GIS REGISTRY **Cover Sheet**

Source Property Information

Source Prop	berty information	CLOSURE DATE:	Apr 30, 2010
BRRTS #:	02-36-228354		
		FID #:	
ACTIVITY NAME:	Cool City Cleaners - Former		
		DATCP #:	
PROPERTY ADDRESS:	1308 Washington Street		
		— COMM #:	
MUNICIPALITY:	Two Rivers		
PARCEL ID #:	053-000-079-014.01		

***WTM COORDINATES:**

WTM83, NAD83 (1991)

WTM COORDINATES REPRESENT:

Approximate Center Of Contaminant Source

O Approximate Source Parcel Center

Please check as appropriate: (BRRTS Action Code)

Contaminated Media:

X <u>Groundwater</u> Contamination > ES (236)

Contamination in ROW

Off-Source Contamination

(note: for list of off-source properties see "Impacted Off-Source Property" form) **Soil** Contamination > *RCL or **SSRCL (232)

Contamination in ROW

Off-Source Contamination

(note: for list of off-source properties see "Impacted Off-Source Property" form)

Land Use Controls:

N/A (Not Applicable)

Soil: maintain industrial zoning (220)

(note: soil contamination concentrations between non-industrial and industrial levels)

Structural Impediment (224)

Site Specific Condition (228)

X Cover or Barrier (222)

(note: maintenance plan for groundwater or direct contact)

X Vapor Mitigation (226)

Maintain Liability Exemption (230)

(note: local government unit or economic development corporation was directed to take a response action)

Monitoring Wells:

Are all monitoring wells properly abandoned per NR 141? (234)

• Yes ∩ No ON/A

> * Residual Contaminant Level **Site Specific Residual Contaminant Level

State of Wisconsin	GIS Registry Checklist	
Department of Natural Resources	Form 4400-245 (R 4/08)	Page 1 of 3
http://dnr.wi.gov	101111400245 (114/00)	ragerors

This Adobe Fillable form is intended to provide a list of information that is required for evaluation for case closure. It is to be used in conjunction with Form 4400-202, Case Closure Request. The closure of a case means that the Department has determined that no further response is required at that time based on the information that has been submitted to the Department.

NOTICE: Completion of this form is mandatory for applications for case closure pursuant to ch. 292, Wis. Stats. and ch. NR 726, Wis. Adm. Code, including cases closed under ch. NR 746 and ch. NR 726. The Department will not consider, or act upon your application, unless all applicable sections are completed on this form and the closure fee and any other applicable fees, required under ch. NR 749, Wis. Adm. Code, Table 1 are included. It is not the Department's intention to use any personally identifiable information from this form for any purpose other than reviewing closure requests and determining the need for additional response action. The Department may provide this information to requesters as required by Wisconsin's Open Records law [ss. 19.31 - 19.39, Wis. Stats.].

BRRTS #:	02-36-228354	PAF	CEL ID #:	053-000-079-014-01		
ACTIVITY NAME:	Cool City Cleane	rs - Former		WTM COORDINATES:	X: 714455	Y: 410900

CLOSURE DOCUMENTS (the Department adds these items to the final GIS packet for posting on the Registry)

X Closure Letter

Maintenance Plan (*if activity is closed with a land use limitation or condition (land use control) under s. 292.12, Wis. Stats.*)

X Conditional Closure Letter

Certificate of Completion (COC) for VPLE sites

SOURCE LEGAL DOCUMENTS

Deed: The most recent deed as well as legal descriptions, for the **Source Property** (where the contamination originated). Deeds for other, off-source (off-site) properties are located in the **Notification** section.

Note: If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.

Certified Survey Map: A copy of the certified survey map or the relevant section of the recorded plat map for those properties where the legal description in the most recent deed refers to a certified survey map or a recorded plat map. (lots on subdivided or platted property (e.g. lot 2 of xyz subdivision)).

Figure #: NA Title: Not Available

Signed Statement: A statement signed by the Responsible Party (RP), which states that he or she believes that the attached legal description accurately describes the correct contaminated property.

MAPS (meeting the visual aid requirements of s. NR 716.15(2)(h))

Maps must be no larger than 8.5 x 14 inches unless the map is submitted electronically.

Location Map: A map outlining all properties within the contaminated site boundaries on a U.S.G.S. topographic map or plat map in sufficient detail to permit easy location of all parcels. If groundwater standards are exceeded, include the location of all potable wells within 1200 feet of the site.

Note: Due to security reasons municipal wells are not identified on GIS Packet maps. However, the locations of these municipal wells must be identified on Case Closure Request maps.

Figure #: A-1 Title: Site Location Map

Detailed Site Map: A map that shows all relevant features (buildings, roads, individual property boundaries, contaminant sources, utility lines, monitoring wells and potable wells) within the contaminated area. This map is to show the location of all contaminated public streets, and highway and railroad rights-of-way in relation to the source property and in relation to the boundaries of groundwater contamination exceeding a ch. NR 140 Enforcement Standard (ES), and/or in relation to the boundaries of soil contamination exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Levels (SSRCL) as determined under s. NR 720.09, 720.11 and 720.19.

Figure #: A-2 Title: Site Plan with Boring and Monitoring Well Locations

Soil Contamination Contour Map: For sites closing with residual soil contamination, <u>this map is to show the location of all</u> <u>contaminated soil and a single contour</u> showing the horizontal extent of each area of contiguous residual soil contamination that exceeds a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL) as determined under s. NR 720.09, 720.11 and 720.19.

State of Wisconsin	GIS Registry Checklist					
Department of Natural Resources http://dnr.wi.gov	Form 4400-245 (R 4/08)	Page 2 of 3				

BRRTS #: 02-36-228354

ACTIVITY NAME: Cool City Cleaners - Former

MAPS (continued)

Geologic Cross-Section Map: A map showing the source location and vertical extent of residual soil contamination exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL). If groundwater contamination exceeds a ch. NR 140 Enforcement Standard (ES) when closure is requested, show the source location and vertical extent, water table and piezometric elevations, and locations and elevations of geologic units, bedrock and confining units, if any.

Figure #: C-1 Title: Geologic Cross-Section A-A'

Figure #: C-2 Title: Geologic Cross-Section B-B'

Groundwater Isoconcentration Map: For sites closing with residual groundwater contamination, this map shows the horizontal extent of all groundwater contamination exceeding a ch. NR140 Preventive Action Limit (PAL) and an Enforcement Standard (ES). Indicate the direction and date of groundwater flow, based on the most recent sampling data. *Note: This is intended to show the total area of contaminated groundwater.*

Figure #: E-2 Title: Extent of ES and PAL Exceedances in Groundwater - September 2008

Groundwater Flow Direction Map: A map that represents groundwater movement at the site. If the flow direction varies by more then 20° over the history of the site, submit 2 groundwater flow maps showing the maximum variation in flow direction.

Figure #: E-1 Title: Groundwater Flow Map - June 26, 2008

Figure #: Title:

TABLES (meeting the requirements of s. NR 716.15(2)(h)(3))

Tables must be no larger than 8.5 x 14 inches unless the table is submitted electronically. Tables <u>must not</u> contain shading and/or cross-hatching. The use of **BOLD** or *ITALICS* is acceptable.

Soil Analytical Table: A table showing <u>remaining</u> soil contamination with analytical results and collection dates.
 Note: This is one table of results for the contaminants of concern. Contaminants of concern are those that were found during the site investigation, that remain after remediation. It may be necessary to create a new table to meet this requirement.

Table #: C-1 Title: Summary of Soil Analytical Results

Groundwater Analytical Table: Table(s) that show the <u>most recent</u> analytical results and collection dates, for all monitoring wells and any potable wells for which samples have been collected.

Table #: E-2 Title: Monitoring Well Groundwater Analytical Results Summary

Water Level Elevations: Table(s) that show the previous four (at minimum) water level elevation measurements/dates from all monitoring wells. If present, free product is to be noted on the table.

Table #: E-1 Title: Groundwater and Surface Water Elevation Data

IMPROPERLY ABANDONED MONITORING WELLS

For each monitoring well <u>not</u> properly abandoned according to requirements of s. NR 141.25 include the following documents. **Note:** If the site is being listed on the GIS Registry for only an improperly abandoned monitoring well you will only need to submit the documents in this section for the GIS Registry Packet.

X Not Applicable

Site Location Map: A map showing all surveyed monitoring wells with specific identification of the monitoring wells which have not been properly abandoned.

Note: If the applicable monitoring wells are distinctly identified on the Detailed Site Map this Site Location Map is not needed.

Figure #: Title:

Well Construction Report: Form 4440-113A for the applicable monitoring wells.

Deed: The most recent deed as well as legal descriptions for each property where a monitoring well was not properly abandoned.

Notification Letter: Copy of the notification letter to the affected property owner(s).

Page 3 of 3

BRRTS #: 02-36-228354

ACTIVITY NAME: Cool City Cleaners - Former

NOTIFICATIONS

Source Property

- **Letter To Current Source Property Owner:** If the source property is owned by someone other than the person who is applying for case closure, include a copy of the letter notifying the current owner of the source property that case closure has been requested.
- Return Receipt/Signature Confirmation: Written proof of date on which confirmation was received for notifying current source property owner.

Off-Source Property

Group the following information per individual property and label each group according to alphabetic listing on the "Impacted Off-Source Property" attachment.

Letter To "Off-Source" Property Owners: Copies of all letters sent by the Responsible Party (RP) to owners of properties with groundwater exceeding an Enforcement Standard (ES), and to owners of properties that will be affected by a land use control under s. 292.12, Wis. Stats.

Note: Letters sent to off-source properties regarding residual contamination must contain standard provisions in Appendix A of ch. NR 726.

Number of "Off-Source" Letters:

Return Receipt/Signature Confirmation: Written proof of date on which confirmation was received for notifying any off-source property owner.

Deed of "Off-Source" Property: The most recent deed(s) as well as legal descriptions, for all affected deeded off-source property(ies). This does not apply to right-of-ways.

Note: If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.

Letter To "Governmental Unit/Right-Of-Way" Owners: Copies of all letters sent by the Responsible Party (RP) to a city, village, municipality, state agency or any other entity responsible for maintenance of a public street, highway, or railroad right-of-way, within or partially within the contaminated area, for contamination exceeding a groundwater Enforcement Standard (ES) and/or soil exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL).

Number of "Governmental Unit/Right-Of-Way Owner" Letters:

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Jim Doyle, Governor Matthew J. Frank, Secretary Ronald W. Kazmierczak, Regional Director Northeast Region Headquarters 2984 Shawano Avenue Green Bay, Wisconsin 54313-6727 Telephone 920-662-5100 FAX 920-662-5413 TTY Access via relay - 711

April 30 2010

Mr. John Kappelmann Estate of Walter F. Kappelmann 3941 Golfview Drive Two Rivers, WI 54241

SUBJECT: Final Case Closure with Continuing Obligations Former Cool City Cleaners, 1308 Washington Street, Two Rivers, Wisconsin WDNR BRRTS # 02-36-228354

Dear Mr. Kappelmann:

Based on the correspondence and data provided, it appears that your case meets the closure requirements in ch. NR 726, Wisconsin Administrative Code. The Department considers this case closed and no further investigation or remediation is required at this time, however, you and future property owners must comply with certain continuing obligations as explained in this letter.

On November 17, 2009, the Northeast Region Closure Committee reviewed the above referenced case for closure. This committee reviews environmental remediation cases for compliance with state laws and standards to maintain consistency in the closure of these cases. On March 23, 2010, you were notified that the Closure Committee had granted conditional closure to this case.

On April 23, 2010, the Department received information or documentation indicating that you have complied with the requirements for final closure. The conditions of closure required on-site groundwater monitoring wells to be properly abandoned and submittal of additional GIS documentation from an off-site source to be submitted. A groundwater plume from an adjacent petroleum site has migrated onto this property as shown in the attached Figure E-2.

GIS Registry

This site will be listed on the Remediation and Redevelopment Program's GIS Registry. The specific reasons are summarized below:

- Residual soil contamination exists that must be properly managed should it be excavated or removed
- Pavement, an engineered cover or a soil barrier must be maintained over contaminated soil and the state must approve any changes to this barrier
- Groundwater contamination is present above Chapter NR 140 enforcement standards
- A soil vapor extraction system must be operated and maintained

This letter and information that was submitted with your closure request application will be included on the GIS Registry. To review the sites on the GIS Registry web page, visit the RR Sites Map page at http://dnr.wi.gov/org/aw/rr/gis/index.htm. If the property is listed on the GIS Registry because of remaining contamination and you intend to construct or reconstruct a well, you will need prior Department approval in accordance with s. NR 812.09(4)(w), Wis. Adm. Code. To obtain approval, Form 3300-254 needs to be completed and submitted to the DNR Drinking and Groundwater program's regional water supply specialist. This form can be obtained on-line

http://dnr.wi.gov/org/water/dwg/3300254.pdf or at the web address listed above for the GIS Registry.

Closure Conditions

Please be aware that pursuant to s. 292.12 Wisconsin Statutes, compliance with the requirements of this letter is a responsibility to which you and any subsequent property owners must adhere. You must pass on the information about these continuing obligations to the next property owner or owners. If these requirements are not followed or if additional information regarding site conditions indicates that contamination on or from the site poses a threat to public health, safety, welfare, or the environment, the Department may take enforcement action under s. 292.11 Wisconsin Statutes to ensure compliance with the specified requirements, limitations or other conditions related to the property or this case may be reopened pursuant to s. NR 726.09, Wis. Adm. Code. The Department intends to conduct inspections in the future to ensure that the conditions included in this letter (e.g., cap maintenance and vapor mitigation system operation) are met.

Residual Soil Contamination

Residual soil contamination remains at soil boring locations GB1, GP1 to 5, GP7 to10, GP12, GP14, 15, GP17, GP19, and HA1 to HA4 as indicated on the attached map (Figure C-3) and in the information submitted to the Department of Natural Resources. If soil in the specific locations described above is excavated in the future, then pursuant to ch. NR 718 or, if applicable, ch. 289, Stats., and Chs. 500 to 536, the property owner at the time of excavation must sample and analyze the excavated soil to determine if residual contamination remains. If sampling confirms that contamination is present the property owner at the time of excavation will need to determine whether the material is considered solid or hazardous waste and ensure that any storage, treatment or disposal is in compliance with applicable standards and rules. In addition, all current and future owners and occupants of the property need to be aware that excavation of the contaminated soil may pose an inhalation or other direct contact hazard and as a result special precautions may need to be taken to prevent a direct contact health threat to humans.

Cover or Barrier

Pursuant to s. 292.12(2)(a), Wis. Stats., the pavement or other impervious cap that currently exists in the location shown on the attached map (Figure H-1) shall be maintained in compliance with the attached **Cap Maintenance Plan**, dated March 23, 2010, in order to minimize the infiltration of water and prevent additional groundwater contamination that would violate the groundwater quality standards in ch. NR 140, Wis. Adm. Code, and to prevent direct contact with residual soil contamination that might otherwise pose a threat to human health. If soil in the specific locations described above is excavated in the future, the property owner at the time of excavation must sample and analyze the excavated soil to determine if residual contamination remains. If sampling confirms that contamination is present the property owner at the time of excavation will need to determine whether the material is considered solid or hazardous waste and ensure that any storage, treatment or disposal is in compliance with applicable statutes and rules. In addition, all current and future owners and occupants of the property need to be aware that excavation of the contaminated soil may pose an inhalation or other direct contact hazard

and as a result special precautions may need to be taken during excavation activities to prevent a health threat to humans.

The attached maintenance plan and inspection log are to be kept up-to-date and on-site. Only upon request by the Department do you need to submit the inspection log.

Operation and Maintenance of the Vapor Mitigation System

The vapor mitigation system must be operated and inspected in accordance with the attached **Vapor Mitigation System Maintenance Plan** dated March 23, 2010. A radon-type vapor mitigation system was installed in December 2004 in order to maintain acceptable residential air quality below US EPA residential Indoor Air Screening Values. Due to multiple foundations and varying floor construction methods, it consists of two-systems; one each on the north and south side of the building. Monthly inspections, and any system repairs, must be documented in the inspection log. Proper maintenance of the floors (e.g. cracks, holes, etc) is also a part of the required operation of the vapor mitigation system. Only upon request by the Department do you need to submit the monthly inspection log.

Vapor Migration

In addition, depending on site-specific conditions, construction or changes in construction over contaminated materials may result in vapor migration of contaminants into enclosed structures or migration along newly placed underground utility lines. The potential for vapor inhalation and means of mitigation should be evaluated when planning any future redevelopment, and measures should be taken to ensure the continued protection of public health, safety, welfare and the environment at the site.

Prohibited Activities

The following activities are prohibited on any portion of the property where asphalt, a building foundation, soil cover or other barrier, is required as shown on the attached map, unless prior written approval has been obtained from the Wisconsin Department of Natural Resources: 1) removal of the existing barrier; 2) replacement with another barrier; 3) excavating or grading of the land surface; 4) filling on capped or paved areas; 5) plowing for agricultural cultivation; 6) construction or placement of a building or other structure.

Residual Groundwater Contamination

Groundwater impacted by perchloroethylene and its daughter products, stoddard solvent, and petroleum contamination greater than enforcement standards set forth in ch. NR140, Wis. Adm. Code, is present on this property both by onsite use of dry cleaning solvents and from upgradient, (off-source) petroleum products (see Figure E-2) For more detailed information regarding the locations where groundwater samples have been collected (i.e., monitoring well locations) and the associated contaminant concentrations, refer to the Remediation and Redevelopment Program's GIS Registry at the RR Sites Map page at http://dnr.wi.gov/org/aw/rr/gis/index.htm.

Post-Closure Notification Requirements

In accordance with ss, 292.12 and 292.13, Wis. Stats., you must notify the Department before making changes that affect or relate to the conditions of closure in this letter. For this case, examples of changed conditions requiring prior notification include, but are not limited to:

- Any activity or construction that results in the removal or modification of the building.
- Development, construction or other changes, including zoning changes, that change the land use
- Disturbance, construction on, change or removal in whole or part of pavement, an engineered cover or a soil barrier that must be maintained over contaminated soil
- Discontinuing operation and maintenance or changes to the soil vapor mitigation system

Please send written notifications in accordance with the above requirements to Green Bay, to the attention of Diane Hanson, at the address listed in the letterhead.

The Department appreciates your efforts to restore the environment at this site. If you have any questions regarding this letter, please contact Annette Weissbach at 920-662-5165 or email at annette.weissbach@Wisconsin.gov.

Sincerely,

Bruce Urben. Team Su

Northeast Region Remediation & Redevelopment Program

- Attachments: Figure E-2 Extent of CVOC and PVOC in Groundwater 2008 Figure C-3 Extent of RCL Exceedance in soil Cap Maintenance Plan (including Figure H-1) Vapor Mitigation System Maintenance Plan
- e-cc: Bernard Fenelon GZA, <u>bernard.fenelon@gza.com</u> Dan Pawlitzke – City of Two Rivers, <u>danpaw@two-rivers.org</u> Jillian Steffes – CF/8, Madison

CAP MAINTENANCE PLAN

March 23, 2010

Property Address: Former Cool City Cleaners 1308 Washington Street Two Rivers, Wisconsin BRRTS No. 02-36-228354 Parcel Identification Number (PIN) 053-000-079-014.01

Introduction

This document is the Cap Maintenance Plan ("Cap Maintenance Plan") for maintenance of existing surface conditions at the Former Cool City Cleaners property located at 1308 Washington Street in Two Rivers, Wisconsin ("Site"), in accordance with the requirements of s. NR 724.13(2), Wisconsin Administrative Code (WAC). Environmental investigations at the Site have shown that historical activities have caused certain chemicals to accumulate in the soil at concentrations greater than currently established residual contaminant levels (RCLs). These chemicals include tetrachloroethene (PCE) and various petroleum volatile organic compounds (PVOCs). The extent of RCL exceedances in soil at the Site are displayed on the attached map (Figure H-1).

Purpose

The purpose of the Cap Maintenance Plan is to ensure that the existing grassy and paved surfaces at the Site remain suitably in place to act as barriers prohibiting direct contact with underlying soil that might otherwise pose a threat to human health. These paved surfaces and building foundation also act as a partial infiltration barrier to minimize future soil-to-groundwater contamination migration that would violate the groundwater standards in WAC ch. NR 140. Based on the current and future use of the property, the barrier should function as intended unless disturbed.

Two areas of direct contact exceedances for PCE were defined at the Site based on soil sampling performed: 1) outside the building footprint where the residential direct contact RCL for PCE was exceeded in shallow soil collected from GP-4, HA-3 and HA-4; and 2) beneath the building where the PCE direct contact RCL was exceeded in shallow soil samples collected from borings GP-7 and GP-8. In addition, the migration to groundwater RCL for PCE is exceeded in soil over much of the Site.

Annual Inspection

The paved surfaces and building foundation overlying the contaminated groundwater plume and soil and as depicted in Figure H-1 will be inspected once a year, normally in the spring after all snow and ice are gone, for deterioration, cracks and other potential problems that can cause additional infiltration into or exposure to underlying soil. The inspections will be performed to evaluate damage due to settling, exposure to the weather, wear from traffic, increasing age and other factors. Any area where soil has become or is

likely to become exposed will be documented. A log of the inspections and any repairs will be maintained by the property owner and is included as Exhibit B, Inspection and Cap Maintenance Log. The log will include recommendations for necessary repair of any areas where underlying soils are exposed. Once repairs are completed, they will be documented in the inspection log. A copy of the inspection log will be sent to the Wisconsin Department of Natural Resources (WDNR) at least annually after every inspection, unless otherwise directed in the case closure letter.

Other Restricted Activities

In response to the residual soil impacts exceeding a direct contact RCL in the grassy area of the Site west of the building, the following activities are prohibited:

- 1. Digging, excavating, or grading of the land surface; or
- 2. Gardening, plowing, or cultivating the soil for agricultural or other purposes.

Prior written approval must be obtained from WDNR or its successor or assigns for any of the prohibited activities to be carried out.

Cap Maintenance Activities

If problems are noted during the annual inspections or at any other time during the year, repairs will be scheduled as soon as practical. Repairs can include patching and filling operations, re-establishment of vegetative cover, or they can include larger resurfacing or construction operations. In the event that necessary maintenance activities expose the underlying soil, the owner must inform maintenance workers of the direct contact exposure hazard and provide them with appropriate personal protection equipment (PPE). The owner must also sample any soil that is excavated from the Site prior to disposal to ascertain if contamination remains. The soil must be treated, stored and disposed of by the owner in accordance with applicable local, state and federal law. In the event the paved surfaces and/or the building overlying the contaminated groundwater plume or soil are removed or replaced, the replacement barrier must be equally impervious. Any replacement barrier will be subject to the same maintenance and inspection guidelines, as outlined in this Cap Maintenance Plan, unless indicated otherwise by WDNR or its successor. The property owner, in order to maintain the integrity of the paved surfaces and/or the building, will maintain a copy of this Cap Maintenance Plan on-Site and make it available to all interested parties (i.e., on-Site employees, contractors, future property owners, etc.) for viewing.

Preventative Maintenance

The surfaces at the Site are most likely to maintain their integrity and long life if certain conventional preventative maintenance steps are taken. In areas where grass surfaces are to be maintained, healthy vegetation is best achieved through:

• Occasional irrigation and fertilizing;

CAP MAINTENANCE PLAN

- Over-seeding areas where grass density is thin;
- Preventing regular wear or erosion caused by misdirected storm water and runoff, unwarranted walk-through traffic, or other types of excessive use that will deteriorate the grass density and lead to exposure of underlying soils.

For asphalt surfaces, maintenance steps should include such activities as:

- Asphalt sealing on an annual or bi-annual basis; and
- Caulking of cracks, as needed, to prevent water penetration, frost heave and loosening of the pavement.

A combination of regular inspections, preventative maintenance and a thorough approach toward repairing worn or damaged surfaces will serve to meet the full intention of the Cap Maintenance Plan for the Site.

Amendment or Withdrawal of Cap Maintenance Plan

This Cap Maintenance Plan can be amended or withdrawn by the property owner and its successors with the written approval of WDNR.

Technical Support

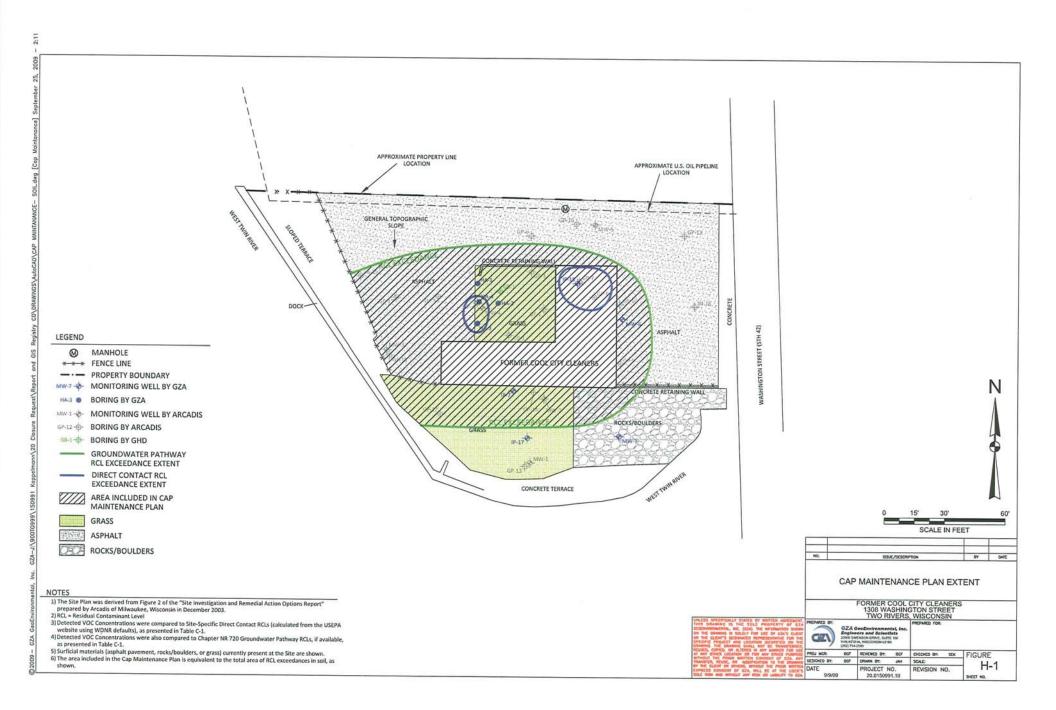
Should questions or concerns arise by the owner or the maintenance staff designated to implement the Cap Maintenance Plan, they can contact the following:

Contact Information

Current Site Owner Mr. John Kappelmann 3941 Golfview Drive Two Rivers, WI 54241

<u>WDNR</u>

Wisconsin Department of Natural Resources 2984 Shawano Avenue Green Bay, Wisconsin 54313-6727 Ms. Annette Weissbach (920) 662-5165 Consultant GZA GeoEnvironmental, Inc. 20900 Swenson Drive, Suite 150 Waukesha, WI 53186 Mr. Bernard G. Fenelon, P.G. (262) 754-2560



0

INSPECTION AND CAP MAINTENANCE LOG Former Cool City Cleaners 1308 Washington Street Two Rivers, Wisconsin

		Condi	itions of V	egetative	Cover		Conditio	ons of Paven	ient	
Date of Inspection	Name of Inspector	Grassy Mat is Continuous Across Unpaved Areas		Areas of Bare Ground Noted		Cont Across Area	Pavement is Continuous Across Parking Areas and Walkways		t Conditions anged Since s Inspection	Describe Any Actions Taken to Repair Defects or Comments (Attach detailed Documentation)
		Yes	No	Yes	No	Yes	No	Yes	No	
	·									

VAPOR MITIGATION SYSTEM MAINTENANCE PLAN

March 23, 2010

Property Address: Former Cool City Cleaners 1308 Washington Street Two Rivers, Wisconsin BRRTS No. 02-36-228354 Parcel Identification Number (PIN) 053-000-079-014.01

INTRODUCTION

This document presents the Maintenance Plan ("Maintenance Plan") for the Vapor Mitigation System at the Former Cool City Cleaners property located at 1308 Washington Street in Two Rivers, Wisconsin ("Site"). This Maintenance Plan provides background information on Site conditions, presents information on the vapor mitigation system layout and operation, and describes an on-going monitoring and maintenance procedures to limit sub-slab vapor intrusion into the building.

BACKGROUND

In December 2004, a radon-type vapor mitigation system was installed in the building due to the detection of elevated levels of dry cleaning vapors beneath the floor slab due to past dry cleaning operations at the Site. Follow-up indoor air samples were collected and analyzed to evaluate indoor air quality during operation of the mitigation system. The analytical results for the indoor air quality samples are summarized on Table F-1. Standards used by the State of Wisconsin, Department of Health and Human Services and listed on the United States Environmental Protection Agency (USEPA) Region 3 Screening Values website (http://www.epa.gov/reg3hwmd/risk/human/ index.htm) are also provided in Table F-1. The concentrations of the five constituents analyzed for each of the indoor air sampling rounds were consistently less than USEPA Region 3 Residential Indoor Air Screening Values. Therefore, indoor air quality in the Site building is acceptable for residential occupancy and other commercial or industrial uses. The vapor mitigation system requires continued operation to maintain acceptable air quality at concentrations below the inhalation standards.

PURPOSE

The purpose of the Vapor Mitigation Maintenance Plan is to ensure that the existing vapor mitigation system at the Site continues to operate to minimize the potential for vapor intrusion into the building. The Plan also provides a schedule and protocol for carrying out inspections that will facilitate consistency when examining system operation.

VAPOR MITIGATION SYSTEM DETAILS

The attached Figure A-4 presents the layout of the vapor mitigation system currently operated within the Site building. The system consists of a suction point and in-line blower on the south side of the building in the kitchen and two separate suction points manifolded to

VAPOR MITIGATION SYSTEM MAINTENANCE PLAN

a single in-line blower on the north side of the building. The two systems were required due to the presence of multiple foundations and varying floor construction. The vapors removed from beneath the slab are vented outside of the building via piping that extends to the roof line about 18 feet above grade.

The in-line blower currently operating in the system is a "Fantech Model HP/FR." The manufacturer installation instructions for the fan and contact information for the supplier of the blower are attached.

VAPOR MITIGATION SYSTEM INSPECTIONS

To ensure that the vapor mitigation system continues to operate properly, the following actions shall be required:

- 1. Monthly inspections are required to be performed and documented by the Site owner or designated maintenance staff.
- 2. The inspector is to observe that the colored fluid inside the manometer (located on interior walls of the Site building) and note whether the fluid is off-set by at least 1 inch. An off-set of the fluid inside the manometer indicates that the blower is operating.
- 3. The inspection is to include observation of the condition of the piping, seal between the piping and the floor and the floor for cracks within the Site building.
- 4. Written documentation of the results of each inspection and actions taken to address system issues are to be maintained on the Site.

A monthly log of the inspections and any repairs will be maintained by the property owner and is included as Exhibit B, Monthly Vapor Mitigation System Inspection and Maintenance Log.

Conditions Requiring Maintenance

The following actions should be used as a guideline when an inspection reveals that the vapor mitigation is not operating properly:

- 1. The likely cause(s) of the condition should be identified and documented.
- 2. The property owner or maintenance personnel should make the necessary repairs or a radon mitigation service company could be hired to repair the system and/or replace the fan, if necessary.
- 3. Cracks or other damage to the piping, seals or floor are to be repaired and/or sealed as necessary.

VAPOR MITIGATION SYSTEM MAINTENANCE PLAN

A combination of regular inspections, preventative maintenance and a thorough approach toward repairing damaged surfaces will serve to meet the full intention of the Vapor Mitigation System Maintenance Plan for the Site.

Amendment or Withdrawal of Vapor Mitigation System Maintenance Plan

This Vapor Mitigation System Maintenance Plan can be amended or withdrawn by the property owner and its successors with the written approval of the Wisconsin Department of Natural Resources (WDNR).

Technical Support

Should questions or concerns arise by the owner or the maintenance staff designated to implement the Vapor Mitigation System Maintenance Plan, they can contact the following:

Contact Information:

Current Site Owner Mr. John Kappelmann 3941 Golfview Drive Two Rivers, WI 54241

Vapor Mitigation System Service Company

Radon Reduction Specialist 6007 Hartlaub Lake Road Manitowoc, WI 54220 Jerry Weyer Telephone: (800) 323-2140

WDNR

Consultant

GZA GeoEnvironmental, Inc.

Waukesha, WI 53186 Mr. Bernard G. Fenelon, P.G.

(262) 754-2560

20900 Swenson Drive, Suite 150

Wisconsin Department of Natural Resources 984 Shawano Avenue Green Bay, Wisconsin 54313-6727 Ms. Annette Weissbach 920-662-5165

MONTHLY INSPECTION AND MAINTENANCE LOG Former Cool City Cleaners 1308 Washington Street Two Rivers, Wisconsin

			Operation of the Syst			oor within the Site ilding			
Month	Date of Inspection	Name of Inspector	Vapor Mitigat Operating Pro Manometer is (Offset by At Lo	perly (Fluid in Observed to be	Floor Condition Since Previo	ns are Unchanged ous Inspection	Describe Any Actions Taken to Repair Defects or Comments (Attach detailed Documentation)		
			Yes	Yes No		No			
January									
February									
March									
April									
May									
June									

MONTHLY INSPECTION AND MAINTENANCE LOG Former Cool City Cleaners 1308 Washington Street Two Rivers, Wisconsin

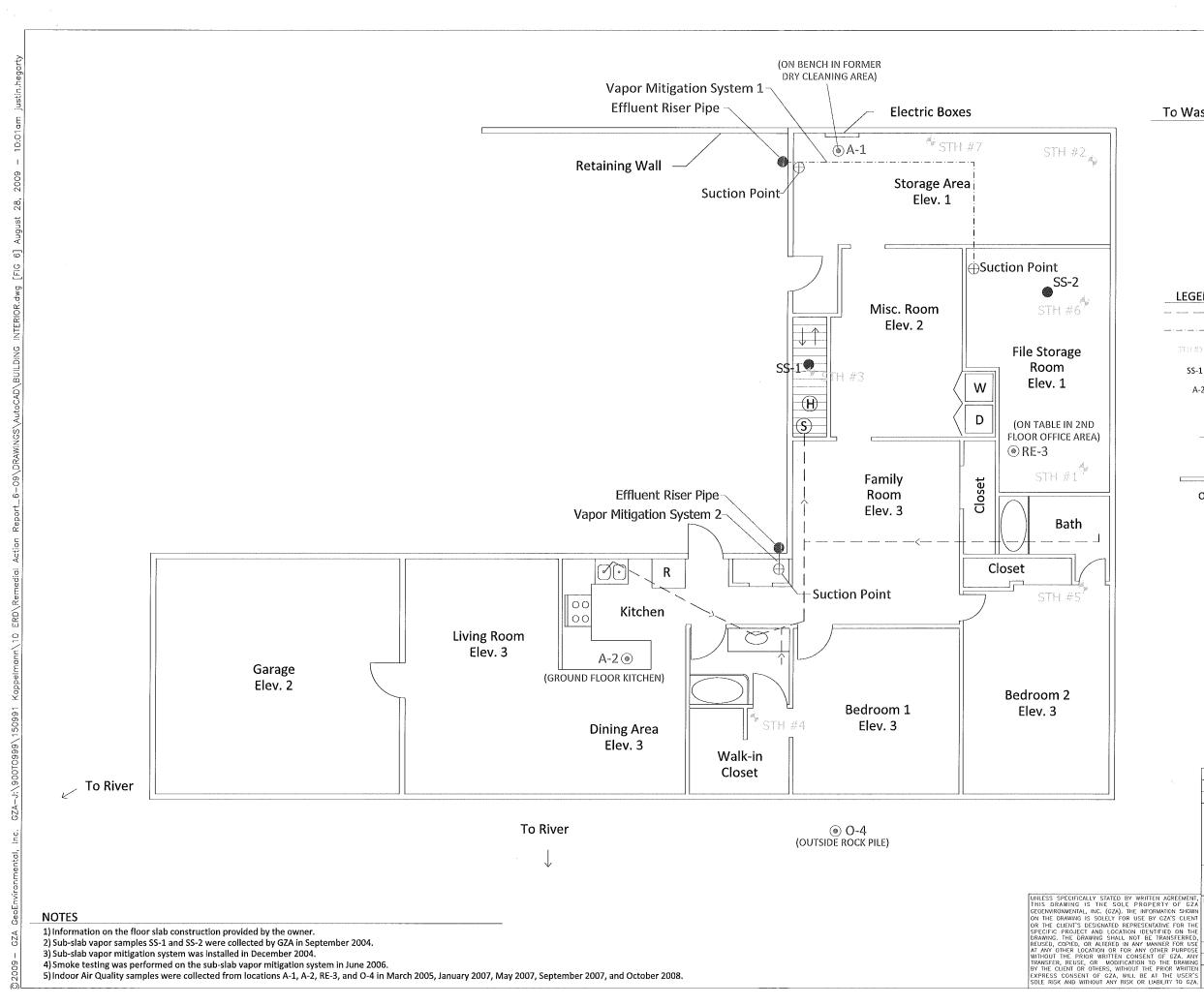
		Name of Inspector		Vapor Mitigation tem		oor within the Site ilding	Describe Any Actions Taken to Repair Defects or Comments (Attach detailed Documentation)		
Month	Date of Inspection		Operating Pro Manometer is	tion System is perly (Fluid in Observed to be east One Inch)	Floor Condition Since Previo	ns are Unchanged ous Inspection			
			Yes	No	Yes	No			
July									
August									
September									
October									
November									
December									

TABLE F-1 INDOOR AIR ANALYTICAL RESULTS SUMMARY Former Cool City Cleaners Two Rivers, Wisconsin

PARAMETERS	Screening	Region 3 g Values ⁽³⁾ /m ³)	(Former D		A-1 Drycleaning Area)		A-2 (Ground Floor Kitchen)			RE-3 (2nd Floor Office)		O-4 (Outside Background)						
	Res.	Comm.	Mar-05	Jan-07	May-07	Sep-07	Oct-08	Mar-05	Jan-07	May-07	Oct-08	Mar-05	Jan-07	Oct-08	Mar-05	Jan-07	May-07	Sep-07
Method TO-15																		
Benzene	3.1	16	1.7	0.63	1.1	0.45	0.46	1.3	0.63	1.4	0.42	1.4	0.63	0.30	1.2	0.62	0.81	0.45
Trichloroethene	12	61	<0.19	<0.17	1.6	1.2	0.29	<0.18	< 0.15	1.3	<0.17	<0.18	<0.18	8.4	<0.15	< 0.17	<0.25	<0.15
Tetrachloroethene	4.1	21	3.5	0.97	1.7	1.5	0.36	1.8	0.77	1.4	0.44	2.3	0.74	0.70	<0.2	< 0.21	< 0.32	<0.2

Notes:

1. Twenty-four-hour time-integrated air samples were collected by GZA GeoEnvironmental, Inc. on March 2 to 3, 2005; January 8 to 9, 2007; April 30 to May 1, 2007;

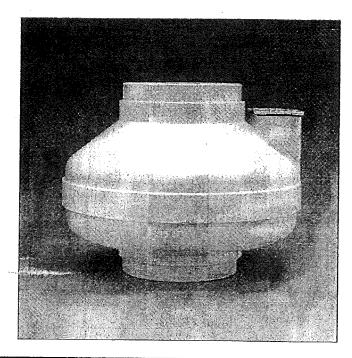

September 15 to 16, 2007; and October 1 to 2, 2008 using 5-liter evacuated SUMMA canisters and air samples were analyzed by Air Toxics Ltd. in Folsom, California utilizing United States Environmental Protection Agency (USEPA) Method TO-15 for benzene, tetrachloroethene, trichloroethene, cis-12,-dichloroethene and vinyl chloride. Only detected constituents are listed.

2. Results are provided in micrograms per cubic meter (µg/m3).

3. United States Environmental Protection Agency (USEPA) Region 3 Screening Values are 10⁵ excess cancer risk indoor air quality values that can be obtained from the following website: <u>http://www.epa.gov/reg3hwmd/risk/human/index.htm.</u> The screening values are used by the Wisconsin Department of Health and Human Services to evaluate acceptable indoor air quality. Concentrations below the screening values are considered acceptable for occupancy of the building.

4. Sample A-1 was collected from the unfinished portion of the ground floor on the north side of the building in the area of former drycleaning activities, A-2 was collected from the finished portion of the ground floor in the kitchen, RE-3 was collected from the second floor office and O-4 was collected from outside the building near the southwest corner of the building to evaluate background conditions.

5. A background was not collected during the September 2008 sampling round because the Summa[®] Canister was compromised during setup.

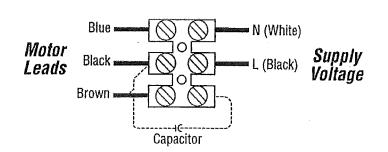

To Washington Street

LEGEND -----ESTIMATED SUBFLOOR PLUMBING LOCATION -----ESTIMATED VAPOR MITIGATION PIPING LOCATION $\nabla T (\{ (f) \mid A_{g} \})$ SMOKE TESTING LOCATION SUB-SLAB VAPOR SAMPLING LOCATION SS-1 🍘 A-2 💿 INDOOR AIR QUALITY SAMPLE LOCATION FLOOR ELEVATIONS Elev. 3 Elev. 2 Elev. 1 XXXXX Orig. Slab Slab on Slab Slab - Gravel - Slab Ν 16' SCALE IN FEET NO. ISSUE/DESCRIPTION BY DATE BUILDING FLOOR PLAN WITH AIR SAMPLE AND SMOKE TESTING LOCATIONS FORMER COOL CITY CLEANERS 1308 WASHINGTON STREET TWO RIVERS, WISCONSIN PREPARED BY PARED FOR GZA GeoEnvironmental, Engineers and Scientists 29900 SWENSON DRIVE, SUITE 150 WAUKESHA, WISCONSIN 53186 ental. In GZ PROJ MGR: BGF REVIEWED BY: BGF CHECKED BY: SEK FIGURE SCALE: DESIGNED BY: BGF DRAWN BY: JAH A-4 PROJECT NO. REVISION NO. DATE 5/27/09 20.0150991.10 SHEET NO.

Installation Instructions for Radon Fans Model HP/FR

READ & SAVE THESE INSTRUCTIONS!

Warnings


DO NOT CONNECT POWER SUPPLY UNTIL FAN IS COMPETELY INSTALLED, MAKE SURE ELECTRICAL SERVICE TO THE FAN IS LOCKED IN "OFF: POSITION.

- 1. Suitable for use with solid-state speed control.
- 2. This unit has rotating parts and safety precautions should be exercised during installation, operation and maintenance.
- 3. CAUTION: "For General Ventilation Use Only. Do Not Use To Exhaust Hazardous Or Explosives Materials and Vapors."
- 4. WARNING: TO REDUCE THE RISK OF FIRE, ELECTRIC SHOCK, OR INJURY TO PERSONS-OBSERVE THE FOLLOWING: a. Use this unit only in the manner intended by the manufacturer. If you have questions, contact the factory.
 - b. Before servicing or cleaning unit, switch power off at service panel and lock the service disconnecting means to prevent power from being switched on accidentally. When the service disconnecting means cannot be locked, securely fasten a prominent warning device, such as a tag, to the service panel.
 - c. Installation work and electrical wiring must be done by qualified person(s) in accordance with all applicable codes and standards, including fire-rated construction.
 - d. The combustion airflow needed for safe operation of fuel burning equipment may be affected by this unit's operation. Follow the heating equipment manufacturer's guidelines and safety standards such as those published by the National Fire Protection Association (NFPA), the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) and the local code authorities.
 - e. When cutting or drilling into wall or ceiling, do not damage electrical wires or other hidden utilities.
 - f. Ducted fans must always be vented to the outdoors.
 - g. If this unit is to be installed over a tub or shower, it must be marked as appropriate for the application.
 - h. NEVER place a switch where it can be reached from a tub or shower.

5. WARNING! Check voltage at the fan to see if it corresponds to the motor nameplate.

GUARDS MUST BE INSTALLED WHEN FAN IS WITHIN REACH OF PERSONNEL OR WITHIN SEVEN (7) FEET OF WORKING LEVEL OR WHEN DEEMED ADVISABLE FOR SAFETY.

Wiring Diagram

Five (5) Year Warranty

This warranty supersedes all prior warranties

DURING ENTIRE WARRANTY PERIOD:

FANTECH will repair or replace any part which has a factory defect in workmanship or material. Product may need to be returned to the fantech factory, together with a copy of the bill of sale and identified with RMA number.

FOR FACTORY RETURN YOU MUST:

- Have a Return Materials Authorization (RMA) number. This may be obtained by calling FANTECH either in the USA at 1.800.747.1762 or in CANADA at 1.800.565.3548. Please have bill of sale available.
- The RMA number must be clearly written on the outside of the carton, or the carton will be refused.
- All parts and/or product will be repaired/replaced and shipped back to buyer; no credit will be issued.
- 0R

The Distributor may place an order for the warranty part and/or product and is invoiced. The Distributor will receive a credit equal to the invoice only after product is returned prepaid and verified to be defective.

FANTECH WARRANTY TERMS DO NOT PROVIDE FOR REPLACEMENT WITHOUT CHARGE PRIOR TO INSPECTION FOR A DEFECT. REPLACE-MENTS ISSUED IN ADVANCE OF DEFECT INSPECTION ARE INVOICED, AND CREDIT IS PENDING INSPECTION OF RETURNED MATERIAL. DEFECTIVE MATERIAL RETURNED BY END USERS SHOULD NOT BE REPLACED BY THE DISTRIBUTOR WITHOUT CHARGE TO THE END USER, AS CREDIT TO DISTRIBUTOR'S ACCOUNT WILL BE PENDING INSPECTION AND VERIFICATION OF ACTUAL DEFECT BY FANTECH.

THE FOLLOWING WARRANTIES DO NOT APPLY:

- Damages from shipping, either concealed or visible. Claim must be filed with freight company.
- Damages resulting from improper wiring or installation.
- Damages or failure caused by acts of God, or resulting from improper consumer procedures, such as:
- 1. Improper maintenance
- 2. Misuse, abuse, abnormal use, or accident, and
- 3. Incorrect electrical voltage or current.
- Removal or any alteration made on the FANTECH label control number or date of manufacture.
- Any other warranty, expressed, implied or written, and to any consequential or incidental damages, loss or property, revenues, or profit, or costs of removal, installation or reinstallation, for any breach of warranty.

WARRANTY VALIDATION

- The user must keep a copy of the bill of sale to verify purchase date.
- These warranties give you specific legal rights, and are subject to an applicable consumer protection legislation. You may have additional rights which vary from state to state.

United States

1712 Northgate Blvd., Sarasota, FL. 34234 Phone: 800.747.1762; 941.309.6000 Fax: 800.487.9915; 941.309.6099 www.fantech.net; info@fantech.net

Canada

50 Kanalflakt Way, Bouctouche, NB E4S 3M5 Phone: 800.565.3548; 506.743.9500 Fax: 877.747.8116; 506.743.9600 www.fantech.ca; info@fantech.ca Fantech, reserves the right to modify, at any time and without notice, any or all of its products' features, designs, components and specifications to maintain their technological leadership position.

> Article #: 301077 Item #: 401443 Rev Date: 090905

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Jim Doyle, Governor Matthew J. Frank, Secretary Ronald W. Kazmierczak, Regional Director Northeast Region Headquarters 2984 Shawano Avenue Green Bay, Wisconsin 54313-6727 Telephone 920-662-5100 FAX 920-662-5413 TTY Access via relay - 711

March 23, 2010

Mr. John Kappelmann Estate of Walter F. Kappelmann 512 Foxtail Naples, FL 34112

> SUBJECT: Conditional Closure Decision Updating closure request and abandonment of monitoring wells Former Cool City Cleaners, 1308 Washington Street, Two Rivers, Wisconsin WDNR BRRTS # 02-36-228354

Dear Mr. Kappelmann:

On November 17, 2009, the Northeast Region Closure Committee (the "Committee") reviewed your request for closure of the case described above. The Committee reviews environmental remediation cases for compliance with state rules and statutes to maintain consistency in the closure of these cases. After careful review of the closure request, the Committee has determined that the perchloroethylene and stoddard solvent contamination on the site from the historic dry cleaner operations appears to have been investigated and remediated to the extent practicable under site conditions. Your case has been remediated to Department standards in accordance with s. NR 726.05, Wis. Adm. Code and will be closed if the following conditions are satisfied. Your site will be listed on the Department's GIS Registry due to impacts to groundwater and soil. Maintenance of a "cap" and operation and maintenance of a vapor mitigation system are required and considered continuing obligations for the site.

Background and relationship to adjacent contaminated BRRTS site

After the Closure Committee meeting, I spoke with your consultant, Bernie Fenlon of GZA and explained that there is a nearby BRRTS case in the City of Two Rivers 1400 Block of Washington Street right-of-way that has a contaminated groundwater plume that extends onto your property and that the city may need to continue monitoring the groundwater on your property. This off-site petroleum contamination is noted by the presence of benzene, naphthalene and MTBE in many of your monitoring wells. MTBE is not a component of dry cleaning solvents. A notification of the off-source contamination was provided to you in a letter written by Nicole LaPlant of Robert E. Lee & Associates on behalf of the City of Two Rivers and was dated January 29, 2010. On February 24th, the Department received the Closure Request for the 1400 Block BRRTS case, and on March 18th, the Closure Committee discussed the site. As a result of their closure decision, there is no need to continue monitoring your wells and you may abandon all of them at your earlier convenience.

Monitoring well abandonment

All monitoring wells at the site must be properly abandoned in compliance with ch. NR 141, Wis. Adm. Code. Documentation of well abandonment must be submitted to me on Form 3300-005 found at http://dnr.wi.gov/org/water/dwg/gw/ or provided by the Department of Natural Resources.

Additional closure and GIS Registry documentation

The off-site plume map prepared by Robert E. Lee & Associates is attached for your Consultant's use in updating the extent of ES and PAL exceedances maps. You may chose to create a new Figure (E-3) and use this map to show the extent of the off-site petroleum plume that has encroached onto your property. Figure E-2 could then be used to show only any ES and PAL exceedances located on-site due to dry cleaning solvent compounds. In addition, the PAL and ES exceedance extent line should be verified to include all injection points with chlorinated solvent ES exceedances as measured the last time the wells were sampled. There are a couple of typos on the vapor mitigation maintenance plan: The mitigation system was installed in 2005 not 2004, and my telephone number is 662-5165.

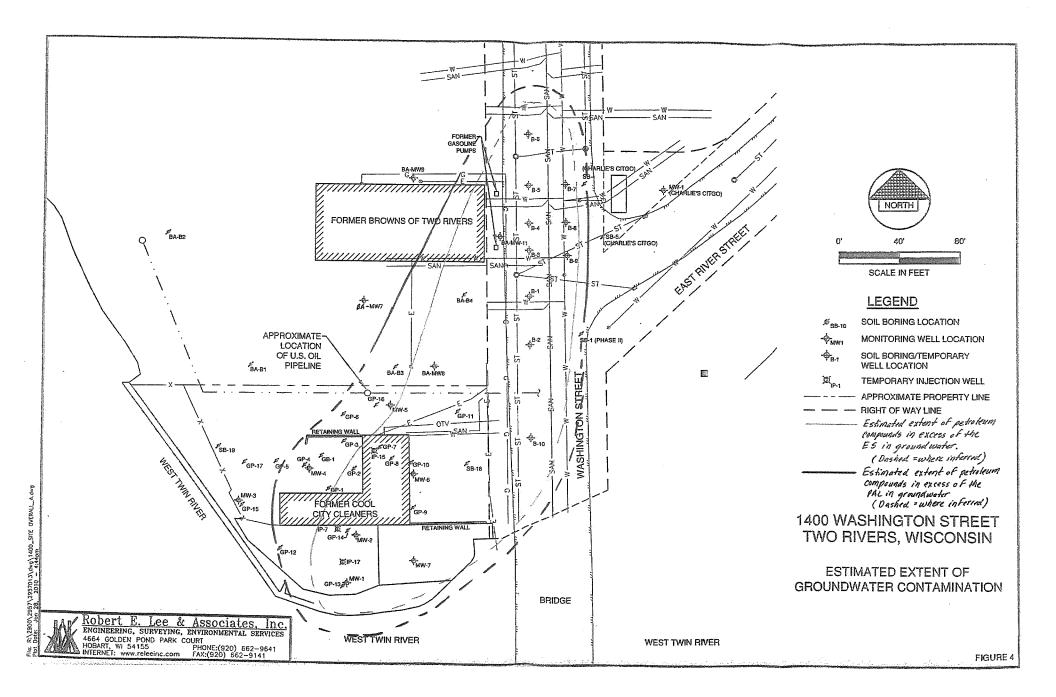
Purge water, waste and soil pile removal

If there are any remaining purge waters, waste and/or soil piles generated as part of site investigation or remediation activities, they must be removed from the site and disposed of or treated in accordance with Department of Natural Resources' rules. Once that work is completed, please send me any appropriate documentation verifying proper disposal.

When the above conditions have been satisfied, please submit the appropriate documentation (for example, well abandonment forms, disposal receipts, updated GIS registry documents) to verify that applicable conditions have been met, and your case will be closed. Your site will be listed on the DNR Remediation and Redevelopment GIS Registry of Closed Remediation Sites. Information that was submitted with your closure request application will be included on the GIS Registry. To review the site on the GIS Registry web page, visit the RR Sites Map page at: <u>http://dnr.wi.gov/org/aw/rr/gis/index.htm</u>.

Please be aware that the case may be reopened pursuant to s. NR 726.09, Wis. Adm. Code, if additional information regarding site conditions indicates that contamination on or from the site poses a threat to public health, safety, or welfare or to the environment.

We appreciate your efforts to restore the environment at this site. If you have any questions regarding this letter, please contact me at 920-662-5165 or email at annette.weissbach@Wisconsin.gov.


Sincerely,

PINKLE NEISSbeech

Annette Weissbach Hydrogeologist Remediation & Redevelopment Program

Attach: Figure 4: 1400 Washington Street, Two Rivers, Estimated extent of Groundwater contamination, prepared by Robert E. Lee & Associates, January 28, 2010

e-cc: Bernard Fenelon – GZA, bernard.fenelon@gza.com Jillian Steffes – CF/8, Madison

VOL 2160 PG 261

DOC# 1004882

Document Number

Dated February 27

Document Name

State Bar of Wisconsin Form 5-2003

PERSONAL REPRESENTATIVE'S DEED

THIS DEED, made between Gail M. Partenheimer and John D. Kappelmann

as Personal Representatives of the estate of _Walter F. Kappelmann, deceased

("Decedent"), ("Grantor," whether one or more), and ______ **1308 Washington Street Realty LLC,** a Wisconsin LLC created under Agreement on January 1, 2006, by and between Gail M. Partenheimer and John D. Kappelmann, its initial members,

("Grantee," whether one or more). Grantor conveys to Grantee, without warranty, the following described real estate, together with the rents, profits, fixtures and other appurtenant interests, in <u>Manitowoc</u> County, State of Wisconsin ("Property") (if more space is needed, please attach addendum):

Commercial real estate located at 1308 Washington Street, in the City of Two Rivers, (Manitowoc County), Wisconsin, having the following legal description:

Outlot Parcel Part in Lots 1, 2, and 3, Block seventy-nine (79) and Parts of Vacated 14th Street and Vacated West River Street in the City of Two Rivers, as recorded in Volume 336, Page 735 of the Register of Deeds of Manitowoc County, Wisconsin.

**This conveyance is exempt from real estate transfer fee under Wis. Stat. § 77.25(11).

າກກະ

STATE OF WI - MTWC CO PRESTON JONES REG/DEEDS RECEIVED FOR RECORD 02/28/2006 1:05:10 PM **Recording Area** Name and Return Address Rachel Monaco-Wilcox Stephen M. Fisher & Associates LLP 11414 W. Park Place, Suite 107 Milwaukee, WI 53224-3500 053-000-079-014.01 Parcel Identification Number (PIN) This is not homestead property.

Personal Representative by this Deed does convey to Grantee all of the estate and interest in the Property which Decedent had immediately prior to Decedent's death, and all of the estate and interest in the Property which the Personal Representative has since acquired.

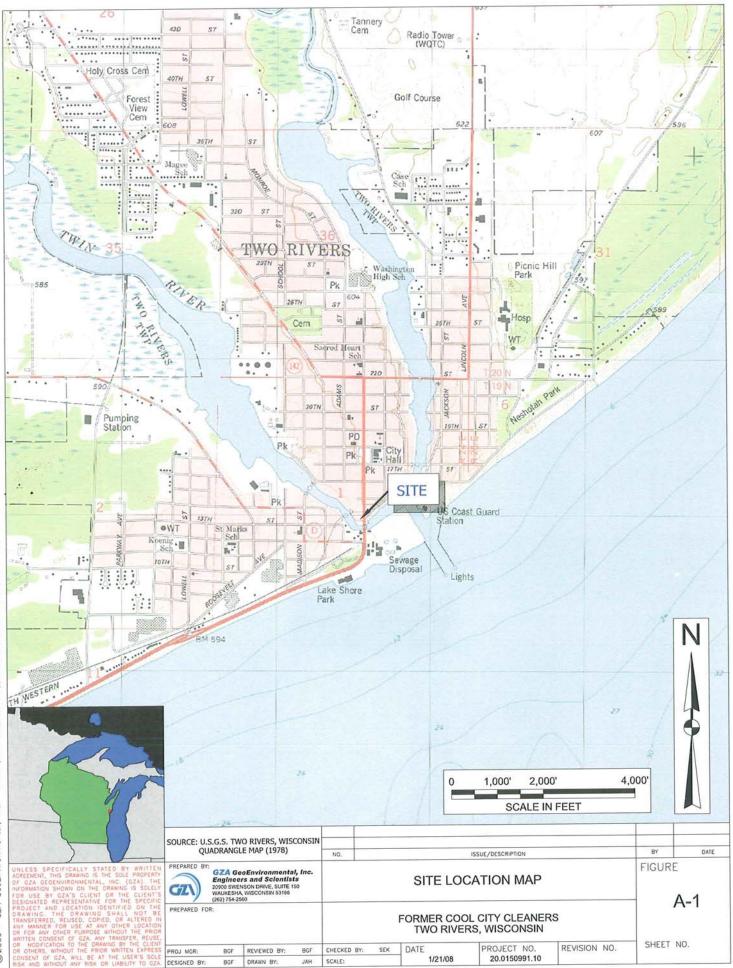
PERSONAL REPRESENTATIVE:	EAL) John D. Konselmano (SEAL)
Gail M. Partenheimer (S	EAL) John D. Kappelmann (SEAL)
AUTHENTICATION	ACKNOWLEDGMENT
Signature(s) of Gail M. Partneheimer and John D. Kappelmann	STATE OF WISCONSIN
authenticated on February 21, 2006	- ·COUNTY)
* Stephen M. Fisher	Personally came before me on,
TITLE: MEMBER STATE BAR OF WISCONSIN	the above-named
(If not, authorized by Wis. Stat. § 706.06)	to me known to be the person(s) who executed the foregoing instrument and acknowledged the same.
THIS INSTRUMENT DRAFTED BY:	
Rachel Monaco-Wilcox of Stephen M. Fisher &	*
Associates, Milwaukee, Wisconsin	 Notary Public, State of Wisconsin My Commission (is permanent) (expires:)
(Signatures may be authenti	rated or acknowledged Roth are not necessary)

(Signatures may be authenticated or acknowledged. Both are not necessary.) NOTE: THIS IS A STANDARD FORM. ANY MODIFICATIONS TO THIS FORM SHOULD BE CLEARLY IDENTIFIED. PERSONAL REPRESENTATIVE'S DEED © 2003 STATE BAR OF WISCONSIN FORM NO. 5-2003 * Type name below signatures. September 14, 2009 File No. 20.0150991.20

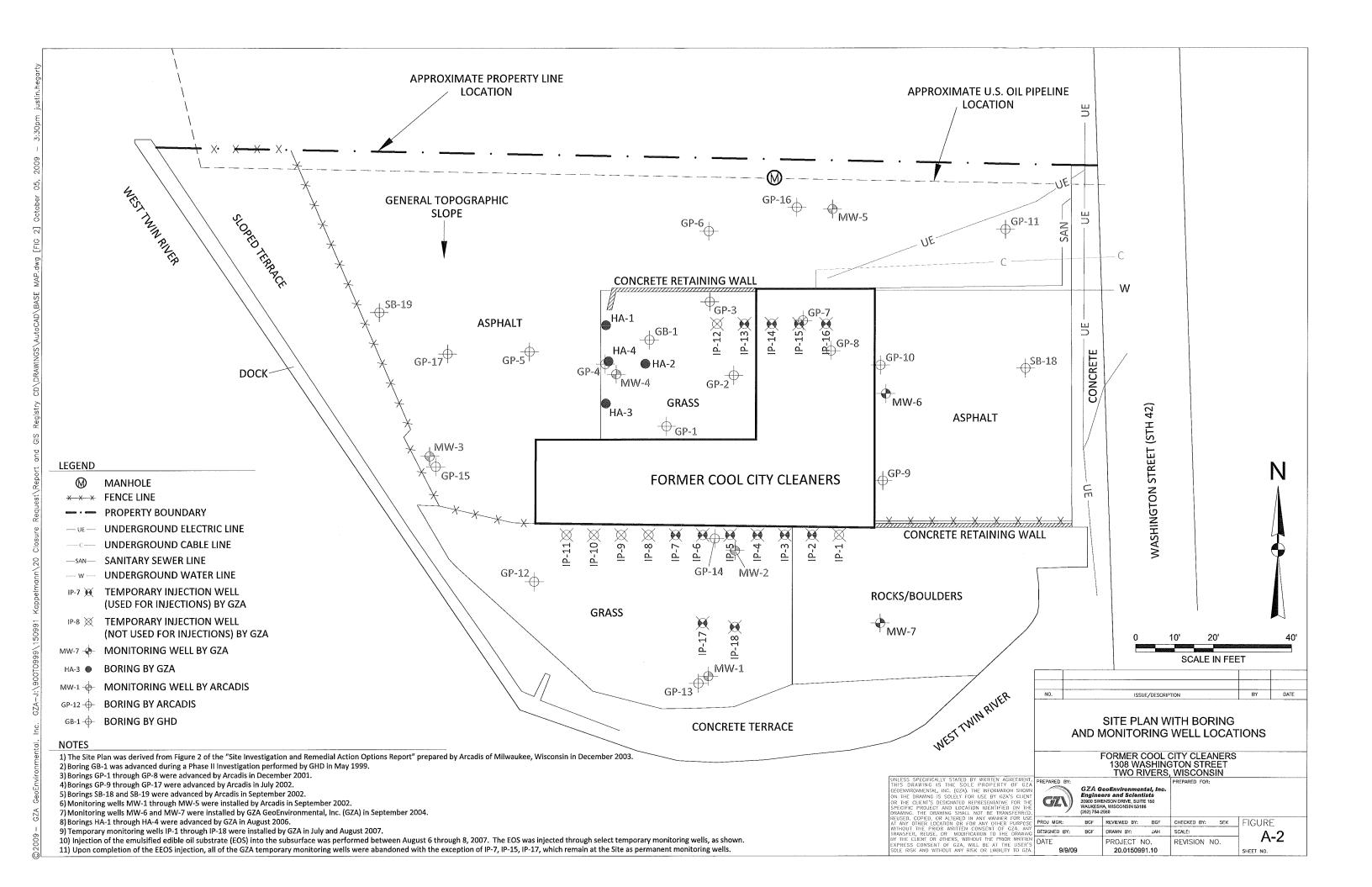
Wisconsin Department of Natural Resources 2984 Shawano Avenue Green Bay, Wisconsin 54313-6727

Attention: Ms. Annette Weissbach Hydrogeologist

Subject: Property Legal Description Former Cool City Cleaners 1308 Washington Street Two Rivers, Wisconsin BRRTS No. 02-36-228354


Dear Ms. Weissbach:

To the best of my knowledge, the legal description provided on the attached deed for the Former Cool City Cleaners property located at 1308 Washington Street in Two Rivers, Wisconsin makes up the entire property within the impacted Site boundary and is being provided to you as part of the soil and groundwater GIS Registry Packet.


Very truly yours,

appelancero

Mr. John Kappelmann Owner

GZA-1: 900T0999(150991 Kappelmann/20 Closure Request/DRAWINGS/AutoCAD(SITE LOCATION.dwg [FIG 1 (3)] August 28, 2009 - 9:56am justin.hegarty Inc. GeoEnvironmental. GZA © 2009 -

<u>3,000</u> Sample Location HA-1 1,2,4-Trimethylbenzene 580,000 1-3' 1,3,5-Trîmethylbenzene 150,000 Sample Depth 8/28/06 **Total Xylenes** 7,900 Sample Date VOCs (µg/kg) APPROXIMATE PROPERTY LINE Tetrachloroethene <u>610</u> APPROXIMATE U.S. OIL PIPELINE LOCATION SB-19 Sample Location Sample Depth 2-4' 9/26/02 Sample Date VOCs (µg/kg) -ൽ 190 Tetrachloroethene GP≠16 GENERAL TOPOGRAPHIC ক T THIN PINER P_{MW-5} STORED SLOPE Sample Location GP-5 GP-6↓ 0-2' Sample Depth 12/11/01 Sample Date VOCs (µg/kg) ARCE RCLEXCEEDANCE Tetrachloroethene <u>240</u> CONCRETE RETAINING WA GP-17 Sample Location SB-19 ₽_{GP-3} IP-15 CP-7 Sample Depth 2-4' ASPHALT ₩^{GB-1} 7/1/02 Sample Date dG₽-8 VOCs (µg/kg) HA-4 GP-5 GP-17[⊕] GP-10 320 Tetrachloroethene @HA-2 WW-4 DOCK-GP-2[♥] Sample Location HA-4 MW-6 1-3' Sample Depth GRASS HA-3 8/28/06 Sample Date ₽gρ-1 VOCs (µg/kg) Tetrachloroethene 8,000 MW-3 Sample Location GP-4 GP-9 GP-15 FORMER COOL CITY CLEANERS 2-4' Sample Depth Sample Date 12/11/01 VOCs (µg/kg) Sample Location GP-15 3,400 Tetrachloroethene Sample Depth 2-4' _0 CONCRETE RETAINING WALL 7/1/02 Sample Date VOCs (µg/kg) GP-14 GP-12 NN-2 <u>190</u> Tetrachloroethene LEGEND RCLEXCEEDANCE ROCKS/BOULDERS Sample Location HA-2 GRASS MANHOLE \bigotimes -MW-7 Sample Depth 1-3' IP-17 * * * FENCE LINE Sample Date 8/28/06 VOCs (µg/kg) ---- PROPERTY BOUNDARY Tetrachloroethene <u>540</u> L MW-1 MW-7 - MONITORING WELL BY GZA GP-13 Sample Location HA-3 Sample Depth 1-3' HA-3
BORING BY GZA 8/28/06 Sample Date CONCRETE TERRACE VOCs (µg/kg) MW-1 - MONITORING WELL BY ARCADIS Tetrachloroethene 1.700 GP-12 - BORING BY ARCADIS GP-12 Sample Location GB-1 \oplus BORING BY GHD 2-4' Sample Depth 7/1/02 Sample Date RCL EXCEEDANCE EXTENT VOCs (µg/kg) Sample Location GP-13 <u>49</u> Tetrachloroethene 4-6¹ Sample Depth NOTES Sample Location GP-1* Sample Date 7/1/02 1) The Site Plan was derived from Figure 2 of the "Site Investigation and Remedial Action Options Report" 6-8 Sample Depth <RCLs VOCs prepared by Arcadis of Milwaukee. Wisconsin in December 2003. 12/11/01 Sample Date 2)* = Sample was collected near or from saturated soils and concentration may be biased by groundwater VOCs (µg/kg) constituents. <u>1,700</u> laphthalene 3) Soil samples were not collected from monitoring wells. 51,000 1.2.4-Trimethylbenzene 4) RCL = Residual Contaminant Level ,3,5-Trimethylbenzene 25,000 o-Xylene 7,300

Sample Location

Sample Depth

Sample Date

VOCs and GRO

GP-3

4-6'

12/11/01

<u>230</u>

GRO (mg/kg)

3,000

Sample Location

Sample Depth

Sample Date

VOCs (µg/kg)

Tetrachloroethene

GB-1*

8-10'

5/26/99

Sample Location

Sample Depth

Sample Date

VOCs (µg/kg)

Naphthalene

GP-6 10-12'

12/11/01

<RCLs

Sample Location

ample Depth

Sample Date

VOCs (µg/kg)

Tetrachloroethene

GP-2

0-2'

12/11/01

<u>110</u>

Sample Location

LOCATION

ASPHALT

WEST WIN RIVER

Sample Location

Sample Depth

Sample Date

VOCs (µg/kg)

Tetrachloroethene

-+GP-11

8

42)

RET (STH

5

WASH

Sample Depth

Sample Date

VOCs

GP-16

10-12'

7/1/02

<RCLs

Sample

Sample

Sample

VOCs (µ

Tetrach

5) Volatile organic compound (VOC) concentrations are presented in micrograms per kilogram (µg/kg). Gasoline range organics (GRO) concentrations are presented in milligrams per kilogram (mg/kg).

6) Detected VOC Concentrations were compared to Site-Specific Direct Contact RCLs (calculated from the USEPA website using WDNR defaults), as presented in Table C-1.

7) Detected VOC Concentrations were also compared to Chapter NR 720 Groundwater Pathway RCLs, if available, as presented in Table C-1.

8) Chapter NR 720 Migration to Groundwater Pathway RCL exceedances are underlined. Site-specific direct contact RCL exceedances are BOLD.

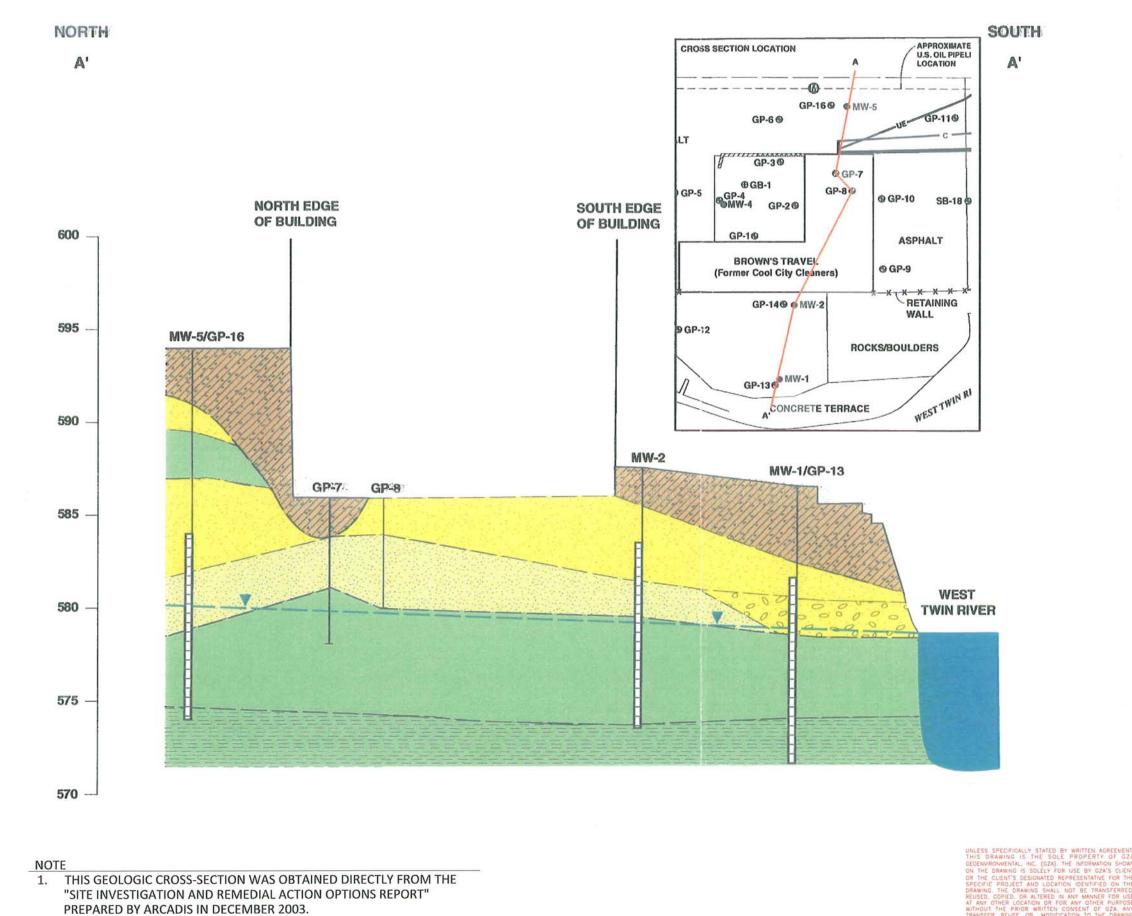
9) Only results for compounds that exceeded a Direct Contact and/or Groundwater Pathway RCL are presented. 10) < RCL = Analyzed compounds were less than Groundwater Pathway and Site-Specific Direct Contact RCLs.

UNLESS SPECIFICALLY STATED BY WRITTEN AG THIS DRAWING IS THE SOLE PROPERTY GEOENVIRONMENTAL, INC. (GZA), THE INFORMATIO ON THE DRAWING IS SOLELY FOR USE BY GZA' OR THE CLIENT'S DESIGNATED REPRESENTATIVE SPECIFIC PROJECT AND LOCATION DESITIFIED DRAWING. THE DRAWING SHALL NOT BE TRANS RUSED, COPIED, OR ALTERED IN ANY MANNER I AT ANY OTHER LOCATION OR FOR ANY OTHER H WITHOUT THE PRIOR WRITER CONSENT OF C IRANSFER, REUSE, OR MODIFICATION TO THE EXPRESS CONSENT OF EXAMPLE EXPRESS CONSENT OF EXAMPLE AT THE SOLE RISK AND WITHOUT ANY RISK OR LABILITY R THE CLIENT'S DESIGNATED REPRESENTATIV

GP-14

2-4'

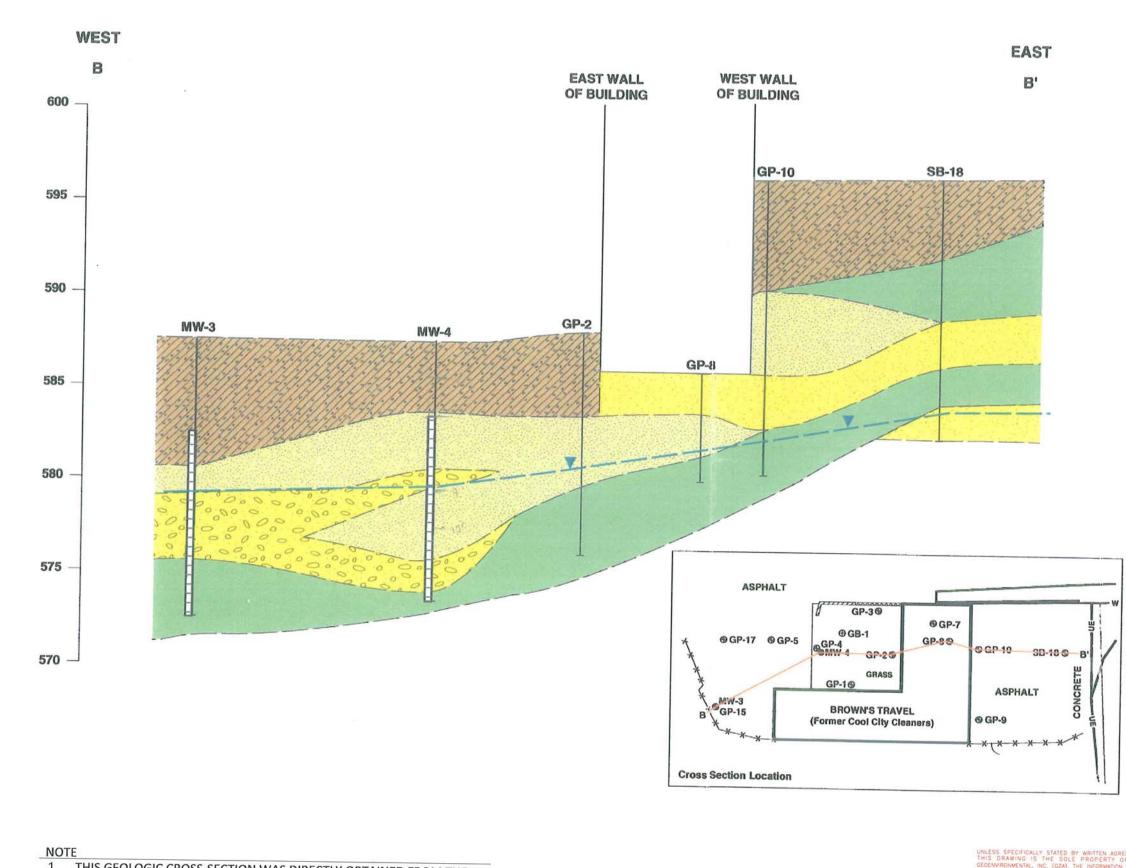
7/1/02


<u>40</u>

Location		P-7	1					
e Location e Depth		P-7 2-4'						
Date		11/01						
µg/kg)								
nloroethene	3,	900						
		<u>.</u>						
	Sample Lo		<u>۱</u>		-11			
	Sample D			10-12'		-14'		
	Sample D	ate			/02			
	VOCs			<rcls< td=""><td><r< td=""><td>CLS</td><td></td><td></td></r<></td></rcls<>	<r< td=""><td>CLS</td><td></td><td></td></r<>	CLS		
			Sample Lo	ocation		GP-8		
			Sample D			2-4'		
		_	Sample D			12/11/0	1	
	\sim		VOCs (µg/		T		_	
/	-		Tetrachio	roethene		3,200		
						ple Locati		GP-10
						ple Depti	1	10-12'
						ple Date		7/1/02
						s (µg/kg)		
					Tetra	achloroet	hene	<u>860</u>
				Sample	locati	on	SB-18	1
				Sample			10-12'	
				Sample	Date		9/26/02	1
				VOCs			<rcls< td=""><td>1</td></rcls<>	1
		S	ample Loc	ation		GP-9	ו	
			ample De			12-14'	1	
			ample Dat			7/1/02	1	
		-	/OCs (µg/k			.,.,=	1	
		-	etrachloro			95	1	
		-					-	
ļ								
				0		15'	30'	
							alineidenide Territelise	
						SC	ALE IN FE	FT

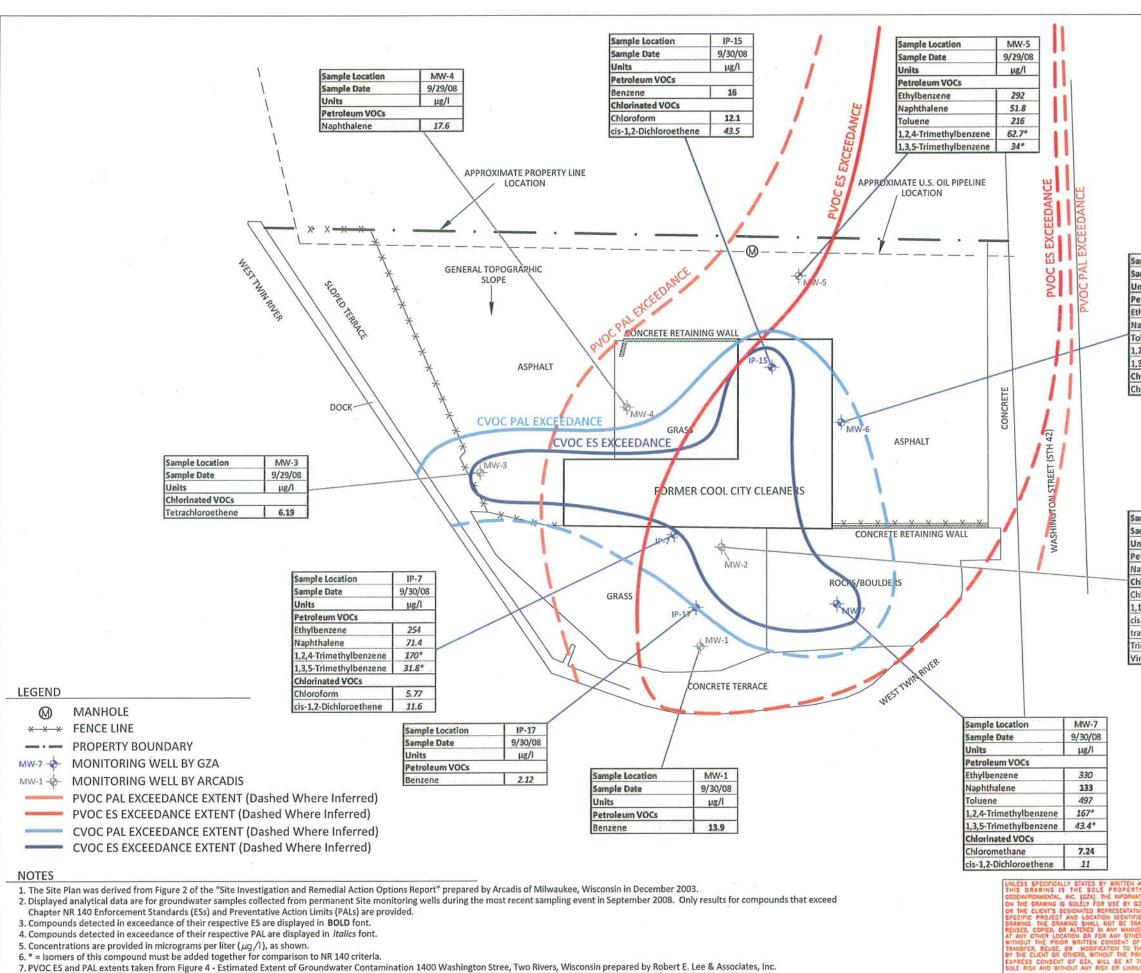
Ν

60'


		SCALE IN FEET								
NO.		ISSU	JE/DESCRIP	חסוד	BY	DATE				
	EXTEN		L EX	CEEDANCE	IN SOIL					
		1308 WA	SHING	CITY CLEANERS	5					
		TWOR	IVERS	WISCONSIN						
PREPARED	GZA G Engine 20900 SW	ieoEnvironmen ers and Scient ENSON DRIVE, SUIT 1A, WISCONSIN 5318	i tal, Inc. lists E 150	PREPARED FOR:						
PREPARED	OZA C Engine 20900 SW WAUKESH (262) 754-	ieoEnvironmen ers and Scient ENSON DRIVE, SUIT 1A, WISCONSIN 5318	i tal, Inc. lists E 150		FIGURE					
GZ	GZA G Engine 20900 SW WAUKESI (262) 754- BGF	ieoEnvironmen ers and Scient ENSON DRIVE, SUIT 14, WISCONSIN 5318 2560	i tal, inc. l ists E 150 36	PREPARED FOR:		_				
	GZA G Engine 20900 SW WAUKESI (262) 754- BGF	eoEnvironmen ers and Scient ENSON DRIVE, SUIT HA, WISCONSIN 5318 2560 REVIEWED BY:	i tal, Inc. i ists E 150 36 BGF JAH	PREPARED FOR: CHECKED BY: SEK		-3				

REUSED, COPIED, OR ALTERED IN MAY MANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WHITEN CONSENT OF GZA. MIN TRANSFER, REUSE, OR WODITICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WHITE EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT MAY RISK OR LUBBLITY TO GZA

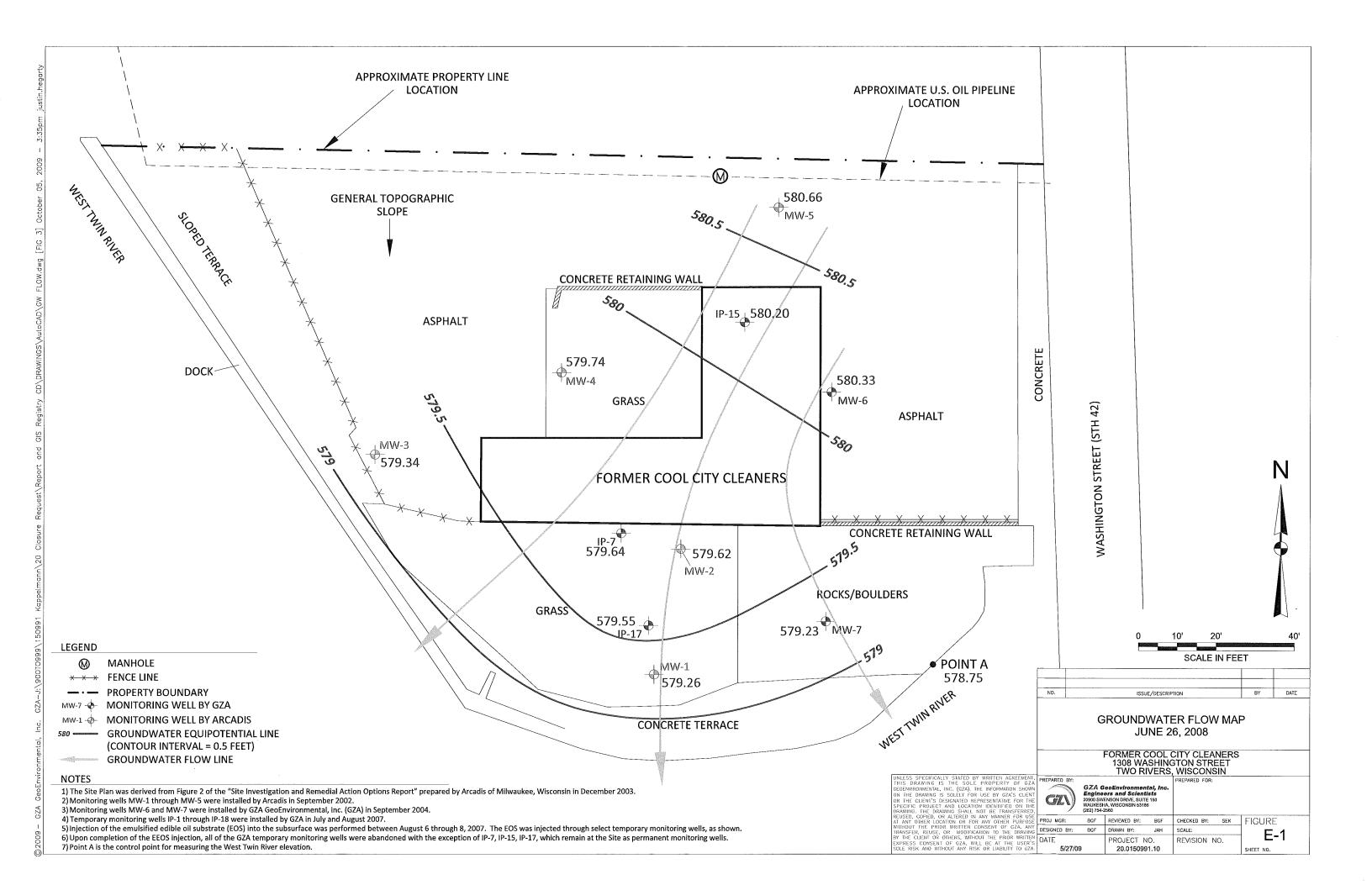
0	10	20	40	(
10000			LE IN FEET RATION = 4X		
EXPL	ANATIO	N			
		Debris (a brick frag present. organic r	nd, silt, clay, grav, sphait, concrete, a gments) may be Also contains sor naterial (grass s, rootlets, decomp	and ne	
		contain s medium,	Yery fine to fine, m ome to abundant well sorted and trace to some silt /.		
		may cont well sorte	ND - Very fine to tain some medium ed and rounded, s ant silt, may conta y.	, very ome	
		silty sand	ID - Borderline of d/very sandy silt, s ne, some fine, som t clay.	and	
		content,	race silt or sand moderately plastic ely stiff to firm.	÷,	
00000	0000	contain a very fine,	Very fine to coarse oppreciable amour , some silt, clay, a osed wood, very po	nts of nd	
	L		BE BORING OR RING WELL LOCA	TION	
		GEOLOG	IC CONTACT (Infe	erred)	
MW	//GP - #	MONITOR BORING	ring well or so Id	DIL	
3	L			ł	
cla loc loc	ssificatio ations an ations. C	tions are b ns made al d are infen	ased on soil t boring/monitoring red between sampl tween native soil u	ing	
N0.		ISSUE/DESCRIP		BY	DATE
GE	ologi	C CROS	SS-SECTION	A-A'	
	1308	WASHING	CITY CLEANERS GTON STREET WISCONSIN		
20900 ST	eers and So WENSON DRIVE	SUITE 150	PREPARED FOR:		
PROJ MGR: BGF	REVIEWED		CHECKED BY: SEK	FIGUR	E
DESIGNED BY: BGF DATE 9/2/09	PROJEC		SCALE: REVISION NO.	SHEET NO.	:-1


SHEET NO.

1. THIS GEOLOGIC CROSS-SECTION WAS DIRECTLY OBTAINED FROM THE "SITE INVESTIGATION AND REMEDIAL ACTION OPTIONS REPORT" PREPARED BY ARCADIS IN DECEMBER 2003.

		0 1	0	00			-
		A STREET	0	20	-	40	
		VERTIC	ZONTA CAL EX	AL SCALE I (AGGERAT	n fee 10n =	T 4X	
	ļ	EXPLANATIO	ON				
			Deb bric pres orga	Sand, sili ris (asphalt k fragments sent. Also c anic materia pings, rootle d).	, conci a) may contain I (gras	rete, and be s some s	d
			cont med roun	ID - Very fin tain some to ium, well so ided, trace t e clay.	abund	dant nd	
			may well to at	Y SAND - N contain sor sorted and pundant silt, e clay.	ne mea	dium, very ed, some	/
			silty is ve	/SAND - Boi sand/very s ry fine, som dant clay.	andy s	ilt, sand	
			conte	Y - Trace silt ent, modera erately stiff	tely pla	astic.	
			very	D - Very fine ain apprecia fine, some s mposed wo d.	ble an ailt, cla	ounts of v. and	
		\bot	GEOI MONI	PROBE BOF	RING O	R	
			GEOL	OGIC CON	TACT (Inferred)	
	1	WW/GP - #		toring we	ELL OF	SOIL	
		V	ELEV	R TABLE A ATIONS BA BER 3, 200 UREMENT	SED O		
i		Soil descript classification locations and locations. C are primarily	tions ar ns mad d are in contacts	e based on a e at boring/r ferred betwe between na	monitor	noling	
NO.		ISSU	E/DESCRIF	PTION		BY	DATE
	GEO	OLOGIC	CROS	SS-SECT	ION I	B-B'	
00704000		FORMER C 1308 WA TWO RI	SHING	STON STRE	EET		
PREPARED BY:	20900 SW	eoEnvironment ers and Scienti ENSON DRIVE, SUITE A. WISCONSIN 53186 2560	sts	PREPARED FOR:			
PROJ MGR:	BGF	REVIEWED BY:	BGF	CHECKED BY:	SEK	FIGURE	
DESIGNED BY:	BGF	DRAWN BY:	JAH	SCALE:		C-	
9/2/09	9	PROJECT No 20.015099	1990 and 19	REVISION N	0.	SHEET NO.	-

DATE


7. PVOC ES and PAL extents taken from Figure 4 - Estimated Extent of Groundwater Contamination 1400 Washington Stree, Two Rivers, Wisconsin prepared by Robert E. Lee & Associates, Inc.

ample Location	MW-6
ample Date	9/29/08
Units	µg/l
Petroleum VOCs	
thylbenzene	198
Vaphthalene	85.8
foluene	266
,2,4-Trimethylbenzene	108*
,3,5-Trimethylbenzene	<2*
Chlorinated VOCs	
Chloroform	2.09

ample Location	MW-2
ample Date	9/30/08
Inits	µg/l
etroleum VOCs	
laphthalene	33.9
hlorinated VOCs	
hloromethane	11.8
,1-Dichlorethene	7.43
is-1,2-Dichloroethene	2,950
rans-1,2-Dichloroethene	82,4
richloroethene	434
/inyl Chloride	384

		0		15' 3	30'		60
				SCALE	IN FE	ET	
NO.		ISSU	IE/DESCRI	PTION		BY	DATE
		SEP			NDW/ 8		
		FORMER O		BER 200 CITY CLEA	8 NERS		
PREPARED BY	GZA C Engine 20900 SV	FORMER (1308 WA TWO R GeoEnvironmen Bers and Scient VENSON DRIVE, SUIT HA, WISCONSIN 5318	TEM	BER 200	8 NERS EET SIN		
PREPARED BY	GZA C Engine 20900 SW WAUKES	FORMER (1308 WA TWO R GeoEnvironmen Bers and Scient VENSON DRIVE, SUIT HA, WISCONSIN 5318	TEM	BER 200 CITY CLEA GTON STR WISCON	8 NERS EET SIN		
GZ	GZA (Engine 20900 SW WAUKES (252) 754 BGF	FORMER (1308 WA TWO R GeoEnvironmen gers and Scient VENSON DRIVE, SUIT HA, WISCONSIN 5318 42, WISCONSIN 5318 2250	TEM COOL SHIN IVERS	BER 200 CITY CLEA GTON STR , WISCON	8 NERS EET SIN	FIGURE	-2

N

TABLE C-1 SUMMARY OF SOIL ANALYTICAL RESULTS Former Cool City Cleaners Two Rivers, Wisconsin

					0000		<u></u>	60 F	<u></u>	<u> </u>	<u> </u>				
Well/Boring ID	Site-Specific	NR 720	GB-1*	GP-1*	GP-2	GP-3	GP-4	GP-5	GP-6	GP-7	GP-8	GP-9	GP-10	GP-11	GP-11
Depth	Direct Contact	Groundwater	8-10'	6-8'	0-2'	4-6'	2-4'	0-2'	10-12'	2-4'	2-4'	12-14'	10-12'	10-12'	12-14'
Date	RCL	Pathway RCL	5/26/99	12/11/01	12/11/01	12/11/01	12/11/01	12/11/01	12/11/01	12/11/01	12/11/01	7/1/02	7/1/02	7/1/02	7/1/02
Non-Chlorinated VOCs															
1,2,4-Trimethylbenzene	50,000 (c)	7,570 (e)	<u>580,000</u>	<u>51,000</u>	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	540
1,3,5-Trimethylbenzene	29,000 (c)	3,520 (e)	<u>150,000</u>	<u>25,000</u>	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	220
Benzene	160 (c)	5.5	<500	<250	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Ethylbenzene	NE	2,900	<500	<250	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	40
Isopropylbenzene	NE	NE	27,000	8,200	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
n-Butylbenzene	NE	NE	<500	49,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	130
n-Propylbenzene	NE	NE	98,000	52,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	42
Naphthalene	20,000 (d)	400 (d)	<u>3,000 Q</u>	<u>1,700</u>	<25	<25	40	<25	<25	<25	<25	<25	<25	<25	140
p-Isopropyltoluene	NE	NE	57,000	<250	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	93
sec-Butylbenzene	NE	NE	79,000	56,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	30
tert-Butylbenzene	NE	NE	7,900	<250	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Toluene	NE	1,500	<500	<250	<25	<25	<25	<25	<25	<25	<25	<25	59	<25	46
m&p-Xylenes	– NE	4,100 (a)	NA	<500	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	310
o-Xylenes		4,100 (a)	NA	<u>7,300</u>	<25	<25	47	30	<25	<25	<25	<25	<25	<25	90
Xylenes, Total	NE	4,100	<u>7,900</u>	NA	<75	<75	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorinated VOCs											· .				
cis-1,2-Dichloroethene	156,000 (b)	27	<500	<250	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Tetrachloroethene	1,230 (b)	4.1	<500	<250	<u>110</u>	<u>230</u>	<u>3,400</u>	<u>240</u>	<25	<u>3,900</u>	<u>3,200</u>	<u>95</u>	<u>860</u>	<25	<25
Trichloroethene	14 (c)	3.7	<500	<250	<25	<25	<25	<25	<25	33	<25	<25	<25	<25	<25
Gasoline Range Organics (mg/kg)		100	NA	<u>3,000</u>	<10	<10	<10	<10	<10	NA	NA	NA	NA	NA	NA

TABLE C-1 SUMMARY OF SOIL ANALYTICAL RESULTS **Former Cool City Cleaners** Two Rivers, Wisconsin

Site-Specific	NR 720	GP-12	GP-13	GP-14	GP-15	GP-16	GP-17	SB-18	SR-10	MEOH	LIA 1	114.2		1
Direct Contact	Groundwater	2-4'	4-6'											HA-4
RCL	Pathway RCL	7/1/02									-			1-3'
			,,,		.,_, .,	771702	//1/02	3/20/02	9/20/02	9/20/02	8/28/06	8/28/06	8/28/06	8/28/06
50,000 (c)	7,570 (e)	220	<25	<25	<25	81	< 25	<25	<25	<2E	(20		07	
29,000 (c)	3,520 (e)	48	<25						· · · · · · · · · · · · · · · · · · ·					<28
160 (c)	5.5	<25	<25					+						<28
NE	2,900	<25	<25											<28
NE	NE	<25	<25											<28
NE	NE	52												<28
NE	NE	<25												<28
20,000 (d)	400 (d)													<28
NE	NE		· · · · · · · · · · · · · · · · · · ·											<55
NE	NE													<28
NE	NE													<28
NE	1,500													<28
														<28
NE	4,100 (a)													NA
NE	4,100													NA
						INA		INA	NA	NA	<94	<90	<93	<94
156,000 (b)	27	<25	<25	<25	<25	<25		<2F	- 2F					
1,230 (b)										······				<28
														<u>8,000</u>
				120	~25	<u> </u>	< <u>2</u> 5	<25	<25	<25	<28	<27	<27	<28
	100	NA	NA	<10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Direct Contact RCL 50,000 (c) 29,000 (c) 160 (c) NE NE NE 20,000 (d) NE NE NE NE NE NE NE NE NE NE NE NE	Direct Contact RCL Groundwater Pathway RCL 50,000 (c) 7,570 (e) 29,000 (c) 3,520 (e) 160 (c) 5.5 NE 2,900 NE NE 2,900 NE NE NE NE NE NE NE NE NE 20,000 (d) 400 (d) NE NE NE 1,500 NE 4,100 (a) NE 4,100 NE 4,100 156,000 (b) 27 1,230 (b) 4.1 14 (c) 3.7	Direct Contact RCL Groundwater Pathway RCL 2-4' $2-4'$ 7/1/02 50,000 (c) 7,570 (e) 220 29,000 (c) 3,520 (e) 48 160 (c) 5.5 <25	Direct Contact RCL Groundwater Pathway RCL 2-4' 4-6' $7/1/02$ $7/1/02$ $7/1/02$ 50,000 (c) 7,570 (e) 220 <25 29,000 (c) 3,520 (e) 48 <25 160 (c) 5.5 <25 <25 NE 2,900 <25 <25 NE 2,900 <25 <25 NE NE <225 <25 NE NE 29 <25 NE NE <25 <25 NE NE <25 <25 NE NE <25 <25 NE NE <25 <25 NE $<1,000$ (a) <25 <25 NE $<1,000$ NA	Direct Contact RCL Groundwater Pathway RCL $2-4'$ $4-6'$ $2-4'$ $7/1/02$ $7/1/02$ $7/1/02$ $7/1/02$ 50,000 (c) $7,570$ (e) 220 <25 <25 29,000 (c) $3,520$ (e) 48 <25 <25 29,000 (c) $3,520$ (e) 48 <25 <25 160 (c) 5.5 <25 <25 <25 NE $2,900$ <25 <25 <25 NE NE 220 <25 <25 NE NE 225 <25 <25 NE NE 52 <25 <25 NE NE 29 <25 <25 NE NE 29 <25 <25 NE NE 29 <25 <25 NE NE <25 <25 <25 NE NE <25 <25 <25 NE	Direct Contact RCLGroundwater Pathway RCL $2-4'$ $4-6'$ $2-4'$ $2-4'$ $2-4'$ $7/1/02$ $7/1/02$ $7/1/02$ $7/1/02$ $7/1/02$ $50,000$ (c) $7,570$ (e) 220 <25 <25 <25 $29,000$ (c) $3,520$ (e) 48 <25 <25 <25 160 (c) 5.5 <25 <25 <25 <25 160 (c) 5.5 <25 <25 <25 <25 NE $2,900$ <25 <25 <25 <25 NE NE 2.25 <25 <25 <25 NE NE 225 <25 <25 <25 NE NE 225 <25 <25 <25 NE NE 29 <25 <25 <25 NE NE 29 <25 <25 <25 NE NE 29 <25 <25 <25 NE NE 225 <25 <25 <25 NE NE 25 <25 <25 <25 NE NE 25 <25 <25 <25 NE $1,500$ <25 <25 <25 <25 NE $4,100$ NA NA NA NA NE $4,100$ NA NA NA NA $156,000$ (b) 27 <25 <25 <25 <25 $1,230$ (b) 4.1 49 <25 <25 <25 <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Direct Contact RCL Groundwater Pathway RCL 2.42 4.65 2.41 2.41 10-12' 2.44 10-12' 2.44 10-12' 2.44 10-12' 2.44 10-12' 2.44 10-12' 2.44 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10'''' 10'''''</td><td>Direct Contact RCL Groundwater Pathway RCL 2-4 4-6 2-4 10 01-12 2-4 10-12' 2-4' 10-12' 2-4' 10-12' 2-4' 10-12' 2-4' 10-12' 2-4' 10-12' 2-4' 10-12' 2-4' 10-12' 2-4' 10-12' 2-4' Blank 50,000 (c) 3,520 (e) 220 <25</td> <25</t<>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Direct Contact RCL Groundwater Pathway RCL 2.42 4.65 2.41 2.41 10-12' 2.44 10-12' 2.44 10-12' 2.44 10-12' 2.44 10-12' 2.44 10-12' 2.44 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.44' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10-12' 2.4'' 10'''' 10'''''	Direct Contact RCL Groundwater Pathway RCL 2-4 4-6 2-4 10 01-12 2-4 10-12' 2-4' 10-12' 2-4' 10-12' 2-4' 10-12' 2-4' 10-12' 2-4' 10-12' 2-4' 10-12' 2-4' 10-12' 2-4' 10-12' 2-4' Blank 50,000 (c) 3,520 (e) 220 <25	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Direct Contact RCL Groundwater Pathway RCL 2-4' 4-6' 2-4' 10-12' 10-12' 2-4' 10-12'	Direct Contact RCL Groundwater Pathway RCL 2.4 4-6 2.4 2.4 1.3 1.13 1.3 1.13

Notes:

1. Soil sample GB-1 was collected by GHD Inc. in May 1999. Soil samples GP-1 through GP-17 were collected by Arcadis and analyzed by U.S. Analytical Lab of Kimberly, Wisconsin. Soil samples SB-18 and SB-19 were collected by Arcadis and analyzed by En Chem, Inc. of Green Bay, Wisconsin. Soil samples HA-1 through HA-4 were collected by GZA GeoEnvironmental, Inc. and analyzed by TestAmerica Inc. of Watertown, Wisconsin.

2. Results reported in micrograms per kilogram (μ g/kg) unless otherwise noted.

3. For the Site-specific direct-contact residual contaminant level (RCL), the most stringent of the ingestion, vapor inhalation and fugitive dust inhalation pathways is provided.

4. (a) Isomers of this compound must be added together for comparison to NR 720 criteria.

5. (b) Ingestion pathway calculated from the United States Environmental Protection Agency (USEPA) website: http://risk.lsd.ornl.gov/epa/ssl1.shtml) with WDNR default inputs.

6. (c) Inhalation pathway calculated from the USEPA website: http://risk.lsd.ornl.gov/epa/ssl1.shtml) with WDNR default inputs.

7. (d) RCL obtained from the Wisconsin Department of Natural Resources' (WDNR) 1997 polycyclic aromatic hydrocarbon (PAH) Guidance.

8. (e) Migration to groundwater pathway calculated from the USEPA website: http://risk.lsd.ornl.gov/epa/ssl1.shtml) with WDNR

9. * = Sample was collected near or from saturated soil and concentration may be biased by groundwater constituents.

10. mg/kg = milligrams per kilogram.

11. NA = parameter not analyzed.

12. NE = not established.

13. Q = concentration is between the limit of detection and the limit of quantitation.

14. VOC = volatile organic compound.

15. Migration to groundwater pathway RCL exceedances are <u>underlined</u>. Direct-contact RCL exceedances are **bold**.

		-	ND 440												MV	V-1					101-00		4/00		6/00	1	
PARAMETERS	UNITS	NR 140 ES	NR 140 PAL	10/3/02	4/9/03	8/5/03	9/16/04	11/30/04	11/04 Dup.	3/21/05	6/27/05	9/29/05	12/30/05	4/25/06	7/31/06	7/9/07	7/07 Dup.	9/13/07	9/07 Dup.	12/27/07	12/07 Dup.	4/3/08	4/08 Dup.	6/27/08	6/08 Dup.	9/30/08	9/08 Duj
PVOCs																	107	10.4	10 5	27.8	27.2	<2	<2	14.7	14.2	13.9	13.7
Benzene	µg/l	5	0.5	160	85	77	92	97	110	56	46	63	69	49	1.2	21.1	16.7	18.4	19.5	<2	<2	15	13.7	<4	<4	12.9	<4
Butylbenzene	µg/l	NE	NE	5.3	<20	<2.5	10	11	12	10	9.1	12	1.0	7.4	<0.8	<2	<2	8.34	<2	<2	<2	5.02	8.18	<3	<3	7.3	8.81
sec-Butylbenzene	µg/l	NE	NE	6.9	<20	12	15	14	16	14	13	14	10	11	<1	4.86	<2	<2	<2	<2	<2	<3	<3	<3	<3	<3	<3
tert-Butylbenzene	µg/l	NE	NE	<4.8	<20	<2.5	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1	<1.6	<0.8	<2	<2	<2 122	129	152	141	84.2	83.8	101	97.8	102	106
Ethylbenzene	µg/l	700	140	170	350	380	370	330	370	310	330	330	300	350	14	168	148 10.7	122	11.5	10.6	10	9.5	9.39	12	11.4	11.1	10.7
Isopropylbenzene	µg/l	NE	NE	12	<20	19	22	22	25	20	19	18	16	16	0.88	11.5	2.24	2.29	<2	4.53	4.73	6.38	5.91	7.63	6.47	6.05	7.07
4-Isopropyltoluene	µg/l	NE	NE	<2.9	<20	17	18	20	25	19	19	16	20	14	<0.8	2.47	<2	<2	<2	3.71	3.59	<5	<5	<5	<5	<5	<5
Methyl tert-butyl ether	µg/l	60	12	<4.3	<40	<5	<4	<4	<4	<4	<4	<4	<2.5	<4	<2	<2		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Naphthalene	µg/l	100	10	37	49	56	40	29	33	18	14	13	11	7.8	3.4	<3	<10 9.43	9.46	9.93	8.46	7.66	7.72	7.66	9.5	9.08	<1	7.90
Propylbenzene	µg/l	NE	NE	18	<40	33	30	30	34	28	25	21	17	17	<2	10.7		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Styrene	µg/l	100	10	<3.1	<20	<2.5	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1	<1.6	<0.8	<1	<1	20.3	21.3	237	225	122	121	114	108	112	102
Toluene	µg/l	1,000	200	180	320	220	220	250	280	180	150	150	250	230	41	22.2 43.6	15.7 39.1	40	43.3	55.8	51.8	44.5	44.5	45.5	44.3	37.2	41.3
1,2,4-Trimethylbenzene	µg/l	480*	96*	320	440	330	330	350	380	290	240	210	200	170	3.8	1.000877		5.71	7.47	16.7	15.3	11.3	11.3	13.4	12.7	9.15	6.96
1,3,5-Trimethylbenzene	µg/l	100	50	45	78	62	42	24	29	20	21	15	16	5	<0.8	7.5	37.5	51.18	54.99	73.6	67.5	37.01	36.2	49.6	46.6	18.8	59.4
Xylenes, Total	µg/l	10,000	1,000	161	250	300	270	260	290	270	270	250	310	220	23	65.83	54.73 334	289	297	590	554	343	342	367	351	330	364
Total PVOCs				1,115	1,572	1,506	1,459	1,437	1,604	1,235	1,156	1,112	1,229	1,097	87	358	334	209	251	550	551	515	UIL				
Halogenated VOCs														1.0	.0.0	(10	<10	10.4	19.3	<10	<10	<10	<10	<10	<10	<10	<10
Bromomethane	µg/l	4.4	0.44	<4.3	<20	<2.5	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1	<1.6	<0.8	<10	<10	19.4	<6	<6	<6	<6	<6	<6	<6	<6	<6
Chloroethane	µg/l	400	80	<4.2	<80	<10	<8	<8	<8	<8	<8	<8	<5	<8	<4	<6	<6	<6	<2	<2	<2	<2	<2	<2 ·	<2	<2	<2
Chloroform	µg/l	6	0.6	<2.2	<20	<2.5	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1	<1.6	<0.8	<2	<2	<2		<3	<3	<4	<4	<4	<4	<4	<4
Chloromethane	µg/l	3	0.3	<1.4	29	<2.5	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1	<1.6	1.1	4.55	<3	10	8.1 <2	<2	<2	<2	<2	<2	<2	<2	<2
Dibromochloromethane	µg/l	60	6	<4.2	<20	<2.5	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1	<1.6	<0.8	<2	<2	<2	<4	<2	<4	<4	<4	<4	<4	<4	<4
1,1-Dichloroethene	µg/l	7	0.7	<2.8	<40	<5	<4	<4	<4	<4	<4	<4	<2.5	<4	<2	<4	<4	<4	3.01	<2	<2	<3	<3	<3	<3	<3	<3
cis-1,2-Dichloroethene	µg/l	70	7	<4	<40	<5	<4	<4	<4	<4	<4	<4	<2.5	<4	440	6.23	7.14	3.2	2.85	<2	<2	2.68	2.12	<2	<2	<2	<2
trans-1,2-Dichloroethene	µg/l	100	20	<4	<40	<5	<4	<4	<4	<4	<4	<4	<2.5	<4	15	3.57	4.08			<3	<3	10.6	8.71	<5	<5	<5	<5
1,1-Dichloropropylene	µg/l	NE	NE	<4	<40	<5	<4	<4	<4	<4	<4	<4	<2.5	<4	<2	12.1	10.6	9.92	10.1	<4	<4	<4	<4	<4	<4	<4	<4
Methylene Chloride	µg/l	5	0.5	<2.3	<80	<10	<8	<8	<8	<8	<8	<8	<5	<8	<4	<4	<4	<4	<2	<2	<2	<2	<2	<2	<2	<2	<2
1,1,1-Trichloroethane	µg/l	200	40	<3.2	<40	<5	<4	<4	<4	<4	<4	<4	<2.5	<4	<2	<2	<2	<2	<2	<2	<2	<3	<3	<3	<3	<3	6.10
1,1,2-Trichloroethane	µg/l	5	0.5	<2.5	<20	<2.5	<2	<2	<2	<2	<2	<2	<1.2	3.4	<1	<2	<2	<2 <3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Tetrachloroethene	µg/l	5	0.5	<3.1	<40	<5	<4	<4	<4	<4	<4	<4	<2.5	<4	7.4	<3	<3		<2	<2	<2	<4	<4	<4	<4	<4	<4
Trichloroethene	µg/l	5	0.5	<1.9	<20	<2.5	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1	<1.6	210	<2	<2	<2 <6	<2	<6	<6	<6	<6	<6	<6	<6	<6
1,2,3-Trichloropropane	µg/l	60	12	<4.6	<40	<5	<4	<4	<4	<4	<4	<4	<2.5	<4	<2	<5		2.05	2.37	<2	<2	<2	<2	<2	<2	<2	<2
Vinyl Chloride	µg/l	0.2	0.02	<0.55	<40	<2.5	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1	<1.6	1.1	<2	26	2,05	2,37	14	~~	16					
RD Parameters																14	14.2	6.82	10.9	23.6	20.8	60.2	58.96	65.5	67.7	55.4	64.4
Diss Iron	mg/l			-	-	-	-	-	-			-	-	-	-	14	14.2	0.0807	0.153	0.326	0.36	0.438	0.442	0.509	0.506	0.388	0.392
Diss Manganese	mg/l			-	-	-	-	-	-	-	-	-		-	-	0.167	0.206	-	1.02	0.320	0.30	0.438	0.112	0.0	0.0	0.0	0.0
Diss Oxygen	mg/l			0.13	0.41	0.15	-		3.53	-	-	-	-	-	-	1.25	1.25	1.02	5.06	3.75	2.83	1.48	1.86	<1.4	<1.4	<1.4	<1.4
Ethane	µg/l			6.4	13	14	-	-	-	-	-			-	-	2.7	2.35	2 50	2.81	<1.5	<75	<150	<150	<1.5	<1.5	<1.5	<1.5
Ethene	µg/l			0.54	2.7	3.8	-	-	-	-	-	-		-	-	9.41	8.98	2.59		5,420	4,850	11,200	10,400		8,040	7,990	8,780
Methane	µg/l			730	1800	2200	-	-	-	-	-	-	-	-		80.5	62.5	324	339	70.040	-113	-155	-155	-163	-163	-141	-141
ORP	mV			65.7	-147.2	-137.1	-	-	-	-	-	-	-		-	-157	-157	-145	-145	-113	3.79	2.46	2.47	<1	<1	2.1	2.06
Sulfate	mg/l			-	-	-	-	-	-	-	-	-	-	-	-	36.5	36.8	3.58	3.6	<1	3.79	91.7	87.7	43	43.6	29.6	26.1
Total Organic Carbon	mg/l			14	1	18	-		-	-	-	-	-	-	-	9.66	7.62	103	102	373	3/1	91./	07.7	-13	15.0	2510	2011

													MW-2									
PARAMETERS	UNITS	NR 140 ES	NR 140 PAL	10/3/02	4/9/03	4/03 Dup.	8/5/03	8/03 Dup.	9/16/04	11/30/04	3/21/05	6/27/05	9/29/05	12/30/05	4/25/06	7/31/06	7/9/07	9/13/07	12/27/07	4/2/08	6/27/08	9/30/08
PVOCs						Dup		Dupi														
Benzene	µg/l	5	0.5	78	45	47	43	37	57	43	22	99	29	6.2	16	28	<20	<2	4.67	<2	8.58	<2
Butylbenzene	µg/l	NE	NE	<1.6	<0.5	<0.25	<0.25	<0.25	<0.2	<0.2	<0.2	<8	<0.2	<0.4	<0.2	<16	<20	<2	<2	<4	<4	<4
sec-Butylbenzene	µg/l	NE	NE	<1.6	<0.5	<0.25	0.28	<0.25	<0.25	<0.25	<0.25	<10	<0.25	<0.5	<0.25	<20	<20	<2	<2	<3	<3	<3
tert-Butylbenzene	µg/l	NE	NE	<2.4	<0.5	<0.25	<0.25	<0.25	<0.2	<0.2	<0.2	<8	<0.2	<0.4	<0.2	<16	<20	<2	<2	<3	<3	<3
Ethylbenzene	µg/l	700	140	30	7.6	9.9	26	22	37	13	9.5	290	70	6.6	53	290	258	21	25.3	22	103	81.2
Isopropylbenzene	µg/l	NE	NE	<1.7	0.72	0.92	1.6	1.4	3.5	0.94	0.7	20	4.2	<0.4	2.5	17	14.3	<1	<1	<1	7.49	6.44
4-Isopropyltoluene	µg/l	NE	NE	<1.4	<0.5	<0.25	<0.25	<0.25	<0.2	<0.2	<0.2	<8	<0.2	<0.4	<0.2	<16	<20	<2	<2	<2	<2	<2
Methyl tert-butyl ether	µg/l	60	12	<2.2	<1	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<20	2.8	5.4	7.2	<40	<20	17.1	8.71	10	<5	<5
Naphthalene	µg/l	100	10	4.3	0.88	0.93	2.4	2	16	8.6	1.8	76	16	<0.5	7.8	77	<100	<10	<10	<10	43.6	33.9
Propylbenzene	µg/l	NE	NE	<2.4	<1	<0.5	0.57	<0.5	2.1	<0.5	<0.5	<20	2.8	<1	1.7	<40	<10	<1	<1	<1	6.3	<1
Styrene	µg/l	100	10	<1.6	<0.5	<0.25	0.47	0.39	<0.2	<0.2	<0.2	<8	<0.2	<0.4	<0.2	<16	<10	<1	<1	<1	<1	<1
Toluene	µg/l	1,000	200	110	28	31	38	34	51	28	14	730	110	5.6	110	830	87	12.7	31.6	19.1	140	83.9
1,2,4-Trimethylbenzene	µg/l			8	0.9	1.4	2.6	2.1	9.4	9.5	2	110	17	0.48	12	86	88.7	4.63	2.95	3.05	48.7	32.5
1,3,5-Trimethylbenzene	µg/l	480*	96*	4.7	<0.5	0.4	0.27	0.35	1.3	2.1	<0.2	19	4.1	<0.4	2.5	<16	43.5	<2	<2	<2	8.21	6.26
Xylenes, Total	µg/l	10,000	1,000	121	5.7	7.7	18	16	48	22	9.9	500	66	2.6	78	460	212	17.7	27.07	22.2	133.6	95.1
Total PVOCs	1.0.			356	89	99	133	115	225	127	60	1,844	322	27	291	1,788	704	73	100	76	499	339
Halogenated VOCs																						
Bromomethane	µg/l	4.4	0.44	<2.2	<0.5	<0.25	<0.25	<0.25	<0.2	<0.2	<0.2	<8	<0.2	<0.4	<0.2	<16	<100	13.3	<10	<10	<10	<10
Chloroethane	µg/l	400	80	<2.1	<2	<1	<1	<1	<1	<1	<1	<40	<1	<2	<1	<80	<60	<6	<6	<6	<6	<6
Chloroform	µg/l	6	0.6	<1.1	<0.5	<0.25	<0.25	<0.25	<0.2	<0.2	<0.2	<8	<0.2	<0.4	<0.2	<16	<20	<2	<2	<2	<2	<2
Chloromethane	µg/l	3	0.3	<0.68	12	26	<0.25	<0.25	<0.2	<0.2	<0.2	<8	<0.2	0.58	<0.2	26	<30	5.36	<3	<4	<4	11.8
Dibromochloromethane	µg/l	60	6	<2.1	<0.5	<0.25	<0.25	<0.25	<0.2	<0.2	<0.25	<8	<0.2	<0.4	<0.20	<16	<20	<2	<2	<2	<2	<2
1,1-Dichloroethene	µg/l	7	0.7	<1.4	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	1.4	<1	1.6	<40	<40	<2	<4	<4	5.61	7.43
cis-1,2-Dichloroethene	µg/l	70	7	120	3.9	6.8	31	27	150	51	24	3,400	1,500	120	4,700	8,900	3,240	243	121	137	5,050	2,950
trans-1,2-Dichloroethene	µg/l	100	20	49	1.8	3.4	19	17	32	37	18	140	39	3.6	84	280	298	17.8	4.57	6.72	80.7	82.4
1,1-Dichloropropylene	µg/l	NE	NE	<2	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<0.5	<1	<0.5	<40	66.6	<3	<3	<5	<5	<5
Methylene Chloride	µg/l	5	0.5	<1.2	<2	<1	<1	<1	<1	<1	<1	<40	<1	<2	16	<80	<40	<4	<4	<4	<4	<4
1,1,1-Trichloroethane	µg/l	200	40	<1.6	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<0.5	<0.5	<0.5	<40	<20	<2	<2	<2	<2	<2
1,1,2-Trichloroethane	µg/l	5	0.5	<1.2	<0.5	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<10	<0.25	<0.5	<0.25	<20	<20	<2	<2	<3	<3	<3
Tetrachloroethene	µg/l	5	0.5	160	3.5	7.7	68	67	230	55	8.9	230	12	<1	16	150	93.3	<3	<3	<3	38.7	<3
Trichloroethene	µg/l	5	0.5	310	9.5	16	100	98	130	79	25	590	84	2.5	990	4,200	4,630	11.5	<2	<4	954	434
1,2,3-Trichloropropane	µg/l	60	12	<2.3	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<0.5	<1	<0.5	<40	<60	<6	<6	<6	<6	<6
Vinyl Chloride	µg/l	0.2	0.02	<0.28	<1	<0.5	1	0.89	<0.2	0.44	<0.2	<8	4	2.9	16	25	68	24.5	25.1	16.8	281	384
RD Parameters																						
Diss Iron	mg/l			-	<u>a</u>	-	-	-	-	-	-	-	•	-		-	2.96	2.31	2.15	0.335	4.63	3.16
Diss Manganese	mg/l			-	-	-	-	-	2	-	-		2 - 2			-	0.0901	0.152	0.126	0.0956	0.379	0.125
Diss Oxygen	mg/l			0.48	0.4		0.15		-	-		-	-	-	-	-	1.47	1.79	0.86	0.0	0.0	0.0
Ethane	µg/l			7.2	9.3	-	6.4	100	÷	-	*	-				-	2.23	2.62	2.54	2.18	2.48	2.44
Ethene	µg/l			0.37	<5	-	0.5	-	-	-	4	ш. С	-	-	() =)	-	2.2	2.01	1.58	<1.5	6.18	16.4
Methane	µg/l			270	750	-	560	-	-	-	-		-	-	-	-	70.3	76.9	65.7	56.4	498	395
ORP	mV			33.6	-55.3	-	-56.2	-	-	-	(=)		-			-	-121	-120	-93	-137	-138	-100
Sulfate	mg/l			-	-	-	1.7	-	-	-	-	-	~	-	-	2	17	21.8	16.2	10.4	13.7	8.33
Total Organic Carbon	mg/l			8	0.37	-	4.7	-	-	-	-	-	-			-	9.15	4.3	3.6	3.54	9.62	13

TABLE E-2 MONITORING WELL GROUNDWATER ANALYTICAL RESULTS SUMMARY Former Cool City Cleaners

Two	Rivers ,	Wisconsin
-----	-----------------	-----------

		ND 440	ND 440									MW-3								
PARAMETERS	UNITS	NR 140 ES	PAL	10/3/02	4/9/03	8/5/03	9/16/04	11/30/04	3/21/05	6/27/05	9/29/05	12/30/05	4/25/06	7/31/06	7/9/07	9/13/07	12/26/07	4/2/08	6/26/08	9/29/08
PVOCs																				
Benzene	µg/l	5	0.5	0.57	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Butylbenzene	µg/l	NE	NE	< 0.65	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.4	<0.4	<0.4
sec-Butylbenzene	µg/l	NE	NE	<0.62	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.2	<0.2	<0.2	<0.3	<0.3	<0.3
tert-Butylbenzene	µg/l	NE	NE	< 0.96	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.3	<0.3	<0.3
Ethylbenzene	µg/l	700	140	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2
Isopropylbenzene	µg/l	NE	NE	<0.66	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4-Isopropyltoluene	µg/l	NE	NE	<0.58	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methyl tert-butyl ether	µg/l	60	12	< 0.87	0.79	2.5	0.97	1.8	<0.5	4	8.6	11	14	35	29.6	18.4	5.6	9.45	12.5	4.97
Naphthalene	µg/l	100	10	< 0.63	<0.25	<0.25	0.59	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<1	<1	<1	<1	<1	<1
Propylbenzene	µg/l	NE	NE	< 0.95	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Styrene	µg/l	100	10	< 0.62	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	μ <u>g</u> /l	1,000	200	4.5	0.67	1.3	<0.2	2.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
1,2,4-Trimethylbenzene	μg/l	1,000		<0.69	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,3,5-Trimethylbenzene	μ <u>g</u> /l	480*	96*	< 0.64	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Xylenes, Total	µg/l	10,000	1,000	4.87	<0.5	0.97	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PVOCs	P9/1	10,000	1,000	11	1.5	4.8	1.6	4	0	4	8.6	11	14	35	30	18	5.6	9.5	13	5.0
Halogenated VOCs					1.5	1.0	1.0				010									
Bromomethane	µg/l	4.4	0.44	<0.87	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1	1.04	<1	<1	<1	<1
Chloroethane	µg/l	400	80	<0.84	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Chloroform	µg/l	6	0.6	<0.45	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chloromethane	µg/l	3	0.3	<0.13	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.3	0.78	<0.3	<0.4	<0.4	<0.4
Dibromochloromethane	µg/l	60	6	<0.84	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,1-Dichloroethene	μg/l	7	0.7	<0.56	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
cis-1,2-Dichloroethene	µg/l	70	7	<0.81	<0.5	<0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.3	<0.3	<0.3
		100	20	<0.81	<0.5	<0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
trans-1,2-Dichloroethene	µg/l	NE	NE	<0.79	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5
1,1-Dichloropropylene	µg/l	5	0.5	<0.79	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Methylene Chloride	µg/l	200	40	<0.47	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2
1,1,1-Trichloroethane	µg/l	5		-		<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,1,2-Trichloroethane	µg/l		0.5	<0.5	<0.25	4.3	9.8	7	3.5	3.6	4.6	3.1	1.6	1.3	2.35	2.78	2.02	1.34	2.17	6.19
Tetrachloroethene Trichloroethene	µg/l	5	0.5	6.7 0.67	<i>2.2</i> <0.25	0.33	<0.2	<0.2	<0.2	<0.2	0.24	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.4	<0.4	<0.4
	µg/l	5	0.5		10.356.25	<0.5	<0.2	<0.2	<0.2	<0.2	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.6	<0.4	<0.6
1,2,3-Trichloropropane	µg/l	60	12	<0.92	<0.5		<0.5		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Vinyl Chloride	µg/l	0.2	0.02	<0.11	<0.5	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	NU.2	\U.2	10.2	<0.Z	10.2	N0.2
RD Parameters												-		-	0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01
Diss Iron	mg/l			-	-		-	-	-	-		-		-	0.01	0.0431	0.0047	0.0081	0.0602	0.0713
Diss Manganese	mg/l			-	-	-	-	-	-	-	-	-	-		101001-00101-0004	1.0.10000000000000000000000000000000000			The Notes Course of La	
Diss Oxygen	mg/l			0.3	1.68	0.16		-	-	-	-	-			6.23	2.94	2.83	5.74	7.11	2.37
Ethane	µg/l			<0.005	0.038	0.018	-	-	-	-	-	-	-	-	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4
Ethene	µg/l			<0.005	0.028	0.0067		-		-	-			-	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Methane	µg/l			1.5	3.5	0.2	-	-	-	-	-	-	-	-	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8
ORP	mV			69.3	33.9	24.1	-	-	-	-	-	-	-	-	143	47	117	119	47	110
Sulfate	mg/l			-	_5	-			-	-	-	-	i.	-	66.1	83.9	96	85.2	54.8	62.5
Total Organic Carbon	mg/l			4	4.4	5.1	-	-	-	-	-	-	-	-	6.14	2.34	5.32	3.46	3.36	3.12

		NR 140	NR 140									MW-4								
PARAMETERS	UNITS	ES	PAL	10/3/02	4/9/03	8/5/03	9/16/04	11/30/04	3/21/05	6/27/05	9/29/05	12/30/05	4/25/06	7/31/06	7/10/07	9/13/07	12/26/07	4/3/08	6/26/08	9/29/08
PVOCs				1																
Benzene	µg/l	5	0.5	<0.5	<0.25	<0.25	<0.2	<0.2	<0.2	0.29	12	9.2	10	3.4	15.9	<2	6.92	<4	3.79	<2
Butylbenzene	µg/l	NE	NE	11	<0.25	<0.25	<0.2	0.61	<0.2	0.7	0.55	<0.2	<0.8	<0.4	<10	<2	<0.2	<8	<4	<4
sec-Butylbenzene	µg/l	NE	NE	<1.2	9	6.4	4.2	3.9	2.4	3.4	3.2	1	1.1	3.9	<10	<2	<0.2	<6	<3	<3
tert-Butylbenzene	µg/l	NE	NE	<1.9	<0.25	0.93	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.8	0.74	<10	<2	<0.2	<6	<3	<3
Ethylbenzene	µg/l	700	140	<1.1	<0.5	<0.5	<0.5	<0.5	<0.5	4.8	<0.5	2.2	40	19	124	11.8	66.7	65.4	21.3	52.3
Isopropylbenzene	µg/l	NE	NE	5.4	1.4	1.3	1	0.66	0.46	1.4	0.8	0.7	4.3	3.7	7.07	<1	4.04	5	2.52	4.79
4-Isopropyltoluene	µg/l	NE	NE	15	0.66	0.59	0.49	0.52	<0.2	<0.2	3.9	1.2	0.88	6.6	<10	<2	0.54	<4	<2	<2
Methyl tert-butyl ether	µg/I	60	12	<1.7	<0.5	<0.5	1.4	8.2	5.8	3.7	11	4.4	5.4	77	<10	<2	5.47	<10	<5	<5
Naphthalene	µg/l	100	10	2.5	0.31	<0.25	<0.25	<0.25	<0.25	1.8	<0.25	<0.25	3.7	8.4	<50	<10	10.2	<20	<10	17.6
Propylbenzene	µg/l	NE	NE	9.5	2.6	2.4	1.4	1.1	0.77	2.2	1.4	<0.5	<2	2	5.44	<1	1.64	<2	1.55	3.1
Styrene	µg/l	100	10	<1.2	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.8	0.52	<5	<1	<0.1	<2	<1	<1
Toluene	µg/l	1,000	200	2	0.37	0.52	0.28	<0.2	<0.2	16	5.9	13	140	30	482	48.2	309	346	137	83.1
1,2,4-Trimethylbenzene	µg/l			150	12	4.6	5.9	4.6	1.1	9.4	6.6	0.25	27	2.7	18.4	<2	5.66	5.02	2.18	6.61
1,3,5-Trimethylbenzene	µg/l	480*	96*	19	<0.25	<0.25	1.2	0.46	<0.2	1.9	0.78	<0.2	<0.8	0.46	18.3	<2	6.3	5.73	3.08	5.32
Xylenes, Total	µg/l	10,000	1,000	<3.7	<0.5	<0.5	<0.5	<0.5	<0.5	17	2.1	4.3	28	27	227.2	13.38	141.2	100.4	35.1	57
Total PVOCs	1.0/			214	26	17	16	20	11	63	48	36	260	185	898	73	558	528	207	230
Halogenated VOCs													200	100	050	10	550	520	207	2.50
Bromomethane	µg/l	4.4	0.44	<1.7	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.8	<0.4	<50	11.1	<1	<20	<10	<10
Chloroethane	µg/l	400	80	<1.7	<1	<1	<1	<1	<1	<1	<1	<1	<4	<2	<30	<6	<0.6	<12	<6	<6
Chloroform	µg/l	6	0.6	<0.9	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.8	<0.4	<10	<2	<0.2	<4	<2	<2
Chloromethane	µg/l	3	0.3	<0.54	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.8	2.1	<15	6.81	<0.3	<8	<4	<4
Dibromochloromethane	µg/l	60	6	<1.7	<0.25	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.80	<0.4	<10	<2	<0.2	<4	<2	<2
1,1-Dichloroethene	µg/l	7	0.7	<1.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<1	<20	<4	<0.4	<8	<4	<4
cis-1,2-Dichloroethene	µg/l	70	7	<1.6	< 0.5	<0.5	2.9	0.66	<0.5	0.7	<0.5	<0.5	<2	1.1	<10	<2	<0.2	<6	<3	5.35
trans-1,2-Dichloroethene	µg/l	100	20	<1.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<1	<10	<2	<0.2	<4	<2	<2
1,1-Dichloropropylene	µg/l	NE	NE	<1.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<1	<15	<3	<0.2	<10	<5	<5
Methylene Chloride	µg/l	5	0.5	<0.94	<1	<1	<1	<1	<1	<1	<1	<1	<4	<2	<20	<4	<0.4	<8	<4	<4
1,1,1-Trichloroethane	µg/l	200	40	<1.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<1	<10	<2	<0.1	<4	<2	<2
1,1,2-Trichloroethane	µg/l	5	0.5	<1.0	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<1	<0.5	<10	<2	<0.2	<6	<3	<3
Tetrachloroethene	µg/l	5	0.5	3.2	0.78	1.8	4.4	1.1	1.8	2.8	1.8	1.9	3.8	4.9	<15	<3	1.78	<6	11.5	<3
Trichloroethene	µg/l	5	0.5	<0.78	<0.25	<0.25	<0.2	<0.2	<0.2	0.35	0.25	<0.2	<0.8	<0.4	<10	<2	<0.2	<8	<4	<4
1,2,3-Trichloropropane	µg/l	60	12	<1.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<1	<25	<6	<0.2	<12	<6	<6
Vinyl Chloride	µg/l	0.2	0.02	<0.22	<0.5	<0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.8	<0.4	<10	<2	<0.2	<4	<2	<2
RD Parameters	-5/-					- CILC	- OIL	- OIL	-OIL	NO.2	SUIL	SULL.			10	~~	50.2	~1	~2	~2
Diss Iron	mg/l			-	-	-	-	-	-	-	-	-	-		7.47	2.78	1.55	2.85	1.16	12.4
Diss Manganese	mg/l			-	-	-	-	-	-	-	-	-	-	-	0.172	0.19	0.219	0.152	0.0702	0.183
Diss Oxygen	mg/l			0.05	0.31	0.1	-	-	-	-		-			2.88	1.84	1.78	1.47	2.61	1.25
Ethane	µg/l			0.046	0.015	0.027	-	-	-	-	-	-		-	3.58	<1.4	1.78	<1.4	<1.4	<1.4
Ethene	µg/l			< 0.005	0.029	0.02	-	-	-	-	-	-	-	-	<1.5	<1.4	<1.5	<1.4	<1.4	
Methane	µg/l			0.72	27	16	_	-	-			-	-	-	26.6	7.75	5.9	1.000.000		<1.5 229
ORP	mV			56.5	-120.1	-157.9	-	-	-	-	-	-	-	-	-92	20.070		2.82	<1.8	
Sulfate	mg/l				-120.1	-137.9		-	-		-	-	-	-	32,3	-97	-20	-51	-47	-81
Total Organic Carbon	mg/l			7	6.3	8.9	-	-	-	_	-	-	-			63.7	84.7	56.2	47.6	45.9
	ing/i			/	0.3	0.9	-		-			-	-	-	9.95	5.5	5.37	5.95	10	9.08

	13											MW-5								
PARAMETERS	UNITS	NR 140 ES	NR 140 PAL	10/3/02	4/9/03	8/5/03	9/16/04	11/30/04	3/21/05	6/27/05	9/29/05	12/30/05	4/25/06	7/31/06	7/10/07	9/13/07	12/26/07	4/3/08	6/27/08	9/29/08
PVOCs																				
Benzene	µg/l	5	0.5	13	9,3	15	22	12	7.1	21	10	9.2	9,4	18	<10	<10	<10	<4	<4	<4
Butylbenzene	µg/l	NE	NE	<3.2	<0.5	<1.2	<0.2	<0.2	<0.2	<2	<1.6	0.84	<1.6	<2	<10	<10	<10	<8	<8	<8
sec-Butylbenzene	µg/l	NE	NE	<3.1	<0.5	<1.2	0.38	0.37	<0.25	<2.5	<2	<1	<2	<2.5	<10	<10	<10	<6	<6	<6
tert-Butylbenzene	µg/l	NE	NE	<4.8	<0.5	<1.2	<0.2	<0.2	<0.2	<2	<1.6	<0.8	<1.6	<2	<10	<10	<10	<6	<6	<6
Ethylbenzene	µg/l	700	140	120	53	82	93	89	56	95	76	160	220	280	335	261	351	403	355	292
Isopropylbenzene	µg/l	NE	NE	6.2	2.3	3.7	5.1	4.8	3	6	4.3	7.9	9.8	13	10.3	7.59	12.1	14.9	15.8	11.9
4-Isopropyltoluene	µg/l	NE	NE	<2.9	<0.5	<1.2	2.2	1	0.54	<2	<1.6	1	<1.6	<2	<10	<10	<10	<4	<4	<4
Methyl tert-butyl ether	µg/l	60	12	<4.3	3.2	20	94	370	430	160	50	31	<4	<5	<10	<10	<10	<10	<10	<10
Naphthalene	µg/l	100	10	28	10	20	36	27	14	37	25	32	28	46	58.8	<50	55.8	35.3	42.3	51.8
Propylbenzene	µg/l	NE	NE	<4.8	1.2	<2.5	4.1	3.9	2.3	<5	<4	5	5	7.1	<5	<5	<5	<2	<2	<2
Styrene	µg/l	100	10	<3.1	<0.5	1.6	<0.2	<0.2	<0.2	<2	<1.6	<0.8	<1.6	<2	<5	<5	<5	<2	<2	<2
Toluene	µg/l	1,000	200	480	80	160	170	140	120	300	200	570	560	620	564	425	925	746	450	216
1,2,4-Trimethylbenzene	µg/l	480*	96*	54	16	26	53	39	22	48	30	48	51	76	67.9	37.7	53.7	68.6	74.6	62.7
1,3,5-Trimethylbenzene	µg/l	100		8.3	1.6	4.5	13	6.6	3.6	7.1	3.8	7.3	5.7	11	39.6	22.4	33.9	29.1	11	34
Xylenes, Total	µg/l	10,000	1,000	389	100	190	230	150	84	220	140	190	310	430	325.9	260	427.3	553.3	551.4	437.7
Total PVOCs	3			1,099	277	523	723	844	743	894	539	1,062	1,199	1,501	1,402	1,014	1,859	1,850	1,500	1,106
Halogenated VOCs														-		50		.20	(20	(20)
Bromomethane	µg/l	4.4	0.44	<4.3	<0.5	<1.2	<0.2	<0.2	<0.2	<2	<1.6	<0.8	<1.6	<2	<50	<50	<50	<20	<20	<20
Chloroethane	µg/l	400	80	<4.2	<2	<5	<1	<1	<1	<10	<8	<4	<8	<10	<30	<30	<30	<12	<12	<12
Chloroform	µg/l	6	0.6	<2.2	<0.5	<1.2	<0.2	<0.2	<0.2	<2	<1.6	<0.8	<1.6	<2	<10	<10	<10	<4	<4	<4
Chloromethane	µg/I	3	0.3	<1.4	6.1	<1.2	<0.2	<1	<0.2	<2	<1.6	<0.8	<1.6	39	28.7	35.9	<15	20.6	<8	<8
Dibromochloromethane	µg/l	60	6	<4.2	<0.5	<1.2	<0.2	<0.2	<0.2	<2	<1.6	<0.8	<1.6	<2	<10	<10	<10	<4	<4	<4
1,1-Dichloroethene	µg/l	7	0.7	<2.8	<1	<2.5	<0.5	<0.5	<0.5	<5	<4	<2	<4	<5	<20	<20	<20	<4 <6	<8	<8 <6
cis-1,2-Dichloroethene	µg/I	70	7	<4	<1	<2.5	<0.5	<0.5	<0.5	<5	<4	<2	<4	<5	<10	<10	<10	<0	<0	<0
trans-1,2-Dichloroethene	µg/l	100	20	<4	<1	<2.5	<0.5	<0.5	<0.5	<5	<4	<2	<4	<5	<10	<10	<10 <15	<10	<10	<10
1,1-Dichloropropylene	µg/l	NE	NE	<4	<1	<2.5	<0.5	<0.5	<0.5	<5	<4	<2	<4	<5	26.8	<15	<15	<10	<8	<8
Methylene Chloride	µg/l	5	0.5	<2.3	<2	<5	<1	<1	<1	<10	<8	<4	<8	<10	<20	<20	<10	<0	<4	<4
1,1,1-Trichloroethane	µg/I	200	40	<3.2	<1	<2.5	<0.5	<0.5	<0.5	<5	<4	<2	<4	<5	<10	<10 <10	<10	<6	<6	<6
1,1,2-Trichloroethane	µg/l	5	0.5	<2.5	<0.5	<1.2	<0.25	<0.25	<0.25	<2.5	<2	<1	<2	<2.5	<10 <15	<10	<10	<6	<6	<6
Tetrachloroethene	µg/l	5	0.5	<3.1	<1	<2.5	<0.5	<0.5	<0.5	<5	<4	<2	<4	<5	100.001		<10	<8	<8	<8
Trichloroethene	µg/l	5	0.5	<1.9	<0.5	<1.2	<0.2	<0.2	<0.2	<2	<1.6	<0.8	<1.6	<2 <5	<10 <30	<10 <30	<30	<12	<12	<12
1,2,3-Trichloropropane	µg/l	60	12	<4.6	<1	<2.5	<0.5	<0.5	<0.5	<5	<4	<2	<4	<2	<10	<10	<10	<4	<4	<4
Vinyl Chloride	µg/l	0.2	0.02	<0.55	<1	<1.2	<0.2	<0.2	<0.2	<2	<1.6	<0.8	<1.0	<2	<10	<10	<10	7	T/	+-
RD Parameters												-	1	-	4.01	1.75	1.95	1.87	1.7	3.03
Diss Iron	mg/l			-	-	-	-		-	-	-	-		-	0.171	0.102	0.105	0.118	0.127	0.161
Diss Manganese	mg/l			-	-	-	-	-	-	-		-	-	-	1.13	0.33	0.40	0.0	0.0	0.0
Diss Oxygen	mg/l			0.07	0.32	0.09	-	-	-	-		-	-	-	3.15	2.34	3.78	3.31	2.36	2.57
Ethane	µg/l			4.9	4.2	0.11	-	-		-				-	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Ethene	µg/l			0.23	0.18		-	-	-	-		1		-	13.8	13.1	37.4	45.9	27.8	31.2
Methane	µg/l	-		97	140	92 -137	-	-	-			-	-	-	-124	-112	-110	-155	-134	-113
ORP	mV			-55.5	-101.1	-137	-	-	-	-		-	-	-	3.65	11.4	7.3	9.18	8.15	6.09
Sulfate	mg/l			-	-	2010	-	-		-		-	-	-	9.38	3.75	4.98	5.41	4.92	4.38
Total Organic Carbon	mg/l			6	5.4	3.9			-						5.50	5,75				

-

PARAMETERS	UNITS	(C	NR 140	an opposite the second							1	MW-6		(
		ES	PAL	9/16/04	11/30/04	3/21/05	3/05 Dup.	6/27/05	6/05 Dup.	9/29/05	9/05 Dup.	12/30/05	4/25/06	7/31/06	7/10/07	9/13/07	12/26/07	4/3/08	6/27/08	9/29/
PVOCs	_																			
Benzene	µg/l	5	0.5	28	27	<16	17	38	40	20	18	<8.0	16	32	23	<10	<10	<4	14.7	<2
Butylbenzene	µg/l	NE	NE	<4	<4	<16	<16	<16	<10	<10	<10	<8.0	<1.6	<2	<10	<10	<10	<8	<4	<4
sec-Butylbenzene	µg/l	NE	NE	<5	<5	<20	<20	<20	<12	<12	<12	<10	<2	<2.5	<10	<10	<10	<6	<3	<3
tert-Butylbenzene	µg/l	NE	NE	<4	<4	<16	<16	<16	<10	<10	<10	<8.0	<1.6	<2	<10	<10	<10	<6	<3	<3
Ethylbenzene	µg/l	700	140	780	650	590	590	470	530	550	560	560	390	440	406	223	165	211	320	198
Isopropylbenzene	µg/l	NE	NE	50	38	34	34	30	33	35	36	38	28	30	25	13.5	8.99	13.4	20.1	10.9
4-Isopropyltoluene	µg/l	NE	NE	6.6	<4	<16	<16	<16	<10	<10	<10	<8.0	2.1	3.5	<10	<10	<10	<4	2.34	3.71
Methyl tert-butyl ether	µg/l	60	12	<10	<10	<40	<40	<40	<25	<25	<25	<20	<4	<5	<10	<10	<10	<10	<5	<5
Naphthalene	µg/l	100	10	280	230	190	190	190	200	210	200	200	180	180	184	84.5	64.4	93.5	149	
Propylbenzene	µg/l	NE	NE	<10	36	<40	<40	<40	30	30	31	34	23	27	<5	<5	9.91	13.7		85.8
Styrene	µg/l	100	10	<4	<4	<16	<16	<16	<10	<10	<10	<8	<1.6	<2	<5	7.16	<5		<1	<1
Toluene	µg/l	1,000	200	3,100	2,900	3,000	2,900	2,100	2,200	2,800	2,800	2,700	360	630	1,260	145	<5 119	5.84	<1	6.16
1,2,4-Trimethylbenzene	µg/l	400*	0.6*	460	300	280	270	240	260	260	270	280	200	240	221	145		104	743	266
1,3,5-Trimethylbenzene	µg/l	480*	96*	86	62	46	57	42	50	59	51	61	19	48	181	33.6	73.2	119	193	108
Xylenes, Total	µg/l	10,000	1,000	2,700	2,100	2,000	1,900	1,700	1,900	1,800	1,800	2,000	760	840			17.6	<4	35.1	<2
Total PVOCs				7,491	6,343	6,140	5,958	4,810	5,243	5,764	5,766	5,873	1,978	2,471	1,156	195.1	155.9	214.4	836	294.2
Halogenated VOCs								1/020	5/2.15	5,701	5,700	5,075	1,970	2,471	3,456	804	614	775	2,313	973
Bromomethane	µg/l	4.4	0.44	<4	<4	<16	<16	<16	<10	<10	<10	-0	110	.2						
Chloroethane	µg/l	400	80	<20	<20	<80	<80	<80	<50	<50	<50	<8	<1.6	<2	<50	62	<50	<20	<10	<10
Chloroform	µg/l	6	0.6	<4	<4	<16	<16	<16	<10	<10		<40	<8	<10	<30	<30	<30	<12	<6	<6
Chloromethane	µg/l	3	0.3	<4	<4	<16	<16	<16	<10		<10	<8	<1.6	<2	<10	<10	<10	<4	<2	2.09
Dibromochloromethane	µg/l	60	6	<4	<4	<16	<16	<16	<10	<10	<10	<8	<1.6	35	24	31.8	<15	<8	<4	<4
,1-Dichloroethene	µg/l	7	0.7	<10	<10	<40	<40	<40		<10	<10	<8	<1.6	<2	<10	<10	<10	<4	<2	<2
is-1,2-Dichloroethene	µg/l	70	7	<10	<10	<40	<40	100000	<25	<25	<25	<20	<4	<5	<20	<20	<10	<8	<4	<4
rans-1,2-Dichloroethene	µg/l	100	20	<10	<10	<40	<40	<40	<25	<25	<25	<20	<4	<5	<10	<10	<10	<6	5.94	5.25
,1-Dichloropropylene	μg/l	NE	NE	<10	<10	<40	V.2	<40	<25	<25	<25	<20	<4	<5	<10	<10	<10	<4	<2	4.72
1ethylene Chloride	µg/l	5	0.5	<20	<20	<80	<40	<40	<25	<25	<25	<20	<4	<5	34.9	15.9	<15	21.9	<5	<5
,1,1-Trichloroethane	µg/l	200	40	<10	<10		<80	<80	<50	<50	<50	<40	<8	<10	<20	<20	<20	<8	<4	<4
,1,2-Trichloroethane	µg/l	5	0.5	<5		<40	<40	<40	<25	<25	<25	<20	<4	<5	<10	<10	<10	<4	<2	<2
etrachloroethene	µg/l	5	0.5		<5	<20	<20	<20	<12	<12	<12	<10	<2	<2.5	<10	<10	<10	<6	<3	<3
richloroethene	µg/i µg/i	5	0.5	19	<10	<40	<40	<40	<25	<25	<25	<20	22	7.2	<15	<15	<15	<6	12.7	<3
,2,3-Trichloropropane	µg/l	60	12	ALCONTROL 1	<4	<16	<16	<16	<10	<10	<10	<8	<1.6	<2	<10	<10	<10	<8	<4	<4
inyl Chloride	µg/l	0.2	0.02	<10	<10	<40	<40	<40	<25	<25	<25	<20	<4	<5	<30	<30	<30	<12	<6	<6
RD Parameters	hð\1	0.2	0.02	<4	<4	<16	<16	<16	<10	<10	<10	<8	<1.6	<2	<10	<10	<10	<4	<2	<2
liss Iron	mg/l																			
iss Manganese	mg/l			-	-	-	-	-	-	-	-	-	-	-	4.44	1.47	1.37	1.15	1.49	2.41
iss Oxygen				-	-	-	-	-	-	-	-	-	-	-	0.108	0.0539	0.056	0.0541	0.956	0.0683
thane	mg/l			-	-	-	-	-	-	-	-	-	-	(=)	1.76	1.16	0.57	0.0	0.0	0.57
thene	µg/l			-	-	-	-				-	-	-	-	5.56	<1.4	<1.4	1.44	4.18	2.83
	µg/l			-		-	-	-	-	-	-	2	-	-	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
lethane RP	µg/l			-	-	-	-	-	-	-	-	-	-	-	26	13.6	24	14.2	24.6	47.2
	mV			-	-	-	-	-	-	-	-	-	*	-	-117	-106	-101	-167	-136	-101
ulfate	mg/l					-	-	-		-	-	-		-	6.45	25.7	25.7	20.2	6.86	3.12
otal Organic Carbon	mg/l			-	-	-	-	-	-	-	-	-	-	-	6.92	4.46	4.45	4.64	5.14	4.93

PARAMETERS	UNITS	2	NR 140		-							M	W-7								
	ONITS	ES	PAL	9/16/04	9/04 Dup.	11/30/04	3/21/05	6/27/05	9/29/05	12/30/05	12/05	4/25/06	4/06 Dup.	7/31/06	7/06 Dup	7/9/07	9/13/07	12/27/07	4/2/08	6/27/08	0/20/
PVOCs											Dup.					.,,,,,,,	5/ 25/07	12/2//0/	4/2/08	0/2//08	9/30/
Benzene	µg/l	5	0.5	67	71	75	45	16	44	32	28	38	35	27	26	0.40				Carried Cost	
Butylbenzene	µg/l	NE	NE	<4	<4	<10	<16	<10	<10	<8	<8	<1.6		1000	26	8.13	<2	3.5	<2	23.4	<2
sec-Butylbenzene	µg/l	NE	NE	<5	<5	<12	<20	<12	<12	<10	<10	<2	<1.6	<4	<4	<2	<2	2.33	<4	<4	8.19
tert-Butylbenzene	µg/l	NE	NE	<4	<4	<10	<16	<10	<10	<8	<8	<1.6	<2	<5	<5	<2	<2	<2	<3	<3	6.26
Ethylbenzene	µg/l	700	140	640	620	550	480	300	450	450	400	380	<1.6	<4	<4	<2	<2	<2	<3	<3	<3
Isopropylbenzene	µg/l	NE	NE	40	41	34	26	16	28	29	27	1000000	370	360	340	204	284	210	244	333	330
4-Isopropyltoluene	µg/l	NE	NE	<4	<4	<10	<16	<10	<10	<8	<8	26	25	24	22	11.2	16.9	9.22	12.7	20.8	21
Methyl tert-butyl ether	µg/l	60	12	<10	<10	<25	<40	<25	<25		2007.0	2.2	<1.6	<4	<4	<2	<2	<2	<2	<2	3.77
Naphthalene	µg/l	100	10	220	220	170	140	88		<20	<20	<4	<4	<10	<10	<2	<2	<2	<5	<5	<5
Propylbenzene	µg/l	NE	NE	33	34	29	<40	<25	150	150	130	150	130	140	130	72.7	101	48.6	67.2	126	133
Styrene	µg/l	100	10	<4	<4	<10	<16		<25	22	23	21	20	19	18	<1	<1	8.43	11.5	<1	<1
Toluene	μg/l	1,000	200	2,700	2,700			<10	<10	<8	<8	<1.6	<1.6	<4	<4	<1	<1	3.66	5.63	<1	<1
1,2,4-Trimethylbenzene	µg/l	1,000	200	300		2,800	2,600	1,300	1,800	1,800	1,700	1,900	1,900	1,600	1,500	164	200	63.6	110	445	497
1,3,5-Trimethylbenzene	µg/l	480*	96*	73	300	250	210	120	200	210	200	190	170	180	160	88.1	132	74.8	103	166	167
Xylenes, Total	µg/l	10,000	1,000		72	50	50	20	40	41	58	18	19	40	35	33.4	40.1	16.2	21.1	41.2	43.4
Total PVOCs	μg/i	10,000	1,000	1,700	1,700	1,600	1,400	880	1,300	1,300	1,300	1,200	1,200	1,200	1,100	300.9	345.4	197	248	516	477.6
Halogenated VOCs	-	1		5,773	5,758	5,558	4,951	2,740	4,012	4,034	3,866	3,925	3,869	3,590	3,331	882	1,119	637	823	1,671	1,687
Bromomethane		4.4	0.44																		
Chloroethane	µg/l	4.4	0.44	<4	<4	<10	<16	<10	<10	<8	<8	<1.6	<1.6	<4	<4	<10	14.1	<10	<10	<10	<10
Chloroform	µg/l	400	80	<20	<20	<50	<80	<50	<50	<4	<40	<8	<8	<20	<20	<6	<6	<6	<6	<6	<6
	µg/l	6	0.6	<4	<4	<10	<16	<10	<10	<8	<8	<1.6	<1.6	<4	<4	<2	<2	<2	<2	<2	<2
Chloromethane	µg/l	3	0.3	<4	<4	<10	<16	<10	<10	<8	<8	<1.6	<1.6	31	17	8.95	7.16	<3	6.02	<4	7.24
Dibromochloromethane	µg/l	60	6	<4	<4	<10	<16	<10	<10	<8	<8	<1.6	<1.6	<4	<4	<2	<2	<2	<2	<2	<2
1,1-Dichloroethene	µg/l	7	0.7	<10	<10	<25	<40	<25	<25	<20	<20	<4	<4	<10	<10	<4	<4	<4	<4	<4	<4
cis-1,2-Dichloroethene	µg/l	70	7	65	71	54	<40	<25	<25	<20	<20	23	21	13	12	4.23	2.21	<2	<3	31.7	11
trans-1,2-Dichloroethene	µg/l	100	20	<10	<10	<25	<40	<25	<25	<20	<20	<4	<4	<10	<10	<2	<2	<2	<2	<2	<2
1,1-Dichloropropylene	µg/l	NE	NE	<10	<10	<25	<40	<25	<25	<20	<20	<4	<4	<10	<10	15.1	19.3	<3	19.2	<5	11.8
Methylene Chloride	µg/l	5	0.5	<20	<20	<50	<80	<50	<50	<40	<40	<8	<8	<20	<20	<4	<4	<4	<4	<4	<4
1,1,1-Trichloroethane	µg/l	200	40	<10	<10	<25	<40	<25	<25	<20	<20	<4	<4	<10	<10	<2	<2	<2	<2	<2	
1,1,2-Trichloroethane	µg/l	5	0.5	<5	<5	<12	<20	<12	<12	<10	<10	<2	<2	<5	<5	<2	<2	<2			3.45
Tetrachloroethene	µg/l	5	0.5	<10	<10	<25	<40	<25	<25	<20	<20	<4	<4	<10	<10	<3	<3	<3	<3 <3	<3	<3
Trichloroethene	µg/l	5	0.5	<4	<4	<10	<16	<10	<10	<8	<8	<1.6	<1.6	<4	<4	<2	<2	<2		<3	<3
1,2,3-Trichloropropane	µg/l	60	12	<10	<10	<25	<40	<25	<25	<20	<20	<4	<4	<10	<10	<6	<6	<6	<4	<4	<4
Vinyl Chloride	µg/l	0.2	0.02	<4	<4	<10	<16	<10	<10	<8	<8	<1.6	<1.6	<4	<4	<2	<2	<2	<6	<6	<6
RD Parameters															~1	~2	~2	<2	<2	<2	<2
Diss Iron	mg/l			-	-	-	-	-	-	-	-	-	-	-	-	3.43	2.57	0.000	0.150		
Diss Manganese	mg/l			-	-	-	-			-	-	-	-	-	-		2.57	0.923	0.158	4	2.37
Diss Oxygen	mg/l			-		-	-	-	-	-	-	-	-		-	0.0834	0.104	0.0781	0.0735	0.0794	0.0989
thane	µg/l			-	-	-	-	-	-	-	-	-		-		1.07	1.06	0.83	0.58	0.0	0.0
thene	µg/l			-	-	-	-	-	-	-	-	-	-	-		3.82	2.75	2.35	2.56	3.42	3.22
lethane	µg/l			-	-	-	-	2	-			-			-	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
DRP	mV			-	-	-	-	-	-		-	-	-	-	-	159	85.9	92.7	77.2	53.2	61.9
ulfate	mg/l			-	-	-	-			-	-		-		-	-150	-96	-97	-129	-151	-108
otal Organic Carbon	mg/l			-							-	8 7 8	-	-	-	16.6	15.9	3.07	2.47	8.67	4.16
	mg/1			-	-	(1)	-	-	-	-	-	-	-	12	-	6.45	5.08	6.13	4.72	6.73	

PARAMETERS	UNITS		NR 140			II	P-7	1	1		IP-15			IP	-17	
	0.1110	ES	PAL	7/9/07	9/13/07	12/27/07	4/3/08	6/27/08	9/30/08	7/11/07	6/27/08	9/30/08	9/13/07	4/3/08	6/26/08	9/30/0
<u>PVOCs</u>										i						
Benzene	µg/l	5	0.5	<2	19.9	30.5	<2	13.3	<2	<2	29,6	16	<0.2	5.42	7.06	2.12
Butylbenzene	µg/l	NE	NE	<2	<2	<2	<4	<4	<4	<2	<2	<4	<0.2	<0.4	<0.4	<2
sec-Butylbenzene	µg/l	NE	NE	<2	<2	<2	<3	58.8	<3	<2	<6	<3	<0.2	<0.4	<0.4	<1.5
tert-Butylbenzene	µg/l	NE	NE	<2	<2	<2	<3	<3	<3	<2	<6	<3	<0.2	<0.3	<0.3	<1.5
Ethylbenzene	µg/l	700	140	305	15.5	434	402	368	254	438	<4	<2	1.5	3.28	20.3	12.1
Isopropylbenzene	µg/l	NE	NE	24.8	1.22	30.9	30.8	28.2	19.6	29.5	<2	<1	0.41	0.33	0.6	
4-Isopropyltoluene	µg/l	NE	NE	16	<2	2.23	33.7	17.6	22.3	6.86	6.86	<2	<0.2	<0.2	<0.2	< 0.5
Methyl tert-butyl ether	µg/l	60	12	<2	<2	<2	<5	<5	<5	<2	<10	<5	<0.2	<0.2	<0.2	<1
Naphthalene	µg/l	100	10	77.1	<10	87.6	78.8	92	71.4	194	<20	<10	<1	<1		<2.5
Propylbenzene	µg/l	NE	NE	<1	<1	<1	<1	<1	<1	<1	<1	<1	0.38	0.43	<1	<5
Styrene	µg/l	100	10	<1	<1	<1	<1	<1	<1	<1	<2	<1			0.46	< 0.5
Toluene	µg/l	1,000	200	425	354	436	364	450	173	778	<8	26.5	<0.1	<0.1	<0.1	< 0.5
1,2,4-Trimethylbenzene	µg/l			300	9.58	259	296	242	175	245	<0		<0.4	66.3	64.6	10.3
1,3,5-Trimethylbenzene	µg/l	480*	96*	106	3.47	38.6	<2	49.3	31.8	 186	<4	<2	1.32	1.31	2.17	1.88
Xylenes, Total	µg/l	10,000	1,000	466	25.7	562	658	612	348	663		<2	2.19	<0.2	0.21	<1
Total PVOCs	1 5/			1,720	429	1,881	1,863	1,931			<4	<4	<0.2	0.75	5.14	1.66
Halogenated VOCs				17720	125	1,001	1,005	1,931	1,090	2,540	36	43	6	78	101	28
Bromomethane	µg/l	4.4	0.44	<10	14.3	<10	<10	<10	(10	(10						
Chloroethane	µg/l	400	80	<6	<6	<6	<6	<10	<10	<10	<20	<10	<1	<1	<1	<5
Chloroform	µg/l	6	0.6	<2	<2	<2	<2		<6	<6	<12	<6	2	<0.6	<0.6	<3
Chloromethane	µg/l	3	0.3	22.3	11.1	<3	5.12	<2	5.77	13.3	<4	12.1	<0.2	<0.2	<0.2	<2
Dibromochloromethane	μg/l	60	6	<2	<2	<2		<4	<4	13.6	<8	<4	1.05	<0.4	<0.4	<2
,1-Dichloroethene	µg/l	7	0.7	<4	<4		<2	<2	<2	<2	<4	5.71	<0.2	<0.2	<0.2	<1
cis-1,2-Dichloroethene	µg/l	70	7	14.1	12.2	<4	<4	<4	<4	<4	<4	<4	<0.2	<0.4	<0.4	<2
rans-1,2-Dichloroethene	µg/l	100	20	3.26		26.2	6.62	18.9	11.6	<2	160	43.5	50.4	3.57	2.71	6.61
,1-Dichloropropylene	µg/l	NE	NE	42.7	2.26	<2	<2	<2	<2	2	<4	<2	4.64	0.81	0.93	<1
1ethylene Chloride	µg/l	5	0.5	42.7 <4	<3	<3	24.1	<5	19.8	61.2	<10	<5	<0.3	<0.5	<0.5	<2.5
,1,1-Trichloroethane	µg/l	200	40		<4	<4	<4	<4	<4	<4	<8	<4	0.72	<0.4	<0.4	<2
,1,2-Trichloroethane	µg/l	5	0.5	<2	<2	<2	<2	<2	<2	<2	<4	<2	<0.2	<0.2	<0.2	<1
etrachloroethene	µg/l	5	0.5	<2	<2	<2	<3	<3	<3	<2	<6	<3	<0.2	<0.3	<0.3	<1.5
richloroethene	µg/l	5	-	<3	27.2	11.2	<3	<3	<3	16	12.7	<3	1.79	1.01	1.02	<1.5
,2,3-Trichloropropane		-	0.5	<2	<2	<2	<4	<4	<4	<2	<8	<4	0.49	<0.4	<0.4	<2
inyl Chloride	µg/l	60	12	<6	<6	<6	<6	<6	<6	<6	<12	<6	<0.6	<0.6	<0.6	4.84
RD Parameters	µg/l	0.2	0.02	<2	<2	<2	<2	<2	<2	<2	<4	<2	4.7	8.82	6.11	<1
iss Iron	mall				10.1		10.00									
iss Manganese	mg/l			-	18.4	10.2	6.25	5.51	2.41	-	-	-	-	-	-	-
iss Oxygen	mg/l			-	0.394	0.309	0.191	0.177	0.149	-	-	-	-	-	-	-
	mg/l			-	1.85	0.92	0.0	0.0	0.0	-	-	-	-	-	-	-
thane	µg/l			-	3.65	2.52	1.71	3.25	<1.4	-	-		1.74	-	<140	<1.4
thene	µg/l			-	<1.5	<150	<150	1.53	<1.5	-	-	-	<1.5	-	<150	<1.5
ethane	µg/l			-	330	9,270	13,800	11,100	9,830	-	-	-	37.9	-	14,200	8,050
RP	mV			-	-127	-95	-111	-137	-168	-	-	-	-	-	-	-
ulfate	mg/l			-	1.91	1.83	<1	6.86	17.3	-	-	-	-	-	-	-
otal Organic Carbon	mg/l			-	84.1	129	50.4	22.9	15.1	-	460	-	-	-	284	19.1

otes:

Groundwater samples were collected by Arcadis in 2002 and 2003, nd were analyzed by U.S. Analytical Lab of Kimberly, Wisconsin October 2002), En Chem, Inc. of Green Bay, Wisconsin (April 2003) nd TestAmerica Incorporated (TestAmerica) of Watertown, Wisconsin ugust 2003). Samples were collected by GZA GeoEnvironmental, c. (GZA) in 2004 and after, and were analyzed by TestAmerica or emens Water Technologies Corp. of Rothschild, Wisconsin. Values in Italics indicate concentrations greater than the Wisconsin ministrative Code (WAC) NR 140 Preventive Action Limit (PAL) and lues in **BOLD** indicate concentrations greater then WAC NR 140 forcement Standard (ES). * = Isomers of this compound must be added together for mparison to NR 140 criteria. NE = not established; "-" = sample not tested for that parameter. Red vertical line represents the time of organic carbon injection in

igust 2007.

Propylbenzene = n-Propylbenzene. 4-Isopropyltoluene = p-Isopropyltoluene. Butylbenzene = n-Butylbenzene.

MONITORING WELL OR RIVER LOCATION	TOP-OF-CASING OR CONTROL POINT ELEVATION (ft msl)	GROUND SURFACE ELEVATION (ft msl)	WELL SCREEN DEPTH (ft bgs)	WELL SCREEN ELEVATION (ft msl)	MEASUREMENT DATE	DEPTH TO WATER (ft btoc)	WATER TABLE ELEVATION (ft msl)
					10/3/02	6.66	579.08
					4/9/03	7.46	578.28
					8/5/03	7.00	578.74
					9/16/04	6.40	579.34
					11/30/04	6.90	578.84
					3/21/05	6.84	578.90
					6/27/05	6.50	579.24
					9/29/05	6.91	578.83
					12/30/05	7.24	578.50
					4/25/06	6.96	578.78
					7/31/06	6.59	579.15
MW-1	585.74	586.39	5' - 15'	581.39 - 571.39	7/9/07	6.87	578.87
					8/6/07 am	6.98	578.76
					8/6/07 pm	6.71	579.03
					8/7/07 am	6.92	578.82
					8/7/07 pm	6.85	578.89
					8/8/07 am	6.93	578.81
					8/8/07 pm	6.43	579.31
					9/13/07	7.12	578.62
					12/26/07	7.83	577.91
					4/2/08	7.48	578.26
					6/26/08	6.48	579.26
					9/29/08	6.64	579.10

MONITORING WELL OR RIVER LOCATION	TOP-OF-CASING OR CONTROL POINT ELEVATION (ft msl)	GROUND SURFACE ELEVATION (ft msl)	WELL SCREEN DEPTH (ft bgs)	WELL SCREEN ELEVATION (ft msl)	MEASUREMENT DATE	DEPTH TO WATER (ft btoc)	WATER TABLE ELEVATION (ft msl)
					10/3/02	7.79	579.21
					4/9/03	8.41	578.59
					8/5/03	7.95	579.05
					9/16/04	7.30	579.70
					11/30/04	7.85	579.15
					3/21/05	7.80	579.20
					6/27/05	7.51	579.49
					9/29/05	7.87	579.13
					12/30/05	8.16	578.84
					4/25/06	7.90	579.10
					7/31/06	7.45	579.55
MW-2	587.00	587.38	4' - 14'	583.38 - 573.38	7/9/07	7.74	579.26
					8/6/07 am	7.87	579.13
					8/6/07 pm	7.44	579.56
					8/7/07 am	7.80	579.20
					8/7/07 pm	7.56	579.44
					8/8/07 am	7.78	579.22
					8/8/07 pm	5.79	581.21
					9/13/07	8.01	578.99
					12/26/07	8.75	578.25
					4/2/08	8.42	578.58
					6/26/08	7.38	579.62
					9/29/08	7.61	579.39

TOP-OF-CASING OR CONTROL POINT ELEVATION (ft msl)	GROUND SURFACE ELEVATION (ft msl)	WELL SCREEN DEPTH (ft bgs)	WELL SCREEN ELEVATION (ft msl)	MEASUREMENT DATE	DEPTH TO WATER (ft btoc)	WATER TABLE ELEVATION (ft msl)
				10/3/02	7.89	579.18
				4/9/03	8.63	578.44
				8/5/03	8.19	578.88
				9/16/04	7.66	579.41
				11/30/04	8.06	579.01
				3/21/05	8.15	578.92
				6/27/05	7.76	579.31
				9/29/05	8.18	578.89
				12/30/05	8.44	578.63
				4/25/06	8.26	578.81
				7/31/06	7.82	579.25
587.07	587.53	5' - 15'	582.53 - 572.53	7/9/07	8.03	579.04
				8/6/07 am	8.17	578.90
				8/6/07 pm	8.11	578.96
				8/7/07 am	8.11	578.96
				8/7/07 pm	8.08	578.99
				8/8/07 am	8.13	578.94
				8/8/07 pm	8.05	579.02
				9/13/07	8.23	578.84
				12/26/07	8.93	578.14
				4/2/08	8.68	578.39
				6/26/08	7.73	579.34
				9/29/08	7.88	579.19
	CONTROL POINT ELEVATION (ft msl)	CONTROL POINT ELEVATION (ft msl)	CONTROL POINT ELEVATION (ft msl) GROUND SURFACE ELEVATION (ft msl) UEPTH (ft bgs)	CONTROL POINT ELEVATION (ft msl) GROUND SURFACE ELEVATION (ft msl) WELL SCREEN DEPTH (ft bgs) WELL SCREEN ELEVATION (ft msl)	CONTROL POINT ELEVATION (ft msl) GROUND SURFACE ELEVATION (ft msl) WELL SCREEN DEPTH (ft bgs) WELL SCREEN ELEVATION (ft msl) MEASUREMENT DATE 10/3/02 4/9/03 8/5/03 9/16/04 11/30/04 3/21/05 6/27/05 9/29/05 587.07 587.53 5' - 15' 582.53 - 572.53 7/9/07 587.07 587.53 5' - 15' 582.53 - 572.53 7/9/07 8/6/07 pm 8/6/07 pm 8/6/07 pm 8/6/07 pm 8/8/07 am 8/8/07 am 8/8/07 am 8/8/07 am 8/8/07 pm 9/13/07 12/26/07 12/26/07	CONTROL POINT ELEVATION (ft msl) GROUND SURFACE ELEVATION (ft msl) WELL SCREEN DEPTH (ft bgs) WELL SCREEN ELEVATION (ft msl) MEASUREMENT DATE DEPTH 10 WATER (ft btoc) 10/3/02 7.89 4/9/03 8.63 8/5/03 8.19 9/16/04 7.66 11/30/04 8.06 3/21/05 8.15 6/27/05 7.76 9/29/05 8.18 12/30/05 8.44 4/2/5/06 8.26 7/31/06 7.82 587.07 587.53 5' - 15' 582.53 - 572.53 5//07 am 8/6/07 pm 8.11 8//07 am 8.11 8//07 am 8.11 8//07 pm 8.08 8/8/07 pm 8.05 9/13/07 8.23 12/26/07 8.93 4/2/08 8.68 6/26/08 7.73

MONITORING WELL OR RIVER LOCATION	TOP-OF-CASING OR CONTROL POINT ELEVATION (ft msl)	GROUND SURFACE ELEVATION (ft msl)	WELL SCREEN DEPTH (ft bgs)	WELL SCREEN ELEVATION (ft msl)	MEASUREMENT DATE	DEPTH TO WATER (ft btoc)	WATER TABLE ELEVATION (ft msl)
					10/3/02	7.89	579.40
					4/9/03	8.58	578.71
					8/5/03	8.12	579.17
					9/16/04	7.56	579.73
		587.69			11/30/04	7.97	579.32
	587.29				3/21/05	8.13	579.16
			4' - 14'	583.69 - 573.69	6/27/05	7.76	579.53
					9/29/05	8.06	579.23
					12/30/05	8.39	578.90
					4/25/06	8.12	579.17
					7/31/06	7.70	579.59
MW-4					7/9/07	7.91	579.38
					8/6/07 am	8.08	579.21
					8/6/07 pm	7.94	579.35
					8/7/07 am	8.01	579.28
					8/7/07 pm	7.93	579.36
					8/8/07 am	7.98	579.31
					8/8/07 pm	7.83	579.46
					9/13/07	8.32	578.97
					12/26/07	8.82	578.47
					4/2/08	8.58	578.71
					6/26/08	7.55	579,74
					9/29/08	7.84	579.45

MONITORING WELL OR RIVER LOCATION	TOP-OF-CASING OR CONTROL POINT ELEVATION (ft msl)	GROUND SURFACE ELEVATION (ft msl)	WELL SCREEN DEPTH (ft bgs)	WELL SCREEN ELEVATION (ft msl)	MEASUREMENT DATE	DEPTH TO WATER (ft btoc)	WATER TABLE ELEVATION (ft msl)
					10/3/02	13.50	580.08
					4/9/03	14.36	579.22
					8/5/03	13.71	579.87
					9/16/04	13.16	580.42
					11/30/04	13.65	579.93
		593.99			3/21/05	13.87	579.71
	593.58		10' - 20'	583.99 - 573.99	6/27/05	13.01	580.57
					9/29/05	13.43	580.15
					12/30/05	13.80	579.78
					4/25/06	13.35	580.23
					7/31/06	12.89	580.69
MW-5					7/9/07	13.02	580.56
					8/6/07 am	13.43	580.15
					8/6/07 pm	13.41	580.17
					8/7/07 am	13.42	580.16
					8/7/07 pm	13.25	580.33
					8/8/07 am	13.63	579.95
					8/8/07 pm	13.32	580.26
					9/13/07	13.48	580.10
					12/26/07	14.36	579.22
					4/2/08	14.21	579.37
					6/26/08	12.92	580.66
					9/29/08	13.45	580.13

MONITORING WELL OR RIVER LOCATION	TOP-OF-CASING OR CONTROL POINT ELEVATION (ft msl)	GROUND SURFACE ELEVATION (ft msl)	WELL SCREEN DEPTH (ft bgs)	WELL SCREEN ELEVATION (ft msl)	MEASUREMENT DATE	DEPTH TO WATER (ft btoc)	WATER TABLE ELEVATION (ft msl)
					9/16/04	15.81	580.14
					11/30/04	16.35	579.60
					3/21/05	16.49	579.46
		596.30			6/27/05	15.68	580.27
	595.95			586.30 -576.30	9/29/05	16.09	579.86
			10' - 20'		12/30/05	16.46	579.49
					4/25/06	16.06	579.89
					7/31/06	15.58	580.37
					7/9/07	15.82	580.13
MUN C					8/6/07 am	16.13	579.82
MW-6					8/6/07 pm	14.40	581.55
					8/7/07 am	16.32	579.63
					8/7/07 pm	15.91	580.04
					8/9/07 am	16.00	579.95
					8/9/07 pm	15.81	580.14
					9/13/07	16.22	579.73
					12/26/07	16.97	578.98
					4/2/08	17.03	578.92
					6/26/08	15.62	580.33
					9/29/08	16.08	579.87

MONITORING WELL OR RIVER LOCATION	TOP-OF-CASING OR CONTROL POINT ELEVATION (ft msl)	GROUND SURFACE ELEVATION (ft msl)	WELL SCREEN DEPTH (ft bgs)	WELL SCREEN ELEVATION (ft msl)	MEASUREMENT DATE	DEPTH TO WATER (ft btoc)	WATER TABLE ELEVATION (ft msl)
					9/16/04	6.85	579.26
					11/30/04	7.33	578.78
					3/21/05	7.23	578.88
					6/27/05	6,92	579.19
					9/29/05	7.33	578.78
					12/30/05	7.61	578.50
					4/25/06	7,35	578.76
					7/31/06	6.91	579,20
					7/9/07	7.84	578.27
	586.11	586.60	3' - 13'	583.60 - 573.60	8/6/07 am	7.38	578.73
MW-7					8/6/07 pm	6.23	579.88
					8/7/07 am	7,35	578.76
					8/7/07 pm	7.30	578.81
					8/8/07 am	7.41	578.70
					8/8/07 pm	7.05	579.06
					9/13/07	7.55	578.56
					12/26/07	8.24	577.87
					4/2/08	7.90	578.21
					6/26/08	6.88	579.23
					9/29/08	7.01	579.10
	587.17	587.29	9' - 14'	578.29 - 573.29	9/13/07	8.09	579.08
					12/26/07	8.77	578.40
IP-7					4/2/08	8.48	578.69
					6/26/08	7.53	579.64
					9/29/08	7.72	579.45
	587.06	587.15	3' - 8'	584.14 - 579.15	9/13/07	DRY	<579.23
					12/26/07	DRY	<579.23
IP-15					4/2/08	DRY	<579.23
1, 10					6/26/08	6.86	580.20
					9/29/08	7.31	579.75

MONITORING WELL OR RIVER LOCATION	TOP-OF-CASING OR CONTROL POINT ELEVATION (ft msl)	GROUND SURFACE ELEVATION (ft msl)	WELL SCREEN DEPTH (ft bgs)	WELL SCREEN ELEVATION (ft msl)	MEASUREMENT DATE	DEPTH TO WATER (ft btoc)	WATER TABLE ELEVATION (ft msl)
		586.73			9/13/07	7.64	578.93
					12/26/07	8.30	578.27
IP-17	586.57		3.5' - 8.5'	583.23 - 578.23	4/2/08	8.00	578.57
					6/26/08	7.02	579.55
					9/29/08	7.24	579.33
	584.49	NA	NA	NA	10/3/02	5.90	578.59
					4/9/03	7.00	577.49
					8/5/03	6.30	578.19
Point A (Control					11/30/04	6.10	578.39
point for water					3/21/05	6.01	578.48
surface elevation of					6/27/05	5.61	578.88
West Twin River - See Figure 3)					9/29/05	6.28	578.21
					12/30/05	6.45	578.04
					4/25/06	6.24	578.25
					7/31/06	5.91	578.58
					6/26/08	5.74	578.75

Notes:

1. Monitoring well construction details for wells MW-1 through MW-6 were reported by Arcadis in their December 2003 Site Investigation and Remedial Action Options Report.

2. Monitoring wells MW-6 and MW-7 were installed by Wisconsin Soil Testing for GZA GeoEnvironmental, Inc. (GZA) on September 14, 2004.

3. Monitoring wells IP-7, IP-15 and IP-17 were installed by Soil Essentials (IP-7 and IP-15) and GZA (IP-17) in July and August 2007.

4. ft msl = feet above mean sea level.

5. ft bgs = feet below ground surface.

6. ft btoc = feet below top-of-casing.

7. NA = Not applicable.