From:	Schultz, Josie M - DNR
Sent:	Thursday, June 6, 2024 1:02 PM
То:	Andy Delforge
Cc:	Ken Juza
Subject:	Closure revisions needed for V&L Stripping, BRRTS # 02-05-216722
Attachments:	Lost MW Development Forms.pdf; Vapor Results.pdf

Hi Andy,

Thanks for taking the time to have a Teams call with me this morning to go over the revisions needed for V&L Stripping's closure request.

Below are the revisions that were noted during DNR's review of the closure packet. I've attached the monitoring well construction and development forms for the lost wells, and historic vapor sampling results to save you some time searching through the site file. The first two pages of the vapor results PDF are pulled from the November 18, 2010 Groundwater and Air Sampling September, 2010, report submitted by Shaw. This is followed by the report submitted by the Department of Health and Family Services that include vapor sampling results from 2003.

Revisions:

- Closure Form
 - Page 1 site address is 864 Mather
 - 4.B. VMS is considered an interim action, needs to be added here.
 - Table 5 iv. Monitoring wells not abandoned on Source Property and ROW need to be checked
 - MW-400, MW-600, MW-2000, TW-800 were destroyed during road construction.
 - Page 10 Att. E check that not all monitoring wells can be located
 - Attachment G table
 - Check box for monitoring wells not abandoned for Mather St ROW
 - Check box for residual volatile contamination poses future risk of VI for 714 Lincoln and 856 Mather.
- Tables A.2.a, A.2.b, A.2.c
 - Include Industrial direct contact RCLs on table
- Table A.3 Residual Soil Contamination
 - Include Industrial direct contact RCLs on table
 - o Add samples B200, B500, B800, B1100, B2400, B2800, B2900 to table
- Table A.4.a Ambient Air Sampling Results
 - Include 9/28/2010 indoor air sample results on table 5 of the 11/18/2010 AC 43:
 - 856 Mather St
 - Indoor air of on-site building
 - Ambient outdoor air
 - Include the following vapor air results from 8/5/2003 DHFS letter (in site file):
 - Ambient Air (outside north side of on-site building)

- Basement Indoor air (basement air from 856 Mather)
- Table A.4.b, Sub-Slab Vapor Results
 - Include 9/28/2010 sub-slab vapor sample results for SSM, SSW and SSE from 11/18/2010 AC 43, Table 4
 - Include following sub-slab sample results from 8/5/2003 DHFS letter (in site file):
 - Soil Vapor (VP3600 on maps, from SG probe outside of 714 Lincoln residence)
 - Sub-Slab Vapor (VP3700 on maps, from basement of 856 Mather)
- Table A.4.c, Sewer Vapor Sampling Results
 - Include SSGSL standards on table and include VAL standards for the cleanout sample as this would be compared to the VAL.
- <u>All Figures</u>
 - Include site boundary
 - Change addresses on affected properties to 714 Lincoln and 856 Mather. They're currently labeled at 716 Lincoln and 866 Mather.
- Figure B.1.b, Detailed Site Map
 - Include parcel number for the site
 - Include site boundary
- Figure B.2.a, Soil Contamination Map
 - Include delineation around B1400 for non-industrial direct contact exceedance for CVOCs
 - Identify that the hashed purple outline is residual soil contamination exceeding groundwater pathway RCLs for CVOCs
 - Include area of excavation in purple hashed area because excavation did not go down to the water table.
 - o Include B3400 on the map
- Figure B.2.b, Residual Soil Contamination
 - Delineation around B1400 should say residual soil contamination exceeding nonindustrial direct contact for CVOCs
 - Hashed purple delineation should say residual soil contamination exceeding groundwater pathway RCLs for CVOCs
 - Add the following points to the map and include them in the gw pathway delineation:
 B200, B500, B800 (unless removed during road construction), B1100, B2400, B2800,
 B2900.
 - Include excavation area in residual contamination because the excavation only went down to 5', which isn't below the water table.
- Figure B.3.a, Geologic Cross Section
 - Include and identify isoconcentration contour for non-industrial direct contact exceedances for CVOCs in soil at TW1400.
 - Include and identify isoconcentration contour for GW pathway exceedances for CVOCs in soil.

- Include and identify isoconcentration contour, horizontal and vertical extent, for groundwater exceeding the ES for CVOCs.
- Include recent excavation extent and show that it was backfilled with pit run sand.
- Have a single B.3.b figure for groundwater contamination rather than one for each individual contaminant.
 - Dark blue isoconcentration line should say ES exceedance for CVOCs in groundwater and should include: MW100, MW200, MW300, MW400, MW600, TW900, MW800, TW1100, TW1300, TW1400, MW1500,
 - Light blue isoconcentration line should say PAL exceedance for CVOCs in groundwater and should include: TW1500, MW2100, MW3200, PZ1700,
 - Include Site boundary
 - Off-site addresses should say 714 Lincoln and 856 Mather.
- Figure B.3.d, Monitoring Wells
 - Needs to clearly designate wells that are proposed to be abandoned, cannot be located (e.g. destroyed during road construction), and have been abandoned.
 - o Destroyed: MW400, TW800, TW1300, MW2000, MW600 (RMSC)
 - Properly abandoned as part of Randys Mobil: MW300, MW700, MW800, MW900, MW1100, MW1200
 - Temp Wells properly abandoned without abandonment forms available: TW1100, TW1500, TW3100, TW3500
 - To be abandoned: MW100, MW200, MW300, MW800, TW900, TW1400, MW1500, MW2000R, MW2100
- Figure B.4.a
 - Site boundary needs to be added
 - Indoor air sample locations need to be added
 - Communication (PFE) testing locations need to be added
 - \circ $\;$ Needs to include residual soil and groundwater contamination
 - Sump pit sample ID at 714 Lincoln needs to be added
 - Needs to include soil and groundwater contamination isoconcentrations along with concentrations at each vapor monitoring point.
- Attachment E
 - Include description of efforts to find lost wells on cover page
 - Include MW construction & development forms for wells destroyed during road construction:
 - MW-400
 - MW-600
 - MW-2000
 - TW-800
 - TW-1300
 - TW1100, TW1500, TW3100, TW3500
- Att D Vapor Mitigation System OM&M Plan

- Figures D.2.a and D.2.b are missing; these should show system details
- Double check that manometer by fan is permanent (looks similar to the one used for the VP PFE testing)
- Annual submittal of inspection log to DNR is required. Need to perform by September
 30th and submitted to DNR by October 15th
- Include vapor ports in the inspection log with photos

Please let me know if you have any questions.

Thanks, Josie

We are committed to service excellence.

Visit our survey at <u>http://dnr.wi.gov/customersurvey</u> to evaluate how I did.

Josie M. Schultz

Hydrogeologist – Northeast Region Remediation and Redevelopment Team Wisconsin Department of Natural Resources 110 S. Neenah Avenue, Sturgeon Bay, WI 54235 Cell Phone: 920-366-5685 Josie.Schultz@Wisconsin.gov

the second se					
State of Wisconsin Department of Natural Resources Env. Response	d Waste 🛛 Haz. Waste & Repair 🗖 Undergi	Wastewater D	ier 🖸	MONITORING WELL CONSTRUCT Form 4400-113A Rev.	FION 4-90
Facility/Project Name	Local Grid Location of	Well	TIE.	/ell Name	
V+L STRIPPING	ft.	<u>S.</u>		MW - 700	mber S
Facility License, Permit or Monitoring Number	Und Ungin Location	Long	or	vis onique ven humoa Divk wen hu	
Type of Well Water Table Observation Well 1	Cal	Eong		Date Well Installed	<u></u>
Piezometer [] 12	Section Location of W	nste/Source	II. D.	$\frac{OB}{mm} \frac{2}{d} \frac{6}{d} \frac{7}{y} \frac{B}{y}$	
Distance Well Is From Waste/Source Boundary	$N_{\rm M}$ 1/4 of $1/4$ of S	lec 1 .T. 24 N. 1	R. JO A. E. V	Vell Installed By: (Person's Name and Fin	m)
ft.	Location of Well Relat	ive to Waste/Source		BRIAN REPINSKI	-
Is Well A Point of Enforcement Std. Application?	u 🛛 Upgradient	s 🔲 Sidegradie	ant	203	
	d 😡 Downgradient		an and lock?	Z Yes D	No
A. Protective pipe, top elevation	L MSL	2.1	Protective cover	pipe:	•~
B. Well casing, top elevation 294.16°	I. MSL	H V	. Inside diamete	r: <u>8</u> .	<u> 9</u> n.
C. Land surface elevation 597.7 f	I. MSL	I I L I). Length:	_2.	<u>O</u> ft.
D. Surface seal, bottom 593.7 ft. MSL or	1.	I TAKEN	c. Material:	Steel Z	04
12. USCS classification of soil near screen:			Additional pro	Direction?	'No
GP GM G GC GW G SW K S			If yes, descrit	De:	1~
	но М		Surface seal:	Bentonite	30
12 Sieve analysis attrahad?	. 🕷		anat scar.	Concrete Ø	01
13. Sieve analysis anached:			· · · · · · · · · · · · · · · · · · ·	Other 🛛	4 4
Hollow Stem Auger		4.1	vialenal delwee	n wen casing and protective pipe: Rentonite	3.0
Other D			А	Annular space seal	
				Other 🛛	
15. Drilling fluid used: Water 02 Air 0		5.1	Annular space s	eal: a. Granular Bentonite	33
Drining wind [] 0.3 None []		🧱 . b.	Lbs/gal	mud weight Bentonite-sand slurry	35
16. Drilling additives used? 🛛 Yes 🖉 M	ю 👹	С	Lbs/gal % Bent	mud weight Bentonite slurry	31
		u.	<i>N</i> Define	³ volume added for any of the above	50
Describe	👹	f.	How installed	1: Tremie	01
17. Source of water (allach analysis):				Tremie pumped	02
] 🕅			Gravity Ø	08
E Partonite and ton 5997 7 ft MSL or			Bentonite seal:	a. Benionite granules β	33
E. Demonite seat, top in his of	<u> </u>). LIJ/4 101. L	Diber	3 Z
F. Fine sand, top 5917 ft. MSL or	3 o ft.	7.1	Fine sand mater	ial: Manufacturer, product name & mesh	size
			N/A		<u> </u>
•G. Filter pack, top _ <u>5 91</u> .7 It. MSL or	⊇. <u>⊇</u> /	t t). Volume adde	xdft ³	
H Screen joint ton 591 & ft. MSL or	35 ft_		Roce mate	20-40	in suze
			Volume adde	ft^3	<u>1</u>
I . Well bottom $58i2$ ft. MSL or 1	3.5 ft.	9 '	Well casing:	Flush threaded PVC schedule 40	23
EGA A G MEL -				Flush threaded PVC schedule 80	24
J. Filter pack, bottom 2202.2 ii. MSL or 1	4 <u>2</u> II.			Other L	
K Borehole bottom _ 580 2 ft. MSL or	45 m.	-10 a	Screen material Screen type:	Factory cut	, 222 11
			, energy of the	Continuous slot	01
L. Borehole, diameter _8 o in.			<u>.</u>	Other	
· · · · · · · · · · · · · · · · · · ·		\ ь	Manufacture	BOART, (1~-
M. O.D. well casing <u></u> <u>J</u> in.		c.	Slotted lengt	0. Q1	[<u>U</u> n. . ft.
N. I.D. well casing 704 in			Backfill material	(below filter pack): None PT	14
				Other 🛛	
hereby certify that the information on this	form is true and	correct to the be	est of my kn	owledge.	
Bignature R. ()	Firm Cne				
Please complete both sides of this form and return to	the appropriate DNR of	fice listed at the top	of this form as	required by chs 144 147 and 160 Wir S	tate

Please complete both sides of this form and return to the appropriate DNR office listed at the top of this form as required by chs. 144, 147 and 160, Wis. Stats., and ch. NR 141, Wis. Ad. Code. In accordance with ch. 144, Wis Stats., failure to file this form may result in a forfeiture of not less than \$10, nor more than 5000 for each day of violation. In accordance with ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each ay of violation. NOTE: Shaded areas are for DNR use only. See instructions for more information including where the completed form should be sent.

•

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 6-97

Route To: Watershed/Wa	astewater	гIJ	Waste Management			
Remediation/I	Redevelo	pment 🛛	Other			
Facility/Project Name		County		Well N	ame	
Former V & L Stripping, Inc.			Brown		M	V400
Facility License, Permit or Monitoring Number		County Code	Wis. Unique Well Nu	mber	DNR Wel	Number
		5				
					· · · ·	
1. Can this well be purged dry?	🛛 Yes	🗆 No	11 Double to Weden	Before	Development	After Development
			(from ton of			
2. Well development method:			(non top of	a.	7.48 ft.	7.60 ft.
surged with bailer and bailed		I	wen casing)			• .
surged with bailer and pumped	6 1	l .				
surged with block and bailed		2	Date	b. O	8/28/1998	09/15/1998
surged with block and pumped	□ 62	2				
surged with block, bailed, and pumped	0 70)				
compressed air	0 20)	Time	с.	12:00 pm	12:00 am
bailed only	⊠ 10)			· .	
pumped only	D 51	L	12. Sediment in well		inches	inches
pumped slowly	0 50) .	bottom			
other			13. Water clarity	Clear	⊠ 10	Clear 🛛 20
				Turbid	□ 15	Turbid 🛛 25
3. Time spent developing well		22 min.		(Describ	e)	(Describe)
4. Depth of well (from top of well casing)	.14	4.5 ft.			· · · · · · · · · · · · · · · · · · ·	·
5. Inside diameter of well	2.	04 in.		· · · · · · · · · · · · · · · · · · ·		
6. Volume of water in filter pack and well casing	-	7 () gal				· · · · · · · · · · · · · · · · · · ·
Cubing		to gui.	Till in 16 dailting Guid.			damata fastitan
			Lu n n ound uno	s were used	and wen is at sol	iu waste lacility.
7. Volume of water removed from well	12	2.0 gal.				
and the second			14. Total suspended		mg/l	mg/l
8. Volume of water added (if any)		gal.	sonas			·
9. Source of water added	<u></u>		15. COD		mg/l	mg/l
						·
			16. Well developed by	: Person's	Name and Firm	
10. Analysis performed on water added? (If yes, attach results)	🗆 Yes	□ No				
					·	_ <u>`</u>

Facility Address or Owner/Responsible Party Address	I hereby certify that the above information is true and correct to the best of my knowledge.		
Firm:	Signature: Jeromy Klaas		
Street:	Print Name: Jeremy Haas		
City/State/Zip:	Firm: Northern Environmental		

NOTE: See instructions for more information including a list of county codes and well type codes.

State of Wisconsin Densitment of Natural Resources Route to: Sol	id Waste LI Haz. Wast	e 🛛 Wastewater 🗆		MONITORING WE	LL CONSTRUCTIO	ON 90
Env. Response	& Repair U Underg	round Tanks D Oth	er []			
Facility/Project Name		N.		MW2000		
Former V & E Stripping	Crid Origin Location	l <u>\$.</u>		Vall Number	Wall Numi	har
, racinty excense, remit of monitoring number	at	Long	~	0W360	DIK Wen Hunt	Det
Type of Well Water Table Observation Well 11	e	Long		e Well Installed	15 00	
Piezometer	St. Plane	IL.N	<u></u>	$\frac{1}{m}$	$\frac{15}{44}$	
Distance Well Is From Waste/Source Boundary	Section Location of W	asic/Source		Il Installed By: (Person	n's Name and Firm)	}
fr	1/4 of 1/4 of S	Sec, T N, F	ζ Ψ.	Mike Gerrit	ts.	
Is Well A Point of Enforcement Std. Application?	Location of Well Relat	ive to Waste/Source				
	d 🗖 Downgradient	n [] Not Know		EDS, Inc.		
A Protective rine ton elevation			ap and lock?		Yes D N	6
		2. P	rotective cover p	ipe:		
B. Well casing, top elevation	I. MSL		Inside diameter:	- ,	_ <u>8</u> 0_;	in,
C Land surface elevation	MSL	b.	Length:		_10_	ft.
	10	C. ANDERE C	. Material:		Steel 📕 (04
D. Surface seal, bottom ft. MSL or		X	<u> </u>		Other 🛛 💈	<u>.</u>
12. USCS classification of soil near screen:		With the second	. Additional prot	ection?	🛛 Yes 🗋 N	ю
GP GM GM GC GW G SW G S			If yes, describe	·		
	сны Ц		urface coal-		Bentonite 🔳 3	30
			unace seal.		Concrete 🛛 🛛	01
13. Sieve analysis allached? Li Yes	•o				Other 🗖 💡	
14. Drilling method used: Rotary	50	4. N	laterial between	well casing and protectiv	ve pipe:	
Hollow Stem Auger			-		Bentonite 📕 3	30
Other D				Annul	ar space seal 🔲 💡	Z
					Other 🖬 💡	22
15. Drilling fluid used: Water LI 02 Air LI		5. A	nnular space sea	1: a. Granul	lar Bentonite 🔳 3	33
Druing Mud Li 03 None		b	Lbs/gal m	ud weight Bentonit	e-sand slurry 🛛 3	35
16 Drilling additives used?	. 🕷	С	Lbs/gal m	ud weight Ben	tonite slurry D 3	31
	*°	🐰 d	% Benton	ite Bentonite of	cement grout 🛛 🛛 5	50
Describe		С	Ft -	volume added for any o	of the above	
17. Source of water (attach analysis):		f.	How installed:		Tremie 🔲 (01
				Trei	mic pumped 🔲 (02
	🕅				Gravity 🔳 🛛	08
	o o . 🕷	6. B	entonite seal:	a. Bento	nite granules 🔲 3	33
E. Bentonite seal, top ft. MSL or	<u>∪</u> . <u>∪</u> ft.	6.	, 🛛 1/4 in. 🔳	3/8 in. 🛛 1/2 in. Bent	ionite pellets 🔲 3	32
	256				Other	
F. Fine sand, top II. MSL or	$\frac{2}{2} \cdot \frac{3}{2} \cdot \frac{n}{2}$		Bedger	l: Manufacturer, produ Mining 40/60	ict name & mesh siz	<i>.</i> .e
A DAME I A DAME OF A DAME	256		bauger i	40/00	<u>بنا</u>	,
G. Filter pack, top		b .	Volume added	It	, 	
W Commission in the same fit MCL or	3 5 6 1	8.1	iller pack maler	al: Manufacturer, proch	act name and mesh	Si7C
H. Screen joint, top II. MSL OI	n.	- a	Badger	<u>Mining 20/40</u>	<u>ب</u>	
I W-UL-Mar 1	3 5 6		Volume atted	II	uhadula 40 🗰 🧉	^)
	⊇		ven casing:	Flush threaded PVC s	chequie 40 📕 2	23 78
G MSI or 1	40.		Tobacaa	Plush interaced P VC s		24
J. Filter pack, bottom II. MISL of _1	M.		Jonnson	DVC	Other Ll 🛓	<u>a 11</u>
K D S L L L M S C MSL or 1	400	~10. S	creen material:	FVC	2	- <u>-</u> -
K. Borehole, boltom II. MSL of	II.	a.	Screen type:	C	Factory cut	11
				Con	annuous stot 🔲 (01
L. Borehole, diameter $\frac{\delta U}{\delta U}$ in.				Johnson	Other LI	. <u>-</u>
2 37		b .	Manufacturer	0011/16011		.
M. U.D. well casing $2 - 31$ in.			SINE SIZE: Stottart Innothe		100	ா. ச
N ID mutanta 2 04		\	-1 CH - 1 CH - 1 CH	1 61		. 16.
N. I.D. well casing $\frac{2}{4}$ $\frac{04}{4}$ in.		11. Bi	ackfill material (ł	clow filter pack):		4
						<u>. </u>
r nereby certify that the information on this	iorm is true and	correct to the be	st of my know	wiedge.		
SINE MAGNE for CDS	EDS,	[nc.				

Please complete both sides of this form and return to the appropriate DNR office listed at the top of this form as required by chs. 144, 147 and 160, Wis. Stats., and ch. NR 141, Wis. Ad. Code. In accordance with ch. 144, Wis Stats., failure to file this form may result in a forfeiture of not less than \$10, nor more than \$5000 for each day of violation. In accordance with ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. NOTE: Shaded areas are for DNR use only. See instructions for more information including where the completed form should be sent.

State of Wisconsin

Department of Natural Resources

MONITORING	WELL DEVELOP	MENT
Form 4400-113B	Rev. 7-98	

Route To: Waters	hed/Wastewate	ar 🖸	Waste Management				
Remedi	ation/Redevelo	opment 🗭	Other	. · · ·			
Facility/Project Name	······	County		Well Name	····.		<u></u>
Ken Joza Property Brou		Brow	n	mwa	000		
Facility License, Permit or Monitoring Number		County Code	Wis. Unique Well Nu	mber	DNR Well N	Number	
		-5	0~36	0			
1. Can this well be purged dry?	S Yes	🗆 No		Before Dev	elopment	After Devel	opment
			11. Depth to Water				
2. Well development method:			(from top of	a. 7,14	ft.		ft.
surged with bailer and bailed	4	1	wen casnig)				
surged with bailer and pumped		1					
surged with block and bailed		2	Date	b. II/da	102		
surged with block and pumped		2					
surged with block, bailed, and pumped		0			🛢 a.n	n.	🛛 a.m
compressed air		0.	Time	c. 852	3 🛛 p.n	n. -	🗆 p.m
bailed only		0					
pumped only		1	12. Sediment in well	Ø	inches	0	inches
pumped slowly	8 5 (0	bottom				
other	D 📓		13. Water clarity	Clear 🔲 I	0 (Clear 🖬 20	
••••••••••••••••••••••••••••••••••••••				Turbid 🖬	5	Furbid LI 25	
3. Time spent developing well	192	min.		(Describe)	(1	Describe)	
				<u> </u>	dy		· · · · · · · · · · · · · · · · · · ·
4. Depth of well (from top of well casing)	14, s	ft.			0		
5. Inside diameter of well	2.06	in.					
6. Volume of water in filter pack and well	i/4						
casing	1.6	gai.					
			Fill in if drilling fluids	s were used and v	vell is at solid	waste facility:	
7. Volume of water removed from well	15	gal.					
			14. Total suspended		mg/l		mg/l
8. Volume of water added (if any)	0	gal.	solids				
	A14		15. COD		mg/l		mg/l
y, source of water added							.
			16. Well developed by	· Person's Name	and Firm		
10. Analysis performed on water added?	□ Yes	No		Clock o Paullo			
(If yes, attach results)			17.7	Read	Nathan	Environ	mental
			J. JETT	Jang	100-400000	, e «) , , , , , , , , , , , , , , , , , ,	

17. Additional comments on development:

Facility Address or Owner/Responsible Party Address	I hereby certify that the above information is true and correct to the best of my
Name: Kenneth Juza	knowledge.
Firm:	Signature: Jeff Shan
Street: 1478 Norfield Road	Print Name: Jeff Broad
City/State/Zip: Suamico, WI 54173	Firm: Northern Environmental

■ate of Wisconsin ■epartment of Natural Resources Route To:	Watershed/Wastewater	Waste Management	MONITORING WELL CONSTRUCTION
<u></u>	Remediation/Redevelopment	Other	Form 4400-113A Rev. 7-98
Facility/Project Name	Local Grid Location of Well	71 E	Well Name
Former V&L Stripping	ft. 🛛 S	ft. 🖸 Ϋ.	TW800
Facility License, Permit or Monitoring No.	Local Grid Origin [] (estimated:	\Box) or Well Location \boxtimes	Wis. Unique Well No. DNR Well Number
02-05-216722	Lat. 44° 31' 37.0" Long	$r_{\rm f} = \frac{88^{\circ}}{1000} = \frac{1}{1000} = \frac{27.0^{\circ\circ}}{1000} \text{ or }$	
=acility ID	St. Plane ft. N,	ft. E. S/C/N	Date Well Installed
Trans - C 117-11	Section Location of Waste/Source		10/10/2002
Type of well	<u>NW</u> 1/4 of <u>SW</u> 1/4 of Sec. <u>25</u>	_, T. 25 N, R. 20 0 W	Well installed By: (Person's Name and Firm)
Well Code 11/mw	Location of Well Relative to Waste/Sc	ource Gov. Lot Number	Mike Olsen
Jource ft.	$u \square$ Upgradient $s \square$ Sid $d \square$ Downgradient $n \square$ No	egradient t Known	ATS
A. Protective pipe, top elevation59	04.74 ft. MSL	1. Cap and lock?	🛛 Yes 🗆 No
B. Well casing, top elevation59	<u>24.51</u> ft. MSL	2. Protective cover p	ipe:
C. Land surface elevation	947 A MSI	h. Length:	m. ft.
	IL MISL	c. Material:	Steel 🖾 0.4
b . Surface seal, bottom ft. MSL	or <u>0.5</u> ft.		Other
12. USCS classification of soil near screen:		d. Additional prot	tection? 🗆 Yes 🖾 No
GP GM GC GW SY	W 🗆 SP 🗆 🔤 🕺 🚺	If yes, describe	
	Г СН		Bentonite 🗆 30
Bedrock		5. Surface sear.	Concrete 🖾 01
13. Sieve analysis attached?	≫ ⊠ No 🛛 💥 💥		Other 🗆 🗾
14. Drilling method used: Rota	ry □ 50 🛞 🛞	⁴ . Material between	well casing and protective pipe:
Hollow Stem Aug	er 🗆 4 1		Bentonite 🖾 30
Oth	er 🗆 🎆 👘 🔛		Other 🗆 💹
		5. Annular space sea	al: a. Granular/Chipped Bentonite 🛛 3 3
15. Drilling fluid used: Water $\Box 02$ A	ir $\Box 01$	bLbs/gal n	nud weight Bentonite-sand slurry 🔲 35
Drilling Mud $\Box 0.3$ Nor	ie ⊠99	cLbs/gal n	nud weight Bentonite slurry 🛛 3 1
16 Drilling additives used?	es 🗆 No 🔰 🛛 👹	d% Benton	nite Bentonite-cement grout \Box 50
		eFt [*]	volume added for any of the above
Describe N		f. How installed	
17. Source of water (attach analysis, if required	<u></u>]		Tremie pumped LJ 02
	´ 🛛 🕅 🕅		Gravity 🖄 0.8
	📓 🕅	6. Bentonite seal:	a. Bentonite granules \boxtimes 33
5047		b. ∐1/4 m. ∐	$3/8$ in. $\Box 1/2$ in. Bentonite chips $\Box 3/2$
E. Bentonite seal, top ft. MSL	or ft 📓	C	J: Monufacturer product name & mesh size
	. \ 🕅 🦉	7. Phile Saile Materia	
F. Fine sand, top ft. MSL	ог п. 🔪 📓	a	A3
= Filter neck ten 5937 & MSI	ar 10 A.	8 Filter nack materi	al. Manufacturer, product name & mesh size
J. Fillel pack, top		0. I mei pack materi	#10 Red Flint Sand
Screen joint ton 592.7 ft MSI	or 2.0 ft -	d h. Volume added	A ³
		9 Well casing:	Flush threaded PVC schedule 40 🕅 23
I Well bottom 583.3 ft MSL	or 11.5 ft >	j. Wen clashig.	Flush threaded PVC schedule $80 \square 24$
		·	Other
Filter pack bottom 582.7 ft MSL	or 12.0 ft	10 Screen material	PVC
		a. Screen Type:	Factory cut 🕅 11
K. Borehole, bottom 582.7 ft. MSL	or <u>12.0</u> ft >		Continuous slot 🔲 0 1
			Other 🗆 🌌
Borehole, diameter <u>2.0</u> in.		b. Manufacturer	Monoflex
· · · · · · · · · · · · · · · · · · ·		c. Slot size:	<u>0.010</u> in.
-1. O.D. well casing <u>1.25</u> in.		d. Slotted length	<u> 10.0 ft</u> .
		11. Backfill material	(below filter pack): None 🗌 14
N. I.D. well casing 1.00 in.		· · · · · · · · · · · · · · · · · · ·	n Other 🖾 🔜
hereby certify that the information on this form	n is true and correct to the best of my k	mowledge.	·······
Bignature Sun Unala D	W ATS Northern Enviro	onmental	Tel: (920) 592-8400
Please complete both Forms 4400-1134 and 4400-11	$\frac{11}{38}$ and return them to the appropriate DNR (e Green Bay, WI 54304	Fax: (920) 592-8444 ese reports is required by chs. 160, 281, 283, 289

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 91, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastewater	Waste Management
Remediation/Redevelopment	Other
Facility/Project Name County Name	e Well Name
Facility License, Permit or Monitoring Number County Code	Wis. Unique Well Number DNR Well ID Number
 Can this well be purged dry? Yes No Well development method surged with bailer and bailed 4 1 	11. Depth to Water (from top of a. -7.26 ft. -2.26 ft.
surged with bailer and pumped [] 6 1 surged with block and bailed [] 4 2 surged with block and pumped [] 6 2 surged with block, bailed and pumped [] 7 0	Date $b.\underline{j} \bigcirc \underline{j} \boxed{\frac{1}{m} \frac{1}{d} \frac{1}{d} \frac{2}{y} \frac{0}{y} \frac{2}{y} \frac{1}{y} \frac{2}{y} \frac{0}{y} \frac{4}{y} \frac{2}{y} \frac{0}{y} \frac{2}{y} \frac{1}{y} \frac{2}{y} \frac{0}{y} \frac{2}{y} \frac{1}{y} \frac{2}{y} \frac{0}{y} \frac{2}{y} \frac{1}{y} \frac{1}{y} \frac{2}{y} \frac{0}{y} \frac{2}{y} \frac{1}{y} \frac{1}{y}$
bailed only 10 pumped only 51 pumped slowly 50 Other 1	12. Sediment in well \bigcirc \bigcirc \bigcirc \bigcirc inches \bigcirc \bigcirc \bigcirc inches bottom 13. Water clarity Clear \square 10 Clear \blacksquare 20 Turbid \blacksquare 15 Turbid \square 25
3. Time spent developing well $- \frac{1}{2} \bigcirc \min$.	(Describe) (Describe)
4. Depth of well (from top of well casisng) $- 12.2$ ft.	
5. Inside diameter of well -1.23 in.	
 6. Volume of water in filter pack and well casingQ. 5 gal. 7. Volume of water removed from well3 gal. 	Fill in if drilling fluids were used and well is at solid waste facility:
8. Volume of water added (if any) $\underline{\bigcirc} \underline{\bigcirc} \underline{\bigcirc} \underline{\bigcirc}$ gal.	14. Total suspended mg/l mg/l mg/l solids
9. Source of water addedNA	15. COD mg/l mg/l
10. Analysis performed on water added? [] Yes INO (If yes, attach results)	16. Well developed by: Name (first, last) and Firm First Name: Jeff Last Name: Bear of Firm: Nochaso Fault Coordinated

17. Additional comments on development:

by certify that the above information is true and correct to the best knowledge.
e: Jeff Brank
me: Jeff Brazel
Northern Environmental

NOTE: See instructions for more information including a list of county codes and well type codes.

tate of Wisconsin Department of Natural Resources <u>Route To:</u>	Watershed/Wastewater	Waste Management	MONITORING WELL CONSTRUCTION
	Remediation/Redevelopment	Other LJ	Form 4400-113A Kev. 7-98
Facility/Project Name	Local Grid Location of Well	ΠE	Well Name
Former V&L Stripping	ft. S	ft. <u>d</u> Ŵ.	1W1300
Facility License, Permit or Monitoring No.	Local Grid Origin [] (estimated:	\Box) or Well Location \boxtimes	Wis. Unique Well No. DNR Well Number
02-05-216722	Lat. <u>44° 31' 37.0"</u> Long	$\frac{88^{\circ}}{27.0''}$ or	
acility ID	St Plane ft N	fLE S/C/N	Date Well Installed
	Section Location of Waste/Source	<u></u>	10/10/2002
Type of Well		25 20 ⊠E	Well Installed By: (Person's Name and Firm)
Well Code 11/mw	$\frac{NW}{1/4 \text{ of } SW}$ 1/4 of Sec. 25	<u>_, T25_ N, R20_ </u> W	Mike Olsen
Distance from Waste/ Enf. Stds.	Location of Well Relative to Waste/So	Gov. Lot Number	
Source ft. Apply	$d \square$ Downgradient $n \square$ No	t Known	ATS
A. Protective pipe, top elevation59	4.71_ft. MSL	1. Cap and lock?	⊠ Yes □ No
B. Well casing, top elevation59	<u>4.51</u> ft. MSL	a. Inside diameter	: in.
C. Land surface elevation	94.7 ft. MSL	b. Length:	ft.
D. Surface seal, bottom ft. MSL	or ft.	c. Material:	Steel \boxtimes 04 Other \square
12. USCS classification of soil near screen:		Additional prot	tection?
		If yes, describe	:
			Bentonite 🗔 3.0
Bedrock 🗆		3. Surface seal:	
13 Sieve analysis attached?	-s⊠No 🛛 🕅		
14. Drilling method used: Rotai	y ∐50	4. Material between	well casing and protective pipe:
Hollow Stem Aug	x □41 🛛 💥 💥		Bentonite 🛛 30
Oth	я 🗆 🔛 🛛 🔛 🔛		Other 🗋 📖
		5. Annular space sea	al: a. Granular/Chipped Bentonite 🛛 3 3
15. Drilling fluid used: Water 0 2 A	ir □01	bLbs/gal n	nud weight Bentonite-sand slurry 🔲 35
Drilling Mud 03 Nor	ie ⊠99	cLbs/gal n	nud weight Bentonite slurry 🛛 3 1
		d% Benton	bite Bentonite-cement grout \Box 50
16. Drilling additives used? \boxtimes Ye	≍⊔No 🛞 🕅	eFt ³	volume added for any of the above
NT NT		f. How installed	Tremie 🗆 01
DescribeN			Tremie pumped 🔲 02
17. Source of water (attach analysis, if required	i):		Gravity 🛛 08
		6 Bentonite seal	a Bentonite granules 🕅 3.3
		$/$ b $\Box 1/4$ in \Box	$\frac{1}{2}$ a. Demonite granutes \swarrow $\frac{1}{2}$
5047 0 100			$5/8$ III. $\Box 1/2$ III. Dentointe emps $\Box 5/2$
E. Bentonite seal, top H. MSL	or <u> </u>	7 Fine sand materia	l: Manufacturer, product name & mesh size
		7. Plite sand materia	i. Manufacturer, product hance & mesh size
F. Fine sand, top ft. MSL	or ft.	a	B
£02.7		b. Volume added	II
J. Filter pack, top ft. MSL	or ft.	8. Filter pack materi	al: Manufacturer, product name & mesh size #10 Red Flint Sand
H. Screen joint, top592.7 ft. MSL	or <u>2.0</u> ft.	b. Volume added	ft ³
		9. Well casing:	Flush threaded PVC schedule 40 🛛 23
Well bottom ft. MSL	or ft >		Flush threaded PVC schedule 80 1 24
			Other
Filter nack bottom 582.7 ft MSI		10 Corror motorials	PVC
= Filler pack, bottom It. MSL		10. Screen material:	
5927	12.0	a. Screen Type:	Factory cut 🛛 11
K. Borehole, bottom ft. MSL	or <u>12.0</u> ft.		Continuous slot 📋 0 I
• •			Other 🗆 🔜
		b. Manufacturer	Monoflex
		c. Slot size:	<u> </u>
M. O.D. well casing 1.25 in.		d. Slotted length:	<u>10.0</u> ft.
		11. Backfill material	(below filter pack): None 🗆 1 4
N. I.D. well casing 1.00 in	*.		n Other 🖾 💹
·····			
I hereby certify that the information on this for	n is true and correct to the best of my k	mowledge.	
Signature	Firm Nation F		T.J. (020) 502 0400
Sue Knabe for A	TS 954 Circle Driv	re Green Bay, WI 54304	Fax: (920) 592-8440

 Sue What
 for ATS
 Northern Environmental 954 Circle Drive Green Bay, WI 54304
 Fax: (920) 592-840

 Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 191, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastew	ater	Waste Management			
Remediation/Redev	velopment	Other 🔲			
Facility/Project Name Ken Juza Property Facility License, Permit or Monitoring Number	County Name Brown County Code	Wis. Unique Well Nu	Well Name TW 1 umber	300 DNR Well	ID Number
	_ <u>₹</u>				
1. Can this well be purged dry? Yes 2. Well development method 4 surged with bailer and bailed 4 surged with bailer and pumped 6 surged with block and bailed 4 surged with block and pumped 6 surged with block, bailed and pumped 6 surged with block, bailed and pumped 7 compressed air 24 bailed only 14 pumped only 5 Other 0	□ No 1 1 2 2 0 0 1 0 0	 11. Depth to Water (from top of well casing) Date Time 12. Sediment in well bottom 13. Water clarity 	Before Devi a7. b. $\frac{1}{m} \frac{0}{d} \frac{10}{d}$ c. $\frac{1}{6} \frac{1}{2} \frac{2}{d}$ 0. Clear 1 Turbid \blacksquare 1	elopment $7 \circ ft.$ $1 \rightarrow 0 \circ 0$ $y \rightarrow y \rightarrow y$ a.m. a.m. b m. b m.	After Development $- 7.98 \text{ ft.}$ $\frac{2}{y} \frac{120912002}{\text{m m d d y y y y}}$ $- 8:22 \text{ m m.}$ $- 0.9 \text{ inches}$ Clear $\blacksquare 20$ Turbid 25
3. Time spent developing well	<u>S</u> min.		(Describe)	· · ((Describe)
4. Depth of well (from top of well casisng) $- \angle 2$.	<u>O</u> ft.				
5. Inside diameter of well $-\underline{1}$. $\underline{\bigcirc}$	<u>3</u> in.				
6. Volume of water in filter pack and well	<u>4</u> gal.	Fill in if drilling fluid	ls were used an	d well is at	solid waste facility:
7. Volume of water removed from well 8. Volume of water added (if any)	gal. gal.	14. Total suspended solids	<u></u>	mg/l	mg/!
9. Source of water added		15. COD		mg/l	mg/l
10. Analysis performed on water added? (If yes, attach results)	No No	16. Well developed b First Name: حرب Firm: Northern	y: Name (first, la	est) and Firm Last Name	: Knabe

17. Additional comments on development:

Name and Address of Facility Contact /Owner/Responsible Party First Name: Kenneth Name: Joza	I hereby certify that the above information is true and correct to the best of my knowledge.					
Facility/Firm:	Signature:					
Street: 1478 Norfield Road	Print Name: Jeff Brand					
City/State/Zip: Suamico, WI 54173	Firm: Northern Environmental					

NOTE: See instructions for more information including a list of county codes and well type codes.

State of Wisconsin Department of Natural Resources Revealed Bar Solid Waste Haz. Wa	Aste D Wastewater D MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 4-90
Facility/Project Name Local Grid Location	on of Well Mame WW600
Facility License, Permit or Monitoring Number Grid Origin Locat	on Wis Unique Well Number DNR Well Number
Type of Well Water Table Observation Well 🛛 11 St. Plane	ft. N,ft. E. Date Well Installed 0 3/0 4/9 7
Distance Well Is From Waste/Source Boundary	f Waste/Source $\overline{\mathbf{X}}$ E. Well Installed By (Parcente Name and E)
ft. [<u>NW</u> 1/4 of1/4 ft. [Location of Well]	A of Sec. 1, T. 24 N, R. 20 W. With instance by: (reison's Name and Firm) Relative to Waste/Source. Mike W.
Is Well A Point of Enforcement Std. Application?	s Sidegradient ent n D Not Known M&K Environmental Drilling
A. Protective pipe, top elevation ft. MSL	1. Cap and lock?
B. Well casing, top elevation 594.19 ft, MSL	2. Protective cover pipe:
C. Land surface elevation 594.6 ft. MSL ~	b. Length: 1.0 ft
D. Surface seal, bottom593.6 ft. MSL or1.0 ft.	c. Material: Steel 🔯 04
12. USCS classification of soil near screen:	d. Additional protection?
GP GM GC GW SW SP SN SM SC ML MH CL CH CH	If yes, describe:
Bedrock	3. Surface seal: Concrete 🖸 01
15. Sieve analysis attached? I fes X No 14 Drilling method used: Poteny I 50	
Hollow Stem Auger 41	4. Material between well casing and protective pipe: Bentonite 🛛 30
Probe Rig Other 🖾	Annular space seal
15. Drilling fluid used: Water 02 Air 01	5. Annular space seal: a. Granular Bentonite 🖾 33
Drilling Mud □03 None 🛛 99	bLbs/gal mud weight. Bentonite-sand slurry 35
16. Drilling additives used? 🗖 Yes 🛛 No	cLos/gai mud weight Bentonite slurry [] 31 d% Bentonite Bentonite-cement grout [] 50
Describe	eFt ³ volume added for any of the above
17. Source of water (attach analysis):	Tremie pumped 01
	Gravity 🖾 08
$\mathbf{E} \text{Pointonite and for } 502.6 \mathbf{A} 10 \mathbf{A} \mathbf{A}$	6. Bentonite seal: a. Bentonite granules \square 33 b. \square 1/4 in \square 3/8 in \square 1/2 in Bentonite pellets \square 32
E. Demointe sear, top -335.0 It. MISE of -1.0 It.	cOther
F. Fine sand, top <u>591.6</u> ft. MSL or <u>3.0</u> ft.	7. Fine sand material: Manufacturer, product name & mesh size a. <u>#40-#60 Badger Mining Sand</u>
G. Filter pack, top <u>591.1_</u> ft. MSL or <u>3.5_</u> ft.	b. Volume added <u>.16</u> ft^3
H. Screen joint, top590.6 ft. MSL or4.0 ft.	a. #65-#75 Badger Mining Sand
	b. Volume added 3.52 ft ³
1. Well bottom580.6_ ft. MSL or14.0_ ft.	9. Well casing: Flush threaded PVC schedule 40 M 25 Flush threaded PVC schedule 80 □ 24
J. Filter pack, bottom580.1_ ft. MSL or14.5_ ft.	10. Screen material: PVC
K. Borehole, bottom ft. MSL or ft.	a. Screen type: Factory cut 🛛 11 Continuous slot 🗖 01
L. Borehole, diameter <u>8.00</u> in.	Other 🗆 🛄
M. O.D. well casing 2.25 in.	b. Manufacturer <u>Bedrock Industries</u> c. Slot size: 0.010_in.
N ID well cooling 2 00 in	d. Slotted length: <u>10.0</u> ft. 11 Backfill material (below filter pack): None 🛛 14
	Other 🗆 🧾
I hereby certify that the information on this form is true and	correct to the best of my knowledge.
Martha J. Vimmer 954	Circle Drive, Green Bay, WI 54304 (414) 592-8400
Please complete both sides of this form and return to the appropriate DN	R office listed at the top of this form as required by che 144 147 & 160. Wis Stats

Please complete both sides of this form and return to the appropriate DNR office listed at the top of this form as required by chs 144,147 & 160, Wis Stats, and ch NR 141, Wis Ad Code. In accordance with ch 144, Wis Stats, failure to file this form may result in a forfeiture of not less than \$10, nor more than \$5000 for each day of violation. In accordance with ch 147, Wis Stats, failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. NOTE: Shaded areas are for DNR use only. See instructions for more information including where the completed form should be sent.

MONITORING WELL DEVELOPMENT

Rev. 4-90

Form 4400-113B

Route to: Solid Waste Haz. Waste Wastewater

Facility/Project Name Randy's Mobil Service		County Name 05	5	Well Name MW600	
Facility License, Permit or Monitoring Numbe	r 	County Code	Wis. Unique Well N	umber DNR We	l Number
1. Can this well be purged dry ?	XX Ye	s 🗆 No		Before Development	After Development
2. Well development method surged with bailer and bailed surged with bailer and pumped surged with block and bailed surged with block, bailed and pumped surged with block, bailed and pumped compressed air bailed only pumped only pumped slowly	□ 43 □ 61 □ 42 □ 62 □ 70 □ 20 ⊠ 10 □ 53 □ 50	1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	 11. Depth to Water (from top of well casing) Date 12. Sediment in well bottom 	a. <u>12.85</u> ft. b. <u>0 3/0 4/9 7</u> mm d d y y c. <u>1 2 : 2 3 9 pm</u> ll <u>inches</u>	$ \underline{- 7.71}_{mm} \text{ ft.} $ $ \underline{0 \ 3 / 1}_{mm} \frac{7 / 9}{d} \frac{7}{y} \frac{7}{y} $ $ \underline{1 \ 0 : 5 \ 4}_{pm} \boxed{\square p.m} $ $ \underline{1 \ 0 : 5 \ 4}_{pm} \boxed{\square p.m} $
Other		<u>.</u>	13. Water clarity	Clear 10 Turbid 15	Clear ⊠ 20 Turbid □ 25
3. Time spent developing well	158	min.		(Describe) <u>slightly cloudy</u>	(Describe)
4. Depth of well (from top of well casing)	<u>14</u> .	<u>2</u> ft.		<u></u>	
5. Inside diameter of well	2.00	in.		<u></u>	·
6. Volume of water in filter pack and well casing	<u>1</u> .	<u>1</u> gal.			
7. Volume of water removed from well	<u>9</u> .	0_ gal.	Fill in if drilling flu	ids were used and well is	at solid waste facility :
8. Volume of water added (if any)	0	gal.	solids		^{mg/1}
9. Source of water added			15. COD	mg/l	mg/l
10. Analysis performed on water added? (If yes, attach results)	ΠY	es 🛛 No			

16. Additional comments on development:

Well developed by : Person's Name and Firm	I hereby certify that the above information is true and correct to the best of my knowledge
Name: Martha F. Nimmer Firm: Northern Environmental Technologies, Inc	Signature: Martha J. Munne Print Initials: <u>M F N</u> Northern Environmental Technologies, Inc. Firm: 954 Circle Drive, Green Bay, WI 54304 (414) 592-8400

NOTE: Shaded areas are for DNR use only. See instructions for more information including a list of county codes.

RMS330478

Table 4

Summary of Sub-Slab Vapor Results V&L Stripping 864 Mather Street Green Bay, Wiscosin

Commercial VAL
Small Commercial VRSL
(Large Commercial VRSL

Sample Location	Inits	¹ EPA Region 3 RSL Commercial/Residential (Target Risk = 1E-06)	² WDNR Guidance RSL Commercial/Residential (Target Risk = 1E-05)	WDNR Guidance Subslab to Indoor (AF = 0.1)	Sub Slab Middle (SSM) - Center of Main Floor of 864 Mather Street (V&L Stripping) 9/28/2010	Sub Slab West (SSW) - West Area of Main Floor of 864 Mather Street (V&L Stripping) 9/28/2010	Sub Slab East (SSE) - East Area of Main Floor of 864 Mather Street (V&L Stripping) 9/28/2010
Exposure/Sample Duration	Jinto				24-hr	24-hr	24-hr
					2111	2111	2111
Benzene	uq/m ³	0.31	3.1	31	<1100	<69	<59
Bromoform	ug/m ³	0.05	0.5	5	<3700	<220	<190
Bromomethane	ug/m ³	5.2	52	520	<1400	<84	<72
Carbon Tetrachloride	ug/m ³	0.41	4.1	41	<2300	<140	<120
Chlorobenzene	ug/m ³	52	520	5200	<1600	<99	<86
Chloroethane	ug/m ³	NES			<940	<57	<49
Chloroform	ug/m ³	0.11	1.1	11	<1700	<110	<91
Chloromethane	ug/m ³	94	940	9400	<1800	<110	<96
1.2-Dibromoethane	ug/m ³	0.0041	0.041	0.41	<2800	<170	<140
1.2-Dichlorobenzene	ug/m ³	210	2100	21000	<2200	<130	<110
1.3-Dichlorobenzene	ug/m ³	NES			<2200	<130	<110
1,4-Dichlorobenzene	ug/m ³	0.22	2.2	22	<2200	<130	<110
Dichlorodifluoromethane	ug/m ³	210	2100	21000	<1800	<110	<92
1,1-Dichloroethane	ug/m ³	1.5	15	150	<1400	<87	<75
1,2-Dichloroethane	ug/m ³	0.094	0.94	9.4	<1400	<87	<75
1,1-Dichloroethene	ug/m ³	210	2100	21000	<1400	<85	<74
cis-1,2-Dichloroethene (DCE)	ug/m ³	NES			<1400	<85	<74
1,2-Dichloropropane	ug/m ³	0.24	2.4	24	<1700	<100	<86
cis-1,3-Dichloropropene	ug/m ³	NES		*	<1600	<98	<84
trans-1,3-Dichloropropene	ug/m ³	NES			<1600	<98	<84
Dichlorotetrafluoroethane	ug/m ³	NES			<2500	<150	<130
Ethylbenzene	ug/m ³	0.97	9.7	97	<1600	<94	<81
Hexachlorobutadiene	ug/m ³	0.11	1.1	11	<19000	<1100	<990
Methylene Chloride	ug/m ³	5.2	52	520	<3100	<190	<160
Styrene	ug/m ³	1000	10000	100000	<1500	<92	<79
1,1,2,2-Tetrachloroethane	ug/m ³	0.042	0.42	4.2	<2500	<150	<130
Tetrachloroethene (PCE)	ug/m ³	0.41	A.1 180	41 6000	450000	19000	17000
Toluene	ug/m ³	5200	52000	520000	<1300	<81	<70
1,2,4-Trichlorobenzene	ug/m ³	2.1	21	210	<13000	<800	<690
1,1,1-Trichloroethane	ug/m ³	5200	52000	520000	<2000	<120	<100
1,1,2-Trichloroethane	ug/m ³	0.15	1.5	15	<2000	<120	<100
Trichloroethene (TCE)	ug/m ³	1.2	12 8.8	120 293	4200	250	<100
Trichlorofluormethane	ug/m ³	730	7300	73000	<2000	<120	<100
1,1,2-Trichlorotrifluoroethan	ug/m ³	NES			<2700	<170	<140
1,2,4-Trimethylbenzene	ug/m³	7.3	73	730	<1800	<110	<91
1,3,5-Trimethylbenzene	Jg/m³	NES			<1800	<110	<91
Vinyl Chloride	ug/m ³	0.16	1.6	16	<920	<55	<48
Xylene, o u	ıg/m ³	730	7300	73000	<1600	<94	<81
Xylenes, m + p u	ıg/m ³	730	7300	73000	<1600	<94	<81

NOTES:

1 USEPA Region 3 - Regional Screening Level (RSL) Table Residential Air May 2010. Carcinogenic Target Risk (TR) = 1E-06.

2 WDNR "Draft Addressing Vapor Intrustion at Remediation and Redevelopment Sites in Wisconsin' guidance June 2010. Carcinogenic Target Risk (TR) = 1E-05.

AF attenuation factor

NES no established standard

Green/Italic = Exceeds the WDNR Guidnace Standard for Subslab to Indoor with an attenutation factor (AF) of 0.1

Blue = Exceeds the WDNR Guidnace Standard for Soil Gas to Indoor with an attenutation factor (AF) of 0.01

Red/Bold = Exceeds the WDNR Guidance - Residential/Commercial (indoor air)

Soil Gas Summary 9-1-09.xls 11/18/2010 11:56 AM Table 5 Summary of Air Monitoring Results V&L Stripping 864 Mather Street Green Bay, Wiscosin

Page 1 of 1

Sample Location	Units	¹ EPA Region 3 RSL Commercial/Residential (Target Risk = 1E-06)	² WDNR Guidance RSL Commercial/Residential (Target Risk = 1E-05)	WDNR Guidance Subslab to Indoor (AF = 0.1)	856 Mather Street (Residence) West Wall of Basement (Residence) West	Ambient Air Indoor (AAI) - Center of Main Floor of 864 Mather Street (V7L Stripping) (AAI) - Center of Main 9/28/2010	Ambient Air Outdoor (AAO) - Northwest Outer Corner of 864 Mather Street (V&L Stripping) Outdoor (AAO) -
Exposure/Sample Duration	onto				24-hr	24-hr	24_hr
					27-111	24-111	24-111
Benzene	ua/m ³	0.31	313.6	31/20	0.96	54	0.67
Bromoform	ua/m ³	0.05	0.5	5	<2.1	<2.1	<2.1
Bromomethane	µg/m ³	5.2	52	520	<0.78	<0.78	<0.78
Carbon Tetrachloride	µa/m ³	0.41	4.1	41	<1.3	<1.3	<1.3
Chlorobenzene	µa/m ³	52	520	5200	< 0.92	<0.92	<0.92
Chloroethane	µa/m ³	NES			< 0.53	< 0.53	< 0.53
Chloroform	ua/m ³	0.11	1/1.2	140	14	<0.98	<0.98
Chloromethane	ua/m ³	94	940	9400	1.9	1.3	<1.0
1.2-Dibromoethane	ua/m ³	0.0041	0.041	0.41	<1.5	<1.5	<1.5
1.2-Dichlorobenzene	ua/m ³	210	2100	21000	<1.2	<1.2	<1.2
1.3-Dichlorobenzene	µg/m ³	NES		2.000	<1.2	<1.2	<1.2
1.4-Dichlorobenzene	µg/m ³	0.22	2.2	22	<1.2	<1.2	<1.2
Dichlorodifluoromethane	µg/m ³	210	2100	21000	2.6	2.3	2.3
1.1-Dichloroethane	µa/m ³	1.5	15	150	< 0.81	< 0.81	< 0.81
1.2-Dichloroethane	µa/m ³	0.094	0.94	9.4	< 0.81	< 0.81	< 0.81
1.1-Dichloroethene	ua/m ³	210	2100	21000	<0.79	<0.79	<0.79
cis-1.2-Dichloroethene (DCF	ua/m ³	NES	2100	21000	<0.79	<0.79	<0.79
1.2-Dichloropropane	ua/m^3	0.24	24	24	<0.92	<0.92	<0.92
cis-1 3-Dichloropropene	$\mu g/m^3$	NES	2.17	24	<0.91	<0.02	<0.02
trans-1 3-Dichloropropene	$\mu g/m^3$	NEG			<0.01	<0.01	<0.01
Dichlorotetrafluoroethane	$\mu g/m^3$	NEG			<1.1	<1.4	<0.91
Ethylhonzono	$\mu g/m^3$	NE5	0.7	07	2.0	2.4	<0.97
	$\mu g/m^3$	0.97	9.7	97	2.0	2.4	<0.07
Methylene Chloride	$\mu g/m^3$	0.11	1.1	11	12	<17	<17
Sturopo	$\mu g/m^3$	5.2	52	520	13	<0.95	<1.7 <0.95
Julie 1 1 2 2 Totrachlaroothana	$\mu g/m^3$	1000	10000	10000	<0.05	<0.05	<0.0>
Totrachloroothono (PCE)	$\mu g/m^3$	0.042	0.42	4.2	<1.4	1.4	<1.4
	$\mu g/m^3$	0.41	57000	91 1 400	1.4	100	<1.4 E
1 0 4 Trichlorohonzono	$\mu g/m^3$	5200	52000	520000	40	20	5
1,2,4-Trichloropenzene	$\mu g/m^3$	2.1	21	210	<7.4	0.7	<7.4
1,1,1-Trichloroethane	$\mu g/m^3$	5200	52000	520000	<1.1 <1.1	<1.1	<1.1 -1.1
T, T, Z-Trichloroethane	$\mu g/m$	0.15	1.5	15	<1.1		<1.1
	µg/m	1.2	12 01	120 100	\$1.1	2.4	<1.1
	µg/m ³	/30	7300	73000	2	1.5	1.4
1,1,2-1 richlorotrifluoroethan	µg/m	NES			<1.5	<1.5	<1.5
1,2,4-Trimethylbenzene	µg/m ³	7.3	73	730	2	.4</td <td><0.98</td>	<0.98
1,3,5-1 methyldenzene	µg/m ⁻	NES			<0.98	1.5	<0.98
vinyi Chioride	µg/m ³	0.16	1.6	16	<0.51	<0.51	<0.51
Xylene, o	ug/m°	730	7300	73000	2.2	3.1	<0.87
Xylenes, m + p	ug/m°	730	7300	73000	9.3	9.2	<0.87

NOTES:

1 USEPA Region 3 - Regional Screening Level (RSL) Table Residential Air May 2010. Carcinogenic Target Risk (TR) = 1E-06.

2 WDNR "Draft Addressing Vapor Intrustion at Remediation and Redevelopment Sites in Wisconsin' guidance June 2010. Carcinogenic Target Risk (TR) = 1E-05.

AF attenuation factor

NES no established standard

Green/Italic = Exceeds the WDNR Guidnace Standard for Subslab to Indoor with an attenutation factor (AF) of 0.1

Blue = Exceeds the WDNR Guidnace Standard for Soil Gas to Indoor with an attenutation factor (AF) of 0.01

Red/Bold = Exceeds the WDNR Guidance - Residential/Commercial (indoor air)

Soil Gas Summary 9-1-09.x/s 11/18/2010 11:59 AM

•

DIVISION OF PUBLIC HEALTH

1 WEST WILSON STREET P O BOX 2659 MADISON WI 53701-2659

> 608-266-1251 FAX: 608-267-2832 www.dhfs.state.wi.us

State of Wisconsin

Helene Nelson Secretary

Jim Doyle

Governor

Department of Health and Family Services

August 5, 2003

Sue Knabe & Lynelle Caine Northern Environmental, Inc. 954 Circle Drive Green Bay, WI 54304

Subject: Results from June 19th Sampling – V&L Stripping Property BRRTS # 02-05-216723

Dear Ms. Knabe and Ms. Caine:

I have received the sample results for the sampling we jointly conducted on June 19th, 2003 (copies attached). The results of those samples indicate that a vapor intrusion potential does exist for the property to the east of the business. Based on the sub-slab sample taken from 856 Mather Street, it is unlikely that the pathway could be ruled out for this residence without active mitigation. Active remediation of the contaminant source area should also be conducted to reduce the low potential for additional off-site impacts due to soil vapor migration.

Background

The V&L Stripping site, also known as the Ken Juza property, is a former dry cleaning business with previously confirmed groundwater and soil contamination. The primary contaminants of concern are chlorinated solvents including tetrachloroethylene, trichloroethylene, and other related contaminants. Based on the groundwater and soil investigation DHFS and DNR staff have concluded that some source remediation will be needed at the site. After reviewing the site investigation data for soils and groundwater at this site, DHFS and DNR recommended additional sampling in June 2003 to better characterize the vapor intrusion pathway from the site to nearby residents.

On June 19th, Sue Knabe and I collected four samples to evaluate the vapor intrusion migration pathway at the V&L Stripping property, 864 Mather Street, Green Bay. The samples were collected from 1) the ambient air on the property, 2) the soil vapor probe installed by Northern Environmental across the alley from the site (710 Lincoln Street), 3) sub-slab soil vapor beneath the basement of the adjacent residential property (856 Mather Street), and 4) basement indoor air of the adjacent residential property (856 Mather Street). The samples were collected in six liter evacuated stainless steel canisters. Each sample was analyzed for volatile organic compounds (VOCs) at the State Laboratory of Hygiene using EPA method TO-14. The results of the analysis are summarized in Table 1. Photos of the sample collection for each sample are at the end of this letter (Figures 1 to 4).

The **ambient air sample** (outdoor air) was collected as a reference because ambient air quality can have an effect on the air quality of each of the other samples. This sample was located behind the building on the northeastern part of the property (864 Mather). Analysis of this sample identified low concentrations of a number of VOCs including acetylene, benzene, carbon tetrachloride, propene, toluene, and xylenes. The benzene and carbon tetrachloride levels are slightly above the health-based comparison values included in the table. These levels are consistent with our knowledge of ambient air quality around the state. Although we do not have health based comparison values for acetylene and propene, the levels detected in these samples do not indicate exposures of health concern. The primary contaminant of concern, tetrachloroethylene, was not detected in the ambient air sample.

The **soil vapor sample** was collected from the back yard of the residence north of the site at 710 Lincoln Street. This sample was collected to find out if site related contaminants were migrating in soil vapor towards residential properties to the north and northeast in soil vapor. The soil vapor sample contained tetrachloroethylene and a low-level detection of chloroform. Chloroform has not been found as a contaminant of concern in the past at the site. It is not clear if the chloroform detected is from degradation of site contaminants or from another source. The tetrachloroethylene detected indicates some soil vapor migration from the site.

10-14 / Mi Sample Results Jule 19, 2005								
V&L Stripping Property, Green Bay								
VOC	Ambient	Soil	Sub-Slab	Basement	Comparison			
	Air	Vapor ^d	Vapor ^d	Indoor Air	Value (EPA)			
Acetylene	0.35	ND	ND	0.64	NA			
Benzene	0.14	ND	ND	0.44	0.1			
Carbon tetrachloride	0.1	ND	ND	0.11	0.026			
Chlorobenzene	ND	ND	ND	0.22	13			
Chloroform	ND	0.54	ND	0.09	0.022			
Ethylbenzene	ND	ND	ND	0.35	0.51			
Methylene chloride	ND	ND	18	51	1.2			
n-Octane	ND	ND	ND	0.32	NA			
Propene	0.1	ND	ND	0.40	NA			
Styrene	ND	ND	ND	0.28	230			
Tetrachloroethylene	ND	26	670	0.12	0.12			
Toluene	0.28	ND	5.6	17	110			
1,1,1-Trichloroethane	ND	ND	ND	0.61	400			
m/p-Xylene	0.14	ND	ND	1.5	1600			
o-Xylene	0.064	ND	ND	0.46	1600			

Table 1 TO-14 Air Sample Results – June 19, 2003 V&I Stripping Property Green Pay

(EPA) – from Table 2c of EPA Draft Guidance for Evalutating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils

All units - parts per billion by volume (ppbv)

ND - Chemical Not Detected

NA – Comparison Value Not Available

^d – Results approximate due to dilution technique

Concentrations below the comparison values shown in Table 1 are not likely to be of health concern under any circumstances. Chemical concentrations in indoor air above those levels are not necessarily a health hazard, but warrant a closer evaluation. Although both chemicals exceeded their respective health based comparison values, these concentrations are not relevant to public health since they weren't measured at a point of possible exposure.

The **sub-slab sample** taken beneath the basement at 856 Mather Street contained a relatively high level of tetrachloroethylene along with methylene chloride and toluene. The purpose of the sub-slab sample was to determine if contaminants had migrated from the source area to the foundation of the adjacent building. Because the contaminant source area in soil is close to the residence we didn't expect to find a *clean* soil vapor sample between them. The tetrachloroethylene result indicates that contaminants do migrate from the source area to the foundation of this home. The source of the methylene chloride and toluene detections is less clear, since the concentrations of each were considerably higher in the corresponding indoor air sample.

The results of the **indoor air sample** from 856 Mather Street show a variety of VOCs which could have originated from ambient air, soil vapor, and indoor sources. This sample was collected for comparison to the sub-slab sample result. Because of the variability of indoor air quality as it relates to vapor intrusion, this sample is of limited use in making decisions for the site. Of the fifteen chemicals detected, only the tetrachloroethylene in this sample is plausibly linked to a soil vapor source. However, there are potential household sources of tetrachloroethylene that cannot be ruled out as a source for this sample. It is important to note that this indoor air sample was a short-term (grab) sample that is not likely to be representative of long-term air quality in the basement, and even less predictive of long-term air quality in the living area of the home. The sub-slab conditions are expected to remain more consistent over time and as such are a better predictor of the vapor intrusion pathway.

Discussion

As is common with air sampling, there were a variety of chemicals detected that are unrelated to the contaminant source area at the site. The sample from the basement indoor air contains numerous chemicals, that could have come from several containers of chemicals on the basement shelves. The concentrations of the various chemicals are low, and the containers and storage area were in generally good condition. Removing these chemicals from the home may provide a small improvement in indoor air quality. (See Figure 5)

Both the soil vapor and sub-slab sample indicate that tetrachloroethylene from the site is available for off-site vapor intrusion. Neither the ambient air sample or basement indoor air sample indicated a source of tetrachloroethylene that could otherwise explain these results.

EPA in its draft vapor intrusion guidance assumes a minimum attenuation factor of ten for shallow soil vapor migrating to indoor air. This means that a sub-slab measurement of 670 ppbv is expected to result in an indoor air concentration no greater than 67 ppbv under worst case conditions. Although data from a number of sites evaluated by EPA indicate that the attenuation factor is likely much higher (leading to lower indoor air concentrations), the measured sub-slab

concentration at this site would not allow us to rule out the vapor intrusion pathway without extensive and long-term monitoring of both indoor air and soil vapor.

The short-term basement indoor air sample found tetrachloroethylene at 0.12 ppbv. This result indicates with limited confidence, that there isn't currently a strong tendency towards vapor intrusion into the home. However, the sample was taken over a short period during the summer months when fresh air exchange is greatest and the influence of a stack effect would be largely absent.

The lower level of tetrachloroethylene found in the soil vapor sample at 710 Lincoln Street is also higher than EPA's screening values for tetrachloroethylene in shallow soil vapor. However, the tetrachloroethylene concentration is much lower and additional characterization could allow us to rule out the pathway on this property.

The remediation of the source area of the site should have an effect on soil vapor and shallow groundwater contaminant concentrations. If remediation of the source area takes place, additional sampling resources related to the 710 Lincoln Street property would be best spent on confirmation sampling to ensure that the action is effectively controlling off-site migration.

Health Implications

Daily exposures for many years to high concentrations of tetrachloroethylene (such as in an occupational setting) can result in liver and kidney damage and may result in an increased risk of developing some forms of cancer. Long-term exposure to tetrachloroethylene levels relevant to what could be found at this site are not likely to result in an increase in health problems. Even though the risks are low, DHFS considers them unnecessary and prudent to avoid.

Conclusions

- Tetrachloroethylene from the V&L Stripping site impacts soil vapor on two neighboring residential properties.
- Remediation of the source area on the site would likely lower the risk of off-site vapor migration.
- It is unlikely that additional investigation would allow us to rule out vapor intrusion as a source of human exposure at 856 Mather Street.
- The soil vapor sample collected at 710 Lincoln Street indicates a very low potential for vapor intrusion into the home on that property. Additional sampling may rule out this pathway. However, remediation of the source area may also result in eliminating this potential migration pathway.

Recommendations

- The adjacent property owners and occupants should be advised of the results of this sampling. I will contact them with these results and explain the health implications of the results to them.
- Source remediation should be designed specifically to reduce the potential for off-site vapor migration.
- The remedial action should be monitored for its effectiveness at source removal and control of off-site soil vapor migration.

• Because of the high tetrachloroethylene concentrations in the sub-slab soil vapor at 856 Mather Street, I recommend the installation of a sub-slab depressurization system by an approved radon mitigation contractor. Based on the analytical data there is no need to install this system immediately. It can be installed as part of the site remediation. I would recommend that the system installed no later than November 30, 2003.

If you have questions about my evaluation of the sample results and site conditions, or if I can be of further assistance in addressing these recommendations, please contact me at (608) 267-3732. Thank you.

Sincerely,

Chuck Warzecha Health Hazard Evaluation Bureau of Environmental Health

Cc: Kristin DuFresne – DNR, Green Bay Robin Schmidt/Jeff Soellner – DNR, Madison

Figure 1 : Ambient air sample.

Figure 2 : Soil vapor sample.

Figure 3 : Sub-slab sample.

Figure 4 : Indoor air sample.

Figure 5 : Basement chemical storage.

Wisconsin State Lab Environment Data

Laboratory Report Lab: 113133790

Sample: ON002548

Page 1

Laboratory:

07/28/03

Wisconsin State Lab of Hiegiene 2601 Agriculture Dr Madison WI 53705

Phone: 800-442-4618 Fax Phone: 608-224-6276

Sample:

Field #: GBBASEMENT Collection Start: 2003-06-19 10:17:00.0 Collected by: WARZECHA ID #: County: Sample Location: Sample Description: BASEMENT IAQ SAMPLE TO-14 ANALYSIS Sample Source: Air Date Reported: 2003-07-18 14:58:18.0 Project No: Sample #: ON002548 Collection End: 2003-06-19 10:22:00.0 Waterbody/Outfall Id: ID Point #: Account #: DH052

> Sample Depth: Sample Status: **COMPLETE**

Analyses and Results

Analysis Method		Analysis Date			Lab Comments			
TOXIC OF	RGANIC COMPOUNDS IN AMBIENT AIR - T014	2003-07-07	7 00:00:00.0	ł.	SEE ON0025	48.MM1		
Code	Description	CAS No	Result	Units	LOD	Report Limit	LOQ	
43828	BROMODICHLOROMETHANE	75272	<0.050	PPB V		0.050		
43824	TRICHLOROETHENE	79016	<0.050	PPB V		0.050		
43831	CIS-1,3-DICHLOROPROPENE	542756	<0.10	PPB V		0.10		
43830	TRANS-1,3-DICHLOROPROPENE	10061026	<0.10	PPB V		0.10		
43820	1,1,2-TRICHLOROETHANE	79005	<0.10	PPB V		0.10		
45202	TOLUENE	108883	17.	PPB V		0.050		
43832	DIBROMOCHLOROMETHANE	124481	<0.050	PPB V		0.050		
43233	N-OCTANE	111659	0.32	PPB V		0.050		
43817	TETRACHLOROETHENE	127184	0.12	PPB V		0.050		
45801	CHLOROBENZENE	108907	0.22	PPB V		0.050		
45203	ETHYLBENZENE	100414	0.35	PPB V		0.050		
45109	M/P-XYLENE	NA	1.5	PPB V		0.10		
43806	BROMOFORM	75252	<0.10	PPB V		0.10		
45220	STYRENE	100425	0.28	PPB V		0.10		
45204	O-XYLENE	1330207	0.46	PPB V		0.050		
43818	1,1,2,2-TETRACHLOROETHANE	79345	<0.10	PPB V		0.10		
45210	ISOPROPYLBENZENE	98828	<0.050	PPB V		0.050		
45806	1,3-DICHLOROBENZENE	54173	<0.10	PPB V		0.10		
45807	1,4-DICHLOROBENZENE	106467	<0.10	PPB V		0.10		
43206	ACETYLENE	74862	0.64	PPB V		0.10		
43205	PROPENE	115071	0.40	PPB V		0.10		
43801	CHLOROMETHANE	74873	*l <85.	PPB V		0.30		
43860	VINYL CHLORIDE	75014	<0.10	PPB V		0.10		
43218	1,3-BUTADIENE	106990	<0.10	PPB V		0.10		
43819	BROMOMETHANE	74839	<0.10	PPB V		0.10		
43812	CHLOROETHANE	75003	<0.10	PPB V		0.10		
43802	METHYLENE CHLORIDE	75092	51.	PPB V		0.10		
43838	TRANS-1,2-DICHLOROETHENE	156605	<0.10	PPB V		0.10		
43835	CHLOROPRENE	126998	<0.10	PPB V		0.10		
43803	CHLOROFORM	67663	0.090	PPB V		0.050		
43815	1,2-DICHLOROETHANE	10762	<0.10	PPB V		0.10		
43814	1,1,1-TRICHLOROETHANE	71556	0.61	PPB V		0.050		
45201	BENZENE	71432	0.44	PPB V		0.050		
43804	CARBON TETRACHLORIDE	56235	0.11	PPB V		0.050		
43829	1,2-DICHLOROPROPANE	78875	<0.10	PPB V		0.10		
45805	1,2-DICHLOROBENZENE	95501	<0.10	PPB V		0.10		

 Analyses and Results

 Analysis Method
 Analysis Date

 TOXIC ORGANIC COMPOUNDS IN AMBIENT AIR T014 - 2003-07-07 00:00:00.0

 PREP

 Code
 Description

 CAS No
 Result

 Units
 LOD

 Report Limit
 LOQ

Wisconsin State Lab Environment Data Laboratory Report

Laboratory	R
Lab: 113133790	

Page 1

07/28/03			Lab: 113133790				Page 1		
Labora	tory:	Wisconsin State Lab c 2601 Agriculture Dr Madison WI 53705 Phone: 800-442-4618	of Hiegiene Fax Pho	ne: 608-22	4-6276				
		1 110110. 000 442 4010	1 42 1 110	10. 000 LL					
Sample	9: Eiold #						Somple #: ON00254	7	
c	Collection Star	2003-06-19 10:45:00.0				Colle	ection End: 2003-06-1	9 10:53:00.0	
	Collected by	: WARZECHA				Waterbody	/Outfall Id:		
	ID #						ID Point #:		
5.	County						Account #: DH052		
Samr	npie Location	BASEMENT SUB-SLA		TO.14 AN		P3700)			
S	ample Source	: Air	o orani ee	10-14-614		Sam	ple Depth:		
· 1	Date Reported	2003-07-18 14:58:18.0				Sam	ple Status: COMPLE	ſE	
	Project No	÷							
Analys	es and Res	ulte						1	
Analysis	Mothod	uns		Anolygia D	lata		Lab Commont		
TOXIC C	RGANIC CON	POUNDS IN AMBIENT	AIR - T014	2003-07-1	0 00:00:00	.0	SEE ON00254	5 7.MM1	
Code	Description	7		CAS No	Result	Units	100	Report Limit	100
43832	DIBROMO	, CHLOROMETHANE		124481	*D <2.3	PPB V	200	0.050	200
43233	N-OCTAN	E		111659	*D <2.3	PPB V		0.050	
43817	TETRACH	LOROETHENE		127184	*DT 670.	PPB V		0.050	
45801	CHLOROE	BENZENE		108907	*D <2.3	PPB V		0.050	
45203	ETHYLBEI	NZENE		100414	*D <2.3	PPB V		0.050	
45109	M/P-XYLE	NE		NA	*D <4.6	PDB V		0.10	
43800	STYDENE	DRM		100425	*D <4.0			0.10	
45220	O-XYLENE	-		1330207	*D <4.0	PPRV		0.10	
43818	1.1.2.2-TE	- TRACHI OROFTHANE		79345	*D <4.6	PPB V		0.10	
45210	ISOPROP	YLBENZENE		98828	*D <2.3	PPB V		0.050	
45806	1,3-DICHL	OROBENZENE		54173	*D <4.6	PPB V		0.10	
45807	1,4-DICHL	OROBENZENE		106467	*D <4.6	PPB V		0.10	
45805	1,2-DICHL	OROBENZENE		95501	*D <4.6	PPB V		0.10	
43206	ACETYLE	NE		74862	*D <4.6	PPB V		0.10	
43205	PROPENE			115071	*D <4.6	PPB V		0.10	
43801				74873	*D <14.			0.30	
43000				106990	*D <4.0	PPRV		0.10	
43819	BROMOM	ETHANE		74839	*D <4.6	PPB V	<i>.</i>	0.10	
43812	CHLOROE	THANE		75003	*D <4.6	PPB V		0.10	
43802	METHYLE	NECHLORIDE		75092	*DT 18.	PPB V		0.10	
43838	TRANS-1,2	2-DICHLOROETHENE		156605	*D <4.6	PPB V		0.10	
43835	CHLOROP	RENE		126998	*D <4.6	PPB V		0.10	
43803	CHLOROF	ORM		67663	*D <2.3	PPB V		0.050	
43815	1,2-DICHL			10762	*D <4.6	PPB V		0.10	
45014	I, I, I-IRIC	HLOROETHANE		71730	D <2.3			0.050	
43804	CARRONI			56235	*D <2.3	PPRV		0.050	
43829	1.2-DICHL	OROPROPANE		78875	*D <4.6	PPB V		0.10	
43828	BROMODI	CHLOROMETHANE		75272	*D <2.3	PPB V		0.050	
43824	TRICHLOF	OETHENE		79016	*D <2.3	PPB V		0.050	
43831	CIS-1,3-DI	CHLOROPROPENE		542756	*D <4.6	PPB V		0.10	
43830	TRANS-1,3	B-DICHLOROPROPENE		10061026	*D <4.6	PPB V		0.10	
43820	1,1,2-TRIC	HLOROETHANE		79005	*D <4.6	PPB V		0.10	
45202	TOLUENE			108883	"DI 5.6"	PPR V		0.050	

Analyses and Results

Analysis N TOXIC OF PREP	Aethod RGANIC COMPOUNDS IN AMBIENT AIR T014	Analysis I - 2003-07-1	Date 10 00:00:00	.0	Lab Comment	S	
Code	Description	CAS No	Result	Units	LOD	Report Limit	LOQ

Wisconsin State Lab Environment Data

07/28/03

Laboratory Report

Lab: 113133790

Laboratory:

Wisconsin State Lab of Hiegiene 2601 Agriculture Dr Madison WI 53705 Phone: 800-442-4618 Fax Phone: 608-224-6276

Sample:

Field #: GB-AMBIENT Collection Start: 2003-06-19 09:35:00.0 Collected by: WARZECHA ID #: County: Sample Location: Operation: AMBIENT AIR SAMPL Sample Description: AMBIENT AIR SAMPLE TO-14 ANALYSIS Sample Source: Air Date Reported: 2003-07-18 14:58:18.0 Project No:

Sample #: ON002546 Collection End: 2003-06-19 11:00:00.0 Waterbody/Outfall Id: ID Point #: Account #: DH052

Sample Depth: Sample Status: COMPLETE

Sample: ON002546

Analysis Method		Analysis Date			Lab Comments			
TOXIC ORGANIC COMPOUNDS IN AMBIENT AIR - T014		2003-07-07 00:00:00.0		SEE ON002546.MM1				
Code	Description	CAS No	Result	Units	LOD	Report Limit	100	
43206	ACETYLENE	74862	0.35	PPB V		0.10		
43205	PROPENE	115071	0.10	PPB V		0.10		
43801	CHLOROMETHANE	74873	*I <0.46	PPB V		0.30		
43860	VINYL CHLORIDE	75014	<0.10	PPB V		0.10		
43218	1,3-BUTADIENE	106990	<0.10	PPB V		0.10		
43819	BROMOMETHANE	74839	<0.10	PPB V		0.10		
43812	CHLOROETHANE	75003	<0.10	PPB V		0.10	1	
43802	METHYLENE CHLORIDE	75092	<0.10	PPB V		0.10		
43838	TRANS-1,2-DICHLOROETHENE	156605	<0.10	Ρ́ΡΒ V		0.10		
43835	CHLOROPRENE	126998	<0.10	PPB V		0.10		
43803	CHLOROFORM	67663	<0.050	PPB V		0.050		
43815	1,2-DICHLOROETHANE	10762	<0.10	PPB V		0.10		
43814	1,1,1-TRICHLOROETHANE	71556	<0.050	PPB V		0.050		
45201	BENZENE	71432	0.14	PPB V		0.050		
43804	CARBON TETRACHLORIDE	56235	0.10	PPB V		0.050		
43829	1,2-DICHLOROPROPANE	78875	<0.10	PPB V		0.10		
43828	BROMODICHLOROMETHANE	75272	<0.050	PPB V		0.050		
43824	TRICHLOROETHENE	79016	<0.050	PPB V		0.050		
43831	CIS-1,3-DICHLOROPROPENE	542756	<0.10	PPB V		0.10	f	
43830	TRANS-1,3-DICHLOROPROPENE	10061026	<0.10	PPB V		0.10		
43820	1,1,2-TRICHLOROETHANE	79005	<0.10	PPB V		0.10		
45202	TOLUENE	108883	0.28	PPB V		0.050		
43832	DIBROMOCHLOROMETHANE	124481	<0.050	PPB V		0.050		
43233	N-OCTANE	111659	<0.050	PPB V		0.050		
43817	TETRACHLOROETHENE	127184	<0.050	PPB V		0.050		
45801	CHLOROBENZENE	108907	<0.050	PPB V		0.050	}	
45203	ETHYLBENZENE	100414	<0.050	PPB V		0.050	1	
45109	M/P-XYLENE	NA	0.14	PPB V		0.10		
43806	BROMOFORM	75252	<0.10	PPB V		0.10		
45220	STYRENE	100425	<0.10	PPB V		0.10		
45204	O-XYLENE	1330207	0.064	PPB V		0.050		
43818	1,1,2,2-TETRACHLOROETHANE	79345	<0.10	PPB V		0.10		
45210	ISOPROPYLBENZENE	98828	< 0.050	PPB V		0.050		
45806	1,3-DICHLOROBENZENE	54173	<0.10	PPB V		0.10	(
45807	1,4-DICHLOROBENZENE	106467	<0.10	PPB V		0.10	1	
45805	1,2-DICHLOROBENZENE	95501	<0.10	PPB V		0.10		

Analyses and Results

Analysis Method Analysis Date Lab Comments TOXIC ORGANIC COMPOUNDS IN AMBIENT AIR T014 - 2003-07-07 00:00:00.0 PREP								
Code	Description	CAS No	Result	Units	LOD	Report Limit	LOQ	

Page 1

Wisconsin State Lab Environment Data

Laboratory Report Lab: 113133790 Sample: ON002545 Laboratory:

07/28/03

Wisconsin State Lab of Hiegiene 2601 Agriculture Dr Madison WI 53705 Phone: 800-442-4618 Fax Phone: 608-224-6276

Sample:

Field #: GBSOILVAPO Collection Start: 2003-06-19 09:55:00.0 Collected by: WARZECHA ID #: County: Sample Leasting: Sample Location: Sample Description: SOIL VAPOR (VP3600) TO14 ANALYSIS Sample Source: Air Date Reported: 2003-07-18 14:58:17.0 Project No:

Sample #: ON002545 Collection End: 2003-06-19 10:07:00.0 Waterbody/Outfall Id: ID Point #: Account #: DH052

Sample Depth: Sample Status: COMPLETE

Analyses and Results

Analysis Method		Analysis Date			Lab Comments			
TOXIC OF	RGANIC COMPOUNDS IN AMBIENT AIR - T014	2003-07-08 00:00:00.0			SEE ON002545.MM1			
Code	Description	CAS No	Result	Units	L	LOD	Report Limit	LOQ
43804	CARBON TETRACHLORIDE	56235	*D <1.0	PPB V			0.050	
43829	1,2-DICHLOROPROPANE	78875	*D <2.0	PPB V			0.10	
43828	BROMODICHLOROMETHANE	75272	*D <1.0	PPB V			0.050	
43824	TRICHLOROETHENE	79016	*D <1.0	PPB V			0.050	
43831	CIS-1,3-DICHLOROPROPENE	542756	*D <2.0	PPB V			0.10	
43830	TRANS-1,3-DICHLOROPROPENE	10061026	*D <2.0	PPB V			0.10	
43820	1,1,2-TRICHLOROETHANE	79005	*D <2.0	PPB V			0.10	
45202	TOLUENE	108883	*D <1.0	PPB V			0.050	
43832	DIBROMOCHLOROMETHANE	124481	*D <1.0	PPB V			0.050	
43233	N-OCTANE	111659	*D <2.0	PPB V			0.050	
43817	TETRACHLOROETHENE	127184	*DT 26.	PPB V			0.050	
45801	CHLOROBENZENE	108907	*D <1.0	PPB V			0.050	
45203	ETHYLBENZENE	100414	*D <1.0	PPB V			0.050	
45109	M/P-XYLENE	NA	*D <2.0	PPB V			0.10	
43806	BROMOFORM	75252	*D <2.0	PPB V			0.10	
45220	STYRENE	100425	*D <2.0	PPB V			0.10	
45204	O-XYLENE	1330207	*D <2.0	PPB V			0.050	
43818	1,1,2,2-TETRACHLOROETHANE	79345	*D <2.0	PPB V			0.10	
45210	ISOPROPYLBENZENE	98828	*D <1.0	PPB V			0.050	
45806	1,3-DICHLOROBENZENE	54173	*Ð <2.0	PPB V	•		0.10	
45807	1,4-DICHLOROBENZENE	106467	*D <2.0	PPB V		.e.	0.10	
45805	1,2-DICHLOROBENZENE	95501	*D <2.0	PPB V			0.10	
43206	ACETYLENE	74862	*D <2.0	PPB V			0.10	
43801	CHLOROMETHANE	74873	*D <6.0	PPB V			0.30	
43205	PROPENE	115071	*D <2.0	PPB V			0.10	
43860	VINYL CHLORIDE	75014	*D <2.0	PPB V			0.10	
43218	1,3-BUTADIENE	106990	*D <2.0	PPB V			0.10	
43819	BROMOMETHANE	74839	*D <2.0	PPB V			0.10	
43812	CHLOROETHANE	75003	*D <2.0	PPB V			0.10	
43802	METHYLENE CHLORIDE	75092	*D <2.0	PPB V			0.10	
43838	TRANS-1,2-DICHLOROETHENE	156605	*D <2.0	PPB V			0.10	
43835	CHLOROPRENE	126998	*D <2.0	PPB V			0.10	
43803	CHLOROFORM	67663	*DT 0.54	PPB V			0.050	
43815	1,2-DICHLOROETHANE	10762	*D <2.0	PPB V			0.10	
43814	1,1,1-TRICHLOROETHANE	71556	*D <1.0	PPB V			0.050	
45201	BENZENE	71432	*D <1.0	PPB V			0.050	

Analyses and Results

Analysis Method TOXIC ORGANIC COMPOUNDS IN AMBIENT AIR T014 - PREP		Analysis E AIR T014 - 2003-07-0	Analysis Date 2003-07-08 00:00:00.0		Lab Comments		
Code	Description	CAS No	Result	Units	LOD	Report Limit	LOQ

Page 1