## **TEMCO**

THE ENVIRONMENTAL MANAGEMENT COMPANY LLC

July 16, 2007

F10#24/222520 02-41-184802

Ms. Victoria Stovall Environmental Program Associate Wisconsin Department of Natural Resources 2300 North Martin Luther King Drive Milwaukee, WI 53212

RE: Request for Approval for Off-site Disposal of Contaminated Soil From The Pioneer Neighborhood Redevelopment Project Site At A Response Action Site (Lime Pit Property) ~ West Allis, Wisconsin

Dear Ms. Stovall:

On behalf of the City of West Allis Community Development Authority (CDA), THE ENVIRONMENTAL MANAGEMENT COMPANY LLC (TEMCO) requests WDNR approval to dispose contaminated soil fill to be excavated from the Pioneer Neighborhood Redevelopment Project Site (PN Site) at the Lime Pit property.

The PN Site is located in West Allis, Wisconsin and is bounded by West National Avenue on the north and the Union Pacific Railroad on the south. The site extends approximately one-half block west of South 80<sup>th</sup> Street and one-half block east of South 78<sup>th</sup> Street. The Lime Pit property is located approximately 1 mile southeast of the PN Site and is bounded by the Union Pacific railroad trackbed on the north, the City of West Allis Fire Station #2 on the south, Becher Place on the east, and South 67<sup>th</sup> Place and St. Augustine Catholic Church and School on the west.

Both the PN Site and the Lime Pit property are owned by the City of West Allis CDA. The above referenced WDNR approval is requested to facilitate redevelopment of the PN Site, which may require net export of on-site soil to accommodate underground parking facilities. An estimated maximum of 5,000 tons of soil fill contaminated with low levels of PAH and several RCRA metals may require disposal at an off-site location if the final redevelopment plan does not allow replacement and management of all excavated soil on the PN Site.

The Lime Pit property is currently being prepared for future light industrial redevelopment. The only soil contamination on the Lime Pit property which exceeds RCL's (recommended) are PAH compounds, which are widely distributed throughout the site. The highest PAH levels occur in shallow soil fill in the former lime slurry pit areas (southwestern corner of the site and the south eastern and eastern areas of the site).

The West Allis CDA seeks WDNR approval under WAC NR 718.13 to place the soil fill from the PN Site contaminated with low levels of PAH compounds and several RCRA metals on the Lime Pit property in the former lime slurry pit areas. A summary of the contamination levels of soil which may be exported from the PN Site, together with the relevant analytical data table and site figures, is included in this submittal.

A summary of the distribution of contaminants in shallow soil at the PN Site follows:

- Volatile Organic Compounds (VOC) (reference Tables 1(TEMCO) and 1 (Symbiont) and Figure 3). The only VOC found on the site above regulatory standards is petroleum and chlorinated solvent (likely sourced from parts cleaning) soil and groundwater contamination below the floor and adjacent to the west wall of the garage building located in the northeast corner of the site. The petroleum VOC is residual contamination remaining from a former LUST case in which all accessible contaminated soil (approximately 3,000 tons) and 3,500+ gallons of contaminated groundwater were removed from the site. This residual and the chlorinated solvent soil contamination will be removed from the site for disposal at a commercial landfill following demolition of the garage building. This remediation will provide the basis for closure of the currently open ERP case on the site.
- Polyaromatic Hydrocarbons (reference Tables 3 (TEMCO) and 1 (Symbiont) and Figure 3)
  - Soil with recommended RCL exceedances of PAH compounds and layers containing foundry sand, where present, are contained in the upper eight (8) feet of the soil profile at the site, primarily along the southern boundary of the site, in the western part of the site, and in the north-central part of the site.
  - The only building in the site redevelopment plan (Figure A1.2) which will be constructed with underground parking facilities is the "U-shaped" independent living building in the western part of the site adjacent to South 80<sup>th</sup> Street. Referring to Figure 3, this area is virtually devoid of PAH soil contamination, except along the south property line, which will be developed as driveway and surface parking areas. As such, little if any of the soil excavated for construction of the independent living building will require management as contaminated soil. The estimated maximum 5,000 tons cited above is intended to cover soil excavated from utility trenches, parking/driveway areas to allow placement of a granular base layer, spread footing trenches for slab-on-grade buildings, etc. in areas of the site where PAH contamination of shallow soil exceeds recommended RCL's.

It is likely that some of the shallow, PAH contaminated soil described above will be replaced and managed on-site beneath a structure or pavement. Approval for disposal of this soil at the Lime Pit is, however, required as a contingency in the event that the volume of PAH contaminated soil which must be excavated exceeds the volume which can be replaced and managed on-site.

- Metals (reference Table 2 (TEMCO) and Table 1 (Symbiont) and Figure 3)
  - Arsenic levels in shallow soil are generally low single-digit mg/kg levels typical of urban soils in southeastern Wisconsin. These levels are generally considered background values. The only

exceptions found were arsenic levels of 24.6 mg/kg in SSB5 and 11.3 in SSB4 in the western part of the site. This area of the site will be developed as part of the parking lot of a new bank.

- Lead levels in shallow site soil are generally below 100 mg/kg except at SSB4 in the western part of the site and SB-9 in the central part of the site. Both of these areas will be paved during site redevelopment.
- Soil which requires excavation in the areas containing high metals levels during site redevelopment will be replaced and managed on-site beneath pavement or disposed off-site in a commercial landfill.

Also attached is a Lime Pit Property figure showing the area where the soil fill will be placed, spread, and compacted. The accompanying soil contaminant distribution figure and analytical data tables show the high levels of PAH compounds in the former lime slurry pit areas. The northeast corner of the site, which was a former lime slurry pit area, has been reserved from filling temporarily. The City of West Allis is planning to place high capacity sanitary and storm sewer trunk lines on the Lime Pit property along the north property boundary. Relevant information concerning soil and groundwater conditions at the Lime Pit Property is contained in the Site Investigation Report prepared and submitted to WDNR by TEMCO in March 2006.

TEMCO has evaluated this soil fill placement plan with the requirements of WAC NR 718.13 (2) through (9), and believes the plan conforms with all of the listed conditions.

Placement of contaminated soil fill from the Pioneer Neighborhood Redevelopment Project on the nearby Lime Pit site, if required by excavated soil volume in excess of the amount that can be replaced and managed on-site, will be very beneficial to redevelopment of both properties. Excess soil from the PN Site represents a portion of the fill needed to level the Lime Pit site prior to redevelopment.

The Remedial Action Plan for the Lime Pit property will specify placement of a cap over areas containing PAH contaminants in the direct contact zone above recommended industrial RCL's. These areas include virtually all of the former lime slurry pit areas and small portions of the central, western and northern parts of the site. The site capping will likely take the form of industrial buildings, pavement above parking lots and walkways, and clay soil in landscape areas.

Ms. Victoria Stovall July 16, 2007 Page 4

Please contact the undersigned with questions or if further information is needed. Thank you for your assistance in facilitating this important redevelopment project in the City of West Allis.

Sincerely,

THE ENVIRONMENTAL MANAGEMENT COMPANY LLC

Od Hosh

Jeffrey L. Hosler Senior Hydrogeologist Principal

**Enclosures** 

cc: Mr. John F. Stibal - City of West Allis Mr. Patrick Schloss - City of West Allis

#### THE ENVIRONMENTAL MANAGEMENT COMPANY LLC

### **Novak Property (Lime Pit)**

West Allis, Wisconsin

Soil Analytical Results Table: PolyChlorinated Biphenyls (PCB)

All Contaminants Shown in mg/kg

| Sample<br>ID | Sample<br>Date | Depth<br>(feet bgs) | Aroclor<br>1016 | Aroclor<br>1221 | Aroclor<br>1232 | Aroclor<br>1242 | Aroclor<br>1248 | Aroclor<br>1254 | Aroclor<br>1260 |
|--------------|----------------|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| SB-6         | 02/20/04       | 0 - 4               | <0.0158         | <0.0316         | <0.0548         | <0.0122         | <0.0377         | <0.0548         | <0.0852         |
| SB-7         | 02/20/04       | 0 - 4               | <0.0507         | <0.0788         | <0.101          | <0.0349         | <0.0113         | <0.0293         | <0.0146         |
| SB-8         | 02/20/04       | 0 - 4               | <0.0023         | <0.00299        | <0.0322         | <0.00597        | <0.0207         | <0.0103         | <0.00712        |
| SB-9         | 02/20/04       | 0 - 4               | <0.0024         | <0.054          | <0.00744        | <0.0108         | <0.00624        | <0.00312        | <0.084          |
| MW-8         | 08/09/04       | 2-3                 | <0.061          | <0.061          | <0.061          | <0.061          | <0.061          | <0.061          | <0.061          |
| MW-14        | 08/09/04       | 4-6                 | <0.1            | <0.1            | <0.1            | <0.1            | <0.1            | 0.26            | <0.1            |

mg/kg = milligrams per kilogram

March 7, 2006

### THE ENVIRONMENTAL MANAGEMENT COMPANY LLC

#### **Novak Property (Lime Pit)**

#### West Allis, Wisconsin

Soil Analytical Results Table: Metals

All contaminants shown in mg/kg (milligrams per kilogram)

|              |                      |                     | the state of the s |        | T T 3   | The second of the second | D A A A B T . | '       |               |        |
|--------------|----------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|--------------------------|---------------|---------|---------------|--------|
| Sample<br>ID | Sample<br>Date       | Depth<br>(feet bgs) | Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Barium | Cadmium | Chromium                 | Lead          | Mercury | Selenium      | Silver |
| SB-6         | 02/20/04             | 0 - 4               | <3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69     | <0.6    | 19.6                     | 62.4          | 0.080   | <3            | <3     |
| SB-7         | 02/20/04             | 0 - 4               | 3.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42.6   | <0.6    | 8.99                     | 32.1          | 0.137   | <3            | <3     |
| SB-8         | 02/20/04             | 0 - 4               | <3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34.3   | <0.6    | 9.95                     | 41.3          | 0.1957  | <3            | <3     |
| SB-9         | 02/20/04             | 0 - 4               | 3.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54.2   | <0.6    | 16.8                     | 65.4          | 0.047   | <3            | <3     |
| SB-12        | 05/27/04             | 0 - 4               | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42     | 0.67    | 10.0                     | 19            | 0.031   | <0.5          | <0.25  |
| SB-18        | 05/27/04             | 4 - 8               | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1    | <0.25   | 2.6                      | <0.25         | <0.02   | 0.84          | <0.25  |
| SB-22        | 05/27/04             | 4 - 8               | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36     | 0.95    | 8.2                      | 26            | 0.055   | <0.5          | <0.25  |
|              | Contaminant<br>evels | Industrial          | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 510     |                          | 500           |         |               |        |
| Outlined =   | Exceeds Resid        | ual Contamin        | ant Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |         |                          |               |         | March 7, 2006 |        |

#### THE ENVIRONMENTAL MANAGEMENT COMPANY LLC

#### **Soil Sample Analytical Results**

#### Diesel Range Organics (DRO) & Gasoline Range Organics (GRO) Novak Property (Lime Pit)

#### West Allis, Wisconsin

All Contaminants Shown In mg/kg (milligrams per kilogram)

| Sample ID          | Sample<br>Date         | Feet (bgs)      | DRO<br>(mg/kg) | GRO<br>(mg/kg) |
|--------------------|------------------------|-----------------|----------------|----------------|
| SB-1               | 02/20/04               | 0 - 4           | 160            | <10            |
| SB-2               | 02/20/04               | 0 - 4           | 58             | <10            |
| SB-3               | 02/20/04               | 0 - 4           | 14             | <10            |
| SB-4               | 02/20/04               | 0 - 4           | 190            | <10            |
| SB-5               | 02/20/04               | 0 - 4           | 28             | <10            |
| SB-6               | 02/20/04               | 0 - 4           | 450            | 11             |
| SB-7               | 02/20/04               | 0 - 4           | 450            | <10            |
| SB-8               | 02/20/04               | 0 - 4           | 350            | <10            |
| SB-9               | 02/20/04               | 0 - 4           | 200            | <10            |
| SB-10              | 02/20/04               | 0 - 4           | 84             | <10            |
| Residu             | al Contaminant Level ( | RCL)            | 100            | 100            |
| s = below ground s | urface outline         | d = exceeds RCL |                | March 22, 2004 |

#### THE ENVIRONMENTAL MANAGEMENT COMPANY LLC

## Soil Sample Analytical Results - PolyAromatic Hydrocarbons (PAH) Novak Site (Lime Pit), West Allis, Wisconsin

All Contaminants Shown In (mg/kg)

| Sample<br>ID | Sample<br>Date                | Depth<br>(feet bgs) | Acenaph<br>thene | Acenaph<br>thylene | Anthr<br>acene     | Benz(a)<br>anthra<br>cene | Benzo(a)<br>pyrene | Benzo(b)<br>fluoran<br>thene | Benzo<br>(g,h,i)<br>perylene | Benzo(k)<br>fluoran<br>thene | Chry<br>sene      | Dibenz (a,h) anthracene | Fluor<br>anthene   | Fluorene          | Indeno<br>(1,2,3-cd)<br>pyrene | 1-Methyl<br>naphth<br>alene | 2-Methyl<br>naphthal<br>ene | Naph<br>thalene | Phenan<br>threne   | Pyrene             |
|--------------|-------------------------------|---------------------|------------------|--------------------|--------------------|---------------------------|--------------------|------------------------------|------------------------------|------------------------------|-------------------|-------------------------|--------------------|-------------------|--------------------------------|-----------------------------|-----------------------------|-----------------|--------------------|--------------------|
| SB-1         | 02/20/04                      | 0 - 4               | < 0.056          | 2.9                | 3                  | 6.2                       | 8.4                | 6.2                          | 6.6                          | 2.7                          | 6.9               | 1.6                     | 12                 | 0.83 <sup>J</sup> | 5.9                            | <0.094                      | <0.044                      | <0.078          | 6.4                | 11                 |
| SB-2         | 02/20/04                      | 0 - 4               | <0.28            | <0.32              | 0.77 <sup>J</sup>  | 1 <sup>J</sup>            | 1.1 <sup>J</sup>   | 1.5                          | 0.46 <sup>J</sup>            | <0.45                        | 0.89 <sup>J</sup> | <0.47                   | 2.4                | <0.32             | <0.56                          | <0.47                       | <0.22                       | <0.39           | 1.7                | 2.1                |
| SB-3         | 02/20/04                      | 0 - 4               | <0.028           | <0.032             | <0.046             | 0.04 <sup>J</sup>         | 0.045 <sup>1</sup> | 0.09 <sup>1</sup>            | <0.032                       | <0.045                       | <0.04             | <0.047                  | 0.084 <sup>J</sup> | <0.032            | <0.056                         | <0.047                      | <0.022                      | <0.039          | 0.041 <sup>J</sup> | 0.079 <sup>J</sup> |
| SB-4         | 02/20/04                      | 0 - 4               | <0.56            | <0.64              | 1.04 <sup>J</sup>  | 1.6 <sup>J</sup>          | 1.6 <sup>J</sup>   | 2.3 <sup>J</sup>             | <0.64                        | <0.9                         | 1.6 <sup>J</sup>  | <0.94                   | 3.8                | <0.64             | <1.12                          | <0.94                       | <0.44                       | <0.78           | 2.2 <sup>J</sup>   | 3.4                |
| SB-5         | 02/20/04                      | 0 - 4               | <0.14            | <0.16              | <0.23              | 0.53 <sup>J</sup>         | 0.6 <sup>J</sup>   | 1                            | 0.22 <sup>J</sup>            | 0.25 <sup>J</sup>            | 0.64 <sup>J</sup> | <0.235                  | 1.1                | <0.16             | <0.28                          | <0.235                      | <0.11                       | <0.195          | 0.43 <sup>J</sup>  | 0.98               |
| SB-6         | 02/20/04                      | 0 - 4               | 15               | <1.6               | 29                 | 23                        | 21                 | 25                           | 9.2                          | 9.8                          | 23                | 2.9 <sup>J</sup>        | 50                 | 19                | 9.4                            | 4.8 <sup>J</sup>            | 9.5                         | 37              | 59                 | 45                 |
| SB-7         | 02/20/04                      | 0 - 4               | <1.4             | 1.9 <sup>J</sup>   | 5.1 <sup>J</sup>   | 11                        | 14                 | 16                           | 6.2                          | 7.8                          | 12                | <2.35                   | 22                 | 1.6 <sup>J</sup>  | 6 <sup>J</sup>                 | <2.35                       | <1.1                        | <1.95           | 11                 | 19                 |
| SB-8         | 02/20/04                      | 0 - 4               | 20               | 2.5 <sup>J</sup>   | 49                 | 75                        | 46                 | 90                           | 30                           | 30                           | 68                | 9.7                     | 180                | 25                | 32                             | 2.7 <sup>J</sup>            | 2.9 <sup>J</sup>            | 5 <sup>J</sup>  | 150                | 170                |
| SB-9         | 02/20/04                      | 0 - 4               | 3.1 <sup>J</sup> | <1.6               | 11                 | 16                        | 15 <sup>J</sup>    | 20                           | 5.7                          | 5.2 <sup>J</sup>             | 16                | <2.35                   | 33                 | 4.4 <sup>J</sup>  | 6.4 <sup>J</sup>               | <2.35                       | <1.1                        | <1.95           | 24                 | 29                 |
| SB-10        | 02/20/04                      | 0 - 4               | <1.4             | <1.6               | 6.2J               | 11                        | 11                 | 13                           | 3.9 <sup>J</sup>             | 4.2 <sup>J</sup>             | 11                | <2.35                   | 21                 | 1.9 <sup>J</sup>  | 4.6 <sup>J</sup>               | <2.35                       | <1.1                        | <1.95           | 13                 | 18                 |
| SB-11        | 05/27/04                      | 0 - 4               | 7.4 <sup>J</sup> | <3.2               | 17                 | 32                        | 26                 | 31                           | 15                           | 14                           | 30                | <4.7                    | 76                 | 8.7 <sup>J</sup>  | 14 <sup>J</sup>                | <4.7                        | <2.2                        | <3.9            | 54                 | 69                 |
| SB-12        | 05/27/04                      | 0 - 4               | 18               | 4 <sup>J</sup>     | 66                 | 99                        | 80                 | 94                           | 43                           | 41                           | 90                | 13 <sup>J</sup>         | 180                | 29                | 40                             | <4.7                        | <2.2                        | <3.9            | 140                | 170                |
| SB-13        | 05/27/04                      | 0 - 3               | 6.9              | 3.6 <sup>J</sup>   | 23                 | 41                        | 35                 | 49                           | 17                           | 19                           | 40                | 5.6 <sup>J</sup>        | 69                 | 8.1               | 17                             | <2.35                       | <1.1                        | <1.95           | 53                 | 71                 |
| SB-14        | 05/27/04                      | 0 - 4               | <0.028           | 0.035 <sup>J</sup> | <0.046             | 0.092 <sup>J</sup>        | 0.11 <sup>J</sup>  | 0.17                         | <0.032                       | 0.064 <sup>J</sup>           | 0.11 <sup>J</sup> | <0.047                  | 0.2                | <0.032            | <0.056                         | <0.047                      | <0.022                      | <0.039          | 0.13               | 0.2                |
| SB-15        | 05/27/04                      | 0 - 4               | <0.028           | 0.056 <sup>J</sup> | <0.046             | 0.14                      | 0.16               | 0.25                         | 0.084 <sup>J</sup>           | 0.091 <sup>J</sup>           | 0.18              | <0.047                  | 0.32               | <0.032            | 0.081 <sup>J</sup>             | <0.047                      | <0.022                      | <0.039          | 0.14               | 0.34               |
| SB-16        | 05/27/04                      | 0 - 4               | <0.028           | <0.032             | 0.053 <sup>J</sup> | 0.11                      | 0.095 <sup>J</sup> | 0.14                         | 0.033 <sup>J</sup>           | <0.045                       | 0.11 <sup>J</sup> | <0.047                  | 0.24               | <0.032            | <0.056                         | <0.047                      | <0.022                      | <0.039          | 0.15               | 0.26               |
| SB-17        | 05/27/04                      | 0 - 4               | <0.028           | < 0.032            | <0.046             | < 0.033                   | <0.043             | <0.042                       | <0.032                       | <0.045                       | <0.046            | <0.047                  | 0.047 <sup>J</sup> | <0.032            | < 0.056                        | < 0.047                     | <0.022                      | <0.039          | < 0.036            | 0.050 <sup>J</sup> |
| SB-18        | 05/27/04                      | 0 - 4               | <0.28            | <0.32              | <0.46              | 0.91 <sup>J</sup>         | 0.9 <sup>J</sup>   | 1.2 <sup>J</sup>             | 0.32 <sup>J</sup>            | 0.47 <sup>J</sup>            | 0.88 <sup>J</sup> | <0.47                   | 1.9                | <0.32             | <0.56                          | <0.47                       | <0.22                       | <0.39           | 1.2                | 2.0                |
| SB-18        | 05/27/04                      | 4 - 8               | <0.028           | 0.069 <sup>J</sup> | <0.046             | 0.15                      | 0.26               | 0.33                         | 0.11                         | 0.1 <sup>J</sup>             | 0.16              | <0.047                  | 0.2                | <0.032            | 0.11 <sup>J</sup>              | <0.047                      | <0.022                      | <0.039          | 0.1 <sup>J</sup>   | 0.26               |
| Resi         | mended<br>idual<br>nant Level | GW<br>DC-I          | 38<br>60000      | 0.7<br>360         | 3000<br>300000     | 17<br>3.9                 | 48<br>0.39         | 360<br>3.9                   | 6800<br>39                   | 870<br>39                    | 37<br>390         | 38<br>0.39              | 500<br>40000       | 100<br>40000      | 680<br>3.9                     | 23<br>70000                 | 20<br>40000                 | 0.4<br>110      | 1.8<br>390         | 8700<br>30000      |

mg/kg = milligrams per kilogram GW = groundwater pathway J
Bold & Outlined = Exceeds 1 or more of the Recommended Residual Contaminant Levels mg/kg = milligrams per kilogram

J = Analyte detected between LOD and LOQ

DC-I = direct contact pathway, industrial

### THE ENVIRONMENTAL MANAGEMENT COMPANY LLC

## Soil Sample Analytical Results - PolyAromatic Hydrocarbons (PAH)

Novak Site (Lime Pit), West Allis, Wisconsin All Contaminants Shown In (mg/kg)

| Sample<br>ID    | Sample<br>Date | Depth<br>(feet bgs) | Acenaph<br>thene | Acenaph<br>thylene | Anthr<br>acene     | Benz(a)<br>anthra<br>cene | Benzo(a)<br>pyrene | Benzo(b)<br>fluoran<br>thene | Benzo<br>(g,h,i)<br>perylene | Benzo(k)<br>fluoran<br>thene | Chry<br>sene       | Dibenz (a,h) anthracene | Fluor<br>anthene    | Fluorene           | Indeno<br>(1,2,3-cd)<br>pyrene | 1-Methyl<br>naphth<br>alene | 2-Methyl<br>naphthal<br>ene | Naph<br>thalene   | Phenan<br>threne   | Pyrene             |
|-----------------|----------------|---------------------|------------------|--------------------|--------------------|---------------------------|--------------------|------------------------------|------------------------------|------------------------------|--------------------|-------------------------|---------------------|--------------------|--------------------------------|-----------------------------|-----------------------------|-------------------|--------------------|--------------------|
| SB-19           | 05/27/04       | 0 - 4               | <1.4             | <1.6               | 3 <sup>J</sup>     | 4.2 <sup>J</sup>          | 3.6 <sup>J</sup>   | 4.2 <sup>J</sup>             | 1.6 <sup>J</sup>             | <2.25                        | 4.5 <sup>J</sup>   | <2.35                   | 11                  | <1.6               | <2.8                           | <2.35                       | <1.1                        | <1.95             | 11                 | 11                 |
| SB-20           | 05/27/04       | 0 - 4               | 1.3 <sup>J</sup> | <0.64              | 3.8                | 5.6                       | 5.1                | 6.1                          | 2.3                          | 2.5 <sup>J</sup>             | 5.3                | < 0.94                  | 12                  | 1.7 <sup>J</sup>   | 2.4 <sup>J</sup>               | <0.94                       | <0.44                       | <0.78             | 12                 | 12                 |
| SB-21           | 05/27/04       | 0 - 3               | 7.4 <sup>J</sup> | <3.2               | 23                 | 46                        | 39                 | 48                           | 17                           | 20                           | 44                 | 5.7 <sup>3</sup>        | 90                  | 7.8 <sup>J</sup>   | 17                             | <4.7                        | <2.2                        | <3.9              | 58                 | 91                 |
| SB-22           | 05/27/04       | 4 - 8               | 0.2              | 0.055 <sup>J</sup> | 0.57               | 0.98                      | 0.88               | 1.2                          | 0.26                         | 0.41                         | 0.92               | 0.09 <sup>J</sup>       | 1.6                 | 0.25               | 0.28                           | <0.047                      | 0.031 <sup>J</sup>          | 0.04 <sup>J</sup> | 1.3                | 1.7                |
| SB-23           | 05/27/04       | 0 - 4               | <0.028           | < 0.032            | 0.11 <sup>J</sup>  | 0.42                      | 0.43               | 0.65                         | 0.14                         | 0.21                         | 0.46               | 0.057 <sup>J</sup>      | 0.83                | < 0.032            | 0.16 <sup>J</sup>              | < 0.047                     | <0.022                      | <0.039            | 0.39               | 0.99               |
| SB-24           | 05/27/04       | 3 - 4               | <0.028           | < 0.032            | <0.046             | <0.033                    | <0.043             | <0.042                       | <0.032                       | < 0.045                      | <0.046             | <0.047                  | <0.030              | < 0.032            | <0.056                         | <0.047                      | <0.022                      | <0.039            | <0.036             | <0.039             |
| SB-25           | 05/27/04       | 0 - 4               | <0.028           | < 0.032            | <0.046             | < 0.033                   | <0.043             | <0.042                       | <0.032                       | < 0.045                      | <0.046             | <0.047                  | <0.030              | < 0.032            | <0.056                         | < 0.047                     | <0.022                      | <0.039            | <0.036             | <0.039             |
| SB-26           | 01/09/07       | 3 - 4               | <0.017           | <0.019             | <0.011             | <0.012                    | <0.0081            | <0.0075                      | <0.0085                      | < 0.014                      | <0.020             | <0.011                  | <0.0074             | <0.0095            | <0.0095                        | <0.011                      | <0.012                      | <0.017            | <0.0089            | <0.011             |
| SB-27           | 01/09/07       | 3 - 4               | < 0.017          | <0.019             | <0.011             | <0.012                    | <0.0081            | <0.0075                      | <0.0085                      | < 0.014                      | <0.020             | <0.011                  | 0.0081 <sup>J</sup> | <0.0095            | <0.0095                        | <0.011                      | <0.012                      | <0.017            | <0.0089            | <0.011             |
| SB-28           | 01/09/07       | 3 - 4               | < 0.017          | <0.019             | 0.013 <sup>J</sup> | 0.029 <sup>J</sup>        | 0.023 <sup>J</sup> | 0.038                        | 0.021 <sup>J</sup>           | 0.017 <sup>J</sup>           | 0.035 <sup>J</sup> | <0.011                  | 0.074               | <0.0095            | 0.014 <sup>J</sup>             | <0.011                      | <0.012                      | <0.017            | 0.033              | 0.055              |
| SB-29           | 01/09/07       | 2 - 3               | <0.017           | <0.019             | 0.036              | 0.038                     | 0.026 <sup>J</sup> | 0.040                        | 0.023 <sup>J</sup>           | < 0.014                      | 0.045 <sup>J</sup> | <0.011                  | 0.068               | 0.011 <sup>J</sup> | 0.013 <sup>J</sup>             | 0.059                       | 0.043                       | <0.017            | 0.260              | 0.068              |
| SB-30           | 01/09/07       | 5 - 6               | <0.017           | <0.019             | <0.011             | <0.012                    | <0.0081            | <0.0075                      | <0.0085                      | < 0.014                      | <0.020             | <0.011                  | <0.0074             | <0.0095            | <0.0095                        | <0.011                      | <0.012                      | <0.017            | <0.0089            | <0.011             |
| SB-31           | 01/09/07       | 3 - 4               | <0.017           | <0.019             | <0.011             | < 0.012                   | <0.0081            | <0.0075                      | <0.0085                      | < 0.014                      | <0.020             | <0.011                  | <0.0074             | <0.0095            | <0.0095                        | <0.011                      | <0.012                      | <0.017            | <0.0089            | <0.011             |
| SB-32           | 01/09/07       | 3 - 4               | <0.017           | <0.019             | <0.011             | <0.012                    | <0.0081            | < 0.0075                     | <0.0085                      | < 0.014                      | <0.020             | <0.011                  | <0.0074             | <0.0095            | <0.0095                        | <0.011                      | <0.012                      | <0.017            | <0.0089            | <0.011             |
| SB-33           | 01/09/07       | 3 - 4               | <0.017           | <0.019             | <0.011             | <0.012                    | <0.0081            | <0.0075                      | <0.0085                      | <0.014                       | <0.020             | <0.011                  | <0.0074             | <0.0095            | <0.0095                        | <0.011                      | <0.012                      | <0.017            | <0.0089            | <0.011             |
| SB-34           | 01/09/07       | 5 - 6               | <0.017           | <0.019             | <0.011             | <0.012                    | <0.0081            | < 0.0075                     | <0.0085                      | <0.014                       | <0.020             | <0.011                  | <0.0074             | <0.0095            | <0.0095                        | <0.011                      | <0.012                      | <0.017            | <0.0089            | <0.011             |
| SB-35           | 01/09/07       | 3 - 4               | <0.017           | <0.019             | <0.011             | 0.013 <sup>J</sup>        | <0.0081            | 0.0098 <sup>J</sup>          | <0.0085                      | <0.014                       | <0.020             | <0.011                  | 0.021 <sup>J</sup>  | <0.0095            | <0.0095                        | <0.011                      | <0.012                      | <0.017            | 0.014 <sup>J</sup> | 0.018 <sup>J</sup> |
| SB-36           | 01/09/07       | 3 - 4               | <0.017           | <0.019             | <0.011             | <0.012                    | <0.0081            | <0.0075                      | <0.0085                      | <0.014                       | <0.020             | <0.011                  | <0.0074             | <0.0095            | <0.0095                        | <0.011                      | <0.012                      | <0.017            | <0.0089            | <0.011             |
| SB-37           | 01/09/07       | 3 - 4               | <0.017           | <0.019             | <0.011             | <0.012                    | <0.0081            | <0.0075                      | <0.0085                      | <0.014                       | <0.020             | <0.011                  | <0.0074             | <0.0095            | <0.0095                        | <0.011                      | <0.012                      | <0.017            | <0.0089            | <0.011             |
| Recomm<br>Resid |                | GW<br>DC-I          | 38<br>60000      | 0.7<br>360         | 3000<br>300000     | 17<br>3.9                 | 48<br>0.39         | 360<br>3.9                   | 6800<br>39                   | 870<br>39                    | 37<br>390          | 38<br>0.39              | 500<br>40000        | 100<br>40000       | 680<br>3.9                     | 23<br>70000                 | 20<br>40000                 | 0.4<br>110        | 1.8<br>390         | 8700<br>30000      |

#### THE ENVIRONMENTAL MANAGEMENT COMPANY LLC

#### Soil Sample Analytical Results - PolyAromatic Hydrocarbons (PAH) Novak Site (Lime Pit), West Allis, Wisconsin

All Contaminants Shown In (mg/kg)

| Sample<br>ID               | Sample<br>Date | Depth<br>(feet bgs) | Acenaph<br>thene   | Acenaph<br>thylene | Anthr<br>acene   | Benz(a)<br>anthra<br>cene | Benzo(a)<br>pyrene | Benzo(b)<br>fluoran<br>thene | Benzo<br>(g,h,i)<br>perylene | Benzo(k)<br>fluoran<br>thene | Chry<br>sene | Dibenz<br>(a,h)<br>anthracene | Fluor<br>anthene | Fluorene         | Indeno<br>(1,2,3-cd)<br>pyrene | 1-Methyl<br>naphth<br>alene | 2-Methyl<br>naphthal<br>ene | Naph<br>thalene    | Phenan<br>threne   | Pyrene        |
|----------------------------|----------------|---------------------|--------------------|--------------------|------------------|---------------------------|--------------------|------------------------------|------------------------------|------------------------------|--------------|-------------------------------|------------------|------------------|--------------------------------|-----------------------------|-----------------------------|--------------------|--------------------|---------------|
| MW-1                       | 08/02/04       | 18 - 20             | <0.041             | <0.042             | <0.034           | < 0.054                   | <0.059             | < 0.042                      | <0.082                       | < 0.079                      | <0.038       | < 0.076                       | <0.042           | <0.041           | <0.069                         | < 0.037                     | <0.072                      | <0.040             | 0.022 <sup>J</sup> | <0.058        |
| MW-2                       | 08/02/04       | 12 - 14             | <0.041             | <0.042             | <0.034           | < 0.054                   | <0.059             | < 0.042                      | <0.082                       | <0.079                       | <0.038       | < 0.076                       | <0.042           | <0.041           | <0.069                         | < 0.037                     | <0.072                      | <0.040             | <0.020             | <0.058        |
| MW-3                       | 08/02/04       | 9 - 11              | <0.041             | <0.042             | <0.034           | < 0.054                   | <0.059             | < 0.042                      | <0.082                       | < 0.079                      | <0.038       | < 0.076                       | <0.042           | <0.041           | <0.069                         | < 0.037                     | <0.072                      | <0.040             | <0.020             | <0.058        |
| MW-4                       | 08/03/04       | 12 - 14             | <0.041             | <0.042             | <0.034           | < 0.054                   | <0.059             | < 0.042                      | <0.082                       | < 0.079                      | <0.038       | < 0.076                       | <0.042           | <0.041           | <0.069                         | < 0.037                     | < 0.072                     | <0.040             | <0.020             | <0.058        |
| MW-5                       | 08/03/04       | 13.5 - 14           | 0.097 <sup>J</sup> | <0.042             | 0.2              | 0.34                      | 0.32               | 0.41                         | 0.11 <sup>J</sup>            | 0.12 <sup>J</sup>            | 0.33         | < 0.076                       | 0.83             | 0.14             | 0.13 <sup>J</sup>              | 0.048 <sup>J</sup>          | <0.072                      | 0.31               | 0.75               | 0.74          |
| MW-6                       | 08/03/04       | 15 - 17             | <0.041             | <0.042             | <0.034           | < 0.054                   | <0.059             | <0.042                       | <0.082                       | <0.079                       | <0.038       | < 0.076                       | <0.042           | <0.041           | <0.069                         | <0.037                      | <0.072                      | <0.040             | <0.020             | <0.058        |
| MW-7                       | 08/03/04       | 3 - 5               | <0.041             | <0.042             | <0.034           | < 0.054                   | <0.059             | <0.042                       | <0.082                       | <0.079                       | <0.038       | <0.076                        | <0.042           | <0.041           | <0.069                         | < 0.037                     | < 0.072                     | <0.040             | <0.020             | <0.058        |
| MW-8                       | 08/09/04       | 2-3                 | 0.110 <sup>J</sup> | 0.310              | 0.410            | 1.20                      | 1.30               | 1.80                         | 0.30                         | 0.95                         | 1.50         | 0.12 <sup>J</sup>             | 3.40             | 0.17             | 0.310                          | 0.041 <sup>J</sup>          | <0.072                      | 0.078 <sup>J</sup> | 1.40               | 3.0           |
| MW-8                       | 08/09/04       | 4-6                 | <0.041             | <0.042             | <0.034           | < 0.054                   | <0.059             | <0.042                       | <0.082                       | <0.079                       | <0.038       | < 0.076                       | <0.042           | <0.041           | < 0.069                        | <0.037                      | <0.072                      | <0.040             | <0.020             | <0.058        |
| MW-9                       | 08/09/04       | 8.5-9               | <0.041             | <0.042             | <0.034           | < 0.054                   | <0.059             | <0.042                       | <0.082                       | <0.079                       | <0.038       | <0.076                        | <0.042           | <0.041           | <0.069                         | < 0.037                     | <0.072                      | <0.040             | <0.020             | <0.058        |
| MW-10                      | 08/09/04       | 4-6                 | <0.041             | <0.042             | <0.034           | < 0.054                   | <0.059             | <0.042                       | <0.082                       | <0.079                       | <0.038       | < 0.076                       | <0.042           | <0.041           | <0.069                         | < 0.037                     | <0.072                      | <0.040             | <0.020             | <0.058        |
| MW-11                      | 08/09/04       | 4-6                 | <0.041             | <0.042             | <0.034           | < 0.054                   | <0.059             | <0.042                       | <0.082                       | <0.079                       | <0.038       | < 0.076                       | <0.042           | <0.041           | <0.069                         | < 0.037                     | <0.072                      | <0.040             | <0.020             | <0.058        |
| MW-12                      | 08/09/04       | 4-6                 | 1.4                | 0.24               | 5.7 <sup>J</sup> | 11.0                      | 9.7                | 12.0                         | 4.6 <sup>J</sup>             | 4.1 <sup>J</sup>             | 11.0         | 0.63                          | 28.0             | 2.3 <sup>J</sup> | 4.3 <sup>J</sup>               | 0.210                       | 0.240                       | 0.60               | 20.0               | 24.0          |
| MW-13                      | 08/09/04       | 4-6                 | <0.041             | <0.042             | <0.034           | < 0.054                   | <0.059             | <0.042                       | <0.082                       | <0.079                       | <0.038       | < 0.076                       | <0.042           | <0.041           | <0.069                         | <0.037                      | <0.072                      | <0.040             | 0.021 <sup>J</sup> | <0.058        |
| MW-14                      | 08/09/04       | 4-6                 | 0.370              | <0.042             | 0.170            | 0.380                     | 0.380              | 0.380                        | <0.082                       | 0.270                        | 0.430        | < 0.076                       | 0.800            | 0.240            | 0.074 <sup>J</sup>             | 0.110 <sup>J</sup>          | 0.220 <sup>J</sup>          | 0.180              | 0.680              | 0.930         |
| Recomi<br>Resi<br>Contamin |                | GW<br>DC-I          | 38<br>60000        | 0.7<br>360         | 3000<br>300000   | 17<br>3.9                 | 48<br>0.39         | 360<br>3.9                   | 6800<br>39                   | 870<br>39                    | 37<br>390    | 38<br>0.39                    | 500<br>40000     | 100<br>40000     | 680<br>3.9                     | 23<br>70000                 | 20<br>40000                 | 0.4<br>110         | 1.8<br>390         | 8700<br>30000 |

mg/kg = milligrams per kilogram GW = groundwater pathway J
Bold & Outlined = Exceeds 1 or more of the Recommended Residual Contaminant Levels

J = Analyte detected between LOD and LOQ

DC-I = direct contact pathway, industrial

# THE ENVIRONMENTAL MANAGEMENT COMPANY LLC Soil Sample Analytical Results - Volatile Organic Compounds (VOC)

Novak Site (Lime Pit) - West Allis, Wisconsin

All Contaminants Shown In mg/kg • Only Contaminants With Detects Shown

|           |                     |            |             |                           |                          |                        |             |             |                  |                          |                            |             |                           |                     |                         |             |               |        |        |               | 14            |                   |       |
|-----------|---------------------|------------|-------------|---------------------------|--------------------------|------------------------|-------------|-------------|------------------|--------------------------|----------------------------|-------------|---------------------------|---------------------|-------------------------|-------------|---------------|--------|--------|---------------|---------------|-------------------|-------|
| Sample ID | Sample<br>Date      | Feet (bgs) | Ben<br>zene | tert-<br>Butyl<br>benzene | sec-<br>Butyl<br>benzene | n<br>-Butyl<br>benzene | 1,2-<br>DCA | 1,1-<br>DCE | Ethyl<br>benzene | Iso<br>propyl<br>benzene | p-<br>Isopropyl<br>toluene | 1,4-<br>DCB | Methy<br>lene<br>chloride | Naph<br>thalen<br>e | n–<br>Propyl<br>benzene | Tol<br>uene | 1,1,1-<br>TCA | PCE    | TCE    | 1,2,4-<br>TMB | 1,3,5-<br>TMB | Vinyl<br>Chloride | Xy    |
| SB-1      | 2/20/04             | 0 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | 0.25                | <0.025                  | <0.025      | <0.02         | <0.025 | <0.025 | <0.025        | <0.025        | <0.025            | <0.02 |
| SB-2      | 2/20/04             | 0 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | <0.025              | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | <0.025        | <0.025            | <0.02 |
| SB-3      | 2/20/04             | 0 - 4      | <0.025      | < 0.025                   | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | < 0.025                   | <0.025              | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | <0.025        | <0.025            | <0.02 |
| SB-4      | 2/20/04             | 0 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | 0.038 <sup>J</sup>  | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | <0.025        | <0.025            | <0.02 |
| SB-5      | 2/20/04             | 0 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | <0.025              | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | < 0.025       | <0.025            | <0.02 |
| SB-6      | 2/20/04             | 0 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | 130                 | < 0.025                 | 0.029       | <0.025        | <0.025 | <0.025 | 0.037         | < 0.025       | <0.025            | 0.03  |
| SB-7      | 2/20/04             | 0 - 4      | <0.025      | < 0.025                   | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | 0.157               | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | <0.025        | <0.025            | <0.02 |
| SB-8      | 2/20/04             | 0 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | 1.54                | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | < 0.025       | <0.025            | <0.02 |
| SB-9      | 2/20/04             | 0 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | 0.257               | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | < 0.025       | <0.025            | <0.0  |
| SB-10     | 2/20/04             | 0 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | 0.069               | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | <0.025        | <0.025            | <0.02 |
| SB-11     | 5/27/04             | 0 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | 1.33                | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | <0.025        | <0.025            | <0.02 |
| SB-12     | 5/27/04             | 0 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | 1.33                | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | <0.025        | <0.025            | <0.02 |
| SB-13     | 5/27/04             | 0 - 3      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | 2.46                | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | <0.025        | <0.025            | <0.02 |
| SB-14     | 5/27/04             | 0 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | 0.025 <sup>J</sup>  | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | <0.025        | <0.025            | <0.02 |
| SB-15     | 5/27/04             | 0 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | <0.025              | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | <0.025        | <0.025            | <0.02 |
| SB-18     | 5/27/04             | 4 - 8      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | 0.107               | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | <0.025        | <0.025            | <0.02 |
| SB-19     | 5/27/04             | 0 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | 0.338               | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | <0.025        | <0.025            | <0.03 |
| SB-20     | 5/27/04             | 0 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | 0.633               | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | <0.025        | <0.025            | <0.02 |
| SB-22     | 5/27/04             | 4 - 8      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | 0.32                | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | <0.025        | <0.025            | <0.02 |
| SB-24     | 5/27/04             | 3 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | <0.025              | <0.025                  | <0.025      | <0.025        | <0.025 | <0.025 | <0.025        | <0.025        | <0.025            | <0.02 |
| Residu    | al Contam<br>Levels | inant      | 0.0055      | -                         | -                        | -                      | 0.004<br>9  | -           | 2.9              | -                        | -                          | -           | -                         | 0.4†                | -                       | 1.5         | -             | -      | -      | -             | -             | -                 | 4.1   |

mg/kg = milligrams per kilogram

† = recommended RCL

Bold & Outlined = exceeds RCL

J = Analyte detected between LOD and LOQ

#### THE ENVIRONMENTAL MANAGEMENT COMPANY LLC

#### Soil Sample Analytical Results - Volatile Organic Compounds (VOC) Novak Site (Lime Pit) - West Allis, Wisconsin

All Contaminants Shown In mg/kg • Only Contaminants With Detects Shown

| Sample<br>ID | Sample<br>Date | Feet (bgs) | Ben<br>zene | tert-<br>Butyl<br>benzene | sec-<br>Butyl<br>benzene | n<br>-Butyl<br>benzene | 1,2-<br>DCA | 1,1-<br>DCE | Ethyl<br>benzene | Iso<br>propyl<br>benzene | p-<br>Isopropyl<br>toluene | 1,4-<br>DCB | Methy<br>lene<br>chloride | Naph<br>thalen<br>e | n–<br>Propyl<br>benzene | Tol<br>uene | 1,1,1-<br>TCA | PCE                | TCE    | 1,2,4-<br>TMB | 1,3,5-<br>TMB | Vinyl<br>Chloride | Xy<br>lenes |
|--------------|----------------|------------|-------------|---------------------------|--------------------------|------------------------|-------------|-------------|------------------|--------------------------|----------------------------|-------------|---------------------------|---------------------|-------------------------|-------------|---------------|--------------------|--------|---------------|---------------|-------------------|-------------|
| SB-26        | 01/09/07       | 3 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | <0.025              | <0.025                  | <0.025      | <0.025        | <0.025             | <0.025 | <0.025        | <0.025        | <0.025            | <0.025      |
| SB-27        | 01/09/07       | 3 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | <0.025              | <0.025                  | <0.025      | <0.025        | <0.025             | <0.025 | <0.025        | <0.025        | <0.025            | <0.025      |
| SB-28        | 01/09/07       | 3 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | < 0.025     | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | <0.025              | <0.025                  | <0.025      | <0.025        | <0.025             | <0.025 | <0.025        | <0.025        | <0.025            | <0.025      |
| SB-29        | 01/09/07       | 2-3        | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | <0.025              | <0.025                  | <0.025      | <0.025        | <0.025             | <0.025 | <0.025        | <0.025        | <0.025            | <0.025      |
| SB-30        | 01/09/07       | 5 - 6      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | <0.025              | <0.025                  | <0.025      | <0.025        | < 0.025            | <0.025 | <0.025        | <0.025        | <0.025            | <0.025      |
| SB-31        | 01/09/07       | 3 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | <0.025              | <0.025                  | <0.025      | <0.025        | <0.025             | <0.025 | <0.025        | <0.025        | <0.025            | <0.025      |
| SB-32        | 01/09/07       | 3 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | <0.025              | <0.025                  | <0.025      | <0.025        | 0.049 <sup>J</sup> | <0.025 | <0.025        | <0.025        | <0.025            | <0.025      |
| SB-33        | 01/09/07       | 3 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | <0.025              | <0.025                  | <0.025      | <0.025        | <0.025             | <0.025 | <0.025        | <0.025        | <0.025            | <0.025      |
| SB-34        | 01/09/07       | 5 - 6      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | <0.025              | <0.025                  | <0.025      | <0.025        | <0.025             | <0.025 | <0.025        | <0.025        | <0.025            | <0.025      |
| SB-35        | 01/09/07       | 3 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | <0.025              | <0.025                  | <0.025      | <0.025        | <0.025             | <0.025 | <0.025        | <0.025        | <0.025            | <0.025      |
| SB-36        | 01/09/07       | 3 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | < 0.025                   | <0.025              | <0.025                  | <0.025      | <0.025        | <0.025             | <0.025 | <0.025        | <0.025        | <0.025            | <0.025      |
| SB-37        | 01/09/07       | 3 - 4      | <0.025      | <0.025                    | <0.025                   | <0.025                 | <0.025      | <0.025      | <0.025           | <0.025                   | <0.025                     | <0.025      | <0.025                    | <0.025              | <0.025                  | <0.025      | <0.025        | <0.025             | <0.025 | <0.025        | <0.025        | <0.025            | <0.025      |
| Residual     | Contaminan     | t Levels   | 0.0055      | -                         | -                        | -                      | 0.0049      | -           | 2.9              | -                        | -                          | -           | -                         | 0.4†                |                         | 1.5         | -             |                    |        | -             | -             | -                 | 4.1         |

mg/kg = milligrams per kilogram

† = recommended RCL

Bold & Outlined = exceeds RCL

J = Analyte detected between LOD and LOQ

Table 2
THE ENVIRONMENTAL MANAGEMENT COMPANY LLC
Laidlaw Bus Company Site - West Allis, Wisconsin ~ Soil Analytical Results Table: Metals
All contaminants shown in mg/kg (milligrams per kilogram)

| Sample<br>ID | Sample<br>Date       | Depth<br>(feet bgs) | Arsenic      | Barium | Cadmium  | Chromium | Lead      | Mercury | Selenium | Silver |
|--------------|----------------------|---------------------|--------------|--------|----------|----------|-----------|---------|----------|--------|
| SB-1         | 04/28/06             | 1.5 - 2.0           | 5.9          | NA     | NA       | NA       | 18        | NA      | NA       | NA     |
| SB-9         | 04/28/06             | 2.5 - 3.0           | 7.6          | NA     | NA ·     | NA       | 930       | NA      | NA       | NA     |
| SB-10        | 04/28/06             | 3.0 - 3.5           | 4.9          | NA     | NA       | NA       | 10        | NA      | NA       | NA     |
| SB-11        | 04/28/06             | 5.5 - 6.5           | 4.9          | NA     | NA       | NA       | 11        | NA      | NA       | NA     |
| SB-12        | 05/01/06             | 1.5 - 2.5           | 3.8          | NA     | NA       | NA       | 26        | NA      | NA       | NA     |
| SB-13        | 05/01/06             | 1.5 - 2.0           | 5.0          | NA     | NA       | NA       | 41        | NA      | NA       | NA     |
| SB-14        | 05/01/06             | 1.5 - 2.5           | 4.0          | NA     | NA       | NA       | 9.2       | NA      | NA       | NA     |
| SB-15        | 05/01/06             | 1.5 - 2.5           | 4.2          | NA     | NA       | NA       | 11        | NA      | NA       | NA     |
|              | Contaminant<br>evels | NI<br>I             | 0.039<br>1.6 |        | 8<br>510 | 16,000   | 50<br>500 |         |          |        |

NI = non-industrial I = industrial NA = not analyzed Bold & Outlined = Exceeds RCL February 1, 2007

#### Table 1

#### THE ENVIRONMENTAL MANAGEMENT COMPANY LLC

### Soil Sample Analytical Results - Volatile Organic Compounds (VOC)

#### Laidlaw Bus Company Site - West Allis, Wisconsin

All Contaminants Shown In mg/kg (milligrams per kilogram) • Only Contaminants With Detects Shown

|              | -              |            |         |                          |                    |             |                  | 0 .                  | 0 , 0                      |                           |                 |                         |                           |         |               |        |               |               | ·       |                   |         |
|--------------|----------------|------------|---------|--------------------------|--------------------|-------------|------------------|----------------------|----------------------------|---------------------------|-----------------|-------------------------|---------------------------|---------|---------------|--------|---------------|---------------|---------|-------------------|---------|
| Sample<br>ID | Sample<br>Date | Feet (bgs) | Benzene | sec-<br>Butyl<br>benzene | n-Butyl<br>benzene | 1,2-<br>DCA | Ethyl<br>benzene | Isopropyl<br>benzene | p-Iso<br>propyl<br>toluene | Methy<br>lene<br>chloride | Naph<br>thalene | n–<br>Propyl<br>benzene | Tetra<br>chloro<br>ethene | Toluene | 1,1,1-<br>TCA | TCE    | 1,2,4-<br>TMB | 1,3,5-<br>TMB | PCE     | Vinyl<br>Chloride | Xylenes |
| SB-1         | 04/28/06       | 1.5-2.0    | <0.025  | <0.025                   | <0.025             | <0.025      | <0.025           | <0.025               | <0.025                     | <0.025                    | <0.025          | <0.025                  | <0.025                    | <0.025  | <0.025        | <0.025 | <0.025        | <0.025        | <0.025  | <0.025            | <0.050  |
| SB-1         | 04/28/06       | 10-12      | <0.025  | 0.055                    | <0.025             | <0.025      | < 0.025          | <0.025               | <0.025                     | <0.025                    | <0.025          | <0.025                  | <0.025                    | <0.025  | <0.025        | <0.025 | <0.025        | <0.025        | < 0.025 | <0.025            | <0.050  |
| SB-2         | 04/28/06       | 5.0-6.5    | <0.025  | < 0.025                  | <0.025             | <0.025      | < 0.025          | <0.025               | <0.025                     | <0.025                    | <0.025          | <0.025                  | <0.025                    | <0.025  | <0.025        | <0.025 | <0.025        | <0.025        | <0.025  | <0.025            | <0.050  |
| SB-3         | 04/28/06       | 1.5-2.5    | <0.025  | < 0.025                  | <0.025             | <0.025      | < 0.025          | <0.025               | <0.025                     | <0.025                    | <0.025          | <0.025                  | <0.025                    | <0.025  | <0.025        | <0.025 | <0.025        | <0.025        | < 0.025 | <0.025            | <0.050  |
| SB-4         | 04/28/06       | 4-5        | <0.025  | < 0.025                  | <0.025             | <0.025      | < 0.025          | <0.025               | <0.025                     | <0.025                    | <0.025          | <0.025                  | <0.025                    | <0.025  | <0.025        | <0.025 | <0.025        | <0.025        | < 0.025 | <0.025            | <0.050  |
| SB-5         | 04/28/06       | 4-5        | <0.025  | < 0.025                  | <0.025             | <0.025      | <0.025           | <0.025               | <0.025                     | <0.025                    | <0.025          | <0.025                  | <0.025                    | <0.025  | <0.025        | <0.025 | <0.025        | <0.025        | < 0.025 | <0.025            | <0.050  |
| SB-6         | 04/28/06       | 3-4        | <0.025  | < 0.025                  | <0.025             | <0.025      | < 0.025          | <0.025               | <0.025                     | <0.025                    | <0.025          | <0.025                  | <0.025                    | <0.025  | <0.025        | <0.025 | <0.025        | <0.025        | < 0.025 | <0.025            | <0.050  |
| SB-7         | 04/28/06       | 2-3        | <0.025  | < 0.025                  | <0.025             | <0.025      | < 0.025          | <0.025               | <0.025                     | <0.025                    | <0.025          | <0.025                  | <0.025                    | <0.025  | <0.025        | <0.025 | <0.025        | <0.025        | < 0.025 | <0.025            | <0.050  |
| SB-8         | 04/28/06       | 6-8        | <0.025  | < 0.025                  | <0.025             | <0.025      | < 0.025          | <0.025               | <0.025                     | <0.025                    | <0.025          | <0.025                  | <0.025                    | <0.025  | <0.025        | <0.025 | <0.025        | <0.025        | <0.025  | <0.025            | <0.050  |
| SB-8         | 04/28/06       | 12.5-13    | <0.025  | < 0.025                  | <0.025             | <0.025      | < 0.025          | <0.025               | <0.025                     | <0.025                    | <0.025          | <0.025                  | <0.025                    | <0.025  | <0.025        | <0.025 | <0.025        | <0.025        | <0.025  | <0.025            | <0.050  |
| SB-9         | 04/28/06       | 2.5-3.0    | <0.025  | < 0.025                  | <0.025             | <0.025      | < 0.025          | <0.025               | <0.025                     | <0.025                    | <0.025          | <0.025                  | <0.025                    | <0.025  | <0.025        | <0.025 | <0.025        | <0.025        | < 0.025 | <0.025            | <0.050  |
| SB-10        | 04/28/06       | 3.0-3.5    | <0.025  | < 0.025                  | <0.025             | <0.025      | < 0.025          | <0.025               | <0.025                     | <0.025                    | <0.025          | <0.025                  | <0.025                    | <0.025  | <0.025        | <0.025 | <0.025        | <0.025        | <0.025  | <0.025            | <0.050  |
| SB-11        | 04/28/06       | 5.5-6.5    | <0.025  | < 0.025                  | <0.025             | <0.025      | < 0.025          | <0.025               | <0.025                     | <0.025                    | <0.025          | < 0.025                 | <0.025                    | <0.025  | <0.025        | <0.025 | <0.025        | <0.025        | <0.025  | <0.025            | <0.050  |
| SB-12        | 05/01/06       | 1.5-2.5    | <0.025  | < 0.025                  | <0.025             | <0.025      | < 0.025          | <0.025               | <0.025                     | <0.025                    | <0.025          | <0.025                  | <0.025                    | <0.025  | <0.025        | <0.025 | <0.025        | <0.025        | <0.025  | <0.025            | <0.050  |
| SB-13        | 05/01/06       | 1.5-2.0    | <0.025  | < 0.025                  | <0.025             | <0.025      | < 0.025          | <0.025               | <0.025                     | <0.025                    | <0.025          | <0.025                  | <0.025                    | <0.025  | 0.240         | <0.025 | <0.025        | <0.025        | 0.064   | <0.025            | <0.050  |
| SB-14        | 05/01/06       | 1.5-2.5    | <0.025  | <0.025                   | <0.025             | <0.025      | <0.025           | <0.025               | <0.025                     | <0.025                    | <0.025          | <0.025                  | <0.025                    | <0.025  | <0.025        | <0.025 | <0.025        | <0.025        | <0.025  | <0.025            | <0.050  |
| SB-15        | 05/01/06       | 1.5-2.5    | <0.025  | < 0.025                  | <0.025             | <0.025      | < 0.025          | <0.025               | <0.025                     | <0.025                    | <0.025          | <0.025                  | <0.025                    | <0.025  | <0.025        | <0.025 | <0.025        | <0.025        | <0.025  | <0.025            | <0.050  |
| Residual     | Contamina      | nt Levels  | 0.0055  | _                        | _                  | 0.0049      | 2.9              | -                    | -                          | -                         | 0.4†            | -                       | -                         | 1.5     | -             | -      | -             | -             | _       | -                 | 4.1     |

† = recommended RCL

Bold & Outlined = exceeds RCL

Bold & Italics = exceeds NR 746.06(2)(b) Table 1 levels (indicators of potential free product) or NR 746.06(2)(c) Table 2 levels (indicates unsafe for human contact) ported by lab

J = Analyte detected between LOD and LOQ

\* Possible lab contamination reported by lab

#### Table 3

#### THE ENVIRONMENTAL MANAGEMENT COMPANY LLC

# Soil Sample Analytical Results - PolyAromatic Hydrocarbons (PAH) Laidlaw Bus Company Site - West Allis, Wisconsin

All Contaminants Shown In mg/kg (milligrams per kilogram)

| Sample<br>ID          | Sample<br>Date           | Depth<br>(feet bgs) | Acenap<br>hthene   | Acenaph<br>thylene | Anthr<br>acene         | Benz(a)<br>anthra<br>cene | Benzo (a) pyrene     | Benzo(b)<br>fluoran<br>thene | Benzo<br>(g,h,i)<br>perylene | Benzo(k)<br>fluoran<br>thene | Chrysene           | Dibenz (a,h) anthracene | Fluor<br>anthene    | Fluorene            | Indeno<br>(1,2,3-cd)<br>pyrene | 1-Methyl<br>naphth<br>alene | 2-Methyl<br>naphthale<br>ne | Naph<br>thalene    | Phenan<br>threne   | Pyrene               |
|-----------------------|--------------------------|---------------------|--------------------|--------------------|------------------------|---------------------------|----------------------|------------------------------|------------------------------|------------------------------|--------------------|-------------------------|---------------------|---------------------|--------------------------------|-----------------------------|-----------------------------|--------------------|--------------------|----------------------|
| SB-1                  | 04/28/06                 | 1.5-2.0             | <0.017             | <0.019             | <0.011                 | 0.013 <sup>J</sup>        | 0.011 <sup>J</sup>   | 0.043                        | 0.019 <sup>J</sup>           | <0.014                       | 0.025 <sup>J</sup> | <0.011                  | 0.025               | <0.0095             | 0.016 <sup>J</sup>             | <0.011                      | <0.012                      | <0.017             | 0.013 <sup>J</sup> | 0.018 <sup>J</sup>   |
| SB-1                  | 04/28/06                 | 5.5-6.5             | <0.017             | <0.019             | <0.011                 | < 0.012                   | <0.0081              | <0.0081                      | <0.0085                      | <0.014                       | <0.020             | <0.011                  | <0.0074             | <0.0095             | <0.0095                        | <0.011                      | <0.012                      | <0.017             | <0.0089            | <0.011               |
| SB-2                  | 04/28/06                 | 5.0-6.5             | <0.017             | <0.019             | <0.011                 | 0.025 <sup>J</sup>        | 0.018 <sup>J</sup>   | 0.054                        | 0.026 <sup>J</sup>           | <0.014                       | 0.045 <sup>J</sup> | <0.011                  | 0.082               | <0.0095             | 0.015 <sup>J</sup>             | 0.047                       | 0.043                       | 0.037 <sup>J</sup> | 0.102              | 0.063                |
| SB-3                  | 04/28/06                 | 1.5-2.5             | <0.017             | <0.019             | <0.011                 | 0.013 <sup>J</sup>        | <0.0081              | 0.015 <sup>J</sup>           | <0.0085                      | <0.014                       | <0.020             | <0.011                  | 0.018 <sup>J</sup>  | <0.0095             | <0.0095                        | $0.032^{J}$                 | 0.028 <sup>J</sup>          | 0.023 <sup>J</sup> | 0.057              | 0.019 <sup>J</sup>   |
| SB-4                  | 04/28/06                 | 4-5                 | <0.017             | <0.019             | <0.011                 | <0.012                    | <0.0081              | <0.0081                      | <0.0085                      | <0.014                       | <0.020             | <0.011                  | < 0.0074            | <0.0095             | <0.0095                        | <0.011                      | <0.012                      | <0.017             | <0.0089            | <0.011               |
| SB-5                  | 04/28/06                 | 4-5                 | <0.017             | 0.394              | 0.516                  | 2.040                     | 2.080                | 2.620                        | 0.998                        | 0.774                        | 1.630              | 0.158                   | 5.720               | 0.088               | 0.892                          | 0.072                       | 0.060 <sup>J</sup>          | 0.080 <sup>J</sup> | 2.080              | 5.900                |
| SB-6                  | 04/28/06                 | 3-4                 | <0.017             | <0.019             | <0.011                 | < 0.012                   | <0.0081              | <0.0081                      | <0.0085                      | <0.014                       | <0.020             | <0.011                  | < 0.0074            | <0.0095             | <0.0095                        | <0.011                      | <0.012                      | <0.017             | <0.0089            | <0.011               |
| SB-7                  | 04/28/06                 | 2-3                 | <0.017             | <0.019             | <0.011                 | <0.012                    | <0.0081              | <0.0081                      | <0.0085                      | <0.014                       | <0.020             | <0.011                  | <0.0074             | <0.0095             | <0.0095                        | <0.011                      | <0.012                      | <0.017             | <0.0089            | <0.011               |
| SB-8                  | 04/28/06                 | 6-8                 | <0.017             | 0.019 <sup>J</sup> | 0.061                  | 0.276                     | 0.258                | 0.742                        | 0.255                        | 0.179                        | 0.424              | 0.081                   | 0.701               | 0.021 <sup>J</sup>  | 0.203                          | 0.024 <sup>J</sup>          | 0.017 <sup>J</sup>          | 0.023 <sup>J</sup> | 0.371              | 0.498                |
| SB-8                  | 04/28/06                 | 12.5-13             | <0.017             | <0.019             | <0.011                 | < 0.012                   | <0.0081              | <0.0081                      | <0.0085                      | <0.014                       | <0.020             | <0.011                  | <0.0074             | <0.0095             | <0.0095                        | <0.011                      | <0.012                      | <0.017             | <0.0089            | <0.011               |
| SB-9                  | 04/28/06                 | 2.5-3               | < 0.017            | 0.054 <sup>J</sup> | 0.036                  | 0.554                     | 0.527                | 0.977                        | 0.280                        | 0.298                        | 0.548              | 0.060                   | 1.190               | <0.0095             | 0.305                          | <0.011                      | <0.012                      | <0.017             | 0.133              | 0.883                |
| SB-10                 | 04/28/06                 | 3-3.5               | <0.017             | <0.019             | <0.011                 | <0.012                    | <0.0081              | < 0.0081                     | <0.0085                      | <0.014                       | <0.020             | <0.011                  | < 0.0074            | <0.0095             | <0.0095                        | <0.011                      | <0.012                      | <0.017             | <0.0089            | <0.011               |
| SB-11                 | 04/28/06                 | 5.5-6.5             | <0.017             | <0.019             | <0.011                 | <0.012                    | <0.0081              | <0.0081                      | <0.0085                      | <0.014                       | <0.020             | <0.011                  | 0.013 <sup>J</sup>  | <0.0095             | <0.0095                        | <0.011                      | <0.012                      | <0.017             | <0.0089            | <0.011               |
| SB-12                 | 05/01/06                 | 1.5-2.5             | <0.017             | <0.019             | <0.011                 | 0.020 <sup>J</sup>        | 0.013 <sup>J</sup>   | 0.047                        | 0.018 <sup>J</sup>           | <0.014                       | 0.039 <sup>J</sup> | <0.011                  | 0.063               | <0.0095             | 0.011 <sup>J</sup>             | 0.025 <sup>J</sup>          | 0.020 <sup>J</sup>          | <0.017             | 0.060              | 0.044                |
| SB-13                 | 05/01/06                 | 1.5-2.0             | <0.017             | <0.019             | <0.011                 | <0.012                    | <0.0081              | < 0.0081                     | <0.0085                      | <0.014                       | <0.020             | <0.011                  | <0.0074             | <0.0095             | <0.0095                        | <0.011                      | <0.012                      | <0.017             | <0.0089            | <0.011               |
| SB-14                 | 05/01/06                 | 1.5-2.5             | < 0.017            | <0.019             | <0.011                 | <0.012                    | <0.0081              | <0.0081                      | <0.0085                      | <0.014                       | <0.020             | <0.011                  | <0.0074             | <0.0095             | <0.0095                        | <0.011                      | <0.012                      | <0.017             | <0.0089            | <0.011               |
| SB-15                 | 05/01/06                 | 1.5-2.5             | <0.017             | <0.019             | <0.011                 | <0.012                    | <0.0081              | <0.0081                      | <0.0085                      | <0.014                       | <0.020             | <0.011                  | <0.0074             | <0.0095             | <0.0095                        | <0.011                      | <0.012                      | <0.017             | <0.0089            | <0.011               |
| Suggested<br>Contamin | d Residual<br>nant Level | GW<br>DC-NI<br>DC-I | 38<br>900<br>60000 | 0.7<br>18<br>360   | 3000<br>5000<br>300000 | 17<br>0.088<br>3.9        | 48<br>0.0088<br>0.39 | 360<br>0.088<br>3.9          | 6800<br>1.8<br>39            | 870<br>0.88<br>39            | 37<br>8.8<br>390   | 38<br>0.0088<br>0.39    | 500<br>600<br>40000 | 100<br>600<br>40000 | 680<br>0.088<br>3.9            | 23<br>1100<br>70000         | 20<br>600<br>40000          | 0.4<br>20<br>110   | 1.8<br>18<br>390   | 8700<br>500<br>30000 |

GW = groundwater pathway DC-NI = direct contact pathway, non-industrial Bolded & Outlined = Exceeds 1 or more of the Suggested Residual Contaminant Levels

J = Analyte detected between LOD and LOQ

DC-I = direct contact pathway, industrial

May 15, 2006

Table 1. Soil Analysis - Detected Constituents

Phase II ESA

"Pioneer Neighborhood"/Former Advertoprint Inc. Facility

West Allis, WI

| Chemical Name            | Concentration (mg/kg dry) | UD 1 (2' 4'\          | HP-2 (2'-4')          | עם און און                         | HP-5 (2'-4')          | HP-7 (0'-2')                                                   | HP-7 (2'-4')          | SB-1 (2'-4')                       | SB 2 (2) 4')                              | CD 2 (4) C')          | SB 2 (2) 21)                   | SD 2 /2! 4!\                       | SD 2 (4' S')                          | SD 4 (21.21)                   | CD 4 (4' C')          | SD 5 (41.20)                   | SD 5 (4) 5"\                       | SB-6                                         | SB-6 (4'-6')            | SB-7 (0'-1.5')                               | SB-7 (1.5'-4')          |
|--------------------------|---------------------------|-----------------------|-----------------------|------------------------------------|-----------------------|----------------------------------------------------------------|-----------------------|------------------------------------|-------------------------------------------|-----------------------|--------------------------------|------------------------------------|---------------------------------------|--------------------------------|-----------------------|--------------------------------|------------------------------------|----------------------------------------------|-------------------------|----------------------------------------------|-------------------------|
| Chemical Name            | RCL                       | HF-1 (2-4)            | FF-2 (2-4)            | ПР-3 (0 <i>-2</i> ) ;              | пР-3 (2 <i>-</i> 4)   | HP-7 (0-2)                                                     | ΠP-1 (2-4)            | 56-1 (2-4)                         | SB-2 (2'-4')                              | SB-2 (4'-6')          | SB-3 (2'-3')                   | SB-3 (3'-4')                       | SB-3 (4'-6')                          | SB-4 (2'-3')                   | SB-4 (4'-6')          | SB-5 (1'-2')                   | SB-5 (4'-6')                       | (0'-2') <sup>014, 017</sup>                  | SB-0 (4-6)              | 36-7 (0-1.5)                                 | 36-7 (1.5-4)            |
| DATE                     | •                         | 8/31/2006             | 8/31/2006             | 8/31/2006                          | 8/31/2006             | 8/31/2006                                                      | 8/31/2006             | 8/31/2006                          | 8/31/2006                                 | 8/31/2006             | 8/31/2006                      | 8/31/2006                          | 8/31/2006                             | 8/31/2006                      | 8/31/2006             | 8/31/2006                      | 8/31/2006                          | 8/31/2006                                    | 8/31/2006               | 8/31/2006                                    | 8/31/2006               |
| APPARENT SUBSURFAC       | E LAYER                   | Native<br>(saturated) | Native<br>(saturated) | Native<br>(partially<br>saturated) | Native<br>(saturated) | Mix of Historic<br>Fill and Native<br>(partially<br>saturated) | Native<br>(saturated) | Native<br>(partially<br>saturated) | Historic Fill<br>(partially<br>saturated) | Native<br>(saturated) | Historic Fill<br>(unsaturated) | Native<br>(partially<br>saturated) | Native<br>(saturated)                 | Historic Fill<br>(unsaturated) | Native<br>(saturated) | Historic Fill<br>(unsaturated) | Native<br>(partially<br>saturated) | Historic/Normal<br>Fill Mix<br>(unsaturated) | Native<br>(unsaturated) | Historic/Normal<br>Fill Mix<br>(unsaturated) | Native<br>(unsaturated) |
| VOCs - EPA Method 8260B  |                           | <del>-</del>          |                       |                                    |                       |                                                                |                       |                                    |                                           |                       |                                |                                    |                                       |                                |                       |                                |                                    |                                              |                         |                                              |                         |
| No Detected Constituents |                           | ND                    | ND                    | -                                  | ND                    |                                                                | ND                    | ND                                 |                                           | ND                    |                                | ND                                 |                                       |                                |                       |                                | ND                                 | -                                            | ND                      |                                              | ND                      |
| PAHs - EPA Method 8310   |                           |                       |                       | <u> </u>                           |                       |                                                                |                       |                                    |                                           |                       | -                              | •                                  |                                       |                                | ,                     |                                |                                    |                                              |                         |                                              |                         |
| Benzo(a)anthracene       | 0.088 (DC)                | _                     | _                     | <0.600                             | _                     | <0.603                                                         |                       | _                                  | <0.678                                    |                       | <0.565                         |                                    | <0.573                                | 0.934                          | <0.603                | <0.470                         |                                    | <0.126                                       | _                       | <0.562                                       |                         |
| Benzo(a)pyrene           | 0.0088 (DC)               | _                     |                       | <0.060                             | _                     | <0.0603                                                        |                       | -                                  | <0.0678                                   | _                     | 0.216                          | T -                                | <0.0573                               | 1.040                          | <0.0603               | <0.0470                        | _                                  | 0.021                                        |                         | 0.507                                        |                         |
| Benzo(b)fluoranthene     | 0.088 (DC)                |                       |                       | <0.600                             |                       | <0.603                                                         |                       |                                    | <0.678                                    | -                     | <0.565                         | _                                  | <0.573                                | 0.952                          | <0.603                | <0.470                         | _                                  | <0.126                                       |                         | <0.562                                       |                         |
| Fluoranthene             | 500 (G)                   |                       | _                     | <1.200                             |                       | <1.210                                                         | -                     |                                    | <1.360                                    |                       | <1.130                         | _                                  | <1.150                                | 1.660                          | <1.120                | <0.941                         |                                    | <0.251                                       |                         | <1.120                                       | _                       |
| Indeno(1,2,3-cd)pyrene   | 0.088 (DC)                |                       | _                     | <0.600                             |                       | <0.603                                                         |                       |                                    | <0.678                                    |                       | <0.565                         |                                    | <0.573                                | 0.813                          | <0.603                | <0.470                         | _                                  | <0.126                                       |                         | <0.562                                       |                         |
| Pyrene                   | 500 (DC)                  |                       |                       | <1.200                             |                       | <1.210                                                         |                       |                                    | <1.360                                    | _                     | <1.130                         |                                    | <1.150                                | 1,41                           | <1.120                | <0.941                         |                                    | <0.251                                       |                         | <1.120                                       | _                       |
| RCRA Metals - EPA Method | 6010B/ 7471A              | (Mercury)             |                       |                                    |                       |                                                                |                       |                                    |                                           |                       | •                              |                                    | · · · · · · · · · · · · · · · · · · · |                                |                       |                                |                                    | -                                            |                         |                                              |                         |
| Arsenic                  | 0.43 (DC)                 |                       |                       |                                    | _                     |                                                                |                       |                                    |                                           | _                     | 7.31                           |                                    | 6.07                                  | 11.3                           | 5.05                  | 24.6                           |                                    |                                              |                         | 4.46                                         |                         |
| Barium                   | 330 (G)                   |                       |                       |                                    | -                     |                                                                |                       |                                    |                                           | _                     | 98.9                           |                                    | 47.8                                  | 214                            | 46.1                  | 137                            |                                    |                                              |                         | 50.9                                         | _                       |
| Cadmium                  | 0.75 (G)                  |                       |                       | _                                  | -                     |                                                                |                       |                                    |                                           | _                     | <0.565                         |                                    | <0.573                                | 0.712                          | <0.603                | <0.561                         |                                    |                                              | _                       | 1.40                                         |                         |
| Chromium                 | NE                        |                       |                       |                                    |                       |                                                                | 1                     |                                    | _                                         | _                     | 4.53                           | <del></del>                        | 17.8                                  | 8.05                           | 18.5                  | 7.51                           |                                    | _                                            |                         | 12.7                                         |                         |
| Lead                     | 50 (DC)                   |                       |                       | _                                  |                       |                                                                |                       | _                                  |                                           |                       | 27.2                           |                                    | 10.8                                  | 185                            | 8.43                  | 59.8                           |                                    |                                              |                         | 76.8                                         |                         |
| Mercury                  | 0.21 (G)                  |                       |                       |                                    |                       |                                                                | _                     |                                    | _                                         |                       | <0.0181                        |                                    | <0.0158                               | 0.0488                         | 0.0254                | 0.474                          |                                    |                                              |                         | 0.176                                        |                         |
| GENERAL CHEMISTRY        |                           |                       |                       |                                    |                       |                                                                |                       |                                    |                                           |                       |                                |                                    |                                       |                                |                       |                                |                                    |                                              |                         |                                              |                         |
| Percent Soilds (%)       | NE                        | 84.3                  | 86.3                  | 83.4                               | 81.4                  | 82.9                                                           | 85.4                  | 87.7                               | 82.5                                      | 76.5                  | 88.5                           | 79.8                               | 87.2                                  | 79.4                           | 82.9                  | 89.2                           | 85.0                               | 79.9                                         | 83.5                    | 88.9                                         | 82.3                    |

#### NOTES:

į

. |

i Z <sup>014</sup> - One or more surrogate recoveries were below the laboratory established control limits

Olf of the sample extract, a tar-like substance formed. The filterable portion of the extract was analyzed and the tar substance was discarded. Quantitation is based on the per-filtered extract volume (1mL).

RCL = Residual Contaminant Level for non-industrial sites per chapter NR 720 Wisconsin Administrative Code (c. NR 720 WAC).

Applicable generic RCLs calculated per c. NR 720 WAC procedures and Interim Guidance, WDNR, Bureau of Remediation and Redevelopment,

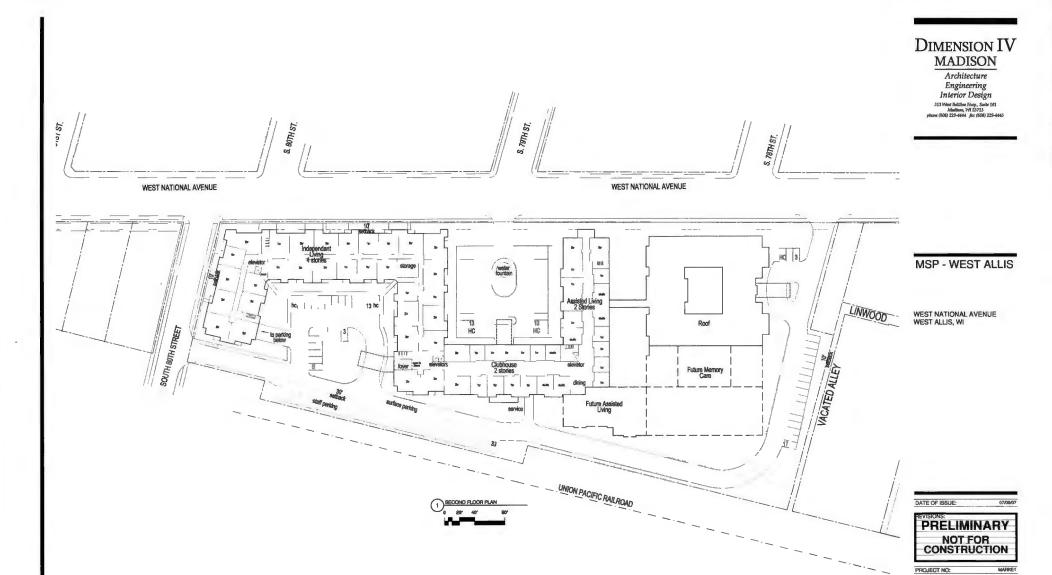
April 1997 (Publication RR-519-97)

\* - RCL calculated using U.S. EPA soil screening website as per WDNR publication Pub-RR-682

VOCs - Volatile Organic Compounds.

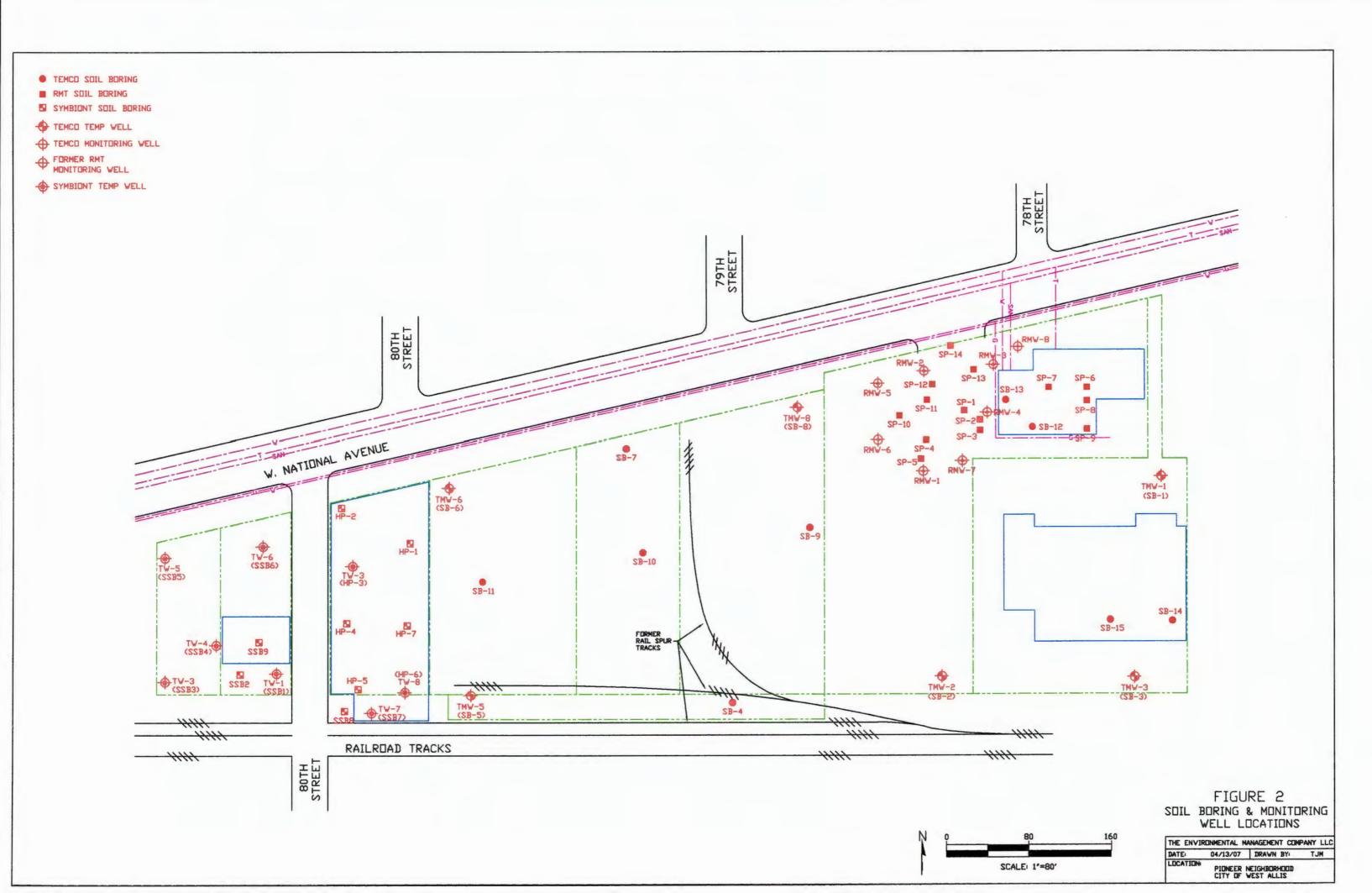
PAHs - Polynuclear Aromatic Hydrocarbons

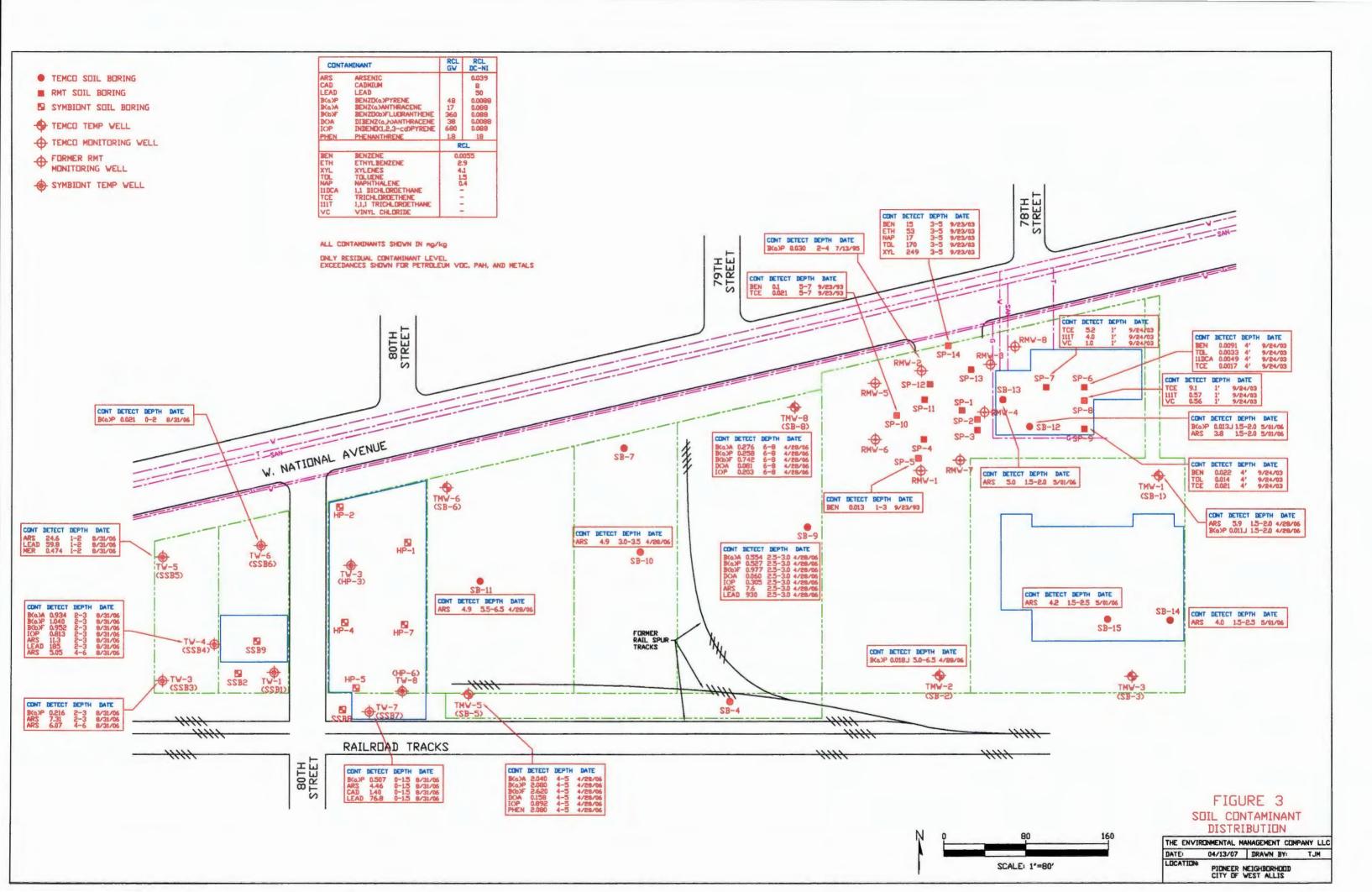
All concentrations presented in mg/kg - milligrams per kilogram

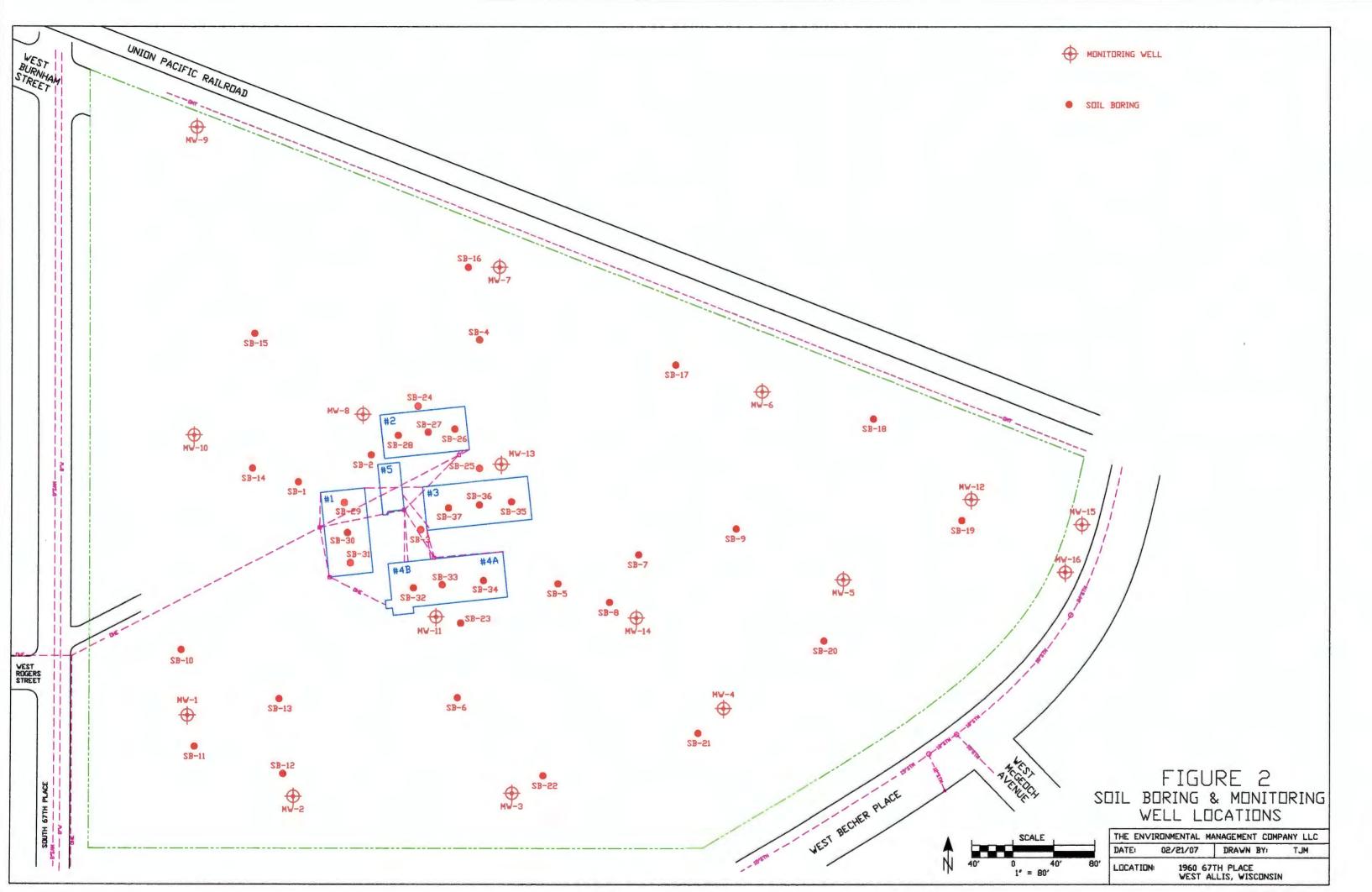

(DC) - Direct contact RCL

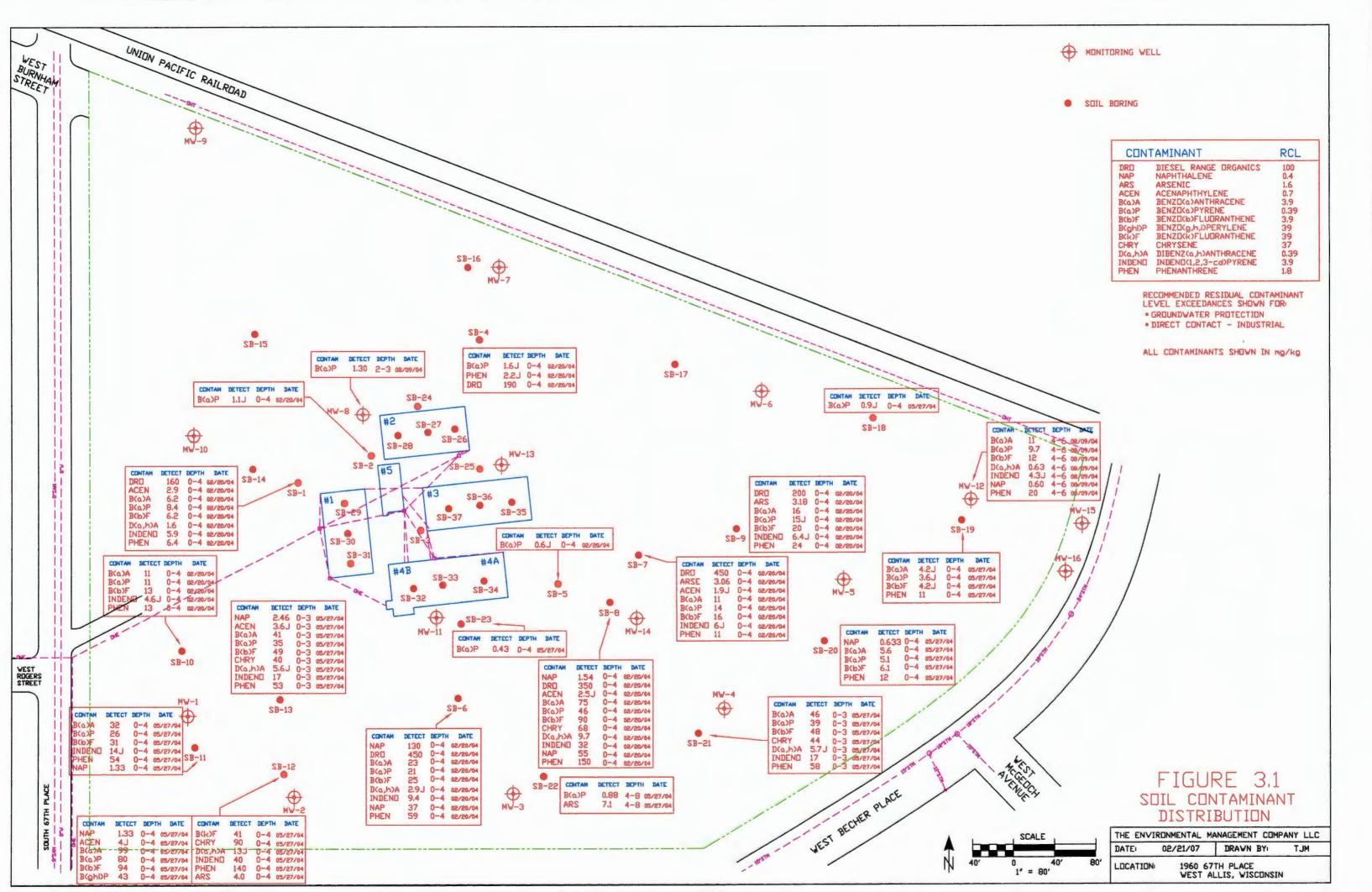
(I) - Inhalation RCL

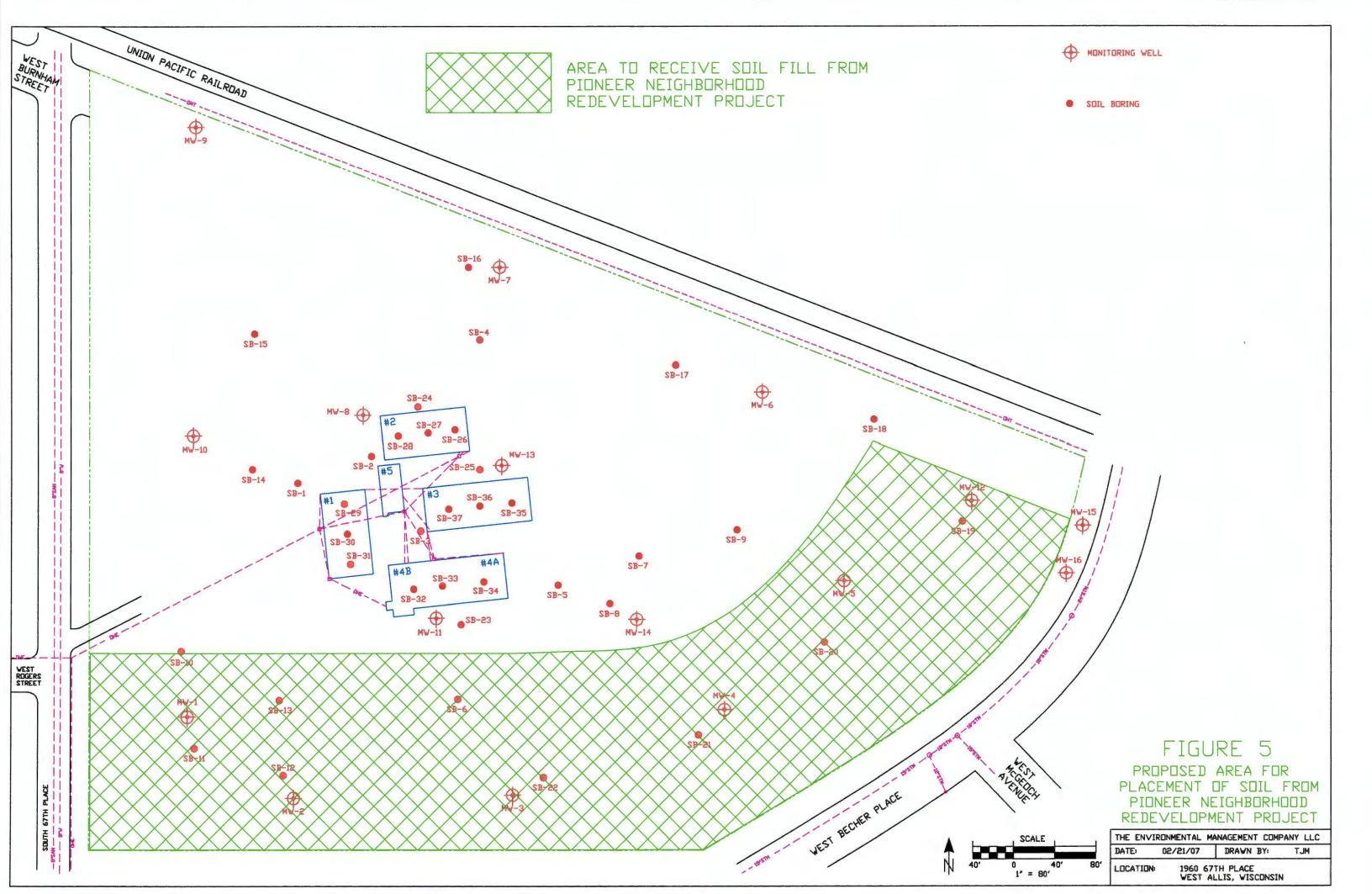
(G) - Protection of Groundwater RCL


--- Sample not analyzed for this constituent.


ND = No detected constituents





A1.2


SECOND FLOOR PLAN









