " 20.0 ND 104 70-130 13.0 20 1,4-Dichloropropane 23.3 5.00 " 20.0 ND 106 70-130 5.80 20 1,3-Dichloropropane 21.3 5.00 " 20.0 ND 106 70-130 5.80 20 2,2-Dichloropropane 21.3 5.00 " 20.0 ND 106 70-130 5.91 20 2,2-Dichloropropane 20.4 5.00 " 20.0 ND 104 70-130 5.91 20 2,2-Dichloropropane 20.4 5.00 " 20.0 ND 104 70-130 5.91 20 2,2-Dichloropropane 20.4 5.00 " 20.0 ND 104 70-130 5.91 20 2,2-Dichloropropane 20.4 5.00 " 20.0 ND 106 70-130 5.91 20 20 2,2-Dichloropropane 20.4 5.00 " 20.0 ND 106 70-130 5.91 20 20 20 20 20 20 20 2	Dibromochloromethane	22.6	5.00	"	20.0	ND	113	70-130	3.15	20	
1,2-Dichlorobenzene	1,2-Dibromo-3-chloropropane	24.2	0.629	"	20.0	ND	121	70-130	7.73	20	
1,3-Dichlorobenzene 21.2 5.00 " 20.0 ND 106 70-130 4.34 20 1.4-Dichlorobenzene 20.3 5.00 " 20.0 ND 102 70-130 2.49 20 Dichlorodifluoromethane 8.80 5.00 " 20.0 ND 44.0 70-130 2.49 20 LH 1,1-Dichlorocthane 21.7 5.00 " 20.0 ND 44.0 70-130 2.11 20 LH 1,1-Dichlorocthane 119.9 0.500 " 20.0 ND 99.5 70-130 11.1 20 11.1-Dichlorocthane 119.9 0.500 " 20.0 ND 99.5 70-130 11.1 20 11.1-Dichlorocthane 20.4 0.500 " 20.0 ND 102 70-130 14.2 20 11.1-Dichlorocthane 20.4 0.500 " 20.0 ND 102 70-130 11.1 20 11.1-Dichlorocthane 20.8 5.00 " 20.0 ND 115 70-130 11.2 20 11.1-Dichlorocthane 20.8 5.00 " 20.0 ND 115 70-130 11.2 20 11.1-Dichloropropane 20.8 5.00 " 20.0 ND 104 70-130 11.2 20 11.2-Dichloropropane 21.3 5.00 " 20.0 ND 106 70-130 5.80 20 11.3-Dichloropropane 21.3 5.00 " 20.0 ND 106 70-130 5.80 20 11.3-Dichloropropane 20.4 5.00 " 20.0 ND 106 70-130 5.80 20 11.3-Dichloropropane 20.4 5.00 " 20.0 ND 102 70-130 6.51 20 11.3-Dichloropropane 20.4 5.00 " 20.0 ND 102 70-130 5.80 20 11.3-Dichloropropane 20.4 5.00 " 20.0 ND 102 70-130 5.80 20 11.3-Dichloropropane 20.4 5.00 " 20.0 ND 102 70-130 5.80 20 11.3-Dichloropropane 20.4 5.00 " 20.0 ND 102 70-130 5.80 20 11.3-Dichloropropane 20.4 5.00 " 20.0 ND 102 70-130 5.80 20 11.3-Dichloropropane 20.4 5.00 " 20.0 ND 102 70-130 5.80 20 11.3-Dichloropropane 20.4 5.00 " 20.0 ND 102 70-130 5.80 20 11.3-Dichloropropane 20.4 5.00 " 20.0 ND 102 70-130 5.80 20 11.3-Dichloropropane 20.4 5.00 " 20.0 ND 104 70-130 5.91 20 11.3-Dichloropropane 20.4 5.00 " 20.0 ND 104 70-130 5.91 20 11.3-Dichloropropane 20.4 5.00 " 20.0 ND 104 70-130 5.91 20 11.3-Dichloropropane 20.4 5.00 " 20.0 ND 104 70-130 5.91 20 11.3-Dichloropropane 20.0 ND 104 70-130 5.91 20 11.3-Dichloropropane 20.0 ND 104 70-130 5.91 20 11.3-Dichloropropane 20.0 ND 104 70-130 5.91 20 11.3-Dichloropropane 20.0 ND 104 70-130 5.91 20 11.3-Dichloropropane 20.0 ND 104 70-130 5.91 20 11.3-Dichloropropane 20.0 ND 104 70-130 5.91 20 11.3-Dichloropropane 20.0 ND 104 70-130 5.91 20 11.3-Dichloropropane 20.0 ND 104 70-130 5.91 20 11.3-Dichloropropane 20.0 ND 104 7	1,2-Dibromoethane	20.8	0.329	"	20.0	ND	104	70-130	3.42	20	
1,4-Dichlorobenzene 20.3 5.00 " 20.0 ND 102 70-130 2.49 20 20 20 20 20 20 20 2	1,2-Dichlorobenzene	22.4	5.00	"	20.0	ND	112	70-130	3.17	20	
Dichlorodifiluoromethane 8.80 5.00 " 20.0 ND 44.0 70-130 21.1 20 LH 1,1-Dichloroethane 21.7 5.00 " 20.0 ND 108 70-130 14.3 20 1,2-Dichloroethane 19.9 0.500 " 20.0 ND 99.5 70-130 11.1 20 1,1-Dichloroethane 20.4 0.500 " 20.0 ND 102 70-130 14.2 20 1,1-Dichloroethene 23.0 5.00 " 20.0 ND 115 70-130 13.0 20 1,1-Dichloroethene 23.0 5.00 " 20.0 ND 104 70-130 11.2 20 1,2-Dichloroethene 23.9 0.500 " 20.0 ND 104 70-130 11.2 20 1,2-Dichloropapane 23.3 5.00 " 20.0 ND 104 70-130 6.93 20 1,2-Dichloropapane 21.3 5.00 " 20.0 ND 106 70-130 5.80 20 1,3-Dichloropapane 20.4 5.00 " 20.0 ND 102 70-130 13.6 20 2,2-Dichloroppane 20.4 5.00 " 20.0 ND 102 70-130 13.6 20 2,2-Dichloroppane 20.4 5.00 " 20.0 ND 102 70-130 13.6 20 Elthylbenzene 20.9 5.00 " 20.0 ND 104 70-130 5.91 20 Hexachlorobutadiene 22.2 10.0 " 20.0 ND 111 70-130 6.51 20 Elthylbenzene 18.2 5.00 " 20.0 ND 105 70-130 4.88 20 P-Isopropylbenzene 21.5 5.00 " 20.0 ND 108 70-130 11.7 20 Methyl tert-butyl ether 21.5 5.381 " 20.0 ND 108 70-130 7.41 20 n-Propylbenzene 21.5 5.00 " 20.0 ND 119 70-130 5.41 20 n-Propylbenzene 21.5 5.00 " 20.0 ND 108 70-130 7.41 20 n-Propylbenzene 21.5 5.00 " 20.0 ND 104 70-130 5.41 20 n-Propylbenzene 21.5 5.00 " 20.0 ND 104 70-130 5.41 20 n-Propylbenzene 19.8 0.500 " 20.0 ND 106 70-130 0.47 20 n-Propylbenzene 21.4 10.0 " 20.0 ND 106 70-130 0.47 20 n-Propylbenzene 22.4 10.0 " 20.0 ND 106 70-130 0.47 20 n-Propylbenzene 22.4 10.0 " 20.0 ND 106 70-130 0.47 20 n-Propylbenzene 22.4 10.0 " 20.0 ND 106 70	1,3-Dichlorobenzene	21.2	5.00	11	20.0	ND	106	70-130	4.34	20	
1,1-Dichloroethane	1,4-Dichlorobenzene	20.3	5.00	11	20.0	ND	102	70-130	2.49	20	
1,2-Dichloroethane 19,9 0,500 " 20,0 ND 99,5 70-130 11.1 20 1,1-Dichloroethene 20,4 0,500 " 20,0 ND 102 70-130 14.2 20 cis-1,2-Dichloroethene 23,0 5,00 " 20,0 ND 115 70-130 13.0 20 trans-1,2-Dichloroethene 23,0 5,00 " 20,0 ND 115 70-130 13.0 20 trans-1,2-Dichloroethene 23,9 0,500 " 20,0 ND 104 70-130 11.2 20 1,2-Dichloropropane 23,9 0,500 " 20,0 ND 106 70-130 6.93 20 1,2-Dichloropropane 21,3 5,00 " 20,0 ND 106 70-130 5.80 20 2,2-Dichloropropane 20,4 5,00 " 20,0 ND 102 70-130 14.7 20 Di-isopropyl ether 20,4 5,00 " 20,0 ND 102 70-130 13.6 20 Ethylbenzene 20,9 5,00 " 20,0 ND 102 70-130 13.6 20 Ethylbenzene 20,9 5,00 " 20,0 ND 102 70-130 13.6 20 Ethylbenzene 18,2 5,00 " 20,0 ND 111 70-130 6.51 20 Isopropylbenzene 18,2 5,00 " 20,0 ND 111 70-130 6.51 20 Esperpylbenzene 21,0 5,00 " 20,0 ND 111 70-130 6.51 20 Esperpylbenzene 21,0 5,00 " 20,0 ND 108 70-130 11.7 20 Methyl tert-butyl ether 21,0 5,00 " 20,0 ND 108 70-130 11.7 20 Methyl tert-butyl ether 21,5 0,381 " 20,0 ND 108 70-130 11.3 20 Naphthalene 23,8 8,00 " 20,0 ND 108 70-130 11.3 20 Naphthalene 23,8 8,00 " 20,0 ND 108 70-130 11.3 20 Naphthalene 23,8 8,00 " 20,0 ND 108 70-130 11.3 20 Naphthalene 23,8 8,00 " 20,0 ND 108 70-130 11.3 20 Naphthalene 23,8 8,00 " 20,0 ND 108 70-130 11.3 20 Naphthalene 24,4 10,0 " 20,0 ND 104 70-130 5.18 20 Tetrachloroethene 29,9 5,00 " 20,0 ND 104 70-130 5.18 20 Tetrachloroethene 20,9 5,00 " 20,0 ND 104 70-130 5.18 20 Tetrachloroethene 20,9 5,00 " 20,0 ND 104 70-130 5.18 20 Tetrachloroethene 20,9 5,00 " 20,0 ND 104 70-130 6.33 20	Dichlorodifluoromethane	8.80	5.00	11	20.0	ND	44.0	70-130	21.1	20	LH
1,1-Dichloroethene 20.4 0.500 " 20.0 ND 102 70-130 14.2 20 cis-1,2-Dichloroethene 23.0 5.00 " 20.0 ND 115 70-130 13.0 20 trans-1,2-Dichloroethene 20.8 5.00 " 20.0 ND 104 70-130 11.2 20 1,2-Dichloropropane 23.9 0.500 " 20.0 ND 106 70-130 6.93 20 1,3-Dichloropropane 21.3 5.00 " 20.0 ND 106 70-130 6.93 20 2,2-Dichloropropane 20.4 5.00 " 20.0 ND 102 70-130 14.7 20 2,2-Dichloropropane 20.4 5.00 " 20.0 ND 102 70-130 13.6 20 2,2-Dichloropropane 20.4 5.00 " 20.0 ND 102 70-130 13.6 20 Di-isopropyl ether 20.0 ND 102 70-130 13.6 20 20 ND	1,1-Dichloroethane	21.7	5.00	"	20.0	ND	108	70-130	14.3	20	
23.0 5.00 " 20.0 ND 115 70-130 13.0 20 12.2	1,2-Dichloroethane	19.9	0.500	11	20.0	ND	99.5	70-130	11.1	20	
trans-1,2-Dichloroethene 20.8 5.00 " 20.0 ND 104 70-130 11.2 20 1,2-Dichloropropane 23.9 0.500 " 20.0 ND 120 70-130 6.93 20 1,3-Dichloropropane 21.3 5.00 " 20.0 ND 106 70-130 5.80 20 2,2-Dichloropropane 20.4 5.00 " 20.0 ND 102 70-130 11.7 20 Di-isopropyl ether 20.4 5.00 " 20.0 ND 102 70-130 13.6 20 Ethylbenzene 20.9 5.00 " 20.0 ND 104 70-130 5.91 20 Hexachlorobutadiene 22.2 10.0 " 20.0 ND 111 70-130 6.51 20 Horopylbenzene 18.2 5.00 " 20.0 ND 111 70-130 6.51 20 Hexachlorobutadiene 21.7 0.641 " 20.0 ND 105 70-130 13.6 20 Hexhyltene chloride 21.7 0.641 " 20.0 ND 105 70-130 11.3 20 NB 11.1 20 NB 11.1 70-130 6.51 20 NB 11.1 70-130 8.48 20 N	1,1-Dichloroethene	20.4	0.500	"	20.0	ND	102	70-130	14.2	20	
1,2-Dichloropropane 23.9 0.500 " 20.0 ND 120 70-130 6.93 20 1,3-Dichloropropane 21.3 5.00 " 20.0 ND 106 70-130 5.80 20 2,2-Dichloropropane 20.4 5.00 " 20.0 ND 102 70-130 14.7 20 Di-isopropyl ether 20.4 5.00 " 20.0 ND 102 70-130 13.6 20 Ethylbenzene 20.9 5.00 " 20.0 ND 104 70-130 5.91 20 Hexachlorobutadiene 22.2 10.0 " 20.0 ND 111 70-130 6.51 20 Isopropylbenzene 18.2 5.00 " 20.0 ND 91.0 70-130 2.79 20 Isopropylbenzene 21.0 5.00 " 20.0 ND 105 70-130 4.88 20 Methyle tert-butyl ether 21.5 0.381 " 20.0 ND 108 70-130 11.3 20 <td>cis-1,2-Dichloroethene</td> <td>23.0</td> <td>5.00</td> <td>**</td> <td>20.0</td> <td>ND</td> <td>115</td> <td>70-130</td> <td>13.0</td> <td>20</td> <td></td>	cis-1,2-Dichloroethene	23.0	5.00	**	20.0	ND	115	70-130	13.0	20	
1,3-Dichloropropane 21.3 5.00 " 20.0 ND 106 70-130 5.80 20 20,2-Dichloropropane 20.4 5.00 " 20.0 ND 102 70-130 14.7 20 Di-isopropyl ether 20.4 5.00 " 20.0 ND 102 70-130 13.6 20 Ethylbenzene 20.9 5.00 " 20.0 ND 104 70-130 5.91 20 Hexachlorobutadiene 22.2 10.0 " 20.0 ND 111 70-130 6.51 20 Isopropylenzene 18.2 5.00 " 20.0 ND 111 70-130 6.51 20 Isopropylenzene 18.2 5.00 " 20.0 ND 115 70-130 2.79 20 Isopropyltoluene 21.0 5.00 " 20.0 ND 105 70-130 11.7 20 Methylene chloride 21.7 0.641 " 20.0 ND 108 70-130 11.7 20 Methyl tert-butyl ether 21.5 0.381 " 20.0 ND 108 70-130 11.3 20 Naphthalene 23.8 8.00 " 20.0 ND 119 70-130 7.41 20 In-Propylbenzene 21.5 5.00 " 20.0 ND 108 70-130 11.3 20 In-Propylbenzene 21.5 5.00 " 20.0 ND 108 70-130 11.3 20 In-Propylbenzene 21.5 5.00 " 20.0 ND 108 70-130 5.41 20 In-Propylbenzene 20.9 0.422 " 20.0 ND 108 70-130 5.41 20 In-Propylbenzene 20.9 0.422 " 20.0 ND 108 70-130 5.41 20 In-Propylbenzene 20.9 5.00 " 20.0 ND 104 70-130 5.41 20 In-Propylbenzene 20.9 5.00 " 20.0 ND 104 70-130 5.41 20 In-Propylbenzene 20.9 5.00 " 20.0 ND 104 70-130 5.41 20 In-Propylbenzene 20.9 5.00 " 20.0 ND 104 70-130 5.18 20 In-Propylbenzene 20.9 5.00 " 20.0 ND 104 70-130 5.18 20 In-Propylbenzene 20.9 5.00 " 20.0 ND 104 70-130 6.47 20 In-Propylbenzene 21.2 10.0 " 20.0 ND 104 70-130 0.447 20 In-Propylbenzene 21.2 10.0 " 20.0 ND 108 70-130 0.447 20 In-Propylbenzene 21.2 10.0 " 20.0 ND 108 70-130 0.471 20 In-Propylbenzene 21.2 10.0 " 20.0 ND 108 70-130 0.471 20 In-Propylbenzene 21.2 10.0 " 20.0 ND 108 70-130 0.471 20 In-Propylbenzene 21.2 10.0 " 20.0 ND 108 70-130 0.471 20 In-Propylbenzene 21.2 10.0 " 20.0 ND 108 70-130 0.471 20 In-Propylbenzene 21.2 10.0 " 20.0 ND 108 70-130 0.471 20 In-Propylbenzene 21.2 10.0 " 20.0 ND 108 70-130 0.471 20 In-Propylbenzene 21.2 10.0 " 20.0 ND 108 70-130 0.471 20 In-Propylbenzene 21.2 10.0 " 20.0 ND 108 70-130 0.471 20 In-Propylbenzene 21.2 10.0 " 20.0 ND 108 70-130 0.471 20 In-Propylbenzene 21.2 10.0 " 20.0 ND 108 70-130 0.471 20 In-Propylbenzene 21.2 10.0 " 20.0 ND 108 70-130 0.471 20 In	trans-1,2-Dichloroethene	20.8	5.00	"	20.0	ND	104	70-130	11.2	20	
1,3-Dichloropropane 21.3 5.00 " 20.0 ND 106 70-130 5.80 20 2,2-Dichloropropane 20.4 5.00 " 20.0 ND 102 70-130 14.7 20 Di-isopropyl ether 20.4 5.00 " 20.0 ND 102 70-130 13.6 20 Ethylbenzene 20.9 5.00 " 20.0 ND 104 70-130 5.91 20 Hexachlorobutadiene 22.2 10.0 " 20.0 ND 111 70-130 5.91 20 Isopropylbenzene 18.2 5.00 " 20.0 ND 91.0 70-130 2.79 20 Isopropyltoluene 21.0 5.00 " 20.0 ND 105 70-130 4.88 20 Methylene chloride 21.7 0.641 " 20.0 ND 108 70-130 11.7 20 Methyl tert-butyl ether 21.5 0.381 " 20.0 ND 108 70-130 11.3 20	1,2-Dichloropropane	23.9	0.500	**	20.0	ND	120	70-130	6.93	20	
Di-isopropyl ether 20.4 5.00 " 20.0 ND 102 70-130 13.6 20 Ethylbenzene 20.9 5.00 " 20.0 ND 104 70-130 5.91 20 Hexachlorobutadiene 22.2 10.0 " 20.0 ND 111 70-130 6.51 20 Isopropylbenzene 18.2 5.00 " 20.0 ND 91.0 70-130 2.79 20 p-Isopropylbenzene 21.0 5.00 " 20.0 ND 105 70-130 4.88 20 Methylene chloride 21.7 0.641 " 20.0 ND 108 70-130 11.7 20 Methyleter-butyl ether 21.5 0.381 " 20.0 ND 108 70-130 11.3 20 Naphthalene 23.8 8.00 " 20.0 ND 119 70-130 7.41 20 Naphthalene 21.5 5.00 " 20.0 ND 108 70-130 5.41 20 Naphthalene 21.5 5.00 " 20.0 ND 108 70-130 5.41 20 Naphthalene 21.5 5.00 " 20.0 ND 108 70-130 5.41 20 Naphthalene 20.9 0.422 " 20.0 ND 108 70-130 5.41 20 Naphthalene 20.9 0.422 " 20.0 ND 104 70-130 5.41 20 Naphthalene 20.9 5.00 " 20.0 ND 104 70-130 5.41 20 Naphthalene 20.9 5.00 " 20.0 ND 104 70-130 5.41 20 Naphthalene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 Naphthalene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 Naphthalene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 Naphthalene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 Naphthalene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 Naphthalene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 Naphthalene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 Naphthalene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 Naphthalene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 Naphthalene 20.0 ND 104 70-130 8.48 20 Naphthalene 20.0 ND 104 70-130 8.48 20 Naphthalene 20.0 ND 104 70-130 8.48 20 Naphthalene 20.0 ND 104 70-130 8.48 20 Naphthalene 20.0 ND 104 70-130 8.48 20 Naphthalene 20.0 ND 105 70-130 8.48 20 Naphthalene 20.0 ND 106 70-130 8.48 20 Naphthalene 20.0 ND 106 70-130 8.48 20 ND 112 70-130 8.48	1,3-Dichloropropane	21.3	5.00	11	20.0	ND	106	70-130	5.80		
Ethylbenzene 20.9 5.00 " 20.0 ND 104 70-130 5.91 20 Hexachlorobutadiene 22.2 10.0 " 20.0 ND 111 70-130 6.51 20 Isopropylbenzene 18.2 5.00 " 20.0 ND 91.0 70-130 2.79 20 p-Isopropylbenzene 21.0 5.00 " 20.0 ND 105 70-130 4.88 20 Methylene chloride 21.7 0.641 " 20.0 ND 108 70-130 11.7 20 Methyl tert-butyl ether 21.5 0.381 " 20.0 ND 108 70-130 11.3 20 Naphthalene 23.8 8.00 " 20.0 ND 119 70-130 7.41 20 n-Propylbenzene 21.5 5.00 " 20.0 ND 108 70-130 4.76 20 1,1,2,2-Tetrachloroethane 20.9	2,2-Dichloropropane	20.4	5.00	11	20.0	ND	102	70-130	14.7	20	
Ethylbenzene 20.9 5.00 " 20.0 ND 104 70-130 5.91 20 Hexachlorobutadiene 22.2 10.0 " 20.0 ND 111 70-130 6.51 20 Isopropylbenzene 18.2 5.00 " 20.0 ND 91.0 70-130 2.79 20 P-Isopropylbenzene 21.0 5.00 " 20.0 ND 105 70-130 4.88 20 Methylene chloride 21.7 0.641 " 20.0 ND 108 70-130 11.7 20 Methyl tert-butyl ether 21.5 0.381 " 20.0 ND 108 70-130 11.3 20 Naphthalene 23.8 8.00 " 20.0 ND 119 70-130 7.41 20 n-Propylbenzene 21.5 5.00 " 20.0 ND 108 70-130 4.76 20 n-Propylbenzene 21.5 5	Di-isopropyl ether	20.4	5.00	11	20.0	ND	102	70-130	13.6	20	
Sopropylbenzene 18.2 5.00 " 20.0 ND 91.0 70-130 2.79 20	Ethylbenzene	20.9	5.00	"	20.0	ND	104	70-130	5.91		
p-Isopropyltoluene 21.0 5.00 " 20.0 ND 105 70-130 4.88 20 Methylene chloride 21.7 0.641 " 20.0 ND 108 70-130 11.7 20 Methyl tert-butyl ether 21.5 0.381 " 20.0 ND 108 70-130 11.3 20 Naphthalene 23.8 8.00 " 20.0 ND 119 70-130 7.41 20 n-Propylbenzene 21.5 5.00 " 20.0 ND 108 70-130 4.76 20 1.1,2,2-Tetrachloroethane 20.9 0.422 " 20.0 ND 104 70-130 5.41 20 Tetrachloroethene 19.8 0.500 " 20.0 ND 99.0 70-130 5.18 20 Toluene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 1.2,3-Trichlorobenzene 22.4 10.0 " 20.0 ND 112 70-130 8.48 20 1.2,3-Trichlorobenzene 21.2 10.0 " 20.0 ND 112 70-130 0.447 20 1.2,4-Trichlorobenzene 21.2 10.0 " 20.0 ND 106 70-130 0.471 20 1.1,1-Trichloroethane 21.6 5.00 " 20.0 ND 108 70-130 9.20 20 1.1,1-Trichloroethane 22.8 0.347 " 20.0 ND 114 70-130 6.33 20	Hexachlorobutadiene	22.2	10.0	"	20.0	ND	111	70-130	6.51	20	
Methylene chloride 21.7 0.641 " 20.0 ND 108 70-130 11.7 20 Methyl tert-butyl ether 21.5 0.381 " 20.0 ND 108 70-130 11.3 20 Naphthalene 23.8 8.00 " 20.0 ND 119 70-130 7.41 20 n-Propylbenzene 21.5 5.00 " 20.0 ND 108 70-130 4.76 20 1,1,2,2-Tetrachloroethane 20.9 0.422 " 20.0 ND 104 70-130 5.41 20 Tetrachloroethene 19.8 0.500 " 20.0 ND 199.0 70-130 5.18 20 Toluene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 1,2,3-Trichlorobenzene 22.4 10.0 " 20.0 ND 112 70-130 0.447 20 1,2,4-Trichloroethane 21.6 <td>Isopropylbenzene</td> <td>18.2</td> <td>5.00</td> <td>**</td> <td>20.0</td> <td>ND</td> <td>91.0</td> <td>70-130</td> <td>2.79</td> <td>20</td> <td></td>	Isopropylbenzene	18.2	5.00	**	20.0	ND	91.0	70-130	2.79	20	
Methylene chloride 21.7 0.641 " 20.0 ND 108 70-130 11.7 20 Methyl tert-butyl ether 21.5 0.381 " 20.0 ND 108 70-130 11.3 20 Naphthalene 23.8 8.00 " 20.0 ND 119 70-130 7.41 20 n-Propylbenzene 21.5 5.00 " 20.0 ND 108 70-130 4.76 20 1,1,2,2-Tetrachloroethane 20.9 0.422 " 20.0 ND 104 70-130 5.41 20 Tetrachloroethene 19.8 0.500 " 20.0 ND 199.0 70-130 5.18 20 Toluene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 1,2,3-Trichlorobenzene 22.4 10.0 " 20.0 ND 112 70-130 0.447 20 1,2,4-Trichloroethane 21.6 <td>p-Isopropyltoluene</td> <td>21.0</td> <td>5.00</td> <td>Ħ</td> <td>20.0</td> <td>ND</td> <td>105</td> <td>70-130</td> <td>4.88</td> <td></td> <td></td>	p-Isopropyltoluene	21.0	5.00	Ħ	20.0	ND	105	70-130	4.88		
Methyl tert-butyl ether 21.5 0.381 " 20.0 ND 108 70-130 11.3 20 Naphthalene 23.8 8.00 " 20.0 ND 119 70-130 7.41 20 n-Propylbenzene 21.5 5.00 " 20.0 ND 108 70-130 4.76 20 1,1,2,2-Tetrachloroethane 20.9 0.422 " 20.0 ND 104 70-130 5.41 20 Tetrachloroethane 19.8 0.500 " 20.0 ND 99.0 70-130 5.18 20 Toluene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 1,2,3-Trichlorobenzene 22.4 10.0 " 20.0 ND 112 70-130 0.447 20 1,2,4-Trichlorobenzene 21.2 10.0 " 20.0 ND 106 70-130 0.471 20 1,1,1-Trichloroethane 21.6 5.00 " 20.0 ND 114 70-130 6.33 20	Methylene chloride	21.7	0.641	11	20.0	ND	108	70-130	11.7		
Naphthalene 23.8 8.00 " 20.0 ND 119 70-130 7.41 20 n-Propylbenzene 21.5 5.00 " 20.0 ND 108 70-130 4.76 20 1,1,2,2-Tetrachloroethane 20.9 0.422 " 20.0 ND 104 70-130 5.41 20 Tetrachloroethene 19.8 0.500 " 20.0 ND 99.0 70-130 5.18 20 Toluene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 1,2,3-Trichlorobenzene 22.4 10.0 " 20.0 ND 112 70-130 0.447 20 1,2,4-Trichlorobenzene 21.2 10.0 " 20.0 ND 106 70-130 0.471 20 1,1,1-Trichloroethane 21.6 5.00 " 20.0 ND 108 70-130 9.20 20 1,1,1,2-Trichloroethane 22.8 0.347 " 20.0 ND 114 70-130 6.33 20	Methyl tert-butyl ether	21.5	0.381	11	20.0	ND	108	70-130	11.3		
n-Propylbenzene 21.5 5.00 " 20.0 ND 108 70-130 4.76 20 1,1,2,2-Tetrachloroethane 20.9 0.422 " 20.0 ND 104 70-130 5.41 20 Tetrachloroethene 19.8 0.500 " 20.0 ND 99.0 70-130 5.18 20 Toluene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 1,2,3-Trichlorobenzene 22.4 10.0 " 20.0 ND 112 70-130 0.447 20 1,2,4-Trichlorobenzene 21.2 10.0 " 20.0 ND 106 70-130 0.471 20 1,1,1-Trichloroethane 21.6 5.00 " 20.0 ND 108 70-130 9.20 20 1,1,1,2-Trichloroethane 22.8 0.347 " 20.0 ND 114 70-130 6.33 20	Naphthalene	23.8	8.00	11	20.0	ND	119	70-130	7.41		
1,1,2,2-Tetrachloroethane 20.9 0.422 " 20.0 ND 104 70-130 5.41 20 Tetrachloroethene 19.8 0.500 " 20.0 ND 99.0 70-130 5.18 20 Toluene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 1,2,3-Trichlorobenzene 22.4 10.0 " 20.0 ND 112 70-130 0.447 20 1,2,4-Trichlorobenzene 21.2 10.0 " 20.0 ND 106 70-130 0.471 20 1,1,1-Trichloroethane 21.6 5.00 " 20.0 ND 108 70-130 9.20 20 1,1,2-Trichloroethane 22.8 0.347 " 20.0 ND 114 70-130 6.33 20	n-Propylbenzene	21.5	5.00	**	20.0	ND	108	70-130	4.76		
Tetrachloroethene 19.8 0.500 " 20.0 ND 99.0 70-130 5.18 20 Toluene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 1,2,3-Trichlorobenzene 22.4 10.0 " 20.0 ND 112 70-130 0.447 20 1,2,4-Trichlorobenzene 21.2 10.0 " 20.0 ND 106 70-130 0.471 20 1,1,1-Trichloroethane 21.6 5.00 " 20.0 ND 108 70-130 9.20 20 1,1,2-Trichloroethane 22.8 0.347 " 20.0 ND 114 70-130 6.33 20	1,1,2,2-Tetrachloroethane	20.9	0.422	#	20.0		104	70-130	5.41		
Toluene 20.9 5.00 " 20.0 ND 104 70-130 8.48 20 1,2,3-Trichlorobenzene 22.4 10.0 " 20.0 ND 112 70-130 0.447 20 1,2,4-Trichlorobenzene 21.2 10.0 " 20.0 ND 106 70-130 0.471 20 1,1,1-Trichloroethane 21.6 5.00 " 20.0 ND 108 70-130 9.20 20 1,1,2-Trichloroethane 22.8 0.347 " 20.0 ND 114 70-130 6.33 20	Tetrachloroethene	19.8	0.500	11	20.0	ND	99.0	70-130	5.18		1 .
1,2,3-Trichlorobenzene 22.4 10.0 " 20.0 ND 112 70-130 0.447 20 1,2,4-Trichlorobenzene 21.2 10.0 " 20.0 ND 106 70-130 0.471 20 1,1,1-Trichloroethane 21.6 5.00 " 20.0 ND 108 70-130 9.20 20 1,1,2-Trichloroethane 22.8 0.347 " 20.0 ND 114 70-130 6.33 20	Toluene .	20.9		н .	20.0						
1,2,4-Trichlorobenzene 21.2 10.0 20.0 ND 106 70-130 0.471 20 1,1,1-Trichloroethane 21.6 5.00 20.0 ND 108 70-130 9.20 20 1,1,2-Trichloroethane 22.8 0.347 20.0 ND 114 70-130 6.33 20	1,2,3-Trichlorobenzene			н							
1,1,1-Trichloroethane 21.6 5.00 " 20.0 ND 108 70-130 9.20 20 1,1,2-Trichloroethane 22.8 0.347 " 20.0 ND 114 70-130 6.33 20	1,2,4-Trichlorobenzene			#							
1,1,2-Trichloroethane 22.8 0.347 " 20.0 ND 114 70-130 6.33 20	1,1,1-Trichloroethane			11							
	1,1,2-Trichloroethane			11							
	Trichloroethene	22.2	0.500		20.0	ND	111	70-130	4.61	20	

Great Lakes Analytical--Oak Creek

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha, WI 53189 Project: 7-21058

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 01/23/04 16:29

WDNR Volatile Organic Compounds by Method 8260 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010083 - EPA 5030B (P/T)		B. (11.1. 11.1.)								
Matrix Spike Dup (4010083-MSD1)	Sou	rce: W4011	34-01	Prepared:	01/20/04	Analyzed	l: 01/22/04			
Trichlorofluoremethane	20.9	5.00	ug/l	20.0	ND	104	70-130	13.8	20	
1,2,4-Trimethylbenzene	21.7	5.00	"	20.0	ND	108	70-130	4.24	20	
1,3,5-Trimethylbenzene	21.4	5.00	"	20.0	ND	107	70-130	6.76	20	
Vinyl chloride	18.0	0.652	**	20.0	ND	90.0	70-130	8.09	20	
Total Xylenes	65.2	5.00	"	60.0	ND	109	70-130	4.87	20	
Surrogate: Dibromofluoromethane	50.5		"	50.0		101	70-130		, , , , , , , , , , , , , , , , , , , ,	
Surrogate: 1,2-Dichloroethane-d4	48.4		"	50.0		96.8	70-130			
Surrogate: Toluene-d8	51.5	•	"	50.0		103	70-130			
Surrogate: 4-Bromofluorobenzene	45.7		"	50.0		91.4	70-130			

Great Lakes Analytical--Oak Creek

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

Project: 7-21058

205 Wilmont Dr.

Waukesha, WI 53189

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported: 01/23/04 16:29

Notes and Definitions

QC The result for one or more quality control measurements associated with this sample did not meet the laboratory and/or source

method acceptance criteria.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

L This quality control measurement is below the laboratory established limit.

H This quality control measurement is above the laboratory established limit.

Great Lakes Analytical--Buffalo Grove Wisconsin DNR Certification Lab ID: 999917160

Great Lakes Analytical--Buffalo Grove NELAP Primary Accreditation: Illinois #100261

Great Lakes Analytical--Buffalo Grove NELAP Secondary Accreditation: New Jersey #IL001

Great Lakes Analytical--Oak Creek, WI Wisconsin DNR Certification Lab ID: 341000330

Great Lakes Analytical--Oak Creek, WI NELAP Primary Accreditation: Illinois #100307

Note: For analyses that require NELAP accreditation, all analytes, by matrix and method, are accredited following current NELAP standards unless specifically noted by way of a qualifier listed above.

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andrea Stathas, Project Manager

BELLEVIOLET GULLEGE COLLULES

1380 Busch Parkway Buffalo Grove, IL 60089-4505 (847) 808-7766 FAX (847) 808-7772

140 E. Byan Road Oak Creek, Wil 53154 (414) 570-9460 FAX (414) 570-9481

		000	1100										·										
Client: My daysest Engine	C/2/1	VISER	Bill To:		()									TA	AT: (ST	(D.)	4 DA	4 <i>Y</i> :	3 DA	Y 21	DAY 1	DAY <2	24 HRS.
Client: MUDWEST ENGINE Address: 205 W. MUNT DR	7	/	A -1 -1	^	M	M	1							X	YES -	TAT I	s criti	ical			DATE RES	DAY <2 SULTS NEED Z3	19-04-V
Address: (A C) (1) (1) (1) (1)	<u>-:</u>		Addres	s: ()	JENO.	/								Re	eceive	d:	not c	ice	e e	+	Temp. (Jpon Rece	ipt:
[Navius Na, W]								0/-		ш. /	· · ·				ু ambie eliveral	ent		□ ref	frigera				
Réport to: Mila Réhiclet Phone #: (E-mail: Fax #: ()		State & Prograi	n:				Fax	one	ĺ))				eliveral] STD	ole Pa	аска] Othe	<i>ge:</i> er	GLA	<i>very</i> . □ C	Method: lient ☑ S	: Shipped □	Courier 🗌
Project Name: MPL Badgere	,	7 7	7		7	# of I		∋s	/{	2/5	To 1	7 7	7	7	7	7	7	7	SA	4MPLE	- /		
Project #/PO#: 7-21058		ି ଜ /	₽/.	,	/ Pre	eserva	ative	Used.	/§*		~ ~			Ι.	/ /	/ /	/ /	/	/co.	NTRO	L/		
Sampler: Mike Achielat FIELD ID, LOCATION	- K		SAMPLE MATHER		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ \\$\\\$\\\$	[]]]		1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0			//	$^{\prime}/^{\prime}$	'		/,		85.40°				BORATO NUMBI	
1 1711.0-10		- 1	1 . /	\ \	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~/~	/ \\ \\	2 / <i>R</i>	$\frac{1}{1}$	/5 /-	+	$\overline{}$	_	-1		-/	-	, 00	/ 83	ή —			
PID:	- 1/20/L	4 am	tho		14	1		3		1										V	ノイで	119	4-01
2 17(N-10) PID:		am	tho		*			3		\	4										1		-02
3 MW-103	-	am	1/20		1			3	:	7	4												-03
4) inu-7		am	tho		1			3			4												-04
5 17110-9 PID:	1	am	theo		1			3		1													-05
6	 		 	1	11		十	1			\top	_	 										
PID:																							-06
7											İ												
PID:		- 	<u> </u>				-	_					<u> </u>	-						<u> </u>			
PID:	_																Ì						
9			 	++		_	+	-			+		 										
PID:																							
10																							
RELINGUISHED RID	RECEIV	ied la	L	<u> </u>	1/2	0/04	REL	INQUIS	SHED				<u> </u>]]	- R	ECEI'	VED		<u> </u>	L			
RELINQUISHED	RECEIV	ED	10m	un		1.1/_	REI	INQUIS	SHED						- R	ECEI	VED						
		,																					
COMMENTS:						<u>'</u>	-																
														***				T	PAG	iE \	·	OF	-

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha WI, 53189

Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported: 08/25/03 15:04

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-7	W308148-01	Water	08/14/03 13:15	08/15/03 14:34
MW-9	W308148-02	Water	08/14/03 13:40	08/15/03 14:34
MW-102	W308148-03	Water	08/14/03 13:25	08/15/03 14:34
MW-103	W308148-04	Water	08/14/03 13:10	08/15/03 14:34

Great Lakes Analytical--Oak Creek

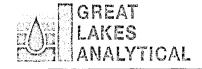
Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/25/03 15:04


WDNR Volatile Organic Compounds by Method 8021 Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-7 (W308148-01) Water	Sampled: 08/14/03 13:15	Received:	08/15/03	14:34					QC
Benzene	ND	0.500	ug/l	1	3080073	08/19/03	08/20/03	EPA 8021B	
∃romobenzene	ND	0.500	Ħ	**	11	"	**	**	
Bromodichloromethane	ND	0.500	tt .	11	"	11	п	"	
p-Butylbenzene	ND	0.500	"	"	**	"		"	
≠ec-Butylbenzene	ND	0.500	**	"	"	"	"	11	
ert-Butylbenzene	ND	0.500	**	n	**	"	Ħ	11	
Carbon tetrachloride	ND	0.500	11	"	"	"	**	"	
Chlorobenzene	ND	0.500	"	"	н	"	•	"	
Chloroethane	ND	0.500	n	11	"	**	n	IT	
Chloroform	ND	0.140	Ħ	Ħ	91	**	**	11	
Chloromethane	9.29	0.600	11	11	**	**	11	"	G13
 2-Chlorotoluene	ND	0.500	**	11	ti	"	11	11	
-Chlorotoluene	ND	0.500	**	11	11	"	"	rr .	
Dibromochloromethane	ND	0.500	. 11	11	"	ıı	H*	"	
1,2-Dibromo-3-chloropropane	ND	0.390	**	**	11	**	"	"	
,2-Dibromoethane	ND	0.380	11	"	n	"	**	"	
,2-Dichlorobenzene	ND	0.500	н	**	11	"	. 11	n	
1,3-Dichlorobenzene	ND	0.500	er .	n	11	H .	•	n	
,4-Dichlorobenzene	ND	0.500	п	n	**	II .	n	"	
Dichlorodifluoromethane	ND	0.500	**	11	"	"	н	"	G1:
,1-Dichloroethane	5.93	0.500	"	11	"	n	n	"	
1,2-Dichloroethane	2.26	0.500	11	11	**	11	**	"	
,1-Dichloroethene	1.87	0.500	"	**	н	11	19	"	
is-1,2-Dichloroethene	0.621	0.500	••	"	11	**	"	"	
trans-1,2-Dichloroethene	ND	0.500	n	**	11	n	"	11	
1,2-Dichloropropane	ND	0.500	п	n	"	n	11	H	
3,3-Dichloropropane	ND	0.500	11	H	"	11	**	n	
2,2-Dichloropropane	ND	0.500	**		ti	**		"	
Di-isopropyl ether	ND	5.00	п	n	11		"	"	
∃thylbenzene	ND	0.500	11	11	"	n	**	ıı	
-lexachlorobutadiene	ND	5.00	19	Ħ	"	n		"	
Isopropylbenzene	ND	0.500	19	"	**	11	n	11	
p-Isopropyltoluene	ND	0.500	"	"	11	"	н	.11	
Methylene chloride	ND	0.530	n	**	**		11	"	
■Aethyl tert-butyl ether	1.53	0.500	н	n	**	**	17	n	
Naphthalene	ND	2.00	17	n	**	11	19	11	
n-Propylbenzene	ND	0.500	,, .	11	**	11	"	11	
1,1,2,2-Tetrachloroethane	ND	0.350		**	"	"	**	"	
Tetrachloroethene	2.38	0.500	IF	**	**		11	"	
Toluene	2.36 ND	0.500	**	"	,,	11	11	H	
,2,3-Trichlorobenzene	ND ND	2.00	,,	11	11	11	11	11	
,2,4-Trichlorobenzene			n	**	11	. "	"	11	
,2,4-Themorobenzene	ND	2.00					**		

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andrea Stathas, Project Manager

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/25/03 15:04

WDNR Volatile Organic Compounds by Method 8021 Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-7 (W308148-01) Water	Sampled: 08/14/03 13:15	Received:	08/15/03	14:34					Q
1,1,1-Trichloroethane	76.6	5.00	ug/l	10	3080073	08/19/03	08/21/03	EPA 8021B	
1,1,2-Trichloroethane	ND	0.160	11	1	11	**	08/20/03	H	
Trichloroethene	72.0	5.00	W	10	**	"	08/21/03	11	
Trichlorofluoromethane	ND	0.500	"	1	11	"	08/20/03	**	
1,2,4-Trimethylbenzene	ND	1.00	11	"	11	**	"	11	
1,3,5-Trimethylbenzene	ND	1.00	"	**	**	#	"	11	
Vinyl chloride	ND	0.170	"	11	**	"	"	"	
Total Xylenes	ND	0.500	n	11	н	"	11	11	
Surrogate: 1-Cl-4-FB (ELCD)		94.3 %	76.3	-154	"	"	"	"	
Surrogate: 1-Cl-4-FB (PID)		100 %	71.1		"	"	"	"	
MW-9 (W308148-02) Water	Sampled: 08/14/03 13:40	Received:	08/15/03	14:34					Q
Benzene	11.4	0.500	ug/l	1	3080073	08/19/03	08/21/03	EPA 8021B	
Bromobenzene	ND	0.500	**	11	"	11	n	"	
Bromodichloromethane	ND	0.500	11	11	H	**	11	"	
-Butylbenzene	27.5	0.500	"	H	II	n		n	
ec-Butylbenzene	19.3	0.500	11	11	"	11	11	11	
tert-Butylbenzene	4.30	0.500	"	11	"	"	. "	n	
Carbon tetrachloride	ND	0.500	"	17	"	**	**	"	
Chlorobenzene	ND	0.500	tt	**	"	n	11	H	
Chloroethane	3.86	0.500	19	11	**	n	n	"	
Chloroform	ND	0.140	11	11	**	"	•	n	
Chloromethane	3.68	0.600	"	11	11	11	11	n	G1
-Chlorotoluene	ND	0.500	**	, 11	"	**	"	11	
4-Chlorotoluene	ND	0.500	"	n	H		11	**	
Dibromochloromethane	ND	0.500	11	11	11	11	"	u	
,2-Dibromo-3-chloropropane	ND	0.390	**	**	"	**	"	n	
,2-Dibromoethane	ND	0.380	**	"	"	19	n	Ħ	
1,2-Dichlorobenzene	ND	0.500	n	"	11	11	11	11	
,3-Dichlorobenzene	ND	0.500	11	**	n	n	"	11	
,4-Dichlorobenzene	ND	0.500	**	11	"	н	17	"	
Dichlorodifluoromethane	ND	0.500	n	Ħ	"	"		n	GI
1,1-Dichloroethane	47.7	0.500	Ħ	n	**	ur .	**	n	
,2-Dichloroethane	ND	0.500	n	"	n	n	"	11	
,1-Dichloroethene	28.7	0.500	11	"	n	n	11	**	
cis-1,2-Dichloroethene	832	25.0	**	50	n	. "	08/22/03	11	
rans-1,2-Dichloroethene	42.5	0.500	n	1	11	11	08/21/03	11	
,2-Dichloropropane	ND	0.500	"	u	"	"	If	**	
,3-Dichloropropane	ND	0.500	**	. 11	н	"	н	H	
2,2-Dichloropropane	ND	0.500	**	"	11	n	11	#	
⊃i-isopropyl ether	ND	5.00	*	"	11	"	11	"	
Ithylbenzene	229	25.0	11	50	11	11	08/22/03	**	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Cendrea Starthan

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/25/03 15:04

WDNR Volatile Organic Compounds by Method 8021 Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-9 (W308148-02) Water	Sampled: 08/14/03 13:40	Received:	08/15/03	14:34			-		QC
Hexachlorobutadiene	ND	5.00	ug/l	1	3080073	08/19/03	08/21/03	EPA 8021B	
I sopropylbenzene	9.71	0.500	"	11	**	н	"	"	
p-Isopropyltoluene	14.0	0.500	"	11	11	11	•	"	
Methylene chloride	ND	0.530	" .	17	17	"	"	n	
Methyl tert-butyl ether	ND	0.500	u	"	**	**	"	H	
Naphthalene	ND	100	**	50	11	n	08/22/03	"	
n-Propylbenzene	15.8	0.500		1	17	"	08/21/03	11	
■,1,2,2-Tetrachloroethane	ND	0.350	n	11	"	n	n	"	
Tetrachloroethene	ND	0.500	**	"	**	**	**	11	
Toluene	99.2	25.0	**	50	**	n	08/22/03	11	
1,2,3-Trichlorobenzene	ND	2.00	11	1	**	"	08/21/03	"	
_,2,4-Trichlorobenzene	ND	2.00	**	n	11	n	11	n	
1,1,1-Trichloroethane	30.4	0.500	**	11	**	"	"	n	
,1,2-Trichloroethane	ND	0.160	11	11	11	"	**		
_Trichloroethene	2050	25.0	11	50	"	**	08/22/03	"	
Trichlorofluoromethane	ND	0.500	**	1	17	**	08/21/03	n	
1,2,4-Trimethylbenzene	201	50.0	"	50	"	11	08/22/03	Ħ	
1,3,5-Trimethylbenzene	55.2	50.0	п	11	"	11	"	n	
Vinyl chloride	272	8.50	11	11	11	**	**	"	
Total Xylenes	835	25.0		rt	**	**	11	11	
Surrogate: 1-Cl-4-FB (ELCD)		86.7 %	76	3-154	"	"	08/21/03	"	
Surrogate: 1-Cl-4-FB (PID)		82.1 %		1-137	"	n	"	n	
MW-102 (W308148-03) Wate	er Sampled: 08/14/03 13:2	25 Receive	ed: 08/15/	03 14:34					QC
Benzene	1.76	0.500	ug/l	1	3080073	08/19/03	08/22/03	EPA 8021B	
Bromobenzene	ND	0.500	11	11	**	H	**	"	
₿ romodichloromethane	ND	0.500	11	11	"	11		"	
H-Butylbenzene	ND	0.500		11	11 .	n	**	n	
sec-Butylbenzene	ND	0.500	11	11	11	11	"	**	
■ert-Butylbenzene	ND	0.500	17	11	11	"	"	"	•
□arbon tetrachloride	ND	0.500	11	17	n	11		**	
Chlorobenzene	ND	0.500	"	17	11	"	. "	n	
Chloroethane	ND	0.500	17	11	11		"	n	
Chloroform	ND	0.140	11	17	11	11	n	11	
thloromethane	ND	0.600	11	"	"	11	08/21/03	11	G13
2-Chlorotoluene	ND	0.500	"	"	11	11	08/22/03		
-Chlorotoluene	ND	0.500	"	17	**	11	11	n	
Dibromochloromethane	ND	0.500	11	**	"	"	11	**	
1,2-Dibromo-3-chloropropane	ND	0.390	**	**	11	11	H	11	
1,2-Dibromoethane	ND	0.380	**	†I	***	"	11	н	
,2-Dichlorobenzene	ND	0.500	11	17	"	"	**	n	
,3-Dichlorobenzene	ND	0.500	11	11		11	,,	tt	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Indua Status

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/25/03 15:04

WDNR Volatile Organic Compounds by Method 8021

Great Lakes Analytical--Oak Creek

Analyte	R Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-102 (W308148-03) Water	Sampled: 08/14/03 13:25	Receive	d: 08/15/	03 14:34					QO
1,4-Dichlorobenzene	ND	0.500	ug/l	1	3080073	08/19/03	08/22/03	EPA 8021B	
Dichlorodifluoromethane	ND	0.500	**	**	11	11	**	n	G1:
1,1-Dichloroethane	1.05	0.500	"	**	"	"	"	"	
1,2-Dichloroethane	0.611	0.500	"	H	"	**	•	11	
,1-Dichloroethene	ND	0.500	**	**	**	"	**	11	
is-1,2-Dichloroethene	14.7	0.500	"	**	**	**		n	
trans-1,2-Dichloroethene	1.16	0.500	"	**	**	**	**	11	
,2-Dichloropropane	ND	0.500	п	Ħ	11	11	**	11	
,3-Dichloropropane	ND	0.500	"	"	"	**	#1	11	
2,2-Dichloropropane	ND	0.500	11	H.	11	**	**	11	
Di-isopropyl ether	ND	5.00	n	11	11	"	"	11	
E thylbenzene	1.87	0.500	**	"	и .	**	"	11	
Hexachlorobutadiene	ND	5.00	**	11	11		11	11	
IsopropyIbenzene	0.877	0.500	n	n .	11	"	Ħ	11	
p-Isopropyltoluene	ND ·	0.500	"	11	II	**	**	11	
Methylene chloride	ND	0.530	н	н	**	11		**	
Methyl tert-butyl ether	1.77	0.500	11	**	11	11	**	n	
Naphthalene	ND	2.00	11	н	11	"	17	n	
■-Propylbenzene	0.559	0.500	17	н	11	"	11	H	•
,1,2,2-Tetrachloroethane	ND	0.350	n	Ħ	n	**	n	n	
Tetrachloroethene	ND	0.500	n	n	"	11	17	11	
Toluene	ND	0.500	IT	u u	**	11	11	11	
,2,3-Trichlorobenzene	ND	2.00	n	n	"	11	11	11	
,2,4-Trichlorobenzene	ND	2.00	11	н	11	11	19	11	
1,1,1-Trichloroethane	3.50	0.500	Ħ	u	**	n	11	11	
1,1,2-Trichloroethane	ND	0.160	**	"	"	11	n	n	
Trichloroethene	16.0	0.500	**	н	**	11	11	**	
Trichlorofluoromethane	ND	0.500	"	11	"	11	n	11	
1,2,4-Trimethylbenzene	ND	1.00	"	"	••	11	tt	n	
1,3,5-Trimethylbenzene	ND	1.00	"	11	**	n	"	11	
Vinyl chloride	ND	0.170	11	11	11	u	**	**	
Total Xylenes	ND	0.500	**	11	**	11	**	n	
Surrogate: 1-Cl-4-FB (ELCD)		101 %	76.3	-154	"	"	"	"	
Surrogate: I-Cl-4-FB (PID)		98.3 %	71.1		"	"	"	"	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andrea Stathas, Project Manager

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

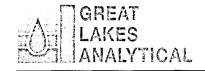
Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/25/03 15:04

WDNR Volatile Organic Compounds by Method 8021


Great Lakes Analytical-Oak Creek

Analuta		Reporting	I I=:4-	Dilasia	Datah	Dronsess	Anolysis	Mathad	Mate
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-103 (W308148-04) Water	Sampled: 08/14/03 13:10	Receive	d: 08/15/	03 14:34			·		Q
Benzene	ND	0.500	ug/l	1	3080073	08/19/03	08/21/03	EPA 8021B	
Bromobenzene	ND	0.500	11	**	"	**	11	"	
Bromodichloromethane	ND	0.500	11	11	11	**	**	11	
n-Butylbenzene	ND	0.500	17	**	"	"	"	THE STATE OF THE S	
ec-Butylbenzene	ND	0.500	11	**	n	17	"	11	
■ert-Butylbenzene	ND	0.500	"	и .	H	"	**	Ħ	
Carbon tetrachloride	ND	0.500	"	**	n	ij	"	"	
Chlorobenzene	ND	0.500	11	**	"	"	**	11	
Chloroethane	ND	0.500	**	11	11	"	"	n	
thloroform	ND	0.140	11	n	"	17	"	n	
Chloromethane	ND	0.600	11	H	"	11	"	n	G1:
≛- Chlorotoluene	ND	0.500	11	11	n	**	**	11	
Chlorotoluene	ND	0.500	11	11	11	**	11	11	
Dibromochloromethane	ND	0.500	**	11	"	tr	n	, "	
1,2-Dibromo-3-chloropropane	ND	0.390	Ħ	**	11	n	n	11	
,2-Dibromoethane	ND	0.380	n	H	"	п	11	n	
,2-Dichlorobenzene	ND	0.500	" .		n	**	11	H	
1,3-Dichlorobenzene	ND	0.500	**	11	n	**	n	n	
1,4-Dichlorobenzene	ND	0.500	**	11	Ħ	**	"	n	
Dichlorodifluoromethane	ND	0.500	**	17	**	11	"	11 .	G1
1,1-Dichloroethane	ND	0.500	,,	11	n	"	H	**	
1,2-Dichloroethane	ND	0.500	**	11	n	"	11	n	
,1-Dichloroethene	ND	0.500	11	11	11	11	11	n	
is-1,2-Dichloroethene	ND	0.500		**	n	11	11	11	
trans-1,2-Dichloroethene	ND	0.500	11	**	"	"	"	n	
1,2-Dichloropropane	ND	0.500	**	"	"	"	n	**	
,3-Dichloropropane	ND	0.500	19	11	**	**	**	u	
2,2-Dichloropropane	ND	0.500	11	11	н	11	n	"	
Di-isopropyl ether	ND	5.00	11	11	n n	"	**	"	
Ethylbenzene	ND	0.500	**	11	n	n	Ħ	•	
Hexachlorobutadiene	ND	5.00	**	17	11	11	11	**	
rsopropylbenzene	ND	0.500	11	**	**	"	**	11	
p-Isopropyltoluene	ND	0.500	**	n	н			**	
Aethylene chloride	ND	0.530	**	11	11	"	**	"	
-1ethyl tert-butyl ether	ND	0.500	"	11	U	11	"	**	
Naphthalene	ND	2.00		"	н	"		11	
-Propylbenzene	ND	0.500	**	11	n	11		11	
,1,2,2-Tetrachloroethane	ND	0.350	11	**	11	π	**	11	
Tetrachloroethene	ND	0.500	11	"	"	11	Ħ	11	
Toluene	ND	0.500	**	11		11	11	11	
,2,3-Trichlorobenzene	ND	2.00	19	17	n		17	11	
,2,4-Trichlorobenzene	ND	2.00	11		IT	n	"		
,2, 7- 111011010001120110	עוו	∠.00							

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ceroliea Stathas

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/25/03 15:04

WDNR Volatile Organic Compounds by Method 8021

Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-103 (W308148-04) Water	Sampled: 08/14/03 13:10	Receive	d: 08/15/	03 14:34					QC
1,1,1-Trichloroethane	ND	0.500	ug/l	1	3080073	08/19/03	08/21/03	EPA 8021B	
,1,2-Trichloroethane	ND	0.160	11	11	tr	n	"	n	
Trichloroethene	ND	0.500	**	**	"	n	**	11	
Trichlorofluoromethane	ND	0.500	tt	n	**	"	11	"	
,2,4-Trimethylbenzene	ND	1.00	17	**	"	11	"	"	
,3,5-Trimethylbenzene	ND	1.00	**	**	11	n	"	n	
Vinyl chloride	ND	0.170	n	**	н	11	11	"	
Total Xylenes	ND	0.500	11	11	n	"	08/22/03	"	
urrogate: 1-Cl-4-FB (ELCD)		95.0 %	76.3	3-154	"	"	08/21/03	"	
Surrogate: 1-Cl-4-FB (PID)		93.8 %	71.1	'-137	"	"	"	"	

Great Lakes Analytical--Oak Creek

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/25/03 15:04

WDNR Volatile Organic Compounds by Method 8021 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3080073 - EPA 5030B (P/T)										
Blank (3080073-BLK1)				Prepared	& Analyze	ed: 08/19/0	03			
Benzene	ND	0.500	ug/l	<u> </u>		*				
Bromobenzene	ND	0.500	"							
Bromodichloromethane	ND	0.500	n							
n-Butylbenzene	ND	0.500	"							
sec-Butylbenzene	ND	0.500	н							
ert-Butylbenzene	ND	0.500	н							
Carbon tetrachloride	ND	0.500	11							
Chlorobenzene	ND	0.500	11							
∓hloroethane	ND	0.500	11							
Chloroform	ND	0.140	**							
Chloromethane	ND	0.600	"							
2-Chlorotoluene	ND	0.500	**							
-Chlorotoluene	ND	0.500								
Dibromochloromethane	ND	0.500	**							
_,2-Dibromo-3-chloropropane	ND	0.390	**							
,2-Dibromoethane	ND	0.380	"							
1,2-Dichlorobenzene	ND	0.500	11							
,3-Dichlorobenzene	ND	0.500	11							
,4-Dichlorobenzene	ND	0.500	**							
Dichlorodifluoromethane	ND	0.500	**							
, 1-Dichloroethane	ND	0.500	**							
7,2-Dichloroethane	ND	0.500	n							
1,1-Dichloroethene	ND	0.500	**							
=is-1,2-Dichloroethene	ND	0.500	н							
rans-1,2-Dichloroethene	ND	0.500	n							
,2-Dichloropropane	ND	0.500	н							
,3-Dichloropropane	ND	0.500	11							
,2-Dichloropropane	ND	0.500	19							
Di-isopropyl ether	ND	5.00	11							
Ethylbenzene	ND	0.500	"							
lexachlorobutadiene	ND	5.00	**							
rsopropylbenzene	ND	0.500	**							
p-Isopropyltoluene	ND	0.500	**							
1ethylene chloride	ND	0.530	11							

Great Lakes Analytical--Oak Creek

Andrea Stathas, Project Manager

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/25/03 15:04

WDNR Volatile Organic Compounds by Method 8021 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3080073 - EPA 5030B (P/T)										
Blank (3080073-BLK1)				Prepared	& Analyze	ed: 08/19/	03			
Methyl tert-butyl ether	ND	0.500	ug/l							
Naphthalene	ND	2.00	ti							
-Propylbenzene	ND	0.500	н							
1,1,2,2-Tetrachloroethane	ND	0.350	11							
Tetrachloroethene	ND	0.500	10							
C oluene	ND	0.500	11							
,2,3-Trichlorobenzene	ND	2.00	11							
1,2,4-Trichlorobenzene	ND	2.00	11							
_,1,1-Trichloroethane	ND	0.500	11							
,1,2-Trichloroethane	ND	0.160	11							
Trichloroethene	ND	0.500	91							
richlorofluoromethane	ND	0.500	**							
,2,4-Trimethylbenzene	ND	1.00	*1							
1,3,5-Trimethylbenzene	ND	1.00	#1							
Jinyl chloride	ND	0.170	**							
Total Xylenes	ND	0.500	n							
Surrogate: 1-Cl-4-FB (ELCD)	10.3		"	10.0		103	76.3-154		, ,	
urrogate: 1-Cl-4-FB (PID)	10.1		"	10.0		101	71.1-137			
LCS (3080073-BS1)				Prepared	& Analyze	ed: 08/19/	03			
Benzene	10.0	0.500	ug/l	10.0	<u>-</u>	100	85-115	-	***************************************	
Bromobenzene	10.8	0.500	n	10.0		108	85-115			,
3romodichloromethane	10.4	0.500	n	10.0		104	85-115			
n-Butylbenzene	11.3	0.500	н	10.0		113	85-115			
ec-Butylbenzene	10.4	0.500	н	10.0		104	85-115			
ert-Butylbenzene	10.9	0.500	н	10.0		109	85-115			
Carbon tetrachloride	10.0	0.500	17	10.0		100	85-115			
Chlorobenzene	9.96	0.500	н	10.0		99.6	85-115			
Chloroethane	11.3	0.500	н	10.0		113	85-115			
Chloroform	9.56	0.140	n	10.0		95.6	85-115			
Chloromethane	20.0	0.600	"	10.0		200	85-115			Н
-Chlorotoluene	10.4	0.500	•	10.0		104	85-115			
4-Chlorotoluene	11.0	0.500	Ħ	10.0		110	85-115			
Pibromochloromethane	11.0	0.500	"	10.0		110	85-115			
,2-Dibromo-3-chloropropane	10.0	0.390	"	10.0		100	85-115			

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Cendrea Stathas

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/25/03 15:04

WDNR Volatile Organic Compounds by Method 8021 - Quality Control Great Lakes Analytical--Oak Creek

-Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3080073 - EPA 5030B (P/T)										
LCS (3080073-BS1)				Prepared of	& Analyze	d: 08/19/0)3			
,2-Dibromoethane	10.3	0.380	ug/l	10.0		103	85-115			
,2-Dichlorobenzene	10.5	0.500	**	10.0		105	85-115			
,3-Dichlorobenzene	10.4	0.500	n	10.0		104	85-115			
,4-Dichlorobenzene	10.8	0.500	19	10.0		108	85-115			
Dichlorodifluoromethane	8.18	0.500	11	10.0		81.8	85-115			L
,1-Dichloroethane	10.2	0.500	17	10.0		102	85-115			
_,2-Dichloroethane	10.1	0.500	**	10.0		101	85-115			
1,1-Dichloroethene	9.06	0.500	n	10.0		90.6	85-115			
is-1,2-Dichloroethene	10.8	0.500	н	10.0		108	85-115			
=ans-1,2-Dichloroethene	9.94	0.500	u	10.0		99.4	85-115			
1,2-Dichloropropane	10.2	0.500	11	10.0		102	85-115			
,3-Dichloropropane	10.6	0.500	**	10.0		106	85-115			
,2-Dichloropropane	10.2	0.500	19	10.0		102	85-115			
Di-isopropyl ether	10.6	5.00	**	10.0		106	85-115			
Ethylbenzene	9.60	0.500	11	10.0		96.0	85-115			
∃exachlorobutadiene	10.7	5.00	"	10.0		107	85-115			
Isopropylbenzene	10.6	0.500	11	10.0		106	85-115			
-Isopropyltoluene	11.4	0.500	"	10.0		114	85-115			
-fethylene chloride	10.5	0.530	**	10.0		105	85-115			
Methyl tert-butyl ether	10.2	0.500	"	10.0		102	85-115			
Naphthalene	10.8	2.00	"	10.0		108	85-115			
-Propylbenzene	10.8	0.500	"	10.0		108	85-115			
1,1,2,2-Tetrachloroethane	9.44	0.350	"	10.0		94.4	85-115			
Tetrachloroethene	10.3	0.500	**	10.0		103	85-115			
Toluene	9.96	0.500	**	10.0		99.6	85-115			
,2,3-Trichlorobenzene	11.0	2.00	n	10.0		110	85-115			
,2,4-Trichlorobenzene	11.4	2.00	н	10.0		114	85-115			
,1,1-Trichloroethane	9.95	0.500	n	10.0		99.5	85-115			
1,1,2-Trichloroethane	10.5	0.160	"	10.0		105	85-115			
Trichloroethene	10.1	0.500	**	10.0		101	85-115			
richlorofluoromethane	11.0	0.500	n ·	10.0		110	85-115			
,2,4-Trimethylbenzene	11.4	1.00	19	10.0		114	85-115			
1,3,5-Trimethylbenzene	11.1	1.00	11	10.0		111	85-115			
inyl chloride	10.7	0.170	**	10.0		107	85-115			

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Cendra Stathas

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/25/03 15:04

WDNR Volatile Organic Compounds by Method 8021 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3080073 - EPA 5030B (P/T)										
LCS (3080073-BS1)				Prepared	& Analyze	ed: 08/19/	03			
Total Xylenes	31.7	0.500	ug/l	30.0		106	85-115			
Surrogate: 1-Cl-4-FB (ELCD)	9.71		"	10.0		97.1	76.3-154			
Surrogate: 1-Cl-4-FB (PID)	9.97		"	10.0		99.7	71.1-137			
Matrix Spike (3080073-MS1)	So	urce: W3080	76-05	Prepared:	08/19/03	Analyzed	1: 08/20/03			
Benzene	10.7	0.500	ug/l	10.0	ND	107	62.7-132			
Bromobenzene	10.0	0.500	11	10.0	ND	100	65.3-122			
Bromodichloromethane	9.95	0.500	"	10.0	ND	99.5	53.7-162			
n-Butylbenzene	10.2	0.500	17	10.0	ND	102	58.1-126			
ec-Butylbenzene	10.3	0.500	tt	10.0	ND	103	59.5-129			
tert-Butylbenzene	10.5	0.500	11	10.0	ND	105	61.2-127			
Carbon tetrachloride	9.55	0.500	17	10.0	ND	95.5	62.1-140			
Chlorobenzene	9.58	0.500	**	10.0	ND	95.8	59.5-122			
thloroethane	11.6	0.500	17	10.0	ND	116	34.9-152			
Chloroform	9.41	0.140	**	10.0	ND	94.1	61.5-135			
□hloromethane	6.35	0.600	17	10.0	ND	63.5	10-164			
-Chlorotoluene	10.2	0.500	**	10.0	ND	102	57.8-141			
4-Chlorotoluene	10.4	0.500	"	10.0	ND	104	53.4-134			
⊃ibromochloromethane	10.8	0.500	**	10.0	ND	108	63.3-145			
,2-Dibromo-3-chloropropane	11.1	0.390	11	10.0	ND	111	54.9-149			
1,2-Dibromoethane	10.8	0.380	11	10.0	ND	108	57.8-157			
,2-Dichlorobenzene	10.4	0.500	"	10.0	ND	104	58.8-131			
,3-Dichlorobenzene	9.91	0.500	"	10.0	ND	99.1	61.9-127			
1,4-Dichlorobenzene	10.2	0.500	"	10.0	ND	102	63.6-125			
Dichlorodifluoromethane	6.82	0.500	н	10.0	ND	68.2	26.5-124			
,1-Dichloroethane	9.71	0.500	ıı	10.0	ND	97.1	58.5-143			
1,2-Dichloroethane	9.94	0.500	"	10.0	ND	99.4	57.3-157			
,1-Dichloroethene	9.19	0.500	**	10.0	ND	91.9	63.5-128			
is-1,2-Dichloroethene	11.4	0.500	"	10.0	ND	114	64.6-130			
trans-1,2-Dichloroethene	9.95	0.500	H.	10.0	ND	99.5	63.6-127			
L2-Dichloropropane	9.78	0.500	Ħ	10.0	ND	97.8	60.5-147			
_3-Dichloropropane	10.6	0.500	11	10.0	ND	106	64.8-147			
2,2-Dichloropropane	9.37	0.500	**	10.0	ND	93.7	42.2-181			
Pi-isopropyl ether	10.9	5.00	"	10.0	ND	109	64.5-131			
thylbenzene	9.42	0.500	n	10.0	ND	94.2	54.8-122			

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Cendra Stathas

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/25/03 15:04

WDNR Volatile Organic Compounds by Method 8021 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3080073 - EPA 5030B (P/T)	1100011	2311111			7100011	701420				110100
Matrix Spike (3080073-MS1)	Sou	rce: W3080	76-05	Prepared:	08/19/03	Analyzeo	l: 08/20/03			
Hexachlorobutadiene	9.42	5.00	ug/l	10.0	ND	94.2	57.3-125			
sopropylbenzene	10.0	0.500	"	10.0	ND	100	60.6-125			
o-Isopropyltoluene	9.93	0.500	"	10.0	ND	99.3	56.2-122			
Methylene chloride	10.3	0.530	"	10.0	ND	103	57.7-144			
Methyl tert-butyl ether	10.2	0.500	**	10.0	ND	102	61.4-134			
Naphthalene	11.7	2.00	′ н	10.0	ND	117	42.2-144			
-Propylbenzene	10.3	0.500	11	10.0	ND	103	61.2-131			
1,1,2,2-Tetrachloroethane	9.79	0.350	**	10.0	ND	97.9	48.8-162			
Tetrachloroethene	9.92	0.500	н	10.0	ND	99.2	62.3-123			
Coluene	10.9	0.500	11	10.0	ND	109	68.6-126			
,2,3-Trichlorobenzene	10.4	2.00	11	10.0	ND	104	53.4-124			
,2,4-Trichlorobenzene	9.42	2.00	**	10.0	ND	94.2	52.9-139			
,1,1-Trichloroethane	9.89	0.500	н	10.0	ND	98.9	65.5-141			
,1,2-Trichloroethane	10.4	0.160	11	10.0	ND	104	66.9-142			
frichloroethene	9.96	0.500	n	10.0	ND	99.6	67.2-132			
richlorofluoromethane	10.4	0.500	17	10.0	ND	104	54.7-145			
,2,4-Trimethylbenzene	10.1	1.00	11	10.0	ND	101	52.6-129			
,3,5-Trimethylbenzene	10.3	1.00	11	10.0	ND	103	60.5-125			
inyl chloride	7.61	0.170	11	10.0	ND	76.1	59.3-132			
Total Xylenes	30.8	0.500	"	30.0	ND	103	62.1-124			
urrogate: 1-Cl-4-FB (ELCD)	9.81		"	10.0		98.1	76.3-154			
Surrogate: 1-Cl-4-FB (PID)	9.96		"	10.0		99.6	71.1-137			
Matrix Spike Dup (3080073-MSD1)	Sou	rce: W3080	76-05	Prepared:	08/19/03	Analyzed	1: 08/20/03			
Benzene	10.6	0.500	ug/l	10.0	ND	106	62.7-132	0.939	28.1	
Bromobenzene	10.3	0.500	n	10.0	ND	103	65.3-122	2.96	31	
Bromodichloromethane	10.3	0.500	"	10.0	ND	103	53.7-162	3.46	34.8	
-Butylbenzene	10.2	0.500	"	10.0	ND	102	58.1-126	0.00	32.2	
ec-Butylbenzene	10.4	0.500	"	10.0	ND	104	59.5-129	0.966	29.9	
ert-Butylbenzene	10.7	0.500	n	10.0	ND	107	61.2-127	1.89	29.5	
Carbon tetrachloride	9.80	0.500	11	10.0	ND	98.0	62.1-140	2.58	29	
hlorobenzene	9.73	0.500	"	10.0	ND	97.3	59.5-122	1.55	26.9	
hloroethane	12.1	0.500	"	10.0	ND	121	34.9-152	4.22	39	
`hloroform	9.81	0.140	**	10.0	ND	98.1	61.5-135	4.16	28.1	
-hloromethane	19.2	0.600	11	10.0	ND	192	10-164	101	68.9	НН

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

andrea Stathas

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/25/03 15:04

WDNR Volatile Organic Compounds by Method 8021 - Quality Control Great Lakes Analytical--Oak Creek

-Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3080073 - EPA 5030B (P/T)										
Matrix Spike Dup (3080073-MSD1)	So	Source: W308076-05			08/19/03	Analyzed				
Z-Chlorotoluene	10.6	0.500	ug/l	10.0	ND	106	57.8-141	3.85	43.7	
4-Chlorotoluene	10.6	0.500	"	10.0	ND	106	53.4-134	1.90	40.5	
Dibromochloromethane	10.6	0.500	**	10.0	ND	106	63.3-145	1.87	26.2	
1,2-Dibromo-3-chloropropane	11.5	0.390	"	10.0	ND	115	54.9-149	3.54	36.1	
1,2-Dibromoethane	10.6	0.380	**	10.0	ND	106	57.8-157	1.87	27.2	
,2-Dichlorobenzene	11.1	0.500	**	10.0	ND	111	58.8-131	6.51	30.1	
,3-Dichlorobenzene	10.1	0.500	**	10.0	ND	101	61.9-127	1.90	41.9	
1,4-Dichlorobenzene	10.3	0.500	"	10.0	ND	103	63.6-125	0.976	28.6	
⊃ichlorodifluoromethane	7.89	0.500	"	10.0	ND	78.9	26.5-124	14.5	61.2	
,1-Dichloroethane	10.3	0.500	"	10.0	ND	103	58.5-143	5.90	29.8	
1,2-Dichloroethane	10.2	0.500	п	10.0	ND	102	57.3-157	2.58	32.2	
,1-Dichloroethene	9.09	0.500	"	10.0	ND	90.9	63.5-128	1.09	35	
=is-1,2-Dichloroethene	10.6	0.500	"	10.0	ND	106	64.6-130	7.27	28.4	
trans-1,2-Dichloroethene	10.1	0.500	u	10.0	ND	101	63.6-127	1.50	33	
,2-Dichloropropane	10.2	0.500	n	10.0	ND	102	60.5-147	4.20	28	
,3-Dichloropropane	10.5	0.500	"	10.0	ND	105	64.8-147	0.948	25.5	
2,2-Dichloropropane	9.24	0.500	"	10.0	ND	92.4	42.2-181	1.40	39.3	
⊃i-isopropyl ether	11.3	5.00	**	10.0	ND	113	64.5-131	3.60	30.9	
∃thylbenzene	9.50	0.500	**	10.0	ND	95.0	54.8-122	0.846	26.1	
Hexachlorobutadiene	9.44	5.00	**	10.0	ND	94.4	57.3-125	0.212	31.3	
sopropylbenzene	10.3	0.500	II .	10.0	ND	103	60.6-125	2.96	29.8	
-Isopropyltoluene	9.83	0.500	**	10.0	ND	98.3	56.2-122	1.01	29.2	
Methylene chloride	10.4	0.530	T	10.0	ND	104	57.7-144	0.966	41.6	
Methyl tert-butyl ether	10.7	0.500	**	10.0	ND	107	61.4-134	4.78	34.8	
Vaphthalene	10.6	2.00	**	10.0	ND	106	42.2-144	9.87	41.3	
n-Propylbenzene	10.5	0.500	н	10.0	ND	105	61.2-131	1.92	26.1	
1,1,2,2-Tetrachloroethane	10.3	0.350	н	10.0	ND	103	48.8-162	5.08	34.7	
Cetrachloroethene	11.4	0.500	"	10.0	ND	114	62.3-123	13.9	30.4	
Toluene	10.3	0.500	n	10.0	ND	103	68.6-126	5.66	29.2	
1,2,3-Trichlorobenzene	9.41	2.00	"	10.0	ND	94.1	53.4-124	9.99	34.7	
,2,4-Trichlorobenzene	9.33	2.00	**	10.0	ND	93.3	52.9-139	0.960	31.8	
,1,1-Trichloroethane	9.83	0.500	11	10.0	ND	98.3	65.5-141	0.609	27.9	
1,1,2-Trichloroethane	10.6	0.160	11	10.0	ND	106	66.9-142	1.90	29	
_richloroethene	10.7	0.500	11	10.0	ND	107	67.2-132	7.16	36.7	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Cerolia Station

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058 Project Manager: Mike Rehfeldt

Reported: 08/25/03 15:04

WDNR Volatile Organic Compounds by Method 8021 - Quality Control Great Lakes Analytical--Oak Creek

	Reporting			Spike Source %REC				RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Sour	rce: W3080	76-05	Prepared:	08/19/03	Analyzed	1: 08/20/03			
10.7	0.500	ug/l	10.0	ND	107	54.7-145	2.84	34.6	
9.56	1.00	**	10.0	ND	95.6	52.6-129	5.49	34.8	
9.90	1.00	"	10.0	ND	99.0	60.5-125	3.96	28.3	
8.24	0.170	11	10.0	ND	82.4	59.3-132	7.95	28.2	
30.7	0.500	**	30.0	ND	102	62.1-124	0.325	27.8	
9.38		<i>"</i>	10.0		93.8	76.3-154			
9.85		"	10.0		98.5	71.1-137			
	Sour 10.7 9.56 9.90 8.24 30.7 9.38	Source: W3080 10.7 0.500 9.56 1.00 9.90 1.00 8.24 0.170 30.7 0.500 9.38	Source: W308076-05 10.7	Source: W308076-05 Prepared: 10.7 0.500 ug/l 10.0 9.56 1.00 " 10.0 9.90 1.00 " 10.0 8.24 0.170 " 10.0 30.7 0.500 " 30.0 9.38 " 10.0	Source: W308076-05 Prepared: 08/19/03 10.7 0.500 ug/1 10.0 ND 9.56 1.00 " 10.0 ND 9.90 1.00 " 10.0 ND 8.24 0.170 " 10.0 ND 30.7 0.500 " 30.0 ND 9.38 " 10.0	Source: W308076-05 Prepared: 08/19/03 Analyzed 10.7 0.500 ug/l 10.0 ND 107 9.56 1.00 " 10.0 ND 95.6 9.90 1.00 " 10.0 ND 99.0 8.24 0.170 " 10.0 ND 82.4 30.7 0.500 " 30.0 ND 102 9.38 " 10.0 93.8	Source: W308076-05 Prepared: 08/19/03 Analyzed: 08/20/03 10.7 0.500 ug/l 10.0 ND 107 54.7-145 9.56 1.00 " 10.0 ND 95.6 52.6-129 9.90 1.00 " 10.0 ND 99.0 60.5-125 8.24 0.170 " 10.0 ND 82.4 59.3-132 30.7 0.500 " 30.0 ND 102 62.1-124 9.38 " 10.0 93.8 76.3-154	Source: W308076-05 Prepared: 08/19/03 Analyzed: 08/20/03 10.7 0.500 ug/l 10.0 ND 107 54.7-145 2.84 9.56 1.00 " 10.0 ND 95.6 52.6-129 5.49 9.90 1.00 " 10.0 ND 99.0 60.5-125 3.96 8.24 0.170 " 10.0 ND 82.4 59.3-132 7.95 30.7 0.500 " 30.0 ND 102 62.1-124 0.325 9.38 " 10.0 93.8 76.3-154	Source: W308076-05 Prepared: 08/19/03 Analyzed: 08/20/03 10.7 0.500 ug/l 10.0 ND 107 54.7-145 2.84 34.6 9.56 1.00 " 10.0 ND 95.6 52.6-129 5.49 34.8 9.90 1.00 " 10.0 ND 99.0 60.5-125 3.96 28.3 8.24 0.170 " 10.0 ND 82.4 59.3-132 7.95 28.2 30.7 0.500 " 30.0 ND 102 62.1-124 0.325 27.8 9.38 " 10.0 93.8 76.3-154

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

andrea Stathas, Project Manager

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

Project: 7-21058

205 Wilmont Dr. Waukesha WI, 53189 Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 08/25/03 15:04

Notes and Definitions

G13 The recovery of this analyte in the check standard is below the method specified acceptance criteria.

QC The result for one or more quality control measurements associated with this sample did not meet the laboratory and/or source

method acceptance criteria.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

L This quality control measurement is below the laboratory established limit.

H This quality control measurement is above the laboratory established limit.

Great Lakes Analytical--Buffalo Grove Wisconsin DNR Certification Lab ID: 999917160

Great Lakes Analytical--Buffalo Grove NELAP Primary Accreditation: Illinois #100261

Great Lakes Analytical--Buffalo Grove NELAP Secondary Accreditation: New Jersey #IL001

Great Lakes Analytical--Oak Creek, WI Wisconsin DNR Certification Lab ID: 341000330

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

regien, dogreperte nurse

1380 Busch Parkway Buffalo Grove, IL 60089-4505 (847) 808-7766 FAX (847) 808-7772

140 E. Ryan Read Oak Creek, WI 53154 (414) 570-9460 FAX (414) 570-9461

	··· · · · · · · · · · · · · · · · · ·			/_/	
Client: M.E.S,	Bill To:	(Chan			AY 3 DAY 2 DAY 1 DAY < 24 H7\\$
Address: 205 WILMONT PR.	Address:)	YES - TAT is crit	
				Received:	Qice Temp. Up∮n Receipt:
Report to: 1 0 Phone #: (262) 5215 7312	State &		Phone #: ()	☐ ambient	ge: Delivery Method:
Report to: MINE RENKENDT Phone #: (262) 521-2112 E-mail: Fax #: (262) 521-212	Program:	MI/MS	Phone #: () Fax #: ()	☐ STD ☐ Oth	er GLA Client Shipped Courier
Project Name: 7-21058 Formalize Namy	′ /	# of Bott	tles	/ / / / / /	/ SAMPLE / CONTROL
Project #/PO#: 7-2:050 / 8 /	B/4 /	/ Preservative			CONTROL
Sampler: PINO POHFELD, /44/4				/ /	LABORATORY
Project #/PO#: 7-2:050 Sampler: Powerson FIELD ID, LOCATION	LECTE SAMPLE TO SAMPLE			' / / / / / /	/&\$/\&\$/ ID NUMBER
1 MW-7 nuce 1:15	NATION		tles Survey Surv		
		71-1-1			W308148-01
2 MW- 9 1240		3	3 X		
PID:		3	3 X		3
4 MW-103	1/	3	3 X		
PID: [1.10]	14-				
PID:					
6					
PID:					
7					
PID:					
8					
9 PID:					
PID:					
10					
	11/				
RELINGUISHED STOREGETVED	ALAKIT	8/1903 RE	LINQUISHED	8/5/3 RECEIVED	08/15/0
RELINQUISHED RECEIVED	7400		LINQUISHED	RECEIVED	MANUA 14/2
L L	<u> </u>				
COMMENTS:					1
					PAGE OF

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha WI, 53189

Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported:

07/10/02 18:45

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-102	W206261-01	Water	06/27/02 15:10	06/28/02 14:33
MW-103	W206261-02	Water	06/27/02 15:20	06/28/02 14:33
MW-7	W206261-03	Water	06/27/02 15:40	06/28/02 14:33

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha WI, 53189

Project: 7-21058

Project Number: 7-21058 Project Manager: Mike Rehfeldt

Reported: 07/10/02 18:45

WDNR Volatile Organic Compounds by Method 8021

Great Lakes Analytical--Oak Creek

i	Bounding										
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
MW-102 (W206261-01) Water	Sampled: 06/27/02 15:10	Received	d: 06/28/0	2 14:33					QC		
Benzene	2.38	0.500	ug/l	1	2070003	07/01/02	07/03/02	EPA 8021B			
Bromobenzene	ND	0.500	"	"	**	"	"	11			
Bromodichloromethane	ND	0.500	"	н	11	"	"	11			
n-Butylbenzene	ND	0.500	"	**	**	**	n	"			
sec-Butylbenzene	ND	0.500	,,	tt.	**	"	**	"			
tert-Butylbenzene	ND	0.500	"	n	"	"	"	**			
Carbon tetrachloride	ND	0.500	*	н	"	"	**	**			
Chlorobenzene	ND	0.500	"	tt	**	"	n	11			
Chloroethane	ND	0.500	**	**	"	"	"				
Chloroform	ND	0.140	"	II.	**	"	rt	**			
Chloromethane	· ND	0.600	"	**	"	**	11	"			
2-Chlorotoluene	ND	0.500	**	**	"	"	"	u .			
4-Chlorotoluene	ND	0.500	**	u	**	"	"	11			
Dibromochloromethane	ND	0.500	**	н	**	"	"	"			
1,2-Dibromo-3-chloropropane	ND	0.390	"	н	**	**	"	**			
1,2-Dibromoethane	ND	0.380	tr	U	**	**	•	11			
1,2-Dichlorobenzene	ND	0.500	"	"	**	11	**	11			
1,3-Dichlorobenzene	ND	0.500	11	u	**	11	n	11			
1,4-Dichlorobenzene	ND	0.500	"	**	11	11	**	Ħ			
Dichlorodifluoromethane	ND	0.500	11	**	11	11	Ħ	n			
1,1-Dichloroethane	1.02	0.500	**	**	11	11	н	u .			
1,2-Dichloroethane	0.672	0.500	Ħ	**	11	17	**	11			
1,1-Dichloroethene	ND	0.500	**	**	**	n	11	**			
cis-1,2-Dichloroethene	11.9	0.500	н	11	**	n.	**	**			
trans-1,2-Dichloroethene	1.28	0.500	н	11	**	11	u u	11			
1,2-Dichloropropane	ND	0.500	II .	11	11	H .	**	**			
1,3-Dichloropropane	ND	0.500	и	**	Ħ	U	**	11			
2,2-Dichloropropane	ND	0.500	**	**	н	H	**	11			
Di-isopropyl ether	ND	5.00	n	11	"	n	11	11			
Ethylbenzene	8.79	0.500	н	11	"	H	n	н			
Hexachlorobutadiene	ND	5.00	н	**	**	tr.	11	H :			
Isopropylbenzene	2.40	0.500		**	"	H	**	11			
p-Isopropyltoluene	17.4	0.500	н	11	"	H	**	Ħ			
Methylene chloride	ND	0.530	*1	**	**	"	H	19			
Methyl tert-butyl ether	2.55	0.500	н	**	**	"	11	Ħ			
Naphthalene	ND	2.00	**	Ħ	**	"	11	"			
n-Propylbenzene	1.99	0.500	**	11	"	"	н	H .			
1,1,2,2-Tetrachloroethane	ND	0.350	н	#	**	"	н	**			
Tetrachloroethene	ND	0.500	**	**	**	"	н				
Toluene	ND	0.500	н	**	**	"	11	"			
1,2,3-Trichlorobenzene	ND	2.00	**	"	11	11	11				

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

Project: 7-21058

205 Wilmont Dr. Waukesha WI, 53189 Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 07/10/02 18:45

WDNR Volatile Organic Compounds by Method 8021 Great Lakes Analytical—Oak Creek

	Great	Lakes A	Analyti	icalOa	k Creek	<u> </u>		<u></u>	
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-102 (W206261-01) Water	Sampled: 06/27/02 15:10	Receive	d: 06/28/	02 14:33					QC
1,2,4-Trichlorobenzene	ND	2.00	ug/l	1	2070003	07/01/02	07/03/02	EPA 8021B	
1,1,1-Trichloroethane	1.88	0.500	**	"	н	n	"	**	
1,1,2-Trichloroethane	ND	0.160	11	u	"	"	n	11	
Trichloroethene	24.2	0.500	**	n	"	"	**	If	
Trichlorofluoromethane	ND	0.500	**	11	**	"	**	Ħ	
1,2,4-Trimethylbenzene	ND	1.00	**	n	"	"	**	**	
1,3,5-Trimethylbenzene	ND	1.00	"	"	H	11	**	**	
Vinyl chloride	ND	0.170	**	"	H	11		II .	
Total Xylenes	1.37	0.500	**		н	n	"	11	
Surrogate: 1-Cl-4-FB (ELCD)		105 %	80-	-120	"	"	"	n	
Surrogate: 1-Cl-4-FB (PID)		87.6%		-120	"	"	"	"	
MW-103 (W206261-02) Water	Sampled: 06/27/02 15:20	Receive	d: 06/28/	02 14:33					QC
Benzene	ND	0.500	ug/l	1	2070003	07/01/02	07/03/02	EPA 8021B	
Bromobenzene	ND	0.500	11	**	u	"			
Bromodichloromethane	ND	0.500	H	"	0	"		u	
n-Butylbenzene	ND	0.500	11	**	**		**	n	
sec-Butylbenzene	ND	0.500	**	11	"	"	"		
tert-Butylbenzene	ND	0.500	"	**	**	11		11	
Carbon tetrachloride	ND	0.500	"			11	11	n	
Chlorobenzene	ND	0.500	11	**	H	"	н	n	
Chloroethane	ND	0.500	**	**	**	**	**	11	
Chloroform	ND	0.140		**	н	**	11	н	
Chloromethane	ND	0.600	11		*1	ıı	11	**	
2-Chlorotoluene	ND	0.500	11	**	**	"	11	11	
4-Chlorotoluene	ND	0.500	11		**	"	"	11	
Dibromochloromethane	ND	0.500	11	11	"	н	11	11	
1,2-Dibromo-3-chloropropane	ND	0.390		11		"	11	H	
1,2-Dibromoethane	ND	0.380	**	11	"	n	ŧr	"	
1,2-Dichlorobenzene	ND	0.500	**		**	"		11	
1,3-Dichlorobenzene	ND	0.500	11	"	**	11		11	
1,4-Dichlorobenzene	ND	0.500	н	**	"	**	н	**	
Dichlorodifluoromethane	ND	0.500	**	н	н	"	Ħ	**	
1,1-Dichloroethane	ND	0.500	"	"	**	**	**		
1,2-Dichloroethane	ND	0.500	11	**	**	Ħ	**	**	
1,1-Dichloroethene	ND	0.500	**	**	"	11	11	**	
cis-1,2-Dichloroethene	ND	0.500	11	17	"	Ħ	**		
trans-1,2-Dichloroethene	ND	0.500	11	**	"	"	n	"	
1,2-Dichloropropane	ND	0.500	**	11	н	**	**	**	
1,3-Dichloropropane	ND	0.500	**		н	**	•	**	
0.0 D'-11	ND	0.500	.,	10	**		,,		

Great Lakes Analytical--Oak Creek

2,2-Dichloropropane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

andrea Stathas

ND

0.500

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported: 07/10/02 18:45

WDNR Volatile Organic Compounds by Method 8021

Great Lakes Analytical--Oak Creek

Analyte	I Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-103 (W206261-02) Water	Sampled: 06/27/02 15:20	Received	d: 06/28/	02 14:33					QC
Di-isopropyl ether	ND	5.00	ug/l	1	2070003	07/01/02	07/03/02	EPA 8021B	
Ethylbenzene	ND	0.500	н	n	"	"	11	"	
Hexachlorobutadiene	ND	5.00	n	Ħ	"	u.	"	"	
Isopropylbenzene	ND	0.500	Ħ	"	**	11	"	н	
p-Isopropyltoluene	ND	0.500	n	"	H	"		**	
Methylene chloride	ND	0.530	11	"	**	11	"	n	
Methyl tert-butyl ether	ND	0.500	"	"	11	11	"	n	
Naphthalene	ND	2.00	"	"	11	Ħ	**	"	
n-Propylbenzene	ND	0.500	"	**	**	н		11	
1,1,2,2-Tetrachloroethane	ND	0.350	11	"	11	*1	**	11	
Tetrachloroethene	ND	0.500	**	н	**	"	**	11	
Toluene	ND	0.500	**	**	"	"	n	"	
1,2,3-Trichlorobenzene	ND	2.00	**	11	"	"	**	n	
1,2,4-Trichlorobenzene	ND	2.00	н	11	"	"	**	n i	
1,1,1-Trichloroethane	ND	0.500	н	11	"	**	**	11	
1,1,2-Trichloroethane	ND	0.160	**	"	"	"	n	II .	
Trichloroethene	ND	0.500	**	11	"	"	H	H	
Trichlorofluoromethane	ND	0.500	н	н	"	"	n	и .	
1,2,4-Trimethylbenzene	ND	1.00	**	11	Ħ	**	n	н	
1,3,5-Trimethylbenzene	ND	1.00	**	n		"	Ħ	n	
Vinyl chloride	ND	0.170	**	**	"	**		H	
Total Xylenes	ND	0.500	11	Ħ	"	Ħ			
Surrogate: 1-Cl-4-FB (ELCD)		107 %	80	-120	"	"	"	"	
Surrogate: 1-Cl-4-FB (PID)		96.8 %	80	-120	"	"	"	"	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported: 07/10/02 18:45

WDNR Volatile Organic Compounds by Method 8021 Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-7 (W206261-03) Water	Sampled: 06/27/02 15:40	Received:	06/28/02	14:33					QC
Benzene	ND	0.500	ug/l	1	2070003	07/01/02	07/03/02	EPA 8021B	
Bromobenzene	ND	0.500	er	"	**	"	**	H	
Bromodichloromethane	ND	0.500	Ħ	"	"	'n	**	Ħ	
n-Butylbenzene	ND	0.500	11	"	11	11	н	n	
sec-Butylbenzene	ND	0.500	Ħ	n	**	**	11	11	
tert-Butylbenzene	ND	0.500	11	n	11	"	n	11	
Carbon tetrachloride	ND	0.500	11	11	"	"	rı	11	
Chlorobenzene	ND	0.500	**	11	"	**	**		
Chloroethane	ND	0.500		"	"	"	Ħ	· ·	
Chloroform	ND	0.140	**	"	"	**	**	"	
Chloromethane	ND	0.600	11	"	н	tt	11	**	
2-Chlorotoluene	ND	0.500	н	H	11	Ħ	•	"	
4-Chlorotoluene	ND	0.500	**	n	н	п	"	**	
Dibromochloromethane	ND	0.500	#	n	10	11	"	**	
1,2-Dibromo-3-chloropropane	ND	0.390	11	H	n	Ħ		**	
1,2-Dibromoethane	ND	0.380	11	н	11	н	**	n	
1,2-Dichlorobenzene	ND	0.500	**	n	11	11	**	n	
1,3-Dichlorobenzene	ND	0.500		19	11	11		11	
1,4-Dichlorobenzene	ND	0.500	"	Ħ	н	11		н	
Dichlorodifluoromethane	ND	0.500	"	н	19	tt	11	и	
1.1-Dichloroethane	ND	0.500	"	н	н	11		u.	
1,2-Dichloroethane	3.88	0.500	**	н	н	rr	**		
1.1-Dichloroethene	1.71	0.500	**	11	H	н	11	•	
cis-1,2-Dichloroethene	0.538	0.500	11	**	H	**	n	"	
trans-1,2-Dichloroethene	ND	0.500	"	II	н	. 11	n	"	
1,2-Dichloropropane	ND	0.500		11	н	11	11	•	
1,3-Dichloropropane	ND	0.500		11	11	#	89	"	
2,2-Dichloropropane	ND	0.500	,,	н	н	11	*1	11	
Di-isopropyl ether	ND ND	5.00	"	11	11	, н	н	"	
Ethylbenzene	ND	0.500		11	19	п	Ħ	•	
Hexachlorobutadiene	ND ND	5.00	н	11	11	11	Ħ		
Isopropylbenzene	ND ND	0.500	н	11	19	11	н	11	
p-Isopropyltoluene	ND ND	0.500	"	11	19	ti	н		
			н		11	11	**	"	
Methylene chloride	ND	0.530 0.500	"	11	11	11	н	11	
Methyl tert-butyl ether	0.993			"	11	#	н		
Naphthalene	ND	2.00	,,	"		 H	 It	"	
n-Propylbenzene	ND	0.500	"	"	"	11	"	"	
1,1,2,2-Tetrachloroethane	ND	0.350	" "	"	"	11	"		
Tetrachloroethene	1.64	0.500	"	"	" "	"	и	"	
Toluene	ND	0.500		"	"	"	n H	"	
1,2,3-Trichlorobenzene	ND	2.00	**	"	11	**	"	11	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ceroliea Stathan

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha WI, 53189

Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported: 07/10/02 18:45

WDNR Volatile Organic Compounds by Method 8021

Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-7 (W206261-03) Water	Sampled: 06/27/02 15:40	Received:	06/28/02	14:33					QC
1,2,4-Trichlorobenzene	ND	2.00	ug/l	1	2070003	07/01/02	07/03/02	EPA 8021B	
1,1,1-Trichloroethane	73.8	5.00	**	10	11	**	07/05/02	II .	
1,1,2-Trichloroethane	ND	0.160	"	1	н	Ħ	07/03/02	H	
Trichloroethene	83.4	5.00	11	10	n	**	07/05/02	II .	
Trichlorofluoromethane	ND	0.500	*	1		"	07/03/02		
1,2,4-Trimethylbenzene	ND	1.00	н	"	**	n	n	**	
1,3,5-Trimethylbenzene	ND	1.00	u.	"	**	"	"	11	
Vinyl chloride	ND	0.170	**	"	***	11	"	11	
Total Xylenes	ND	0.500	"	11	**	**	•	11	
Surrogate: 1-Cl-4-FB (ELCD)		99.1 %	80-	120	"	"	"	"	
Surrogate: 1-Cl-4-FB (PID)		98.1 %	80-	120	"	"	"	n	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Project: 7-21058

Project Number: 7-21058

Reported: 07/10/02 18:45

Waukesha WI, 53189

Project Manager: Mike Rehfeldt

WDNR Volatile Organic Compounds by Method 8021 - Quality Control Great Lakes Analytical--Oak Creek

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (2070003-BLK1)				Prepared & Analyzed: 07/01/02
Benzene	ND	0.500	ug/l	
Bromobenzene	ND	0.500	"	
Bromodichloromethane	ND	0.500	"	
n-Butylbenzene	ND	0.500	"	
sec-Butylbenzene	ND	0.500	"	
tert-Butylbenzene	ND	0.500	**	
Carbon tetrachloride	ND	0.500	n	
Chlorobenzene	ND	0.500	н	
Chloroethane	ND	0.500	н .	
Chloroform	ND	0.140	n	
Chloromethane	ND	0.600	n	
2-Chlorotoluene	ND	0.500	"	
1-Chlorotoluene	ND	0.500	и	
Dibromochloromethane	ND	0.500	Ħ	
,2-Dibromo-3-chloropropane	ND	0.390	"	
,2-Dibromoethane	ND	0.380	11	
,2-Dichlorobenzene	ND	0.500	11	
,3-Dichlorobenzene	ND	0.500	"	
1,4-Dichlorobenzene	ND	0.500	**	
Dichlorodifluoromethane	ND	0.500	. "	
,1-Dichloroethane	ND	0.500	11	
,2-Dichloroethane	ND	0.500	11	
,1-Dichloroethene	ND	0.500	11	
cis-1,2-Dichloroethene	ND	0.500	**	
rans-1,2-Dichloroethene	ND	0.500	11	
,2-Dichloropropane	ND	0.500	11	
,3-Dichloropropane	ND	0.500	"	
2,2-Dichloropropane	ND	0.500	11	
Di-isopropyl ether	ND	5.00	н	
Ethylbenzene	ND	0.500	н	
Hexachlorobutadiene	ND	5.00	"	
sopropylbenzene	ND	0.500	"	
-Isopropyltoluene	ND	0.500	"	
Methylene chloride	ND	0.530	"	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Cerdia Status

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058
Project Manager: Mike Rehfeldt

Reported:

07/10/02 18:45

WDNR Volatile Organic Compounds by Method 8021 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2070003 - EPA 5030B (P/T)										
Blank (2070003-BLK1)				Prepared	& Analyze	ed: 07/01/0)2			
Methyl tert-butyl ether	ND	0.500	ug/l							
Naphthalene	ND	2.00	н							
n-Propylbenzene	ND	0.500	"							
1,1,2,2-Tetrachloroethane	ND	0.350	H							
Tetrachloroethene	ND	0.500	Ħ							
Toluene	ND	0.500	Ħ							
1,2,3-Trichlorobenzene	ND	2.00	11							
1,2,4-Trichlorobenzene	ND	2.00	"							
1,1,1-Trichloroethane	ND	0.500	**							
1,1,2-Trichloroethane	ND	0.160	"							
Trichloroethene	ND	0.500	**							
Trichlorofluoromethane	ND	0.500	**							
1,2,4-Trimethylbenzene	ND	1.00	**							•
1,3,5-Trimethylbenzene	ND	1.00	H							
Vinyl chloride	ND	0.170	n .							
Total Xylenes	ND	0.500	n							
Surrogate: 1-Cl-4-FB (ELCD)	11.9	· · · · · · · · · · · · · · · · · · ·	"	10.0		119	80-120			
Surrogate: 1-Cl-4-FB (PID)	9.94		"	10.0		99.4	80-120			
LCS (2070003-BS1)				Prepared	& Analyze	ed: 07/01/0	02			
Benzene	10.9	0.500	ug/l	10.0		109	85-115			
Bromobenzene	10.1	0.500	"	10.0		101	85-115			
Bromodichloromethane	9.50	0.500	"	10.0		95.0	85-115			
n-Butylbenzene	10.3	0.500	"	10.0		103	85-115			
sec-Butylbenzene	11.1	0.500	"	10.0		111	85-115			
tert-Butylbenzene	10.1	0.500	"	10.0		101	85-115			
Carbon tetrachloride	10.5	0.500	"	10.0		105	85-115			
Chlorobenzene	10.9	0.500	"	10.0		109	85-115			
Chloroethane	10.9	0.500	**	10.0		109	85-115			
Chloroform	10.3	0.140	"	10.0		103	85-115			
Chloromethane	8.96	0.600	11	10.0		89.6	85-115			
2-Chlorotoluene	11.1	0.500	"	10.0		111	85-115			
4-Chlorotoluene	10.2	0.500	11	10.0		102	85-115			
Dibromochloromethane	9.85	0.500	11	10.0		98.5	85-115			

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Undue Startha

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported: 07/10/02 18:45

WDNR Volatile Organic Compounds by Method 8021 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2070003 - EPA 5030B (P/T)				-				<u></u>		
LCS (2070003-BS1)				Prepared	& Analyze	ed: 07/01/0)2			
1,2-Dibromo-3-chloropropane	8.78	0.390	ug/l	10.0		87.8	85-115			
1,2-Dibromoethane	9.41	0.380	"	10.0		94.1	85-115			
1,2-Dichlorobenzene	10.4	0.500	**	10.0		104	85-115			
1,3-Dichlorobenzene	10.7	0.500	"	10.0		107	85-115			
1,4-Dichlorobenzene	10.3	0.500	"	10.0		103	85-115			
Dichlorodifluoromethane	8.94	0.500	0	10.0		89.4	85-115			
1,1-Dichloroethane	10.4	0.500	"	10.0		104	85-115			
1,2-Dichloroethane	11.5	0.500	**	10.0		115	85-115			
1,1-Dichloroethene	10.2	0.500	4	10.0		102	85-115			
cis-1,2-Dichloroethene	10.5	0.500	**	10.0		105	85-115			
trans-1,2-Dichloroethene	11.5	0.500	H	10.0		115	85-115			
1,2-Dichloropropane	12.2	0.500	н	10.0		122	85-115			Н
1,3-Dichloropropane	9.75	0.500	**	10.0		97.5	85-115			
2,2-Dichloropropane	9.74	0.500	н	10.0		97.4	85-115			
Di-isopropyl ether	10.8	5.00	11	10.0		108	85-115			
Ethylbenzene	9.98	0.500	11	10.0		99.8	85-115			
Hexachlorobutadiene	12.1	5.00	#	10.0		121	85-115			Н
Sopropylbenzene	11.1	0.500	н	10.0		111	85-115			
p-Isopropyltoluene	9.38	0.500	**	10.0		93.8	85-115			
Methylene chloride	9.79	0.530	**	10.0		97.9	85-115		•	
Methyl tert-butyl ether	11.5	0.500	**	10.0		115	85-115			
Naphthalene	11.5	2.00	**	10.0		115	85-115			
n-Propylbenzene	10.9	0.500	**	10.0		109	85-115			
1,1,2,2-Tetrachloroethane	10.4	0.350	н	10.0		104	85-115			
Tetrachloroethene	10.1	0.500	Ħ	10.0		101	85-115			
Foluene	10.7	0.500	Ħ	10.0		107	85-115			
1,2,3-Trichlorobenzene	9.91	2.00	н	10.0		99.1	85-115			
1,2,4-Trichlorobenzene	10.7	2.00		10.0		107	85-115			
1,1,1-Trichloroethane	10.3	0.500	**	10.0		103	85-115			
1,1,2-Trichloroethane	9.47	0.160	"	10.0		94.7	85-115			
Trichloroethene	10.5	0.500	"	10.0		105	85-115			
Trichlorofluoromethane	10.4	0.500	**	10.0		104	85-115			
1,2,4-Trimethylbenzene	10.2	1.00	11	10.0		102	85-115			
,3,5-Trimethylbenzene	10.8	1.00	11	10.0		108	85-115			

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Cendra Stathas

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha WI, 53189

Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported:

07/10/02 18:45

WDNR Volatile Organic Compounds by Method 8021 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2070003 - EPA 5030B (P/T)										
LCS (2070003-BS1)				Prepared	& Analyze	ed: 07/01/0	02			
Vinyl chloride	8.85	0.170	ug/l	10.0		88.5	85-115			
Total Xylenes	33.4	0.500	"	30.0		111	85-115			
Surrogate: 1-Cl-4-FB (ELCD)	10.5	····	"	10.0		105	80-120			
Surrogate: 1-Cl-4-FB (PID)	10.3		"	10.0		103	80-120			
Matrix Spike (2070003-MS1)	So	urce: W2062	49-01	Prepared	& Analyze	ed: 07/01/0	02			
Benzene	11.3	0.500	ug/l	10.0	0.610	107	75-125		•	
Bromobenzene	9.70	0.500	**	10.0	ND	97.0	75-125			
Bromodichloromethane	8.75	0.500	Ħ	10.0	ND	87.5	75-125			
n-Butylbenzene	9.38	0.500	11	10.0	ND	93.8	75-125			
sec-Butylbenzene	10.3	0.500	"	10.0	ND	103	75-125		•	
tert-Butylbenzene	9.22	0.500	**	10.0	ND	92.2	75-125			
Carbon tetrachloride	9.65	0.500	**	10.0	ND	96.5	75-125			
Chlorobenzene	9.84	0.500	11	10.0	ND	98.4	75-125			
Chloroethane	9.09	0.500	n	10.0	ND	90.9	75-125			
Chloroform	9.36	0.140	n	10.0	ND	93.6	75-125			
Chloromethane	2.88	0.600	"	10.0	ND	28.8	75-125			L
2-Chlorotoluene	10.2	0.500	"	10.0	ND	102	75-125			
4-Chlorotoluene	9.54	0.500	**	10.0	ND	95.4	75-125			
Dibromochloromethane	10.1	0.500	**	10.0	ND	101	75-125			
1,2-Dibromo-3-chloropropane	10.9	0.390	**	10.0	ND	109	75-125			
1,2-Dibromoethane	10.4	0.380	**	10.0	ND	104	75-125			
1,2-Dichlorobenzene	14.1	0.500	**	10.0	ND	141	75-125		•	Н
1,3-Dichlorobenzene	9.94	0.500	"	10.0	ND	99.4	75-125			
1,4-Dichlorobenzene	9.52	0.500	"	10.0	ND	95.2	75-125			
Dichlorodifluoromethane	8.59	0.500	"	10.0	ND	85.9	75-125			
1,1-Dichloroethane	9.54	0.500	11	10.0	ND	95.4	75-125			
1,2-Dichloroethane	11.1	0.500	ш	10.0	ND	111	75-125			
1,1-Dichloroethene	10.6	0.500	,,	10.0	ND	106	75-125			
cis-1,2-Dichloroethene	12.2	0.500	**	10.0	ND	122	75-125			
trans-1,2-Dichloroethene	11.1	0.500	"	10.0	ND	111	75-125			
1,2-Dichloropropane	11.4	0.500	"	10.0	ND	114	75-125			
1,3-Dichloropropane	9.72	0.500	#	10.0	ND	97.2	75-125			
2,2-Dichloropropane	8.48	0.500	11	10.0	ND	84.8	75-125			

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha WI, 53189

Project: 7-21058

Project Number: 7-21058 Project Manager: Mike Rehfeldt

Reported: 07/10/02 18:45

WDNR Volatile Organic Compounds by Method 8021 - Quality Control Great Lakes Analytical--Oak Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2070003 - EPA 5030B (P/T)										
Matrix Spike (2070003-MS1)	So	urce: W2062	49-01	Prepared	& Analyze	ed: 07/01/0	02			
Di-isopropyl ether	12.0	5.00	ug/l	10.0	ND	120	75-125			
Ethylbenzene	9.20	0.500	11	10.0	ND	92.0	75-125			
Hexachlorobutadiene	9.06	5.00	**	10.0	ND	90.6	75-125			
Isopropylbenzene	10.2	0.500	11	10.0	ND	102	75-125			
p-Isopropyltoluene	8.67	0.500	11	10.0	ND	86.7	75-125			
Methylene chloride	8.86	0.530	H	10.0	ND	88.6	75-125			
Methyl tert-butyl ether	14.9	0.500	n	10.0	4.04	109	75-125			
Naphthalene	10.3	2.00	H	10.0	ND	103	75-125			
n-Propylbenzene	9.97	0.500	н	10.0	ND	99.7	75-125			
1,1,2,2-Tetrachloroethane	11.3	0.350	н	10.0	ND	113	75-125			
Tetrachloroethene	8.93	0.500	ıı	10.0	ND	89.3	75-125			
Toluene	9.92	0.500	"	10.0	ND	99.2	75-125			
1,2,3-Trichlorobenzene	8.72	2.00	**	10.0	ND	87.2	75-125			
1,2,4-Trichlorobenzene	10.2	2.00	11	10.0	ND	102	75-125			
1,1,1-Trichloroethane	9.47	0.500	н	10.0	ND	94.7	75-125			
1,1,2-Trichloroethane	9.61	0.160	n	10.0	ND	96.1	75-125			
Trichloroethene	11.3	0.500	"	10.0	ND	113	75-125			
Trichlorofluoromethane	9.62	0.500	**	10.0	ND	96.2	75-125			
1,2,4-Trimethylbenzene	9.24	1.00	H	10.0	ND	92.4	75-125			
1,3,5-Trimethylbenzene	10.0	1.00		10.0	ND	100	75-125			
Vinyl chloride	9.01	0.170	**	10.0	ND	90.1	75-125			
Total Xylenes	30.1	0.500	"	30.0	ND	100	75-125			
Surrogate: 1-Cl-4-FB (ELCD)	10.6		"	10.0		106	80-120			
Surrogate: 1-Cl-4-FB (PID)	9.91		"	10.0		99.1	80-120			
Matrix Spike Dup (2070003-MSD1)	Son	urce: W2062	49-01	Prepared	& Analyze	ed: 07/01/0)2			
Benzene	11.6	0.500	ug/l	10.0	0.610	110	75-125	2.62	20	
Bromobenzene	9.20	0.500	11	10.0	ND	92.0	75-125	5.29	20	
Bromodichloromethane	8.47	0.500	**	10.0	ND	84.7	75-125	3.25	20	
n-Butylbenzene	9.02	0.500	н	10.0	ND	90.2	75-125	3.91	20	
sec-Butylbenzene	9.77	0.500	Ħ	10.0	ND	97.7	75-125	5.28	20	
tert-Butylbenzene	8.64	0.500	11	10.0	ND	86.4	75-125	6.49	20	
Carbon tetrachloride	9.77	0.500	"	10.0	ND	97.7	75-125	1.24	20	
Chlorobenzene	9.63	0.500	11	10.0	ND	96.3	75-125	2.16	20 ·	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported: 07/10/02 18:45

WDNR Volatile Organic Compounds by Method 8021 - Quality Control Great Lakes Analytical--Oak Creek

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2070003 - EPA 5030B (P/T)										
Matrix Spike Dup (2070003-MSD1)	Sou	rce: W2062	49-01	Prepared	& Analyze	ed: 07/01/0	02			
Chloroethane	8.04	0.500	ug/l	10.0	ND	80.4	75-125	12.3	20	
Chloroform	9.34	0.140	**	10.0	ND	93.4	75-125	0.214	20	
Chloromethane	3.74	0.600	"	10.0	ND	37.4	75-125	26.0	20	LH
2-Chlorotoluene	9.82	0.500	11	10.0	ND	98.2	75-125	3.80	20	
4-Chlorotoluene	9.06	0.500	Ħ	10.0	ND	90.6	75-125	5.16	20	
Dibromochloromethane	9.57	0.500	**	10.0	ND	95.7	75-125	5.39	20	
1,2-Dibromo-3-chloropropane	12.5	0.390	"	10.0	ND	125	75-125	13.7	20	
1,2-Dibromoethane	10.0	0.380	11	10.0	ND	100	75-125	3.92	20	
1,2-Dichlorobenzene	13.1	0.500	11	10.0	ND	131	75-125	7.35	20	H
1,3-Dichlorobenzene	9.50	0.500	н	10.0	ND	95.0	75-125	4.53	. 20	
1,4-Dichlorobenzene	9.04	0.500	"	10.0	ND	90.4	75-125	5.17	20 -	
Dichlorodifluoromethane	8.78	0.500	"	10.0	ND	87.8	75-125	2.19	20	
1,1-Dichloroethane	9.57	0.500	"	10.0	ND	95.7	75-125	0.314	20	
1,2-Dichloroethane	11.1	0.500	11	10.0	ND	111	75-125	0.00	20	
1,1-Dichloroethene	9.99	0.500	**	10.0	ND	99.9	75-125	5.93	20	
cis-1,2-Dichloroethene	11.8	0.500	**	10.0	ND	118	75-125	3.33	20	
trans-1,2-Dichloroethene	10.5	0.500	U	10.0	ND	105	75-125	5.56	20	
1,2-Dichloropropane	10.9	0.500	**	10.0	ND	109	75-125	4.48	20	
1,3-Dichloropropane	9.64	0.500		10.0	ND	96.4	75-125	0.826	20	
2,2-Dichloropropane	8.20	0.500	11	10.0	ND	82.0	75-125	3.36	20	
Di-isopropyl ether	11.7	5.00	Ħ	10.0	ND	117	75-125	2.53	20	
Ethylbenzene	8.91	0.500	"	10.0	ND	89.1	75-125	3.20	20	
Hexachlorobutadiene	8.69	5.00	•	10.0	ND	86.9	75-125	4.17	20	
Isopropylbenzene	9.70	0.500	11	10.0	ND	97.0	75-125	5.03	20	
p-Isopropyltoluene	8.13	0.500	11	10.0	ND	81.3	75-125	6.43	20	
Methylene chloride	9.11	0.530	**	10.0	ND	91.1	75-125	2.78	20	
Methyl tert-butyl ether	14.6	0.500	n	10.0	4.04	106	75-125	2.03	20	
Naphthalene	10.3	2.00	Ħ	10.0	ND	103	75-125	0.00	20	
n-Propylbenzene	9.47	0.500	**	10.0	ND	94.7	75-125	5.14	20	
1,1,2,2-Tetrachloroethane	11.5	0.350	H	10.0	ND	115	75-125	1.75	20	
Tetrachloroethene	9.24	0.500	11	10.0	ND	92.4	75-125	3.41	20	
Toluene	10.4	0.500	"	10.0	ND	104	75-125	4.72	20	
1,2,3-Trichlorobenzene	8.78	2.00	**	10.0	ND	87.8	75-125	0.686	20	
1,2,4-Trichlorobenzene	9.55	2.00	**	10.0	ND	95.5	75-125	6.58	20	

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andrea Stathas, Project Manager

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr. Waukesha WI, 53189 Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported:

07/10/02 18:45

WDNR Volatile Organic Compounds by Method 8021 - Quality Control Great Lakes Analytical--Oak Creek

		Reporting			Source		%REC		×	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2070003 - EPA 5030B (P/T)										
Matrix Spike Dup (2070003-MSD1)	Sour	rce: W2062	49-01	Prepared	& Analyz	ed: 07/01/	02			
1,1,1-Trichloroethane	9.37	0.500	ug/I	10.0	ND	93.7	75-125	1.06	20	
1,1,2-Trichloroethane	9.50	0.160	"	10.0	ND	95.0	75-125	1.15	20	
Trichloroethene	9.69	0.500	**	10.0	ND	96.9	75-125	15.3	20	
Trichlorofluoromethane	9.89	0.500	**	10.0	ND	98.9	75-125	2.77	20	
1,2,4-Trimethylbenzene	8.71	1.00	11	10.0	ND	87.1	75-125	5.91	20	
1,3,5-Trimethylbenzene	9.42	1.00	11	10.0	ND	94.2	75-125	5.97	20	
Vinyl chloride	8.58	0.170	11	10.0	ND	85.8	75-125	4.89	20	
Total Xylenes	29.0	0.500	н	30.0	ND	96.7	75-125	3.72	20	
Surrogate: 1-Cl-4-FB (ELCD)	10.5		"	10.0		105	80-120		·· ·· ·-	
Surrogate: 1-Cl-4-FB (PID)	9.80		"	10.0		98.0	80-120			

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (414) 570-9460 FAX (414) 570-9461

Midwest Engineering Services

205 Wilmont Dr.

Waukesha WI, 53189

Project: 7-21058

Project Number: 7-21058

Project Manager: Mike Rehfeldt

Reported:

07/10/02 18:45

Notes and Definitions

QC The result for one or more quality control measurements associated with this sample did not meet the laboratory and/or source

method acceptance criteria.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

L This quality control measurement is below the laboratory established limit.

H This quality control measurement is above the laboratory established limit.

Great Lakes Analytical--Oak Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

138u = acch i ununay Buffalo Grove, IL 60089-4505 (847) 808-7766 FAX (847) 808-7772 Oak Creek, WE 50154 (414) 570/4400 FAX (414) £30/2481

		<i></i>			$\overline{}$	
Client: M.E.S,	Bill To:	CLIEN	15)		TAT: 5 DAY 4 DAY	/ 3 DAY 2 DAY 1 DAY < 24 HRS.
Address: 205 WILMANT DRIVE	Address:			L	DATE RESULTS NE	EDED:
WAURESHA, WIT				7.	EMPERATURE UPO	ON RECEIPT: UNICO
Report to: Phone #: 164 521-2125 Fax #: 641 521-247	State & (プラ	LUST	Phone #: () Fax #: ()	L	Deliverable Package	e Needed:
Report to: K=1470 Fax #: 661 521-247	Program:		[Fax #: ()	, , , , , , , , , , , , , , , , , , , 	□ STD □ III A	□IIIB □Other
Project: 7- 21 058	/	/ # of Bottl Preservative		/ / / /		/ / SAMPLE / / CONTROL /
Sampler: MILE RENFELDT PO/Quote #: FIELD ID, LOCATION	2016 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7777		JANJALYSK	7 / / /	
PO/Quote #:	SAMPLE TO SAMPLE					
,FIELD ID, LOCATION / ෮ゟ゚ / ヾ゚゙゙		[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			/ / / / / / / / / / / / / / / / / / / /	SE/SE/ ID NUMBER
1 MW-102 PID: 610	Maried !	3	2/			
21/10/1/03					 	12256261-01
PID:		3	3/		~	-02
3 MW-72 aux	Q J	3	3 X			-02
PID:			1-3/	·		
PID:						
5						
PID:						
6						
PID:						
7						
PID:						
8						
PID:						
9						
PID:				- - 	 	
A / (PID:						
RELINQUISHED OF G. 25 02 BECEIVED	11/1/	OG SYD REI	_INQUISHED	DATE	RECEIVED	D. G.
	100	10:22		THAE		<u> </u>
RELINQUISHED RECEIVED	{	REI	INQUISHED	DATE	RECEIVED	\mathcal{D}_{t}
		lua.		TAKE		\overline{H}^{-1}
COMMENTS:			······································			
						PAGE 1 OF

SOIL BORING LOG

midwest engineering services, inc.

Project Name: Location: Former Wire & Metal Specialties 4021 South Kinnickinnic Avenue

St. Francis, Wisconsin

Boring: B-3 (MW 11) Project No.: 7-21058 Date of Boring: 2-26-04

Field Representative: Mike Rehfeldt

VISUAL SOIL CLASSIFICATION		SAMPLE		Qp	Qu	МС	PID	en en en en en en en en en en en en en e
GROUND SURFACE: ELEVATION	(Feet)	NO.	N	(tsf)	(tsf)	(%)	i.u.	REMARKS
Brown Sandy SILT, trace Gravel,(and Broken Brick)	_ _	1-SS	3				ND	- -
_ ` _	- -	2-SS	4				ND	- √
	5 <u></u>	3-SS	2				ND	<u> </u>
Moist, SAND seam, little Silt	<u> </u>	4-SS	3			!	ND	- -
Bright Brown Clayey SILT	 10	5-SS	8				ND	; ;
Gray Clayey SILT	- -	6-SS	11				ND	_
- Crov Silh, CLAV	_ _	7-SS	18			,	ND	-
Gray Silty CLAY Wet, Gray Sandy SILT	15 <u> </u>	8-SS	14				ND	<u> </u>
Wet, Gray CLAY	_	9-SS	14			:	ND	
End of Boring: 18' bgs Note:	20 <u> </u>							- - -
SS = Split Spoon Sample PID = Photoionization Detector i.u. = Instrument Units b.g.s. = Below Ground Surface ND = Not Detected Depth Groundwater observed during drilling	25							- - - - -
- 	30							_
-	- -			:				_ _
-	35							_
	-						ı	-
<u>-</u>	40				:			_
_ _	-							_
 	_							_
	_		and a consequent of the reaching of		er en en en en en en en en en en en en en	ta sinti sihaapaitunaigo		to photographic to the analysis of the

Lines of Demarcation represent an approximate boundary between soil types. Variations may occur between sampling intervals and between boring locations, and the transition may be gradual. Dashed lines are indicative of potentially erratic or unknown changes, such as fill-to-natural soil zone transitions.

SOIL BORING LOG

midwest engineering services, inc.

Project Name: Location: Former Wire & Metal Specialties 4021 South Kinnickinnic Avenue

St. Francis, Wisconsin

Boring: B-4 (PZ -1) Project No.: 7-21058 Date of Boring: 7-26-04

Field Representative: Mike Rehfeldt

VISUAL SOIL CLASSIFICATION	DEPTH	SAMPLE	and residentially and	Qp	Qu	MC	PID	The standard section is a man
GROUND SURFACE: ELEVATION	(Feet)	NO.	N	(tsf)	(tsf)	(%)	i.u.	REMARKS
 Brown Silty SAND to Clayey SILT and Intermixed Organic Material, 	_	1-SS	Push				ND	
— (Fill) —	- -	2-SS	6		-		ND	
Dark Brown SILT, trace Sand, (Possible Buried	5	3-SS	8				ND	_
- Topsoil) - Brown Clayey SILT, trace Sand	_ _	4-SS	9				ND	-
	10 <u> </u>	5-SS	11				ND	– Moderate
Brown to Gray Silty CLAY, WetSand seams at 14' to 16'	- -	6-SS	12				35	Petroleum Odor — Strong Odor —
- -	- - 15	7-SS	13				>500	Moderate Odor
	-	8-SS	12		·		145	
Gray CLAY, reduced Moisture,reduced Petroleum Odors	_	9-SS	12			;	5	_
Note A	20	10-SS	15				<3	_
Blind Drill 	- -	·						- -
_	_ _ 						,	
Wet, Gray SILT, trace Sand and Gravel	_	11-SS	17				<5	_
End of Boring: 27' bgs	_ _							_
Note A: Dark Greenish-Gray Sandy SILT- Note:	30			:				
- SS = Split Spoon Sample	- -							-
PID = Photoionization Detector i.u. = Instrument Units b.g.s. = Below Ground Surface	35 <u> </u>							-
ND = Not Detected= Depth Groundwater observed	-							_ _
during drilling during drilling	-							-
	40 <u> </u>							-
<u>-</u>	-				!			- -
	_					a com a la manación coma co		

Lines of Demarcation represent an approximate boundary between soil types. Variations may occur between sampling intervals and between boring locations, and the transition may be gradual. Dashed lines are indicative of potentially erratic or unknown changes, such as fill-to-natural soil zone transitions.

State of Wisconsin

WELL/DRILLHOLE/BOREHOLE ABANDONMENT

Department of Natural Resources

Form 3300-5W

11-89

All abandonment work shall be performed in accordance with the provisions of Chapters NR 111, NR 112, or NR 141. Wis Admin Code whichever is applicable. Also, see instruction on back.

of NR 141, WIS. Admin, Code, W	nichever is applicable. Al	so, see msu	uction on be	ack.		
1) GENERAL INFORMATION		(2) FACILIT	Y NAME			
Well/Drillhole/Borehole B-6	County Milwaukee	Original W	ell Owner (I	f Known)		
Location WE Energies Vacant	Lot	<u> </u>				
		Present We	ell Owner			
NE 1/4 of NE 1/4 of Sec.22; T.6	6 ; R. 22E			MPL Rea	ılty	
(If applicable)		Street or R	oute			
	Grid Number		W	302 N6015 Sp	ence Road	
Grid Location		City, State,	Zip Code			
ft.[]N.[]S	ft.[]E.[]W.			Hartland WI		
Civil Town Name		Facility We	ll No.&/or N	ame (If Applica	ıble)	WI Unique Well No.
St. Franc	is					
Street Address of Well		Reason Fo	r Abandonn			
Vacant Lo		<u> </u>		Borehole	Only	
fity, Village St. Francis	3	Date of Aba	andonment			
				26-Jul-0	4	
WELL/DRILLHOLE/BOREHOLE INFOR						
(3) Original Well/Drillhole/Borehole Consti		(4) Depth t	to Water (F	eet) <u>N/A</u>		
(Date) <u>July 26, 2004</u>	<u> </u>					
						Not Applicable
Monitoring Well Construction	n Report Available?	Liner(s) Re	moved?	[] Yes	[] No [X]	Not Applicable
] Water Well [] Yes [[x] No	Screen Rea	moved?	[] Yes	[] No [X]	Not Applicable Not Applicable
] Drillhole		Casing Left	t in Place?	[] Yes] No [X]	Not Applicable
[X] Borehole		If No, Expla				
Construction Type:				elow Surface?		
[X] Drilled [] Driven (Sand	dpoint) [] Dug			ise to Surface?		
Other (Specify)		Did Materia	al Settle Afte	er 24 Hours?	[] Yes	[] No
		If Yes, Was	s Hole Reto	pped?	[] Yes	[] No
Formation Type:		(5) Require	d Method o	f Placing Sealir	ng Material	
[x] Unconsolidated Formation [] Bedrock	[] Condu	ctor Pipe-G	ravity []	Conducto	or Pipe-Pumped
-	-	[] Dump	Bailer	[X	Gravity	
Total Borehole Depth (ft.)45		(6) Sealing	Materials	[X] F	or Monitor	ing wells and
(From groundsurface)	_	[] Neat C	ement Gro	ut mo		ell boreholes only
,		li i Sand-0	Cement (Co	ncrete) Grout		•
asing Depth (ft.)		[] Concre	•		[] Bentor	nite Pellets
			and Slurry			lar Bentonite
-Vas Well Annular Space Grouted? [1 Yes [X] No [] Unknown		nite-Sand Sl			nite-Cement-Grou
If Yes, to What Depth?	Feet	,	ed Bentonite	•	[] Bonto.	mo oomon orou
		[A] CIMPPO				· · · · · · · · · · · · · · · · · · ·
				No. Yards, Sad		Mix Ratio or
7) Sealing Materia	al Used	From (Ft.)	To (Ft.)	Sealant or Vol	ume	Mud Weight
3/8" Chipped Bentonite		0	45	15		
8) Comments:		(10) FOR	DNR OR C	DUNTY USE O	NLY	
			ved/Inspec		District/Co	urt
(9) Name of Person or Firm Doin	g Sealing Work	1				
Midwest Engineering Services, In-	•					
Fignature of Person Doing Work	Date Signed	Reviewer/Ir	aspector			
	7/27/04	104104401711	-spuotoi			
Demis Analete Street or Route	Telephone Number	1				
	· ·	Fall-				
205 Wilmont Drive	(414) 521-2125	Follow-up N	vecessary			
City, State, Zip Code						
Waukesha, Wisconsin 53186	DNR/COUNTY					

	Management MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Remediation/Redevelopment A Other	
Facility/Project Name Local Grid Location of Well N. Focusion of Well N. Focusion Wiles & Merval Specialized	ft. □ Well Name MW − 9
	Well Towns I We I was Wall May I DAD Wall DAG
Facility License, Permit or Monitoring No. Local Grid Origin (estimated:)	1 TT Q 1 M TT Q 1 Mill
Facility ID St. Plane ft. N	S. W.W. Carlotte
7 4 1 4 3 6 9 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	fr. E. S/C/N Date Well Installed 2/07/2003
Type of Well And Alexander	MB. Well Installed By: Name (first, last) and Firm
Wall Code M.C. M.W. 1101/4 or 1101/4 or See 251.	6 N.R. 22 TW Scott Llaures
Distance from Waste/ Enf. Stds. Location of Well Relative to Waste/Sour	co Gov. Lot Number
Source n. Apply d d Downgradient n Not Kno	
A. Protective pipe, top elevation	1. Cap and lock? ☐ Yes ☐ No
	2. Protective cover pipe:
B. Well casing, top elevation - 99.6 ft. MSL	a. Inside diameter: 12. Cin.
C. Land surface elevation	b. Length:
	gy c. Material: Steel 💆 0.4
D. Surface seal, bottom 10, ft. MSL or ft.	Other 🗆 🧮
12. USCS classification of soil near screen:	d. Additional protection?
GP GM GC GW SW G SP G	If yes, describe:
SM D SC D MLD MHD CL D CH D	3. Surface scal:
, POST 14001	Concrete 01
	Other D
14. Drilling method used: Rotary D 5 0	4. Material between well casing and protective pipe:
Hollow Stem Auger 2 41	Bentonite 🗆 30
Other D	Si WS Other DK
15. Drilling fluid used: Water 0 2 Air Q 01	5. Annular space scal: a. Granular/Chipped Bentonite [2] 3 3
Drilling Mud 🗆 0 3 None 🖂 99	bLbs/gal mud weight Bentonite-sand slurry 3.5
A Marie Paris	cLbs/gal mud weight Bentonite slurry 31
16. Drilling additives used?	d % Bentonite Bentonite-cement grout 🗆 50
, · · · · · · · · · · · · · · · · · · ·	eFt ⁻³ volume added for any of the above f. How installed: Tremit □ 0.1
Describe	# 330 M 1000M100M
17. Source of water (attach analysis, if required):	Tremic pumped D 02 Gravity 📝 08
	6. Bentonite seal: a. Bentonite granules 33
	b. □1/4 in. □3/8 in. □1/2 in. Bentonite chips □ 32
E. Hentonite seal, top	/ c. Other D
	/
F. Fine sand, topft. MSL orft.	7. Fine sand material: Manufacturer, product name & meth size
	American Materials 💹
G. Filter pack, topft. Of the MSL or ft.	b. Volume addedft ³
$\mathcal{G}_{\mathcal{O}}$, \mathbf{n}	8. Filter pack material: Manufacturer, product name & mesh size
H. Screen joint, top 1st. MSL or st.	American Materials Red Flint,
90 4	b. Volume added ft ³
I. Well bottom	9. Well easing: Flush threaded PVC schedule 40 2 23
J. Filter pack, bottom _ #A 1 ft MSL or _ ft.	Fhish threaded PVC schedule 80 0 24
1. Filter pack, bottom OU. II MSL or II.	Other D 33
K. Borchole, bottom & Lit MSL or ft.	10. Screen material:
K. Borchole, bottom 20 2ft MSL or ft.	a. Screen type: Factory cut D 11
L. Borebole, diameter 2.2 in	Sch 40 Continuous slot
L. Borehole, diameter _ 2.2 in.	2022
M. O.D. well easing $\frac{2.05}{10.00}$ in.	b. Manufacturer
M. O.D. well easing _ 4.05 in.	1 · · · · · · · · · · · · · · · · · · ·
N. I.D. well casing -2.00 in.	* · · · · · · · · · · · · · · · · · · ·
N. I.D. well casing -2.0° in.	11, Backfill material (below filter pack): None 🗷 14 Other 🗆 🚳
I hereby certify that the information on this form is true and correct to the best of my	
	FIGURE SECTION AND ADDRESS OF THE SECTION ADDRESS OF THE SECTION ADDRESS OF THE SECTION ADDRESS OF THE SECTION ADDRESS OF THE SECTION ADDRESS OF THE SECTION AND ADDRESS OF THE SECTION AD
	ineering Services

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR affice and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file there forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be

C F	Watershed/Wastewater		agement [MONITORING WEL Form 4400-113A	L CONSTRUC Rev. 7-98	TION
Facility/Project Name - State CAR	Remediation/Redevelopme Local Grid Location of W	^{'cll} □N	, DE	Well Name Man	-10	7
Facility License, Permit or Monitoring No.	Local Grid Origin 🗆 (e		34	Wis. Unique Well No.		No.
Facility ID 24 1 039920			n.e. s/c/n	Date Well Installed /	1 <u>081 200</u>	<u> </u>
Type of Well Well Code MW / 11	Section Location of Waste <u>NS 14 of NS 14 of</u>	Sec. 22 T. 6	N.R. 22	Well Installed By: No		
Distance from Waste/ Enf. Stds. Source n Apply	Location of Well Relative u		Gov. Lot Number	M.Es.		<u></u>
A. Protective pipe, top elevation	ft.MSL —		1. Cap and lock?		DXYes D	No
	0636 n MSL	TAB	2. Protective cover : a. Inside diameter	-	J2-	Cin.
C. Land surface elevation	6.82 n.MSL	ا الب	b. Length:		- 71	Ċţr.
D. Surface seal, bottom _ \(\sqrt{Q5.8 ft. MS} \)	Lor ft 🛒	N. S.	c. Material:		Steel (A)	
12. USCS classification of soil near screen		A Associate	d. Additional pro	tection?	☐ Yes 🗗	
GP GM GC GW S			If yes, describe	•		
Bedrock			3. Surface scal:		Bentonite D Concrete D	
13. Sieve analysis performed?	Yes DNo			CAN	Other D	4 54 5-6-
- 1	tary ☐ 5 0		 Material hetween 	well casing and protect		1
Hollow Stem Au	iger [2] 41 ther [2] (2)			SAWS	Bentonite C	30
			5. Amular space sea			
	Air □ 01		bLbs/gal n	nud weight Bentoni		3.5
Drilling Mud □ 03 }	Vario X 99		cLbs/gal n	nud weight Ben	tonite slumy	31
16. Drilling additives used?	Yes pX No			to Bentonite-		:5 0
The Age	• `		f. How installed:	· · · · · · · · · · · · · · · · · · ·	Tremie 🗆	01
Describe	imd).		-		mic pumped D	0.2
			6. Bentonite scal:	a. Bentro	Gravity 🖄 nite granales 🏋	~ ~ ~
10 == 0					ntonite chips M	
E. Bentonite seal, top			C		Other 🛘	100
F. Fine sand, top	/ '		7. Fine sand materis <u>American</u>	d: Manufscturer, prodi Materials	ict name & mesh	ı size
G. Filter pack, top G. Oft. MS	Lor ft.		b. Volume added	, 40	13	
H. Screen joint, top	Lor B	掛関 ノ		al: Manufacturer, prod Materials Red I		
· · · · · · · · · · · · · · · · · · ·			b. Volume added		13.	
I. Well bottom \(\frac{9}{2} \frac{6}{2} \) ft. MS	L or ft.		9. Well casing:	Flush threaded PVC s		23
J. Filter pack, bottom _ 86_6_ft MS	Lorfl		· ·	Flush threaded PVC:	chedule 30 Other	2 4 32
K. Borchole, bottom	LorfL		Screen material: Screen type:		Factory cut	2 <u>0</u> 11
L. Borehole, diameter _ 8, 2 in.			Sch 40	Con	tinuous slot Other	01
M. O.D. well easing 205 in.			b. Manufacturer		0.00	A :
-		/	c. Slot size:d. Slotted length	:		Qñ.
N. I.D. well easing 200 in.		1	l Backfill material		None D	[14]
I hereby certify that the information on this		the best of my kno	wkedge.			
Signature All Dell	Firm	dwest Engine	ering Service	<u> </u>		······································
٠ ١				the second secon		

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and burean. Completion of these reports is required by chs. 160, 281, 283, 283, 291, 292, 293, 295, and 299, Wis. Statu, and ch. NR 141, Wis. Adm. Code. In accordance with the 281, 289, 291, 292, 293, 295, and 299, Wis. Statu, and ch. NR 141, Wis. Adm. Code. In accordance with the 281, 289, 291, 292, 293, 295, and 299, Wis. Statu, failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

	Vatershed/Wastewater Remediation/Redevelopment	Waste Management [MONITORING Form 4400-113A	WELL CONSTRUCTION Rev. 7-98
Facility/Project Name	Remediation/Redevelopment Local Grid Location of Well/	Other	Well Name	
Former WILE & METAL	<u> </u>	₫\$:	- B. Well Malle	カーゴナ
Facility License, Permit or Monitoring No.	Local Grid Origin 🔲 (estim	Long.		II No. DNR Well ID No.
Pacility ID	St. Plane ft.)		S/C/N Date Well Instal	led
241039920	Section Location of Waste/So		. SPEATE	<u>70212612004</u>
Type of Well Well Code (MW) / 11	NS 14 of NS 14 of Sec	22T. 6 N.R. 2	2 Well Installed B	iy: Name (first, last) and Firm
Distance from Waste/ Enf. Stds.	Location of Well Relative to	Waste/Source Gov. Lot	Number	3-4-17-51-0
Source R. Apply	u Upgradient s [d Downgradient n [Sidegradient Not Known	<u> </u>	
A. Protective pipe, top elevation	n. MSL	1. Carp and		□\Yes □ No
B. Well casing, top elevation	9.5 n. MSL -	1 1 2 7	ve cover pipe: e diameter:	_12_9m
C. Land surface elevation	O. DOR. MSL	b. Long	th:	1 Oft.
		ZEZE C. Maie		Steel S 04
D. Surface seal, bottom 11ft. MS	Lorn			Other 🗖 🚟
12. USCS classification of soil near screen		Viscosias d. Addi	tional protection?	☐ Yes ☐ No
GP GM GM GC GW G S		114	s, describe:	
SM D SC D MLD MHD C	TO CHO			Bentonite 🛘 30
Bedrock	~ M	3. Surface	scal:	Concrete 101
13. Sieve analysis performed?	Yes 🖾 No			Other D
14. Drilling method used: Ro	ary □ 50 Ø	# 4. Materia	l between well casing and p	
Hollow Stem Av				Bentonite 🗆 30
	ther 🗆 💮		CHAC	Other AD
		S Amonia	r space scal: 2. Granular	Chipped Bentonite 2 33
15. Drilling fluid used: Water 0 2	Air 🔲 01 📗 🔯		Lbs/gal mod weight Be	
Drilling Mud 🖂 0 3 1	Tome 209		Lbs/gal mud weight	
			% Bentonjte Bent	
16. Drilling additives used?	Yes IZNo 🖁		Fi ³ volume added fo	
8 4	188	f. How	installod:	Tremie 🛛 01
Describe	 🐰			Tremie pumped D 02
17. Source of water (attach analysis, if requ	area):			Gravity PK 08
		6. Bentoni	ite scal: a. I	Bentonite granules 🔲 33
00.0		b. □1	/4 in. □3/8 in. □1/2 in.	Bentonite chips 🗵 32
E. Bentonize seal, top	\	/		Other 🛚 💥
F. Fine send, top93.5ft. MS	ro		nd material: Manufecturer, erican Materials	-
G. Filter pack, top 92.5 ft. MS	Lorft.		me added	
	\ 1 31	1	ack material: Manufacturer	product name & mesh size
II. Screen joint, top 12,0 ft. MS	Lorft		erican Materials R	
	Frit		une added	n ³
I. Well bottom 82 Oft. MS	Lorft	9. Well ca		VC schedule 40 🔲 23
	128		Flush threaded I	PVC schedule 80 🔲 24
J. Filter pack, bottom 82.0 ft MS	Lorfl.			Other D
K. Borchole, bottom 820 ft MS	Lor (L	10. Screen a. Scre		Factory cut 11
L. Borchole, diameter _ &. Z in.		Sch	n 40	Continuous slot 01
L Durchole, disincici _ D in.		1.	ufacturer	Other 🗆 💥
M. O.D. well easing $Z_1 \subseteq S$ in.		c, Slot d, Slot	size: ted length:	o <u>. <i>O</i> (O</u> in. <u>1,0 o</u> n.
N. I.D. well casing _200 in.			lou length; I material (below filter pack	iX
- 			*	Other 🗆 🎎
I hereby certify that the information on this	formis the and correct to the	best of my knowledge.		
Signature /	// Firm			
MANNE	Midw Midw	est Engineering S	Services	

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and burean. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 280, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on those forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconnia Department of Natural Resources Route to:	Watershed/Wastewater Remediation/Redevelopment	Waste Management Other	MONITORING WELL CONSTRUCTION Form 4400-113A Ray, 7-98
Facility/Project Name (Foxuse	Local Grid Location of Well	· · · · · · · · · · · · · · · · · · ·	Well Name PZ-1
Writch Matthe Speciality License, Permit or Monitoring No.			Wis. Unique Well No. DNR Well ID No.
Facility License, Permit of Monitoring No.		ongor	PLSS 8
Pacifity ID	St. Plano ft. N	and the second s	
241039920	Carried Location of Wester Cont.	***	mm/dd v v v v
Type of Well Code 12 / PZ	NE 14 OF NE 14 OF Sea.	72 T. 6 N.R. R2 8	Well Installed By: Name (first, last) and Firm
Distance from Waste/ Enf. Stds.	Location of Well Relative to W	aste/Source Gov. Lot Number Sidegradient	- CONTROL CONTROL
Sourcen. Apply		Not Known	M. E. S.
A. Protective pipe, top elevation	n. MsL —	1. Cap and lock?	. Yes □ No
B. Well casing, top elevation -10 .	6.67 n. MSL - C	2. Protective cover	1 ~ A
	7.22n.MSL	b. Length:	- 1 On
D. Surface seal, bottom		c. Material:	Steel Ch 04
T	7.55 C. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		Other D
GP GM GC GW S	1 1 1	d. Additional pro	
SM D SC D MLD MHD C	T GH D		Bentonite D 30
Bedrock 🗆		3. Surface scali	Auf Concrete A 01
	Yes 🗆 No		Other E
14. Drilling method used: Rot Hollow Stem Au	tary D 50	4. Material hetween	well casing and protective pipe: Bentonite 30
Noticw Stein At	ther D		SAWS Other EX EX
		5. Annular space se	
15. Drilling fluid used: Water □ 0 2 Drilling Mud □ 0 3	Air 🗆 01	bLbs/gal 1	and weight Bentonite-sand slurry □ 35
Duming rated Cl 0.3 V	Tome □ 99		mid weight Bentonite slumy D 31
16. Drilling additives used?	Yes 🗆 No		your added for any of the above
		f. How installed	
Describe		**	Tremie pumped 🗓 , 02
17. Source of water (attach Bialysia, if itse	arcaj:		Gravity 🖄 08
		6. Bentonite scal:	a. Bentonite granules 3 3 3 3/8 in. 1/2 in. Bentonite chips 1 3 2
E. Hentonite seal, top	LorfL	Ø / c	Other D
F. Fine sand, top		2. Fine sand materi	al: Manufacturer, product name & mesh size
F. Fine sand, top	LorIL	American	-
G. Filter pack, top	Lorft.	b. Volume adde	
	- Hi	8. Filter pack mater	ial: Manufacturer, product name & mesh size
H. Screen joint, top	Lorft	American American	Materials Red Flint,
I. Well bottom 79 6 ft. MS	Lorf	h. Volume adde 9. Well casing:	d R ³ Flush threaded PVC schedule 40 □ 23
		y, wen casing:	Flush threaded PVC schedule 80 24
J. Filter pack, bottom _ 79.6ft MS	Lorfl.	刻	Other 🛛 💥
39 /4.50		10. Screen rasterial:	<u> </u>
K. Borchole, bostom ? 9. 6st MS	L or IL	a. Screen type:	Factory cut 1 11 Continuous slot 0 01
L. Borehole, dismeter _ £. 2 in.		Sch 40	Continuous slot 0 0 1
,		b. Manufacturer	.
M. O.D. well easing 2.05 in.		c. Stot size:	0. <u>A</u> <u>Q</u> in.
N. I.D. well casing 200 in.		d. Slotted length	
IV. I.D. WEII CESING		11, Backfill material	(below filter pack): None 14
I hereby certify that the information on this	form is true and correct to the b	est of my knowledge.	
Signature 0 0/2	/)/// Firm		
_/MEHOUSEN	Midwe	st Engineering Service	es

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with the 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

	Watershed/Wastewater	Waste Management	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name Course	Remediation/Redevelopment Local Grid Location of Well	Other D	Well Name NW-12
Ficility License, Permit or Monitoring No.	Local Grid Origin (estimat	ted: 🗆) or Well Location 🗆	Wis. Unique Well No. DNR Well ID No.
Facility ID		ong.	Dear Well Installed
241039920	St. Planeft. N. Section Location of Waste/Sour		07/26/2007
Type of Well Code // / NW	NE 14 OF NE 14 OF SOC.	22r. 6 n.r. 22 0	Well Installed By: Name (first, last) and Fire
Distance from Waste/ Enf. Stds.	JI BORTION OF WALL KALIDING TO WE	astc/Source Gov. Lot Number Sidegradient	H.E.S.
Source n. Apply	d Downgradient n	Not Known	Yes No
/^	3.0° n. MSL 250n. MSL	2. Projective cover	
441	· • • • • • • • • • • • • • • • • • • •	a. Inside diamete	n <u>/ 2 ¢in.</u>
	00 n. MSL	b. Longth:	Steel Di 04
	SL or fL		Other 🛚
12. USCS classification of soil near screen		d. Additional pro	· .
SM C SC C MLC MHC C		3, Surface scal:	Bentonite D 30
Bedrock 13. Sieve analysis performed?	Yes □ No	3. Surface scal:	Concrete 2 01
	tary D 50	4 Material between	Other O well casing and protective pipe:
Hollow Stem At	nger 🛘 41 🔯		Bentonite □ 30
	ther 🗆 🕌		S.M.D. Other DK
15. Drilling fluid used: Water 0 2	Air 🗆 01	5. Amular space se	al: a. Granular/Chipped Bentonite [A 33] mud weight Bentonite-sand slurry [] 35
Drilling Mud 🗆 0 3	Nomes 🗆 99		and weight Bentonite slurry D 31
16. Drilling additives used7	Yes 🗆 No		ite Bentonite-cement grout 5 0
		f. How installed	ovolume added for any of the above Tremie 01
Describe 17. Source of water (attach analysis, if requ	rired):		Tremie pumped D 02
11, bombo et water (castar Emilyard (1104)		6. Bentonite scal:	Gravity 2 08 a. Bentonite granules 1 33
Cla A			13/8 in. 1/2 in. Bentonite chips 2 32
E. Bentoniie seal, topft. MS	Lorn	[] c,	Other D
F. Fine sand, top	Lorft	LIXE /	all Manufacturer, product name & mesh size
G. Filter pack, top 92 Grt. MS	Lorft	a American b. Volume adde	
	- Fill	8. Filter pack mater	ial: Manufacturer, product name & mesh size
	Lorft.	a American	Materials Red Flint,
I. Well bottom	LorfL	9. Well casing:	Flush threaded PVC schedule 40 23
J. Filter pack, bottom 82.3ft MS	Lorf.		Fhuh threaded PVC schedule 80 0 24 Other 0 33
K. Borchole, bottom &2.3 ft MS	LorA	10. Screen material: a. Screen type:	Factory cut 11
9.5			Continuous slot 01
L. Borehole, diameter in.	·	Sch 40	Other 🗆 🚉
M. O.D. well easing _Z. 55 in.		b. Manufacturer c. Slot size:	0, <u>C(0</u> in.
N. 1.D. well casing 2.00 in.		d. Slotted length	(below filter pack): None 2 14
I hereby certify that the information on this	form is true and correct to the h	est of my knowledge.	Other D
Signature / C Signature	/)		
	Midwe	st Engineering Service	PS

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and burean. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis: Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on those forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

S	cate of Wisconsin pastment of Natural Resource	ES
	II	

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastew	vater 🔲	Waste Management			
Remediation/Rede	velopment 🔯	Other			
acility/Project Name	County Name		Well Name		
Forwar Wilson Manter Sazzinamos		AUKEE	MW-	-9	
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well N	umber	DNR Wel	I ID Number
	41	<u>21.</u>	910	İ	
1. Can this well be purged dry?	s 🗆 No	11. Depth to Water (from top of			After Development
Well development method surged with bailer and bailed 4	•	well casing)	a	<u>v </u>	
surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air bailed only pumped only pumped slowly Other 3. Time spent developing well	1 2 2 0 0 0 1 0	Date	c. <u>l O</u> : O Clear Turbid (Describe)	8 □ p.m. O inches 0 5	23 0 3 / 0 3 / 2003 y m m d d y y y y 12:15 p.m. _ 0 0 inches Clear 20 Turbid 25 (Describe) Clear
Depth of well (from top of well casisng) -11	<u>. 5</u> ft.				
Inside diameter of well	<u> </u>				
Volume of water in filter pack and well casing Volume of water removed from well Volume of water added (if any) Source of water added	gal.			mg/l	t solid waste facility:mg/l
Analysis performed on water added? (If yes, attach results)	s 🗆 No	16. Well developed to First Name: And Firm: Mrdh	by: Name (first, lrew est En	last) and Firm Last Nam A (hear)	e: La Vizue ng Sepuites
_ Additional comments on development:				v	U
Slight petrolaum od			·		
Time and Address of Facility Contact/Owner/Responsible First Last Puchware Name: Puchware		I hereby certify the of my knowledge.		ıformation i	is true and correct to the best
Facility/Firm: MPL Restry		Signature:	fila	121	
Set: W302 N6015 Spanes	12011	Print Name:	ichson 1		246-87DL
City/State/Zip: 1 WRTLAWY WI S	3029	Firm:	3. La	<u>, , S , </u>	

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastewa	ıter 🔲	Waste Management			
Remediation/Redeve	Other				
	County Name		Well Name		•
Facility License, Permit or Monitoring Number C	Make	Wis. Unique Well No	_	MW.	•
Facility License, Permit or Monitoring Number C	County Code	Wis. Unique Well No PL	umber - 556	DNR Wel	1 ID Number
1. Can this well be purged dry? Yes	□ No	11. Depth to Water			After Development
2. Well development method surged with bailer and bailed 4 1		(from top of well casing)	a <u>13</u> .	<u>23</u> n.	_ <u>18,4</u> 3n.
surged with bailer and pumped		Date	$b.\frac{O1}{m} \frac{1}{d} \frac{Q}{d}$	1 2 0 0 y y y	4 01/19/2004 y m m d d y y y y
surged with block, bailed and pumped		Time	c <u>q</u> : <u>1</u> §	_ a.m. 	10:50 p.m.
pumped only 51 pumped slowly 55		12. Sediment in well bottom	_ Q.	(inches	OO. O inches
Other 3. Time spent developing well 9		13. Water clarity	Clear [] 1 Turbid [] 1 (Describe)	5	Clear (20 Turbid 25 (Describe)
4. Depth of well (from top of well casising)	∑min. ≥ ft.				(Describe)
5, Inside diameter of well	<u>O</u> in.				
6. Volume of water in filter pack and well casing	3 gal.				
7. Volume of water removed from well	O gal.				t solid waste facility:
8. Volume of water added (if any)	∑gal.	solids		mg/r	
9. Source of water added		15. COD		-	mg/l
10. Analysis performed on water added? (If yes, attach results)	DXN ₀	16. Well developed b First Name: LA	•	-	これでからないない!
17. Additional comments on development:		h			
No obvious obors,					
Name and Address of Facility Contact/Owner/Responsible First Name: Last PUENNER Name: Name:	=	I hereby certify that of my knowledge.	at the above inf	ormation is	s true and correct to the best
Facility/Firm: OPL Rahaing		Signature:	1 in (a)	121	
, , ,	orRs.		10 MARS	<u>w.</u> 6	SHELDT .
City/State/Zip: 1 + AR TAND WI	53029	Firm: 0	1, E. C.	·····	

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastewater	1 , 7	Waste Management
Remediation/Redevelopmen	nt 🔯 🕠	Other
Facility/Project Name County	Name	Well Name
Former W. 232 MARAL Spariments 1)	1 run	VEST PZ-1
Facility License, Permit or Monitoring Number County 6	Code (V	Wis. Unique Well Number DNR Well ID Number
1. Can this well be purged dry?		Before Development After Development 1. Depth to Water
2. Well development method surged with bailer and bailed		(from top of well casing) Date $b = \frac{\sqrt{8} \cdot 23}{m m} \text{ ft.} \qquad \frac{\sqrt{9} \cdot 42}{d y y y y m m} \text{ ft.}$ Time $c = \frac{9 \cdot 30}{m m} \text{ ft.} \qquad \frac{\sqrt{9} \cdot 42}{m m} \text{ ft.}$
pumped only	ľ	2. Sediment in wellOinchesOinches bottom 3. Water clarity Clear 10 Clear 10 20 Turbid 15 Turbid 25
3. Time spent developing well65 min.		(Describe) (Describe)
4. Depth of well (from top of well easising)		Diger Bommith.
5. Inside diameter of well	İ	(de l'all d
6. Volume of water in filter pack and well casing 7. Volume of water removed from well 8. Volume of water added (if any) 9 gal.	F	ill in if drilling fluids were used and well is at solid waste facility: 14. Total suspended mg/l mg/l solids
9. Source of water added	_ 1	5. COD mg/l
10. Analysis performed on water added? Yes [] Yes [] Yes. (If yes, attach results)	No	6. Well developed by: Name (first, last) and Firm First Name: Au Last Name: Twenty see Firm: in E.S.
No obvious obors,		
Name and Address of Facility Contact /Owner/Responsible Party		I hereby certify that the above information is true and correct to the best
Facility/Firm:		of my knowledge. Signature:
Facility/Firm: OPPL KERALTY Street: W302 N 6015 Spence (Print Name: M. CIMOL W. REMECTOR
		Firm: M.E.S.