

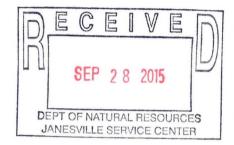
Tel: 608-838-9120

September 14, 2015

PECFA ID - 53563-1032-02

Mr. Shawn Wenzel Wisconsin Department of Natural Resources 2514 Morse Street Janesville, Wisconsin 53545

Re:


Investigation Update

Bob's Citgo

602 W. Madison Avenue - Milton, Wisconsin

BRRTS: 03-54-000193

Dear Mr. Wenzel:

Seymour Environmental Services, Inc. is pleased to present the results of the recent vapor intrusion assessment and groundwater monitoring. Additionally, a brief summary of previous findings and recommendations for additional work are included.

SUMMARY OF PREVIOUS FINDINGS

This environmental investigation was initiated as part of a potential real estate transaction and because the site has an open Department of Natural Resources (DNR) case number. The current owner was told that a spill had occurred but had been dealt with at the time of discovery. This issue resurfaced with the prospect of transferring the property in 2005.

On August 24, 2005 Seymour conducted soil sampling around the tank system including the dispensers. Soil samples collected from the borings were analyzed for gasoline range organics (GRO), diesel range organics (DRO), petroleum volatile organic compounds (PVOCs), and lead. Contaminants present at levels that exceed the RCL included benzene, ethylbenzene, MTBE, toluene, trimethylbenzenes, xylenes and naphthalene.

Since significant soil contamination was identified a groundwater monitoring network of 6 wells was installed between October 2010 and September 2011. Data from those monitoring wells indicated that groundwater flow is toward the west. Sampling showed that groundwater at all six wells contained compounds present above the ES. The most widespread contaminant was MTBE, which was present above the limit of detection in all of the wells.

In August 2013 four additional monitoring wells were installed at the site to further delimit the extent of groundwater contamination. Three of the wells were installed to the south and west of the existing monitoring network and one well (MW-10) was installed in the upgradient direction (east). Groundwater monitoring data showed that petroleum impacted groundwater extends westward from the site to Division Street which is ~ 400 feet west. No petroleum contamination was present in the groundwater at MW-10 which is east of the site.

Based on the data collected at the site a report was prepared and submitted to the WDNR. In response to the data included in the report the WDNR requested that additional work be conducted at the site. Specifically, the work requested included conducting additional groundwater monitoring and vapor sampling to evaluate the vapor migration potential in the building at the site.

RECENT ENVIRONMENTAL ACTIVITIES

Groundwater Monitoring

On May 28, 2015 groundwater monitoring was conducted. The monitoring consisted of water level/product measurement and groundwater sample collection at the ten wells at the site. Groundwater samples were analyzed for PVOCs+naphthalene. Results of the recent groundwater monitoring are compiled in Table 1. Figure 1 shows the May 2015 groundwater monitoring data.

Water level data collected in May 2015 is consistent with historic data from the site. The data show that the water-table is present slightly deeper than 50 feet below grade. Free-phase product was present at one well, MW-2. The apparent product thickness was 0.68 feet; this is lower than previous thickness measurements, which exceeded 3 feet on several occasions. The water level data shows that water-table on the subject parcel, particularly in MW-2, is significantly higher than on the surrounding properties. The measured water-level variation across the monitoring network is inconsistent with the relatively high conductivity materials in the aquifer. It appears that a "perched" area of saturated conditions exist in the area of the tank bed.

Groundwater chemistry data confirms that petroleum-related contamination originating at the site extends to the west approximately 400 feet. The highest contaminant levels were present in the groundwater at MW-1, which is located immediately to the northwest of the tank basin. Very high levels of PVOCs also were present in the other two monitoring wells on the subject property (MW-2 and MW-3). One of these wells, MW-2, is located on the east side of the tank bed and has consistently contained free-phase product. The other on site well, MW-3, is located immediately west of the dispenser island at the front (south) of the property. In addition to the monitoring wells located on the subject property MW-5 contained numerous PVOCs above the NR140 groundwater quality standards,. This well is located on the Milton Fire Department property and is approximately 200 feet west of the tank bed.

Limited contamination exceeding NR140 standards was noted in the remaining six monitoring wells. Benzene exceeded the ES in groundwater at MW-7 and the PAL at MW-8; these wells are located along Division Street ~ 400 feet west of the site. The MTBE level exceeded the ES in groundwater at MW-4 and MW-7. No PVOCs were detected in the groundwater samples collected from MW-6 and MW-9 located to the west of the site and south of Madison Avenue. No PVOCs were detected in the groundwater at MW-10 which is located on the north side of Madison Avenue ~80 feet east of the site.

Vapor Migration Sampling

Vapor migration sampling was conducted at the site in June 2015. Sampling included collection of subslab samples beneath the building on the subject parcel as well as indoor and outdoor air samples. This was the first round of vapor sampling.

On May 28, 2015 two sub-slab vapor probes were installed at the building on the subject property. One of the sub-slab probes was installed along the east side of the building close to a former tank bed with known soil contamination (SS-1), and the other in the northern extension of the building near the underground storage tank basin (SS-2).

To install the sub-slab probes a 1.25" hole was drilled through the concrete floor and advanced to a depth of approximately 10 inches. The concrete slab varied from 5 to 6 inches. A stainless steel sampling tip attached to a length of 1/4 OD Teflon tubing was placed in the hole. The area around the probe was filled with clean filtered sand (#30) to ~1 inch below the concrete floor slab. Granular bentonite was placed above the sand and extended upward to the just below the base of the floor. The bentonite was hydrated to provide a seal. The remaining borehole was sealed with hydraulic cement.

Vapor sampling was conducted at the site on June 9-10, 2015. The vapor samples were collected using a 6-liter Summa canister provided by the Wisconsin State Lab of Hygiene. The sub-slab sampling canisters were equipped with a regulator so that the canister filled over a 30-minute period limiting the flow to approximately 200 ml/min. The canisters used to collect indoor and outdoor air samples were equipped with regulators so that they filled over a 24 hour period. The vapor sample was analyzed for VOCs (TO15).

Prior to collecting the sub-slab and soil gas samples a plastic well was placed around the sampling probe and sealed to the floor/ground with putty. A vacuum test was performed to ensure that the sampling lines did not leak. A vacuum of 17-18 inches Hg was applied to the sampling line. The vacuum was checked and fittings were tightened if leakage was noted. After the lines appeared to be tight the vacuum was monitored for a 5-minute period. No vacuum loss was noted during the monitoring period. After the vacuum test was passed the area within the containment well was filled with an 80 pound bentonite slurry mix to the 100 ml mark on the well. A small amount of air (~50 ml) was pumped into the ground via the sampling probe to look for leakage in the seal. No air bubbles were noted within the bentonite slurry inside the containment well so the surface seal appeared to be tight. Subsequently, 250 ml of vapor was pumped out of the sampling probe to purge the area around the point. Lastly, after the vacuum and surface leakage tests were completed satisfactorily the valve on the Summa canister was opened to collect the vapor sample.

Both the indoor and outdoor air samples contained a number of analytes. This was not unexpected since the site is located in a commercial area and a convenience store and gasoline station is operating at the site. Compounds present in these samples included petroleum-related constituents (benzene, ethylbenzene ...), refrigerant-related constituents (trichlorofluoramethane, dichlorodifluoramethane), and miscellaneous other VOCs. In total 23 different VOCs were detected in the air samples with the majority of the compounds present at less than 1 vppb. All of the petroleum and refrigerant related compounds detected were present at concentrations substantially below the indoor air standard for non-residential properties. One compound, acrolein, was present above the indoor air standard. Acrolein was present in the outdoor air at 0.39 vppb and indoor air at 0.70 vppb. The indoor air quality standard established by the USEPA for acrolein is 0.03 ppbv. Acrolein is not a commonly used industrial chemical although it is used in a number of pesticides. It is produced as a by-product of partial combustion of organic materials and is a component in cigarette smoke and frying oils. Results of the vapor sampling are summarized in Table 2.

Five compounds were identified in the sub-slab vapor samples, 1,2,4 trimethylbenzene, acetone, methyl ethyl ketone (MEK), trichlorofluoromethane, and tetrachloroethene (PCE). With the exception of PCE all of the compounds were present at higher levels in the indoor and/or outdoor air samples. The VOC concentrations detected in the sub-slab samples all were substantially below the WDNR sub-slab screening levels based on the 0.1 attenuation factor as cited in RR800. For example PCE was present at 0.66 vppb (SS-1) and 0.46 vppb (SS-2); the indoor air standard at non-residential properties for PCE is 27 vppb with a sub-slab screening levels of 270 vppb.

CONCLUSIONS AND RECOMMENDATIONS

Groundwater containing petroleum-related VOCs in excess of NR140 ESs originates at the subject parcel and extends to the west to the limit of the monitoring network (over 400 feet). At the most downgradient well, MW-7, two compounds are present in the groundwater at concentrations exceeding the ES, benzene (18.8 ug/l) and MTBE (126 ug/l). The concentrations of each of these compounds were lower in the May 2015 sampling than in the initial sampling conducted in September 2013. During the most recent two monitoring events no PVOCs were present in the groundwater samples collected at the two monitoring wells south of Madison Avenue (MW-6 and MW-9) or the monitoring well east of the site (MW-10).

Vapor analytical data show that numerous VOCs are present in the ambient air outside the building as well as the interior building air. All of the compounds detected were present below indoor air quality standards with the exception of acrolein. Data collected from the subslab vapors indicate limited accumulation of VOCs beneath the building has occurred. Only low VOC levels were detected in the subslab vapors and the detected levels of all compounds present were below indoor air quality standards. All of the compounds detected in the subslab vapors were present at higher levels in the ambient air samples both inside and outside the building with the exception of tetrachloroethene (PCE). Based on the initial vapor monitoring data it appears that vapor intrusion is not an immediate concern at the building.

Based on the data collected to date and the remaining question regarding the severity of the contamination we recommend that the following actions be considered.

- Conduct additional groundwater monitoring to evaluate contaminant concentration trends in the downgradient wells to determine whether additional monitoring wells will be required.
- Conduct the previously-approved vapor sampling at the site (two more rounds).

Please call me at 608-838-9120 if you have any questions or would like additional information.

Sincerely,

Seymour Environmental Services, Inc.

Robyn Seymour, P.G.

Hydrogeologist

TABLES 1 - Summary of Groundwater Monitoring Data (May 2015)

2 - Summary of Vapor Analytical Data (June 2015)

FIGURES 1 - Groundwater Monitoring Data (May 2015)

2 - Vapor Sampling Locations (June 2015)

LAB REPORTS

TABLE 1 SUMMARY OF GROUNDWATER MONITORING DATA (May 28, 2015) Former Bob's CITGO

602 West Madison Avenue - Milton, Wisconsin

Sample I.D. MW-1 MW-2 MW-3 MW-4 MW-5 MW-6 MW-7 MW-8 MW-9 MW-10 NR140 ES Groundwater Depth (ft) 57.51 50.25 55.51 58.95 62.76 60.84 63.54 67.17 61.91 64.56 Free-phase Product (ft) 0.68													
Free-phase Product (ft) 0.68	Sample I.D.	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	l	NR140 PAL
Groundwater Elevation 816.98 823.85 819.54 815.65 812.44 813.96 811.72 811.28 812.66 812.12 PVOCs PVOCs 360 2020 1360 <0.40	Groundwater Depth (ft)	57.51	50.25	55.51	58.95	62.76	60.84	63.54	67.17	61.91	64.56		
PVOCs Benzene 5620 2020 1360 <0.40 2170 <0.40 18.8 0.75(J) <0.40 <0.40 5 1,2 Dichloroethane na	Free-phase Product (ft)		0.68										
Benzene 5620 2020 1360 <0.40 2170 <0.40 18.8 0.75(J) <0.40 <0.40 5 1,2 Dichloroethane na <	Groundwater Elevation	816.98	823.85	819.54	815.65	812.44	813.96	811.72	811.28	812.66	812.12		
1,2 Dichloroethane na	PVOCs												
Ethylbenzene 2060 3400 3040 <0.39 917 <0.39 1.3 <0.39 <0.39 <0.39 700 Methyl-tert-butyl ether 160 49.6 <24.2	Benzene	5620	2020	1360	<0.40	2170	<0.40	18.8	0.75 (J)	<0.40	<0.40	5	0.5
Methyl-tert-butyl ether 160 49.6 <24.2 95.0 105 <0.48 126 10.3 <0.48 <0.48 60 Toluene 12800 2560 719 <0.39	1,2 Dichloroethane	na	na	na	5	0.5							
Toluene 12800 2560 719 <0.39 1690 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <	Ethylbenzene	2060	3400	3040	<0.39	917	<0.39	1.3	<0.39	<0.39	<0.39	700	140
1,3,5 Trimethylbenzene 394 843 732 <0.42	Methyl-tert-butyl ether	160	49.6	<24.2	95.0	105	<0.48	126	10.3	<0.48	<0.48	60	12
1,2,4 Trimethylbenzene 1460 3000 2610 <0.42 703 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.42 <0.84 <0.84 <0.84 <0.84 <0.84 <0.84 <0.84 <0.84 <0.84 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.45	Toluene	12800	2560	719	<0.39	1690	<0.39	<0.39	<0.39	<0.39	<0.39	800	160
Total Trimethylbenzenes 1854 3843 3342 <0.84 900 <0.84 <0.84 1.6 <0.84 <0.84 480 Xylenes, -m, -p 6390 10200 9150 <0.80	1,3,5 Trimethylbenzene	394	843	732	<0.42	197	<0.42	<0.42	1.6	< 0.42	<0.42	ns	ns
Xylenes, -m, -p 6390 10200 9150 <0.80 2450 <0.80 1.1 <0.80 <0.80 <0.80 ns Xylene, -o 2970 3950 3460 <0.45	1,2,4 Trimethylbenzene	1460	3000	2610	<0.42	703	<0.42	<0.42	<0.42	<0.42	<0.42	ns	ns
Xylene, -o 2970 3950 3460 <0.45 1470 <0.45 4.1 <0.45 <0.45 <0.45 ns Total Xylenes 9360 14150 12610 <1.25	Total Trimethylbenzenes	1854	3843	3342	<0.84	900	<0.84	<0.84	1.6	<0.84	<0.84	480	96
Total Xylenes 9360 14150 12610 <1.25 3920 <1.25 5.2 <1.25 <1.25 <1.25 2000	Xylenes, -m, -p	6390	10200	9150	<0.80	2450	<0.80	1.1	<0.80	<0.80	<0.80	ns	ns
	Xylene, -o	2970	3950	3460	<0.45	1470	<0.45	4.1	<0.45	<0.45	<0.45	ns	ns
Naphthalene 567 826 831 <0.42 275 <0.42 1.7 0.67(J) <0.42 <0.42 100	Total Xylenes	9360	14150	12610	<1.25	3920	<1.25	5.2	<1.25	<1.25	<1.25	2000	400
100	Naphthalene	567	826	831	<0.42	275	<0.42	1.7	0.67(J)	<0.42	<0.42	100	10

⁻ All results are listed in ug/l

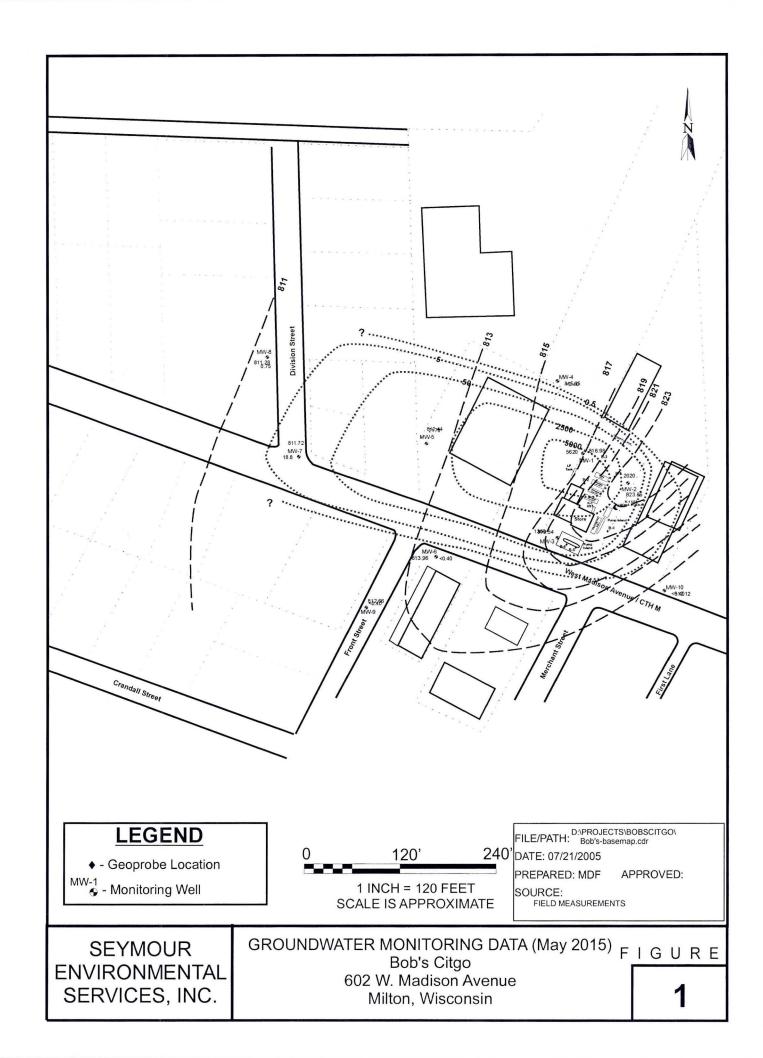
⁻ na = not analyzed

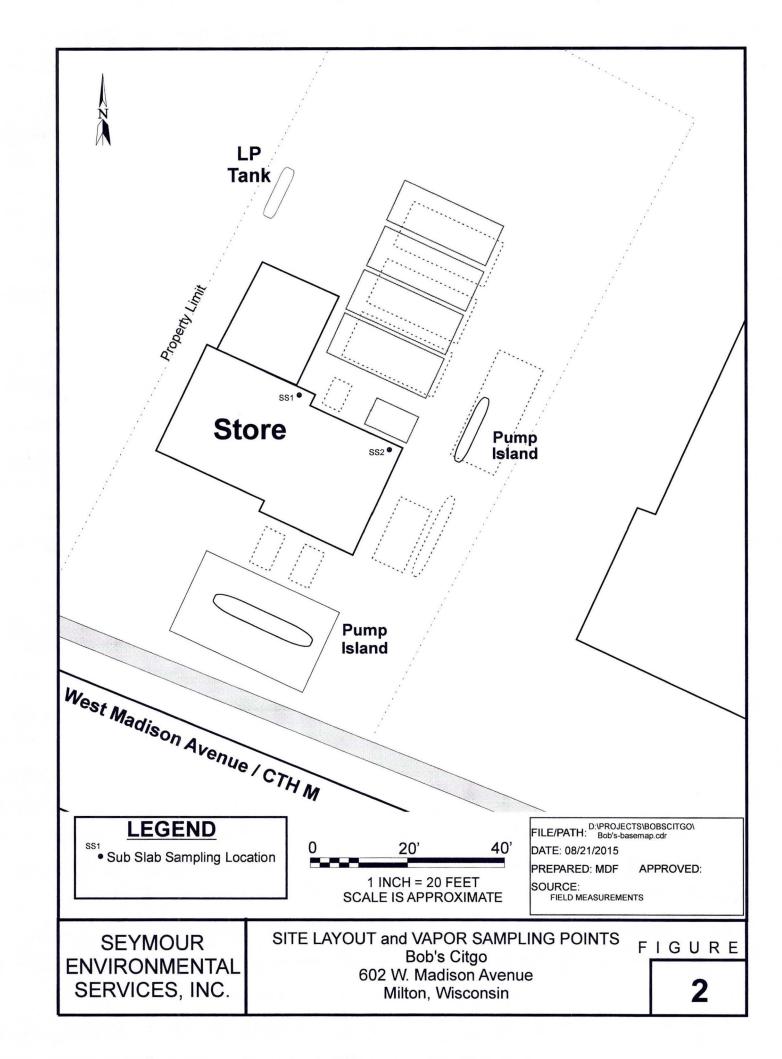
⁻ ns = no standard established

⁻ NR140 PAL = Preventative Action Limit (exceedances bold)

⁻ NR140 ES = Enforcement Standard (exceedances shaded)

^{- (}J) = Detected below the limit of quantitation


TABLE 2 SUMMARY OF INITIAL VAPOR MIGRATION SAMPLING (June 9, 2015) Former Bob's CITGO


602 West Madison Avenue - Milton, Wisconsin

		Samp	le Results		Standa	Standards / Screening Levels (non-residential)			
					Indoor Air	Indoor Air	Subslab	Sunslab	
San	ple SS-1	SS-2	Indoor	Outdoor	Standard	Standard	Screening	SCreening	
					(ug/m3)	(ppbV)	(10 X)	(33 X)	
Benzene	<0.08	5 <0.085	0.37	0.45	16	4.9	49	163	
Ethylbenzene	<0.08	5 <0.085	0.55	0.36	49	11	110	367	
n-Hexane	<0.08	5 <0.085	0.73	1.1	3100	865	8,651	28833	
MTBE	<0.08	5 <0.085	< 0.085	<0.085	470	130	1300	4333	
Toluene	<0.08	5 <0.085	1.5	1.6	22000	5700	57000	190000	
1,2,4 Trimethylbenzene	<0.08	5 0.32	0.67	0.66	31	6.2	62	207	
1,3,5 Trimethylbenzene	<0.08	5 <0.085	0.36	0.33	ne	ne	ne	ne	
m&p Xylenes	< 0.17	< 0.17	2.1	1.2	880	200	2000	6667	
o Xylene	<0.08	5 <0.085	0.57	0.49	440	100	1000	3333	
Ethyl Acetate	<0.08	5 <0.085	0.78	<0.085	ne	ne	ne	ne	
Cyclohexane	<0.08	5 <0.085	< 0.085	0.28	26000	7,430	74,299	247667	
Propene (propylene)	<0.08	5 <0.085	< 0.085	< 0.085	13000	7,430	74,299	247667	
Heptane	<0.08	5 <0.085	0.20 F	0.36	ne	ne	ne	ne	
Vinyl Acetate	<0.08	5 <0.085	0.85	0.86	880	246	2,458	8200	
Acetone	0.68	0.77	11	7.2	140000	57,972	579,718	1932400	
Methylene Chloride	<0.08	5 <0.085	0.13 F	<0.085	2600	740	7400	24667	
Tetrachloroethene	0.66	0.46	< 0.085	< 0.085	180	27	270	900	
Trichloroethene	<0.08	5 <0.085	< 0.085	< 0.085	8.8	1.6	16	53	
cis 1,2 Dichloroethene	<0.08	5 <0.085	< 0.085	< 0.085	ne	ne	ne	ne	
trans 1,2 Dichloroethene	<0.08		< 0.085	< 0.085	260	65	650	2167	
Vinyl chloride	<0.08	5 <0.085	< 0.085	<0.085	28	11	110	367	
Trichlorofluoromethane	3.8	2.1	5.6	0.23 F		540	5400	18000	
MEK	0.24 F		0.94	0.80	22000	6239	62391	207969	
Dichlorodifluoromethane	<0.08		2.9	0.43		88	880	2933	
Acrolein	<0.08		0.70	0.39	0.088	0.03	0.32	1	
Tetrahydrofuran	< 0.08	5 <0.085	0.20 F	< 0.085		ne	ne	ne	
Carbontetrachloride	<0.08		0.20 F	< 0.085		3.1	31	103	
Styrene	< 0.08		0.37	<0.085	4400	864	8639	28798	
Chloromethane	<0.08		13	11		190	1900	6333	
1-ethyl-4-methyl benzene	< 0.08	5 <0.085	0.34	0.35		ne	ne	ne-	

- All results are listed in ppbV
- ne = no standard established
- Detected compounds shown in bold

- Indoor Air Standard (exceedances underlined)
- Subslab Screening (10X) = Based on former WDNR attenuation factor of 0.1
 Subslab Screening (33X) = Based on new WDNR attenuation factor of 0.03 (exceedances shaded)

Laboratory Report

D.F. Kurtycz, M.D., Medical Director - Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

WDNR LAB ID: 113133790

NELAP LAB ID: E37658

EPA LAB ID:

WI00007

WI DATCP ID: 105-415

WSLH Sample: 199368001

Report To:

SEYMOUR ENV SERVICES 2531 DYRESON RD P.O. BOX 398

MCFARLAND, WI 53558

Invoice To:

SEYMOUR ENV SERVICES

2531 DYRESON RD

P.O. BOX 398

MCFARLAND, WI 53558

Customer ID:

13810

Field #:

SS-1

Project No:

BOB'S CITGO

Collection End: 6/9/2015 11:16:00 AM

Collection Start: 06/09/15 10:45

Collected By: MOF/ MRS Date Received: 6/12/2015

Date Reported: 6/30/2015

Sample Reason:

ID#:

Sample Location:

Sample Description:

Sample Type: SB-SUB SLAB

Waterbody:

Point or Outfall:

Sample Depth:

Program Code:

Region Code:

County:

OC-Volatiles

Analyte			Analysis Method	Result	Units	LOD	LOQ
Prep Date	06/24/15	Analysis Date	06/24/15				
Propene			EPA TO-15	ND	ppbv	0.085	0.28
Dichlorodif	luoromethane		EPA TO-15	ND	ppbv	0.085	0.28
Chloromet	hane		EPA TO-15	ND	ppbv	0.085	0.28
1,2-Dichlor	otetrafluoroethane		EPA TO-15	ND	ppbv	0.085	0.33
Vinyl chlori	ide		EPA TO-15	ND	ppbv	0.085	0.28
1,3-Butadie	ene		EPA TO-15	ND	ppbv	0.085	0.28
Bromomet	hane		EPA TO-15	ND	ppbv	0.085	0.28
Chloroetha	ine		EPA TO-15	ND	ppbv	0.085	0.28
Acrolein			EPA TO-15	ND	ppbv	0.085	0.28
Acetone			EPA TO-15	0.68	ppbv	0.085	0.28
Trichloroflu	oromethane		EPA TO-15	3.8	ppbv	0.085	0.28
1,1-Dichlor	oethene		EPA TO-15	ND	ppbv	0.085	0.28
Methylene	chloride		EPA TO-15	ND	ppbv	0.085	0.28
Carbon dis	sulfide		EPA TO-15	ND	ppbv	0.085	0.28
Trichlorotri	fluoroethane		EPA TO-15	ND	ppbv	0.085	0.28

Laboratory Report

D.F. Kurtycz, M.D., Medical Director - Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB ID:

WI00007

WI DATCP ID: 105-415

WSLH Sample: 199368001

OC-Volatiles

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date 06/24/15 Analysis Date	06/24/15			,	
trans-1,2-Dichloroethene	EPA TO-15	ND	ppbv	0.085	0.28
1,1-Dichloroethane	EPA TO-15	ND	ppbv	0.085	0.28
Methyl tert-Butyl ether (MTBE)	EPA TO-15	ND	ppbv	0.085	0.28
Vinyl acetate	EPA TO-15	ND	ppbv	0.085	0.28
Methyl Ethyl Ketone (MEK)	EPA TO-15	0.24F	ppbv	0.085	0.28
The Upper QC limit for the calibration check is	s exceeded.				
cis-1,2-Dichloroethene	EPA TO-15	ND	ppbv	0.085	0.28
Hexane	EPA TO-15	ND	ppbv	0.085	0.28
Chloroform	EPA TO-15	ND	ppbv	0.085	0.28
Ethyl acetate	EPA TO-15	ND	ppbv	0.085	0.28
Tetrahydrofuran	EPA TO-15	ND	ppbv	0.085	0.28
1,2-Dichloroethane	EPA TO-15	ND	ppbv	0.085	0.28
1,1,1-Trichloroethane	EPA TO-15	ND	ppbv	0.085	0.28
Benzene	EPA TO-15	ND	ppbv	0.085	0.28
Carbon tetrachloride	EPA TO-15	ND	ppbv	0.085	0.28
Cyclohexane	EPA TO-15	ND	ppbv	0.085	0.28
1,2-Dichloropropane	EPA TO-15	ND	ppbv	0.085	0.28
Bromodichloromethane	EPA TO-15	ND	ppbv	0.085	0.33
Trichloroethene	EPA TO-15	ND	ppbv	0.085	0.28
1,4 Dioxane	EPA TO-15	ND	ppbv	0.085	0.28
n-Heptane	EPA TO-15	ND	ppbv	0.085	0.28
cis-1,3-Dichloropropene	EPA TO-15	ND	ppbv	0.085	0.28
4-Methyl-2-pentanone (MIBK)	EPA TO-15	ND	ppbv	0.085	0.28
trans-1,3-Dichloropropene	EPA TO-15	ND	ppbv	0.085	0.28
1,1,2-Trichloroethane	EPA TO-15	ND	ppbv	0.085	0.28
Toluene	EPA TO-15	ND	ppbv	0.085	0.28
2-Hexanone	EPA TO-15	ND	ppbv	0.085	0.28
Chlorodibromomethane	EPA TO-15	ND	ppbv	0.085	0.28
1,2-Dibromoethane	EPA TO-15	ND	ppbv	0.085	0.28

Report ID: 2346949

Page 2 of 16

Report Rev: 0000.25.2.WSLH.0

Laboratory Report

D.F. Kurtycz, M.D., Medical Director - Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

WDNR LAB ID: 113133790 N

NELAP LAB ID: E37658

EPA LAB ID:

WI00007

WI DATCP ID: 105-415

WSLH Sample: 199368001

OC-Volatiles

Analyte			Analysis Method	Result	Units	LOD	LOQ
Prep Date	06/24/15	Analysis Date	06/24/15				
Tetrachloro	ethene		EPA TO-15	0.66	ppbv	0.085	0.28
Chlorobenz	zene		EPA TO-15	ND	ppbv	0.085	0.28
Ethyl Benz	ene		EPA TO-15	ND	ppbv	0.085	0.28
m,p-Xylene	•		EPA TO-15	ND	ppbv	0.17	0.56
Bromoform			EPA TO-15	ND	ppbv	0.085	0.28
Styrene			EPA TO-15	ND	ppbv	0.085	0.28
1,1,2,2-Tet	rachloroethane		EPA TO-15	ND	ppbv	0.085	0.28
o-Xylene			EPA TO-15	ND	ppbv	0.085	0.28
1-ethyl-4-m	nethyl benzene		EPA TO-15	ND	ppbv	0.085	0.28
1,3,5-Trime	ethylbenzene		EPA TO-15	ND	ppbv	0.085	0.28
1,2,4-Trime	ethylbenzene		EPA TO-15	ND	ppbv	0.085	0.28
Benzyl chlo	oride		EPA TO-15	ND	ppbv	0.085	0.28
1,3-Dichlor	obenzene		EPA TO-15	ND	ppbv	0.085	0.28
1,4-Dichlor	obenzene		EPA TO-15	ND	ppbv	0.085	0.28
1,2-Dichlor	obenzene		EPA TO-15	ND	ppbv	0.085	0.28
1,2,4-Trich	lorobenzene		EPA TO-15	ND	ppbv	0.085	0.28
Hexachloro	butadiene		EPA TO-15	ND	ppbv	0.085	0.28

List of Abbreviations:

LOD = Level of detection

LOQ = Level of quantification

ND = None detected. Results are less than the LOD

F next to result = Result is between LOD and LOQ

Z next to result = Result is between 0 (zero) and LOD

if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Laboratory Report

D.F. Kurtycz, M.D., Medical Director - Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

WDNR LAB ID: 113133790

NELAP LAB ID: E37658

EPA LAB ID:

WI00007

WI DATCP ID: 105-415

WSLH Sample: 199368001

Responsible Party

Microbiology: Sharon Kluender, Lab Manager, 608-224-6262 Inorganic Chemistry: Tracy Hanke, Lab Manager, 608-224-6270 Metals: DeWayne Kennedy-Parker, Lab Manager, 608-224-6282 Organic Chemistry: Al Spallato, Lab Manager, 608-224-6269

Emergency Chemical Response: Noel Stanton, Lab Manager, 608-224-6251

Laboratory Report

D.F. Kurtycz, M.D., Medical Director - Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB ID: WI00007 WI DATCP ID: 105-415

WSLH Sample: 199368002

Report To:

SEYMOUR ENV SERVICES 2531 DYRESON RD P.O. BOX 398

MCFARLAND, WI 53558

Invoice To:

SEYMOUR ENV SERVICES

2531 DYRESON RD

P.O. BOX 398

MCFARLAND, WI 53558

Customer ID: 13810

Field #:

Project No:

SS-2

BOB'S CITGO

Collection End: 6/9/2015 11:40:00 AM

Collection Start: 06/09/15 1106

Collected By: MOF/ MRS Date Received: 6/12/2015 Date Reported: 6/30/2015

Sample Reason:

ID#:

Sample Location:

Sample Description:

Sample Type: SB-SUB SLAB

Waterbody: Point or Outfall: Sample Depth: Program Code:

Region Code: County:

OC-Volatiles

1	Analyte			Analysis Method	Result	Units	LOD	LOQ
P	rep Date	06/24/15	Analysis Date	06/24/15				
	Propene			EPA TO-15	ND	ppbv	0.085	0.28
	Dichlorodif	luoromethane		EPA TO-15	ND	ppbv	0.085	0.28
	Chlorometh	nane		EPA TO-15	ND	ppbv	0.085	0.28
	1,2-Dichlor	otetrafluoroethane		EPA TO-15	ND	ppbv	0.085	0.33
	Vinyl chlori	de		EPA TO-15	ND	ppbv	0.085	0.28
	1,3-Butadie	ene		EPA TO-15	ND	ppbv	0.085	0.28
	Bromometh	nane		EPA TO-15	ND	ppbv	0.085	0.28
	Chloroetha	ne		EPA TO-15	ND	ppbv	0.085	0.28
	Acrolein			EPA TO-15	ND	ppbv	0.085	0.28
	Acetone			EPA TO-15	0.77	ppbv	0.085	0.28
	Trichloroflu	oromethane		EPA TO-15	2.1	ppbv	0.085	0.28
	1,1-Dichlor	oethene		EPA TO-15	ND	ppbv	0.085	0.28
	Methylene	chloride		EPA TO-15	ND	ppbv	0.085	0.28
	Carbon dis	ulfide		EPA TO-15	ND	ppbv	0.085	0.28
	Trichlorotrif	fluoroethane		EPA TO-15	ND	ppbv	0.085	0.28

Laboratory Report

D.F. Kurtycz, M.D., Medical Director - Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

WDNR LAB ID: 113133790

NELAP LAB ID: E37658

EPA LAB ID:

WI00007

WI DATCP ID: 105-415

WSLH Sample: 199368002

OC-Volatiles

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date 06/24/15 Analysis Date	06/24/15				
trans-1,2-Dichloroethene	EPA TO-15	ND	ppbv	0.085	0.28
1,1-Dichloroethane	EPA TO-15	ND	ppbv	0.085	0.28
Methyl tert-Butyl ether (MTBE)	EPA TO-15	ND	ppbv	0.085	0.28
Vinyl acetate	EPA TO-15	ND	ppbv	0.085	0.28
Methyl Ethyl Ketone (MEK)	EPA TO-15	0.23F	ppbv	0.085	0.28
The Upper QC limit for the calibration check is	exceeded.				
cis-1,2-Dichloroethene	EPA TO-15	ND	ppbv	0.085	0.28
Hexane	EPA TO-15	ND	ppbv	0.085	0.28
Chloroform	EPA TO-15	ND	ppbv	0.085	0.28
Ethyl acetate	EPA TO-15	ND	ppbv	0.085	0.28
Tetrahydrofuran	EPA TO-15	ND	ppbv	0.085	0.28
1,2-Dichloroethane	EPA TO-15	ND	ppbv	0.085	0.28
1,1,1-Trichloroethane	EPA TO-15	ND	ppbv	0.085	0.28
Benzene	EPA TO-15	ND	ppbv	0.085	0.28
Carbon tetrachloride	EPA TO-15	ND	ppbv	0.085	0.28
Cyclohexane	EPA TO-15	ND	ppbv	0.085	0.28
1,2-Dichloropropane	EPA TO-15	ND	ppbv	0.085	0.28
Bromodichloromethane	EPA TO-15	ND	ppbv	0.085	0.33
Trichloroethene	EPA TO-15	ND	ppbv	0.085	0.28
1,4 Dioxane	EPA TO-15	ND	ppbv	0.085	0.28
n-Heptane	EPA TO-15	ND	ppbv	0.085	0.28
cis-1,3-Dichloropropene	EPA TO-15	ND	ppbv	0.085	0.28
4-Methyl-2-pentanone (MIBK)	EPA TO-15	ND	ppbv	0.085	0.28
trans-1,3-Dichloropropene	EPA TO-15	ND	ppbv	0.085	0.28
1,1,2-Trichloroethane	EPA TO-15	ND	ppbv	0.085	0.28
Toluene	EPA TO-15	ND	ppbv	0.085	0.28
2-Hexanone	EPA TO-15	ND	ppbv	0.085	0.28
Chlorodibromomethane	EPA TO-15	ND	ppbv	0.085	0.28
1,2-Dibromoethane	EPA TO-15	ND	ppbv	0.085	0.28
Papart ID: 2246040		Dona 6 of 16			

Report ID: 2346949 Page 6 of 16

Report Rev: 0000.25.2.WSLH.0

Laboratory Report

D.F. Kurtycz, M.D., Medical Director - Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

WDNR LAB ID: 113133790

NELAP LAB ID: E37658

EPA LAB ID:

WI00007

WI DATCP ID: 105-415

WSLH Sample: 199368002

OC-Volatiles

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date 06/24/15 Analysis Date	06/24/15				
Tetrachloroethene	EPA TO-15	0.46	ppbv	0.085	0.28
Chlorobenzene	EPA TO-15	ND	ppbv	0.085	0.28
Ethyl Benzene	EPA TO-15	ND	ppbv	0.085	0.28
m,p-Xylene	EPA TO-15	ND	ppbv	0.17	0.56
Bromoform	EPA TO-15	ND	ppbv	0.085	0.28
Styrene	EPA TO-15	ND	ppbv	0.085	0.28
1,1,2,2-Tetrachloroethane	EPA TO-15	ND	ppbv	0.085	0.28
o-Xylene	EPA TO-15	ND	ppbv	0.085	0.28
1-ethyl-4-methyl benzene	EPA TO-15	ND	ppbv	0.085	0.28
1,3,5-Trimethylbenzene	EPA TO-15	ND	ppbv	0.085	0.28
1,2,4-Trimethylbenzene	EPA TO-15	0.32	ppbv	0.085	0.28
The Upper QC limit for the calibration check is	exceeded.				
Benzyl chloride	EPA TO-15	ND	ppbv	0.085	0.28
1,3-Dichlorobenzene	EPA TO-15	ND	ppbv	0.085	0.28
1,4-Dichlorobenzene	EPA TO-15	ND	ppbv	0.085	0.28
1,2-Dichlorobenzene	EPA TO-15	ND	ppbv	0.085	0.28
1,2,4-Trichlorobenzene	EPA TO-15	ND	ppbv	0.085	0.28
Hexachlorobutadiene	EPA TO-15	ND	ppbv	0.085	0.28

Laboratory Report

D.F. Kurtycz, M.D., Medical Director - Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB ID: WI00007 WI DATCP ID: 105-415

WSLH Sample: 199368002

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Microbiology: Sharon Kluender, Lab Manager, 608-224-6262 Inorganic Chemistry: Tracy Hanke, Lab Manager, 608-224-6270 Metals: DeWayne Kennedy-Parker, Lab Manager, 608-224-6282 Organic Chemistry: Al Spallato, Lab Manager, 608-224-6269

Emergency Chemical Response: Noel Stanton, Lab Manager, 608-224-6251

Laboratory Report

D.F. Kurtycz, M.D., Medical Director - Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

WDNR LAB ID: 113133790

NELAP LAB ID: E37658

EPA LAB ID:

WI00007

WI DATCP ID: 105-415

WSLH Sample: 199368003

Report To:

SEYMOUR ENV SERVICES 2531 DYRESON RD

P.O. BOX 398

MCFARLAND, WI 53558

Invoice To:

SEYMOUR ENV SERVICES

2531 DYRESON RD

P.O. BOX 398

MCFARLAND, WI 53558

Customer ID: 13810

Field #:

INDOOR

Project No:

BOB'S CITGO

Collection End: 6/10/2015 11:38:00 AM

Collection Start: 06/09/15 1112

Collected By: MOF/ MRS

Date Received: 6/12/2015

Date Reported: 6/30/2015

Sample Reason:

ID#:

Sample Location:

Sample Description:

Sample Type: AI-INDOOR AIR

Waterbody:

Point or Outfall:

Sample Depth:

Program Code:

Region Code: County:

OC-Volatiles

Analyte			Analysis Method	Result	Units	LOD	LOQ
Prep Date	06/22/15	Analysis Date	06/22/15				
Propene			EPA TO-15	<1.04	ppbv	0.085	0.28
Interf	erence						
The I	ower QC limit for the	calibration check is	exceeded.				
Dichlorodi	fluoromethane		EPA TO-15	2.9	ppbv	0.085	0.28
1,2-Dichlo	rotetrafluoroethane		EPA TO-15	ND	ppbv	0.085	0.33
Vinyl chlor	ide		EPA TO-15	ND	ppbv	0.085	0.28
1,3-Butadi	ene		EPA TO-15	ND	ppbv	0.085	0.28
Bromomet	hane		EPA TO-15	ND	ppbv	0.085	0.28
Chloroetha	ane		EPA TO-15	ND	ppbv	0.085	0.28
Acrolein			EPA TO-15	0.70	ppbv	0.085	0.28
Trichloroflu	uoromethane		EPA TO-15	5.6	ppbv	0.085	0.28
1,1-Dichlo	roethene		EPA TO-15	ND	ppbv	0.085	0.28
Methylene	chloride		EPA TO-15	0.13F	ppbv	0.085	0.28
Carbon dis	sulfide		EPA TO-15	ND	ppbv	0.085	0.28
Trichlorotr	fluoroethane		EPA TO-15	ND	ppbv	0.085	0.28

Laboratory Report

D.F. Kurtycz, M.D., Medical Director - Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

WDNR LAB ID: 113133790

NELAP LAB ID: E37658

EPA LAB ID:

WI00007

WI DATCP ID: 105-415

WSLH Sample: 199368003

OC-Volatiles

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date 06/22/15 Analysis Date	06/22/15	result	Office	LOD	
trans-1,2-Dichloroethene	EPA TO-15	ND		0.005	0.00
1,1-Dichloroethane	EPA TO-15		ppbv	0.085	0.28
Methyl tert-Butyl ether (MTBE)	EPA TO-15	ND	ppbv	0.085	0.28
Vinyl acetate	EPA TO-15	ND	ppbv	0.085	0.28
	EPA TO-15	0.85	ppbv	0.085	0.28
Methyl Ethyl Ketone (MEK)		0.94	ppbv	0.085	0.28
cis-1,2-Dichloroethene	EPA TO 15	ND	ppbv	0.085	0.28
Hexane	EPA TO-15	0.73	ppbv	0.085	0.28
Chloroform	EPA TO-15	ND	ppbv	0.085	0.28
Ethyl acetate	EPA TO-15	0.78	ppbv	0.085	0.28
Tetrahydrofuran	EPA TO-15	0.20F	ppbv	0.085	0.28
1,2-Dichloroethane	EPA TO-15	ND	ppbv	0.085	0.28
1,1,1-Trichloroethane	EPA TO-15	ND	ppbv	0.085	0.28
Benzene	EPA TO-15	0.37	ppbv	0.085	0.28
Carbon tetrachloride	EPA TO-15	0.20F	ppbv	0.085	0.28
Cyclohexane	EPA TO-15	ND	ppbv	0.085	0.28
1,2-Dichloropropane	EPA TO-15	ND	ppbv	0.085	0.28
Bromodichloromethane	EPA TO-15	ND	ppbv	0.085	0.33
Trichloroethene	EPA TO-15	ND	ppbv	0.085	0.28
1,4 Dioxane	EPA TO-15	ND	ppbv	0.085	0.28
n-Heptane	EPA TO-15	0.20F	ppbv	0.085	0.28
cis-1,3-Dichloropropene	EPA TO-15	ND	ppbv	0.085	0.28
4-Methyl-2-pentanone (MIBK)	EPA TO-15	ND	ppbv	0.085	0.28
trans-1,3-Dichloropropene	EPA TO-15	ND	ppbv	0.085	0.28
1,1,2-Trichloroethane	EPA TO-15	ND	ppbv	0.085	0.28
Toluene	EPA TO-15	1.5	ppbv	0.085	0.28
2-Hexanone	EPA TO-15	ND	ppbv	0.085	0.28
Chlorodibromomethane	EPA TO-15	ND	ppbv	0.085	0.28
1,2-Dibromoethane	EPA TO-15	ND	ppbv	0.085	0.28
Tetrachloroethene	EPA TO-15	ND	ppbv	0.085	0.28
Report ID: 2346949		Page 10 of 16			000 25 2 WSL H 0

Report ID: 2346949

Page 10 of 16

Report Rev: 0000.25.2.WSLH.0

Laboratory Report

D.F. Kurtycz, M.D., Medical Director - Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

WSLH Sample: 199368003

OC-Volatiles

Analyte			Analysis Method	Result	Units	LOD	LOQ
Prep Date	06/22/15	Analysis Date	06/22/15				
Chloroben	zene		EPA TO-15	ND	ppbv	0.085	0.28
Ethyl Benz	zene		EPA TO-15	0.55	ppbv	0.085	0.28
m,p-Xylen	е		EPA TO-15	2.1	ppbv	0.17	0.56
Bromoforn	n		EPA TO-15	ND	ppbv	0.085	0.28
Styrene			EPA TO-15	0.37	ppbv	0.085	0.28
1,1,2,2-Te	trachloroethane		EPA TO-15	ND	ppbv	0.085	0.28
o-Xylene			EPA TO-15	0.57	ppbv	0.085	0.28
1-ethyl-4-r	methyl benzene		EPA TO-15	0.34	ppbv	0.085	0.28
The I	Upper QC limit for the	calibration check is	exceeded.				
1,3,5-Trim	ethylbenzene		EPA TO-15	0.36	ppbv	0.085	0.28
The I	Upper QC limit for the	calibration check is	exceeded.				
1,2,4-Trim	ethylbenzene		EPA TO-15	0.67	ppbv	0.085	0.28
The I	Upper QC limit for the	calibration check is	exceeded.				
Benzyl chl	oride		EPA TO-15	ND	ppbv	0.085	0.28
1,3-Dichlo	robenzene		EPA TO-15	ND	ppbv	0.085	0.28
1,4-Dichlo	robenzene		EPA TO-15	ND	ppbv	0.085	0.28
1,2-Dichlo	robenzene		EPA TO-15	ND	ppbv	0.085	0.28
1,2,4-Trich	nlorobenzene		EPA TO-15	ND	ppbv	0.085	0.28
Hexachlor	obutadiene		EPA TO-15	ND	ppbv	0.085	0.28
Prep Date	06/22/15	Analysis Date	06/22/15				
Chloromet	thane		EPA TO-15	13	ppbv	2.1	7.0
Acetone			EPA TO-15	11	ppbv	2.1	7.0

Compound detected in lab blank.

Laboratory Report

D.F. Kurtycz, M.D., Medical Director - Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

WDNR LAB ID: 113133790

NELAP LAB ID: E37658

EPA LAB ID:

WI00007

WI DATCP ID: 105-415

WSLH Sample: 199368003

List of Abbreviations:

LOD = Level of detection LOQ = Level of quantification ND = None detected. Results are less than the LOD F next to result = Result is between LOD and LOQ Z next to result = Result is between 0 (zero) and LOD if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Microbiology: Sharon Kluender, Lab Manager, 608-224-6262 Inorganic Chemistry: Tracy Hanke, Lab Manager, 608-224-6270 Metals: DeWayne Kennedy-Parker, Lab Manager, 608-224-6282 Organic Chemistry: Al Spallato, Lab Manager, 608-224-6269

Emergency Chemical Response: Noel Stanton, Lab Manager, 608-224-6251

Laboratory Report

D.F. Kurtycz, M.D., Medical Director - Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

WDNR LAB ID: 113133790

NELAP LAB ID: E37658

EPA LAB ID:

WI00007

WI DATCP ID: 105-415

WSLH Sample: 199368004

Report To:

SEYMOUR ENV SERVICES 2531 DYRESON RD P.O. BOX 398

MCFARLAND, WI 53558

Invoice To:

SEYMOUR ENV SERVICES 2531 DYRESON RD

P.O. BOX 398

MCFARLAND, WI 53558

Customer ID:

13810

Field #:

OUTDOOR

Project No: BOB'S CITGO

Collection End: 6/10/2015 11:54:00 AM

Collection Start: 06/09/15 1140 Collected By: MOF/ MRS

Date Received: 6/12/2015
Date Reported: 6/30/2015

Sample Reason:

ID#:

Sample Location:

Sample Description: Sample Type: AR-AIR

Waterbody:

Point or Outfall:

Sample Depth: Program Code:

Region Code:

County:

OC-Volatiles

. . .

Analyte			Analysis Method	Result	Units	LOD	LOQ
Prep Date	06/24/15	Analysis Date	06/24/15				
Propene			EPA TO-15	ND	ppbv	0.085	0.28
Dichlorodi	fluoromethane		EPA TO-15	0.43	ppbv	0.085	0.28
Chlorome	thane		EPA TO-15	11	ppbv	0.085	0.28
Resu	ults are approximate, a	bove upper calibrati	on range.				
1,2-Dichlo	rotetrafluoroethane		EPA TO-15	ND	ppbv	0.085	0.33
Vinyl chlo	ride		EPA TO-15	ND	ppbv	0.085	0.28
1,3-Butad	iene		EPA TO-15	ND	ppbv	0.085	0.28
Bromome	thane		EPA TO-15	ND	ppbv	0.085	0.28
Chloroeth	ane		EPA TO-15	ND	ppbv	0.085	0.28
Acrolein			EPA TO-15	0.39	ppbv	0.085	0.28
Acetone			EPA TO-15	7.2	ppbv	0.085	0.28
Trichlorofl	uoromethane		EPA TO-15	0.23F	ppbv	0.085	0.28
1,1-Dichlo	roethene		EPA TO-15	ND	ppbv	0.085	0.28
Methylene	chloride		EPA TO-15	ND	ppbv	0.085	0.28
Carbon di	sulfide		EPA TO-15	ND	ppbv	0.085	0.28

Laboratory Report

D.F. Kurtycz, M.D., Medical Director - Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

WDNR LAB ID: 113133790 N

NELAP LAB ID: E37658

EPA LAB ID:

WI00007

WI DATCP ID: 105-415

WSLH Sample: 199368004

OC-Volatiles

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date 06/24/15 Analysis Date	06/24/15				
Trichlorotrifluoroethane	EPA TO-15	ND	ppbv	0.085	0.28
trans-1,2-Dichloroethene	EPA TO-15	ND	ppbv	0.085	0.28
1,1-Dichloroethane	EPA TO-15	ND	ppbv	0.085	0.28
Methyl tert-Butyl ether (MTBE)	EPA TO-15	ND	ppbv	0.085	0.28
Vinyl acetate	EPA TO-15	0.86	ppbv	0.085	0.28
Methyl Ethyl Ketone (MEK)	EPA TO-15	0.80	ppbv	0.085	0.28
The Upper QC limit for the calibration check is	exceeded.				
cis-1,2-Dichloroethene	EPA TO-15	ND	ppbv	0.085	0.28
Hexane	EPA TO-15	1.1	ppbv	0.085	0.28
Chloroform	EPA TO-15	ND	ppbv	0.085	0.28
Ethyl acetate	EPA TO-15	ND	ppbv	0.085	0.28
Tetrahydrofuran	EPA TO-15	ND	ppbv	0.085	0.28
1,2-Dichloroethane	EPA TO-15	ND	ppbv	0.085	0.28
1,1,1-Trichloroethane	EPA TO-15	ND	ppbv	0.085	0.28
Benzene	EPA TO-15	0.45	ppbv	0.085	0.28
Carbon tetrachloride	EPA TO-15	ND	ppbv	0.085	0.28
Cyclohexane	EPA TO-15	0.28	ppbv	0.085	0.28
1,2-Dichloropropane	EPA TO-15	ND	ppbv	0.085	0.28
Bromodichloromethane	EPA TO-15	ND	ppbv	0.085	0.33
Trichloroethene	EPA TO-15	ND	ppbv	0.085	0.28
1,4 Dioxane	EPA TO-15	ND	ppbv	0.085	0.28
n-Heptane	EPA TO-15	0.36	ppbv	0.085	0.28
cis-1,3-Dichloropropene	EPA TO-15	ND	ppbv	0.085	0.28
4-Methyl-2-pentanone (MIBK)	EPA TO-15	ND	ppbv	0.085	0.28
trans-1,3-Dichloropropene	EPA TO-15	ND	ppbv	0.085	0.28
1,1,2-Trichloroethane	EPA TO-15	ND	ppbv	0.085	0.28
Toluene	EPA TO-15	1.6	ppbv	0.085	0.28
2-Hexanone	EPA TO-15	ND	ppbv	0.085	0.28
Chlorodibromomethane	EPA TO-15	ND	ppbv	0.085	0.28

Report ID: 2346949 Page 14 of 16 Report Rev: 0000.25.2.WSLH.0

Laboratory Report

D.F. Kurtycz, M.D., Medical Director - Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB ID: WI00007 WI DATCP ID: 105-415

WSLH Sample: 199368004

OC-Volatiles

,	Analyte			Analysis Method	Result	Units	LOD	LOQ
F	Prep Date	06/24/15	Analysis Date	06/24/15				
	1,2-Dibrom	oethane		EPA TO-15	ND	ppbv	0.085	0.28
	Tetrachloro	ethene		EPA TO-15	ND	ppbv	0.085	0.28
	Chlorobenz	zene		EPA TO-15	ND	ppbv	0.085	0.28
	Ethyl Benz	ene		EPA TO-15	0.36	ppbv	0.085	0.28
	m,p-Xylene	•		EPA TO-15	1.2	ppbv	0.17	0.56
	The U	Ipper QC limit fo	r the calibration check is	exceeded.				
	Bromoform	l		EPA TO-15	ND	ppbv	0.085	0.28
	Styrene			EPA TO-15	ND	ppbv	0.085	0.28
	1,1,2,2-Tet	rachloroethane	•	EPA TO-15	ND	ppbv	0.085	0.28
	o-Xylene			EPA TO-15	0.49	ppbv	0.085	0.28
	1-ethyl-4-m	nethyl benzene		EPA TO-15	0.35	ppbv	0.085	0.28
	The U	Ipper QC limit fo	r the calibration check is	exceeded.				
	1,3,5-Trime	ethylbenzene		EPA TO-15	0.33	ppbv	0.085	0.28
	The U	Ipper QC limit for	r the calibration check is	exceeded.				
	1,2,4-Trime	ethylbenzene		EPA TO-15	0.66	ppbv	0.085	0.28
	The U	Ipper QC limit for	r the calibration check is	exceeded.				
	Benzyl chlo	oride		EPA TO-15	ND	ppbv	0.085	0.28
	1,3-Dichlor	obenzene		EPA TO-15	ND	ppbv	0.085	0.28
	1,4-Dichlor	obenzene		EPA TO-15	ND	ppbv	0.085	0.28
	1,2-Dichlor	obenzene		EPA TO-15	ND	ppbv	0.085	0.28
	1,2,4-Trich	lorobenzene		EPA TO-15	ND	ppbv	0.085	0.28
	Hexachloro	butadiene		EPA TO-15	ND	ppbv	0.085	0.28

Laboratory Report

D.F. Kurtycz, M.D., Medical Director - Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

WDNR LAB ID: 113133790

NELAP LAB ID: E37658

EPA LAB ID:

WI00007

WI DATCP ID: 105-415

WSLH Sample: 199368004

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Microbiology: Sharon Kluender, Lab Manager, 608-224-6262 Inorganic Chemistry: Tracy Hanke, Lab Manager, 608-224-6270 Metals: DeWayne Kennedy-Parker, Lab Manager, 608-224-6282 Organic Chemistry: Al Spallato, Lab Manager, 608-224-6269

Emergency Chemical Response: Noel Stanton, Lab Manager, 608-224-6251

June 08, 2015

Robyn Seymour Seymour Environmental Services, INC. 2531 Dyreson Road Mc Farland, WI 53558

RE: Project: 10370.00 BOB'S CITGO

Pace Project No.: 40115747

Dear Robyn Seymour:

Enclosed are the analytical results for sample(s) received by the laboratory on June 02, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dan Milewsky

dan.milewsky@pacelabs.com

Project Manager

Enclosures

CERTIFICATIONS

Project:

10370.00 BOB'S CITGO

Pace Project No.:

40115747

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334

North Dakota Certification #: R-150 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 US Dept of Agriculture #: S-76505 Wisconsin Certification #: 405132750

SAMPLE SUMMARY

Project:

10370.00 BOB'S CITGO

Pace Project No.:

40115747

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40115747001	MW-10	Water	05/28/15 10:30	06/02/15 07:45
40115747002	MW-9	Water	05/28/15 11:20	06/02/15 07:45
40115747003	MW-8	Water	05/28/15 11:50	06/02/15 07:45
40115747004	MW-7	Water	05/28/15 12:15	06/02/15 07:45
40115747005	MW-4	Water	05/28/15 12:45	06/02/15 07:45
40115747006	MW-6	Water	05/28/15 13:00	06/02/15 07:45
40115747007	MW-5	Water	05/28/15 13:15	06/02/15 07:45
40115747008	MW-3	Water	05/28/15 13:50	06/02/15 07:45
40115747009	MW-1	Water	05/28/15 14:00	06/02/15 07:45
40115747010	MW-2	Water	05/28/15 14:15	06/02/15 07:45

SAMPLE ANALYTE COUNT

Project:

10370.00 BOB'S CITGO

Pace Project No.: 40115747

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40115747001	MW-10	WI MOD GRO	PMS	10	PASI-G
40115747002	MW-9	WI MOD GRO	PMS	10	PASI-G
40115747003	MW-8	WI MOD GRO	PMS	10	PASI-G
40115747004	MW-7	WI MOD GRO	PMS	10	PASI-G
40115747005	MW-4	WI MOD GRO	PMS	10	PASI-G
40115747006	MW-6	WI MOD GRO	PMS	10	PASI-G
40115747007	MW-5	WI MOD GRO	LCF	10	PASI-G
40115747008	MW-3	WI MOD GRO	PMS	10	PASI-G
40115747009	MW-1	WI MOD GRO	PMS	10	PASI-G
40115747010	MW-2	WI MOD GRO	PMS	10	PASI-G

PROJECT NARRATIVE

Project:

10370.00 BOB'S CITGO

Pace Project No.:

40115747

Method: WI MOD GRO
Description: WIGRO GCV

Client:

SEYMOUR ENVIRONMENTAL SERVICES, INC.

Date:

June 08, 2015

General Information:

10 samples were analyzed for WI MOD GRO. All samples were received in acceptable condition with any exceptions noted below.

pH: Post-analysis pH measurement indicates insufficient VOA sample preservation.

• MW-5 (Lab ID: 40115747007)

• MW-8 (Lab ID: 40115747003)

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project:

10370.00 BOB'S CITGO

Pace Project No.: 40115747

Sample: MW-10	Lab ID:	40115747001	Collected	: 05/28/1	5 10:30	Received: 06	/02/15 07:45 M	latrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIGRO GCV	Analytical	Method: WI MC	DD GRO						
Benzene	<0.40	ug/L	1.0	0.40	1		06/03/15 13:41	71-43-2	
Ethylbenzene	< 0.39	ug/L	1.0	0.39	1		06/03/15 13:41	100-41-4	
Methyl-tert-butyl ether	<0.48	ug/L	1.0	0.48	1		06/03/15 13:41	1634-04-4	
Naphthalene	<0.42	ug/L	1.0	0.42	1		06/03/15 13:41	91-20-3	
Toluene	< 0.39	ug/L	1.0	0.39	1		06/03/15 13:41	108-88-3	
1,2,4-Trimethylbenzene	<0.42	ug/L	1.0	0.42	1		06/03/15 13:41	95-63-6	
1,3,5-Trimethylbenzene	< 0.42	ug/L	1.0	0.42	1		06/03/15 13:41	108-67-8	
m&p-Xylene	<0.80	ug/L	2.0	0.80	1		06/03/15 13:41	179601-23-1	
o-Xylene	<0.45	ug/L	1.0	0.45	1		06/03/15 13:41	95-47-6	
Surrogates									
a,a,a-Trifluorotoluene (S)	98	%	80-120		1		06/03/15 13:41	98-08-8	
Sample: MW-9	Lab ID:	40115747002	Collected	: 05/28/1	5 11:20	Received: 06	5/02/15 07:45 M	latrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIGRO GCV	Analytical	Method: WI MO	DD GRO						
Benzene	<0.40	ug/L	1.0	0.40	1		06/03/15 20:07	71-43-2	
Ethylbenzene	< 0.39	ug/L	1.0	0.39	1		06/03/15 20:07		
Methyl-tert-butyl ether	<0.48	ug/L	1.0	0.48	1		06/03/15 20:07		
Naphthalene	<0.42	ug/L	1.0	0.42	1		06/03/15 20:07		
Toluene	<0.39	ug/L	1.0	0.39	1		06/03/15 20:07		
1,2,4-Trimethylbenzene	<0.42	ug/L	1.0	0.42	1		06/03/15 20:07		
1,3,5-Trimethylbenzene	< 0.42	ug/L	1.0	0.42	1		06/03/15 20:07		
m&p-Xylene	<0.80	ug/L	2.0	0.80	1		06/03/15 20:07		
o-Xylene	<0.45	ug/L	1.0	0.45	1		06/03/15 20:07		
Surrogates		-5-							
a,a,a-Trifluorotoluene (S)	99	%	80-120		1		06/03/15 20:07	98-08-8	HS
Sample: MW-8	Lab ID:	40115747003	Collected	: 05/28/1	5 11:50	Received: 06	5/02/15 07:45 N	latrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIGRO GCV	Analytical	Method: WI MO	DD GRO						
Benzene	0.75J	ug/L	1.0	0.40	1		06/03/15 20:32	71-43-2	
Ethylbenzene	<0.39	ug/L	1.0	0.39	1		06/03/15 20:32		
Methyl-tert-butyl ether	10.3	ug/L	1.0	0.48	1		06/03/15 20:32		
Naphthalene	0.67J	ug/L	1.0	0.42	1		06/03/15 20:32		
Toluene	< 0.39	ug/L	1.0	0.39	1		06/03/15 20:32		
1,2,4-Trimethylbenzene	< 0.42	ug/L	1.0	0.42	1		06/03/15 20:32		
1,3,5-Trimethylbenzene	1.6	ug/L	1.0	0.42	1		06/03/15 20:32		
m&p-Xylene	<0.80	ug/L	2.0	0.80	1		06/03/15 20:32		
o-Xylene	<0.45	ug/L	1.0	0.45	1		06/03/15 20:32		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ANALYTICAL RESULTS

Project:

10370.00 BOB'S CITGO

Pace Project No.: 40115747

Date: 06/08/2015 04:47 PM

Sample: MW-8	Lab ID:	40115747003	Collected:	05/28/1	5 11:50	Received: 06	/02/15 07:45 N	Matrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIGRO GCV	Analytical	Method: WI MC	DD GRO						
Surrogates									
a,a,a-Trifluorotoluene (S)	99	%	80-120		1		06/03/15 20:32	2 98-08-8	HS,pH
Sample: MW-7	Lab ID:	40115747004	Collected:	05/28/1	5 12:15	Received: 06	i/02/15 07:45 N	Matrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIGRO GCV	Analytical	Method: WI MC	DD GRO						
Benzene	18.8	ug/L	1.0	0.40	1		06/03/15 18:50	0 71-43-2	
Ethylbenzene	1.3	ug/L	1.0	0.39	1		06/03/15 18:50	0 100-41-4	
Methyl-tert-butyl ether	126	ug/L	1.0	0.48	1		06/03/15 18:50	0 1634-04-4	
Naphthalene	1.7	ug/L	1.0	0.42	1		06/03/15 18:50	0 91-20-3	
Toluene	< 0.39	ug/L	1.0	0.39	1		06/03/15 18:50	0 108-88-3	
1,2,4-Trimethylbenzene	< 0.42	ug/L	1.0	0.42	1		06/03/15 18:50	0 95-63-6	
1,3,5-Trimethylbenzene	< 0.42	ug/L	1.0	0.42	1		06/03/15 18:50	0 108-67-8	
m&p-Xylene	1.1J	ug/L	2.0	0.80	1			0 179601-23-1	
o-Xylene	4.1	ug/L	1.0	0.45	1		06/03/15 18:50		
Surrogates									
a,a,a-Trifluorotoluene (S)	99	%	80-120		1		06/03/15 18:50	0 98-08-8	
Sample: MW-4	Lab ID:	40115747005	Collected:	05/28/1	5 12:45	Received: 06	5/02/15 07:45 N	Matrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIGRO GCV	Analytical	Method: WI MC	DD GRO						
Benzene	<0.40	ug/L	1.0	0.40	1		06/03/15 19:1	5 71-43-2	
Ethylbenzene	<0.39	ug/L	1.0	0.39	1		06/03/15 19:1		
Methyl-tert-butyl ether	95.0	ug/L	1.0	0.48	1		06/03/15 19:1		
Naphthalene	<0.42	ug/L	1.0	0.42	1		06/03/15 19:19		
Toluene	<0.39	ug/L	1.0	0.39	1		06/03/15 19:1		
1,2,4-Trimethylbenzene	<0.42	ug/L	1.0	0.42	1		06/03/15 19:1		
1,3,5-Trimethylbenzene	<0.42	ug/L	1.0	0.42	1		06/03/15 19:15		
m&p-Xylene	<0.42	ug/L	2.0	0.42	1			5 179601-23-1	
o-Xylene	<0.45	ug/L	1.0	0.45	1		06/03/15 19:15		
Surrogates	-0.40	ug/L	1.0	0.40			00/00/10 19.10	0 00-41-0	
a,a,a-Trifluorotoluene (S)	98	%	80-120		1		06/03/15 19:1	5 98-08-8	
, , , , , , , , , , , , , , , , , , , ,	20	2.5					- 3 0		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ANALYTICAL RESULTS

Project:

10370.00 BOB'S CITGO

Pace Project No.: 40115747

Sample: MW-6	Lab ID:	40115747006	Collected: 05/28/15 13:00			Received: 06/02/15 07:45 Matrix: Water				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
WIGRO GCV	Analytical	Method: WI MC	DD GRO							
Benzene	<0.40	ug/L	1.0	0.40	1		06/03/15 19:41	71-43-2		
Ethylbenzene	< 0.39	ug/L	1.0	0.39	1		06/03/15 19:41	100-41-4		
Methyl-tert-butyl ether	< 0.48	ug/L	1.0	0.48	1		06/03/15 19:41	1634-04-4		
Naphthalene	< 0.42	ug/L	1.0	0.42	1		06/03/15 19:41	91-20-3		
Toluene	< 0.39	ug/L	1.0	0.39	1		06/03/15 19:41	108-88-3		
1,2,4-Trimethylbenzene	< 0.42	ug/L	1.0	0.42	1		06/03/15 19:41	95-63-6		
1,3,5-Trimethylbenzene	< 0.42	ug/L	1.0	0.42	1		06/03/15 19:41	108-67-8		
m&p-Xylene	<0.80	ug/L	2.0	0.80	1		06/03/15 19:41	179601-23-1		
o-Xylene	< 0.45	ug/L	1.0	0.45	1		06/03/15 19:41			
Surrogates		-3								
a,a,a-Trifluorotoluene (S)	98	%	80-120		1		06/03/15 19:41	98-08-8		
Sample: MW-5	Lab ID:	40115747007	Collected	: 05/28/1	5 13:15	Received: 06	/02/15 07:45 Ma	atrix: Water		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
								- CAS NO.		
WIGRO GCV	Analytical	Method: WI MC	DD GRO							
Benzene	2170	ug/L	25.0	9.9	25		06/04/15 22:48	71-43-2		
Ethylbenzene	917	ug/L	25.0	9.8	25		06/04/15 22:48	100-41-4		
Methyl-tert-butyl ether	105	ug/L	25.0	12.1	25		06/04/15 22:48	1634-04-4		
Naphthalene	275	ug/L	25.0	10.6	25		06/04/15 22:48	91-20-3		
Toluene	1690	ug/L	25.0	9.7	25		06/04/15 22:48	108-88-3		
1,2,4-Trimethylbenzene	703	ug/L	25.0	10.4	25		06/04/15 22:48	95-63-6		
1,3,5-Trimethylbenzene	197	ug/L	25.0	10.4	25		06/04/15 22:48	108-67-8		
m&p-Xylene	2450	ug/L	50.0	20.0	25		06/04/15 22:48	179601-23-1		
o-Xylene	1470	ug/L	25.0	11.2	25		06/04/15 22:48	95-47-6		
Surrogates										
a,a,a-Trifluorotoluene (S)	97	%	80-120		25		06/04/15 22:48	98-08-8	pН	
Sample: MW-3	Lab ID:	40115747008	Collected	: 05/28/1	5 13:50	Received: 06	i/02/15 07:45 Ma	atrix: Water	-	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
WIGRO GCV	Analytical	Method: WI MC	DD GRO							
Benzene	1360	ug/L	50.0	19.8	50		06/03/15 17:58	71-43-2		
Ethylbenzene	3040	ug/L	50.0	19.6	50		06/03/15 17:58			
Methyl-tert-butyl ether	<24.2	ug/L	50.0	24.2	50		06/03/15 17:58			
Naphthalene	831	ug/L	50.0	21.2	50		06/03/15 17:58			
Toluene	719	ug/L	50.0	19.4	50		06/03/15 17:58			
1,2,4-Trimethylbenzene	2610	ug/L	50.0	20.9	50		06/03/15 17:58			
1,3,5-Trimethylbenzene	732	ug/L	50.0	20.8	50		06/03/15 17:58			
m&p-Xylene	9150	ug/L	100	40.0	50		06/03/15 17:58			
	0.00	- Marie	100							

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

(920)469-2436

ANALYTICAL RESULTS

Project:

10370.00 BOB'S CITGO

Pace Project N

Date: 06/08/2015 04:47 PM

40115747

Pace Project No.: 40115747									
Sample: MW-3	Lab ID:	40115747008	Collected	: 05/28/1	5 13:50	Received: 06	5/02/15 07:45 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIGRO GCV	Analytical	Method: WI MC	DD GRO						
Surrogates	98	%	80-120		50		06/03/15 17:58	00 00 0	
a,a,a-Trifluorotoluene (S)	90	76	80-120		50		00/03/13 17.50	90-00-0	
Sample: MW-1	Lab ID:	40115747009	Collected	: 05/28/1	5 14:00	Received: 06	6/02/15 07:45 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIGRO GCV	Analytical	Method: WI MO	DD GRO						
Benzene	5620	ug/L	125	49.5	125		06/03/15 18:24	71-43-2	
Ethylbenzene	2060	ug/L	125	49.1	125		06/03/15 18:24	100-41-4	
Methyl-tert-butyl ether	160	ug/L	125	60.6	125		06/03/15 18:24	1634-04-4	
Naphthalene	567	ug/L	125	53.0	125		06/03/15 18:24	91-20-3	
Toluene	12800	ug/L	125	48.5	125		06/03/15 18:24	108-88-3	
1,2,4-Trimethylbenzene	1460	ug/L	125	52.2	125		06/03/15 18:24		
1,3,5-Trimethylbenzene	394	ug/L	125	52.0	125		06/03/15 18:24		
m&p-Xylene	6390	ug/L	250	99.9	125		06/03/15 18:24		
o-Xylene	2970	ug/L	125	56.1	125		06/03/15 18:24		
Surrogates	2570	ug/L	120	30.1	120		00/03/13 10.24	33-47-0	
a,a,a-Trifluorotoluene (S)	96	%	80-120		125		06/03/15 18:24	98-08-8	
Sample: MW-2	Lab ID:	40115747010	Collected	: 05/28/1	5 14:15	Received: 06	6/02/15 07:45 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIGRO GCV	Analytical	Method: WI MO	DD GRO						
Benzene	2020	ug/L	20.0	7.9	20		06/03/15 17:07	71-43-2	
Ethylbenzene	3400	ug/L	20.0	7.9	20		06/03/15 17:07		
Methyl-tert-butyl ether	49.6	ug/L	20.0	9.7	20		06/03/15 17:07		
Naphthalene	826	ug/L	20.0	8.5	20		06/03/15 17:07		
Toluene	2560	ug/L	20.0	7.8	20		06/03/15 17:07		
1,2,4-Trimethylbenzene	3000	ug/L	20.0	8.4	20		06/03/15 17:07		
1,3,5-Trimethylbenzene	843	ug/L	20.0	8.3	20		06/03/15 17:07		
m&p-Xylene	10200	ug/L	40.0	16.0	20		06/03/15 17:07		
o-Xylene	3950	-	20.0	9.0	20		06/03/15 17:07		
Surrogates	3930	ug/L	20.0	9.0	20		00/03/15 17:07	90-47-0	
a,a,a-Trifluorotoluene (S)	101	%	80-120		20		06/03/15 17:07	09.09.9	
a,a,a- miliuorototuene (3)	101	/0	00-120		20		00/03/13 17:07	90-00-0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project:

10370.00 BOB'S CITGO

Pace Project No.:

40115747

QC Batch:

GCV/14499

Analysis Method:

WI MOD GRO

QC Batch Method:

WI MOD GRO

Analysis Description:

WIGRO GCV Water

Associated Lab Samples:

40115747001, 40115747002, 40115747003, 40115747004, 40115747005, 40115747006, 40115747007,

40115747008, 40115747009, 40115747010

METHOD BLANK: 1168140

Date: 06/08/2015 04:47 PM

Matrix: Water

Associated Lab Samples:

40115747001, 40115747002, 40115747003, 40115747004, 40115747005, 40115747006, 40115747007,

40115747008, 40115747009, 40115747010

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,2,4-Trimethylbenzene	ug/L	<0.42	1.0	06/03/15 09:16	
1,3,5-Trimethylbenzene	ug/L	<0.42	1.0	06/03/15 09:16	
Benzene	ug/L	<0.40	1.0	06/03/15 09:16	
Ethylbenzene	ug/L	< 0.39	1.0	06/03/15 09:16	
m&p-Xylene	ug/L	<0.80	2.0	06/03/15 09:16	
Methyl-tert-butyl ether	ug/L	<0.48	1.0	06/03/15 09:16	
Naphthalene	ug/L	<0.42	1.0	06/03/15 09:16	
o-Xylene	ug/L	<0.45	1.0	06/03/15 09:16	
Toluene	ug/L	< 0.39	1.0	06/03/15 09:16	
a,a,a-Trifluorotoluene (S)	%	97	80-120	06/03/15 09:16	

LABORATORY CONTROL SAMPL	E & LCSD: 1168141		11	1168142						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,2,4-Trimethylbenzene	ug/L	20	20.1	19.9	101	100	80-120	1	20	
1,3,5-Trimethylbenzene	ug/L	20	19.9	19.7	99	98	80-120	1	20	
Benzene	ug/L	20	19.4	19.3	97	97	80-120	0	20	
Ethylbenzene	ug/L	20	19.8	19.8	99	99	80-120	0	20	
m&p-Xylene	ug/L	40	39.7	39.4	99	99	80-120	1	20	
Methyl-tert-butyl ether	ug/L	20	18.6	18.5	93	92	80-120	1	20	
Naphthalene	ug/L	20	18.1	18.4	90	92	80-120	2	20	
o-Xylene	ug/L	20	19.7	19.5	98	98	80-120	1	20	
Toluene	ug/L	20	19.5	19.5	98	98	80-120	0	20	
a,a,a-Trifluorotoluene (S)	%				98	98	80-120			

MATRIX SPIKE & MATRIX SI	PIKE DUPLICA	ATE: 11688			1168896							
Parameter	4 Units	0115527004 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,2,4-Trimethylbenzene	ug/L	897	200	200	1220	1200	160	151	29-200		20	
1,3,5-Trimethylbenzene	ug/L	672	200	200	991	979	160	154	57-171	1	20	
Benzene	ug/L	140	200	200	340	340	100	100	69-150	0	20	
Ethylbenzene	ug/L	572	200	200	830	818	129	123	80-146	1	20	
m&p-Xylene	ug/L	662	400	400	1140	1130	120	117	65-173	1	20	
Methyl-tert-butyl ether	ug/L	<4.8	200	200	184	192	92	96	80-120	4	20	
Naphthalene	ug/L	157	200	200	367	381	105	112	66-137	4	20	
o-Xylene	ug/L	6.9J	200	200	217	220	105	107	79-144	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project:

10370.00 BOB'S CITGO

Pace Project No.: 40115747

Date: 06/08/2015 04:47 PM

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	CATE: 116889	95		1168896							· ·
Parameter	Units	40115527004 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Toluene a,a,a-Trifluorotoluene (S)	ug/L %	7.6J	200	200	209	212	101 100	102 99	67-156 80-120	-	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project:

10370.00 BOB'S CITGO

Pace Project No .:

40115747

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G

Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

Date: 06/08/2015 04:47 PM

HS

Results are from sample aliquot taken from VOA vial with headspace (air bubble greater than 6 mm diameter).

pН

Post-analysis pH measurement indicates insufficient VOA sample preservation.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

10370.00 BOB'S CITGO

Pace Project No.: 40115747

Date: 06/08/2015 04:47 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch		
40115747001	MW-10	WI MOD GRO	GCV/14499				
40115747002	MW-9	WI MOD GRO	GCV/14499				
40115747003	MW-8	WI MOD GRO	GCV/14499				
10115747004	MW-7	WI MOD GRO	GCV/14499				
10115747005	MW-4	WI MOD GRO	GCV/14499				
10115747006	MVV-6	WI MOD GRO	GCV/14499				
10115747007	MW-5	WI MOD GRO	GCV/14499				
10115747008	MW-3	WI MOD GRO	GCV/14499				
10115747009	MW-1	WI MOD GRO	GCV/14499				
40115747010	MW-2	WI MOD GRO	GCV/14499				

(Please Print Clearly)			_	-							RMIDWES					Page 1	oi /
Company Name: SEV MOURE ENVIRON									MN:	612-607-170	00 WI :	920-469-2	2436			£ 11	
Branch/Locat	ranch/Location: SEYMOUR ENVIRON TRECHING		Pace Analytical •						1	Also Course #				40115747 =			
Project Contact: ROBYN SeyMOUR		www.pecelebs.com								Quote	# :	Page					
Phone: 409 - 878 - 9/20		CHAIN OF CUSTODY									Mail To Co	ontact:	RoByn Seymon				
Project Number: 10370.00		**Preservation Codes A=None B=HCL C=H2SO4 D=HNO3 E=DI Water F=Methanot G=NaOH							N	lail To Co	mpany:	RoBYN Seymon Symous Environ as 31 Dyneson Rd MCFM2 CANY, WF S31-58					
Project Name: 1303's C. 150] —	H=Sodium Bisulfate Solution I=Sodium Thiosulfate J=Other								┙′	Mail To Ad	idress:	2531 Dyneson Rd			
Project State: WF		FILTE (YES	/NO)	Y/N	N									MCFM	2 CANY, WI	-23123	
Sampled By (Print): MANN R. Seymock		e e	PRESER (CO		Pick Letter	B						In	voice To	Contact:			
Sampled By (Sign): Mars Z Lignus					:						Inv	oice To C	ompany:			***************************************	
PO#:		egulatory Program:			8	3	.			1		In	voice To A	Address:			
Data Packa	hle)		trix Codes		3	2											
EPA Level III (billable) B = Biota C = Charco		Biota Charcoal	DW = Drinkii GW = Groun SW = Surface	d Water	1	ţ						Ir	voice To	Phone:			
your sample S = Soil S = Soil S = Sludge		Soil Sludge COLL	WW = Waste WP = Wipe LECTION		Amal	PVOC+Dank							CLIE			OMMENTS Use Only)	Profile #
		DATE	TIME				\vdash				+-+						
00/	M 10 - 10	728/13	10:30			X					┼┼-				3-4	OWLUB	
002 mw-9		+	11:50			X					+	_					
003	MW-B		11:50	GW		X											
004 mw.7			12:15	GW		X											
005	005 NW-4		12:48	6w		X											
006	MW-6		13:00	GW		X					199						
007	MW-5		13:15	GW		X											
008			12:50	610		X						51	sen or	necter		4.00 Mark 100 Mark 10	
009	MW-1	Ш	14:00	CW		X							Sheen annotes				
010	MW-2	1	14:15	GW		X							40 + :		4	1	
											<u> </u>						
Rush Turnaround Time Requested - Prelims (Rush TAT subject to approval/surcharge) Date Needed: Relinq			place K Legnon 6/1/15 por pare/Time: Pr					Receive	Received By: Date/Time: Received By: Date/Time: Date/Time: 6774					PACE Project No.			
Transmit Prelim Rush Results by (complete what you want):			yeu	Newham 6-215 0745 BU						Wes	Wat Wife 6275			0 / 25	Receipt Temp = (20 T°C	
Email #1:	Relin		iquished By:	quished By: Date/Time: Received By:						d By:		Û	Date/Time:		Sample Re	celpt pH	
Email #2: Telephone:			quished By:	quished By: Date/Time: Received By:						d Bv:		Date/Time:				usted	
fax:		pulsariou by. Date/ rime: Received by						,	Date/Time:				Cooler Cus				
				uished By: Date/Time: Received By:						d By:			Date/Time:		Present / Not Present		
		-				and the second	ALCO DESCRIPTION OF THE PARTY OF	1000	-	The second second	-			The Real Property lies, the Person lies,	-	Version 6.0 06/14/06	