General Engineering Company P.O. Box 340 916 Silver Lake Drive Portage, WI 53901

608-742-2169 (Office) 608-742-2592 (Fax) gec@generalengineering.net www.generalengineering.net

Engineers • Consultants • Inspectors

September 26, 2016

Ms. Kristin DuFresne Wisconsin Department of Natural Resources 2984 Shawano Avenue Green Bay, WI 54313

RE: VPLE SITE INVESTIGATION UPDATE AND CONSTRUCTION DOCUMENTATION REPORT

VPLE-06-05-576806 for the Former One Hour Martinizing (BRRTS No. 02-05-217276)

Green Bay, Wisconsin

GEC Project Number: 2-0615-231

Dear Ms DuFresne:

General Engineering Company has completed this Voluntary Party Liability Exemption (VPLE) Site Investigation Update and Construction Documentation Report for Lot 3 of Parcel 21-1323-1, located at 1923 Main Street, in the City of Green Bay, Wisconsin. Please feel free to contact General Engineering with any questions you may have.

Sincerely yours,

Lynn Bradley

GENERAL ENGINEERING COMPANY

Brian Youngwirth Environmental Project Manager

Environmental Project Manager

Engineers • Consultants • Inspectors

VPLE SITE INVESTIGATION UPDATE AND CONSTRUCTION DOCUMENTATION REPORT

For

FORMER ONE HOUR MARTINIZING

Located at

1923 Main Street
Lot 3 of Parcel 21-1323-1
City of Green Bay, Brown County, Wisconsin

September 26, 2016

Prepared by:

GENERAL ENGINEERING COMPANY LLC
916 Silver Lake Drive

PO Box 340 Phone: (608) 742-2169

GEC Project No.: 2-1114-295A

Client:

GB Real Estate Investments,

c/o Garritt Bader 300 North Van Buren Street Green Bay, WI 54301

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	Page 1-3
2.0	INTRODUCTION 2.1 General 2.2 Purpose 2.3 Scope of Work	3-4 4 5
3.0	SITE DESCRIPTION 3.1 Site Features 3.2 Background	5 5-7
4.0	ADDITIONAL SITE INVESTIGATION AND CONSTRUCTION DOCUMENTATION 4.1 Scope Summary 4.2 Soil, Groundwater, and Sub-Slab Vapor Sample Collection and Preparation	8
5.0	GROUNDWATER, SOIL, AND SUB-SLAB VAPOR SAMPLING ACTIVITIES 5.1 Groundwter Sampling 5.2 Soil Sampling 5.3 Sub-Slab Vapor Sampling	9 9 9
6.0	GROUNDWATER AND SOIL TESTING RESULTS 6.1 Groundwater Quality Standards 6.2 Laboratory Groundwater Results 6.3 NR 720 Soil Standards 6.4 Laboratory Soil Results	9 10 10 10
7.0	VAPOR MITIGATION SYSTEM DESIGN AND SUB-SLAB VAPOR TESTING RESULTS	10-11
8.0	CONSTRUCTION DOCUMENTATION	11-12
9.0	CONCLUSION, RECOMMENDATIONS, OPINIONS	12

APPENDICES

APPENDIX A

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Soil Probe, Boring, and Monitoring Well Location Map
- Figure 4 Vapor Mitigation System Layout and Vapor Point Locations Diagram
- Figure 5 Utility Diagrams

APPENDIX B

- Table 1 Soil Analytical Results
- Table 2 Groundwater Analytical Results
- Table 3 Groundwater Elevations
- Table 4 Sub-Slab Vapor Test Results

APPENDIX C

Soil and Groundwater Analytical Reports and Chain of Custody Forms

APPENDIX D

Monitoring Well Abandonment Forms

APPENDIX E

• Site Photographs

1.0 EXECUTIVE SUMMARY

General Engineering Company previously performed a Phase I ESA, dated August 17, 2015 on Lots 1,2, and 3 of the property located at 1923 Main Street as part of a potential property transaction. General Engineering Company's report identified two recognized environmental conditions (RECs) in connection with Lots 1, 2 and 3. Specifically, soil and groundwater contamination associated with the former One-Hour Martinizing dry cleaner facility located at 1923 Main Street (Lot 3), which operated from approximately 1979 through 2008 has been documented on the southwestern portion of Lot 3. Rice Management, Inc. is the responsible party for the Environmental Repair Program (ERP) case and the consultant for the case is Fehr Graham Engineering & Environmental. In addition to the One-Hour Martinizing site, the west/northwestern portion of the Phase I property, with a former address of 1915 Main Street (Lot 1), appeared to be a former service garage/repair facility from the 1950s through the early 1970s based on a review of city directories and aerial photographs.

Based on the findings, General Engineering Company recommended that a Phase II ESA be performed to evaluate soil and groundwater conditions. Seventeen (17) soil borings (B-1 to B-5, B-5A, B-5B, and B-6 to B-15), 5 of which were converted to temporary monitoring wells (TW-1 to TW-5), were advanced on September 22 and 23, 2015 to depths of approximately 10 to 20 feet below ground surface. The borings were performed primarily on Lots 1 and 2 with plans to further investigate Lot 3 as part of a planned Voluntary Party Liability Exemption (VPLE) investigation. Lots 1 and 2 were not part of the planned VPLE investigation and the results of the testing on those properties was previously provided to the Wisconsin Department of Natural Resources (WDNR) within a Limited Phase II Environmental Site Assessment Report, dated October 20, 2015. Soil and groundwater samples collected from the borings performed on Lot 3 (B-14/TW-4 and B-15/TW-5), were submitted for laboratory analysis for the presence of volatile organic compounds (VOCs). The soil samples collected at depths of 2 to 4 feet and groundwater samples collected from TW-4 and TW-5 on April 21, 2016 either did not contain VOCs or did not contained them at levels exceeding their respective laboratory adjusted reporting limits.

As a result of the ERP case on Lot 3 of Parcel 21-1323-1 and the planned purchase of the property by GB Real Estate Investments, LLC, a request to enter the property into the VPLE program was made to the WDNR, which was approved in a letter dated March 20, 2016.

The WDNR approved scope of the VPLE site investigation activities (which were performed in conjunction with a geotechnical exploration for a planned structure) included the advancement of 15 soil borings (VP-1 to VP-15), 5 of which were converted to monitoring wells, collection of soil samples and one round of groundwater samples from previously existing wells MW-1, MW-3, MW-4, MW-7, MW-8, TW-4, TW-5 and newly installed wells MW-10 to MW-14. Soil and groundwater samples were submitted for laboratory analysis for the presence of volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), RCRA metals, copper, nickel, and zinc.

With regard to the chlorinated solvent contamination associated with the Former One Hour Martinizing, VOCs were detected within soil samples collected from VP-13 and VP-14. The highest levels were detected in the sample collected from VP-14 at a depth of 6 to 8 feet, which contained tetrachloroethene (7,700 μ g/kg) and trichloroethene (850 μ g/kg). No VOCs were detected within the samples collected from the other boring locations performed for this investigation. VOCs were detected within the groundwater samples collected from monitoring wells MW-1, MW-3, MW-4, and MW-7 at levels similar to those previously observed during the on-going investigative activities. VOCs were not detected within the other monitoring wells sampled as part of this investigation (MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, TW-4, and TW-5).

With regard to the other testing (PAHs/metals) performed as part of this investigation, PAHs were not detected above the laboratory limit of detection within any of the soil samples performed as part of this investigation. However, groundwater samples collected from MW-4, MW-7, and TW-4 contained PAHs at levels exceeding their respective NR 140 ES. The sample collected from MW-4 contained benzo(a)pyrene (17.2 µg/l), benzo(b)fluoranthene (33 µg/l), and chrysene (18.2 µg/l), which exceed each

compound's respective NR 140 ES of $0.2 \mu g/l$. The samples collected from MW-7 and TW-4 contained benzo(b)fluoranthene and/or chrysene at levels just above their NR 140 ES of $0.2 \mu g/l$. The samples collected at the remaining locations contained similar levels of the above-mentioned compounds at levels generally exceeding their respective NR 140 PAL.

The soil samples collected for laboratory analysis for the presence of RCRA metals, copper, nickel, and zinc contained arsenic, zinc, and/or selenium at levels exceeding their respective soil to groundwater RCLS and/or direct contact levels, however they were detected at relatively similar levels below their WDNR established background levels and were considered to be naturally occurring background levels. In addition, the groundwater samples collected did not contain the tested metals at levels exceeding their respective NR 140 PALs. A VPLE Site Investigation Report, dated May 6, 2016 was submitted to the WDNR.

Based on the results, the WDNR requested further evaluation of the PAHs detected within the collected groundwater samples. Additionally, since GB Real Estate Investments, LLC purchased Lots 3 during 2016 and commenced construction of the planned development, the WDNR requested construction documentation of the performed activities.

As directed by the WDNR, groundwater samples were collected from monitoring wells MW-4 and off-site monitoring well MW-5 on May 11, 2016. Groundwater samples were collected from monitoring wells MW-1, MW-3, MW-4, MW-5, MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, TW-4, and TW-5 on June 7, 2016. Groundwater samples were collected from monitoring wells MW-4 and MW-5 on June 21, 2016. The samples were submitted for laboratory analysis for the presence of PAHs. The groundwater samples collected from MW-4 on May 11, 2016 contained benzo(a)pyrene (0.289 μ g/l), benzo(b)fluoranthene (0.63 μ g/l), and chrysene (0.32 μ g/l), which exceed each compound's respective NR 140 ES of 0.2 μ g/l. The sample collected from MW-5 on May 11, 2016 contained benzo(b)flouranthene at a concentration of 0.218, which exceeds its NR 140 ES of 0.2 μ g/l. The samples contained slight sediment. The samples collected from MW-1, MW-3, MW-4, MW-5, MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, TW-4, and TW-5 on June 7, 2016 and from monitoring wells MW-4 and MW-5 on June 21, 2016 either did not contain PAHs or contained them at low levels at concentrations below their respective NR 140 ES. The samples were sediment free.

An approximate 5,000 square foot structure was constructed within the northeast portion of the property by Immel Construction during 2016. The building consisted of a slab on grade structure with no basement. A vapor mitigation system and two sampling vapor ports were installed beneath the concrete slab of the structure. Sub-slab vapor samples were collected from VP-1 and VP-2 on September 2, 2016. The samples were submitted for laboratory analysis for the presence of VOCs by the TO-15 method. Several VOCs were detected within the collected air samples at levels below their respective small commercial sub-slab vapor risk screening levels, with the exception of ethylbenzene at VP-1, which was detected at a level of 4420 micrograms per cubic meter exceeding its risk screening level of 1600 micrograms per cubic meter. However, several other VOCs (such as acetone, methyl ethyl ketone, tetrahydrofuran, and styrene) were detected at elevated levels within the collected samples. According to the laboratory these compounds are commonly used within plumbing glues or building insulation materials and are commonly observed subsequent to new construction. Therefore, it is not planned to activate the system unless otherwise directed by the WDNR.

Asphalt from the former parking lot on the site was pulverized on site and reused as base course beneath the new parking areas along the southern and western portions of the site. The most highly affected soils and groundwater (near MW-3) are now located beneath an impermeable asphalt cap. The former concrete slab and foundation were removed from the site and transported to Tordour Quarry. Since no VOCs, PAHs, or metals were detected, or were detected at levels below their NR 720 soil standards or background levels, within the previous VPLE investigation borings performed near the planned corners of the proposed building, soils removed during footing excavations were utilized as fill on site or were incorporated into the berm area on the north end of the site.

With regard to elevations changes at the site, site grades were generally raised from less than a foot to about 2 feet with the exception of the bermed areas on the north end of the site, which were raised approximately 4 to 5 feet. The only undercutting performed at the site was performed within the water detention basin and drainage swale area in the eastern/southeastern portions of the site where the grade was lowered by up to about 3 to 4 feet. No soil contamination was detected within the soil samples collected in that area of the site and the removed soils were also incorporated into the bermed area.

All of the existing monitoring wells at the site (with the exception of MW-2 in the right of way) were extended to the new grade by General Engineering Company to accommodate the changed grades. The wells were extended with a two inch PVC coupling and additional two inch schedule 40 riser pipe. In addition, upon authorization from the WDNR, monitoring wells MW-10, MW-11, MW-13, and MW-14 were properly abandoned by General Engineering Company on July 21, 2016.

Soils imported to the site consisted of clear stone gravel and crushed gravel beneath the floor slab and parking areas along with topsoil within the landscaped areas. Samples of the gravel materials were not collected for laboratory analysis since they consisted of stone or crushed stone from Daanen & Janssen Scray's Hill Quarry. Approximately 30 loads of topsoil were imported to the subject site from a residential project occurring east of the intersection of North Huron Road and Indigo Bluff Terrace in Green Bay, Wisconsin. The topsoil was placed in landscaped areas to thicknesses of about 4 inches. Three topsoil samples were collected and submitted for laboratory analysis for the presence of RCRA metals and VOCs. Soils samples collected from the imported topsoil did not contain VOCs and did not contain metals at levels exceeding their respective NR 720 soil standards or background levels.

The majority of new utility installations were performed on the southeastern portion of the subject property where no soil or groundwater contamination has been documented or were performed beyond the areas of known soil contamination. Therefore, soils excavated during the utility excavations were reused as backfill or were incorporated into the bermed areas on the northern portion of the site. A groundwater sample was collected from an open utility excavation (W-1) located in the southwestern portion of the subject site on June 20, 2016. The sample was collected as a result of the excavation contractor (DeNoble Excavating) breaking an existing water line during replacement of a storm water manhole and storm water inlet tie-in. The sample was collected from the groundwater present on the bottom of the excavation at a depth of about 7 feet and was collected for the purpose of evaluating groundwater quality within the utility trench. The clear stone around the piping was replaced subsequent to completing the water line repair and storm water manhole replacement. The sample was submitted for laboratory analysis for the presence of VOCs. The sample did not contain VOCs.

Based on conversations with the WDNR, it is understood that that no further sampling is being required with regard to the low levels of PAHs detected within the groundwater monitoring wells on Lot 3. Therefore, it appears the VPLE site investigation activities have been completed. In addition, the requested construction documentation has been completed. Therefore, General Engineering is requesting review of the information and a VPLE Certificate of Completion pending case closure of the Former One Hour Martinizing case and the concurrence of the WDNR.

2.0 INTRODUCTION

2.1 General

This report presents the findings and conclusions of the additional VPLE site investigation activities performed on Lot 3 of parcel 21-1323-1 since the submittal of the VPLE Site Investigation Report, dated May 6, 2016. This report also presents documentation of the construction activities performed on the site. Approval to proceed in the VPLE process was in the form of correspondence from the Wisconsin Department of Natural Resources (WDNR), dated March 10, 2016. The VPLE process is being pursued due to a known on-going chlorinated solvent investigation on the southwestern portion of Lot 3 (Former One Hour Martinizing-BRRTs No. 02-05-217276).

VPLE Site Investigation Update and Construction Documentation Report

Lot 3 of 21-1323-1 Green Bay, Wisconsin

Page 4

Site Name and Location:

Former One Hour Martinizing

1923 Main Street Green Bay, Wisconsin

Northwest ¼ of the Southeast ¼ of Section 5, Township 23 North, Range 21 East

Brown County, Wisconsin

WTM Coordinates: X=680951, Y=448626

Site Operations: The property has been developed with an approximate 5,000 square foot

structure that will be occupied by Familia Dental. Further improvements to the site include asphalt pavement on the southern and western portions of the building and landscaping (berm, drainage swale, and water detention area) on the

northern and eastern portions of the site.

Responsible Party:

Rice Management, Inc.

Larry L. Rice

1726 North Ballard Road Appleton, Wisconsin 54911 Phone: (920) 428-5354

Irice@rice.blue

ERP Consultant

Fehr Graham Engineering & Environmental

Matt Dahlem 1237 Pilgrim Road

Plymouth, Wisconsin 53073 Phone: (920) 892-2620 mdahlem@fehr-graham.com

VPLE Consultant:

General Engineering Company

916 Silver Lake Drive Portage, WI 53901 Phone: (608) 742-2169

Project Manager:

Brian Youngwirth

General Engineering Company

916 Silver Lake Drive Portage, WI 53901 Phone: (608) 697-8010

byoungwirth@generalengineering.net

VPLE Applicant:

GB Real Estate Investments, LLC

Garritt Bader

300 North Van Buren Street Green Bay, WI 54301 Phone: (813) 500-0296

2.2 Purpose

The purpose of the work was to further evaluate the presence of low levels of polycyclic aromatic hydrocarbons identified within the groundwater samples collected during the prior VPLE Site Investigation. The purpose of the work was also to present documentation of the construction activities completed on the site and the results of any other site investigation activities completed as a result of the construction.

2.3 Scope of Work

The scope of the site investigation activities included collection of additional groundwater samples from groundwater monitoring wells selected by the WDNR, which were submitted for laboratory analysis for the presence of PAHs; the collection of a groundwater sample from a utility excavation on the southeastern portion of the site, which was submitted for laboratory analysis for the presence of VOCs; the collection of soil samples from imported topsoil, which were submitted for laboratory analysis for the presence VOCs and RCRA metals; documentation of the installation of a vapor mitigation system and two sub-slab vapor monitoring ports within the newly constructed building; collection of sub-slab vapor samples from the monitoring ports; documentation of changes to site conditions (elevation, surface covering, utilities); the raising of the elevation of monitoring wells MW-1, MW-3, MW-4, MW-5, MW-6, MW-7, MW-8, MW-9, MW-12, PZ-1, TW-4, and TW-5 to accommodate the raised elevations on the property; monitoring well abandonment of MW-10, MW-11, MW-13, and MW-14; and preparation of this report.

3.0 SITE DESCRIPTION

3.1 Site Features

The Subject Property consists of an approximate 1.07-acre parcel (Lot 3 of Parcel 21-1323-1) with a site address of 1923 Main Street, located southeast of the intersection of Lime Kiln Road and Main Street (STH 141) in the City of Green Bay, Brown County, Wisconsin. Specifically, the site is located within the Northwest ¼ of the Southeast ¼ of Section 5, Township 23 North, Range 21 East, Brown County, Wisconsin. The Subject Property is located approximately 1 mile east of the East River, 2 miles east of the Fox River and 2 miles south of Green Bay. A copy of the Site Location Map is included in Figure 1, Appendix A.

The property is located in an area developed with commercial and residential properties within the eastern portion of City of Green Bay. Since completion of the VPLE site investigation, an approximate 5,000 square foot slab on grade structure has been constructed on the northeastern portion of the property. The ground surface surrounding the structure consists of asphalt pavement on the southern and western portions of the building and landscaped areas consisting of a berm, drainage swale, and water detention basin on the northern and eastern portions of the property. The property is connected to the City of Green Bay municipal sewer and water system. A site plan is included within Figure 2, Appendix A.

3.2 Back ground

A Phase I Environmental Site Assessment, dated August 17, 2015, was performed by General Engineering Company on Lots 1, 2, and 3 as part of the potential property transaction. The report has been previously submitted to the WDNR. General Engineering Company's report identified two recognized environmental conditions (RECs) in connection with Lots 1, 2 and 3. Specifically, soil and groundwater contamination associated with the former One-Hour Martinizing dry cleaner facility located at 1923 Main Street (Lot 3), which operated from approximately 1979 through 2008 has been documented on the southwestern portion of Lot 3. In addition to the One-Hour Martinizing site, the west/northwestern portion of the Phase I property, with a former address of 1915 Main Street (Lot 1), appeared to be a former service garage/repair facility from the 1950s through the early 1970s based on a review of city directories and aerial photographs.

Based on the findings, General Engineering Company recommended that a Phase II ESA be performed to evaluate soil and groundwater conditions. Due to the known contamination, General Engineering also recommended that a vapor mitigation system be considered for planned structures (on Lots 1, 2, and 3) pending the results of the testing and actual locations of the planned buildings. Lots 1 and 2 are not included in the request for the VPLE.

Seventeen (17) soil borings (B-1 to B-5, B-5A, B-5B, and B-6 to B-15), 5 of which were converted to temporary monitoring wells (TW-1 to TW-5), were advanced on September 22 and 23, 2015 to depths of approximately 10 to 20 feet below ground surface. The borings were performed primarily on Lots 1 and 2 with plans to further investigate Lot 3 as part of a planned VPLE investigation. With regard to the soil borings performed on Lot 3 (B-14/TW-4 and B-15/TW-5), select soil samples were collected from each boring and analyzed for the presence of VOCs. The soil samples collected at depths of 2 to 4 feet did not contain VOCs. In addition, groundwater samples collected from those locations did not contain VOCs. A Limited Phase II ESA Report, dated October 20, 2015 was previously submitted to the WDNR.

Based on the site investigation/remedial testing and the results of testing at B-14/TW-4 and B-15/TW-5, it appeared that the horizontal extent of chlorinated soil and groundwater contamination associated with the former One Hour Martinizing case had generally been defined with the exception of a number of utility corridors near the source of contamination. It is understood that the current consultant (Fehr Graham) is assessing the utility corridors as potential conduits for groundwater and vapor contamination at the direction of the WDNR. An off-site liability clarification letter was issued by the WDNR to GB Real Estate Investments on December 15, 2015 regarding potential future impacts to Lots 1 and 2 from Lot 3 along with a No Action Required Determination for low levels of petroleum contamination detected within soil and groundwater samples on Lot 1.

Although no other RECs were identified on Lot 3 during the previous Phase I ESA, possible fill soils were identified within the upper approximately 5 feet of soil on or near Lot 3 during the performed soil borings. The WDNR indicated the fill on Lot 3 must be evaluated as part of the investigation activities for the planned VPLE investigation.

A VPLE Site Investigation Work Plan, dated March 21, 2016 was submitted to the WDNR. The Work Plan was approved by the WDNR in a letter dated April 13, 2016. Soil borings VP-1 to VP-15 were advanced on Lot 3 on April 20 and 21, 2016. Collected samples at each location were screened in the field with a Minirae photoionization detector (PID). Soil samples collected from the borings were submitted for laboratory analysis of the presence of VOCs, PAHs, RCRA metals, copper, nickel, and zinc. Soil borings VP-4, VP-5, VP-8, VP-9, and VP-11 were converted to monitoring wells MW-10 to MW-14, respectively. Monitoring wells MW-10 to MW-14 were developed on April 20 and 21, 2016. The general location of the soil borings/monitoring wells are shown on Figure 3, Appendix A.

The surface at the boring locations consisted of a concrete block wall (VP-1), asphalt (VP-2, VP-4, VP-5, VP-7, VP-8, VP-9, VP-10, VP-11, and VP-13), a concrete building slab at VP-3, VP-6, VP-14, and VP-15, and base course at VP-12. The surface materials were underlain by fill or possible fill soils consisting of primarily base course underlain by silty sand with a few of the locations containing sandy silt or sand to depths of approximately 1 to 4 feet below ground surface. The fill and possible fill was underlain by natural soil generally consisting of light brown and brown sandy silt or silty sand to depths of 8 to 9 feet below ground surface. The silty sand and sandy silt were generally underlain by reddish brown and brown silty clay to the termination depths of the borings at 10 to 15 feet below ground surface. Groundwater was encountered within the borings at depths of about 2 to 3 feet. No unusual staining or odors were observed within any of the fill or possible fill soils.

With regard to the soil samples submitted for the presence of VOCs, the samples collected from the southwestern portion of the site (VP-13 and VP-14) contained VOCs at levels exceeding their respective standards. VP-13 and VP-14 were performed within the approximate area of the plume of known chlorinated solvent contamination. Specifically, the sample collected from VP-13 at a depth of 6 to 8 feet contained cis 1,2 Dichloroethene (75 μ g/kg), which exceeds its NR 720 soil to groundwater RCL of 41.2 μ g/kg. The samples collected from VP-14, beneath the southwest portion of the building slab (beyond the former remedial excavation limits), contained tetrachloroethene (660 μ g/kg at a depth of 2 to 4 feet and 7,700 μ g/kg at a depth of 6 to 8 feet) and trichloroethene (850 μ g/kg at a depth of 6 to 8 feet). These levels exceed each compound's respective NR 720 soil to groundwater RCLs of 4.5 μ g/kg (tetrachloroethene) and 3.6 μ g/kg (trichloroethene). None of the other collected samples contained VOCs.

With regard to the samples submitted for laboratory analysis of metals, arsenic, nickel, and selenium were detected at levels exceeding their current standards. Specifically, arsenic was detected at levels ranging from 0.882J mg/kg to 4.89 mg/kg, which exceeds its NR 720 direct contact level and soil to groundwater RCLs of 0.613 mg/kg and 0.584 mg/kg, respectively. The levels detected were at similar concentrations and were below the WDNR background level of 8 mg/kg. The concentrations are considered to be naturally occurring concentrations.

Nickel was detected at levels ranging from 2.61 mg/kg to 32.5 mg/kg. The levels detected at VP-1 at a depth of 13 to 15 feet (27.4 mg/kg); VP-8 at a depth of 8 to 10 feet (17.8 mg/kg); VP-11 at a depth of 6 to 8 feet (19.4 mg/kg); and VP-13 at a depth of 6 to 8 feet (32.5 mg/kg) exceed its soil to groundwater RCL of 13 mg/kg. However, the levels were detected at similar concentrations near or below its WDNR background level of 31 mg/kg and the concentrations are considered to be naturally occurring.

Selenium was detected within the sample collected from VP-14 at a depth of 2 to 14 feet (1.07J mg/kg), which exceeds its soil to groundwater RCL of 0.5 mg/kg. Based on the J in the laboratory report, the concentration is estimated by the laboratory. In addition, none of the collected groundwater samples contained selenium levels exceeding it NR 140 preventive action limit. The detection is not considered to be associated with a release.

None of the other soil samples tested for metals contained concentrations exceeding their current standards and their detections are considered to be naturally occurring background levels. In addition, none of the soil samples collected contained PAHs above the laboratory limit of detection. Soil sampling results are in summarized on Table 1, Appendix B.

Groundwater samples were collected from existing wells MW-1, MW-3, MW-4, MW-7, MW-8, TW-4, TW-5 and newly installed wells MW-10 to MW-14 on April 20 and 21, 2016. The samples were submitted for laboratory analysis for the presence of VOCs, PAHs, RCRA metals, and copper nickel, and zinc.

The groundwater samples collected from MW-3 contained tetrachloroethene (760 μ g/l), trichloroethene (197 μ g/l), and vinyl chloride (0.40J μ g/l), which exceeds each compound's respective NR 140 ES of 5 μ g/l, 5 μ g/l, and 0.2 μ g/l. The samples collected from MW-1 and MW-7 contained tetrachloroethene at levels of 7.6 μ g/l and 143 μ g/l, respectively. The sample collected from MW-4 contained tetrachloroethene at a level of 0.89J μ g/l, which exceeds its NR 140 PAL. None of the other collected groundwater samples contained VOCs.

With regard to PAH testing, the samples collected from MW-4, MW-7, and TW-4 contained PAHs at levels exceeding their respective NR 140 ES. The sample collected from MW-4 contained benzo(a)pyrene (17.2 μ g/l), benzo(b)fluoranthene (33 μ g/l), and chrysene (18.2 μ g/l), which exceed each compound's respective NR 140 ES of 0.2 μ g/l. The samples collected from MW-7 and TW-4 contained benzo(b)fluoranthene and/or chrysene at levels just above their NR 140 ES of 0.2 μ g/l. The samples collected at the remaining locations contained similar levels of the above-mentioned compounds at levels generally exceeding their respective NR 140 PAL. It should be noted that the groundwater samples collected from MW-4, MW-7, and TW-4 contained moderate sediment at the time of sampling.

None of the groundwater samples collected and submitted for laboratory analysis of metals contained levels exceeding each compound's respective NR 140 PAL. Groundwater analytical results are summarized on Table 2, Appendix B and the groundwater elevations are shown on Table 3, Appendix B.

Based on the results, the WDNR requested further evaluation of the PAHs detected within the collected groundwater samples. The results of the additional groundwater testing and documentation of the construction activities are discussed herein.

4.0 ADDITIONAL SITE INVESTIGATION AND DOCUMENTATION ACTIVITIES

4.1 Scope Summary

The scope of the additional groundwater monitoring activities were generally directed by the WDNR and included the performance of one to three additional sampling rounds from selected monitoring wells and submittal of the samples for laboratory analysis of PAHs. In addition, the scope of performed services included the collection of a groundwater sample from a utility excavation on the southeastern portion of the site, which was submitted for laboratory analysis for the presence of VOCs; the collection of soil samples from imported topsoil, which were submitted for laboratory analysis for the presence VOCs and RCRA metals; documentation of the installation of a vapor mitigation system and two sub-slab vapor monitoring ports within the newly constructed building; collection of sub-slab air samples from the two vapor monitoring ports; documentation of changes to site conditions (elevation, surface covering, utilities); the raising of the elevation of monitoring wells MW-1, MW-3, MW-4, MW-5, MW-6, MW-7, MW-8, MW-9, MW-12, PZ-1, TW-4, and TW-5 to accommodate the raised elevations on the property; and monitoring well abandonment of MW-10, MW-11, MW-13, and MW-14.

4.2 Soil, Groundwater, and Sub-Slab Vapor Sample Collection and Preparation

The soil samples submitted for laboratory analysis for the presence of VOC were extracted from the soils utilizing a sterile syringe and approximately 10 to 12 grams of soil were transferred into a clean, laboratory prepared jar with approximately 10 milliliters of methanol. The samples submitted for laboratory analysis of metals were placed into laboratory prepared 4 oz. plastic cups until no headspace remained within the container. The samples were placed on ice, and Chain-of-Custody procedures were initiated. The samples were then submitted to Synergy Laboratory of Appleton, Wisconsin, for laboratory analysis.

Groundwater samples submitted for VOC analysis where transferred into a laboratory prepared 40-milliliter vials containing Hydrochloric Acid preservative. Samples submitted for PAH analysis were transferred into a laboratory prepared 250-milliliter amber bottles. The sample containers were placed on ice and standard chain-of-custody procedures were initiated. The groundwater samples were submitted to Synergy Environmental Lab in Appleton, Wisconsin.

Subslab vapor ports were installed by drilling a 1.5-inch hole in the concrete floor to approximately 2 inches, followed by a 5/8-inch hole through the remainder of the concrete. General Engineering then utilizes the Cox-Colvin Vapor Kit to place the vapor points. A rubber vapor pin sleeve is placed over a stainless steel pin, which is hammered into the hole and creates a seal. The 1.5-inch hole that is drilled to place the cover is also used as a dam to ensure there are no leaks and a proper seal is in place. The plastic hose for the Suma Canister is then placed over the pin for a sealed sample. The vapor samples were collected over the period of one hour and submitted for laboratory analysis for the presence of VOCs.

5.0 GROUNDWATER, SOIL, AND SUB-SLAB VAPOR SAMPLING ACTIVITIES

5.1 Groundwater Sampling

Groundwater samples were collected from monitoring wells MW-4 and off-site monitoring well MW-5 on May 11, 2016. Groundwater samples were collected from monitoring wells MW-1, MW-3, MW-4, MW-5, MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, TW-4, and TW-5 on June 7, 2016. Groundwater samples were collected from monitoring wells MW-4 and MW-5 on June 21, 2016. The samples were purged with a bailer and were sediment free during the two most recent sampling rounds performed. The samples were submitted for laboratory analysis for the presence of PAHs.

A groundwater sample was collected from an open utility excavation (W-1) located in the southwestern portion of the subject site on June 20, 2016. The sample was collected as a result of the excavation contractor (DeNoble Excavating) breaking an existing water line during replacement of a storm water manhole and storm water inlet tie-in. The sample was collected from the bottom of the excavation at a depth of about 7 feet and was collected for the purpose of evaluating groundwater quality within the utility trench. The clear stone around the piping was replaced subsequent to completing the water line repair and storm water manhole replacement. The sample was submitted for laboratory analysis for the presence of VOCs.

5.2 Soil Sampling

Three soil samples (SS-1 to SS-3) were collected on August 16, 2016 from imported topsoil placed on the subject property within the landscaped areas and water detention area. According to Dave Dellise of Dtame Sand & Gravel, approximately 30 loads of topsoil were imported from a residential project occurring east of the intersection of North Huron Road and Indigo Bluff Terrace in Green Bay, Wisconsin. The samples were submitted for laboratory analysis for the presence of VOCs and RCRA metals. No other soil was imported during the construction activities with the exception of crushed gravel or clear stone aggregate from Daanen & Janssen's Scrays Hill Quarry.

5.3 Sub-Slab Vapor Sampling

On September 2, 2016, two sub-slab vapor ports were installed in the floor of the building. The ports (VP-1 and VP-2) were installed within the northeastern and southwestern portions of the building, respectively. The locations of the vapor ports are shown on Figure 3, Appendix A.

Vapor samples were collected on September 2, 2016 using summa canisters. Samples were collected over a period of one hour and were analyzed for VOCs. Standard chain-of-custody procedures were initiated and the vapor samples were submitted to Synergy Environmental Lab in Appleton, Wisconsin.

6.0 GROUNDWATER AND SOIL TESTING RESULTS

6.1 Groundwater Quality Standards

The Enforcement Standards (ESs) and Preventive Action Limits (PALs) are Groundwater Quality Standards, which have been established in NR140 of the Wisconsin Administrative Code. These Standards are referenced when evaluating the need for further study or remedial activities. The PAL is the more stringent guideline, in terms of being lesser in magnitude than the ES, but will typically require less response action when exceeded. The required action is determined by DNR regulations, based on various site-specific considerations.

6.2 Laboratory Groundwater Results

The groundwater samples collected MW-4 on May 11, 2016 contained benzo(a)pyrene (0.289 μ g/l), benzo(b)fluoranthene (0.63 μ g/l), and chrysene (0.32 μ g/l), which exceed each compound's respective NR 140 ES of 0.2 μ g/l. The sample collected from MW-5 on May 11, 2016 contained benzo(b)flouranthene at a concentration of 0.218, which exceeds its NR 140 ES of 0.2 μ g/l. The samples contained slight sediment.

The samples collected from MW-1, MW-3, MW-4, MW-5, MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, TW-4, and TW-5 on June 7, 2016 and from monitoring wells MW-4 and MW-5 on June 21, 2016 either did not contain PAHs or contained them at low levels at concentrations below their respective NR 140 ES. The samples were sediment free.

The sample collected from the utility excavation at W-1 on June 20, 2016 did not contain VOCs. The results of the sampling were provided to Fehr-Graham for use in their utility investigation for the ERP case.

The results of the chemical analyses of the groundwater samples collected from the monitoring wells are summarized in Table 2 in Appendix B. Laboratory analytical results and chain of custody forms for the monitoring well samples and sample W-1 are included in Appendix C.

6.3 NR 720 Soil Standards

Chapter 720 of the NR700 series code established residual contaminant levels (RCLs) for soils intended to be protective of the direct contact (upper 4 feet of soil defined by human exposure to substances in soil through inhalation of particulate matter, dermal absorption, incidental ingestion, or inhalation of vapors from the soil) and soil-to-groundwater pathways. The direct contact levels are dependent on the planned use and zoning of the affected property. Although these individual RCLs have been established for a wide range of compounds, the WDNR requires that the cumulative effects of detected compounds be evaluated through use of a WDNR interactive table where individual concentrations can be entered to evaluate whether the target cancer risk has been exceeded. The individual RCLs provided by the WDNR were developed using standard default exposure assumptions. As an alternative, site specific calculations can be performed utilizing the U.S. EPA Regional Screening Level Web Calculator.

6.4 Laboratory Soil Results

Three soil samples were collected from the imported topsoil on the subject site on August 16, 2016. The samples collected from SS-1 to SS-3 contained arsenic at concentrations ranging from 2.95 mg/kg to 3.43 mg/kg, which exceed their NR 720 soil to groundwater RCL but are below their WDNR established background value of 8 mg/kg. The concentrations are considered to be naturally occurring background levels. The other tested metals were either not detected or were detected at levels below their NR 720 soil standards or background levels. None of the samples contained VOCs.

Laboratory analytical and chain of custody forms are located in Appendix C.

7.0 VAPOR MITIGATION SYSTEM DESIGN AND SUB-SLAB VAPOR TESTING RESULTS

The sub-slab vapor mitigation system at the site was designed and installed by American Radon Reduction. The system consisted of a piping network beneath the slab consisting of 3-inch diameter Schedule 30 PVC that was connected to a 4-inch diameter Schedule 40 4-inch riser pipe extending through the roof line that was connected to a Radon Away electric fan blower. The piping was bedded in approximately 10 to 12 inches of clear stone gravel. Two sub-slab vapor testing ports were installed by General Engineering personnel within the northeastern (VP-1) and southwestern (VP-2) portions of the building. The system layout and locations of the vapor test ports are shown on Figure 4, Appendix A.

Sub-slab vapor samples were collected from VP-1 and VP-2 on September 2, 2016. The samples were submitted for laboratory analysis for the presence of VOCs by the TO-15 method. Several VOCs were detected within the collected air samples at levels below their respective small commercial sub-slab vapor risk screening levels, with the exception of ethylbenzene at VP-1, which was detected at a level of 4420 micrograms per cubic meter exceeding its risk screening level of 1600 micrograms per cubic meter. However, several other VOCs (such as acetone, methyl ethyl ketone, tetrahydrofuran, and styrene) were detected at elevated levels within the collected samples. According to the laboratory these compounds are commonly used within plumbing glues or building insulation materials and are commonly observed subsequent to new construction.

8.0 CONSTRUCTION DOCUMENTATION

An approximate 5,000 square foot structure was constructed within the northeast portion of the property by Immel Construction during 2016. The building consisted of a slab on grade structure with no basement. A vapor mitigation system and two sampling vapor ports were installed beneath the concrete slab of the structure, which were discussed within previous sections of this report. As of the date of this report, the interior of the structure is still under construction. Asphalt from the former parking lot on the site was pulverized on site and reused as base course beneath the new parking areas along the southern and western portions of the site. The most highly affected soils and groundwater (near MW-3) are now located beneath an impermeable asphalt cap. The former concrete slab and foundation were removed from the site and transported to Tordour Quarry. Since no VOCs, PAHs, or metals were detected or were detected at levels below their NR 720 soil standards or background levels within the previous VPLE investigation borings performed near the planned corners of the proposed building, soils removed during footing excavations were utilized as fill on site or were incorporated into the berm area on the north end of the site. It should be noted that visual observations performed by General Engineering during the footing excavation indicated a few inches of basecourse type material in the upper few inches of soil underlain by natural sand soils. The footing excavations generally extended to a depth of about 4 feet below grade. In a few areas undercuts were performed due the presence of unsuitable soft soils.

With regard to elevations changes at the site, site grades were generally raised from less than a foot to about 2 feet with the exception of the bermed areas on the northern end of the site, which were raised approximately 4 to 5 feet. The only undercutting performed at the site was performed within the water detention basin and drainage swale area in the eastern/southeastern portions of the site where the grade was lowered by up to about 3 to 4 feet. No soil contamination was observed within the soil samples collected in that area of the site and the removed soils were also incorporated into the bermed area. All of the monitoring wells at the site (with the exception of MW-2 in the right of way) were extended by General Engineering Company to accommodate the changed grades. The wells were extended with a two inch PVC coupling and additional two inch schedule 40 riser pipe. It is understood that Fehr Graham personnel will perform surveying of the new elevations of the wells during their on-going monitoring activities. In addition, upon authorization from the WDNR, monitoring wells MW-10, MW-11, MW-13, and MW-14 were properly abandoned by General Engineering Company on July 21, 2016. Monitoring well abandonment forms are included in Appendix D.

Soils imported to the site consisted of clear stone gravel and crushed gravel beneath the floor slab and parking areas, respectively and topsoil within landscaped areas. Samples of these materials were not collected for laboratory analysis since they consisted of stone or crushed stone from Daanen & Janssen Scray's Hill Quarry. Approximately 30 loads of topsoil were imported to the subject site from a residential project occurring east of the intersection of North Huron Road and Indigo Bluff Terrace in Green Bay, Wisconsin. The imported soils were placed in landscaped areas to thicknesses of about 4 inches. Soils samples collected from the imported topsoil (discussed in previous sections of this report) did not contain VOCs and did not contain metals at levels exceeding their respective NR 720 soil standards or background levels.

The majority of new utility installations were performed on the southeastern portion of the subject property where no soil or groundwater contamination has been documented or were performed beyond the areas of known soil contamination. Therefore, soils excavated during the utility excavations were reused as

backfill or were incorporated into the bermed areas on the northern portion of the site. A diagram showing the original utilities, removed or previously removed utilities, and new utilities are shown on Figure 5, Appendix A.

Site photographs documenting changes to the site are provided within Appendix E.

9.0 CONCLUSIONS, RECOMMENDATIONS, AND OPINIONS

Conclusion: General Engineering Company has performed this VPLE Site Investigation Update and Construction Documentation Report for the Former One Hour Martinizing property located at 1923 Main Street (Lot 3 of Parcel 21-1323-1), in the City of Green Bay, Brown County, Wisconsin.

With regard to the additional groundwater sampling performed as a result of the detected PAHs at levels exceeding their respective NR 140 ES at MW-4, MW-7, and TW-4, it appears that detected PAHs may be largely attributable to sediment within the samples. The sediment free samples collected from MW-1, MW-3, MW-4, MW-5, MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, TW-4, and TW-5 on June 7, 2016 and from monitoring wells MW-4 and MW-5 on June 21, 2016 either did not contain PAHs or contained them at low levels at concentrations below their respective NR 140 ES well below those initially observed at MW-4, MW-7, and TW-4 when moderate sediment was present within the samples. Therefore, it appears that the extent of groundwater impacted by VOCs and to a lesser extent by PAHs has been generally defined and that no further groundwater VPLE investigation activities are necessary with the exception of completion of the ERP investigation and continued monitoring of the VOC plume within groundwater by Fehr Graham.

With regard to the soils utilized during construction, imported soils consisted of clear stone gravel and crushed gravel beneath the floor slab and parking areas, respectively and topsoil within landscaped areas. Samples of the gravel materials were not collected for laboratory analysis since they consisted of stone or crushed stone from Daanen & Janssen Scray's Hill Quarry. Approximately 30 loads of topsoil were imported to the subject site from a residential development project in Green Bay and placed in landscaped areas to thicknesses of about 4 inches. Soils samples collected from the imported topsoil did not contain VOCs and did not contain RCRA metals at levels exceeding their respective NR 720 soil standards or background levels. Therefore, it appears that the extent of VOC related soil contamination has been defined and that there are no other known affected soils on the subject site and that no further soil related site investigation activities are necessary to satisfy the VPLE site investigation.

With regard to the vapor mitigation system and vapor port testing, the samples collected from VP-1 and VP-2 contained several VOCs at levels below their respective small commercial sub-slab vapor risk screening levels, with the exception of ethylbenzene at VP-1, which was detected at a level of 4420 micrograms per cubic meter exceeding its risk screening level of 1600 micrograms per cubic meter. However, several other VOCs (such as acetone, methyl ethyl ketone, tetrahydrofuran, and styrene) were detected at elevated levels within the collected samples. According to the laboratory these compounds are commonly used within plumbing glues or building insulation materials and are commonly observed subsequent to new construction. Therefore, their presence appears to be related to the materials utilized in the construction of the new building and not from a contaminant source on the property. In addition, compounds associated within the ERP case were either not detected or were detected at levels well below each compound's respective sub-slab vapor risk screening level. Therefore, at the present time, it is not planned that the electric fan for the vapor mitigation system will be activated unless otherwise directed by the WDNR. If necessary, subsequent to the completion of the remaining interior construction activities, an additional round of vapor samples could be collected from the vapor ports to confirm the results.

Respectfully Submitted,

GENERAL ENGINEERING COMPANY

Brian Youngwirth

Environmental Project Manager

ynn Bradley

Environmental Project Manager

P.O. Box 340 • 816 Sëver Lake Dr. • Portage, WI 53901 608-742-2169 (Office) • 608-742-2592 (Fax)

This document contains confidential or proprietary information of General Engineering Company Neither this document not the information herein in to be reproduced, distributed, used or disclosed and the property of the p

SITE LOCATION MAP

VPLE Site Investigation Former One Hour Martinizing GB Real Estate Development, LLC

City of Green Bay Brown County, WI

U	
DRAWN BY	KP
REVIEWED BY	LMB
ISSUE DATE	Sept 2016
GEC FILE NO.	2-0615-231
FIGUI	RE 1

General Engineering Company
P.O. Bax 340 - 916 Saver Lake Dr. - Portage, WI 53901
008-742-2199 (Office) - 608-742-2592 (Fax)
www.generalergineering.net

SITE PLAN
VPLE Site Investigation
GB Real Estate Development, LLC
1923 Main St.
City of Green Bay
Brown County, WI

LEGEND

MONITORING WELL LOCATION

PIEZOMETER LOCATION

DRAWN BY KP
REVIEWED BY LMB
ISSUEDATE Sept 2016
GECFILE NO. 2-0815-231

FIGURE 2

General Engineering Company

GB Real Estate Development, LLC City of Green Bay Brown County, WI

SOIL PROBE, BORING & MONITORING WELL LOCATION MAP

LEGEND
MONITORING WELL LOCATION
PIEZOMETER LOCATION SOIL BORING LOCATION
ABANDONED MONITORING
WELL LOCATION

■ • • ¤

SCAL	E
DRAWN BY	
REVIEWED BY	LM
ISSUE DATE	Sept 20
GEC FILE NO.	2-0615-2

FIGURE 3

General Engineering Company
P.O. Box 340 • 916 Stver Lake Dr. • Portage, WI 53901
608-742-7169 (Office) • 608-742-2582 (Fax)
www.generalergineering.net

UTILITY DIAGRAM
VLPE Site I nvestigation
GB Real Estate Development, LLC
1923 Main St.
City of Green Bay
Brown County, WI

MONITORING WELL LOCATION
PIEZOMETER LOCATION
SOIL BORING LOCATION
ABANDONED MONITORING
WELL LOCATION

ŞCAL	
DRAWN BY	кр
REVIEWEDBY	LMB
ISSUE DATE	Sept 2018
GEC FILE NO.	2-0615-231

FIGURE 5

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS FORMER ONE HOUR MARTINIZING GEC PROJECT #2-0615-231

Sample No.		WDNR Non-	WDNR Soil to	Background	٧	P-1	V	P-2	V	P-3	V	P-4	VI	P-5
Sampling Date	NR 720 RCL	Industrial RCL	Groundwater	Threshold	4/20	/2016	4/20	/2016	4/21	/2016	4/20	/2016	4/20	/2016
Sample Depth (feet)		(Direct Contact)	RCL	Value (mg/kg)	5-7	13-15	2-4	8-10	2-4	8-10	2-4	6-8	2-4	6-8
VOLATILE ORGANIC	COMPOUND	S (VOCs) (µg/kg											a ler	EARLY BURNE
Benzene	1490	1490	5.1	NE	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16
cis 1,2 Dichloroethene	156000	156000	41.2	NE	<21	<21	<21	<21	<21	<21	<21	<21	<21	<21
Ethylbenzene	7470	7470	1570	NE	<27	<27	<27	<27	<27	<27	<27	<27	<27	<27
Methyl tert-butyl ether	59400	59400	27	NE	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Tetrachloroethene	30700	30700	4.5	NE	<54	<54	<54	<54	<54	<54	<54	<54	<54	<54
Toluene	5300000	818000	1107	NE	<31	<31	<31	<31	<31	<31	<31	<31	<31	<31
Trichloroethene	1260	1260	3.6	NE	<42	<42	<42	<42	<42	<42	<42	<42	<42	<42
1,2,4-Trimethylbenzene	89800	89800	1382	NE	<78	<78	<78	<78	<78	<78	<78	<78	<78	<78
1,3,5-Trimethylbenzene	782000	182000	1382	NE	<89	<89	<89	<89	<89	<89	<89	<89	<89	<89
Xylenes, -m, -p	890000	258000	3940	NE	<70	<70	<70	<70	<70	<70	<70	<70	<70	<70
Xylenes, -o		230000	3940	NE	<29	<29	<29	<29	<29	<29	<29	<29	<29	<29
RCRA METALS (RCR	A) (mg/kg)		VIII A TO	AND FORM	CO SECULIA							Part of the	C. L. Dange	La Sint
Mercury	14.7	3.13	0.208	NE	<0.0028	0.0179J	<0.0028	<0.0028	<0.0028	0.00775J	< 0.0028	0.0047J	0.0075J	< 0.0028
Arsenic	0.613	0.613	0.584	8	2.3	4.2	1.09J	3.04	2.95	2.44	1.12J	1.19J	1.89J	1.74J
Barium	15300	15300	164.8	364	10.50	103.00	9.94	17.60	17.70	29.00	8.02	13.60	23.70	10.30
Cadmium	70	70	0.752	1	<0.07	0.175J	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	0.100J	<0.07
Chromium	NE	NE	360000	44	4.72	25.10	3.97	4.99	10.20	12.40	4.21	4.99	6.51	3.82
Copper	3130	3130	91.6	35	6.68	32.50	2.19	9.01	7.43	13.50	6.76	9.06	4.63	6.01
Lead	NE	400	27	52	1.58	8.62	1.10	2.08	1.86	3,16	1.06	2.43	5.88	1.78
Nickel	1550	1550	13	31	5.72	27.40	3.24	6.11	8.45	11.70	4.46	5.86	5.22	4.13
Selenium	391	391	0.52	NE	<0.74	<0.74	<0.74	<0.74	<0.74	<0.74	<0.74	<0.74	<0.74	<0.74
Silver	391	391	0.85	NE	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28
Zinc	23500	23500	NE	150	7.81	39.40	6.57	9,51	8.52	13.10	7.37	8.83	11.9	6.76
DETECTED POLYNU	CLEAR ARON	ATIC HYDROC	ARBONS (PAH) (µa/ka)										
Acenaphthene	3440000	3440000	NE	NE	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2
Acenaphthylene	NE	NE	NE	NE	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9
Anthracene	17200000	17200000	197727	NE	<18.5	<18.5	<18.5	<18.5	<18.5	<18.5	<18.5	<18.5	<18.5	<18.5
Benzo(a)anthracene	148	148	NE	NE	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4
Benzo(a)pyrene	15	15	470	NE	<16.8	<16.8	<16.8	<16.8	<16.8	<16.8	<16.8	<16.8	<16.8	<16.8
Benzo(b)fluoranthene	148	148	479	NE	<19.4	<19.4	<19.4	<19.4	<19.4	<19.4	<19.4	<19.4	<19.4	<19.4
Benzo(g,h,i)perylene	NE	NE	NE	NE	<17	<17	<17	<17	<17	<17	<17	<17	<17	<17
Benzo(k)fluoranthene	1480	1480	NE	NE	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4
Chrysene	14800	14800	145	145	<20.6	<20.6	<20.6	<20.6	<20.6	<20.6	<20.6	<20.6	<20.6	<20.6
Dibenz(a,h)anthracene	15	15	NE I	NE NE	<21.2	<21.2	<21.2	<21.2	<21.2	<21.2	<21.2	<21.2	<21.2	<21.2
Fluoranthene	2290000	2290000	88818	NE NE	<19.6	<19.6	<19.6	<19.6	<19.6	<19.6	<19.6	<19.6	<19.6	<19.6
Fluorene	2290000	2290000	14802	NE	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2
Indeno(1,2,3-cd)pyrene	148	148	NE NE	NE	<22.3	<22.3	<22.3	<22.3	<22,3	<22.3	<22,3	<22.3	<22.3	<22.3
1-Methylnaphthalene	15600	15600	NE NE	NE NE	<21.4	<21.4	<21.4	<21.4	<21.4	<21.4	<21.4	<21.4	<21.4	<21.4
2-Methylnaphthalene	229000	229000	NE	NE NE	<17.8	<17.8	<17.8	<17.8	<17.8	<17.8	<17.8	<17.8	<17.8	<17.8
Naphthalene	5150	5150	658	NE NE	<18.2	<18.2	<18.2	<18.2	<18.2	<18.2	<18.2	<18.2	<18.2	<18.2
Phenanthrene	NE NE	NE NE	NE NE	NE NE	<16.3	<16.3	<16.3	<16.3	<16.3	<16.3	<16.3	<16.3	<16.3	<16.3
	1720000	1720000	NE 54132	NE NE	<18.8	<18.8	<18.8	<16.3 <18.8						
Pyrene J = Analyte detected above labo				INC]	\10.0	\10.0	\10.0	\10.0	\10.0	\10.0	\10,0	\10.0	\10.0	\10.0

J = Analyte detected above laboratory limit of detection but below limit of quantitation.

Bold indicates analytical results exceed NR 720 RCL or generic RCL for direct contact or groundwater pathway

RCL = Residual Contaminant Level

SSL = Soil Screening Levels

DCL = Direct-Contact Levels

NA = Parameter not analyzed

NE = NR 720 RCL not established

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS FORMER ONE HOUR MARTINIZING GEC PROJECT #2-0615-231

Sample No.		WDNR Non-	WDNR Soil to	Background	V	P-6	V	P-7	V	P-8	V	P-9	VF	P-10
Sampling Date	NR 720 RCL	Industrial RCL (Direct Contact)	Groundwater	Threshold	4/21	1/2016	4/20	/2016	4/20	/2016	4/20	/2016	4/20	/2016
Sample Depth (feet)			RCL	Value (mg/kg)	2-4	8-10	2-4	6-8	2-4	8-10	2-4	6-8	2-4	8-10
VOLATILE ORGANIC	COMPOUND	S (VOCs) (µg/kg	1		22-27				The state of the s		A. A. Trail			and same
Benzene	1490	1490	5.1	NE	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16
cis 1.2 Dichloroethene	156000	156000	41.2	NE	<21	<21	<21	<21	<21	<21	<21	<21	<21	<21
Ethylbenzene	7470	7470	1570	NE	<27	<27	<27	<27	<27	<27	<27	<27	<27	<27
Methyl tert-butyl ether	59400	59400	27	NE	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Tetrachloroethene	30700	30700	4.5	NE	<54	<54	<54	<54	<54	<54	<54	<54	<54	<54
Toluene	5300000	818000	1107	NE	<31	<31	<31	<31	<31	<31	<31	<31	<31	<31
Trichloroethene	1260	1260	3.6	NE	<42	<42	<42	<42	<42	<42	<42	<42	<42	<42
1,2,4-Trimethylbenzene	89800	89800	1382	NE	<78	<78	<78	<78	<78	<78	<78	<78	<78	<78
1.3,5-Trimethylbenzene	782000	182000	1382	NE	<89	<89	<89	<89	<89	<89	<89	<89	<89	<89
Xylenes, -m, -p	890000	258000	3940	NE	<70	<70	<70	<70	<70	<70	<70	<70	<70	<70
Xylenes, -o	890000	258000	3940	NE	<29	<29	<29	<29	<29	<29	<29	<29	<29	<29
RCRA METALS (RCR	A) (mg/kg)			TO HE S	7 19 1	50 N 80 S			MC JAN A			St. 194 . 1 1 7 1	100	
Mercury	14.7	3.13	0.208	NE	<0.0028	0.00847J	<0.0028	<0.0028	0.0054J	0.0055J	<0.0028	<0.0028	<0.0028	0.0072J
Arsenic	0.613	0.613	0.584	8	1.87J	3.82	1.12J	1.69J	1.86J	2.39	<0.65	1.48J	1.00J	3.39
Barium	15300	15300	164.8	364	14.8	54.2	12.7	21.8	17.0	57.9	10.6	11.0	14	69.8
Cadmium	70	70	0.752	1	<0.07	<0.07	<0.07	<0.07	<0.07	0.105J	<0.07	<0.07	<0.07	0.098J
Chromium	NE	NE	360000	44	13.50	20.50	7.44	7.39	7.10	14.10	6.65	4.31	6.7	18.3
Copper	3130	3130	91.6	35	6.32	20.20	5.89	10.50	11.20	22.50	7.73	8.04	6.16	26
Lead	NE	400	27	52	2.01	5.08	1.98	2.56	2.77	5.75	1.97	2.00	1.52	6.33
Nickel	1550	1550	13	31	6.44	18.30	6.57	8.77	9.95	17.8	6.14	8.75	5.76	21.0
Selenium	391	391	0.52	NE	<0.74	<0.74	<0.74	<0.74	<0.74	<0.74	<0.74	<0.74	<0.74	<0.74
Silver	391	391	0.85	NE	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28
Zinc	23500	23500	NE	150	8.62	22.00	10.60	12.30	13.00	23.90	9.66	7.69	9.50	29.9
DETECTED POLYNU	CLEAR AROM	ATIC HYDROC	ARBONS (PAH) (µg/kg)			U. LINE			Service Control				
Acenaphthene	3440000	3440000	NE	NE I	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2
Acenaphthylene	NE	NE	NE	NE I	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9
Anthracene	17200000	17200000	197727	NE	<18.5	<18.5	<18.5	<18.5	<18.5	<18.5	<18.5	<18.5	<18.5	<18.5
Benzo(a)anthracene	148	148	NE	NE	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4
Benzo(a)pyrene	15	15	470	NE	<16.8	<16.8	<16.8	<16.8	<16.8	<16.8	<16.8	<16.8	<16.8	<16.8
Benzo(b)fluoranthene	148	148	479	NE I	<19.4	<19.4	<19.4	<19.4	<19.4	<19.4	<19.4	<19.4	<19.4	<19.4
Benzo(g,h,i)perylene	NE	NE	NE	NE	<17	<17	<17	<17	<17	<17	<17	<17	<17	<17
Benzo(k)fluoranthene	1480	1480	NE	NE I	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4
Chrysene	14800	14800	145	145	<20.6	<20.6	<20.6	<20.6	<20.6	<20.6	<20.6	<20.6	<20.6	<20.6
Dibenz(a,h)anthracene	15	15	NE I	NE I	<21.2	<21.2	<21.2	<21.2	<21.2	<21.2	<21.2	<21.2	<21.2	<21.2
Fluoranthene	2290000	2290000	88818	NE	<19.6	<19.6	<19.6	<19.6	<19.6	<19.6	<19.6	<19.6	<19.6	<19.6
Fluorene	2290000	2290000	14802	NE I	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2
Indeno(1,2,3-cd)pyrene	148	148	NE	NE	<22.3	<22.3	<22.3	<223	<22.3	<22.3	<22.3	<22.3	<22.3	<22.3
1-Methylnaphthalene	15600	15600	NE I	NE I	<21.4	<21.4	<21.4	<21.4	<21.4	<21.4	<21.4	<21.4	<21.4	<21.4
2-Methylnaphthalene	229000	229000	NE NE	NE	<17.8	<17.8	<17.8	<17.8	<17.8	<17.8	<17.8	<17.8	<17.8	<17.8
Naphthalene	5150	5150	658	NE I	<18.2	<18.2	<18.2	<18.2	<18.2	<18.2	<18.2	<18.2	<18.2	<18.2
	NE NE	NE NE	NE NE	NE NE	<16.3	<16.3	<16.3	<16.3	<16.3	<16.3	<16.2	<16.2	<16.3	<16.3
Phenanthrene														

J = Analyte detected above laboratory limit of detection but below limit of quantition.

Bold indicates analytical results exceed NR 720 RCL or generic RCL for direct contact or groundwater pathway

RCL = Residual Contaminant Level

SSL = Soil Screening Levels

DCL = Direct-Corriect Levels

NA = Parameter not analyzed NE = NR 720 RCL not established

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS FORMER ONE HOUR MARTINIZING GEC PROJECT #2-0615-231

Sample No.		WDNR Non-	WDNR Soil to	Background	VF	2-11	VF	P-12	VF	2-13	VF	2-14	VP	P-15
Sampling Date	NR 720 RCL	Industrial RCL	Groundwater	Threshold	4/21	/2016	4/20	/2016	4/21	/2016	4/21	/2016	4/21	/2016
Sample Depth (feet)		(Direct Contact)	RCL	Value (mg/kg)	2-4	6-8	4-6	8-10	2-4	6-8	2-4	6-8	2-4	6-8
VOENTILE ORGANIC	COMPOUND.	SAVOLO (TITIKO) Carlette			CATCHE LOCK								
Benzene	1490	1490	5.1	NE	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16
cis 1,2 Dichloroethene	156000	156000	41.2	NE	<21	<21	<21	<21	<21	75	<21	<21	<21	<21
Ethylbenzene	7470	7470	1570	NE	<27	<27	<27	<27	<27	<27	<27	<27	<27	<27
Methyl tert-butyl ether	59400	59400	27	NE	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Tetrachloroethene	30700	30700	4.5	NE	<54	<54	<54	<54	<54	<54	660	7700	<54	<54
Toluene	5300000	818000	1107	NE	<31	<31	<31	<31	<31	<31	<31	<31	<31	<31
Trichloroethene	1260	1260	3.6	NE	<42	<42	<42	<42	<42	<42	<42	850	<42	<42
1,2,4-Trimethylbenzene	89800	89800	1382	NE	<78	<78	<78	<78	<78	<78	<78	<78	<78	<78
1,3,5-Trimethylbenzene	782000	182000	1382	NE	<89	<89	<89	<89	<89	<89	<89	<89	<89	<89
Xylenes, -m, -p	890000	258000	3940	NE	<70	<70	<70	<70	<70	<70	<70	<70	<70	<70
Xylenes, -o		258000	3940	NE	<29	<29	<29	<29	<29	<29	<29	<29	<29	<29
RCRA METALS (RCR	(Mg/kg)			March 18 Table			3233		550		A Property of			
Mercury	14.7	3.13	0,208	NE	0.00446J	0.00813J	<0.0028	0.0075J	<0.0028	0.00838J	0.0375	<0.0028	<0.0028	<0.0028
Arsenic	0.613	0.613	0.584	8	1.87J	5.32	0.882J	3.71	4.19	4.89	3.43	2.05	< 0.65	1.65
Barium	15300	15300	164.8	364	29.2	59.8	9.9	75,1	36.9	105.0	122.0	24.8	8.68	19.4
Cadmium	70	70	0.752	1	<0.07	<0.07	<0.07	0.131J	<0.07	0.131J	0.599	<0.07	<0.07	<0.07
Chromium	NE	NE	360000	44	13.00	22.20	4.74	20.20	13.20	36.40	15.70	11.25	4.49	8.89
Copper	3130	3130	91.6	35	5.93	21.20	3.19	26.90	16.40	32.50	8.37	11.00	1.67J	8.1
Lead	NE	400	27	52	2.30	4.71	1.64	6.86	3,52	7.80	7.69	3.18	1.07	2.28
Nickel	1550	1550	13	31	9.24	19.40	3.33	22.30	12.50	32.5	10.3	10.0	2.61	7.48
Selenium	391	391	0.52	NE	< 0.74	<0.74	<0.74	<0.74	<0.74	<0.74	1.07J	<0.74	<0.74	<0.74
Silver	391	391	0.85	NE	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28
Zinc	23500	23500	NE	150	13.50	24.40	7.73	31.60	12.10	42,90	43.10	10.80	3.16	8.22
DETECTED POLYNU	CLEAR AROM	ATIC HYDROC	ARBONS (PAH) (µg/kg)								July III all		
Acenaphthene	3440000	3440000	NE	NE	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2
Acenaphthylene	NE	NE	NE	NE	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9
Anthracene	17200000	17200000	197727	NE	<18.5	<18.5	<18.5	<18.5	<18.5	<18.5	<18.5	<18.5	<18.5	<18.5
Benzo(a)anthracene	148	148	NE	NE	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4
Benzo(a)pyrene	15	15	470	NE	<16.8	<16.8	<16.8	<16.8	<16.8	<16.8	<16.8	<16.8	<16.8	<16.8
Benzo(b)fluoranthene	148	148	479	NE	<19.4	<19.4	<19.4	<19.4	<19.4	<19.4	<19.4	<19.4	<19.4	<19.4
Benzo(g,h,i)perylene	NE	NE	NE	NE	<17	<17	<17	<17	<17	<17	<17	<17	<17	<17
Benzo(k)fluoranthene	1480	1480	NE	NE	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4	<17.4
Chrysene	14800	14800	145	145	<20.6	<20.6	<20.6	<20.6	<20.6	<20.6	<20.6	<20.6	<20.6	<20.6
Dibenz(a,h)anthracene	15	15	NE NE	NE NE	<21.2	<21.2	<21.2	<21.2	<21.2	<21.2	<21.2	<21.2	<21.2	<21.2
Fluoranthene	2290000	2290000	88818	NE	<19.6	<19.6	<19.6	<19.6	<19.6	<19.6	<19.6	<19.6	<19.6	<19.6
Fluorene	2290000	2290000	14802	NE NE	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2	<20.2
Indeno(1,2,3-cd)pyrene	148	148	NE NE	NE NE	<22.3	<22.3	<22.3	<22.3	<22.3	<22.3	<22.3	<22.3	<22.3	<22.3
1-Methylnaphthalene	15600	15600	NE NE	NE NE	<21.4	<21.4	<21.4	<21.4	<21.4	<21.4	<21.4	<21.4	<21.4	<21.4
2-Methylnaphthalene	229000	229000	NE NE	NE NE	<17.8	<17.8	<17.8	<17.8	<17.8	<17.8	<17.8	<17.8	<17.8	<17.8
Naphthalene	5150	5150	658	NE	<18.2	<18,2	<18.2	<18.2	<18.2	<18.2	<18.2	<18.2	<18.2	<18.2
Phenanthrene	NE NE	NE NE	NE NE	NE	<16.3	<16.3	<16.2	<16.3	<16.2	<16.2	<16.2	<16.3	<16.3	<16.3
Pyrene	1720000	1720000	54132	NE NE	<18.8	<18.8	<18.8	<18.8	<18.8	<18.8	<18.8	<18.8	<18.8	<18.8
CONTRACTOR OF THE PARTY OF THE		on but below limit of au		INC	₹10.0	\10.0	\ 10.0	₹10.0	10.0	10.0	\ 10.0	10.0	\10.0	10.0

J = Analyte detected above laboratory limit of detection but below limit of quantitation.

Bold indicates analytical results exceed NR 720 RCL or generic RCL for direct contact or groundwater pathway

RCL = Residual Contaminant Level

SSL = Soil Screening Levels

DCL = Oirect-Contact Levels

NA = Parameter not analyzed

NE = NR 720 RCL not established

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS FORMER ONE HOUR MARTINIZING GEC PROJECT #2-0615-231

Sample No.	1	WDNR Non-	WDNR Soil to	Background	SS-1	SS-2	SS-3
Sampling Date	1 NR 720 RCL	Industrial RCL	Groundwater	Threshold	8/16/2016	8/16/2016	8/16/2016
Sample Depth (Inches)	I NIC 720 KG2	(Direct Contact)		Value (mg/kg)	0-4	0-4	0-4
VOLATILE ORGANIC	COMPOUNDS	(VOCs) (µg/kg)					and the state of t
Benzene	1490	1490	5.1	NE	<16	<16	<16
cis 1,2 Dichloroethene	156000	156000	41.2	NE	<21	<21	<21
Ethylbenzene	7470	7470	1570	NE	<27	<27	<27
Methyl tert-butyl ether	59400	59400	27	NE	<25	<25	<25
Tetrachloroethene	30700	30700	4.5	NE	<54	<54	<54
Toluene	5300000	818000	1107	NE	<31	<31	<31
Trichloroethene	1260	1260	3.6	NE	<42	<42	<42
1,2,4-Trimethylbenzene	89800	89800	1382	NE	<78	<78	<78
1,3.5-Trimethylbenzene	782000	182000	1382	NE	<89	<89	<89
Xylenes, -m, -p	890000	258000	3940	NE	<70	<70	<70
Xylenes, -o	890000	256000	3940	NE	<29	<29	<29
RCRA METALS (RCR.	A) (mg/kg)						
Mercury	14.7	3.13	0.208	NE	0.0118	0.0165	0.0138
Arsenic	0.613	0.613	0.584	8	2.95	3.00	3.43
Barium	15300	15300	164.8	364	38.7	55.2	42.1
Cadmium	70	70	0.752	1	0.28	0.247J	0.262
Chromium	NE	NE	360000	44	14.80	18.70	13.9
Lead	NE	400	27	52	12.50	10.50	7.38
Selenium	391	391	0.52	NE	<0.74	<0.74	<0.74
Silver	391	391	0.85	NE	<0.28	<0.28	<0.28

J = Analyte detected above laboratory limit of detection but below limit of quantitation.

Bold indicates analytical results exceed NR 720 RCL or generic RCL for direct contact or groundwater pethway RCL = Residual Contaminant Level

SSL = Soil Screening Levels

DCL = Direct-Contact Levels

NA = Parameter not analyzed

NE = NR 720 RCL not established

TABLE 2
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS
FORMER ONE HOUR MARTINIZING
GEC PROJECT #2-0615-231

W	1 40	140		W.1			_						_		27.0																
Monitoring Well	-				-	W-3			W-4		**********	MW-5			W-7	MY			W-10		V-11		1-12		1-13		¥.14		N-4	- 1	W-6
Sampling Date	ES	PAL.	4/29/2016			6/7/2016	4/20/2016	1 5/11/2016	6/7/2015	6/21/2916	5/11/2016	67/2016	6/21/2016	4/21/2016	6/7/2016	4/20/2016	6/7/2016	4/21/2016	6/7/2016	4/21/2016	6/7/2016	4/20/2016	6/7/2016	4/20/2016	6/7/2016	4/21/2016	6/7/2016	4/21/2016	6/7/2016	421/2016	6/7/2016
PETROLEUM VOLATILE		OR OTHER DESIGNATION OF REAL PROPERTY.		تتنظير كالمكتبيرة	The second second		_		-		-				_			-	1200	-		-		-						Marine M	3 4 7 4
Bonzone	- 5	0.5	10.44	NA.	<0.44	NA.	<0.44	NA.	NA	NA	NA.	NA.	NA.	<0.44	NA NA	<0.44	NA NA	<0.44	NA NA	<0.44	NA NA	<0.44	NA.	<0.44	NA.	<0.44	NA.	<044		<0.44	
cis 1,2 Dichloroethene	70	7	<0.45	NA	24.3	NA.	<0.45	NA	NA	NA.	NA.	NA NA	NA:	<0.45	NA.	<0.45	NA NA	<0.45	NA	< 0.45	NA:	<0.45	NA	<0.45	NA.	<0.45	NA.	<0.45	NA.	<0.45	NA.
trans 1,2 Dichloroethene	100	20	<0.54	NA.	2.22	NA.	<0.54	NA	NA	NA	NA	NA.	NA.	90.54	NA.	< 0.54	NA	< 0.54	NA.	10.54	NA	<0.54	NA	<0.54	NA.	40.54	NA	< 0.54	NA	<0.54	NA
Ethylberizone	700	140	<0.71	NA NA	<0.71	NA .	<0.71	NA	NA.	NA.	NA	NA.	NA	<0.71	NA.	<0.71	NA	< 0.71	NA	<0.71	NA.	<0.71	NA	<0.71	NA	<0.71	NA.	<0.71	NA	<0.71	NA
p-Isopropyflokuene	NE	NE	<1.1	NA.	<1.1	NA	<1.1	NA.	NA	NA.	NA	NA.	NA.	(1.1)	NA.	<1.1	NA	<1.1	NA.	<1.1	NA	1,321	NA	<0.71	NA	1.83.1	NA:	1,83,1	NA	1.83J	NA
Mothyl tert-butyl ether	60	12	<1.1	NA.	<1,1	NA	<1.1	NA.	NA	NA .	NA.	NA	NA	<1.1	NA.	<1.1	NA	51.1	NA	<1.1	NA	51.1	NA NA	<1.1	NA.	<1.1	NA:	<1.1	NA	41.1	NA
Tetrachioroethene	5	0.5	7.6	NA.	760	NA	0.89J	NA	NA	NA.	NA.	NA	NA.	14.3	NA	<0.49	NA.	< 0.49	NA.	<0.49	NA	@49	NA .	< 0.49	NA	<0.49	NA	<0.49	NA	<0.49	NA.
Tokunno	800	160	10.44	NA	<0.44	NA	<0.44	NA	FIA	NA:	NA	NA.	NA.	40,44	NA:	<0.44	NA	<0.44	NA.	<0.44	NA	<0.44	NA	<0.44	NA	<0.44	NA:	<0.44	NA	<0.44	NA.
Trict/oroethene	5	0.5	40.47	NA:	197	NA	<0.47	NA.	NA	NA.	NA.	NA	NA.	<0.47	NA.	<0.47	NA.	<0.47	NA.	<0.47	NA	<0.47	NA	<0.47	NA	<0.47	NA.	<0.47	NA	<0.47	NA.
1,2,4-Trimethy/benzerie	480	00	<1.0	NA.	<1.5	NA.	<1.5	NA.	NA	NA.	NA	NA.	NA.	<1.6	NA.	<1.6	NA.	<1.6	NA.	<1.6	NA.	<1.6	NA	<1.6	NA:	<1.6	NA.	<1.6	NA	<1.8	NA
1,3,5-Trimethytherizene	400	90	<1.5	NA	<1.5	NA	<1.5	NA	NA	NA	NA.	NA.	NA.	<15	NA	<15	NA.	<1.5	NA.	<1.5	NA	<1.5	NA	<1.5	NA	<1.5	NA	<1.5	NA.	<1.5	NA.
Vinyl Chloride	0.2	0.02	50.17	NA	0.403	NA	<0.17	NA.	NA.	NA.	NA	NA	NA.	<0.17	NA.	<0.17	NA.	< 0.17	NA.	<0.17	NA	<0.17	NA.	<0.17	NA	40.17	NA.	<0.17	NA.	<0.17	NA.
Xvienes, o	2000	400	<22	NA.	122	NA	422	NA.	NA.	NA.	NA	NA.	NA.	922	NA.	<22	NA.	422	NA.	<22	NA	<2.2	NA	<22	NA	<2.2	NA.	122	NA	922	NA.
Xytones, -m, -p	2000	400	40.9	NA.	<0.9	NA .	40.9	NA	NA .	NA.	NA	NA	NA	<0.9	NA.	<0.9	NA.	<0.9	NA.	<0.9	NA	<0.9	NA NA	<0.9	NA.	40.9	NA.	<0.9	NA	<0.9	NA.
DETECTED POLYNUCLE	AR AROL	MIGH	DROCAR	IONS (PA	1) (pg/L)	1000		10000	-			-	P . T. W.	-	503 E.S.					TOTAL SEC.	7-2-6		10000				CATALOG .	100 m	OH A Pro-		4
Acenaphthene	NE.	NE	<0.016	<0.016	<0.016	<0.016	0.146J	48.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	49.016	<0.016	<0.016	<0.016
Agenophthylene	NE	NE	<0.019	<0.019	<0.019	<0.019	0.8	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	40.019	<0.019	<0.019	0.095	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019
Anthrecene	3000	600	<0.019	<0.019	<0.019	<0.019	2.31	0.0463	0.04J	<0.019	0.0257J	0.036J	<0.019	0.037.1	<0.019	<0.019	0.145	<0.019	<0.019	<0.019	0.0295J	<0.019	<0.019	<0.019	0.068	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019
Benutotalanthracene	NE	NE	0.02583	0.01943	0.6423	<0.017	7.7	0.09	0.02641	0.07281	0.0481	0.057	0.041J	0.045J	<0.017	0.028.1	0.0241	0.0264J	SD 017	0.01841	0.057	0.02251	0.0363	0.02493	0.122	<0.017	<0.017	0.077	<0.017	0.02483	<0.017
Benzota zwrene	0.2	0.02	0.0313J	<0.021	0.0302J	<0.021	17.2	0.289	0.082	0.053	0.119	0.049J	0.037J	0.17	<0.021	0.0664	0.023J	0.0384	<0.021	0.0273	0.052.1	0.0232J	0.0299J	0.0423	0.137	<0.021	<0.021	0.13	<0.021	<0.021	<0.021
Benzo/bifluoranthone	0.2	0.02	0.067	<0.018	0.058	<0.018	33	0.63	0.194	0.127	0.218	0.0553	0.0441	0.36	<0.018	0.15	0.03/1	0.074	<0.018	0.0543	0.062	0.0433	0.0363	0.075	0.143	0.0207J	<0.018	0.292	<0.018	0.0341	<0.018
Benzoig hipporvione	NE	NE	0.0663	<0.025	0.0314J	<0.025	21.3	0.4	0.142	0.105	0.193	0.0453	0.036J	0.33	<0.025	0.091	<0.025	0.043J	<0.025	0.0380	0.042.1	40.025	0.027.1	0.0500	0.13	<0.025	<0.025	0.142	<0.025	0.0251J	<0.025
Benzoik)Ruoranthone	NE	NE	0.0298J	<0.016	0.032J	<0.016	0	0.171	0.061	0.047.1	0.006	0.046J	0.0263.1	0.147	<0.016	0.053	0.034J	0.0014.1	<0.016	0.02351	0.0441	<0.016	0.0275J	0.0321	0 144	<0.016	<0.016	0.108	<0.016	<0.016	<0.016
Chrysene	0.2	0.02	0.043	<0.02	0.047J	<0.02	18.2	0.32	0.097	0.0563	0.115	0.0543	0.038J	0.202	<0.02	0.078	0.0274J	0.0514	<0.02	0.0383	0.0563	49.020	0.0282J	0.042J	0.12	<0.020	<0.02	0.186	<0.02	0.02053	<0.02
Dibenzia hianthricene	NE	NE	<0.025	<0.025	<0.025	<0.025	3.3	0.0463	<0.025	<0.025	<0.025	<0.025	<0.025	0.0330	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.081	40.025	<0.025	<0.025	<0.025	<0.025	<0.025
Fluoranthene	400	80	0.051J	0.0214J	0.064	<0.017	27.9	0.48	0.144	0.096	0.152	0.0473	0.039J	0.285	<0.017	0.023	0.045J	0.07	<0.017	0.0533	0.055	<0.017	0.02623	0.0298J	0.114	<0.017	<0.017	0.34	<0.017	0.02733	<0.017
Fluorece	400	80	<0.021	<0.021	<0.021	<0.021	0.23J	<0.021	<0.021	<0.021	<0.021	<0.021	<0.021	<0.021	<0.021	<0.021	<0.021	0.037J	40.021	<0.021	<0.021	<0.021	<0.021	<0.021	0.0232J	0.0238J	<0.021	(0.021	<0.021	<0.021	<0.021
Indenoi1,23-cd)pyrene	NE	NE	0.0533	<0.023	0.032.1	<0.023	22.1	0.41	0.109	0.075	0.162	0.0291J	0.0287.1	0.272	<0.023	0.083	<0.023	0.0313	<0.023	0.033	0.0381	<0.021	<0.023	0.05J	0.136	<0.023	<0.023	0.143	<0.021	<0.021	<0.023
1-Methylnochtholene	NE	NE	<0.024	<0.024	<0.024	<0.024	<0.12	<0.024	<d 024<="" td=""><td><0.024</td><td><0.024</td><td><0.024</td><td><0.024</td><td><0.024</td><td><0.024</td><td><0.024</td><td><0.024</td><td>0.1</td><td><0.024</td><td><0.024</td><td><0.024</td><td>0.084</td><td><0.023</td><td>0.055</td><td><0.024</td><td>0.114</td><td><0.023</td><td><0.024</td><td><0.023</td><td><0.023</td><td><0.024</td></d>	<0.024	<0.024	<0.024	<0.024	<0.024	<0.024	<0.024	<0.024	0.1	<0.024	<0.024	<0.024	0.084	<0.023	0.055	<0.024	0.114	<0.023	<0.024	<0.023	<0.023	<0.024
2-Methytnaphthalene	NE	NE	<0.024	<0.024	<0.024	<0.024	<0.12	<0.024	<0.024	<0.024	<0.024	<0.024	<0.024	40.024	<0.024	<0.024	<0.024	0.13	40.024	40.024	<0.024	0.139	<0.024	0.152	<0.024	0.208	<0.024	<0.024	<0.024	<0.024	<0.024
Naphthalene	100	10	<0.019	0.036J	<0.019	0.0286J	0.111	<0.019	0.02633	<0.019	<0.019	0.0276J	<0.019	<0.019	0.0251J	<0.019	0.01941	0.126	0.0213J	0.0291	0.0249J	0.184	<0.019	0.17	<0.024	0.161	<0.019	0.02001	0.0196J	<0.019	<0.019
Phenanttrene	NE	NE	0.0242J	<0.055	0.0273	<0.055	9.2	0.179	0.081	0.059	0.0533	<0.055	<0.055	0.086	<0.055	0.0324	0.08	0.08	<0.055	0.0381	0.064	0.041J	<0.055	0.037J	0.101	0.056	<0.055	0.179	<0.055	<0.017	<0.055
Pyrene	250	50	0.0493	<0.02	0.060	40.02	24.2	0.39	0.122	0.03	0.138	0.0451	0.040	0.278	<0.02	0.074	0.0383	0.062	<0.02	0.044J	0.049J	<0.020	0.028J	0.02993	0.112	<0.020	<0.02	0.25	<0.02	0.0271	<0.02
RESULTALS (NOT.)	-	- 11				-	212	0.00	0,122	0.00	0.100	0.04.0	0.0-0	0.270		0.017	v.v.v.	0.002	10.02	0.0443	0.0493	40.050	0.0200	0.02300	0.112	-9.020	10.02	0.20	-0.04	0.0271	-0.0a
Arsenic	10	1	<06	NA.	<0.6	NA.	<06	NA.	NA.	NA	NA.	NA	NA.	<0.6	NA	<0.6	NA.	0.63	NA.	<06	NA.	<0.6	NA	22	NA.	<0.6	NA I	<0.6	NA.	<0.6	NA.
Barum	2000	400	73	NA.	77	NA.	51	NA.	NA.	NA	NA	NA NA	NA.	57	NA NA	37	NA.	102	NA.	103	NA NA	93	NA NA	120	NA.	104	NA NA	58	NA NA	158	NA.
Codmium	5	0.5	<03	NA.	403	NA.	93	NA.	NA.	NA.	NA	NA NA	NA.	<0.3	NA NA	403	NA.	90.3	NA NA	903	NA NA	<0.3	NA NA	<0.3	NA.	104	NA NA	40.3	NA.	40.3	NA NA
Chromam	100	10	<18	NA.	418	NA.	41.8	NA.	NA.	NA NA	NA.	NA NA	NA.	<1.8	NA	\$1,8	NA.	<1.8	NA.	<1.8	NA NA	<1.8	NA NA	<1.8	NA	<1.8	NA NA	<1.8	NA.	<1.5	NA.
Tarte Laboratoria Company	1300	130	731	NA.	521	NA.	54.8	NA.	NA	NA NA	NA NA	NA NA	NA NA	<4.8	NA NA	<4.8	NA.	44.8	NA NA	<4.8	NA NA	500	NA NA		NA NA	10.0			NA NA	9.74	
Copper	15	1.5	<0.8	NA NA	<0.8	NA.	40.8	NA.	NA.	NA NA	NA NA	NA NA												5.23			NA.	10J			NA.
23.2.2	2	0.2	<0.11	NA.	<0.11	NA.	<0.11	NA.	NA.		NA NA		NA.	<0.8	NA	<0.8	NA.	<0.8	NA.	<0.8	NA	40.8	NA .	<0.8	NA.	<0.8	NA.	<0.8	NA.	<0.8	NA.
Mercury	100	20	431	NA.	401	NA.	<2	NA.	NA NA	NA NA	NA.	NA NA	NA NA	<0.11 3.3J	NA NA	<0.11 2.51	NA NA	Q 11	NA NA	273	NA NA	<0.11 3.6J	NA NA	<0.11	NA NA	<0.11 2.4J	NA NA	<0.11	NA.	<0.11	NA NA
Selenum	50	10	<1.1	NA NA	121	NA.	51.1	NA.	NA.	NA NA	NA NA	NA NA	NA.	293	NA NA	121	NA NA	911	NA NA	51.1	NA NA	51.1	NA NA	KI.1	NA NA	211	NA NA	<1.1	NA NA	3.33	NA
Séver	50	10	98.4	NA.	584	NA.	914	NA.	NA.	NA NA	NA.	NA.	NA .	48.4	NA NA	98.4	NA NA	<8.4	NA NA	48.4	NA NA	934	NA NA	<8.4	NA NA	<84	NA NA	<84	NA NA	<8.4	NA.
Zinc	5000		46.4	NA	<6.4	NA.	39	NA	NA.		NA.	NA	NA			96.4		90.4		46.4		281	NA.	46.4	NA NA		NA	7.13		464	
A STATE OF THE STA	-			-							-23					100	- 124					_		- 4/4				2.10	147		147

Enno. 50000 25000 46,4 NA

NE = NR 140 ES not established

O = Availyte debacked above laboratory first of defection but below first of quantitation

D = Result not applicable due to bample dislation

Shading indicables withflictin results above NR 140 ES

TABLE 3 WATER LEVEL DATA FORMER ONE HOUR MARTINIZING

Monitoring Well Number	Top of Well Casing Elevation	Date Measured	Utility Bottom Elevation (Ft.)	Depth to Water (Ft.)	Groundwater Elevation (Ft.)
MW-1	98.61	4/21/2016		2.77	95.84
MW-3	98.29	4/21/2016		5.63	92.66
MW-4	99.27	4/21/2016		3.61	95.66
MW-7	97.83	4/21/2016		3.71	94.12
MW-8	98.91	4/21/2016		2.75	96.16
TW-4	100.04	4/21/2016		3.40	96.64
TW-5	99.96	4/21/2016		3.51	96.45
MW-10	100.37	4/21/2016		3.35	97.02
MW-11	100.23	4/21/2016		3.23	97.00
MW-12	100.73	4/21/2016		3.02	97.71
MW-13	99.92	4/21/2016		2.14	97.78
MW-14	99.16	4/21/2016		2.71	96.45
Catch Basin 1	98.31	4/21/2016	92.71		
NW Pad Catch Basin	99.53	4/21/2016	95.38		

ft = feet

NR=Not recorded

Elevations in feet in reference to benchmark with an assumed elevation of 100 feet.

TABLE 4 SUMMARY OF SUB-SLAB VAPOR SOIL ANALYTICAL RESULTS FORMER ONE HOUR MARTINIZING 2-0615-231

TABL	E 1 REGIONAL	SCREENING LEVEL SU	MMARY
Sample No.	Small	VP-1	VP-2
Sampling Date	Commerical	09/02/16	09/02/16
Units		ug/m3	
VOLATILE ORGANIC CO	MPOUNDS (VO	C) (ug/m3)	
Benzene	530	8.58	<48.9
Carbon Tetrachloride	670	<1.23	<123
Chloroform	180	<0.930	<93
Chloromethane	13000	<0.374	<37.4
Dichlorodifluoromethane	15000	<0.989	<98.9
1,1 Dichloroethane	2600	<0.685	<68.5
1,2 Dichloroethane	160	<0.830	<83
1,1-Dichloroethene	29000	<0.646	<64.6
cis-1,2-Dichloroethene	NE	<0.515	<51.5
trans-1,2-Dichloroethene	NE	<0.614	<61.4
Ethylbenzene	1600	4420	313
Methylene Chloride	87000	12.7	<53.8
Methy Tert Butyl Ether	16000	<0.605	196
Naphthalene	120	4.37	<269
Tetrachloroethylene	6000	1.47	<113
Toluene	730000	25.5	149
1,1,1-Trichloroethane	73000	<1.21	<121
Trichloroethylene	290	<0.975	<97.5
Trichlorofluoromethane	NE	1.3	<126
1,2,4-Trimethylbenzene	1000	16.8	<79
1,3,5-Trimethylbenzene	NE	3.58	<103
Vinyl chloride	930	<0.389	<38.9
m&p-Xylene	15000	33.6	<137
o-Xylene	15000	18.2	<91.5

UG/M³ - Micrograms per Cubic Meter of Air

Bold indicates analytical results exceed May 2016 USEPA Regional Sub-Slab Vapor Risk Screening Level

CHAIN OF STODY RECORD

Quote No.:

Lab I.D. #

Project #:

Account No. :

Environmental Lab, Inc.

Chain	#	No	276

Dage	of

Comple	Handling	Dogues
Saminie		<u>u negues</u>

Rush Analysis Date Required (Rushes accepted only with prior authorization)

Project #:	DA		_						. • Appleton, WI 54914 • FAX 920-733-0631 (Rushes accepted only with prior auth							ח)									
Sampler: (signature)	12-1						92	0-830-2455	• FAX 920-7	33	_	_				L		_	=	1101	- IIIai i		- Curiu		_
Project (Name / Los	cation): GB	Man	7							L	- 1	Analy	sis	Req	uest	ed						Oth	er Ana	lysis	
Reports To: 13/	ing Young	CUND	\	invo	ce To:		1																		
Company 6	SZ'			Com	pany		, / .	00	7 0									χ.						1	
Address C)	6 3.1.101 6	. Lp	01	Addr	ess		11	(_1	41	- F	<u>6</u>					m									
City State Zip D	Zud sach	5390	3	City	State Z	ip (10	$\bigcirc I$		Sep 95)	eb 3					ALEN		i i	١						
Phone GUY	697 XC	010		Phor	ne		U			DRO S	30 S	1 2	w	5	15	Ę			600	ALS					
FAX	/			FAX							D PC	Ş	3EAS	A 82	PAG	NAP	u i	ביים ביים	A 82	MET					PID/ FID
Lab I.D.	Sample I.D.	Collec	- 1	Comp	Grab	Filtered Y/N	No. of Containers	Sample Type (Matrix)*	Preservation	DRO (Mod [GRO (Mod GRO Sep 95)	LEAD	OIL & GREASE	PAH (EPA 8270)	PCB PVOC (F	PVOC + NAPHTHALENE	SULFATE	VOC DIA SUSPENDED SOLIDS	VOC (EPA 8260)	8-RCRA METALS					
503 1552 A	55-1 Tapsail	8/10/1	Pm		X	Ŋ	3	5	meth non	1								×		X					
В	55-2 Topson	•	1		2)		۲					
	55-3 Tipsul	-6	+		>	4			4			-	-		+		_	7	-	>		-	+	+	_
			-				7					+	-		+		\vdash	+	+	\vdash	+	-	\vdash	++	-
												+			+					\forall			\vdash		-
												-			_			1							
			-	_							\vdash	+		-	+	-		+		\vdash	-			+	_
Comments/Spec	lal Instructions (*S	pecify g	groundv	vater "	ĠW", C	Orinking W	Vater "DW", W	daste Water	 "WW", Soil "S",	, Aiı	- "A"	, Oil,	Sluc	ge e	tc.)						_1_			<u> </u>	
Meth	To be completed of Shipment:	ch	<u> </u>		Retio	nquished B	y: (sign)		Time	_	Date		Rece	eived	By: (\$	ign)						Time		Date	
Cooler seal inta	ct upon receipt: _	2 Yes		lo	Rece	eived in La	boratory By:	Q-		-		=);=				т	ime:	45	><)		Date: \	8/1	K	

Quote No.:

Lab I.D. #

Account No.:

Synergy

Environmental Lab, Inc.

Chain	*	NIO	27	21
Chain	Ħ	14.	21	64

Page	of

Sample Handling Request

Rush Analysis Date Required

(Rushes accepted only with prior authorization)

Sampler: (signature)	1990 Prospect Ct. • Appletor 920-830-2455 • FAX 920-		Turn Around	
Project (Name / Location):	Bren Buy	Analysis Request	ed	Other Analysis
Reports To: Brand Invoice	ce To:			
Company 6F (Comp	pany OF		8	
Address PH S. LVP Lule D. Addre	ess ()		SOLIDS	
City State Zip Portuse W1 53901 City S	State Zip	Sep 95) Sep 95)	ALEN SED S	
Phone 608 69780() Phon	е	RO S RO S Sie (70)	HTH A 54 (S60)	
FAX		od DI E/NIT FEAS	NAP SUSF V (EP	PID/ FID
Lab I.D. Sample I.D. Collection Date Time	Grab Fiftered No. of Sample Type Y/N Containers (Matrix)*	DHO (Mod DRO Sep 95) GRO (Mod GRO Sep 95) LEAD NITRATE/NITRITE OIL & GREASE PAH (EPA 8270) PCB	PVOC + NAPHTHALENE SULFATE TOTAL SUSPENDED SO VOC DW (EPA \$42.2) VOC (EPA 8260) 8-RCRA METALS	
503/018/ MW-Y SILLIPM	N I GW -	X		
0 mw 5 shapm	N 1 6W -	8		
Comments/Special Instructions ("Specify groundwater "G	SW Drinking Water "DW", Waste Water "WW", Soil "S	". Air "A". Oil. Studge etc.)		
Commente of the control of the contr	or , Similary reals. See , viable reals.	Trin Tri On Gladge Gla.)		
	B Do			
Sample Integrity - To be completed by receiving lab.	Relinquished By: (sign) Time	Date Received By: (s	ign)	Time Date
Method of Shipment:				
Temp. of Temp. Blank °C On Ice:				
Cooler seal intact upon receipt: Yes No	Received in Laboratory By:	Sec	Time: 3:00/140) Date: 5-11-16

CHAIN OF CUSTODY RECORD

Chain #	No	27	16
OHOUNT /	1 1		

Mark the second	ON CAPTURE AND VIOLENCE	Sistematic a	D. D. P. II	`	J.	101	72							Pag	ge _		of	_		
Let Clark				Smerie		~~4~ <i>[</i>		<i>f</i> -										dlina F	Reque	st
Account No. :	Quote No.:		Environmental Lab,			9	In	G,			Sample Handling Request Rush Analysis Date Required									
Project #:	n					Ct. • Appleton							(1	Rush	es a	ссер	ted only	with pri	ior auth	orization)
Sampler; (signature)	Jugan	\supset_{L}		92	0-830-2455	• FAX 920-7	'33-0	0631	1				L		_		Norma	al Turn	Aroun	d
Project (Name / Location):	& Maria SV	16.	ropu 1	300				A	naly	ısls	Req	este	∍d					Ot	her An	alysis
Reports To:	Han Kali ~ 1	Invoice		7																
Company (F)	0	Compan	y ()	10											50					
Address 916 Silver	Lako Di	Address		U									ш		SOLIDS	ľ	11			
City State Zip	WT 5390	City Sta	e Zip /	121			p 95)	95 95					LEN		3 C)	Si.				
Phone 608 697 80	10	Phone) WC	_		O.S.	Š	HE HE		<u>6</u>	12	THA			9 (542	LS.			
FAX		FAX						469	E	EAS	4 827	PA 8	AP		USP I	(EP/	MET/			PID/ FID
Lab I.D. Sample I.I.	Collection Date Time	Comp Gr	Filtered Y/N	No. of Containers	Sample Type	Preservation	DRO (Mod DRO Sep 95)	GRO (Mo	NITRATE/NITRITE	OIL & GREASE	PAH (EPA 8270)	PVOC (EPA 8021)	PVOC + NAPHTHALENE	SULFATE	OTAL S	VOC DW (EPA 542.2) VOC (EPA 8260)	8-RCRA METALS			FID
20211P1 & WM-1	6/7/12			QUALITIES 1	(Matrix)*	None		<u> </u>	JZ	0	N	10	10	(A)		> >	φ)		++	
\$ MW-3	7		1/1		1	10.		\top			i				1					
MW- 5									-		П				1					
E MULE			1-1-					+	+		1	+		H	+	+			++	
T M. W 12								十			1				+		1			
\$ 7 MW-13																				
k mw - 17								_												
M TUTY			110	4	// 4	11	-	+	+	-	H	_		-	-	+	-		+-	++-
Comments/Special Instruction	s (*Specify ground	water "GW	". Drinking	Water "DW" V	Vaste Water	"WW" Soil "S"	Air	"A".	Oil :	Sluc	ige e	tc)			_					
облино по организации	o (opeon) g. cana		, ermining		575757550		, , , , , ,	,		0.00	. 9 0 0	,								
			11					,	,											
			12	4	2	8:36 am	6	17	16											
Sample Integrity - To be com	pleted by receiving	lab.	lelinquished E	By: (sign)		Time	D	ate		Rece	bevie	3y: (s	lgn')					Tim	e	Date
Method of Shipme	新加州 (1966年) 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10	-		V		_		_		_			_							
	lank °C On It	A.V.		7																
Cooler seal intact upon receip	THE RESERVE TO SHOULD BE S	SECURITY OF SECURITY			1															
Color oce minor aport rosor	Mary Harris Mary Contract	WHICH THE P			1	127							_					_		1 11

CUSTODY RECORD

Quote No.:

Temp. of Temp. Blank ____ °C On los

Cooler seal intact upon receipt: X Yes ____ No

Lab I.D. #

Account No. :

Synergy

Environmental Lab, Inc.

1990 Prospect Ct. • Appleton, WI 54914

Chain #	NIO	2.	O E
Chain #	14.7	6.	. U J

Page	of	

Sample Handling Request

Rush Analysis Date Required (Rushes accepted only with prior authorization)

Date: (0 21111

Time: (0)24

Project #: Normal Turn Around 920-830-2455 • FAX 920-733-0631 Sampler: (signature Project (Name / Location): **Analysis Requested** Other Analysis Invoice To: Reports To: Company Company SOLIDS Address Address PVOC + NAPHTHALENE DRO (Mod DRO Sep 95) GRO (Mod GRO Sep 95) TOTAL SUSPENDED City State Zip City State Zip VOC DW (EPA 542.2) NITHATE/NITRITE PVOC (EPA 8021) 8-RCHA METALS Phone VOC (EPA 8260) PAH (EPA 8270) Phone OIL & GREASE PID/ FAX FAX SULFATE FID Sample Collection Filtered No. of PCB Lab I.D. Type Sample I.D. Comp Grab Preservation Date Time YIN Containers (Matrix)* 5031253A N 62 NUL Comments/Special Instructions (*Specify groundwater "GW", Drinking Water "DW", Waste Water "WW", Soil "S", Air "A", Oil, Sludge etc.) Relinquished By: (sign Received By: (sign) Time Date Sample Integrity - To be completed by receiving lab. Method of Shipment:

Received in Laboratory By:

CUSTODY RECORD

Quote No.:

Lab I.D. #

Account No.:

Synergy

Environmental Lab, Inc.

Chain #	Nº	2.	06

Page_

_	_		_	
Sample	~ U~-	مطالات		1100
Sambi	s nai	MINISTRA	і печ	ucsi

Project#: 6B	Mary	+							t. • Appleton, i • FAX 920-7							-	Rus			epte	d only w lormal	ith pric	or autho	orizatio	<u>on)</u>
Sampler: (signature)		ny	1.04	1-			92	U-83U-2450	FAX 920-7	33-								_	_						
Project (Name / Loc	cation): 63	MAIL	7	160	000	Rus					_	Analy	eie,	Req	uest	ed	_		_	- 1		Oth	er Ana	alysis	.
Reports To:	Vin You	YWIV	41	Invo	ice To:	/	1	~		6116															
Company GF	()	0		Con	npany		1. /	4/										SQ	1						
Address S	6 SILVEN	Lule	- Dr	Add	ress	1	10 6			<u>ي</u>	2					삦		SOLE							
City State Zip R	Huce w	535	iol	City	State Z	ip				Sep 95)	6 dag	١.,				ALE		ED (2.2)						
Phone 60 X	697 80	510		Pho	ne					DROS	80		끯	02	100	Ī		ENC	A 54	(90)	ALS				
FAX				FAX						(Mod D	D DO	N. I	REA	24 82	VOL	Z A	μ	SUS	V (EP	PA 8	3				PID/ FID
Lab I.D.	Sample I.D.	1	ection Time	Comp	Grab	Filtered Y/N	No. of Containers	Sample Type (Matrix)*	Preservation	DRO (M	GRO (Mod GRO Sep 95)	LEAD	OIL & GREASE	PAH (EPA 8270)	PCB	PVOC + NAPHTHALENE	SULFATE	TOTAL SUSPENDED SOLIDS	VOC DW (EPA 542.2)	VOC (EPA 8260)	B-HCHA METALS				
5031257 H	MW-Y	6/21/16	An			2	1	6 W						X	Ì					-		\mathbf{H}			
D	10th - 9																								
		-									-	+	-		+	-	-			-	5		++	+	
												+	H		+	+	1		1	+	++		+	+	
14.1																									
											-	-	-		-	+	-		\dashv	+	+	-	+-	++	
		1											H		+		H					+			
Comments/Speci	ial Instructions (*:	Specify	ground	water *	GW, [Prinking W	Vater "DW", W	/aste Water	"WW". Soil "S"			Oil,		ige e	ic.)		•								
Sample Integrity Methodology Temp Cooler seal intac	od of Shipment: o. of Temp. Blank	, ,	C On k	же: <u>Х</u>		eived in Lai	y: (sign) boratory By:	ala (Time		Date	_	Rece	elved	By: (Ð.,	74		Time	[e(Date	_

Synergy Environmental Lab, INC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PORTAGE, WI 53901

Report Date 30-Aug-16

Project Name GB MAIN STREET Invoice # E31552

Project #

Lab Code 5031552A **Sample ID** SS-1 TOP SOIL

Sample Matrix Soil Sample Date 8/16/2016

•	Result	Unit	LOD	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code
General										
General										
Solids Percent	93.1	%			1	5021		8/22/2016	NJC	1
Inorganic										
Metals										
Arsenic, Total	2.95	mg/kg	0.65	2.17	1	6010B		8/23/2016	ESC	1
Barium, Total	38.7	mg/kg	0.17	0.567	1	6010B		8/23/2016	ESC	1
Cadmium, Total	0.282	mg/kg	0.07	0.233	1	6010B		8/23/2016	ESC	1
Chromium, Total	14.8	mg/kg	0.14	0.467	1	6010B		8/23/2016	ESC	1
Lead, Total	12.5	mg/kg	0.19	0.633	1	6010B		8/23/2016	ESC	1
Mercury, Total	0.0118	mg/kg	0.0028	0.0093	1	7471		8/20/2016	ESC	1
Selenium, Total	< 0.74	mg/kg	0.74	2.47	1	6010B		8/23/2016	ESC	1
Silver, Total	< 0.28	mg/kg	0.28	0.933	1	6010B		8/23/2016	ESC	1
Organic										
VOC's										
Benzene	< 0.016	mg/kg	0.016	0.049	1	8260B		8/23/2016	CJR	1
Bromobenzene	< 0.039	mg/kg	0.039	0.12	1	8260B		8/23/2016	CJR	1
Bromodichloromethane	< 0.015	mg/kg	0.015	0.048	1	8260B		8/23/2016	CJR	1
Bromoform	< 0.023	mg/kg	0.023	0.073	1	8260B		8/23/2016	CJR	1
tert-Butylbenzene	< 0.035	mg/kg	0.035	0.11	1	8260B		8/23/2016	CJR	1
sec-Butylbenzene	< 0.036	mg/kg	0.036	0.11	1	8260B		8/23/2016	CJR	1
n-Butylbenzene	< 0.086	mg/kg	0.086	0.27	1	8260B		8/23/2016	CJR	1
Carbon Tetrachloride	< 0.021	mg/kg	0.021	0.067	1	8260B		8/23/2016	CJR	1
Chlorobenzene	< 0.039	mg/kg	0.039	0.12	1	8260B		8/23/2016	CJR	1
Chloroethane	< 0.045	mg/kg	0.045	0.14	1	8260B		8/23/2016	CJR	1
Chloroform	< 0.026	mg/kg	0.026	0.081	1	8260B		8/23/2016	CJR	1
Chloromethane	< 0.25	mg/kg	0.25	0.78	1	8260B		8/23/2016	CJR	1
2-Chlorotoluene	< 0.029	mg/kg	0.029	0.093	1	8260B		8/23/2016	CJR	1
4-Chlorotoluene	< 0.032	mg/kg	0.032	0.1	1	8260B		8/23/2016	CJR	1
1,2-Dibromo-3-chloropropane	< 0.078	mg/kg	0.078	0.25	1	8260B		8/23/2016	CJR	1
Dibromochloromethane	< 0.031	mg/kg	0.031	0.098	1	8260B		8/23/2016	CJR	1
1,4-Dichlorobenzene	< 0.03	mg/kg	0.03	0.096	1	8260B		8/23/2016	CJR	1
1,3-Dichlorobenzene	< 0.03	mg/kg	0.03	0.097	1	8260B		8/23/2016	CJR	1

Invoice # E31552

Project Name Project # **GB MAIN STREET**

5031552A Lab Code Sample ID SS-1 TOP SOIL

Sample Matrix Soil Sample Date 8/16/2016

•	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
1,2-Dicblorobenzene	< 0.039	mg/kg	0.039	0.12	1	8260B		8/23/2016	CJR	1
Dichlorodifluoromethane	< 0.043	mg/kg	0.043	0.14	1	8260B		8/23/2016	CJR	1
1,2-Dichloroethane	< 0.03	mg/kg	0.03	0.096	1	8260B		8/23/2016	CJR	1
1,1-Dichloroethane	< 0.025	mg/kg	0.025	0.079	1	8260B		8/23/2016	CJR	1
1,1-Dichloroethene	< 0.029	mg/kg	0.029	0.093	1	8260B		8/23/2016	CJR	1
cis-1,2-Dichloroethene	< 0.021	mg/kg	0.021	0.068	1	8260B		8/23/2016	CJR	1
trans-1,2-Dichloroethene	< 0.024	mg/kg	0.024	0.076	1	8260B		8/23/2016	CJR	1
1,2-Dichloropropane	< 0.025	mg/kg	0.025	0.078	1	8260B		8/23/2016	CJR	1
2,2-Dichloropropane	< 0.1	mg/kg	0.1	0.33	1	8260B		8/23/2016	CJR	1
1,3-Dichloropropane	< 0.031	mg/kg	0.031	0.097	1	8260B		8/23/2016	CJR	1
Di-isopropyl ether	< 0.012	mg/kg	0.012	0.04	1	8260B		8/23/2016	CJR	1
EDB (1,2-Dibromoethane)	< 0.035	mg/kg	0.035	0.11	1	8260B		8/23/2016	CJR	1
Ethylbenzene	< 0.027	mg/kg	0.027	0.086	1	8260B		8/23/2016	CJR	1
Hexachlorobutadiene	< 0.11	mg/kg	0.11	0.36	1	8260B		8/23/2016	CJR	1
Isopropylbenzene	< 0.037	mg/kg	0.037	0.12	1	8260B		8/23/2016	CJR	1
p-Isopropyltoluene	< 0.056	mg/kg	0.056	0.18	1	8260B		8/23/2016	CJR	1
Methylene chloride	< 0.22	mg/kg	0.22	0.7	1	8260B		8/23/2016	CJR	1
Methyl tert-butyl ether (MTBE)	< 0.025	mg/kg	0.025	0.078	1	8260B		8/23/2016	CJR	1
Naphthalene	< 0.087	mg/kg	0.087	0.28	1	8260B		8/23/2016	CJR	1
n-Propylbenzene	< 0.035	mg/kg	0.035	0.11	1	8260B		8/23/2016	CJR	1
1,1,2,2-Tetrachloroethane	< 0.013	mg/kg	0.013	0.04	1	8260B		8/23/2016	CJR	1
1,1,1,2-Tetrachloroethane	< 0.029	mg/kg	0.029	0.093	1	8260B		8/23/2016	CJR	1
Tetrachloroethene	< 0.054	mg/kg	0.054	0.17	1	8260B		8/23/2016	CJR	1
Toluene	< 0.031	mg/kg	0.031	0.099	1	8260B		8/23/2016	CJR	1
1,2,4-Trichlorobenzene	< 0.085	mg/kg	0.085	0.27	1	8260B		8/23/2016	CJR	1
1,2,3-Trichlorobenzene	< 0.12	mg/kg	0.12	0.38	1	8260B		8/23/2016	CJR	1
1,1,1-Trichloroethane	< 0.04	mg/kg	0.04	0.13	1	8260B		8/23/2016	CJR	1
1,1,2-Trichloroethane	< 0.033	mg/kg	0.033	0.11	1	8260B		8/23/2016	CJR	1
Trichloroethene (TCE)	< 0.042	mg/kg	0.042	0.13	1	8260B		8/23/2016	CJR	1
Trichlorofluoromethane	< 0.06	mg/kg	0.06	0.19	1	8260B		8/23/2016	CJR	1
1,2,4-Trimethylbenzene	< 0.078	mg/kg	0.078	0.25	1	8260B		8/23/2016	CJR	1
1,3,5-Trimethylbenzene	< 0.089	mg/kg	0.089	0.28	1	8260B		8/23/2016	CJR	1
Vinyl Chloride	< 0.01	mg/kg	0.01	0.031	1	8260B		8/23/2016	CJR	1
m&p-Xylene	< 0.07	mg/kg	0.07	0.22	1	8260B		8/23/2016	CJR	1
o-Xylene	< 0.029	mg/kg	0.029	0.092	1	8260B		8/23/2016	CJR	1
SUR - 4-Bromofluorobenzene	117	Rec %			1	8260B		8/23/2016	CJR	1
SUR - Dibromofluoromethane	99	Rec %			1	8260B		8/23/2016	CJR	1
SUR - Toluene-d8	102	Rec %			1	8260B		8/23/2016	CJR	1
SUR - 1,2-Dichloroethane-d4	92	Rec %			1	8260B		8/23/2016	CJR	1

Project Name GB MAIN STREET

Proiect #

Lab Code 5031552B **Sample ID** SS-2 TOP SOIL

Sample Matrix Soil **Sample Date** 8/16/2016

Sample Date 8/	16/2016										
		Result	Unit	LOD	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Cod
General											
General											
Solids Percent		07.0	0/				5001		0.100.100.1		
		87.9	%			1	5021		8/22/2016	NJC	1
Inorganic											
Metals											
Arsenic, Total		3.00	mg/kg	0.65	2.17	1	6010B		8/23/2016	ESC	1
Barium, Total		55.2	mg/kg	0.17	0.567	1	6010B		8/23/2016	ESC	1
Cadmium, Total		0.247 "J"	mg/kg	0.07	0.233	1	6010B		8/23/2016	ESC	1
Chromium, Total		18.7	mg/kg	0.14	0.467	1	6010B		8/23/2016	ESC	1
Lead, Total		10.5	mg/kg	0.19	0.633	1	6010B		8/23/2016	ESC	1
Mercury, Total		0.0165	mg/kg	0.0028	0.0093	1	7471		8/20/2016	ESC	1
Selenium, Total		< 0.74	mg/kg	0.74	2.47	1	6010B		8/23/2016	ESC	1
Silver, Total		< 0.28	mg/kg	0.28	0.933	1	6010B		8/23/2016	ESC	1
Organic											
VOC's											
			_								
Benzene		< 0.016	mg/kg	0.016	0.049	1	8260B		8/23/2016	CJR	1
Bromobenzene		< 0.039	mg/kg	0.039	0.12	1	8260B		8/23/2016	CJR	1
Bromodichloromethane	;	< 0.015	mg/kg	0.015	0.048	1	8260B		8/23/2016	CJR	1
Bromoform		< 0.023	mg/kg	0.023	0.073	1	8260B		8/23/2016	CJR	1
tert-Butylbenzene		< 0.035	mg/kg	0.035	0.11	1	8260B		8/23/2016	CJR	1
sec-Butylbenzene		< 0.036	mg/kg	0.036	0.11	1	8260B		8/23/2016	CJR	1
n-Butylbenzene		< 0.086	mg/kg	0.086	0.27	1	8260B		8/23/2016	CJR	1
Carbon Tetrachloride		< 0.021	mg/kg	0.021	0.067	1	8260B		8/23/2016	CJR	1
Chlorobenzene		< 0.039	mg/kg	0.039	0.12	1	8260B		8/23/2016	CJR	1
Chloroethane		< 0.045	mg/kg	0.045	0.14	1	8260B		8/23/2016	CJR	1
Chloroform		< 0.026	mg/kg	0.026	0.081	1	8260B		8/23/2016	CJR	1
Chloromethane 2-Chlorotoluene		< 0.25	mg/kg	0.25	0.78	1	8260B		8/23/2016	CJR	1
4-Chlorotoluene		< 0.029	mg/kg	0.029	0.093	1	8260B		8/23/2016	CJR	1
1,2-Dibromo-3-chlorop	505050	< 0.032	mg/kg	0.032	0.1	1	8260B		8/23/2016	CJR	1
Dibromochloromethane	-	< 0.078	mg/kg	0.078	0.25	1	8260B		8/23/2016	CJR	1
1,4-Dichlorobenzene	•	< 0.031	mg/kg	0.031	0.098	1	8260B		8/23/2016	CJR	1
1,3-Dichlorobenzene		< 0.03 < 0.03	mg/kg	0.03	0.096	1	8260B		8/23/2016	CJR	1
1,2-Dichlorobenzene		< 0.03	mg/kg	0.03 0.039	0.097 0.12	1	8260B		8/23/2016	CJR	1
Dichlorodifluoromethan	ne.	< 0.039	mg/kg		0.12	1	8260B		8/23/2016	CJR	1
1,2-Dichloroethane	iic	< 0.03	mg/kg	0.043	0.14	1	8260B 8260B		8/23/2016	CJR	1
1,1-Dichloroethane		< 0.03	mg/kg mg/kg	0.03	0.079	1	8260B 8260B		8/23/2016	CJR	1
1,1-Dichloroethene		< 0.023		0.023	0.079	1	8260B		8/23/2016 8/23/2016	CJR	1
cis-1,2-Dichloroethene		< 0.023	mg/kg mg/kg	0.029	0.068	1	8260B			CJR	
trans-1,2-Dichloroether	ne.	< 0.021	mg/kg	0.021	0.076	1	8260B		8/23/2016 8/23/2016	CJR CJR	1
1,2-Dichloropropane	10	< 0.025	mg/kg	0.024	0.078	1	8260B		8/23/2016	CJR	1
2,2-Dichloropropane		< 0.1	mg/kg	0.023	0.33	1	8260B		8/23/2016	CJR	1
1,3-Dichloropropane		< 0.031	mg/kg	0.031	0.097	1	8260B		8/23/2016	CJR	1
Di-isopropyl ether		< 0.012	mg/kg	0.012	0.04	1	8260B		8/23/2016	CJR	1
EDB (1,2-Dibromoetha	ne)	< 0.035	mg/kg	0.012	0.11	1	8260B		8/23/2016	CJR	1
Ethylbenzene	,	< 0.027	mg/kg	0.033	0.086	1	8260B		8/23/2016	CJR	1
Hexachlorobutadiene		< 0.11	mg/kg	0.11	0.36	1	8260B		8/23/2016	CJR	1
Isopropylbenzene		< 0.037	mg/kg	0.037	0.12	1	8260B		8/23/2016	CJR	1
p-Isopropyltoluene		< 0.056	mg/kg	0.056	0.12	1	8260B		8/23/2016	CJR	1
Methylene chloride		< 0.22	mg/kg	0.22	0.7	1	8260B		8/23/2016	CJR	1
Methyl tert-butyl ether	(MTBE)	< 0.025	mg/kg	0.025	0.078	1	8260B		8/23/2016	CJR	1
Naphthalene	,	< 0.087	mg/kg	0.023	0.28	1	8260B		8/23/2016	CJR	1
n-Propylbenzene		< 0.035	mg/kg	0.035	0.11	1	8260B		8/23/2016	CJR	1
1,1,2,2-Tetrachloroetha	ne	< 0.013	mg/kg	0.013	0.04	1	8260B		8/23/2016	CJR	1
1,1,1,2-Tetrachloroetha		< 0.029	mg/kg	0.013	0.093	1	8260B		8/23/2016	CJR	1
Tetrachloroethene		< 0.054	mg/kg	0.054	0.17	1	8260B		8/23/2016	CJR	1
Toluene		< 0.031	mg/kg	0.031	0.099	1	8260B		8/23/2016	CJR	1
		- 0.001		0.051	0.077	,	32001		0/23/2010	CJI	1

Project Name Project # **GB MAIN STREET** Invoice # E31552

5031552B Lab Code Sample ID SS-2 TOP SOIL

Sample Matrix Soil Sample Date 8/16/2016

	Result	Unit	LOD	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code	
1,2,4-Trichlorobenzene	< 0.085	mg/kg	0.085	0.27	1	8260B		8/23/2016	CJR	1	
1,2,3-Trichlorobenzene	< 0.12	mg/kg	0.12	0.38	1	8260B		8/23/2016	CJR	1	
1,1,1-Trichloroethane	< 0.04	mg/kg	0.04	0.13	1	8260B		8/23/2016	CJR	1	
1,1,2-Trichloroethane	< 0.033	mg/kg	0.033	0.11	1	8260B		8/23/2016	СJR	1	
Trichloroethene (TCE)	< 0.042	mg/kg	0.042	0.13	1	8260B		8/23/2016	CJR	1	
Trichlorofluoromethane	< 0.06	mg/kg	0.06	0.19	1	8260B		8/23/2016	CJR	1	
1,2,4-Trimethylbenzene	< 0.078	mg/kg	0.078	0.25	1	8260B		8/23/2016	CJR	1	
1,3,5-Trimethylbenzene	< 0.089	mg/kg	0.089	0.28	1	8260B		8/23/2016	CJR	1	
Vinyl Chloride	< 0.01	mg/kg	0.01	0.031	1	8260B		8/23/2016	CJR	1	
m&p-Xylene	< 0.07	mg/kg	0.07	0.22	1	8260B		8/23/2016	CJR	1	
o-Xylene	< 0.029	mg/kg	0.029	0.092	1	8260B		8/23/2016	CJR	1	
SUR - 1,2-Dichloroethane-d4	95	Rec %			1	8260B		8/23/2016	CJR	1	
SUR - 4-Bromofluorobenzene	102	Rec %			1	8260B		8/23/2016	CJR	1	
SUR - Dibromofluoromethane	105	Rec %			1	8260B		8/23/2016	CJR	1	
SUR - Toluene-d8	102	Rec %			1	8260B		8/23/2016	CJR	1	

Project Name GB MAIN STREET **Project #**

5031552C Lab Code SS-3 TOP SOIL Sample ID

Sample Matrix Soil **Sample Date** 8/16/2016

Sample Date	8/16/2016										
		Result	Unit	LOD	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		94.4	%			1	5021		8/22/2016	NJC	1
Inorganic											
Metals											
Arsenic, Total		3.43		0.65	2.17		C010D		0/02/0016	EGG	
Barium, Total		42.1	mg/kg	0.65 0.17	2.17 0.567	1	6010B		8/23/2016	ESC	1
Cadmium, Total		0.262	mg/kg mg/kg	0.17	0.233	1	6010B 6010B		8/23/2016 8/23/2016	ESC ESC	1
Chromium, Total		13.9	mg/kg	0.07	0.467	1	6010B		8/23/2016	ESC	1 1
Lead, Total		7.38	mg/kg	0.14	0.633	1	6010B		8/23/2016	ESC	i
Mercury, Total		0.0138	mg/kg	0.0028	0.0093	î	7471		8/20/2016	ESC	i
Selenium, Total		< 0.74	mg/kg	0.74	2.47	1	6010B		8/23/2016	ESC	i
Silver, Total		< 0.28	mg/kg	0.28	0.933	1	6010B		8/23/2016	ESC	1
Organic			0 0								-7
VOC's											
VOCS											
Benzene		< 0.016	mg/kg	0.016	0.049	1	8260B		8/23/2016	CJR	1
Bromobenzene		< 0.039	mg/kg	0.039	0.12	1	8260B		8/23/2016	CJR	1
Bromodichlorometh	nane	< 0.015	mg/kg	0.015	0.048	1	8260B		8/23/2016	CJR	1
Bromoform		< 0.023	mg/kg	0.023	0.073	1	8260B		8/23/2016	CJR	1
tert-Butylbenzene		< 0.035	mg/kg	0.035	0.11	1	8260B		8/23/2016	CJR	1
sec-Butylbenzene		< 0.036	mg/kg	0.036	0.11	1	8260B		8/23/2016	CJR	1
n-Butylbenzene	1.	< 0.086	mg/kg	0.086	0.27	1	8260B		8/23/2016	CJR	1
Carbon Tetrachloric	ie	< 0.021	mg/kg	0.021	0.067	1	8260B		8/23/2016	CJR	1
Chlorobenzene Chloroethane		< 0.039	mg/kg	0.039	0.12	1	8260B		8/23/2016	CJR	1
Chloroform		< 0.045 < 0.026	mg/kg	0.045	0.14	1	8260B		8/23/2016	CJR	1
Chloromethane		< 0.026	mg/kg	0.026	0.081 0.78	1 1	8260B		8/23/2016	CJR	1
2-Chlorotoluene		< 0.029	mg/kg mg/kg	0.25 0.029	0.78	1	8260B 8260B		8/23/2016	CJR CJR	1
4-Chlorotoluene		< 0.029	mg/kg	0.029	0.093	1	8260B		8/23/2016 8/23/2016	CJR CJR	1
1,2-Dibromo-3-chlo	огоргорапе	< 0.032	mg/kg	0.032	0.25	1	8260B		8/23/2016	CJR	1
Dibromochlorometh		< 0.031	mg/kg	0.031	0.098	1	8260B		8/23/2016	CJR	1
1,4-Dichlorobenzen		< 0.03	mg/kg	0.03	0.096	1	8260B		8/23/2016	CJR	í
1,3-Dichlorobenzen	ie	< 0.03	mg/kg	0.03	0.097	1	8260B		8/23/2016	CJR	î
1,2-Dichlorobenzen	ie	< 0.039	mg/kg	0.039	0.12	1	8260B		8/23/2016	CJR	1
Dichlorodifluorome	ethane	< 0.043	mg/kg	0.043	0.14	1	8260B		8/23/2016	CJR	1
1,2-Dichloroethane		< 0.03	mg/kg	0.03	0.096	1	8260B		8/23/2016	CJR	1
1,1-Dichloroethane		< 0.025	mg/kg	0.025	0.079	1	8260B		8/23/2016	CJR	1
1,1-Dichloroethene		< 0.029	mg/kg	0.029	0.093	1	8260B		8/23/2016	CJR	1
cis-1,2-Dichloroeth		< 0.021	mg/kg	0.021	0.068	1	8260B		8/23/2016	CJR	1
trans-1,2-Dichloroe		< 0.024	mg/kg	0.024	0.076	1	8260B		8/23/2016	CJR	1
1,2-Dichloropropan		< 0.025	mg/kg	0.025	0.078	1	8260B		8/23/2016	CJR	1
2,2-Dichloropropan		< 0.1	mg/kg	0.1	0.33	1	8260B		8/23/2016	CJR	1
1,3-Dichloropropan	ie	< 0.031	mg/kg	0.031	0.097	1	8260B		8/23/2016	CJR	1
Di-isopropyl ether		< 0.012	mg/kg	0.012	0.04	1	8260B		8/23/2016	CJR	1
EDB (1,2-Dibromo	ethane)	< 0.035	mg/kg	0.035	0.11	1	8260B		8/23/2016	CJR	1
Ethylbenzene Havaehlarahutadian		< 0.027	mg/kg	0.027	0.086	1	8260B		8/23/2016	CJR	1
Hexachlorobutadien Isopropylbenzene	ne	< 0.11 < 0.037	mg/kg	0.11	0.36	1	8260B		8/23/2016	CJR	1
p-Isopropyltoluene		< 0.056	mg/kg	0.037	0.12	1	8260B		8/23/2016	CJR	1
Methylene chloride		< 0.22	mg/kg	0.056	0.18 0.7	1	8260B 8260B		8/23/2016	CJR	1
Methyl tert-butyl et		< 0.025	mg/kg mg/kg	0.22 0.025	0.078	1 1	8260B		8/23/2016	CJR	1
Naphthalene	ner (WIBL)	< 0.023	mg/kg mg/kg	0.023	0.078	1	8260B		8/23/2016	CJR	1
n-Propylbenzene		< 0.035	mg/kg mg/kg	0.087	0.28	1	8260B 8260B		8/23/2016 8/23/2016	CJR CJR	1
1,1,2,2-Tetrachloro	ethane	< 0.013	mg/kg	0.033	0.04	1	8260B		8/23/2016	CJR CJR	1
1,1,1,2-Tetrachloro		< 0.029	mg/kg	0.013	0.093	1	8260B		8/23/2016	CJR CJR	1
Tetrachloroethene	-	< 0.054	mg/kg	0.023	0.17	1	8260B		8/23/2016	CJR	i
Toluene		< 0.031	mg/kg	0.031	0.099	1	8260B		8/23/2016	CJR	î
		0.001	-66	3.051		•			0.20.2010	Cont	

Project Name GB MAIN STREET Invoice # E31552

Proiect #

Lab Code 5031552C **Sample ID** SS-3 TOP SOIL

Sample Matrix Soil Sample Date 8/16/2016

	Result	Unit	LOD 1	LOQ I)il	Method	Ext Date	Run Date	Analyst	Code
1,2,4-Trichlorobenzene	< 0.085	mg/kg	0.085	0.27	1	8260B		8/23/2016	CJR	1
1,2,3-Trichlorobenzene	< 0.12	mg/kg	0.12	0.38	1	8260B		8/23/2016	CJR	1
1,1,1-Trichloroethane	< 0.04	mg/kg	0.04	0.13	1	8260B		8/23/2016	CJR	1
1,1,2-Trichloroethane	< 0.033	mg/kg	0.033	0.11	1	8260B		8/23/2016	CJR	1
Trichloroethene (TCE)	< 0.042	mg/kg	0.042	0.13	1	8260B		8/23/2016	CJR	1
Trichlorofluoromethane	< 0.06	mg/kg	0.06	0.19	1	8260B		8/23/2016	CJR	1
1,2,4-Trimethylbenzene	< 0.078	mg/kg	0.078	0.25	1	8260B		8/23/2016	CJR	1
1,3,5-Trimethylbenzene	< 0.089	mg/kg	0.089	0.28	1	8260B		8/23/2016	CJR	1
Vinyl Chloride	< 0.01	mg/kg	0.01	0.031	1	8260B		8/23/2016	CJR	1
m&p-Xylene	< 0.07	mg/kg	0.07	0.22	1	8260B		8/23/2016	CJR	1
o-Xylene	< 0.029	mg/kg	0.029	0.092	1	8260B		8/23/2016	CJR	1
SUR - Toluene-d8	101	Rec %			1	8260B		8/23/2016	CJR	1
SUR - 1,2-Dichloroethane-d4	88	Rec %			1	8260B		8/23/2016	CJR	1
SUR - 4-Bromofluorobenzene	109	Rec %			1	8260B		8/23/2016	CJR	1
SUR - Dibromofluoromethane	98	Rec %			1	8260B		8/23/2016	CJR	1

"J" Flag: Analyte detected between LOD and LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

Code Comment

Laboratory QC within limits.

ESC denotes sub contract lab - Certification #998093910

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Michaelflul

Authorized Signature

ANALYTICAL REPORT

September 15, 2016

Synergy Environmental Lab, LLC

Sample Delivery Group:

L857985

Samples Received:

09/07/2016

Project Number:

GENERAL ENGINEERING

Description:

Air Sample

Site:

GB REAL ESTATE

Report To:

Mike Ricker

1990 Prospect Court

Appleton, WI 54914

Entire Report Reviewed By: Jahn V Houlins

John Hawkins

Cp: Cover Page	1
² Tc: Table of Contents	2
³ Ss: Sample Summary	3
³ Cn: Case Narrative	4
Sr: Sample Results	5
VP-1 L857985-01	5
VP-2 L857985-02	7
⁵ Qc: Quality Control Summary	9
Volatile Organic Compounds (MS) by Method TO-15	9
GI: Glossary of Terms	19
³ Al: Accreditations & Locations	20
Sc: Chain of Custody	21

SAMPLE SUMMARY

VP-1 L857985-01 Air			Collected by Lynn Bradley	Collected date/time 09/02/16 09:30	09/07/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG906878	1	09/12/16 22:39	09/12/16 22:39	DWR
Volatile Organic Compounds (MS) by Method TO-15	WG907498	40	09/14/16 00:44	09/14/16 00:44	DWR
Volatile Organic Compounds (MS) by Method TO-15	WG907728	200	09/14/16 17:09	09/14/16 17:09	DWR
			Collected by	Collected date/time	Received date/time
VP-2 L857985-02 Air			Lynn Bradley	09/02/16 09:35	09/07/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG907386	100	09/13/16 17:55	09/13/16 17:55	DWR

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE:

PAGE:

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the

John Hawkins

Technical Service Representative

Collected date/time: 09/02/16 09:30

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	7.60	18.1	1650	3910		40	WG907498
Allyl chloride	107-05-1	76.53	0.182	0.570	ND	ND		1	WG906878
Benzene	71-43-2	78.10	0.153	0.489	2,68	8.58		_1	WG906878
Benzyl Chloride	100-44-7	127	0.199	1.03	ND	ND		1	WG906878
Bromodichloromethane	75-27-4	164	0.145	0.973	ND	ND		1	WG906878
Bromoform	75-25-2	253	0.262	2.71	ND	ND		1	WG906878
Bromomethane	74-83-9	94.90	0.203	0.788	ND	ND		1	WG906878
1,3-Butadiene	106-99-0	54.10	0.188	0.416	ND	ND		1	WG906878
Carbon disulfide	75-15-0	76,10	0.181	0.563	3,85	12.0		1	WG906878
Carbon tetrachloride	56-23-5	154	0.195	1.23	ND	ND		1	WG906878
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG906878
Chloroethane	75-00-3	64.50	0.163	0.430	ND	ND		1	WG906878
Chloroform	67-66-3	119	0.191	0.930	ND	ND		1	WG906878
Chloromethane	74-87-3	50.50	0.181	0.374	ND	ND		1	WG906878
2-Chlorotoluene	95-49-8	126	0,202	1.04	ND	ND		1	WG906878
Cyclohexane	110-82-7	84.20	0,178	0.613	0.958	3.30		1	WG906878
Dibromochloromethane	124-48-1	208	0.165	1.40	ND	ND		1	WG906878
1,2-Dibromoethane	106-93-4	188	0.0617	0.474	ND	ND		1	WG906878
1,2-Dichlorobenzene	95-50-1	147	0.201	1,21	ND	ND		ī	WG906878
1,3-Dichlorobenzene	541-73-1	147	0,199	1.20	ND	ND		1	WG906878
1,4-Dichlorobenzene	106-46-7	147	0.186	1.12	ND	ND		1	WG906878
1,2-Dichloroethane	107-06-2	99	0.205	0.830	ND	ND		1	WG906878
1,1-Dichloroethane	75-34-3	98	0.171	0.685	ND	ND		1	WG906878
1,1-Dichloroethene	75-35-4	96.90	0.163	0.646	ND	ND		1	WG906878
cis-1,2-Dichloroethene	156-59-2	96.90	0.130	0.515	ND	ND	<u>J4</u>	1	WG906878
trans-1,2-Dichloroethene	156-60-5	96,90	0,155	0.614	ND	ND		1	WG906878
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG906878
cis-1,3-Dichloropropene	10061-01-5	111	0.196	0.890	ND	ND		1	WG906878
trans-1,3-Dichloropropene	10061-02-6	111	0.145	0,658	ND	ND		1	WG906878
1,4-Dioxane	123-91-1	88.10	0.185	0.667	ND	ND		1	WG906878
Ethanol	64-17-5	46.10	11.1	20.9	819	1540		40	WG907498
Ethylbenzene	100-41-4	106	6.76	29.3	1020	4420		40	WG907498
4-Ethyltoluene	622-96-8	120	0.222	1.09	0.886	4.35		1	WG906878
Trichlorofluoromethane	75-69-4	137.40	0.224	1.26	0.231	1.30		1	WG906878
Dichlorodifluoromethane	75-71-8	120,92	0,200	0,989	ND	ND		1	WG906878
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.229	1.76	ND	ND		1	WG906878
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.153	1.07	ND	ND		1	WG906878
Heptane	142-82-5	100	0.209	0.855	1.79	7.34		1	WG906878
Hexachloro-1,3-butadiene	87-68-3	261	0.219	2.34	ND	ND		1	WG906878
n-Hexane	110-54-3	86.20	0.152	0.536	2.77	9.78		1	WG906878
Isopropylbenzene	98-82-8	120.20	0.188	0.924	7.53	37.0		1	WG906878
Methylene Chloride	75-09-2	84.90	0.155	0.538	3.66	12,7		1	WG906878
Methyl Butyl Ketone	591-78-6	100	0.227	0.928	ND	ND		1	WG906878
2-Butanone (MEK)	78-93-3	72.10	6.56	19.3	1070	3160		40	WG900878 WG907498
4-Methyl-2-pentanone (MIBK)	108-10-1	100,10	0.217	0.888	ND	ND		1	WG906878
Methyl methacrylate	80-62-6	100,10	0.258	1.06	ND	ND		1	WG906878
MTBE	1634-04-4	88.10	0.258	0.605	ND	ND			WG906878 WG906878
Naphthalene	91-20-3	128	0.168	2,69	0.835	4.37		1	WG906878
	67-63-0	60.10	0.513	0.723					
2-Propanol					25.8 ND	63.5		1	WG906878
Propene	115-07-1	42.10	0.311	0.536	ND 610	ND 2620		1	WG906878
Styrene 11.2.2 Tetrachloroothano	100-42-5	104	6 20	26.4	618 ND	2630 ND		40	WG907498
1,1,2,2-Tetrachloroethane	79-34-5	168	0.192	1.32	ND	ND 1.47		1.	WG906878
Tetrachloroethylene Tetrachudaefuran	127-18-4	166	0.166	1.13	0,217	1.47		1	WG906878
Tetrahydrofuran	109-99-9	72.10	33.8	99.7	297	876		200	WG907728
Toluene	108-88-3	92.10	0.166	0.625	6.76	25.5		1	WG906878
1,2,4-Trichlorobenzene	120-82-1	181	0.493	3.65	ND	ND		1	WG906878

VP-1

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 09/02/16 09:30

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
Analyte			ppbv	ug/m3	ppbv	ug/m3	-			
1,1,1-Trichloroethane	71-55-6	133	0.222	1.21	ND	ND		1	WG906878	
1,1,2-Trichloroethane	79-00-5	133	0.0957	0.521	ND	ND		1	WG906878	
Trichloroethylene	79-01-6	131	0.182	0.975	ND	ND		1	WG906878	
1,2,4-Trimethylbenzene	95-63-6	120	0.161	0.790	3.42	16.8		1	WG906878	
1,3,5-Trimethylbenzene	108-67-8	120	0.210	1.03	0.729	3.58		1	WG906878	
2,2,4-Trimethylpentane	540-84-1	114.22	0.152	0.710	0.685	3.20		1	WG906878	
Vinyl chloride	75-01-4	62.50	0,152	0.389	ND	ND		1	WG906878	
Vinyl Bromide	593-60-2	106.95	0.242	1.06	ND	ND		1	WG906878	
Vinyl acetate	108-05-4	86.10	0.213	0.750	ND	ND		1	WG906878	
m&p-Xylene	1330-20-7	106	0.315	1.37	7.76	33.6		1	WG906878	
o-Xylene	95-47-6	106	0.211	0.915	4.19	18.2		1	WG906878	
TPH (GC/MS) Low Fraction	8006-61-9	101	23.0	95.0	718	2970		1	WG906878	
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		103				WG906878	
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		99.6				WG907728	
(S) 1.4-Bromofluorobenzene	460-00-4	175	60 0-140		104				WG907498	

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 09/02/16 09:35

857985

Analyte	CAS#	Mol. Wt.	RDL1 ppbv	RDL2 ug/m3	Result ppbv	Result ug/m3	Qualifier	Dilution	<u>Batch</u>
Acetone	67-64-1	58.10	19.0	45.1	1550	3690		100	WG907386
Allyl chloride	107-05-1	76,53	18.2	57.0	ND	ND		100	WG907386
Benzene	71-43-2	78.10	15.3	48,9	ND	ND		100	WG907386
Benzyl Chloride	100-44-7	127	19.9	103	ND	ND		100	WG907386
Bromodichloromethane	75-27-4	164	14.5	97.3	ND	ND		100	WG907386
Bromoform	75-25-2	253	26.2	271	ND	ND		100	WG907386
Bromomethane	74-83-9	94.90	20.3	78.8	ND	ND		100	WG907386
1,3-Butadiene	106-99-0	54.10	18.8	41.6	ND	ND		100	WG907386
Carbon disulfide	75-15-0	76.10	18.1	56.3	44.2	138		100	WG907386
Carbon tetrachloride	56-23-5	154	19.5	123	ND	ND		100	WG907386
Chlorobenzene	108-90-7	113	20.0	92.4	ND	ND		100	WG907386
Chloroethane	75-00-3	64,50	16,3	43.0	ND	ND		100	WG907386
Chloroform	67-66-3	119	19.1	93.0	ND	ND		100	WG907386
Chloromethane	74-87-3	50,50	18.1	37.4	ND	ND		100	WG907386
2-Chlorotoluene	95-49-8	126	20.2	104	ND	ND		100	WG907386
Cyclohexane	110-82-7	84,20	17.8	61.3	ND	ND		100	WG907386
Dibromochloromethane	124-48-1	208	16.5	140	ND	ND		100	WG907386
1,2-Dibromoethane	106-93-4	188	6.17	47.4	ND	ND		100	WG907386
1,2-Dichlorobenzene	95-50-1	147	20.1	121	ND	ND		100	WG907386
1,3-Dichlorobenzene	541-73-1	147	19.9	120	ND	ND		100	WG907386
1,4-Dichlorobenzene	106-46-7	147	18,6	112	ND	ND		100	WG907386
1,2-Dichloroethane	107-06-2	99	20.5	83,0	ND	ND		100	WG907386
1,1-Dichloroethane	75-34-3	98	17.1	68.5	ND	ND		100	WG907386
1,1-Dichloroethene	75-35-4	96.90	16.3	64.6	ND	ND		100	WG907386
cis-1,2-Dichloroethene	156-59-2	96,90	13.0	51.5	ND	ND		100	WG907386
trans-1,2-Dichloroethene	156-60-5	96.90	15.5	61.4	ND	ND		100	WG907386
1,2-Dichloropropane	78-87-5	113	20.0	92.4	ND	ND		100	WG907386
cis-1,3-Dichloropropene	10061-01-5	111	19.6	89.0	ND	ND		100	WG907386
trans-1,3-Dichloropropene	10061-01-3	111	14.5	65.8	ND	ND		100	WG907386
1,4-Dioxane	123-91-1	88.10	18.5	66.7	ND	ND		100	WG907386
Ethanol	64-17-5	46.10	27.7	52.2	124	234		100	WG907386
Ethylbenzene	100-41-4	106	16.9	73.3	72.3	313		100	WG907386
4-Ethyltoluene	622-96-8	120	22.2	109	ND	ND		100	WG907386
Trichlorofluoromethane	75-69-4	137.40	22.4	126	ND	ND		100	WG907386
Dichlorodifluoromethane	75-71-8	120.92	20.0	98,9				100	WG907386
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40		176	ND ND	ND ND		100	WG907386
			22.9						
1,2-Dichlorotetrafluoroethane	76-14-2	171	15.3	107	ND	ND		100	WG907386
Heptane	142-82-5	100	20.9	85.5	ND	ND		100	WG907386
Hexachloro-1,3-butadiene	87-68-3	261	21.9	234	ND	ND 406		100	WG907386
n-Hexane	110-54-3	86.20	15.2	53.6	115	406		100	WG907386
Isopropylbenzene	98-82-8	120.20	18,8	92.4	ND	ND		100	WG907386
Methylene Chloride	75-09-2	84.90	15.5	53.8	ND	ND		100	WG907386
Methyl Butyl Ketone	591-78-6	100	22.7	92.8	ND	ND		100	WG907386
2-Butanone (MEK)	78-93-3	72.10	16.4	48.4	1780	5250		100	WG907386
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	21.7	88.8	ND	ND		100	WG907386
Methyl methacrylate	80-62-6	100.12	25.8	106	ND FA.F	ND 105		100	WG907386
MTBE	1634-04-4	88.10	16.8	60.5	54.5	196		100	WG907386
Naphthalene	91-20-3	128	51.3	269	ND	ND		100	WG907386
2-Propanol	67-63-0	60.10	29.4	72.3	ND	ND		100	WG907386
Propene	115-07-1	42.10	31.1	53.6	ND	ND		100	WG907386
Styrene	100-42-5	104	15.5	65,9	41.6	177		100	WG907386
1,1,2,2-Tetrachloroethane	79-34-5	168	19.2	132	ND	ND		100	WG907386
Tetrachloroethylene	127-18-4	166	16,6	113	ND	ND		100	WG907386
Tetrahydrofuran	109-99-9	72.10	16.9	49.8	1320	3890		100	WG907386
Toluene	108-88-3	92.10	16.6	62.5	39.6	149		100	WG907386
1,2,4-Trichlorobenzene	120-82-1	181	49.3	365	ND	ND		100	WG907386

VP-2

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/lime: 09/02/16 09:35

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	22.2	121	ND	ND		100	WG907386
1,1,2-Trichloroethane	79-00-5	133	9.57	52.1	ND	ND		100	WG907386
Trichloroethylene	79-01-6	131	18.2	97.5	ND	ND		100	WG907386
1,2,4-Trimethylbenzene	95-63-6	120	16.1	79.0	ND	ND		100	WG907386
1,3,5-Trimethylbenzene	108-67-8	120	21.0	103	ND	ND		100	WG907386
2,2,4-Trimethylpentane	540-84-1	114.22	15.2	71.0	ND	ND		100	WG907386
Vinyl chloride	75-01-4	62.50	15.2	38.9	ND	ND		100	WG907386
Vinyl Bromide	593-60-2	106.95	24.2	106	ND	ND		100	WG907386
Vinyl acetate	108-05-4	86.10	21.3	75.0	ND	ND		100	WG907386
m&p-Xylene	1330-20-7	106	31.5	137	ND	ND		100	WG907386
o-Xylene	95-47-6	106	21.1	91.5	ND	ND		100	WG907386
TPH (GC/MS) Low Fraction	8006-61-9	101	2300	9500	4920	20300		100	WG907386
(SL14-Bromofluorobenzene	460-00-4	175	60.0-140		100				WG907386

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

PAGE:

DATE/TIME:

Volatile Organic Compounds (MS) by Method TO-15

L857985-01

Method Blank (MB)

ACCOUNT:

(MB) R3163119-3 09/12/16	12:56						
•	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	ppbv		ppbv	ppbv			
Allyl Chloride	U		0.0546	0.182			
Benzene	U		0.0460	0.153			
Benzyl Chloride	U		0.0598	0.199			
Bromodichloromethane	U		0.0436	0.145			
Bromoform	U		0.0786	0,262			
Bromomethane	U		0.0609	0.203			
1,3-Butadiene	U		0.0563	0.188	7		
Carbon disulfide	U		0.0544	0.181			
Carbon tetrachloride	U		0.0585	0.195			
Chlorobenzene	U		0.0601				
Chloroethane	U		0.0489	0.163			
Chloroform	U		0.0574	0.191			
Chloromethane	U		0.0544	0.181			
2-Chlorotoluene	U		0.0605	0.202			
Cyclohexane	U		0.0534	0.178			
Dibromochloromethane	U		0.0494	0.165			
1,2-Dibromoethane	U		0.0185	0.0617			
1,2-Dichlorobenzene	U		0.0603	0.201			
1,3-Dichlorobenzene	U		0.0597	0.199			
1,4-Dichlorobenzene	U		0.0557	0.186			
1,2-Dichloroethane	U		0.0616	0.205			
1,1-Dichloroethane	U		0.0514	0.171			
1,1-Dichloroethene	U		0.0490	0,163			
cis-1,2-Dichloroethene	U		0.0389	0.130			
trans-1,2-Dichloroethene	U		0.0464	0.155			
1,2-Dichloropropane	U		0.0599	0.200			
cis-1,3-Dichloropropene	U		0.0588	0.196			
trans-1,3-Dichloropropene	U		0.0435	0.145			
1,4-Dioxane	U		0.0554	0.185			
4-Ethyltoluene	U		0.0666	0.222			
Trichlorofluoromethane	U		0.0673	0.224			
Dichlorodifluoromethane	U		0.0601	0.200			
1,1,2-Trichlorotrifluoroethane	U		0.0687	0.229			
1,2-Dichlorotetrafluoroethane	U		0.0458	0.153			
Heptane	U		0.0626	0.209			
Hexachloro-1,3-butadiene	U		0.0656	0.219			
n-Hexane	U		0.0457	0.152			
Isopropylbenzene	U		0.0563	0.188			
Methylene Chloride	U		0.0465	0.155			
Methyl Butyl Ketone	U		0.0682	0.227			

SDG:

PROJECT:

WG906878

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

857985-01

Method Blank (MB)

Volatile Organic Compounds (MS) by Method TO-15

(MB) R3163119-3 09/12/16					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
4-Methyl-2-pentanone (MIBK)	U		0,0650	0,217	
Methyl Methacrylate	U		0.0773	0.258	
MTBE	U		0.0505	0.168	
Naphthalene	U		0.154	0.513	
2-Propanol	U		0.0882	0.294	
Propene	U		0.0932	0.311	
1,1,2,2-Tetrachloroethane	U		0.0576	0.192	
Tetrachloroethylene	U		0.0497	0.166	
Toluene	U		0.0499	0.166	
1,2,4-Trichlorobenzene	U		0.148	0.493	
1,1,1-Trichloroethane	U		0.0665	0,222	
1,1,2-Trichloroethane	U		0.0287	0.0957	
Trichloroethylene	U		0.0545	01 82	
1,2,4-Trimethylbenzene	U		0.0483	0.161	
1,3,5-Trimethylbenzene	U		0,0631	0.210	
2,2,4-Trimethylpentane	U		0.0456	0.152	
Vinyl chloride	U		0.0457	0.152	
Vinyl Bromide	U		0.0727	0.242	
Vinyl acetate	U		0.0639	0,213	
m&p-Xylene	U		0.0946	0.315	
o-Xylene	U		0.0633	0.211	
TPH (GC/MS) Low Fraction	U		6.91	23.0	
(S) 1,4-Bromofluorobenzene	99.7			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3163119-1 09/12/16			19/12/10 10:20								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Propene	3.75	4.71	4 84	126	129	53.9-143			2.78	25	
Dichlorodifluoromethane	3.75	4.51	4.45	120	119	56.7-140			1.26	25	
1,2-Dichlorotetrafluoroethane	3.75	4.60	4.56	123	122	70.0-130			0,810	25	
Chloromethane	3.75	4.49	4.46	120	119	70.0-130			0.660	25	
Vinyl chloride	3.75	4.72	4.65	126	124	70.0-130			1.38	25	
1,3-Butadiene	3.75	4.64	4.62	124	123	70.0-130			0,290	25	
Bromomethane	3,75	4.66	4.64	124	124	70.0-130			0.390	25	
Chloroethane	3.75	4.69	4.69	125	125	70.0-130			0.0100	25	
Trichlorofluoromethane	3.75	3.95	4.48	105	119	70.0-130			12.4	25	
1,1,2-Trichlorotrifluoroethane	3.75	4.46	4.69	119	125	70.0-130			4.92	25	

ACCOUNT:

PROJECT:

SDG:

DATE/TIME:

PAGE:

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE

Volatile Organic Compounds (MS) by Method TO-15

L857985-01

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3163119-1 09/12/16	09:37 • (LCSD)	R3163119-2	09/12/16 10:20								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
1,1-Dichloroethene	3.75	4.69	4.74	125	126	70.0-130			1.09	25	
1,1-Dichloroethane	3.75	4.47	4.44	119	118	70.0-130			0.800	25	
2-Propanol	3.75	4.65	4.80	124	128	50.4-152			3.18	25	
Carbon disulfide	3.75	4.72	4.80	126	128	70.0-130			1.66	25	
Methylene Chloride	3.75	4.17	4.13	111	110	70.0-130			0.850	25	
ИТВЕ	3.75	4.67	4.63	124	124	70.0-130			0.670	25	
rans-1,2-Dichloroethene	3.75	4.57	4.50	122	120	70,0-130			1.53	25	
n-Hexane	3.75	4.35	4.29	116	114	70.0-130			1.24	25	
/inyl acetate	3.75	4.72	4.72	126	126	70.0-130			0.130	25	
cis-1,2-Dichloroethene	3.75	4.96	4.94	132	132	70.0-130	<u>J4</u>	<u>J4</u>	0.260	25	
Chloroform	3.75	4.38	4.35	117	116	70,0-130			0.660	25	
Cyclohexane	3.75	4.60	4.58	123	122	70.0-130			0.380	25	
,1,1-Trichloroethane	3.75	4.42	4.39	118	117	70,0-130			0.640	25	
Carbon tetrachloride	3.75	4.37	4.36	117	116	70.0-130			0.220	25	
lenzene	3.75	4.41	4.37	118	117	70.0-130			0.930	25	
2-Dichloroethane	3.75	4.30	4.26	115	114	70.0-130			0.870	25	
leptane	3.75	4.63	4.62	123	123	70.0-130			0.080.0	25	
richloroethylene	3.75	4.35	4.32	116	115	70.0-130			0.860	25	
2-Dichloropropane	3.75	4.40	4.38	117	117	70.0-130			0.360	25	
4-Dioxane	3.75	4.49	4.54	120	121	48.0-156			0.930	25	
romodichloromethane	3.75	4.37	4.33	116	115	70.0-130			0.920	25	
is-1,3-Dichloropropene	3.75	4.57	4.57	122	122	70.0-130			0.130	25	
-Methyl-2-pentanone (MIBK)	3.75	4.63	4.63	124	124	55.3-154			0.0100	25	
oluene	3.75	4.52	4.50	120	120	70.0-130			0.440	25	
ans-1,3-Dichloropropene	3.75	4.52	4.52	121	120	70.0-130			0,140	25	
1,2-Trichloroethane	3.75	4.39	4.36	117	116	70.0-130			0.580	25	
etrachloroethylene	3.75	4.29	4.28	114	114	70,0-130			0.110	25	
Methyl Butyl Ketone	3.75	4.76	4,76	127	127	47.9-165			0.0200	25	
ibromochloromethane	3.75	4.43	4.40	118	117	70.0-130			0.810	25	
2-Dibromoethane	3.75	4.50	4.49	120	120	70.0-130			0.190	25	
hlorobenzene	3.75	4.52	4.50	121	120	70.0-130			0,470	25	
ı&p-Xylene	7.50	9.28	9.24	124	123	70.0-130			0.380	25	
-Xylene	3.75	4.75	4.72	127	126	70.0-130			0.640	25	
romoform	3.75	4.43	4.40	118	117	70.0-130			0.530	25	
1,2,2-Tetrachloroethane	3.75	4.52	4.50	121	120	70.0-130			0.450	25	
-Ethyltoluene	3.75	4.73	4.71	126	126	70.0-130			0.460	25	
3,5-Trimethylbenzene	3.75	4.73	4.72	126	126	70.0-130	-		0.320	25	
2,4-Trimethylbenzene	3.75	4.75	4.71	127	126	70.0-130			1.00	25	
3-Dichlorobenzene	3.75	4.47	4.47	119	119	70.0-130			0.0500	25	
4-Dichlorobenzene	3.75	4.52	4.51	121	120	70.0-130			0.290	25	

(S) 1,4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

ONE LAB NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L857985-01

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

101

101

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Benzyl Chloride	3.75	4.78	4.77	128	127	55.6-160			0,240	25	
1,2-Dichlorobenzene	3.75	4.45	4.43	119	118	70.0-130			0.380	25	
1,2,4-Trichlorobenzene	3.75	4.46	4.47	119	119	53.6-154			0.290	25	
Hexachloro-1,3-butadiene	3.75	4.35	4.35	116	116	62.1-143			0.140	25	
Naphthalene	3.75	4.61	4.64	123	124	52.0-158			0.490	25	
TPH (GC/MS) Low Fraction	176	209	207	119	118	70.0-130			0.710	25	
Allyl Chloride	3.75	4.82	4.82	128	128	70.0-130			0.0300	25	
2-Chlorotoluene	3.75	4.67	4.66	125	124	70.0-130			0.240	25	
Methyl Methacrylate	3.75	4.37	4.34	116	116	70.0-130			0.490	25	
2,2,4-Trimethylpentane	3.75	4.69	4.68	125	125	70.0-130			0.160	25	
Vinyl Bromide	3.75	4.02	4.59	107	123	70.0-130			13,4	25	
Isopropylbenzene	3.75	4.68	4.67	125	124	70.0-130			0.370	25	

60.0-140

PAGE:

Volatile Organic Compounds (MS) by Method TO-15

L857985-02

Method Blank (MB)

ACCOUNT:

(MB) R3163333-2 09/13/16	5 11:08						
,	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	ppbv		ppbv	ppbv			
Acetone	U		0.0569	0.190			
Allyl Chloride	U		0.0546	0.182			
Benzene	U		0.0460	0.153			
Benzyl Chloride	U		0.0598	0.199			
Bromodichloromethane	U		0.0436	0.145			
Bromoform	U		0.0786	0.262			
Bromomethane	U		0.0609	0.203			
1,3-Butadiene	U		0.0563	0.188			
Carbon disulfide	U		0.0544	0.181			
Carbon tetrachloride	U		0.0585	0.195			
Chlorobenzene	U		0.0601	0.200			
Chloroethane	U		0.0489	0.163			
Chloroform	U		0.0574	0.191			
Chloromethane	U		0.0544	0.181			
2-Chlorotoluene	U		0.0605	0,202			
Cyclohexane	U		0.0534	0.178			
Dibromochloromethane	U		0.0494	0,165			
1,2-Dibromoethane	U		0.0185	0.0617			
1,2-Dichlorobenzene	U		0.0603	0.201			
1,3-Dichlorobenzene	U		0.0597	0.199			
1,4-Dichlorobenzene	U		0.0557	0.186			
1,2-Dichloroethane	U		0.0616	0.205			
1,1-Dichloroethane	U		0.0514	0.171			
1,1-Dichloroethene	U		0.0490	0.163			
cis-1,2-Dichloroethene	U		0.0389	0.130			
trans-1,2-Dichloroethene	U		0.0464	0.155			
1,2-Dichloropropane	U		0.0599	0,200			
cis-1,3-Dichloropropene	U		0.0588	0.196			
trans-1,3-Dichloropropene	U		0,0435	0.145			
1,4-Dioxane	U		0.0554	0.185			
Ethylbenzene	U		0.0506	0.169			
4-Ethyltoluene	U		0.0666	0.222			
Trichlorofluoromethane	U		0.0673	0.224			
Dichlorodifluoromethane	υ		0.0601	0.200			
1,1,2-Trichlorotrifluoroethane	U		0.0687	0,229			
1,2-Dichlorotetrafluoroethane			0.0458	0.153			
Heptane	U		0.0626	0,209			
Hexachloro-1,3-butadiene	U		0.0656	0.219			
n-Hexane	U		0.0457	0,152			
Isopropylbenzene	U		0.0563	0.188			

SDG:

DATE/TIME:

PROJECT:

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L857985-02

Method Blank (MB)

(MB) R3163333-2 09/13/16	11:08			
	MB Result	MB Qualifier	MB MDL	MBRDL
Analyte	ppbv		ppbv	ppbv
Methylene Chloride	0.0804	<u>J</u>	0.0465	0.155
Methyl Butyl Ketone	U		0.0682	0.227
2-Butanone (MEK)	U		0.0493	0,164
4-Methyl-2-pentanone (MIBK)	U		0.0650	0.217
Methyl Methacrylate	U		0.0773	0.258
MTBE	U		0.0505	0.168
Naphthalene	U		0.154	0,513
2-Propanol	U		0.0882	0.294
Propene	U		0.0932	0,311
Styrene	U		0.0465	0.155
1,1,2,2-Tetrachloroethane	U		0.0576	0.192
Tetrachloroethylene	U		0.0497	0.166
Tetrahydrofuran	U		0.0508	0,169
Toluene	U		0.0499	0.166
1,2,4-Trichlorobenzene	U		0.148	0.493
1,1,1-Trichloroethane	U		0.0665	0.222
1,1,2-Trichloroethane	U		0.0287	0.0957
Trichloroethylene	U		0.0545	0.182
1,2,4-Trimethylbenzene	U		0.0483	0.161
1,3,5-Trimethylbenzene	U		0.0631	0.210
2,2,4-Trimethylpentane	U		0.0456	0.152
Vinyl chloride	U		0.0457	0.152
Vinyl Bromide	U		0.0727	0.242
Vinyl acetate	Ü		0.0639	0.213
m&p-Xylene	U		0.0946	0.315
o-Xylene	U		0.0633	0.211
Ethanol	U		0.0832	0.277
TPH (GC/MS) Low Fraction	U		6.91	23.0
(S) 1,4-Bromofluorobenzene	97.3			60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3163333-1 09/13/16	10:21 • (LCSD)	R3163333-3	09/13/16 13:40								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Ethanol	3.75	3.29	2.87	87.7	76.5	34.3-167			13.6	25	
Propene	3.75	3.97	4.07	106	109	53.9-143			2.54	25	
Dichlorodifluoromethane	3.75	4,03	4.50	108	120	56.7-140			10.9	25	
1,2-Dichlorotetrafluoroethane	3.75	4.08	4.24	109	113	70.0-130			3.83	25	

ACCOUNT:

PROJECT:

SDG:

DATE/TIME:

PAGE:

Volatile Organic Compounds (MS) by Method TO-15

L857985-02

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3163333-1 09/13/10	6 10:21 • (LCSD)	R3163333-3	09/13/16 13:40								
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Chloromethane	3.75	3.92	4.12	104	110	70.0-130			4.96	25	
Vinyl chloride	3.75	3.73	3.94	99.6	105	70.0-130			5.40	25	
1,3-Butadiene	3,75	3,92	4.04	105	108	70.0-130			2.91	25	
Bromomethane	3.75	3.75	3.77	100	100	70.0-130			0,360	25	
Chloroethane	3.75	3.64	3.72	97.1	99.2	70,0-130			2.11	25	
richlorofluoromethane	3.75	3.85	3.85	103	103	70.0-130			0.100	25	
,1,2-Trichlorotrifluoroethane	3.75	3.68	3.61	98.1	96.3	70,0-130			1.91	25	
,1-Dichloroethene	3.75	3.75	3.66	100	97.5	70.0-130			2.57	25	
,1-Dichloroethane	3.75	4.11	4.15	110	111	70.0-130			0.810	25	
Acetone	3,75	3.76	3.70	100	98.6	70.0-130			1.73	25	
2-Propanol	3.75	3.64	3.69	97.0	98,3	50 4-152			1,33	25	
Carbon disulfide	3.75	3.69	3.74	98.4	99.7	70.0-130			1.33	25	
Methylene Chloride	3.75	3.77	3.78	101	101	70,0-130			0.230	25	
MTBE	3.75	4.13	4.10	110	109	70.0-130			0.660	25	
rans-1,2-Dichloroethene	3.75	4.20	4.22	112	112	70.0-130			0.480	25	
-Hexane	3.75	4.10	4.10	109	109	70.0-130			0.100	25	
'inyl acetate	3.75	4.38	4.33	117	115	70.0-130			1.28	25	
Methyl Ethyl Ketone	3.75	4.18	4.19	112	112	70.0-130			0.200	25	
is-1,2-Dichloroethene	3.75	4.22	4.22	113	113	70,0-130			0.0200	25	
hloroform	3.75	4.08	4.09	109	109	70.0-130			0.460	25	
Cyclohexane	3.75	4.17	4.17	111	111	70.0-130			0.0800	25	
1,1-Trichloroethane	3.75	4.07	4.09	108	109	70.0-130			0.480	25	
Carbon tetrachloride	3.75	3.99	4.05	106	108	70.0-130			1,41	25	
enzene	3.75	4.08	4.15	109	111	70.0-130			1.84	25	
2-Dichloroethane	3.75	4.18	4.23	111	113	70,0-130			1.12	25	
leptane	3.75	4.19	4.22	112	113	70.0-130			0.660	25	
richloroethylene	3.75	4.13	4.12	110	110	70,0-130			0,120	25	
2-Dichloropropane	3.75	4.16	4.23	111	113	70.0-130			1.69	25	
4-Dioxane	3.75	4.10	4.18	109	112	48 0-156			2.00	25	
romodichloromethane	3.75	4.12	4.17	110	111	70.0-130			1.09	25	
is-1,3-Dichloropropene	3.75	4.28	4.30	114	115	70.0-130			0.510	25	
-Methyl-2-pentanone (MIBK)	3.75	4.24	4.27	113	114	55.3-154			0.710	25	
oluene	3.75	4.13	4.19	110	112	70.0-130			1.40	25	
ans-1,3-Dichloropropene	3.75	4.35	4.42	116	118	70.0-130			1.42	25	
1,2-Trichloroethane	3.75	4.17	4.24	111	113	70,0-130			1.71	25	
etrachloroethylene	3.75	4.10	4.13	109	110	70,0-130			0.740	25	
lethyl Butyl Ketone	3.75	4.42	4.45	118	119	47,9-165			0.560	25	
ibromochloromethane	3.75	4.19	4.22	112	113	70.0-130			0.810	25	
2-Dibromoethane	3.75	4.20	4.24	112	113	70.0-130			0.740	25	
Chlorobenzene	3.75	4.13	4.18	110	111	70.0-130			1.12	25	

(S) 1,4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE

Volatile Organic Compounds (MS) by Method TO-15

L857985-02

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3163333-1 09/13/	16 10:21 • (LCSD)	R3163333-3	09/13/16 13:40								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec, Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Ethylbenzene	3.75	4.25	4.25	113	113	70.0-130			0.0100	25	
m&p-Xylene	7.50	8.61	8.61	115	115	70.0-130			0.0600	25	
o-Xylene	3.75	4.28	4.33	114	115	70.0-130			1,13	25	
Styrene	3.75	4.50	4.49	120	120	70.0-130			0.200	25	
Bromoform	3.75	4.26	4.32	114	115	70.0-130			1.28	25	
1,1,2,2-Tetrachloroethane	3.75	4.14	4.23	110	113	70.0-130			1.96	25	
4-Ethyltoluene	3. 7 5	4.41	4.44	118	118	70.0-130			0.560	25	
1,3,5-Trimethylbenzene	3.75	4.29	4.30	114	115	70.0-130			0.350	25	
1,2,4-Trimethylbenzene	3.75	4.39	4.47	117	119	70.0-130			1.81	25	
1,3-Dichlorobenzene	3.75	4.44	4.51	118	120	70.0-130			1.57	25	
1,4-Dichlorobenzene	3.75	4.44	4.51	118	120	70.0-130			1.49	25	
Benzyl Chloride	3.75	4.47	4.55	119	121	55.6-160			1.76	25	
1,2-Dichlorobenzene	3.75	4.34	4.44	116	118	70.0-130			2.37	25	
1,2,4-Trichlorobenzene	3.75	4.18	3.96	111	106	53.6-154			5.26	25	
Hexachloro-1,3-butadiene	3.75	4.28	4.23	114	113	62.1-143			1.28	25	
Naphthalene	3.75	4.26	4.14	114	110	52.0-158			2.86	25	
TPH (GC/MS) Low Fraction	176	186	189	106	107	70_0-130			1.31	25	
Allyl Chloride	3.75	4.02	4.08	107	109	70.0-130			1.43	25	
2-Chlorotoluene	3.75	4.20	4.22	112	112	70,0-130			0.440	25	
Methyl Methacrylate	3.75	4.28	4.25	114	113	70.0-130			0.850	25	
Tetrahydrofuran	3.75	4.12	4.14	110	110	65.0-140			0.370	25	
2,2,4-Trimethylpentane	3.75	4.17	4.15	111	111	70.0-130			0.660	25	
Vinyl Bromide	3.75	3.86	3.87	103	103	70.0-130			0.180	25	
Isopropylbenzene	3.75	4.25	4.27	113	114	70.0-130			0.490	25	

60.0-140

101

101

WG907498

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE

Volatile Organic Compounds (MS) by Method TO-15

L857985-01

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	B RDL	
Analyte	ppbv		ppbv	bbv	
Acetone	U		0.0569	190	
Ethylbenzene	U		0.0506	169	
2-Butanone (MEK)	U		0.0493	164	
Styrene	U		0.0465	155	
Ethanol	U		0.0832	277	
(S) 1,4-Bromofluorobenzene	94.9			0.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3163455-1 09/13/16 21:45 • (LCSD) R3163455-2 09/13/16 22:30											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Ethanol	3.75	4.30	4.44	115	118	34.3-167			3.21	25	
Acetone	3.75	4.83	4.89	129	130	70.0-130			1.17	25	
Methyl Ethyl Ketone	3.75	4.44	4.39	118	117	70.0-130			1.20	25	
Ethylbenzene	3.75	4.08	4.04	109	108	70.0-130			1.11	25	
Styrene	3.75	4.11	4.07	109	109	70.0-130			0.840	25	
(S) 1,4-Bromofluorobenzene				105	104	60.0-140					

DATE/TIME:

SDG:

WG907728

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L857985-01

Method Blank (MB)

(MB) R3163660-3 09/14/16	12:02				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Tetrahydrofuran	U		0.0508	0.169	
(S) 1,4-Bromofluorobenzene	96.8			60.0-140	

²Tc

4 (cr

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3163660-1 09/14	1/16 10:32 • (LCSD) R3163660-2	09/14/16 11:16									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%		
Tetrahydrofuran	3.75	4.67	4.65	125	124	65.0-140			0.430	25		
(S) 1,4-Bromofluorobenze	ne			98.6	98.2	60.0-140						

Abbreviations and Definitions

SDG	Sample Delivery Group.
MDL.	Method Detection Limit.
RDL	Reported Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J4	The associated batch QC was outside the established quality control range for accuracy.

PAGE:

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conductive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina 1	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia 1	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas 5	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA	100789	
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01	
Canada	1461.01	USDA	S-67674	
EPA-Crypto	TN00003			

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶⁸ Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

			Billing Info	formation:					Analysi	s / Container		Chain of Custody Pageo			
Synergy Environmen 1990 Prospect Court Appleton, WI 54914	tal Lab, Ll	.C	1990 Pro	ike Ricker 190 Prospect Court opleton, WI 54914									L·A·B		SC IVENNICIEN
Report to:			Email To: n	nrsynergy@wi.two	bc.com								12065 Leb Mount Juli	anon Rd et, TN 3712	TEL (40) SEE
Mike Ricker					- 10						100000	CONT.		5-758-5858 D-767-5859	
Project GB Real ES Description: Air Sample	state			City/State Coreen Bary 1									Fax: 615-7:		東京美国
Phone: 920-830-2455 Fax: 920-733-0631	Client Project	# End	31088/8	Lab Project # SYNENVWI-AIR				40.0					L	.220	925
Collected by (print): Lynn Bradley	Site/Facility ID	Site/Facility ID# CB Rocal Estate					ea		W				Acctnum	e:T1090	10 10 10 10 10 10
Collected by (signature):	Rush? (Lab MUST Be Notified) Same Day				esults Needed		Summa		3				Prelogin	: P566!	589
Immediately Packed on Ice N Y	Two Da	Jaγ 3λ	50%		No X_Yes NoYes	No. of	TO-15TIC.							ec i	8-30-16
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	10				宣音 资		Rem./Cont		Sample # (lab only)
VP-1		Air		9/2/16	9:30	1	X	15		12 May 1					-01
VP-A		Air		V	9:35	1	X								-n
								22					-		
					The state of the s										
				14		-	Net la								10 10 T
	-					-					19319				
							程						-		
Matrix: SS - Soil GW - Groundwater	r WW - WasteWa	iter DW - Dr	rinking Water	OT - Other	- 310				рН		Temp				
Remarks:									Flow			Hold	#		
Relinquished by : (Signature)		Date:	Ī	ime: Re	ceived by: (Signa	ture)				les returned v		Cond	ition:	(lab use	e only) alb
Relinquished by : (Signature)		Date:		îme: Re	ceived by: (Signa	ture)				FedEx C	Bottles Recei	ved: Fc	xz e	-	
100 kg 8	<i>y</i>						/		152000	Np	2	coc	Seal Intact:	Υ	NNA
Relinquished by : (Signature)		Date:	Ī	ime: Re	ceived for lab by		ature)		Date: 9- 7	16	Time: qu	> PH Ch	necked:	NCF:	

	Cooler Red	ceipt Form			
Client: SYNENVWI		SDG#	1657985		
Cooler Received/Opened On:	9/ 7/2016	Temperature Upon Receipt:	: AMS °C		
Received By: Michael Lowe					
Signature:					
	Receipt Check List		Yes	No	N/A
Were custody seals on outside of	cooler and intact?				_
Were custody papers properly fill	ed out?		-		
Did all bottles arrive in good cond	lition?		/		
Were correct bottles used for the	analyses requested?				
Was sufficient amount of sample	sent in each bottle?				
Were all applicable sample conta	iners correctly preserv	ved and			1
checked for preservation? (Any n	ot in accepted range r	noted on COC)			
If applicable, was an observable \	OA headspace preser	nt?			
Non Conformance Generated. (If	yes see attached NCF	的生态是是不是是数据的。	- 199		

Synergy Environmental Lab, INC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PORTAGE, WI 53901

Report Date 16-May-16

Project Name GB MAIN ST. Invoice # E31018

Proiect #

Lab Code 5031018A Sample ID MW-4 Sample Matrix Water Sample Date 5/11/2016

Sample Date	- -									
	Result	Unit	LOD 1	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
Organic										
PAH SIM										
Acenaphthene	< 0.016	ug/l	0.016	0.05	1	M8270C	5/11/2016	5/12/2016	DЛ	5
Acenaphthylene	< 0.019	ug/l	0.019	0.061	1	M8270C	5/11/2016	5/12/2016	DЛ	5
Anthracene	0.046 "J"	ug/l	0.019	0.062	1	M8270C	5/11/2016	5/12/2016	DJL	1
Benzo(a)antbracene	0.09	ug/l	0.017	0.054	1	M8270C	5/11/2016	5/12/2016	DЛ	1
Benzo(a)pyrene	0.289	ug/l	0.021	0.067	1	M8270C	5/11/2016	5/12/2016	DЛ	1
Benzo(b)fluoranthene	0.63	ug/l	0.018	0.058	1	M8270C	5/11/2016	5/12/2016	DЛ	1
Benzo(g,h,i)perylene	0.4	ug/l	0.025	0.081	1	M8270C	5/11/2016	5/12/2016	DЛ	1
Benzo(k)fluoranthene	0.171	ug/l	0.016	0.05	1	M8270C	5/11/2016	5/12/2016	DЛ	1
Chrysene	0.32	ug/l	0.02	0.065	1	M8270C	5/11/2016	5/12/2016	DЛ	1
Dibenzo(a,h)anthracene	0.046 "J"	ug/l	0.025	0.078	1	M8270C	5/11/2016	5/12/2016	DЛ	1
Fluoranthene	0.48	ug/l	0.017	0.053	1	M8270C	5/11/2016	5/12/2016	DЛ	1
Fluorene	< 0.021	ug/l	0.021	0.066	1	M8270C	5/11/2016	5/12/2016	DJL	1
Indeno(1,2,3-cd)pyrene	0.41	ug/l	0.023	0.074	1	M8270C	5/11/2016	5/12/2016	DЛ	1
1-Methyl naphthalene	< 0.024	ug/l	0.024	0.076	1	M8270C	5/11/2016	5/12/2016	DЛ	1
2-Methyl naphthalene	< 0.024	ug/l	0.024	0.075	1	M8270C	5/11/2016	5/12/2016	DЛ	1
Naphthalene	< 0.019	ug/l	0.019	0.06	1	M8270C	5/11/2016	5/12/2016	DЛ	5
Phenanthrene	0.179	ug/l	0.017	0.055	1	M8270C	5/11/2016	5/12/2016	DЛ	1
Pyrene	0.39	ug/l	0.02	0.063	1	M8270C	5/11/2016	5/12/2016	DЛ	1

Project Name GB MAIN ST. Invoice # E31018

Proiect #

Lab Code 5031018B Sample ID MW-5 Sample Matrix Water Sample Date 5/11/2016

	Result	Unit	LOD	LOQ 1	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PAH SIM										
Acenaphthene	< 0.016	ug/l	0.016	0.05	1	M8270C	5/11/2016	5/12/2016	DJL	5
Acenaphthylene	< 0.019	ug/l	0.019	0.061	1	M8270C	5/11/2016	5/12/2016	DJL	5
Anthracene	0.0257 "J"	ug/l	0.019	0.062	1	M8270C	5/11/2016	5/12/2016	DJL	1
Benzo(a)anthracene	0.048 "J"	ug/l	0.017	0.054	1	M8270C	5/11/2016	5/12/2016	DJL	1
Benzo(a)pyrene	0.119	ug/l	0.021	0.067	1	M8270C	5/11/2016	5/12/2016	DJL	1
Benzo(b)fluoranthene	0.218	ug/l	0.018	0.058	1	M8270C	5/11/2016	5/12/2016	DJL	1
Benzo(g,h,i)perylene	0.193	ug/l	0.025	0.081	1	M8270C	5/11/2016	5/12/2016	DJL	1
Benzo(k)fluoranthene	0.066	ug/l	0.016	0.05	1	M8270C	5/11/2016	5/12/2016	DJL	1
Chrysene	0.115	ug/l	0.02	0.065	1	M8270C	5/11/2016	5/12/2016	DJL	1
Dibenzo(a,h)antbracene	< 0.025	ug/l	0.025	0.078	1	M8270C	5/11/2016	5/12/2016	DJL	1
Fluoranthene	0.152	ug/l	0.017	0.053	1	M8270C	5/11/2016	5/12/2016	DJL	1
Fluorene	< 0.021	ug/l	0.021	0.066	1	M8270C	5/11/2016	5/12/2016	DJL	1
Indeno(1,2,3-cd)pyrene	0.162	ug/l	0.023	0.074	1	M8270C	5/11/2016	5/12/2016	DJL	1
1-Methyl naphthalene	< 0.024	ug/l	0.024	0.076	1	M8270C	5/11/2016	5/12/2016	DJL	1
2-Methyl naphthalene	< 0.024	ug/l	0.024	0.075	1	M8270C	5/11/2016	5/12/2016	DJL	1
Naphthalene	< 0.019	ug/l	0.019	0.06	1	M8270C	5/11/2016	5/12/2016	DJL	5
Phenanthrene	0.053 "J"	ug/l	0.017	0.055	1	M8270C	5/11/2016	5/12/2016	DJL	1
Pyrene	0.138	ug/1	0.02	0.063	1	M8270C	5/11/2016	5/12/2016	DJL	1

[&]quot;J" Flag: Analyte detected between LOD and LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

1 Laboratory QC within limits.

5 The QC blank not within established limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Muchaelyllul

Authorized Signature

Synergy Environmental Lab, INC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PORTAGE, WI 53901

Report Date 13-Jun-16

Project Name GB MAIN STREET Invoice # E31164

Proiect #

Lab Code 5031164A Sample ID MW-1 Sample Matrix Water Sample Date 6/7/2016

Sample Date 0/1/20	10									
	Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
Organic										
PAH SIM										
Acenaphthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DЛ	6
Acenaphthylene	< 0.019	ug/l	0.019	0.061	1	M8270C	6/8/2016	6/8/2016	DJL	6
Anthracene	< 0.019	ug/l	0.019	0.062	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(a)anthracene	0.0194 "J "	ug/l	0.017	0.054	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(a)pyrene	< 0.021	ug/l	0.021	0.067	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(b)fluoranthene	< 0.018	ug/l	0.018	0.058	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(g,h,i)perylene	< 0.025	ug/l	0.025	0.081	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Benzo(k)fluoranthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	1
Chrysene	< 0.02	ug/l	0.02	0.065	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Dibenzo(a,h)anthracene	< 0.025	ug/l	0.025	0.078	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Fluoranthene	0.0214 "J"	ug/l	0.017	0.053	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Fluorene	< 0.021	ug/l	0.021	0.066	1	M8270C	6/8/2016	6/8/2016	DЛ	6
Indeno(1,2,3-cd)pyrene	< 0.023	ug/l	0.023	0.074	1	M8270C	6/8/2016	6/8/2016	DЛ	1
1-Methyl naphthalene	< 0.024	ug/l	0.024	0.076	1	M8270C	6/8/2016	6/8/2016	DЛ	1
2-Methyl naphthalene	< 0.024	ug/l	0.024	0.075	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Naphthalene	0.036 "J"	ug/l	0.019	0.06	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Phenanthrene	< 0.055	ug/l	0.055	0.055	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Pyrene	< 0.02	ug/l	0.02	0.063	1	M8270C	6/8/2016	6/8/2016	DЛ	1

Project Name GB MAIN STREET Invoice # E31164

Proiect #

Lab Code5031164BSample IDMW-3Sample MatrixWaterSample Date6/7/2016

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PAH SIM										
Acenaphthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DЛL	6
Acenaphthylene	< 0.019	ug/l	0.019	0.061	1	M8270C	6/8/2016	6/8/2016	DJL	6
Anthracene	< 0.019	ug/l	0.019	0.062	1	M8270C	6/8/2016	6/8/2016	DJL	6
Benzo(a)anthracene	< 0.017	ug/l	0.017	0.054	1	M8270C	6/8/2016	6/8/2016	DЛ	6
Benzo(a)pyrene	< 0.021	ug/l	0.021	0.067	1	M8270C	6/8/2016	6/8/2016	DЛ	6
Benzo(b)fluoranthene	< 0.018	ug/l	0.018	0.058	1	M8270C	6/8/2016	6/8/2016	DЛL	6
Benzo(g,h,i)perylene	< 0.025	ug/l	0.025	0.081	1	M8270C	6/8/2016	6/8/2016	DJL	6
Benzo(k)fluoranthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	6
Chrysene	< 0.02	ug/l	0.02	0.065	1	M8270C	6/8/2016	6/8/2016	DЛL	6
Dibenzo(a,h)anthracene	< 0.025	ug/l	0.025	0.078	1	M8270C	6/8/2016	6/8/2016	DЛL	6
Fluoranthene	< 0.017	ug/l	0.017	0.053	1	M8270C	6/8/2016	6/8/2016	DЛL	6
Fluorene	< 0.021	ug/l	0.021	0.066	1	M8270C	6/8/2016	6/8/2016	DЛ	6
Indeno(1,2,3-cd)pyrene	< 0.023	ug/l	0.023	0.074	1	M8270C	6/8/2016	6/8/2016	DJL	6
l-Methyl naphthalene	< 0.024	ug/l	0.024	0.076	1	M8270C	6/8/2016	6/8/2016	DJL	1
2-Methyl naphthalene	< 0.024	ug/l	0.024	0.075	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Naphthalene	0.0286 "Ј"	ug/l	0.019	0.06	1	M8270C	6/8/2016	6/8/2016	DJL	1
Phenanthrene	< 0.055	ug/l	0.055	0.055	1	M8270C	6/8/2016	6/8/2016	DJL	6
Pyrene	< 0.02	ug/l	0.02	0.063	1	M8270C	6/8/2016	6/8/2016	DЛL	6

Lab Code5031164CSample IDMW-4Sample MatrixWaterSample Date6/7/2016

-	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PAH SIM										
Acenaphthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Acenaphthylene	< 0.019	ug/l	0.019	0.061	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Anthracene	0.04 "Ј"	ug/l	0.019	0.062	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Benzo(a)anthracene	0.0264 "Ј"	ug/l	0.017	0.054	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Benzo(a)pyrene	0.082	ug/l	0.021	0.067	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Benzo(b)fluoranthene	0.194	ug/l	0.018	0.058	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Benzo(g,h,i)perylene	0.142	ug/l	0.025	0.081	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Benzo(k)fluoranthene	0.081	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Chrysene	0.097	ug/l	0.02	0.065	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Dibenzo(a,h)anthracene	< 0.025	ug/l	0.025	0.078	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Fluoranthene	0.144	ug/l	0.017	0.053	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Fluorene	< 0.021	ug/l	0.021	0.066	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Indeno(1,2,3-cd)pyrene	0.109	ug/l	0.023	0.074	1	M8270C	6/8/2016	6/8/2016	DЛ	1
1-Methyl naphthalene	< 0.024	ug/l	0.024	0.076	1	M8270C	6/8/2016	6/8/2016	DJL	1
2-Methyl naphthalene	< 0.024	ug/l	0.024	0.075	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Naphthalene	0.0263 "Ј"	ug/l	0.019	0.06	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Phenanthrene	0.081	ug/l	0.055	0.055	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Pyrene	0.122	ug/l	0.02	0.063	1	M8270C	6/8/2016	6/8/2016	DЛL	1

Invoice # E31164

Project Name GB MAIN STREET

Project #

Lab Code 5031164D Sample ID MW-5 Sample Matrix Water Sample Date 6/7/2016

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PAH SIM										
Acenaphthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	1
Acenaphthylene	< 0.019	ug/l	0.019	0.061	1	M8270C	6/8/2016	6/8/2016	DJL	I
Anthracene	0.036 "J"	ug/l	0.019	0.062	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(a)anthracene	0.057	ug/l	0.017	0.054	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(a)pyrene	0.049 "J"	ug/l	0.021	0.067	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(b)fluoranthene	0.055 "Ј"	ug/l	0.018	0.058	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(g,h,i)perylene	0.045 "J"	ug/l	0.025	0.081	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(k)fluoranthene	0.046 "J"	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	1
Chrysene	0.054 "J"	ug/l	0.02	0.065	1	M8270C	6/8/2016	6/8/2016	\mathbf{DJL}	1
Dibenzo(a,h)anthracene	< 0.025	ug/l	0.025	0.078	1	M8270C	6/8/2016	6/8/2016	DJL	1
Fluoranthene	0.047 "J"	ug/l	0.017	0.053	1	M8270C	6/8/2016	6/8/2016	DJL	1
Fluorene	< 0.021	ug/l	0.021	0.066	1	M8270C	6/8/2016	6/8/2016	DJL	1
Indeno(1,2,3-cd)pyrene	0.0291 "J"	ug/l	0.023	0.074	1	M8270C	6/8/2016	6/8/2016	DJL	1
1-Methyl naphthalene	< 0.024	ug/l	0.024	0.076	1	M8270C	6/8/2016	6/8/2016	DJL	1
2-Methyl naphthalene	< 0.024	ug/l	0.024	0.075	1	M8270C	6/8/2016	6/8/2016	DJL	1
Naphthalene	0.0276 "J"	ug/l	0.019	0.06	1	M8270C	6/8/2016	6/8/2016	\mathbf{DJL}	1
Phenanthrene	< 0.055	ug/l	0.055	0.055	1	M8270C	6/8/2016	6/8/2016	DJL	1
Pyrene	0.045 "J"	ug/l	0.02	0.063	1	M8270C	6/8/2016	6/8/2016	DJL	_1

Lab Code5031164ESample IDMW-7Sample MatrixWaterSample Date6/7/2016

•	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PAH SIM										
Acenaphthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	6
Acenaphthylene	< 0.019	ug/l	0.019	0.061	1	M8270C	6/8/2016	6/8/2016	DJL	6
Anthracene	< 0.019	ug/l	0.019	0.062	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(a)anthracene	< 0.017	ug/l	0.017	0.054	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(a)pyrene	< 0.021	ug/l	0.021	0.067	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(b)fluoranthene	< 0.018	ug/l	0.018	0.058	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(g,h,i)perylene	< 0.025	ug/l	0.025	0.081	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(k)fluoranthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	1
Chrysene	< 0.02	ug/l	0.02	0.065	1	M8270C	6/8/2016	6/8/2016	DJL	1
Dibenzo(a,h)anthracene	< 0.025	ug/l	0.025	0.078	1	M8270C	6/8/2016	6/8/2016	DJL	1
Fluoranthene	< 0.017	ug/l	0.017	0.053	1	M8270C	6/8/2016	6/8/2016	DJL	1
Fluorene	< 0.021	ug/l	0.021	0.066	1	M8270C	6/8/2016	6/8/2016	DJL	6
Indeno(1,2,3-cd)pyrene	< 0.023	ug/l	0.023	0.074	1	M8270C	6/8/2016	6/8/2016	DJL	1
l-Methyl naphthalene	< 0.024	ug/l	0.024	0.076	1	M8270C	6/8/2016	6/8/2016	DJL	1
2-Methyl naphthalene	< 0.024	ug/l	0.024	0.075	1	M8270C	6/8/2016	6/8/2016	DJL	1
Naphthalene	0.0251 "J"	ug/l	0.019	0.06	1	M8270C	6/8/2016	6/8/2016	DJL	1
Phenanthrene	< 0.055	ug/l	0.055	0.055	1	M8270C	6/8/2016	6/8/2016	DJL	1
Pyrene	< 0.02	ug/l	0.02	0.063	1	M8270C	6/8/2016	6/8/2016	DJL	1

Project Name GB MAIN STREET Invoice # E31164

Proiect #

Lab Code5031164FSample IDMW-8Sample MatrixWaterSample Date6/7/2016

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PAH SIM										
Acenaphthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	6
Acenaphthylene	0.095	ug/l	0.019	0.061	1	M8270C	6/8/2016	6/8/2016	DJL	6
Anthracene	0.145	ug/l	0.019	0.062	1	M8270C	6/8/2016	6/8/2016	DJL	6
Benzo(a)anthracene	0.024 "J"	ug/l	0.017	0.054	1	M8270C	6/8/2016	6/8/2016	DJL	6
Benzo(a)pyrene	0.023 "J"	ug/l	0.021	0.067	1	M8270C	6/8/2016	6/8/2016	DJL	6
Benzo(b)fluoranthene	0.038 "Ј"	ug/l	0.018	0.058	1	M8270C	6/8/2016	6/8/2016	DJL	6
Benzo(g,h,i)perylene	< 0.025	ug/l	0.025	0.081	1	M8270C	6/8/2016	6/8/2016	DJL	6
Benzo(k)fluoranthene	0.034 "Ј"	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	6
Chrysene	0.0274 "J"	ug/l	0.02	0.065	1	M8270C	6/8/2016	6/8/2016	DJL	6
Dibenzo(a,h)anthracene	< 0.025	ug/l	0.025	0.078	1	M8270C	6/8/2016	6/8/2016	DJL	6
Fluoranthene	0.045 "J"	ug/l	0.017	0.053	1	M8270C	6/8/2016	6/8/2016	DJL	6
Fluorene	< 0.021	ug/l	0.021	0.066	1	M8270C	6/8/2016	6/8/2016	DJL	6
Indeno(1,2,3-cd)pyrene	< 0.023	ug/l	0.023	0.074	1	M8270C	6/8/2016	6/8/2016	DJL	6
1-Methyl naphthalene	< 0.024	ug/l	0.024	0.076	1	M8270C	6/8/2016	6/8/2016	DJL	1
2-Methyl naphthalene	< 0.024	ug/l	0.024	0.075	1	M8270C	6/8/2016	6/8/2016	DJL	1
Naphthalene	0.0194 "Ј"	ug/l	0.019	0.06	1	M8270C	6/8/2016	6/8/2016	DJL	1
Phenanthrene	0.06	ug/l	0.055	0.055	1	M8270C	6/8/2016	6/8/2016	DJL	6
Pyrene	0.038 "J"	ug/l	0.02	0.063	1	M8270C	6/8/2016	6/8/2016	DJL	6

Lab Code5031164GSample IDMW-10Sample MatrixWaterSample Date6/7/2016

= 1	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PAH SIM										
Acenaphthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	1
Acenaphthylene	< 0.019	ug/l	0.019	0.061	1	M8270C	6/8/2016	6/8/2016	DJL	1
Anthracene	< 0.019	ug/l	0.019	0.062	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(a)anthracene	< 0.017	ug/l	0.017	0.054	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(a)pyrene	< 0.021	ug/l	0.021	0.067	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(b)fluoranthene	< 0.018	ug/l	0.018	0.058	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(g,h,i)perylene	< 0.025	ug/l	0.025	0.081	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(k)fluoranthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	1
Chrysene	< 0.02	ug/l	0.02	0.065	1	M8270C	6/8/2016	6/8/2016	DJL	1
Dibenzo(a,h)anthracene	< 0.025	ug/l	0.025	0.078	1	M8270C	6/8/2016	6/8/2016	DJL	1
Fluoranthene	< 0.017	ug/l	0.017	0.053	1	M8270C	6/8/2016	6/8/2016	DJL	1
Fluorene	< 0.021	ug/l	0.021	0.066	1	M8270C	6/8/2016	6/8/2016	DJL	1
Indeno(1,2,3-cd)pyrene	< 0.023	ug/l	0.023	0.074	1	M8270C	6/8/2016	6/8/2016	DJL	1
1-Methyl naphthalene	< 0.024	ug/l	0.024	0.076	1	M8270C	6/8/2016	6/8/2016	DJL	1
2-Methyl naphthalene	< 0.024	ug/l	0.024	0.075	1	M8270C	6/8/2016	6/8/2016	DJL	1
Naphthalene	0.0213 "J"	ug/l	0.019	0.06	1	M8270C	6/8/2016	6/8/2016	DJL	1
Phenanthrene	< 0.055	ug/l	0.055	0.055	1	M8270C	6/8/2016	6/8/2016	DJL	1
Pyrene	< 0.02	ug/l	0.02	0.063	1	M8270C	6/8/2016	6/8/2016	DЛL	1

Project Name GB MAIN STREET Invoice # E31164

Project #

Lab Code5031164HSample IDMW-11Sample MatrixWaterSample Date6/7/2016

	Result	Unit	LOD 1	LOQ I)il	Method	Ext Date	Run Date	Analyst	Code
Organic										
PAH SIM										
Acenaphthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	6
Acenaphthylene	< 0.019	ug/l	0.019	0.061	1	M8270C	6/8/2016	6/8/2016	DJL	6
Anthracene	0.0295 "J"	ug/l	0.019	0.062	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(a)anthracene	0.057	ug/l	0.017	0.054	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(a)pyrene	0.052 "J "	ug/l	0.021	0.067	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(b)fluoranthene	0.062	ug/l	0.018	0.058	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(g,h,i)perylene	0.042 "J"	ug/l	0.025	0.081	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(k)fluoranthene	0.044 "J"	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	1
Chrysene	0.056 "J"	ug/l	0.02	0.065	1	M8270C	6/8/2016	6/8/2016	DJL	1
Dibenzo(a,h)anthracene	< 0.025	ug/l	0.025	0.078	1	M8270C	6/8/2016	6/8/2016	DJL	1
Fluoranthene	0.055	ug/l	0.017	0.053	1	M8270C	6/8/2016	6/8/2016	DJL	1
Fluorene	< 0.021	ug/l	0.021	0.066	1	M8270C	6/8/2016	6/8/2016	DJL	6
Indeno(1,2,3-cd)pyrene	0.038 " J"	ug/l	0.023	0.074	1	M8270C	6/8/2016	6/8/2016	DJL	1
1-Methyl naphthalene	< 0.024	ug/l	0.024	0.076	1	M8270C	6/8/2016	6/8/2016	DJL	1
2-Methyl naphthalene	< 0.024	ug/l	0.024	0.075	1	M8270C	6/8/2016	6/8/2016	DJL	1
Naphthalene	0.0249 "J"	ug/l	0.019	0.06	1	M8270C	6/8/2016	6/8/2016	DJL	1
Phenanthrene	0.064	ug/l	0.055	0.055	1	M8270C	6/8/2016	6/8/2016	DJL	1
Pyrene	0.049 "J"	ug/l	0.02	0.063	1	M8270C	6/8/2016	6/8/2016	DJL	1

Lab Code5031164ISample IDMW-12Sample MatrixWaterSample Date6/7/2016

	Result	Unit	LOD	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PAH SIM										
Acenaphthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	1
Acenaphthylene	< 0.019	ug/l	0.019	0.061	1	M8270C	6/8/2016	6/8/2016	DJL	1
Anthracene	< 0.019	ug/l	0.019	0.062	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(a)anthracene	0.036" J "	ug/l	0.017	0.054	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(a)pyrene	0.0299 "J"	ug/l	0.021	0.067	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(b)fluoranthene	0.036 "Ј"	ug/l	0.018	0.058	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(g,h,i)perylene	0.027 "J"	ug/l	0.025	0.081	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(k)fluoranthene	0.0275 "J"	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	1
Chrysene	0.0282 "J"	ug/l	0.02	0.065	1	M8270C	6/8/2016	6/8/2016	DJL	1
Dibenzo(a,h)anthracene	< 0.025	ug/l	0.025	0.078	1	M8270C	6/8/2016	6/8/2016	DJL	1
Fluoranthene	0.0282 "Ј"	ug/l	0.017	0.053	1	M8270C	6/8/2016	6/8/2016	DJL	1
Fluorene	< 0.021	ug/l	0.021	0.066	1	M8270C	6/8/2016	6/8/2016	DJL	1
Indeno(1,2,3-cd)pyrene	< 0.023	ug/l	0.023	0.074	1	M8270C	6/8/2016	6/8/2016	DJL	1
1-Methyl naphthalene	< 0.024	ug/l	0.024	0.076	1	M8270C	6/8/2016	6/8/2016	DJL	1
2-Methyl naphthalene	< 0.024	ug/l	0.024	0.075	1	M8270C	6/8/2016	6/8/2016	DJL	1
Naphthalene	< 0.019	ug/l	0.019	0.06	1	M8270C	6/8/2016	6/8/2016	DJL	1
Phenanthrene	< 0.055	ug/l	0.055	0.055	1	M8270C	6/8/2016	6/8/2016	DJL	1
Pyrene	0.028 "Ј"	ug/l	0.02	0.063	1	M8270C	6/8/2016	6/8/2016	DJL	1

Proiect #

Lab Code5031164JSample IDMW-13Sample MatrixWaterSample Date6/7/2016

	Result	Unit	LOD	LOQ 1	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PAH SIM										
Acenaphthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	1
Acenaphthylene	< 0.019	ug/l	0.019	0.061	1	M8270C	6/8/2016	6/8/2016	DJL	1
Anthracene	0.068	ug/l	0.019	0.062	1	M8270C	6/8/2016	6/8/2016	DJL	6
Benzo(a)anthracene	0.122	ug/l	0.017	0.054	1	M8270C	6/8/2016	6/8/2016	DJL	6
Benzo(a)pyrene	0.137	ug/l	0.021	0.067	1	M8270C	6/8/2016	6/8/2016	DJL	6
Benzo(b)fluoranthene	0.143	ug/l	0.018	0.058	1	M8270C	6/8/2016	6/8/2016	DJL	6
Benzo(g,h,i)perylene	0.13	ug/l	0.025	0.081	1	M8270C	6/8/2016	6/8/2016	DJL	6
Benzo(k)fluoranthene	0.144	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	6
Chrysene	0.12	ug/l	0.02	0.065	1	M8270C	6/8/2016	6/8/2016	DJL	6
Dibenzo(a,h)anthracene	0.081	ug/l	0.025	0.078	1	M8270C	6/8/2016	6/8/2016	DJL	6
Fluoranthene	0.114	ug/l	0.017	0.053	1	M8270C	6/8/2016	6/8/2016	DJL	6
Fluorene	0.0232 "J"	ug/l	0.021	0.066	1	M8270C	6/8/2016	6/8/2016	DJL	1
Indeno(1,2,3-cd)pyrene	0.136	ug/l	0.023	0.074	1	M8270C	6/8/2016	6/8/2016	DJL	6
1-Methyl naphthalene	< 0.024	ug/l	0.024	0.076	1	M8270C	6/8/2016	6/8/2016	DJL	1
2-Methyl naphthalene	< 0.024	ug/l	0.024	0.075	1	M8270C	6/8/2016	6/8/2016	DJL	1
Naphthalene	< 0.019	ug/l	0.019	0.06	1	M8270C	6/8/2016	6/8/2016	DJL	1
Phenanthrene	0.101	ug/l	0.055	0.055	1	M8270C	6/8/2016	6/8/2016	DJL	6
Pyrene	0.112	ug/l	0.02	0.063	1	M8270C	6/8/2016	6/8/2016	DJL	6

Lab Code5031164KSample IDMW-14Sample MatrixWaterSample Date6/7/2016

1										
	Result	Unit	LOD	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PAH SIM										
Acenaphthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	1
Acenaphthylene	< 0.019	ug/l	0.019	0.061	1	M8270C	6/8/2016	6/8/2016	DJL	1
Anthracene	< 0.019	ug/l	0.019	0.062	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(a)anthracene	< 0.017	ug/l	0.017	0.054	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(a)pyrene	< 0.021	ug/l	0.021	0.067	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(b)fluoranthene	< 0.018	ug/l	0.018	0.058	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(g,h,i)perylene	< 0.025	ug/l	0.025	0.081	1	M8270C	6/8/2016	6/8/2016	DJL	1
Benzo(k)fluoranthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DJL	1
Chrysene	< 0.02	ug/l	0.02	0.065	1	M8270C	6/8/2016	6/8/2016	DJL	1
Dibenzo(a,h)anthracene	< 0.025	ug/l	0.025	0.078	1	M8270C	6/8/2016	6/8/2016	DJL	1
Fluoranthene	< 0.017	ug/l	0.017	0.053	1	M8270C	6/8/2016	6/8/2016	DJL	1
Fluorene	< 0.021	ug/l	0.021	0.066	1	M8270C	6/8/2016	6/8/2016	DJL	1
Indeno(1,2,3-cd)pyrene	< 0.023	ug/l	0.023	0.074	1	M8270C	6/8/2016	6/8/2016	DJL	1
1-Methyl naphthalene	< 0.024	ug/l	0.024	0.076	1	M8270C	6/8/2016	6/8/2016	DJL	1
2-Methyl naphthalene	< 0.024	ug/l	0.024	0.075	1	M8270C	6/8/2016	6/8/2016	DJL	1
Naphthalene	< 0.019	ug/l	0.019	0.06	1	M8270C	6/8/2016	6/8/2016	DJL	1
Phenanthrene	< 0.055	ug/l	0.055	0.055	1	M8270C	6/8/2016	6/8/2016	DJL	1
Pyrene	< 0.02	ug/l	0.02	0.063	1	M8270C	6/8/2016	6/8/2016	DJL	1

Proiect#

Lab Code 5031164L Sample ID TW-4 Sample Matrix Water Sample Date 6/7/2016

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PAH SIM										
Acenaphthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Acenaphthylene	< 0.019	ug/l	0.019	0.061	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Anthracene	< 0.019	ug/l	0.019	0.062	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Benzo(a)anthracene	< 0.017	ug/l	0.017	0.054	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Benzo(a)pyrene	< 0.021	ug/l	0.021	0.067	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Benzo(b)fluoranthene	< 0.018	ug/l	0.018	0.058	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Benzo(g,h,i)perylene	< 0.025	ug/l	0.025	0.081	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Benzo(k)fluoranthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Chrysene	< 0.02	ug/l	0.02	0.065	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Dibenzo(a,h)anthracene	< 0.025	ug/l	0.025	0.078	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Fluoranthene	< 0.017	ug/l	0.017	0.053	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Fluorene	< 0.021	ug/l	0.021	0.066	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Indeno(1,2,3-cd)pyrene	< 0.023	ug/l	0.023	0.074	1	M8270C	6/8/2016	6/8/2016	DЛ	1
l-Methyl naphthalene	< 0.024	ug/l	0.024	0.076	1	M8270C	6/8/2016	6/8/2016	DЛL	1
2-Methyl naphthalene	< 0.024	ug/l	0.024	0.075	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Naphthalene	0.0198 "Ј"	ug/l	0.019	0.06	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Phenanthrene	< 0.055	ug/l	0.055	0.055	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Pyrene	< 0.02	ug/l	0.02	0.063	1	M8270C	6/8/2016	6/8/2016	DЛ	1

Lab Code5031164MSample IDTW-5Sample MatrixWaterSample Date6/7/2016

	Result	Unit	LOD 1	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
Organic										
PAH SIM										
Acenaphthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Acenaphthylene	< 0.019	ug/l	0.019	0.061	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Anthracene	< 0.019	ug/l	0.019	0.062	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Benzo(a)anthracene	< 0.017	ug/l	0.017	0.054	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Benzo(a)pyrene	< 0.021	ug/l	0.021	0.067	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Benzo(b)fluoranthene	< 0.018	ug/l	0.018	0.058	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Benzo(g,h,i)perylene	< 0.025	ug/l	0.025	0.081	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Benzo(k)fluoranthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Chrysene	< 0.02	ug/l	0.02	0.065	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Dibenzo(a,h)anthracene	< 0.025	ug/l	0.025	0.078	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Fluoranthene	< 0.017	ug/l	0.017	0.053	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Fluorene	< 0.021	ug/l	0.021	0.066	1	M8270C	6/8/2016	6/8/2016	DЛL	1
Indeno(1,2,3-cd)pyrene	< 0.023	ug/l	0.023	0.074	1	M8270C	6/8/2016	6/8/2016	DJL	1
l-Methyl naphthalene	< 0.024	ug/l	0.024	0.076	1	M8270C	6/8/2016	6/8/2016	DЛ	1
2-Methyl naphthalene	< 0.024	ug/l	0.024	0.075	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Naphthalene	< 0.019	ug/l	0.019	0.06	1	M8270C	6/8/2016	6/8/2016	DJL	1
Phenanthrene	< 0.055	ug/l	0.055	0.055	1	M8270C	6/8/2016	6/8/2016	DЛ	1
Pyrene	< 0.02	ug/l	0.02	0.063	1	M8270C	6/8/2016	6/8/2016	DЛL	1

Project #

"I" Flag: Analyte detected between LOD and LOQ LOD Limit of Detection LOQ Limit of Quantitation

Code Comment

1 Laboratory QC within limits.

6 The surrogate recovery not within established limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Michaelflul

Authorized Signature

Synergy Environmental Lab, INC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PORTAGE, WI 53901

Report Date 30-Jun-16

Project Name ONE HOUR MARTINIZING

Project #

Lab Code 5031253A Sample ID W-1 Sample Matrix Water Sample Date 6/20/2016

	Result	Unit	LOD I	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
VOC's										
Benzene	< 0.44	ug/l	0.44	1.4	1	8260B		6/28/2016	CJR	1
Bromobenzene	< 0.48	ug/l	0.48	1.5	1	8260B		6/28/2016	CJR	1
Bromodichloromethane	< 0.46	ug/l	0.46	1.5	1	8260B		6/28/2016	CJR	1
Bromoform	< 0.46	ug/l	0.46	1.5	1	8260B		6/28/2016	CJR	1
tert-Butylbenzene	< 1.1	ug/l	1.1	3.4	1	8260B		6/28/2016	CJR	1
sec-Butylbenzene	< 1.2	ug/l	1.2	3.8	1	8260B		6/28/2016	CJR	1
n-Butylbenzene	< 1	ug/l	1	3.3	1	8260B		6/28/2016	CJR	1
Carbon Tetrachloride	< 0.51	ug/l	0.51	1.6	1	8260B		6/28/2016	CJR	1
Chlorobenzene	< 0.46	ug/l	0.46	1.4	1	8260B		6/28/2016	CJR	1
Chloroethane	< 0.65	ug/l	0.65	2.1	1	8260B		6/28/2016	CJR	1
Chloroform	< 0.43	ug/l	0.43	1.4	1	8260B		6/28/2016	CJR	1
Chloromethane	< 1.9	ug/l	1.9	6	1	8260B		6/28/2016	CJR	1
2-Chlorotoluene	< 0.4	ug/l	0.4	1.3	1	8260B		6/28/2016	CJR	1
4-Chlorotoluene	< 0.63	ug/l	0.63	2	1	8260B		6/28/2016	CJR	1
1,2-Dibromo-3-chloropropane	< 1.4	ug/l	1.4	4.5	1	8260B		6/28/2016	CJR	1
Dibromochloromethane	< 0.45	ug/l	0.45	1.4	1	8260B		6/28/2016	CJR	1
1,4-Dichlorobenzene	< 0.49	ug/l	0.49	1.6	1	8260B		6/28/2016	CJR	1
1,3-Dichlorobenzene	< 0.52	ug/l	0.52	1.6	1	8260B		6/28/2016	CJR	1
1,2-Dichlorobenzene	< 0.46	ug/l	0.46	1.5	1	8260B		6/28/2016	CJR	1
Dichlorodifluoromethane	< 0.87	ug/l	0.87	2.8	1	8260B		6/28/2016	CJR	1
1,2-Dichloroethane	< 0.48	ug/l	0.48	1.5	1	8260B		6/28/2016	CJR	1
1,1-Dichloroethane	< 1.1	ug/l	1.1	3.6	1	8260B		6/28/2016	CJR	1
1,1-Dichloroethene	< 0.65	ug/l	0.65	2.1	1	8260B		6/28/2016	CJR	1
cis-1,2-Dichloroethene	< 0.45	ug/l	0.45	1.4	. 1	8260B		6/28/2016	CJR	1
trans-1,2-Dichloroethene	< 0.54	ug/l	0.54	1.7	1	8260B		6/28/2016	CJR	1
1,2-Dichloropropane	< 0.43	ug/l	0.43	1.37	1	8260B		6/28/2016	CJR	1
2,2-Dichloropropane	< 3.1	ug/l	3.1	9.8	1	8260B		6/28/2016	CJR	1
1,3-Dichloropropane	< 0.42	ug/l	0.42	1.3	1	8260B		6/28/2016	CJR	1
Di-isopropyl ether	< 0.44	ug/l	0.44	1.4	. 1	8260B		6/28/2016	CJR	1
EDB (1,2-Dibromoethane)	< 0.63	ug/l	0.63	2	1	8260B		6/28/2016	CJR	1
Ethylbenzene	< 0.71	ug/l	0.71	2.3	1			6/28/2016	CJR	1
Hexachlorobutadiene	< 2.2	ug/l	2.2	7.1	1	8260B		6/28/2016	CJR	1
Isopropylbenzene	< 0.82	ug/l	0.82	2.6	1	8260B		6/28/2016	CJR	1

Invoice # E31253

Project Name ONE HOUR MARTINIZING Invoice # E31253

Proiect #

Lab Code 5031253A Sample ID W-1 Sample Matrix Water Sample Date 6/20/2016

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
p-Isopropyltoluene	< 1.1	ug/l	1.1	3.5	1	8260B		6/28/2016	CJR	1
Methylene chloride	< 1.3	ug/l	1.3	4.2	1	8260B		6/28/2016	CJR	1
Methyl tert-butyl ether (MTBE)	< 1.1	ug/l	1.1	3.7	1	8260B		6/28/2016	CJR	1
Naphthalene	< 1.6	ug/l	1.6	5.2	1	8260B		6/28/2016	CJR	1
n-Propylbenzene	< 0.77	ug/l	0.77	2.4	1	8260B		6/28/2016	CJR	1
1,1,2,2-Tetrachloroethane	< 0.52	ug/l	0.52	1.7	1	8260B		6/28/2016	CJR	1
1,1,1,2-Tetrachloroethane	< 0.48	ug/l	0.48	1.5	1	8260B		6/28/2016	CJR	1
Tetrachloroethene	< 0.49	ug/l	0.49	1.5	1	8260B		6/28/2016	CJR	1
Toluene	< 0.44	ug/l	0.44	1.4	1	8260B		6/28/2016	CJR	1
1,2,4-Trichlorobenzene	< 1.7	ug/l	1.7	5.6	1	8260B		6/28/2016	CJR	1
1,2,3-Trichlorobenzene	< 2.7	ug/l	2.7	8.6	1	8260B		6/28/2016	CJR	1
1,1,1-Trichloroethane	< 0.84	ug/l	0.84	2.7	1	8260B		6/28/2016	CJR	1
1,1,2-Trichloroethane	< 0.48	ug/l	0.48	1.52	1	8260B		6/28/2016	CJR	1
Trichloroethene (TCE)	< 0.47	ug/l	0.47	1.5	1	8260B		6/28/2016	CJR	1
Trichlorofluoromethane	< 0.87	ug/l	0.87	2.8	1	8260B		6/28/2016	CJR	1
1,2,4-Trimethylbenzene	< 1.6	ug/l	1.6	5	1	8260B		6/28/2016	CJR	1
1,3,5-Trimethylbenzene	< 1.5	ug/l	1.5	4.8	1	8260B		6/28/2016	CJR	1
Vinyl Chloride	< 0.17	ug/l	0.17	0.54	1	8260B		6/28/2016	CJR	1
m&p-Xylene	< 2.2	ug/l	2.2	6.9	1	8260B		6/28/2016	CJR	1
o-Xylene	< 0.9	ug/l	0.9	2.9	1	8260B		6/28/2016	CJR	1
SUR - Toluene-d8	85	REC %			1	8260B		6/28/2016	CJR	1
SUR - 1,2-Dichloroethane-d4	96	REC %			1	8260B		6/28/2016	CJR	1
SUR - 4-Bromofluorobenzene	102	REC %			1	8260B		6/28/2016	CJR	1
SUR - Dibromofluoromethane	96	REC %			1	8260B		6/28/2016	CJR	1

[&]quot;J" Flag: Analyte detected between LOD and LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

Code Comment

1 Laboratory QC within limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Michaelplul

Authorized Signature

Synergy Environmental Lab, INC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PORTAGE, WI 53901

Report Date 28-Jun-16

Project Name GB MAIN STREET Invoice # E31252

Project #

Lab Code5031252ASample IDMW-4Sample MatrixWaterSample Date6/21/2016

	Result	Unit	LOD	LOQ 1	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PAH SIM										
Acenaphthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/27/2016	6/27/2016	DJL	1
Acenaphthylene	< 0.019	ug/l	0.019	0.061	1	M8270C	6/27/2016	6/27/2016	DJL	1
Anthracene	< 0.019	ug/l	0.019	0.062	1	M8270C	6/27/2016	6/27/2016	DJL	1
Benzo(a)anthracene	0.0228 "J"	ug/l	0.017	0.054	1	M8270C	6/27/2016	6/27/2016	DJL	1
Benzo(a)pyrene	0.05 "J"	ug/l	0.021	0.067	1	M8270C	6/27/2016	6/27/2016	DJL	1
Benzo(b)fluoranthene	0.127	ug/l	0.018	0.058	1	M8270C	6/27/2016	6/27/2016	DJL	1
Benzo(g,h,i)perylene	0.105	ug/l	0.025	0.081	1	M8270C	6/27/2016	6/27/2016	DJL	1
Benzo(k)fluoranthene	0.047 "Ј"	ug/l	0.016	0.05	1	M8270C	6/27/2016	6/27/2016	DJL	1
Chrysene	0.056 "J"	ug/l	0.02	0.065	1	M8270C	6/27/2016	6/27/2016	DJL	1
Dibenzo(a,h)anthracene	< 0.025	ug/l	0.025	0.078	1	M8270C	6/27/2016	6/27/2016	DJL	1
Fluoranthene	0.096	ug/l	0.017	0.053	1	M8270C	6/27/2016	6/27/2016	DJL	1
Fluorene	< 0.021	ug/l	0.021	0.066	1	M8270C	6/27/2016	6/27/2016	DJL	1
Indeno(1,2,3-cd)pyrene	0.075	ug/l	0.023	0.074	1	M8270C	6/27/2016	6/27/2016	DJL	1
1-Methyl naphthalene	< 0.024	ug/l	0.024	0.076	1	M8270C	6/27/2016	6/27/2016	DJL	1
2-Methyl naphthalene	< 0.024	ug/l	0.024	0.075	1	M8270C	6/27/2016	6/27/2016	DJL	1
Naphthalene	< 0.019	ug/l	0.019	0.06	1.	M8270C	6/27/2016	6/27/2016	DJL	1
Phenanthrene	0.059	ug/l	0.055	0.055	1	M8270C	6/27/2016	6/27/2016	DJL	1
Pyrene	0.08	ug/l	0.02	0.063	1	M8270C	6/27/2016	6/27/2016	DJL	1

Project #

Lab Code5031252BSample IDMW-5Sample MatrixWaterSample Date6/21/2016

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
PAH SIM										
Acenaphthene	< 0.016	ug/l	0.016	0.05	1	M8270C	6/27/2016	6/27/2016	DJL	1
Acenaphthylene	< 0.019	ug/l	0.019	0.061	1	M8270C	6/27/2016	6/27/2016	DJL	1
Anthracene	< 0.019	ug/l	0.019	0.062	1	M8270C	6/27/2016	6/27/2016	DJL	1
Benzo(a)anthracene	0.041 "J"	ug/l	0.017	0.054	1	M8270C	6/27/2016	6/27/2016	DJL	1
Benzo(a)pyrene	0.0307 "J"	ug/l	0.021	0.067	1	M8270C	6/27/2016	6/27/2016	DJL	1
Benzo(b)fluoranthene	0.044 "J"	ug/l	0.018	0.058	1	M8270C	6/27/2016	6/27/2016	DJL	1
Benzo(g,h,i)perylene	0.036 "J"	ug/l	0.025	0.081	1	M8270C	6/27/2016	6/27/2016	DJL	1
Benzo(k)fluoranthene	0.0263 "J"	ug/l	0.016	0.05	1	M8270C	6/27/2016	6/27/2016	DJL	1
Chrysene	0.038 "J"	ug/l	0.02	0.065	1	M8270C	6/27/2016	6/27/2016	DJL	1
Dibenzo(a,h)anthracene	< 0.025	ug/l	0.025	0.078	1	M8270C	6/27/2016	6/27/2016	DJL	1
Fluoranthene	0.039 "J"	ug/l	0.017	0.053	1	M8270C	6/27/2016	6/27/2016	DJL	1
Fluorene	< 0.021	ug/l	0.021	0.066	1	M8270C	6/27/2016	6/27/2016	DJL	1
Indeno(1,2,3-cd)pyrene	0.0287 "J"	ug/l	0.023	0.074	1	M8270C	6/27/2016	6/27/2016	DJL	1
1-Methyl naphthalene	< 0.024	ug/l	0.024	0.076	1	M8270C	6/27/2016	6/27/2016	DJL	1
2-Methyl naphthalene	< 0.024	ug/l	0.024	0.075	1	M8270C	6/27/2016	6/27/2016	DJL	1
Naphthalene	< 0.019	ug/l	0.019	0.06	1	M8270C	6/27/2016	6/27/2016	DJL	1.
Phenanthrene	< 0.055	ug/l	0.055	0.055	1	M8270C	6/27/2016	6/27/2016	DJL	1
Pyrene	0.04 "J"	ug/l	0.02	0.063	1	M8270C	6/27/2016	6/27/2016	DJL	1

[&]quot;J" Flag: Analyte detected between LOD and LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

Code Comment

Laboratory QC within limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Michaelflul

Authorized Signature

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result In a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

∇erification Only of Fill an	d Seal		to DNR Bureau: Prinking Water	[Watershed/Wa	stewater	Remed	liation/Redevelopmen		
			Vaste Managemer	nt [Other:					
1. Well Location Information			ELECTION OF	2. Facil	ity / Owner Info	rmation	00 KA 300	4 5 1 2 2 2		
County WI Unique Removed V		Hicap #			mer one	How M	artini	ZINS		
Latitude / Longitude (see instructions)	Format		Method Code GPS008 SCR002	40	O (FID or PWS) SOO Y Y9 Permit/Monitoring i	<u>)</u>		Ų		
87.9756513	w 🗆	DDM	OTH001		MW-12					
1/1/2 Nu) 1/4 SE S or Gov't Lot #	ection Tov	vnship	Range Z E	Original V	Ren Ech	AP IN	rem 129	ite LLC		
Well Street Address	100			GB	Well Owner	told In	No fac	all LLL		
Well City, Village or Town	,		ZIP Code 4302		Address of Present	Owner	St.			
Subdivision Name	Lot#				resent Owner		State W.J.	ZIP Code 54301		
Reason for Removal from Service	WI Unique We	ll # of Re	eplacement Well		p, Liner, Scree		Sealing Mat	7 (-1)		
Sampline Complete				1	and piping removes) removed?	eur	<u>_</u>	Yes No No		
3. Filled & Sealed Well / Drillho	ginal Construct	THE PERSON NAMED IN	Marie Charles and the same of		s) perforated?		F	Yes No No		
Monitoring Well	W/5	116	(mmaayyyy)	Scree	en removed?		Ē	Yes □ No ☑ N/		
Water Well	1/0	1 1 %) 	Casin	g left in place?			Yes No No N		
D	a vveii Construc ease attach.	коп кер	oort is available,	Was	casing cut off belov	w surface?	Σ	Yes No No		
Construction Type:		Did se	ealing materlal rise	to surface?	Z	Yes No No				
Drilled Driven (San	ıg	Did m	naterial settle after	24 hours?		Yes No No				
Other (specify):					yes, was hole reto	• •]Yes 🗌 No 📈 N		
Formation Type:					ntonite chips were u water from a knowr	and the problem of the second of the stable of	hydrated	Yes ∏No ⊠N		
Unconsolidated Formation	Bed	rock			d Method of Placin		rial			
Total Well Depth From Ground Surface	ce (ft.) Casino	Diamet	er (in.)		onductor Pipe-Grav		ctor Pipe-Pun	nped		
13	Ed and Colon Colon	2			creened & Poured	Other	(Explain):			
Lower Drillhole Diameter (in.)	Casino	Depth (ft.)		entonite Chips) Materials					
		1-7)	1	eat Cement Grout		Concret	.e		
		15	Σ		and-Cement (Conc	rete) Grout	Bentonit	te Chips		
Was well annular space grouted?	Yes	✓ No	o Unknown		nitoring Wells and I			•		
If yes, to what depth (feet)?	Depth to Wa	ter (feet)		entonite Chips		entonite - Cer			
	3	4r	La		ranular Bentonite		entonite - Sar	nd Slurry		
5. Material Used to Fill Well / D	rillhole	70-		From (No Yards Sa	cks Sealant o	r Mix Ratio or		
							circle one)	Mud Weight		
3/K" Bentinite Ch	-€P-			Surfa	ice 13	0.3	3 Kayes			
10 11 11 11 11 11 11 11 11 11 11 11 11 1				+						
6. Comments	7 1 1 7 7 P	THE S			SATE VELLE	WHE ST	4-07-	EXECUTE VENEZIONE		
7 Commend in 18 Mart										
7. Supervision of Work Name of Person or Firm Doing Filling	& Sealing L	icense #	Date of F	illing & Se	ealing or Verification	n Date Receiv	DNR Us	Noted By		
CAMPAL Exampling Co	MA 02/			(yyy) 7	1			1000 To 1000		
Street or Route	m 7.			Telephone	Number	Comments				
916 SWON LOUS	Unive			(107)	742 2169					
City Portuge	Stat V	-	P Code	Signatu	re of Person Doing	Work	D	Pate Signed		
- V					0					

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally Identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information. Route to DNR Bureau: Watershed/Wastewater X Remediation/Redevelopment **Drinking Water** Verification Only of Fill and Seal Other: Waste Management 2. Facility / Owner Information 1. Well Location Information WI Unique Well # of Facility Name Hicap # County Removed Well DOM NO. CILL V Facility ID (FID or PWS) Latitude / Longitude (see instructions) Format Code Method Code GPS008 **図DD** N License/Permit/Monitoring# **SCR002 DDM** W OTH001 Original Well Owner Section Township Range ME or Gov't Lot # Present Well Owner Well Street Address 1423 Mailing Address of Present Owner Well ZIP Code Well City, Village or Town 54302 ZIP Code City of Present Owner State Subdivision Name 5430 CIRPA 4. Pump, Liner, Screen, Casing & Sealing Material Reason for Removal from Service WI Unique Well # of Replacement Well N/A Pump and piping removed? No X N/A Yes Liner(s) removed? 3. Filled & Sealed Well / Drillhole / Borehole Information Yes No N/A Liner(s) perforated? Original Construction Date (mm/dd/yyyy) Monitoring Well No Screen removed? 又 N/A Water Well N/A Casing left in place? No Yes If a Well Construction Report is available, Borehole / Drillhole Was casing cut off below surface? Yes No N/A please attach. No N/A Did sealing material rise to surface? Yes Construction Type: Dld material settle after 24 hours? Yes 习No N/A > Drilled Driven (Sandpoint) Dug If ves, was hole retopped? l No ∦ N/A Yes Other (specify): If bentonite chips were used, were they hydrated Formation Type: No X N/A with water from a known safe source? Required Method of Placing Sealing Material Unconsolidated Formation Bedrock X Conductor Pipe-Gravity Conductor Pipe-Pumped Total Well Depth From Ground Surface (ft.) Casing Diameter (in.) Screened & Poured Other (Explain): (Bentonite Chips) Lower Drillhole Diameter (in.) Casing Depth (ft.) Sealing Materials Neat Cement Grout Concrete Sand-Cement (Concrete) Grout Bentonite Chips Was well annular space grouted? Yes V No Unknown For Monitoring Wells and Monitoring Well Boreholes Only: If yes, to what depth (feet)? Depth to Water (feet) | | Bentonite Chips Bentonite - Cement Grout MA Granular Bentonite Bentonite - Sand Slurry ards, Sacks Sealant or 5. Material Used to Fill Well / Drillhole From (ft.) To (ft.) Volume (circle one) Surface Montania Ch 6. Comments 7. Supervision of Work **DNR Use Only** Name of Person or Firm Doing Filling & Sealing License # Date of Filling & Sealing or Verification **Date Received** Noted By (mm/dd/yyyy) Street or Route Telephone Number Comments 1) 148 2161 City ZIP Code Signature of Person Doing Work State **Date Signed** 1227

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

	Route to DNR Bureau:										
Verification Only of Fil	l and Seal		rinking Water		ion/Redevelopment						
		U W	aste Managemen	t _	Other:						
1. Well Location Informatio		MARKET IN			/ / Owner Inform	nation		40年中全海			
	ique Well # of ved Well	Hicap #		Facility Nan		NI	1 2 2				
Brunn -	vod vvon		1990	Tolo	MEDIAN L	ONLY IX	107 11 MIS	17:5			
Latitude / Longitude (see instructi	ons) Form	at Code	Method Code		(FID or PWS)			U			
44,493013	N	⊒DD	GPS008	License/Permit/Monitoring #							
87,975,513	w F	DDM	SCR002								
74/74 N 1 1/4 C C					Original Well Owner						
or Gov't Lot #	1 2 Pw		Opni Edis	or TAU	insar 189	, LLC					
or Gov't Lot # 2 N Well Street Address					ell Owner						
1923 70	Strant			GR	1. Ex	Jon To	WINNER	il LLL			
Well City, Village or Town			ZIP Code	Mailing Ad	dress of Present O	wner	178				
Green 1	v2	15	4302	-	Harry Vier	. There to	1				
Subdivision Name		Lot #	.	City of Pre	sent Owner		200	ZIP Code			
						C - 1 - 2	MJ	54301			
Reason for Removal from Service WI Unique Well # of Replacement Well					, Liner, Screen, nd piping removed			res No N/A			
TOMPLAN CONSTRU					removed?		=	res No N/A			
3. Filled & Sealed Well / Drillhole / Borehole Information Original Construction Date (mm/dd/yyyy)					perforated?			Yes No NA			
Monitoring Well	Cliginal Constit	ction Date	(IIIIIIIIIIII)	Screen removed?							
Water Well	1120	10		Casing	left in place?			Yes No No N/A			
Borehole / Drillhole	If a Well Consti	ruction Rep	ort is available,	Was ca	sing cut off below s	surface?	[S])	Yes No N/A			
Construction Type:				Did sea	aling material rise to	surface?	ĬŽ,	Yes No NA			
Drilled Driver	(Sandpoint)	При	ıg	Did mat	terial settle after 24	hours?		Yes No N/A			
Other (specify):				If ye	es, was hole retopp	ed?	`	Yes 🗌 No 🔣 N/A			
Formation Type:				If bentonite chips were used, were they hydrated with water from a known safe source? Required Method of Placing Sealing Material Conductor Pipe-Gravity Conductor Pipe-Pumped Screened & Poured Other (Explain):							
Unconsolidated Formation	Пв	edrock									
Total Well Depth From Ground		ing Diamet	er (in.)								
13	,,,,	2	()								
Lower Drillhole Diameter (in.)	Cas	ing Depth (ff \	Sealing M	ntonite Chips)		(
Lower Diamote Diamoter (in.)	Į da	ing Deptin	,,		at Cement Grout		Concrete				
			Σ		id-Cement (Concre	te) Grout	Bentonite	Chips			
Was well annular space grouted	? Yes	s 🔯 N	Unknown		oring Wells and Mo	•		•			
If yes, to what depth (feet)?	Depth to	Water (feet			itonite Chips		Bentonite - Ceme				
21-00-puj	7		Los		nular Bentonite		Bentonite - Sand	Slurry			
5. Material Used to Fill We	all / Drillbole			From (ft		No. Yards, S	acks Sealant or	Mix Ratio or			
							(circle one)	Mud Weight			
3/1/ Kent-niv	ch to			Surfac	e 13		- Chart				
				-							
6. Comments			A CONTRACT	30 8 2	THE WAY TO SE	No water	MARIA TO SERVE	阿拉思斯			
7. Supervision of Work		1 0 1 1		identicaes as fa			DND II	Only			
Name of Person or Firm Doing	Filling & Sealing	License #	Date of	Filling & Sea	aling or Verification	Date Rece	DNR Use	Noted By			
PARKED EVER IN	Campin	1		уууу) 🤈 🏳		1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<i>(1010,000,000,000,000,000,000,000,000,00</i>			
Street or Route				Telephone N	Number	Comments	1				
916 S. Was Lo	ry Class			(10)	742 2169						
City	S		P Code	Signature	e of Person Doing V	Vork	Da	te Signed			
1 Winge		J.J.		1 1	2-	-		3年月16			
					1						

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., fallure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

☐ Verification Only of F	ill and Seal		to DNR Bureau: rinking Water /aste Managemer	Watershed/Wastewater Remediation/Redevelopmen						
1. Well Location Informat	ion			2. Facility / Owner Information						
County WI	Jnique Well # of noved Well	Hicap #		Facility Name Forms One Down Markin 2005 Facility ID (FID or PWS)						
Latitude / Longitude (see instru	N	mat Code DDD	Method Code GPS008 SCR002 OTH001	License/Permit/Monitoring #						
14/14 ∫ 14 14 15 16 17 17 17 17 17 17 17 17	Section	Township	Range X E	1000						
Well Street Address	Servi			Present Well Owner GRANNE END INVESTMENT OF THE						
Well City, Village or Town	3		ZIP Code 4302	Mailing Address of Present Owner						
Subdivision Name	_	Lot #	'	City of Present Owner Crep. 2 ZIP Code 54301						
	s - F		eplacement Well	4. Pump, Liner, Screen, Casing & Sealing Material Pump and piping removed? Liner(s) removed? Yes No X N						
3. Filled & Sealed Well / I Monitoring Well Water Well	Orillhole / Borel			Liner(s) perforated? Screen removed? Casing left in place? Yes No X N Yes No X N						
Borehole / Drillhole	If a Well Cons please attach.		ort is available,	Was casing cut off below surface? Did sealing material rise to surface? Yes No						
Construction Type: Drilled Driv Other (specify): Formation Type:	en (Sandpoint)	Du	9	Did material settle after 24 hours? If yes, was hole retopped? If bentonite chips were used, were they hydrated						
Unconsolidated Formatio	n 🔲 !	Bedrock		Required Method of Placing Sealing Material						
Total Well Depth From Ground		sing Diamete	· ·	Conductor Pipe-Gravity Conductor Pipe-Pumped Screened & Poured (Bentonite Chips) Other (Explain):						
Lower Drillhole Diameter (in.)	Ca	sing Depth (ft.)	Sealing Materials Neat Cement Grout Concrete Sand-Cement (Concrete) Grout Bentonite Chips						
Was well annular space groute If yes, to what depth (feet)?		water (feet								
Maria di America	The Alley	10	4	Granular Bentonite Bentonite - Sand Slurry						
5. Material Used to Fill V				From (ft.) To (ft.) No. Yards, Sacks Sealant or Volume (circle one) Mud Weight Surface 13 Mix Ratio or Mud Weight						
6. Comments										
7. Supervision of Work Name of Person or Firm Doin	g Filling & Sealing	License #		f Filling & Sealing or Verification Date Received Noted By						
Street or Roule	oule Tel			Telephone Number Comments						
City		State ZII	P Code	Signature of Person Doing Work Date Signed						

PHOTOGRAPH FROM SOUTHEAST CORNER OF SITE VIEWING TOWARD THE NORTH ALONG THE STORMWATER MANAGEMENT AREA

PHOTOGRAPH FROM THE SOUTHEAST CORNER OF THE PROPERTY VIEWING TO THE NORTHWEST

PHOTOGRAPH OF MW-1/PZ-1 VIEWING FROM THE SOUTHWEST TOWARD THE NORTHEAST

PHOTOGRAPH OF MW-9 NEAR THE WESTERN PROPERTY BOUNDARY

PHOTOGRAPH FROM NEAR THE SOUTHWEST CORNER OF THE PROPERTY VIEWING TOWARD THE EAST

PHOTOGRAPH OF THE WESTERN PORTION OF THE CONSTRUCTED FAMILIA DENTAL BUILDING

PHOTOGRAPH OF PAVED AREA AROUND MW-3 VIEWING TOWARD THE WEST AND THE ADJOINING ARBY'S CONSTRUCTION

PHOTOGRAPH OF PAVED AREA AROUND MW-4 VIEWING TO THE SOUTHEAST TOWARD THE FAMILIA DENTAL BUILDING

PHOTOGRAPH OF STORMWATER DETENTION AREA ON THE NORTHERN PORTION OF THE WESTERN ADJOINING PROPERTY AND THE BERM ON THE NORTHERN PORTION OF THE SUBJECT PROPERTY

PHOTOGRAPH OF THE BERM AREA VIEWING FROM THE NORTHWESTERN PORTION OF THE PROEPRTY TOWARD THE SOUTHWEST

PHOTOGRAPH OF BERM AREA ALONG THE NORTHEASTERN PORTION OF THE PROPERTY VIEWING TOWARD THE SOUTHEAST

PHOTOGRAPH OF BERM AREA ALONG THE NORTHEASTERN PORTION OF THE PROPERTY VIEWING TOWARD THE SOUTHEAST

PHOTOGRAPH OF TW-5 NEAR THE SOUTHWESTERN PORTION OF THE FAMILIA DENTAL BUILDING

PHOTOGRAPH OF MW-12 NEAR NORTHWEST CORNER OF THE PROPERTY

PHOTOGRAPH OF PAVED AREA ALONG THE WESTERN PORTION OF THE FAMILIA DENTAL BUILDING VIEWING TOWARD THE SOUTHWEST

PHOTOGRAPH OF THE BERM AREA ALONG THE NORTHEASTERN PORTION OF THE PROPERTY VIEWING TOWARD THE NORTHWEST

PHOTOGRAPH FROM NEAR THE NORTHEAST CORNER OF THE SUBJECT PROPERTY VIEWING TOWARD THE SOUTHWEST

PHOTOGRAPH OF VAPOR MITIGATION SYSTEM PIPING AND OTHER BUILDING PLUMBING VIEWING FROM THE NORTHWEST TOWARD THE SOUTHEAST