Cover Sheet

Source Pr	operty Information		CLOSURE DATE: Mar 5, 2012					
RRTS #:	03-61-000357							
CTIVITY NAME:	STETSONVILLE OIL		FID #: 861044470					
ROPERTY ADDRE	SS: 115 S HWY 13	115 S HWY 13						
MUNICIPALITY:		STETSONVILLE						
ARCEL ID #:	181-00083-0004							
	*WTM COORDINATES:		WTM COORDINATES REPRESENT:					
	X: 495203 Y: 511506	C	Approximate Center Of Contaminant Source					
	* Coordinates are in WTM83, NAD83 (1991)	•	Approximate Source Parcel Center					
ease check as ap	ppropriate: (BRRTS Action Code)							
	Con	ntaminated	d Media:					
X	Groundwater Contamination > ES (236		Soil Contamination > *RCL or **SSRCL (232)					
-	Contamination in ROW		ズ Contamination in ROW					
	▼ Off-Source Contamination		▼ Off-Source Contamination					
	(note: for list of off-source properties see "Impacted Off-Source Property" form)		(note: for list of off-source properties see "Impacted Off-Source Property" form)					
	La	and Use Co	ontrols:					
	N/A (Not Applicable)		Cover or Barrier (222)					
	Soil: maintain industrial zoning (2	220)	(note: maintenance plan for					
	(note: soil contamination concentrations		groundwater or direct contact) Vapor Mitigation (226)					
	between non-industrial and industrial level: Structural Impediment (224)	5)						
	Site Specific Condition (228)		Maintain Liability Exemption (230) (note: local government unit or economic development corporation was directed to take a response action)					
	N	lonitoring	Wells:					
	Are all monitoring we	lls properly al	bandoned per NR 141? (234)					
	○ Yes	No	○ N/A					
			* Posidual Contaminant Loyal					

^{*} Residual Contaminant Level

^{**}Site Specific Residual Contaminant Level

State of Wisconsin	GIS Registry Checklist				
Department of Natural Resources	Form 4400-245 (R 3/10)	Page 1 of 3			
http://dnr.wi.gov	101111 4400 243 (11 3/10)	rage rors			

This Adobe Fillable form is intended to provide a list of information that is required for evaluation for case closure. It is to be used in conjunction with Form 4400-202, Case Closure Request. The closure of a case means that the Department has determined that no further response is required at that time based on the information that has been submitted to the Department.

NOTICE: Completion of this form is mandatory for applications for case closure pursuant to ch. 292, Wis. Stats. and ch. NR 726, Wis. Adm. Code, including cases closed under ch. NR 746 and ch. NR 726. The Department will not consider, or act upon your application, unless all applicable sections are completed on this form and the closure fee and any other applicable fees, required under ch. NR 749, Wis. Adm. Code, Table 1 are included. It is not the Department's intention to use any personally identifiable information from this form for any purpose other than reviewing closure requests and determining the need for additional response action. The Department may provide this information to requesters as required by Wisconsin's Open Records law [ss. 19.31 - 19.39, Wis. Stats.].

BRRTS #:	03-61-000357	PARCEL ID #:	181-00083-0004						
ACTIVITY NAME:	STETSONVILLE OIL		WTM COORDINATES:	X: 495203 Y: 511506					
CLOSURE DOCU	IMENTS (the Departm	nent adds these items to the f	inal GIS packet for posting o	on the Registry)					
⋉ Closure Lette	r								
	Maintenance Plan (if activity is closed with a land use limitation or condition (land use control) under s. 292.12, Wis. Stats.)								
▼ Continuing Obligation Cover Letter (for property owners affected by residual contamination and/or continuing obligations)									
▼ Conditional Closure Letter									
☐ Certificate of	Certificate of Completion (COC) (for VPLE sites)								

SOURCE LEGAL DOCUMENTS

- Deed: The most recent deed as well as legal descriptions, for the Source Property (where the contamination originated). Deeds for other, off-source (off-site) properties are located in the **Notification** section.
 - **Note:** If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.
- ▼ Certified Survey Map: A copy of the certified survey map or the relevant section of the recorded plat map for those properties where the legal description in the most recent deed refers to a certified survey map or a recorded plat map. (lots on subdivided or platted property (e.g. lot 2 of xyz subdivision)).

Figure #: Title:

Signed Statement: A statement signed by the Responsible Party (RP), which states that he or she believes that the attached legal description accurately describes the correct contaminated property.

MAPS (meeting the visual aid requirements of s. NR 716.15(2)(h))

Maps must be no larger than 11 x 17 inches unless the map is submitted electronically.

Location Map: A map outlining all properties within the contaminated site boundaries on a U.S.G.S. topographic map or plat map in sufficient detail to permit easy location of all parcels. If groundwater standards are exceeded, include the location of all potable wells within 1200 feet of the site.

Note: Due to security reasons municipal wells are not identified on GIS Packet maps. However, the locations of these municipal wells must be identified on Case Closure Request maps.

Figure #: Title: Site Location Map

- Detailed Site Map: A map that shows all relevant features (buildings, roads, individual property boundaries, contaminant sources, utility lines, monitoring wells and potable wells) within the contaminated area. This map is to show the location of all contaminated public streets, and highway and railroad rights-of-way in relation to the source property and in relation to the boundaries of groundwater contamination exceeding a ch. NR 140 Enforcement Standard (ES), and/or in relation to the boundaries of soil contamination exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Levels (SSRCL) as determined under s. NR 720.09, 720.11 and 720.19.
 - Figure #: Title: Site Layout and Soil Boring/Monitoring Well Location
- Soil Contamination Contour Map: For sites closing with residual soil contamination, this map is to show the location of all contaminated soil and a single contour showing the horizontal extent of each area of contiguous residual soil contamination that exceeds a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL) as determined under s. NR 720.09, 720.11 and 720.19.

Figure #: Title: Soil Contaminant Plume Map

State of Wisconsin Department of Natural Re http://dnr.wi.gov	esources	GIS Registry Che Form 4400-245	ecklist (R 4/08)	Page 2 of 3
BRRTS #: 03-61-000357	ACTIVITY NAME: Stets	onville Oil Co.		
MAPS (continued)			-	
ch. NR 140 Enforcement	ction Map: A map showing the source location and ve evel (RCL) or a Site Specific Residual Contaminant Le Standard (ES) when closure is requested, show the s nd locations and elevations of geologic units, bedrock	vel (SSRCL). If grou	ndwater conta	
Figure #: 4.2	Title: Geologic Cross-Section Plan View			
Figure #: 4.3, 4.4	Title: Geologic Cross-Section A-A', Geologic Cro	oss-Section B-B'		
omone of all ground water	oncentration Map: For sites closing with residual grou contamination exceeding a ch. NR140 Preventive Act date of groundwater flow, based on the most recent s undwater.	IAN Limit (UAL Land)	on Enforcement	4 04-11 3-11 / 12 04
Figure #:	Title: GROUNDWATER Plume Map (Monitoring \	Wells), Private Well	Contamination	on Map
X Groundwater Flow then 20° over the history of	Direction Map: A map that represents groundwater of the site, submit 2 groundwater flow maps showing t	movement at the site he maximum variatio	e. If the flow direc	ection varies by more tion.
Figure #:	Title: Potentiometric Surface Map			
TABLES /				
Tables must be no larger t	uirements of s. NR 716.15(2)(h) than 8.5 x 14 inches unless the table is submitted elec of BOLD or <i>ITALICS</i> is acceptable.	ctronically. Tables m	nust not contair	n shading and/or
table of teering for the coll	A table showing remaining soil contamination with an taminants of concern. Contaminants of concern are the lit may be necessary to create a new table to meet this	lose that were found	collection dates during the site	s. Note: This is one investigation, that
Figure #: 2.3, 2.4, 4.2, 1,	2 Title: IFA Soil Boring Analytical Results, IFA Soi Analytical Results, Feasibility Boring Analy	il Excavation Analy ytical Results, Soil	tical Results, Analytical Re	Soil Boring Sample sults
X_ Groundwater Analyti and any potable wells for v	cal Table: Table(s) that show the most recent analytic which samples have been collected.	cal results and collec	ction dates, for	all monitoring wells
Figure #:	Title: Groundwater Analytical Results Summary (Jack's Auto, Stetso	onville Oil, and	d Private Wells)
X Water Level Elevation monitoring wells. If present	ons: Table(s) that show the previous four (at minimum t, free product is to be noted on the table.) water level elevatio	n measureme	nts/dates from all
Figure #:	Title: Watertable Elevation Table (Jack's Auto and	d Stetsonville Oil)		
For each monitoring well no Note: If the site is being lis	IED MONITORING WELLS of properly abandoned according to requirements of seted on the GIS Registry for only an improperly abandofor the GIS Registry Packet.	s. NR 141.25 include oned monitoring well	the following o	documents. need to submit the
Not Applicable	,			
The secon property abandon	p: A map showing all surveyed monitoring wells with s led. nitoring wells are distinctly identified on the Detailed Si			
	Title: FMI Soil Boring/Monitoring Well Locations		saon map to III	noodod,
	n Report: Form 4440-113A for the applicable monitori	ing wells.		
	ecent deed as well as legal descriptions for each prope		ing well was no	ot properly

X Notification Letter: Copy of the notification letter to the affected property owner(s).

State of Wisconsin

Department of Natural Resources http://dnr.wi.gov

GIS Registry Checklist
Form 4400-245 (R 4/08) Page 3 of 3

BRRTS #: 03-61-000357

ACTIVITY NAME: Stetsonviile Oil Co.

NOTIFICATIONS

Source Property

<u>N/A</u> Letter To Current Source Property Owner: If the source property is owned by someone other than the person who is applying for case closure, include a copy of the letter notifying the current owner of the source property that case closure has been requested.

<u>N/A</u> Return Receipt/Signature Confirmation: Written proof of date on which confirmation was received for notifying current source property owner.

Off-Source Property

Group the following information per individual property and label each group according to alphabetic listing on the "Impacted Off-Source Property" attachment.

X Letter To "Off-Source" Property Owners: Copies of all letters sent by the Responsible Party (RP) to owners of properties with groundwater exceeding an Enforcement Standard (ES), and to owners of properties that will be affected by a land use control under s. 292.12, Wis. Stats.

Note: Letters sent to off-source properties regarding residual contamination must contain standard provisions in Appendix A of ch. NR 726.

Number of "Off-Source" Letters: 19

- X Return Receipt/Signature Confirmation: Written proof of date on which confirmation was received for notifying any off-source property owner.
- X Deed of "Off-Source" Property: The most recent deed(s) as well as legal descriptions, for all affected deeded off-source property(ies). This does not apply to right-of-ways.

Note: If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.

N/A Letter To "Governmental Unit/Right-Of-Way" Owners: Copies of all letters sent by the Responsible Party (RP) to a city, village, municipality, state agency or any other entity responsible for maintenance of a public street, highway, or railroad right-of-way, within or partially within the contaminated area, for contamination exceeding a groundwater Enforcement Standard (ES) and/or soil exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL).

Number of "Governmental Unit/Right-Of-Way Owner" Letters: 3

State of Wisconsin
DEPARTMENT OF NATURAL RESOURCES
107 Sutliff Avenue
Rhinelander WI 54501-3349

Scott Walker, Governor Cathy Stepp, Secretary Telephone 608-266-2621 Toll Free 1-888-936-7463 TTY Access via relay - 711

March 5, 2012

Mr. Brian Dahl Stetsonville Oil Company 115 S. STH 13 Stetsonville, WI 54480

KEEP THIS DOCUMENT WITH YOUR PROPERTY RECORDS

SUBJECT:

Final Case Closure with Continuing Obligations

Stetsonville Oil Company, 115 S. STH 13, Stetsonville, WI

WDNR BRRTS Activity #: 03-61-000357

Dear Mr. Dahl:

The Department of Natural Resources ("DNR") considers the Stetsonville Oil Company site referenced above ("Property") closed, with continuing obligations. No further investigation or remediation is required at this time. However, you and future property owners must comply with the continuing obligations as explained in the conditions of closure in this letter. Please read over this letter closely to ensure that you comply with all conditions and other on-going requirements. Provide this letter to anyone who purchases this property from you.

The DNR's Northern Region Closure Committee reviewed the request for closure on May 17, 2011. The Closure Committee reviews environmental remediation cases for compliance with state laws and standards to maintain consistency in the closure of these cases. A conditional closure letter was issued by the DNR on May 23, 2011, and documentation that the conditions in that letter were met was received on June 20, 2011 and January 5, 2012. This final closure decision is based on the correspondence and data provided, and is issued under ch. NR 726, Wisconsin Administrative Code.

Continuing Obligations

- The continuing obligations for this site are summarized below. Further details on actions required are found in the section Closure Conditions.
- Groundwater contamination is present above ch. NR 140, Wis. Adm. Code enforcement standards.
- Residual soil contamination exists that must be properly managed should it be excavated or removed.
- One or more monitoring wells were not located and must be properly filled and sealed if found.
- If a structural impediment that obstructed a complete site investigation or cleanup is removed or modified, additional environmental work must be completed.

GIS Registry

This site will be listed on the Remediation and Redevelopment Program's internet accessible Geographic Information System (GIS) Registry, to provide notice of residual contamination and of any continuing obligations. DNR approval prior to well construction or reconstruction is required for all sites shown on the GIS Registry, in accordance with s. NR 812.09(4) (w), Wis. Adm. Code. To obtain approval, complete and submit Form 3300-254 to the DNR Drinking and Groundwater program's regional water supply specialist. This form can be obtained on-line at http://dnr.wi.gov/org/water/dwg/3300254.pdf or at the web address listed below for the GIS Registry.

All site information is also on file at the Northern Regional DNR office, at 107 Sutliff Avenue, Rhinelander. This letter and information that was submitted with your closure request application will be included on the GIS Registry in a PDF attachment. To review the site on the GIS Registry web page, visit the RR Sites Map page at http://dnr.wi.gov/org/aw/rr/gis/index.htm.

Closure Conditions

Compliance with the requirements of this letter is a responsibility to which you and any subsequent property owners must adhere. DNR staff will conduct periodic prearranged inspections to ensure that the conditions included in this letter and the attached maintenance plans are met. If these requirements are not followed, the DNR may take enforcement action under s. 292.11, Wisconsin Statutes to ensure compliance with the specified requirements, limitations or other conditions related to the property.

Residual Groundwater Contamination (ch. NR 140, 812, Wis. Adm. Code)

Groundwater contamination greater than enforcement standards is present both on and off this contaminated property, as shown on Figure 2: Site Layout & Soil Boring/Monitoring Well Location Groundwater Contamination Plume Map (Private Wells) prepared by Northern Environmental on October 2, 2006 which is attached. Affected property owners were notified of the presence of groundwater contamination. If you intend to construct a new well, or reconstruct an existing well, you'll need prior DNR approval.

Residual Soil Contamination (ch. NR 718, chs. 500 to 536, Wis. Adm. Code or ch. 289, Wis. Stats.)

Soil contamination remains on and off the Property as indicated on Soil Contamination Plume Map which is attached. If soil in the specific locations described above is excavated in the future, the property owner at the time of excavation must sample and analyze the excavated soil to determine if contamination remains. If sampling confirms that contamination is present, the property owner at the time of excavation will need to determine whether the material is considered solid or hazardous waste and ensure that any storage, treatment or disposal is in compliance with applicable standards and rules. In addition, all current and future owners and occupants of the property need to be aware that excavation of the contaminated soil may pose an inhalation or other direct contact hazard and as a result special precautions may need to be taken to prevent a direct contact health threat to humans.

Monitoring Wells that could not be Properly Filled and Sealed (ch. NR 141, Wis. Adm. Code)

Monitoring well(s) MW-3 and PZ-11 located on the Property and at 134 S. STH 13 as shown on the attached FMI Soil Boring/Monitoring Well Locations Map as modified by METCO on March 10, 2011, could not be properly filled and sealed because they were missing due to being paved over, covered or removed during site development activities. Your consultant made a reasonable effort to locate the well and to determine whether it was properly filled and sealed, but was unsuccessful. You may be held

liable for any problems associated with the monitoring wells if they create a conduit for contaminants to enter groundwater. If the groundwater monitoring well is found, the then current owner of the property on which the well is located is required to notify the DNR, to properly fill and seal the wells and to submit the required documentation to the DNR.

Structural Impediments (s. 292.12 (2) (b), Wis. Stats.)

State Highway 13 and property development on the east side of State Highway 13, as shown on Figure 2, made complete investigation and/or remediation of the soil contamination impracticable. If the structural impediment is to be removed, the property owner shall notify the DNR before removal and conduct an investigation of the degree and extent of petroleum contamination below the structural impediment. If contamination is found at that time, the contamination shall be properly remediated in accordance with applicable statutes and rules.

PECFA Reimbursement

Section 101.143, Wis. Stats., requires that Petroleum Environmental Cleanup Fund Award (PECFA) claimants seeking reimbursement of interest costs, for sites with petroleum contamination, submit a final reimbursement claim within 120 days after they receive a closure letter on their site. For claims not received by the PECFA Program within 120 days of the date of this letter, interest costs after 60 days of the date of this letter will not be eligible for PECFA reimbursement. If there is equipment purchased with PECFA funds remaining at the site, contact the Department of Safety and Professional Services PECFA Program to determine the method for salvaging the equipment.

The following DNR fact sheet, "Continuing Obligations for Environmental Protection", RR-819, was included with this letter, to help explain a property owner's responsibility for continuing obligations on their property. If the fact sheet is lost, you may obtain a copy at http://dnr.wi.gov/org/aw/rr/archives/pubs/RR819.pdf.

Please send written notifications in accordance with the above requirements to the attention of John Sager, Remediation and Redevelopment Hydrogeologist at the above address. Please be aware that the case may be reopened pursuant to s. NR 726.09, Wis. Adm. Code, if additional information regarding site conditions indicates that contamination on or from the site poses a threat to public health, safety, or welfare or to the environment.

The DNR appreciates your efforts to restore the environment at this site. If you have any questions regarding this closure decision or anything outlined in this letter, please contact John Sager at (715) 365-8959.

Sincerely.

John-Rebinson

Northern Region Team Supervisor

Remediation & Redevelopment Program

Attachments:

- Figure 2: Site Layout & Soil Boring/Monitoring Well Location Groundwater Contamination Plume Map (Private Wells)
- Soil Contamination Plume Map
- FMI Soil Boring/Monitoring Well Locations
- RR 819: Continuing Obligations for Environmental Protection

cc: Bill Dobbins, DGW, Rhinelander Dee Lance, DSPS Jason Powell, METCO

State of Wisconsin
DEPARTMENT OF NATURAL RESOURCES
Northern Region Headquarters
107 Sutliff Avenue
Rhinelander WI 54501-3349

Scott Walker, Governor Cathy Stepp, Secretary John Gozdzialski, Regional Director Telephone 715-365-8900 FAX 715-365-8932 TTY Access via relay - 711

May 23, 2011

Mr. Brian Dahl Stetsonville Oil Company 115 S. STH 13 Stetsonville, WI 54480

Subject:

Conditional Closure Decision,

With Requirements to Achieve Final Closure

Stetsonville Oil Company, 115 S. STH 13, Stetsonville, Wisconsin

WDNR BRRTS Activity # 03-61-000357

Dear Mr. Dahl:

On May 17, 2011, the Department of Natural Resources ("Department") Northern Region Closure Committee ("Closure Committee") reviewed your request for closure of the environmental investigation and remedial action associated with the petroleum release at the property described above ("Site"). The Closure Committee reviews environmental investigation and remedial action activities for compliance with Wisconsin Statute and Administrative Code to maintain closure consistency. After review of the closure request, the Department has determined that the petroleum release from the former underground storage tanks appears to have been investigated and remediated to the extent practicable under site conditions in accordance with s. NR 726.05, Wisconsin Administrative Code. This Site will receive final closure if the following conditions are satisfied:

- Properties in the Village of Stetsonville are connected to the Village of Stetsonville municipal water supply.
- Private potable water supply wells in the Village of Stetsonville are abandoned per NR812
 Wisconsin Administrative Code.
- Monitoring wells associated with the Site investigation are abandoned in accordance with ch. NR 141, Wisconsin Administrative Code.
- Any remaining purge water, waste and/or soil piles generated as part of site investigation or remediation activities must be removed from the site and disposed of or treated in accordance with Wisconsin Statute and Administrative Code.

Once the above work is completed, please send documentation of monitoring well and potable well abandonment, municipal water supply connection and documentation of any waste disposal to John Sager. Well abandonment must be documented on Form 3300-005, found at http://dnr.wi.gov/org/water/dwg/gw/ or provided by the Department of Natural Resources.

Following closure this site will be listed on the Department's Remediation and Redevelopment Program Geographic Information System ("GIS") Registry. Information that was submitted with your closure request application will be included on the GIS Registry. To review the site on the GIS Registry web page, visit the RR Sites Map page at: http://dnr.wi.gov/org/aw/rr/gis/index.htm.

Please be aware that the case may be reopened pursuant to s. NR 726.09, Wis. Adm. Code, if additional information regarding site conditions indicates that contamination on or from the site poses a threat to public health, safety, or welfare or to the environment.

We appreciate your efforts to restore the environment at this site. If you have any questions regarding this letter, please contact me at (715) 365-8959.

Sincerely,

Jóhn Sager

⊮ydrogeologist

Remediation & Redevelopment Program

cc: Bill Dobbins, DGW, Rhinelander

Dee Lance, Commerce Dennis Legler, Commerce Jason Powell, METCO

Greg Brunner, Village of Stetsonville

Stan Charron, MSA

257980

Reelato Image 230

STATE BAR OF WISC "NSIN — FORM 3 QUIT" CHAIN, DEED THIS SPACE RESERVED FOR RECORDING DATA

wife Deed, fred L. Dahl and		SISTER'S OFFICE ss. unty of Taylor, Wis. ss.
quitelaims to Stetsonville Oil (ompany, Corporation	Inc., a Wisconsin HG	eived for record this & day of 44, 1995 at 11:28 o'clock A.M., microfilmed on Reel 240
Grantee for a valuable consideration		ecords on image 230
the following described real estate in Tay State of Wisconsin:	lor	Vel A. Lernke, Register of Deeds
A parcel of land located in the Northe Northeast Quarter (NET NFT), Section Township Thirty (30) North, Range One Principal Meridian, in Stetsonville, Todescribed as follows: Beginning at the of the centerline of Stetson Avenue and Main Street, said point also being the southerly along the centerline of said said Section 24, a distance of 280 feed described course a distance of 110 feed and/or concentric with and 19 feet normal track of Wisconsin Central Ltd.; I distance of 280 feet, more or less, to alwans, also being the North line of said senterline a distance of 110 feet, more	wenty-four (24), (1) East of the Fourth avior County, Wisconsin, Tax R e point of intersection This i d the centerline of Northeast corner of said Se Main Street, also being alo t; the ace westerly at right t, more or less, to a point mally distant casterly from thence northerly along last a point on the aforesaid cen	Sey #
encertine a discance of 110 feet, more	e or less, to the point of be	rty atong last said Rithning.
ubject to exceptions, reservations, ed	sements and restrictions of	record.
		EXEMPT(3)
Executed a Mediora, Wisconsin	1 2/ J 2m	
RIGHED AND RULLED IN PHERENCY OF	and the the state of the	14 mm 19 cm
	Fred L. Dalil	T (NFAL)
		· · · · (SFAL)
	Almira A. Dahl	·n
	(the said of	Colony Colons
1 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		· (SFAL)
Suprarures of	•	the second
suthingulated this and the second second	. 19	e e e e e e e e e e e e e e e e e e e
•	. •	
STATE OF Wiscomers	Tan Model Store bur it Woods Anton Coder S. Model	n or Con r Pany
Personally come torsie no ves the above exmed Fred L. told and Almera A.	Coffice of 1657	157,
d the kie which he the president who essented the following	a ween any of a stance soft profine	1 1
HIS INSTRUMENT WAS DRAFTED BY		Will have
Attorney Kehert I. Brandset Lauren und Brandser Fizz (dr.) 2. 2. 2. Medterd. 21 - Sankl Drumerfachungen ingenal	Kolhori 1. Dr.	contract of Markety
,	Water Patter Taylor	The state of the s
	the committee to the first till the	Softerat.

Numer of previous signing in any capitals it will be said at point (Let in the Englander)

Reel 24 Image 29/

REGISTER'S OFFICE 1 County of Taylor, Wis. } Repelved for record this 30 Hay of May, 1995 at 3:40 o'clock P. M. and microfilmed on Reel 240 of Repords on image

QUITCLAIM DEED

Marvel A. Lemke, Register of Deeds

THIS INDENTURE, Witnesseth that the Grantor, WISCONSIN CENTRAL LTD., a Corporation duly organized and existing under and by virtue of the laws of the State of Illinois, located at 6250 North River Road, Rosemont, Illinois 60018, for and in the consideration of TEN AND NO/100 (\$10.00) DOLLARS and other good and valuable consideration in hand paid, does hereby GRANT, CONVEY and QUIT CLAIM to the Grantee,

> STETSONVILLE OIL CO., INC. 300 West Martin Avenue Stetsonville, Wisconsin 54480

all right, title, and interest in and to the following described lands and property situated in the County of Taylor, and State of Wisconsin to wit:

SEE ATTACHED RIDER FOR LEGAL DESCRIPTION AND ALL CONDITIONS TO WHICH THIS CONVEYANCE IS SUBJECT

IN WITNESS WHEREOF, WISCONSIN CENTRAL LTD., the Grantor, has caused these presents to be signed by Thomas F. Power, Jr., its Executive Vice President, and its corporate seal, duly attested by Catherine Aldana, its Assistant Secretary to be hereunto affixed, they being thereunto duly authorized this 22nd day of January, 1992.

WISCONSIN CENTRAL LTD.

Thomas F. Power, Jr Executive Vice President

Attost:

Corporate

Seal

Catherine Aldana Assistant Secretary STATE OF ILLINCIS)
COUNTY OF COOK)

I, Arthur L. Spiros, a Notary Public, in and for the County of Cook, State of Illinois, Do Hereby Certify that Thomas F. Power Jr., personally known to me to be the Executive Vice President of WISCONSIN CENTRAL LTD., an Illinois Corporation and Catherine Aldana, personally known to me to be the Assistant Secretary of said corporation and personally known to me to be the same persons whose names are subscribed to the foregoing instrument, appeared before me this day in person and severally acknowledged under oath that as such Executive Vice President and Assistant Secretary, they signed and delivered the said instrument as Executive Vice President and Assistant Secretary of said corporation, and caused the corporate seal of said corporation to be affixed thereto, pursuant to authority given by the Board of Directors of said corporation as their free and voluntary act and as the free and voluntary act and deed of said corporation, for the uses and purposes therein set forth.

Given under my hand and seal this 22nd day of January, 1992.

y: (Mille

Notary Public

"OFFICIAL SEAL"
ANTHUM L SPINIOS
NUMBER SECTIAL OF ALLOSS
WHICHES SECTIAL OF ALLOSS

This instrument prepared by: Real Estate Department Wisconsin Central Ltd. P. O. Box 5062 Rosemont, Illinois 60917-5062

After recording, please return this document to:

Name:

Firm:

Address:

City:

State:

2 ip Code:

RIDER TO DEED

LEGAL DESCRIPTION:

A parcel of land in the Northeast Quarter of the Northeast Quarter of Section 24, Township 30 North, Range 1 East of the Principal Meridian in Stetsonville, Taylor County, Wisconsin, described as follows:

Beginning at the point of intersection of the South line of Taylor County Trunk Highway A (Stetson Avenue) and a line that lies parallel with and 100 feet normally distant westerly from the centerline of the main track of Wisconsin Central Ltd.;

Thence southerly along said parallel line a distance of 297 feet, more or less, to a point on the centerline of First Avenue

S.W., extended easterly;

Thence easterly along the last said centerline a distance of 70 feet, more or less, to a line that lies parallel with and 30 feet normally distant westerly from said main track centerline;

Thence northerly along the last said parallel line a distance of 297 feet, more or less, to a point on the South line of said Stetson Avenue;

Thence westerly along last said South line a distance of 70 feet, more or less, to the point of beginning.

Grantee covenants and agrees for itself, its successors, assigns, grantees, heirs and legal representatives, not to do or cause to be done any act that will unreasonably impede the flow of drainage water over the property conveyed herein which would adversely affect continuing rail operations. This covenant shall not be construed to prohibit the Grantee from erecting buildings or other improvements on the said property, provided that drainage equivalent to that which exists as of the date of this deed shall be maintained, whether naturally or by other means. This covenant shall run with the land.

Company (1987)

NE-NE-24-30-LE.

LOT 1 VOLUME 100 DEEDS, PAGE 376
2 SCHOOL LOT-NO DEED FOUND.
3 106 245
111 383 THIS PLAT WAS MADE BY ORDER OF THE VILLAGE BOARD OF STETSONVILLE, WISCONSIN FOR THE PURPOSE OF RECORDING AS AN ASSESSOR'S PLAY CERTAIN PARCELS OF LAND IN THE SAID VILLAGE, HEREON DESCRIBED BY THEIR VOLUME AND PAGE NUMBERS IN DEEDS AS RECORDED BY THE REGISTER OF DEEDS, TAYLOR COUNTY, WISCONSIN. SE-NE-24-30-IE. 245 383 PLAT MADE AND CERTIFIED BY: Edgar J. Carrington EBGAR J. CARRINGTON GOV. LOT 2-19-30-2E. 437 SEP 2 (1952 NW-NW-19-30-2E. PLAT APPROVED BY THE VILLAGE BOARD OF STETSONVILLE. 311 GOV. LOT 1-19-30-2E 146 ACKNOWLEDGED BY: Harred Hauser NE-NE-24-30-1E. HAROLD HAUSER PRESIDENT VILLAGE OF STETSONVILLE Frederik A Amacher FREDERICK A. AMACHER, CLERK VILLAGE OF STETSONVILLE

140773

Pressures Office | 88
19/100 Ca. His. | 60 or 2

Described to record this. Co or 2

Described to 19 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3-15 (1-1)
1 3

SOUTH 1/4 CORNER 18-30-2E-COUNTY HIGHWAY A'7 AVENUE STETSON WEST AVENUE 150 STETSON 15 15 ar.ż <u>6</u>0.L,1 22 20 14 3 13 13 BLOCK O.L. 3 12 12 48 47 171.01 S W AVENUE FIRST 10 10 8 150' SE 0.L.5 AVENUE S FIRST 150' D 0. L.6 13 12 12 LOT [-19-3 BLOC 0. L.7 Z GOV. NE - NE - 24-30-1E. 4 BLOC L ш 10 S α ۲ ا 0.L.8 S CKYNENNE 0. L. 9 SE S SECOND ESP 1 150° Q) 0. L.10 14 14 3 Q. OLLII . 13 4 BLOC . BLO BLOC ECOND 12 R S H R 0. L.12 11 49 10 10 0.L.13 SE 🖁 AVE. °23RD GOV LOT 2-19-30-2E. SE-NE-24-30-1E. 100' 100' VILLAGE LIMITS STETSONVILLE-ASSESSOR'S PLAT NO. I ASSESSOR'S PLAT LOT NUMBERS SHOWN IN BROWN

WDNR BRRTS Case #: <u>03-61-000357</u>
WDNR Site Name: Stetsonville Oil
•
Geographic Information System (GIS) Registry of Closed Remediation Site
In compliance with the revisions to the NR 700 rule series requiring certain closed sites to be listed on the Geographic Information System (GIS) Registry of Closed Remediation Sites (Registry) effective Nov., 2001, I have provided the following information.
To the best of my knowledge the legal descriptions provided and attached to this statement are complete and accurate.
Responsible Party:
Brian W. Dahl - Secretary / Treasure (print name/title)
(print name/title)
Brian 2. Dall 02-08-201/ (signature) (date)
(signature) (date)

TOPO! map printed on 04/21/11 from "wisconsin.tpo" and "Untitled.tpg" 90°19.000' W WG584 90°18.000' W Z. 45°05,000' 45°05,000' Stetsonville Oil Co Sacred Hea Stetsonvill Sewage Disposal Ponds 45°04.000" 45°04.000' 90°19.000' W WGS84 90°18.000' W TN MN COO FEET O _1000 METERS 2° Printed from TOPO! ©2001 National Geographic Holdings (www.topo.com)

SITE LOCATION MAP – CONTOUR INTERVAL 10 FEET STETSONVILLE OIL CO. – STETSONVILLE, WI SEAMLESS USGS TOPOGRAPHIC MAPS ON CD-ROM

Geologic Cross-Section B-B' Stetsonville Oil Company Site Stetsonville, Wisconsin

4.4

IFA Soil Boring Analytical Results Stetsonville Oil Company Site Stetsonville, Wisconsin April, 1992

Boring Interval (in feet)	(ppb) * 1,800* NA)* ND NA NA NA NA NA NA NA NA NA
Coning (in feet) (ppmt) (ppm) (ppm) (ppb)	(ppb) * 1,800* NA)* ND NA NA NA NA NA NA NA NA NA
TB-1 2.5-4.5 19.1* 20.5* 21* 80* 300* 100* 200* ND 1,80* TB-1 17.5-19.5 NA <6.5 <6.5 NA	* 1,800* NA NA ND NA NA NA NA NA O* 65,000*
TB-1 17.5-19.5 NA <6.5 <6.5 NA	NA ND NA NA NA NA O* 65,000*
TB-1 17.5-19.5 NA <0.5 <0.5 <0.5 NA NA ND NA	0* ND NA NA NA NA O* 65,000*
TB-2 12.5-14.5 NA <6.5 <6.5 NA	NA NA NA NA 0* 65,000*
TB-3/MW-1 5.0-7.0 NA <6.5 <6.5 NA	NA NA 0* 65,000*
TB-3/MW-1 12.5-14.5 NA <6.5 <6.5 NA NA <td>NA 0* 65,000*</td>	NA 0* 65,000*
TB-4 7.5-9.5 16.6* 1140* 1110* 59,600* 75,100* 31,200* 83,000* ND 26,30 TB-4 15.0-17.0 151 2,380 2,300 <1,100)* 65,000*
TB-4 7.5-9.5 16.6* 1140* 1110* 59,600* 75,100* 31,200* 83,000* ND 26,30 TB-4 15.0-17.0 151 2,380 2,300 <1,100	
TB-5 5.0-7.0 NA <6.5 897 4,000* 1,700 800* 1,600* <2,300 3,30	n 24000 i
10-0 0.0-1.0 1471 0.00 001 1,000 1,00	
1D-0 10.0*17.0 19/1 10.0 12 1.11	
TB-6 2.5-4.5 NA <6.5 <6.5 NA NA NA NA NA NA	NA
TB-6 12.5-14.5 5.6 <6.5 222 <500 2,200 3,800 9,200 <1, 900 7, 00	
TB-6 20.0-22.0 NA <6.5 15.5 <2.3 <4.7 <2.3 <9.4 <9.2 <4.	
TB-7/MW-2 7.5-9.5 12.1 547 398 11,500 1,400 2,100 5,700 <2,100 4,80) 4,900
TB-7/MW-2 10.0-12.0 8.3 150 173 3,100 <1,000 900 3,000 <2,100 3,50	
TB-7/MW-2 42.5-44.5 NA <6.5 <6.5 NA NA NA NA NA NA NA	NA
TB-8 12.5-14.5 NA <6.5 1,370 <600 8,400 6,200 31,400 <2,200 27,4	0 8,900
TB-8 15.0-17.0 NA <6.5 920 5,500 21,800 12,500 83,300 <2,000 67,3	0 20,800
TB-9 12.5-14.5 7.1 18.20 21.9 <3300 <6000 3,600 <13,000 <13,000 17,8	
TB-9 15.0-17.0 NA <6.5 <6.5 NA NA NA NA NA NA NA	NA
TB-10/MW-3 12.5-14.5 NA <6.5 330 <600 3,600 1,400 6,200 <2,200 11,8	0 4,700
TB-10/MW-3 25.0-27.0 NA <6.5 <6.5 NA NA NA NA NA NA NA	NA
TB-11 10.0-12.0 NA <6.5 1,280 <500 7,500 1,600 31,300 <2,000 41,5	0 13,500
TB-11 12.5-14.5 NA <6.5 <6.5 NA NA NA NA NA NA NA NA NA	NA
TB-12/MW-4 2.5-4.5 NA <6.5 <6.5 NA NA NA NA NA NA NA NA	NA
TB-12/MW-4 10.0-12.0 NA <6.5 <6.5 NA NA NA NA NA NA NA	
TB-13/MW-5 7.5-9.5 NA <5.9 <5.9 NA NA NA NA NA NA NA NA	NA NA
TB-13/MW-5 10.0-12.0 NA <5.9 <5.9 NA NA NA NA NA NA NA	NA
TB-14 7.5-9.5 9.9 10,200 <5.9 18,800 66,300 112,000 481,000 <8.3 268,000 10,000 112,000 481,000 112,00	
TB-14 10.0-12.0 7.5 1,140 <5.9 6,500 14,500 12,500 113,900 <8.3 80,7	
TB-16 10.0-12.0 NA <5.9 <5.9 NA NA NA NA NA NA NA NA	
TB-16 12.5-14.5 NA <5.9 <5.9 NA	NA
NR 720 Soil Cleanup Standard 50 100 100 5.5 2,900 1,500 4,100 NS NS	NS

Notes:

Bold indicates values exceeds the soil cleanup standard

(*) - This contamination was removed during soil excavation in May 1992

NA - Not Analyzed

ND - Not Detected

NS – No Standard

Source: IFA 1991

IFA – Inman-Foltz and Associates, Inc.

TMB - Trimethylbenzene

TPH - Total Petroleum Hydrocarbons

MTBE – Methyl t-butyl ether

Table 1
Laboratory Analysis of Soil Samples Collected on November 16, 1995

Analysis	Parameter	Units	MW-1 7.5-9.5 fbis	MW-1 10:0-12:0 fbis	MW-2 5.0 - 7.0 fbls	MW-2 7.5 - 9.5 fbls	MW-3 5.0 -7.0 fbis	MW-3 10.0 - 12.0 fbls
GRO-S	Gasoline Range Organics	mg/kg	4,400	1,700	2,200	2,300	1,900	2,700
VOC-S (*)	Benzene Bromomethane n-Butylbenzene sec-Butylbenzene Ethyl Benzene Isopropylbenzene p-Isopropyltoluene Naphthalene n-propylbenzene Toluene 1,2,4 - Trimethylbenzene 1,3,5 - Trimethylbenzene Xylenes, m+p Xylenes, o	µg/kg	46,000 ND 35,000 7,800 110,000 15,000 44,000 56,000 350,000 400,000 110,000 490,000	9,400 ND 16,000 3,300 680,000 7,000 3,400 29,000 31,000 210,000 170,000 52,000 280,000 110,000	2,500 360 5,700 1,300 19,000 2,300 3,000 7,300 8,700 54,000 63,000 19,000 67,000 28,000	9,500 ND 6,300 1,500 26,000 3,200 750 11,000 12,000 83,000 77,000 25,000 120,000 41,000	7,400 ND 4,100 980 16,000 1,900 520 5,800 7,400 53,000 43,000 14,000 62,000 23,000	13,000 ND 4,600 1,100 18,000 2,200 620 7,100 8,300 64,000 49,000 15,000 70,000 25,000
Pb-S	Lead.	mg/kg	12	7.7	8.7	16	6.8	8.4

ND = Not Detected

(*) = Only Volatile Organic Compounds detected are listed Please see Laboratory Report for Detection Limits

Table 1
Laboratory Analysis of Soil Samples Collected on November 16, 1995

Analysis	Parameter	Units	MFW-1 7.5 - 9:5 fbls	MW-1 10:0 - 12:0 fbls	MW-2 5.0 - 7.0 fbls	MW-2 7:5 - 9:5 fbls	MW-3 5.0 47:0 fbls	MW-3 10:0 - 12:0 fbls
GRO-S	Gasoline Range Organics	mg/kg	4,400	1,700	2,200	2,300	1,900	2,700
VOC-S (*)	Benzene Bromomethane n-Butylbenzene sec-Butylbenzene Ethyl Benzene Isopropylbenzene p-Isopropyltoluene Naphthalene n-propylbenzene Toluene 1,2,4 - Trimethylbenzene 1,3,5 - Trimethylbenzene Xylenes, m+p Xylenes, o	μg/kg	46,000 ND 35,000 7,800 110,000 15,000 44,000 56,000 350,000 400,000 110,000 490,000	9,400 ND 16,000 3,300 680,000 7,000 3,400 29,000 31,000 210,000 170,000 52,000 280,000 110,000	2,500 360 5,700 1,300 19,000 2,300 3,000 7,300 8,700 54,000 63,000 19,000 67,000 28,000	9,500 ND 6,300 1,500 26,000 3,200 750 11,000 12,000 83,000 77,000 25,000 120,000 41,000	7,400 ND 4,100 980 16,000 1,900 520 5,800 7,400 53,000 43,000 14,000 62,000 23,000	13,000 ND 4,600 1,100 18,000 2,200 620 7,100 8,300 64,000 49,000 15,000 70,000 25,000
Pb-S	Lead.	mg/kg	12	7.7	8.7	16	6.8	8.4

ND = Not Detected

(*) = Only Volatile Organic Compounds detected are listed

Please see Laboratory Report for Detection Limits

Table 2
Laboratory Analysis of Soil Samples Collected on February 13 and February 14, 1996

Analysis	Parameter	Units	MW-4 7.5=9.5 fbls	MW-4 10:0-42:0 fbls	MW-5 12.5 - 14:5 fbls	MW-6 10:0 = 12:0 fbls	MW-7 7.5 - 9.5 fbls	MW-7 10.0 - 12.0 fbl
GRO-S	Gasoline Range Organics	mg/kg	670	1,500	1,100	190	3,000	4,400
PVOC-S (*)	Benzene Ethyl Benzene Methyl-tert-butyl ether Toluene 1,2,4 - Trimethylbenzene 1,3,5 - Trimethylbenzene Xylenes, total	μg/kg	860 2,800 660 630 13,000 7,600	3,000 11,000 2,800 1,100 30,000 18,000 20,600	9,400 21,000 5,000 50,000 47,000 14,000	ND 320 ND ND 1,700 2,100 810	16,000 44,000 ND 120,000 95,000 32,000 209,000	39,000 70,000 ND 210,000 140,000 46,000 335,000
Pb-S	Lead	mg/kg	4.1	ND	5.8	3.7	5.1	6.9

ND = Not Detected

(*) = Only Volatile Organic Compounds Detected are Listed Please see Laboratory Report for Detection Limits

Table 3
Laboratory Analysis of Soil Samples Collected on July 24, 1996

Analyze	Parameter	Units	MW-8 9-11 fbls	MW-8a 8 - 10 fbls	MW-8a 10-15/bls	NIW-9 8 - 10 fbls	MW-9a 8 - 10 fbls	MW-10 11-13 fbis
GRO-S	Gasoline Range Organics	mg/kg	, ND	ND	420	ND	360	2,600
VOC-S (*)	Benzene sec - Butylbenzene Ethyl Benzene Isopropylbenzene p - Isopropyltoluene Napthalene n - Propylbenzene Toluene 1,2,4 - Trimethylbenzene 1,3,5 - Trimethylbenzene Xylenes, total	μg/kg ·	ND	ND	ND ND 3,800 ND ND 1,700 2,400 1,900 13,000 9,600 18,600	ND ;	ND 330 1,900 360 820 2,400 1,300 1,100 14,000 9,700 11,300	11,000 1,700 25,000 3,000 3,400 11,000 13,000 74,000 78,000 55,000 133,000
Pb-S	Lead	mg/kg	, ND ;	3.7	3.5	3.5	3.7	ND

See Laboratory Report for Detection Limits

ND = Not Detected

(*) = Only Volatile Organic Compounds Detected are Listed

Table 4
Laboratory Analysis of Soil Samples Collected on April 17, 1997

Analysis	Parameter	Units	MW-11 9.0-11.0 fbis
GRO-S	Gasoline Range Organics	mg/kg	1,300
VOC-S (*)	Benzene n-Butylbenzene sec-Butylbenzene Ethyl Benzene Isopropylbenzene p-Isopropyltoluene Napthalene n-Propylbenzene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Xylenes, total	μg/kg	3,40 11,000 2,100 2,100 3,700 640- 13,000 15,000 36,000 85,000 26,000 118,000
Pb-S	Lead	mg/kg	4.8

^{(*) ==} Only Volatile Organic Compounds detected are listed.
Please see laboratory report for detection limits

Table 5
Laboratory Analysis of Soil Samples Collected on May 6, 1998

Analysis	Parameter	Units	GP-I 8:0-12:0 fbls	GP-2 10:0-12:0 fbls	GP-6 8.0-12.0 f51s	MW-12 8.0-12.0 fbls	MW-13 8.0-12.0 fb/s	MW-14 8.0-12.0 fbis
GRO-S	Gasoline Range Organics	mg/kg	ND	210	ND	ND	. ND	ND
VOC-S (*)	n-Butylbenzene sec-Butylbenzene Ethyl Benzene Isopropylbenzene p-Isopropyltoluene n-Propylbenzene Toluene 1,3,5-Trimethylbenzene Xylenes, total	μg/kg	ND	63 58 74 100 62 110 63 250	ND	ND	ŇD	ND
Pb-S	Lead	mg/kg	4.8	ND	ND	ŊD	ND	ND

(*) — Only Volatile Organic Compounds detected are listed.
Please see laboratory report for detection limits

Table 6
Residual Contamination Levels [WAC NR 720.09(4)]

Analysis	Parameter	Units	Residual Contaminant Level
DRO-S	Diesel Range Organics	mg/kg	100 or 250
GRO-S	Gasoline Range Organics	mg/kg	100 or 250
PVOC-S	Benzene Bromomethane n-Butylbenzene sec-Butylbenzene Ethyl Benzene Isopropylbenzene p-Isopropyltoluene Methyl-tert-butyl ether Naphthalene n-Propylbenzene Toluene 1,2,4-trimethylbenzene 1,3,5-trimethylbenzene Xylenes, total	μg/kg	5.5 No Level Established No Level Established No Level Established 2,900 No Level Established 1,500 No Level Established No Level Established 4,100
Pb-S	Lead	mg/kg	50

TABLE 1

Excavation Soil Sample Analytical Results Jack's Auto Service Stetsonville, WI

Sample	Sample Date	Depth (ft bgs)	PID (ppm eq)	Benzene	Ethylbenzene	MTBE	Toluene	1,2,4-TMB	1,3,5-TMB	Xylen (total
S-I	06/21/99	11.5	120	270	1,800	320 .	<62	6,200	2,200	2,690
S-2	06/21/99	11.5	<10	<25	<25	<25	<25	<25	<25	2,090 <50
S-3	06/21/99	11.5	18	√25	50	<25	<25	320	100	249
S-4	06/21/99	11.5	653	1,200	11,000	2,600	18,000	24,000	7,800	51,00
S-5	06/21/99	11.5	723	2,100	30,000	3,800	43,000	65,000	22,000	140,00
S-6	06/21/99	11.5	1,123	12,000	60,000	9,200	160,000	140,000	42,000	
S-7	06/22/99	11.5	1,320	3,300	52,000	5,800	83,000	180,000	57,000	318,00
S-8	06/22/99	11.5	870	1,200	23,000	3,700	39,000	49,000	16,000	360,00
. S-9	06/22/99	11.5	1,620	29,000	57,000	7,200	160,000	130,000	39,000	108,0
S-10	06/22/99	11.5	221	74	50	<25	210	76	<25	280,0 225
S-11	6/23/1999	11.5	20.2	<25	<25	<25	<25	<25	<25	<50
S-12	6/23/1999	11.5	23.9	<25	<25	<25	<25	38	<25	<50
S-13	6/23/1999	11.5	1,826	5,800.	24,000	2,800	70,000	57,000	18,000	124,0
S-14	6/23/1999	11.5	1,736	6,300	22,000	3,900	58,000	49,000	16,000	101,0
S-15	6/23/1999	11.5	231	440	2,000	150	3,200	5,600	2,000	9,10
S-16	6/23/1999	11.5	1,235	2,100	6,100	1,500	9,400	13,000	6,100	24,20
S-17	6/23/1999	11.5	28	57	100	<25	63	390	140	330
B-1	06/21/99	12.5	818	12,000	51,000	8,700	140,000	120,000	35,000	266,0
B-2	06/21/99	12.5	110	19,000	44,000	8,000	130,000	91,000	28,000	210,0
B-3	06/22/99	12.5	728	29,000	59,000	11,000	190,000	120,000	37,000	293,0
B-4	06/22/99	. 12.5	1,130	14,000	45,000	6,800	120,000	100,000	30,000	237,0
B-5	06/22/99	12.5	1,633	4,500	14,000	2,400	41,000	29,000	8,900	66,00
B-6	6/23/1999	12.5	1,700	8,900	25,000	7,000	44,000	50,000		
B-7	6/23/1999	12.5	2,000	2,200	50,000	9,500	63,000	99,000	17,000	121,0
B-8 .	6/23/1999	12.5	2,000	9,200	28,000	3,600	69,000		30,000	240,0
B-9	6/23/1999	12.5	NM	<130	3,500	540		62,000	20,000	129,0
	<u> </u>		21112	= 130	3,500	340	3,000	13,000	4,100	15,10
	NR 720.09 I	CLs		5.5	2,900	NS	1,500	NS	NS	4,10
NR 746.0	6 Table 1 (free	product ind	icator)	8,500	4,600	42,000	38,000	83,000	11,000	42,00
NR 746.0	5 Table 2 (direc	t contact st	andard)	1,100	NS	NS	NS	NS	NS	NS

Concentrations in ppb unless otherwise noted

Bold - exceedence of the above listed standards

ft bgs - feet below ground surface

TMB - Trimethylbenzene

PID - Photoionization detector

ppb - parts per billion

ppm eq - part per million equivalent

MTBE - Methyl t-butyl ether

NS - No standard '

Table 2, Soil Analytical Results, Stetsonville Oil and Jack's Auto, Stetsonville, Wisconsin.

Γ-	T	П		_	-	·	·															
	Xylenes		4100	42000	N.	<75	422		ξ	213	114.1	Ï	7 9	SV.	30400	<75	75	3 6	۲/۶	206000	<75	1802
ılts (ug/ke	ənəxnədiydiəmirT - 2,£,	r	N.	11000	NE	25	720	, ,	9	64	306	30	,	7	2600	. <25	<25	, ,	7	30600	Ś	1270
tical Rest	ənəznədiyiləmirT - 4,2,1		E L	83000	E)	\$.	920	,	7	92	390	25	3	}	15200	<25	\$	25	3	88000	<25	460
Relevant and Significant PVOC Analytical Results (ug/kg)	Toluene	2001	one:	00085	2	\$2	43	27.1	1:	82	25"J"	255	£,		11500	25	\$25	<25		88000	\$.	350
ufficant PV	MTBE	E E	Ę	1	J.	225	\$25	225	t i	25	25	8	. <25		3.	\$	\$5	8		_1	\$	\$25
t and Sign	ецеруја буру буру буру буру буру буру буру бур	2900	4600	5		25	277	<25	;	44	\$25	<25	<25 25	5700	00/0	<25	<25	<25	10000	43000	25	940
Relevan	реихеи e	5,5	8500	1100		252	274	34		5 77	<2.5	<25	46	3600		9	\$5	<25	7070		8	920
	Date Sampled				20,5000	90//0/60	90//0/60	90//0/60	90/20/60	00110110	90/00/60	09/02/06	90/10/60	90/20/60	20/20/00	0011010	90/20/60	90//0/60	90/20/60	70/0/00	00//0/60	90/20/60
	PID Response (iui)			-	P'E	t <u>:</u>	001	4	413		74 - 1	7	37	420	6		88		562	01	; ;	155
	Sample Depth (fig)				2-4	10-12		2-4	8-9	2.0	1 -	71-01	2-4	8-9	.2-4	8-10		7-4	8-9	2-4	10-12	71-01
	Sample Number	DÁN IIII	tics		S102	S106		7078	S204	\$302	8306		S402	S404	S502	S505	20%0	7000	S604	S702	S706	
	Boring Sample Number Nu	NR 746.06 Table 1 Values	NR 746.06 Table 2 Values		B100	į	BOOD	0020		B300		0.400	0400		B500		B600	2		B700		
		<u> </u>		Ĭ								<u> </u>			-							_

fbg = Feet Below Grade NE
micrograms per Kilogram — Mot Established by Wis. Adm. Code — Methyl-Tertiary-Burty-Ether — Not detected above Laboratory Limit of Detection (LOD) of X. — Analyte detected between Limit of Detection and Limit of Quantitation — Petroleum Volatile Organic Compound

Aeir mg/kg kg/kg NE MTBE < X

= milligrams per kilogram

TABLE 2.4

IFA Soil Excavation Analytical Results Stetsonville Oil Company Site Stetsonville, Wisconsin May 1992

Sample Name	GRO (ppm)
A	41.3
В	141
C	2,560
NR 720 Soil Cleanup Standard	100

Notes:

Shading indicates value exceeds the soil cleanup standard

GRO - Gasoline range organics IFA - Inman-Foltz and Associates, Inc. Source: IFA 1991

Checked by: IMP Approved by: Not

TABLE 4.2

Soil Boring Sample Analytical Results Stetsonville Oil Company Site Stetsonville, Wisconsin

Boring	Date	Depth (feet)	Веплепе	Ethyl- benzene	Toluene :	Xylenes	1,2,4- TMB	1,3,5- TMB	GRO (ppm)	DRO (ppm)	Lead (ppm)
MW-20	12/16/93	8.5 - 10	< 60	< 60	< 120	<180	< 60	< 60	< 10	<10	3.1
	12, 10,75	18.5 - 20	< 50	< 50	< 106	<150 .	<50	<50	< 10	< 10	<2.5
MW-21	12/16/93	8.5 - 10	<55	< 55	<110	< 165	<55	65.7	< 10	<10	3.5
		18.5 - 20	<60	< 60	< 120	< 180	< 60	. <60	< 10	< 10	4.2
MW-22	12/16/93	8.5 - 10	<55	<55	<110	< 165	<55	<55	<10	<10	6.3
	12(10)2	13.5 - 15	< 50	< 50	< 100	< 150	< 50	<50	< 10	< 10	3
MW-23	12/16/93	8.5 - 10	<55	< 55	<110	< 165	<55	< 55	< 10	< 10	3.8
-		18.5 - 20	<55	<55	< 110	< 165	<55	< 55	< 10	< 10	4.3
MW-24	12/16/93	8.5 - 10	<50	< 50	< 100	< 150	<50	< 50	< 10	< 10	<2.5
		18.5 - 20	458	1,460	385	2,924.4	4,000 .	1,320	84.8	< 10	<2.5
GP-I	6/13/95	11 - 13	16	< 0.5	< 0.4	<1.6	<0.8	< 0.8	<2.7	<4.3	<3.4
		13 - 15	377	<0.6	<0.5	1.0	<0.8	<0,8	<2.9	<4.4	3.9
GP-2	6/13/95	11 - 13	<0.6	<.06	< 0.5	<1.6	<0.8	<0.8	<2.9	<4.4	4.7
	v	13 - 15	<0.6	<0.6	< 0.5	<1.6	<0.8	<0.8	<2.9	<4.3	3.8
GP-3	6/13/95	11 - 13	<0.6	<0.6	< 0.4	<1.6	<0.8	< 0.8	<2.8	<4.2	<3.6
		13 - 15	<0.6	<0.6	<0.5	<1.6	<0.8	<0.8	<2.9	<4.7	<3.7
NR 720 :	Soil Cleanup S	tandards	5.5	2,900	1,500	4,100	NS	NS	100	100	50

Notes:

All concentrations in ppb unless otherwise noted
Shading indicates value exceeds the soil cleanup standard
NS - No standard
Elevated reporting limits are due to methods used at the time of analysis

TMB - Trimethylbenzene GRO - Gasoline range organics DRO - Diesel range organics

(Continued)

Checked by: IMP
Approved by: MOC

TABLE 4.2 (Continued)

Soil Boring Sample Analytical Results Stetsonville Oil Company Site Stetsonville, Wisconsin

Boring	Date	Depth (feet)	Велгеце	Ethyl- benzene	Toluene	Xylenes	1,2,4- TMB	1,3,5- TMB	GRO (ppm)	DRO (ppm)	Lead (ppm)
		9 - 11	23,000	51,000	160,000	303,000	150,000	48,000	3,800	1,600	5.7
GP-4	6/13/95	11 - 13	14,000	26,000	88,000	140,000	72,000	23,000	1,600	190	9.5
		11 - 13	< 0.6	<0.6	< 0.5	.<1.6	<0.8	< 0.8	<2.9	<4.4	<3.7
GP-5	6/13/95	13 - 15	< 0.6	< 0.6	< 0.5	< 1.7	<0.8	< 0.8	<3.0	<4.8	4.9
		10 - 12	246	740	112	1,568	1,681	482	28	59	NA
PZ-10	11/29/95	12 - 14	1,781	5,676	5,676	27,825	22,260	6,789	1,091	2,115	· NA
		, 10 - 12	<5.6	< 5.6	< 5.6	< 16.8	< 5.6	< 5.6	5.6	< 5.6	NA
PZ-11	12/01/95	12 - 14	<5.6	<5.6	<5.6	<16.8	< 5.6	< 5.6	5.6	<5.6	NA
	12/1	6/93 '	< 50	< 50	< 100	< 150	< 50	<50 ·	< 10	NA	NA
Trip Blank	6/13	3/95	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	NA	NA
	12/0	1/95	<0.5	<1.0	<1.0 .	<3.0	<1.0	<1.0	NA	NA	NA
Methanol	6/13	3/95	NA	NA	NA	NA	NA	NA	<2.5	NA .	NA
Blank	12/0	1/95	NA	NA	NA	NA	NA	NA	< 5.0	NA	NA
NR 720 S	oil Cleanup S	tandards	5.5	2,900	1,500	4,100	NS	NS	100	100	50

Notes:

All concentrations in ppb unless otherwise noted Shading indicates value exceeds the soil cleanup standard NS - No standard

Checked by: VMR
Approved by: MoC

TMB - Trimethylbenzene GRO - Gasoline range organics DRO - Diesel range organics NA - Not analyzed

TABLE 1

Feasibility Boring Analytical Results Stetsonville Oil Site Stetsonville, Wisconsin January 8, 1997

Boring Location	Benzene	Ethyl-benzene	Toluene	Total Xylenes	1,2,4-TMB	1,3,5-TMB	MTBE	GRO (ppm)
. GP-1A	13,000	33,000	120,000	241,000	100,000	31,000	1,200	1,700
GP-1B	8,300	14,000	43,000	80,000	34,000	11,000	850	630
GP-3A	<25	<25	<25 .	<25	<25	<25	<25	<2.7
GP-3B	3,600	17,000	34,000	147,000	81,000	29,000	1,700	2,100
GP-4A	<25	<25	<25	<25	<25	<25	<25	<2.8
GP-4B	<25	<25	<25	<25	<25	<25	<2:5	<2.9
NR 720 Generic Soil Standards +	5.5	. 2,900	1,500	4,100	NS	NS	NS	100

Notes:

All results are reported in ppb unless otherwise noted

Shading indicates value equals or exceeds the NR 720 generic soil standard. The official WDNR reporting limit for volatile organic compound results provided after March 1, 1996, is 25 ppb (+):

MTBE: Methyl t-butyl ether

NS: No standard

GRO: Gasoline range organics

TMB: Trimethylbenzene

WDNR: Wisconsin Department of Natural Resources

Checked by: کممتریکلر Approved by: Kings

Table 2, Sõil Analytical Results, Stetsonville Oil and Jack's Auto, Stetsonville, Wisconsin

		·			Releva	nt and Sig	gnificant P	VOC Anal	ytical Res	ults (µg/l	(p)
Boring Number Number	Sample Number	Sample Depth (fbg)	PID Response (iui)	Date Sampled	Вепхеле	Ethylbenzene	MTBE	Toluene	1,2,4 - Trimethylbenzene	1,3,5 - Trimethylbenzene	
IR 746 06 Table I Va IR 746.06 Table 2 Va	lucs		-		5.5	2900	NE	1500	NE	NE	
	lucs		·	—— <u> </u>	8500	4600	NE	38000	83000	11000	4100
B100	S102	2-4	34	0010011	1100	NE	NE	NE	NÈ	NE NE	42000 NE
	\$106	10-12	133	09/07/06	<25	<25	<25 .	<25	<25	<25	<75
B200	S202	2-4	4	09/07/06	274	277	<25	43	920	720	422
	S204	6-8	413	· 09/07/06 09/07/06	34	<25	<25	27.1	35	<25	· <75
B300	S302	2-4	2	09/07/06	114	44	<25	82	92.	64	213
·	S306	10-12	7	09/07/06	<25	<25	<25	25"J"	390	306	114.1
B400	S402	2-4	37	09/07/06	<25 46	<25	<2 <i>5</i>	<2 <i>5</i> ·	<25	<25	<75
	S404	6-8	420	09/07/06	3600	<25	<25	52	<25	<25	<75
B500	S502	2-4	9	09/07/06	<25	57,00 <25	<25	11500	15200	5600	30400
0.00	S505	8-10	88	09/07/06	<25 .	<25	<25	<25	<25	. <25	<75
B600	S602	2-4	Il	09/07/06	<25		<25	<25	<25	<25	<75
	S604	6-8	562	09/07/06	9700	<25	<2.5	<25	<25	<25	<75
B700	S702	2-4	10	09/07/06	<25	43000	<500	88000	88000	30600	206000
	S706	10-12	133	09/07/06	920	<25 940	<25 <25	<25	<25	<25	<75

Aev. mg/kg

= milligrams per kilogram

μg/kg = micrograms per kilogram NE

= Not Established by Wis. Adm. Code

MTBE = Methyl-Tertiary-Burty-Ether $< \chi$

≈ Not detected above Laboratory Limit of Detection (LOD) of X. "," = Analyte detected between Limit of Detection and Limit of Quantitation PVOC

= Petroleum Volatile Organic Compound

fbg NE

= Feet Below Grade

XXX XXXXXX

= Not Established by Wisconsin Administrative Code (Wis. Adm. Code) = Exceeds Chapter NR 720.09 Wis. Adm. Code Residual Contaminant Level

= Exceeds Chapter NR 745.06 Wis. Adm. Code Table 1 Values

= Exceeds Chapter NR 746.06 Wis. Adm. Code Table 2 Values

iui = Instrument units as isobutylene Well SMW-1 PVC Elevation=

100.93

(feet)

							, ,					
	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethy!		, 	,	-	
·	⊞evation	to Water	Lead	Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	M		Trimethyl-	Xylene
Date	(im feet)	(in feet)	(dqq)	(ppb)	(ppb)	(ppb)	1	1	Naphthalene	Toluene	benzenes	(Total)
05/10/94	MM	NM	<3.0	1.6	<10	<1.0	(ppb) <1.0	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
03/07/95	NM	NM	NA	2.8	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	10.5	20
05/16/95	NM	NM	NA	1.8	NA NA	<1.0	<1.0	<1.0	1.4	1.1	15.3	17
08/09/95	NM	NM	NA	6.1	NA NA	<1.0	1.2	<1.0	<1.0	<1.0	19.3	6.9
12/06/96	NM	NM	NА	14	NA	NA NA	3.8	<1.0	NA NA	<1.0	15.3	35
02/14/97	NM	NM	NA	1.2	NA NA	NA NA	<0.22	0.19	NĀ.	<1.0	2.2	<3.0
05/22/97	NM	NM	NA	41	NA NA	NA NA	26		NA NA	<0.20	< 0.51	<0.23
05/22/98	NM	NM	NA	8.6	NA NA	NA NA	<0.30	<0.32	NA	1.9	7.39	4.4
09/08/98	NM	MM	NA .	0.87	NA NA	NA NA	<0.30	<0.16	NA .	<0.20	<0.51	< 0.30
06/12/00	NM	NM	NA	13.1	NA NA	NA NA	7.56	<0.16	NA	<0.20	<0.51	<0.23
10/25/00	MM	NM	NA	20.6	NA NA	NA NA		<0.500	NA	<5.00	<10.00	<5.00
11/14/01	MM	NM	NA	26	NA NA	NA NA	<5.00 28	2.61	NA	<5.00	<10.00	<5.00
09/07/04	87.44	11.64				NA .	DRY	<0.46	NA	2.9	36.93	7.3
11/2/2006	91.17	9.95	<0.7	13.5	< 0.49	2.24		.0.50				
2/7/2007				17.5	10.70	DRY	40	< 0.52	9.4	0.71	15.7	2.66
5/1/2007	91.80	9.32	<0.7	0.78	<0.49	2.37	4 44 1	*0.50 T				
8/20/2007					-0.10	DRY	1.41	<0.52	<1.8	<0.46	3.4	0.45
4/15/2008	92.41	8.71	<0.7	<0.24	<0.41	<0.76	0.40		·			
7/15/2008	93.24	7.69	<0.7	6.8	<0.76	1.31	0.48 	<0.7	<1.8	<0.39	2.5	0.90-1.90
10/14/2008	90.62	10.31	<0.7	<0.24	<0.76	<0.41	1.24	<0.7	10.9	1.16	39.93	22.6
1/20/2009						UNDER A DUMPST		<0.7	<1.8	<0.39	2.28-2.51	<1.67
4/15/2009	92.01	8.92	<0.7	<0.41	· <0.52	<0.43		-0 F I				
7/13/2009	92.16	8.77	<0.7	3.5	<0.52	0.66	<0.87 5.8	<0.5	<1.7	<0.51	08/09/01	0.60-2.20
10/14/2009	91.74	9.19	<0.7	<0.41	<0.52	<0,43	<0.87	<0.5	5.5	<0.51	19.1-20.6	4.81
1/19/2010	89.49	11.44	<0.7	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/18/2010	93.81	7.12	<0.7	3.6	<0.95	1.26	16.6	<0.5	<1.7	<0.51	<2.6	<2.13
					-0.00	1.20	10.6	<0.25	<2.4	<0.72	23.05	5.45
											1	

Well SMW-2 PVC Elevation =

101.02

(feet)

						•						
	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethyl		T ⁱⁱ		Trimethyl-	I V. Ian
_	Elevation	to Water	Lead	Benzene	moethane (EDB).	loroehtane (DCA)	Веплепе	MTBE	Naphthalene	Toluene	benzenes	Xylen
Date	(in feet)	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	i .	(Tota
05/10/94	NM	NM	<3.0	810	<100	86	<10	<10	<1.0	(PPD) <10	(ppb) <20	(ppb) <30
03/07/95	MM	NM	NA	64	<1.0	55	1	2,1	<1.0	2	2	
05/16/95	MM	NM	NA	1300	NA	83	21	<20	NA NA	<20	<40	4.7
08/09/95	NM	NM	NA	1200	NA	110	17	13	NA NA	<10	<20	<60
12/06/96	NM	NM	NA	2000	NA	NA	30	<10	NA NA	<10	<20	<10
02/14/97	NM	NM	NA	1300	NA	NA	27	13	NA NA	5.2	<1.02	<30
05/22/97	NM	NM	NA	1200	NA	NΛ	24	<1.6	NA NA	7.7	4.5	4.8
08/21/97	NM	NM	NA	980	NA	NA	20	<39	NA NA	5.9	4.4	15
05/22/98	NM	NM	NA	1700	NA	NA	<27	<20	NA NA	9.9	4.4	13
09/08/98	NM	NM	NA	780 .	NA	NA	7.7	<0.80	NA NA	5,3	3.0	10 7
12/07/98	NM	NM	NA	970	NA	NA	14	38	NA NA	12		
06/12/00	NM	NM	NA NA	510	NA	NA	5.18	24.0	NA NA	<5.00	<20.4	<28
10/25/00	NM	NM	NA	2200	NA	NA	9.84	49.5	NA NA		<10.00	<5.00
05/25/01	NM	NM	NA	88	. NA	NA	12	71	NA NA	5.45 13	<10.00	5.19
11/14/01	NM	NM	NA	2500	NĀ	NA NA	21	59	NA NA	<8.2	24	16
09/07/04	85.94	15.08	<1.5	860	<5.6	<3.6	<5.4	<6.1	47	<6.7	<12 .	<14
11/2/2006	88.12	12.90	<0.7	750	<4.9	9.0	5.3	6.4	<22	5.9	<18.0	<26.3
2/7/2007	NM	NM	<0.7	500	<4.9	<4.5	<3.8	<5.2	<18		<15.9	<14.2
5/1/2007	89.03	11.99	<0.7	305	<4.9	15.7	<3.8	<5.2	<18	<4.6	<15.7	<9.9
3/20/2007	86.99	14.03	<0.7	490	<4.9	9.9	<3.8	<5.2	<18	<4.6	<15.7	<9.9
/15/2008	89.09	11.93	<0.7	450	21.1	<7.6	<3.5	<7	<18	<4.6	<15.7	<9.9
7/15/2008	90.90	10.12	<0.7	590	<7.6	23.5	5.1	<7	22.4	<3.9	<7.4	<16.7
0/14/2008	88.42	12.60	<0.7	790	<7.6	<4.1	<3.5	<7		4.6	<7.4	<16.7
/20/2009	85.99	15.03	<0.7	490	<7.6	10.9	<3.5	<7	31.4	4.8	<7.4	<16.7
/15/2009	87.49	13.53	<0.7	840	<5.2	36	<8.7		<18	<3.9	<7.4	<16.7
/13/2009	89.81	11.21	2.8	10.7	<0.52	<0.43	<0.87	<5	34	6	<26	<21.3
0/14/2009	89.50	11,52	<0.7	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
/19/2010	89.68	11.34	<0.7	400	<2.6	19,3		<0.5	<1.7	<0.51	<2.6	<2.13
0/18/2010	91.69	9.33	<0.7	25.1	<0.95	1.06	<4.35	<2.5	<8.5	<2.55	<13	<10.6
				- -	10.00	1.00	5.1	<0.25	<2.4	1.56	1.08-2.35	7.4-7.9

Well SMW-3 PVC Elevation =

98.16

(feet)

	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethyl				Tries aller	V. (
	Elevation	to Water	Lead	Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	Trimethyi-	Xylene
Date	(in feet)	(in feet)	(dqq)	(dgq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	benzenes	(Total)
05/10/94	NM	NM	25	2000	<500	460	200	<50	200	170	(ppb) 850	(ppb)
03/07/95	NM	MM	NA	1100	<50	210	140	93	160	110	450	620
05/16/95	NM	NM	NA	1100	NA	190	150	82	150	150	490	430
08/09/95	NM	NM	NA	1300	NA	340	110	100	NA NA	120		520
02/14/97	NM	NM	NA	730	NA	NA	190	34	NA NA	150	390	470
05/22/97	NM	NM	NA	480	NA	NA	60	<1.6	NA NA	160	228 320	700
08/21/97	MM	NM	NA	440	NA	NA.	70	<0.80	NA NA	150		970
05/22/98	NM	NM	NA	1400	NA NA	NA NA	180	<17	NA NA	430	620	1300
09/08/98	NM	MM	NA	900	NA NA	NA NA	11	<23	NA NA	4.4	800	1500
12/07/98	МИ	NM	NA	2000	NA	NA	110	<21	NA NA	4.4 59	1.85	4.8
06/12/00	MM	NM	NÄ	1990	NA	NA NA	25.1	6.96	153	8.59	280	310
05/25/01	NM	NM	NA	1400	NA NA	NA NA	290	<9.2	180	550 550	87.3	67.7
11/14/01	NM	NM	NA	1600	NA	NA NA	220	<9.2	220		730	1700
09/07/04	88.22	10.21	41	2200	25	140	400	<12	220	<9.2	830	1300
11/2/2006	89.28	9.15	24.40	1950	<24.5	42	420	<26	390	730	720	1900
2/7/2007	88.04	10.39	9.0	1930	<24.5	<22.5	430	<26		600	1089	2290
5/1/2007		·				FREE PRODUCT		- 20	256	780	830	2270
8/20/2007	MM	NM	<0.7	< 0.47	<0.49	<0.45	<0.38	<0.52	-40 1			
4/15/2008	87.22	11.21				NOT SAMPLED FR			<1.8	<0.46	<1.57	<0.99
7/15/2008	91.15	7.01				NOT SAMPLED FR	EE PRODU	ICT DDE	DEIVE			
10/14/2008	88.20	9.96	5.1	1500	<38	<20.5	390	<35		200	2 1	
1/20/2009	86.75	11.41	3.5	158	<38	<20.5	166	<35	410	600	858	2300
4/15/2009	86.63	11.53	5.8	800	<5.2	<4.3	450	<5 <5	108	242	494	1510
7/13/2009	90.38	7.78	22.4	650	<5.2	<4.3	136	<5 <5	252	450	995	2620
10/14/2009	89.19	8.97	10.4	690	<5.2	<4.3	285	<5 <5	114	207	721	1450
1/19/2010	88.08	10.08	<0.7	760	<5.2	32	250	<5	187	284	810	1920
0/18/2010	91.72	6.44	5.9	550	<19	12	107	<5 <5	190	211	839	790
					-,0	14.	107	<0	146	137	845	1500

Well SMW-4 PVC Elevation = 10/18/10

(feet)

	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethyl	I			Trimethyl-	V.(
	Elevation	to Water	Lead	Benzene	moethane (EDB)	foroehtane (DCA)	Benzene	MTBE	Naphthalene	Totuene	benzenes	Хуlеле
Date	(in feet)	(in feet)	(ppb)	(ppb)	(ppb)	(apb)	(ppb)	(dqq)	(ppb)	(ppb)	(ppb)	(Total)
05/10/94	NM	NM	<3.0	1.2	<10	<1.0	<1.0	1.3	(βββ) <1.0	<1.0	(PP0) <2.0	(ppb) <3.0
03/07/95	NM	NM	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	
05/16/95	NM	NM	NA	<1.0	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0 <3.0
08/09/95	NM	NM	NA	<1.0	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
12/06/96	NM	NM	NA	<0.50	NA	NA	<1.0	<1.0	NA .	<1.0	<2.0	<3.0
05/22/97	NM	NM	NA	< 0.13	NA	NA.	<0.22	< 0.16	NA NA	<0.20	<0.51	<0.23
08/19/97	NM	NM	NA	0.31	NA	NA	< 0.22	< 0.16	NA NA	<0.20	0.38	0.26
05/22/98	NM	NM	NA	<0.13	NA	NA	<0.22	< 0.16	NA NA	<0.20	<0.51	<0.23
09/08/98	MM	NM	NA	< 0.13	NA	NA	<0.22	<0.16	NA NA	<0.20	<0.51	<0.23
12/07/98	NM	NM	NA	0.53	NA	NA	<0.43	< 0.141	NA NA	0.79	<1.00	<1.4
06/12/00	NM	NM	NA	< 0.500	NA	NA	<5.00	<0.500	NA .	<5.00	<10.00	<5.00
10/25/00	NM	NM	NA	<0.500	NA	NA:	<5.00	<0.500	NA NA	<5.00	<10.00	<5.00
11/14/01	NM	NM	NA	<0.21	NA	NÁ	<0.22	< 0.46	NA NA	<0.41	<0.60	<0.69
09/07/04	90.92	9.03	<1.5	<0.41	< 0.56	< 0.36	<0.54	0.8	<0.74	<0.67	<1.8	<2.63
11/2/2006	90.74	9.21	<0.7	<0.47	< 0.49	< 0.72	<0.38	<0.52	<2.2	<0.59	<1.59	<1.42
2/7/2007	89.90	10.05	<0.7	<0.47	< 0.49	< 0.45	<0.38	<0.52	<1.8	<0.46	<1.57	<0.99
5/1/2007	91.33	8.62	<0.7	<0.47	< 0.49	< 0.45	<0.38	<0.52	<1.8	<0.46	<1.57	1.35
8/20/2007	89.85	10.10	<0.7	3.4	<0.49	< 0.45	<0.38	<0.52	<1.8	< 0.46	<1.57	0.43
4/15/2008	90.13	9.82	<0.7	0.64	<0.76	<0.41	<0.35	<0.7	<1.8	<0.40	<1.55	<1.67
7/15/2008	93.46	6.22	< 0.7	0.58	<0.76	< 0.41	<0.35	<0.7	<1.8	0.44	<0.74	<1.67
10/14/2008	90.79	8.89	<0.7	1.93	<0.76	<0.41	<0.35	<0.7	<1.8	<0.39	<0.74	<1.67
1/20/2009	88.77	10.91	<0.7	0.28	<0.76	<0.41	< 0.35	<0.7	<1.8	1.48	<0.74	
4/15/2009	89.61	10.07	< 0.7	< 0.41	< 0.52	< 0.43	<0.87	<0.5	<1.7	<0.51		<1.67
7/13/2009	92.82	6.86	<0.7	< 0.41	<0.52	< 0.43	<0.87	<0.5	<1.7	<0.51	<2.6 <2.6	<2.13
10/14/2009	92.24	7.44	0.7	2.54	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51		<2.13
1/19/2010	90.17	9.51	93	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/18/2010	93.67	5.85	<0.7	<0.38	<0.95	<0.38	<0.55	<0.25	<2.4	<0.72	<2.6	<2.13
						2.30	-0.00	-0.25	~2,4	<u> </u>	<1.20	<1.62

Well SMW-5 PVC Elevation =

101.07

(feet)

	Water	Depth										
	Elevation	to Water	1		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
Date	(in feet)	(in feet)	Lead	Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
05/10/94	NM NM	(Marieet)	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(ppb)	(ppb)
03/07/95	NM	NM	<3.0	<1.0	<10	<1.0	<1.0	<1.0	. <1.0	<1.0	<2.0	(ppa) <3.0
05/16/95	NM		NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
08/09/95	NM	MM MM	NA NA	<1.0	NA NA	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
12/06/96	NM		NA NA	<1.0	NA NA	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
05/22/97	NM	NM	NA	<0.50	NA .	NA	- <1.0	<1.0	NA	<1:0	<2.0	<3.0
08/19/97	NM	NM	NA	<0.13	NA	NA	< 0.22	< 0.16	NA NA	<0.20	<0.51	<0.23
05/22/98	NM	MM	NA	<0.13	NA	NA	< 0.22	<0.16	NA	< 0.20	<0.51	
09/08/98		NM	NA	<0.13	NA	NA	<0.22	<0.16	NA NA	<0.20	<0.51	<0.23
12/07/98	NM	NM NM	NA	<0.13	NA NA	NA	<0.22	<0.16	NA NA	<0.20	<0.51	0.25
06/12/00	NM	NM	NA	<0.41	NA	NA	<0.43	<0.41	NA NA	<0.20		<0.23
10/25/00	NM	NM	ÑΑ	<0.500	NA NA	NA NA	<5.00	<0.500	<8.00	<5.00	<1.00	<1.4
	NM	MM	NA	<0.500	NA NA	NA	<5.00	<0.500	<8.00	<5.00	<10.00	<5.00
11/14/01	NM	NM	NA	<0.21	NA	NA	<0.22	< 0.46	NA NA	<0.41	<10.00	<5.00
09/07/04	91.78	9.55	<1.5	<0.41	< 0.56	< 0.36	< 0.54	<0.61	<0.74	<0.41	<0.60	< 0.69
11/2/2006	92.96	8.37	<0.7	< 0.47	< 0.49	<0.72	<0.38	<0.52	<2.2		<1.8	<2.63
2/7/2007	90.11	11.22	<0.7	< 0.47	< 0.49	<0.45	<0.38	<0.52	<1.8	<0.59	0.59	<1.42
5/1/2007						INACCESSIBLE	10.00	\u.02	<u> </u>	<0.46	<1.57	< 0.99
8/20/2007						INACCESSIBLE						
4/15/2008	96.10	5.23	<0.7	<0.24	<0.76	<0.41	<0.35	<0.7	<1.8	-0.00	· · · · · · · · · · · · · · · · · · ·	·
7/15/2008	96.16	4.91	<0.7	<0.24	<0.76	<0.41	<0.35	<0.7	<1.8	<0.39	<1.55	<1.67
10/14/2008	94.18	6.89	<0.7	<0.24	<0.76	<0.41	<0.35	<0.7		<0.39	<0.74	<1.67
1/20/2009	88.96	12.11	NS	<0.24	<0.76	<0.41	<0.35		<1.8	<0.39	<0.74	<1.67
4/15/2009	95.19	5.88	<0.7	<0.41	<0.52	<0.43	<0.87	<0.7	<1.8	<0.39	<0.74	<1.67
7/13/2009	94.83	6.24	<0.7	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2,6	<2.13
10/14/2009	95.51	5.56	<0.7	< 0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/19/2010	90.19	10.88	<0.7	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/18/2010	95.58	5.49	<0.7	<0.38	<0.95	<0.38	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
						~0.30	<0.05	<0.25	<2.4	<0.72	<1.20	<1.62
												

Well SMW-20 PVC Elevation =

101.04

(feet)

	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethyl			· · ·		
	Elevation	to Water	Lead	Benzene	moethane (EDB)	Ioroehtane (DCA)	Benzene	MTBE			Trimethyl-	Xylen
Date	(in feet)	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	3		Naphthalene	Toluene	benzenes	(Tota
05/10/94	NM	NM	<3.0	<1.0	<10	<1.0	(ppb) <1.0	(ppb)	(ppb)	(ppb)	(ppb)	(ppb
03/07/95	NM	MM	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1,1	<2.0	<3.0
05/16/95	MM	NM	NA	<1.0	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
08/09/95	NM	NM	NA	2.4	NA NA	1.5		<1.0	<1.0	<1.0	<2.0	<3.0
12/06/96	NM	NM	NA	<0.50	NA NA	NA NA	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
05/22/97	NM	NM	NA NA	<0.13	NA NA	NA NA	<1.0	<1.0	NA	<1.0	<2.0	<3.0
08/19/97	NM	NM ·	NA	<0.13	NA NA	NA NA	<0.22	<0.16	NA	<0.20	< 0.51	< 0.23
09/07/04	89.48	12.04	<1.5	<0.41	<0.56	<0.36	<0.22	<0.16	NA	<0.20	<0.51	<0.23
11/2/2006	NM	MM	<0.7	<0.47	NS	<0.72	< 0.54	< 0.61	<0.74	<0.67	<1.8	<2.63
2/7/2007	89.10	12.42	<0.7	<0.47	<0.49		<0.38	<0.52	NS	<0.59	<1.59	<1.42
5/1/2007	91.25	10.27	<0.7	<0.47	<0.49	<0.45 <0.45	<0.38	<0.52	<1.8	<0.46	<1.57	<0.99
3/20/2007				3.17	V0.43		<0.38	< 0.52	<1.8	<0.46	<1.57	< 0.99
1/15/2008	91.01	10.51	<0.7	<0.24	<0.76	INACCESSIBLE			· · · · · · · · · · · · · · · · · · ·			
7/15/2008	93.29	7.75	<0.7	<0.24	<0.76	<0.41	<0.35	<0.7	<1.8	< 0.39	<1.55	<1.67
0/14/2008	90.56	10.48	<0.7	<0.24	<0.76	<0.41	<0.35	<0.7	<1.8	<0.39	<0.74	<1.67
/20/2009	87.91	13.13	<0.7	0.28	<0.76	<0.41	<0.35	<0.7	<1.8	<0.39	< 0.74	<1.67
/15/2009	89.18	11.86	<0.7	<0.41	<0.52	<0.41	<0.35	<0.7	<1.8	<0.39	<0.74	<1.67
/13/2009	92.37	8.67	<0.7	<0.41		<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
0/14/2009	91,83	9.21	<0.7	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
/19/2010	89.17	11.87	<0.7	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
0/18/2010	93.66	7.38	<0.7	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
			~~~~	~0.36	<0.95	<0.38	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62

# Groundwater Analytical Results Summary Stetsonville Oil Company LUST Site BRRTS# 03-61-000357

Well SMW-21 PVC Elevation =

102.09

(feet)

	Water	Depth			1,2-Dibro-	1,2-Dich-						
1	Elevation	to Water	Lead	Benzene	moethane (EDB)	forcehlane (DCA)	Ethyl		1		Trimethyl-	Xylene
Date	(in feet )	(in feet)	(ppb)	(ppb)	(ppb)		Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
05/10/94	NM	NM	<3.0	8.1	<10	(ppb)	(apb)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)
03/07/95	NM	NM	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
05/16/95	NM	NM	NA	<1.0	NA NA		<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
08/09/95	NM	NM	NA	2.6	NA NA	<1.0 · 1.8	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
12/06/96	NM	NM	NA	1.0	NA NA		<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
05/22/97	NM	NM	NA	0.22	NA .	NA NA	<1.0	<1.0	NA	<1.0	<2.0	<3.0
08/19/97	МИ	NM	NA	0.40	NA NA	NA NA	<0.22	<0.16	NA	<0.20	<0.51	< 0.23
09/07/04	88.53	13.56	<1.5	<0.41	<0.56	NA TO DO	<0.22	<0.16	NA -	0.44	0.39	0.52
11/2/2006	91.10	10.99	<0.7	<0.47	<0.49	<0.36	<0.54	<0.61	<0.74	< 0.67	<1.8	<2.63
2/7/2007	89.56	12.53	<0.7	<2.35	<2.45	<0.72	<0,38	<0.52	<2.2	< 0.59	0.59	<1.42
5/1/2007	91.91	10.18	<0.7	<0.47	<0.49	<2.25	<1.9	<2.6	<9	<2.3	<7.85	<4.95
8/20/2007				<u> </u>	- 0.43	<0.45	<0.38	<0.52	<1.8	< 0.46	<1.57	< 0.99
4/15/2008	93.53	8.56	<0.7	<0.24	< 0.76	DRY						
7/15/2008	92.93	9.16	<0.7	<0.24	<0.76	<0.41	<0.35	<0.7	<1.8	< 0.39	<1.55	<1.67
10/14/2008	90.28	11.81	<0.7	<0.24	<0.76	<0.41	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
1/20/2009	87.93	14.16	<0.7	<0.24	<0.76	<0.41	< 0.35	<0.7	<1.8	< 0.39	< 0.74	<1.67
4/15/2009	90.07	12.02	<0.7	<0.41	<0.52	<0.41	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
7/13/2009	91.91	10.18	<0.7	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/14/2009	91.58	10.51	<0.7	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/19/2010	89.40	12.69	<0.7	<0.41	<0.52	<0.43 <0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/18/2010	93.73	8.36	<0.7	<0.38	<0.95		<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
				0.50	-0.00	<0.38	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62

Well SMW-22 PVC Elevation =

(feet)

	Elevation (in feet ) NM	to Water (in feet)	Lead	Dan		1,2-Dich-	Ethyl				Tains a tland	V. d.
05/10/94 03/07/95 05/16/95	NM	(in feet)		Benzene	moethane (EDB)	foroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	Trimethyi-	Xylene
03/07/95 05/16/95			(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(pph)			benzenes	(Total)
05/16/95		NM	<3.0	<1.0	<10	<1.0	<1.0	<1.0	(ppb)	(ppb)	(dqq)	(ppb)
	NM	NM	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
08/09/95	NM	NM	NA	<1.0	NA	<1.0	<1.0		<1.0	<1.0	<2.0	<3.0
	NM .	NM	NΑ	<1.0	NA NA	<1.0		<1.0	<1.0	<1.0	<2.0	<3.0
05/22/97	NM	MM	NA	< 0.13	NA:	NA NA	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
08/19/97	NM .	NM	NA	0.26	NA NA	NA NA	<0.22	< 0.16	NA	<0.20	<0.51	< 0.23
05/22/98	NM	NM	ÑΑ	<0.13	NA NA		0.29	<0.16	NA	<0.20	0.39	< 0.16
09/07/04				-5.10		NA NA	<0.22	<1.6	NA	< 0.20	<0.51	<1.6
11/2/2006					<del></del>	NOT SAMPLED						
2/7/2007						DESTROYED						
5/1/2007						DESTROYED						
8/20/2007						DESTROYED						
4/15/2008						DESTROYED						
7/15/2008						DESTROYED						
10/14/2008			,	·		DESTROYED						<del></del>
1/20/2009						DESTROYED						
4/15/2009						DESTROYED			····			
7/13/2009						DESTROYED						
						DESTROYED						
10/14/2009						DESTROYED						
1/19/2010						DESTROYED			·····		<del></del>	
10/18/2010						DESTROYED		<del></del> -				
							-					

Well SMW-23 PVC Elevation =

98.43

(feet)

	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Elevation	to Water	Lead	Benzene	moethane (EDB)	foroehtane (DCA)	Benzene	MTBE	Naphthalene :	Toluene	benzenes	(Total)
Date	(in feet )	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(dag)	(ppb)	(ppb)
05/10/94	NM -	NM	<3.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
03/07/95	NM	NM	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
05/16/95	NM	NM	NΑ	<1.0	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
08/09/95	МM	NM	NA	<1.0	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
12/06/96	NM	NM	NA	< 0.50	NA	NA	<1.0	<1.0	NA	<1.0	<2.0	<3.0
02/14/97	NM	NM	NA	<0.13	NA	NA	<0.22	0.74	NA	< 0.20	<0.51	<0.23
05/22/97	NM	NM	NA	<0.13	NA	. NA	<0.22	<1.0	NA	< 0.20	< 0.51	<0.23
08/19/97	NM	NM	NA	4.2	NA NA	NA	<0.22	< 0.16	NA	0.34	0.70	0.97
05/22/98	NM	NM	NA	<0.13	NA	NA	<0.22	<1.9	NA	<0.20	< 0.51	0.28
09/08/98	NM	NM	NA	0.33	NA	NA	<0.22	< 0.16	NA	<0.20	<0.51	< 0.23
06/12/00	NM	NM	NA	<0.500	NA	NA	<5.00	<0.500	<8.00	<5.00	<10.00	< 5.00
10/25/00	NM	NM	NA	<0.500	NA	NA	<5.00	< 0.500	<8.00	<5.00	<10.00	<5.00
05/25/01	NM	MM	NA	0.29	NA	NA	0.4	< 0.46	< 0.69	2.3	0.45	1.2
11/14/01	MM	NM	NA	<0.21	NA	NA	<0.22	< 0.46	< 0.69	< 0.41	<0.60	< 0.69
09/07/04	87.44	11.64	<1.5	<0.41	<0.56	<0.36	< 0.54	<0.61	< 0.74	< 0.67	<1.8	<2.63
11/2/2006	NM	NM	<0.7	<0.47	<0.49	<0.72	<0.38	< 0.52	<2.2	< 0.59	<1.59	<1.42
2/7/2007	NM	NM	<0.7	< 0.47	<0.49	<0.45	<0.38	<0.52	<1.8	< 0.46	<1.57	<0.99
5/1/2007	88.15	10.28	<0.7	< 0.47	<0.49	<0.45	<0.38	<0.52	<1.8	<0.46	<1.57	<0.99
8/20/2007	87.17	11.26	<0.7	<0.47	<0.49	< 0.45	<0.38	<0.52	<1.8	< 0.46	<1.57	< 0.99
4/15/2008	87.24	11.19	<0.7	<0.24	< 0.76	< 0.41	< 0.35	< 0.7	<1.8	< 0.39	<1.55	<1.67
7/15/2008	90.02	8.41	<0.7	<0.24	< 0.76	<0.41	< 0.35	< 0.7	<1.8	< 0.39	< 0.74	<1.67
0/14/2008	87.57	10.86	<0.7	< 0.24	<0.76	<0.41	< 0.35	<0.7	<1.8	< 0.39	< 0.74	<1.67
1/20/2009	86.20	12.23	<0.7	<0.24	<0.76	<0.41	< 0.35	< 0.7	<1.8	<0.39	< 0.74	<1.67
4/15/2009	85.27	13.16	<0.7	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
7/13/2009	88.92	9.51	<0.7	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
0/14/2009	88.56	9.87	0.8	<0.41	< 0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/19/2010	87.00	11.43	<0.7	<0.41	< 0.52	< 0.43	<0.87	< 0.5	<1.7	<0.51	<2.6	<2.13
0/18/2010	90.41	8.02	<0.7	<0.38	<0.95	<0.38	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62
				[							<del></del>	

Well SMW-24 PVC Elevation =

100.77

(feet)

	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethyl		Γ		Trimethyl-	Xylene
	Elevation	to Water	Lead	Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(in feet )	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
05/10/94	· NM	NM	5.7	2300	<200	<20	710	<20	250	400	1570	1200
03/07/95	· NM	NM	NA	5100	<200	260	1100	<200	260	1800	1230	2700
05/16/95	NM	NM	NA	7000	NA	530	1600	99	390	2300	1870	3600
08/09/95	NM	NM	NA	8600	NA	810	1400	<50	NA	1700	1370	2900
12/06/96	NM	NM	NA	140	NA	NA	13	<1.0	NA.	19	12.2	45
05/22/97	MM	NM	NA	3800	NA	NA	940	<3.2	NA	890	910	2100
08/19/97	NM	NM	NA	7500	NA	NA	1500	<8.0	NA	1800	1320	3200
09/07/04	87.69	13.08	1.9	1300	<11	79	280	<12	130	160	300	647
11/2/2006	88.22	12.55	4.6	6300	184	380	1200	<26	310	950	810	1940
2/7/2007	87.03	13.74	2.4	6100	234	370	1460	<26	380	1520	1216	2970
5/1/2007	88.00	12.77	8.2	5800	254	270	1530	<26	314	1440	1074	2580
8/20/2007	87.25	13.52	5.4	4800	202	94	1160	<26	313	1240	967	2380
4/15/2008	87.31	13.46	<0.7	117	<0.76	2.72	14.3	<0.7	2.11	10.8	10.3	33.7
7/15/2008	90.21	10.56	5.7	5700	225	330	1460	<70	298	1730	1084	2990
10/14/2008	87.65	13.12	7.3	5900	179	<41	1150	<70	540	1500	945	2290
1/20/2009	86.11	14.66	2.8	6400	195	93	1570	<70	370	2230	1400	3340
4/15/2009	85.70	15.07	5.4	6100	150	<43	1440	<50	340	1750	1210	2960
7/13/2009	89.19	11.58	5.1	5500	204	121	1290	<50	280	1780	1151	2770
10/14/2009	88.36	12.41	4.5	5600	174	248	1540	<50	460	2040	1338	3180
1/19/2010	87.43	13.34	<0.7	4800	125	72	1390	<50	590	1410	1149	2550
10/18/2010	90.64	10.13	1.0	3900	122	162	1410	<5	390	1430	1157	2680
							— I				:::"	

Well SMW-30 PVC Elevation =

98.84

(feet)

	Water	Depth			1.2-Dibro-	100:		-				
	Elevation	to Water	Lead	Benzene		1,2-Dich-	Ethyl "				Trimethyl-	Xylene
Date	(in feet )		1	1	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
08/09/95		(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	. (bbp)	(ppb)
	NM	NM	NA	<1.0	NA NA	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
12/06/96	NM	NM	NA	<0.50	NA	NA .	<1.0	<1.0	`NA	<1.0	<2.0	<3.0
02/14/97	NM	NM	NA	0.15	NA	NA	<0.22	<0.16	NA ·	<0.20	<0.51	< 0.23
05/22/97	NM	NM	NA	<0.13	NA	NA NA	<0.22	<0.16	NA	< 0.20	< 0.51	< 0.23
05/22/98	NM	NM	NA	<0.13	NA NA	NA	<0.22	< 0.16	NA .	< 0.20	< 0.51	< 0.23
09/08/98	NM	NM	NA	<0.13	NA NA	NA	< 0.22	< 0.16	NA	< 0.20	< 0.51	< 0.23
12/07/98	NM	MM	NA	<0.41	NA NA	NA	< 0.43	0.57	NA	< 0.38	<1.00	<1.4
06/12/00	NM	NM	NA	<0.500	NA ,	NA	<5.00	<0.500	<8.00	<5.00	<10.00	<5.00
10/25/00	MM	NM	NA	<0.500	NA	NΑ	<5.00	< 0.500	<8.00	<5.00	<10.00	<5.00
11/14/01	MM	MM	NA	100	NA	NA	<0.22	< 0.46	3.3	< 0.41	0.85	16
09/07/04	88.15	10.69	<1.5	110	<0.56	11	3.3	< 0.61	0.82	3.2	1.8	10.4
11/2/2006	·				INACCE	SSIBLE - COULD N	OT LOCAT	Ë				
2/7/2007	87.94	10.90	< 0.7	1260	<24.5	<22.5	<19	<26	<90	<23	<78.5	<49.5
5/1/2007.	90.16	8.68	<0.7	490	<4.9	48	<3.8	<5.2	<18	<4.6	<15.7	28.1
8/20/2007	88.30	10.54	<0.7	670	9.1	100	11.8	<5.2	<18	<4.6	<15.7	39.5
4/15/2008	88.81	10.03	1.1	520	<0.76	103	<3.5	<7	<18	<3.9	<7.4	<16.7
7/15/2008	91.92	6.92	<0.7	248	<7.6	22.6	52	<7	<18	23.9	<7.4	53.4
10/14/2008	88.92	9.92	<0.7	1070	11.5	146	78	<7	124	<3.9	27.1-29.4	92
1/20/2009	87.13	11.71	<0.7	234	<7.6	41	8,2	<7	<18	<3.9	<7.4	<16.7
4/15/2009	87.38	11.46	1.0	9	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
7/13/2009	90.86	7.98	<0.7	440	<5,2	16.9	19.6	<5	<17	13.2	<26	27.6
10/14/2009	90.73	8.11	<0.7	760	<5.2	-54	59	<5	45	<5.1	47-62	98
1/19/2010	88.49	10.35	<0.7	730	<5.2	86	22.1	<5	<17	<5.1	<26	7.4-23.4
10/18/2010	93.75	5.09	<0.7	10.9	<0.95	0.66	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62
							<del>- 0.00</del>	.0.20	12.4	NO.72	~1.20	× 1.0Z

Well SMW-31 PVC Elevation =

97.65

(feet)

	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Elevation	to Water	Lead	Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(in feet )	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
08/09/95	NM .	MM	NA	<1.0	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
12/06/96	NM	NM	NA	<0.50	NA NA	NA	<1.0	<1.0	NA	<1.0	<2.0	<3.0
02/14/97	NM	NM	NA	<0.13	NA	NA	<0.22	< 0.16	NA	<0.20	< 0.51	< 0.23
05/22/97	NM	NM	NA	<0.13	NA	NA	<0.22	< 0.16	NA	< 0.20	<0.51	< 0.23
05/22/98	. NM	NM	NA	0.21	NA	. NA	< 0.22	< 0.16	NA	<0.20	<0.51	< 0.23
09/08/98	NM	NM	NA	<0.13	NA	NA NA	<0.22	< 0.16	NA	<0.20	<0.51	<0.23
06/12/00	MM	NM	NA NA	28.6	NA .	NA	<5.00	<0.500	<8.00	<5.00	<10.00	<5.00
10/25/00	NM	NM	NA	<0.500	NA	NA	<5.00	<0.500	<8.00	<5.00	<10.00	<5.00
11/14/01	NM	NM	NΛ	<0.21	NA	NA	< 0.22	< 0.46	< 0.69	< 0.41	< 0.60	< 0.69
09/07/04	88.04	10.04	<1.5	< 0.41	< 0.56	< 0.36	<0.54	< 0.61	< 0.74	0.92	<1.8	<2.63
11/2/2006	89.55	8.53	<0.7	<0.47	< 0.49	< 0.72	<0.38	<0.52	<2.2	< 0.59	<1.59	<1.42
2/7/2007	87.45	10.63	<0.7	<0.47	< 0.49	< 0.45	<0.38	<0.52	<1.8	<0.46	<1.57	<0.99
5/1/2007	88.85	9.23	<0.7	<0.47	< 0.49	<0.45	<0.38	<0.52	<1.8	<0.46	<1.57	<0.99
8/20/2007					INACCE	SSIBLE - COULD N	OT LOCAT	E				
4/15/2008	87.39	10.69	< 0.7	<0.24	< 0.76	<0.41	< 0.35	< 0.7	<1.8	<0.39	<1.55	<1.67
7/15/2008	85.12	12.53	<0.7	<0.24	< 0.76	< 0.41	< 0.35	<0.7	<1.8	0.4	<0.74	<1.67
10/14/2008	87.90	9.75	<0.7	<0.24	< 0.76	< 0.41	< 0.35	<0,7	<1.8	< 0.39	<0.74	<1.67
1/20/2009	86.24	11.41	<0.7	<0.24	< 0.76	< 0.41	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
4/15/2009	86.16	11.49	<0.7	<0.41	<0.52	<0.43	<0.87	< 0.5	<1.7	<0.51	<2.6	<2.13
7/13/2009	89.76	7.89	<0.7	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/14/2009	89.06	8.59	< 0.7	<0.41	<0.52	< 0.43	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/19/2010	87.34	10.31	3	< 0.41	<0.52	< 0.43	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/18/2010	91.23	6.42	<0.7	<0.38	< 0.95	< 0.38	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62
						1.01.0						11.02

#### **Groundwater Analytical Results Summary** Stetsonville Oil Company LUST Site BRRTS# 03-61-000357

Well SPZ-1 PVC Elevation =

95.57

(feel)

	Water	Depth	·		1,2-Dibro-	1,2-Dich-	Ethyl	· · · · · ·				
	Elevation	to Water	Lead	Benzene	moethane (EDB)	loroehtane (DCA)		МТВЕ		<b>-</b> .	Trimethyl-	Xylene
Date	(in feet )	(in feet)	(ppb)	(ppb)	(ppb)	1 ' '	Benzene		Naphthalene	Toluene	benzenes	(Total)
08/09/95	NM	NM ·	NA.	1100	NA	(ppb) 120	(ppb) <1.0	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
10/25/95	NM	NM	NA.	1500	NA NA	76	2.5	<1.0	<1.0	4.1	<2.0	<3.0
12/06/96	NM	NM	NA NA	560	NA NA	NA NA	<1.0	<1.0 3.2	<1.0	20	<2.0	<3.0
02/14/97	NM	NM	NA.	1600	NA NA	NA NA			NA	<1.0	<2.0	7.2
05/22/97	NM	NM	NA.	540	NA NA	NA NA	1.3	0.25	NA	25	<0.51	4.5
05/22/98	NM	NM	NA	1900	NA NA	NA NA	<1,1	<0.80	NA	11	<2.5	3.2
09/08/98	NM	NM	NA NA	870	NA NA	NA NA	<4.3	<1.8	NA	45	<5.1	<2.3
12/07/98	NM	NM	NA NA	1600	NA NA		0.25	<0.16	NA .	24	1.21	1.5
06/12/00	NM	NM	NA	1720	NA .	NA NA	<22	<21	NA	72	<50	<70
10/25/00	NM	NM	NA NA	817		NA NA	6.99	1.35	NA NA	30.2	<10.00	<5.00
05/25/01	NM	NM	NA NA	1200	NA ·	NA NA	<5.00	< 0.500	NA	16.7	<10.00	<5.00
11/14/01	NM	NM	NA NA	1900	NA NA	NA	4.9	<4.6	NA	36	<6.0	<6.9
09/07/04	76.02	22.55	<1.5	860	. NA	NA NA	<4.4	<9.2	NA	36	<12.0	<14
11/2/2006	80.46	15.11	<0.7	<0.47	<5.6	210	<5.4	<6.1	<7.4	24	<18	<26.3
2/7/2007	78.53	17.04			<0.49	<0.72	<0.38	<0.52	<2.2	<0.59	<1.59	<1.42
5/1/2007	80.63	17.04	<0.7 <0.7	<0.47	<0.49	<0.45	<0.38	<0.52	<1.8	< 0.46	<1.57	<0.99
8/20/2007	79.41	16.16		640	<4.9	119	<0.38	<5.2	<1.8	18.5	<15.7	3.5
4/15/2008	84.33	11.24	<0.7	920	<4.9	176	<3.8	<5.2	<1.8	23.1	<15.7	4.5
7/15/2008			2.9	540	<0.76	107	<3.5	<7	<18	12.8	<7.4	<16.7
10/14/2008	82.88 80.96	12.69	<0.7	12.1	<7.6	19.1	<3.5	<7	<18	<3.9	<7.4	<16.7
1/20/2009		14.61	<0.7	271	<7.6	85	<3.5	<7	<18	6.1	<7.4	<16.7
	78.10	17.47	<0.7	510	<7.6	119	<3.5	<7	<18	12.1	<7.4	<16.7
4/15/2009	78.79	16.78	10	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
7/13/2009	82.89	12.68	<0.7	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/14/2009	81.71	13.86	<0.7	7	<0.52	1.16	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/19/2010	79.40	16.17	<0.7	1.38	<0.43	<0.52	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/18/2010	82.96	12.61	<0.7	1.38	<0.95	<0.38	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62
				i				***		1		

Well SPZ-2 PVC Elevation =

98.87

(feet)

	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Elevation	to Water	Lead	Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(in feet )	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(ppb)	(ppb)
08/09/95	NM	MM	NA	1.9	NA	62	<1.0	<1.0	NA	<1.0	<2.0	<3.0
10/25/95	NM	NM	NA	0.98	NA	45	<1.0	<1.0	<1.0	<1.0	<2.0	<3.0
12/06/96	MM	NM	NA	< 0.50	NA	NA	<1.0	<1.0	NA	<1.0	<2.0	<3.0
02/14/97	NM	NM	NA	0.47	NA	NA	0.35	< 0.16	NA	<0.20	0.39	0.45
05/22/97	NM	NM	NΑ	<0.13	NA	NA	<0.22	< 0.16	NA	0.35	<0.51	<0.23
08/19/97	NM	NM	NA	0.65	NA	NA	<0.22	< 0.16	NA	<0.20	0.72	0.35
05/22/98	NM	MM	NA	< 0.76	NA	NA	<0.22	<2.9	NA	<0.20	0.43	< 0.36
09/08/98	NM	NM	NA	0.48	AN	NA	3.4	<0.80	NA:	1.1	8.5	20
12/07/98	NM	NM	NA	0.91	NA	NA	0.68	1.1	NΛ	2.2	<1.00	<1.4
06/12/00	NM	NM	NΑ	0.613	NA	NA	<5.00	1.91	NA	<5.00	<10.00	<5.00
10/25/00	NM -	MM	NA	0.835	NA	NA	<5.00	1.53	NA	<5.00	<10.00	<5.00
05/25/01	NM	NM	NA	1.7	NA	NA	1.5	1.4	NA NA	9.2	1.6	6.7
11/14/01	NM	NM	NA	0.94	NA NA	NA	0.49	1.7	NA NA	0.44	0.47	<0.69
09/07/04	85.00	13.87	<1.5	1.8	< 0.56	40	<0.54	1.4	<0.74	< 0.67	<1.8	<2.63
11/2/2006	87.35	11.52	<0.7	1.41	<0.49	38	< 0.38	2.05	<2.2	<0.59	<1.59	<1.42
2/7/2007	85.77	13.10	<0.7	<0.47	<0.49	17.4	<0.38	1.74	<1.8	<0.46	<1.57	<0.99
5/1/2007	87.58	11.29	<0.7	4.0 .	< 0.49	24.3	<0.38	<0.52	<1.8	<0.46	<1.57	<0.99
8/20/2007	86.27	12.60	<0.7	5.6	<0.49	24.2	<0.38	1.19	<1.8	<0.46	<1.57	0.33
4/15/2008	89.69	9.18	<0.7	2.78	<0.76	13.3	<0.35	1.89	<1.8	<0.39	<1.55	<1.67
7/15/2008	89.61	9.26	<0.7	<0.24	<0.76	0.44	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
10/14/2008	87.07	11.80	<0.7	10.5	<0.76	28.6	< 0.35	2.11	<1.8	<0.39	<0.74	<1.67
1/20/2009	85.24	13.63	<0.7	5.1	<0.76	14.2	< 0.35	1.99	<1.8	<0.39	<0.74	<1.67
4/15/2009	84.59	14.28	4.7	0.81	<0.52	4,2	<0.87	0.53	<1.7	<0.51	<2.6	<2.13
7/13/2009	88.61	10.26	<0.7	0.50	< 0.52	4.5	<0.87	1.38	<1.7	<0.51	<2.6	<2.13
10/14/2009	88.04	10.83	2.2	3.2	<0.52	18	<0.87	4.1	<1.7	<0.51	<2.6	<2.13
1/19/2010	86.56	12.31	<0.7	3.7	<0.52	16.1	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/18/2010	91.01	7.86	<0.7	<0.38	<0.95	<0.38	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62
										-0.72	-1.20	` 1.02

# Groundwater Analytical Results Summary Stetsonville Oil Company LUST Site BRRTS# 03-61-000357

Well SPZ-10 PVC Elevation =

99.81

(feet)

	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethyl				Trimothul	V. J
_	Elevation	to Water	Lead	Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	Trimethyl-	Xylene
Date	(in feet )	(in feet)	(ppb)	(ppb)	(ppb) /	(ppb)	(ppb)	(ppb)	(ppb)		benzenes	(Total)
01/04/96	NM	NM	NA	43	NA NA	NA NA	36	<5.0	33	(ppb)	(ppb)	(ppb)
12/06/96	MM	NM	NA	< 0.50	NA	NA NA	<1.0	<1.0	NA NA	40 <1.0	138	160
02/14/97	NM	NM	NA	5.3	NA	NA NA	2.9	<0.16	NA NA	<1.0	<2.0	<3.0
05/22/97	NM	NM	ΝA	< 0.13	NA	NA NA	<0.22	< 0.16	NA NA	0.51	2.02	0.66
05/22/98	NM	NM	NA	0.29	NA	NA.	<0.22	<1.5	NA NA	<0.20	<0.51 <0.51	<0.23
09/08/98	NM	NM	NA	0.20	NA	NA	<0.22	<0.16	NA NA	<0.20		<0.23
12/07/98	NM	NM	NA	0.44	NA	NA	< 0.43	<0.41	NA .	<0.20	<0.51 <1.00	<0.23
06/12/00	NM	NM	NA	1.38	NA	NA	< 5.00	<0.500	NA NA	<5.00	<10.00	<1.4
10/25/00	NM	NM	NA	<0.500	NA	NA	<5.00	<0.500	NA NA	<5.00		<5.00
05/25/01	NM	NM	NA	2.8	NA	NA	0.75	<0.46	NA NA	4.3	<10.00	<5.00
11/14/01	NM	NM	NA	2	NA	NA	<0.22	<0.46	NA NA	< 0.41	0.8	2.8
09/07/04	82.62	17.19	<1.5	0.88	< 0.56	3.4	<0.54	<0.61	<0.74	<0.67	<0.60 <1.8	< 0.69
11/2/2006	86.36	13.45	<0.7	<0.47	< 0.49	<0.72	<0.38	<0.52	<2,2	<0.59	1.16	<2.63
2/7/2007	85.12	14.69	<0.7	0.72	< 0.49	20	<0.38	<0.52	<1.8	<0.46	<1.57	<1.42
5/1/2007	85.83	13.98	<0.7	< 0.47	< 0.49	21.6	<0.38	<0.52	<1.8	<0.46	<1.57	<0.99
8/20/2007	84.69	15.12	<0.7	1.3	<0.49	27.3	<0.38	<0.52	<1.8	< 0.46	<1.57	<0.99
4/15/2008	84.87	14.94	<0.7	1.69	< 0.76	36	<0.35	<0.7	<1.8	<0.39	<1.55	<0.99
7/15/2008	87.84	11.97	<0.7	0.98	<0.76	35	<0.35	<0.7	<1.8	<0.39	<0.74	<1.67
10/14/2008	84.89	14.92	<0.7	8.2	<0.76	48	<0.35	<0.7	<1.8	<0.39	<0.74	<1.67
1/20/2009					L	PVC FULL OF IC			<u> </u>	×0.58	<u> </u>	<1.67
4/15/2009	84.53	15.28	<0.7	< 0.41	<0.52	20.1	<0.87	<0.5	<1.7	<0.51	<2.6	-0.45
7/13/2009	86.44	13.37	<0.7	0.42	<0.52	39	<0.87	<0.5	<1.7	<0.51		<2.13
10/14/2009	85.75	14.06	<0.7	5.8	<0.52	62	<0.87	<0.5	<1.7	<0.51	<2.6 <2.6	<2.13
1/19/2010	84.65	15.16	<0.7	3.5	<0.52	57	<0.87	<0.5	<1.7	<0.51		<2.13
10/18/2010	88.13	11.68	<0.7	1.71	< 0.95	68	< 0.55	<0.25	<2.4	<0.72	<2.6	<2.13
							.5,50	-0.20	~2.4	NO.72	<1.20	<1.62

Well SPZ-11 PVC Elevation =

MM

(feet)

	Water Elevation	Depth to Water	Lead	Benzene	1,2-Dibro- moethane (EDB)	1,2-Dich- Ioroehtane (DCA)	Ethyl Benzene	MTBE	Nanhthalana	Taluana	Trimethyl-	Xylene
Date	(in feet )	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	ì		Naphthalene	Toluene	benzenes	(Total)
01/04/96	NM	NM	NA.	<0.50	NA NA	7.7	(ppb) <1.0	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
02/14/97	NM	NM	NA	< 0.40	NA.	NA NA	0.26	<1.0	<1.0	<1.0	<2.0	<3.0
05/22/97	NM	MN	NA	0.21	NA NA	NA NA	<0.28	<0.16	NA	<0.20	<0.51	< 0.23
09/08/98	NM	NM	NA	0.17	NA NA	NA NA	<0.22	<0.16	NA NA	<0.20	<0.51	<0.23
09/07/04				0.11		NOT SAMPLED		<0.16	NA	<0.20	2.03	1.4
11/2/2006						DESTROYED	<u>′</u>					
2/7/2007					<del></del>	DESTROYED						
5/1/2007					<del></del>	DESTROYED						
8/20/2007						DESTROYED						
4/15/2008						DESTROYED	<del></del>					
7/15/2008						DESTROYED			<del></del>			
10/14/2008		·				DESTROYED						
1/20/2009						DESTROYED						
4/15/2009	·					DESTROYED	<del></del>				·	
7/13/2009						DESTROYED	<del></del>					
10/14/2009						DESTROYED						
1/19/2010						DESTROYED						
10/18/2010			·			DESTROYED						
	1				<del></del>	DESTRUTED						
						- JEGINOTED						

Well JMW-1 PVC Elevation =

96.23

(feet)

	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethyl		1		Trimethyl-	Xylene			
	Elevation	to Water	Lead	Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)			
Date	(in feet )	(in feet)	(ppb)	(dqq)	(ppb)	(ppb)	(dqq)	(ppb)	(ppb)	(ppb)	(opb)	(ppb)			
08/08/96	NM	NM	190	11000	<1000	<1000	6800	<1000	22000	34000	68000	48000			
09/07/04	87.32	10.09	72	8700	140	<72	2700	<120	900	23000	3200	16000			
11/2/2006						FREE PRODUC	T								
2/7/2007	87.24	9.52	<0.7	131	<4.9	<4.5	40	<5.2	<18	36	24.5	26.4			
5/1/2007						FREE PRODUC	T								
8/20/2007	87.48	9.28	41	5600	51	78	2400	<52	790	19300	2710	14700			
4/16/2008	86.75	10.01		NOT SAMPLED - FREE PRODUCT PRESENT											
7/14/2008	89.38	6.85				NOT SAMPLED - F	REE PROD	DUCT PRE	SENT						
10/15/2008	87.61	8.62	51.2	4700	<152	<82	2460	<140	1750	19700	2880	14300			
1/19/2009	85.49	10.74	40	6600	<152	<82	2520	<140	800	22000	2450	15600			
4/16/2009	85.75	10.48	31	6500	<86	<104	2820	<100	900	22000	3220	16700			
7/14/2009				FREE PRODUCT											
10/14/2009				FREE PRODUCT											
1/18/2010						FREE PRODUC	T		w						
10/18/2010						FREE PRODUC	T								
						_	i								

Well JMW-2 PVC Elevation =

96.82

(feet)

	Water	Depth	-	·	1,2-Dibro-	1,2-Dich-	Ethy!				Trimethyl-	Xylene		
	Elevation	to Water	t.ead	Benzene	moethane (EDB)	forcehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)		
Date	(in feet )	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)		
08/08/96	NM	NM	150	7700	210	<100	2000	<100	1600	13000	5300	11300		
05/13/98	NM	NM	NA	5500	NA	NA	1600	<22	NA	11000	1770	8500		
11/2/2006					71.0	DRY								
2/21/2007	<u> </u>					DRY								
5/1/2007				•		DRY								
8/20/2007	86.60	10.43	<0.7	< 0.47	< 0.49	< 0.45	<0.38	< 0.52	<1.8	<0.46	<1.57	< 0.99		
4/16/2008		FULL OF BENTONITE - ABANDONED												
7/14/2008		FULL OF BENTONITE - ABANDONED												
10/15/2008					FULL (	OF BENTONITE - A	BANDONEL	)						
1/19/2009					FULL (	OF BENTONITE - AI	BANDONEL	)						
4/16/2009					FULL (	OF BENTONITE - A	BANDONED	)						
7/14/2009					FULL (	OF BENTONITE - AI	BANDONED	)						
10/14/2009					FULL	OF BENTONITE - AI	BANDONED	)						
1/18/2010					FULL	OF BENTONITE - AI	BANDONEC	5						
10/18/2010					FULL (	OF BENTONITE - AI	BANDONEE	)		-				
											- 1			

Well JMW-3 PVC Elevation =

97.18

(feet)

	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Elevation	to Water	Lead	Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(in feet )	(in feet)	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(ppb)
08/08/96	MM	NM	65	15000	780	380	2400	<200	2800	22000	11300	17500
05/13/98	NM	NM	NA	14000	NA	NA	2000	<44	NA	21000	2310	10600
11/2/2006						DESTROYED						
2/7/2007						DESTROYED						
5/1/2007						DESTROYED		**				
8/20/2007						DESTROYED						
4/16/2008						DESTROYED						
7/14/2008						DESTROYED						
10/15/2008						DESTROYED.					<del></del>	
1/19/2009						DESTROYED					·-··	
4/16/2009						DESTROYED						
7/14/2009					····	DESTROYED						
10/14/2009						DESTROYED					-	
1/18/2010						DESTROYED						
10/18/2010						DESTROYED						
								-				

Well JMW-4 PVC Elevation =

98.12

(feet)

	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Elevation	to Water	Lead	Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(in feet )	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)
02/21/96	NM	NM	79	2300	63	120	1400	<25	390	720	481	4400
08/08/96	NM	NM	68	2100	39	79	1000	<25	480	400	1780	2810
05/13/98	NM	NM	NΑ	1900	NA	NA	650	18	NA NA	120	1160	10110
07/22/99	NM	MM	NA	1700	NA	NA	510	20	NA.	94	820	808
10/16/00	NM	NM	NA	1900	NA	NA	430	<4.0	NA NA	82	1110	753
04/12/01	87.20	10.55	28	2200	NA	72	640	<24	NA NA	100	1180	1086
07/26/02	91.36	6.39	6.5	1600	NA	NA	470	<25	250	87	880	720
09/07/04	88.21	10.29	3.7	1400	<5.6	54	110	<6.1	53	42	317	197
11/2/2006	88.33	9.42	2.2	1130	<49	<72	188	<52	<220	<59	226	241
2/7/2007	87.18	10.57	<0.7	780	<4.9	<4.5	190	<5.2	79	50	343	315.4
5/1/2007	88,53	9.22	4.2	920	<4.9	<4.5	201	<5.2	78	50	407	294
8/20/2007	87.18	10.57	1.1	890	<24.5	<22.5	180	<26	114	56	404	300.5
4/16/2008	87.43	10.32	1.0	820	<41	<76	288	<70	<180	68	677	450-517
7/14/2008	91.15	6.97	0.7	1270	<38	30.5	165	<35	<90	50	342	249-282
10/15/2008	88.50	9.62	<0.7	_1			SAMPLE B			50	342	249-282.
1/19/2009	86.53	11.59	3,6	930	<7.6	<4.1	221	<7	115	42	454	339.5
4/16/2009	86.39	11.73	4.4	560	<4.3	<5.2	239	<5	147	42	827	
7/14/2009	89.92	8.20	<0.7	1060	<5.2	<4.3	130	<5	52	45	100	423
10/14/2009	88.86	9.26	3.4	1220	<5.2	<4.3	192	<5	74	52	219	193.4
1/18/2010	87.51	10.61	1.3	1060	<5.2	32	247	<5	139	32 48	∠19 472	272.1
10/18/2010	90.47	7.65	<0.7	1230	<9.5	<3.8	251	<2.5	109	62	337	355.9 339
								- · E.G	100	<del>U</del> Z	337	339

Well JMW-5 PVC Elevation =

96.98

(feet)

	Waler	Depth			1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xvlene
Б.	Elevation	to Water	Lead	Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(in feet )	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
02/21/96	NM.	NM .	60	12000	510	<200	2400	<200	460	18000	2500	12100
08/08/96	NM	NM	55	7600	290	<100	1900	<100	510	11000	2580	11400
05/13/98	NM	NM	· NA	9300	NA NA	NA	1900	24	NA	13000	2030	9800
07/22/99	NM	MM	NA	310	NA	NA	82	1.5	NA	360	140	390
10/16/00	NM :	MM	NA	110	NA	NA	58	<0.20	NA	13	76	75
04/12/01	91.51	5.47	<1	0.44	NA	< 0.35	<0.4	< 0.47	NA	< 0.37	<1.03	<1.43
07/26/02	92.29	4.69	<0.66	71	NA	NA .	47	< 0.49	15	81	48	90
09/07/04	89.70	8.13	<1.5	19	< 0.56	< 0.36	2.0	< 0.61	4.3	22	24.4	39
11/2/2006	89.27	7.71	<0.7	110	0.90	< 0.72	58	< 0.52	16	37	44	46.9
2/21/2007	86.90	10.08	1.0	129	0.76	<0.45	29.6	<0.52	5.0	46	19.63	39.6
5/1/2007	89.88	7.10	< 0.7	79	0.76	1.83	12.4	<0.52	7.4	72	29.2	123
8/20/2007	89.08	7.90	<0.7	7.5	<0.49	<0.45	0.67	<0.52	<1.8	< 0.46	2.91	1.03
4/16/2008	. 90.01	6.97	<0.7	1.53	<0.41	< 0.76	0.63	<0.7	<1.8	4	0.74-1.25	3.49
7/14/2008	91.61	5.37	<0.7	7.1	<0.76	< 0.41	2.63	<0.7	3.4	<0.39	4.3-4.53	3,5-4.5
10/15/2008	89.43	7.55	< 0.7	6.7	<0.76	<0.41	< 0.35	<0.7	<1.8	<0.39	< 0.74	1.06-2.06
1/19/2009	86.02	10.96	<0.7	2.4	<0.76	<0.41	<0.35	<0.7	<1.8	<0.39	<0.74	<1.67
4/16/2009	90.59	6.39	4.4	3.07	< 0.43	<0.52	1.3	<0.5	<1.7	6.4	<2.5	7.33
7/14/2009	91.47	5.51	<0.7	6.3	<0.52	<0.43	5.7	<0.5	3.3	<0.51	8.2-9.7	2.86-4.46
10/14/2009	91.14	5.84	<0.7	< 0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	
1/18/2010	87.06	9.92	<0.7	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51		<2.13
10/18/2010	93.06	3.92	<0.7	<0.38	<0.95	<0.38	<0.55	<0.25	<2.4		<2.6	<2.13
					-5.00	-0.00	VO.00	NO.20	`Z.4	<0.72	<1.20	<1.62

Well JMW-6 PVC Elevation =

10/18/10 97.87

98.79

(feet)

	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethyl			_	Trimethyl-	Xylene
	Elevation	to Water	Lead	Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(in feet )	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
02/21/96	NM	NM	4.8	280	<5.0	<5.0	190	<5.0	260	58	223	158
08/08/96	NM	MM	2.2	160	<2.0	<2.0	110	<2.0	160	- 8	126	63.5
07/22/99	NM	NM	NA	140	NA	NA	100	3.6	NA	15	133	73
09/07/04	88.10	10.85	<1.5	97	<1.4	< 0.90	85	<1.5	170	8.1	111	61
11/2/2006	88.59	9.62	<0.7	102	<0.49	< 0.72	61	<0.52	128	6.8	98	45.2
2/7/2007						FREE PRODUC	T		123	0.0	30 1	40.4
5/1/2007						FREE PRODUC						
8/20/2007						FREE PRODUC		-				
4/16/2008	87.69	10.52	< 0.7	91	< 0.41	<0.76	78	<0.7	100	8.4	131	57
7/14/2008	91.54	7.25	2.4	67	< 0.76	2	69	<0.7	116	7.4	134	55.9
10/15/2008	88.75	10.04	<0.7	101	< 0.76	<0.41	98	<0.7	186	9.6	137	65.7
1/19/2009						FREE PRODUC			700	3.0	137	00.7
4/16/2009						FREE PRODUC					<del></del>	
7/14/2009	90.17	8.62	<0.7	54	<0.52	<0.43	67	<0.5	172	6.3	135	58.7
10/14/2009	88.97	9.82	<0.7	67	<0.52	<0.43	82	<0.5	186	6.4		
1/18/2010	87.95	10.84	<0.7	69	<0.52	<0.43	87	<0.5	154	8.9	140	59.7
10/18/2010	90.09	7.78	<0.7	64	<0.95	0.80	63	<0.25	98		108	65.9
					-0.00	0.00	- 03	<u>~0.20</u>	98	5.5	121	50.2

Well JMW-7 PVC Elevation =

96.49

(feet)

	Water	Deoth			1,2-Dibro-	1.2-Dich-	Ethyl	·····			Trimethyl-	Xylene
!	Elevation	to Water	Lead	Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(in feet )	(in feet)	(ppb)	(ppb)	(ppb) ´	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
02/21/96	NM	NM	370	22000	1300	2900	2100	<250	530	30000	2430	11000
08/08/96	NM	NM	53	1600	60	96	420	<25	200	3300	1070	3300
04/23/97	NM	NM	NA	120	3.1	<2.0	59	<5.0	35	430	560	800
05/13/98	NM	MM	NA	3300	NA	NA	570	22	NA	5200	1100	3800
11/2/2006	88.09	8.40	0.80	4200	262	610	650	150	370	7200	1640	5900
2/21/2007	86.79	9.70	<0.7	8800	440	1040	1010	236	370	11900	2000	8420
5/1/2007						DRY				11000	2000	UTLU
8/20/2007						INACCESSIBLE						
4/16/2008	86.71	9.78	<0.7	4900	390	206	730	40	380	8900	2580	9600
7/14/2008	90.23	6.26	<0.7	780	<76	53	181	<70	<180	2590	851	2420
10/15/2008	87.48	9.01	7.4	2710	101	302	330	<70	410	2690	1090	3410
1/19/2009	85.74	10.75	1.5	3600	125	420	400	<70	<180	4000	1060	4080
4/16/2009	85.73	10.76	2.7	2720	128	69	490	<25	350	4300	2250	6820
7/14/2009	89.03	7.46	<0.7	2080	54	86	140	<25	104	2830	1009	2530
10/14/2009	88.03	8.46	<0.7	3600	130	262	295	26.5	175	4200	1294	4140
1/18/2010	86.90	9.59	<0.7	4600	179	340	.450	<50	530	6000	1225	4950
10/18/2010	90.40	6.09	<0.7	2630	71	177	460	<12.5	770	3600	1164	3780
	J											

Well JMW-8 PVC Elevation = 10/18/10

96.86 97.02

(feet)

	Water	Depth		1	1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xviene
	Elevation	to Water	Lead	Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(in feet )	(in feet)	(ppb)	(ppb)	(ppb) '	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
08/08/96	NM	NM	3.5	<0.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.2	<2.0
05/13/98	NM	NM	NA	<0.26	NA	NA	< 0.24	<0.22	NA NA	0.27	<1.40	<1.34
07/22/99	NM	NM	NA	6.7	NA	NA	6.8	<0.22	NA	3.7	8.1	13.4
10/16/00	NM	MM .	NA	< 0.35	NA	NA	< 0.37	< 0.36	NA	<0.38	<0.74	<1.14
04/12/01	87.70	9.44	4.3	< 0.39	NA	< 0.35	<0.4	< 0.47	NA	2.4	1.87	<1.43
07/26/02	91.36	5.78	<0.66	< 0.43	NA	NA	< 0.49	< 0.49	<1.4	0.65	<1.14	<1.5
09/07/04	88.47	9.50	<1.5	<0.41	< 0.56	< 0.36	< 0.54	< 0.61	<0.74	<0.67	<1.80	<2.63
11/2/2006	NM	NM	<0.7	< 0.47	< 0.49	<0.72	<0.38	<0.52	<2.2	<0.59	<1.59	<1.42
2/21/2007	86.57	10.57	1.6	< 0.47	<0.49	< 0.45	< 0.38	< 0.52	<1.8	< 0.46	<1.57	< 0.99
5/1/2007	88.78	8.36	<0.7	<0.47	<0.49	< 0.45	< 0.38	< 0.52	<1.8	<0.46	<1.57	< 0.99
8/20/2007	88.43	8.71	<0.7	< 0.47	<0.49	< 0.45	<0.38	< 0.52	<1.8	<0.46	<1.57	<0.99
4/16/2008	87.46	9.68	2.7	<0.24	<0.41	< 0.76	0.46	<0.7	<1.8	< 0.39	0.60-0.83	1.01-1.68
7/14/2008	90.34	6.68	<0.7	<0.24	<0.76	< 0.41	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
10/15/2008	88.41	8.61	<0.7	<0.24	<0.76	<0.41	< 0.35	<0.7	<1.8	9.6	<0.74	<1.67
1/19/2009	85.98	11.04	0.8	<0.24	<0.76	<0.41	< 0.35	<0.7	<1.8	9.6	< 0.74	<1.67
4/16/2009	86.04	10.98	1.6	< 0.41	<0.52	< 0.43	<0.87	<0.5	<1.7	1.09	<2.6	<2.13
7/14/2009	89.13	7.89	<0.7	< 0.41	<0.52	< 0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/14/2009	88.80	8.22	0.9	<0.41	<0.52	<0.41	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/18/2010	86.80	10.22	<0.7	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/18/2010	90.54	6.32	<0.7	<0.38	< 0.95	<0.38	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62

Well JMW-9 PVC Elevation ≈ 10/18/10 97.76

98.06

(feet)

	Water	Depth			3.2.00	1661	·					
	Elevation	to Water	Lead	D	1,2-Dibro-	1,2-Dich-	Ethyl		1		Trimethyl-	Xylene
Date				Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
	(in feet )	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb) .	(dqq)
08/08/96	NM	NM	<2.0	<0.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0
05/13/98	NM	NM	NA	< 0.26	NA	NA	<0.24	<0.22	NA	<0.21	<1.40	<1.34
07/22/99	NM	NM	NA	0.67	NA .	NA	0,99	<0.22	NA	2.1	<1.40	4
10/16/00	MM	NM	NA	<0.35	NA	NA	< 0.37	< 0.36	NA	< 0.38	<0.74	<1.14
04/12/01	88.81	8.38	<1	< 0.39	NA	< 0.35	< 0.4	<0.47	NA	< 0.37	<1.03	<1.43
07/26/02	91.85	5.34	<0.66	< 0.43	NΛ	NA	< 0.49	< 0.49	<1.4	< 0.63	<1.14	<1.5
09/07/04	88.64	9.54	<1.5	< 0.41	< 0.56	< 0.36	< 0.54	< 0.61	<0.74	< 0.67	<1.80	<2.63
11/2/2006	88.96	8.23	<0.7	< 0.47	< 0.49	< 0.72	< 0.38	< 0.52	<2.2	< 0.59	<1.59	<1.42
2/7/2007	87.44	9.75	<0.7	< 0.47	<0.49	< 0.45	< 0.38	< 0.52	<1.8	< 0.46	<1.57	<0.99
5/1/2007	89.33	7.86	<0.7	< 0.47	<0.49	<0.45	< 0.38	<0.52	<1.8	< 0.46	<1.57	<0.99
8/20/2007	87.83	9.36	<0.7	< 0.47	< 0.49	< 0.45	< 0.38	< 0.52	<1.8	< 0.46	<1.57	< 0.99
4/16/2008	89.08	8.11	<0.7	< 0.24	<0.41	< 0.76	<0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
7/14/2008	91.77	6.29	<0.7	< 0.24	< 0.76	< 0.41	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
10/15/2008	89.83	8.23	<0.7	< 0.24	< 0.76	<0.41	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
1/19/2009	87.28	10.78	<0.7	< 0.24	<0.76	< 0.41	<0.35	<0.7	<1.8	<0.39	<0.74	<1.67
4/16/2009	87.37	10.69	< 0.7	< 0.41	< 0.43	<0.52	<0.87	<0.5	<1.7	< 0.51	<2.6	<2.13
7/14/2009	90.55	7.51	<0.7	< 0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/14/2009	90.18	7.88	<0.7	< 0.41	<0.52	<0.41	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/18/2010	87.05	11.01	<0.7	<0,41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/18/2010	91.84	5.92	<0.7	<0.38	<0.95	<0.38	< 0.55	<0.25	<2.4	<0.72		
	-			1,44	5.00	-0.00	*0.00	V.Z3	\Z.4	<u>\0.72</u>	<1.20	<1.62

#### Groundwater Analytical Results Summary Jack's Auto Service LUST Site BRRTS# 03-61-000910

Well JMW-10

10/18/10 93.81 95.91

PVC Elevation ≈

(feet)

	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene		
	Elevation	to Water	Lead	Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)		
Date	(în feet )	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)		
08/08/96	N₩	NM	280	18000	780	630	2100	<250	580	28000	2950	13800		
04/23/97	NM	NM	NA	15000	620	780	2500	<130	570	28000	3990	15900		
09/07/04	87.80	89.10	180	16000	850	<7.2	3000	<120	1700	25000	4750	17500		
11/2/2006						FREE PRODUC	T							
2/21/2007						FREE PRODUC	T							
5/1/2007						FREE PRODUC	T		· · · · · · · · · · · · · · · · · · ·			~~~		
8/20/2007		FREE PRODUCT												
4/16/2008	85.21													
7/14/2008	89.69	6.22				NOT SAMPLED - P	REE PROD	UCT PRE	SENT					
10/15/2008	86.93	8.98				NOT SAMPLED - F	REE PROD	UCT PRE	SENT					
1/19/2009	·				**	FREE PRODUC	T							
4/16/2009						FREE PRODUC	Ť							
7/14/2009						FREE PRODUC	Ť		***************************************					
10/14/2009						FREE PRODUC	Т		·			-		
1/18/2010						FREE PRODUC	T		*					
0/18/2010						FREE PRODUC	Ţ.							

Well JMW-11 PVC Elevation =

94.87

(feet)

•	7777	- ·										
1	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethyl		ľ		Trimethyl-	Xylene
1	Elevation	to Water	Lead	Benzene	moethane (EDB)	loreehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(in feet )	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)
04/23/97	NM ,	NM	110	20000	1100	<50	5000	<130	2400	29000	11500	24200
09/07/04	87.19	8.69	64	9100	420	<36	930	<61	540	8700	2440	10900
11/2/2006	86.45	8.85	18.8	3000	178	<144	304	<104	440	5600	2450	10500
2/21/2007	85.50	9.80	32	8300	490	<45	850	<52	<180	12200	2560	16200
5/1/2007	86.28	9.02	72	6600	360	<45	590	<52	490	8400	3760	14100
8/20/2007	85.81	9.49	97	7900	510	126	510	<52	540	8500	3450	12800
4/16/2008	83.87	11.43	9.3	5200	127	119	580	<70	284	6000	2420	9680
7/14/2008	88.33	6.54				NOT SAMPLED - F	REE PROD	OUCT PRE	SENT			• •
10/15/2008	86.04	8.83				NOT SAMPLED - F	REE PROD	OUCT PRE	SENT			
1/19/2009						FREE PRODUC	Ť					
4/16/2009	84.03	10.84	36	7400	<43	281	1480	<50	580	9900	4650	14800
7/14/2009						FREE PRODUC	T					
10/14/2009						FREE PRODUC	T					
1/18/2010	86.18	8.69	83.8	8700	<43	370	1020	<50	690	9900	2710	11700
10/18/2010					*	FREE PRODUC	T		·			
							T I			****		

Well JMW-12

PVC Elevation =

93.87

(feet)

	Water	Depth		]	1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Elevation	to Water	Lead	Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(in feet )	(in feet)	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)
05/13/98	NM	NM	NA	<0.27	<0.39	<0.37	< 0.32	< 0.32	< 0.35	<0.27	<0.49	<0.67
08/13/98	NM	MM	NA	NA	NA	NA	NA	NA	NA -	NA	NA	NA
10/10/00	MM	MM	NA	< 0.29	NA	NA	< 0.57	<0.20	NA	<0.57	< 0.63	< 0.63
09/07/04	85.53	9.19	<1.5	< 0.41	< 0.56	< 0.36	< 0.54	< 0.61	< 0.74	<0.54	<1.80	<2.63
11/2/2006	84.79	9.25	<0.7	<0.47	< 0.49	<0.72	<0.38	<0.52	<2.2	<0.59	<1.59	<1.42
2/21/2007	83.89	10.15	<0.7	<0.47	< 0.49	< 0.45	<0.38	< 0.52	<1.8	< 0.46	<1.57	< 0.99
5/1/2007	84.62	9.42	<0.7	<0.47	< 0.49	< 0.45	<0.38	< 0.52	<1.8	<0.46	<1.57	< 0.99
8/20/2007	83.78	10.26	< 0.7	< 0.47	< 0.49	< 0.45	<0.38	< 0.52	<1.8	<0.46	<1.57	<0.99
4/16/2008	83.53	10.51	<0.7	<0.24	< 0.41	< 0.76	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
7/14/2008	87.09	6.78	<0.7	<0.24	< 0.76	<0.41	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
10/15/2008	84.44	9.43	<0.7	< 0.24	< 0.76	0.86	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
1/19/2009	82.69	11.18	<0.7	0.31	< 0.76	1.54	< 0.35	<0.7	<1.8	< 0.39	< 0.74	<1.67
4/16/2009						ICE IN PVC			·			
7/14/2009	85.68	8,19	<0.7	< 0.41	<0.52	< 0.43	<0.87	< 0.5	<1.7	< 0.51	<2.6	<2.13
10/14/2009	84.85	9.02	< 0.7	< 0.41	<0.52	< 0.41	<0.87	<0.5	<1.7	< 0.51	<2.6	<2.13
1/18/2010	84.18	9.69	<0.7	< 0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/18/2010	87.74	6.13	<0.7	<0.38	1.99	13.9	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62

Well JMW-13 PVC Elevation =

93.19

(feet)

	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Elevation	to Water	Lead	Benzene	moethane (EDB)	loroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(in feet )	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(dad)	(ppb)	(ppb)	(ppb)
05/13/98	MM	NM	NA	<0.27	< 0.39	· <0.37	<0.32	<0.32	<0.35	<0.27	<0.49	< 0.67
08/13/98	NM	NM	NA	NA	NA NA	NA	NA	NA	NA	NA	NA.	NA
10/10/00	NM	NM	NA	<0.29	NA	NA	< 0.57	<0.20	NA	<1,1	< 0.63	<0.63
09/07/04	82.01	11.88	<1.5	<0.41	<0.56	< 0.36	< 0.54	<0.61	<0.74	<0.67	<1.80	<2.63
11/2/2006	81.27	11.92	<0.7	< 0.47	< 0.49	<0.72	< 0.38	< 0.52	<2.2 ·	< 0.59	<1.59	<1.42
2/21/2007	80.95	12.24	<0.7	<0.47	<0.49	<0.45	<0.38	< 0.52	<1.8	<0.46	<1.57	< 0.99
5/1/2007	82.18	11.01	<0.7	<0.47	< 0.49	< 0.45	< 0.38	<0.52	<1.8	<0.46	<1.57	< 0.99
8/20/2007	80.47	12.72	<0.7	<0.47	< 0.49	< 0.45	< 0.38	< 0.52	<1.8	<0.46	<1.57	<0.99
4/16/2008	87.12	6.07	1.7	<0.24	<0.41	< 0.76	< 0.35	<0.7	<1.8	<0.39	< 0.74	<1.67
7/14/2008	83.48	9.71	<0.7	<0.24	<0.76	<0.41	< 0.35	<0.7	<1.8	<0.39	< 0.74	<1.67
10/15/2008	81.02	12.17	<0.7	<0.24	<0.76	<0.41	< 0.35	<0.7	<1,8	0.44	<0.74	<1.67
1/19/2009						DRY					-0.11	-1.01
4/16/2009	81.87	11.32	5.3	<0.41	< 0.43	<0.52	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
7/14/2009	82.46	10.73	<0.7	<0.41	<0.52	< 0.43	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/14/2009	81.38	11.81	<0.7	<0.41	<0.52	<0.41	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/18/2010	81.17	12.02	2.0	< 0.41	<0.52	< 0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/18/2010	84.41	8.78	<0.7	< 0.38	< 0.95	< 0.38	<0.55	< 0.25	<2.4	<0.72	<1.20	<1.62

Well JMW-14 PVC Elevation =

94.76

(feet)

	Water	Depth			1,2-Dibro-	1,2-Dich-	Ethyl				Trimethy!-	Xylene
Ī	Elevation	to Water	Lead	Benzene	moethane (EDB)	ioroehtane (DCA)	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(in feet )	(in feet)	(ppb)	(ppb)	(ppb)	(ppb) '	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
05/13/98	NM	NM	NA	< 0.27	< 0.39	< 0.37	<0.32	< 0.32	< 0.35	<0.27	<0.49	< 0.67
08/13/98	MM	NM	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA
10/10/00	NM	NM	NA	<0.29	NA	NA NA	< 0.57	<0.20	NA **-	<1.1	< 0.63	< 0.63
09/07/04	85.67	9.77	<1.5	<0.41	<0.56	< 0.36	< 0.54	< 0.61	< 0.74	< 0.67	<1.80	<2.63
11/2/2006	85.40	9.36	<0.7	< 0.47	< 0.49	< 0.72	< 0.38	<0.52	<2.2	<0.59	<1.59	<1.42
2/21/2007	84.35	10.41	<0.7	< 0.47	< 0.49	<0.45	< 0.38	< 0.52	<1.8	< 0.46	<1.57	< 0.99
5/1/2007	85.77	8.99	<0.7	<0.47	< 0.49	<0.45	< 0.38	<0.52	<1.8	< 0.46	<1.57	<0.99
8/20/2007	84.20	10.56	<0.7	<0.47	<0.49	< 0.45	< 0.38	<0.52	<1.8	<0.46	<1.57	<0.99
4/16/2008	88.97	5.79	<0.7	<0.24	< 0.41	<0.76	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
7/14/2008	86.16	8.60	<0.7	<0.24	< 0.76	<0.41	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
10/15/2008	84.68	10.08	<0.7	<0.24	< 0.76	< 0.41	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
1/19/2009	82.84	11.92	8.9	<0.24	<0.76	< 0.41	< 0.35	<0.7	<1.8	< 0.39	< 0.74	<1,67
4/16/2009	84.48	10.28	<0.7	<0.41	< 0.43	<0.52	. <0.87	< 0.5	<1.7	<0.51	<2.6	<2.13
7/14/2009	86.08	8.68	<0.7	<0.41	<0.52	· <0.43	< 0.87	< 0.5	<1.7	<0.51	<2.6	<2.13
10/14/2009	85.42	9.34	1.5	< 0.41	<0.52	<0.41	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/18/2010	84.28	10.48	<0.7	<0.41	<0.52	< 0.43	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/18/2010	87.66	7.10	<0.7	<0.38	<0.95	<0.38	< 0.55	<0.25	<2.4	<0.72	<1.20	<1.62

#### Stetsonville Oil 115 STH 13

		1,2-Dibro-	1,2-Dich-	Ethyl			,	Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(ppb)	(ppb)	(ppb)
06/02/1992				New Po	tabie Well	Installed			
02/28/2002	<0,21	NA ·	< 0.23	<0.22	<0.46	< 0.69	<0.41	<0.60	< 0.69
11/30/2006	<0.47	< 0.49	<0.72	<0.38	<0.52	<2.2	<0.59	<1.59	<1.42
5/29/2007	<0.47	< 0.49	< 0.45	<0.38	<0.52	<1.8	<0.46	<1.57	< 0.99
7/15/2008	<0.24	< 0.76	<0.41	<0.35	<0.7	<1.8	<0.39	<0.74	. <1.67
1/20/2009	<0.24	<0.76	< 0.41	< 0.35	<0.7	<1.8	< 0.39	< 0.74	<1.67
7/14/2009	<0.41	_ <0.52	< 0.43	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/20/2010	<0.41	< 0.52	< 0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	<0.38	< 0.95	<0.38	< 0.55	<0.25	<2.4	< 0.72	<1.20	<1.62
		·							

#### Jack's Auto 137 STH 13

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb).	(ppb)
04/14/1995	0.17	NA	< 0.09	<0.20	NA	NA	0,16	NA	< 0.37
05/16/1995	0.17	NA	< 0.09	< 0.20	NA	NA	<0,11	NA NA	< 0.37
02/21/1996	ND	NA .	ND	ND	ND	ND	ND	ND	ND
08/08/1996	<0.6	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0
03/04/1998	0.37	NA	NA	<0.29	<0.20	NA	< 0.36	<1.15	<1.15
04/12/2001	2.1	NA	1.2	<0.4	<0.47	NA	0.63	<1.43	<1.43
11/30/2006	<0.47	< 0.49	2.77	<0.38	<0.52	<2.2	<0.59	<1.59	<1.42
5/29/2007	<0.47	< 0.49	2.21	<0.38	<0.52	<1.8	<0.46	<1.57	<0.99
7/14/2008	<0.24	< 0.76	3.2	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
1/19/2009	<0.24	< 0.76	<0.41	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
7/14/2009	<0.41	< 0.52	2.46	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/19/2010	<0.41	< 0.52	2.92	<0.87	<0.5	<1.7	9.3	<2.6	<2.13
10/19/2010	<0.38	<0.95	3	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62

#### Stetsonville Heating & Plumbing - 111 Lincoln Street

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
02/28/2002	16	na	3.2	<0.22	<0.46	< 0.69	<0.41	< 0.60	< 0.69
10/09/2002				New Po	table Well	Installed			
11/30/2006				Ñ	OT SAMPI	_ED			
5/29/2007				NO	OT SAMPE	.ED			
7/15/2008	<0.24	< 0.76	<0.41	<0.35	<0.7	<1.8	<0.39	<0.74	<1.67
1/20/2009	< 0.24	<0.76	< 0.41	<0.35	<0.7	<1.8	<0.39	< 0.74	<1.67
7/14/2009	<0.41	<0.52	<0.43	<0.87	<0.5	. <1.7	<0.51	<2.6	<2.13
1/20/2010	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	<0.38	<0.95	<0.38	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62
						· ·			· · · · ·

#### North Central/Little Black Mutual - 128 STH 13

		1,2-Dibro-	1,2-Dlch-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(þpb)	(ppb)	(ppb)
08/09/1995	< 0.07	NA	0.09	< 0.20	NA	NA	<0.11	NA	< 0.37
02/28/2002	< 0.21	NA	<0.23	<0.22	<0.46	< 0.69	<0.11	< 0.60	< 0.69
11/30/2006	<0.47	< 0.49	0.86	<0.38	<0.52	<2.2	< 0.59	<1.59	<1.42
5/29/2007	<0.47	<0.49	2.11	<0.38	<0.52	<1.8	<0.46	<1.57	< 0.99
7/14/2008	<0.24	<0.76	0.48	< 0.35	<0.7	<1.8	< 0.39	< 0.74	<1.67
1/20/2009	<0.24	<0.76	1.68	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
7/14/2009	<0.41	<0.52	1.95	< 0.87	<0.5	<1.7	< 0.51	<2.6	<2.13
1/19/2010	<0.41	<0.52	2.58	<0.87	<0.5	<1.7	< 0.51	<2.6	<2.13
10/19/2010	<0.38	<0.95	<0.38	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62
	41.4								

#### McLlamar Apartments (Former Liepke Residence) - 134 STH 13

"		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
05/10/1994	10	NS	4.5	<0.5	NA	NA	<0.51	NA NA	<1.0
03/07/1995	8.5	NS	3.5	<0.5	NA	NA	1.4	NA	<1.0
05/16/1995	10	NS	4.2	<0.5	NA	NA	<0.51	NA NA	<1.0
09/23/1996				New Po	table Well	Installed			
10/21/1996	0.16	NS	0.15	<0.1	NA	<0.19	1.2	< 0.215	<0.35
02/01/2000	<0.5	NS	0.5	<0.1	NA	NA	<0.51	NA I	<0.20
03/15/2000	<0.5	NS	0.58	<0.1	NA	NA	<0.51	NA NA	<0.20
05/08/2001	0.27	NS	0.75	<0.15	<0.15	<0.15	<0.15	< 0.30	<0.30
11/14/2001	<0.21	NS	0.57	<0.22	< 0.46	< 0.69	<0.22	< 0.60	<0.69
10/28/2002	0.23	NS	0.88	<0.15	<0.15	<0.15	<0.15	< 0.30	<0.30
11/30/2006	0.61	<0.49	1.64	< 0.38	<0.52	<2.2	< 0.59	<1.59	<1.42
6/8/2007	0.79	<0.49	2.54	< 0.38	<0.52	<1.8	<0.46	<1.57	<0.99
7/14/2008	1.41	<0.76	2.11	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
1/20/2009	2.55	<0.76	3.4	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
7/14/2009	2.43	<0.52	3.08	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/19/2010	4.9	<0.52	5.2	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	5.3	<0.95	<0.38	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62

#### McLlamar Apartments (Former Pauls Upholstery) - 142 STH 13

		1,2-Dibro-	1,2-Dich-	Ethyl		***		Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
02/21/1996	ND	NS	ND	ND	ND	ND	ND	ND	ND
08/08/1996	0.6	NS	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0
10/22/1997	0.41	NS	<0.24	< 0.23	< 0.53	<0.22	<0.28	<0.55	<0.79
06/19/1998	< 0.26	NS	NA	< 0.24	<0.22	NA	<0.21	<1.40	<1.34
06/01/2000	< 0.26	NS	NA	< 0.24	<0.22	NA	<0.21	<1.40	<1.34
08/01/2003				New Po	table Well	Installed		11.00	-11.0-1
11/30/2006	<0.47	< 0.49	<0.72	< 0.38	<0.52	<2.2	< 0.59	<1.59	<1.42
6/8/2007	< 0.47	<0.49	0.68	< 0.38	< 0.52	<1.8	<0.46	<1.57	<0.99
7/14/2008	0.39	< 0.76	1.22	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
1/20/2009	0.44	< 0.76	1.77	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
7/14/2009	0.41	<0.52	3	< 0.87	<0.5	<1.7	< 0.51	<2.6	<2.13
1/19/2010	0.73	<0.52	3,3	< 0.87	< 0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	1.47	< 0.95	3.4	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62
	`							1,20	71.02

#### Gengler's Tavern - 105 Martin Ave.

		1,2-Dibro-	1,2-Dich-	Ethyl	· ·	1		Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
02/21/1996	4.0	NA	1.0	ND	ND'	ND ND	ND	ND	ND
08/08/1996	4.0	NA	1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0
08/29/1996	1.2	NA	NA	<1.0	<1.0	NA	<1.0	<2.0	<2.0
09/17/1997	2.4	NA	0.57	NA	NA	NA NA	NA	NA NA	NA
10/22/1997	8.2	NA	1.9	< 0.23	< 0.53	<0.22	<0.28	<0.55	<0.79
04/29/1998	13	NA	NA	<0.24	< 0.22	NA	<0.21	<1.40	<1.34
04/30/1998	12	NA	2.5	NA	NA	NA	NA	NA	NA NA
05/14/1998	11	NA	2.5	NA	NA	NA	NA .	NA NA	NA NA
01/29/1999	9.2	NA	NA	<0.24	<0.22	NA NA	<0.21	<1.40	<1.34
06/01/2000	10	NA	NA	< 0.24	<0.22	NA	<0.21	<1.40	<1.34
10/10/2000	14	NA	NA	<0.57	< 0.20	NA	<1.1	<0.63	< 0.63
04/12/2001	3.2	NA	1.2	<0.4	<0.47	NA NA	<0.37	<1.03	<1.43
07/26/2002	3.5	NA	NA	< 0.49	< 0.49	NA	< 0.63	<1.14	<4.5
11/25/2002				New Po	lable Well		10.00	*1,14	V4.5
05/14/2003		_ <del></del>			able Well			<del></del> -	
11/30/2006	<0.47	<0.49	<0.72	<0.38	<0.52	<2.2	<0.59	<1.59	<1.42
5/29/2007	<0.47	<0.49	0.65	< 0.38	<0.52	<1.8	<0.46	<1.57	<0.99
7/15/2008	0.52	<0.76	0.66	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
1/19/2009	0.25	<0.76	0.66	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
7/14/2009	<0.41	<0.52	0.80	<0.41	<0.52	<1.7	<0.55	<2.6	<2.13
1/20/2010	<0.41	<0.52	0.46	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	<0.38	< 0.95	0.41	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62
							-0.72	~1,20	~1.02

#### Chuck Anderson - 206 A & B STH 13

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Хуlеле
	Benzene	moethane	foroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(dqq)	(ppb)	(ppb)	(ppb)
10/22/1997	<0.41	NA	<0.24	< 0.23	<0.53	<0.22	<0.28	<0.55	<0.79
03/04/1998	< 0.16	NA	NA	< 0.29	< 0.20	NA	<0.36	< 0.64	<1.15
08/13/1998	<0.26	NA	NA	< 0.24	<0.22	NA	<0.21	<1.40	<1.13
04/12/2001	1.7	NA	< 0.35	< 0.4	<0.47	NA	<0.37	<1.03	<1.43
05/23/2001	2.6	NA	< 0.23	<0.22	< 0.46	NA.	<0.41	< 0.60	< 0.69
11/30/2006	0.49	< 0.49	< 0.72	<0.38	<0.52	<2.2	<0.59	<1.59	<1.42
5/29/2007	0.86	< 0.49	1.94	<0.38	<0.52	<1.8	<0.46	<1.57	
7/15/2008	0.9	< 0.76	2.02	< 0.35	<0.7	<1.8	<0.39	<0.74	<0.99
1/19/2009	0.3	<0.76	1.69	<0.35	<0.7	<1.8	<0.39		<1.67
7/14/2009	< 0.41	< 0.52	1,45	<0.41	<0.5	. <1.7		<0.74	<1.67
1/20/2010	< 0.41	<0.52	1.88	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	1.29	<0.95	2.54	<0.55	<0.25		< 0.51	<2.6	<2.13
			2,04	~0.00	\U.Z5	<2.4	<0.72	<1.20	<1.62

## Duplex (Former Zuleger)

Date	Benzene (ppb)	1,2-Dibro- moethane (ppb)	1,2-Dich- loroehtane (ppb)	Ethyl Benzene (ppb)	MTBE (ppb)	Naphthalene (ppb)	Toluene (ppb)	Trimethyl- benzenes (ppb)	Xylene (Total)
11/30/2006 5/29/2007		<u> </u>		1 10 10 10 10 10 10 10 10 10 10 10 10 10	(PP~)	ζρρογ	(ppo)	(bbn)	(ppb)
7/15/2008 1/20/2009			SHARE	O WELL WIT	ΓΗ ANDEF	RSON - (206 ST	H 13)		

Tim & Brook Wesle (Former Westermeyer ) - 230 STH 13 - Shares with 226 STH 13

		1,2-Dibro-	1,2-Dich-	Ethyl		ř ·		Trimethyl-	Xvlene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(ppb)	(ppb)	(ppb)
09/07/2000	<0.15	NA	<0.15	NA	NA	NA	NA	NA	NA
12/11/2006	1.68	<0.49	<0.72	<0.38	<0.52	<2.2	< 0.59	<1.59	<1.42
5/29/2007	6.2	< 0.49	< 0.45	<0.38	<0.52	<1.8	< 0.46	<1.57	<0.99
7/15/2008	23.2	< 0.76	1.11	< 0.35	<0.7	<1.8	< 0.39	< 0.74	<1.67
1/20/2009	19.1	<0.76	<0.41	< 0.35	<0.7	<1.8	< 0.39	< 0.74	<1.67
7/14/2009	22.1	<0.52	1.41	<0.87	<0.5	<1.7	< 0.51	<2.6	<2.13
1/20/2010	35	<0.52	2.27	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	- 8	< 0.95	1.27	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62
									1.02

#### Ray Boxrucker - 117 Lincoln St.

	_	1,2-Dibro-	1,2-Dich-	Ethyl		-		Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
10/22/1997	<0.41	NA	<0.24	<0.23	< 0.53	< 0.66	<0.28	<0.55	<0.79
11/30/2006	<0.47	< 0.49	<0.72	<0.38	<0.52	<2.2	< 0.59	<1.59	<1.42
			REFUS	SED SAMPL	E COLLE	CTION		·	
7/15/2008	<0.24	<0.76	< 0.41	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
1/19/2009	<0.24	<0.76	<0.41	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
7/14/2009	<0.41	<0.52	< 0.43	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/20/2010	<0.41	<0.52	< 0.43	<0.87	<0.5	<1.7	< 0.51	<2.6	<2.13
10/19/2010			1	REFUSED S	AMPLE C	OLLECTION		0	2.10
								1	

#### Stefzel

		1,2-Dibro-	1,2-Dich-	Ethyl			1	Trimethyl-	Xvlene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	i. ''i	•
Date	(dag)	(dag)	(dqq)	(ppb)	(ppb)	(ppb)		benzenes	(Total)
10/22/1997	<0.41	NA NA	<0.24	<0.23	<0.53	<0.66	(ppb)	(ppb)	(ppb)
11/30/2006	<0.47	<0.49	<0.72	<0.38	<0.52	<2.2	<0.28	<0.55	<0.79
5/29/2007	<0.47	<0.49	< 0.45	<0.38	<0.52	<del></del>	<0.59	<1.59	<1.42
0,20,200	-0,-11	10.40	10.40	~0.50	\U,3Z	<1.8	<0.46	<1.57	<0.99

Marlene Niznik/Rhyner - 205 Lincoln St.

	, i	1,2-Dibro-	1,2-Dich-	Ethyl			<u> </u>	Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
10/22/1997	<0.41	NA	< 0.24	<0.23	< 0.53	< 0.66	<0.28	<0.55	<0.79
03/04/1998	1.5	NA	NA	<0.29	<0.20	NA	< 0.36	< 0.64	<1.15
06/09/1998	<0.26	NA	NA	<0.24	<0.22	NA.	<0.21	<1.40	<1.34
08/13/1998	1.3	NA	NA	<0.24	<0.22	NA	4.5	<1.40	<1.34
01/29/1999	1.1	NA	NA .	<0.24	<0.22	NA	0.3	<1.40	<1.34
06/01/2000	<0.26	NA	NA	<0.24	<0.22	NA	<0.21	<1.40	<1.34
10/10/2000	0.66	NA	NA :	< 0.57	<0.20	NA	<1.1	< 0.63	<0.63
05/23/2001	<0.21	NA	< 0.23	<0.22	< 0.46	< 0.69	<0.41	< 0.60	< 0.69
11/30/2006	1.66	< 0.49	2.46	<0.38	<0.52	<2.2	< 0.59	<1.59	<1.42
5/29/2007	<0.47	< 0.49	<0.45	< 0.38	<0.52	<1.8	< 0.46	<1.57	<0.99
7/14/2008	1.28	< 0.76	7	< 0.35	<0.7	<1.8	< 0.39	< 0.74	<1.67
1/20/2009	3.08	<0.76	5.7	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
7/14/2009	0.74	<0.52	5.1	<0.87	<0.5	<1.7	< 0.51	<2.6	<2.13
1/19/2010	2.37	< 0.52	6.2	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	<0.38	< 0.95	4.9	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62

#### Kuchera/Heser

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphihalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(dqq)	(ppb)	(dqq)	(ppb)	(ppb)	(ppb)
11/11/1997	4.2	NA	2.3	< 0.23	< 0.53	< 0.66	<0.28	<0.55	<0.79
03/04/1998	4.1	NA	NA	< 0.29	<0.20	NA	< 0.36	< 0.64	<1.15
05/13/1998	9	NA	4.1	NΑ	NA	NA	NA	NA	NA NA
06/09/1998	5.4	NA	NA	< 0.24	<0.22	NA	<0.21	<1.40	<1.34
08/13/1998	4.2	NA	NA	<0.24	<0.22	NA	<0.21	<1.40	<1.34
01/29/1999	5	NA	NA	NA	NA	NA	NA	NA	NA.
03/02/1999	5	NA	NA	NΑ	NA	NA	NA	NA	NA NA
06/01/2000	4.1	NA	NA	< 0.24	<0.22	NA	<0.21	<1.40	<1.34
10/10/2000	4.4	NA.	NA	<0.57	<0.20	NA	<1.1	< 0.63	<0.63
05/23/2001	4.4	NA	5.3	<0.22	< 0.46	<0.69	<0.41	< 0.60	< 0.69
10/10/2001				New Po	table Well	Installed	<u> </u>	-0.00	-0.00
05/14/2002	<0.15	NA	<0.15	< 0.15	<0.15	<0.15	<0.15	<0.30	< 0.30
11/30/2006	0.56	< 0.49	1.99	< 0.38	<0.52	<2.2	<0.59	<1.59	<1.42
				INACCES	SIBLE				-1,42

Poirier/Randy & Kay Waldhart - 227 Lincoln St.

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
_	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
10/22/1997	<0.41	NA NA	2.4	<0.23	<0.53	< 0.66	<0.28	<0.55	<0.79
03/04/1998	0.37	NA	NA	<0.29	<0.20	NA	< 0.36	<0.64	<1.16
06/09/1998	0.4	NA	NA	<0.24	<0.22	NA	< 0.21	<1.40	<1.34
08/13/1998	0.5	NA	NA	<0.24	<0.22	NΑ	<0.21	<1,40	<1.34
01/29/1999	0.83	NA	NA	< 0.24	< 0.22	NA .	<0.21	<1.40	<1.34
06/01/2000	1.8	NA NA	NA	NÄ	NA	NA	NA	NA	NA.
10/10/2000	2.2	NA	NA	<0.57	< 0.20	NA	<1.1	< 0.63	< 0.63
04/12/2001	2.6	NA NA	11	< 0.4	< 0.47	NA	< 0.37	<1.03	<1.43
05/23/2001	3.2	NA	11	<0.22	<0.46	< 0.69	< 0.41	<0.60	< 0.69
09/18/2003				New Po	table Well	Installed			0.00
11/30/2006	< 0.47	< 0.49	< 0.72	<0.38	<0.52	<2.2	< 0.59	<1.59	<1.42
5/29/2007	< 0.47	< 0.49	< 0.45	< 0.38	< 0.52	<1.8	< 0.46	<1.57	<0.99
7/14/2008	< 0.24	<0.76	2.59	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
1/19/2009	<0.24	< 0.76	0.41	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
7/14/2009	<0.41	< 0.52	< 0.43	<0.87	<0.5	<1,7	<0.51	<2.6	<2.13
1/19/2010	<0.41	<0.52	< 0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	1.97	<0.95	1.58	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62
								-1.20	1.02

Tim or Carol Devine - 235 Lincoln St.

		1,2-Dibro-	1,2-Dich-	Ethyl	<u> </u>			Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	_ (ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
03/04/1998	<0.16	NA	NA	<0.29	< 0.20	NA	< 0.36	<0.64	<1.15
08/13/1998	<0.26	NA	NA	<0.24	<0.22	NA	<0.21	<1.40	<1.34
06/01/2000	<0.26	NA	NA	<0.24	< 0.22	NA	<0.21	<1.40	<1.34
05/23/2001	<0.21	NA	0.28	<0.22	<0.46	< 0.69	< 0.41	< 0.60	<0.69
11/30/2006	<0.47	<0.49	17.1	<0.38.	<0.52	<2.2	< 0.59	<1.59	<1.42
				INACCES	SIBLE				
7/14/2008	<0.24	<0.76	16.8	<0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
1/20/2009	3.7	< 0.76	1.94	< 0.35	<0.7	<1.8	0.82	<0.74	<1.67
7/14/2009	3.6	< 0.52	2.33	< 0.87	<0,5	<1.7	<0.51	<2.6	<2.13
1/19/2010	3.2	<0.52	1.98	< 0.87	< 0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	4.6	<0.95	2.45	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62

#### Walter Gross/Grossman - 212 Lincoln St.

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenés	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
04/29/1998	<0.27	NA	< 0.37	< 0.32	< 0.32	< 0.35	<0.27	<0.49	< 0.67
08/13/1998	<0.26	NA	NA	<1.34	<0.22	NA	<0.21	<1.40	<1.34
06/01/2000	<0.26	NA	NA	<1.34	< 0.22	NA	< 0.21	<1.40	<1.34
11/30/2006	<0.47	< 0.49	< 0.72	< 0.38	<0.52	<2.2	<0.59	<1.59	<1.42
5/29/2007	<0.47	< 0.49	<0.45	<0.38	<0.52	<1.8	<0.46	<1.57	<0.99
7/15/2008	1.04	< 0.76	0.56	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
1/19/2009	1.43	<0.76	0.95	< 0.35	<0.7	<1.8	<0.39	< 0.74	<1.67
7/14/2009	1.99	<0.52	1.05	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/20/2010	2.05	<0.52	1.39	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	<0,38	<0.95	1.05	<0.55	<0.25	<2,4	<0.72	<1.20	<1.62
						<u>-</u>			

#### Eva Molitor (Former Weber) - 226 Lincoln St.

		1,2-Dibro-	1,2-Dich-	Éthyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(ppb)	(ppb)	(ppb)
03/04/1998	< 0.16	NA	NA	< 0.29	<0.20	NA	<0.36	<0.64	<1.15
08/13/1998	<0.26	NA	NA	<0.24	<0.22	NA	< 0.21	<1.40	<1.34
06/01/2000	<0.26	NA_	NA	< 0.24	<0.22	NA	< 0.21	<1.40	<1.34
11/30/2006	4.6	< 0.49	9.0	< 0.38	< 0.52	<2.2	<0.59	<1.59	<1.42
5/29/2007	15.9	< 0.49	11.4	<0.38	< 0.52	<1.8	< 0.46	<1.57	<0.99
6/8/2007	17.2	< 0.49	10.1	<0.38	<0.52	<1.8	< 0.46	<1.57	<0.99
7/14/2008	<0.24	< 0.76	<0.41	< 0.35	<0.7	<1.8	1.79	<0.74	<1.67
1/19/2009	0.33	< 0.76	<0.41	< 0.35	<0.7	<1.8	1.4	<0.74	<1.67
7/14/2009	38	<0.52	25,3	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/19/2010	<0.41	<0.52	<0.43	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	77	<0.95	<0.38	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62

#### Jennifer Bacon (Former Dietz/Barry) - 230 Lincoln St.

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
09/07/2000	<0.15	NA	< 0.15	NA	NA	NA	NA	NA NA	NA
04/12/2001	< 0.39	NA	< 0.35	< 0.4	< 0.47	NA NA	< 0.37	<1.03	<1.43
11/30/2006				iN.	ACCESSI	BLE			
5/29/2007	<0.47	<0.49	<0.45	< 0.38	< 0.52	<1.8	< 0.46	<1.57	< 0.99
7/15/2008	< 0.24	< 0.76	< 0.41	< 0.35	< 0.7	<1.8	< 0.39	< 0.74	<1.67
1/20/2009	<0.24	<0.76	< 0.41	< 0.35	<0.7	<1.8	< 0.39	< 0.74	<1.67
7/14/2009	0.56	<0.52	< 0.43	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/20/2010	0.92	< 0.52	<0.43	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	1.32	<0.95	0.77	< 0.55	<0.25	<2.4	<0.72	<1.20	<1.62
						`			

Linsmeyer/Ray Martin - 226 Mink Ave.

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	
04/29/1998	<0.27	NA	< 0.37	<0.32	<0.32	<0.35	<0.27	<0.49	(ppb) <0.67
08/13/1998	<0.26	NA	NA	< 0.24	<0.22	NA	<0.21	<1.40	<1.34
06/01/2000	<0.26	NA	NA	<0.24	<0.22	NA	<0.21	<1.40	<1.34
11/30/2006	0.96	<0.49	0.77	< 0.38	<0.52	<2.2	< 0.59	<1.59	<1.42
5/29/2007	7.5	< 0.49	5.5	< 0.38	<0.52	<1.8	< 0.46	<1.57	<0.99
7/15/2008	<0.24	< 0.76	. <0.41	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
1/19/2009	<0.24	<0.76	<0.41	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
7/14/2009	<0.41	<0.52	<0.43	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/20/2010	<0.41	<0.52	< 0.43	< 0.87	< 0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	<0.38	< 0.95	<0.38	<0.55	< 0.25	<2.4	<0.72	<1.20	<1.62
							-5.72	-1,20	~1.02

Lloyd & GaileLindahl - 205 Swift Ave.

	_	1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
09/07/2000	<0.15	NA	<0.15	NA	NA	NA	NA	NA NA	NA
11/30/2006	<0.47	< 0.49	<0.72	<0.38	<0.52	<2.2	<0.59	<1.59	<1.42
5/29/2007	< 0.47	< 0.49	< 0.45	< 0.38	<0.52	<1.8	<0.46	<1.57	<0.99
7/15/2008	1.2	<0.76	0.51	< 0.35	<0.7	<1.8	<0.39	<0.74	·
1/20/2009				NC	OT SAMPL		10.00	-0.74	<1.67
7/14/2009			<del></del>		OT SAMPL				
1/20/2010			<del></del> -		T SAMPL				
10/19/2010					OT SAMPL				
								7	

Ron Spanbauer - 204 Lincoln St.

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
5	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(ppb)
09/07/2000	<0,15	NA	<0.15	NA	NA	NA NA	NA	NA NA	NA NA
11/30/2006	<0.47	< 0.49	<0.72	<0.38	<0.52	<2.2	< 0.59	<1.59	<1.42
5/29/2007	<0.47	< 0.49	< 0.45	< 0.38	<0.52	<1.8	<0.46	<1.57	< 0.99
7/14/2008	<0.24	< 0.76	< 0.41	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
1/19/2009	0.45	< 0.76	<0.41	<0.35	<0.7	<1.8	<0.39	<0.74	<1.67
7/14/2009	< 0.41	<0.52	< 0.43	<0.87	<0.5	<1.7	<0.53	<2.6	
1/19/2010	<0.41	< 0.52	< 0.43	<0.87	<0.5	<1.7	<0.51		<2.13
10/19/2010	0.50	< 0.95	<0.38	< 0.55	<0.25	<2.4	<0.72	<2.6 <1.20	<2.13
					5.20	-2	-0.72	~1.20	<1.62

John & Mercedes Kapfhamer - 326 Lincoln St.

	_	1,2-Dibro-	1,2-Dich-	Ethyl		-		Trimethyl-	Xylene
<u>.</u> .	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(ppb)	(ppb)	(ppb)
11/30/2006	<0.47	< 0.49	<0.72	< 0.38	<0.52	<2.2	<0.59	<1.59	<1.42
5/29/2007	<0.47	< 0.49	< 0.45	< 0.38	< 0.52	<1.8	<0.46	<1.57	<0.99
7/14/2008	<0.24	< 0.76	< 0.41	< 0.35	<0.7	<1.8	<0.39	<0.74	
1/20/2009			SHAR	ES WELL V		LINCOLN STRE		<0.74	<1.67
7/14/2009			SHAR	ES WELL W	/ITH 316 i	LINCOLN STRE	ET	<del></del>	<del></del>
1/20/2010	· · · · · · · · · · · · · · · · · · ·		SHAR	ES WELL W	//TH 316 I	LINCOLN STRE	CT -	<del></del>	
10/19/2010			SHAR	ES WELL W	/ITH 3161	LINCOLN STRE	EI		
			077741	LO VILLE VI	11113101	TINCOLN 2 LKE	EI		

#### Rakestraw

Deta	Benzene	1,2-Dibro- moethane	1,2-Dich- loroehtane	Ethyl Benzene	MTBE	Naphthalene	Toluene	Trimethyl- benzenes	Xylene (Total)
					MTBE	Naphthalene	Toluene		,
Date 12/44/2006	(ppb)	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
12/11/2006 5/29/2007	<0.47 <0.47	<0.49 <0.49	<0.72	<0.38	<0.52	<2.2	<0.59	<1.59	<1.42
012012001	~0.47		<0.45	<0.38	< 0.52	<1.8	< 0.46	<1.57	< 0.99

Greg Jakel - 327 Gershwin St.

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	_ (dqq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
11/30/2006	<0.47	<0.49	< 0.72	<0.38	<0.52	<2.2	<0.59	<1.59	<1.42
5/29/2007	<0.47	<0.49	<0.45	<0.38	< 0.52	<1.8	< 0.46	<1.57	<0.99
7/14/2008	<0.24	<0.76	< 0.41	< 0.35	< 0.7	<1.8	< 0.39	<0.74	<1.67
1/19/2009	< 0.24	<0.76	< 0.41	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
7/14/2009	<0.41	<0.52	< 0.43	< 0.41	<0.5	<1.7	<0.51	<2.6	<2.13
1/19/2010	<0.41	<0.52	< 0.43	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	<0.38	<0.95	<0.38	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62
								-	

#### Cypher/Scott Orth Ludwig - 229 Swift Ave. - Shares with 317 Gershwin St.

	_	1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
11/30/2006	<0.47	< 0.49	< 0.72	<0.38	< 0.52	<2.2	<0.59	<1.59	<1,42
5/29/2007	<0.47	<0.49	< 0.45	<0.38	<0.52	<1.8	<0.46	<1.57	<0.99
7/14/2008	<0.24	<0.76	<0.41	<0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
1/19/2009	< 0.24	< 0.76	<0.41	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
7/14/2009	<0.41	<0.52	< 0.43	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/19/2010	< 0.41	<0.52	< 0.43	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	<0.38	<0.95	<0.38	<0.55	< 0.25	<2.4	<0.72	<1.20	<1.62
			-						11.02

Bruce & Luanne Olsen - 229 Gershwin St.

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
11/30/2006	<0.47	<0.49	< 0.72	< 0.38	<0.52	<2.2	<0.59	<1.59	<1.42
5/29/2007	<0.47	< 0.49	<0.45	<0.38	<0.52	<1.8	< 0.46	<1.57	<0.99
7/14/2008	<0.24	< 0.76	<0.41	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
1/19/2009	0.49	<0.76	<0.41	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
7/14/2009	0.86	< 0.52	< 0.43	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/19/2010	0.69	< 0.52	< 0.43	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	0.93	< 0.95	0.48	<0.55	< 0.25	<2.4	<0.72	<1.20	<1.62
								20	

Riemer - 221 Gershwin St.

	_	1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyi-	Xvlene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
11/30/2006				IN	ACCESSI			(PPD/]	(bhp)
5/29/2007	<0.47	<0.49	<0.45	< 0.38	<0.52	<1.8	< 0.46	<1.57	< 0.99
7/15/2008	<0.24	< 0.76	<0.41	< 0.35	< 0.7	<1.8	<0.39	<0.74	<1.67
1/20/2009	<0.24	< 0.76	< 0.41	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
7/14/2009	0.58	< 0.52	< 0.43	< 0.87	<0.5	<1,7	<0.51	<2.6	<2.13
1/20/2010	0.44	< 0.52	< 0.43	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	0.40	<0.95	<0.38	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62
			-					-	

Virgil & Coreen Wilcox - 231 Martin Ave.

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
11/30/2006	<0.47	< 0.49	< 0.72	< 0.38	<0.52	<2.2	<0.59	<1.59	<1.42
5/29/2007	<0.47	<0.49	<0.45	<0.38	< 0.52	<1.8	< 0.46	<1.57	<0.99
7/14/2008	<0.24	<0.76	< 0.41	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
1/19/2009	0.33	< 0.76	<0.41	< 0.35	< 0.7	<1.8	<0.39	<0.74	<1.67
7/14/2009	0.45	<0.52	< 0.43	<0.87	< 0.5	<1.7	<0.51	<2.6	<2.13
1/19/2010	< 0.41	<0.52	< 0.43	< 0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	0.42	< 0.95	<0.38	< 0.55	<0.25	<2.4	<0.72	<1.20	<1.62
				***************************************			V.1 L	-1.20	11.04

#### Sandi Kuenne - 121 Swift Ave.

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	ioroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
11/30/2006	9.2	< 0.49	1.08	<0.38	<0.52	<2.2	<0.59	<1.59	<1.42
5/29/2007	0.95	< 0.49	<0.45	<0.38	<0.52	<1.8	< 0.46	<1.57	< 0.99
6/8/2007	9.8	< 0.49	1.8	<0.38	<0.52	<1.8	<0.46	<1.57	< 0.99
7/15/2008	0.8	< 0.76	0.54	<0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
1/19/2009	0.65	< 0.76	0.68	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
7/14/2009	0.79	<0.52	0.76	<0.87	<0.5	<1.7	< 0.51	<2.6	<2.13
1/20/2010	1.09	<0.52	0.83	<0.87	- <0.5	<1.7	<0.51	<2.6	<2,13
10/19/2010	1.28	<0.95	1.23	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62

#### Jeanne Ching - 131 Swift Ave.

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xγlene
	Benzene	moethane	forcehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
11/30/2006	<0.47	<0.49	<0.72	<0.38	<0.52	<2.2	<0.59	<1.59	<1.42
5/29/2007	<0.47	<0.49	<0.45	<0.38	<0.52	<1.8	<0.46	<1.57	<0.99
7/14/2008	<0.24	<0.76	0.79	<0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
1/19/2009				COUL	D NOT S	AMPLE			<del></del> :
7/14/2009	<0.41	<0.52	1.03	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
1/19/2010	<0.41	<0.52	1.27	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	<0.38	<0.95	1.46	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62

#### Coin Laundry

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moelhane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	_ (ppb)	(ppb)	(dqq)	(dqq)	(dag)	(ppb)
12/11/2006	<0.47	< 0.49	<0.72	<0.38	<0.52	<2.2	<0.59	<1.59	<1.42
5/29/2007	<0.47	<0.49	< 0.45	<0.38	<0.52	<1.8	<0.46	<1.57	< 0.99

#### Post Office

1		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
I	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(dag)
6/8/2007	< 0.47	< 0.49	0.78	<0.38	< 0.52	<1.8	< 0.46	<1.57	<0.99

#### Last Resort (Frankes) - 108 E. CTH A

	-	1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
6/8/2007	196	<0.49	13.7	<0.38	<0.52	<1.8	1.99	<1.57	<0.99
7/15/2008	45	<0.76	1.68	< 0.35	<0.7	<1.8	0.86	< 0.74	<1.67
1/20/2009	55	< 0.76	2.32	< 0.35	<0.7	<1.8	1.08	<0.74	<1.67
7/14/2009	55	<0.52	2.52	< 0.87	<0.5	<1.7	0.90	<2.6	<2.13
1/20/2010	66	<0.52	2.6	< 0.87	<0.5	<1.7	1.11	<2.6	<2.13
10/19/2010	52	<0.95	2.36	<0.55	<0.25	<2.4	1.1	<1.20	<1.62

#### Ann Hoefful - 125 Lincoln St.

		1,2-Dibro-	1,2-Dich-	Ethyl			}	Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(dqq)	(dqq)	(ppb)	(ppb)	(dgg)	(ppb)	(ppb)	(ppb)
7/15/2008	<0.24	< 0.76	<0.41	< 0.35	< 0.7	<1.8	< 0.39	<0.74	<1.67
1/19/2009	<0.24	< 0.76	<0.41	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
7/14/2009	<0.41	<0.52	< 0.43	< 0.87	< 0.5	<1.7	<0.51	<2.6	<2.13
1/20/2010	<0.41	<0.52	< 0.43	< 0.87	<0.5	· <1.7	<0.51	<2.6	<2.13
10/19/2010	<0.38	<0.95	<0.38	< 0.55	< 0.25	<2.4	<0.72	<1.20	<1.62

## Sharon Whitstone - 234 Lincoln St.

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Berzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(ppb)	(dqq)
7/15/2008	9.5	<0.76	9.2	< 0.35	< 0.7	<1.8	<0.39	<0.74	<1.67
1/19/2009	9.6	<0.76	9.5	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
7/14/2009	12.3	<0.52	11.6	<0.87	<0.5	<1.7	< 0.51	<2.6	<2.13
1/20/2010	19.3	<0.52	12.3	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	20	<0.95	14.9	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62
<u></u>								T T	

#### James Sova - 215 Lincoln St.

		1,2-Dibro-	1,2-Dich-	Ethyl			Ĭ	Trimethyl-	Xylene
į	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
7/14/2008	1.43	<0.76	5.3	< 0.35	<0.7	<1.8	<0.39	<0.74	<1.67
1/20/2009	3.3	< 0.76	5.9	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
7/14/2009	3.14	<0.52	6.9	<0.87	<0.5	. <1.7	<0.51	<2.6	<2:13
1/19/2010	5.4	<0.52	9.3	<0.87	<0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	4.8	<0.95	<0.38	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62
			!		<u> </u>		,		í Til

#### Marsha Duellman - 419 Fremont

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moelhane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(dqq)	(ppb)
1/20/2009	<0.24	<0.76	< 0.41	< 0.35	<0.7	<1.8	< 0.39	<0.74	<1.67
7/14/2009				NO	OT SAMPL	.ED		<u> </u>	
1/20/2010				NO	T SAMPL	ED			
10/19/2010	,,,				T SAMPL				******
							r	Г Т	

#### Dotty Pierce - 124 Lincoln Street

		1 2 2 2 2	7 2 2 1						
		1,2-Dibго-	1,2-Dich-	Ethyi			i —	Trimethyl-	Xvlene
1	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
1/20/2009	<0.24	< 0.76	<0.41	<0.35	<0.7	<1.8	< 0.39	<0.74	<1.67

#### Katherine Boehlen - 316 Lincoln Street

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
1/20/2009	<0.24	< 0.76	< 0.41	<0.35	< 0.7	<1.8	< 0.39	< 0.74	<1.67
7/14/2009	<0.41	< 0.52	< 0.43	<0.41	< 0.52	<1.7	<0.51	<2.6	<2.13
1/19/2010	<0.41	< 0.52	< 0.43	<0.87	< 0.5	<1.7	<0.51	<2.6	<2.13
10/19/2010	<0.38	<0.95	<0.38	<0.55	<0.25	<2.4	<0.72	<1.20	<1.62

# Groundwater Analytical Results Summary Private Well Analytical Results, Jack's Auto Service and Stetsonville Oil Company

#### 142 Lincoln Street

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
_ Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	, (ppb)
7/14/2009	<0.41	<0.52	3.60	< 0.41	< 0.52	<1.7	<0.51	<2.6	<2.13
1/20/2010				NO	T SAMPL	ED		·	
10/19/2010				NC	OT SAMPL	.ED			

#### 110 Hwy 13

		1,2-Dibro-	1,2-Dich-	Ethyl				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
7/14/2009	<0.41	<0.52	3.60	<0.41	<0.52	· <1.7	<0.51	<2.6	<2.13
1/20/2010				NO	OT SAMPL	ED			
10/19/2010		NOT SAMPLED							

#### 324 Hwy 13

		1,2-Dibro-	1,2-Dich-	Ëthyf				Trimethyl-	Xylene
	Benzene	moethane	loroehtane	Benzene	MTBE	Naphthalene	Toluene	benzenes	(Total)
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
7/14/2009	<0.41	<0.52	3.60	< 0.41	<0.52	<1.7	<0.51	<2.6	<2.13
1/20/2010		NOT SAMPLED							
10/19/2010		NOT SAMPLED							
[								· 1	

# Summary of Free Product Levels & Recovery Stetsonville Oil Co. BRRTS#03-61-000357

DATE		SMW-3	GALS REC./PERIOD	TOT GALS RECOVERED
02/07/07	inches of FP	0.5	0.02	0.02
04/05/07	Inches of FP	8	0.18	0.20
04/17/07	Inches of FP	0.25	0.01	0.21
05/01/07	Inches of FP	2	0.04	0.24
05/15/07	Inches of FP	0.06	0.01	0.25
05/29/07	Inches of FP	0.13	0.01	0.26
08/06/07	Inches of FP	0	0.00	0.26
08/20/07	Inches of FP	0	0.00	0.26
04/15/08	Inches of FP	0.5	0.02	0.28
ļ	Gals Recovered	0.02		0.20
	Inches of Sock Saturated	No Sock		
07/15/08	Inches of FP	0.25	0.01	0.29
	Gals Recovered	0.01		0.23
	Inches of Sock Saturated	No Sock		
10/14/08	Inches of FP	0	0	0.29
	Gals Recovered	0		0.20
	Inches of Sock Saturated	No Sock		
01/20/09	Inches of FP	0	0	0.29
	Gals Recovered	0		0.23
	Inches of Sock Saturated	No Sock		
04/15/09	Inches of FP	0	0	0.29
	Gals Recovered	0		V
	Inches of Sock Saturated	No Sock		
07/13/09	Inches of FP	0	0	0.29
	Gals Recovered	0		0.20
	Inches of Sock Saturated	No Sock		
10/14/09	Inches of FP	0	0	0.29
	Gals Recovered	0	_	0.20
	Inches of Sock Saturated	No Sock		
01/19/10	Inches of FP	0	0	0.29
	Gals Recovered	0		0.20
	Inches of Sock Saturated	No Sock		į
10/18/10	Inches of FP	0	0	0.29
	Gals Recovered	0	·	V.M.O
	Inches of Sock Saturated	No Sock		

#### Watertable Elevations Table Stetsonville Oil Company LUST Site BRRTS# 03-61-000357 Stetsonville, Wisconsin

pvc top (ft) Top of well Bottom of well Date	SMW-1 100.93 100.12 90.12	<b>SMW-2</b> 101.02 64.14 59.14	<b>SMW-3</b> 98.16 92.22 82.22	<b>SMW-4</b> 99.52 98.74 88.74	<b>SMW-5</b> 101.07 97.93 87.93	SMW-20 101.04 100.48 85.48	SMW-21 102.09 95.63 80.63	SMW-22 == NM NM	<b>SMW-23</b> 99.08 95.13 80.13	<b>SMW-24</b> 100.77 93.26 78.26	SMW-30 98.84 91.16 81.16	<b>SMW-31</b> 97.65 90.75 80.75	<b>SPZ-1</b> 95.57 41.44 31.44	<b>SPZ-2</b> 98.87 68.37 58.37	<b>SPZ-10</b> 99.81 NM 32.44	SPZ-11 NM NM NM
09/07/04	87.44	85.94	88.22	90.92	91.78	89.48	88.53	NM I	07.44	22.00						
11/2/2006	91.17	88.12	89.28	90.74	92.96	NM	91.10		87.44	87.69	88.15	88.04	76.02	85.00	82.62	NM
2/7/2007	DRY	NM	88.04	89.90	90.11	89,10	89.56	DESTROY- ED	NM	88.22	IA I	89.55	80.46	87.35	86.36	DESTROY-
5/1/2007	91.80	89.03	FP	91.33	IA	91.25		L ⊑₽.	NM	87.03	87.94	87.45	78.53	85.77	85.12	ED
8/20/2007	DRY	86.99	NM	89.85	IA	1A	91.91	! +	88.15	88.00	90.16	88.85	80.63	87.58	85.83	7
4/15/2008	92.41	89.09	87.22	90.13	96.10	. 91.01	DRY		87.17	87.25	88.30	IA_	79,41	86.27	84.69	1
7/15/2008	93.24	90.90	91,15	93.46	96.16	93.29	93.53		87.89	87.31	88.81	87.39	84.33	89.69	84.87	1
10/14/2008	90.62	88.42	88.20	90.79	94.18	90.56	92.93		90.67	90.21	91.92	85.12	82.88	89.61	87.84	1
1/20/2009	UD	85.99	86.75	88.77	88.96	87.91	90.28		88.22	87.65	88,92	87.90	80.96	87.07	84.89	1
4/15/2009	92.01	87.49	86.63	89.61	95.19	89.18	87.93	<u> </u>	86.85	86.11	87.13	86.24	78.10	85.24	PVC	1
7/13/2009	92.16	89.81	90.38	92.82	94.83	92.37	90.07	-	85.92	85.70	87.38	86.16	78.79	84.59	84.53	i !
10/14/2009	91,74	89.50	89.19	92.24	95.51		91.91	-	89.57	89.19	90.86	89.76	82,89	88.61	86.44	1 [
1/19/2010	89.49	89,68	88.08	90.17	90.19	91.83	91.58	L	89.21	88.36	90.73	89.06	81.71	88.04	85.75	1
10/18/2010	93.81	91.69	91,72	93,67	95.58	89.17	89.40	<u> </u>	87.65	87.43	88.49	87.34	79.40	86.56	84.65	1 1
				- 00.07	90,06	93.66	93.73		91.06	90.64	93,75	91.23	82.96	91.01	88.13	1

Note: Elevations are presented in feet.

NM = Not Measured CNL = Could Not Locate FP = Free Product

IA = Inaccessible

UD = Under Dumpster

#### Watertable Elevations Table Jack's Auto Service LUST Site BRRTS# 03-61-000910 Stetsonville, Wisconsin

pvc top (ft) Top of well Bottom of well Date	JMW-1 96.23 88.76 78.26	JMW-2 96.82 90.03 80.03	JMW-3 97.18 90.18 80.18	JMW-4 98.12 89.75 79.75	JMW-5 96.98 88.98 78.98	J <b>MW-6</b> 97.87 90.21 80.21	<b>JMW-7</b> 96.49 89.49 79.49	JMW-8 96.86 92.34 82.34	JMW-9 97.76 92.39 82.39	JMW-10 93.81 91.68 81.68	JMW-11 94.87 91.30 81.30	JMW-12 93.87 89.54 79.54	<b>JMW-13</b> 93.19 88.69 78.69	JMW-14 94.76 90.26 80.26								
04/12/01	NM	NM	NM	87.20	91.51	NM	NM	87.70	88.81	NM	NM	NM	NIN I									
07/26/02	NM	NM	NM	91.36	92.29	NM	NM	91.36	91.85	NM	NM	NM .	NM NM	NM								
09/07/04	87.32	NM	NM	88.21	89.70	88.10	NM	88.47	88.64	87.80	87,19	85.53		NM								
11/2/2006	FP	DRY		88.33	89.27	88.59	88.09	NM	88.96	67.00 FP	86.45		82.01	85.67								
2/7 or 21/2007	87.24	DRY	]	87.18	86.90	FP	86.79	86.57	87.44	FP	85.50	84.79	81.27	85.40								
5/1/2007	FP	DRY	DESTROY- ED	88.53	89.88	FP	DRY	88.78	89.33	FP		83.89	80.95	84.35								
8/20/2007	87.48	86.60		87.18	89.08	FP	IA	88.43	87.83	FP	86.28	84.62	82.18	85.77								
4/16/2008	FP	D		1	1							87.43	90.01	87.69	86.71	87.46	89.08	FP	85.81	83.78	80.47	84.20
7/14/2008	89.38	FULL		91.15	91.61	91.54	90.23	90.34	91.77	89.69	83.87	83.53	87.12	88.97								
10/15/2008	87.61	FULL		88.50	89.43	88.75	87.48	88.41	89.83		88.33	87.09	83.48	86.16								
1/19/2009	85.49	FULL		86.53	86.02	FP	85.74	85.98	87.28	86.93	86.04	84.44	·81.02	84.68								
4/16/2009	85.75	FULL		86,39	90.59	FP	85.73	86.04		FP	FP	82.69	DRY	82.84								
7/14/2009	FP	FULL		89.92	91.47	90.17	89.03		87.37	FP FR	84.03	ICE	81.87	84.48								
10/14/2009	FP	FULL		88.86	91.14	88.97		89.13	90.55	FP	FP	85.68	82.46	86.08								
1/19/2010	FP	FULL		87.51	87.06	87.95	88.03 86.90	88.80	90.18	FP	FP	84.85	81.38	85.42								
10/18/2010	FP	FULL		90.47	93.06	90.09		86.80	87.05	FP	86.18	84.18	81.17	84.28								
				50,47	33.00	90.09	90.40	90.54	91.84	FP	FP	87.74	84.41	87.66								

Note: Elevations are presented in feet mean sea level (msl).

NM = Not Measured FP = Free Product

IA = Inaccessible

D = Destroyed FULL = Full of Bentonite

ICE = Ice in PVC



State of Wisconsin Department of Natural Resources Route to: Sol	id Waste [] Haz. Waste []	Wastewater [	MONITORING WELL CONSTRUCTION Form 4400-113A
( gotte) (1 to lest 1 talls	& Repair Underground Local Grid Location of We	lanks Ki Other	Rev. 4-90
JACKS AUTO SERVICE	t. H&	ft. ☐ E.	Well Name
Pacifity License, Permit or Monitoring Number	Grid Origin Location		MONITORING WELL #3 Wis Unique Well Number DNR Well Number
		ong. 90° 18′ 55° or	· · · · · · · · · · · · · · · · · · ·
Diana — as a	St. Plane ft.	N ft. E.	Date Well Installed
Distance Well Is From Waste/Source Boundary	Section Location of Waste/S		$\frac{1}{m} \frac{1}{m} \frac{1}{d} \frac{6}{d} \frac{1}{9} \frac{9}{9} \frac{5}{9}$ Well Installed 0.
To Wall a Daine of the Company of the	Location of Well Relative to	ZY,T. ≥ N, R. ⊥ ☐ W.	Well Installed By: (Person's Name and Firm)  MIKE McArdle of M&K
Is Well A Point of Enforcement Std. Application?	u Da Upgradient s	☐ Sidegradient	
A. Protective pipe, top elevation 1449.00 ft	d □ Downgradient n	☐ Not Known  1. Cap and lock?	ENVIRON MENTAL DRILLING
B. Well casing, top elevation 144850 fi		2. Protective cov	
C. Land surface elevation L449.6 ft	. 111	a. Inside diame	t <del>ian</del>
D. Surface seal, bottom 1448 of ft MSL or _L		b. Length:	$-\frac{1}{2}\cdot\hat{Q}$ ft.
12. USCS classification of soil near screen:			Steel 💆 0.4  Other 🗆
GP GM A GC GW GW G SW G S	P	d. Additional p	rotection?
SM I SC A ML MH C CL C	н 🗖 📗 📗	If yes, descr	ibe:
13. Sieve analysis attached?    Yes N	,	3. Surface seal:	Bentonite 1 30 Concrete 2 01
14. Drilling method used: Rotary 1 5	( )(001 )(0	Managar I I and a	Ob [7]
Hollow Stem Auger 🕱 4		4. Material Deline	en well casing and protective pipe:
Other []			Bentonite 💢 3.0 Armular space seal □
15. Drilling fluid used: Water 0 0 2 Air 0 0	1		Other 🗆
Drilling Mud 0 3 None 2 9	9	5. Annular space	seal: a Granular Bentonite 🔬 33
16. Drilling additives used?    Yes X		cLbs/ga	I mud weight Bentonite-sand slurry [] 35 I mud weight Bentonite slurry [] 3;
		d % Beni	onite Bentonite-cement group [7] sa
Describe		eF	t volume added for any of the above
(within alarysis).		i. How histage	T-man
			Claytis II 03
E. Bentonite seal, top 4480 ft. MSL or	_O ft_	6. Bentonite seal:	a. Bentonite granules 🕱 33
F. Fine sand, top 14456 ft. MSI, or		/ c	
. [444.7]		7. Fine sand mater  a. BAD66	ial: Manufacturer, product name & mesh size
G. Filter pack, top 1444 of ft. MSL or		b. Volume acide	d 1846 ft3
H. Screen joint, top LY42.0 ft. MSL or7	(O fr	8. Filter pack mate	rial: Manufacturer, product name and mesh size
I: Well bottom 1432.0 ft. MSL or 17	A 6	b. Volume acide	2 # 65 - # 75 SAND
		. 9. Well casing:	Flush threaded PVC schedule 40 🗶 23
J. Filter pack, bottom L431 5 ft. MSL or 17	.5 h		Flush threaded PVC schedule 80 [] 24
K. Borehole, bottom 1431 5 ft. MSL or 17	5 m.	10. Screen material: a. Screen type:	ScH40 PVC
L. Borehole, diameter 8 0 in.			Continuous slot 0 1
M. O.D. well casing $-2.37$ in.		b. Manufacturer c. Slot size:	360 Rock 0. <u>0.</u> <u>0.</u> <u>0.</u> in.
I.D. well casing $206$ in.		d. Slotted length	u 10.0h.
I hereby certify that the information on this for	orm is true and	'	· · · · · · · · · · · · · · · · · · ·
Signature Manufacture of this it	Firm	i to the best of my kno	owledge,`
Please complete both state of this for	HGENDA T	NTERNATIONAL	INC.
Please complete both stors of this form and return to the and ch VR 111 Wie and Code In accordance with ch	appropriate DNR office list	ed at the top of this form as	required by chs. 144, 147 and 160, Wis. Stats.
			·

	lid Waste 🗆 Haz, Waste 🛭 & Repair 🔲 Undergro		MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 4-90
Hiry/Project Name	Local Gnd Location of V	Vell	Well Name
intry/Project Name	4907,48 g. FR	4956.50 18 PE	1: W/m-99
STETSOWILE O () actility License, Permit or Monitoring Number	Grid Origin Location		Wis, Unique Well Number DNR Well Number
racitity License, Permit of Montioring Number	1	1	1/200/2014 - 1-2014 - 1-2014 - 1-2014 - 1-2014 - 1-2014 - 1-2014 - 1-2014 - 1-2014 - 1-2014 - 1-2014 - 1-2014
l	<u> </u>	_ Long or	
pe of Well Water Table Observation Well 211	St. Plane		Date Well Installed 12/16/93
Piezometer 🗆 12	Section Location of Was		mm dd y y
Pistance Well Is From Waste/Source Boundary	NEI/4 of AIE1/4 of Se	c. 건. T. 3D N, R. 1 금통.	Well installed By: (Person's Name and Firm)
Dokum to	Location of Well Relativ		MATT O.
Well A Point of Enforcement Std. Application?	u 🛘 Upgradient	s 🛘 Sidegradient	
☐ Ya 12 No	d 🗆 Downgradient	л 📆 Not Known	Floro dlamae men The
Protective pipe, top elevation 1454.57	<del></del>	1. Cap and lock	? <b>2</b> Ys 🗆 No
		2. Protective co	
1. Well casing, top elevation 1454.07	h. MSL	a. Inside diam	c)
	ft. MSL	b. Length:	_1.0n
Land surface elevation 1454.5	IL MISE	c. Material:	. Steel   04
Surface seal, bottom ft MSL or _	L.O.ft、藍藍出		Aluminuwi Ode 12 8
12 USCS classification of soil near screen:		d. Additional	
	CD PT		
GP GM GC GW GSW GSW GSM GSM GC GM GSW	었음! / [1]	11 yes, aes	cribe:
Beteck □	(,, 1 ) 類	3. Surface seal:	Βεπιοπίε 🔲 30
	日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	· 🛱 🔪	Concrete 201
	I 1855		
, Drilling method used: Rotary	50   🙇	4. Material bern	veen well casing and protective pipe:
Hollow Stem Auger 🖼			Bentonite 🗷 30
Other 🗆			Armular space seal 🔲 🚃
			Oher 🛛 💆
5. Drilling fluid used: Warr 02 Air 0	01	5. Armular space	e seal: a. Granular Bentonite 🖼 3 3
Drilling Mud 🛮 03 None 🗵	99   🕅		gal mud weight Bentonite-sand shurry   35
			gal mud weight Bentonite slumy   3 1
S. Drilling additives used? 🔲 Yes 💹 🔀	No E		entoniteBentonite-cement grout   50
			_Ft 3 volume added for any of the above
Describe		674	
1. Source of water (attach analysis):		f. How insta	
			Tremie pumped 🔲 02
			Gravity 🗷 0.8
<b>k</b>	, ,	6. Bentonite sei	- · · · · · · · · · · · · · · · · · · ·
Bentonite seal, top ft. MSL or	L.Q fi~ 關	B / b. □1/4 in	. D3/8 in. D1/2 in. Bentonite pellets D 32
•.		閥 /	Other 🗖 💆
. Fine sand, top ft. MSL or	.32 仁/ \ 日間		aterial: Manufacturer, product name & mesh size
		Padacr	Mining #70
Filter pack, top ft. MSL or	35 11 \	b. Volume a	යැපැ <u>ු ් එ                                  </u>
			naterial: Manufacturer, product name and mesh size
I. Screen joint, top ft. MSL or	. 년 O ft 기빔	1	E1 Wt #30
		b. Volume a	<u> </u>
: Well bottom ft. MSL or \	aon. I	9. Well casing	
	· - · - · - ·	<u> 필</u> 션	Flush threaded PYC schedule 80 🔲 24
Filter pack, bottom ft. MSL or	100 s VE		Other 🗆 🐺
THE PACK COROUNT TO THE MISTON TO			
C. Borehole, bottom ft. MSL or	2006	10. Screen mate	
e potentiale, pottom it. Map of	-2.5	a. Scr∞n d	
D. I. I. II. d. a			Continuous slot   01
Borehole, diameter $49$ in.	122		Other 🗆 💮
100		b. Manufact	
1. O.D. well casing _2.31 in.		c. Slot size:	'
		d Sloued le	
4 I.D. well casing $201$ in.		11. Backfill mate	erial (below filter pack): None D 14
			Other [] Will
hereby certify that the information on the	s form is true and c	correct to the best of my	knowledge.
gnance	Fam 😞 -	6 1 1/	/ .
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+   Wid	: Mauryant /	
dease complete both sides of this form and return to	the appropriate DNR off	ice listed at the/top of this for	m as required by chs. 144, 147 and 160, Wis. Stats

lease complete both sides of this form and return to the appropriate DNR office listed at the flop of this form as required by chs. 144, 147 and 160, Wis. Stats., and ch. NR 141, Wis. Ad. Code. In accordance with ch. 144, Wis Stats., failure to file this form may result in a forfeiture of not less than \$10, nor more than 5000 for each day of violation. In accordance with ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each lay of violation. NOTE: Shaded areas are for DNR use only. See instructions for more information including where the completed form should be sent.

tate of Wisconsin <u>Route</u> epartment of Natural Resources <u>Env.</u>	<u>? To</u> : Solid Waste ☐ Haz. Response & Repair ☐ Unde	Waste □ Wastewater□ erground Tanks X Other[	MONITORING WE □Form 4400-113A	ELL CONSTRUCTION Rev. 4.90
Facility/Project Name STETSONVILLE OIL	Local Grid Location of Feet S. Feet W	Well	Weil Name PZ-11	
Facility License, Permit or Monitoring Number	Grid Origin Location		Wis. Unique Well Number	DNR Well Number
Type of Well Water Table Observation Well Piezometer	12 Section Location of W	laste/Source Section 24, T 30 N, R I E	Date Well Installed 12/4/95	·
Distance Health Tolk Heater Journe Bournery	Location of Well Relat	lve to Waste/Source	Well Installed By: (Person'	s Name and Firm)
[s Well A Point of Enforcement Std. Applicatio	u ∐ Upgradient d ⊠ Downgradient	s □ Sidegradient n □ Not Known	PAUL BOART-LONGYEAR	,
A. Protective pipe, top elevation	ft. MSL _		and lock?	⊠Yes □No
8. Well casing, top elevation	_		ective cover pipe: ide diameter:	4 in.
C. Land surface elevation	ft. MSL	b. Ler c. Ma		1 ft. Steel ⊠ 04 . Other □
D. Surface seal, bottom <u>.5</u> ft. MSL or _	ft. \	d. Ad	ditional protection? yes, describe:	☐ Yes ☒ No
12. USCS Classification of soil near screen:  GP□ GM□ GC□ GW□ SW□ SM□ SC□ ML□ MH□ CL□  Bedrock⊠	SP CHC	3. Sur	face seal:	Bentonite ☐ 30 Concrete ⊠ 01 Other ☐
13. Sieve analysis attached?	50 41	5. Ann	ular space seal: a. Grar	Bentonite ≥ 30  ular space seal □  Other □  nular Bentonite □ 33
15. Drilling fluid used: Water □ 02 Air □ Drilling Mud □ 03 None ⊠	01   99°	c d e	Lbs/gal mud weight Bentoni Lbs/gal mud weight Bentonite Sentonite Bentonite Ft ³ volume added for any of the above installed:	lentonite slurry   31 -cement grout   50 ove Tremie   01 Tremie pumped   02
18. Drilling additives used?			ntonite seal: a. Ben	
17. Source of water (attach analysis):		0. –	1/4 in. ⊠ 3/8 in. □ 1/2 in. ⊟ 8e	0ther 🗆
		[] / a. <u>s</u>	OLD MEDAL #50	Auct have an hear size
E. Bentonite seal, top <u>1.0</u> ft. MSL or _	ft	- F-71 F-77 /	olume added <u>.34                                    </u>	product name and mesh size
F. Fine sand, top <u>54</u> ft. MSL or _	ft	-[4] [4] / a. §	OLD MEDAL #20 olume added 2.38 ft ³	-
G. Filter pack, top 55 ft. MSL or _	ft	-Li Li /	I casing: Flush threaded P\	/C schedule 40 ⊠ 23
H. Screen joint, top 57 ft. MSL or _	ft,		Flush threaded P	VC schedule 80 ☐ 24 ———— Other ☐
I. Well bottom <u>62</u> ft. MSL or _	ft	10. Sc	reen material: <u>PVC</u>	
J. Filter pack, bottom <u>62</u> ft. MSL or _	ft	a. S	creen type:	Factory cut ☑ 11 Continuous slot ☐ 01
K. Borehole, bottom <u>62</u> ft. MSL or _	ft			Other 🗆
L. Borehole, diameter <u>8.25</u> in.			anufacturer <u>JOHNSON</u> lot size:	.010 in.
M. O.D. well casing 2.38 in.			lotted length:	5 ft.
N. I.D. well casing 2.00 in.	a la brico and account to 22		ckfill material (below filter p	ack): None 🖾 14
I hereby certify that the information on this form Signature	ris true and correct to the	best of my knowledge.		
W. L. J.		FLUID MANAGE	EMENT INC.	

Please complete both sides of this form and return to the appropriate DNR office listted at the top of this form as required by chs. 144, 147 and 160 Wis. Stats., and ch. NR 141, Wis. Ad. Code. In accordance with ch. 144 Wis. Stats., failure to file this form may result in a forfeiture of not less than \$10,000 for than \$5000 for each day of violation. In accordance with ch. 147 Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. NOTE: Shaded areas are for DNR use only. See instructions for more information including where the completed form should be sent.

### STATE BAR OF WISCONSIN FORM 3 - 1998 QUIT CLAIM DEED

Document Number

This Deed, made between Donna Polrier, a/k/a Donna Marie Poirier, Grantor, and Jack Poirier, a/k/a Jack W. Poirier, a/k/a Jack William Poirler, Grantee.

Grantor quit claims to Grantee the following described real estate in Taylor County, State of Wisconsin:

#### Parcel 1:

Part of Lot 48, Assessor's Plat No. 1, as described in parcel recorded in Volume 205 at Image 667 as follows:

A parcel of land located in the Northeast Quarter of the Northeast Quarter of Section 24, Township 30 North, Range I East of the Fourth Principal Meridian, in Stetsonville, Taylor County, Wisconsin, described as

Commencing at the point of intersection of the centerline of Stetson Avenue and the West line of Main Street, said point also being the Northeast corner of said Section 24:

Thence southerly along said West line of Main Street a distance of 280 feet, to the POINT OF BEGINNING:

Thence continuing southerly along last said West line a distance of 140 feet;

Thence westerly at right angles to the last described course a distance of 77 feet, more or less, to a point on a line parallel and/or concentric with and 25 feet normally distant easterly from the centerline of the main track of Wisconsin Central Ltd:

Thence northerly along last said parallel and/or concentric line a distance of 140 feet, more or less, to a point on a line parallel with and 280 feet normally distant southerly from the centerline of Stetson Avenue:

DOCUMENT # 329546

Fee Exempt 77.25-(88)

Recorded Mar. 02,2009 AT 10:07AM arat. Duernlier TAYLOR COUNTY WISCONSIN MARVEL A LEMKE REGISTER OF DEEDS Fee Arounts

\$11.00

Recording Area

Name and Return Address Rusch & Rusch Law Office, S.C. 111 E. Division St. PO Box 425 Medford, WI 54451 *11pd (1)

<u>181 00083-006</u> Parcel Identification Number (PIN)

This includes homestead property. Grantor is not married.

Thence easterly along last said parallel line a distance of 72 feet, more or less, to the point of beginning; together with easement as set forth in Document No. 240875, recorded at Reel 205, Image 667, and subject to the easement reserved therein.

Parcel 2: Lot Six (6), Sunrise Estates, a Subdivision of the Northwest Quarter of the Northeast Quarter (NW1/4-NE1/4), Section Nineteen (19), Township Thirty (30) North, Range Two (2) East, Village of Stetsonville, Wisconsin; together with easement granted in Document No. 271611 and recorded at Reel 271, Image 118.

Parcel 3: The Northwest Quarter of the Northeast Quarter (NW%-NE%), Section Nineteen (19), Township Thirty (30) North, Range Two (2) East, EXCEPT 1) The South 225 feet of said forty; 2) Any part of said forty lying West of the Eastern boundary line of Sunrise Estates, a subdivision, Village of Stetsonville, Wisconsin; and 3) Lot One (1) of Taylor County Certified Survey Map No. 282 recorded May 17, 1983 in Vol. 1-S of Surveys on page 282 as Document No. 216002.

This is a deed pursuant to a judgment of divorce between the parties, granted March 2, 2009, by the Taylor County Circuit Court in Case No. 08 FA 102, exempt from the transfer tax pursuant to § 77.25(8M).

_ day of March, 2009,

Jama Pairier	
* Donna Poirier	<b>*</b>
<b>*</b>	*
AUTHENTICATION	ACVNOULED CAMEAU
Signature(s) Donna Poirier	ACKNOWLEDGMENT STATE OF
	) ss.
authenticated this 2 nd day of March , 2009	County. )
Mours m. France	Personally came before me this day of, the above named
* Thomas M. Rusch	
TITLE: MEMBER STATE BAR OF WISCONSIN	
(If not,	to me known to be the person(s) who executed the foregoing
authorized by §706.06, Wis. Stats.)	instrument and acknowledged the same.
THIS INSTRUMENT WAS DRAFTED BY	
Attorney Thomas M. Rusch	•
State Bar No. 1012375	Notary Public, State of
(Signatures may be authenticated or acknowledged, Both are not necessary.)	My Commission is permanent. (If not, state expiration date:

## Reel 240 Image 230

STATE BAR OF WISC "NSIN - FORM : QUIT DLAIN, HERD THIS SPACE ACCERNIC FOR ACCORDING DAT

wife	Almira A. Dahl, his	County of Taylor, Wis. ss.	
guitelaine to Stetsonville Oil	Grator S.	Received for record this 26	lay of
quit-dains to Stetsonville Oil (ompany, Corporation		Hay 1995 at //:28 o'clock	
		and microfilmed on Reel_240 of Records on Image _230	
tor a valuable consideration,	4111-00	or records on imagex_c	h
the following described real estate in Tay State of Wisconsin:	lor County.	Mayvel A. Lernke, Register of D	<u>Re</u>
		J .	0000
A parcel of land located in the Northe Northeast Quarter (NEL NFL), Section Township Thirty (30) North, Range One Principal Meridian, in Stetsonville, T described as follows: Beginning at the of the centerline of Stetson Avenue an Main Street, said point also being the southerly along the centerline of said said Section 24, a distance of 280 feed described course a distance of 110 feed and/or concentric with and 19 feet normaln track of Wisconsin Central Lid.; I distance of 280 feet, more or less, to avenue, also being the North line of said senterline a distance of 110 feet, more subject to exceptions, reservations, e.	(1) East of the Fourth avior County, Wisconsing point of intersection of the centerline of the centerline of Sortheast corner of somain Street, also being to the ace westerly at rest, more or less, to a point on the aforesa and Section 24: thence a or less, to the point or the point	Tax Key #	
·		# 77.25(3)	
		EMPT	
Exceed it. Medigert, Misconsin		·	
	open that willy the day of	my way	
SIGNAD AND ADALIST IN DRUKENCH OF THE	and the state of		
	Fred L. Dal	il and MAL	
•	j	,	
	Almira A. 1	Palet	
	Alanci.	G. Cell GIAN	
	( . K. t. x	" CT & ROBERT (STAL)	
* * * * * * * * * * * * * * * * * * * *		* ** * · · · · · · · · · · · · · · · ·	
		(SFA1)	
Signatures of			
authenticated this day of	. 14	·	
	Too Wester Spector of	Wronson or this Chang	
\$1451 (2) 10 4	And the London & Spice		
SIATI OF WISCOMES			
Pero astly rame for an area of a	6.44 Min		
the shore raned First L. Sall mi Almara A.	Add Southman of the		
	and any ork		
of the Lie was to be the president of white treated its pro-	a secretary got a land soft	hor Krimer A	
HIR BESTRUMENT WAS DRAFTED BY	1/2/1/5	thought -	
Attorney Kehner ) . Branding	War XX	11/10/11/2	
Buffste and Brandner law of the	Kohor	1. Brandon Frotary	
Months ed. (2) Council be me of a nerves a appoint	14 6 4	li mat	
and the state of t	Notary Politics 14	21.00	1
	Marinen was CREHES IN	Control of the Contro	
americal and a second	**************************************	k waterat.	

and the statement of th

	,	DOC# 301534
Document No.	WARRANTY DEED	Recorded OCT. 08,2003 AT 09:46AM
	e D. Paul and Susan M. Paul, his wife,	Signed Mauel a Same
Granters, convey and w. McNamar, husband property, Grantees, for a valuable	warrant to Allen J. McNamar and Ann and wife as survivorship marital e consideration, the following describe unty, State of Wisconsin	MERICAL A LEME  REGISTER OF DEEDS  Fee Amount: \$11.00  Transfer fee: \$99.00
		Return to: Atty. Robert L. Brandner 205 South Second Street Medford, WI 54451  FURALLY #90TF
		This is homestead property
	servations, easements, restrictions and	
Executed at Medford, W.  Suc D. Faul  Bruce D. Paul	isconsin, this // 5 day of September day (SEAL)  Susan M. P	dison M. Jaliseal
Signatures above not note	arized below are authenticated this	day of, 2003.
	Attorney Ro	obert L. Brandner
STATE OF WISCONSIN		
TAYLOR COUNTY	) ss. )	Notary

This instrument drafted by: Attorney Robert L. Brandner Curran and Brandner Law Office, S.C. Medford, WI 54451

foregoing instrument and acknowledged the same.

Robert L. Brandner

Personally came before me, this ______ day of September, 2003, the above named Bruce D. Paul and Susan M. Paul, husband and wife, to me known to be the persons who executed the

Notary Public - Taylor County, Wisconsin

My Commission is permanent



1421 State Road 16 ◆ La Crosse, WI 54601 ◆ 1-800-552-2932 ◆ Fax (608) 781-8893 Email: rona@metcohq.com ◆ www.metcohq.com

March 16, 2011

Ann McNamar. W8876 Sawyer Ave. Medford, WI 54451



Subject: Missing monitoring well from the Stetsonville Oil property LUST Investigation (BRRTS#: 03-61-000357) located at 115 S. State Hwy 13, Stetsonville, Wisconsin 54480.

Dear Mrs. McNamar,

On April 15, 2008, METCO noted that piezometer well SPZ-11 located at 134 S. State Hwy 13 (parcel # 181-00092-0000) can not be located or properly abandoned because it appears to have been destroyed during construction activities. METCO has made reasonable efforts to locate the lost well to determine whether it was properly abandoned but has been unsuccessful in those efforts. You need to understand that in the future you may be held responsible for any problems associated with the missing monitoring well if it creates a conduit for contaminants to enter groundwater. If in the future the lost monitoring well is found, you will be required to notify the WDNR and to properly abandon the well in compliance with the requirements in ch. NR 141, Wis. Adm. Code, and to submit the required documentation of the abandonment to the WDNR.

Because the lost monitoring well cannot be properly abandoned at this time, it will be listed on the DNR Remediation and Redevelopment GIS Registry.

If you have any questions regarding this matter please contact John Sager of the WDNR at 715-365-8959 or myself at 608-781-8879.

Sincerely,

Jason T. Powell

Project Manager

Attached: Site map with missing monitoring well location

En T. Rwell

c: Brian Dahl - Stetsonville Oil Co. Inc.



<ul> <li>SENDER: COMPLETE THIS SECTION</li> <li>Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired.</li> <li>Print your name and address on the reverse so that we can return the card to you.</li> <li>Attach this card to the back of the mailpiece, or on the front if space permits.</li> </ul>	A. Signature  A. Signature  A. Signature  Address  B. Received by (Printed Name)  C. Date of Deliver  A. A. A. A. C. C. S. W. A. C. C. D. A. C. C. D. A. C. C. D.
1. Article Addressed to:  Ann McNamar W8876 Sawyer Ave.	D. Is delivery address different from Item 1?  Yes  If YES, enter delivery address below:  No
Medford, WI 54451	3. Service Type  A Certified Mall
2. Article Number 7 🖂 🛣 7 🖂 🖂 7 🖂 🖂 7 🖂 🖂 7 🖂 7	4. Restricted Delivery? (Extra Fee) ☐ Yes  1060 0002 4301 8492
PS Form 3811, February 2004 Domestic Re	turn Receipt 102595-02-M-15

### WDNR BRRTS Case # 03-61-000357

WDNR Site Name: Stetsonville Oil Co.

Please note that all off-site property notifications were sent out to property owners with the recommended enclosures: legal description, WDNR Publication #RR-589, map, and table of analytical results.

State of Wisconsin Department of Natural Resources http://dnr.wi.gov	IMPACTED OFF-SOURCE PROPERTY INFORMATION Form 4400-246 (R 3/08)
----------------------------------------------------------------------	--------------------------------------------------------------------

This fillable form is intended to provide a list of information that must be submitted for evaluation for case closure. It is to be used in conjunction with Form 4400-202, Case Closure Request (Section H). The closure of a case means that the Department has determined that no further response is required at that time based on the information that has been submitted to the Department.

**NOTICE:** Completion of this form is mandatory for applications for case closure pursuant to ch. 292, Wis. Stats. and ch. NR 726, Wis Adm. Code, including cases closed under ch. NR 746 and under ch. NR 749, Wis. Adm. Code, Table 1 are included. It is not the Departments intention to use any personally identifiable information from this form for any purpose other than reviewing closure requests and determining the need for additional response action. The Department may provide this information to requesters as required by Wisconsin's Open Records law [ss. 19.31 – 19.39, Wis. Stats.].

BRRTS #: 03-61-000910, 03-61-000357

ACTIVITY NAME <u>Jack's Auto Service & Stetsonville Oil Co.</u>

ID	Off-Source Property Address	Parcel Number	WTM X	WTM Y
Α	None	181002050000	495311	511222
В	221 Gershwin St.	181002280000	495418	511346
С	229 Gershwin St.	181002270000	495419	511312
D	108 E. CTH A	181002890001	495235	511566
E	131 E. CTH A	181001020000 181001010000	495308 495308	511530 511514
F	106 STH 13	181000840000	495236	511532
G	112 STH 13	181000850000	495239	511514
н	116 STH 13	181000860000	495237	511499
1	122 STH 13 128 STH 13	181000870000 181000890000 181000880000	495236 495234 495254	511484 511470 511469

	132 & 134 STH 13 142 STH 13	181000900000 181000910000 181000920000 181000930000 181000940000	495233 495238 495236 495238 495271	511461 511448 511434 511423 511421
J	204 STH 13	181001040000 181001050000	495234 495237	511398 511383
К .	206 STH 13	181001060000 181001070000 181001080000 181001090000	495236 495230 495255 495234	511377 511368 511367 511350
<b>L</b> .	201 STH 13 213 STH 13	181000830007 181000830010	495194 495197	511411 511379
М	217 & 223 STH 13	181000830008	495195	511326
Ņ	226 STH 13	181001100000	495232	511367
0	230 & 236 STH 13	181001120000 181001110000	495231 <b>4</b> 95231	511335 511306
P	306 STH 13 321 STH 13	181001190000 181000830009 181001200000	495251 495191 495234	511272 511245 511258
Q	316 STH 13	181001210000 181001222000	495240 495245	511244 511232
R	111 Lincoln St.	181001000000	495310	511500
s	117 Lincoln St.	181000980000 181000990000	495318 495321	511473 511486
Т	125 Lincoln St.	181000970000 181000950000 181000960000	495312 495306 495312	511452 511419 511436
U	204 Lincoln St.	181001330000 181002290001	495350 495396	511393 511368

V	205 Lincoln St.	181001150000 181001160000	495312 495316	511398 511387
w	212 Lincoln St.	181001340000 181001350000	495348 495349	511374 511361
X	215 Lincoln St.	181001170000 181001180000	495318 495312	511364 511353
Υ	226 Lincoln St.	181001370000 181001360000	495345 495346	511344 511356
Z	227 Lincoln St.	181001940000 181001180001	495310 495310	511330 511345
AA	230 Lincoln St.	181002250000 181002240000	495345 495351	511319 511333
AB	234 Lincoln St.	181002260000	495349	511299
AC	235 Lincoln St.	181001960000 181001950000	495309 495309	511298 511314
AD	315 Lincoln St.	181002070000 181002060000	495311 495312	511250 511238
AE	316 Lincoln St.	181002330000	495345	511242
AF	116 Swift Ave.	181001140000	495270	511300
AG	121 Swift Ave.	181002110000 181002090000	495284 495283	511276 511261
АН	131 Swift Ave.	181002100000 181002080000	495311 495309	511273 511260
Al	205 Swift Ave.	181002320000	495351	511270
AJ	229 Swift Ave.	181002470000 181002460000	495418 495421	511270 511258

# Stetsonville Oil Co. 03-61-000357

RE: Impacted off-source property letters

Due to the amount of off-source letters associated with this site the letters are not included in the GIS Registry Package. Contact the DNR Project Manager for copies of these letters or to review the file.