January 26, 2018

Wisconsin Department of Natural Resources

Attn: Mr. Ralph Smith 101 S. Webster Street PO Box 7921 Madison, WI 53707-7921

Subject:

Sub Slab Vapor Investigation Report Bayside Forestry Equipment 9222 E County Road L Solon Springs, WI BRRTS #03-16-000971 PECFA #54873-8210-22

Dear Mr. Smith:

Enclosed is the Sub Slab Vapor Investigation Report for the above-mentioned site. REI identified significant petroleum related soil contamination and minimal groundwater impact at this site. Subsequent sub-slab vapor sampling did not identify any vapor analytical concentrations exceeding the published sub-slab vapor risk screening levels. REI is not recommending any further investigation into vapor migration for this investigation.

Please call me with questions or comments toll free at 877-734-7745 or contact me electronically at <u>dlarsen@reiengineering.com</u>.

Sincerely, REI Engineering, Inc.

our

David N. Larsen, P.G. Hydrogeologist/Project Manager

Enclosure

CC: Bayside Forestry Equipment, Attn: Mr. Brad Keseluk, 9222 E County Road L, Solon Springs, WI 54873

Responsive. Efficient. Innovative.

4080 N. 20th Avenue Wausau, WI 54401 715-675-9784 REIengineering.com p:\6100-6199\6198 - bayside forestry\reports\vapor report\6198ssvial2.docx

SUB SLAB VAPOR INVESTIGATION REPORT

BAYSIDE FORESTRY EQUIPMENT SOLON SPRINGS, WISCONSIN

> WDNR BRRTS #03-16-000971 PECFA #54873-8210-22 REI PROJECT #6198

COMPREHENSIVE SERVICES WITH PRACTICAL SOLUTIONS

SUB SLAB VAPOR INVESTIGATION REPORT

BAYSIDE FORESTRY EQUIPMENT 9222 E COUNTY ROAD L SOLON SPRINGS, WI 54873

> BRRTS #03-16-000971 PECFA #54873-8210-22

> > **REI #6198**

PREPARED FOR:

Mr. Brad Keseluk 9222 E County Road L Solon Springs, WI 54873

JANUARY 2018

SUB SLAB VAPOR INVESTIGATION REPORT

BAYSIDE FORESTRY EQUIPMENT 9222 E COUNTY ROAD L SOLON SPRINGS, WI 54873

BRRTS #03-16-000971 **PECFA #54873-8210-22**

REI #6198

The recommendations contained in this report are based on the information obtained from our study of the site and were arrived at in accordance with accepted hydrogeologic and engineering practices at this time and location.

"I, David N. Larsen, hereby certify that I am a registered Professional Geologist in the State of Wisconsin as defined in the Wisconsin Statutes Chapter 470.01. I am also a hydrogeologist as that term is defined in s. NR 712.03 (3), Wis. Adm. Code, and that, to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code."

"I, Brian J. Bailey, hereby certify that I am a scientist as that term is defined in s. NR 712.03 (3), Wis. Adm. Code, and that, to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code."

Environmental Scientist

2

1-26-/8 Date

TABLE OF CONTENTS

- 1.0 Introduction
 - 1.1 Purpose of Report
 - 1.2 Site Location
- 2.0 Sub-Slab Vapor Intrusion Sampling
 - 2.1 Vapor Intrusion Screening Analysis
 - 2.2 Sub-Slab Vapor Probe Installation and Sampling
 - 2.3 Sub-Slab Vapor Probe Installation
 - 2.4 Sub-Slab Vapor Probe Purging and Leak Detection
 - 2.5 Sub-Slab Vapor Probe Analytical Results
- 3.0 Conclusion and Recommendations

LIST OF TABLES

Table 1Sub Slab Vapor Analytical Results

LIST OF FIGURES

- Figure 1 Site Vicinity Map
- Figure 2 Site Map

LIST OF APPENDICES

Appendix A Vapor Laboratory Analytical Reports

SUB SLAB VAPOR INVESTIGATION REPORT

BAYSIDE FORESTRY EQUIPMENT 9222 E COUNTY ROAD L SOLON SPRINGS, WI 54873

BRRTS #03-16-000971 PECFA #54873-8210-22

REI #6198

1.0 INTRODUCTION

1.1 Purpose of Report

The Bayside Forestry Equipment site had historically been used as an automotive repair and towing operation, a retail fuel facility, Bayside Forestry Equipment and is currently used as a custom dock building facility. The Wisconsin Department of Natural Resources (WDNR) was notified of a petroleum release at the Bayside Forestry Equipment facility on November 11, 1995. This report presents the results of the approved sub-slab vapor sampling scope of services.

1.2 Site Location

The Bayside Forestry Equipment site is located in the NW ¹/₄ of the NW ¹/₄ of Section 25, Township 46 North, Range 12 West, in the Town of Bennett, Douglas County, Wisconsin (Figure 1). The site address is 9222 E County Road L, Solon Springs, Wisconsin 54873. Wisconsin Transverse Mercator (WTM) coordinates are 380319, 665160. Property boundaries for the subject property and immediate surrounding properties are included in Figure 2.

2.0 SUB-SLAB VAPOR INTRUSION SAMPLING

2.1 Vapor Intrusion Screening Analysis

Vapor intrusion screening is used to determine the potential for vapor migration from a contaminated property. Vapor intrusion of petroleum compounds most often occurs when free phase petroleum compounds are located near building foundations, where

petroleum impacted groundwater has entered a building, or when petroleum contaminated groundwater is in contact with a building foundation.

Vapor intrusion from petroleum releases tend to occur near the source of the petroleum release and are often detected by smelling petroleum odors in the building. When petroleum odors are not detected, vapor intrusion concerns can be dismissed if there is more than five (5) feet of clean unsaturated and aerated (greater than 5% oxygen content) soil separating the residual contamination from the building.

An investigation into the potential for vapor migration should be completed in situations when there is not more than five (5) feet of clean unsaturated and aerated (greater than 5% oxygen content) soil separating the residual contamination from the building or any of the following conditions:

• Free phase product that has the potential for off gassing vapors underlies a building or is within 30 feet, horizontally or vertically of a building foundation.

Free product has been observed in MW2, located approximately forty (40) feet from the on-site building.

• Petroleum contaminated soils with the potential for off gassing vapors are within 5 feet or less of a building foundation.

No reported soil contamination, with the potential to off-gas vapors was present in the samples collected adjacent to the building.

• Benzene concentrations in groundwater underlying a building is >1,000 ppb and there is less than 20 feet of unsaturated soil between the groundwater and the building.

Based on the November 28, 2017 sample results, no benzene concentrations exceeding 1,000 ppb were reported in wells near the building. Depth to groundwater near the building is less than three(3) feet bls.

• Groundwater contaminated with petroleum product above Wisconsin's groundwater preventive action limit (PAL) is entering a building or in contact with a buildings foundation or is in water intercepted by the buildings foundation drainage system, including sumps.

The building was constructed as a slab on grade structure. No known petroleum impacted groundwater is entering the building.

• Petroleum vapors are present that may migrate from the petroleum source and move through preferential pathways (utility lines, fractured bedrock, etc.) into a building.

While preferential pathways do exist, none are located in the area of known soil contamination.

2.2 Sub-Slab Vapor Probe Installation and Sampling

A total of two (2) sub slab vapor points were installed through the slab on grade concrete floor of the building. Sub-slab vapor ports were advanced though the concrete floor near areas of greatest concern. Sample locations are depicted in Figure 2.

2.3 Sub-Slab Vapor Probe Installation

REI used a rotary hammer drill with a 3/8" bit to drill through the concrete slab and a ³/4" bit to a depth of approximately 2" to set the probe. REI removed the concrete cuttings from the outer and inner holes with a small portable vacuum cleaner followed by a towel moistened with distilled water. REI placed the sub-slab soil vapor probe in the hole so that the top of the probe is flush with the top of the floor. REI placed concrete grout into the annular space between the probe and the outer hole. The cement was allowed to dry prior to sampling.

2.4 Sub-Slab Vapor Probe Purging and Leak Detection

REI completed leak testing prior to sample collection. Tracer gas (helium) shrouds were placed over each sub-slab vapor sample location prior to sampling to ensure that ambient air was not being pulled into the canisters during sampling. This was accomplished by placing a clean, small plastic shroud over each probe location. Prior to purging or sampling activities, helium tracer gas was released via a small diameter tube, placed through the side of the shroud, into the open space beneath the shroud. The sub-slab vapor tube, fitted with an air-tight valve, extended up into the open space beneath the shroud. The valve was then connected to the sampling tube and canister

(both outside of the shroud). A sample of the air inside the shroud was measured through a second port using a field meter calibrated to detect helium to determine the concentration of helium within the enclosure beneath the shroud.

REI purged one to two liters of sub-slab soil vapor from each probe assembly prior to sampling the sub slab vapor. Quality control leak detection included a combination of both vacuum testing and introduction of helium as a tracer to ensure the collected subslab vapor sample was representative of the sub-slab soil gas. Samples were collected using 6-Liter Summa[™] canister and a helium shroud. Four (4) volumes of air were removed from the tubing and the purge air monitored for the presence of helium using an electronic helium detector. Once the line was purged, and the helium detector documented the seal is adequate, the Summa Canister was connected to the sample line and allowed to fill through the flow restrictor. During sample collection, REI checked each Summa Canister periodically to ensure that the canister vacuum had not reached zero. Canisters that reach zero vacuum should not be analyzed and a new sample should be collected at these locations.

Sub-slab sampling points were installed to collect soil gas immediately below the slab at each of the two (2) identified locations. Sub-slab gas samples were collected using a 6-Liter SummaTM canister fitted with a flow orifice pre-calibrated to collect a 6-Liter sample over a 30-minute period. Once the 30-minute sampling period was completed, the canister was boxed and shipped to the laboratory for analysis. Following the removal of the 6-Liter SummaTM canister from the sub slab vapor collection sampling train, REI personnel could also collect soil gas data specific to carbon monoxide (CO), carbon dioxide (CO₂), oxygen (O₂) and methane (CH₄) and lower explosive limit (LEL).

2.5 Sub-Slab Vapor Probe Analytical Results

The two (2) sub slab vapor samples were submitted to Pace Analytical, Minneapolis, Minnesota, for TO-15 analysis. The vapor analytical results and field screening data are summarized in Table 1. The complete laboratory analytical reports are included as Appendix A. Analytical results along with the field screening data document that there are no elevated petroleum concentrations present beneath the concrete slab.

5.0 CONCLUSION AND RECOMMENDATIONS

Based on the analytical results of the two (2) sub-slab vapor analytical ports, REI is not recommending any further investigation into vapor migration into the existing building. REI is recommending additional groundwater sampling be completed at this project and the completion of an approved remedial action in 2018.

Table 1 Sub Slab Vapor Analytical Results Vapor Risk Screening Levels Bayside Forestry Solon Springs, WI

Small Commercial Building		SS-1	SS-2
Attenuation Factor 0.03		11/28	/2017
Chemical (µg/m³)	SS-VRSL		
Acetone		118	94
Benzene	530	2.8	40.5
1,3-Butadiene		< 0.29	22.2
2-Butanone (MEK)		< 16.4	29.1
Carbon disulfide		4.3	10.7
Chloromethane	13,000	< 0.19	0.42^{J}
Cyclohexane		136	2.7
Dichlorodifluoromethane	15,000	2.2	< 0.66
Ethylbenzene	1,600	40.6	10.9
4-Ethyltoluene		110	4.8
n-Heptane		138	8.6
n-Hexane		28.1	12.9
Propylene		< 0.22	91.5
Methylene Chloride	87,000	4.9	9.7
Tetrachloroethene	6,000	< 0.40	10.6
Toluene	730,000	19.4	44.2
1,2,4-Trimethylbenzene	8,700	903	12.3
1,3,5-Trimethylbenzene	8,700	360	3.6
Vinyl Chloride	930	< 0.18	< 0.19
Xylene (mix)	15,000	2,163	44

Field Parameters		SS-1	SS-2
	Background	Re	sult
Carbon Monoxide (CO)	0.0%	1.0%	0.0%
Hydrogen Sulfide (H_2S)	0.0	0.0	0.0
Oxygen (O ₂)	20.9%	20.3%	20.1%
Carbon Dioxide (CO ₂)	0.0%	0.0%	0.0%
PID (ppm)	0.0	0.0	0.0
Methane (CH_4)	0.0%	0.0%	0.0%
Lower Explosive Limit (LEL)	0.0%	0.0%	0.0%

Notes:

Sub-Slab Vapor Risk Screening Levels Based on November 2017 National Screening Level Summary Table AF - Attenuation Factor

Bold Exceeds Sub-Slab Vapor Risk Screening Level

^J - Estimated concentration at or above the Limit of Detection and below the Limit of Quantification

DRAWING FILE: P:/6100-6199/6198 - BAYSIDE FORESTRY/DW6/6198 SITE. DW6 LAYOUT: 3ITE PLOTTED: JAN 26, 2018 - 8913

Appendix A

VAPOR LABORATORY ANALYTICAL RESULTS

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

December 14, 2017

David Larsen REI Engineering 4080 N. 20th Ave Wausau, WI 54401

RE: Project: 6198 Bayside Folestry Pace Project No.: 10413086

Dear David Larsen:

Enclosed are the analytical results for sample(s) received by the laboratory on December 04, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mega Mc Cabe

Megan McCabe megan.mccabe@pacelabs.com (612)607-1700 Project Manager

Enclosures

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: 6198 Bayside Folestry Pace Project No.: 10413086

Minnesota Certification IDs

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #:MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Maryland Certification #: 322 Massachusetts Certification #: M-MN064

Michigan Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: MN00064 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon NwTPH Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DW Certification #: 9952 C West Virginia DEP Certification #: 382 Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: 6198 Bayside Folestry

Pace Project No.: 10413086

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10413086001	SS-1	Air	11/28/17 06:17	12/04/17 12:40
10413086002	SS-2	Air	11/28/17 06:23	12/04/17 12:40

SAMPLE ANALYTE COUNT

Project: 6198 Bayside Folestry Pace Project No.: 10413086

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10413086001	SS-1	TO-15	AFV, NCK	61	PASI-M
10413086002	SS-2	TO-15	AFV	61	PASI-M

ANALYTICAL RESULTS

Project: 6198 Bayside Folestry

Pace Project No.: 10413086

Sample: SS-1	Lab ID:	10413086001	Collected	: 11/28/17	7 06:17	Received: 12	/04/17 12:40 Ma	atrix: Air	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Acetone	118	ug/m3	3.4	2.1	1.39		12/13/17 05:27	67-64-1	
Benzene	2.8	ug/m3	0.45	0.21	1.39		12/13/17 05:27	71-43-2	
Benzyl chloride	<0.33	ug/m3	3.7	0.33	1.39		12/13/17 05:27	100-44-7	
Bromodichloromethane	<0.49	ug/m3	1.9	0.49	1.39		12/13/17 05:27	75-27-4	
Bromoform	<0.96	ug/m3	2.9	0.96	1.39		12/13/17 05:27	75-25-2	
Bromomethane	<0.29	ug/m3	1.1	0.29	1.39		12/13/17 05:27	74-83-9	
1,3-Butadiene	<0.29	ug/m3	0.63	0.29	1.39		12/13/17 05:27	106-99-0	
2-Butanone (MEK)	16.4	ug/m3	4.2	0.28	1.39		12/13/17 05:27	78-93-3	
Carbon disulfide	4.3	ug/m3	0.88	0.25	1.39		12/13/17 05:27	75-15-0	
Carbon tetrachloride	0.48J	ug/m3	0.89	0.44	1.39		12/13/17 05:27	56-23-5	
Chlorobenzene	<0.25	ug/m3	1.3	0.25	1.39		12/13/17 05:27	108-90-7	
Chloroethane	<0.28	ug/m3	0.75	0.28	1.39		12/13/17 05:27	75-00-3	
Chloroform	<0.32	ug/m3	0.69	0.32	1.39		12/13/17 05:27	67-66-3	
Chloromethane	<0.19	ug/m3	0.58	0.19	1.39		12/13/17 05:27	74-87-3	
Cyclohexane	136	ug/m3	0.97	0.32	1.39		12/13/17 05:27	110-82-7	
Dibromochloromethane	<0.61	ug/m3	2.4	0.61	1.39		12/13/17 05:27	124-48-1	
1,2-Dibromoethane (EDB)	<0.46	ug/m3	2.2	0.46	1.39		12/13/17 05:27	106-93-4	
1,2-Dichlorobenzene	<0.45	ug/m3	1.7	0.45	1.39		12/13/17 05:27	95-50-1	
1,3-Dichlorobenzene	<0.65	ug/m3	1.7	0.65	1.39		12/13/17 05:27	541-73-1	
1.4-Dichlorobenzene	<0.30	ua/m3	4.2	0.30	1.39		12/13/17 05:27	106-46-7	
Dichlorodifluoromethane	2.2	ug/m3	1.4	0.58	1.39		12/13/17 05:27	75-71-8	
1.1-Dichloroethane	<0.29	ua/m3	1.1	0.29	1.39		12/13/17 05:27	75-34-3	
1,2-Dichloroethane	<0.28	ug/m3	0.57	0.28	1.39		12/13/17 05:27	107-06-2	
1.1-Dichloroethene	<0.33	ua/m3	1.1	0.33	1.39		12/13/17 05:27	75-35-4	
cis-1.2-Dichloroethene	<0.47	ua/m3	1.1	0.47	1.39		12/13/17 05:27	156-59-2	
trans-1.2-Dichloroethene	<0.41	ua/m3	1.1	0.41	1.39		12/13/17 05:27	156-60-5	
1.2-Dichloropropane	<0.43	ua/m3	1.3	0.43	1.39		12/13/17 05:27	78-87-5	
cis-1,3-Dichloropropene	<0.34	ug/m3	1.3	0.34	1.39		12/13/17 05:27	10061-01-5	
trans-1,3-Dichloropropene	<0.58	ug/m3	1.3	0.58	1.39		12/13/17 05:27	10061-02-6	
Dichlorotetrafluoroethane	<0.61	ug/m3	2.0	0.61	1.39		12/13/17 05:27	76-14-2	
Ethanol	44.4	ug/m3	1.3	0.65	1.39		12/13/17 05:27	64-17-5	
Ethyl acetate	<0.27	ug/m3	1.0	0.27	1.39		12/13/17 05:27	141-78-6	
Ethylbenzene	40.6	ug/m3	1.2	0.24	1.39		12/13/17 05:27	100-41-4	
4-Ethyltoluene	110	ug/m3	1.4	0.30	1.39		12/13/17 05:27	622-96-8	
n-Heptane	138	ug/m3	1.2	0.29	1.39		12/13/17 05:27	142-82-5	
Hexachloro-1,3-butadiene	<1.2	ug/m3	3.0	1.2	1.39		12/13/17 05:27	87-68-3	
n-Hexane	28.1	ug/m3	1.0	0.46	1.39		12/13/17 05:27	110-54-3	
2-Hexanone	4.4J	ug/m3	5.8	0.85	1.39		12/13/17 05:27	591-78-6	
Methylene Chloride	4.9	ug/m3	4.9	2.1	1.39		12/13/17 05:27	75-09-2	
4-Methyl-2-pentanone (MIBK)	<0.49	ug/m3	5.8	0.49	1.39		12/13/17 05:27	108-10-1	
Methyl-tert-butyl ether	<0.93	ug/m3	5.1	0.93	1.39		12/13/17 05:27	1634-04-4	
Naphthalene	4.2	ug/m3	3.7	0.83	1.39		12/13/17 05:27	91-20-3	
2-Propanol	19.9	ug/m3	3.5	1.7	1.39		12/13/17 05:27	67-63-0	
Propylene	<0.22	ug/m3	0.49	0.22	1.39		12/13/17 05:27	115-07-1	
Styrene	2.1	ug/m3	1.2	0.23	1.39		12/13/17 05:27	100-42-5	
1,1,2,2-Tetrachloroethane	<0.40	ug/m3	0.97	0.40	1.39		12/13/17 05:27	79-34-5	

ANALYTICAL RESULTS

Project: 6198 Bayside Folestry

Pace Project No.: 10413086

Sample: SS-1	Lab ID:	10413086001	Collected	d: 11/28/1	7 06:17	Received: 12	2/04/17 12:40 Ma	atrix: Air	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Tetrachloroethene	<0.40	ug/m3	0.96	0.40	1.39		12/13/17 05:27	127-18-4	
Tetrahydrofuran	<0.38	ug/m3	0.83	0.38	1.39		12/13/17 05:27	109-99-9	
Toluene	19.4	ug/m3	1.1	0.22	1.39		12/13/17 05:27	108-88-3	
1,2,4-Trichlorobenzene	<1.3	ug/m3	5.2	1.3	1.39		12/13/17 05:27	120-82-1	
1,1,1-Trichloroethane	<0.48	ug/m3	1.5	0.48	1.39		12/13/17 05:27	71-55-6	
1,1,2-Trichloroethane	<0.31	ug/m3	0.76	0.31	1.39		12/13/17 05:27	79-00-5	
Trichloroethene	<0.37	ug/m3	0.76	0.37	1.39		12/13/17 05:27	79-01-6	
Trichlorofluoromethane	1.3J	ug/m3	1.6	0.58	1.39		12/13/17 05:27	75-69-4	
1,1,2-Trichlorotrifluoroethane	0.56J	ug/m3	2.2	0.51	1.39		12/13/17 05:27	76-13-1	
1,2,4-Trimethylbenzene	903	ug/m3	27.8	4.8	27.8		12/13/17 14:43	95-63-6	
1,3,5-Trimethylbenzene	360	ug/m3	27.8	11.5	27.8		12/13/17 14:43	108-67-8	
Vinyl acetate	<0.23	ug/m3	1.0	0.23	1.39		12/13/17 05:27	108-05-4	
Vinyl chloride	<0.18	ug/m3	0.36	0.18	1.39		12/13/17 05:27	75-01-4	
m&p-Xylene	1520	ug/m3	49.2	9.7	27.8		12/13/17 14:43	179601-23-1	
o-Xylene	643	ug/m3	24.5	10.3	27.8		12/13/17 14:43	95-47-6	
Sample: SS-2	I ab ID:	10413086002	Collecter	· 11/28/1 ⁻	7 06:23	Received: 12	2/04/17 12·40 Ma	atrix [.] Air	
	Lub ID.	1041000002	Concore	. 11/20/1	1 00.20	10001000. 12	/04/17 12.40 Mic		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Acetone	94.0	ug/m3	3.6	2.2	1.49		12/13/17 13:59	67-64-1	
Benzene	40.5	ug/m3	0.48	0.22	1.49		12/13/17 13:59	71-43-2	
Benzyl chloride	<0.35	ug/m3	3.9	0.35	1.49		12/13/17 13:59	100-44-7	
Bromodichloromethane	<0.53	ug/m3	2.0	0.53	1.49		12/13/17 13:59	75-27-4	
Bromoform	<1.0	ug/m3	3.1	1.0	1.49		12/13/17 13:59	75-25-2	
Bromomethane	<0.31	ug/m3	1.2	0.31	1.49		12/13/17 13:59	74-83-9	
1,3-Butadiene	22.2	ug/m3	0.67	0.31	1.49		12/13/17 13:59	106-99-0	
2-Butanone (MEK)	29.1	ug/m3	4.5	0.30	1.49		12/13/17 13:59	78-93-3	
Carbon disulfide	10.7	ug/m3	0.94	0.27	1.49		12/13/17 13:59	75-15-0	
Carbon tetrachloride	<0.47	ug/m3	0.95	0.47	1.49		12/13/17 13:59	56-23-5	
Chlorobenzene	<0.27	ug/m3	1.4	0.27	1.49		12/13/17 13:59	108-90-7	
Chloroethane	<0.30	ug/m3	0.80	0.30	1.49		12/13/17 13:59	75-00-3	
Chloroform	<0.34	ug/m3	0.74	0.34	1.49		12/13/17 13:59	67-66-3	
Chloromethane	0.42J	ug/m3	0.63	0.20	1.49		12/13/17 13:59	74-87-3	
Cyclohexane	2.7	ug/m3	1.0	0.34	1.49		12/13/17 13:59	110-82-7	
Dibromochloromethane	<0.66	ug/m3	2.6	0.66	1.49		12/13/17 13:59	124-48-1	
1,2-Dibromoethane (EDB)	<0.50	ug/m3	2.3	0.50	1.49		12/13/17 13:59	106-93-4	
1,2-Dichlorobenzene	<0.49	ug/m3	1.8	0.49	1.49		12/13/17 13:59	95-50-1	
1,3-Dichlorobenzene	<0.69	ug/m3	1.8	0.69	1.49		12/13/17 13:59	541-73-1	
1,4-Dichlorobenzene	<0.33	ug/m3	4.6	0.33	1.49		12/13/17 13:59	106-46-7	
Dichlorodifluoromethane	2.6	ug/m3	1.5	0.62	1.49		12/13/17 13:59	75-71-8	
1,1-Dichloroethane	1.9	ug/m3	1.2	0.32	1.49		12/13/17 13:59	75-34-3	
1,2-Dichloroethane	<0.30	ug/m3	0.61	0.30	1.49		12/13/17 13:59	107-06-2	

ANALYTICAL RESULTS

Project: 6198 Bayside Folestry

Pace Project No.: 10413086

Sample: SS-2	Lab ID:	10413086002	Collecte	d: 11/28/1	7 06:23	Received: 12	2/04/17 12:40 Ma	atrix: Air	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15	;						
1,1-Dichloroethene	<0.35	ug/m3	1.2	0.35	1.49		12/13/17 13:59	75-35-4	
cis-1,2-Dichloroethene	<0.51	ug/m3	1.2	0.51	1.49		12/13/17 13:59	156-59-2	
trans-1,2-Dichloroethene	<0.44	ug/m3	1.2	0.44	1.49		12/13/17 13:59	156-60-5	
1,2-Dichloropropane	<0.46	ug/m3	1.4	0.46	1.49		12/13/17 13:59	78-87-5	
cis-1,3-Dichloropropene	<0.37	ug/m3	1.4	0.37	1.49		12/13/17 13:59	10061-01-5	
trans-1,3-Dichloropropene	<0.63	ug/m3	1.4	0.63	1.49		12/13/17 13:59	10061-02-6	
Dichlorotetrafluoroethane	<0.66	ug/m3	2.1	0.66	1.49		12/13/17 13:59	76-14-2	
Ethanol	20.5	ug/m3	1.4	0.69	1.49		12/13/17 13:59	64-17-5	
Ethyl acetate	<0.29	ug/m3	1.1	0.29	1.49		12/13/17 13:59	141-78-6	
Ethylbenzene	10.9	ug/m3	1.3	0.25	1.49		12/13/17 13:59	100-41-4	
4-Ethyltoluene	4.8	ug/m3	1.5	0.32	1.49		12/13/17 13:59	622-96-8	
n-Heptane	8.6	ug/m3	1.2	0.31	1.49		12/13/17 13:59	142-82-5	
Hexachloro-1,3-butadiene	<1.3	ug/m3	3.2	1.3	1.49		12/13/17 13:59	87-68-3	
n-Hexane	12.9	ug/m3	1.1	0.50	1.49		12/13/17 13:59	110-54-3	
2-Hexanone	7.7	ug/m3	6.2	0.91	1.49		12/13/17 13:59	591-78-6	
Methylene Chloride	9.7	ug/m3	5.3	2.3	1.49		12/13/17 13:59	75-09-2	
4-Methyl-2-pentanone (MIBK)	4.0J	ug/m3	6.2	0.53	1.49		12/13/17 13:59	108-10-1	
Methyl-tert-butyl ether	<0.99	ug/m3	5.5	0.99	1.49		12/13/17 13:59	1634-04-4	
Naphthalene	<0.89	ug/m3	4.0	0.89	1.49		12/13/17 13:59	91-20-3	
2-Propanol	8.6	ug/m3	3.7	1.9	1.49		12/13/17 13:59	67-63-0	
Propylene	91.5	ug/m3	0.52	0.23	1.49		12/13/17 13:59	115-07-1	E
Styrene	9.2	ug/m3	1.3	0.25	1.49		12/13/17 13:59	100-42-5	
1,1,2,2-Tetrachloroethane	0.49J	ug/m3	1.0	0.43	1.49		12/13/17 13:59	79-34-5	
Tetrachloroethene	10.6	ug/m3	1.0	0.43	1.49		12/13/17 13:59	127-18-4	
Tetrahydrofuran	<0.41	ug/m3	0.89	0.41	1.49		12/13/17 13:59	109-99-9	
Toluene	44.2	ug/m3	1.1	0.24	1.49		12/13/17 13:59	108-88-3	
1,2,4-Trichlorobenzene	<1.4	ug/m3	5.6	1.4	1.49		12/13/17 13:59	120-82-1	
1,1,1-Trichloroethane	<0.51	ug/m3	1.7	0.51	1.49		12/13/17 13:59	71-55-6	
1,1,2-Trichloroethane	<0.34	ug/m3	0.82	0.34	1.49		12/13/17 13:59	79-00-5	
Trichloroethene	<0.40	ug/m3	0.82	0.40	1.49		12/13/17 13:59	79-01-6	
Trichlorofluoromethane	0.73J	ug/m3	1.7	0.62	1.49		12/13/17 13:59	75-69-4	
1,1,2-Trichlorotrifluoroethane	<0.55	ug/m3	2.4	0.55	1.49		12/13/17 13:59	76-13-1	
1,2,4-Trimethylbenzene	12.3	ug/m3	1.5	0.26	1.49		12/13/17 13:59	95-63-6	
1,3,5-Trimethylbenzene	3.6	ug/m3	1.5	0.61	1.49		12/13/17 13:59	108-67-8	
Vinyl acetate	<0.25	ug/m3	1.1	0.25	1.49		12/13/17 13:59	108-05-4	
Vinyl chloride	<0.19	ug/m3	0.39	0.19	1.49		12/13/17 13:59	75-01-4	
m&p-Xylene	31.7	ug/m3	2.6	0.52	1.49		12/13/17 13:59	179601-23-1	
o-Xvlene	12.3	ua/m3	1.3	0.55	1.49		12/13/17 13:59	95-47-6	

QUALITY CONTROL DATA

Project: 6198 Bayside Folestry

Pace Project No.: 10413086

QC Batch: 513214 Analysis Method: QC Batch Method: TO-15

Analysis Description:

Matrix: Air

TO15 MSV AIR Low Level

TO-15

Associated Lab Samples: 10413086001, 10413086002

METHOD BLANK: 2790751

Associated Lab Samples 10412096001 10412096002

Accounted Lab Gumpico.	1041300002	Diant	Denertier		
-		Blank	Reporting	.	o ""
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	<0.34	1.1	12/12/17 14:02	
1,1,2,2-Tetrachloroethane	ug/m3	<0.29	0.70	12/12/17 14:02	
1,1,2-Trichloroethane	ug/m3	<0.22	0.55	12/12/17 14:02	
1,1,2-Trichlorotrifluoroethane	e ug/m3	<0.37	1.6	12/12/17 14:02	
1,1-Dichloroethane	ug/m3	<0.21	0.82	12/12/17 14:02	
1,1-Dichloroethene	ug/m3	<0.24	0.81	12/12/17 14:02	
1,2,4-Trichlorobenzene	ug/m3	<0.96	3.8	12/12/17 14:02	
1,2,4-Trimethylbenzene	ug/m3	<0.17	1.0	12/12/17 14:02	
1,2-Dibromoethane (EDB)	ug/m3	<0.33	1.6	12/12/17 14:02	
1,2-Dichlorobenzene	ug/m3	<0.33	1.2	12/12/17 14:02	
1,2-Dichloroethane	ug/m3	<0.20	0.41	12/12/17 14:02	
1,2-Dichloropropane	ug/m3	<0.31	0.94	12/12/17 14:02	
1,3,5-Trimethylbenzene	ug/m3	<0.41	1.0	12/12/17 14:02	
1,3-Butadiene	ug/m3	<0.21	0.45	12/12/17 14:02	
1,3-Dichlorobenzene	ug/m3	<0.47	1.2	12/12/17 14:02	
1,4-Dichlorobenzene	ug/m3	<0.22	3.1	12/12/17 14:02	
2-Butanone (MEK)	ug/m3	<0.20	3.0	12/12/17 14:02	
2-Hexanone	ug/m3	<0.61	4.2	12/12/17 14:02	
2-Propanol	ug/m3	<1.2	2.5	12/12/17 14:02	
4-Ethyltoluene	ug/m3	<0.21	1.0	12/12/17 14:02	
4-Methyl-2-pentanone (MIBk	() ug/m3	< 0.36	4.2	12/12/17 14:02	
Acetone	ug/m3	<1.5	2.4	12/12/17 14:02	
Benzene	ug/m3	<0.15	0.32	12/12/17 14:02	
Benzvl chloride	ug/m3	< 0.24	2.6	12/12/17 14:02	
Bromodichloromethane	ug/m3	< 0.36	1.4	12/12/17 14:02	
Bromoform	ug/m3	<0.69	2.1	12/12/17 14:02	
Bromomethane	ug/m3	<0.21	0.79	12/12/17 14:02	
Carbon disulfide	ug/m3	<0.18	0.63	12/12/17 14:02	
Carbon tetrachloride	ug/m3	< 0.32	0.64	12/12/17 14:02	
Chlorobenzene	ug/m3	<0.18	0.94	12/12/17 14:02	
Chloroethane	ug/m3	<0.20	0.54	12/12/17 14:02	
Chloroform	ug/m3	<0.23	0.50	12/12/17 14:02	
Chloromethane	ug/m3	<0.13	0.42	12/12/17 14:02	
cis-1.2-Dichloroethene	ug/m3	< 0.34	0.81	12/12/17 14:02	
cis-1.3-Dichloropropene	ug/m3	<0.24	0.92	12/12/17 14:02	
Cyclohexane	ug/m3	<0.24	0.70	12/12/17 14:02	
Dibromochloromethane	ug/m3	<0.44	1.7	12/12/17 14:02	
Dichlorodifluoromethane	ug/m3	<0.42	1.7	12/12/17 14.02	
Dichlorotetrafluoroethane	ug/m3	<0.42	1.0	12/12/17 14:02	
Ethanol	ug/m3	<0.46	0 96 ()	12/12/17 14:02	
Ethyl acetate	ug/m3	~0.40 ~0.20	0.50	12/12/17 14:02	
	ug/mo	NU.20	0.75	12/12/11 14.02	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Matrix: Air

Project: 6198 Bayside Folestry

Pace Project No.: 10413086

ME	THOE) BLANK	: 2790751	1

Associated Lab Samples: 10413086001, 10413086002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Ethylbenzene	ug/m3	<0.17	0.88	12/12/17 14:02	
Hexachloro-1,3-butadiene	ug/m3	<0.87	2.2	12/12/17 14:02	
m&p-Xylene	ug/m3	<0.35	1.8	12/12/17 14:02	
Methyl-tert-butyl ether	ug/m3	<0.67	3.7	12/12/17 14:02	
Methylene Chloride	ug/m3	<1.5	3.5	12/12/17 14:02	
n-Heptane	ug/m3	<0.21	0.83	12/12/17 14:02	
n-Hexane	ug/m3	<0.33	0.72	12/12/17 14:02	
Naphthalene	ug/m3	<0.60	2.7	12/12/17 14:02	
o-Xylene	ug/m3	<0.37	0.88	12/12/17 14:02	
Propylene	ug/m3	<0.16	0.35	12/12/17 14:02	
Styrene	ug/m3	<0.17	0.87	12/12/17 14:02	
Tetrachloroethene	ug/m3	<0.29	0.69	12/12/17 14:02	
Tetrahydrofuran	ug/m3	<0.27	0.60	12/12/17 14:02	
Toluene	ug/m3	<0.16	0.77	12/12/17 14:02	
trans-1,2-Dichloroethene	ug/m3	<0.30	0.81	12/12/17 14:02	
trans-1,3-Dichloropropene	ug/m3	<0.42	0.92	12/12/17 14:02	
Trichloroethene	ug/m3	<0.27	0.55	12/12/17 14:02	
Trichlorofluoromethane	ug/m3	<0.42	1.1	12/12/17 14:02	
Vinyl acetate	ug/m3	<0.17	0.72	12/12/17 14:02	
Vinyl chloride	ug/m3	<0.13	0.26	12/12/17 14:02	

LABORATORY CONTROL SAMPLE: 2790752

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	59.3	67.6	114	70-134	
1,1,2,2-Tetrachloroethane	ug/m3	76.1	73.3	96	70-130	
1,1,2-Trichloroethane	ug/m3	61	51.4	84	70-130	
1,1,2-Trichlorotrifluoroethane	ug/m3	80.2	76.9	96	70-130	
1,1-Dichloroethane	ug/m3	43.6	42.0	96	70-130	
1,1-Dichloroethene	ug/m3	39.9	40.7	102	70-130	
1,2,4-Trichlorobenzene	ug/m3	81.5	95.6	117	60-150	
1,2,4-Trimethylbenzene	ug/m3	53.5	59.8	112	70-136	
1,2-Dibromoethane (EDB)	ug/m3	85.1	80.4	94	70-130	
1,2-Dichlorobenzene	ug/m3	66	88.9	135	70-139	
1,2-Dichloroethane	ug/m3	44	45.5	103	70-130	
1,2-Dichloropropane	ug/m3	51.2	45.4	89	70-131	
1,3,5-Trimethylbenzene	ug/m3	53.5	50.8	95	70-133	
1,3-Butadiene	ug/m3	22.9	21.5	94	70-130	
1,3-Dichlorobenzene	ug/m3	63.6	84.3	133	70-144	
1,4-Dichlorobenzene	ug/m3	66	68.5	104	70-139	
2-Butanone (MEK)	ug/m3	33	27.5	83	70-130	
2-Hexanone	ug/m3	45.8	54.9	120	70-138	
2-Propanol	ug/m3	26.7	29.1	109	70-130	
4-Ethyltoluene	ug/m3	54	51.0	95	70-135	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project: 6198 Bayside Folestry

Pace Project No.: 10413086

LABORATORY CONTROL SAMPLE:	2790752					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
4-Methyl-2-pentanone (MIBK)	ug/m3	45.8	46.8	102	70-130	
Acetone	ug/m3	25.8	24.2	94	64-130	
Benzene	ug/m3	35.1	33.3	95	70-130	
Benzyl chloride	ug/m3	54.7	56.4	103	70-144	
Bromodichloromethane	ug/m3	72.9	67.8	93	70-134	
Bromoform	ug/m3	111	122	110	70-150	
Bromomethane	ug/m3	40.3	38.1	95	70-130	
Carbon disulfide	ug/m3	33.2	27.7	83	70-134	
Carbon tetrachloride	ug/m3	65.2	72.3	111	68-150	
Chlorobenzene	ug/m3	51.5	46.5	90	70-132	
Chloroethane	ug/m3	26.6	26.7	101	70-132	
Chloroform	ug/m3	50.6	50.2	99	70-130	
Chloromethane	ug/m3	22.9	20.1	88	70-130	
cis-1,2-Dichloroethene	ug/m3	42.7	40.9	96	70-133	
cis-1,3-Dichloropropene	ug/m3	50.7	46.6	92	70-137	
Cyclohexane	ug/m3	35	35.7	102	70-130	
Dibromochloromethane	ug/m3	90.9	91.4	101	70-144	
Dichlorodifluoromethane	ug/m3	53.8	45.8	85	70-130	
Dichlorotetrafluoroethane	ug/m3	75.3	66.4	88	70-130	
Ethanol	ug/m3	20.3	23.4	115	70-136	
Ethyl acetate	ug/m3	37.4	30.7	82	70-130	
Ethylbenzene	ug/m3	47.7	43.6	91	70-134	
Hexachloro-1,3-butadiene	ug/m3	119	151	126	45-150	
m&p-Xylene	ug/m3	92.7	86.1	93	70-130	
Methyl-tert-butyl ether	ug/m3	38.5	37.2	97	66-148	
Methylene Chloride	ug/m3	38.8	41.1	106	67-133	
n-Heptane	ug/m3	45.8	38.3	84	70-130	
n-Hexane	ug/m3	35.8	35.0	98	67-132	
Naphthalene	ug/m3	58.6	79.4	136	53-150	
o-Xylene	ug/m3	48.1	42.0	87	70-130	
Propylene	ug/m3	18.9	15.8	84	70-135	
Styrene	ug/m3	47.2	47.6	101	70-139	
Tetrachloroethene	ug/m3	73.8	74.0	100	70-130	
Tetrahydrofuran	ug/m3	32.1	25.9	81	70-130	
Toluene	ug/m3	41.4	36.2	87	70-130	
trans-1,2-Dichloroethene	ug/m3	36.3	38.5	106	70-131	
trans-1,3-Dichloropropene	ug/m3	47.5	49.6	104	70-142	
Trichloroethene	ug/m3	58.4	54.1	93	70-130	
Trichlorofluoromethane	ug/m3	60.5	57.1	94	70-130	
Vinyl acetate	ug/m3	36.9	33.5	91	70-137	
Vinyl chloride	ug/m3	25.7	24.1	94	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: 6198 Bayside Folestry

Pace Project No.: 10413086

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

Е

Analyte concentration exceeded the calibration range. The reported result is estimated.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	6198 Bayside Folestry
Pace Project No .:	10413086

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10413086001	SS-1	TO-15	513214		
10413086002	SS-2	TO-15	513214		

www.paceflats.com Section B Required Client Information: Section B Required Client Information: Required Project Info Company: E Address: LOU Address: LOU Pipene: E Company: E Pipene:	Mormation: Mormation: 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		1-01-Lustoo	y is a LEGAL DO	JUMENT. All relevant	fieids must be completed acc	curateiy.	0	1
Section A Section B Required Clent Information: Required Project Info Company: Company: Address: Report To: Address: LOUN SALUE Phone: Project Name Phone: Project Name Required Due Date/TAT: Project Name Rection D Required Clent Information Project Name Required Due Date/TAT: Project Name Required Scient Information Maid Media Codes Rest Total Rest Rest Total Rest <		1		,					Š.
Company: Company: Report To Address: LUN: SALUCE Copy To: Copy To: Copy To: Copy To: Phone: Email To: Lunchase Order No. Phone: Project Name Project Name Phone: Project Name Reducted Cleart Information Phone: Section D Required Cleart Information Nation Media Reduested Due Date/TAT: Project Name Reduces and to: Reduested Due Date/TAT: Reduested Clear to: Reduces and to: Reduested Due Date/TAT: Reduested Clear to: Reduces and to: Reduested Due Date/TAT: Reduested Clear to: Reduested Clear to: Reduested Due Date/TAT: Reduested Clear to: Reduested Cl		ection C oice Information:			•	30	N D T	Page:	ď
Address, L(D), L, Z, D, L, M, S, L, M,		ention: Divergi C	10-1 <u>5</u> -10			Pro	gram		
A. S. M. J. S. W. J. Email To: Eurchase Order No Phone: A. M. J. S. W. J. Purchase Order No Phone: A. M. J. S. M. J. Project Name) Project Name) B. M. S. M. M. S. M.		mpany Name:				T UST T Superfunc	d T Emission	1	dean Air Ac
Project Project Namé Project Number: Project Namé Requested Due Date/TAT: Project Namé Requested Due Date/TAT: Project Namé Section D Required Client Information Valid Media Codes Ref Sample IDs MUST BE UNIQUE Freisting Code Ref Sample IDs MUST BE UNIQUE Environme Part UP Ref Sample IDs MUST BE UNIQUE Environme Part UP Ref Sample IDS MUST BE UNIQUE Environme Part UP Ref Sample IDS MUST BE UNIQUE Environme Part UP Ref Sample IDS MUST BE UNIQUE Environme Part WP		dress: 41050 (.)	202	and the second		T Voluntary Clean Up	T Dry Clean	RCRA	T Other
Requested Due Date/TAT: Project Number: *Section D Required Client Information Valid Media Codes *Section D Required Client Information Valid Media Codes *Bit SAMPLE ID Total Reput *Bit Sample IDs MUST BE UNIQUE Liter Summa Con It.C *Sample IDs MUST BE UNIQUE Liter Summa Con It.C *Other Part Map Con It.C *Provident Part Met Met *Provident Part Met Met *Provident Part Met Met	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ce Quote Reference: ce Project Manager/Sales Re	ġ			Location of Sampling by State		Reporting ug/m³ PPBV	mg/m ³
Addition Valid Media Codes Section D Required Client Information Valid Media Codes AIR SAMPLE ID Telder Bag Telder Bag To Comple IDs MUST BE UNIQUE Euroma Can Link Summa Can Euroma Can Comple IDs MUST BE UNIQUE Euroma Can		ce Profile #:	220	28		Report Level II. II	II.	Other Other	. 1
A G O - MAR	= HanilO) I	DLLECTED	Pressur e Id - in Hg)	(6)H mi - bi S	1a Flow	Method:	20/21/C	Lioused	n produktiva.
2 2 4 2 2 - 2 2 - 2 2 - 2 2 - 2		COMPOSITE - COMPOSITE - ENDORRANS	Canister I (Initial Fle		er Number	10,10,10,10,10,10,10,10,10,10,10,10,10,1	10-12 8404. 10-12 8404 178 10-12 8404 178 10-12 8404 178	Isriture I	ace Lab ID
6 5 5 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	115311	C1:2)421,1	S A	2	00	×		3	
		L 6:23	1		623			23	
									-
5		Y							
- Marrie									
		· · ·							
α				•					
n ()		-		· ·		· · · · · · · · · · · · · · · · · · ·			
					-				-
12									
Comments :	RELINQUISHED BY / AFFIL	IATION DATE	TIME	ACCEPTE	D BY / AFFILIATIO	N DATE TIME	SAME	PLE CON	DITIONS
	RAN Conten	le1 12-417	11:00		OL PAUE	12-4-17 124	10	Q14	Q.
				ک	-			N/A	50 N/A
				-				N/A	N/A
								N/A	N/A
Ρας		SAMPLER NAME AN PRINT Name of SAMPLER:	D SIGNAT	JRE		-	O° ni q	ived on	d Cooler
Je 13		SIGNATURE of SAMPLER:			DATE Signed (MM/	(xx)	meT	l Bece	else2
5 s of 14								-	
1700 Elm Street SE, Suite 200, Minneapolis, MN 55414	Air Technical Phone: 612.6	307.6 <u>3</u> 86		ar Ling Ala tao tao			FC046Re	tev.01, 03F	eb2010

all a state of

4.00

1

	1 martin		Document Name: Air Sample Condition Upon Receipt				Document Revised: 16Oct2017 Page 1 of 1				
Pe	ace Analytica	<i>l</i> *	Document No.: F-MN-A-106-rev.13				Issuing Authority: Pace Minnesota Quality Office				
Air Sample Condition C Upon Receipt	lient Name: REI	-			Project	#: WO#	: 104	1308	36		
Courier: 🖉 Tracking Number: 74	Fed Ex Commercial 176-300	ロUPS ロPace ひろう	Speede	ee []C	lient	10413086					
Custody Seal on Cooler/	Box Present?	Yes	No	Seals Inta	act?]Yes 🛛 🗖 🗌	Optional: Pro	j. Due Date:	Proj. Name:		
Packing Material:	ubble Wrap	Bubble B	ags 🖉 Foar	n 🗌 No	one 🗌]Tin CanOther:_		Temp E	Blank rec: 📋]Yes 🛃 No	
Temp. (TO17 and TO13 sam Temp should be above free	ples only) (°C): zing to 6°C C	orrection Fact	Corrected Tem	np (°C): _	X	Thermom. Used: Date & Initials of Per	son Examining	Contents:	□151401: □G87A91551 124-17	163 100842 7	
Type of ice Received	lue 🗍 Wet	None					_		-		
							Cor	mments:			
Chain of Custody Present	<u>1</u> ?		Ves_			1.					
Chain of Custody Filled C	out?		Yes			2.			<u>_</u>		
Chain of Custody Relinqu	lished?		Yes			3.					
Sampler Name and/or Si	gnature on COC	3	Yes			4.					
Samples Arrived within F	lold Time?		<u>⊿</u> Yes			5.					
Short Hold Time Analysi	s (<72 hr)?					6.					
Rush Turn Around Time	Requested?		Yes	No		7.					
Sufficient Volume?			■Yes	No	□N/A	8.					
Correct Containers Used	?		∠ Yes	□No	□n/a	9.					
-Pace Containers Used	17		Yes	No	□N/A				.		
Containers Intact?			Yes	No	N/A	10.					
Media: Alt-Can	Airbag	Filter	TDT	Passive		11. individu	ally Certified C	ans Y 🕅	ust which sa	mples)	
Sample Labels Match CO	C?		Yes	No	□n/a	12.					
Samples Received:			· · · · · · · · · · · · · · · · · · ·								
	Can	, isters					Са	nisters			
		Flow	Initial	Fina	al			Flow	Initial	Final	
Sample Number	Can ID	Controller	Pressure	Press	ure	Sample Number	Can ID	Controller	Pressure	Pressur	
55-1			<u> </u>	+ 5	5						
-2			-3	tı							
						•					
										1	
CLIENT NOTIFICATION/R Person Cont	ESOLUTION	1		1.		Date/Time:	Field Data	Required?	Yes No)	
Comments/Reso	lution:							_			
Project Manager Pouleur	. MA De	a W	n. Cal	ne		Date: 1	2/4/17				
Note: Whenever there is a di	screpancy affect	ting North Car	olina complianc	e samples,	a copy of	this form will be sent to	o the North Car	olina DEHNR C	ertification Offi	ice (i.e. out	
now, incorrect preservative, (iol of temp, inco	priect containe	515)								