CCA Building

EXISTING CONDITIONS REPORT Weisenberger Tie and Lumber Company Marathon City, Wisconsin Delta No. 15-91-032

willing.

Prepared by:

Delta Environmental Consultants, Inc. 2775 South Moorland Road, Suite 300 New Berlin, Wisconsin 53151 (414)789-0254

May 4, 1993

2.3.2 Miller Engineers Phase 1 Remedial Investigation (1989 - 1991)

In December 1989, Miller Engineers of Sheboygan, Wisconsin was contracted by the WDNR to conduct a Remedial Investigation (Phase I) to determine the extent and degree of soil and ground water contamination at the site. As of February 1991, a total of 139 soil borings and four monitoring wells (MW-1, MW-2, MW-3 and MW-7 in this report) had been installed at the site by Miller Engineers.

Soil borings installed by Miller Engineers were terminated at depths between two and seven feet below ground surface. Typically, soil samples were collected from depths of 0-2 and 4-6 feet. Soil samples were analyzed for PCP, Total Petroleum Hydrocarbons (TPH) as #2 diesel fuel, and VOC. Contaminant concentrations were highest in the areas adjacent to the dip tanks.

Miller Engineers collected ground water samples from the seven on-site monitoring wells (MW-1, MW-2, MW-3, MW-5, MW-6, MW-7 and MW-10) in February, 1990. Laboratory reports indicated high levels of dissolved TPH and PCP in monitoring wells MW-3, MW-7 and MW-10.

One soil sample, collected from a depth of 0-2 feet at the south end of the PCP dip tanks, was analyzed for isomerspecific dioxins by Alta Analytical Laboratory, Inc. of El Dorado Hills, California in April, 1991. This sample contained some of the highest reported concentrations of TPH and PCP detected in the Miller Engineers study (810 and 1,955 milligrams per kilogram, respectively), and also contained 2,446,378 picograms per gram (pg/g, equivalent to parts per trillion) total dioxin.

2.3.3 Department of Agriculture, Trade, and Consumer Protection Sampling (1991)

In May, 1991, the Wisconsin Department of Agriculture, Trade, and Consumer Protection (DATCP) collected two soil samples near the pressure treating facility in the area east of the tram. The sample taken adjacent to the tram showed elevated levels of copper and arsenic. Due to these levels, the WDNR required a site investigation of the area to determine the extent of copper, chromium and arsenic contamination resulting from preservative discharge to the environment.

The WDNR also instructed Mr. Weisenberger to conduct a remedial investigation at the above ground fuel tanks, located on the north side of the driveway. These tanks were suspected sources of contamination due to no secondary containment structures and because of the past practice of hanging the nozzles upside down

on the outsides of the tanks after fueling. Weisenberger Tie and Lumber Company contracted with CWE to perform this work.

2.3.4 Central Wisconsin Engineers Investigation (1992)

In April 1992, CWE advanced nine soil borings near the pressure treating building (TB-1 through TB-9) to depths of 9.5 feet below the ground surface. TB-1 through TB-5 were located east of the tram and TB-6 through TB-9 were located along the west edge of the concrete drip pad. Soil samples from depths of 0-2 and 2-4 feet were collected from all borings and analyzed for total copper, total chromium and total arsenic. The highest concentrations of these constituents were detected in samples collected from 0-2 feet deep. A soil sample collected from TB-9 at a depth of 0-2 feet was reported to contain concentrations of total arsenic, total chromium and total copper of 1600, 1200 and 760 mg/kg (equivalent to ppm), respectively. CWE's investigation determined that the highest levels of contamination in shallow (0-2 feet) soils at the CCA facility occurred on the west side of the concrete drip pad. CWE's investigation did not define the horizontal extent of contaminants in the soil near the pressure treating facility. CWE recommended additional soil borings to define the horizontal extent of contamination in this area in a May 1992 report to the WDNR.

In April 1992, CWE performed an investigation in the area around the fuel tanks. CWE advanced three soil borings (TB-10, TB-11, and TB-12) to depths of approximately 10 feet below ground in areas where there were visible soil stains and petroleum odors present. Two samples from each boring were submitted for laboratory analysis of DRO and petroleum volatile organic compounds (PVOCs). CWE concluded that petroleum hydrocarbon contamination in the soil extended to depths of 4.5 to 7 feet below ground surface at the soil boring locations. The highest concentration of DRO reported (46,000 ppm) was in a sample collected from 0-2 feet in boring TB-12.

2.4 Contaminant Source Inventory

Potential sources of soil and ground water contamination at the site include the dip tanks, as described above, and which are the primary focus of this investigation. There were three above ground fuel tanks on site consisting of one 10,000 gallon diesel fuel tank, one 4,000 gallon fuel oil tank, and one 500 gallon gasoline tank. The above ground fuel tanks had no secondary containment structures, as described in Section 2.2, and were removed in October, 1992. Additional potential sources of contamination on site include the

CCA pressure treating facility, and 78 drums of used PCP and diesel fuel which are stored in a maintenance building west of the pallet factory (Figure 3).

2.5 Utility Survey

A utility survey was conducted at the site on March 20, 1992. Utilities were located and plotted on a base map (Figure 3). The utilities identified in the areas of investigation include an overhead electric line which trends north-south along the eastern boundary of the study area, and an underground electrical conduit which crosses the northern portion of the study area. The locations of additional buried and above ground utilities at the site are shown on Figure 3.

3.0 PHYSICAL SETTING

3.1 Site Description

Marathon County is located in north central Wisconsin between 44 and 46 degrees north latitude and 89 and 90.5 degrees west longitude. Marathon County is the largest county in the state and contains 1,559 square miles (Clements, 1990). Most of Marathon County is characterized as a gently undulating plain, although the largest relief in the state occurs where Rib Mountain rises 740 feet from its base to a total elevation of 1,942 feet above mean sea level (Kendy and Bradbury, 1988). The Weisenberger property is located in central Marathon County approximately 12 miles west of the city of Wausau and is situated on an upland overlooking the Big Rib river valley. The Big Rib River flows eastward approximately one-half mile south of the site, and is a tributary of the Wisconsin River.

Marathon City's municipal well field is located on the north side of the Big Rib River, near the Highway 107 bridge. The location of Municipal Well #1 is shown on Figure 4, which also identifies potable wells in the vicinity of the site. Logs of the potable wells shown on Figure 4 are included in Appendix A. Four potable water wells are located on the site (PW-1 through PW-4), and are shown on Figure 5. PW-1 is not shown on Figure 5, but is located adjacent to the Weisenberger residence.

The property adjoining the Weisenberger site on the south and southeast belongs to County Concrete Corporation and has been excavated to a depth of approximately 10 to 15 feet on average. The material removed from the excavation to the east of the Weisenberger property was used for road grade on the State Highway 29 overpass (located approximately one-half mile northeast of the site). The County Concrete

sampling event. A stained area, shown on Figure 19, was found to contain high concentrations of DRO, PCP and dioxins/furans based on laboratory analysis of DSS-18. This area was probably the area where freshly dipped lumber was allowed to dry after being removed from the dip tanks.

A third round of samples were collected in December, 1992. Samples were collected from a depth of approximately two feet deep at DSS-4,-5,-9 and DSS-11. These samples were collected to quantify soil contamination with depth at those locations. Eight surface sample locations (DSS-4,-6,-8,-9,-10,-11,-12, and DSS-17) were resampled for VOC analysis because samples collected in September from these locations had been analyzed past required holding times for VOCs.

The fourth round of soil sampling was performed in January, 1993. The WDNR authorized Delta to complete additional investigative work at the CCA pressure treating facility located in the northeast portion of the site and at the former location of the above ground fuel tanks. Investigations begun by Central Wisconsin Engineers at those locations had identified soil contamination, as described in Section 2.3. Delta installed five soil borings and completed one soil boring as a monitoring well at each location.

Soil samples were collected continuously from soil borings advanced during the fourth round of soil sampling. At the former location of the fuel tanks, soil borings were advanced to 10 feet. Two samples from each boring were submitted to RMT Labs for analysis of DRO, Gasoline Range Organics (GRO), Petroleum Volatile Organic Compounds (PVOCs by EPA method 8020), PAH and total lead (Pb).

At the CCA pressure treating facility, soil samples were collected from 0-2 and 2-4 feet deep for analysis of total copper by EPA method 6010, total chromium by EPA method 6010, and total arsenic by EPA method 7060.

5.3 Distribution of Contaminants in Soil

The purpose of the soil investigation was to define the extent and degree of the contaminants in soils that may be impacting surface water, ground water, or the atmosphere. This section presents a discussion of the distribution of organic and inorganic contaminants in site soils, and explores correlations between the wood treatment practices and contaminants detected. The soil sample chemical results are summarized in Tables 5-11. Soil sample analytical reports are included in Appendix F.

In summary, the highest concentrations of PAHs were detected in soil samples collected from borings placed adjacent to the dip tanks from the ground surface to depths of five to six feet, which is the approximate depth to bedrock at that location. There is a potential for PAHs to leach out of the unsaturated soils into the water table at this location. PAHs were not detected in soil samples collected outside the immediate vicinity of the PCP dip tanks at the lumber drying areas.

5.3.2.3 Diesel Range Organics

CWE's investigation of the former above ground fuel tanks location identified diesel range organics (DRO) contaminants in five of six soil samples submitted for laboratory analysis. DRO concentrations ranged from 230 to 46,000 mg/kg. DRO contamination was detected in one soil sample collected at a depth of five to seven feet (230 mg/kg) but the highest concentration of DRO was in a sample collected near the surface (0-2 feet, 46,000 mg/kg). DRO was not detected in soil samples collected by Delta at this location.

Diesel fuel was used as a carrier during the years of PCP treatment operations; therefore, soil samples analyzed for PCP and PAH were also analyzed for diesel range organics (DRO). DRO is not a specific contaminant, and so is not specifically regulated, but can be an indication of the presence of other semi-volatile organic contaminants. The results of DRO analysis are summarized in Table 7.

Quantifiable concentrations of DRO were reported in 24 soil samples collected from 19 locations. The highest reported concentrations of DRO were at the same locations (dip tank area) as the highest PAH and phenol concentrations.

5.3.3 Dioxin and Furan Contamination

The chemical formulation of PCP creates dioxins/furans as impurities in the product. Dioxins/furans are of interest because they are considered highly toxic. These non-volatile compounds are composed of two benzene rings connected by either one (dibenzofurans) or two (dibenzo-p-dioxins) oxygen bridges between the rings. Because dioxins and furans have the same molecular formula and similar structure, the compounds are grouped together. On the dioxin molecular framework there are eight positions where hydrogen atoms can be replaced by chlorine atoms, creating 75 possible configurations of polychlorinated dibenzo-p-dioxins. The isomers with the highest toxicity are those having 4 to 6 chlorine atoms and the 2,3,7,8 positions substituted with chlorine.

guidelines, reported analyte concentrations are considered valid if the level of contamination in the blank is less than five percent of the level detected in the sample.

Dioxin/furan contaminant concentrations in soils increased with congener group, (i.e., tetra<penta<hexa<hepta<ota). Concentrations were greatest in the PCP dipping and lumber drying areas.

Three sediment samples were collected from a pond located approximately 1,500 feet southwest of the site on County Concrete property. These samples were analyzed for dioxins/furans to determine the off-site distribution of dioxins/furans. Two of the samples were reported to contain 2.5 and 2.1 ppt total HeptaCDD. The third sample did not have detectable concentrations of HeptaCDD. The three samples were reported to contain 29.7, 23.4 and 18 ppt of total OctaCDD, but OctaCDD was detected at similar levels in the laboratory method blank during analysis, suggesting that the concentrations reported in the field samples could be false positives. These concentrations indicate that dioxin/furan contamination is not of particular concern in surface water sediments off-site.

In summary, dioxins/furans were detected in all soil samples collected south of Weisenberger Road, in the PCP treating area. High concentrations of dioxins/furans were detected in soil samples collected from borings placed adjacent to the dip tanks from the ground surface to depths of five to six feet, which is the approximate depth to bedrock at that location. There is a potential for dioxins/furans to leach out of the unsaturated soils into the water table at this location. High concentrations of dioxins/furans were also detected at the ground surface in the lumber drying area.

5.3.4 Inorganic Contamination

Arsenic is a common constituent in wood preservative formulations, therefore the WDNR requested that arsenic be analyzed in soil samples to determine if past wood treating practices had contaminated site soils with arsenic. Forty soil samples were analyzed for total arsenic content. These samples were collected from the PCP treating area and the pressure treating facility area.

Copper and chromium are constituents CCA (copper chromium arsenate) the wood treating chemical used in the pressure treating process, therefore, soil samples collected at the pressure treating facility were analyzed for copper and chromium in addition to arsenic.

feet). TCLP is a leaching test procedure. If the leachate concentration of these metals exceeds a regulatory action limit, the source material is regulated as a hazardous waste upon generation. If the concentration does not exceed the regulatory action limit the soil is regulated as a hazardous substance spill under Wisconsin Administrative Code Chapter NR 144.76. The TCLP results for copper and chromium from the ν two samples analyzed for TCLP did not contain hazardous concentrations of copper or chromium. Samples collected closer to the drip pad by CWE may have failed a TCLP analysis.

Total lead analysis was performed on soil samples collected from borings advanced at the former fuel tanks location (DSS-9 through DSS-12 and DMW-10). This analysis was performed to determine if leaded gasoline had leached into the soil in that area. Total lead concentrations for the eight samples analyzed ranged from 22 to 80 mg/kg (Table 9). These concentrations are within the ranges found in natural soils, as published by the EPA, but are above the average. Gasoline range organic compounds were not detected in these samples, suggesting that the reported lead concentrations are naturally occurring.

5.4 Soil Contamination Discussion

1

VOCs, semi-volatiles (PCP, PAH, DRO) and dioxins/furans are considered contaminants of concern in the PCP wood treating area. Specifically, soils adjacent to the dip tanks and the lumber drying areas are considered source areas for these contaminants in ground water. PCP concentrations were generally higher than concentrations of the other contaminants. The extent of VOC, PAH and DRO contamination is within the boundaries of PCP contamination, as depicted on Figure 20. Since any remedial action(s) for PCP in soil would also remediate VOC and PAH contamination, the extent of VOC and PAH contamination in soil are not depicted separately from PCP contamination.

At the dip tanks, soil contamination extends from the ground surface to the bedrock surface, a thickness of approximately six feet. Data generated by Miller Engineers has been used to assist in determining the approximate extent of PCP contamination in the soil around the dip tank and lumber drying areas (Figure 20).

The approximate extent of total TCDD/F contamination in soil, in excess of 1,000 ppt (1.0 ppb) is restricted to the stained soil area at the lumber drying area (Figure 21). The approximate extent of PentaCDD/F in excess of 1,000 ppt is shown on Figure 22. The approximate extent of HexaCDD/F, HeptaCDD/F and OctaCDD/F in excess of 1,000 ppt, are shown on Figures 23, 24, and 25, respectively. The data indicated

that dioxin/furan concentrations decreased greatly at a depth of two feet below the ground surface at most locations (e.g., DSS-11 0-0.5 ft and DSS-11 2 ft., Table 8), except at the dip tanks where high concentrations were detected throughout the unsaturated zone.

The locations of soil borings and monitoring wells advanced in the former fuel tanks location are shown on Figure 26. VOC and DRO contamination appears to be limited to the locations sampled by CWE. DRO concentrations were reported in excess of 200 ppm in all samples collected by CWE except for TB-10, 5-7 feet in which no DRO was detected. Total PVOC concentrations were highest in TB-12 (>10 ppm) which also had the highest reported DRO concentration (46,000 ppm). Organic contaminants were not detected during Delta's soil sampling program at the former above ground fuel tanks location.

Arsenic is not considered a contaminant of concern in the PCP treating area, or at the former fuel tanks location. However, CWE's investigation of the pressure treating facility identified elevated concentrations of arsenic, copper and chromium adjacent to the drip pad, as shown on Figures 27 and 28.

5.5 Ground Water Sampling

Three rounds of ground water sampling were conducted at the site to assess the horizontal and vertical distribution of contaminants in ground water. A total of 16 monitoring wells and six piezometers were sampled. In addition, four water supply wells both on-site (PW-1, PW-4) and downgradient (Krautkramer property) were sampled, and three surface water samples were collected downgradient from the site.

Sampling round no. 1 occurred in June, 1992. Twenty-two ground water samples were collected from 14 monitoring wells, three piezometers and three water supply wells (PW-2 and two Krautkramer wells). Three surface water samples were also collected from a pond downgradient of the site, on County Concrete property. Samples were analyzed for VOCs, semi-volatiles (PAH, Phenolics and DRO), and dissolved arsenic. The results of round 1 sampling showed that the vertical and downgradient extent of ground water contamination had not been defined. Subsequent to round 1, two additional monitoring wells (DMW-7 and DMW-8) and three additional piezometers (DPZ-4, DPZ-5, and DPZ-1a) were installed to define the horizontal and vertical extent of ground water contamination.

Sampling round no. 2 occurred during August, 1992. Twenty-five ground water samples were collected from the same wells sampled during round 1, plus the two additional monitoring wells and three additional

piezometers, and one water supply well (PW-2). Round 2 samples were analyzed for VOCs, semi-volatiles, and dissolved arsenic. In addition, 12 wells were sampled for dioxins/furans. Round 2 sampling results showed that the extent of dioxins/furans had not been established. Subsequent to round 2, monitoring wells were installed at the pressure treating facility (DMW-9) and at the former fuel tanks location (DMW-10).

Sampling round no. 3 occurred during January, 1993. Eight ground water samples were collected from six monitoring wells and one well supplying the Weisenberger residence (PW-1). Six select wells (PW-1, MW-2, MW-6, MW-10, DMW-5 and DMW-10) were sampled for dioxin/furan analysis to define the extent of dioxins/furans in ground water, one well (DMW-10) was sampled for petroleum volatile organic compounds (PVOCs), PAH and dissolved lead analyses, and one well (DMW-9) was sampled for dissolved copper, chromium and arsenic analyses. Round 2 sampling results showed that low level concentrations of dioxins/furans exist at the site.

5.6 Distribution of Contaminants in Ground Water

This section characterizes the contamination occurring within the saturated zone. The observed contamination in ground water is a result of the PCP solution handling and wood treating process.

Analytical methods used for ground water analyses were the same as the soil analytical methods. Ground water analytical data is summarized in Tables 10-13. Laboratory reports are included in Appendix G.

5.6.1 Volatile Organic Contamination

Table 10 summarizes the results of VOCs analysis of ground water samples. A total of 11 volatiles were detected in the 22 samples collected during round 1. A total of eight volatiles were detected in the 25 samples collected during rounds 2 and 3. Methylene chloride was reported in three round 1 samples at concentrations ranging from 1.1 to 6.9 mg/L, but was also present in the laboratory method blank at similar levels. Methylene chloride was not detected in any soil samples (Section 5.3.1) and is not considered to be present at the site.

Volatiles which were detected in both soil and ground water samples were: ethylbenzene, xylenes, 1,3,5 trimethylbenzene, 1,2,4 trimethylbenzene, n-butylbenzene, n-propylbenzene, and naphthalene. Volatiles that were detected in ground water and not in soil were: benzene, toluene and isopropylbenzene.

• Operable Unit 2 (all soils containing dioxin)

1. Excavation > incineration

2. Excavation > vaulting soils w/ dioxin

• Operable Unit 3 (contaminated ground water)

1. Phase separation > bioreactor > carbon polishing > surface discharge

2. Phase separation > UV/ozone oxidation > carbon polishing > surface discharge

3. Phase separation > bioreactor or UV/ozone > carbon polishing > nutrient addition > subsurface reinfiltration

4. Phase separation > carbon polishing > surface discharge

Due to extremely high capital costs, it is strongly recommended that pilot testing be completed before employing treatment processes such as incineration or thermal desorption of soils; and prior to implementing UV/ozone oxidation, bioremediation and nutrient addition for ground water.

9.0 REFERENCES

Attig, John W., and Muldoon, Maureen A., 1989, "Pleistocene Geology of Marathon County, Wisconsin": Wisconsin Geological and Natural History Survey Information Circular 65, 1989.

ATSDR, 1989b, Agency for Toxic Substances and Disease Registry, "Toxicological Profile for 1,2,7,8 Tetrachlorodibenzo-p-dioxin," June 1989, PB89-214522.

Bell, E.A., and Sherrill, M.G., 1974, "Water Availability in Central Wisconsin - An Area of Near-Surface Crystalline Rocks": U.S. Geological Survey Water Supply Paper 2202, 32 p.

Boulton, N.S., and Streltsova, T.D., 1975, "New Equations for Determining the Formation Constants of an Aquifer from Pumping Test Data", Water Resources Research, v. 11 pp 148-153.

Bouwer, H. and Rice, R.C. 1976, A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells, Water Resources Research, v. 12, pp 423-428.

Bouwer, H. 1989, The Bouwer and Rice Slug Test- An Update, Groundwater, v.27 pp.304-309.

Bouwer, H. 1989, Discussion of The Bouwer and Rice Slug Test- An Update, Groundwater, v.27 p.715.

Bultz, D.J., 1981, "The Precambrian-Cambrian Unconformity in Wisconsin": University of Wisconsin, Madison, M.S. Thesis, 63 p.

Central Wisconsin Engineers, Inc., 1992, "CCA Facility and Above Ground Tank Site Assessments for Weisenberger Tie & Lumber Company," Central Wisconsin Engineers, Inc., Rothschild, Wisconsin, Text May, 1992.

Clements, John, 1990, "Flying the Colors, Wisconsin Facts" 1990, Clements Research II, Inc., Dallas, Texas

Cooper, H.H. and Jacob, C.E. 1946, "A Generalized Graphic Method for Evaluating Formation Constants and Summarizing Well-Field History", Transactions American Geophysical Union, v. 27 pp 526-534.

Cummings, M.L., and Scrivner, J.V., 1980, "The Saprolite at the Precambrian-Cambrian Contact, Irvine Park, Chippewa Falls, Wisconsin": Wisconsin Academy of Science, Arts and Letters Transactions. p. 22-29.

Dawson, K.J. and Istok, J.D., 1991, "Aquifer Testing", Lewis Publishers, Chelsea, Michigan

Delta Environmental Consultants, Inc., 1992, "Preliminary Draft Feasibility Study, Ritari Post and Pole Site, Sebeka, Minnesota," Delta Environmental Consultants, Inc., St. Paul, Minnesota, Text December 19, 1992.

Fox, Robert D., Alperin, Edward S., and Helsel, Richard W., 1989, "Soil Decontamination by Low Temperature Thermal Separation", 1989 DOE Model Conference, Oak Ridge, Tennessee.

Freeze, R.A. and J.A. Cherry, 1979, "GROUNDWATER", Prentice Hall, Englewood Cliffs, New Jersey.

GeEx, 1990, "Report on the Geophysical Investigation at the Weisenberger Tie & Lumber Site in Marathon County, Wisconsin," GeEx, Slinger, Wisconsin, Text February, 1990.

GeEx, 1991, "Report on the Seismic Refraction Survey at the Weisenberger Tie & Lumber Site in Marathon, Wisconsin," GeEx, Slinger, Wisconsin, Text July, 1991.

Geosphere Midwest, Inc., "Geophysical Survey Results at the Weisenberger Tie & Lumber Company Facility Marathon City, Wisconsin," Geosphere Midwest, Inc., Brookyln Park, Minnesota, Text March, 1992.

Kendy, Eloise, and Bradbury, Kenneth R., 1988, "Hydrogeology of the Wisconsin River Valley in Marathon County, Wisconsin", Wisconsin Geological and Natural History Survey Information Circular 64.

Kruseman, G.P. and de Ridder, N.A. 1990, "Analysis and Evaluation of Pumping Test Data", International Institute for Land Reclamation and Improvement, Publication 47, Netherlands

LaBerge, Gene L., and Meyers, Paul E., 1983, "Precambrian Geology of Marathon County, Wisconsin", Wisconsin Geological and Natural History Survey, Information Circular Number 45.

Lohman, S.W. 1979, Ground-Water Hydraulics, USGS Professional Paper 708.

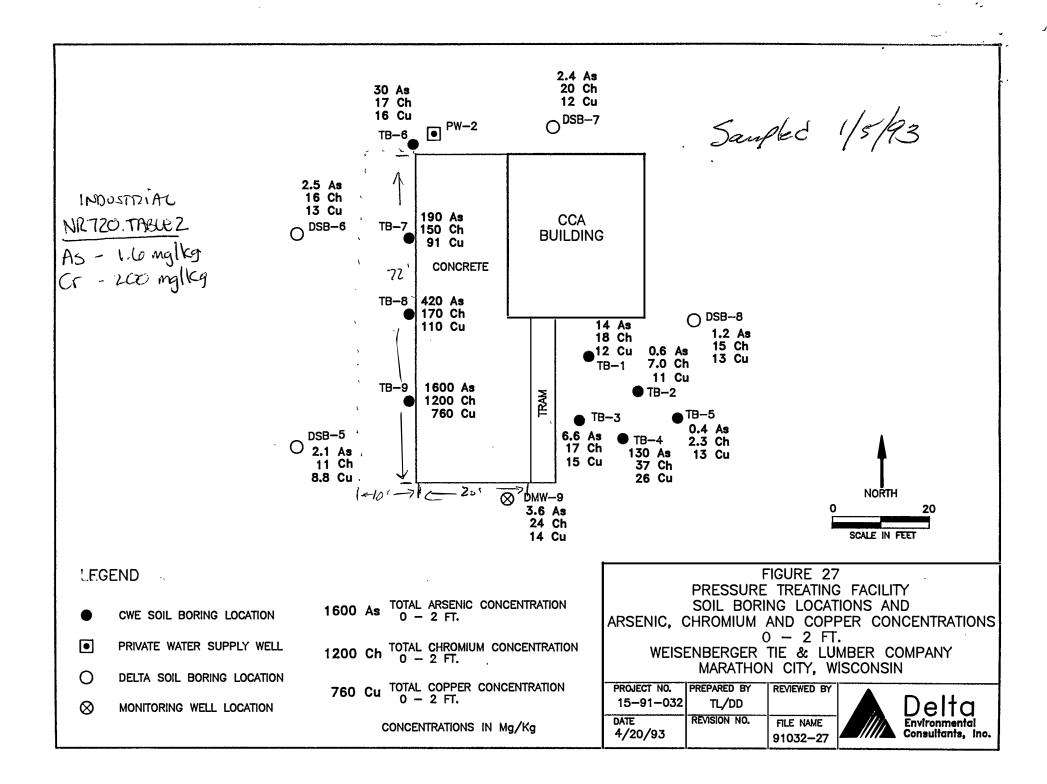
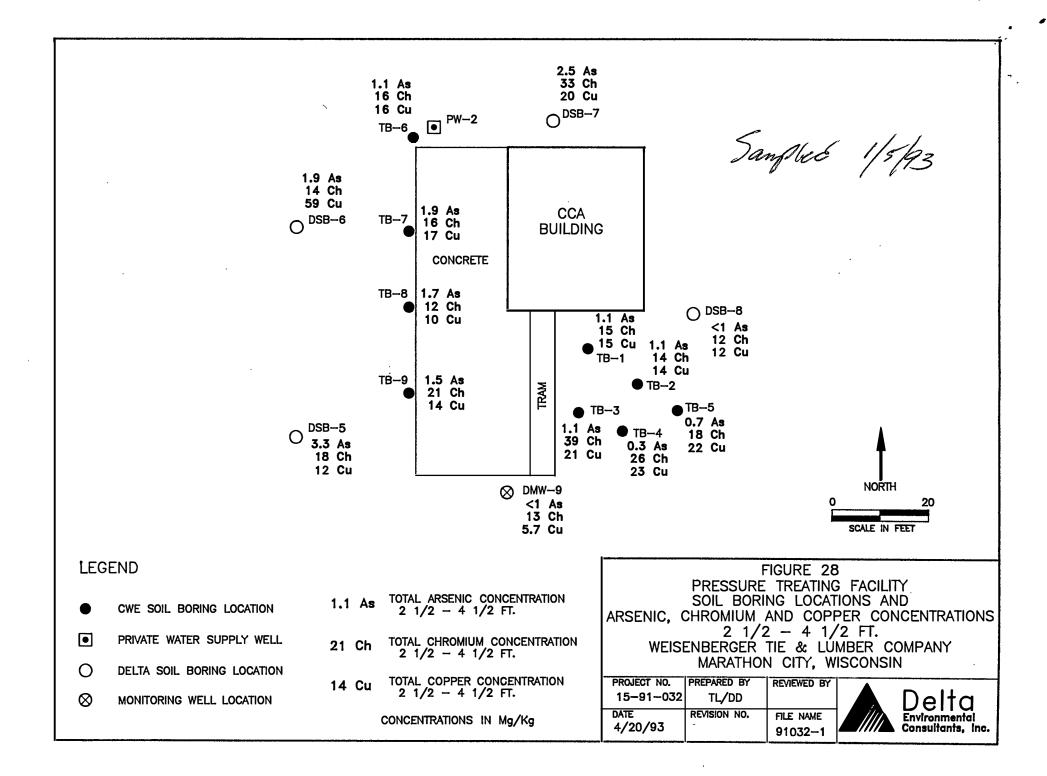
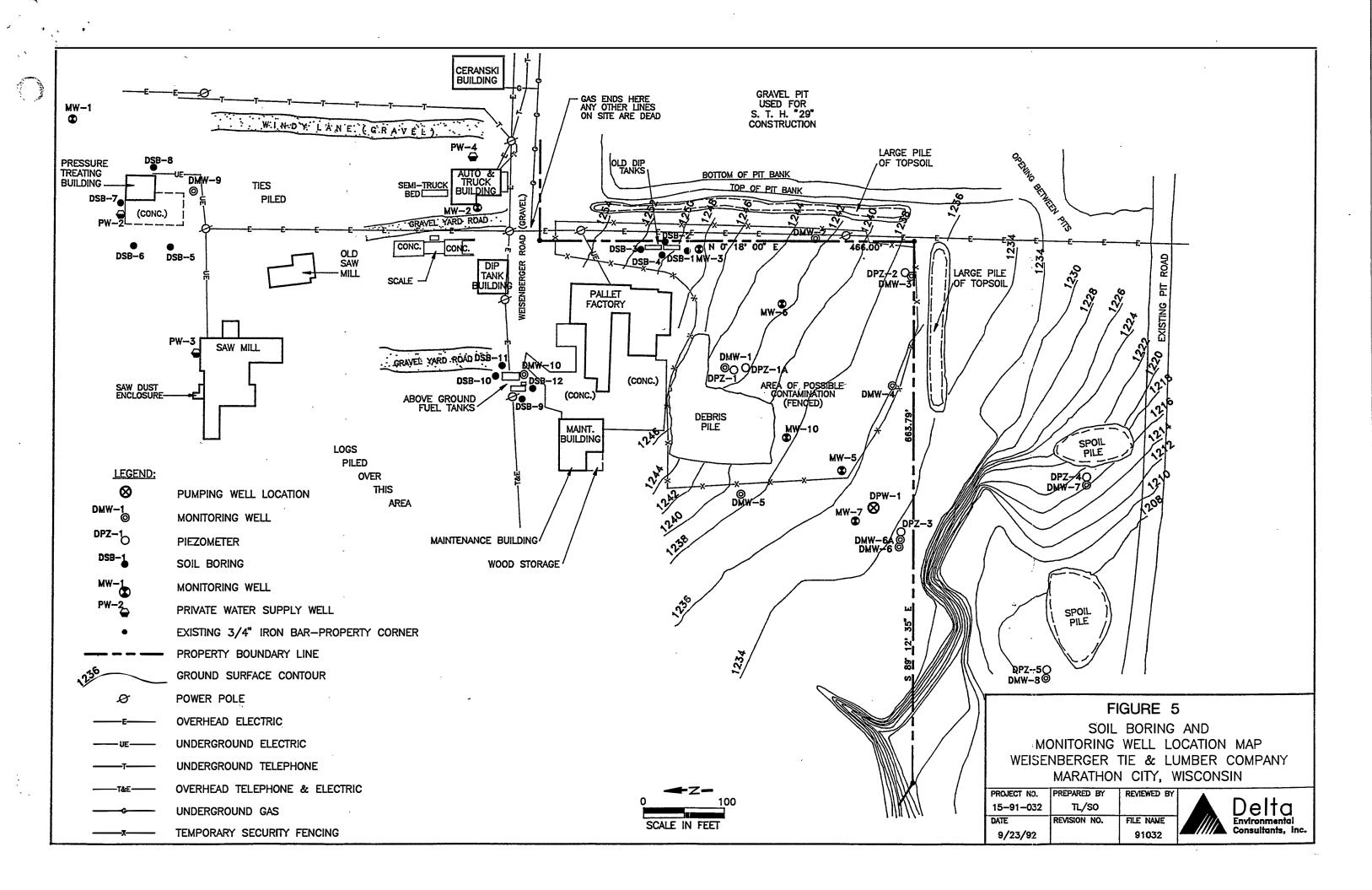
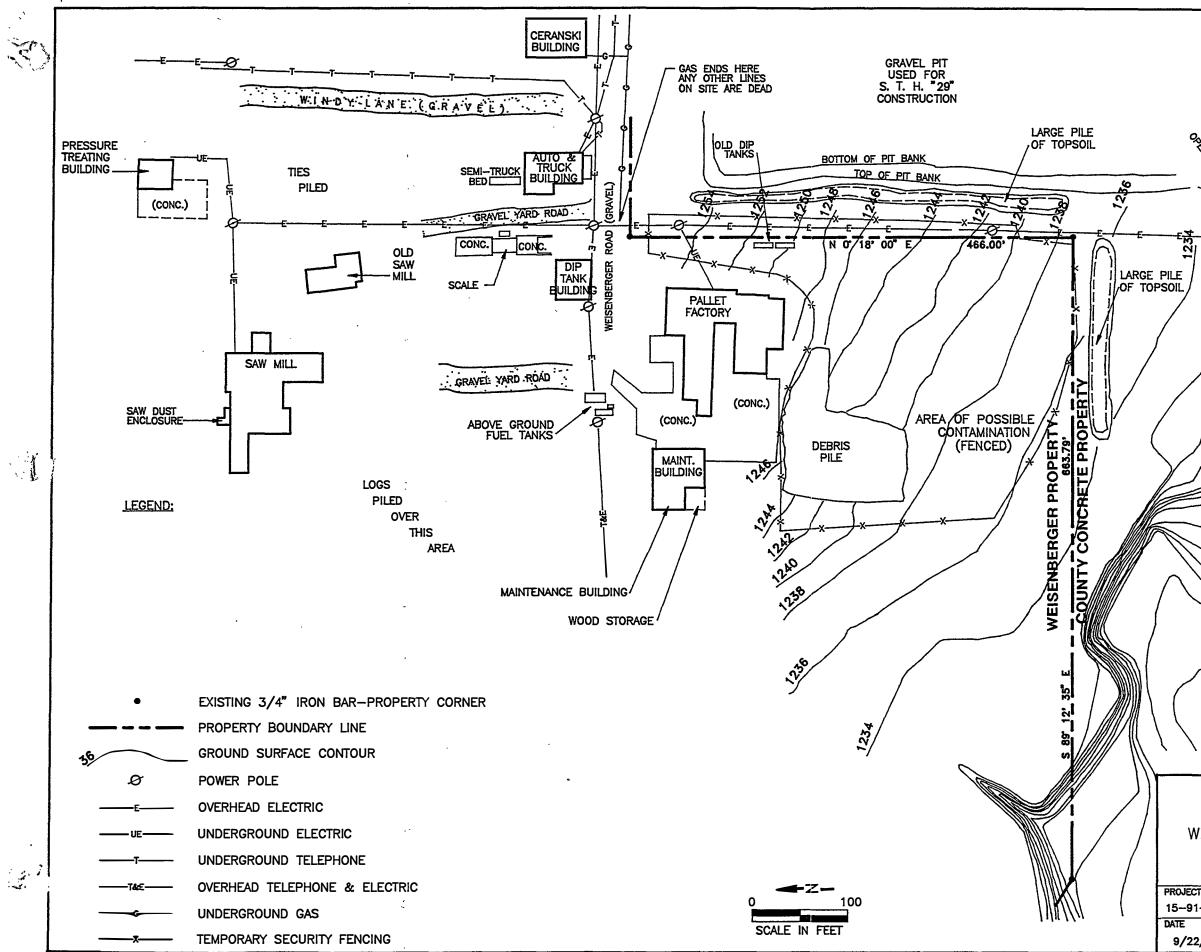

Mode, William N., and Attig, John W., 1988, "Pleistocene Geology of the Marathon County Area of Central Wisconsin", Wisconsin Geological and Natural History Survey, Geoscience Wisconsin Volume 12, July 1988. p. 25.

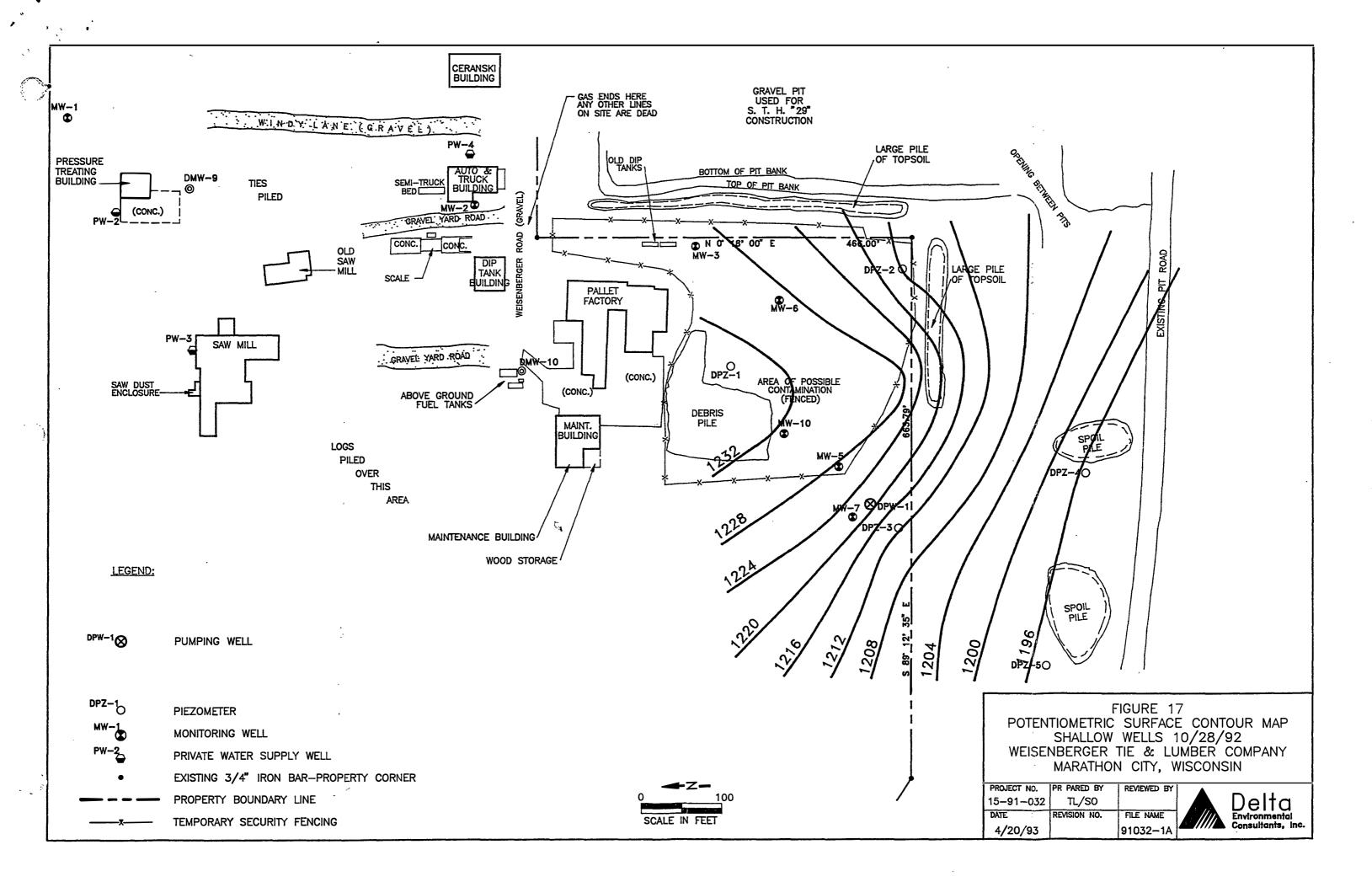
TABLE 9


Summary - Inorganics Analyses in Soil Samples Pressure Treating Facility & Fuel Tanks Locations Weisenberger Tie & Lumber Company Marathon City, Wisconsin Delta No. 15-91-032


Sample Location	Sample Depth	Total Arsenic	Total Copper	Total Chromium	Total Lead
	(ft)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
DMW-9	0-2	3.6	14	24	NA
	2-4	<0.67	5.7	13	NA
DMW-10	4-6	NA	NA	NA	55
	8-10	NA	NA	NA	36
DSB-5	0-2	2.1	8.8	11	NA
and the second	2-4	3.3	12	18	NA
DSB-6	0-2	2.5	13	16	NA
	2-4	1.9	59	14	NA
DSB-7	0-2	2.4	12	20	NA
	2-4	2.5	20	33	NA
DSB-8	0-2	1.2	13	15	NA
	2-4	<0.69	12	15	NA
DSB-9	6-8	NA	NA	NA	37
DSB-10	2-4	NA	NA	NA	80
	6-8	NA	NA	NA	41
DSB-11	4-6	NA	NA	NA	28
	6-8	NA	NA	NA	22
DSB-12	8-10	NA	NA	NA	[·] 33


NA- Sample Not Analyzed.

_ r


۶

`,

•

э.,

Spoil Spoil Pile
FIGURE 3 SITE MAP WEISENBERGER TIE & LUMBER COMPANY MARATHON CITY, WISCONSIN
CT NO. PREPARED BY REVIEWED BY TL/SO TL/SO TL/SO FILE NAME Environmental Consultants, Inc.
22/92 91032 Environmental Consultants, Inc.

CHAF		NISCO	NSIN				FIELD BORING LOG			_		יחו	
	MIL						Wiesenberger		Job N	l o.	2	101	
OCA	TION	<u>ا</u>	•				Marathon, WIElev		Boring	g No	b. <u>M</u>	W-1	
GRO	UND	While	drilling	;			Time after drilling	· · · · · · · · · · · · · · · · · · ·		s	tart .	1-25	-9
WA	TER	Before	casing	rem		I	Depth to water26.5'			1 1	lait	807	
		After o	asing r	remo	val	<u>. </u>	Depth to cave-in			<u> _</u>		L.E.	-
-		Blov San	es on opler	·	Ĩ		L	/Probe	- Pg	╽╻┝	Blos		
Sample No.	Mokture		6/12	- Ho	Total Blows	V	ISUAL FIELD CLASSIFICATION AND REMARKS	<u>140#</u> 30"	Unconfined Strength	Boulders	Casing Size	ž.	
Ser Ser	Mo	0/6	6/12	Ň	P.		Drop		- 55	â	Casin Size	Probe Size	
					┨	E	> Fracture/Water Zone		╡—	 -			
			1		1	F		·····		┝──┝			<u> </u>
						E	Gray GRANITE BEDROCK]				
		1	<u> </u> 1	<u> </u>	<u> </u>		55	55-		┝─┝			╄
						E			<u> </u>	<u></u> }-			-
						Ē			3				1
			1	1	 	F			리				- -
				┼──		E	-60 Е.О.В. @ 60.0'	. 60	<u> </u>				1
				1	1	乍.	Well Set @ 60.0'		1	-			- -
				4		F			1				
		<u> </u> 	<u> </u> 	1	<u>}</u>				<u> </u>	· -			╇
			+	┼──		-	65	65	_	┼─┼			╋
						Ē			3				
				-		E			╡				-
				╉──	┼──	E			3	╢──┤			- -
			+	┿	+-	1-	· 70	70 ·	_	┼──┼			┽╴
					1	Ē			3				
		ļ				E			-	- -			
						E			3-	· ·			- -
			+	1		=	• 75	75 ·		┼──┼			┽
					1_	Ē			3				
		 			4	F			╡	┦──┤			- -
				+	┨──	E			<u>–</u> –	┼─┤			- -
					1	F	• 80	80.					\uparrow
					1_	E]-
		-		-		E			<u> </u>	-			╀
		-	+			F	6 7			╿──┤			╉
						E	• 85	85	-				1
				1	1_	F			=				_
	 					E			3	-		-[╉
		1	1	1	1_	+		~	-	1	-	1	┽
						E	- 90	90 -	=				1
	 	-		-		E			=	-			_ -
		-		-	1-	Ŧ			=				╋
						E	••05	95 [.]	=				1
			-		4_	- =	•95	23.	=			·	Ŧ
			-{	-	-	E			<u> </u>	┽╾┥			-
				+	-	- =				-		· [╞
	1	-	-	-	1-	1=	100		=	-			- -

.

TRIANGLE LABORATORIES OF RTP, INC. PCDD/PCDF 2378X ANALYSIS (b)

2 Page 1 of 2 09/03/92

1 ; *

FILE NAME.: T924206 PROJECT: 21757A CLIENT PROJECT: n/a TLI ID: 59-58-9 COLLECTED.: n/a RECEIVED.:: 08/26/92 MATRIX: WATER EXT. SIZE.: 0.987 L ADJ. SIZE.: 0.987 L EXT. DATE.: 08/27/92 EXT. VOL: 20.00 ul SPIKE FILE: SPX2372S INJECT VOL: 2.0 ul		: RMT LABON : 09/01/92 : 03:18 : SA : T : DB-5 : 1708423 : TC56082 : 06/08/92 : T924195 : 08/31/92	CLIENT CO DILUTION. BLANK FIL % LIPID % SOLIDS. % MOISTUR ORIGIN CONTRACT. SAS NUMBER EPISODE	DE: RM1 : n/a E: T92 : n/a E: n/a E: n/a R: n/a	4197 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
NAME CONC(ppq) NUMBER 	DL EMPC	RATIO	RT 	FLAGS
2378-TCDD ND 12378-PeCDD ND 123478-HxCDD ND 123678-HxCDD ND 123789-HxCDD ND 1234678-HpCDD 28 OCDD 368	2. 4. 2. 3.	4 5 7	1.06 0.83	45:22 50:14	
78-TCDF EMP(12378-PeCDF ND 23478-PeCDF ND 123478-HxCDF ND 123678-HxCDF ND 234678-HxCDF 2 123789-HxCDF ND 1234678-HpCDF ND 1234678-HpCDF ND 1234678-HpCDF ND 1234678-HpCDF ND 1234678-HpCDF ND 1234789-HpCDF ND 0CDF EMP(2. 1. 3. 2. .7 3. 4.	9 1 2 5 5	1.35	40:09	S
TOTAL TCDDNDTOTAL PeCDDNDTOTAL HxCDDNDTOTAL HpCDD46	2. 2. 3.	2 . 4	1.07	•	
TOTAL TCDFEMPOTOTAL PeCDFNDTOTAL HxCDF2TOTAL HpCDF3	1. .6 1	2.0 9	1.35 1.12		, ,
Reviewed By:	KU 9/3/92	1	X237_RP1	4.01, L	ARS 5.00

TRIANGLE LABORATORIES OF RTP, INC. PCDD/PCDF 2378X ANALYSIS (b) QA/QC SUMMARY

Page 2 of 2 09/03/92

						,
LE NAME.: T92 PROJECT: 217 CLIENT PROJECT:	57A				TORIES, INC.	
TLI ID: 59- COLLECTED.: n/a RECEIVED.: 08/ MATRIX: WAT EXT. SIZE.: 0.9	58-9	ANALYS	SIS DATE.: SIS TIME.:	09/01/92 03:18	CLIENT CODE: DILUTION:	RMT01 n/a
RECEIVED: 087	26/92	ANALIS		SA	BLANK FILE	T924197
TYT STZE · 0 0	6K 97 T					
ADJ. SIZE.: 0.9	87 T.			1708423	& MOTSTURE	n/a
EXT. DATE .: 08/						
EXT. VOL. : 20.	00 11]	TCAT. T	ATE	06/08/92	CONTRACT	n/a
SPIKE FILE: SPX	23725	CONCAL	NAME:	T924195	SAS NUMBER:	n/a
SPIKE FILE: SPX INJECT VOL: 2.0	ul	CONCAL	DATE:	08/31/92	EPISODE:	n/a
=======================================	=======			================	===============================	
SURROGATE RECOVE		• •	•		=========================	
NAME	CONC (PI	pq)	% REC	. RATIO	RT	FLAGS
37Cl-TCDD 13Cl2-PeCDF 234 13Cl2-HxCDF 478 13Cl2-HxCDD 478 13Cl2-HpCDF 789	167		82.	2	30:10	•
13C12-PeCDF 234	2220		109	1.5	5 35:05	
13C12-HxCDF 478	1820		90.	0.5	1 39:12	· · · · · ·
13C12-HxCDD 478	2390		118	1.2	1 40:22	
13C12-HpCDF 789	1750	• •	86.	3 0.4	3 45:56	
ALTERNATE STANDA	RDS RECOVE	RY SUM	MARY (TYP)	E B)		
NAME	CONC (pr	pq)	% REC	. RATIO	RT	FLAGS
13C12-HxCDF 789 13C12-HxCDF 234	1860	с 1	91.	7 0.5	1 41:17	
13C12-HxCDF 234	1830		90.	1 0.5	40:10	· · · · · · · · · · · · · · · · · · ·
INTERNAL STANDARI	DS RECOVER	Y SUMM	ARY		· · · · · ·	с. С.
NAME	CONC (pp	====== (p	% REC	. RATIO	RT	FLAGS
13C12-2378-TCDF	1460		72.2	2 0.7	5 29:20	
13C12-2378-TCDD	1600		78.9			· ········
13C12-PeCDF 123	2170	1 a	107	1.5		
13C12-PeCDD 123	2860		141	1.4		
13C12-HxCDF 678	1560	r	77.			` .
13C12-HxCDD 678	1940	,	95.			
13C12-HpCDF 678	1680		82.8			-
13C12-HpCDD 678 13C12-OCDD	1930 4030		95.1 99.9			
	•				/ 50.13	
RECOVERY STANDARD				.=========	=========================	
NAME				RATIO	RT	FLAGS
13C12-1234-TCDD				0:79	9 29:55	
13C12-HxCDD 789		ŕ		1.2		, ,
ے سے سے سے سے کا سے خلیا کہ سے کا کا کا خلیا کہ ا						•••••••••••••••••••••••••••••••••••••••
Reviewed By:		KU	9/3/92		X237_RPT 4.01	, LARS 5.

SEMIVOLAI Repo	RMT SAMPLE NO.		
_	97801		
Client Name: DELTA EN	IVIRONMENTAL Proje	ect # : 91467.00	++
Matrix: (soil/water) Sample wt/vol: Level: (low/med) GPC Cleanup: (Y/N) Moisture: Column: (pack/cap)	WATER 1000 (g/ml) ML LOW N CAP	Field Sample ID: Lab File ID: Sampling Date: Date Extracted: Analysis Date: Dilution Factor:	08-28-92 08-29-92
CAS NO.	COMPOUND	CONCENTRATION UNI	
CAD NO.	COLLOCAD		I_EQL Code
108-95-2Ph	enol		10. U
95-57-82-	Chlorophenol		10. U
	Methylphenol		10. U
	Methylphenol		10. U
	Nitrophenol		10. U
	4-Dimethylphenol		10. U
120-83-22,	4-Dichlorophenol	1	10. U
91-20-3Na	phthalene	1	10. U
59-50-74-	Chloro-3-methylphen	ol	10. IU
	4,6-Trichlorophenol		10. U
95-95-42,	4,5-Trichlorophenol	I	50. U
	enaphthylene		10. U
	enaphthene		10. U
	4-Dinitrophenol		50.[U
	Nitrophenol		50. U
	uorene		10.U
	6-Dinitro-2-methylp		50. U
	ntachlorophenol		50.IU I
85-01-8Ph	enanthrene		10. U
	thracene		10. U
	uoranthene	!	10. U
129-00-0Py		!	10. U
	nzo(a)anthracene		10. U
218-01-9Ch		!	10. U
	nzo(b)fluoranthene_		10. U
	nzo(k)fluoranthene_		10. U
50-32-8Be		i	10. U 10. U
	deno(1,2,3-cd)pyren benz(a,h)anthracene		10. U
	nzo(g,h,i)perylene_		10. U
Be			

.

JOSEPH J. KUBALE ORGANIC SUPERVISOR

.

Page 1 of 1

3

*.

1

	f Wisca ment of		al Reso	Route To: urces Solid Waste Emergency Response Wastewater		ater Res	ind Tar sources	;	F	Form 4	400-12			NFOR		7
	y/Projec			· · · · · · · · · · · · · · · · · · ·		Licens	e/Perm	nit/Mor	nitorin	g Num	ber	Boring		er		
				Lumber ne and name of crew chief)		 Date D		Starter	<u> </u>	Date I). Drilling	Comp	eted	D M W Drillin		h
		• •		ueller			1_0	<u>8/</u>	93		$\frac{1}{1}$	$\frac{8}{2}/\frac{1}{2}$	9 3	Air	-	
				Unique Well Na. Common Well	Name					F	n D e Eleva			Boreho		
Disk	atiny	wen.			Traffic	·		Feet M			0.07			6		
Boring State P	Locatio	on		N,	ESICI	NLL	at			Local	Grid La		·	licable		
		NE	<u> </u>	f Section _ / , T 28 N, R _	-						F	eet 🗖	N S		Feet	
County	1				DNR	County	Code	Civil '	Town/	City/ o	r Villa	ge				
	_	Mara	atho	n 	3						, 			on,	WI	-
Sam	ple	ıts	eet								Ē	Soil	Prope	erties		$\frac{1}{2}$
۲.	ed (ir	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin Fo			S	ы	ε		Standard Penetration	t a				
Number	8th over	≷	Æ	Each Major Unit	~		SC	Graphic Log	Well Diagram	PID/FID	andâ	Moisture Content	Liquid	Plastic Limit	200	
Ň	Length Recovered (in)	Bio	De				ñ	Log al	Šö	I d	Pe	ŜS		Line P	٩	
1	1.0	36	EI	Weathered BEDROCK								м				Í
-		00	E_5	Weddhered DEDhook												
			EI										[
			E ₁ d	~												
			E]					}		ł						
			E-15				ι.									
			E					ļ		1		.				
			E-20										[
			E													
			-25						1							
			E													
			E-30					·								
			E	Hard ROCK		•							[
			E 35							1						
			Ead				T	1	1							
			ΕĨ	EOB 38.0'											İ	
		-	-45]							1		
			EI					ļ							[
			E-5d													
			Εl		÷					1	1			1		
			F-I			~				1		1				
			El													
				AL		1	<u> </u>	1	<u> </u>	Ļ	<u> </u>	L	<u> </u>	1	<u> </u>	1
I her Signa			1 0	the information on this form is	true	Firm	orrect	<u>to</u> th	ie be	st of	<u>my kr</u>	nowled	oge.			_
,	ler		hall	acker		1	WT	DE	nviı	conm	enta	al D	ril	ling		

both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

Description of Manual Baseyrood	id Waste 🛛 Haz. Wa & Repair 🗖 Unde			MONITORING W Form 4400-113A		JCTION ev. 4-90
Facility/Project Name Weisenberger Lumber	Local Grid Location	of Well		Well Name DMW-9		
Facility License, Permit or Monitoring Number	Grid Origin Location	1		Wis. Unique Well Numb		Number
	St. Plane	ft. N,		Date Well Installed	1/08/93	<u> </u>
Distance Well Is From Waste/Source Boundary ft.		f Sec, T		Well Installed By: (Pers Mike Mueller		y Firm)
Is Well A Point of Enforcement Std. Application?	Location of Well Re u Upgradient d Downgradien	s 🗖 Sidegi	radient	WID Environme	ntal Drill	ling
	L. MSL		1. Cap and lock?		🖄 Yස	□ No
() = 1	1. MSL		2. Protective cov	••		4 0 .
		H	a. Inside diame	eter:		<u>4</u> .0in. 7.0ft.
C. Land surface elevation $\frac{1270.076}{12}$			b. Length: c. Material:			<u>7</u> .011. 12.04
D. Surface seal, bottom ft. MSL or _4	. <u>0</u> ft.				Óther	
12. USCS classification of soil near screen:	A		d. Additional p	protection?	 🛛 Yes	
GP GM GC GW SW SW S SM SC ML MH CL G			•	nibe:	Bentonite	D21 30
Bedrock 🗆			3. Surface seal:		Concrete	
13. Sieve analysis attached? Yes I	· ·				Other	
14. Drilling method used: Rotary			4. Material betwe	een well casing and protect	••	
Hollow Stem Auger				•	Bentonite	
Other 🛛 .				Am	ular space seal	
15. Drilling fluid used: Water 02 Air 🗹	01		5. Annular space	ceal: a Gran	Other nular Bentonite	
Drilling Mud 🗖 03 None 🗖	99		-	al mud weight Bentor		
			-	al mud weight B	•	
16. Drilling additives used? Yes 1	No		d% Ben	ntonite Bentonit	e-cement grout	
Describe				Ft ³ volume added for an		
17. Source of water (attach analysis):			f. How install		Tremie	
······································				1	remie pumped Gravity	.17
			6. Bentonite seal		tonite granules	
E. Bentonite seal, top ft. MSL or	0 6 ft.		,	\Box 3/8 in. \Box 1/2 in. Be	•	
			C		Other	
F. Fine sand, top ft. MSL or _1	<u>.50</u> n.			erial: Manufacturer, pro er #7	xluct name & me	esh size
G. Filter pack, top ft. MSL or _]	<u>50</u> ft.		b. Volume ad		ft ³	
H. Screen joint, top ft, MSL or _]	ZQ ft.			uerial: Manufacturer, pro ican Materials		nesh size
I. Well bottom ft. MSL or _ 3	2 0 ft.		b. Volume ad9. Well casing:	Ided Flush ihreaded PV	_ft ³ C schedule 40	1 21 23
	12.5			Flush threaded PV		
J. Filter pack, bottom ft. MSL or _ 3	8.0. ft.		10 6		Other	
K. Borehole, bottom ft. MSL or _ 3	8 <u>0</u> ft.	Ì	 Screen materi a. Screen typ 	e:	Factory cut Continuous slot	-
L. Borehole, diameter 60 in.					Other	
M. O.D. well casing 237 in.			b. Manufactur c. Slot size:		0.	010_in.
N. I.D. well casing 201 in.		\	d. Slotted len 11. Backfill mater	igth: rial (below filter pack):	None	15.0ft. 14
L Louis La constitución de la del de la constitución de la del	form in the set		o boot of	knowladae	Other	<u>u</u>
I hereby certify that the information on thi	<u>Firm</u>		e desi or my	knowledge.		

WID Environmental Drilling Please complete both sides of this form and return to the appropriate DNR office listed at the top of this form as required by chs. 144, 147 and 160, Wis. Stats., and ch. NR 141, Wis. Ad. Code. In accordance with ch.144, Wis Stats., failure to file this form may result in a forfeiture of not less than \$10, nor more than \$5000 for each day of violation. In accordance with ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. NOTE: Shaded areas are for DNR use only. See instructions for more information including where the completed form should be sent.

CLIENT: DELTA ENV. CONSULTANTS, INC. SAMPLE #: 15175 **REPORT DATE: 02/09/93** PROJECT #: 91467.00 COLLECTION DATE: 01/20/93 WORK ORDER #: 930121-9146700 STATION ID: DMW-9 WI DNR LAB ID: 113138520 SAMPLE COLLECTOR: TAL

INORGANIC ANALYSIS REPORT

PARAMETER	RESULT	UNITS
	2	
Arsenic, dissolved Chromium, dissolved Copper, dissolved	<3.0 <2.0 3.1	ug/L ug/L ug/L

2/9/93

Approval Signature

÷

3

CLIENT: DELTA SAMPLE #: 14470 PROJECT #: 91467.00 WORK ORDER #: 930108-9146700 WI DNR LAB ID: 113138520

s 🕴

r

÷.,

REPORT DATE: 01/22/93 COLLECTION DATE: 01/05/93 STATION ID: DSB-5 0-2' SAMPLE COLLECTOR: TAL

INORGANIC ANALYSIS REPORT

PARAMETER	RESULT =====	UNITS =====
Solids, total	90.7	%
Arsenic Chromium Copper	2.1 11 8.8	mg/kg dry wt. mg/kg dry wt. mg/kg dry wt.

1125/93 M. M: Clintock Approval Signature

CLIENT: DELTA SAMPLE #: 14471 PROJECT #: 91467.00 WORK ORDER #: 930108-9146700 WI DNR LAB ID: 113138520

REPORT DATE: 01/22/93 COLLECTION DATE: 01/05/93 STATION ID: DSB-5 2-4' SAMPLE COLLECTOR: TAL ţ,

3

٤,

τ

INORGANIC ANALYSIS REPORT

PARAMETER	RESULT =====	UNITS =====
Solids, total	88.6	%
Arsenic Chromium Copper	3.3 18 12	mg/kg dry wt. mg/kg dry wt. mg/kg dry wt.

||as|93. M: Clintock nera

1

Approval Signature

. 5

CLIENT: DELTA SAMPLE #: 14472 PROJECT #: 91467.00 WORK ORDER #: 930108-9146700 WI DNR LAB ID: 113138520

£ ₹r

c

r.

: .. _ --

`;

REPORT DATE: 01/22/93 COLLECTION DATE: 01/05/93 STATION ID: DSB-6 0-2' SAMPLE COLLECTOR: TAL

10001001

INORGANIC ANALYSIS REPORT

PARAMETER	RESULT	UNITS
Solids, total	90.6	%
Arsenic Chromium Copper	2.5 16 13	mg/kg dry wt. mg/kg dry wt. mg/kg dry wt.

1/25/93 rera M. M= Centrele Approval Signature

С

CLIENT: DELTA SAMPLE #: 14473 PROJECT #: 91467.00 WORK ORDER #: 930108-9146700 WI DNR LAB ID: 113138520

REPORT DATE: 01/22/93 COLLECTION DATE: 01/05/93 STATION ID: DSB-6 2-4' SAMPLE COLLECTOR: TAL ъ

- 🔛

INORGANIC ANALYSIS REPORT

PARAMETER	RESULT	UNITS
Solids, total	87.9	%
Arsenic Chromium Copper	1.9 14 59	mg/kg dry wt. mg/kg dry wt. mg/kg dry wt.

1/25/93 M. Mª Clintocke Approval Signature

CLIENT: DELTA SAMPLE #: 14474 PROJECT #: 91467.00 WORK ORDER #: 930108-9146700 WI DNR LAB ID: 113138520

· ·

·.

s <u>}</u>1

٢

REPORT DATE: 01/22/93 COLLECTION DATE: 01/05/93 STATION ID: DSB-7 0-2' SAMPLE COLLECTOR: TAL

INORGANIC ANALYSIS REPORT

PARAMETER =======	RESULT	UNITS		
Solids, total	86.0	%		
Arsenic Chromium Copper	2.4 20 12	mg/kg dry wt. mg/kg dry wt. mg/kg dry wt.		

125193 M. ME Clusterk rin Approval Signature

CLIENT: DELTA SAMPLE #: 14475 PROJECT #: 91467.00 WORK ORDER #: 930108-9146700 WI DNR LAB ID: 113138520

REPORT DATE: 01/22/93 COLLECTION DATE: 01/05/93 STATION ID: DSB-7 2-4' SAMPLE COLLECTOR: TAL 2

19

INORGANIC ANALYSIS REPORT

PARAMETER	RESULT =====	UNITS =====		
Solids, total	87.0	%		
Arsenic Chromium Copper	2.5 33 20	mg/kg dry wt. mg/kg dry wt. mg/kg dry wt.		

1125193 Mª Clintork

Approval Signature

`...

CLIENT: DELTA SAMPLE #: 14476 PROJECT #: 91467.00 WORK ORDER #: 930108-9146700 WI DNR LAB ID: 113138520

₹4 × - €

REPORT DATE: 01/22/93 COLLECTION DATE: 01/05/93 STATION ID: DSB-8 0-2' SAMPLE COLLECTOR: TAL

INORGANIC ANALYSIS REPORT

PARAMETER	RESULT	UNITS
Solids, total	87.2	%
Arsenic Chromium Copper	1.2 15 13	mg/kg dry wt. mg/kg dry wt. mg/kg dry wt.

M. ME Clintoch 1/25/93

.

Approval Signature

a - - -

٠<u>.</u>.

CLIENT: DELTA SAMPLE #: 14477 PROJECT #: 91467.00 WORK ORDER #: 930108-9146700 WI DNR LAB ID: 113138520

.

e ~ "

`,

REPORT DATE: 01/22/93 COLLECTION DATE: 01/05/93 STATION ID: DSB-8 2-4' SAMPLE COLLECTOR: TAL

~ *

- - -

.

ំ១ ខេស្

INORGANIC ANALYSIS REPORT

.

PARAMETER	RESULT	UNITS		
Solids, total	86.8	%		
Arsenic Chromium Copper	<0.69 15 12	mg/kg dry wt. mg/kg dry wt. mg/kg dry wt.		

1/25/93 icia M. McClintock Approval Signature

CLIENT: DELTA SAMPLE #: 14726 PROJECT #: 91467.00 WORK ORDER #: 930112-9146700 WI DNR LAB ID: 113138520

.

200

REPORT DATE: 01/25/93 COLLECTION DATE: 01/08/93 STATION ID: DMW-9 0-2' SAMPLE COLLECTOR: TAL

٠.

NI . (COOLOOT AAAA

INORGANIC ANALYSIS REPORT

PARAMETER	RESULT	UNITS
Solids, total	87.1	%
Arsenic Chromium Copper	3.6 24 14	mg/kg dry wt. mg/kg dry wt. mg/kg dry wt.

1/25/93 Nº Clintock

. . . .

Approval Signature

- - -

5

CLIENT: DELTA SAMPLE #: 14727 PROJECT #: 91467.00 WORK ORDER #: 930112-9146700 WI DNR LAB ID: 113138520

REPORT DATE: 01/25/93 COLLECTION DATE: 01/08/93 STATION ID: DMW-9 2-4' SAMPLE COLLECTOR: TAL s ...b

INORGANIC ANALYSIS REPORT

PARAMETER =======	RESULT	UNITS
Solids, total	89.7	%
Arsenic Chromium Copper	<0.67 13 5.7	mg/kg dry wt. mg/kg dry ut. mg/kg dry wt.

1/25/93 M= Clustock

Approval Signature

٠,

CLIENT: DELTA SAMPLE #: 15757 PROJECT #: 91467.00 WORK ORDER #: 930203-9146700 WI DNR LAB ID: 113138520

< · ·

r 21 k - 4

REPORT DATE: 02/15/93 COLLECTION DATE: 01/08/93 STATION ID: DMW-9 0-2' SAMPLE COLLECTOR: TAL

TOXICITY CHARACTERISTIC LEACHING PROCEDURE METALS (mg/L)

ہ: PARAMETER =======	MTD	PQL	SPIKE RECOVERY	THRESHOLD LIMIT =====	RESULT	ADJUSTED RESULT
Arsenic	7060	0.0060	MSA 0.9987	5.0	<0.0060	<0.0060

2/15/93

Approval Signature

• •

Methods from USEPA SW846, 3rd Edition. PQL : practical quantitation limit MSA : Method of Standard Addition, acceptable correlation coefficient value (r) greater than 0.995. ADJUSTED RESULT : adjusted for % recovery (method 1311.)

CLIENT: DELTA SAMPLE #: 15757 PROJECT #: 91467.00 WORK ORDER #: 930203-9146700 WI DNR LAB ID: 113138520

REPORT DATE: 02/15/93 COLLECTION DATE: 01/08/93 STATION ID: DMW-9 0-2' SAMPLE COLLECTOR: TAL

TOXICITY CHARACTERISTIC LEACHING PROCEDURE

RESULT	UNITS
100.0 8.0 1.5 1	gm su su
4.9 4.9 02/09/93	su su
	====== 100.0 8.0 1.5 1 4.9 4.9

2/15 a

Approval Signature

·

- - - - - -

METHOD 1311, AS PUBLISHED IN FED. REGISTER; JUNE 29,1990; 40 CFR PARTS 261, 264, 265, 268, 271, AND 302.

CLIENT: DELTA SAMPLE #: 15758 PROJECT #: 91467.00 WORK ORDER #: 930203-9146700 WI DNR LAB ID: 113138520

· · ·

REPORT DATE: 02/15/93 COLLECTION DATE: 01/05/93 STATION ID: DSB-7 2-4' SAMPLE COLLECTOR: TAL

TOXICITY CHARACTERISTIC LEACHING PROCEDURE METALS (mg/L)

؛ PARAMETER =======	MTD	PQL	SPIKE RECOVERY ======	THRESHOL LIMIT =====	D RESULT =====	ADJUSTED RESULT =====
Chromium	6010	0.010	98%	5.0	<0.010	<0.010

2/15

Approval Signature

· .

Methods from USEPA SW846, 3rd Edition. PQL : practical quantitation limit MSA : Method of Standard Addition, acceptable correlation coefficient value (r) greater than 0.995. ADJUSTED RESULT : adjusted for % recovery (method 1311.)

....

CLIENT: DELTA SAMPLE #: 15758 PROJECT #: 91467.00 WORK ORDER #: 930203-9146700 WI DNR LAB ID: 113138520

REPORT DATE: 02/15/93 COLLECTION DATE: 01/05/93 STATION ID: DSB-7 2-4' SAMPLE COLLECTOR: TAL

TOXICITY CHARACTERISTIC LEACHING PROCEDURE

EXTRACTION 1311 PARAMETER =======	RESULT	UNITS
Sample weight, total pH, after 5 minutes pH, after heating Extraction solution	100.0 7.6 1.4 1	gm su su
Final pH Extraction pH Leaching date	4.8 4.9 02/09/93	su su

On 2/15

Approval Signature

`,·

METHOD 1311, AS PUBLISHED IN FED. REGISTER; JUNE 29,1990; 40 CFR PARTS 261, 264, 265, 268, 271, AND 302.

APPENDIX I

.

WELL CONSTRUCTION REPORT

										St.			
≁ં પ	W VISCON	ell Cor VSIN 1	nstruction I UNIQUE W	Report <i>FELL</i>	For NUMB	ER	AB	419		Departmen	te of Wiscons nt of Natu al Vater Supply	Ronoman 7	
P	operty Own	ner Ru	Ti We	isenh	Teleph	one Numb	er 43	3-2049	TAR 10		Box 7921 dison, WI 537	-	s.
M	ailing Addı		Acres 6 Sugar	· · · · · · · · · · · · · · · · · · ·		فنمني من		nger. Rob	1. Location		se type or print	using a black pe	on 1
Ċ	ty	:/:137/		() /	10.0	State	3	Zip Code	- 🗆 Town	City	🛾 Village 🔤	Fire # (if availa	able}
	ounty	ara	County Well Local	tion	<u>.</u> 	い/ Well Com	5	444.3	Grid or Str	PAFAFA eet Address or	Road Name an	d Number (if ava	ailable
	Mara	37	Permit No. W			Date M		$L_1 \frac{88}{YY}$	£		. <u></u>	· ·	
	Well C	Constructo	or (Business Nam		Licen	se # 2.	Mark	well location	Subdivisi	on Name	Lo \	ot# Block	:#
	Addre		Well (<u>]+1/1.1</u>	-= 3:	55		rect 40-acre l of section.	Gov't Lot	t#or	SE 1/4 of _	NE 1/4 of	
			6 ety	12			٦	N.	Section 3. Well T				<u>w</u>
	City	1	a cty	State	ZipC					placement	New Reconst:	ruction/Rehabi	ilitation
	14.0	1501	pda 12	W1	544	<u>/~</u> "	•				ructed in 19		
							' <u>:</u>	S S				ced, or rehabil	itated
4 Well a	orves	# of bo	omes and/or SA	wM	// Hig	h Capacity	Well?	□ Yes Z. Xo	well?	ap la	Made	Wate	منح
			rch, school, indu			h Capacity I	Property	? 🗆 Yes ट्रेस्ट	†			ed D Other_	
			Point of Propert					yout and Surr ard Hydrant	oundings?	C Yes [
			in? 🛛 Yes 🛛 K Vell To Nearest:	No	9 10		pousiti	ard frydraint			aved Animal	-	
25	1. Landi							rain to Cleary	-		nimal Y rd o		
400	3. Septi	ing Overh c or Holdi			12 13			rain to Sewer n	-		arn Gutter		
		-	ption Unit					Plastic 🗆 Othe				∃ Gravity ∃ Pre	
	5. Nonc 6. Eurie		g Pit Heating Oil Tank		14		-	r □ Gravity □ Plastic □ Otl				Plastic I Othe Storage	
	7. Burie	d Petrole	um Tank		15	. Coilecte	or Sew	er		C	ther NR 112	Waste Source	
			nming Pool		16			ımp					
	ole Dimens From	sions To	Method of cons drillhole. (If ap				9.	Туре, Са		eology ving, Color, I	Hardness, Etc	From (ft.)	To (ít.)
<u>Dia. (in.)</u>	(ft.)	(ft.)	🗌 1. Rotary -		irculation		-6-)	<u> </u>	· . · · · · · · · · · · · · · · · · · ·		0
Ş	surface	40	2. Rotary -			1			, lay			surface	8
6	40	145	4. Reverse				DQ-	De	COMPO	ased		2	30
			5. Cable-to				Q-		Ghan	, te		30	14:
			6. Temp. C		ing Kes 🔲 1								
								, ,	**************************************	· · ·			-
7.		Coolinu	Liner, Screen										
		aterial, W	eight, Specificat thod of Assembl		From	To			÷ .		•		
<u>Dia. (in.)</u>	1		,	<u>Iy</u>	(ft.)	(ft.)	2002 2002						
6	57-	St.	ee/		surface	40							
	2.80	WALC	ASTM-	A120	153								
		-	·		1		10. S	Static Water I	Level		12. Well Is:	-	nyina merendeki de
			Stee			<u> </u> 	3	O_ ft. below	ground surf	face	18 :	n. Below	Grade
			1 Jou	int-	<u> </u>	<u> </u>	1	Pump Test			Developed?	Yes	No No
Dia. (in.)	screen t	ype and r	naterial		From	То		npi g Level 🖊			Disinfected? Capped?	Yes Yes	□ No □ No
8.	ļ		or Other Sealing	Material	1	<u>)</u> #	<u> </u>	nping at			•		
Metho	d Kind of S	<u>Fum</u> ealing Ma		From (ft.)	То (ft.)	Sacks Cement	1	Were all unuse Yes	ed, noncomp No I	lying, or uns f no, explain	afe wells prop <u>S</u> t, //	erly filled with	h sælant
					2		4	Signature of W	Vell Constru	ictor	~	Date Signed	d
$_D$	hill	Cc7	tings +	surface			Sign	Anal ature of Drill	v	or or	BH	3/8/82 Dațe Signed	d
				7	40	5		Brian	//		BH	3/8/8	ĴĴ
Make ad	ditional co	omments	on reverse side a	about geo	logy, etc.		DN	RACINES		WELL	CONSTRUC	TION REPC Rev.	