

Ms. Denise Nettesheim WDNR 3911 Fish Hatchery Road Madison, WI 53711

Alpha Terra Science, Inc. 1237 Pilgrim Road, Plymouth, WI 53073 TEL 920/892-2444 FAX 920/892-2620 Website: www.alphaterra.net E-mail: alphaterra@alphaterra.net

RE: Vapor Results and Next Step In Project, DERF Remedial Action, Former Robinson Cleaners, 1819 Milwaukee Street, Janesville, WI BRRTS # 02-54-248342

Dear Denise,

The purpose of this letter is to present the results of the indoor vapor sample and determine the next step in the project.

SCOPE OF WORK

Remedial Excavation and Sampling

As previously described in our February 2008 report, the following actions have been completed at the Vogue Cleaners site in Janesville (Figure 1):

- Hot Spot Soil Excavation and Disposal
- Soil Sampling
- Groundwater Sampling Two Rounds After Excavation
- Sub-Slab Vapor Sampling

Since then, discussions were held with the property owner and responsible parties (Mr. Ray Gehrig and representatives of Robin, Inc.), the Wisconsin Department of Health and Family Services (WDHFS) project manager Mr. Henry Nehls-Lowe, and the WDNR project manager Ms. Denise Nettesheim, regarding the site conditions and additional project requirements. It was determined a vapor sample from the southwest tenant space of the building should be obtained for evaluation of the indoor vapor chemistry.

Indoor Vapor Sampling

The facility no longer operates as a "wet" drycleaner, and all clothing is sent off-site to another location for drycleaning using Stoddard solvent as the cleaning solution. However, despite discontinued operation as a wet drycleaning facility, WDHFS indicated that due to storage and handling of clothing that has been recently treated with drycleaning solvent, the indoor air within the Vogue Cleaners site is expected to exceed the commercial indoor air quality concentrations for drycleaning chemicals. This is considered acceptable for the drycleaning portion of the property, as there is an expectation by employees of a drycleaning store that there will be some exposure to drycleaning chemicals.

The southwest portion of the building is partitioned by walls into an office for a "Checks for Cash" store. The entire building has shared heating, ventilation and air conditioning (HVAC), with separate

thermostat controls. Evaluation of the indoor air within the "Checks for Cash" store was considered necessary prior to consideration of closure for the facility.

On October 28, 2008, Kyle Kutcher of Alpha Terra Science obtained a vapor sample from the indoor air in the Checks for Cash store. The summa canister was provided by the laboratory (State Laboratory of Hygiene, Madison, WI) and one sample was obtained of the air from the approximate breathing level (4 feet above the floor) within the Checks for Cash store. A regulator on the 6-liter summa canister was used to obtain an 8-hour integrated sample from the store. The sample was obtained from approximately 5:30 PM to 1:30 AM, primarily during hours when the store was closed.

The "Checks for Cash" store consists of a carpeted office measuring approximately 25 by 40 feet (Figure 2). The store has one office and a storage area that are separated from the rest of the store by dividers, but there are no floor to ceiling interior walls. Air can freely move within the entire 1,000 square foot retail space.

The canister was recovered on the morning of October 29 and sent to the State Laboratory of Hygiene, Madison, WI for analysis of VOCs using the TO-15 method. Results are provided in Attachment A, and summarized on Table 1.

Previous results obtained from subslab vapors beneath the Vogue Cleaners floor were obtained in June 2007 and tested for an abbreviated list of chlorinated solvents using the Microseeps method. The vapor probes are sealed with a threaded plug but are still present.

RESULTS

Vapor Chemistry Standards

The results indicate the presence of sixteen VOC compounds in the indoor air of the "Checks for Cash" store. The laboratory analytical results are included in Attachment A, and have been converted to ug/cubic meter using temperature dependent conversion factors from the USEPA "On-line Tools for Site Assessment Calculation" found on the EPA vapor intrusion web site¹. A temperature of 68 degrees Fahrenheit was used for conversion, as the sample was obtained from the indoor air of the office.

To evaluate the significance of the results, the data was compared to information on the USEPA risk based concentration table values for industrial indoor vapor². Conversion of the EPA values to WDHFS / WDNR values was performed based on information for tetrachloroethene and subslab to indoor air vapor attenuation presented by WDHFS at a recent vapor intrusion conference. A presentation entitled "Evaluating for Vapor Intrusion" by Henry Nehls-Lowe of WDHFS indicates the following principles can be used to establish ceiling concentrations for indoor and subslab vapor data:

• Calculated USEPA Risk Based Concentrations for vapor exposure in an industrial setting assumes a 1 in 1,000,000 increased risk of cancer, while WDHFS utilizes a 1 in 100,000 increased risk of cancer for vapor exposure in a commercial setting (10X higher value assumed by WDHFS for commercial setting when compared to EPA industrial table values)

¹ http://www.epa.gov/athens/learn2model/part-two/onsite/ia_unit_conversion.htm

² http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm

• Subslab vapors should assume a 10X attenuation factor for comparison to indoor exposure values (Assume that a 10X higher concentration beneath the floor is acceptable when compared to indoor air risk values)

Indoor Vapor Results

The indoor vapor results from the "Checks for Cash" store indicate the concentration of PCE and TCE exceed the WDNR / WDHFS commercial indoor air standard by approximately 2 to 3 times. The standard for PCE is 21 ug/m³, and the standard for TCE is 61 ug/m³. Concentrations at or above these levels will theoretically results in a 1 in 100,000 increased risk of cancer, assuming the exposure assumptions of inhalation of air from the store for a period of eight hours per day, 250 days per year for a lifetime employee exposure period of 25 years.

Other detected compounds are present in the indoor air from the store, including several petroleum constituents, but the concentrations of these compounds in the indoor air are below levels that pose a risk to human health.

Subslab Vapor Results

In June 2007, subslab vapors were retained beneath the Vogue Cleaners floor at four locations, and a fifth sample was retained from the passive exhaust vent (no fan operating). The results are shown on Table 1 and compared to WDNR / WDHFS standards for subslab air, which assumes a 10 fold increase (10X dilution factor) between the indoor exposure limit and the subfloor vapor.

The subslab results indicate levels of PCE at all tested locations exceed the theoretical limit for vapors beneath a building. The subslab level for TCE exceeds the theoretical limit at one location. These results mean that if the vapors beneath the building enter the building at the typical rate that subslab vapors migrate into buildings, there will be an increased risk to human health.

REMEDIAL OPTIONS

The indoor air results indicate steps should be taken to prevent further employee exposure via vapor intrusion to the "Checks for Cash" portion of the building. Subslab vapors indicate vapor intrusion through the floor is likely occurring beneath the Vogue Cleaners portion of the building, but current use as a drycleaner renders this exposure route of minimal concern at this time. However; if future use of the building changes, the subslab vapor results beneath the Vogue Cleaners portion of the building indicate steps should be taken to minimize potential vapor intrusion.

Three alternatives to address the vapor intrusion issue have been considered:

Option One: Modify the HVAC system in the building. If a positive pressure ventilation system were installed that utilized outside air, subslab migration of vapors into the building would be greatly minimized. Segregated HVAC systems for each portion of the building may also be desirable. Testing of indoor vapors following installation and operation of the new HVAC system will be necessary to demonstrate effectiveness.

Comment: This option requires operation of the HVAC system(s) to prevent exposure. If the system is shut off, for example, during spring and fall during periods of nice weather, the positive pressure system would not be operating to prevent subslab vapor migration into the building.

Option Two: Installation of a low-powered fan on the existing subslab ventilation system piping to withdraw contaminated subslab vapors from beneath the existing Vogue Cleaners building. Powering the existing subslab ventilation system piping may remove elevated subslab vapors from beneath the building, and may also help reduce vapors in the "Checks for Cash" store. Testing of subslab and indoor vapors must be performed following fan operation to evaluate effectiveness.

Comment: The existing vapor mitigation piping was installed along the building north wall at the base of the building footing at a depth of approximately 4.5 feet below grade. The depth of the extraction pipe may be too great to be in direct connection with the shallow contaminated vapors immediately under the building floor. Testing should reveal whether there is vapor connection between the piping and the building subslab vapors. Powering a fan on the existing vapor mitigation piping could be effective as long as the fan is operating.

Option Three: Installation of a subslab vapor mitigation system for the entire building. A radon mitigation contractor should be hired to design and install an effective vapor mitigation system for the building. Typically, the system would consist of a penetration through the building floor that taps into the subslab fill. A low-voltage fan and extraction piping would be installed and operated to withdraw air from the subsurface and vent it outside. Testing of indoor, subslab, and exhaust vapors following system installation will be necessary to demonstrate effectiveness.

Comment: If properly designed, the subslab system would likely be effective as long as the fan is operating.

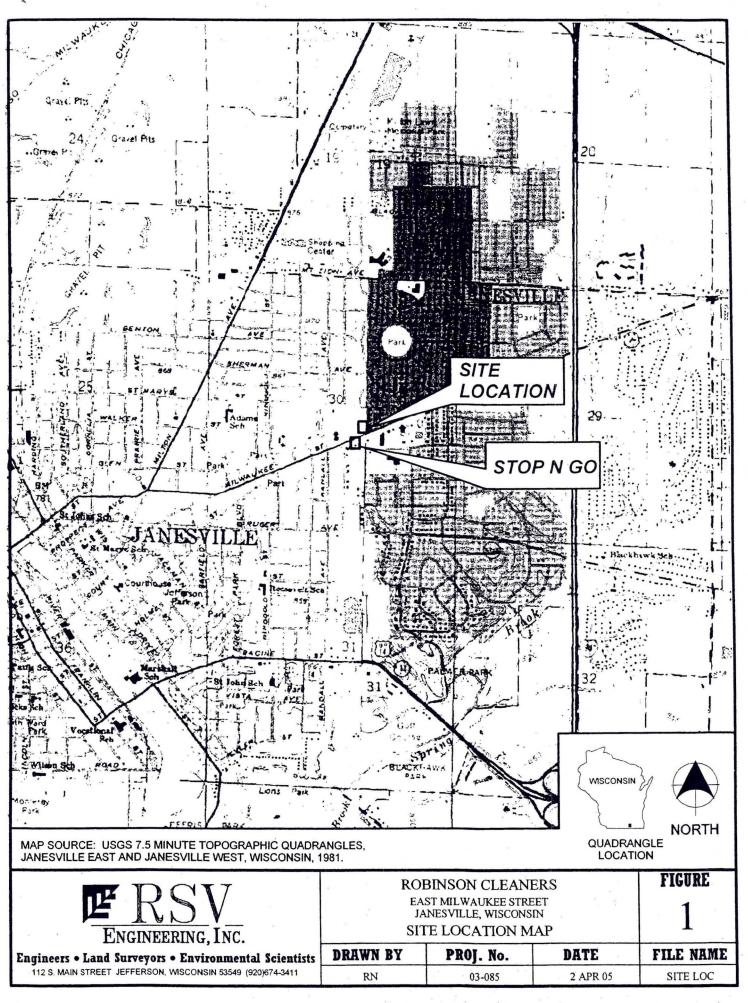
RECOMMENDATIONS

Based on the results and site conditions, no further work is needed for soil or groundwater evaluation. Further work related to minimizing vapor intrusion is necessary.

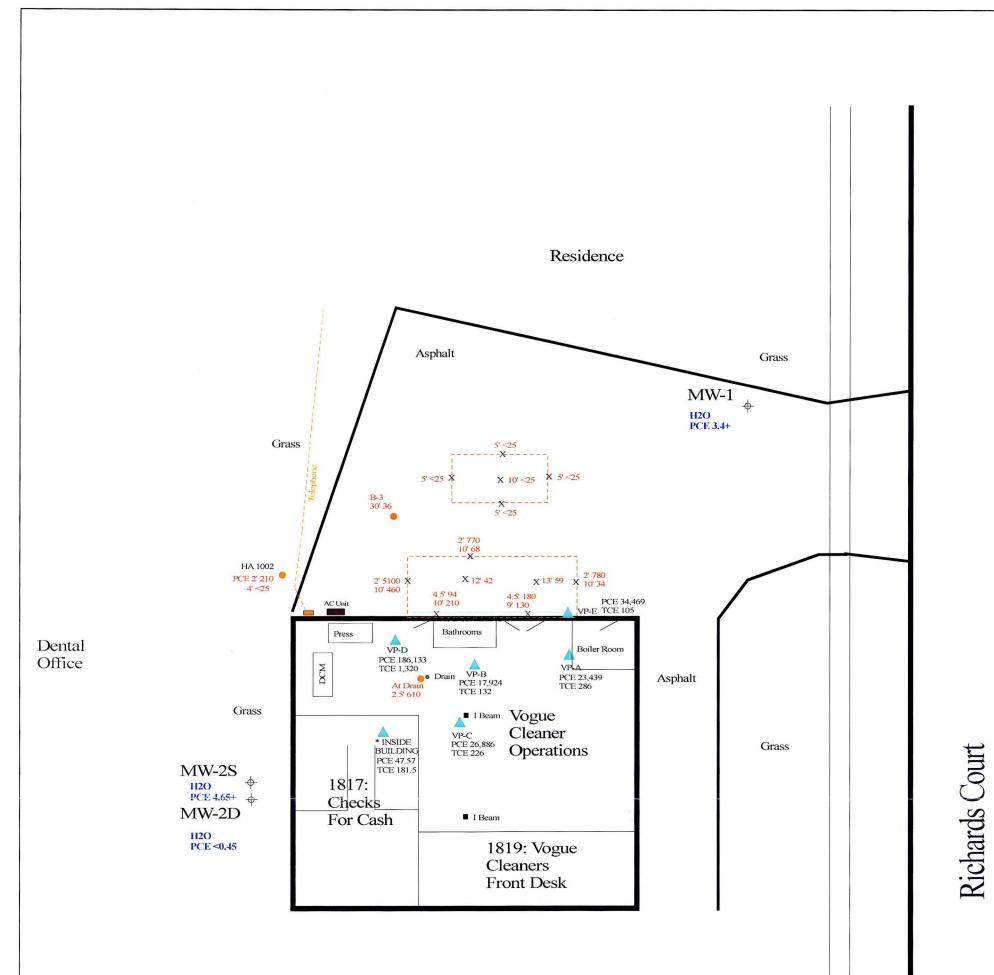
This report should be submitted to the WDNR and WDHFS for discussion purposes. The significance of the results and feedback on the report, including potential remedial options should be obtained from WDNR and WDHFS. Costs for implementation of the selected alternative should be defined and approved under the DERF process. Upon approval of the costs, the system should be installed and operated, and verification sampling performed.

Once a vapor mitigation system has been installed, is operating, and has been demonstrated to be effective, the project can be closed.

I trust this information meets your needs. If you have any questions, please give me a call.

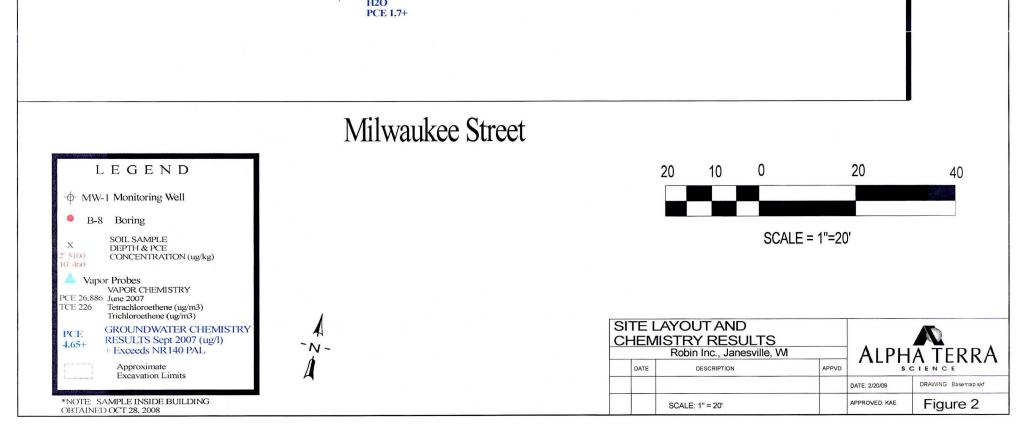

I look forward to hearing from you.

Sincerely,


Ken Ebbott, P.G.

Attachments: Figure 1: Site Location and Local Topography Figure 2: Site Layout and Sample Locations Table 1: Vapor Analytical Results – Detected VOC Parameters A: Vapor Sample Laboratory Analytical Results

Mr. Henry Nehls-Lowe, WDHFS, Madison, WI w/ Attachments
Ms. Marion Matteson, Robin, Inc., P.O. Box 348, Janesville, WI 53547 w/ Attachments
Mr. Ray Gehrig, 5110 North Conner Street, Janesville, WI 53545 w/ Attachments
Mr. Don Gallo, Reinhart Boerner, et.al., P.O. Box 2265, Waukesha, WI 53187-2265 w/ Attachments


}

1

Asphalt

↔ MW-3

TABLE 1 VAPOR ANALYTICAL RESULTS - DETECTED VOC PARAMETERS Former Robinson Cleaners, 1819 Milwaukee Ave, Janesville, WI

Sample	Sample	Sample Location	Sample Details	1	PCE			TCE	•		cis-1.2 DCE		Í ,	Vinyl Chlorid	le
ID	Date			ppbv	ug/m ³	CF*	ppbv	ug/m³	CF*	ppbv	ug/m°	CF*	ppbv	ug/m ³	_
VP-A	6/12/07	NE by Sewing Station	Sub Slab Grab	3,400	23439	6.89	52.000	286	5.5	<20	<80	4.03	<1000	<2600	
VP-B	6/12/07	N Center by Washing Machine	Sub Slab Grab	2,600	17924	6.89	24.000	132	5.5	<20	<80	4.03	<1000	<2600	\Box
VP-C	6/12/07	S Center by I-Beam	Sub Slab Grab	3,900	26886	6.89	41.000	226	5.5	<20	<80	4.03	<1000	<2600	
VP-D	6/12/07	NW by Steam Press	Sub Slab Grab	27,000	186133	6.89	240.000	1320	5.5	<20	<80	4.03	<1000	<2600	Γ
VP-E	6/12/07	Passive Vent Extraction Piping	Sub Slab Grab	5,000	34469	6.89	19.0	105	-5.5	<20	<80	4.03	<1000	<2600	
INSIDE BUILDIN	G										1		1		Г
Checks for Cash	10/28/2008	Inside Checks for Cash	Indoor Air 8 hr	6.9	47.57	6.89	33	181.50	5.5	<1.0	<4.03	4.03	<1.0	<2.6	
	WDNF	V WDHFS Commercial Subslab			210 ug/m ³ C	;		610 ug/m ³ C	;		NS			280 ug/m ³ (0
	WDNR	/ WDHFS Commercial Indoor Air			21 ug/m ³ C		1	61 ug/m ³ C		1	NS			28 ug/m ³ ()

											ч.							
Sample	Sample	Sample Location	Sample Details	•	Benzene	•) E	Ethyl-benzen	e		Toluene			Xylenes		l	TMBs ¹	
ID	Date			ppbv	ug/m ³	CF*	ppbv	ug/m³	CF*	ppbv	ug/m ³	CF*	ppbv	ug/m³	CF*	ppbv	ug/m ³	CF*
VP-A	6/12/07	NE by Sewing Station	Sub Slab Grab	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NÁ	NA NA
VP-B	6/12/07	N Center by Washing Machine	Sub Slab Grab	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VP-C	6/12/07	S Center by I-Beam	Sub Slab Grab	NA	NA	NA	NA	NA	NA	NĂ	NA	NA	NA	NA _	NA	NA	NA	NA
VP-D	6/12/07	NW by Steam Press	Sub Slab Grab	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VP-E	6/12/07	Passive Vent Extraction Piping	Sub Slab Grab	NA	NA	NA	NA	NA	NA	NA	NA I	NA	NA	NA	NA ·	NA	NA	NA
NSIDE BUILDING	;			1			<u> </u>	1										[
Checks for Cash	10/28/2008	Inside Checks for Cash	Indoor Air 8 hr	3.10	10.08	3.25	4.20	18.52	4.41	40.0	153.20	3.83	14.7	64.83	4.41	4.20	21.00	5.00
	WDNR	R / WDHFS Commercial Subslab	·········		160 ug/m ³ C	;	<u> </u>	490 ug/m ³ 0	<u> </u>	22	11 00000 ug/m ³	N	4	1 4000 ug/m ³	N		1 2600 ug/m ³	
	WDNR	/WDHFS Commercial Indoor Air			16 ug/m ³ C	•		49 ug/m ³ C	:	22	20000 ug/m ³	N	· 4	4400 ug/m ³	N		260 ug/m ³ l	V

			· "											•			• • •	
Sample	Sample	Sample Location	Sample Details		Acetone		Dichle	orodifluorome	thane	Met	hyl Ethyl Ke	tone		Hexane		· •	Ethyl Acetat	a · ·
ID	Date	· · · · · · · · · · · · · · · · · · ·		ppbv	ug/m ³	CF*	ppbv	ug/m³	CF*	ppbv	ug/m³	CF*	ppbv	ug/m³_	CF*	ppbv	ug/m ³	CF*
VP-A	6/12/07	NE by Sewing Station	Sub Slab Grab	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VP-B	6/12/07	N Center by Washing Machine	Sub Slab Grab	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VP-C	6/12/07	S Center by I-Beam	Sub Slab Grab	NÂ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VP-D	6/12/07	NW by Steam Press	Sub Slab Grab	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VP-E	6/12/07	Passive Vent Extraction Piping	Sub Slab Grab	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
INSIDE BUILDING																		
Checks for Cash	10/28/2008	Inside Checks for Cash	Indoor Air 8 hr	17	41	2.41	3.70	18.57	5.02	7.90	23.7	3.00	4.50	16.11	3.58	3.70	1.136	3.66
		/ WDHFS Commercial Subslab / WDHFS Commercial Indoor Air	•		 000000 ug/n 400000 ug/m			1 18000 ug/m ³ 18800 ug/m ³		1	200000 ug/m 20000 ug/m		1	10000 ug/m 31000 ug/m ³			NS NS	1

Sample	Sample	Sample Location	Sample Details	Те	tra hvdro fu	an		Svclo hexan	A .	· Ca	arbon Disulfi	de		Нер
ID	Date		Cumpie Octailo	ppbv	ug/m ³	CF*	ppbv	ug/m ³	CF*	ppbv	ug/m³	CF*		. pp
P-A	6/12/07	NE by Sewing Station	Sub Slab Grab	NA	NA	NA	NA	NA	NA	NÁ	NA	NA	· [N
′P-B	6/12/07	N Center by Washing Machine	Sub Slab Grab	NA	NA	NA	NA	NA	NA	NA	NA	NA	Γ	N
P-C	6/12/07	S Center by I-Beam	Sub Slab Grab	NA	NA	NA	NA	NA	NA	NA	NA	NA	i F	N
'P-D	6/12/07	NW by Steam Press	Sub Slab Grab	NA	NA	NA	NA	NA	NA	NA	NA	NA	[Ň
P-E	6/12/07	Passive Vent Extraction Piping	Sub Slab Grab	NA	NĂ	NA	NA ·	NA	NA	NA	NA	NA	Γ	N
SIDE BUILDING	3			1									Г	
Checks for Cash	10/28/2008	Inside Checks for Cash	Indoor Air 8 hr	7.70	21.8	2.83	4.50	16.5	3.66	5.7	18.07	3.17	F	3.
······		R / WDHFS Commercial Subslab / WDHFS Commercial Indoor Air			NS NS	<u> </u>		00000 ug/m 00000 ug/m			10000 ug/m ³ 1000 ug/m ³		F	N

Notes

* =68 degrees F (20 C) used in conversion factor based on estimated sample temperature (July) N = Noncarcinogen; C = Carcinogen BOLD : Exceeds Subslab Vapor Standard
BOLD and BOXED Exceeds Indoor Air Standard
NA=Not Analyzed

NS : No Standards

CF* 2.60 2.60 2.60 2.60 2.60 2.60 2.60

Page 1 of 1

Wisconsin State Laboratory of Hygiene 2601 Agriculture Drive, PO Box 7996 Madison, WI 53707-7996 (800)442-4618 · FAX (608)224-6213 http://www.slh.wisc.edu

Laboratory Report

D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

7305879

2601 AGRICULTURAL DRIVE

320225

11/07/2008 08:04:00

11/26/2008

Environmental Health Division NELAP LAB ID: E37658 EPA LAB WI00007 WDNR LAB ID: 113133790

Organic Chemistry

WI DATCP ID: 105-415

Bill To

ID#:

Point/Well:

Project No:

Date Received:

Date Reported:

Sample Reason:

Billing ID:

Customer ID:

TRACKING 4920

MADISON WI 53718

Waterbody/Outfall Id:

Account #: LH034

9161545 Supplement to test report#:

> WSLH Sample: OT001938

KEN EBBOTT

1237 PILGRIM RD PLYMOUTH, WI 53073

Field #: R1 Collection Start: Collection End: Collected By: **KYLE KUTCHER** County:

Sample Source:

Sample Depth:

Sample Information:

Sample Location: 1817 MILWAUKEE ST NEXT TO OLD ROBIN DRYCLEANER Sample Description: **8 HR INSIDECHECKS FOR CASH**

Analyses and Results:

	Comment E OT001938.MM1	×		*	
Analysis Method	Result	Units	LOD	LOQ	Report Limit
PROPENE	*D <1.0	PPB V	0.10	0.33	
DICHLORODIFLUOROMETHANE	3.7	PPB V	0.10	0.33	
CHLOROMETHANE	*D <1.0	PPB V	0.10	0.33	
1,2-DICHLOROTETRAFLUOROETHANE	*D <1.0	PPB V	0.10	0.33	
VINYL CHLORIDE	*D <1.0	PPB V	0.10	0.33	
1,3-BUTADIENE	*D <1.0	PPB V	0.10	0.33	
BROMOMETHANE	*D <1.0	PPB V	0.10	0.33	
CHLOROETHANE	*D <1.0	PPB V	0.10	0.33	·
ACROLEIN	*ES *D<5.0	PPB V	0.50	1.65	
ACETONE	*QU 17.	PPB V	0.50	1.65	
HALOCARBON 11	*D <1.0	PPB V	0.10	0.33	
1,1-DICHLOROETHENE	*D <1.0	PPB V	0.10	0.33	
METHYLENE CHLORIDE	*D <1.0	PPB V	0.10	0.33	
CARBON DISULFIDE	5.7	PPB V	0.10	0.33	
1,1,2-TRICHLOROTRIFLUOROETHANE	*D <1.0	PPB V	0.10	0.33	× 8.

Page 1 of 4

Wisconsin State Laboratory of Hygiene 2601 Agriculture Drive, PO Box 7996 Madison, WI 53707-7996 (800)442-4618 · FAX (608)224-6213 http://www.slh.wisc.edu

Laboratory Report

D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division Organic Chemistry WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007

Supplement to test report#:

WSLH Sample:

9161545

OT001938

WI DATCP ID: 105-415

Analysis Method Result Units LOD Report Limit LOQ TRANS-1,2-DICHLOROETHYLENE *D <1.0 PPB V 0.33 0.10 0.33 1,1-DICHLOROETHANE *D <1.0 PPB V 0.10 TERT-BUTYL METHYL ETHER *D <1.0 0.10 0.33 PPB V VINYL ACETATE PPB V 0.33 *D <1.0 0.10 METHYL ETHYL KETONE 0.33 7.9 PPB V 0.10 **CIS-1,2-DICHLOROETHYLENE** *D <1.0 PPB V 0.10 0.33 HEXANE 4.5 PPB V 0.10 0.33 CHLOROFORM *D <1.0 0.33 PPB V 0.10 ETHYL ACETATE 3.7 PPB V 0.10 0.33 **TETRAHYDROFURAN** 7.7 PPB V 0.50 1.65 0.33 1;2-DICHLOROETHANE *D <1.0 PPB V 0.10 1,1,1-TRICHLOROETHANE *D <1.0 PPB V 0.10 0.33 BENZENE 3.1 PPB V 0.10 0.33 CARBON TETRACHLORIDE *D <1.0 PPB V 0.10 0.33 CYCLOHEXANE 4.5 PPB V 0.10 0.33 **1.2-DICHLOROPROPANE** 0.33 *D <1.0 PPB V 0.10 BROMODICHLOROMETHANE *D <1.0 PPB V 0.10 0.33 TRICHLOROETHYLENE 0.33 33. PPB V 0.10 1.4-DIOXANE *D <5.0 1.65 PPB V 0.5 HEPTANE 3.7 PPB V 0.33 0.10 **CIS-1,3-DICHLOROPROPENE** *D <1.0 PPB V 0.10 0.33 METHYL ISOBUTYL KETONE *D <5.0 PPB V 0.50 1.65 **TRANS-1,3-DICHLOROPROPENE** *D <1.0 PPB V 0.10 0.33 1,1,2-TRICHLOROETHANE *D <1.0 PPB V 0.10 0.33 TOLUENE PPB V 0.10 0.33 40. METHYL N-BUTYL KETONE *D <5.0 PPB V 0.50 1.65 DIBROMOCHLOROMETHANE *D <1.0 PPB V 0.10 0.33 **1.2-DIBROMOETHANE** *D <1.0 0.33 PPB V 0.10 **TETRACHLOROETHYLENE** 6.9 PPB V 0.10 0.33 CHLOROBENZENE *D <1.0 PPB V 0.10 0.33 ETHYLBENZENE 4.2 0.33 PPB V 0.10 M/P-XYLENE 10. PPB V 0.20 0.66 BROMOFORM *D <1.0 0.10 0.33 PPB V STYRENE *D <1.0 PPB V 0.10 0.33 1,1,2,2-TETRACHLOROETHANE *D <1.0 PPB V 0.10 0.33

Wisconsin State Laboratory of Hygiene 2601 Agriculture Drive, PO Box 7996 Madison, WI 53707-7996 (800)442-4618 • FAX (608)224-6213 http://www.slh.wisc.edu

Laboratory Report

D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Organic Chemistry

WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007 WI DATCP ID: 105-415

9161545

WSLH Sample:

Supplement to test report#:

Environmental Health Division

				,	
Analysis Method	Result	Units	LOD	LOQ	Report Limit
O-XYLENE	4.7	PPB V	0.10	0.33	
1-ETHYL-4-METHYL BENZENE	*D <1.0	PPB V	0.10	0.33	
1,3,5-TRIMETHYL BENZENE	*D <1.0	PPB V	0.10	0.33	
1,2,4-TRIMETHYL BENZENE	4.2	PPB V	0.10	0.33	
CHLOROMETHYL BENZENE (ALPHA)	*D <1.0	PPB V	0.10	0.33	
1,3-DICHLOROBENZENE	*D <1.0	PPB V	0.10	0.33	a
1,4-DICHLOROBENZENE	*D <1.0	PPB V	0.10	0.33	a .
1,2-DICHLOROBENZENE	*D <1.0	PPB V	0.10	0.33	
1,2,4-TRICHLOROBENZENE	*D <1.0	PPB V	0.10	0.33	
HEXACHLORO-1,3-BUTADIENE	*D <1.0	PPB V	0.10	0.33	

OT001938

WISCONSIN STATE LABORATORY OF HYGIENE SAMPLE OT001938 CONTAINS THE FOLLOWING FLAGS.

UPPER QC LIMIT FOR CALIBRATION CHECK EXCEEDED - *QU. COMPOUND QUANTITATED WITH EXPIRED STANDARD - *ES. LOD NOT ACHIEVABLE DUE TO DILUTION - *D. THE SYSTEM BLANK CONTAINED THE FOLLOWING COMPOUNDS; ACETONE

ACROLEIN

VINYL ACETATE

IF YOU HAVE ANY QUESTIONS, CONTACT STEVE GEIS AT (608) 224-6269.

Analysis Date 11/13/2008	Lab Comment	e 1	14 E	· · · ·	
Analysis Method	Result	Units	LOD	LOQ	Report Limit
TOXIC ORGANIC COMPOUNDS IN AMBIENT AIR T015 - PREP	COMPLETE	*			1

Wisconsin State Laboratory of Hygiene 2601 Agriculture Drive, PO Box 7996 Madison, WI 53707-7996 (800)442-4618 • FAX (608)224-6213 http://www.slh.wisc.edu

Laboratory Report

D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007

Organic Chemistry

WI DATCP ID: 105-415

Supplement to test report#:

Environmental Health Division

WSLH Sample: OT001938

9161545

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes see http://www.slh.wisc.edu/nelap/

List of Abbreviations: LOD = Level of detection

LOQ = Level of quantification

ND = None detected. Results are less than the LOD

Responsible Party:

If there are questions about this report, please contact Steve Geis at 608-224-6269.

The results in this report apply only to the sample specifically listed above. This report is not to be reproduced except in full.

State of Wisconsin Department of Natural Resources

1.38

Organic Test Request Form 4800-016 (R 4/06) Page 1 of 2

), License, Permit or	STORET Numbe	Point or Outfall Number	Field Number County No. Program (Code Region
Vaterbody Number	Sample Addre	ss or Location		
	1.877	Millioute ST	next to old Robin dry cleans.	-
ample Point Descrip	tion / Sampling I	Device		
	Send Rep	port To	Enforcement? Yes No (If yes, include chain o	of custody form
NR User ID	Date Results	Needed (mm/dd/yyyy)	Sample Type (select one)	i odotody tomit.
	·		SU Surface Water	d Wastewater)
Name (Last, First)	· · ·		NP Storm Water	ted Wastewater
EObort	Ken		SE Sediment MW Monitoring W	ell
ddress		nan and an	SL Sludge	· · ·
1237	P 19 man	Or Albert Star Star	LE Leachate SO Soil	or Lab Use:
City		State ZIP		Priority
R 15 Minus			E Public Drinking Entry Point OW Waste	
LH034	Collected By		W Public Drinking Well/Source PO Private Well	
	and they be		D Public Drinking Distribution X Non-Potable W	ell
akes Grant or Proje	ct Number	Telephone Number	Sample Reason (Drinking Water - select one)	
			N New Well	(qu wollo
Begin or Grab Date	(mm/dd/yyyy)	Begin Time (24-hr clock)	L I Investigation D Compliance	
			W Raw water (drinking)	·
nd Date - For Componly (mm/dd/yyyy)	posite Samples	End Time (24-hr clock) - For Composite Samples Only	Depth of Sample (feet or meters)	
			Is Sample Disinfected? Yes No If Yes, how?	
OCs Water / Soll (check one of the	following)	Additional parameters	
Quantification (E				
-1		A Method 524.2)	407444000017601761761761761761761761761761761761761761	STON DISCLOSURATIONS.
			PIDreading	
Priority Pollutant S				
Priority Pollutant		и.	(2187	2)
- A	DasenneullainAu	10	(2107	9 · ·
CBs		*		
	UA=R	7015		· · · ·
		7.0.0		
etroleum Product				
Petroleum Finge	rprint			
PAH's (HPLC)				
esticides	· . · . ·			1
List in additional	parameters section	on to the right	승규는 말 같은 책 드리를 알려.	· · ·
others		· · · ·		
Algal Toxins				•
Total Organic Ca	arbon			
Dissolved Organ	ic Carbon (Field	Filtered? Yes No)		
Glycols			(1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	
oxicity Characteri	stic Leaching P	rocedure (TCLP)		
Check one or more	of the following)		For Lab Use: Date Received	Sample
VOCs - TCLP			Temp °C	
Ignitability (Haz	Waste Char.)		Analyst	
				= 11/07

