GIS REGISTRY (Cover Sheet) Form 4400-280 (R 6/13)

Source Proper	ty Information			CLOSURE DATE: 10/20/2014
BRRTS #:	03-12-211070			0L000NL DATE. 10/20/2014
ACTIVITY NAME:	Featherston Property			FID #:
PROPERTY ADDRESS:	48799 Barnum DR		**************************************	DATCP #:
MUNICIPALITY:	Barnum			PECFA#: 54631-972268
PARCEL ID #:	010-0682-0000			
PARCEL ID #.	010-0662-0000			
	*WTM COORDINATES:		WTM COOR	DINATES REPRESENT:
X: 4	Y: 305402	•	Approximate Cer	nter Of Contaminant Source
	* Coordinates are in WTM83, NAD83 (1991)	C	Approximate Sou	urce Parcel Center
Please check as approp	oriate: (BRRTS Action Code)			
	CONTINU	ING OE	LIGATIONS	
Contaminated	l Media for Residual Con	ıtamina	tion:	
⊠ <u>Groundwater</u> (Contamination > ES (236)		Soil Contamina	ntion > *RCL or **SSRCL (232)
⊠ Contamin	ation in ROW		☐ Contamina	ation in ROW
☐ Off-Sourc	e Contamination		☐ Off-Source	• Contamination
	of off-source properties Off-Source Property Information, 5")			f off-source properties Off-Source Property Information, "')
Site Specific (Obligations:			
☐ Soil: maintain	industrial zoning (220)	Г	Cover or Barrie	r (222)
	nation concentrations		 ☐ Direct Cont	•
petween non-indust	rial and industrial levels)		☐ Soil to GW	Pathway
Structural Impe	ediment <i>(224)</i>		ີ່ Vapor Mitigatioເ	n <i>(226)</i>
Site Specific C	ondition (228)		☐ Maintain Liabilit	y Exemption <i>(230)</i>
		d	note: local governm evelopment corpora ake a response actio	
		Monito	oring Wells:	
	Are all monitoring wells	s properly	∕ abandoned per N	NR 141? <i>(234)</i>
		O No	ON/A	
				* Residual Contaminant Level

State of Wisconsin Department of Natural Resources http://dnr.wi.gov

PLEASE ASSEMBLE IN THIS ORDER

GIS Registry Checklist

Form 4400-245 (R 8/11)

- Page 1 of 3

This Adobe Fillable form is intended to provide a list of information that is required for evaluation for case closure. It is to be used in conjunction with Form 4400-202, Case Closure Request. The closure of a case means that the Department has determined that no further response is required at that time based on the information that has been submitted to the Department.

NOTICE: Completion of this form is mandatory for applications for case closure pursuant to ch. 292, Wis. Stats. and ch. NR 726, Wis. Adm. Code, including cases closed under ch. NR 746 and ch. NR 726. The Department will not consider, or act upon your application, unless all applicable sections are completed on this form and the closure fee and any other applicable fees, required under ch. NR 749, Wis. Adm. Code, Table 1 are included. It is not the Department's intention to use any personally identifiable information from this form for any purpose other than reviewing closure requests and determining the need for additional response action. The Department may provide this information to requesters as required by Wisconsin's Open Records law [ss. 19.31 - 19.39, Wis. Stats.].

BRRTS #: 03-12-211070 (No Dashes) PARCEL ID #: 010-0682-0000 ACTIVITY NAME: |Featherston Property WTM COORDINATES: Y: 305402 451692 CLOSURE DOCUMENTS (the Department adds these items to the final GIS packet for posting on the Registry) X Closure Letter Maintenance Plan (if activity is closed with a land use limitation or condition (land use control) under s. 292.12, Wis. Stats.)

- Continuing Obligation Cover Letter (for property owners affected by residual contamination and/or continuing obligations)
- X Conditional Closure Letter
- Certificate of Completion (COC) (for VPLE sites)

SOURCE LEGAL DOCUMENTS

- Deed: The most recent deed as well as legal descriptions, for the Source Property (where the contamination originated). Deeds for other, off-source (off-site) properties are located in the Notification section. Note: If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.
- Certified Survey Map: A copy of the certified survey map or the relevant section of the recorded plat map for those properties where the legal description in the most recent deed refers to a certified survey map or a recorded plat map. (lots on subdivided or platted property (e.g. lot 2 of xyz subdivision)).

Figure #: --

Title: Village of Barnum Plat Map

Signed Statement: A statement signed by the Responsible Party (RP), which states that he or she believes that the attached legal description accurately describes the correct contaminated property.

MAPS (meeting the visual aid requirements of s. NR 716.15(2)(h))

Maps must be no larger than 11 x 17 inches unless the map is submitted electronically.

Location Map: A map outlining all properties within the contaminated site boundaries on a U.S.G.S. topographic map or plat map in sufficient detail to permit easy location of all parcels. If groundwater standards are exceeded, include the location of all potable wells within 1200 feet of the site.

Note: Due to security reasons municipal wells are not identified on GIS Packet maps. However, the locations of these municipal wells must be identified on Case Closure Request maps.

Figure #: 1

Title: Site Location Map

- Detailed Site Map: A map that shows all relevant features (buildings, roads, individual property boundaries, contaminant sources, utility lines, monitoring wells and potable wells) within the contaminated area. This map is to show the location of all contaminated public streets, and highway and railroad rights-of-way in relation to the source property and in relation to the boundaries of groundwater contamination exceeding a ch. NR 140 Enforcement Standard (ES), and/or in relation to the boundaries of soil contamination exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Levels (SSRCL) as determined under s. NR 720.09, 720.11 and 720.19.
 - Figure #: 2 Title: Site Plan, Soil Boring, Probe, and Monitoring Well Locations Map
- Soil Contamination Contour Map: For sites closing with residual soil contamination, this map is to show the location of all contaminated soil and a single contour showing the horizontal extent of each area of contiguous residual soil contamination that exceeds a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL) as determined under s. NR 720.09, 720.11 and 720.19.

Figure #: 3

Title: Estimated Extent of Soil Exceeding the NR 720 RCL

State of Wisconsin Department of Natural Resources http://dnr.wi.gov

GIS Registry Checklist

Form 4400-245 (R 8/11)

Page 2 of 3

BRRTS #: 03-12-211070

ACTIVITY NAME: Featherston Property

MAPS (continued)

K Geologic Cross-Section Map: A map showing the source location and vertical extent of residual soil contamination exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL). If groundwater contamination exceeds a ch. NR 140 Enforcement Standard (ES) when closure is requested, show the source location and vertical extent, water table and piezometric elevations, and locations and elevations of geologic units, bedrock and confining units, if any.

Figure #: 2

Title: Geologic Cross Section A - A'

Figure #:

Title:

| Groundwater Isoconcentration Map: For sites closing with residual groundwater contamination, this map shows the horizontal extent of all groundwater contamination exceeding a ch. NR140 Preventive Action Limit (PAL) and an Enforcement Standard (ES). Indicate the direction and date of groundwater flow, based on the most recent sampling data. **Note:** This is intended to show the total area of contaminated groundwater.

Title: Estimated Extent of Contaminated Groundwater Exceeding the NR 140 ES

Groundwater Flow Direction Map: A map that represents groundwater movement at the site. If the flow direction varies by more then 20° over the history of the site, submit 2 groundwater flow maps showing the maximum variation in flow direction.

Figure #: 5

Title: Groundwater Elevation Contour Map October 21, 2008

Figure #: 6

Title: Groundwater Elevation Contour Map June 20, 2011

TABLES (meeting the requirements of s. NR 716.15(2)(h)(3))

Tables must be no larger than 11 x 17 inches unless the table is submitted electronically. Tables $\underline{\text{must not}}$ contain shading and/or cross-hatching. The use of BOLD or ITALICS is acceptable.

Soil Analytical Table: A table showing remaining soil contamination with analytical results and collection dates. Note: This is one table of results for the contaminants of concern. Contaminants of concern are those that were found during the site investigation, that remain after remediation. It may be necessary to create a new table to meet this requirement.

Table #: 1 and 3

Title: Summary of Soil Analytical Results and Summary of Remedial Soil Excavation Results

Groundwater Analytical Table: Table(s) that show the most recent analytical results and collection dates, for all monitoring wells and any potable wells for which samples have been collected.

Table #: 2

Title: Summary of Groundwater Analytical Results

Water Level Elevations: Table(s) that show the previous four (at minimum) water level elevation measurements/dates from all monitoring wells. If present, free product is to be noted on the table.

Table #: 4

Title: Water Level Data

IMPROPERLY ABANDONED MONITORING WELLS

For each monitoring well not properly abandoned according to requirements of s. NR 141.25 include the following documents. Note: If the site is being listed on the GIS Registry for only an improperly abandoned monitoring well you will only need to submit the documents in this section for the GIS Registry Packet.

Not Applicable

Site Location Map: A map showing all surveyed monitoring wells with specific identification of the monitoring wells which have not been properly abandoned.

Note: If the applicable monitoring wells are distinctly identified on the Detailed Site Map this Site Location Map is not needed.

Figure #:

Well Construction Report: Form 4440-113A for the applicable monitoring wells.

Deed: The most recent deed as well as legal descriptions for each property where a monitoring well was not properly abandoned.

Notification Letter: Copy of the notification letter to the affected property owner(s).

State of Wisconsin Department of Natural Resources http://dnr.wi.gov

GIS Registry Checklist

Form 4400-245 (R -8/11)

Page 3 of 3

BRRTS #: 03-12-211070

ACTIVITY NAME: | Featherston Property

			IC			

Source Property

- K Letter To Current Source Property Owner: If the source property is owned by someone other than the person who is applying for case closure, include a copy of the letter notifying the current owner of the source property that case closure has been requested.
- Return Receipt/Signature Confirmation: Written proof of date on which confirmation was received for notifying current source property owner.

Off-Source Property

Group the following information per individual property and label each group according to alphabetic listing on the "Impacted Off-Source Property" attachment.

- ▼ Not Applicable
- Letter To "Off-Source" Property Owners: Copies of all letters sent by the Responsible Party (RP) to owners of properties with groundwater exceeding an Enforcement Standard (ES), and to owners of properties that will be affected by a land use control under s. 292.12, Wis. Stats.

Note: Letters sent to off-source properties regarding residual contamination must contain standard provisions in Appendix A of ch. NR 726.

Number of "Off-Source" Letters:

- Return Receipt/Signature Confirmation: Written proof of date on which confirmation was received for notifying any off-source property owner.
- Deed of "Off-Source" Property: The most recent deed(s) as well as legal descriptions, for all affected deeded off-source property(ies). This does not apply to right-of-ways.

Note: If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.

Certified Survey Map: A copy of the certified survey map or the relevant section of the recorded plat map for those properties where the legal description in the most recent deed refers to a certified survey map or a recorded plat map. (lots on subdivided or platted property (e.g. lot 2 of xyz subdivision)).

Figure #:

Title:

🔀 Letter To "Governmental Unit/Right-Of-Way" Owners: Copies of all letters sent by the Responsible Party (RP) to a city, village, municipality, state agency or any other entity responsible for maintenance of a public street, highway, or railroad right-of-way, within or partially within the contaminated area, for contamination exceeding a groundwater Enforcement Standard (ES) and/or soil exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL).

Number of "Governmental Unit/Right-Of-Way Owner" Letters: 2

State of Wisconsin DEPARTMENT OF NATURAL RESOURCES 473 Griffith Ave Wisconsin Rapids, WI 54494

Scott Walker, Governor Cathy Stepp, Secretary Dan Bauman, Regional Director Telephone 715-421-7800 Fax 715-421-7830

October 20, 2014

Doretta Featherston 6710 Elmwood Ave Middleton, WI 53563

KEEP THIS DOCUMENT WITH YOUR PROPERTY RECORDS

SUBJECT:

Final Case Closure

Featherston Property, 48799 Barnum Drive, Barnum, WI

DNR BRRTS Activity #: 03-12-211070

Dear Mrs. Featherston:

The Department of Natural Resources (DNR) considers the Featherston Property site closed, with continuing obligations. No further investigation or remediation is required at this time. However, you and future property owners, and occupants must comply with the continuing obligations as explained in the conditions of closure in this letter. Please read over this letter closely to ensure that you comply with all conditions and other on-going requirements. Provide this letter to anyone who purchases, rents or leases this property from you. For residential property transactions, you may be required to make disclosures under s. 709.02, Wis. Stats.

This final closure decision is based on the correspondence and data provided, and is issued under chs. NR 726 and 727, Wisconsin Administrative Code. The West Central Region Closure Committee reviewed the request for closure on March 8, 2012. The closure committee reviewed this environmental remediation case for compliance with state laws and standards. A conditional closure letter was issued by the DNR on March 9, 2012, and documentation that the conditions in that letter were met was received on October 20, 2014.

This former gas station had soil and groundwater contaminated with petroleum VOCs. Responses include excavation and monitoring. The conditions of closure and continuing obligations required were based on the property being used for residential purposes.

Continuing Obligations

The continuing obligations for this site are summarized below. Further details on actions required are found in the section <u>Closure Conditions</u>.

- Groundwater contamination is present above ch. NR 140 enforcement standards.
- Residual soil contamination exists that must be properly managed should it be excavated or removed.

The DNR fact sheet, "Continuing Obligations for Environmental Protection", RR-819, helps to explain a property owner's responsibility for continuing obligations on their property. The fact sheet may be obtained at http://dnr.wi.gov/files/PDF/pubs/rr/RR819.pdf.

GIS Registry

This site will be included on the Bureau for Remediation and Redevelopment Tracking System (BRRTS on the Web) at http://dnr.wi.gov/topic/Brownfields/rrsm.html, to provide public notice of residual contamination and of any continuing obligations. The site can also be viewed on the Remediation and Redevelopment Sites Map (RRSM), a map view, under the Geographic Information System (GIS) Registry layer, at the same web address.

DNR approval prior to well construction or reconstruction is required for all sites shown on the GIS Registry, in accordance with s. NR 812.09 (4) (w), Wis. Adm. Code. This requirement applies to private drinking water wells and high capacity wells. To obtain approval, complete and submit Form 3300-254 to the DNR Drinking and Groundwater program's regional water supply specialist. This form can be obtained on-line at http://dnr.wi.gov/topic/wells/documents/3300254.pdf.

All site information is also on file at the West Central Regional DNR office, at 473 Griffith Ave, Wisconsin Rapids, WI. This letter and information that was submitted with your closure request application, including any maintenance plan and maps, can be found as a PDF in BRRTS on the Web.

Closure Conditions

Compliance with the requirements of this letter is a responsibility to which you and any subsequent property owners must adhere. DNR staff will conduct periodic prearranged inspections to ensure that the conditions included in this letter and the attached maintenance plans are met. If these requirements are not followed, the DNR may take enforcement action under s. 292.11, Wisconsin Statutes to ensure compliance with the specified requirements, limitations or other conditions related to the property.

Please send written notifications in accordance with the following requirements to:

Department of Natural Resources
Attn: Remediation and Redevelopment Program Environmental Program Associate
1300 W. Clairemont Ave
Eau Claire, WI 54701

Residual Groundwater Contamination (chs. NR 140 and 812, Wis. Adm. Code)

Groundwater contamination greater than enforcement standards is present both on this contaminated property and off this contaminated property, as shown on the attached map (Figure 4: Estimated extent of contaminated groundwater exceeding the NR 140 ES). If you intend to construct a new well, or reconstruct an existing well, you'll need prior DNR approval. Affected property owners were notified of the presence of groundwater contamination.

Residual Soil Contamination (ch. NR 718, or ch. 289, Stats.; chs. 500 to 536, Wis. Adm. Code)

Soil contamination remains in the vicinity of the former pump islands and tank basin as indicated on the attached map (Figure 3: Estimated extent of contaminated soil exceeding the NR 720 RCL). If soil in the specific locations described above is excavated in the future, the property owner at the time of excavation must sample and analyze the excavated soil to determine if contamination remains. If sampling confirms that contamination is present, the property owner at the time of excavation will need to determine whether the material is considered solid or hazardous waste and ensure that any storage, treatment or disposal is in compliance with applicable standards and rules.

In addition, all current and future owners and occupants of the property need to be aware that excavation of the contaminated soil may pose an inhalation or other direct contact hazard and as a result special precautions may need to be taken to prevent a direct contact health threat to humans.

Depending on site-specific conditions, construction over contaminated soils or groundwater may result in vapor migration of contaminants into enclosed structures or migration along newly placed underground utility lines. The potential for vapor inhalation and means of mitigation should be evaluated when planning any future redevelopment, and measures should be taken to ensure the continued protection of public health, safety, welfare and the environment at the site.

General Wastewater Permits for Construction Related Dewatering Activities

The DNR's Water Quality Program regulates point source discharges of contaminated water, including discharges to surface waters, storm sewers, pits, or to the ground surface. This includes discharges from construction related dewatering activities, including utility and building construction.

If you or any other person plan to conduct such activities, you or that person must contact that program, and if necessary, apply for the necessary discharge permit. Additional information regarding discharge permits is available at dnr.wi.gov/topic/wastewater/GeneralPermits.html. If residual soil or groundwater contamination is likely to affect water collected in a pit/trench that requires dewatering, a general permit for Discharge of Contaminated Groundwater from Remedial Action Operations may be needed. If water collecting in a pit/trench that requires dewatering is expected to be free of pollutants other than suspended solids and oil and grease, a general permit for Pit/Trench Dewatering may be needed.

PECFA Reimbursement

Section 101.143, Wis. Stats., requires that Petroleum Environmental Cleanup Fund Award (PECFA) claimants seeking reimbursement of interest costs, for sites with petroleum contamination, submit a final reimbursement claim within 120 days after they receive a closure letter on their site. For claims not received within 120 days of the date of this letter, interest costs after 60 days of the date of this letter will not be eligible for PECFA reimbursement. If there is equipment purchased with PECFA funds remaining at the site, contact the DNR Program to determine the method for salvaging the equipment.

In Closing

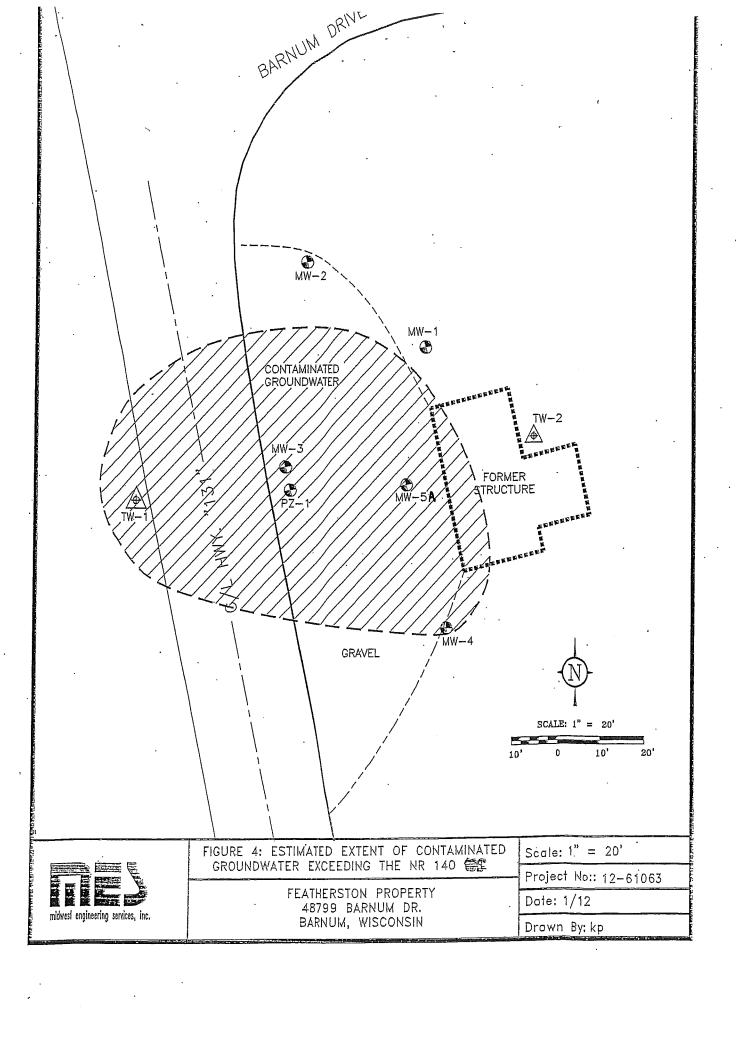
Please be aware that the case may be reopened pursuant to s. NR 727.13, Wis. Adm. Code, for any of the following situations:

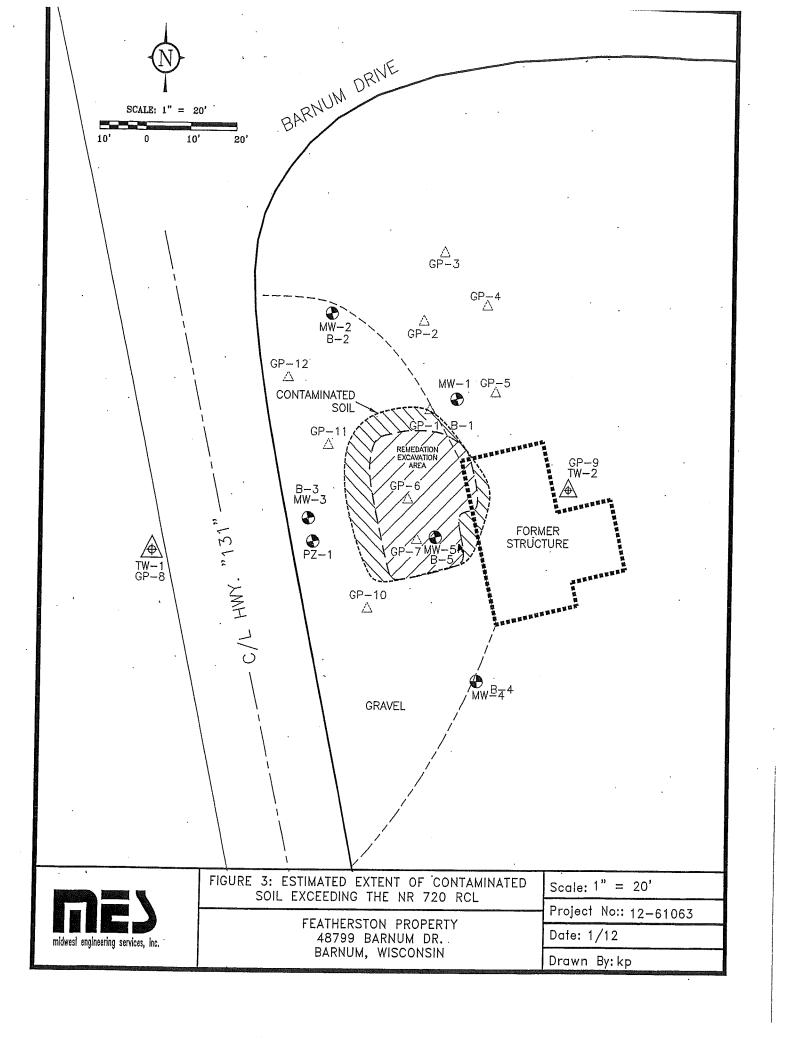
- if additional information regarding site conditions indicates that contamination on or from the site poses a threat to public health, safety, or welfare or to the environment,
- if the property owner does not comply with the conditions of closure, with any deed restrictions applied to the property, or with a certificate of completion issued under s. 292.15, Wis. Stats, or
- a property owner fails to maintain or comply with a continuing obligation (imposed under this closure approval letter).

The DNR appreciates your efforts to restore the environment at this site. If you have any questions regarding this closure decision or anything outlined in this letter, please contact Dave Rozeboom at 715-421-7873, or at David.Rozeboom@wisconsin.gov.

Sincerely,

Dave Rozeboom


Team Supervisor – West Central Region Remediation & Redevelopment Program


Attachments:

- Figure 4: Estimated extent of contaminated groundwater exceeding the NR 140 ES Figure 3: Estimated extent of contaminated soil exceeding the NR 720 RCL

Brian Youngwirth, PSI cc:

State of Wisconsin
DEPARTMENT OF NATURAL RESOURCES
Wisconsin Rapids Service Center
473 Griffith Avenue
Wisconsin Rapids WI 54494

Scott Walker, Governor Cathy Stepp, Secretary Telephone 608-266-2621 Toll Free 1-888-936-7463 TTY Access via relay - 711

March 9, 2012

Doretta Featherston 6710 Elmwood Ave Middleton, WI 53563

Subject:

Conditional Closure Decision,

With Requirements to Achieve Final Closure

Featherston Property, 48799 Barnum Drive, Barnum, Wisconsin

WDNR BRRTS Activity # 03-12-211070

Dear Mrs. Featherston:

On March 8, 2012, the Wisconsin Department of Natural Resources reviewed your request for closure of the case described above. The West Central Region Closure Committee reviews environmental remediation cases for compliance with state rules and statutes to maintain consistency in the closure of these cases. After careful review of the closure request, the Closure Committee has determined that the petroleum contamination on the site from the area in the vicinity of the former pump islands appears to have been investigated and remediated to the extent practicable under site conditions. Your case has been remediated to Department standards in accordance with s. NR 726.05, Wis. Adm. Code and will be closed if the following conditions are satisfied:

The monitoring wells and temporary wells at the site must be properly abandoned in accordance with ch. NR 141, Wis. Adm. Code. Documentation of well abandonment must be submitted to me on Form 3300-005, found at http://dnr.wi.gov/org/water/dwg/gw/ or provided by the Department of Natural Resources.

Any remaining purge water, waste and/or soil piles generated as part of site investigation or remediation activities must be removed from the site and disposed of or treated in accordance with Department of Natural Resources' rules. Once that work is completed, please send appropriate documentation regarding the treatment or disposal of the remaining purge water, waste and/or soil piles.

When the above conditions have been satisfied, please submit the appropriate documentation (for example, well abandonment forms, disposal receipts, copies of correspondence, etc.) to verify that applicable conditions have been met, and your case will be closed. Your site will be listed on the DNR's Remediation and Redevelopment GIS Registry. Information that was submitted with your closure request application will be included on the GIS Registry. To review the site on the GIS Registry web page, visit the RR Sites Map page at: http://dnr.wi.gov/org/aw/rr/gis/index.htm.

Please be aware that the case may be reopened pursuant to s. NR 726.09, Wis. Adm. Code, if additional information regarding site conditions indicates that contamination on or from the site poses a threat to public health, safety, or welfare or to the environment.

We appreciate your efforts to restore the environment at this site. If you have any questions regarding this letter, please contact me at (715) 421-7873.

Sincerely,

Dave Rozeboom Hydrogeologist

Remediation & Redevelopment Program

cc: Brian

Brian Youngwirth, MES

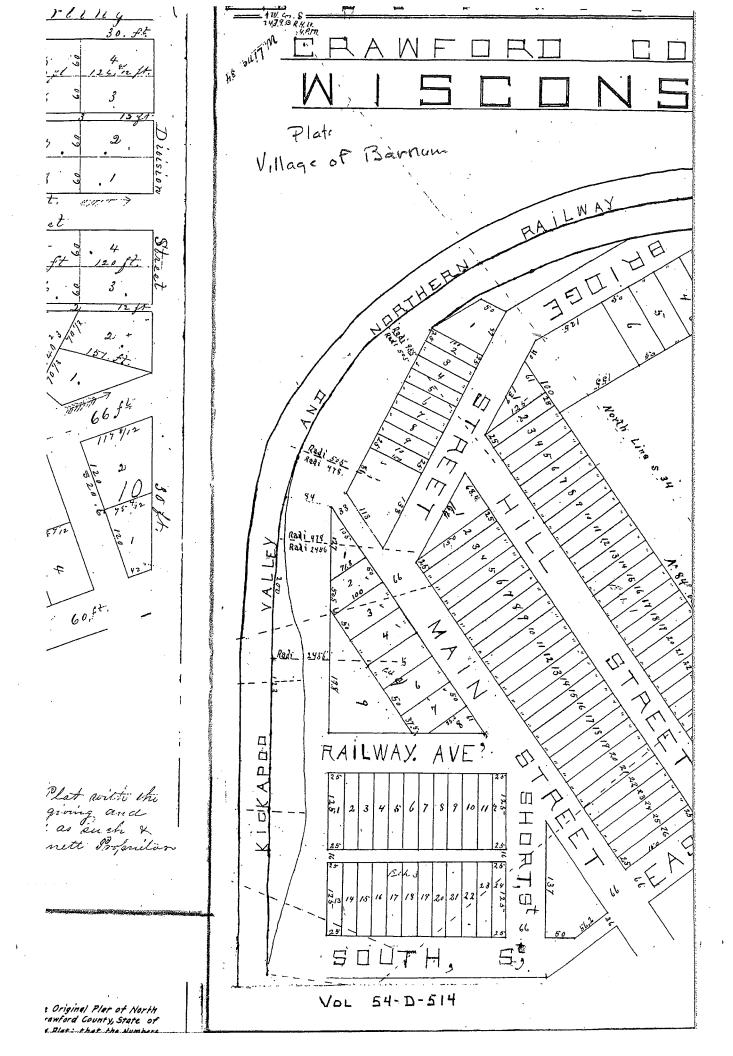
WARRANTY DEED Recorded Document No. SEP. 12,2001 AT 11:30AM REBISTER OF DEEDS OFFICE This Deed, made between Robert Featherston and Doretta CHERYL E OLSON REGISTER Featherston, husband and wife, Grantor, Fee Asount: \$13.00 Transfer fee: \$126.00 and Ted W. Steines and Deanna R. Steines, husband and wife, as survivorship marital property, Grantee, Witnesseth, That the said Grantor, for valuable consideration . conveys, to Grantee, the following described real estate in Crawford County RETURN RECORDED DOCUMENT TO: Kinney & Urban, P.O. Box 528, Lancaster, WI 53813 State of Wisconsin: Lots One (1), Two (2), Three (3) and Four (4), Block Four (4), Village of Barnum, Crawford County, Wisconsin, also a strip of land lying between Block Four (4) and the railway right of way, beginning at the West corner of 12-010-0882-00 ond 010,684-0000 and

This is not homestead property.

Together with all and singular the hereditaments and appurtenances thereunto belonging;

Lot Two (2) and running parallel to Block Four (4) intersecting street, being

in Section 43, Town 9 North, Range 4 West, Crawford County, Wisconsin.


And Grantor warrants that the title is good, indefeasible in fee simple and free and clear of encumbrances, exce easements, restrictions and rights-of-way of record

and will warrant and defend the same.

Dated this 3

(SEAL)

0000 and 12-010-0685-000 Parcel Identification Nos.

2010 Property Record | Crawford County, WI

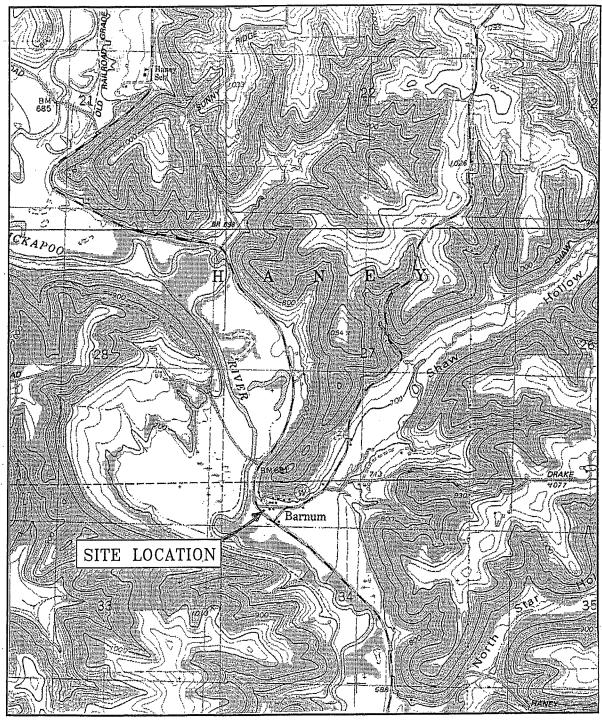
Property information is valid as of 2011-12-2.

	34		09		. 04
Section		Township		Range	
School District				NORTH CRA	WFORD
Parcel ID:	,			010-066	
Property Information					
48799 BARNUM DR GAYS MILLS WI 54631-0000					
TED/DEANNA STEINES					
Owner					

Land Valuation <u>Class</u> Acres 11	Land Value 800 800	Improvements 0
Tax Districts		TOWN OF HANEY
Total Taxes		18.72
First Dollar Credit		.00
Lottery Credit		.00
Woodland Forest		.00.
Special Charges		.00.
Net Tax		18.72
Tax Information	*	

January 25, 2012

SUBJECT:


CERTIFY GIS

Featherston Property 48799 Barnum Drive Town of Haney, Wisconsin MES Document No.12-61063 WDNR BRRTS# 03-12-211070

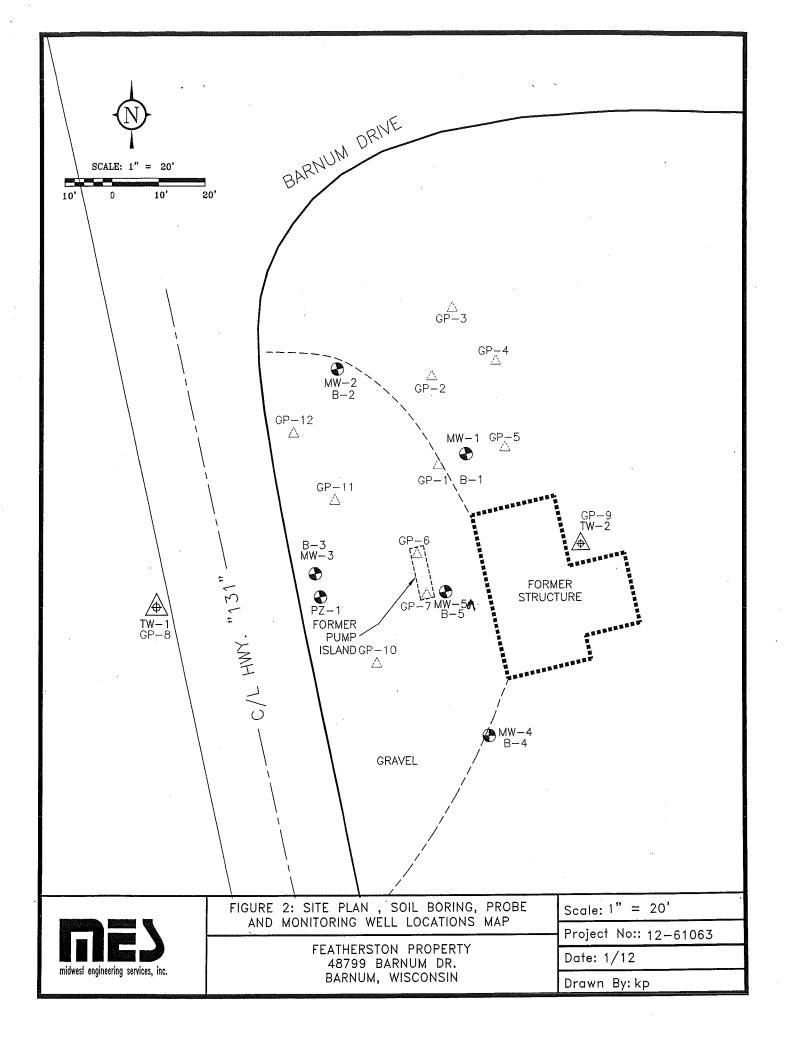
I hereby certify that the legal descriptions in the GIS registration package for the above mentioned project are complete and accurate.

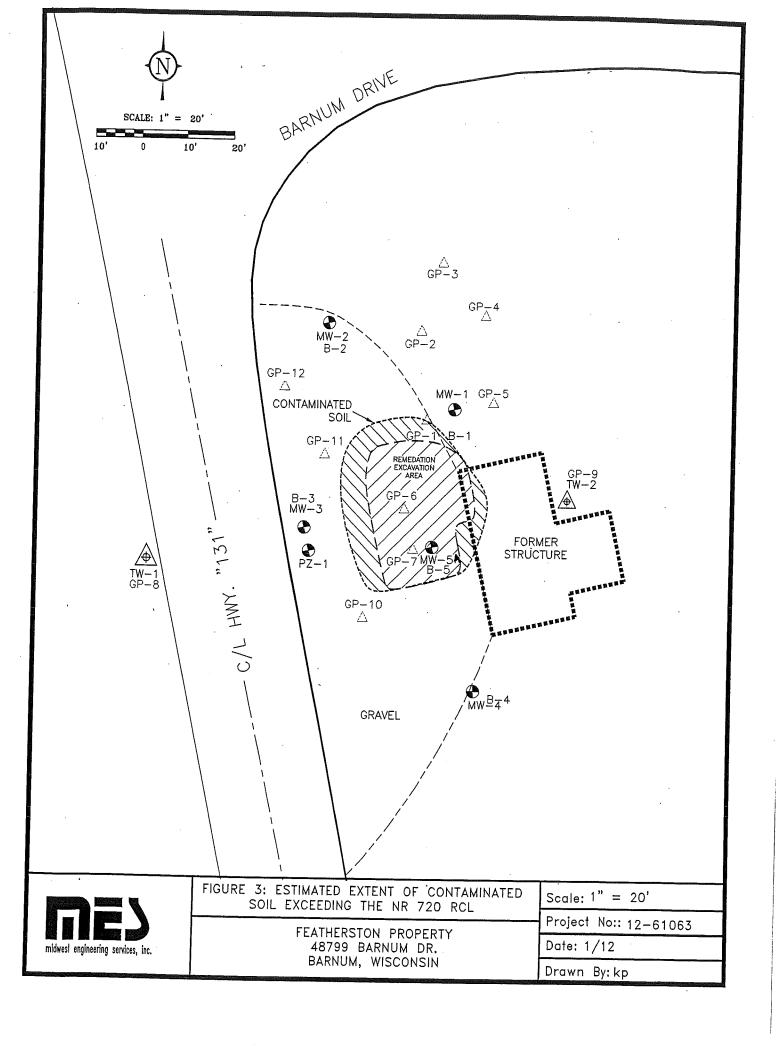
for Darotta Frakershom

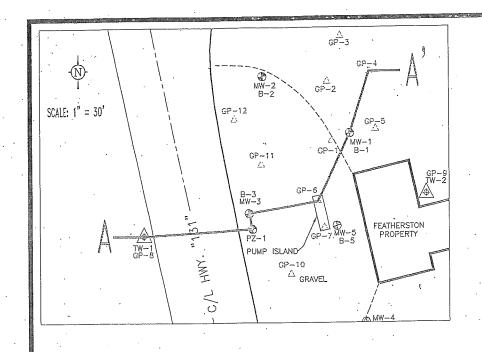
Ms. Doretta Featherston

STEUBEN QUADRANGLE
U.S.G.S. 7.5 MINUTE SERIES
(TOPOGRAPHIC) CRAWFORD COUNTY
WISCONSIN

SCALE: 1:24,000


FIGURE 1: SITE LOCATION MAP

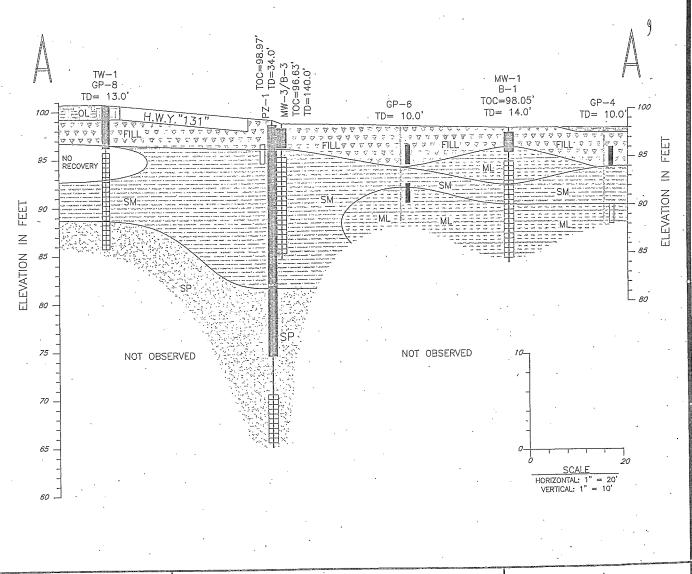

FEATHERSTON PROPERTY BARNUM, WISCONSIN

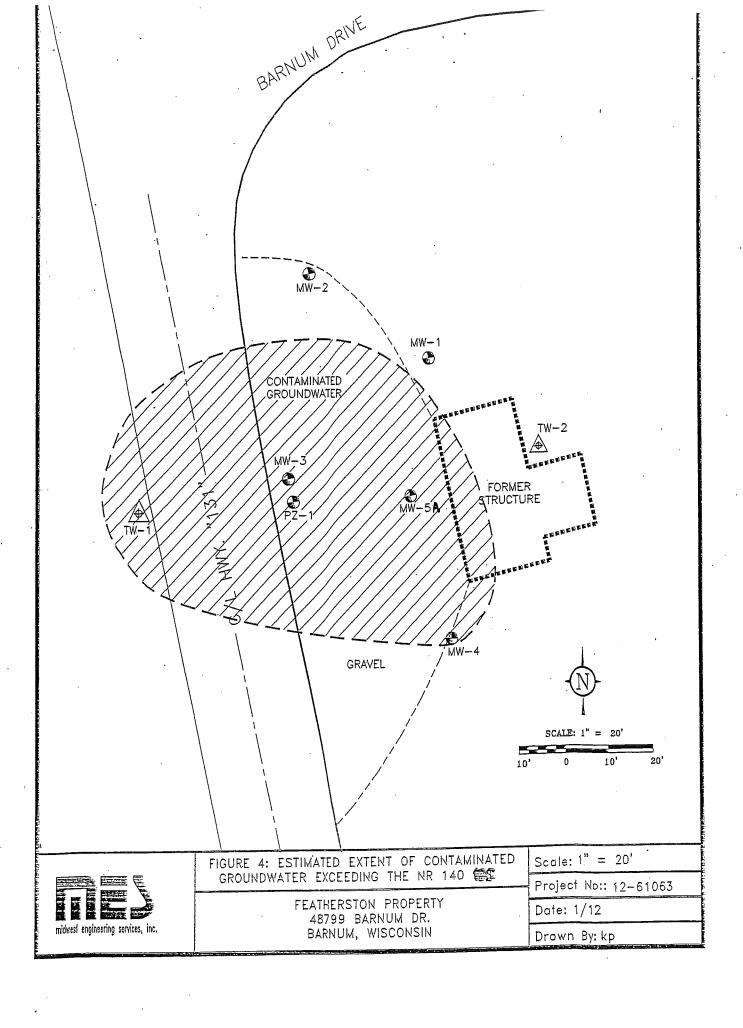

Project No: 12-61063

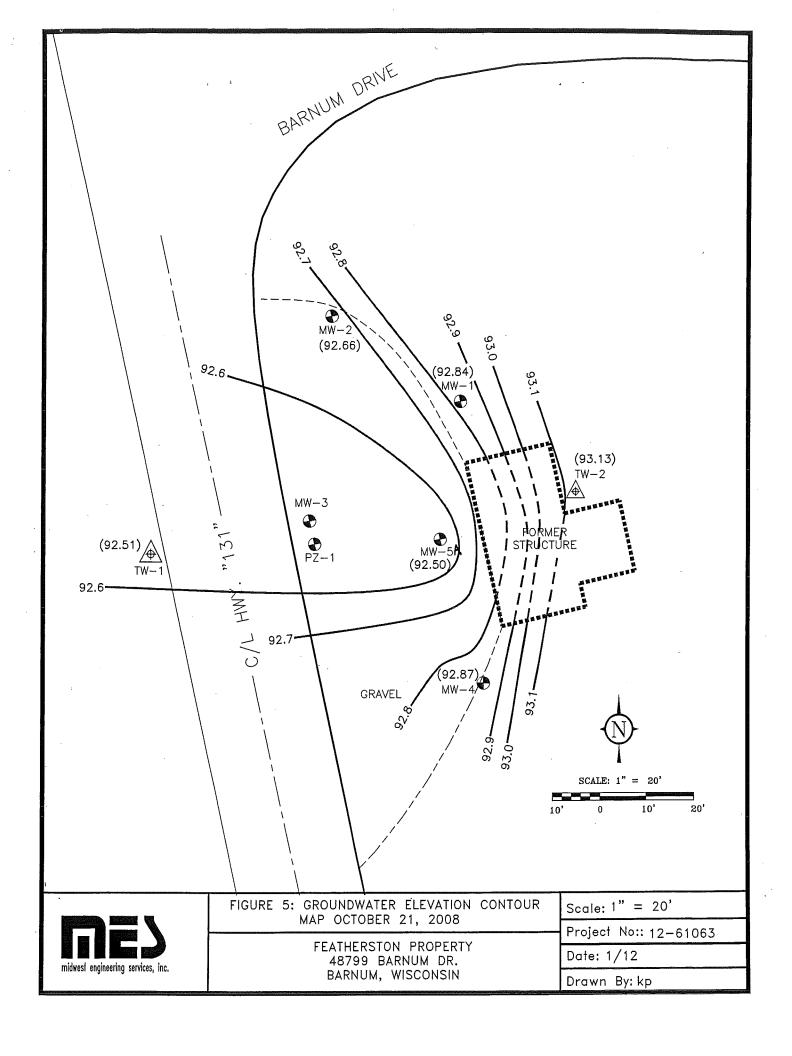
Ďate: 9/22/08

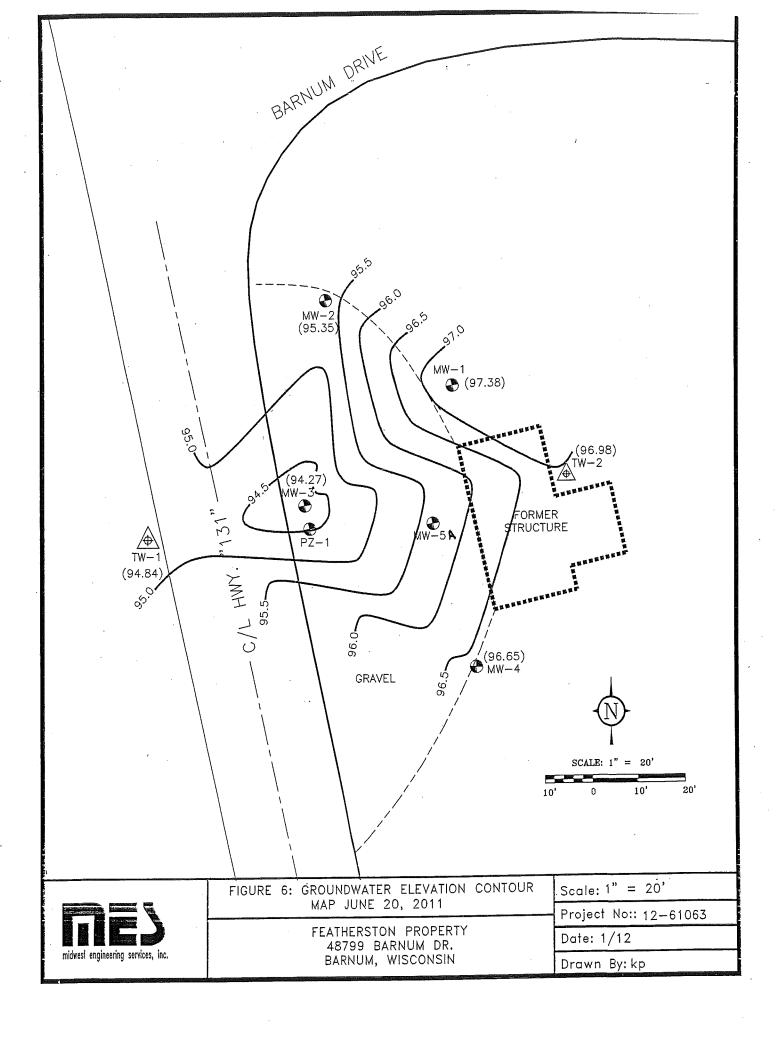
Drawn By: KP

	EXPLANATION	
,S	COILS CLASSIFICATION	MONITORING WELL
TOPSOIL	Organic clays of medium to high plasticity, organic silty clays, organic silts.	Bentonite Seal
FILL DAAA	See bore logs	Groundwater Elevation
ML ====	Inorganic silts, and very fine sands, rock flour, silty or clayey fine sand or clayey silts with slight plasticity.	Soil sample Location
· SM	Silty sands, sand—silt mixtures.	Soil Sample Exceeding NR 720 RCL
SP	Poorly graded sands or gravelly sands, little or no fines.	Well Screen




FIGURE 2: GEOLOGIC CROSS SECTION A-A'


FEATHERSTON PROPERTY 48799 BARNUM DR. BARNUM, WISCONSIN Scale: see note


Project Number: 12-61063

Date: 7/18/08

Drawn By: kp

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS FEATHERSTON PROPERTY MES PROJECT NO. 12-61063

					gested Generic F	oci I	GF	2-1	G G	2-2	GF	2-3	GP	-4	GI	² -5	G	² -6		P-7
Sample No.				Sug	Direct Contact		2/26/2007	2/26/2007	2/26/2007	2/26/2007	2/26/2007	2/26/2007	2/26/2007	2/26/2007	2/26/2007	2/26/2007	2/26/2007	2/26/2007	2/26/2007	2/26/2007
Sampling Date	NR 720	NR 746	1	Groundwater	Direct Contac	ot i attimay	LIZUIZUUI					2.42	2.4	8-10	4-6	8-10	2-4	6-8		
	RCL	SSL	DCL	Pathway	Non-Industrial	Industrial	2-4	4-6	2-4	6-8	2-4	8-10	2-4	8-10	4-0	0-10		0-0	2-4	4-6
Sample Depth (feet)		11100	OMPON	NOC /BVOC	(va/ka)															
PETROLEUM VOLATI						NE	<25	<50	58 Q	<25	<25	<25	67 Q	<25	<25	<25	<1000	<620	120 Q	7400
Benzene	5.5	8500	1100	NE NE	NE NE	NE NE	30 Q	1200	180	<25	<25	<25	140	<25	55 Q	68 Q	13000	16000	430	39000
Ethylbenzene	2900	4600	NE	NE NE	NE NE	NE NE	<25	<50	<25	<25	<25	<25	<25	<25	<25	<25	<1000	<620	<100	<1200
Methyl tert-butyl ether	NE	NE	NE	NE		NE	46 Q	100 Q	670	<25	110	<25	630	<25	160	56 Q	8400	16000	860	76000
Toluene	1500	38000	NE	NE	NE.	NE NE	78	7300	190	<25	<25	<25	100	<25	330	1100	170000	91000	14000	290000
1,2,4-Trimethylbenzene	.NE	83000	NE	NE	NE NE		<25	2300	67 Q	<25	<25	<25	37 Q	<25	150	250	56000	28000	6100	100000
1,3,5-Trimethylbenzene	NE	11000	NE	NE	NE.	NE	78 Q	5100	660				470	<75	180	300	89000	82000	6400	250000
Xylenes, -m, -p	4100	42000	NE	NE	NE	NE	/8 Q <25	1500	240	<75	<75	<75	160	5</td <td>76</td> <td>86</td> <td>34000</td> <td>32000</td> <td>2600</td> <td>110000</td>	76	86	34000	32000	2600	110000
Xylenes, -o							<25	1500	240											
DETECTED POLYNUC	CLEAR A	ROMA			S (PAH) (µg/kg)			<3.8	<3.5	<3.4	<3.5	<3.6	5,6 Q	<3.7	<3.7	<3.6	38 Q	<35	6.3 Q	<74
Acenaphthene	NE	NE	NE	38,000	900,000	60,000,000	5.0 Q		15	<3.3	18	<3.4	86	<3.6	<3.6	<3.5	<35	<34	3.4 Q	<71
Acenapthylene	NE	NE	NE	700	18,000	360,000	33	<3.7	27	<4.1	21	<4.2	77	<4.4	<4.4	<4.3	<43	<42	9.1 Q	<88>
Anthracene	NE	NE	NE	3,000,000	5,000,000	300,000,000	32	<4.6	84	<6.0	73	<6.3	290	<6.6	<6.6	<6.1	<64	<62	<5.9	<130
Benzo(a)anthracene	NE	NE	NE	17,000	88	3,900	60	<6.8	76	4.2 Q	71	<3.4	300	<3.6	<3.6	<3.5	<35	40 Q	<3.2	<71
Benzo(a)pyrene	NE	NE	NE	48,000	8.8	390	76	6.6 Q		3.3 Q	58	<3.3	270	<3.5	<3.5	<3.4	<34	34 Q	<3.1	<69
Benzo(b)fluoranthene	NE	NE	NE	360,000	88	3,900	72	6.3 Q	81	<4.1	31	<4.2	120	<4.4	<4.4	<4.3	<43	<42	15	<88
Benzo(g,h,i)perylene	NE	NE	NE	6,800,000	1,800	39,000	68	4.7 Q	31	4.1 Q	63	<3.6	260	<3.8	<3.8	<3.7	<37	38 Q	<3.4	<76
Benzo(k)fluoranthene	NE	NE	NE	870,000	880	39,000	66	6.8 Q	71	6.0 Q	74	<5.2	280	<5.4	<5.4	<5.3	<53	<51	<4.8	<110
Chrysene	NE	NE	NE	37,000	8,800	390,000	70	9,3 Q	89		11 Q	<3.3	46	<3.4	<3.4	<3.3	<33	<32	<3.1	<68
Dibenz (a,h) anthracene	NE	NE	NE	38,000	8.8	390	19	<3.5	12	<3.1	140	<3.4	520	<3.6	<3.6	<3.5	<35	100 Q	9.5 Q	<71
Fluoranthene	NE	NE	NE	500,000	600,000	40,000,000	120	17	170	8.9 Q	<4.0	<4.0	4.9 Q	<4.3	<4.2	<4.1	<41	<40	4.9 Q	<84
Fluorene	NE	NE	NE	100,000	600,000	40,000,000	5.3 Q	<4.4	<4.1	<3.9		<3.0	120	· <3.1	<3.1	<3.0	<31	<29	<2.8	<62
Indeno(1,2,3-cd)pyrene	NE	NE	NE	680,000	88	3,900	57	3.8 Q	29	<2.9	30	<3.6	12 Q	<3.8	79	11 Q	4800	3500	560	8900
1-Methylnaphthalene	NE	NE	NE	23,000	1,100,000	70,000,000	59	180	22	<3.5	<3.6		22	<3.9	130	16	9700	7300	1100	19000
2-Methylnaphthalene	NE	NE	NE	20,000	600,000	40,000,000	67	380	48	<3.6	4.6 Q	<3.7	35	<5.0	23	20	5100	6000	410	13000
Naphthalene	NE	2700	NE	400	20,000	110,000	65	930	70	<4.6	6.2 Q	<4.7		<3.7	<3.7	<3.6	58 Q	100 Q	21	85 Q
Phenanthrene	NE	NE	NE	1,800	18,000	390,000	36	8.1 Q	62	<3.4	43	<3.5 <2.9	110 440	<3.1	<3.0	<3.0	<30	99	8.5 Q	<61
Pyrene	NE	NE	NE	8,700,000	500,000	30,000,000	130	15	130	9.0 Q	130	<u> </u>	440	\ 0.1	<u></u>	_ ~0.0	1 ,00			
LEAD (mg/kg)	•									-			I 20	6.5	9.7	6.5	T 58	13	49	92
Lead	I NE	I NE	50	NE	50	500	5.7	25	41	6	7.8	2.3	20	0.0	9.1	0.0		10		

mg/kg = milligrams per kilogram
μg/kg = micrograms per kilogram
RCL = Residual Contaminant Level

SSL = Soil Screening Levels

DCL = Direct-Contact Levels

NA = Parameter not analyzed

NE = NR 720 RCL not established
Q = Analyte detected above laboratory limit of detection but below limit of quantitation.
Bold indicates analytical results exceed NR 720 RCL

TABLE 1 (Continued) SUMMARY OF SOIL ANALYTICAL RESULTS FEATHERSTON PROPERTY MES PROJECT NO. 12-61063

Sample No.				GP-9	GP-	-10	GP-11	GP	-12
Sampling Date	NR 720	NR 746	NR 746	10/21/2008	10/21/2008	10/21/2008	10/21/2008	10/21/2008	10/21/2008
	RCL	SSL	DCL	2-4	2-4	6-8	2-4	2-4	6-8
Sample Depth (feet) PETROLEUM VOLATI	FORC	ANICC	OMPOL	NOS (PVOC	1 + NAPHTI	HALENE (U	a/ka)		
PETROLEUM VOLATI	LE UKU						<125	28.4J	443
Benzene	5.5	8500	1100	<25	<25	118			
Ethylbenzene	2900	4600	NE	<25	<25	<25	2160	51.6J	1400
Methyl tert-butyl ether	NE	NE	NE	<25	<25	<25	213J	<25	66.6J
Naphthalene	NE	2700	NE	<25	<25	<25	2690	<25	79
	1500	38000	NE	<25	<25	<25	324J	<25	91
Toluene					<25	<25	18000	161	1270
1,2,4-Trimethylbenzene	NE	83000	NE	<25					436
1,3,5-Trimethylbenzene	NE	11000	NE	<25	<25	<25	6400	50.3J	430
Xylenes, -m, -p	4400	42000	NE	<50	<50	497	10900	134	5850
Xylenes, -o	4100	42000	NE	<25	<25			39.6J	

mg/kg = milligrams per kilogram
μg/kg = micrograms per kilogram
RCL = Residual Contaminant Level
SSL = Soil Screening Levels
DCL = Direct-Contact Levels

NA = Parameter not analyzed
NE = NR 720 RCL, not established
J = Analyte detected above laboratory limit of detection but below limit of quantitation.
Bold indicates analytical results exceed NR 720 RCL

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS FEATHERSTON PROPERTY **MES PROJECT NO. 12-61063**

Sample No.				Sug	gested Generic F	RCL	B-2	B-4	PZ-1
Sampling Date	NR 720	NR 746	NR 746	Groundwater	Direct Conta	ct Pathway	5/14/2008	5/14/2008	5/14/2008
	RCL	SSL	DCL	Pathway	Non-Industrial	Industrial	2.5-4.5	2.4-4.5	2.5-4.5
Sample Depth (feet) PETROLEUM VOLATION		ANICC	OMPOL	NOS (PVOC)	(ua/ka)				
			1100	NE	NE NE	NE	<25	<25	<25
Benzene	5.5	8500	NE	NE NE	NE NE	NE.	88.8	<25	<25
Ethylbenzene	2900	4600		NE	NE NE	NE NE	<25	<25	<25
Methyl tert-butyl ether	NE	NE	NE	NE NE	NE NE	NE	<25	<25	<25
Toluene	1500	38000	NE		NE NE	NE NE	191	<25	<25
1,2,4-Trimethylbenzene	NE	83000	- NE	NE NE		NE NE	86.6	<25	<25
1,3,5-Trimethylbenzene	NE	11000	NE	NE	NE		169	<25	<25
Xylenes, -m, -p	4100	42000	NE	NE	• NE	NE	52.1J	<25	<25
Xylenes, -o			T/O / / //E	NOCATION!	2 (BAH) (ua/ka)		32.13	120	
DETECTED POLYNUC						60,000,000	<1.8	<1.8	<1.7
Acenaphthene	NE	NE	NE	38,000	900,000	60,000,000	<2	<1.9	2.6J
Acenapthylene	NE	NE	NE	700	18,000	360,000		3.3J	3.8J
Anthracene	NE	NE	NE	3,000,000	5,000,000	300,000,000	3.0J	13.8J	15.3J
Benzo(a)anthracene	NE	NE	NE	17,000	88	3,900	5.5J		14.2J
Benzo(a)pyrene	NE	NE	NE	48,000	8.8	390	5.3J	13.3J	13.1J
Benzo(b)fluoranthene	NE	NE	NE	360,000	88	3,900	7.8J	12.4J	
Benzo(g,h,i)perylene	NE	NE	NE	6,800,000	1,800	39,000	6.7J	6.3J	8.1J
Benzo(k)fluoranthene	NE	NE	NE	870,000	880	39,000	5.4J	12.9J	13.7J
Chrysene	NE	NE	NE	37,000	8,800	390,000	9.6J	15.4J	17.6J
Dibenz (a,h) anthracene	NE	NE	NE	38,000	8.8	390	<2.2	2.4J	2.9J
Fluoranthene	NE	NE	NE	500,000	600,000	40,000,000	9.5J	26.4	31.6
Fluorene	NE	NE	NE	100,000	600,000	40,000,000	<2.0	<1.9	<1.8
Indeno(1,2,3-cd)pyrene	NE	NE	NE	680,000	88	3,900	4.0J	5.9J	7.6J
1-Methylnaphthalene	NE	NE	NE	23,000	1,100,000	70,000,000	5.0J	<1.5	<1.5
2-Methylnaphthalene	NE	NE	NE	20,000	600,000	40,000,000	7.4J	<1.6	<1.6
Naphthalene	NE	2700	NE	400	20,000	110,000	16.4J	<1.3	<1.3
Phenanthrene	NE	NE	NE	1,800	18,000	390,000	7.9J	9.9J	10.1J
Pyrene	NE	NE	NE	8,700,000	500,000	30,000,000	8.6J	24	25.9
LEAD (mg/kg)									
Lead	NE	NE	50	NE	50	500	40.8	19.7	6.3

mg/kg = milligrams per kilogram

μg/kg = micrograms per kilogram

RCL = Residual Contaminant Level

SSL = Soil Screening Levels

DCL = Direct-Contact Levels

NA = Parameter not analyzed

NE = NR 720 RCL not established

Q = Analyte detected above laboratory limit of detection but below limit of quantitation.
Bold indicates analytical results exceed NR 720 RCL

TABLE 3 SUMMARY OF REMEDIAL EXCAVATION SOIL ANALYTICAL RESULTS FEATHERSTON PROPERTY MES PROJECT NO. 12-61063

Sample No.	ND 720	NR 746	ND 746	S-1	S-2	S-3	S-4	S-5	S-6		
Sampling Date	RCL	SSL	DCL	10/27/2009	10/27/2009	10/27/2009	10/27/2009	10/27/2009	10/27/2009		
Sample Depth (feet)	I/OL	5	ט	9	4	4	4	4	9		
VOLATILE ORGANIC (COMPO	UNDS (VOC) (p	g/kg)							
Benzene	5.5	8500	1100	551	<50	<25	1470J	975	321J		
Ethylbenzene	2900	4600	NE	984	5950	<25	40800	18700	13500		
Methyl tert-butyl ether	NE	NE	. NE	<25	<50	<25	<625	<250	<125		
Naphthalene	NE	2700	NE	718	4300	<25	31300	10100	5880		
Toluene	1500	38000	NE	<25	205	<25	38900	12700	11200		
1,2,4-Trimethylbenzene	NE	83000	NE	1510	10300	<25	137000	52400	26900		
1,3,5-Trimethylbenzene	NE	11000	NE .	460	3070	<25	47700	18600	8860		
Kylenes, -m, -p	4100	42000	NE	4460	28280	<75	189500	86200	64100		
Kylenes, -o	4100	72000	141	4400	20200	. 10	100000	00200	04100		
ng/kg = milligrams per kilogram ug/kg = micrograms per kilogram RCL = Residual Contaminant Lev SSL = Soil Screening Levels									•		
OCL = Direct-Contact Levels											
IA = Parameter not analyzed											
IE = NR 720 RCL not establishe											
Q = Analyte detected above laboratory limit of detection but below limit of quantitation. Bold indicates analytical results exceed NR 720 RCL or NR 746 SSL											

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS FEATHERSTON PROPERTY MES PROJECT NO. 12-61063

		•													1	C1 NO. 12-					1						MV	V.5		MW	-5A	
Monitoring Well	NR	140			:	viW1					M	N2				I	4/19/2010	V-3 9/22/2010	2/14/2011	6/23/2011	6/18/2008	10/21/2008	4/19/2010	W-4 9/22/2010	2/14/2011	6/23/2011	6/18/2008	10/21/2008	4/19/2010	9/22/2010	2/14/2011	6/23/2011
Sampling Date	ES	PAL	6/18/2008	10/21/2008	4/19/:;010	9/22/2010	2/14/2011	6/23/2011	6/18/2008	10/21/2008	4/19/2010	9/22/2010	2/14/2011	6/23/2011	6/18/2008	18/21/2008	4/19/2010	9/22/2010	2142011	6/24/2011	37(32333	10,2,1,2,0			1							l .
2000 Section (2002)		10000	est and t																	1	i i		T	<u> </u>					,			
PETROLEUM VOLATILE ORGAN	VIC COMPOU	0.5	<0.41	0.35J	<0.39	<0.39	<0.39	<0.39	<0.41	<0.23	<0.39	<0.39	<0.39	<0.39	9450	4280	7260	5720	8720	5720	26.1	35.4	56.8	214	149	185	NA	5850	398	163	76,8	24.4
Benzene	5					<0.41	<0.41	<0.41	<0.54	<0.40	<0.41	<0.41	<0.41	<0.41	2460	1950	2110	2120	2520	2400	60.9	62.5	128	285	241	319	NA NA	3720	30.8	79.2	73.7	33
Ethylbenzene	700		6.6	7.5	<0.41			<0.38	<0.61	<0.36	<0.38	<0.38	<0.38	<0.38	<61	<18	<38,1	<19.0	30.2J	<19	<0.61	<0.36	1.1	1.1	3,7	1.3J	NA	<36.1	0.38J	0.84J	3.7	· <0.38
Methyl tert-butyl ether	60	12	<0,61	<0.36	<0.38	<0.38	<0.38	<0.42	<0.67	<0.36	<0.42	<0.42	<0.42	<0.42	12800	7160	7250	4960_	8300	8950	33.1	2.5	60.4	12.2	20.8	291	NA NA	25700	11.3	46.3	7.7	2.3
Toluene	800	160	<0.67	0.53J	<0.42	<0.42	<0.42		<0.97	<0.39	<0.43	<0,43	<0.43	<0.43	1640	1520	1390	1470	1690	1780	55.9	47.5	156	235	198	221	NA	2730	14	23	32,3	10.7
1,2,4 -Trimethylbenzene	480	96	115	32.1	<0,43	0.60J	<0.43	<0.43		<0.40	<0.40	<0.40	<0.40	<0.40	461	451	386	428	495	533	14.1	7.9	36	8.4	42.1	50.4	NA ,	773	9.5	8.8	7.7	2.4
1,3,5 -Trimethylbenzene			31.3	3.3	<0.40	<0.40	0,52J	<0.40	<0.83						7540		9780	9780	11800	11100	215	210	162	445	648	1060	NA.	15900	58.9	58.3	37.3	28.3
Xylenes, -m, -p	2000	400	65.5	67	<1.3	<1.3	<1.3	<1.3	<1.8	<1.1	<1.3	<1.3	<1.3	<1.3	3280	8510	9/80	3700	11000	1,100	85.4]					NA					
Xylenes, -o			59.8						<0.83						3200																	
OTHER DETECTED VOLA	TILE ORGA	NIC COL	MPOUNDS (/OC) (ua/L)				T T	ľ								NΔ	NA	NA.	NA.	28	NA.	NA.	NA.	NA.	NA	NA.	NA	NA	NA	NA	NA_
Isopropylbenzene (Cumene)	NE	NE	1.5	NA.	NA.	NA_	NA.	NA_	<0.59	NA	NA	NA	NA	NA	_59.7J	NA.	14,			NA.	<0.67	NA.	NA.	NA.	NA.	NA NA	NA	NA	NA	NA	NA	ŊA_
p-Isopropyltoluene	NE	NE	2	NA	NA.	NA _	NA	. NA	<0.67	NA	NA	NA.	NA	NA NA	<67	NA	NA	NA.	NA			12.1	23.5	51.7	40.6	50,8	NA NA	926	39.1	21.9	14.4	4.8
Naphthalene	100	10	14.5	9.2	<0.40	<0.40	<0.40	0.41J	<0.74	<0.47	<0.40	<0.40	<0.40	<0.40	378J	456	416	466	468	482	2.3J		NA NA	NA NA	NA NA	NA.	NA NA	NΔ	NA	NA	NA	NA.
n-Propylbenzene	NE	NE	3.8	NA	NA.	NA	NA NA	NA	<0.81	NA	NA_	NA	NA	NA_	204	NA	NA .	NA	NA .	NA.	6.1	NA	I NA	IVA	I INA	146	1.00		74.			
DETECTED POLYNUCLES	AR AROMA	TIC HYD	ROCARBON	S (PAH) (ua	/L)								1	T	Т		Τ			1	T	T					T T		NA	NA .	NA	NA
	NE_	NE	12	NA.	NA.	NA .	NA .	NA	<0.0096	NA NA	NA	NA_	NA.	NA	66.3	NA	NA	NA	NA_	NA_	0.23	NA.	NA NA	NA NA	NA	NA	NA	NA		197		
1-Methylnaphthalene	NE.		11	NA.	NA.	NA.	NA.	NA	0,012J	NA	NA	NA .	NA	NA	128	NA	NA	NA NA	NA.	NA_	0,36	NA	NA	NA_	NA NA	NA	NA .	NA NA	NA	NA	NA	NA
2-Methylnaphthalene	NE NE		2.0		NA	NA NA	NA	. NA	0.0092J	NA	NA .	NA_	NA NA	NA.	0.16J	NA .	NA NA	NA	NA NA	NA NA	<0.0079	NA.	· NA	NA	NA.	NA	NA NA	NA	NA	NA.	NA	NA
Acenaphthene			0.2	NA	NA.	NA NA	NA NA	NA.	0.028J	NA	NA.	NA	NA_	NA.	<0.099	NA	NA.	NA	NA_	NA.	0.0065J	NA_	NA_	. NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA.
Acenaphthylene	NE_		0.023J	NA.	NA.		NA NA	NA.	0,023J	NA.	NA.	NA	NA	NA	<0.13	NA NA	NA.	NA	NA.	NA	0.0091J	NA.	NA NA	NA	NA.	NA.	NA NA	NA	NA	NA NA	NA	NA .
Anthracene	3000			NA_	NA.	NA NA	NA NA	NA NA	0.062	NA.	NA.	NA.	NA.	NA	<0.069	NA	NA	NA	NA_	NA	0.023J	NA	NA.	NA NA	NA NA	NA.	NA	NA NA	NA	NA .	NA	. <u>NA</u>
Benzo(a)anthracene	NE_	NE	U810.0	NA.	AI1	NA.				NA.	NA.	NA NA	NA.	NA.	<0.11	NA.	NA	.NA	NA	NA	0.016J	_NA	NA NA	NA	NA_	NA	NA .	NA NA	NA	NA	NA	. NA
Benzo(a)pyrene	0.2	0.02	0.015J	NA_	NA_	NA_	NA.	NA	0,048		NA.	NA.	NA.	NA.	<0.10	NA.	NA.	NA.	NA.	NA	0.018J	NA_	NA NA	. NA	NA.	NA	NA.	NA	NA .	NA.	NA_	NA
Benzo(b)fluoranthene	0.2	0.02	0.015J	NA.	NA_	NA	NA.	NA	0.043J	NA			NA NA	NA.	<0.12	NA .	NA NA	NA	NA	NA	0.015J	NA.	NA	NA.	NA	NA .	NA NA	NA	NA.	NA NA	NA	NA_
Benzo(g,h,i)perylene	NE_	NE	0.013J	NA.	Alí	NA NA	NA.	NA NA	0.026J	NA.	NA	NA NA			<0.16	NA NA	NA NA	NA	NA	NA	0.014J	.NA	NA	NA	NA	NA_	NA NA	. NA	NA.	NA .	NA	NA _
Benzo(k)fluoranthene	NE_	NE	0.015J	NA_	NA_	NA	NA.	NA_	0.040J	NA	NA.	NA	NA NA	NA.				NA NA	NA.	NA.	0.019J	NA.	NA	NA	NA.	NA	NA_	NA	NA.	NA NA	NA	NA.
Chrysene	0.2	0.02	0.016J	NA_	NA.	NA NA	NA_	NA	0.044J	NA.	NA	NA	NA_	NA NA	<0.14	NA	NA NA	NA NA	NA.	NA NA	<0.0043	NA NA	NA.	NA	NA	NA	NA	NA.	NA_	NA .	NA	ŅA
Dibenz (a,h) anthracene	NE	NE	<0.0043	NA_	J\A_	NA_	NA_	NA.	0.0060J	NA	NA	NA_	NA NA	NA_	<0.086	NA.	NA			NA NA	0.033J	NA.	NA NA	NA.	NA.	NA.	NA NA	NA .	NA.	NA	NA	NA_
Fluoranthene	400	80	0.031J	NA_	NA_	NA_	NA_	NA_	0.1	NA	NA	NA NA	NA.	NA	<0.11	NA	NA	NA .	NA_			NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA.	NA	NA
Fluorene	400	80	0.065	NA_	NA_	NA_	NA NA	NA NA	0.0095J	NA	NA	NA_	NA	NA.	0.13J	NA.	NA .	NA.	NA.	NA	<0.0063		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA	NA	NA
Indeno(1,2,3-cd)pyrene	NE	NE	0.0097J	NA	NA.	NA_	NA_	NA_	0.023J	NA .	NA_	NA	NA.	NA .	<0.072	NA	NA.	NA	NA_	NA.	0.0094J	NA		1		NA NA	NA NA	NÁ NÁ	NA.	NA .	NA	NA
1	40		2.8	NA	NA	NA NA	NA	NA	0,031J	NA	NA	NA	NA NA	NA_	359	NA NA	NA NA	NA.	NA NA	NA .	3.1	NA NA	NA	NA	NA_			NA NA	NA.	NA.	NA	NA
Naphthalene	NE.		0.027J	NA.	NA	NA	NA.	NA.	0,025J	NA	NA NA	NA_	NA	NA.	0.19J	NA NA	NA_	NA	NA_	NA_	0,018J	NA	NA_	NA	NA NA	NA	NA			NA NA	NA NA	NA
Phenanthrene	250		0.0273	NA NA	AM	NA.	NA.	NA	0.100	NA	NA	NA	NA	NA NA	<0.14	NA_	NA NA	NA	NA	NA .	0.040J	NA NA	NA	NA	NA .	NA_	NA .	NA	NA	I NA L	147	177
Pyrene	Section Section	J 50	1 0.0363	1 100													·			1	1	T	T			T T	T			T T	ΝA	NA
Lead (µd/L)		T		NA.	MA	NΔ	NA.	NA.	1.3J	NA.	NA	NA	NA	NA	3.0J	NA .	NA	NA .	NA	NA	1.2J	NA	NA NA	NA	NA .	NA	NA NA	NA	NA.	NA .	NA.	I INA
LEAD PAL = Preventive Action Limit	NE	I NE	1.9J	I NA	, NA			. 00	1.00			·																	•			
ug/L = micrograms per liter NA = Parameter not analyzed																																
NE = NR 140 ES not established J = Analyte detected above labora	atory limit of de	tection but	below limit of qu	antitation.																												
Bold indicates analytical results a	above NR 140 i	ES																														

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS FEATHERSTON PROPERTY MES PROJECT NO. 12-81063

MES PROJECT NO. 12-61063								T												
Monitoring Well	NR 1	40			PZ	-1	,,,,			T	TW-1					TW-2			Potal	ole Well
			6/18/2008	10/21/2008	4/19/2010	9/22/2010	2/14/2011	6/23/2011	10/21/2008	4/19/2010	9/22/2010	2/14/2011	6/23/2011	10/21/2008	4/19/2010	9/22/2010	2/14/2011	6/23/2011	6/18/2008	10/21/2008
Sampling Date	ES	PAL																		
PETROLEUM VOLATILE ORGANIC	COMPOUN	D\$ APVO				4	2001436668				447	305	324	<0.23	<0,39	<0.39	0.61J	<0.39	<0.41	<0.23
Benzene	5	0.5	<0.41	<0.23	<0.39	<0.39	<0.39	<0.39	2120	768	417								<0.54	<0.40
Ethylbenzene	700	140	<0.54	<0.40	<0.41	<0.41	<0.41	<0.41_	318	169_	90	46.9	79.2	<0.40	<0.41	<0.41	<0.41	<0.41		
Methyl tert-butyl ether	60	12	<0.61	<0.36	<0.38	<0.38	<0.38	<0.38	<7.2	<3.8	<0.95	<1.9	<1.9	<0.36	<0.38	<0.38	<0.38	<0.38	<0.61	<0.36
Toluene	800	160	<0.67	<0.36	<0.42	<0.42	<0.42	<0.42	12.7J	<4.2	2.0J	<2,1	<2.1	<0.36	<0.42	<0.42	<0.42	<0.42	<0.67	<0.36
1,2,4 -Trimethylbenzene	480	96	<0.97	<0.39	<0.43	<0.43	<0.43	<0.43	202	134	79.1	62	52.1	<0.39	<0,43	<0.43	<0.43	<0.43	<0.97_	<0,39
1,3,5 -Trimethylbenzene			<0.83	<0.40	<0.40	<0.40	<0.40	<0.40	44,4	4.7	17.8	16.6	8	<0.40	<0.40	<0.40	<0.40	<0.40	<0.83	<0.40
Xylenes, -m, -p	2000	400	<1.8	<1.1	<1.3	<1.3	<1.3	<1.3	1270	869	537	276	373	<1.1	<1.3	<1.3	<1.3	<1.3	<1.8	<1.1
Xylenes, -o		***********	<0.83		SHACKARA														<0.83	
OTHER DETECTED VOL	ATILE	ORGA	ис сом	POUNDS	VOC) (III	a/L)	 		T T	Ī		koninis I	I			T	(,,, <u>,,,,,,</u>	i i	T	<u> </u>
Isopropylbenzene (Cume	NE	NE	<0.59	NA_	NA_	NA	NA	NA	NA	NA	NA .	NA.	NA	NA	NA.	NA_	NA	NA_	<0.59	NA.
p-Isopropyltoluene	NE	NE	<0.67	NA _	NA	NA	NA	NA.	NA.	NA	NA	NA.	NA_	NA_	NA .	NA	NA_	NA .	<0.67	NA.
Naphthalene	100	10	<0.74	<0.47	<0.40	<0.40	<0.47	<0.40	50	22_	16.2	11	16	<0.47	<0.40	<0.40	<0.40	<0.40	<0.74	<0.47
n-Propylbenzene	NE	NE	<0.81	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA .	NA	NA	NA	<0.81	NA
DETECTED POLYNUCL	EAR AR	OMAT	C HYDR	OCARBO	NS (PAH)	(ug/L)									1	T	<u>: </u>	1	T	
1-Methylnaphthalene	NE	NE	<0.010	NA.	NA.	NA_	NA	NA .	NA _	NA .	NA	NA	NA .	NA.	NA.	NA_	NA .	NA.	<0.0095	NA.
2-Methylnaphthalene	NE	NE	<0.011	NA_	NA	NA.	NA	NA	_NA	NA	NA.	NA	NA.	NA.	NA_	NA .	NA	NA_	<0.011	NA
Acenaphthene	NE	NE	<0.0083	NA	NA	NA	. NA	NA.	NA_	NA	NA	NA	NA_	NA_	NA .	NA	NA	NA.	<0.0078	NA
Acenaphthylene	NE	NE	<0.0053	NA.	NA	NA	NA	NA .	NA .	NA.	NA	NA	NA	NA	NA	NA_	NA	NA	<0.0050	NA.
Anthracene	3000	600	<0.0069	NA NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA_	NA_	NA .	NA	NA.	NA .	<0.0065	NA
Benzo(a)anthracene	NE	NE	<0.0037		NA	NA	NA.	NA_	NA _	NA.	NA	NA	NA	. NA	NA	NA_	NA.	NA	<0.0035	NA
Benzo(a)pyrene	0.2	0.02			NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA.	.NA	NA .	NA	NA_	<0.0054	NA.
Benzo(b)fluoranthene	0.2	0.02			NA	NA	NA	NA_	NA	NA	NA.	NA.	NA	NA	NA .	NA	NA.	NA.	<0.0051	NA
Benzo(g,h,i)perylene	NE	NE	<0.0066		NA.	NA.	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA_	NA	NA_	<0.0082	NA.
Benzo(k)fluoranthene	NE	NE	<0.0082		NA.	NA	NA	NA	NA	NA	NA	NA.	NA_	NA.	NA.	NA	NA.	NA	<0.0078	NA.
	0.2	0.02			NA.	NA.	NA.	NA.	NA	NA	NA	NA.	NA	NA.	NA	NA.	NA .	NA	<0.0070	NA.
Chrysene	NE	NE	<0.0074	T	NA.	NA.	NA.	NA.	NA.	NA	NA	NA	NA	NA.	NA	NA .	NA	NA	<0.0043	NA
Dibenz (a,h) anthracene	400	80	<0.0046		NA.	NA.	NA NA	NA NA	· NA	NA NA	NA .	NA	NA	NA	NA	NA	NA	NA	<0.0053	NA.
Fluoranthene			<0.0056		NA NA	NA	NA.	NA.	NA	NA	NA.	NA	NA	NA	NA.	NA	NA.	NA_	<0.0063	NA.
Fluorene	400	80	Γ.	T		T		NA.	NA NA	NA NA	NA.	NA NA	NA	NA	NA	NA.	NA	NA	<0.0036	NA
Indeno(1,2,3-cd)pyrene	NE.	NE	<0.0038	I	NA NA	NA NA	NA NA		NA NA	NA NA	NA.	NA.	NA .	NA.	NA	NA	NA.	NA	<0.016	NA
Naphthalene	40	8	<0.017		NA.	NA_	NA 	NA NA			NA NA	NA.	NA.	NA NA	NA.	NA NA	NA.	NA.	<0.0075	NA
Phenanthrene .	NE	NE	<0.0079		NA.	NA	NA_	NA	NA_	NA.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.0068	
Pyrene	250	50	<0.0072	2 NA	NA	NA.	NA NA	NA_	NA_	NA	NA	<u> NA</u>	I NA	INA	IVA	INA	INA	1 140	140.0000	1.40
Lead (ua/L)	T	T	T		T	1	T	Τ	T		Τ	NA.	NA	NA.	NA	NA	NA	NA	1.5J	NA
LEAD	NE	NE	<0.98	NA NA	NA.	NA	NA	NA	NA	NA	NA	NA NA	I NA	I INA	INA	INM	144	1 INA	1 1,00	

LEAU

NE PAL = Preventive Action Limit

Jul = micrograms ser liter

Na = Parameter not analyzed

NE = NR 1-40 ES not established

J = Anahyze destered above altoratory limit of detection but below limit of quantitation.

Bold indicates analytical results above NR 140 ES

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS **FEATHERSTON PROPERTY MES PROJECT NO. 12-61063**

Monitoring Well	NR ·	140	GP-1	GP-2	GP-7
Sampling Date	ES	PAL	2/26/2007	2/26/2007	2/26/2007
PETROLEUM VOLATILE OF	RGANIC CO	MPOUNDS	(PVOC) (μg/L)		
Benzene	5	0.5	4.1	<0.41	7400
Ethylbenzene	700	140	190	<0.54	2600
Methyl tert-butyl ether	60	12	<1.5	<0.61	<120
Toluene	800	160	33	<0.67	20000
1,2,4 -Trimethylbenzene			320	1.9 Q	1700
1,3,5 -Trimethylbenzene	480	96	93	<0.83	480
·			700	<1.8	8400
Xylenes, -m, -p	2000	400	280	<0.83	3700
Xylenes, -o OTHER DETECTED VOLAT	ILE OPGAN	IIC COMBO		ANALYSIA AND AND AND AND AND AND AND AND AND AN	3700
Bromodichloromethane	0.6	0.06		(0.56	<110
Bromodiciniorometriane Bromoform	4.4	0.06	<1.4 <2.3	<0.94	<190
Bromomethane	10	1	<2.3	<0.94	<180
Carbon Tetrachloride	5	0.5	<1.2	<0.49	<98
Chloroethane	400	80	<2.4	<0.97	<190
Chloroform	6	0.6	<0.92	<0.37	<74
Chloromethane	3	0.3	<0.60	<0.24	<48
1,2-Dibromoethane	0.05	0.005	<1.4	<0.56	<110
1,2-Dibromo-3-chloropropane	0.2	0.02	<2.2	<0.87	<170
Dichlorodifluoromethane	60	. 6	<2.5	<0.99	<200
1,2-Dichlorobenzene	600	60	<2.1	<0.83	<170
1,3-Dichlorobenzene	1250	125	<2.2	<0.87	<170
1,4-Dichlorobenzene	75	15	<2.4	<0.95	<190
1,2-Dichloroethane	5	0.5	<0.90	<0.36	.<72
cis-1,2-Dichloroethene	70	7	<2.1	<0.83	<170
trans-1,2-Dichloroethene	100	20	<2.2	<0.89	<180
cis-1,3-Dichloropropene	0.2	0.02	<0.48	<0.19	<38
trans-1,3-Dichloropropene	0.2	0.02	<0.48	<0.19	<38
Fluorotrichloromethane	3490	698	<2.0	<0.79	<160
Methylene Chloride	5	0.5	<1.1	<0.43	<86
Naphthalene	40	8	64	<0.74	340
Styrene	100	10	<2.2	<0.86	<170
1,1,1,2-Tetrachloroethane	70	7	<2.3	<0.92	<180
1,1,2,2-Tetrachloroethane	0.2	0.02	<0.50	<0.20	<40
Tetrachloroethene	5	0.5	<1.1	<0.45	<90
1,2,4-Trichlorobenzene	70	14	<2.4	<0.97	<190
1,1,1-Trichloroethane	200	40	<2.2	<0.90	<180
Trichloroethene	5	0.5	<1.2	<0.48	<96
1,1,2-Trichloroethane	5	0.5	. <1.0	<0.42	<84
1,2,3-Trichloropropane	60	12	<2.5	<0.99	<200 <36
Vinyl Chloride	0.2	0.02	<0.45	<0.18	1 -30
LEAD (µg/L) Lead	5	0.5	NA NA	2.3	NA NA

ES = Enforcement Standard
PAL = Preventive Action Limit
μg/L = micrograms per liter
NA = Parameter not analyzed
NE = NR 140 ES not established
Q = Analyte detected above laboratory limit of detection but below limit of quantitation.
Bold indicates analytical results above NR 140 ES

TABLE 4 WATER LEVEL DATA FEATHERSTON PROPERTY BARNUM, WISCONSIN MES PROJECT No. 12-61063

Monitoring Well Number	Top of Well Casing Elevation	Date Measured	Depth to Water (Ft.)	Groundwater Elevation (Ft.)
	98.05	6/18/2008	1.34	96.71
		10/21/2008	5.21	92.84
MW-1		4/19/2010	5.15	92.90
18184-1		9/22/2010	4.21	93.84
		2/14/2011	6.04	92.01
		6/20/2011	0.67	97.38
	98.62	6/18/2008	2.95	95.67
MW-2		10/21/2008	5,96	92.66
		4/19/2010	6.45	92,17
		9/22/2010	5,59	93,03
		2/14/2011	7.10	91.52
		6/20/2011	3.27	95.35
MW-3	98.63	6/18/2008	2.65	95.98
		10/21/2008	5.67	92,96
		4/19/2010	5.38	93,25
		9/22/2010	4.68	93,95
		2/14/2011	5.79	92.84
		6/20/2011	4.36	94.27
	98.30	6/18/2008	2,60	95,70
		10/21/2008	5.43	92.87
MW-4		4/19/2010	5.77	92.53
1818.4-4		9/22/2010	4.91	93,39
		2/14/2011	5.30	93,00
		6/20/2011	2.65	95,65
	99.02	6/18/2008	3.17	95.85
MW-5		10/21/2008	6,52	92.50
				Abandoned
	100.04	4/19/2010	4.53	95.51
MW-5A		9/22/2010	4.36	95.68
		2/14/2011	5.37	94.67
		6/20/2011	1.85	98.19
PZ-1	98.97	6/18/2008	3,58	95.39
		10/21/2008	6.27	92.70
		4/19/2010	6.83	92.14
		9/22/2010	5.94	93.03
		2/14/2011	6.04	92.93
		6/20/2011	4.01	94.96
TW-1	100.71	10/21/2008	8.2 8.76	92.51
		4/19/2010	0,70	91.95
1 44-1		9/22/2010	7.88 7.99	92.83 · 92.72
		2/14/2011 6/20/2011	7.99 5.87	92.72
	99.34	10/21/2008	6.21	93.13
		4/19/2010	5,2	94.14
TW-2		9/22/2010	4.89	94.14
1 44-7		2/14/2011	5.98	94.45
		6/20/2011	2.36	93,36
ft = f = d		0/20/2011	۷.30	90,90

ft = feet

Elevations in feet in reference to benchmark with an assumed elevation of 100 feet.

NA=Not applicable

⁻⁼Not measured

SOURCE PROPERTY

midwest engineering services, inc.

geotechnical • environmental • materials engineers

608 N. Stanton Street Ripon, WI 54971-1182 920-745-2200 FAX 920-745-2222 www.midwesteng.com

February 6, 2012

Mrs. Deanna Steines 48799 Barnum Drive Barnum, Wisconsin 54631

SUBJECT:

Notice of Closure Request and Contamination

Featherston Property 48799 Barnum Drive Town of Haney, Wisconsin MES Document No.12-61063 WDNR BRRTS# 03-12-211070

COMM # 54631-9722-68

Dear Mrs. Steines:

This letter is being sent to notify you that closure is being requested for the above-mentioned site. The letter is a requirement of the soil and groundwater GIS registry and is sent to property owners who own an affected property, but are not responsible for the cleanup on the property. It should be noted that affected soil and groundwater will remain on the site at the time of closure. A figure with the estimated extent of soil and groundwater contamination is provided as an attachment. This letter was sent return receipt. Therefore, please forward the return receipt to MES utilizing the attached envelope. Please let me know if you have any questions or need any additional information.

Respectfully submitted,

MIDWEST ENGINEERING SERVICES, INC.

Brian Youngwirth Project Manager SOURCE PROPERTY

SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY
■ Complete Items 1, 2, and 3. Also complete item 4 if Restricted Delivery Is desired. ■ Print your name and address on the reverse so that we can return the card to you. ■ Attach this card to the back of the mailplece, or on the front if space permits. 1. Article Addressed to: Deanna Steines H8799 Barnum Drive	A. Signature X. Dearna Grand Agent B. Received by (Printed Name) C. Date of Delivery Dearna Steines D. Is delivery address different from item 17 If YES, enter delivery address below:
Barnum, W1 54431	3. Service Type Cortified Mail Registered Resum Receipt for Merchandise C.O.D.
	4. Restricted Delivery? (Extra Fee) ☐ Yes
2. Article Number (Transfer from service label) 701.0 1.87	0 0002 6275 8682

RIGHT-OF-WAY

midwest engineering services, inc.

geotechnical • environmental • materials engineers

608 N. Stanton Street Ripon, WI 54971-1182 920-745-2200 FAX 920-745-2222 www.midwesteng.com

January 25, 2012

Mr. Elling Jones Town Chairman 48173 County Road S Gays Mills, Wisconsin 54631

RE:

NOTICE OF CONTAMINANTION WITHIN RIGHT OF WAY

Doretta Featherston Property 48799 Barnum Drive

48799 Barnum Drive Town of Haney, WI MES Project # 12-61063

Dear Mr. Jones:

On behalf of Ms. Doretta Featherston, who is the owner of the above-mentioned property, Midwest Engineering Services (MES) is completing a site investigation at the referenced site. The Wisconsin Department of Natural Resources requires the municipality be notified of contamination within the right of way if present at the time closure is requested. Therefore, MES has provided the attached information regarding groundwater contamination at the site, which is present beneath Highway 131. The estimated extent of petroleum affected groundwater contamination is shown on the attached Figure.

If you have any questions, please contact MES at (920) 745-2200.

Sincerely,

Midwest Engineering Services, Inc.

Brian Youngwirth-Hydrogeologist

Attachment

Right of Way Notification

Figure

C: Ms. Doretta Featherston

Brian Youngwirth

From:

Brian Youngwirth [byoungwirth@midwesteng.com]

Sent:

Wednesday, January 25, 2012 1:27 PM

To:

'sharlene.tebeest@wisconsin.gov'

Attachments: 20120125140721918.pdf

Attached, please find the right of way notification for petroleum affected groundwater and/or soil within the US Highway 131 right of way in the Town of Haney at the Featherston Property (48799 Barnum Drive). This information will be included with the GIS package and closure request being submitted to Dave Rozeboom of the WDNR. Please let me know if you have any questions or need any additional information.

Brian Youngwirth Midwest Engineering Services, Inc. 608 North Stanton Street Ripon, WI 54971

(920) 745-2200 - Phone (920) 745-2222 - Fax byoungwirth@midwesteng.com - e-mail RIGHT-OF-WAY

Right of Way Notification of Contamination

County:

Crawford

Site Name:

Featherston Property

Site Address:

48799 Barnum Drive, Town of Haney, WI 54628

WDNR BRRTS:

03-12-211070

Commerce Number:

54631-9722-68

FID Number:

Owner's Name:

Doretta Featherston

Owner's Address:

48799 Barnum Drive, Town of Haney, WI 54631

Consulting Firm:

Midwest Engineering Services, Inc.

Consultant Contact:

Brian Youngwirth

Consultant Address:

608 North Stanton Street, Ripon, WI 54971

Consultant Phone and Fax:

(920) 745-2200

(920) 745-2222

Consultant e-mail:

byoungwirth@midwesteng.com

Soil Contamination:

The majority of affected soils appear to have been removed from the site and properly disposed. The remaining affected soils do not appear to extend off site. However, soils affected by groundwater contamination are located within the right of

way.

Groundwater Contamination:

Groundwater contamination at concentrations

exceeding the state's standards is present beneath

Highway 131 (see figure).

Depth to Water Table:

1 to 8 feet feet

Types of Contamination:

leaded gasoline

Cleanup Activities: Approximately 254 tons of affected soil was removed from the subject property. Groundwater samples collected from monitoring wells (MW-3 and TW-1) located on the east and west sides of Highway 131 contain petroleum compounds exceeding their

respective standards.

Attachments:

Figure showing the estimated extent of groundwater contamination.