P.F. Fink, Inc.

c/o Attorney Joseph A. Hoida 403 South Jefferson Street Green Bay, Wisconsin 54301

> APR 2 1 2000 LMD SOLID WASTE

Additional Site Investigation and Remedial Action
Recommendations Report

One Hour Martinizing

1233 South Military Avenue
Green Bay, Wisconsin

24871XF

April 2000

April 20, 2000

Ms. Kristin Nell Wisconsin Department of Natural Resources 1125 North Military Avenue P.O. Box 10448 Green Bay, Wisconsin 54307-0448

Subject: Additional Site Investigation and Remedial Action Recommendations Report, One-Hour Martinizing, 1233 South Military Avenue, Green Bay, Wisconsin --WDNR ERP Case No. 02-05-217270 -- STS Project No. 24871XF

Dear Ms. Nell:

Accompanying this letter is a copy of the Additional Site Investigation and Remedial Action Recommendations Report for the One-Hour Martinizing Dry Cleaners facility located at 1233 South Military Avenue, Green Bay, Wisconsin.

Based on the results of the environmental investigation conducted at the site referenced above, we are recommending 1) one year of quarterly groundwater monitoring to determine the feasibility of natural attenuation of chlorinated hydrocarbons to restore groundwater quality and 2) the performance of a pilot test to determine the effectiveness of vapor extraction to address non-saturated zone soil chlorinated hydrocarbon impacts.

Please review the attached report and comment accordingly. If you have any questions, please contact us.

Sincerely,

STS CONSULTANTS, LTD.

Paul M. Garvey Project Scientist

Roger A. Miller, P.G.

Senior Project Hydrogeologist

PMG/jlp.wd

Copy: P.F. Fink, Inc.

c/o Attorney Joseph A. Hoida 403 South Jefferson Street Green Bay, Wisconsin 54301

C471F008.DOC

"I, Roger A. Miller, P.G., hereby certify that I am a hydrogeologist as that term is defined in s. NR 712.03(1), Wis. Adm. Code, and that, to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code."

Roger A. Miller, P.G.

4/20/00

Senior Project Hydrogeologist

TABLE OF CONTENTS

<u>P</u>	<u>age</u>
EXECUTIVE SUMMARY	1
1.0 PROJECT DIRECTORY	2
2.0 PROJECT OVERVIEW 2.1 Background 2.2 Local and Regional Geology	3 3 6
3.0 PROCEDURES 3.1 Soil Borings 3.2 Groundwater Monitoring Well Installation and Sampling 3.3 Chemical Analyses	7 7 7 9
4.0 RESULTS 4.1 Field Results 4.2 Soil Chemical Results 4.2.1 Site-Specific Residual Contaminant Levels 4.2.2 Cumulative Risk 4.3 Groundwater Monitoring Results 4.4 Municipal Utilities	10 10 10 11 13 13
5.0 CONCLUSIONS	19 19 19
6.0 REMEDIAL ACTION PLAN	21
7.0 ESTIMATED COST	22 22 22
8.0 GENERAL QUALIFICATIONS	23
9.0 REFERENCES	24
LIST OF FIGURES	
Figure 1 - Site Location Diagram	4 8 15

TABLE OF CONTENTS (Page 2)

LIST OF TABLES

	<u> </u>	Page
Table 2 - Fie	il Analytical Resultsld Sampling Summarybundwater Analytical Results	14
	LIST OF APPENDICES	
Appendix A	WDNR Soil Boring Logs WDNR Well Construction Forms WDNR Well Development Forms WDNR Well/Drillhole/Borehole Abandonment Forms	
Appendix B	Robert E. Lee & Associates, Inc. Laboratory Reports	
Appendix C	Average Linear Velocity Calculations Vertical Gradient Calculations	
Appendix D	City of Green Bay Well No. 7 (7th Street Well) Construction Diagram	
Appendix E	Site-Specific Residual Contaminant Levels Calculations Cumulative Risk Calculations	

EXECUTIVE SUMMARY

On March 10, 1999, as part of a Phase II Environmental Site Assessment (ESA) associated with a real estate transaction, Northern Environmental, Inc. (Northern), Green Bay, Wisconsin, identified chlorinated hydrocarbon contamination and notified the Wisconsin Department of Natural Resources (WDNR) following receipt of confirmatory analytical results.

As a result of that notification and a subsequent WDNR letter (which outlined the legal responsibilities regarding site investigation and cleanup), STS Consultants, Ltd. (STS), was retained by P.F. Fink, Inc. (former owner), to conduct site assessment activities and to provide remedial action recommendations.

STS completed a site investigation of this property, which included the following:

- 1) Seven soil borings, six of which were converted into groundwater monitoring wells and one of which was converted to a piezometer.
- 2) Chemical analyses of selected soil and groundwater samples.
- 3) Calculation of site-specific residual contaminant levels (SSRCLs).

Soils encountered at the One-Hour Martinizing site consisted primarily of silty clays. Sandy fill material was encountered immediately east of the building area to a depth of approximately 4 feet. The water table was encountered at depths of approximately 5 to 8 feet below ground surface (bgs).

Field and laboratory results indicate Wisconsin Administrative Code (WAC) Chapter NR 140 exceedances for some chlorinated hydrocarbons were detected in the groundwater. Chlorinated hydrocarbon-related impacts were also identified at concentrations above calculated SSRCLs in the non-saturated zone soils near the dry cleaning machine (under the floor slab) and also immediately east of the building.

Based on these results, STS is recommending a pilot test to determine the feasibility of vapor extraction as a remedial option for removal of chlorinated hydrocarbons in the vadose zone.

To address groundwater impacts, STS is recommending one year of natural attenuation monitoring to determine if biodegradation of chlorinated hydrocarbons is occurring at a reasonable rate or if biodegradation needs stimulation through the addition of simple carbon sources, such as glucose or lactate.

1.0 PROJECT DIRECTORY

Project:

One-Hour Martinizing Dry Cleaning Service

Project Location:

1233 South Military Avenue

Green Bay, Wisconsin

Responsible Party

Mr. Joseph A. Hoida, Attorney for P. F. Fink, Inc.

Representative:

403 South Jefferson Street Green Bay, Wisconsin 54301

Phone: (920) 432-0401

Engineer:

STS Consultants, Ltd.

1035 Kepler Drive

Green Bay, Wisconsin 54311

Contacts:

Mr. Paul M. Garvey and

Mr. Mark A. Bergeon

Phone: (920) 468-1978 (Fax: 920-468-3312)

Regulator:

Wisconsin Department of Natural Resources

1125 North Military Avenue

P.O. Box 10448

Green Bay, Wisconsin 54307-0448

Contact:

Ms. Kristin Nell

Phone: (920) 492-5861 (Fax: 920-492-5859)

2.0 PROJECT OVERVIEW

2.1 Background

The subject property is located at 1233 South Military Avenue, city of Green Bay, Brown County, Wisconsin (Subdivision of Private Claim No. 8, west side of the Fox River, city of Green Bay, Brown County, Wisconsin, T24N, R20E). Figure 1 shows the site location on a portion of the Green Bay-West, Wisconsin, United States Geological Survey (USGS) 7.5-minute (1:24,000-scale) quadrangle map. The One-Hour Martinizing facility is located in a one-story mini-mall developed with commercial businesses. The site is bordered by a residential area to the east.

The One-Hour Martinizing site has operated as a dry cleaning facility for more than 20 years. In 1967, Marti-Chic Corporation of Madison, Wisconsin, opened a One-Hour Martinizing franchised dry cleaning facility at the 1233 South Military Avenue location. The store was purchased by PEP Enterprises (a partnership) in April of 1972. Peter F. Fink was one of the partners. In 1975, Mr. Fink bought out the partnership and operated the location as the sole proprietor until incorporating the business in October 1997. The property continues to be developed with an active dry cleaning establishment.

Perchloroethylene (tetrachloroethene) was used as a solvent at the One-Hour Martinizing facility. Amyl acetate, tannic acid, picric (2,4,6-trinitrophenol), and ammonia were also historically used as spotting chemicals.

Virgin solvents were stored on site in a 150-gallon tank until May of 1997, when the use of 5-gallon sealed pails of solvents replaced the use of bulk storage. In May 1999, a closed loop system was installed, further limiting the potential for solvent spillage.

Historically, used solvents, filters, and non-volatile residues have been collected and disposed of by licensed hazardous waste companies. Safety Kleen provided One-Hour Martinizing with disposal documentation as early as June 1986.

BASE MAP SOURCE: USGS GREEN BAY WEST, WISCONSIN 7.5 MINUTE QUADRANGLE (REVISED 1982)

SITE LOCATION DIAGRAM
ONE HOUR MARTINIZING DRY CLEANING
1233 SOUTH MILITARY AVENUE
GREEN BAY, WISCONSIN

DRAWN BY	CPB	02/18/00
CHECKED BY	PMG	02/18/00
APPROVED BY		
CADFILE	SCALE	
ATXT.dwg		2000'
STS PROJECT NO.	FIGURE N	0.
24871XF		1

04/01/1998 08:

Dry cleaning from 1967 to March of 1994 was accomplished through the transfer system. A dry cleaning machine was used to clean the clothing, which was then transferred to a dry cleaning dryer. From 1967 to 1976, an Olson filter was used. The Olson filter required daily service by adding diatomaceous earth and activated carbon directly to the filter screen to provide a coating that the solvent flowed through. This coating was removed daily and was distilled. The distillation process left an ash residue, and the clear solvent was then returned to the cleaning machine. In 1976, a filter cartridge system was added, thereby eliminating the ash residue. In 1983, a vapor condensing unit, using refrigeration to condense the solvent vapors (instead of using water), was installed. In 1986, a concrete slab was poured and a storage shed was built to house the filter cartridges awaiting disposal by Safety Kleen. A "dry to dry cleaning machine" was installed and put into operation in March 1994.

Historical leakage of the transfer system process unit, which required continual maintenance of both its door closing mechanism and seals on the shaft housing, may have contributed to a release at this location. On March 10, 1999, as part of the real estate transaction, Northern, Green Bay, Wisconsin, identified chlorinated solvent contamination on the site and notified the WDNR. Northern summarized the results of the Phase II ESA in a report dated March 23, 1999.

As a result of that notification, the dry cleaning facility was assigned the WDNR Environmental Response Program (ERP) Case No. 02-05-217270 in a letter dated April 1, 1999. The April 1999 letter outlined legal responsibilities regarding investigation and site cleanup.

STS was retained by P.F. Fink, Inc., and submitted a Work Plan for site assessment to the WDNR on April 27, 1999. In June 1999, STS installed five soil borings in the immediate vicinity of the dry cleaning facility to determine the vertical and horizontal extent of the impacted soil and groundwater. At that time, four soil borings were converted to groundwater monitoring wells, and one soil boring was converted to a piezometer. Results of that phase of soil and groundwater sampling were summarized in the September 2, 1999, project status report. In the September 1999 report, STS recommended the installation of two additional monitoring wells to further define the extent and degree of groundwater impacts. This report presents the procedures and results of the additional investigation activities and also provides a remedial action recommendation.

2.2 Local and Regional Geology

Topography of the site is relatively flat with local relief of less than 2 feet. According to the soil survey of Brown County, Wisconsin (1974), the surface soils in the vicinity of the subject site are classified as Oshkosh silt loam with 2% to 6% slopes. The Oshkosh series consists of deep, well-drained soils on lacustrine plains dissected by V-shaped valleys. The Oshkosh silt loam consists of approximately 22 inches of weak, red silt loam over reddish-brown silty clay. Based on the Green Bay-West USGS quadrangle map, the ground surface at the site is relatively flat. Surface elevations are estimated to be approximately +640.0 feet above mean sea level in the area.

The Water Resources of Wisconsin, Fox-Wolf River Basin, Hydrogeologic Atlas HA-321 reports the area to be underlain by glacial lake deposits consisting mainly of silt and clay. Glacial deposits can range between 0 to 100 feet in thickness. Glacial lake deposits generally have a poor permeability. Regional groundwater flow direction is to the east toward the Fox River.

Possible migration pathways at the site consist primarily of soil pores and fractures (if present), utility trenches, and groundwater.

3.0 PROCEDURES

3.1 Soil Borings

On December 14, 1999, Boart Longyear (Boart), Schofield, Wisconsin, mobilized a truck-mounted rotary drill rig to advance two soil borings (MW-5 and MW-6) at the One-Hour Martinizing site. Borings were advanced to a depth of 13.5 feet bgs, using solid-stem and 4 1/4-inch inside diameter (ID) hollow-stem augers. Soil boring locations are illustrated on Figure 2.

Soil samples were collected at 2-foot intervals using a split-spoon sampling device in accordance with ASTM D 1586-84, "Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils." Soil samples were transferred from the open split-spoon to new glass jars or analytical sample containers provided by the laboratory. Soil samples were screened in the field by STS personnel using a photoionization detector (PID) equipped with a 10.6-electron volt lamp. Soil analytical samples were selected to represent the condition at or above the apparent water table or at the depth of the highest PID field-screening result. Selected analytical samples were collected immediately from the open split-spoon prior to soil screening, stored on ice in the field, and shipped under Chain of Custody control to Robert E. Lee & Associates, Inc. (REL), in Green Bay, Wisconsin, for the analysis of total organic carbon (TOC). REL's analytical laboratory was awarded the annual contract with STS for 1999, based on competitive bidding results.

Soil screening samples were classified according to the Unified Soil Classification System (ASTM D 2488-84). The WDNR soil boring logs are included in Appendix A.

3.2 Groundwater Monitoring Well Installation and Sampling

Following soil borings installation and soil sampling, Boart used a truck-mounted rotary drill rig to install groundwater monitoring wells at the MW-5 and MW-6 locations. Wells were constructed using 2-inch diameter, Schedule 40 polyvinyl chloride (PVC) with flush-threaded joints. The screened section of each water table observation well consisted of a 10-foot length of 2-inch diameter, Schedule 40 PVC with 0.006-inch factory-cut slots. The screens of the water table observation wells were installed so that they would intersect the apparent water table at the time of installation.

08/27/1999 13:52

The annulus of each well was backfilled with uniformly-graded silica sand to a level above the top of the screen. The remainder of the annulus was backfilled with hydrated granular bentonite. The wells were developed by alternately surging and purging and removing water, until the well was dry. A WDNR Monitoring Well Construction Form (4400-113A) and Well Development Form (4400-113B) was completed for each well installed (Appendix A). Groundwater monitoring well locations are illustrated on Figure 2.

Groundwater samples were collected by STS field personnel on January 4, 2000, from Monitoring Wells MW-1 through MW-6 and Piezometer PZ-1. Groundwater samples were collected using disposable polyethylene bailers for field parameters and laboratory analysis. Field parameters include water level, pH, conductivity, temperature, color, odor, turbidity, dissolved oxygen, and ferrous iron. Groundwater samples were submitted on ice to REL under Chain of Custody control for the analysis of volatile organic compounds (VOCs), sulfate, nitrate/nitrite, methane, ethane, and ethene.

3.3 Chemical Analyses

Soil samples collected while conducting Soil Borings MW-5 and MW-6 were analyzed for TOC (EPA Method 9060). Soil samples collected from previous borings were analyzed for VOC (EPA Method 8021).

Groundwater samples collected following the monitoring well installation activities were analyzed for VOCs (EPA Method 8021) soluble sulfate (EPA Method 300.0), and nitrate/nitrite (EPA Method 353.2). Methane, ethane, and ethene were also analyzed using EPA Method 8015-B. Ferrous iron and dissolved oxygen (DO) concentrations were recorded in the field using Chemetrics (colorimetric) ampoules.

4.0 RESULTS

4.1 Field Results

Soil encountered at the site consisted primarily of brown silty clay. Approximately 4 feet of sandy fill material was encountered under and immediately east of the existing dry cleaning facility. Details of the soils encountered are provided on the WDNR Form 4400-122, Soil Boring Log Information Forms, provided in Appendix A. Results of the PID screening of soil samples are also summarized on the Soil Boring Log Information Forms.

Elevated PID readings (above 25 instrument units) were previously recorded at the MW-1/PZ-1 location.

4.2 Soil Chemical Results

A summary of the soil sample analytical test results is provided on Table 1. Tetrachloroethene, trichloroethene, and cis 1,2-dichloroethene were detected in the soil at several locations (Table 1). No other VOCs were detected. SSRCLs were calculated for detected chlorinated hydrocarbons, because there are currently no generic residual contaminant levels for chlorinated hydrocarbons in Wisconsin Administrative Code. SSRCLs generated for the chlorinated hydrocarbons of concern are summarized on Table 1 (see Section 4.2.1). Laboratory reports are included in Appendix B.

Soil impacts appear to be concentrated primarily in two areas: 1) immediately below the floor slab of the One-Hour Martinizing dry cleaning machine location and 2) outside the back door in the vicinity of B200B, PZ-1, and MW-1. Soil impacts in these areas appear to extend to the depth of the shallow water table (approximately 7 feet bgs).

As indicated on Table 1, tetrachloroethene and trichloroethene were detected above calculated SSRCLs in the unsaturated zone soils analyzed from Borings PZ-1, B100B, and B200B. Tetrachloroethene at a concentration of 33 milligrams per kilogram (mg/kg) was detected above non-industrial soil ingestion and inhalation SSRCLs (18 mg/kg and 20 mg/kg, respectively) under the building floor slab (Boring B100B). Groundwater pathway SSRCL exceedances were detected in the unsaturated zone soil (ground surface to 7 feet bgs) at the PZ-1, B100B, and B200B locations.

Table 1 Soil Analytical Results One Hour Martinizing 1233 S. Military Avenue Green Bay, Wisconsin

			Analyte	Benzene	cis 1,2-Dichloroethene	Ethylbenzene	Methylene Chloride	Naphthalene	Tetrachloroethene	Trichloroethene	Toluene	Trimethylbenzenes	Xylenes	TOC
			Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg
			Depth-ft											
MW-1/PZ-1	6/3/99	S-2	2.0 - 4.0	<116	<115	<120	<157	<50.7	10100	511	<68.0	<501	<352	
		S-3	4.0 - 6.0	<11.4	21.2 (p)	<11.8	<15.4	<4.97	2760	134	<6.67	<49.1	<34.6	
MW-2	6/3/99	S-3	4.0 - 6.0	<12.6	<12.5	<13.0	<17.1	<5.51	106	<14.2	<7.39	<54.5	<38.3	
MW-3	6/3/99	S-2	2.0 - 4.0	<11.7	<11.6	<12.1	<15.8	<5.12	<21.0	<13.2	<6.86	<50.6	<35.6	
		S-4	6.0 - 8.0	<12.9	<12.8	<13.3	<17.5	<5.64	378	<14.6	<7.56	<55.7	<39.1	
MW-4	6/3/99	S-2	3.0 - 5.0	<11.7	<11.6	<12.1	<15.8	<5.11	<21.0	<13.2	<6.86	<50,5	<35.5	
MW-5	12/14/99	S-2	2.0 - 4.0			•				•			••	4640
MW-6	12/14/99	S-2	2.0 - 4.0				**				••	••		2150
Soil Analytical R	esults from N	Northern En	vironmental's	March 23, 1	999, Phase 2 ESA.			······································		***************************************			 	
B100B	S102B	3/10/99	1.0 - 3.0	<25	38	<25	<25	<25	33000	66	<25	<50	<75	
B200B	S201B	3/10/99	1.0 - 3.0	<25	<25	<25	<25	<25	7800	88	<25	<50	<75	
В300В	S301B	3/10/99	1.0 - 3.0	<25	<25	<25	<25	<25	34	<25	<25	<50	<75	••
WAC NR 720 Ge	eneric RCL ¹			5.5		2,900					1,500		4,100	
Site-Specific RCI	L - Non-indus	strial Ingestic	on Pathway		1100000				18000	83000				
Site-Specific RCI	L - Industrial	Ingestion Pa	thway		~ L				55000	260000				
Site-Specific RCI	L - Non-indus	strial Inhalati	ion Pathway		150000				20000	5300				
Site-Specific RCI					120000				19000	5200				
Site-Specific RCI			•		240				130	36				
<u> </u>	Ũ													

Notes:

ug/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

(p) = Reported result is less than the practical quantitation limit

¹Wisconsin Administrative Code Chapter NR 720 Generic Residual Contaminant Level

TOC = Total Organic Compounds

4.2.1 Site-Specific Residual Contaminant Levels

While commercial use of the One-Hour Martinizing site is the most likely scenario to occur in the near future, SSRCLs were calculated for detected VOCs for both industrial and non-industrial sites (i.e., unrestricted land use scenarios). Based on site conditions, we reviewed the following exposure pathways: 1) direct contact (soil ingestion or inhalation) and 2) leaching to groundwater. SSRCLs were calculated for direct contact and the groundwater pathway for the three detected VOCs using the algorithms presented in the WDNR's Interim PAH Guidance (WDNR Publication RR-519-97). As summarized on the calculation sheets in Appendix E, default values from WDNR Guidance were used in the calculations, if available. Chemical fate parameters and health criteria for VOCs were obtained from EPA sources where possible (e.g., Integrated Risk Information System; EPA Region IX Preliminary Remediation Goals Toxicity and Physical/Chemical Tables). References for chemical fate input parameters and health criteria are listed with the SSRCL calculations.

For direct contact, SSRCLs were calculated for both soil ingestion and inhalation pathways. As allowed in s. NR 720.19(5)1, WAC, the excess cancer risk was adjusted to 1×10^{-6} and the hazard quotient was adjusted to one (1) for the non-industrial SSRCL calculations. In addition, because the surface soils are frozen for approximately four months out of the year, the exposure frequency was reduced from 350 to 245 days per year. Although SSRCL calculations for industrial sites are also included for comparison, we selected the SSRCLs for non-industrial sites as the SSRCLs for this site. The direct contact SSRCLs are considered to be conservative because the non-industrial SSRCLs have been compared to the highest organic compound concentrations detected in the soils.

As summarized on Table 1, the soil concentration for tetrachloroethene in Sample B100B (collected under the floor slab) was in exceedance of the direct contact SSRCLs for both the non-industrial ingestion pathway and industrial/non-industrial inhalation pathways.

SSRCLs for the groundwater pathway were calculated for three VOCs (tetrachloroethene, trichloroethene, and cis-1,2-dichloroethene). The SSRCLs equation combines a soil:water partitioning expression with a dilution attenuation factor for the groundwater mixing zone. Groundwater pathway SSRCLs were not found to be protective against an ES exceedance at the MW-1/PZ-1, MW-3, B100B, and B200B boring locations, using the lowest soil TOC concentration detected (2,150 mg/kg). Groundwater pathway SSRCLs are summarized on Table 1.

4.2.2 Cumulative Risk

Cumulative risks were estimated for carcinogens and non-carcinogens for both the ingestion and inhalation pathways. As shown on the calculations provided in Appendix E and in accordance with s. NR 720.11(3), WAC, the cumulative excess cancer risk does not exceed 1×10⁻⁵ for carcinogens, nor does the hazard quotient exceed one (1) for non-carcinogens. Risks for carcinogens and non-carcinogens are conservatively presumed to be additive for each category.

4.3 Groundwater Monitoring Results

The most recent static water level measurements were obtained from the groundwater monitoring wells on January 4, 2000. Groundwater elevations and field parameters were recorded during the sampling activities and are summarized on the Field Sampling Summary (Table 2).

The most recent groundwater elevations recorded in the monitoring wells were used to prepare a Groundwater Contour Map presented as Figure 3. The Groundwater Contour Map indicates groundwater flow is generally southwest across the site at a hydraulic gradient of approximately 0.01 feet per foot.

Based on field observations indicating that groundwater monitoring wells were installed within the natural clays at the site, hydraulic conductivity (K) of saturated soils surrounding the screened interval of the monitoring wells on site has been estimated at 1×10^{-6} centimeters per second (Fetter, 1994).

Based on groundwater elevations measured on January 4, 2000, and the estimated field hydraulic conductivity, the average linear velocity of groundwater flow is estimated to be 0.03 foot per year. The vertical gradient is estimated to be slightly downward at 0.06 feet per foot during the January sampling event. Average linear velocity and vertical gradient calculations are included in Appendix C.

Results of laboratory analyses of groundwater samples collected from the monitoring wells are summarized on Table 3. Also indicated on Table 3 are the preventive action limits (PALs) and enforcement standards (ESs), as established under Chapter NR 140 (NR 140), WAC. Compounds detected in groundwater above the NR 140 ES include tetrachloroethene, bromodichloromethane, trichloroethene, and 1,1,1-trichloroethane. One or more NR 140 ES exceedances were detected in Monitoring Wells MW-1, MW-3, and MW-6 and Piezometer PZ-1. NR 140 PAL exceedances for cis-1,2-dichloroethene were detected in MW-1 and MW-6.

Table 2
Field Sampling Summary
One Hour Martinizing
1233 S. Military Avenue
Green Bay, Wisconsin

99 96.63	TPVC	Elev. (ft)	Oxygen (mg/L)	Iron	pН	Conductance	Temperature	Color			
				(mg/L)	(units)	(µmhos/cm)	(⁰ Celsius)	00.01	Odor	Turbidity	Purged
			<u> </u>					······································			
06.62	5.19	91.44			6.80	985		Clear	None	Low	5.0
96.63	7.51	89.12	2	0.1	7.10	725	11.9	Clear	Slight	Low	4.0
99 96.60	6.05	90.55			6.24	880		Clear	None	Low	5.0
96.60	8.04	88.56	1	0.2	6.63	765	11.7	Clear	None	Low	3.8
99 96.96	5,63	91.33			6.74	839		Clear	None	Low	4.0
96,96	7.88	89.08	1	0.3	6.94	674	10.6	Clear	None	Low	4.0
99 96.32	7.43	88.89			6.49	2350		Clear	None	Low	4.0
96.32	6.99	89.33	<1	<0.1	6.77	1839	11.1	Clear	None	Low	4.0
00 97.43	7.86	89.57	5	0.1	7.26	2950	9.6	Lt. Brown	None	Low	3.8
96.65	7.59	89,06	3	0.1	7.04	1100	11.8	Clear	None	Low	4.0
99 96.55	6.39	90.16			8.10	395		Clear	None	Low	5.0
00 96.55	8.07	88.48	<1	0.2	8.06	369	12.4	Lt. Brown	None	Medium	4.5
											:
recorded											
0 -0	96.60 99 96.96 90 96.96 99 96.32 90 97.43 90 96.65 99 96.55	96.60 8.04 99 96.96 5.63 00 96.96 7.88 99 96.32 7.43 00 96.32 6.99 00 97.43 7.86 00 96.65 7.59 99 96.55 6.39 00 96.55 8.07	00 96.60 8.04 88.56 .99 96.96 5.63 91.33 00 96.96 7.88 89.08 .99 96.32 7.43 88.89 00 96.32 6.99 89.33 00 97.43 7.86 89.57 00 96.65 7.59 89.06 .99 96.55 6.39 90.16 00 96.55 8.07 88.48	000 96.60 8.04 88.56 1 .99 96.96 5.63 91.33 .00 96.96 7.88 89.08 1 .99 96.32 7.43 88.89 .00 96.32 6.99 89.33 <1	000 96.60 8.04 88.56 1 0.2 .99 96.96 5.63 91.33 00 96.96 7.88 89.08 1 0.3 .99 96.32 7.43 88.89 00 96.32 6.99 89.33 <1	00 96.60 8.04 88.56 1 0.2 6.63 99 96.96 5.63 91.33 6.74 00 96.96 7.88 89.08 1 0.3 6.94 -99 96.32 7.43 88.89 6.49 00 96.32 6.99 89.33 <1	00 96.60 8.04 88.56 1 0.2 6.63 765 -99 96.96 5.63 91.33 6.74 839 00 96.96 7.88 89.08 1 0.3 6.94 674 -99 96.32 7.43 88.89 6.49 2350 00 96.32 6.99 89.33 <1	00 96.60 8.04 88.56 1 0.2 6.63 765 11.7 .99 96.96 5.63 91.33 6.74 839 00 96.96 7.88 89.08 1 0.3 6.94 674 10.6 .99 96.32 7.43 88.89 6.49 2350 00 96.32 6.99 89.33 <1	00 96.60 8.04 88.56 1 0.2 6.63 765 11.7 Clear .99 96.96 5.63 91.33 6.74 839 Clear 00 96.96 7.88 89.08 1 0.3 6.94 674 10.6 Clear .99 96.32 7.43 88.89 6.49 2350 Clear 00 96.32 6.99 89.33 <1	00 96.60 8.04 88.56 1 0.2 6.63 765 11.7 Clear None .99 96.96 5.63 91.33 6.74 839 Clear None 00 96.96 7.88 89.08 1 0.3 6.94 674 10.6 Clear None .99 96.32 7.43 88.89 6.49 2350 Clear None 00 96.32 6.99 89.33 <1	00 96.60 8.04 88.56 1 0.2 6.63 765 11.7 Clear None Low .99 96.96 5.63 91.33 6.74 839 Clear None Low 00 96.96 7.88 89.08 1 0.3 6.94 674 10.6 Clear None Low .99 96.32 7.43 88.89 6.49 2350 Clear None Low 00 96.32 6.99 89.33 <1

Table 3 **Groundwater Analytical Results** One Hour Martinizing 1223 S. Military Avenue Green Bay, Wisconsin

		Volatile Or	ganic Compound	ls				·				· · · · · · · · · · · · · · · · · · ·				Natural A	ttenuation	Parameter:	5		
	Analyte	Benzene μg/L	cis 1,2-Dichloro ethene µg/L	1,1-Dichloro- ethene μg/L	Ethyl- benzene µg/L	Bromodichloro- methane µg/L	Methylene Chloride µg/L	Naphthalene µg/L	Tetrachloro- ethene µg/L	Trichloro- ethene µg/L	Toluene μg/L	Trans-1,2-Dichloro- ethene μg/L	· 1,1,1-Trichloro- ethane μg/L	Trimethyl- benzenes µg/L	Xylenes μg/L	Nitrate/ Nitrite mg/L	Ethane µg/L	Ethene µg/L	Methane μg/L	Chloride mg/L	Sulfate mg/L
MW-1	6/17/99 1/4/00	<94 <0.19	<93 62	<55 0,38	<97 <0.19	<124 2.4	<127 <0.25	<41 <0.082	22800 13400	233 (p) 85	<55 0.13	<105 0.33	257 (p) <0.3	<405 <0.81	<285 <0.39	11	- <14	- <14	1100	- 72	- 40
MW-2	6/17/99 1/4/00	<0.19 <0.19	<0.19 <0.19	<0.11 <0.11	<0.19 <0.19	<0.25 <0.25	<0.25 <0.25	<0.08 <0.082	<0.34 <0.34	<0.21 <0.21	<0.11 <0.11	<0.21 <0.21	<0.30 <0.30	<0.81 <0.81	<0.57 <0.39	<0.14	<14	<14	11	- 17	- 32
MW-3	6/17/99 1/4/00	<9.4 <0.19	<9.3 1.8	<5.5 <0.11	<9.7 <0.19	<12.5 <0.25	<12.7 <0.25	<4.1 <0.082	477 489	<10.6 5.9	<5.5 <0.11	<10.5 <0.21	<15.1 <0.3	<40.5 <0.81	<28.5 <0.39	- 16	<14	<14	<7.2	- 47	- 38
MW-4	6/17/99 1/4/00	<0.19 <0.19	<0.19 <0.19	<0.11 <0.11	<0.19 <0.19	<0.25 <0.25	<0.25 <0.25	<0.08 <0.082	<0.34 <0.34	<0.21 <0.21	0.47 <0.11	<0.21 <0.21	<0.30 <0.3	<0.81 <0.81	<0.57 <0.39	<0.14	- <14	- <14	11	365	339
MW-5	1/4/00	<0.19	<0.19	<0.11	<0.19	<0.25	<0.25	<0.082	<0.34	<0.21	<0.11	<0.21	<0.3	<0.81	<0.39	1.2	<14	<14	<7.2	1200	258
MW-6	1/4/00	<0.19	8.7	<0.11	<0.19	0.61	<0.25	<0.082	124	62	<0.11	<0.21	<0.3	<0.81	<0.39	2.7	<14	<14	12	193	76
PZ-1	6/17/99 1/4/00	<0.94 <0.19	<0.93 1.2	<0.55 <0.11	<0.97 <0.19	<1.24 <0.25	<1.27 <0.25	<0.41 <0.082	98.3 27	4 3.9	<0.55 <0.11	<1.05 <0.21	5.04 <0.19	<4.05 <0.81	<2.85 <0.39	<0.14	- <14	- <14	136	42	50
NR 140 NR140		5 0.5	70 7	850 85	700 140	0.6 0.06	5 0,5	40 8	5 0.5	5 0.5	343 68.6	ne ne	200 40	480 96	620 124						

Notes:

Notes:

µg/L = micrograms per liter
(p) = Reported result is less than the practical quantitation limit

NE = Not established

120

Wisconsin Administrative Code Chapter NR 140 Enforcement Standard (ES) Exceedance

Wisconsin Administrative Code Chapter NR 140 Preventive Action Limit (PAL) Exceedance

Results of the January 4, 2000, sampling round suggest that the extent of groundwater impacts has been substantially identified. The locations of groundwater impacts are consistent with soil boring and field screening data collected during subsurface exploration activities. Laboratory reports are included in Appendix B.

Geochemical indicators for naturally occurring biodegradation (DO, nitrate/nitrite, sulfate, chloride, methane, ethane, and ethene) were measured during the January 2000 sampling round. Table 2 indicates that DO was detected above 2 mg/L in Monitoring Wells MW-5 and MW-6. If the concentrations of DO become limiting (i.e., below 1 to 2 mg/L), reducing conditions occur and nitrate and sulfate may serve as electron acceptors for anaerobic biodegradation.

Detectable sulfate was reported in all monitoring wells. Nitrate was detected in MW-1, MW-5, and MW-6. Reducing conditions were observed in MW-1, PZ-1, MW-2, MW-3, and MW-4. Therefore, the potential for biodegradation of chlorinated hydrocarbons through anaerobic reductive dechlorination exists in the areas with the highest reported chlorinated hydrocarbon concentrations.

During reductive dechlorination, chlorine atoms on compounds, such as tetrachloroethylene, are replaced with hydrogen as anaerobic bacteria metabolize naturally-occurring organics in the subsurface. An increase in chloride ions and an accumulation of chlorinated hydrocarbon daughter products is associated with reductive dechlorination (Wiedemeier, et. al., 1996). The reductive dechlorination (biotransformation) sequence is perchloroethylene (tetrachloroethene) to trichloroethene to dichloroethene to vinyl chloride to ethene. According to Wiedemeier, et. al. (1996), methane is the ultimate reductive daughter product of dechlorination through methanogenesis. During methanogenesis, methane is also produced by anaerobic bacteria, which use carbon dioxide as an electron acceptor. Methane production is also an indictor that anaerobic groundwater conditions exist.

Methane detected at concentrations of 1,100 μg/L in Monitoring Well MW-1 and 136 μg/L in Piezometer PZ-1 (near the apparent tetrachloroethene source area) suggests that biodegradation of chlorinated hydrocarbons is occurring via methanogenesis. Ethene and ethane, daughter products of vinyl chloride biotransformation, were not detected above the method detection limits. However, trichloroethene, a daughter product of tetrachloroethene biotransformation, was detected at Monitoring Wells MW-1, PZ-1, MW-3, and MW-6 locations.

Cis-1,2-dichloroethene, a daughter product of the reductive dechlorination of trichloroethene, was also detected at MW-1, PZ-1, and MW-6.

Vinyl chloride, a daughter product of the reductive dechlorination of dichloroethene, biodegrades more efficiently under aerobic conditions (Wiedemeier, 1996). With aerobic conditions at the perimeter of a chlorinated hydrocarbon plume (as indicated in MW-5 and MW-6), natural attenuation of vinyl chloride through aerobic biodegradation can occur.

Based on the presence of tetrachloroethene daughter products and relatively elevated methane concentrations in the source area, it can be inferred that biodegradation is occurring at the MW-1, PZ-1, MW-3, and MW-6 locations.

4.4 Municipal Utilities

The One-Hour Martinizing dry cleaning facility is located within a commercial area within the city of Green Bay. This area is serviced by municipal water and sewer and other public utilities. The municipal water supply draws water from Lake Michigan. The municipal wells are maintained by the City of Green Bay as a backup system only. The closest municipal well is the City of Green Bay Well No. 7 (7th Street well), located approximately 750 feet north-northeast of the site. The 7th Street well is cased to a depth of 250 feet. The total depth of this 7th Street well is 860 feet. According to Well Construction Records, bedrock has been recorded at a depth of 116 feet in the 7th Street well. The well is cased 134 feet into bedrock. The next closest municipal well is the Highland Avenue well, located more than 3,000 feet southwest of the site.

Municipal well water quality is monitored in accordance with state codes. No VOCs were detected in the 7th Street well during the preliminary aquifer storage and recovery feasibility evaluation conducted by CH2M Hill for the City of Green Bay Water Utility dated March 1999. A well construction diagram of the 7th Street well is included in Appendix D.

5.0 CONCLUSIONS

5.1 Soil Conditions

STS completed a site investigation of the One-Hour Martinizing property incorporating seven soil borings, six of which were converted to groundwater monitoring wells, and one which was converted to a piezometer. Laboratory results of this investigation indicate that chlorinated hydrocarbon impacted soil is present.

Chlorinated hydrocarbon impacted soil in the vadose zone was identified primarily in two areas: 1) under the floor slab in the vicinity of the dry cleaning equipment location and 2) in the vicinity of Borings MW-1/PZ-1, B100B, and B200B. Soil impacts detected at the One-Hour Martinizing site were in exceedance of calculated SSRCLs for tetrachloroethene and trichloroethene for the leaching to groundwater pathway at the MW-1/PZ-1, B100B, and B200B locations. A non-industrial direct contact SSRCL exceedance for ingestion and inhalation pathways for tetrachloroethene was detected in the soil sample collected by Northern from beneath the floor slab near the dry cleaning machine (B100B).

5.2 Groundwater Conditions

Due to the naturally occurring clayey soils, groundwater at the One-Hour Martinizing location is interpreted to flow very slowly to the east at approximately 0.03 foot per year, with a slightly downward gradient of 0.06 feet per foot.

Tetrachloroethene in exceedance of WAC Chapter NR 140 ES was identified in the groundwater samples collected from Monitoring Wells MW-1, MW-3, and MW-6 and Piezometer PZ-1. Bromodichloromethane was also identified slightly above its NR 140 ES in MW-1 and MW-6. Cis-1,2-dichloroethene was detected above its NR 140 PAL in MW-1 and MW-6. Trichloroethene was detected above its NR 140 PAL in PZ-1.

Based on field observations and laboratory results, it appears the lateral and vertical extent of groundwater impacts have been substantially defined. Piezometer PZ-1 was installed to document groundwater conditions at the base of the plume. The screened interval of PZ-1 was installed between 20.5 and 22.5 feet below ground surface. Analytical results from PZ-1 indicate that the dissolved-phase chlorinated hydrocarbons have reached a depth of 20 feet. Chlorinated

One-Hour Martinizing 24871XF April 20, 2000

hydrocarbon-related compounds were not detected in Well MW-2, located approximately 50 feet downgradient of MW-1.

Based on the presence of geochemical indicators for naturally occurring biodegradation (sulfate, nitrate, and methane) and the presence of reductive dechlorination daughter products of tetrachloroethene, such as trichloroethene and cis-1,2-dichloroethene, it is our opinion that there is the potential for natural attenuation of chlorinated compounds at this site.

6.0 REMEDIAL ACTION PLAN

As summarized in Section 5.0 of this report, concentrations of detected chlorinated hydrocarbons are in exceedance of direct contact SSRCLs below the floor slab in the vicinity of the dry cleaning machine. Soil chlorinated hydrocarbon concentrations were also in exceedance of the SSRCL leaching to groundwater pathway both under the floor slab and immediately east of the facility.

To address soil chlorinated hydrocarbon impacts above the water table in granular fill soils, STS recommends the installation of four vapor extraction points (two under the floor slab and in granular fill soils and two immediately east of the building) to evaluate the feasibility of extracting chlorinated hydrocarbons by performing a pilot test. The pilot test extraction points will be installed with hand equipment such that they can be connected to a common manifold if integrated into a vapor extraction system. Pilot testing (including vacuum testing, airflow determination, and radius of influence) will be performed to evaluate the feasibility of vapor extraction on the unsaturated granular fill soil as a remedial option. The proposed one-day pilot test study will be exempt from permitting requirements as the total amount of air discharge will be less than 150,000 cubic feet in accordance with NR 406.04(m)3, Wisconsin Administrative Code. The recommendation to install a vapor extraction system will be based on pilot testing results.

As summarized in Section 4.0, geochemical indicator parameters and the presence of chlorinated breakdown products suggest that reductive dechlorination is occurring in the groundwater at the site. To determine the effectiveness of natural attenuation as a remedial option to address groundwater impacts, STS recommends one year of quarterly groundwater monitoring to gather data to evaluate the potential for natural attenuation to reduce the concentrations of chlorinated hydrocarbons in a reasonable time frame. STS recommends sampling of Monitoring Wells MW-1, MW-3, and MW-6 and Piezometer PZ-1 for VOCs on a quarterly basis and the remaining wells semiannually. In addition to VOC analysis, monitoring wells will be analyzed for natural attenuation parameters including DO, nitrate/nitrite, sulfate, chloride, ferrous iron, methane, ethane, and ethene.

Following one year of natural attenuation monitoring, sampling data will be reevaluated to determine if natural attenuation is occurring at a reasonable rate or if anaerobic dechlorination needs stimulation through the addition of simple carbon sources such as glucose or lactate to the subsurface. Estimated costs for the recommended one year of groundwater monitoring and vapor extraction pilot testing are summarized in Section 7.0 of this report.

7.0 ESTIMATED COST

7.1 Groundwater Monitoring - One Year

Consulting Cost	Estimated
	Cost
Project Coordination/Administration	\$1,000
Groundwater Sampling (four rounds)	\$2,800
Groundwater Monitoring Report with Closure Request (if appropriate)	<u>\$3,400</u>
Subtotal	\$7,200
Groundwater Analytical Costs	
22 VOC tests @ \$50/test	\$1,100
22 nitrate/nitrite tests @ \$8/test	\$ 220
22 sulfate tests @ \$5/test	\$ 110
22 chloride tests @ \$10/test	\$ 220
22 methane, ethane, and ethene tests @ \$50/test	<u>\$1,100</u>
Subtotal	\$2,750
Total Estimated Cost of Groundwater Monitoring Well Installation and Sampling	\$9,950

7.2 Pilot Testing

Installation of four vapor extraction points (two inside building and two outside building), vacuum testing, measurement of air flow, and vacuum radius of influence \$1,500

Equipment rental \$\frac{200}{51,700}\$

Note: This cost estimate is for budgeting purposes only and does not represent a proposal by STS.

One-Hour Martinizing 24871XF April 20, 2000

8.0 GENERAL QUALIFICATIONS

Conclusions presented in this report are based on subsurface conditions as revealed in the soil borings, monitoring wells, subsurface conditions noted at the time of study, subcontract laboratory analyses, and our professional interpretation of this information. Stratification lines shown on boring logs represent the approximate boundary between soil types. Variations may exist in both the horizontal and vertical directions between borings. Additionally, seasonal and annual fluctuations of the groundwater table may influence the distribution of dissolved compounds causing variations in groundwater quality. The scope of this report is limited to the specific project and location described herein. Our interpretation of results represents our scientific judgment based on the available information. No other warranties, either expressed or implied, are made.

9.0 REFERENCES

Fetter, C.W., 1994. Applied Hydrogeology, 3rd Edition, Prentice Hall, New Jersey. Page 98.

United States Department of Agriculture, Soil Conservation Service. Soil Survey of Brown County, Wisconsin, 1974.

Wiedemeier, T.H., et. al. 1996. Technical Protocol for Evaluating the Natural Attenuation of Chlorinated Ethenes in Groundwater, The Proceedings of the 1996 Petroleum Hydrocarbons and Organic Chemicals in Groundwater: Prevention, Detection, and Remediation Conference. Pages 425 through 439.

APPENDIX A

WDNR Soil Boring Logs
WDNR Well Construction Forms
WDNR Well Development Forms

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION

Fax: 920-468-3312

Form 4400-122 Rev. 5-97

			<u>Ro</u>	oute To:	Watershed/W Remediation/	astewater Redevelopment	Waste Other		gement			***						
					·									Pa		of	1	
	y/Projec				a a	•	License	/Permi	t/Monite	oring N	umbe	ſ	Boring	g Numb		W 2		
					Cleaning Ser		Data Da									Drilling Method		
Bormg	Dhiled	і ву (і	ırm naı	me and na	ame of crew chie	:1)	Date Di	Date Drilling Started Date Drilling Completed							l	- 1	-	
Boart Longyear - J. Flaminio - STS Project No. 24871XF						ect No. 24871XF		12/1	4/199	Q.			12/14	/1999		1	ollow-stem uger	
WI Unique Well No. DNR Well ID No. Common Well Nam							Final St				Surfa	ce Eleva		1777	В		Diameter	
MW-5									MSL			97.7	Feet N	ISL		8.0	Inches	
Boring	Locati	on or l	Local G	rid Origir	(Check i	f estimated: ()				•	,,	Local	Grid Lo	cation	(If appl	icable)		
State 1	Plane	P.C.	2-9	West Si	ide-Fox Rive	er S/C/N	Lat.		<u> </u>			• }					ΠE	
	1/4	of	1	/4 of Sec		T N, R	Lon				"			t 🗆 S	<u> </u>		Feet 🗌 W	
Facility	y ID				County		County C	ode	i		•	Village						
					Brown		5	7	Gree	n Bay	/		~ 11				T	
San	nple									l	ł		Soil	Prop	erties	T	}	
	& (ii)	S	5			ock Description						ي ا						
. 9	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		And Geo	ologic Origin For				ے		ssiv	. بو		<u>~</u>		nts	
Typ.	Length Att. Recovered	× C	#		Eacl	h Major Unit		CS	phiq	gran	녆	npre	stur	ni i	iti x		ome	
Number and Type	Len	Blo	Dep					n S	Graphic	Well Diagram	(II)	Stre	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments	
S-1 \	<u>24</u> 6	5	E						711/7	MK	1							
ss \	6		E	Fill: G	Grass - dark brow	n organic silt - topsoil			1 71		1							
\mathbb{N}			-1.5						40 7									
S-2 SS	24 18	8	F								2							
SSIV	18		├ 3.0									1 '			j			
/ \			E	Fill: B	Frown silty clay -	- moist at 4.0 feet												
	<u>12</u>		-4.5					ļ		l	1	1						
S-3	24	9	ļ						/////	1日	2	į	1					
S-3 SS	2 <u>4</u> 24		F.,								~			-				
Ι/			6.0							1日			ļ					
	<u>6</u>		<u> </u>							1 目	1							
S-4	24 24	11	7.5							1 目:	2							
ss \	24		E							1 目	1					İ		
\ \			F 9.0	Brown	silty clay - broy	vn fine silty sand seam	s at 5.5	CL		1 =		ļ						
	<u>48</u>		Ļ			to wet - lacustrine				1目	ł			l	1			
			10.5	5				ł										
			F	1						1:1								
			12.0							1 目								
			E 12.0	1						1 🗏								
			þ					İ		1 H	ł							
۱			13.5	End of	Boring	<u> </u>			7////		Ì							
						0.0 feet to 13.5 feet by	<i>i</i>	İ		1								
					-stem auger													
						ter Schedule 40 PVC ng well at 13.0 feet.								}]			
				5.0mid	atol momolii	15 Well at 15.0 leet.												
			1															
I b!	u acuti		tha in C		m ship Come in so	and assess to the b		novite:	l las				L	<u> </u>	1	<u> </u>		
		y mat	me info	imation o	on unis form is tr	ue and correct to the be												
Signat	ure	ر والمرسد	21		7	Firm ST	S Consu	ltants	Ltd.							Tel:	920-468-1978	

This form is authorized by Chapters 281, 283, 291, 292, 293, 295, and 299, Wis. Stats. Completions of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

1035 Kepler Drive, Green Bay, WI 54311

State of Wisconsin Department of Natural Resources Route To:	Watershed/Wastewater ☐ Remediation/Redevelopment ☐	Waste Management Other	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 6-97
Facility/Project Name	Local Grid Location of Well	Office C	Well Name
One Hour Martinizing Dry Cleaning Service	l	ft. □ E.	MW-5
	Grid Origin Location	(Check if estimated:)	Wis. Unique Well No DNR Well Number
	Lat ° ' ' Loi	ng o i " or	1 ' 1
Facility ID	P.C. 2-9 West Sign	de-Fox River ft.E. S/C/N	Date Well Installed
•	St. Plane ft. N, Section Location of Waste/Source		12/14/1999
Type of Well	1	ΘE	Well Installed By: (Person's Name and Firm
Well Code 11/mw	1/4 of 1/4 of Sec Location of Well Relative to Wast		J. Flaminio
Distance Well Is From Waste/Source Boundary ft.	u □ Upgradient s □ S d □ Downgradient n □ N	idegradient	Boart Longyear
A. Protective pipe, top elevation		1. Cap and lock?	⊠ Yes □ No
• • • • • • • • • • • • • • • • • • • •	· 11	2. Protective cover	pipe:
B. Well casing, top elevation	7.43 ft. MSL	a. Inside diamete	
C. Land surface elevation	97.7 ft. MSL 🔍	b. Length:	1.0_ ft.
		c. Material:	Steel ⊠ 04
	or 1.0 ft.		Other 🗆
12. USCS classification of soil near screen:		d. Additional pro	
	W SP D	If yes, describ	e:
SM SC ML MHO C	L 🛛 CH 🗆	3. Surface seal:	Bentonite 3 0
	- FINE	3. 5	Concrete 🗵 0 1
13. Sieve analysis attached? ☐ Yes	⊠ No	3. Surface seal: 4. Material between 5. Annular space so bLbs/gal n cLbs/gal n d% Bento eFt^3 f. How installed 6. Bentonite seal: b. □ 1/4 in. □ c 7. Fine sand material	Other 🗆 💆
_	y □ 50	4. Material between	n well casing and protective pipe:
Hollow Stem Auge	er 🛮 4 1		Bentonite ☐ 3 0 NA Other ☑
Other	er 🗆 🚨 📗	¥	
15 Duilling Strid was to Water 1702 A		5. Annular space se	
15. Drilling fluid used: Water □ 0 2 A Drilling Mud □ 0 3 Nor	ir □01	bLbs/gal 1	mud weight. Bentonite-sand slurry 3 5
Dinning wind 10 3 No.		cLbs/gal i	mud weight Bentonite slurry 3 1
16. Drilling additives used? ☐ Yes	⊠No	d% Bento	nite Bentonite-cement grout 5 0
		ert f. How installed	volume added for any of the above d: Tremie □ 01
Describe		i. How instance	Tremie pumped 0 2
17. Source of water (attach analysis):			Gravity ⊠ 08
		6. Bentonite seal:	•
		6. Bentonte sear.	3/8 in. \square 1/2 in. Bentonite pellets \square 3 2
E. Bentonite seal, top96.7 ft. MSL	10 A	0. 1.74 iii. 1	Other
E. Bentointe seai, top it. MSL	or n.	7. Fine sand materi	ial: Manufacturer, product name and mesh siz
F. Fine sand, top ft. MSL			NA S
1. I like saile, top it. Wish	or ft.	b. Volume added	
G. Filter pack, top 95.2 ft. MSL	or2.5 ft.	`/ /	rial: Manufacturer, product name and mesh si
. Their puerly top		/ a	20/40 Badger Sand
H. Screen joint, top 94.7 ft. MSL	or3.0 ft.	b. Volume added	-
,,,		9. Well casing:	Flush threaded PVC schedule 40 ⊠ 23
I. Well bottom 84.7 ft. MSL	or13.0 ft. <	1	Flush threaded PVC schedule 80 \(\square 24 \)
		<u></u>	Other 🗆 💆
J. Filter pack, bottom 84.2 ft. MSL	or13.5 ft	10. Screen material:	PVC
•		a. Screen Type:	
K. Borehole, bottom 84.2 ft. MSL	or13.5 ft. <		Continuous slot 0 1
·			Other 🗆 🛂 🗓
L. Borehole, diameter8.0 in.		b. Manufacturer	
•		c. Slot size:	
M. O.D. well casing $\frac{2.37}{}$ in.		d. Slotted lengtl	
-		`11. Backfill material	l (below filter pack): None ⊠ 14
N. I.D. well casing 2.06 in.			Other 🗆
I hereby certify that the information on this		of my knowledge.	
Signature on M	Firm STS Consu	ltants Ltd.	Tel: 920-468-1978
L 0111 / 1 .	1025 V 1 D	riva Graan Day Wissonsin	Fav. 020 469 2212

Please complete both Forms #400-113A and 400-113B and return to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be

sent

* State of Wisconsin

MONITORING WELL DEVELOPMENT

Department of Natural Resources			Form 4400-1		Rev. 6-97
Route To: Watershee	d/Wastewater	Waste Management			
Remediat	ion/Redevelopment 🗌	Other			
Facility/Project Name	County		Well Name		
One Hour Martinizing Dry Cleaning	Service	Brown		M	W-5
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Nu	mber	DNR Well	
	5				
1. Can this well be purged dry?	⊠ Yes □ No	11. Depth to Water	Before De	velopment	After Development
2. Well development method: surged with bailer and bailed	⊠ 41	(from top of well casing)	a.	7.77 ft.	11.52 ft.
surged with bailer and pumped surged with block and bailed	□ 61 □ 42	Date	b. 12/2	8/1999	12/28/1999
surged with block and pumped surged with block, bailed, and pumped compressed air	□ 62 □ 70 □ 20	Time	c. 12	:24 pm	12:58 pm
bailed only pumped only	□ 10 □ 51	12. Sediment in well	. 12	inches	inches
pumped slowly other	□ 50 □ □ <u>□</u>	bottom 13. Water clarity	Clear □ Turbid ⊠	1 0 1 5	Clear ⊠ 20 Turbid □ 25
3. Time spent developing well	34.0 min.		(Describe)		(Describe)
4. Depth of well (from top of well casing)	12.5 ft.				
5. Inside diameter of well	2.06 in.				
6. Volume of water in filter pack and well casing	4.0 gal.	Fill in if drilling fluids	were used and	well is at soli	
7. Volume of water removed from well	4.0 gal.	14. Total suspended	, word agod and	mg/l	mg/l
8. Volume of water added (if any)	gal.	solids			
9. Source of water added		15. COD		mg/l	mg/l
10. Analysis performed on water added?	☐ Yes ⊠ No	16. Well developed by:		e and Firm	
(If yes, attach results)	Kent Ch				
		STS Co	nsultants Ltd	<u>d.</u>	
17. Additional comments on development: Groundwater monitoring well was s	urged and purged dry t	hree times.			

Facility Address or Owner/Responsible Party Address	I hereby certify that the above information is true and correct to the best of my knowledge.
Name:	Dana M
Firm: One Hour Martinizing Dry Cleaning Service	Signature:
Street: 1233 Military Avenue	Print Name: PAUL M. GARVEY
City/State/Zip: Green Bay, Wisconsin	Firm: STS Consultants Ltd.

NOTE: See instructions for more information including a list of county codes and well type codes.

State of Wisconsin
Department of Natural Resources

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 5-97

				Ro	ute To:	Watershed/W Remediation/	astewater Redevelopme	nt 🗌	Waste Other		gement								
		•					·									Pa	ge 1	of	1
Facili	ty/Pr	ojec	t Nam	ie					License	/Permi	t/Monito	oring N	umber		Boring	Numb			
On	e H	our	Mar	tinizin	g Dry	Cleaning Ser	vice											W-6	
Borin	g Dr	illed	By (F	irm nar	ne and na	ame of crew chie	ef)		Date Dr	illing S	Started		Da	te Drill	ing Co	mpleted			ling Method
Rο	art I	on	സമവ	- T E	lamini	o - STS Proje	act No. 248	71 YE		12/1	4/199	٥			12/14	/1999			ollow-stem uger
			ell No			Well ID No.	Common We		Final St				Surfac	e Eleva		1222	В		Diameter
	•						MW	⁷ -6	}		MSL		J	96.9 I		ISL			Inches
					id Origir				1		0	,	11	Local (irid Lo	cation ((If appl	icable)	
State				-		Side-Fox Riv	5, 0,		Lat.		_								E
Facili		1/4	of	1	4 of Sec	County	T N, F		Long		ICivil 7	Town/C	ity/ or	Village	Fee	t 🗆 S		-	Feet W
1 aciii	ty II				- 1	Brown			50unty Ct	ouc	1	n Bay	-	v mage					
Sa	mpl	e T				210		L.`			1	<u> </u>			Soil	Prop	erties	-	
Call Daniel Daniel								[.											
	tt. &	9	unts	Fee		And Ge	ologic Origin	For						sive		:			22
ber	: ¥	vere	ိ	h In		Eac	h Major Unit			CS	Pic.	ram	Œ	pres igth	iture	le T	icity		/ men
Number and Type	Length Att.	Recovered (in)	Blow Counts	Depth In Feet						S D	Graphic Log	Well Diagram	(PID) FID	Compressive Strength	Mois Cont	Liquid	Plasticity Index	P 200	RQD/ Comments
S-1 SS	$\frac{1}{\epsilon}$			F							$\overline{\otimes}$	\(\frac{1}{8}\)	<1	0.0					
SS	\parallel	5		E	Fill: C	Grass - dark brov	vn organic silt	- topsoil											
1	\bigvee	- 1		-1.5	. 1.						\bowtie								
S-2 SS	$\frac{2}{2}$	4	12	F									- 1		. *				
33	(2	4		3.0	7771			~ 11.	,		\bowtie	H .	}						
L	1			F	Fill; L	Dark brown silty	clay and brow	vn fine silty	y sand		\bowtie								
	1	2		4.5															
S-3 SS	$\frac{2}{1}$	4	9	<u> </u>								目	1						
SS	$\left(\left \right ^{-1} \right $	2		-6.0															
	<u> </u>			E															
6.4	$\frac{2}{2}$	<u> </u>	8	- -7.5															
S-4 SS	$\int \frac{2}{2}$	4	8	E									1						
- 1/	\setminus	- 1		- -9.0															
- 1	4	8		Ε	_	brown to brown to wet - lacustrir		le gray mo	ttling -	CL									
	-	<u> </u>		10.5	inoist i	to wet " lacasum							-						
				- 10.5						1									
				F 120]					
				12.0															
				-									}						
_	1			13.5	End of	f Boring					1		1]]					
						g advanced from	0.0 feet to 13	.5 feet by											
						/-stem auger ed 2-inch diame	ter Schedule A	0 PVC											
						dwater monitoring			••										
						·													
I here	by ce	ertify	that	the info	mation o	on this form is tr	ue and correct	t to the bes	t of my k	nowled	lge.								
Signa	ture			11	M	1	Fi		Consu					****					920-468-1978
	1			144	/ [<i>-</i>	: [1035	Kenler D	riva C	reen Re	w W/I	5/211					Eow (220-468 2212

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completions of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

State of Wisconsin Department of Natural Resources Route To:	Watershed/Wastew Remediation/Redev		Waste Man	agement 🗌	MONITORING WELL Form 4400-113A	CONSTI		ON
Facility/Project Name	Local Grid Location				Well Name	100.0-		
One Hour Martinizing Dry Cleaning Service	j .		ft.	QE,	MW	-6		
Facility License, Permit or Monitoring No.	Grid Origin Location	on	(Check i	if estimated: \(\)	Wis. Unique Well No D	NR Weli	Number	_
3	I at	" Lon	o o	' " or	•			
Facility ID	P.C. 2	-9 West Side	-Fox River	ft. E. S/C/N	Date Well Installed			_
•	St. Plane Section Location of			II. E. 3/C/N	12/14/1	999		
Type of Well			_	□ E	Well Installed By: (Per	son's Nam	e and Fi	irm
Well Code 11/mw	1/4 of Location of Well R			N, R W	J. Flam	inio		
Distance Well Is From Waste/Source	u Upgradient		legradient					
Boundary ft.	d □ Downgradie				Boart Lor	ngyear		
A. Protective pipe, top elevation			1.	Cap and lock?		⊠ Yes	s 🗆 No)
B. Well casing, top elevation9	6.65 ft. MSL	╼═╫┰┰┞	2.	Protective cover	• •		9.0 i	:
				b. Length:	i •	_	1.0	III.
C. Land surface elevation	96.9 ft. MSL 🔍	ا البير >		c. Material:		 Steel	<u> </u>	
D. Surface seal, bottom 95.9 ft. MSL	or <u>1.0</u> ft. 🐯		16 21 21 16 21 21	C. Material.				
12. USCS classification of soil near screen:	<u> </u>		NATE ATTE AT EXCORDING	d. Additional pro	tection?		. □ □ □ . No	
1	W□ SP□	<u> </u>	X):		, 6 110	•
	L⊠ CH□			• .		Bentonite)
Bedrock □			`3.	Surface seal:		Concrete		-
13. Sieve analysis attached? ☐ Yes	⊠ No					_ Other		
14. Drilling method used: Rotar	y □50		4.	Material between	well casing and protecti			
Hollow Stem Auge	*				- •	Bentonite		
Othe	er 🗆 🖺 📗				NA	_ Other	⊠	(george
			5.	Annular space sea	al: a. Granular	Bentonite	⊠ 33	3
_	ir 🗆 0 1				nud weight . Bentonite-sa			
Drilling Mud □ 0 3 Non	e ⊠99		c	Lbs/gal m	nud weight Bentor	nite slurry	□ 31	i
16 Duilling additions used?	57.No				nite Bentonite-cem)
16. Drilling additives used? ☐ Yes	⊠ No		e		volume added for any of			
Describe			f	How installed		Tremie		
17. Source of water (attach analysis):	· · · · · · · · · · · · · · · · · · ·				Tremi	e pumped		
17. Source of water (attach analysis).		- ₩ ₩				Gravity	⊠ 08	š
			_, 6.	Bentonite seal:		-		
			/		3/8 in. □ 1/2 in. Benton	•	202007774	/ b
E. Bentonite seal, top 95.9 ft. MSL	or ft. \	. 🛭 🗱			1 3 6 6 6			
		\	9 / /	Fine sand materia	al: Manufacturer, produc	t name and	i mesh s	51Z(
F. Fine sand, top ft. MSL	or ft. \		//	a				1
G Files - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	25 0		1/ .	b. Volume added				
G. Filter pack, top 94.4 ft. MSL	or <u>2.5</u> ft. \		/°.	_	ial: Manufacturer, produ 20/40 Badger Sand	ct name ar	na mesn	
H. Screen joint, top 93.9 ft. MSL	or3.0_ ft. ~			a				*
ri. Screen John, top it. MSL	or 1t. ~			b. Volume added Well casing:	Flush threaded PVC scl	h a d1 a 40	57 A A	
I. Well bottom 83.9 ft. MSL	or13.0 ft. <		<i>y</i> 3.	wen casing.	Flush threaded PVC scl			
i. Well dottom	01 11. <				Trush uncaded 1 v C ser	_ Other	75765 nm	
J. Filter pack, bottom 83.4 ft. MSL	or13.5 ft. ~		10	Screen material:	PVC	_ Office		÷ 3
3.1 mer pack, bottom it. IVISE	01 1t.	VIIIII	-10.	a. Screen Type:		actory cut	<u></u>	
K. Borehole, bottom 83.4 ft. MSL	or13.5 ft. <			u. Scroon 13pc.		nuous slot		
-	V \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Collina			
L. Borehole, diameter8.0 in.		V/////	(n)	b. Manufacturer	Boart Longyear		U	•
				c. Slot size:			0.006 i	n.
M. O.D. well casing 2.37 in.				d. Slotted length:	:	_	10.0	ft.
****			\ _{11.}	_	(below filter pack):	None	⊠ 14	
N. I.D. well casing 2.06 in.								30
I hereby certify that the information on this f	orm is true and corr	ect to the best o	f my knowled	dge.				
Signature	Firm	STS Consult	ants Ltd.			Tel: 920-4	468 - 197	18
- Lully a		1035 Kepler Dr		y, Wisconsin		Fax: 920-4		

Please complete both Forms 4400-113A and 4400-113B and return to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. DR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be

* State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 6-97

Route To: Watershed/Wa	stewate	er 🔲	Waste Management								
Remediation/R	Redevel	opment 🗌	Other 🗌								
Facility/Project Name		County		Well Name							
One Hour Martinizing Dry Cleaning Ser-	vice		Brown		M	W-6					
Facility License, Permit or Monitoring Number		County Code	Wis. Unique Well Nu	mber	DNR Well	l Number					
		5									
1. Can this well be purged dry?	⊠ Yes	; □ No	11. Depth to Water	Before De	velopment	After Development					
2. Well development method:			(from top of		7.45 ft.	11.55 ft.					
	⊠ 4	1	well casing)	a.	7.43 II.	11.33 IL					
.											
			Date	b. 12/2	8/1999	12/28/1999					
_	□ 7 □ 6	_]			12.20.1777					
	□ 7		1	•							
			Time	c. 12	:33 pm	01:04 pm					
-		-	Time	C. 12	.55 pm	01.04 pin					
	□ 1 □ 5	-	12. Sediment in well		inches	inches					
	□ 3 □ 5		bottom		Hiches	niches					
		<u>.</u>	13. Water clarity	Clear 🗆	10	Clear ⊠ 20					
other	⊔ 型	24	15. Water clarity		15	Turbid 25					
3. Time spent developing well	3	1.0 min.		(Describe)		(Describe)					
4. Depth of well (from top of well casing)	1	2.5 ft.									
5. Inside diameter of well	2	.06 in.									
C. Mahama Garage in Change and a second											
6. Volume of water in filter pack and well casing		4.0 gal.									
casing		4.0 gai.	Fill in if drilling fluids		all in as anli	id Consistent					
			Fill in it drilling fluids	were used and	wen is at son	iu wasie racinty:					
7. Volume of water removed from well		4.0 gal.	14 Total ayanandad			A					
0.37-1 (11.1/(6)		•	14. Total suspended solids		mg/l	mg/l					
8. Volume of water added (if any)		gal.	Sonds								
9. Source of water added			15. COD		mg/l	mg/l					
			16. Well developed by:	: Person's Nam	e and Firm						
10. Analysis performed on water added?	☐ Yes	⊠ No									
(If yes, attach results)			Kent Christen								
			STS Consultants Ltd.								
17. Additional comments on development:				······							
Groundwater monitoring well was surge	ed and	l purged dry t	hree times.								
Cround water memoring went was surgi	J 4 411C	. pargea ary t									
Facility Address or Owner/Responsible Party Address			1		<u> </u>						
Name:			I hereby certify that th knowledge.	e above inform	ation is true a	nd correct to the best of my					
regire.				100	1 N	1					
Firm: One Hour Martinizing Dry Cleani	ing Se	rvice	Signature:	W/K		lan					
Street: 1233 Military Avenue			Print Name: PAU	IL M.	GARVE	EY/					
Cin/State/Zin. Green Bay Wisconsin			STS C	Consultants I	td						

NOTE: See instructions for more information including a list of county codes and well type codes.

APPENDIX B

Robert E. Lee & Associates, Inc. Laboratory Reports

Engineering, Surveying, Laboratory Services

2825 S. Webster Ave. P.O. Box 2100 Green Bay, WI 54306-2100 Phone: (920) 336-6338

Fax: (920) 336-9141 E-Mail: rel@releeinc.com Milwaukee Area 830 Armour Rd. Oconomowoc, WI 53066 Phone: (262)569-8893 1-800-775-8893

Fax: (262)569-7995

Wisconsin Certification Number: 405043870

PAUL GARVEY STS CONSULTANTS LTD - GREEN BAY 1035 KEPLER DR **GREEN BAY WI 54311**

Phone:

(920)468-1978

Fax:

(920)468-3312

Client ID:

000875100

Contact ID:

3487

Sample Info	rmation	Number of pages attac	hed
Report Date:	1/28/2000	Coversheet:	1
Chain Number:	75681	Analyst generated narratives:	3
Project No:	24871XF	Certificate of Analysis:	12
Project Name:	MILITARY-1 HR MARTINIZING	Flag description:	1
Receive Date:	1/04/2000	Invoice:	2
Sample Date:	1/04/2000	Chain of Custody:	1
		DNR Form:	0
		Sample non-compliance Report	0
		Subcontracted Lab Report:	0
		Miscellaneous:	0
		Total pages:	20

Attest: Stu Hera,

Please visit our new Internet homepage at

www.releeinc.com

Solid sample results are reported on a dry weight basis.

ROBERT E. LEE & ASSOCIATES, INC

CLIENT:

STS CONSULTANTS LTD - GREEN BAY

PROJECT:

24871XF/MILITARY-1 HR MARTINIZING

CHAIN NUMBER:

75681

NARRATIVE

This narrative is relevant to samples MW-1, MW-2, MW-3, MW-4, MW-5, MW-6 and PZ-1.

The samples were prepared by SW-846 Method 3810 and analyzed for light hydrocarbons following SW-846 Method 8015.

The sample used for the matrix spikes is not listed above. The following is a summary of the quality control results:

- 1. The reported compounds were not detected in the method blank.
- 2. The precision between the matrix spike recovery and the matrix spike duplicate recovery was within laboratory limits for each of the reported compounds.
- 3. The matrix spike recovery was within laboratory limits for each of the reported compounds.
- 4. The matrix spike duplicate recovery was within laboratory limits for each of the reported compounds.
- 5. The initial and final check standards verified the calibration curve for each of the reported compounds.

Steve Heraly

Laboratory Coordinator

Ivy

ROBERT E. LEE & ASSOCIATES, INC.

CLIENT: PROJECT:

STS CONSULTANTS LTD - GREEN BAY 24871XF / MILITARY-1 HR MARTINIZING

CHAIN NUMBER:

75681

NARRATIVE

This narrative is relevant to sample MW-1.

The sample was analyzed for volatile organic compounds following SW-846 Method 8260.

The following is a summary of the quality control results:

- 1. The reported compounds were not detected in the method blank.
- 2. The precision between the matrix spike recovery and the matrix spike duplicate recovery was within laboratory limits for each of the reported compounds.
- 3. The matrix spike recovery was within laboratory limits for each of the reported compounds.
- 4. The matrix spike duplicate recovery was within laboratory limits for each of the reported compounds.
- 5. The surrogate recovery was within laboratory limits for each of the three surrogates spiked.
- 6. The initial and final calibration check standards verified the calibration curve for each of the reported compounds.
- 7. The result for trichloroethene was diluted 1 to 50. The result for tetrachloroethene was diluted 1 to 5000. The tetrachloroethene result was analyzed over the hold date. The sample was analyzed twice within the hold time. On January 13, 2000 the sample was not diluted and the tetrachloroethene result was 1650 ug/L. This result was above the calibration limits and looked to have flooded the detector. On January 15, 2000 the tetrachloroethene result was 116000 ug/L which was diluted 1 to 50 and this result was also above the calibration limit. It is believed that the January 15 result was too high due to a linearity problem at that high of a concentration.

Steve Heraly

Laboratory Coordinator

JF

ROBERT E. LEE & ASSOCIATES, INC.

CLIENT:

STS CONSULTANTS LTD - GREEN BAY 24871XF / MILITARY - 1 HR MARTINIZING

PROJECT: CHAIN NUMBER:

75681

NARRATIVE

This narrative is relevant to samples MW-2, MW-3, MW-4, MW-6, PZ-1, TRIP BLANK and MW-5.

The samples were analyzed for volatile organic compounds following SW-846 Method 8260.

The following is a summary of the quality control results:

- 1. The reported compounds were not detected in the method blank.
- 2. The precision between the matrix spike recovery and the matrix spike duplicate recovery was within laboratory limits for each of the reported compounds.
- 3. The matrix spike recovery was within laboratory limits for each of the reported compounds.
- 4. The matrix spike duplicate recovery was within laboratory limits for each of the reported compounds.
- 5. The surrogate recovery for all samples was within laboratory limits for each of the three surrogates spiked.
- 6. The initial and final calibration check standards verified the calibration curve for each of the reported compounds.
- 7. The result for tetrachloroethene in sample MW-6 was diluted 1 to 50.

Steve Heraly

Laboratory Coordinator

JF

Wisconsin Certification Number: 405043870 Certificate of Analysis Report

STS Consultants Ltd - Green Bay

1035 Kepler Dr

Green Bay, WI 54311 Project Number: 24871XF

Project Name: MILITARY-1 HR MARTINIZING

Attn: Paul Garvey

Phone: (920)468-1978

Fax: (920)468-3312

Page: 1 of 12

Client ID: 000875100

Chain: 75681 Report Date: 1/28/2000

Method	Parameter Name	Result	Units Fla	g MDL	PQL	Anl.Date /	Analyst
Lab No. C	ollect Date Sample ID			2.00			
00REL000108	1/04/2000 MW-1						
EPA-353.2	Nitrogen-Nitrate/Nitrite	11	mg/L	0.28	0.93	1/07/2000	CLS
SW-846-8015B	_	<14	ug/L	14	47	1/07/2000	JHI
SW-846-8015B		<14	ug/L	14	47	1/07/2000	JHI
SW-846-8015B		1100	ug/L	7.2	24	1/07/2000	JHI
	1,1,1,2-Tetrachloroethane	<0.19	ug/L	0.19	0.63	1/13/2000	JF
	1,1,1-Trichloroethane	<0.3	ug/L	0.3	1.0	1/13/2000	JF
	1,1,2,2-Tetrachloroethane	<0.52	ug/L	0.52	1.7	1/13/2000	JF
	1,1,2-Trichloroethane	<0.2	ug/L	0.2	0.67	1/13/2000	JF
	1,1-Dichloroethane	<0.15	ug/L	0.15	0.49	1/13/2000	JF
	1,1-Dichloroethene	0.38	ug/L	0.11	0.37	1/13/2000	JF
	1,1-Dichloropropene	<0.25	ug/L	0.25	0.84	1/13/2000	JF
	1,2,3-Trichlorobenzene	<0.052	ug/L	0.052	0.17	1/13/2000	JF
	1,2,3-Trichloropropane	<0.99	ug/L	0.99	3.3	1/13/2000	JF
	1,2,4-Trichlorobenzene	<0.050	ug/L	0.050	0.17	1/13/2000	JF
	1,2,4-Trimethylbenzene	<0.46	ug/L	0.46	1.5	1/13/2000	JF
	1,2-Dibromo-3-chloropropane	<0.23	ug/L	0.23	0.77	1/13/2000	JF
	1,2-Dibromoethane	<0.4	ug/L	0.4	1.3	1/13/2000	JF
	1,2-Dichlorobenzene	<0.036	ug/L	0.036	0.12	1/13/2000	JF
	1,2-Dichloroethane	<0.35	ug/L	0.35	1.2	1/13/2000	JF
	1,2-Dichloropropane	<0.094	ug/L	0.094	0.31	1/13/2000	JF
	1,3,5-Trimethylbenzene	<0.35	ug/L	0.35	1.2	1/13/2000	JF
	1,3-Dichlorobenzene	<0.49	ug/L	0.49	1.6	1/13/2000	JF
	1,3-Dichloropropane	<0.26	ug/L	0.46	0.87	1/13/2000	JF
	1,4-Dichlorobenzene	<0.45	ug/L	0.45	1.5	1/13/2000	JF
	2,2-Dichloropropane	<0.78	ug/L	0.78	2.6	1/13/2000	JF
	2-Chlorotoluene	<0.25	ug/L	0.25	0.83	1/13/2000	JF
	4-Chlorotoluene	< 0.65	ug/L	0.65	2.2	1/13/2000	JF
SW-846-8260B		<0.19	ug/L	0.19	0.63	1/13/2000	JF
	Bromobenzene	<0.34	ug/L ug/L	0.34	1.1	1/13/2000	JF
	Bromochloromethane	<0.17	ug/L	0.17	0.55	1/13/2000	JF
	Bromodichloromethane	2.4	ug/L	0.25	0.83	1/13/2000	JF
	Bromofluorobenzene-Surrogate	89	% Rec	0.25	0.00	1/13/2000	JF
SW-846-8260B	_	<0.45	ug/L	0.45	1.5	1/13/2000	JF
	Bromomethane	<0.34	ug/L	0.34	1.1	1/13/2000	JF
	Carbon tetrachloride	<0.23	ug/L	0.23	0.76	1/13/2000	JF
	Chlorobenzene	< 0.096	ug/L	0.096	0.32	1/13/2000	JF
SW-846-8260B		<0.5	ug/L ug/L	0.5	1.7	1/13/2000	JF
SW-846-8260B		<0.18	ug/L	0.18	0.59	1/13/2000	JF
	Chloromethane	<0.21	ug/L	0.21	0.71	1/13/2000	JF
	cis-1,2-Dichloroethene	62	ug/L	0.19	0.62	1/13/2000	JF
	cis-1,3-Dichloropropene	<0.096	ug/L	0.096	0.32	1/13/2000	JF
	Dibromochloromethane	<0.19	ug/L	0.19	0.64	1/13/2000	JF
	Dibromofluoromethane-Surrogate	89	% Rec	0.10	5. 5⊣	1/13/2000	JF
	Dibromomethane	<0.33	ug/L	0.33	1.1	1/13/2000	JF
	Dichlorodifluoromethane	<0.27	ug/L	0.27	0.91	1/13/2000	JF
511-040-0200B	5.0Journation of the state	· V. = 1	~ _ _		1		

Wisconsin Certification Number: 405043870 Certificate of Analysis Report

STS Consultants Ltd - Green Bay

1035 Kepler Dr

Attn: Paul Garvey
Phone: (920)468-1978
Fax: (920)468-3312
Client ID: 000875100

Page: 2 of 12

Green Bay, WI 54311 Project Number: 24871XF

Chain: 75681

Project Name: MILITARY-1 HR MARTINIZING

	Parameter Name	Result	Units	riag	MDL	TUL	Anl,Date	Analy
1.00 · 1.	Collect Date : Sample ID	1.0	aproni su					
	3 Ethylbenzene	<0.19	ug/L		0.19	0.65	1/13/2000	JF
* *	3 Hexachlorobutadiene	<0.074	ug/L		0.074	0.25	1/13/2000	JF
	3 Isopropylbenzene	<0.23	ug/L		0.23	0.77	1/13/2000	JF
SW-846-8260F	3 Methylene chloride	<0.25	ug/L		0.25	0.85	1/13/2000	JF
SW-846-8260	3 n-Butylbenzene	<0.040	ug/L		0.040	0.13	1/13/2000	JF
SW-846-8260F	3 n-Propylbenzene	<0.36	ug/L		0.36	1.2	1/13/2000	JF
SW-846-8260F	3 Naphthalene	<0.082	ug/L		0.082	0.27	1/13/2000	JF
SW-846-8260F	3 p-Isopropyltoluene	<0.12	ug/L		0.12	0.41	1/13/2000	JF
SW-846-8260F	3 sec-Butylbenzene	<0.35	ug/L		0.35	1.2	1/13/2000	JF
SW-846-8260	3 Styrene	<0.084	ug/L		0.084	0.28	1/13/2000	JF
SW-846-8260F	3 tert-Butylbenzene	<0.28	ug/L		0.28	0.94	1/13/2000	JF
SW-846-8260	3 Tetrachloroethene	13400	ug/L		1680	5600	1/19/2000	JF
SW-846-8260E	3 Toluene	0.13	ug/L	<u>13</u>	0.11	0.37	1/13/2000	JF
SW-846-8260F	3 Toluene-d8-Surrogate	107	% Rec				1/13/2000	JF
SW-846-8260F	3 trans-1,2-Dichloroethene	0.33	ug/L	<u>13</u>	0.21	0.7	1/13/2000	JF
SW-846-8260F	3 trans-1,3-Dichloropropene	<0.14	ug/L		0.14	0.45	1/13/2000	JF
SW-846-8260F	3 Trichloroethene	85	ug/L		11	35	1/15/2000	JF
SW-846-8260F	3 Trichlorofluoromethane	<0.49	ug/L		0.49	1.6	1/13/2000	JF
SW-846-8260F	3 Vinyl chloride	<0.14	ug/L		0.14	0.47	1/13/2000	JF
	3 Xylenes-Total	. <0.39	ug/L		0.39	1.3	1/13/2000	JF
SW-846-9038	Sulfate	40	mg/L		1.0	3.3	1/07/2000	DEY
SW-846-9251	Chloride	72	mg/L		0.75	2.5	1/05/1999	CLS
DEL 000400	4/04/2000 8/8/8/ 2							
・ドロレクリカカ	1/04/2000 19199-2							
PPA-353.2	1/04/2000 MW-2 Nitrogen-Nitrate/Nitrite	<0.14	. mg/L		0.14	0.47	1/07/2000	CLS
	Nitrogen-Nitrate/Nitrite	<0.14 <14	. mg/L ug/L		0.14 14	0.47 47	1/07/2000 1/07/2000	CLS JHI
EPA-353.2	Nitrogen-Nitrate/Nitrite 3 Ethane		ug/L				1/07/2000	JHI
EPA-353.2 SW-846-8015E SW-846-8015E	Nitrogen-Nitrate/Nitrite B Ethane B Ethene	<14 <14	ug/L ug/L	13	14 14	47 47	1/07/2000 1/07/2000	JHI
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8015E	Nitrogen-Nitrate/Nitrite Bethane Center of the state of	<14 <14 11	ug/L ug/L ug/L	<u>13</u>	14 14 7.2	47 47 24	1/07/2000 1/07/2000 1/07/2000	JHI JHI
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8015E SW-846-8260E	Nitrogen-Nitrate/Nitrite 3 Ethane 3 Ethene 3 Methane 3 1,1,1,2-Tetrachloroethane	<14 <14 11 <0.19	ug/L ug/L ug/L ug/L	<u>13</u>	14 14 7.2 0.19	47 47 24 0.63	1/07/2000 1/07/2000 1/07/2000 1/13/2000	JHI JHI JHI
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8015E SW-846-8260E SW-846-8260E	Nitrogen-Nitrate/Nitrite 3 Ethane 3 Ethene 3 Methane 3 1,1,1,2-Tetrachloroethane 3 1,1,1-Trichloroethane	<14 <14 11 <0.19 <0.3	ug/L ug/L ug/L ug/L ug/L	<u>13</u>	14 14 7.2 0.19 0.3	47 47 24 0.63 1.0	1/07/2000 1/07/2000 1/07/2000 1/13/2000 1/13/2000	JHI JHI JHI JF JF
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8260E SW-846-8260E SW-846-8260E	Nitrogen-Nitrate/Nitrite Bethane Control Cont	<14 <14 11 <0.19 <0.3 <0.52	ug/L ug/L ug/L ug/L ug/L	<u>13</u>	14 14 7.2 0.19 0.3 0.52	47 47 24 0.63 1.0 1.7	1/07/2000 1/07/2000 1/07/2000 1/13/2000 1/13/2000 1/13/2000	JHI JHI JHI JF JF
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E	Nitrogen-Nitrate/Nitrite Bethane Continued the state of	<14 <14 11 <0.19 <0.3 <0.52 <0.2	ug/L ug/L ug/L ug/L ug/L ug/L	<u>13</u>	14 14 7.2 0.19 0.3 0.52 0.2	47 47 24 0.63 1.0 1.7 0.67	1/07/2000 1/07/2000 1/07/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000	JHI JHI JF JF JF JF
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E	Nitrogen-Nitrate/Nitrite Bethane Cethene Methane 1,1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,1-Dichloroethane	<14 <14 11 <0.19 <0.3 <0.52 <0.2 <0.15	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>13</u>	14 7.2 0.19 0.3 0.52 0.2 0.15	47 47 24 0.63 1.0 1.7 0.67 0.49	1/07/2000 1/07/2000 1/07/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000	JHI JHI JF JF JF JF
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E	Nitrogen-Nitrate/Nitrite Ethane Ethane Methane 1,1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	<14 <14 11 <0.19 <0.3 <0.52 <0.2 <0.15 <0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>13</u>	14 7.2 0.19 0.3 0.52 0.2 0.15 0.11	47 47 24 0.63 1.0 1.7 0.67 0.49	1/07/2000 1/07/2000 1/07/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000	JHI JHI JF JF JF JF JF
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E	Nitrogen-Nitrate/Nitrite Ethane Methane 1,1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	<14 <14 11 <0.19 <0.3 <0.52 <0.2 <0.15 <0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>13</u>	14 7.2 0.19 0.3 0.52 0.2 0.15 0.11 0.25	47 47 24 0.63 1.0 1.7 0.67 0.49 0.37 0.84	1/07/2000 1/07/2000 1/07/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000	JHI JHI JF JF JF JF JF
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E	Nitrogen-Nitrate/Nitrite Ethane Ethane Methane 1,1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	<14 <14 11 <0.19 <0.3 <0.52 <0.2 <0.15 <0.11 <0.25 <0.052	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>13</u>	14 14 7.2 0.19 0.3 0.52 0.2 0.15 0.11 0.25 0.052	47 47 24 0.63 1.0 1.7 0.67 0.49 0.37 0.84 0.17	1/07/2000 1/07/2000 1/07/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000	JHI JHI JF JF JF JF JF
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E	Nitrogen-Nitrate/Nitrite Bethane Cethane Methane 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	<14 <14 11 <0.19 <0.3 <0.52 <0.2 <0.15 <0.11 <0.25 <0.099	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>13</u>	14 14 7.2 0.19 0.3 0.52 0.2 0.15 0.11 0.25 0.052 0.99	47 47 24 0.63 1.0 1.7 0.67 0.49 0.37 0.84 0.17 3.3	1/07/2000 1/07/2000 1/07/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000	HI
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E	Nitrogen-Nitrate/Nitrite Ethane Ethane Methane 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	<14 <14 11 <0.19 <0.3 <0.52 <0.2 <0.15 <0.11 <0.25 <0.052 <0.052 <0.050	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>13</u>	14 7.2 0.19 0.3 0.52 0.2 0.15 0.11 0.25 0.052 0.99 0.050	47 47 24 0.63 1.0 1.7 0.67 0.49 0.37 0.84 0.17 3.3 0.17	1/07/2000 1/07/2000 1/07/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E	Nitrogen-Nitrate/Nitrite Ethane Ethane Methane 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene	<14 <14 11 <0.19 <0.3 <0.52 <0.2 <0.15 <0.11 <0.25 <0.052 <0.99 <0.050 <0.46	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>13</u>	14 7.2 0.19 0.3 0.52 0.2 0.15 0.11 0.25 0.052 0.99 0.050 0.46	47 47 24 0.63 1.0 1.7 0.67 0.49 0.37 0.84 0.17 3.3 0.17 1.5	1/07/2000 1/07/2000 1/07/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E	Nitrogen-Nitrate/Nitrite Ethane Ethane Methane 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	<14 <14 11 <0.19 <0.3 <0.52 <0.2 <0.15 <0.11 <0.25 <0.052 <0.052 <0.099 <0.050 <0.46 <0.23	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>13</u>	14 7.2 0.19 0.3 0.52 0.2 0.15 0.11 0.25 0.052 0.99 0.050 0.46 0.23	47 47 24 0.63 1.0 1.7 0.67 0.49 0.37 0.84 0.17 3.3 0.17 1.5	1/07/2000 1/07/2000 1/07/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000	
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E	Nitrogen-Nitrate/Nitrite Ethane Methane 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichloropropene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	<14 <14 11 <0.19 <0.3 <0.52 <0.2 <0.15 <0.11 <0.25 <0.052 <0.052 <0.99 <0.050 <0.46 <0.23 <0.4	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>13</u>	14 14 7.2 0.19 0.3 0.52 0.2 0.15 0.11 0.25 0.052 0.99 0.050 0.46 0.23 0.4	47 47 24 0.63 1.0 1.7 0.67 0.49 0.37 0.84 0.17 3.3 0.17 1.5 0.77	1/07/2000 1/07/2000 1/07/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000	
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E	Nitrogen-Nitrate/Nitrite Ethane Ethane Methane 1,1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dibromoethane	<14 <14 11 <0.19 <0.3 <0.52 <0.2 <0.15 <0.11 <0.25 <0.052 <0.052 <0.052 <0.99 <0.050 <0.46 <0.23 <0.4 <0.036	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>13</u>	14 14 7.2 0.19 0.3 0.52 0.2 0.15 0.11 0.25 0.052 0.99 0.050 0.46 0.23 0.4 0.036	47 47 24 0.63 1.0 1.7 0.67 0.49 0.37 0.84 0.17 3.3 0.17 1.5 0.77 1.3	1/07/2000 1/07/2000 1/07/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E	Nitrogen-Nitrate/Nitrite Ethane Ethane Methane 1,1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene	<14 <14 11 <0.19 <0.3 <0.52 <0.2 <0.15 <0.11 <0.25 <0.052 <0.99 <0.050 <0.46 <0.23 <0.4 <0.036 <0.35	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>13</u>	14 14 7.2 0.19 0.3 0.52 0.2 0.15 0.11 0.25 0.052 0.99 0.050 0.46 0.23 0.4 0.036 0.35	47 47 24 0.63 1.0 1.7 0.67 0.49 0.37 0.84 0.17 3.3 0.17 1.5 0.77 1.3 0.12	1/07/2000 1/07/2000 1/07/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E SW-846-8260E	Nitrogen-Nitrate/Nitrite Ethane Ethane Methane 1,1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene	<14 <14 11 <0.19 <0.3 <0.52 <0.2 <0.15 <0.11 <0.25 <0.052 <0.052 <0.052 <0.052 <0.099 <0.050 <0.46 <0.23 <0.4 <0.036 <0.35 <0.094	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>13</u>	14 7.2 0.19 0.3 0.52 0.2 0.15 0.11 0.25 0.052 0.99 0.050 0.46 0.23 0.4 0.036 0.35 0.094	47 47 24 0.63 1.0 1.7 0.67 0.49 0.37 0.84 0.17 3.3 0.17 1.5 0.77 1.3 0.12 1.2	1/07/2000 1/07/2000 1/07/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
EPA-353.2 SW-846-8015E SW-846-8015E SW-846-8260E	Nitrogen-Nitrate/Nitrite Ethane Ethane Methane 1,1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene	<14 <14 11 <0.19 <0.3 <0.52 <0.2 <0.15 <0.11 <0.25 <0.052 <0.99 <0.050 <0.46 <0.23 <0.4 <0.036 <0.35	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	13	14 14 7.2 0.19 0.3 0.52 0.2 0.15 0.11 0.25 0.052 0.99 0.050 0.46 0.23 0.4 0.036 0.35	47 47 24 0.63 1.0 1.7 0.67 0.49 0.37 0.84 0.17 3.3 0.17 1.5 0.77 1.3 0.12	1/07/2000 1/07/2000 1/07/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000 1/13/2000	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Wisconsin Certification Number: 405043870 Certificate of Analysis Report

STS Consultants Ltd - Green Bay

1035 Kepler Dr

Attn: Paul Garvey
Phone: (920)468-1978
Fax: (920)468-3312
Client ID: 000875100

Page: 3 of 12

Green Bay, WI 54311 Project Number: 24871XF

Project Name: MILITARY-1 HR MARTINIZING

Chain: 75681 Report Date: 1/28/2000

Method	Parameter Name	Result	Units Flag	MDL	PQL A	nl.Date	Analyst
Lab No. Co	ollect Date Sample ID						
	1,3-Dichloropropane	<0.26	ug/L	0.26	0.87	1/13/2000	JF
•	1,4-Dichlorobenzene	<0.45	ug/L	0.45	1.5	1/13/2000	JF
	2,2-Dichloropropane	<0.78	ug/L	0.78	2.6	1/13/2000	JF
	2-Chlorotoluene	<0.25	ug/L	0.25	0.83	1/13/2000	JF
	4-Chlorotoluene	<0.65	ug/L	0.65	2.2	1/13/2000	JF
SW-846-8260B		<0.19	ug/L	0.19	0.63	1/13/2000	JF
	Bromobenzene	<0.34	ug/L	0.34	1.1	1/13/2000	JF
	Bromochloromethane	<0.17	ug/L	0.17	0.55	1/13/2000	JF
	Bromodichloromethane	<0.25	ug/L	0.25	0.83	1/13/2000	JF
	Bromofluorobenzene-Surrogate	94	% Rec			1/13/2000	JF
SW-846-8260B		<0.45	ug/L	0.45	1.5	1/13/2000	JF
	Bromomethane	<0.34	ug/L	0.34	1.1	1/13/2000	JF
	Carbon tetrachloride	<0.23	ug/L	0.23	0.76	1/13/2000	JF
	Chlorobenzene	<0.096	ug/L	0.096	0.32	1/13/2000	JF
SW-846-8260B		<0.5	ug/L	0.5	1.7	1/13/2000	JF
SW-846-8260B		<0.18	ug/L	0.18	0.59	1/13/2000	JF
	Chloromethane	<0.21	ug/L	0.21	0.71	1/13/2000	JF
	cis-1,2-Dichloroethene	<0.19	ug/L	0.19	0.62	1/13/2000	JF
	cis-1,3-Dichloropropene	<0.096	ug/L	0.096	0.32	1/13/2000	JF
	Dibromochloromethane	<0.19	ug/L	0.19	0.64	1/13/2000	JF
	Dibromofluoromethane-Surrogate	90	% Rec			1/13/2000	JF
	Dibromomethane	<0.33	ug/L	0.33	1.1	1/13/2000	JF
	Dichlorodifluoromethane	<0.27	ug/L	0.27	0.91	1/13/2000	JF
SW-846-8260B		<0.19	ug/L	0.19	0.65	1/13/2000	JF
	Hexachlorobutadiene	<0.074	ug/L	0.074	0.25	1/13/2000	JF
	Isopropylbenzene	<0.23	ug/L	0.23	0.77	1/13/2000	JF
	Methylene chloride	<0.25	ug/L	0.25	0.85	1/13/2000	JF
	n-Butylbenzene	<0.040	ug/L	0.040	0.13	1/13/2000	JF
	n-Propylbenzene	<0.36	ug/L	0.36	1.2	1/13/2000	JF
SW-846-8260B		<0.082	ug/L	0.082	0.27	1/13/2000	JF
	p-isopropyltoluene	<0.12	ug/L	0.12	0.41	1/13/2000	JF
	sec-Butylbenzene	<0.35	ug/L	0.35	1.2	1/13/2000	JF
SW-846-8260B	· · · · · · · · · · · · · · · · · · ·	<0.084	ug/L	0.084	0.28	1/13/2000	JF
	tert-Butylbenzene	<0.28	ug/L	0.28	0.94	1/13/2000	JF
	Tetrachloroethene	<0.34	ug/L	0.34	1.1	1/13/2000	JF
SW-846-8260B	Toluene	<0.11	ug/L	0.11	0.37	1/13/2000	JF
	Toluene-d8-Surrogate	109	% Rec			1/13/2000	JF
	trans-1,2-Dichloroethene	<0.21	ug/L	0.21	0.7	1/13/2000	JF
	trans-1,3-Dichloropropene	<0.14	ug/L	0.14	0.45	1/13/2000	JF
	Trichloroethene	<0.21	ug/L	0.21	0.71	1/13/2000	JF
	Trichlorofluoromethane	<0.49	ug/L	0.49	1.6	1/13/2000	JF
SW-846-8260B		<0.14	ug/L	0.14	0.47	1/13/2000	JF
SW-846-8260B		<0.39	ug/L	0.39	1.3	1/13/2000	JF
SW-846-9038	Sulfate	32	mg/L	0.52	1.7	1/10/2000	DEY
SW-846-9251	Chloride	17	mg/L	0.75	2.5	1/05/1999	CLS
			-				

Wisconsin Certification Number: 405043870 Certificate of Analysis Report

STS Consultants Ltd - Green Bay

1035 Kepler Dr

Green Bay, WI 54311 Project Number: 24871XF

Project Name: MILITARY-1 HR MARTINIZING

Attn: Paul Garvey

Page: 4

of 12

Phone: (920)468-1978

Fax: (920)468-3312 Client ID: 000875100

Chain: 75681

Method	Parameter Name	Result	Units Fla	g MDL	PQL	Anl.Date	Analyst
Lab No.	ollect Date Sample ID						
00REL000110	1/04/2000 MW-3						
EPA-353.2	Nitrogen-Nitrate/Nitrite	16	mg/L	0.42	1.4	1/07/2000	CLS
SW-846-8015E	Ethane	<14	ug/L	14	47	1/07/2000	JHI
SW-846-8015E	Ethene	<14	ug/L	14	47	1/07/2000	JHI
SW-846-8015E	Methane	<7.2	ug/L	7.2	24	1/07/2000	JHI
SW-846-8260E	1,1,1,2-Tetrachloroethane	<0.19	ug/L	0.19	0.63	1/13/2000	JF
SW-846-8260E	1,1,1-Trichloroethane	<0.3	ug/L	0.3	1.0	1/13/2000	JF
SW-846-8260E	1,1,2,2-Tetrachloroethane	<0.52	ug/L	0.52	1.7	1/13/2000	JF
SW-846-8260E	1,1,2-Trichloroethane	<0.2	ug/L	0.2	0.67	1/13/2000	JF
SW-846-8260E	1,1-Dichloroethane	<0.15	ug/L	0.15	0.49	1/13/2000	JF
SW-846-8260E	1,1-Dichloroethene	<0.11	ug/L	0.11	0.37	1/13/2000	JF
SW-846-8260B	1,1-Dichloropropene	<0.25	ug/L	0.25	0.84	1/13/2000	JF
SW-846-8260B	1,2,3-Trichlorobenzene	<0.052	ug/L	0.052	0.17	1/13/2000	JF
SW-846-8260B	1,2,3-Trichloropropane	< 0.99	ug/L	0.99	3.3	1/13/2000	JF
SW-846-8260B	1,2,4-Trichlorobenzene	<0.050	ug/L	0.050	0.17	1/13/2000	JF
SW-846-8260B	1,2,4-Trimethylbenzene	<0.46	ug/L	0.46	1.5	1/13/2000	JF
SW-846-8260B	1,2-Dibromo-3-chloropropane	<0.23	ug/L	0.23	0.77	1/13/2000	JF
SW-846-8260B	1,2-Dibromoethane	<0.4	ug/L	0.4	1.3	1/13/2000	JF
SW-846-8260B	1,2-Dichlorobenzene	<0.036	ug/L	0.036	0.12	1/13/2000	JF
SW-846-8260B	1,2-Dichloroethane	<0.35	ug/L	0.35	1.2	1/13/2000	JF
SW-846-8260B	1,2-Dichloropropane	<0.094	ug/L	0.094	0.31	1/13/2000	JF
SW-846-8260B	1,3,5-Trimethylbenzene	<0.35	ug/L	0.35	1.2	1/13/2000	JF
SW-846-8260B	1,3-Dichlorobenzene	<0.49	ug/L	0.49	1.6	1/13/2000	JF
SW-846-8260B	1,3-Dichloropropane	<0.26	ug/L	0.26	0.87	1/13/2000	JF
SW-846-8260B	1,4-Dichlorobenzene	<0.45	ug/L	0.45	1.5	1/13/2000	JF
SW-846-8260B	2,2-Dichloropropane	<0.78	ug/L	0.78	2.6	1/13/2000	JF
SW-846-8260B	2-Chlorotoluene	<0.25	ug/L	0.25	0.83	1/13/2000	JF
SW-846-8260B	4-Chlorotoluene	<0.65	ug/L	0.65	2.2	1/13/2000	JF
SW-846-8260B	Benzene	<0.19	ug/L	0.19	0.63	1/13/2000	JF
SW-846-8260B	Bromobenzene	< 0.34	ug/L	0.34	1.1	1/13/2000	JF
SW-846-8260B	Bromochloromethane	<0.17	ug/L	0.17	0.55	1/13/2000	JF
SW-846-8260B	Bromodichloromethane	<0.25	ug/L .	0.25	0.83	1/13/2000	JF
SW-846-8260B	Bromofluorobenzene-Surrogate	93	% Rec			1/13/2000	JF
SW-846-8260B	_	<0.45	ug/L	0.45	1.5	1/13/2000	JF
SW-846-8260B	Bromomethane	<0.34	ug/L	0.34	1.1	1/13/2000	JF
SW-846-8260B	Carbon tetrachloride	<0.23	ug/L	0.23	0.76	1/13/2000	JF
SW-846-8260B	Chlorobenzene	<0.096	ug/L	0.096	0.32	1/13/2000	JF
SW-846-8260B	Chloroethane	<0.5	ug/L	0.5	1.7	1/13/2000	JF
SW-846-8260B	Chloroform	<0.18	ug/L	0.18	0.59	1/13/2000	JF
SW-846-8260B	Chloromethane	<0.21	ug/L	0.21	0.71	1/13/2000	JF
	cis-1,2-Dichloroethene	1.8	ug/L	0.19	0.62	1/13/2000	JF
	cis-1,3-Dichloropropene	<0.096	ug/L	0.096	0.32	1/13/2000	JF
	Dibromochloromethane	<0.19	ug/L	0.19	0.64	1/13/2000	JF
	Dibromofluoromethane-Surrogate	89	% Rec	Ģ. 10	0.04	1/13/2000	JF
OVV-040-0ZDUM							
	Dibromomethane	<0.33	ug/L	0.33	1.1	1/13/2000	JF

Wisconsin Certification Number: 405043870 Certificate of Analysis Report

STS Consultants Ltd - Green Bay 1035 Kepler Dr

Green Bay, WI 54311

Project Number: 24871XF

Project Name: MILITARY-1 HR MARTINIZING

Attn: Paul Garvey

Page: 5 of 12

Phone: (920)468-1978

Fax: (920)468-3312 Client ID: 000875100

Chain: 75681

Method	Parameter Name		Result	Units F	lag	MDL	PQL	Anl.Date	Analyst
Lab No.	Collect Date Sample ID							1848	
SW-846-826	0B Ethylbenzene		<0.19	ug/L		0.19	0.65	1/13/2000	JF
SW-846-826	0B Hexachlorobutadiene		<0.074	ug/L		0.074	0.25	1/13/2000	JF
SW-846-826	0B Isopropylbenzene		<0.23	ug/L		0.23	0.77	1/13/2000	JF
SW-846-826	0B Methylene chloride		<0.25	ug/L		0.25	0.85	1/13/2000	JF
SW-846-826	0B n-Butylbenzene		<0.040	ug/L		0.040	0.13	1/13/2000	JF
SW-846-826	0B n-Propylbenzene		<0.36	ug/L		0.36	1.2	1/13/2000	JF
SW-846-826	0B Naphthalene		<0.082	ug/L		0.082	0.27	1/13/2000	JF
SW-846-826	0B p-Isopropyltoluene		<0.12	ug/L		0.12	0.41	1/13/2000	JF
SW-846-826	0B sec-Butylbenzene		<0.35	ug/L		0.35	1.2	1/13/2000	JF
SW-846-826	0B Styrene		<0.084	ug/L		0.084	0.28	1/13/2000	JF
SW-846-826	0B tert-Butylbenzene	•	<0.28	ug/L		0.28	0.94	1/13/2000	JF
SW-846-826	0B Tetrachloroethene		489	ug/L		0.34	1.1	1/13/2000	JF
SW-846-826	0B Toluene		<0.11	ug/L		0.11	0.37	1/13/2000	JF
SW-846-826	0B Toluene-d8-Surrogate		108	% Rec			•	1/13/2000	JF
SW-846-826	0B trans-1,2-Dichloroethene		<0.21	ug/L		0.21	0.7	1/13/2000	JF
SW-846-826	0B trans-1,3-Dichloropropene		<0.14	ug/L		0.14	0.45	1/13/2000	JF
SW-846-826	0B Trichloroethene		5.9	ug/L		0.21	0.71	1/13/2000	JF
SW-846-826	OB Trichlorofluoromethane		<0.49	ug/L		0.49	1.6	1/13/2000	JF
SW-846-826	OB Vinyl chloride		<0.14	ug/L		0.14	0.47	1/13/2000	JF
SW-846-826	0B Xylenes-Total		<0.39	ug/L		0.39	1.3	1/13/2000	JF
SW-846-903	8 Sulfate		38	mg/L		0.52	1.7	1/10/2000	DEY
SW-846-925	1 Chloride		47	mg/L		0.75	2.5	1/05/1999	CLS
00REL000111	1/04/2000 MW-4								
EPA-353.2	Nitrogen-Nitrate/Nitrite		<0.14	mg/L		0.14	0.47	1/07/2000	CLS
SW-846-801			<14	ug/L		14	47	1/07/2000	JHI
SW-846-801	5B Ethene		<14	ug/L		14	47	1/07/2000	JHI
SW-846-801	5B Methane		11	ug/L	13	7.2	24	1/07/2000	JHI
SW-846-826	OB 1,1,1,2-Tetrachloroethane		<0.19	ug/L		0.19	0.63	1/14/2000	JF
SW-846-826	DB 1,1,1-Trichloroethane		<0.3	ug/L		0.3	1.0	1/14/2000	JF
SW-846-826	OB 1,1,2,2-Tetrachloroethane		<0.52	ug/L		0.52	1.7	1/14/2000	JF
	OB 1,1,2-Trichloroethane		<0.2	ug/L		0.2	0.67	1/14/2000	JF
SW-846-826	OB 1,1-Dichloroethane		<0.15	ug/L		0.15	0.49	1/14/2000	JF
	DB 1,1-Dichloroethene		<0.11	ug/L		0.11	0.37	1/14/2000	JF
	DB 1,1-Dichloropropene		<0.25	ug/L		0.25	0.84	1/14/2000	JF
	OB 1,2,3-Trichlorobenzene		<0.052	ug/L		0.052	0.17	1/14/2000	JF
	DB 1,2,3-Trichloropropane		<0.99	ug/L		0.99	3.3	1/14/2000	JF
	OB 1,2,4-Trichlorobenzene		<0.050	ug/L		0.050	0.17	1/14/2000	JF
	DB 1,2,4-Trimethylbenzene		<0.46	ug/L		0.46	1.5	1/14/2000	JF
	OB 1,2-Dibromo-3-chloropropane		<0.23	ug/L		0.23	0.77	1/14/2000	JF
	DB 1,2-Dibromoethane		<0.4	ug/L		0.4	1.3	1/14/2000	JF
SW-846-826	DB 1,2-Dichlorobenzene		<0.036	ug/ L		0.036	0.12	1/14/2000	JF
SW-846-826	OB 1,2-Dichloroethane		<0.35	ug/L		0.35	1.2	1/14/2000	JF
	DB 1,2-Dichloropropane		<0.094	ug/L		0.094	0.31	1/14/2000	JF
SW-846-826	DB 1,3,5-Trimethylbenzene		<0.35	ug/L		0.35	1.2	1/14/2000	JF

Wisconsin Certification Number: 405043870 Certificate of Analysis Report

STS Consultants Ltd - Green Bay

1035 Kepler Dr

Attn: Paul Garvey
Phone: (920)468-1978
Fax: (920)468-3312
Client ID: 000875100

Page: 6

of 12

Green Bay, WI 54311 Project Number: 24871XF

Project Number: 24871XF Chain: 75681
Project Name: MILITARY-1 HR MARTINIZING Report Date: 1/28/2000

Method	Parameter Name	Result	Units Fla	ag MDL	PQL	Anl.Date	Analyst .
Lab No. C	ollect Date Sample ID	i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de					
39 YEARS 8000 44 C	1,3-Dichloropropane	<0.26	ug/L	0.26	0.87	1/14/2000	JF
	1,4-Dichlorobenzene	<0.45	ug/L ug/L	0.45	1.5	1/14/2000	JF
	2,2-Dichloropropane	<0.78	ug/L	0.78	2.6	1/14/2000	JF
	2-Chlorotoluene	<0.25	ug/L ug/L	0.75	0.83	1/14/2000	JF
	4-Chlorotoluene	<0.65	ug/L	0.65	2.2	1/14/2000	JF
SW-846-8260B		<0.19	ug/L	0.19	0.63	1/14/2000	JF
	Bromobenzene	<0.34	ug/L	0.34	1.1	1/14/2000	JF
	Bromochloromethane	<0.17	ug/L	0.17	0.55	1/14/2000	JF
	Bromodichloromethane	<0.25	ug/L	0.25	0.83	1/14/2000	JF
	Bromofluorobenzene-Surrogate	90	% Rec			1/14/2000	JF
SW-846-8260B	<u> </u>	<0.45	ug/L	0.45	1.5	1/14/2000	JF
	Bromomethane	<0.34	ug/L	0.34	1.1	1/14/2000	JF
	Carbon tetrachloride	<0.23	ug/L	0.23	0.76	1/14/2000	JF
	Chlorobenzene	<0.096	ug/L	0.096	0.32	1/14/2000	JF
SW-846-8260B		<0.5	ug/L	0.5	1.7	1/14/2000	JF
SW-846-8260B	Chloroform	<0.18	ug/L	0.18	0.59	1/14/2000	JF
SW-846-8260B	Chloromethane	<0.21	ug/L	0.21	0.71	1/14/2000	JF
SW-846-8260B	cis-1,2-Dichloroethene	<0.19	ug/L	0.19	0.62	1/14/2000	JF
	cis-1,3-Dichloropropene	<0.096	ug/L	0.096	0.32	1/14/2000	JF
	Dibromochloromethane	<0.19	ug/L	0.19	0.64	1/14/2000	JF
SW-846-8260B	Dibromofluoromethane-Surrogate	89	% Rec			1/14/2000	JF
SW-846-8260B	Dibromomethane	<0.33	ug/L	0.33	1.1	1/14/2000	JF
SW-846-8260B	Dichlorodifluoromethane	<0.27	ug/L	0.27	0.91	1/14/2000	JF
SW-846-8260B	Ethylbenzene	<0.19	ug/L	0.19	0.65	1/14/2000	JF
SW-846-8260B	Hexachlorobutadiene	<0.074	ug/L	0.074	0.25	1/14/2000	JF
SW-846-8260B	Isopropylbenzene	<0.23	ug/L	0.23	0.77	1/14/2000	JF
SW-846-8260B	Methylene chloride	<0.25	ug/L	0.25	0.85	1/14/2000	JF
SW-846-8260B	n-Butylbenzene	<0.040	ug/L	0.040	0.13	1/14/2000	JF
SW-846-8260B	n-Propylbenzene	<0.36	ug/L	0.36	1.2	1/14/2000	JF
SW-846-8260B	Naphthalene	<0.082	ug/L	0.082	0.27	1/14/2000	JF
SW-846-8260B	p-Isopropyltoluene	<0.12	ug/L	0.12	0.41	1/14/2000	JF
SW-846-8260B	sec-Butylbenzene	< 0.35	ug/L	0.35	1.2	1/14/2000	JF
SW-846-8260B	Styrene	<0.084	ug/L	0.084	0.28	1/14/2000	JF
SW-846-8260B	tert-Butylbenzene	<0.28	ug/L	0.28	0.94	1/14/2000	JF
SW-846-8260B	Tetrachloroethene	<0.34	ug/L	0.34	1.1	1/14/2000	JF
SW-846-8260B		<0.11	ug/L	0.11	0.37	1/14/2000	JF
SW-846-8260B	Toluene-d8-Surrogate	103	% Rec			1/14/2000	JF
SW-846-8260B	trans-1,2-Dichloroethene	<0.21	ug/L	0.21	0.7	1/14/2000	JF
	trans-1,3-Dichloropropene	<0.14	ug/L	0.14	0.45	1/14/2000	JF
SW-846-8260B		<0.21	ug/L	0.21	0.71	1/14/2000	JF
	Trichlorofluoromethane	<0.49	ug/L	0.49	1.6	1/14/2000	JF
SW-846-8260B		<0.14	ug/L	0.14	0.47	1/14/2000	JF
SW-846-8260B	-	<0.39	ug/L	0.39	1.3	1/14/2000	JF
SW-846-9038	Sulfate	339	mg/L	2.6	8.7	1/10/2000	DEY
SW-846-9251	Chloride	365	mg/L	7.5	25	1/05/1999	CLS

Wisconsin Certification Number: 405043870 Certificate of Analysis Report

STS Consultants Ltd - Green Bay

1035 Kepler Dr

Green Bay, WI 54311 Project Number: 24871XF

Project Name: MILITARY-1 HR MARTINIZING

Attn: Paul Garvey

Page: 7 of 12

Phone: (920)468-1978

Fax: (920)468-3312

Client ID: 000875100

Chain: 75681

Control of the second s	ollect Date Sample ID		CONTRACTOR CONTRACTOR AND AND AND AND AND AND AND AND AND AND					30000000000000000000000000000000000000
							Th. 1	
EPA-353.2	1/04/2000 MW-5							
	Nitrogen-Nitrate/Nitrite	•	1.2	mg/L	0.14	0.47	1/07/2000	CLS
SW-846-8015B	Ethane		<14	ug/L	14	47	1/07/2000	JHI
SW-846-8015B	Ethene		<14	ug/L	14	47	1/07/2000	JHI
SW-846-8015B	Methane		<7.2	ug/L	7.2	24	1/07/2000	JHI
SW-846-8260B	1,1,1,2-Tetrachloroethane		<0.19	ug/L	0.19	0.63	1/14/2000	JF
SW-846-8260B	1,1,1-Trichloroethane		<0.3	ug/L	0.3	1.0	1/14/2000	JF
SW-846-8260B	1,1,2,2-Tetrachloroethane		<0.52	ug/L	0.52	1.7	1/14/2000	JF
SW-846-8260B	1,1,2-Trichloroethane	•	<0.2	ug/L	0.2	0.67	1/14/2000	JF
SW-846-8260B	1,1-Dichloroethane		<0.15	ug/L	0.15	0.49	1/14/2000	JF
SW-846-8260B	1,1-Dichloroethene		<0.11	ug/L	0.11	0.37	1/14/2000	JF
SW-846-8260B	1,1-Dichloropropene		<0.25	ug/L	0.25	0.84	1/14/2000	JF
SW-846-8260B	1,2,3-Trichlorobenzene		<0.052	ug/L	0.052	0.17	1/14/2000	JF
SW-846-8260B	1,2,3-Trichloropropane		<0.99	ug/L	0.99	3.3	1/14/2000	JF
SW-846-8260B	1,2,4-Trichlorobenzene		< 0.050	ug/L	0.050	0.17	1/14/2000	JF
SW-846-8260B	1,2,4-Trimethylbenzene		<0.46	ug/L	0.46	1.5	1/14/2000	JF
SW-846-8260B	1,2-Dibromo-3-chloropropane		<0.23	ug/L	0.23	0.77	1/14/2000	JF
•	1,2-Dibromoethane		<0.4	ug/L	0.4	1.3	1/14/2000	JF
SW-846-8260B	1,2-Dichlorobenzene		<0.036	ug/L	0.036	0.12	1/14/2000	JF
	1,2-Dichloroethane		<0.35	ug/L	0.35	1.2	1/14/2000	JF
	1,2-Dichloropropane		<0.094	ug/L	0.094	0.31	1/14/2000	JF
	1,3,5-Trimethylbenzene		<0.35	ug/L	0.35	1.2	1/14/2000	JF
	1,3-Dichlorobenzene		<0.49	ug/L	0.49	1.6	1/14/2000	JF
	1,3-Dichloropropane		<0.26	ug/L	0.26	0.87	1/14/2000	JF
	1,4-Dichlorobenzene		<0.45	ug/L	0.45	1.5	1/14/2000	JF
	2,2-Dichloropropane		<0.78	ug/L	0.78	2.6	1/14/2000	JF
	2-Chlorotoluene		<0.25	ug/L	0.25	0.83	1/14/2000	JF
	4-Chlorotoluene		<0.65	ug/L	0.65	2.2	1/14/2000	JF
SW-846-8260B			<0.19	ug/L	0.19	0.63	1/14/2000	JF
	Bromobenzene		<0.34	ug/L	0.34	1.1	1/14/2000	JF
	Bromochloromethane		<0.17	ug/L	0.17	0.55	1/14/2000	JF
	Bromodichloromethane		<0.25	ug/L	0.25	0.83	1/14/2000	JF
	Bromofluorobenzene-Surrogate		90	% Rec	. 0.23	0.05	1/14/2000	JF
SW-846-8260B			<0.45	ug/L	0.45	1.5	1/14/2000	JF
	Bromomethane		<0.45	ug/L ug/L	0.45	1.1	1/14/2000	JF
	Carbon tetrachloride		<0.23					
	Chlorobenzene		<0.23 <0.096	ug/L	0.23 0.096	0.76	1/14/2000	JF IF
				ug/L		0.32	1/14/2000	JF
SW-846-8260B			<0.5	ug/L	0.5	1.7	1/14/2000	JF
SW-846-8260B			<0.18	ug/L	0.18	0.59	1/14/2000	JF
	Chloromethane		<0.21	ug/L	0.21	0.71	1/14/2000	JF
	cis-1,2-Dichloroethene		<0.19	ug/L	0.19	0.62	1/14/2000	JF
	cis-1,3-Dichloropropene		<0.096	ug/L	0.096	0.32	1/14/2000	JF
	Dibromochloromethane		<0.19	ug/L	0.19	0.64	1/14/2000	JF
	Dibromofluoromethane-Surrogate		89	% Rec			1/14/2000	JF
	Dibromomethane Dichlorodifluoromethane		<0.33 <0.27	ug/L ug/L	0.33 0.27	1.1 0.91	1/14/2000 1/14/2000	JF JF

Wisconsin Certification Number: 405043870 Certificate of Analysis Report

STS Consultants Ltd - Green Bay

1035 Kepler Dr

Attn: Paul Garvey
Phone: (920)468-1978
Fax: (920)468-3312
Client ID: 000875100

Page: 8 of 12

Green Bay, WI 54311 Project Number: 24871XF

Project Name: MILITARY-1 HR MARTINIZING

Chain: 75681 Report Date: 1/28/2000

Method	Parameter Name	Result		Flag	MDL	PQL	Ani.Date	Analyst
ab No.	ollect Date Sample ID			in the				
SW-846-8260E	B Ethylbenzene .	<0.19	ug/L		0.19	0.65	1/14/2000	JF
SW-846-8260E	Hexachlorobutadiene	< 0.074	ug/L		0.074	0.25	1/14/2000	JF
SW-846-8260E	lsopropylbenzene .	<0.23	ug/L		0.23	0.77	1/14/2000	JF
SW-846-8260E	Methylene chloride	<0.25	ug/L		0.25	0.85	1/14/2000	JF
SW-846-8260E	n-Butylbenzene	<0.040	ug/L		0.040	0.13	1/14/2000	JF
SW-846-8260E	n-Propylbenzene	< 0.36	ug/L		0.36	1.2	1/14/2000	JF
SW-846-8260E	Naphthalene	<0.082	ug/Ļ		0.082	0.27	1/14/2000	JF
SW-846-8260E	p-Isopropyltoluene	<0.12	ug/L		0.12	0.41	1/14/2000	JF
SW-846-8260E	sec-Butylbenzene	< 0.35	ug/L		0.35	1.2	1/14/2000	JF
SW-846-8260E	Styrene	<0.084	ug/L		0.084	0.28	1/14/2000	JF
SW-846-8260E	tert-Butylbenzene	<0.28	ug/L		0.28	0.94	1/14/2000	JF
	Tetrachloroethene	<0.34	ug/L		0.34	1.1	1/14/2000	JF
SW-846-8260B	Toluene	<0.11	ug/L		0.11	0.37	1/14/2000	JF
	Toluene-d8-Surrogate	103	% Rec				1/14/2000	JF
SW-846-8260E	trans-1,2-Dichloroethene	<0.21	ug/L		0.21	0.7	1/14/2000	JF
SW-846-8260E	trans-1,3-Dichloropropene	<0.14	ug/L		0.14	0.45	1/14/2000	JF
	Trichloroethene	<0.21	ug/L		0.21	0.71	1/14/2000	JF
SW-846-8260E	Trichlorofluoromethane	<0.49	ug/L		0.49	1.6	1/14/2000	JF
SW-846-8260B	Vinyl chloride	<0.14	ug/L		0.14	0.47	1/14/2000	JF
	Xylenes-Total	<0.39	ug/L		0.39	1.3	1/14/2000	JF
SW-846-9038	Sulfate	258	mg/L		2.6	8.7	1/10/2000	DEY
SW-846-9251	Chloride	1200	mg/L		7.5	25	1/05/1999	CLS
REL000113	1/04/2000 MW-6							
EPA-353.2	Nitrogen-Nitrate/Nitrite	2.7	mg/L		0.14	0.47	1/07/2000	CLS
SW-846-8015B	-	<14	ug/L		14	47	1/07/2000	JHI
SW-846-8015B	Ethene	<14	ug/L		14	47	1/07/2000	JHI
SW-846-8015B	Methane	12	ug/L	13	7.2	24	1/07/2000	JHI
SW-846-8260B	1,1,1,2-Tetrachloroethane	<0.19	ug/L		0.19	0.63	1/14/2000	JF
	1,1,1-Trichloroethane	<0.3	ug/L		0.3	1.0	1/14/2000	JF
	1,1,2,2-Tetrachloroethane	<0.52	ug/L		0.52	1.7	1/14/2000	JF
	1,1,2-Trichloroethane	<0.2	ug/L		0.2	0.67	1/14/2000	JF
	1,1-Dichloroethane	<0.15	ug/L		0.15	0.49	1/14/2000	JF
	1,1-Dichloroethene	<0.11	ug/L		0.11	0.37	1/14/2000	JF
	1,1-Dichloropropene	<0.25	ug/L		0.25	0.84	1/14/2000	JF
	1,2,3-Trichlorobenzene	<0.052	ug/L		0.052	0.17	1/14/2000	JF
	1,2,3-Trichloropropane	<0.99	ug/L		0.99	3.3	1/14/2000	JF
	1,2,4-Trichlorobenzene	<0.050	ug/L		0.050	0.17	1/14/2000	JF
	1,2,4-Trimethylbenzene	<0.46	ug/L		0.46	1.5	1/14/2000	JF
	1,2-Dibromo-3-chloropropane	<0.23	ug/L		0.23	0.77	1/14/2000	JF
	1,2-Dibromoethane	<0.4	ug/L		0.4	1.3	1/14/2000	JF
	1,2-Dichlorobenzene	<0.036	ug/L		0.036	0.12	1/14/2000	JF
	1,2-Dichloroethane	<0.35	ug/L		0.35	1.2	1/14/2000	JF
SW-846-8260H	· ·				0.094	0.31	1/14/2000	JF
	1 2-Dichloropropage	<[1] [] UZ						
SW-846-8260B	1,2-Dichloropropane 1,3,5-Trimethylbenzene	<0.094 <0.35	ug/L ug/L		0.054	1.2	1/14/2000	JF

Wisconsin Certification Number: 405043870 Certificate of Analysis Report

STS Consultants Ltd - Green Bay

1035 Kepler Dr

Green Bay, WI 54311 Project Number: 24871XF

Project Name: MILITARY-1 HR MARTINIZING

Attn: Paul Garvey

Page: 9 of 12

Phone: (920)468-1978

Fax: (920)468-3312 Client ID: 000875100

Chain: 75681

Method	Parameter Name	Result	Units Flag	MDL	PQL	Anl.Date	Analyst
₋ab No. C	ollect Date Sample ID						
	1,3-Dichloropropane	<0.26	ug/L	0.26	0.87	1/14/2000	JF
	1,4-Dichlorobenzene	<0.45	ug/L	0.45	1.5	1/14/2000	JF
SW-846-8260B	2,2-Dichloropropane	<0.78	ug/L	0.78	2.6	1/14/2000	JF
	2-Chlorotoluene	<0.25	ug/L	0.25	0.83	1/14/2000	JF
SW-846-8260B	4-Chlorotoluene	<0.65	ug/L	0.65	2.2	1/14/2000	JF
SW-846-8260B	Benzene	<0.19	ug/L	0.19	0.63	1/14/2000	JF
SW-846-8260B	Bromobenzene	<0.34	ug/L	0.34	1.1	1/14/2000	JF
SW-846-8260B	Bromochloromethane	<0.17	ug/L	0.17	0.55	1/14/2000	JF
SW-846-8260B	Bromodichloromethane	0.61	ug/L <u>1</u>	<u>3</u> 0.25	0.83	1/14/2000	JF
SW-846-8260B	Bromofluorobenzene-Surrogate	92	% Rec			1/14/2000	JF
SW-846-8260B	Bromoform	< 0.45	ug/L	0.45	1.5	1/14/2000	JF
SW-846-8260B	Bromomethane	<0.34	ug/L	0.34	1.1	1/14/2000	JF
SW-846-8260B	Carbon tetrachloride	<0.23	ug/L	0.23	0.76	1/14/2000	JF
SW-846-8260B	Chlorobenzene	<0.096	ug/L	0.096	0.32	1/14/2000	JF
SW-846-8260B	Chloroethane	<0.5	ug/L	0.5	1.7	1/14/2000	JF
SW-846-8260B	Chloroform	<0.18	ug/L	0.18	0.59	1/14/2000	JF
SW-846-8260B	Chloromethane	<0.21	ug/L	0.21	0.71	1/14/2000	JF
SW-846-8260B	cis-1,2-Dichloroethene	8.7	ug/L	0.19	0.62	1/14/2000	JF
SW-846-8260B	cis-1,3-Dichloropropene	<0.096	ug/L	0.096	0.32	1/14/2000	JF
SW-846-8260B	Dibromochloromethane	<0.19	ug/L	0.19	0.64	1/14/2000	JF
SW-846-8260B	Dibromofluoromethane-Surrogate	89	% Rec			1/14/2000	JF
SW-846-8260B	Dibromomethane	<0.33	ug/L	0.33	1.1	1/14/2000	JF
SW-846-8260B	Dichlorodifluoromethane	<0.27	ug/L	0.27	0.91	1/14/2000	JF
SW-846-8260B	Ethylbenzene	<0.19	ug/L	0.19	0.65	1/14/2000	JF
SW-846-8260B	Hexachlorobutadiene	<0.074	ug/L	0.074	0.25	1/14/2000	JF
SW-846-8260B	Isopropylbenzene	<0.23	ug/L	0.23	0.77	1/14/2000	JF
SW-846-8260B	Methylene chloride	<0.25	ug/L	0.25	0.85	1/14/2000	JF
SW-846-8260B	n-Butylbenzene	<0.040	ug/L	0.040	0.13	1/14/2000	JF
SW-846-8260B	n-Propylbenzene	<0.36	ug/L	0.36	1.2	1/14/2000	JF
SW-846-8260B	Naphthalene	<0.082	ug/L	0.082	0.27	1/14/2000	JF
SW-846-8260B	p-Isopropyltoluene	<0.12	ug/L	0.12	0.41	1/14/2000	JF
SW-846-8260B	sec-Butylbenzene	<0.35	ug/L	0.35	1.2	1/14/2000	JF
SW-846-8260B	Styrene	<0.084	ug/L	0.084	0.28	1/14/2000	JF
SW-846-8260B	tert-Butylbenzene	<0.28	ug/L	0.28	0.94	1/14/2000	JF
SW-846-8260B	Tetrachloroethene	124	ug/L	17	56	1/15/2000	JF
SW-846-8260B	Toluene	<0.11	ug/L	0.11	0.37	1/14/2000	JF
SW-846-8260B	Toluene-d8-Surrogate	105	% Rec			1/14/2000	JF
SW-846-8260B	trans-1,2-Dichloroethene	<0.21	ug/L	0.21	0.7	1/14/2000	JF
SW-846-8260B	trans-1,3-Dichloropropene	<0.14	ug/L	0.14	0.45	1/14/2000	JF
SW-846-8260B	Trichloroethene	62	ug/L	0.21	0.71	1/14/2000	JF
SW-846-8260B	Trichlorofluoromethane	<0.49	ug/L	0.49	1.6	1/14/2000	JF
SW-846-8260B	Vinyl chloride	<0.14	ug/L	0.14	0.47	1/14/2000	JF
SW-846-8260B	Xylenes-Total	<0.39	ug/L	0.39	1.3	1/14/2000	JF
SW-846-9038	Sulfate	76	mg/L	1.3	4.3	1/10/2000	DEY
SW-846-9251	Chloride	193	mg/L	0.75	2.5	1/05/1999	CLS

Wisconsin Certification Number: 405043870 Certificate of Analysis Report

STS Consultants Ltd - Green Bay

1035 Kepler Dr

Green Bay, WI 54311 Project Number: 24871XF

Project Name: MILITARY-1 HR MARTINIZING

Attn: Paul Garvey

Page: 10 of 12

Phone: (920)468-1978

Fax: (920)468-3312 Client ID: 000875100

Chain: 75681

Method	Parameter Name	Result	Units Flag	MDL	POL A	ol Date A	nalyst :
	ollect Date Sample ID						(A)
00REL000114	<u>1/04/2000</u> <u>PZ-1</u>						
EPA-353.2	Nitrogen-Nitrate/Nitrite	<0.14	mg/L	0.14	0.47	1/07/2000	CLS
SW-846-8015E		<14	ug/L	14	47	1/07/2000	JHI
SW-846-8015B		<14	ug/L 	14	47	1/07/2000	JHI
SW-846-8015B		136	ug/L 	7.2	24	1/07/2000	JHI
	1,1,1,2-Tetrachloroethane	<0.19	ug/L	0.19	0.63	1/14/2000	JF
	1,1,1-Trichloroethane	<0.3	ug/L	0.3	1.0	1/14/2000	JF
	3 1,1,2,2-Tetrachloroethane	<0.52	ug/L	0.52	1.7	1/14/2000	JF
	3 1,1,2-Trichloroethane	<0.2	ug/L	0.2	0.67	1/14/2000	JF
	1,1-Dichloroethane	<0.15	ug/L	0.15	0.49	1/14/2000	JF
	1,1-Dichloroethene	<0.11	ug/L	0.11	0.37	1/14/2000	JF
	1,1-Dichloropropene	<0.25	ug/L	0.25	0.84	1/14/2000	JF
	1,2,3-Trichlorobenzene	<0.052	ug/L	0.052	0.17	1/14/2000	JF
	1,2,3-Trichloropropane	<0.99	ug/L	0.99	3.3	1/14/2000	JF
	1,2,4-Trichlorobenzene	<0.050	ug/L	0.050	0.17	1/14/2000	JF
	1,2,4-Trimethylbenzene	<0.46	ug/L	0.46	1.5	1/14/2000	JF
	1,2-Dibromo-3-chloropropane	<0.23	ug/L	0.23	0.77	1/14/2000	JF
	1,2-Dibromoethane	<0.4	ug/L	0.4	1.3	1/14/2000	JF
	1,2-Dichlorobenzene	<0.036	ug/L	0.036	0.12	1/14/2000	JF
	1,2-Dichloroethane	<0.35	ug/L	0.35	1.2	1/14/2000	JF
	1,2-Dichloropropane	<0.094	ug/L	0.094	0.31	1/14/2000	JF
	1,3,5-Trimethylbenzene	<0.35	ug/L	0.35	1.2	1/14/2000	JF
	1,3-Dichlorobenzene	<0.49	ug/L	0.49	1.6	1/14/2000	JF
	1,3-Dichloropropane	<0.26	ug/L	0.26	0.87	1/14/2000	JF
	1,4-Dichlorobenzene	<0.45	ug/L	0.45	1.5	1/14/2000	JF
	2,2-Dichloropropane	<0.78	ug/L	0.78	2.6	1/14/2000	JF
	2-Chlorotoluene	<0.25	ug/L	0.25	0.83	1/14/2000	JF
	4-Chlorotoluene	<0.65	ug/L	0.65	2.2	1/14/2000	JF .r.
SW-846-8260B		<0.19	ug/L	0.19	0.63	1/14/2000	JF
	Bromobenzene	<0.34	ug/L	0.34	1.1	1/14/2000	JF
	Bromochloromethane	<0.17	ug/L	0.17	0.55	1/14/2000	JF IF
	Bromodichloromethane	<0.25	ug/L	0.25	0.83	1/14/2000	JF JF
	Bromofluorobenzene-Surrogate	94	% Rec	0.45	4.5	1/14/2000	JF
SW-846-8260B		<0.45	ug/L	0.45	1.5	1/14/2000	= :
	Bromomethane	<0.34	ug/L	0.34	1.1	1/14/2000	JF
	Carbon tetrachloride	<0.23	ug/L	0.23	0.76	1/14/2000	JF ''-
	Chlorobenzene	<0.096	ug/L	0.096	0.32	1/14/2000	JF
SW-846-8260B		<0.5	ug/L	0.5	1.7	1/14/2000	JF '-
SW-846-8260B		<0.18	ug/L	0.18	0.59	1/14/2000	JF
	Chloromethane	<0.21	ug/L	0.21	0.71	1/14/2000	JF
	cis-1,2-Dichloroethene	1.2	ug/L	0.19	0.62	1/14/2000	JF IC
	cis-1,3-Dichloropropene	<0.096	ug/L	0.096	0.32	1/14/2000	JF IE
	Dibromochloromethane	<0.19	ug/L	0.19	0.64	1/14/2000	JF IE
	Dibromofluoromethane-Surrogate	90	% Rec	0.22	4.4	1/14/2000	JF :-
	Dibromomethane	<0.33	ug/L	0.33	1.1	1/14/2000	JF IE
5vv-846-8∠60B	Dichlorodifluoromethane	<0.27	ug/L	0.27	0.91	1/14/2000	JF

Wisconsin Certification Number: 405043870 Certificate of Analysis Report

STS Consultants Ltd - Green Bay

1035 Kepler Dr

Green Bay, WI 54311 Project Number: 24871XF

Project Name: MILITARY-1 HR MARTINIZING

Attn: Paul Garvey

Page: 11 of 12

Phone: (920)468-1978

Fax: (920)468-3312 Client ID: 000875100

Chain: 75681

Floject Name. WILLIANT FIRMANTINIZATO		Kel	Jon Date.	1/20/20	000	
Method Parameter Name	Result	Units Fla	ag MDL	PQL	Anl.Date	Analyst
Lab No. Collect Date Sample ID						8 1900 8 1900
SW-846-8260B Ethylbenzene	<0.19	ug/L	0.19	0.65	1/14/2000	JF
SW-846-8260B Hexachlorobutadiene	< 0.074	ug/L	0.074	0.25	1/14/2000	JF
SW-846-8260B Isopropylbenzene	<0.23	ug/L	0.23	0.77	1/14/2000	JF
SW-846-8260B Methylene chloride	< 0.25	ug/L	0.25	0.85	1/14/2000	JF
SW-846-8260B n-Butylbenzene	< 0.040	ug/L	0.040	0.13	1/14/2000	JF
SW-846-8260B n-Propylbenzene	<0.36	ug/L	0.36	1.2	1/14/2000	JF
SW-846-8260B Naphthalene	<0.082	ug/L	0.082	0.27	1/14/2000	JF
SW-846-8260B p-Isopropyltoluene	<0.12	ug/L	0.12	0.41	1/14/2000	JF
SW-846-8260B sec-Butylbenzene	<0.35	ug/L	0.35	1.2	1/14/2000	JF
SW-846-8260B Styrene	<0.084	ug/L	0.084	0.28	1/14/2000	JF
SW-846-8260B tert-Butylbenzene	<0.28	ug/L	0.28	0.94	1/14/2000	JF
SW-846-8260B Tetrachloroethene	27	ug/L	0.34	1.1	1/14/2000	JF
SW-846-8260B Toluene	<0.11	ug/L	0.11	0.37	1/14/2000	JF
SW-846-8260B Toluene-d8-Surrogate	103	% Rec			1/14/2000	JF
SW-846-8260B trans-1,2-Dichloroethene	<0.21	ug/L	0.21	0.7	1/14/2000	JF
SW-846-8260B trans-1,3-Dichloropropene	<0.14	ug/L	0.14	0.45	1/14/2000	JF
SW-846-8260B Trichloroethene	3.9	ug/L	0.21	0.71	1/14/2000	JF
SW-846-8260B Trichlorofluoromethane	< 0.49	ug/L	0.49	1.6	1/14/2000	JF
SW-846-8260B Vinyl chloride	<0.14	ug/L	0.14	0.47	1/14/2000	JF
SW-846-8260B Xylenes-Total	< 0.39	ug/L	0.39	1.3	1/14/2000	JF
SW-846-9038 Sulfate	50	mg/L	1.3	4.3	1/10/2000	DEY
SW-846-9251 Chloride	42	mg/L	0.75	2.5	1/05/1999	CLS
0REL000115						
SW-846-8260B 1,1,1,2-Tetrachloroethane	<0.19	ug/L	0.19	0.63	1/14/2000	JF
SW-846-8260B 1,1,1-Trichloroethane	<0.3	ug/L	0.3	1.0	1/14/2000	JF
SW-846-8260B 1,1,2,2-Tetrachloroethane	<0.52	ug/L	0.52	1.7	1/14/2000	JF
SW-846-8260B 1,1,2-Trichloroethane	<0.2	ug/L	0.2	0.67	1/14/2000	JF
SW-846-8260B 1,1-Dichloroethane	<0.15	ug/L	0.15	0.49	1/14/2000	JF
SW-846-8260B 1,1-Dichloroethene	<0.11	ug/L	0.11	0.37	1/14/2000	JF
SW-846-8260B 1,1-Dichloropropene	<0.25	ug/L	0.25	0.84	1/14/2000	JF
SW-846-8260B 1,2,3-Trichlorobenzene	<0.052	ug/L	0.052	0.17	1/14/2000	JF
SW-846-8260B 1,2,3-Trichloropropane	<0.99	ug/L	0.99	3.3	1/14/2000	JF
SW-846-8260B 1,2,4-Trichlorobenzene	<0.050	ug/L	0.050	0.17	1/14/2000	JF
SW-846-8260B 1,2,4-Trimethylbenzene	<0.46	ug/L	0.46	1.5	1/14/2000	JF
SW-846-8260B 1,2-Dibromo-3-chloropropane	<0.23	ug/L	0.23	0.77	1/14/2000	JF
SW-846-8260B 1,2-Dibromoethane	<0.4	ug/L	0.4	1.3	1/14/2000	JF
SW-846-8260B 1,2-Dichlorobenzene	< 0.036	ug/L	0.036	0.12	1/14/2000	JF
SW-846-8260B 1,2-Dichloroethane	< 0.35	ug/L	0.35	1.2	1/14/2000	JF
SW-846-8260B 1,2-Dichloropropane	<0.094	ug/L	0.094	0.31	1/14/2000	JF
SW-846-8260B 1,3,5-Trimethylbenzene	<0.35	ug/L	0.35	1.2	1/14/2000	JF
SW-846-8260B 1,3-Dichlorobenzene	<0.49	ug/L	0.49	1.6	1/14/2000	JF
SW-846-8260B 1,3-Dichloropropane	<0.26	ug/L	0.26	0.87	1/14/2000	JF
SW-846-8260B 1,4-Dichlorobenzene	<0.45	ug/L	0.45	1.5	1/14/2000	JF
SW-846-8260B 2,2-Dichloropropane	<0.78	ug/L	0.78	2.6	1/14/2000	JF
SW-846-8260B 2-Chlorotoluene	<0.25	ug/L	0.25	0.83	1/14/2000	JF
		~				

Wisconsin Certification Number: 405043870 Certificate of Analysis Report

STS Consultants Ltd - Green Bay

1035 Kepler Dr

Green Bay, WI 54311 Project Number: 24871XF

Project Name: MILITARY-1 HR MARTINIZING

Attn: Paul Garvey Phone: (920)468-1978

Page: 12 of 12

Fax: (920)468-3312

Client ID: 000875100 Chain: 75681

Method	Parameter Name	Result	Units Flag	MDL	PQL A	Anl.Date A	Analyst
Lab No. Co	ollect Date Sample ID						
	4-Chlorofoluene	<0.65	ug/L	0.65	2.2	1/14/2000	JF
SW-846-8260B	Benzene	<0.19	ug/L	0.19	0.63	1/14/2000	JF
SW-846-8260B	Bromobenzene	<0.34	ug/L	0.34	1.1	1/14/2000	JF
SW-846-8260B	Bromochloromethane	<0.17	ug/L	0.17	0.55	1/14/2000	JF
SW-846-8260B	Bromodichloromethane	<0.25	ug/L	0.25	0.83	1/14/2000	JF
SW-846-8260B	Bromofluorobenzene-Surrogate .	93	% Rec			1/14/2000	JF
SW-846-8260B	Bromoform	<0.45	ug/L	0.45	1.5	1/14/2000	JF
SW-846-8260B	Bromomethane	<0.34	ug/L	0.34	1.1	1/14/2000	JF
SW-846-8260B	Carbon tetrachloride	<0.23	ug/L	0.23	0.76	1/14/2000	JF
SW-846-8260B	Chlorobenzene	<0.096	ug/L	0.096	0.32	1/14/2000	JF
SW-846-8260B	Chloroethane	<0.5	ug/L	0.5	1.7	1/14/2000	JF
SW-846-8260B	Chloroform	<0.18	ug/L	0.18	0.59	1/14/2000	JF
SW-846-8260B	Chloromethane	<0.21	ug/L	0.21	0.71	1/14/2000	JF
SW-846-8260B	cis-1,2-Dichloroethene	<0.19	ug/L	0.19	0.62	1/14/2000	JF
SW-846-8260B	cis-1,3-Dichloropropene	<0.096	ug/L	0.096	0.32	1/14/2000	JF
SW-846-8260B	Dibromochloromethane	<0.19	ug/L	0.19	0.64	1/14/2000	JF
SW-846-8260B	Dibromofluoromethane-Surrogate	90	% Rec			1/14/2000	JF
SW-846-8260B	Dibromomethane	<0.33	ug/L	0.33	1.1	1/14/2000	JF
SW-846-8260B	Dichlorodifluoromethane	<0.27	ug/L	0.27	0.91	1/14/2000	JF
SW-846-8260B	Ethylbenzene	<0.19	ug/L	0.19	0.65	1/14/2000	JF
SW-846-8260B	Hexachlorobutadiene	<0.074	ug/L	0.074	0.25	1/14/2000	JF
SW-846-8260B	Isopropylbenzene	<0.23	ug/L	0.23	0.77	1/14/2000	JF
SW-846-8260B	Methylene chloride	<0.25	ug/L	0.25	0.85	1/14/2000	JF
SW-846-8260B	n-Butylbenzene	<0.040	ug/L	0.040	0.13	1/14/2000	JF
SW-846-8260B	n-Propylbenzene	<0.36	ug/L	0.36	1.2	1/14/2000	JF .
SW-846-8260B	Naphthalene	<0.082	ug/L	0.082	0.27	1/14/2000	JF
SW-846-8260B	p-Isopropyltoluene	<0.12	ug/L	0.12	0.41	1/14/2000	JF
SW-846-8260B	sec-Butylbenzene .	<0.35	ug/L	0.35	1.2	1/14/2000	JF
SW-846-8260B	Styrene	<0.084	ug/L	0.084	0.28	1/14/2000	JF
SW-846-8260B	tert-Butylbenzene	<0.28	ug/L	0.28	0.94	1/14/2000	JF
SW-846-8260B	Tetrachloroethene	<0.34	ug/L	0.34	1.1	1/14/2000	JF
SW-846-8260B	Toluene	<0.11	ug/L	0.11	0.37	1/14/2000	JF
SW-846-8260B	Toluene-d8-Surrogate	104	% Rec			1/14/2000	JF
SW-846-8260B	trans-1,2-Dichloroethene	<0.21	ug/L	0.21	0.7	1/14/2000	JF
SW-846-8260B	trans-1,3-Dichloropropene	<0.14	ug/L	0.14	0.45	1/14/2000	JF
SW-846-8260B	Trichloroethene	<0.21	ug/L	0.21	0.71	1/14/2000	JF
SW-846-8260B	Trichlorofluoromethane	<0.49	ug/L	0.49	1.6	1/14/2000	JF
SW-846-8260B	Vinyl chloride	<0.14	ug/L	0.14	0.47	1/14/2000	JF
SW-846-8260B	Xylenes-Total	<0.39	ug/L	0.39	1.3	1/14/2000	JF

Robert E. Lee & Associates, Inc. Quality Control Report - Description of Flags

40	The reported result is less than the practical quantitation limit (POL)
Flag Section	Description

CHAIN OF CUSTODY RECORD

Nº 30999 7568/2

STS Consultants Ltd.
Complete Brainsers,

- · · - 0		C										Specia	al Ha	andling Request		_		BER	THR	OUGH
Phone No. 니당.			١٥٢	j	. (breen Bry					i			Rush		Laboratory \mathcal{RE} Contact Person \mathcal{P} ,	L			
Project No. 248	31)	<u>(</u>	`	71106 1 OS	√ √	Sices Bicy	·							Verbal		Phone No.			·	
Project No. 248 Project Name Onc	hour	Mor	ha	izin	5 D	ry Cleaning	(S	Mi	lita	' '') <u>L</u>			Other		Results Due				
Sample I.D.	Date	Time	Grab	Composite	No. of Containers	Sample Type (Water, soil, air, studge, etc.)	\perp	Z rieservation	Ambient 😇	FID	d Dat	Special Cond.	160 8121 CC+	0)-1 Anal	ysis F	Request			ents on San ajor Contan	•
MW-1	104	PM	X		7	water	X	χ					V	Ocs, Nitrale/Ni	teite	e, Sulfate,	un f	itherel s	anples	00108
	1	<u> </u>			١		\perp						cl	Morido, (Me	the.	n Ethane, Ethene)		<u> </u>		20109
3			Ш				Ш						<u> </u>							0110
4			\coprod				\coprod								<u> </u>					00111
5	Ш						Ш	Ш					ł							00112
4 6							Ш													00113
PZ-1		V	1		V		1	\downarrow							\downarrow		1	,		00114
Trip Blenk	1				1	Wake	Χ							TRIP E	3/a	nK			-	W115
1			_												· 	. Min.				
Collected by:	nt	PC	w		5	Date 0/-	04	_c	ۍ	Т	ime	1445	<u>, </u>	Delivery by:	Ke	Allter	Date	01-04	1-00	Time /500
Received by:						Date				Т	ime			Relinquished	by:		Date			Time
Received by:			1	·		Date				Т	ime			Relinquished	by:		Date			Time
Received by:	16	$\sqrt{\Gamma}$	-			Date				T	ime		_	Relinquished	by:		Date	-		Time
Received for lab b	y: {{\bar{V}}	YWW	K	1		Date 1-64	a)		Т	ime	zu)	Relinquished	by:		Date			Time
Laboratory Comm	nents	Only:	: 8	eals	Inta									□N/A ♂	n î	Ye				
Final Disposition:						· · · · · · · · · · · · · · · · · · ·										ather Conditions, Precau	tions, Ha	zards):		

Distribution: Original ar Instructions to Laborato	nd Gree ry: Forv	n - Labo ward co	orato	ory `	Yellov origina	v - As needed al to STS with a	Pink nalyt	- Tra	ansp resul	orter ts. F	Gol letain	denroc green	l - S	TS Project File y.						6/99cp10k

Engineering, Surveying, Laboratory Services

2825 S. Webster Ave. P.O. Box 2100

Green Bay, WI 54306-2100 Phone: (920) 336-6338 Fax: (920) 336-9141

E-Mail: rel@releeinc.com

Milwaukee Area 830 Armour Rd. Oconomowoc, WI 53066

Phone: (262)569-8893 1-800-775-8893

Fax: (262)569-7995

Wisconsin Certification Number: 405043870

PAUL GARVEY STS CONSULTANTS LTD - GREEN BAY 1035 KEPLER DR **GREEN BAY WI 54311**

Phone:

(920)468-1978

Fax:

(920)468-3312

Client ID:

000875100

Contact ID:

3487

Sample Information

Report Date:

1/03/2000

Chain Number: 75614

Project No:

24871XF

Project Name: 1233 S MILITARY AVE

Receive Date: 12/16/1999

Sample Date: 12/14/1999

Please visit our new Internet homepage at

www.releeinc.com

Solid sample results are reported on a dry weight basis.

Wisconsin Certification Number: 405043870 Certificate of Analysis Report

STS Consultants Ltd - Green Bay

1035 Kepler Dr

Paul Garvey Attn.: Phone: (920)468-1978

Green Bay WI 54311

Fax: (920)468-3312 Client ID: 000875100

Project Number: 24871XF

Chain: 75614

Project Name:

1233 S MILITARY AVE

Report Date: 1/03/2000

Method Parameter Name	Result	Units F	ag MDL	PQL Ar	ıls. Date 🧳	Analyst
Lab No. Collect Date Sample ID		The State of the State of Stat	1			
99REL023003 12/14/1999 MW-5, S-2						
SW-846-9060 Total Organic Carbon	4640	mg/Kg	41	136.66	1/01/2000	AFL
99REL023004 12/14/1999 MW-6, S-2						
SW-846-9060 Total Organic Carbon	2150	mg/Kg	39	130	1/01/2000	AFL

CHAIN OF CUSTODY RECORD

75614

Contact Person	ΣΛιη		Λ	bi id	R/							Specia	l Ha	andling Request			ORD NUMBER	T+	HROUGH
			<u> </u>		21	/ D								Rush		Laboratory	REL		
Phone No. 469-						GB_								Verbal		Contact Person			
Project No. Z49	<u> </u>	<u> </u>	F	10°	10 15\/	2.10		· · · · · · · · · · · · · · · · · · ·						Other		Phone No.			
Project Name 12	<u> </u>	<u>5, ji</u>	IILI	173		130 E	-			_	L	*************		0.1101		Results Due	· · · · · · · · · · · · · · · · · · ·		
Sample I.D.	Date	Time	Grab	Composite	No. of Containers	Sample Type (Water, soil, air, sludge, etc.)	<u>_</u>	Z Freservation	Ambient ()		d Dat	Special Cond.		Analysis	s Re	Request		Comments on S ude Major Con	
ALL S C	12/14		X		4	SOIL	10	Ø		1				110 0/10	Σγ	// /)_			
mw-5,5-2			1		Ì					2			-			2) T.O.C.	ONLY	23	×03
Most for Sale	$\bot \bot$		Ш		\Box		Ц	Ц	<u> </u>	<		<u> </u>							
MW-6, 5-2	4		Y		*	-	4	1	7	1		ļ				T.O.C.	pacy	<i>2</i> 32	<u> </u>
	-		-			·	╁	<u> </u>				ļ							·
							-	-				ļ							
												ļ				1			
	<u> </u>						1					<u> </u>	L			<i> </i>		//	
Collected by:	W					Date 12/1-	4/9	9	······	Ti	ime /	2:15	P	Delivery by	M	W.	Date /Z//	6/99	Time 2:50
Received by:						Date		<u>'</u>		Ti	ime			Relinquished by:	<i>r</i> :	· //	Date		Time
Received by:		J				Date				Ti	ime			Relinquished by:	<i>r</i> :	<u>/</u>	Date		Time
Received by:		-			· ·	Date				Ti	ime			Relinquished by:	/ :		Date		Time
Received for lab by	<u>/: (</u>	Mili	1	-		Date ()	16-	99		Ti	ime	450		Relinquished by:	<u>':</u>		Date		Time
Laboratory Comm	ents	Only:	, S	eals	Inta	ct Upon Re	ceip	ot?			Yes	□ N)	□ N/A & on i	V_1	P			
Final Disposition:														Comments (We		ather Conditions, Precau	tions, Hazards)	:	
												- 		1 7 ,	-	OF ADDITION	INC SAM	PCES	
Distribution: Original and Instructions to Laborator																······································			9/94cp10k

9/94cp10k

APPENDIX C

Average Linear Velocity Calculations

Vertical Gradient Calculations

STS CONSULTANTS LTD. **CALCULATION SHEET**

PROJECT One How Martinizing - S. Military Ave JOB NO 34871XF PAGE OF

SUBJECT Ave. Linear Velocity Calculations for Groundwater Flow DIVISION

DATE 2/28/00 CHECKED BY 4 DATE 2/28/00 ORIGINATOR P. Garvey

Vo = KE (Freeze + Cherry, 1979)

VI = ave. linear velocity

K = hydraulic conductivity

(estimated 1x 10-bcm/sex + to be

conservative for natural silty clays with slow recharge wells)

n= porosity (0.30 assumed)

I = 0.01 ft/ft (from 1/4/00 gravedwater contour map)

(1 * 10 -6 cm/sec) (0.01 ++/4)

(3.3 × 10-8 cm/sec) (2++ (86400 sec) 365 day)

Ve = 0.03 A/yr

STS CONSULTANTS LTD.

CALCULATION SHEET

PROJECT One-hour Martinizing - S. Military, G.B. JOB NO 24871XF PAGE OF

SUBJECT Calculation of Vertical I (Gradient) DIVISION

ORIGINATOR PM6 DATE 3/14/00 CHECKED BY RAM DATE 3/14/00

$$XN = 75.15$$
 $XN = 86.31$ $21.75 - 10.69 = 11.16$

APPENDIX D

City of Green Bay Well No. 7 (7th Street Well) Construction Diagram

FIGURE 3-18
Green Bay Well No. 7
Seventh Street
Green Bay ASR

<u>APPENDIX E</u>

Site-Specific Residual Contaminant Levels Calculations Cumulative Risk Calculations

Site-Specific Residual Contaminant Level (SSRCL) Calculation Input Parameters

One Hour Martinizing

1223 S. Military Avenue, Green Bay, Wisconsin

Parameter	SFo		SFi		Rfi	D	RfC		Koo	c	H'		Da		Dw	,
	(mg/kg-day) ⁻¹	Source	(mg/kg-day)-1	Source	(mg/kg-day)	Source	(mg/m³)	Source	(L/kg)	Source	(unitless)	Source	(cm ² /s)	Source	(cm ² /s)	Source
cis 1.2-Dichloroethene			·		1.0E-02	2	3.5E-02	2	36	2	1.70E-01	2	7.40E-02	2	1.10E-05	2
Trichloroethene	1.1E-02	2	6.0E-03	2					94	2	4.20E-01	2	7.90E-02	2	9.10E-06	2
Tetrachloroethene	5.2E-02	2	2.0E-03	2					270	2	7.50E-01	2	7.20E-02	2	8.20E-06	2

NOTES:

- 1) Abbreviations for RCL chemical fate parameters and health criteria are defined on the calculation sheets.
- 2) The following equation was used in the conversion of inhalation reference dose (RfDi) to reference concentration (RfC):

RfDi
$$\frac{\text{mg}}{(\text{kg-day})}$$
 = RfC (mg/m³) x $\frac{20 \text{ m}^3}{\text{day}}$ x $\frac{1}{70 \text{ kg}}$

SOURCES:

- 1) EPA (U.S. Environmental Protection Agency). 1999. Integrated Risk Information System (IRIS). Office of Solid Waste and Emergency Response, Washington, D.C.
- 2) EPA (U.S. Environmental Protection Agency). 1999. Region IX Preliminary Remediation Goals (PRGs) Toxicity and Physical/Chemical Tables: http://www.epa.gov/region09/waste/sfund/prg/

Cumulative Risk Calculations (Residential Soil)

One Hour Martinizing

1223 S. Military Avenue, Green Bay, Wisconsin

Compound	Highest Soil		rcinogens on (RfD)		Carcinogens Ingestion (SF			rcinogens ion (RfC)			nogens ion (SFi)
	Conc.	RCL	Soil Conc	RCL	RCL	Soil Conc	RCL	Soil Conc	RCL	RCL	Soil Conc
		(mg/kg)	RCL	(mg/kg)	(mg/kg)	RCL	(mg/kg)	RCL	(mg/kg)	(mg/kg)	RCL
	mg/kg	THQ = 1	THQ = 1	$TR = 1 \times 10^{-6}$	$TR = 1 \times 10^{-5}$	$TR = 1 \times 10^{-5}$	THQ = 1	THQ = 1	$TR = 1 \times 10^{-6}$	$TR = 1 \times 10^{-5}$	$TR = 1 \times 10^{-5}$
cis 1,2-Dichloroethene Trichloroethene Tetrachloroethene	0.038 0.511 33	1100	3.455E-05	83 18	830 180	0.00062 0.18333	150	0.00025333	5.3 20	50 200	1.02E-02 1.65E-01

Cumulative Risk or Hazard* =

3.455E-05

0.18

0.0003

0.18

Calculated by: VMK (2/18/00)

Checked by: 12-18-00

Notes:

- 1)*Summation of chemical-specific ratios (i.e., soil conc./RCL).
- 2) TR = Target Risk.
- 3) THQ = Target Hazard Quotient. Site-specific THQ = 1.
- 4) For carcinogens, the highest soil concentration was divided by the adjusted RCL (adjusted to a target risk of 1 x 10.5 as allowed in WAC NR 720.11(3)). The sum of these ratios is below 1 for the ingestion and inhalation pathways. Accordingly, the cumulative risk does not exceed 1 x 10⁻⁵.
- 5) For non-carcinogens, the highest soil concentration was divided by the RCL based on a site-specific hazard quotient (HQ) of 1. The sum of these ratios is below 1 for the ingestion and inhalation pathways. Accordingly, the cumulative hazard does not exceed an HQ of 1.
- 6) Risks for carcinogens and noncarcinogens are conservatively presumed to be additive within each exposure pathway.

cis 1,2-Dichloroethene Soil Ingestion Pathway (RfD)

One Hour Martinizing 1223 S. Military Avenue, Green Bay, Wisconsin

Parameter	Value	Source
ΓHQ - Target Hazard Quotient (unitless)	1	WDNR Default Value
BWc - Average Body Weight for Child (kg)	15	WDNR Default Value
AT - Averaging Time (years)	6	WDNR Default Value
RfDo - Oral Reference Dose (mg/kg-day)	1.0E-02	2
EF - Exposure Frequency (day/year)	245	Frost-Free Days (Est.)
EDc - Exposure Duration During Ages 1-6 (year)	6	WDNR Default Value
(Rc - Ingestion Rate of Soil Age 1-6 (mg/day)	200	WDNR Default Value

Calculated by: Vasanta Kalluri (2/18/00)

Checked by: 12 2-18-00

Note:

cis 1,2-Dichloroethene Soil Inhalation Pathway (RfC)

One Hour Martinizing 1223 S. Military Avenue, Green Bay, Wisconsin

Algorithm for Inhalation of Noncarcinogenic Contaminant	s from		
Non-Industrial (Residential) Soil		~	
Parameter THO The House of the	Value	Source	
THQ - Target Hazard Quotient (unitless) AT - Averaging Time (years)	1 30	WDNR Default Value WDNR Default Value	
RfC - Reference Concentration (mg/m³)	3.5E-02	2	
EF - Exposure Frequency (day/year)	245	Frost-Free Days (Est.)	
ED - Exposure Duration (year)	30	WDNR Default Value	
VF - Volatilization Factor (kg/m³)	2.89E+03	Calculation	
Cp - Concentration of Particles less than 10 μm (μg/m³)	1.4	WDNR Default Value	
Residual Contaminant Level (mg/kg) = THQ:	AT 265 d		150
	x AT x 365 d x [(1/VF) +	(Cp x 10 ⁻⁹ kg/µg)]	130
Algorithm for Inhalation of Noncarcinogenic Contaminant	s in		
Industrial Soil Parameter	Value	Source	
THQ - Target Hazard Quotient (unitless)	Value 1	WDNR Default Value	
AT - Averaging Time (years)	25	WDNR Default Value	
RfC - Reference Concentration (mg/m³)	3.5E-02	2	
EF - Exposure Frequency (day/year)	250	WDNR Default Value	
ED - Exposure Duration (year)	250	WDNR Default Value	
IRc - Inhalation Rate Correction for Adult Laborer (unitless)	1.2	WDNR Default Value	
VF - Volatilization Factor (m³/kg)	2.89E+03		
Cp - Concentration of Particles less than 10 μm (μg/m³)	1.4	WDNR Default Value	
cp Concentration of Factores less than 10 am (agmir)	1.7	TWDINK Belauk Value	
Volatilization Factor (m ³ /kg) = $Q/C \times (3.14)$	x D _A xT) ^{1/2}	$\times 10^{-4} \text{m}^2/\text{cm}^2 =$	2.89E+
Volatilization Factor (m^3/kg) = $Q/C \times (3.14)$	1 x D _A xT) ^{1/2} : 2 x ρ _b x D _A	$\times 10^{-4} \text{m}^2/\text{cm}^2 =$	2.89E+
			2.89E+
	$\frac{1 \times D_A \times T)^{1/2}}{2 \times \rho_b \times D_A}$ $\frac{1 \times D_A \times T)^{1/2}}{2 \times \rho_b \times D_A}$ $\frac{1 \times D_A \times T)^{1/2}}{2 \times \rho_b \times D_A}$		
$D_A \text{ (cm}^2\text{/sec)} = \frac{[(\theta_a^{10/3})]^2}{\rho}$			
$D_A \text{ (cm}^2\text{/sec)} = \frac{[(\theta_a^{10/3})]^2}{\rho}$	$^{10/3}_{b}$ $H' + \theta_{w}^{10/3}$	D _w)/n ²] =	
$D_A (cm^2/sec)$ = $(\theta_a^{10/3})$ ρ	$\frac{D_aH' + \theta_w^{10/3}}{{}_bK_d + \theta_w + \theta_z}$ Value	D _w)/n ²] = H' Source	
$D_{A} \text{ (cm}^{2}\text{/sec}) = \underbrace{[(\theta_{a}^{10/3})]^{10/3}}_{\rho}$ Parameter $Q/C - \text{Inverse Mean Concentration at}$ $Center of Source (g/m^{2}\text{-sec})/(kg/m^{3})$	$D_aH' + \theta_w^{10/3}$ $bK_d + \theta_w + \theta_z$ $Value$ 68.81	D _w)/n ²] = H' Source WDNR Default Value	
$D_{A} \text{ (cm}^{2}\text{/sec)} = \frac{[(\theta_{a}^{10/3})]}{\rho}$ Parameter $Q/C - \text{Inverse Mean Concentration at}$ $Center of Source (g/m^{2}\text{-sec})/(kg/m^{3})$ $D_{A} - \text{Apparent Diffusivity (cm}^{2}\text{/sec})$	$\begin{array}{c} D_{a}H' + \theta_{w}^{-10/3} \\ bK_{d} + \theta_{w} + \theta_{z} \\ \hline Value \\ 68.81 \\ 1.87E-03 \end{array}$	Dw)/n²] = H' Source WDNR Default Value Calculation	
$D_{A} \text{ (cm}^{2}\text{/sec}) = \underbrace{[(\theta_{a}^{10/3})]^{10/3}}_{\rho}$ Parameter $Q/C - \text{Inverse Mean Concentration at}$ $Center of Source (g/m^{2}\text{-sec})/(kg/m^{3})$ $D_{A} - \text{Apparent Diffusivity (cm}^{2}\text{/sec})$	$D_aH' + \theta_w^{10/3}$ $bK_d + \theta_w + \theta_z$ $Value$ 68.81	Dw)/n²] = H' Source WDNR Default Value Calculation	
$D_{A} \text{ (cm}^{2}\text{/sec)} = \underbrace{[(\theta_{a}^{10/3})]}_{\rho}$ $Parameter$ $Q/C - Inverse Mean Concentration at$ $Center of Source (g/m^{2}-sec)/(kg/m^{3})$ $D_{A} - Apparent Diffusivity (cm^{2}/sec)$ $\Gamma - Exposure Intervals (sec)$	$\begin{array}{c} D_{a}H' + \theta_{w}^{-10/3} \\ bK_{d} + \theta_{w} + \theta_{z} \\ \hline Value \\ \hline 68.81 \\ 1.87E-03 \\ 9.50E+08 \end{array}$	Dw)/n²] = H' Source WDNR Default Value Calculation WDNR Default Value	
$D_A \text{ (cm}^2\text{/sec)}$ = $(\theta_a)^{10/3}$ ρ Parameter Q/C - Inverse Mean Concentration at	$\begin{array}{c} D_{a}H' + \theta_{w}^{-10/3} \\ bK_{d} + \theta_{w} + \theta_{i} \\ \hline Value \\ \hline 1.87E-03 \\ 9.50E+08 \\ 1.5 \end{array}$	Dw)/n²] = H' Source WDNR Default Value Calculation WDNR Default Value WDNR Default Value	
$D_{A} \text{ (cm}^{2}\text{/sec)} = \frac{[(\theta_{a}^{10/3})]}{\rho}$ Parameter $Q/C - \text{Inverse Mean Concentration at}$ $Center of Source (g/m^{2}\text{-sec})/(kg/m^{3})$ $D_{A} - \text{Apparent Diffusivity (cm}^{2}\text{/sec})$ $\Gamma - \text{Exposure Intervals (sec)}$ $\theta_{a} - \text{Air Filled Porosity (cm}^{3}\text{/cm}^{3})$ $D_{a} - \text{Air Diffusion Coefficient (cm}^{2}\text{/sec})$	$\begin{array}{c} D_{a}H' + \theta_{w}^{-10/3} \\ b_{b}K_{d} + \theta_{w} + \theta_{s} \\ \hline Value \\ \hline & 68.81 \\ \hline & 1.87E-03 \\ 9.50E+08 \\ \hline & 1.5 \\ \hline & 0.28 \\ \hline & 7.40E-02 \\ \end{array}$	Dw)/n²] = H' Source WDNR Default Value Calculation WDNR Default Value WDNR Default Value WDNR Default Value	
$D_{A} \text{ (cm}^{2}\text{/sec)} = \frac{[(\theta_{a}^{10/3})]}{\rho}$ Parameter $Q/C - \text{Inverse Mean Concentration at}$ $Center of Source (g/m^{2}\text{-sec})/(kg/m^{3})$ $D_{A} - \text{Apparent Diffusivity (cm}^{2}\text{/sec})$ $\Gamma - \text{Exposure Intervals (sec)}$ $\theta_{a} - \text{Air Filled Porosity (cm}^{3}\text{/cm}^{3})$ $D_{a} - \text{Air Diffusion Coefficient (cm}^{2}\text{/sec})$ $H' - \text{Henry's Law Constant (unitless)}$	$\begin{array}{c} D_{a}H' + \theta_{w}^{-10/3} \\ b_{b}K_{d} + \theta_{w} + \theta_{s} \\ \hline Value \\ \hline & 68.81 \\ \hline & 1.87E-03 \\ 9.50E+08 \\ \hline & 1.5 \\ \hline & 0.28 \\ \hline & 7.40E-02 \\ \end{array}$	Dw)/n²] = H' Source WDNR Default Value Calculation WDNR Default Value WDNR Default Value WDNR Default Value WDNR Default Value 2	
$D_{A} \text{ (cm}^{2}\text{/sec)} = \frac{[(\theta_{a}^{10/3})]^{10/3}}{\rho}$ $Parameter$ $Q/C - Inverse Mean Concentration at Center of Source (g/m^{2}\text{-sec})/(kg/m^{3}) D_{A} - Apparent Diffusivity (cm^{2}/\text{sec}) \Gamma - Exposure Intervals (sec) \theta_{a} - Air Filled Porosity (cm^{3}/\text{cm}^{3})$	$\begin{array}{c c} D_a H' + \theta_w^{-10/3} \\ b K_d + \theta_w + \theta_s \\ \hline Value \\ \hline 68.81 \\ 1.87E-03 \\ 9.50E+08 \\ 1.5 \\ 0.28 \\ 7.40E-02 \\ 1.70E-01 \\ 0.15 \\ \end{array}$	Dw)/n²] = H' Source WDNR Default Value Calculation WDNR Default Value WDNR Default Value WDNR Default Value 2 2	
$D_{A} (cm^{2}/sec) = \frac{[(\theta_{a}^{10/3})]}{\rho}$ Parameter $Q/C - Inverse Mean Concentration at Center of Source (g/m^{2}-sec)/(kg/m^{3})$ $D_{A} - Apparent Diffusivity (cm^{2}/sec)$ $\Gamma - Exposure Intervals (sec)$ $\theta_{a} - Air Filled Porosity (cm^{3}/cm^{3})$ $D_{a} - Air Diffusion Coefficient (cm^{2}/sec)$ $H' - Henry's Law Constant (unitless)$ $\theta_{w} - Volumetric Soil Moisture Content (cm^{3}/cm^{3})$	$\begin{array}{c c} D_a H' + \theta_w^{-10/3} \\ b K_d + \theta_w + \theta_s \\ \hline Value \\ \hline 68.81 \\ 1.87E-03 \\ 9.50E+08 \\ 1.5 \\ 0.28 \\ 7.40E-02 \\ 1.70E-01 \\ 0.15 \\ \end{array}$	Dw)/n²] = H' Source WDNR Default Value Calculation WDNR Default Value WDNR Default Value WDNR Default Value 2 WDNR Default Value	
$D_{A} (cm^{2}/sec) = \underbrace{[(\theta_{a}^{103})^{2}]}_{\rho}$ Parameter Q/C - Inverse Mean Concentration at Center of Source $(g/m^{2}-sec)/(kg/m^{3})$ D _A - Apparent Diffusivity (cm^{2}/sec) Γ - Exposure Intervals (sec) θ_{a} - Air Filled Porosity (cm^{3}/cm^{3}) D _a - Air Diffusion Coefficient (cm^{2}/sec) H' - Henry's Law Constant (unitless) θ_{w} - Volumetric Soil Moisture Content (cm^{3}/cm^{3}) D _w - Water Diffusion Coefficient (cm^{2}/sec) In - Total Soil Porosity (cm^{3}/cm^{3})	$\begin{array}{c c} D_a H' + \theta_w^{-10/3} \\ b K_d + \theta_w + \theta_s^{-1} \\ \hline & Value \\ \hline & 68.81 \\ \hline & 1.87E-03 \\ 9.50E+08 \\ 1.5 \\ 0.28 \\ \hline & 7.40E-02 \\ 1.70E-01 \\ 0.15 \\ \hline & 1.10E-05 \\ \end{array}$	Dw)/n²] = H' Source WDNR Default Value Calculation WDNR Default Value WDNR Default Value WDNR Default Value 2 WDNR Default Value 2 WDNR Default Value	
Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m²-sec)/(kg/m³) D _A - Apparent Diffusivity (cm²/sec) Γ - Exposure Intervals (sec) θ _a - Air Filled Porosity (cm³/cm³) D _a - Air Diffusion Coefficient (cm²/sec) H' - Henry's Law Constant (unitless) θ _w - Volumetric Soil Moisture Content (cm³/cm³) D _w - Water Diffusion Coefficient (cm²/sec) n - Total Soil Porosity (cm³/cm³) K _d - Soil:Water Distribution Coefficient (L/kg)	D _a H' + θ _w ^{10/3} b _b K _d + θ _w + θ _s Value 68.81 1.87E-03 9.50E+08 1.5 0.28 7.40E-02 1.70E-01 0.15 1.10E-05 0.43	Dw)/n²] = H' Source WDNR Default Value Calculation WDNR Default Value WDNR Default Value 2 WDNR Default Value 2 WDNR Default Value 2 WDNR Default Value	
$D_{A} (cm^{2}/sec) = \underbrace{[(\theta_{a}^{107})^{2}]}_{\rho}$ Parameter $Q/C - \text{Inverse Mean Concentration at}$ Center of Source $(g/m^{2}-sec)/(kg/m^{3})$ $D_{A} - \text{Apparent Diffusivity } (cm^{2}/sec)$ Γ - Exposure Intervals (sec) $\partial_{a} - \text{Air Filled Porosity } (cm^{3}/cm^{3})$ $D_{a} - \text{Air Diffusion Coefficient } (cm^{2}/sec)$ $H' - \text{Henry's Law Constant (unitless)}$ $\partial_{w} - \text{Volumetric Soil Moisture Content } (cm^{3}/cm^{3})$ $D_{w} - \text{Water Diffusion Coefficient } (cm^{2}/sec)$ $1 - \text{Total Soil Porosity } (cm^{3}/cm^{3})$	$\begin{array}{c c} D_aH' + \theta_w^{-10/3} \\ bK_d + \theta_w + \theta_s \\ \hline Value \\ \hline \\ 1.87E-03 \\ 9.50E+08 \\ 1.5 \\ 0.28 \\ 7.40E-02 \\ 1.70E-01 \\ 0.15 \\ 1.10E-05 \\ 0.43 \\ 0.22 \\ \end{array}$	Dw)/n²] = H' Source WDNR Default Value Calculation WDNR Default Value WDNR Default Value 2 WDNR Default Value 2 WDNR Default Value 2 WDNR Default Value	

Calculated by: Vasanta Kalluri (2/18/00)

Checked by: PAN 2-18-00

Note:

cis 1,2-Dichloroethene

Groundwater Pathway

One Hour Martinizing

1223 S. Military Avenue, Green Bay, Wisconsin

Parameter	Value	Units	Description	Source
K _{oc}	36	L/kg	Organic Carbon Partition Coefficient	2
f _{oc}	0.0021	g/g	Fraction Organic Carbon Content	Low TOC from Soil Test
K _d	0.08	L/kg	Soil:Water Distribution Coefficient	K _{oc} x f _{oc}
θ	0.2	cm ³ -H ₂ 0/cm ³ -soil	Volumetric Water Content, Vadose Zone Soils	WDNR Default Value
n	0.43	cm ³ -void/cm ³ -soil	Porosity	WDNR Default Value
d	152.4	cm	Groundwater Mixing Zone Thickness	WDNR Default Value
R	25.4	cm	Annualized Groundwater Recharge Rate	WDNR Default Value
ρ_{b}	1.5	g-soil/cm ³ -soil	Soil Bulk Density	WDNR Default Value
ES	70	μg/L	Enforcement Standard	NR 140

Calculate Site-Specific Residual Contaminant Level (RCL)

DAF =
$$d/R\theta \times (K_d \times \rho_b + n)$$

DAF

16.3

Dilution Attenuation Factor

$$RCL_{ES} = ES \times 10^{-3}_{mg/\mu g} \times (K_d + \theta/\rho_b) \times DAF$$

RCL_{ES}

0.24 mg/kg

cis 1,2-dichloroethene Site-Specific Residual Contaminant Level using ES

Calculated by: Vasanta Kalluri (2/18/00)

Checked by: 12 ft 2-18-00

Note:

Tetrachloroethene Soil Ingestion Pathway (SFo)

One Hour Martinizing 1223 S. Military Avenue, Green Bay, Wisconsin

Parameter	Value	Source
TR - Target Cancer Risk Level (unitless)	1E-06	WDNR Default Value
AT - Averaging Time (years)	70	WDNR Default Value
SFo - Slope Factor Oral (mg/kg-day) ⁻¹	5.2E-02	2
EF - Exposure Frequency (day/year)	245	Frost-Free Days (Est.)
Fs - Age Adjusted Soil Ingestion Factor (mg-year/kg-day)	114	WDNR Default Value
Rc - Ingestion Rate of Soil Age 1-6 (mg/day)	200	WDNR Default Value
EDc - Exposure Duration During Ages 1-6 (year)	6	WDNR Default Value
BWc - Average Body Weight From Ages 1-6 (kg)	15	WDNR Default Value
Ra - Ingestion Rate of Soil Age 7-31 (mg/day)	100	WDNR Default Value
EDa - Exposure Duration During Ages 7-31 (year)	24	WDNR Default Value
BWa - Average Body Weight From Ages 7-31 (kg)	70	WDNR Default Value
SFo x 10 ⁻⁶ kg/mg x IFs = <u>IRc x EDc</u> BWc	+ <u>IRa x EDa</u> = BWa	114
Algorithm for Ingestion of Carcinogenic Contaminants in Indu		C
Parameter	Value	Source WDND Defends Weller
R - Target Cancer Risk Level (unitless) Wa - Average Body Weight For Adult (kg)	1E-06 70	WDNR Default Value WDNR Default Value
AT - Average Body Weight For Adult (kg)	70	WDNR Default Value
SFo - Slope Factor Oral (mg/kg-day) ⁻¹	5.2E-02	2
EF - Exposure Frequency (day/year)	250	WDNR Default Value
ED - Exposure Duration (year)	25	WDNR Default Value
Ra - Ingestion Rate for Adult (mg/day)	100	WDNR Default Value
Residual Contaminant Level (mg/kg) = TR x BWa x AT x 36 SFo x 10 ⁻⁶ kg/mg x EF		55

Calculated by: Vasanta Kalluri (1/31/00)

Checked by: **2**AM 2-18-00

Note:

Tetrachloroethene Soil Inhalation Pathway (SFi)

One Hour Martinizing 1223 S. Military Avenue, Green Bay, Wisconsin

D	** •	Samuel
Parameter TP Torget Concer Bick Level (unitless)	Value 1E-06	Source WDNR Default Value
FR - Target Cancer Risk Level (unitless) BWa - Average Body Weight For Adult (kg)	70	WDNR Default Value
AT - Averaging Time (years)	70	WDNR Default Value
SFi - Slope Factor Inhalation (mg/kg-day) ⁻¹	2.0E-03	2
EF - Exposure Frequency (day/year)	245	Frost-Free Days (Est.)
ED - Exposure Duration (year)	30	WDNR Default Value
IR - Inhalation Rate (m³/day)	20	WDNR Default Value
VF - Volatilization Factor (kg/m³)	3.23E+03	i
Cp - Concentration of Particles less than 10 µm (µg/m³)	1,4	WDNR Default Value
Cp - Concentration of Particles less than 10 µm (µg/m)	1 1.4	WDNR Delaur Value
	Va x AT x 36	
SFi x EF x ED x	IR x [(1/VF)	+ Cp x 10 ⁻⁹ kg/μg)]
Algorithm for Inhalation of Carcinogenic Contaminants	n Industrial	Soil
Parameter	Value	Source
TR - Target Cancer Risk Level (unitless)	1E-06	WDNR Default Value
BWa - Average Body Weight For Adult (kg)	70	WDNR Default Value
AT - Averaging Time (years)	70	WDNR Default Value
SFi - Slope Factor Inhalation (mg/kg-day) ⁻¹	2.0E-03	1
EF - Exposure Frequency (day/year)	250	WDNR Default Value
ED - Exposure Duration (year)	25	WDNR Default Value
IRw - Inhalation Rate for Adult Laborer (m³/day)	24	WDNR Default Value
		" Bill betaut value
VF - Volatilization Factor (kg/m³)	3.23E+03	Calculation
Cp - Concentration of Particles less than 10 μm (μg/m³)	3.23E+03 1.4 Va x AT x 36	Calculation WDNR Default Value
Cp - Concentration of Particles less than 10 μ m (μ g/m ³) Residual Contaminant Level (mg/kg) = TR x BV	1.4 Va x AT x 36	Calculation WDNR Default Value
Cp - Concentration of Particles less than 10 μm (μg/m³) Residual Contaminant Level (mg/kg); = TR x BV SFi x EF x ED x I	1.4 Va x AT x 36 Rw x [(1/VF)	Calculation WDNR Default Value 5 day/year = 19
SFi x EF x ED x I Volatilization Factor (m^3/kg) = $Q/C \times (3.1)$	1.4 Na x AT x 36 Rw x [(1/VF) 4 x D _A xT) ^{1/2} 2 x ρ _b x D _A	Calculation WDNR Default Value
Cp - Concentration of Particles less than 10 μ m (μ g/m³) Residual Contaminant Level (mg/kg) = TR x BV SFi x EF x ED x I Volatilization Factor (m³/kg) = Q/C x (3.1)	1.4 Va x AT x 36 Rw x [(1/VF)	Calculation WDNR Default Value
Cp - Concentration of Particles less than 10 μ m (μ g/m³) Residual Contaminant Level (mg/kg) = TR x B³ SFi x EF x ED x I Volatilization Factor (m³/kg) = Q/C x (3.1) = $[(\theta_a^{-1})^2]$		Calculation WDNR Default Value 5 day/year
Cp - Concentration of Particles less than 10 μ m (μ g/m³) Residual Contaminant Level (mg/kg) = TR x B¹ SFi x EF x ED x ¹ Volatilization Factor (m³/kg) = Q/C x (3.1) = $\frac{[(\theta_2^{10})^{10}]}{[(\theta_2^{10})^{10}]}$	1.4 Na x AT x 36 Rw x [(1/VF) 4 x D _A xT) ^{1/2} 2 x ρ _b x D _A	Calculation WDNR Default Value 5 day/year
Cp - Concentration of Particles less than 10 μ m (μ g/m³) Residual Contaminant Level (mg/kg) = TR x B¹ SFi x EF x ED x ¹ Volatilization Factor (m³/kg) = Q/C x (3.1) = $\underline{[(\theta_a^{10})^{10}]}$ Parameter Q/C - Inverse Mean Concentration at	1.4 Wa x AT x 36 Rw x [(1/VF) 4 x $D_A xT$) ^{1/2} 2 x $\rho_b x D_A$ 3 $D_a H' + \theta_w^{-10/2}$ $\rho_b K_d + \theta_w + \theta$ Value	Calculation WDNR Default Value 5 day/year
Cp - Concentration of Particles less than 10 μ m (μ g/m³) Residual Contaminant Level (m g/kg) = TR x B¹ SFi x EF x ED x ¹ Volatilization Factor (m ³/kg) = Q/C x (3.1) = $\underline{[(\theta_a^{10})^a]}$ Parameter Q/C - Inverse Mean Concentration at Center of Source (g /m²-sec)/(k g/m³)	$ \begin{array}{c c} 1.4 \\ \text{Wa x AT x 36} \\ \text{Rw x } [(1/\text{VF}) \\ 4 \times D_A \times T)^{1/2} \\ 2 \times \rho_b \times D_A \\ ^{3} D_a H' + \theta_w^{-10/2} \\ \rho_b K_d + \theta_w + \theta \\ \underline{\text{Value}} \\ 68.81 $	Calculation WDNR Default Value
Cp - Concentration of Particles less than 10 μ m (μ g/m³) Residual Contaminant Level (m g/kg) = $\frac{TR \times B^1}{SFi \times EF \times ED \times 1}$ Volatilization Factor (m^3 /kg) = $\frac{Q/C \times (3.1)}{Q^3}$ Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m^3 -sec)/(k g/m³) D _A - Apparent Diffusivity (cm^2 /sec)	$ \begin{array}{c c} 1.4 \\ \text{Na x AT x 36} \\ \text{Rw x } [(1/\text{VF}) \\ 4 \text{ x D}_{A} \text{xT})^{1/2} \\ 2 \text{ x } \rho_{b} \text{ x D}_{A} \\ 3 \\ 0_{b} \text{Kd} + \theta_{w} + \theta \\ \hline & \text{Value} \\ 68.81 \\ 1.50 \\ E-0.3 $	Calculation WDNR Default Value S day/year = 19 P + Cp x 10 ⁻⁹ kg/µg)
Cp - Concentration of Particles less than 10 μm (μg/m³) Residual Contaminant Level (mg/kg) = $\frac{TR \times B1}{SFi \times EF \times ED \times 1}$ Volatilization Factor (m³/kg) = $\frac{Q/C \times (3.1)}{Q^2}$ Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m²-sec)/(kg/m³) D _A - Apparent Diffusivity (cm²/sec) Γ - Exposure Intervals (sec)	$ \begin{array}{c c} 1.4 \\ \text{Na x AT x 36} \\ \text{Rw x } [(1/\text{VF}) \\ 4 \text{ x D}_{A} \text{xT})^{1/2} \\ 2 \text{ x } \rho_{b} \text{ x D}_{A} \\ 3 \\ 0_{b} \text{Kd} + \theta_{w} + \theta \\ \hline & \text{Value} \\ 68.81 \\ 1.50 \\ E-0.3 \\ 9.50 \\ E+0.8 \\ \end{array} $	Calculation WDNR Default Value S day/year
Cp - Concentration of Particles less than 10 μm (μg/m³) Residual Contaminant Level (mg/kg) = $\frac{TR \times B1}{SFi \times EF \times ED \times 1}$ Volatilization Factor (m³/kg) = $\frac{Q/C \times (3.1)}{Q^2}$ Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m²-sec)/(kg/m³) D _A - Apparent Diffusivity (cm²/sec) Γ - Exposure Intervals (sec) ρ_b - Soil Dry Bulk Density (g/cm³)	$ \begin{array}{c c} 1.4 \\ \text{Na x AT x 36} \\ \text{Rw x } [(1/\text{VF}) \\ 4 \text{ x D}_{A} \text{xT})^{1/2} \\ 2 \text{ x } \rho_{b} \text{ x D}_{A} \\ 3 \\ 0_{b} \text{Kd} + \theta_{w} + \theta \\ \hline & Value \\ 68.81 \\ 1.50 \\ E-0.3 \\ 9.50 \\ E-0.8 \\ 1.5 \end{array} $	Calculation WDNR Default Value
Cp - Concentration of Particles less than 10 μm (μg/m³) Residual Contaminant Level (mg/kg) = $\frac{TR \times B1}{SFi \times EF \times ED \times 1}$ Volatilization Factor (m³/kg) = $\frac{Q/C \times (3.1)}{Q^2}$ Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m²-sec)/(kg/m³) D _A - Apparent Diffusivity (cm²/sec) T - Exposure Intervals (sec) p _b - Soil Dry Bulk Density (g/cm³) θ _a - Air Filled Porosity (cm³/cm³)	$ \begin{array}{c c} 1.4 \\ \text{Na x AT x 36} \\ \text{Rw x } [(1/\text{VF}) \\ 4 \text{ x D}_{A} \text{xT})^{1/2} \\ 2 \text{ x } \rho_{b} \text{ x D}_{A} \\ 3 \\ 0_{b} \text{Kd} + \theta_{w} + \theta \\ \hline & Value \\ 68.81 \\ 1.50 \\ 0.28 \end{array} $	Calculation WDNR Default Value S day/year
Cp - Concentration of Particles less than 10 μm (μg/m³) Residual Contaminant Level (mg/kg) = $\frac{TR \times B1}{SFi \times EF \times ED \times 1}$ Volatilization Factor (m³/kg) = $Q/C \times (3.1)$ Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m²-sec)/(kg/m³) D_A - Apparent Diffusivity (cm²/sec) Γ - Exposure Intervals (sec) p_b - Soil Dry Bulk Density (g/cm³) $θ_a$ - Air Filled Porosity (cm³/cm³) D_A - Air Diffusion Coefficient (cm²/sec)	$ \begin{array}{c c} 1.4 \\ \text{Na x AT x } 36 \\ \text{Rw x } [(1/\text{VF}) \\ 4 \text{ x } D_{\text{A}} \text{xT})^{1/2} \\ 2 \text{ x } \rho_{\text{b}} \text{ x } D_{\text{A}} \\ 3 \\ D_{\text{b}} \text{K}_{\text{d}} + \theta_{\text{w}} + \theta \\ \hline & \text{Value} \\ 68.81 \\ 1.50 \\ E-0.3 \\ 9.50 \\ E+0.8 \\ 1.5 \\ 0.28 \\ 7.20 \\ E-0.2 \\ \hline \end{array} $	Calculation WDNR Default Value
Cp - Concentration of Particles less than 10 μm (μg/m³) Residual Contaminant Level (mg/kg) = TR x B³ SFi x EF x ED x I Volatilization Factor (m³/kg) = Q/C x (3.1) $= \frac{[(\theta_a^{16})^{16}]}{[(\theta_a^{16})^{16}]}$ Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m²-sec)/(kg/m³) D _A - Apparent Diffusivity (cm²/sec) Γ - Exposure Intervals (sec) ρ_b - Soil Dry Bulk Density (g/cm³) θ_a - Air Filled Porosity (cm³/cm³) D _A - Air Diffusion Coefficient (cm²/sec) H' - Henry's Law Constant (unitless)	$ \begin{array}{c c} 1.4 \\ \text{Na x AT x } 36 \\ \text{Rw x } [(1/\text{VF}) \\ 4 \text{ x } D_{\text{A}} \text{xT})^{1/2} \\ 2 \text{ x } \rho_{\text{b}} \text{ x } D_{\text{A}} \\ \hline 3 D_{\text{a}} \text{H'} + \theta_{\text{w}}^{-10/2} \\ \rho_{\text{b}} \text{K}_{\text{d}} + \theta_{\text{w}} + \theta \\ \hline & \text{Value} \\ \hline 68.81 \\ 1.50\text{E-}03 \\ 9.50\text{E+}08 \\ 1.5 \\ 0.28 \\ 7.20\text{E-}02 \\ 7.50\text{E-}01 \\ \end{array} $	Calculation WDNR Default Value S day/year = 19 + Cp x 10 ⁻⁹ kg/μg)
Cp - Concentration of Particles less than 10 μm (μg/m³) Residual Contaminant Level (mg/kg) = TR x B³ SFi x EF x ED x I Volatilization Factor (m³/kg) = Q/C x (3.1) $= \frac{[(\theta_a^{16})^{16}]}{[(\theta_a^{16})^{16}]}$ Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m²-sec)/(kg/m³) D _A - Apparent Diffusivity (cm²/sec) Γ - Exposure Intervals (sec) ρ_b - Soil Dry Bulk Density (g/cm³) θ_a - Air Filled Porosity (cm³/cm³) D _A - Air Diffusion Coefficient (cm²/sec) H' - Henry's Law Constant (unitless)	$ \begin{array}{c c} 1.4 \\ \text{Na x AT x } 36 \\ \text{Rw x } [(1/\text{VF}) \\ 4 \text{ x } D_{\text{A}} \text{xT})^{1/2} \\ 2 \text{ x } \rho_{\text{b}} \text{ x } D_{\text{A}} \\ 3 \\ D_{\text{b}} \text{K}_{\text{d}} + \theta_{\text{w}} + \theta \\ \hline & \text{Value} \\ 68.81 \\ 1.50 \\ E-0.3 \\ 9.50 \\ E+0.8 \\ 1.5 \\ 0.28 \\ 7.20 \\ E-0.2 \\ \hline \end{array} $	Calculation WDNR Default Value
Cp - Concentration of Particles less than 10 μm (μg/m³) Residual Contaminant Level (mg/kg) = TR × B³ SFi x EF x ED x I Volatilization Factor (m³/kg) = Q/C x (3.1) $= \frac{[(\theta_a^{16})^{16}]}{[(\theta_a^{16})^{16}]}$ Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m²-sec)/(kg/m³) D _A - Apparent Diffusivity (cm²/sec) Γ - Exposure Intervals (sec) p _b - Soil Dry Bulk Density (g/cm³) θ _a - Air Filled Porosity (cm³/cm³) D _A - Air Diffusion Coefficient (cm²/sec) H' - Henry's Law Constant (unitless) θ _a - Volumetric Soil Moisture Content (cm³/cm³)	$ \begin{array}{c c} 1.4 \\ \text{Na x AT x } 36 \\ \text{Rw x } [(1/\text{VF}) \\ 4 \text{ x } D_{\text{A}} \text{xT})^{1/2} \\ 2 \text{ x } \rho_{\text{b}} \text{ x } D_{\text{A}} \\ \hline 3 D_{\text{a}} \text{H'} + \theta_{\text{w}}^{-10/2} \\ \rho_{\text{b}} \text{K}_{\text{d}} + \theta_{\text{w}} + \theta \\ \hline & \text{Value} \\ \hline 68.81 \\ 1.50\text{E-}03 \\ 9.50\text{E+}08 \\ 1.5 \\ 0.28 \\ 7.20\text{E-}02 \\ 7.50\text{E-}01 \\ \end{array} $	Calculation WDNR Default Value
Cp - Concentration of Particles less than 10 μm (μg/m³) Residual Contaminant Level (mg/kg) = TR × B³ SFi x EF x ED x I Volatilization Factor (m³/kg) = Q/C x (3.1) $= \frac{[(\theta_a^{16})^{16}]}{[(\theta_a^{16})^{16}]}$ Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m²-sec)/(kg/m³) D _A - Apparent Diffusivity (cm²/sec) Γ - Exposure Intervals (sec) p _b - Soil Dry Bulk Density (g/cm³) θ _a - Air Filled Porosity (cm³/cm³) D _A - Air Diffusion Coefficient (cm²/sec) H' - Henry's Law Constant (unitless) θ _w - Volumetric Soil Moisture Content (cm³/cm³) D _w - Water Diffusion Coefficient (cm²/sec)	$\begin{array}{c} 1.4 \\ \text{Wa x AT x 36} \\ \text{Rw x } [(1/\text{VF}) \\ \hline \\ 4 \text{ x D}_{A} \text{ xT})^{1/2} \\ 2 \text{ x } \rho_{b} \text{ x D}_{A} \\ \hline \\ 2 \text{ x } \rho_{b} \text{ x D}_{A} \\ \hline \\ 2 \text{ y } \rho_{b} \text{ x D}_{A} \\ \hline \\ 2 \text{ y } \rho_{b} \text{ x D}_{A} \\ \hline \\ 2 \text{ y } \rho_{b} \text{ x D}_{A} \\ \hline \\ 2 \text{ y } \rho_{b} \text{ x D}_{A} \\ \hline \\ 2 \text{ y } \rho_{b} \text{ x D}_{A} \\ \hline \\ 3 \text{ y } \rho_{b} \text{ x D}_{A} \\ \hline \\ 4 \text{ x D}_{A} \text{ x T})^{1/2} \\ \hline \\ 2 \text{ x } \rho_{b} \text{ x D}_{A} \\ \hline \\ 4 \text{ x D}_{A} \text{ x T})^{1/2} \\ \hline \\ 2 \text{ x } \rho_{b} \text{ x D}_{A} \\ \hline \\ 4 \text{ x D}_{A} \text{ x T})^{1/2} \\ \hline \\ 4 \text{ x D}_{A} x $	Calculation WDNR Default Value
Cp - Concentration of Particles less than 10 μ m (μ g/m³) Residual Contaminant Level (mg/kg) = TR x B¹ SFi x EF x ED x ¹ Volatilization Factor (m³/kg) = Q/C x (3.1) = $\frac{[(\theta_a^{10})^{10}]}{[(\theta_a^{10})^{10}]}$	$\begin{array}{c} 1.4 \\ \text{Wa x AT x 36} \\ \text{Rw x } [(1/\text{VF}) \\ \hline \\ 4 \text{ x D}_{A} \text{ xT})^{1/2} \\ 2 \text{ x } \rho_{b} \text{ x D}_{A} \\ \hline \\ 2 \text{ x } \rho_{b} \text{ x D}_{A} \\ \hline \\ 2 \text{ y } \rho_{b} \text{ x D}_{A} \\ \hline \\ 2 \text{ y } \rho_{b} \text{ x D}_{A} \\ \hline \\ 2 \text{ y } \rho_{b} \text{ x D}_{A} \\ \hline \\ 2 \text{ y } \rho_{b} \text{ x D}_{A} \\ \hline \\ 3 \text{ D}_{b} \text{H}^{+} + \theta_{w}^{-10/2} \\ \hline \\ 4 \text{ x D}_{A} \text{ x T})^{1/2} \\ \hline \\ 2 \text{ x } \rho_{b} \text{ x D}_{A} \\ \hline \\ 3 \text{ D}_{b} \text{K}_{d} + \theta_{w} + \theta \\ \hline \\ 4 \text{ Value} \\ \hline \\ 1.5 \text{ OE-03} \\ 9.50 \text{E+08} \\ 1.5 \\ 0.28 \\ 7.20 \text{E-02} \\ 7.50 \text{E-01} \\ 0.15 \\ 8.20 \text{E-06} \\ \end{array}$	Calculation WDNR Default Value 5 day/year
Cp - Concentration of Particles less than 10 μm (μg/m³) Residual Contaminant Level (mg/kg) = TR × B³ SFi x EF x ED x I Volatilization Factor (m³/kg) = Q/C x (3.1) $= \frac{[(\theta_a^{-10})^{-1}]}{[(\theta_a^{-10})^{-1}]}$ Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m²-sec)/(kg/m³) D _A - Apparent Diffusivity (cm²/sec) T - Exposure Intervals (sec) p _b - Soil Dry Bulk Density (g/cm³) θ _a - Air Filled Porosity (cm³/cm³) D _A - Air Diffusion Coefficient (cm²/sec) H' - Henry's Law Constant (unitless) θ _w - Volumetric Soil Moisture Content (cm³/cm³) D _w - Water Diffusion Coefficient (cm²/sec) n - Total Soil Porosity (cm³/cm³)	$\begin{array}{c} 1.4 \\ \text{Wa x AT x 36} \\ \text{Rw x } [(1/\text{VF}) \\ 4 \text{ x D}_{A} \text{xT}]^{1/2} \\ 2 \text{ x } \rho_{b} \text{ x D}_{A} \\ 2 \text{ x } \rho_{b} \text{ x D}_{A} \\ \frac{3}{2} \rho_{b} \text{H} + \theta_{w} + \theta \\ \text{Value} \\ 68.81 \\ 1.50\text{E-}03 \\ 9.50\text{E+}08 \\ 1.5 \\ 0.28 \\ 7.20\text{E-}02 \\ 7.50\text{E-}01 \\ 0.15 \\ 8.20\text{E-}04 \\ 0.43 \\ \end{array}$	Calculation WDNR Default Value

Calculated by: Vasanta Kalluri (1/31/00)

Checked by: 2-18-00

Note

Tetrachloroethene

Groundwater Pathway

One Hour Martinizing 1223 S. Military Avenue, Green Bay, Wisconsin

Parameter	Value	Units	Description	Source
Koc	270	L/kg	Organic Carbon Partition Coefficient	2
f_{oc}	0.0021	g/g	Fraction Organic Carbon Content	Low TOC from Soil Test
K _d	0.5670	L/kg	Soil:Water Distribution Coefficient	K _{oc} x f _{oc}
θ	0.2	cm ³ -H ₂ 0/cm ³ -soil	Volumetric Water Content, Vadose Zone Soils	WDNR Default Value
n	0.43	cm ³ -void/cm ³ -soil	Porosity	WDNR Default Value
d	152.4	cm	Groundwater Mixing Zone Thickness	WDNR Default Value
R	25.4	cm	Annualized Groundwater Recharge Rate	WDNR Default Value
ρ_b	1.5	g-soil/cm ³ -soil	Soil Bulk Density	WDNR Default Value
ES	5	μg/L	Enforcement Standard	NR 140

Calculate Site-Specific Residual Contaminant Level (RCL)

DAF =
$$d/R\theta \times (K_d \times \rho_b + n)$$

DAF

38.4

Dilution Attenuation Factor

$$RCL_{ES} = ES \times 10^{-3}_{mg/\mu g} \times (K_d + \theta/\rho_b) \times DAF$$

RCL_{ES}

0.13 mg/kg

Tetrachloroethene Site-Specific Residual Contaminant Level using ES

Calculated by: Vasanta Kalluri (1/31/00)

Checked by: $724442-18-\infty$

Note:

TrichloroetheneSoil Ingestion Pathway (SFo)

One Hour Martinizing 1223 S. Military Avenue, Green Bay, Wisconsin

Parameter		Value	Source
FR - Target Cancer Risk Level (unitless)		1E-06	WDNR Default Value
AT - Averaging Time (years)		70	WDNR Default Value
SFo - Slope Factor Oral (mg/kg-day) ⁻¹		1.1E-02	2
EF - Exposure Frequency (day/year)		245	Frost-Free Days (Est.
Fs - Age Adjusted Soil Ingestion Factor (mg-	year/kg-day)	114	WDNR Default Value
Rc - Ingestion Rate of Soil Age 1-6 (mg/day)		200	WDNR Default Value
EDc - Exposure Duration During Ages 1-6 (ye	ear)	6	WDNR Default Value
BWc - Average Body Weight From Ages 1-6	(kg)	15	WDNR Default Value
Ra - Ingestion Rate of Soil Age 7-31 (mg/day)	100	WDNR Default Value
EDa - Exposure Duration During Ages 7-31 (y	/ear)	24	WDNR Default Value
3Wa - Average Body Weight From Ages 7-31	(kg)	70	WDNR Default Value
	$R \times AT \times 365 \text{ day}$ $2 \times 10^{-6} \text{ kg/mg } \times E$ $8 = IRc \times EDc$	F x IFs + <u>IRa x EDa</u>	= 114
IF	x 10 ⁻⁶ kg/mg x E s = <u>IRc x EDc</u> BWc	F x IFs + <u>IRa x EDa</u> BWa	
IF Algorithm for Ingestion of Carcinogenic Cont	x 10 ⁻⁶ kg/mg x E s = <u>IRc x EDc</u> BWc	F x IFs + <u>IRa x EDa</u> BWa trial Soil	= 114
IF Algorithm for Ingestion of Carcinogenic Cont Parameter	x 10 ⁻⁶ kg/mg x E s = <u>IRc x EDc</u> BWc	F x IFs + IRa x EDa BWa trial Soil Value	= 114 Source
IF Algorithm for Ingestion of Carcinogenic Cont Parameter TR - Target Cancer Risk Level (unitless)	x 10 ⁻⁶ kg/mg x E s = <u>IRc x EDc</u> BWc	F x IFs + <u>IRa x EDa</u> BWa trial Soil	= 114 Source WDNR Default Valu
IF Algorithm for Ingestion of Carcinogenic Cont Parameter TR - Target Cancer Risk Level (unitless) BWa - Average Body Weight For Adult (kg)	x 10 ⁻⁶ kg/mg x E s = <u>IRc x EDc</u> BWc	F x IFs + IRa x EDa BWa trial Soil Value 1E-06	= 114 Source WDNR Default Valu WDNR Default Valu
Algorithm for Ingestion of Carcinogenic Cont Parameter FR - Target Cancer Risk Level (unitless) BWa - Average Body Weight For Adult (kg) AT - Averaging Time (years)	x 10 ⁻⁶ kg/mg x E s = <u>IRc x EDc</u> BWc	+ IRa x EDa BWa trial Soil Value 1E-06 70	= 114 Source WDNR Default Valu WDNR Default Valu
Algorithm for Ingestion of Carcinogenic Cont Parameter FR - Target Cancer Risk Level (unitless) BWa - Average Body Weight For Adult (kg) AT - Averaging Time (years) FFo - Slope Factor Oral (mg/kg-day) ⁻¹	x 10 ⁻⁶ kg/mg x E s = <u>IRc x EDc</u> BWc	+ IRa x EDa BWa trial Soil Value 1E-06 70 70	Source WDNR Default Valu WDNR Default Valu WDNR Default Valu 2
Algorithm for Ingestion of Carcinogenic Cont Parameter TR - Target Cancer Risk Level (unitless) BWa - Average Body Weight For Adult (kg) AT - Averaging Time (years) BFo - Slope Factor Oral (mg/kg-day) ⁻¹ EF - Exposure Frequency (day/year)	x 10 ⁻⁶ kg/mg x E s = <u>IRc x EDc</u> BWc	### F x IFs ### ### ### ### #### ###############	Source WDNR Default Valu WDNR Default Valu WDNR Default Valu
Algorithm for Ingestion of Carcinogenic Cont Parameter FR - Target Cancer Risk Level (unitless) BWa - Average Body Weight For Adult (kg) AT - Averaging Time (years) FFo - Slope Factor Oral (mg/kg-day) ⁻¹	x 10 ⁻⁶ kg/mg x E s = <u>IRc x EDc</u> BWc	### F x IFs ### ### ### ### ### #### ###########	Source WDNR Default Valu WDNR Default Valu WDNR Default Valu 2 WDNR Default Valu
Algorithm for Ingestion of Carcinogenic Contection Parameter TR - Target Cancer Risk Level (unitless) BWa - Average Body Weight For Adult (kg) AT - Averaging Time (years) BFo - Slope Factor Oral (mg/kg-day) ⁻¹ BF - Exposure Frequency (day/year) ED - Exposure Duration (year)	x 10 ⁻⁶ kg/mg x E s = <u>IRc x EDc</u> BWc	### F x IFs ### ### ### ### ### #### ###########	Source WDNR Default Valu WDNR Default Valu WDNR Default Valu 2 WDNR Default Valu WDNR Default Valu

Calculated by: Vasanta Kalluri (1/31/00)

Checked by: Rafty 2-18-00

Note:

Trichloroethene Soil Inhalation Pathway (SFi)

One Hour Martinizing 1223 S. Military Avenue, Green Bay, Wisconsin

Parameter	Value	Source
TR - Target Cancer Risk Level (unitless)	1E-06	WDNR Default Value
BWa - Average Body Weight For Adult (kg)	70	WDNR Default Value
AT - Averaging Time (years)	70	WDNR Default Value
SFi - Slope Factor Inhalation (mg/kg-day) ⁻¹	6.0E-03	2
EF - Exposure Frequency (day/year)	245 30	Frost-Free Days (Est.) WDNR Default Value
ED - Exposure Duration (year)		
IR - Inhalation Rate (m³/day)	20	WDNR Default Value
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than 10 μm (μg/m³)	2.60E+03	Calculation WDNR Default Value
Cp - Concentration of Particles less than 10 µm (µg/m)	1 1.4	WDINK Default Value
	Wa x AT x 36 IR x [(1/VF)	$\frac{5 \text{ day/year}}{+ \text{ Cp x } 10^9 \text{ kg/µg}} = \frac{5.3}{}$
Algorithm for Inhalation of Carcinogenic Contaminants	in Industrial	Soil
Parameter	Value	Source
TR - Target Cancer Risk Level (unitless)	1E-06	WDNR Default Value
BWa - Average Body Weight For Adult (kg) AT - Averaging Time (years)	70	WDNR Default Value WDNR Default Value
SFi - Slope Factor Inhalation (mg/kg-day) ⁻¹	6.0E-03	2
EF - Exposure Frequency (day/year)	250	WDNR Default Value
ED - Exposure Duration (year)	25	WDNR Default Value
IRw - Inhalation Rate for Adult Laborer (m³/day)	24	
	24	WDNR Default Value
· • • • • • • • • • • • • • • • • • • •	2.60E+03	WDNR Default Value Calculation
VF - Volatilization Factor (kg/m³)		
VF - Volatilization Factor (kg/m ³) Cp - Concentration of Particles less than $10 \mu m (\mu g/m^3)$ Residual Contaminant Level (mg/kg) = TR x B	2.60E+03 1.4 Wa x AT x 36	Calculation WDNR Default Value
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than 10 μm (μg/m³) Residual Contaminant Level (mg/kg) = TR x B SFi x EF x ED x	2.60E+03 1.4 Wa x AT x 36	Calculation WDNR Default Value 5 day/year = 5.2 + Cp x 10 ⁻⁹ kg/µg)]
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than $10 \mu m (\mu g/m³)$ Residual Contaminant Level (mg/kg) = $\frac{TR \times B}{SF_1 \times EF \times ED \times EF}$ Volatilization Factor (m³/kg) = $\frac{Q/C \times (3.8)}{Q/C \times (3.8)}$	2.60E+03 1.4 Wa x AT x 36 IRw x [(I/VF) 14 x D _A xT) ^{1/2} 2 x p _b x D _A	Calculation WDNR Default Value 5 day/year = 5.2 7 + Cp x 10 ⁻⁹ kg/µg)] x 10 ⁻⁴ m ² /cm ² = 2.60E+03
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than $10 \mu m (\mu g/m³)$ Residual Contaminant Level (mg/kg) = $\frac{TR \times B}{SF_1 \times EF \times ED \times Volatilization Factor (m³/kg)}$ = $Q/C \times (3.$	2.60E+03 1.4 Wa x AT x 36 IRw x [(1/VF)	Calculation WDNR Default Value 5 day/year = 5.2 7 + Cp x 10 ⁻⁹ kg/µg)] x 10 ⁻⁴ m ² /cm ² = 2.60E+03
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than $10 \mu m (\mu g/m³)$ Residual Contaminant Level (mg/kg) = TR x B SFi x EF x ED x Volatilization Factor (m³/kg) = Q/C x (3.		Calculation WDNR Default Value 5 day/year
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than $10 \mu\text{m}$ ($\mu\text{g}/\text{m}^3$) Residual Contaminant Level (mg/kg) = TR x B SFi x EF x ED x Volatilization Factor (m³/kg) = Q/C x (3.) Parameter	2.60E+03 1.4 Wa x AT x 36 IRw x [(I/VF) 14 x D _A xT) ^{1/2} 2 x p _b x D _A	Calculation WDNR Default Value 5 day/year = 5.2 7 + Cp x 10 ⁻⁹ kg/µg)] x 10 ⁻⁴ m ² /cm ² = 2.60E+03
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than $10 \mu\text{m}$ ($\mu\text{g}/\text{m}^3$) Residual Contaminant Level (mg/kg) = TR x B SFi x EF x ED x Volatilization Factor (m³/kg) = Q/C x (3.) Parameter		Calculation WDNR Default Value $5 \text{ day/year} = 5.2$ $+ \text{Cp x } 10^{-9} \text{ kg/µg}$ $\times 10^{-4} \text{m}^2/\text{cm}^2 = 2.60\text{E} + 03$ $\frac{^3 D_w}{^3 H^2} = 2.31\text{E} - 03$ Source
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than $10 \mu m (\mu g/m³)$ Residual Contaminant Level (mg/kg) = TR x B SFi x EF x ED x Volatilization Factor (m³/kg) = Q/C x (3. = [(θ_a) Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m²-sec)/(kg/m³)		Calculation WDNR Default Value $5 \text{ day/year} = 5.2$ $+ \text{Cp x } 10^{-9} \text{ kg/µg}$ $\times 10^{-4} \text{m}^2/\text{cm}^2 = 2.60\text{E} + 03$ $\frac{^3 D_w}{^3 H^2} = 2.31\text{E} - 03$ Source
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than $10 \mu m (\mu g/m³)$ Residual Contaminant Level (mg/kg) = TR x B SFi x EF x ED x Volatilization Factor (m³/kg) = Q/C x (3. = [(θ_a) Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m²-sec)/(kg/m³) D _A - Apparent Diffusivity (cm²/sec)		Calculation WDNR Default Value 5 day/year = 5.2 + Cp x 10 ⁻⁹ kg/µg)] x 10 ⁻⁴ m ² /cm ² = 2.60E+03 3D _w)/n ²] = 2.31E-03 at' Source WDNR Default Value
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than 10 µm (µg/m³) Residual Contaminant Level (mg/kg) = TR x B SFi x EF x ED x Volatilization Factor (m³/kg) = Q/C x (3. = [(θ _a) Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m²-sec)/(kg/m³) D _A - Apparent Diffusivity (cm²/sec) Γ - Exposure Intervals (sec)		Calculation WDNR Default Value 5 day/year = 5.2 + Cp x 10 ⁻⁹ kg/µg)] x 10 ⁻⁴ m ² /cm ² = 2.60E+03 3D _w)/n ²] = 2.31E-03 aH Source WDNR Default Value Calculation
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than 10 µm (µg/m³) Residual Contaminant Level (mg/kg) = TR x B SFi x EF x ED x Volatilization Factor (m³/kg) = Q/C x (3. = [(θ _a) Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m²-sec)/(kg/m³) D _A - Apparent Diffusivity (cm²/sec) T - Exposure Intervals (sec) p _b - Soil Dry Bulk Density (g/cm³)		Calculation WDNR Default Value 5 day/year = 5.2 1 + Cp x 10 ⁻⁹ kg/µg)] x 10 ⁻⁴ m ² /cm ² = 2.60E+03 3 D _w)/n ²] = 2.31E-03 aH' Source WDNR Default Value Calculation WDNR Default Value
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than 10 µm (µg/m³) Residual Contaminant Level (mg/kg) = TR x B SFi x EF x ED x Volatilization Factor (m³/kg) = Q/C x (3. = [(θ _a) Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m²-sec)/(kg/m³) D _A - Apparent Diffusivity (cm²/sec) T - Exposure Intervals (sec) p _b - Soil Dry Bulk Density (g/cm³) θ _a - Air Filled Porosity (cm³/cm³)		Calculation WDNR Default Value 5 day/year = 5.2 1 + Cp x 10 ⁻⁹ kg/µg)] x 10 ⁻⁴ m ² /cm ² = 2.60E+03 3 D _w)/n ²] = 2.31E-03 aH' Source WDNR Default Value Calculation WDNR Default Value WDNR Default Value WDNR Default Value WDNR Default Value
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than 10 μm (μg/m³) Residual Contaminant Level (mg/kg) = TR x B SFi x EF x ED x Volatilization Factor (m³/kg) = Q/C x (3. = [(θ _a) ¹ Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m²-sec)/(kg/m³) D _A - Apparent Diffusivity (cm²/sec) T - Exposure Intervals (sec) p _b - Soil Dry Bulk Density (g/cm³) θ _a - Air Filled Porosity (cm³/cm³) D _A - Air Diffusion Coefficient (cm²/sec)		Calculation WDNR Default Value 5 day/year = 5.2 1 + Cp x 10 ⁻⁹ kg/µg)] x 10 ⁻⁴ m ² /cm ² = 2.60E+03 3 D _w)/n ²] = 2.31E-03 aH' Source WDNR Default Value Calculation WDNR Default Value WDNR Default Value WDNR Default Value WDNR Default Value
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than 10 μm (μg/m³) Residual Contaminant Level (mg/kg) =TR x B	$ \begin{array}{c} 2.60E+03 \\ 1.4 \\ \hline \\ Wa x AT x 36 \\ IRw x \left[(I/VF) \\ 14 x D_A x T \right]^{1/2} \\ 2 x \rho_b x D_A \\ \hline \\ 2 x \rho_b x D_A \\ \hline \\ Value \\ \hline \\ 68.81 \\ \hline \\ 2.31E-03 \\ 9.50E+08 \\ 1.5 \\ 0.28 \\ 7.90E-02 \\ \hline \end{array} $	Calculation WDNR Default Value 5 day/year = 5.2 1 + Cp x 10 ⁻⁹ kg/µg)] x 10 ⁻⁴ m ² /cm ² = 2.60E+03 3 D _w)/n ²] = 2.31E-03 aH' Source WDNR Default Value Calculation WDNR Default Value WDNR Default Value WDNR Default Value WDNR Default Value
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than 10 μm (μg/m³) Residual Contaminant Level (mg/kg) =TR x B		Calculation WDNR Default Value 5 day/year = 5.2 + Cp x 10 ⁻⁹ kg/µg)] x 10 ⁻⁴ m ² /cm ² = 2.60E+03 3D _w /n ²] = 2.31E-03 aH Source WDNR Default Value Calculation WDNR Default Value WDNR Default Value WDNR Default Value WDNR Default Value 2 2
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than 10 μm (μg/m³) Residual Contaminant Level (mg/kg) = TR x B SFi x EF x ED x Volatilization Factor (m³/kg) = Q/C x (3. = [(θa²)] Parameter Q/C - Inverse Mean Concentration at Center of Source (g/m²-sec)/(kg/m³) Da Apparent Diffusivity (cm²/sec) Γ - Exposure Intervals (sec) pa Soil Dry Bulk Density (g/cm³) θa - Air Filled Porosity (cm³/cm³) Da Air Diffusion Coefficient (cm²/sec) H' - Henry's Law Constant (unitless) θa Volumetric Soil Moisture Content (cm²/sec) Da Water Diffusion Coefficient (cm²/sec)	$ \begin{array}{c} 2.60E+03 \\ 1.4 \\ \hline \\ Wa x AT x 36 \\ IRw x [(I/VF) \\ 14 x D_A xT)^{1/2} \\ 2 x \rho_b x D_A \\ \hline \\ 2 x \rho_b x D_A \\ \hline \\ 0/3 D_a H' + \theta_w^{-10/2} \\ \hline \\ \rho_b K_d + \theta_w + \theta_b \\ \hline \\ Value \\ \hline \\ 68.81 \\ \hline \\ 2.31E-03 \\ 9.50E+08 \\ 1.5 \\ 0.28 \\ 7.90E-02 \\ 4.20E-01 \\ 0.15 \\ \end{array} $	Calculation WDNR Default Value 5 day/year = 5.2 + Cp x 10 ⁻⁹ kg/µg)] x 10 ⁻⁴ m ² /cm ² = 2.60E+03 3D _w /n ²] = 2.31E-03 aH Source WDNR Default Value Calculation WDNR Default Value WDNR Default Value WDNR Default Value WDNR Default Value 2 2
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than $10 \mu\text{m}$ ($\mu\text{g}/\text{m}^3$) Residual Contaminant Level (mg/kg) = TR x B SFi x EF x ED x Volatilization Factor (m³/kg) = Q/C x (3.) Parameter Q/C - Inverse Mean Concentration at	$ \begin{array}{c} 2.60E+03 \\ 1.4 \\ \hline \\ Wa x AT x 36 \\ IRw x \left((I/VF) \\ \hline \\ 14 x D_A x T \right)^{1/2} \\ 2 x \rho_b x D_A \\ \hline \\ 2 x \rho_b x D_A \\ \hline \\ P_b K_d + \theta_w + \theta_t \\ \hline \\ Value \\ \hline \\ 68.81 \\ \hline \\ 2.31E-03 \\ 9.50E+08 \\ 1.5 \\ 0.28 \\ 7.90E-02 \\ 4.20E-01 \\ 0.15 \\ 9.10E-06 \\ \end{array} $	Calculation WDNR Default Value 5 day/year = 5.2 + Cp x 10 ⁻⁹ kg/µg)] x 10 ⁻⁴ m ² /cm ² = 2.60E+03 3D _w /n ²] = 2.31E-03 aH Source WDNR Default Value Calculation WDNR Default Value WDNR Default Value WDNR Default Value 2 2 WDNR Default Value 2 2 WDNR Default Value 2
VF - Volatilization Factor (kg/m³) Cp - Concentration of Particles less than 10 μm (μg/m³) Residual Contaminant Level (mg/kg) =TR x B	$ \begin{array}{c} 2.60E+03 \\ 1.4 \\ \hline \\ Wa x AT x 36 \\ 1Rw x \left[(1/VF) \\ 14 x D_A x T \right]^{1/2} \\ 2 x \rho_b x D_A \\ \hline \\ 2 x \rho_b x D_A \\ \hline \\ Value \\ 68.81 \\ \hline \\ 2.31E-03 \\ 9.50E+08 \\ 1.5 \\ 0.28 \\ 7.90E-02 \\ 4.20E-01 \\ 0.15 \\ 9.10E-06 \\ 0.43 \\ 0.56 \\ \end{array} $	Calculation WDNR Default Value 5 day/year = 5.2 + Cp x 10° kg/µg)] x 10° 4m²/cm² = 2.60E+03 3 Dw/n²] = 2.31E-03 H Source WDNR Default Value Calculation WDNR Default Value WDNR Default Value WDNR Default Value 2 2 WDNR Default Value 2 WDNR Default Value 2 WDNR Default Value

Calculated by: Vasanta Kalluri (1/31/00)

Checked by: RAM 2-18-00

Note:

One Hour Martinizing

1223 S. Military Avenue, Green Bay, Wisconsin

Trichloroethene--Groundwater Pathway

Site-Specific Residual Contaminant Level Calculation

Parameter	Value	Units	Description	Source
Koc	94	L/kg	Organic Carbon Partition Coefficient	2
f_{oc}	0.0021	g/g	Fraction Organic Carbon Content	Low TOC from Soil Test
K _d	0.20	L/kg	Soil:Water Distribution Coefficient	K _{oc} x f _{oc}
θ	0.2	cm ³ -H ₂ 0/cm ³ -soil	Volumetric Water Content, Vadose Zone Soils	WDNR Default Value
n	0.43	cm ³ -void/cm ³ -soil	Porosity	WDNR Default Value
d	152.4	cm	Groundwater Mixing Zone Thickness	WDNR Default Value
R	25.4	cm	Annualized Groundwater Recharge Rate	WDNR Default Value
ρ_b	1.5	g-soil/cm ³ -soil	Soil Bulk Density	WDNR Default Value
ES	5	μg/L	Enforcement Standard	NR 140

Calculate Site-Specific Residual Contaminant Level (RCL)

DAF =
$$d/R\theta x (K_d x \rho_b + n)$$

DAF

21.8

Dilution Attenuation Factor

$$RCL_{ES} = ES \times 10^{-3}_{mg/\mu g} \times (K_d + \theta/\rho_b) \times DAF$$

RCL_{ES}

0.036 mg/kg

Site-Specific Residual Contaminant Level using ES

Calculated by: Vasanta Kalluri (1/31/00)

Checked by: 2-1800

Notes: