SITE INVESTIGATION REPORT DT LIQUOR AND CONVENIENCE STORE 3019 STATE HIGHWAY 60 NORTH CUBA CITY, WISCONSIN 53807 BRRTS: 03-22-262317

PREPARED FOR:

JANET DIMAGGIO WISCONSIN DEPARTMENT OF NATURAL RESOURCES 3911 FISH HATCHERY ROAD MADISON, WISCONSIN 53711

AND

WILLIAM DAVIS 400 WEST STREET GALENA, ILLINOIS 61036

APRIL 2016

SEYMOUR ENVIRONMENTAL SERVICES, INC.

P.O. Box 398, 2531 Dyreson Road, McFarland, Wisconsin 53558 Telephone: 608-838-9120

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Project History	1
1.2	Site and Consultant Information	1
2.0	BACKGROUND INFORMATION	2
2.1	Summary of Previous Investigation	2
2.2	Regional Setting	3
2.3	Potential Receptors	3
3.0	SITE INVESTIGATION ACTIVITIES	3
3.1	Monitoring Well Installation	3
3.2	Additional Soil Investigation	4
3.3	Groundwater Monitoring	4
3.4	Hazard Evaluation	4
4.0	DISCUSSION and RECOMMENDATIONS	5

LIST OF TABLES

- 1 Tank Closure Soil Sample Results
- 2 Initial Investigation Soil Sample Results
- 3 Recent Soil Sampling Results
- 4 Groundwater Sampling Results
- 5 Vapor Intrusion Screening

LIST OF FIGURES

- 1 Site Location Map
- 2 Site Layout Map-Sampling Locations
- 3 Soil Sampling Data (December 2006)-
- 4 Receptor Map
- 5 Sampling Locations-Seymour 2015
- 6 Identified Soil Contamination
- 7 Cross Section

APPENDICES

- A Boring Logs and Well Construction Form
- B Laboratory Reports

1.0 INTRODUCTION

1.1 **Project History**

William Davis retained Seymour Environmental Services, Inc. (Seymour) to complete an investigation at the former DT Liquor and Convenience Store at 3019 State Highway 80 in Cuba City, Wisconsin (Figure 1). The work is being done in response to contamination that was discovered during tank removals on October 24, 2000. The initial environmental investigation was conducted by METCO in 2006. Seymour took over the project as the consultant and PECFA agent in 2014.

We have defined the extent of the soil contamination and determined that the groundwater has not been impacted over any Wisconsin Department of Natural Resources (WDNR) standards. We are recommending that the soil contamination be excavated to remove the direct contact and groundwater protection threats.

1.2 Site and Consultant Information

Site Address:	DT Liquor and Convenience Store 3019 State Highway 80 North Cuba City, Wisconsin 53807 Grant County NW ¼ of the SE ¼ of Section 25 Township 2 North, Range 1 West
Consultants:	Seymour Environmental Services, Inc. 2531 Dyreson Road McFarland, Wisconsin 53558 Contact: Robyn Seymour (608) 838-9120
	Northern Environmental 1203 Storbeck Drive Waupun, Wisconsin 53963
	METCO 2956 Airport Road La Crosse, Wisconsin 54603
Drilling Contractors:	Badger State Drilling 360 Business Park Circle Stoughton, Wisconsin 53589 Contact: Mark Garwick (608) 877-9770
	On-Site Environmental Services P.O. Box 280 Sun Prairie, Wisconsin 53590
Laboratories:	Pace Analytical

1241 Bellevue Street, Suite 9 Green Bay, Wisconsin 54302 Contact: Dan Milewsky (920) 469-2436

Synergy Environmental Lab 1990 Prospect Court Appleton, Wisconsin 54914

U.S. Analytical Lab 1090 Kimberly Avenue Kimberly, Wisconsin 54136

2.0 BACKGROUND INFORMATION

2.1 Summary of Previous Investigation

DT Liquor and Convenience Store was a gas station/convenience store. On October 24, 2000 four underground storage tanks (USTs) were removed at the site. The USTs included a 4,000 gallon leaded gasoline, a 2,000-gallon unleaded gasoline, a 1,000-gallon diesel and a 750-gallon fuel oil. Wiederholt Excavating and Trenching removed the tanks. A closure assessment was conducted by Northern Environmental Technologies (Northern). Northern collected 13 soil samples as part of the tank closure assessment. Field observations and sample analysis during the tank closure identified petroleum contamination at two locations, beneath the dispenser island and near fuel oil tank. No petroleum contamination was noted in the soil around the primary tank bed. The site layout and closure sampling locations are shown on Figure 2 and soil analytical results are summarized on Table 1.

In December 2006 METCO conducted a geoprobe investigation at the site to characterize the soil contamination. Soil sampling was conducted at four borings; three of the borings were located near the dispenser and one boring was located near the fuel oil tank. The sample locations are shown on Figure 3. Soil samples were collected continuously during drilling. The 20 samples collected were field screened for organic vapors; elevated organic vapor levels were only identified in the samples from the boring located at the dispenser (G-1). Based on the field screening data 8 of the samples were analyzed for GRO or DRO and petroleum volatile organic compounds plus naphthalene (PVOCs+naph). Additional analyses were performed on three shallow soil samples to evaluate direct contact hazard. Each of these shallow soil samples was analyzed for lead and the one collected near the fuel oil tank was analyzed for PAHs.

Sampling results indicate that the gasoline-related contamination is restricted to the immediate area of the former dispenser (Figure 3). Contamination in this area extended from approximately 4 feet below grade to a depth of 19 feet where bedrock was encountered. Sampling conducted near the fuel oil tank indicated that only limited contamination is present in that area. No PVOCs were detected in that area and only low levels of PAHs were present. The PAH and lead levels noted in the soil sample were below direct contact hazard levels for non-industrial sites. Soil analytical results from this investigation are summarized in Table 2.

2.2 Regional Setting

Cuba City is located in the driftless area of southwestern Wisconsin. This area is characterized by rugged steep-walled valleys and high relief. Drainage patterns are typically dendritic where streams that have cut deeply into the flat bedrock. DT Liquor and Convenience Store is located on a broad ridge at an elevation of approximately 1,005 feet. Surface water at the site drains to the east and into roadside ditches located along STH 80. The surface water continues to flow eastward to an unnamed perennial stream. This stream discharges to the Galena River approximately 2.5 miles northeast of the site.

Soils at the site are mapped as Tama Silt Loam. These soils are characterized as silty clays, which develop from the weathering of the carbonate bedrock. Soil encountered during drilling at the site was generally clay with slight silt. Bedrock at the site is present between 18 and 19 feet below grade. Bedrock underlying the site is the Decorah-Platteville Formation. This formation is a thinly bedded carbonate.

The water table in Cuba City is typically present within Decorah-Platteville Formation at a depth of 50 to 60 feet below grade. Groundwater flow is highly variable as it typically mimics the surface topography. The Decorah-Platteville carbonates are modest produces of groundwater. Locally, the formation is used for water supply purposes for older wells and wells with lower water usage requirements. Newer wells in the area, and wells with higher flow requirements, typically extend into the underlying St. Peter Sandstone to provide sufficient groundwater.

During installation of monitoring well MW-1 groundwater was present ~65 feet below the surface.

2.3 **Potential Receptors**

Potential contaminant receptors near the site generally are limited to groundwater receptors. Underground utilities in the area are located within the Highway 80 right-of-way approximately 25 feet beyond the limit of identified contamination. The vapor intrusion pathway was assessed and we determined that vapor intrusion is not a threat to the building at the site or neighboring buildings. Cuba City has a municipal well (Cuba City Well #2) approximately 600 feet southwest of the property. The nearest private well to the site is located approximately 150 feet northwest of the site. Figure 4 shows the locations of neighboring wells.

3.0 SITE INVESTIGATION ACTIVITIES

3.1 Monitoring Well Installation

On March 6, 2015 Seymour met Badger State Drilling (Badger) at the site to install a single monitoring well near the former dispenser where contamination was identified in contact with bedrock. The boring for the well was drilled using hollow-stem augers through the unconsolidated deposits and air rotary in the bedrock. No sampling was conducted during the drilling. During drilling groundwater was noted at ~ 65 feet below the surface. The monitoring well was set at 75 feet with a 15-foot screen. Seymour developed the well on March 7, 2015. The monitoring well location is shown on Figure 5.

3.2 Additional Soil Investigation

On March 9, 2015 Badger and Seymour returned to the site to installed two soil borings to bedrock near the former dispenser island to further delimit the extent of soil contamination. The borings were installed approximately 20 feet south (B-5) and north (B-6) of METCO boring G-1, which had compounds present above standards (Figure 5). During drilling soil samples were collected continuously. The soil samples were field screened with an organic vapor meter equipped with a 10.6 eV bulb. Obvious contamination starting at approximately 12 feet below grade was noted in B-5. No contamination was noted in B-6.

Soil at the site was mainly clay/silty clay turning to sand just above the bedrock. Bedrock was encountered at 19 feet.

Two soil samples were selected for analysis from each boring. The soil samples were submitted to Pace Analytical for analysis of petroleum volatile organic compounds (PVOCs), polynuclear aromatic compounds (PAHs) and lead. Analytical data confirm that soil contamination exceeding the WDNR groundwater protection RCLs is present around the former dispenser. This soil contamination extends to B-5 south of the dispensers. At B-5 PVOC and naphthalene levels in the soil slightly above the bedrock exceed groundwater protection RCLs. Based on field observations this contamination extends from 12 to 19 feet below grade. No contaminants were present above groundwater protection RCLs in the soil samples from B-6 located to the north of the dispenser. No soil exceeding direct contact hazard levels from PVOCs, PAHs or lead was identified at either boring. Soil analytical results from the sampling are summarized in Table 3.

3.3 Groundwater Monitoring

Groundwater monitoring has been conducted at the site on two occasions, March 9 and June 18, 2015. During each event groundwater level data and a groundwater sample was collected. Water level data was 64.46 and 63.52 respectively. Groundwater samples were analyzed for PAHs and volatile organic compounds (VOCs).

Low levels of petroleum-related contaminants were identified in the groundwater during each of the monitoring events. Toluene was the only VOC present above the detection limit. Toluene was detected in the March 2015 sample and was present below the limit of quantitation. Toluene was not detected in the groundwater sample collected in June 2015. A number of PAHs were detected in the groundwater quality standards. All of the PAHs were present below the limit of quantitation with the exception of 1-methylnaphthalene. Only one PAH, chrysene, was detected in the groundwater sample collected in June 2015. The chrysene level present (0.032 ug/l) exceeded the NR140 preventative action limit. The results of the groundwater sampling indicate that the soil contamination present near the dispenser has caused only a limited impact on groundwater quality. The groundwater results are summarized on Table 4.

3.4 Hazard Evaluation

Based on the data collected an evaluation of the environmental concerns for applicable routes of exposure was performed. Potential exposure routes considered include direct contact hazard

from ingestion/inhalation, vapor migration and intrusion at the building on site, and groundwater protection. Hazard evaluation data and evaluation criteria are described below.

Direct Contact Hazard

Six soil samples were collected from the shallow soil (<4 feet) within the direct contact hazard zone. Each of the samples was analyzed for PVOCs. Additionally, 3 of the samples were analyzed for PAHs and 5 samples were analyzed for lead. Analytical data were compared to the default direct contact hazard levels for non-industrial sites listed in the WDNR R&R RCL calculator. No PVOCs, PAHs, or lead were present in the shallow samples at concentrations exceeding the applicable direct contact hazard levels.

Vapor Intrusion

Vapor intrusion pathway screening was conducted using the criteria outlined in RR-800. The screening criteria generally consider the separation distance between identified areas of contamination and structures where potentially hazardous vapors may accumulate. A separation distance of 5 feet between petroleum contaminated soils/groundwater and a building is considered to be sufficient to allow aerobic degradation of off-gassing contaminants. Details of the vapor intrusion screening are compiled in Table 5. Based on the screening analysis the contamination identified at the site does not appear to represent a vapor intrusion threat.

Groundwater Protection Pathway

Soil contamination identified at the site exceeds the default groundwater protection levels listed in the WDNR R&R RCL calculator. The identified contamination generally is present from ~8 to 19 feet below grade where bedrock is encountered.

4.0 DISCUSSION and RECOMMENDATIONS

A total of twenty-four soil samples were analyzed from the site after the tank closure sampling. Petroleum compounds above the present WDNR groundwater protection RCLs are present in samples in three of the sampling locations surrounding the former dispensers. The most severe contamination was identified at G-1 just above the bedrock. A sample collected during the tank removal assessment indicated that the soil contamination radiating from the dispenser does start shallow, as expected.

Soil contaminated with PVOCs in this boring extends from beneath the dispenser to bedrock at 19 feet. The estimated extent of the soil contamination is shown on Figure 3. This contamination extends over an area of 800 square feet (~16 by 50 feet) and is present from about 4 to 19 feet below grade. The estimated volume of contaminated soil is 650 cubic yards.

Since a municipal well and private wells are located near the subject site we recommend removal of the contaminated soil around the former dispensers. This will alleviate the need for continuing obligations to prevent the contamination from spreading to the groundwater and potentially water supply wells.

Once you have had a chance to review this data please call us to discuss. If you agree with our approach we will submit a budget request for the excavation.

Sincerely, **Seymour Environmental Services, Inc.**

Rokyn Sugnow

Robyn Seymour

TABLES

	TABLE 1 TANK CLOSURE ASSESSMENT SOIL ANALYTICAL DATA DT Liquor and Convenience Store 3019 State Highway 80 North - Cuba City, WI													
SAMPLE	SAMPLE SAMPLE Depth (ft) PID DRO GRO GRO GRO Benzene Benzene Benzene Ethylbenzene ther Toluene Toluene Toluene Toluene Toluene S Total Xylenes S Naphthalene													
						Tank Cl	osure (1	0/24/00)				-		
1	1 11 0 na <10 na													
2	11	0	na	<10	na	na	na	na	na	na	na	na	na	na
3	11	0	na	<10	na	na	na	na	na	na	na	na	na	na
4	11	0	na	<10	na	na	na	na	na	na	na	na	na	na
5	11	0	na	<10	na	na	na	na	na	na	na	na	na	na
6	10	0	na	<10	na	na	na	na	na	na	na	na	na	na
7	10	0	na	<10	na	na	na	na	na	na	na	na	na	na
8	4	22	na	<10	na	na	na	na	na	na	na	na	na	na
9	4-5	>2000	na	10000	na	na	na	na	na	na	na	na	na	na
10	4	69	na	<10	na	na	na	na	na	na	na	na	na	na
11	5	0	<10	na	na	na	na	na	na	na	na	na	na	na
12	6	164	8700	na	na	na	na	na	na	na	na	na	na	na
_	13 4 56 na <10 na													
	Groundwater Protection ns ns 5.1 2.8 1570 27 1107 ns ns 1379 3940 658.7													
Direct	Contact	Hazard	ns	ns	1490	608	7470	59400	818000	182000	89800	ns	258000	5150

DRO and GRO reported in mg/kg
PVOCs are reported in ug/kg
na = not analyzed

- Groundwater Protection RCL (exceedances bold)

- ns = no standard established

- Non-industrial Direct Contact Hazard Level (exceedances underlined)

- Soil standards from R&R Calculator using Wisconsin defaults

	TABLE 2 INITIAL ASSESSMENT SOIL ANALYTICAL DATA (METCO - 12/24/2000) DT Liquor and Convenience Store 3019 State Highway 80 North - Cuba City, WI											
SAMPLE	G1-1	G1-3							C 4 1	C1.5	CWD	Direct Contact
	3.5	12	G1-5 19	G2-1 3.5	G2-3 12	G2-5 19	G3-1 3.5	G3-5 19	G4-1 3.5	G4-5 19		Non-indust
Depth (ft) 3.5 12 19 3.5 19 3.5 19 RCLs Non-indu PID 100 250 400 0 0 0 0 0 0 0 0 ns ns												
DRO na na na 60 11 na na na na na na na ns ns												
\overrightarrow{GRO} <10 13.4 3030 na na na <10 <10 <10 <10 ns ns												
PVOCs	<10	13.4	5050	na	na	na	<10	<10	<10	<10	115	115
Benzene											1490	
1,2 Dichloroethane	<25.0	na	na	<u>123.0</u> na	na	na	<25.0	na	<25.0	na	2.8	608
Ethylbenzene	<25.0	920	98000	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	1570	7470
Methyl-tert-butyl ether	<25.0	<25.0	<1250	<25.0	<25.0	<25.0	<25.0	<25.0	48	<25.0	27	59400
Toluene	<25.0	90	157000	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	1107	818000
1,3,5 Trimethylbenzene	<25.0	360	88000	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	ns	182000
1,2,4 Trimethylbenzene	<25.0	1370	279000	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	ns	89800
												ns
Total Xylenes <75.0 1440 532000 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0 <75.0												
Naphthalene <25.0 88063000 na <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0												
PAHs 05000 na 25.0 25.0 25.0 25.0 25.0 500.7 5150												
Acenaphthene	na	na	na	<17	na	na	na	na	na	na	ns	3,440,000
Acenaphthylene	na	na	na	<19	na	na	na	na	na	na	ns	ns
Anthracene	na	na	na	<11	na	na	na	na	na	na	196,744	17,200,000
Benzo(a)anthracene	na	na	na	<12	na	na	na	na	na	na	ns	148
Benzo(a)pyrene	na	na	na	<8.1	na	na	na	na	na	na	470	15
Benzo(b)fluoranthene	na	na	na	<7.5	na	na	na	na	na	na	480	148
Benzo(g,h,i)perylene	na	na	na	13	na	na	na	na	na	na	ns	ns
Benzo(k)fluoranthene	na	na	na	<14	na	na	na	na	na	na	ns	1,480
Dibenzo(a,h)anthracene	na	na	na	<11	na	na	na	na	na	na	ns	15
Chrysene	na	na	na	<20	na	na	na	na	na	na	145.1	14,800
Fluoranthene	na	na	na	<7.4	na	na	na	na	na	na	88,818	2,290,000
Fluorene	na	na	na	<9.5	na	na	na	na	na	na	14,815	2,290,000
Indeno(1,2,3-cd)pyrene	na	na	na	<9.5	na	na	na	na	na	na	ns	148
1-Methylnaphthalene	na	na	na	<11	na	na	na	na	na	na	ns	15,600
2-Methylnaphthalene na na na a <12 na na na na na na na s 229,000										229,000		
Naphthalene	na	na	na	<17	na	na	na	na	na	na	658.7	5,150
Phenanthrene	na	na	na	<8.9	na	na	na	na	na	na	ns	ns
Pyrene	na	na	na	<11	na	na	na	na	na	na	54,772	1,720,000
METALS												
Lead	110	na	na	na	na	na	18	na	19	na	27	400

DRO and GRO and Metals reported in mg/kg
PVOCs and PAHs are reported in ug/kg
na = not analyzed
ns = no standard established

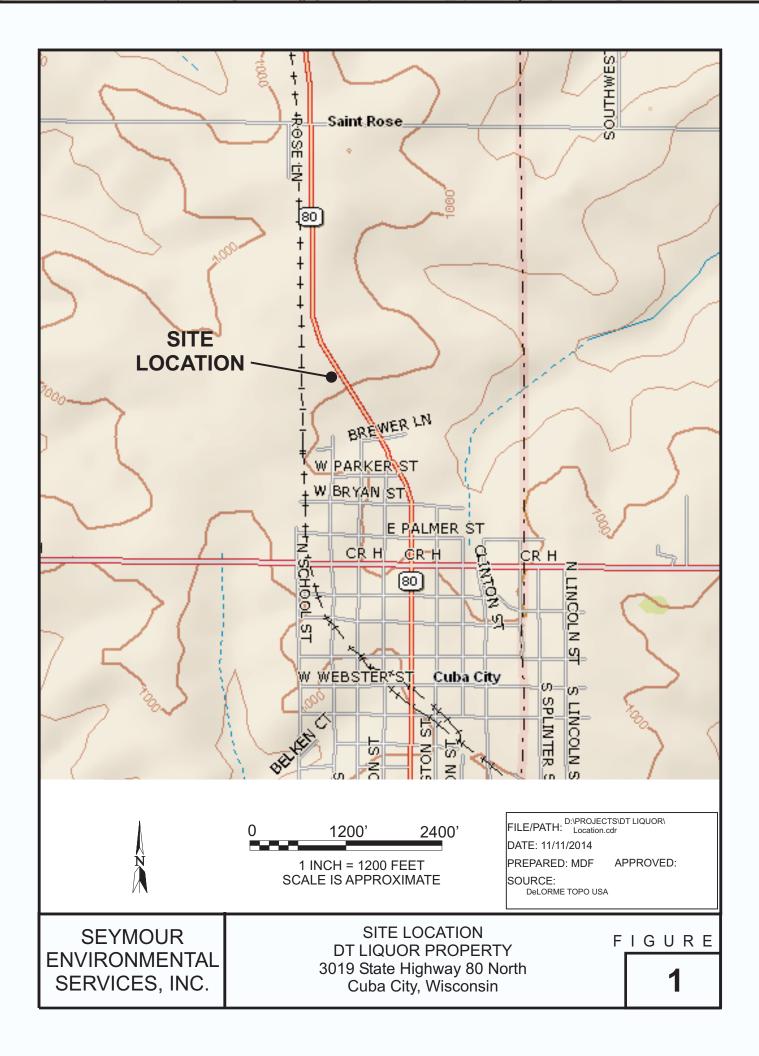
Groundwater Protection RCL (exceedances bold)
Non-industrial Direct Contact Hazard Level (exceedances underlined)
Soil standards from R&R Calculator using Wisconsin defaults

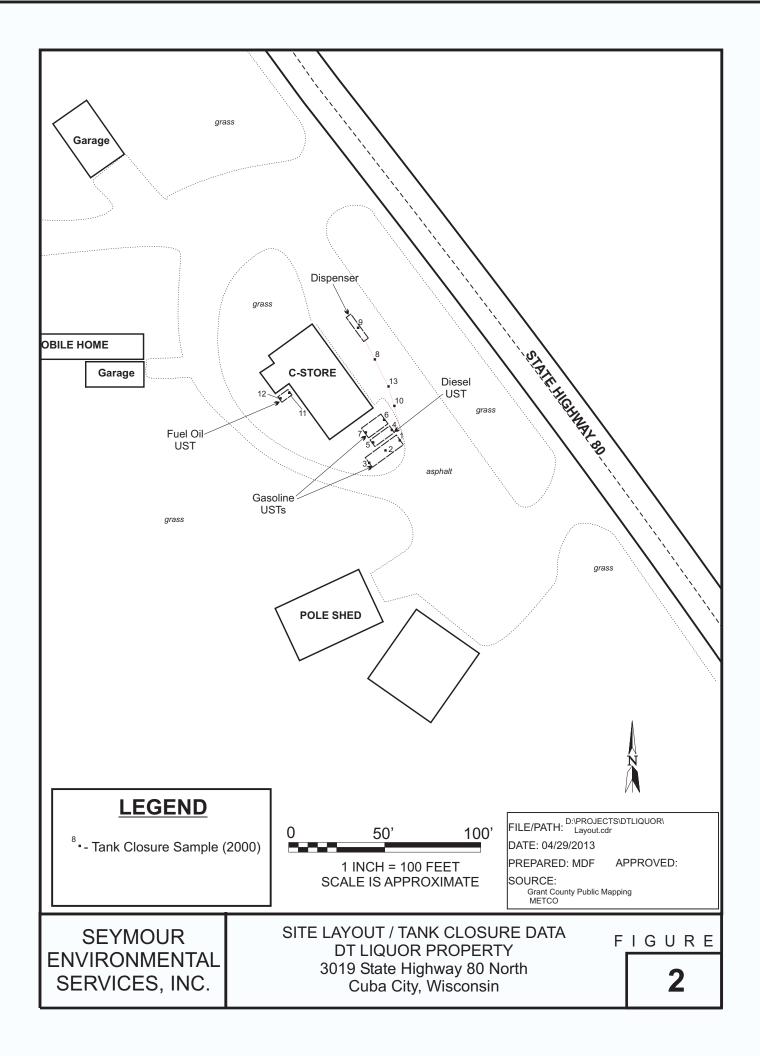
TABLE 3 SOIL ANALYTICAL FROM RECENT ASSESSMENT (SEYMOUR - 03/09/2015) DT Liquor and Convenience Store 2010 Store Window Convenience Store												
	3019 State Highway 80 North - Cuba City, WI SAMPLE B-5 B-5 B-6 B-6 GW Prot Direct Contact											
SAMPLE	B-5	B-5	B-6	B-6	GW Prot	Direct Contact						
Depth (ft)	2-4	15-17	2-4	15-17	RCLs	Non-Indust						
PID	0	1580	20	0	ns	ns						
DRO	na	na	na	na	ns	ns						
GRO	na	na	na	na	ns	ns						
PVOCs												
Benzene	<25.0	1890	<25.0	<25.0	5.1	1490						
1,2 Dichloroethane	na	na	na	na	2.8	608						
Ethylbenzene	<25.0	26600	<25.0	<25.0	1570	7470						
Methyl-tert-butyl ether	<25.0	<250	<25.0	<25.0	27	59400						
Toluene	<25.0	13200	<25.0	<25.0	1107	818000						
1,3,5 Trimethylbenzene	<25.0	25500	44.4	<25.0	ns	182000						
1,2,4 Trimethylbenzene	<25.0	78400	136	<25.0	ns	89800						
Total Trimethylbenzenes	<50.0	103900	180.4	<50.0	1379	ns						
Xylenes, -m, -p	<50.0	100000	89.6	<50.0	ns	ns						
Xylene, -o <25.0 37400 <25.0 s ns												
Total Xylenes	<75.0	137400	89.6	<75.0	3940	258000						
Naphthalene	na	na	na	na	658.7	5150						
PAHs												
Acenaphthene	<10.4	<240	<10.7	<10.6	ns	3,440,000						
Acenaphthylene	<9.3	<215	<9.5	<9.4	ns	ns						
Anthracene	<10.8	<249	<11.1	<11.0	196,744	17,200,000						
Benzo(a)anthracene	<7.2	<167	<7.4	<7.3	ns	148						
Benzo(a)pyrene	<7.4	<172	<7.6	<7.6	470	15						
Benzo(b)fluoranthene	<10.4	<240	<10.7	<10.6	480	148						
Benzo(g,h,i)perylene	<7.9	<183	<8.1	<8.0	ns	ns						
Benzo(k)fluoranthene	<11.5	<266	<11.8	<11.7	ns	1,480						
Dibenzo(a,h)anthracene	<7.6	<176	<7.8	<7.7	ns	15						
Chrysene	<9.6	<222	14.1	<9.8	145.1	14,800						
Fluoranthene	<10.4	<240	<10.7	<10.6	88,818	2,290,000						
Fluorene	<10.4	<240	<10.7	<10.6	14,815	2,290,000						
Indeno(1,2,3-cd)pyrene	<7.9	<183	<8.1	<8.0	ns	148						
1-Methylnaphthalene	<10.4	8430	35.4	<10.6	ns	15,600						
2-Methylnaphthalene	<10.4	17900	75.8	<10.6	ns	229,000						
Naphthalene	<10.4	14900	38.8	<10.6	658.7	5,150						
Phenanthrene	<10.4	<240	<10.7	<10.6	ns	ns						
Pyrene	<10.4	<240	<10.7	<10.6	54,772	1,720,000						
METALS												
Lead	11.6	17.9	11.1	17.0	27	400						

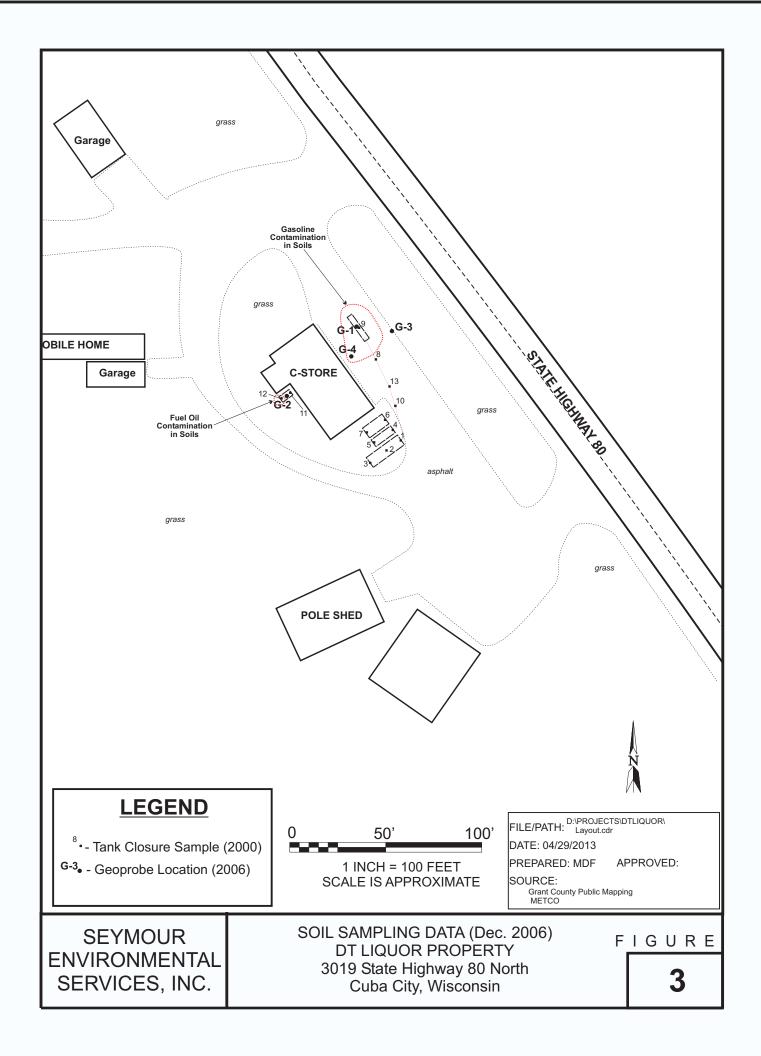
DRO and GRO and Metals reported in mg/kg
PVOCs and PAHs are reported in ug/kg

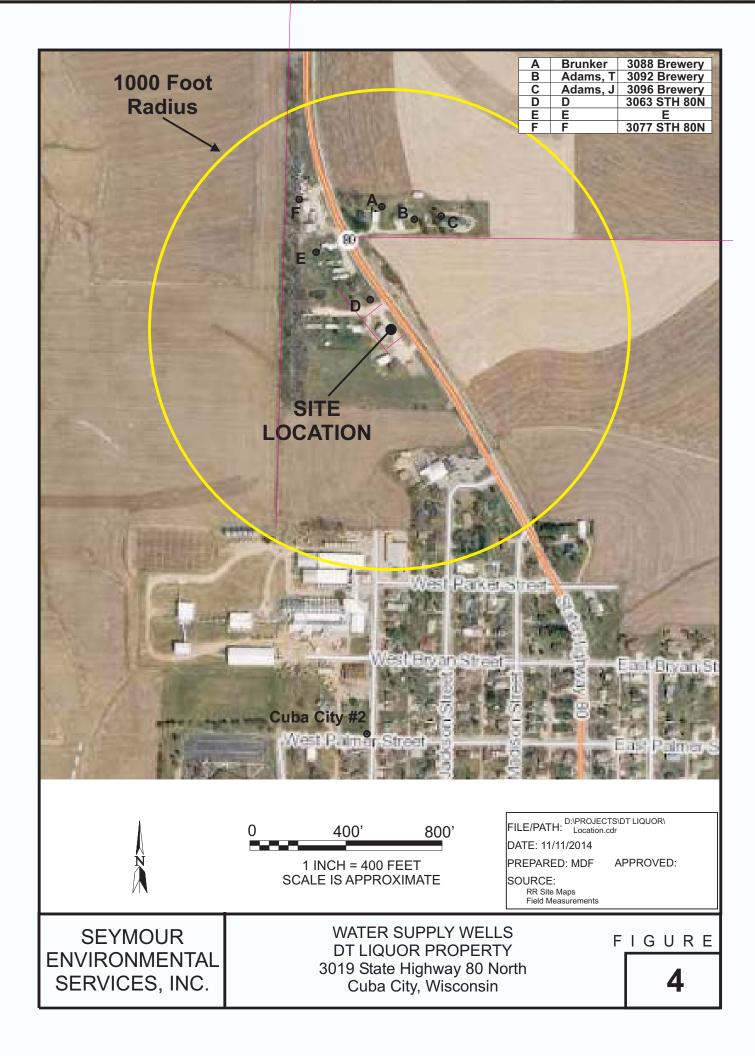
- GW Prot RCL = Groundwater Protection RCL (exceedances bold)

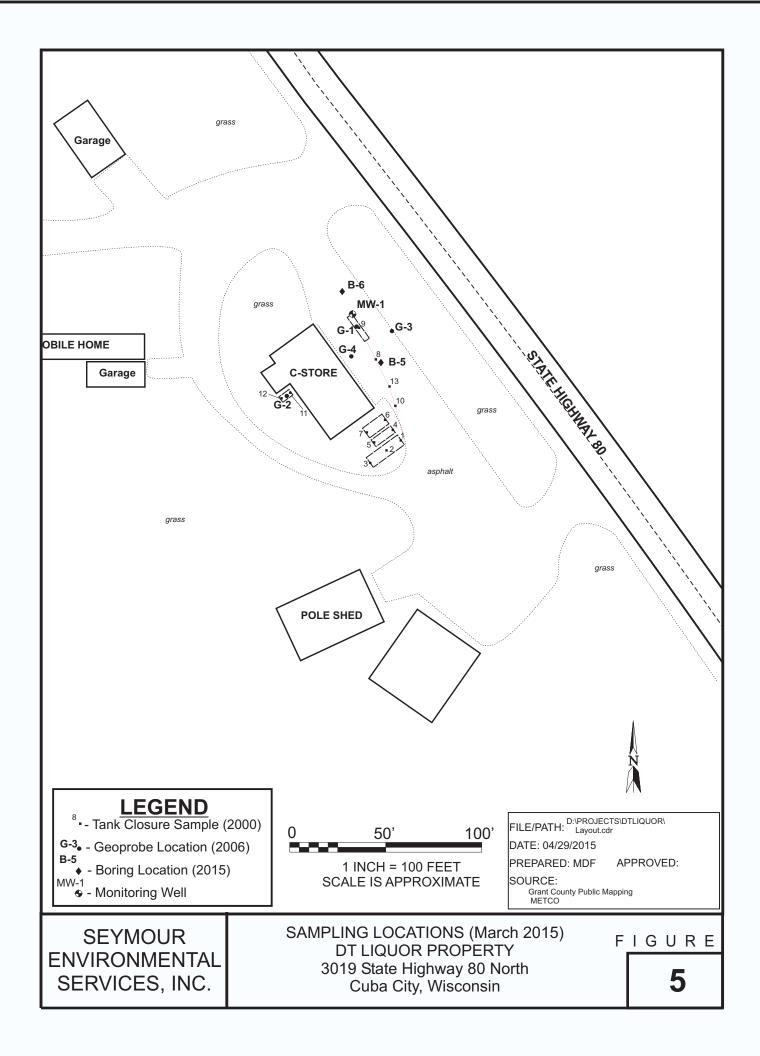
- Non-industrial Direct Contact Hazard Level (exceedances underlined) - Soil standards from R&R Calculator using Wisconsin defaults

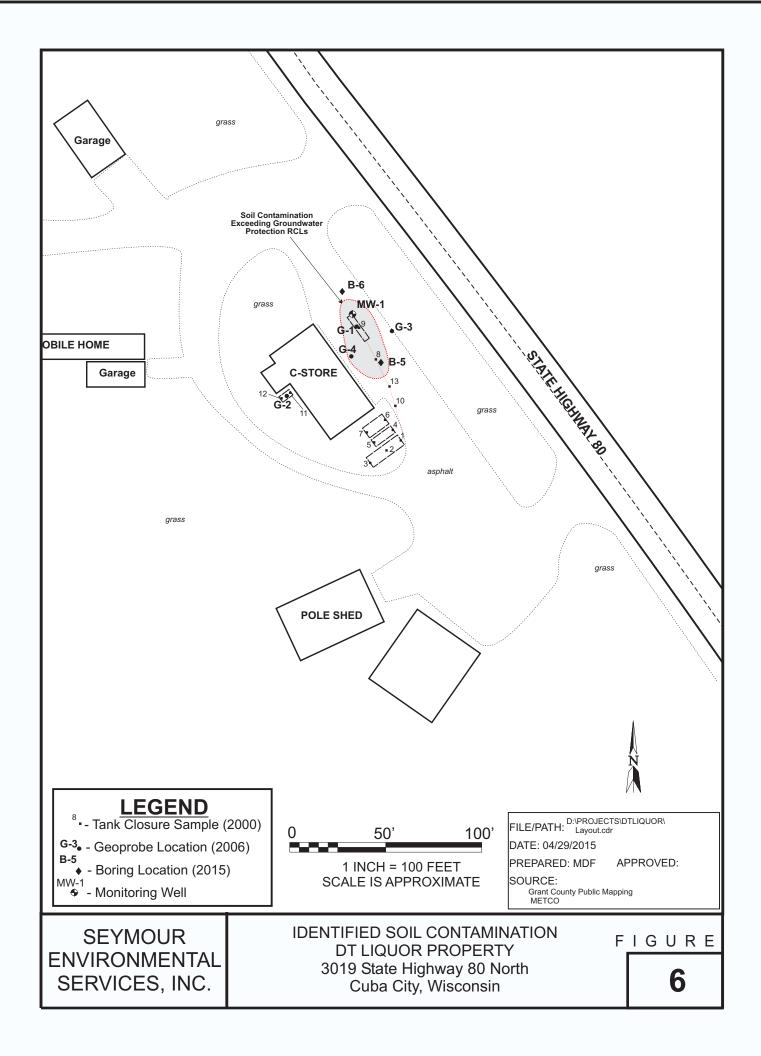

- na = not analyzed

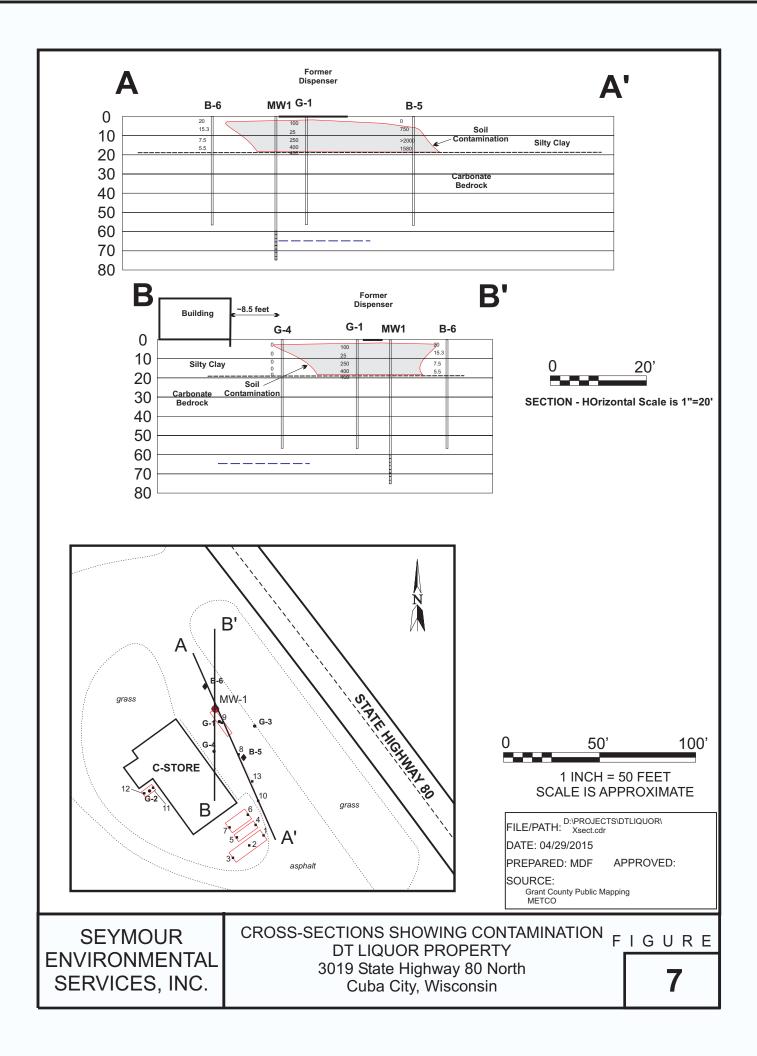

- ns = no standard established


	DT Liquor	TABLE 4 NDWATER ANA and Convenience S yay 80 North - Cub	Store					
			NRI	40				
Sample I.D.	MV	V-1	PAL	ES				
Date	03/09/15	06/18/15						
GW Depth (ft)	64.46	63.52						
Select VOCs								
Benzene	< 0.50	< 0.50	0.5	5				
1,2 Dichloroethane	< 0.17	< 0.17	0.5	5				
Ethylbenzene	< 0.50	< 0.50	140	700				
Methyl-tert-butyl ether	< 0.17	< 0.17	12	60				
Toluene	0.94 (J)	< 0.50	160	800				
1,3,5 Trimethylbenzene	< 0.50	< 0.50	ns	ns				
1,2,4 Trimethylbenzene	< 0.50	< 0.50	ns	ns				
Total Trimethylbenzenes	<1.5	<1.5	96	480				
Xylenes, -m, -p	<1.0	<1.0	ns	ns				
Xylene, -o	< 0.50	< 0.50	ns	ns				
Fotal Xylenes	<1.5	<1.5	400	2000				
Naphthalene	<2.5	<2.5	10	100				
PAHs								
Acenaphthene	0.0096 (J)	< 0.0045	ns	ns				
Acenaphthylene	0.0065 (J)	< 0.0045	ns	ns				
Anthracene	< 0.0040	< 0.0037	600	3000				
Benzo(a)anthracene	0.0095 (J)	< 0.0047	ns	ns				
Benzo(a)pyrene	< 0.0044	< 0.0040	0.02	0.2				
Benzo(b)fluoranthene	< 0.0053	< 0.0048	0.02	0.2				
Benzo(g,h,i)perylene	< 0.0035	< 0.0032	ns	ns				
Benzo(k)fluoranthene	< 0.0056	< 0.0051	ns	ns				
Dibenzo(a,h)anthracene	< 0.0056	< 0.0051	ns	ns				
Chrysene	0.0055 (J)	0.032	0.02	0.2				
Fluoranthene	0.0097 (J)	< 0.0085	80	400				
Fluorene	0.045 (J)	< 0.0037	80	400				
indeno(1,2,3-cd)pyrene	< 0.0036	< 0.0033	ns	ns				
I-Methylnaphthalene	0.12	<0.0028	ns	ns				
2-Methylnaphthalene	0.026 (J)	< 0.0025	ns	ns				
Naphthalene	0.016 (J)	<0.0041	10	100				
Phenanthrene	0.027 (J)	<0.0070	ns	ns				
Pyrene	0.024 (J)	<0.0070	50	250				
METALS								
Lead	na	na	1.5	15				
 All results are reported in ug/l na = not analyzed ns = no standard established - (J) = Results estimated by lab; below quantitative limit - NR140 PAL = Preventative action limit (exceedances bold) - NR140 ES = Enforcement standard (exceedances shaded) 								


	TABLE 5 INITAL VAPOR INTRUSION SCREENING DT LIQUOR and CONVENIENCE - CUBA CITY, WISCONSIN									
WDNR VAPOR SCREENING CRITERIA- PETROLEUM	SITE CONDITIONS COMPARED TO VAPOR SCREENING									
Petroleum-related contaminants can be detected by smell and causes irritation of the mucous membrane. Building occupants should be asked if they have noted petroleum odors.	Occupants in the adjacent building on site do not report noting petroleum odors. Therefore, immediate assessment of vapor intrusion potential is not required.									
Free-phase product that has the potential for off-gassing vapors underlies a building or is within 30 feet, horizontally or vertically, of a building foundation	Free-phase product has not been identified at the site. The water table is present at a depth of over 60 feet. Thus, even if free-phase product was present, it would not be within 30 feet of the building.									
Petroleum contaminated soil with the potential for off-gassing vapors are within 5 feet or less of a building foundation	The petroleum contaminated soils do not appear to be within 5 feet of the building foundation. Only low levels of soil contamination were identified in the borings near to the building.									
Benzene concentration in groundwater underlying a building is $> 1,000$ ppb and there is less than 20 feet of unsaturated soil between the groundwater and the building foundation	Benzene was not detected in groundwater at the property. Therefore, benzene in the groundwater is less than 1,000 ug/l screening level cited in the guidance. Additionally, the groundwater is over 60 feet deep.									
Groundwater contaminated with petroleum product above the Wisconsin's groundwater preventative action limit (PAL) is entering a building or in contact with the building's foundation, or is on water intercepted by the building's foundation drain system, including sumps	Groundwater should not come into contact with the building foundation or drain system since the water-table at the site is located at a depth of approximately 65 feet.									
Petroleum vapors are present that may migrate from the petroleum source and move through preferential pathways (sewer lines, fractured bedrock, etc.) into a building There is no indication of migration of petroleum vapors via preferential pathways parcel.										
Where no petroleum odors are detected, vapor intrusion can be ruled out at most petroleum releases based on the presence of 5 feet (in the horizontal and vertical direction) of clean, unsaturated soil with an oxygen content $\geq 5\%$ between the residual petroleum and the building.										


FIGURES





APPENDIX A

BORING LOGS AND WELL CONSTRUCTION FORM

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION Form 4400-122 Page 1 of ____

					<u> </u>						-		age I o	
	y/Projec Jiquor	t Name				Project N 03022-2				Licens MW-		nit/Mor	itoring	Number
	g Drilled	by					/		-+	Date In	nstalled	1		
Badg	er Stat	e (Alex	x Plummer) Seymour Environmental (R	lobyi	n Sey	ymour))			03/06		5		
Boring MW-	g or Well	Numbe	r WI Unique Well Number (assigned by DNI VU 856	R)		Borehole	e Dian	neter		Water		S	urface E	levation
		1/4 of 9	V U 830 Section _ 25 _ T _ 2 _ N _ R _ 1	W		2-inch 65 ft Grid Location (if applicable)								
Coun	•	Grant	County Code 22		(Civil T	own	Cuba	ı City	7				
S	R E	D			D								7	
А	С	Е		W	Ι			Stable		Soil P	roper	ties		
M P	O V	P T	SOIL/ROCK DESCRIPTION	E L	A G	U S	R Q	O V						Blow Count
L	Е	Н		L	R	С	D	М						
Е	R Y	(ft)			A M	S		(vppm)	q	W	LL	PL	P200	
		Surf	Gravel											
			Base coarse-sandy gravel			GW								
			Blind drilled to 19 ft,											
			hc odor 8 ft-19 Cutting-slightly silty clay,			CL								
		20	Same as above, dense			CL								
			Set auger at 20 ft											
			Air drilled to 79 ft											
			Set well at 75											
Signa	ature		Rokin Sunion			Firm	: Se	eymour E	nvirc	nmen	tal Se	ervice	s, Inc.	
5			Many n Ougrow			1		-						

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION Form 4400-122 Page 1 of <u>1</u>

	y/Project	t Name				I	Project N	lumbe	er			e/Perm		itoring	Number
DT L Boring	iquor Drilled	hv			(3022-26	52317			B-5 Date Ir	nstaller	1			
			Plummer) Seymour Environmental (R	oby	n S	Sey	mour)				03/09				
Boring		Number)		E	orehole	Dian	neter	r Water Level Surface Elevation					levation
B-5 SW 1/4	of NE	¹ ⁄4 of S	ection <u>28</u> T <u>4</u> N R <u>13</u>	E	l	2	2-inch na Grid Location (if applicable)								
					-										
Coun	-	Grant	County Code 22	1		(Civil To	own	Cuba	t City					
S A	R E C	D E		W		D I			Stable	S	oil P	roper	ties		
M P	O V	P T	SOIL/ROCK DESCRIPTION	E L		A G	U S	R Q	O V						Blow Count
L	Е	Н	DESCRIPTION	L	, .	R	С	D	М						Count
Е	R Y	(ft)				A M	S		(vppm)	q	W	LL	PL	P200	
		Surf	Gravel Medium brown slightly silty clay				CL		0						8, 18
1		5	Gray brown sandy silt with clay				CL								5, 5
			Slight hc odor												
			Gray stained cuttings				CL		750						
		10													
			Gray brown stiff clay, hc odor				CL		>2000						
		15	,												
2		15													3, 4
		17	End of Boring				CL		1580						4,3
		20													
Signa	iture		Rokyn Supriow				Firm	: Se	eymour E	nviro	nmen	tal Se	ervice	s, Inc.	

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION Form 4400-122 Page 1 of <u>1</u>

	y/Projec	t Name				I	Project N	Jumbe	er			e/Perm		itoring	Number
	iquor Drilled	by				10)3022-26	52317			B-6 Date Ir	nstalled	1		
Badg	er Stat	e (Alex	R Plummer) Seymour Environmental (R	oby	yn S						03/09	/2015	5		
Boring B-6	g or Well	Number	WI Unique Well Number (assigned by DNF	R)			Borehole 2-inch	h Water Level Surface Elevation					levation		
	of <u>NE</u>	¹ ⁄4 of S	Section <u>28</u> T <u>4</u> N R <u>13</u>	E	E	Grid Location (if applicable)									
Coun	ty (Grant	County Code 22			(Civil T	own	Cuba	ı City					
S	R E	D				D								7	
A M	C O	E P	SOIL/ROCK	W E	7	I A	U R	R	Stable O		Soil Pi	roperties			Blow
Р	V	Т	DESCRIPTION	L	. (G	S	Q	V						Count
L E	E R Y	H (ft)		L	1	R A M	C S	D	M (vppm)	q	w	LL	PL	P200	
	I	Surf	Gravel Medium brown slightly silty clay			VI	CL		20						20, 12
1			Wedium brown sugnity sity eray				CL		20						20, 12 5, 6
		5		-			CL								
			Medium brown slightly silty clay				CL		15.3						
		10													
				1			đ								
			Brown stiff clay, hc odor				CL		7.5						
		15													
2							CL		5.5						6, 5 5, 7
		17	End of Boring				-								- 7 -
		20		-											
Signa	ature						Firm	· Sc	ymour E	nviro	nmen	tal Se		s Inc	
Sigil	une		Rokyn Sugnow				1 11 11		ymour E		mien	an 50		s, me.	

Deserves of Maturel Deserves	id Waste 🛛 Haz. Waste 🗖 & Repair 🗂 Underground		MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 4-90
Facility/Project Name	Local Grid Location of We	Tanks Li Omer Li	Well Name
* wormey is reject i wind	ft. HN.	ft. 🛛 🖳	AMW-1
Facility License, Permit or Monitoring Number	Ond Origin Location	ong or	Wis, Unique Well Number DNR Well Number
Type of Well Water Table Observation Well 11	St. Plane ft		Date Well Installed
Piezometer 12	Section Location of Waste/		$\frac{O3}{mm} \frac{10}{dd} \frac{15}{yy}$
Distance Well Is From Waste/Source Boundary	1/4 of 1/4 of Sec.		Well Installed By: (Person's Name and Firm)
ft.	Location of Well Relative t		Budge State Drilling
Is Well A Point of Enforcement Std. Application?	u 🛛 Upgradient s	Sidegradient	Alex Plummer
A. Protective pipe, top elevation _ Flush_	d Downgradient r	1. Cap and lock?	
B. Well casing, top elevation	it. MSL	2. Protective cov a. Inside diam	
C. Land surface elevation	it. MSL	b. Length:	22ft.
		c. Material:	Steel 🖬 04
D. Surface seal, bottom ft. MSL or			Other 🛛 🛄
12. USCS classification of soil near screen:	- Keeki	d. Additional	
GP GM GC GC GW SW G SM SC G ML MH CL G		If yes, desc	ribe:
Bedrock D		3. Surface seal:	Bentonite 🔲 30
13. Sieve analysis attached?	Vo 🐰		0 ± 5 Concrete \Box 01
14. Drilling method used: Rotary	50		een well casing and protective pipe:
Hollow Stem Auger			Bentonite 🖬 30
Other 🛛		*	Annular space seal
			Other 🛛 🛄
15. Drilling fluid used: Water 202 Air 2	01	5. Annular space	e seal: a. Granular Bentonite 🛛 33
Drilling Mud 🗆 03 None 🗖	99	bLbs/g	al mud weight Bentonite-sand slurry 🗖 35
16. Drilling additives used? Yes	í.	& cLbs/g	al mud weight Bentonite slurry 🛛 31
	NO		ntonite Bentonite-cement grout \Box 50
Describe		00	Ft ³ volume added for any of the above
17. Source of water (attach analysis):		f. How instal	
4 BC1 K		**	Gravity 208
		6 Bentonite sea	a. Bentonite granules 🔲 _33
E. Bentonite seal, top ft. MSL or	Əft.		$\square 3/8$ in. $\square 1/2$ in. Bentonite pellets $\square 32$
		C	
F. Fine sand, top ft. MSL or (/) ft.	7. Fine sand ma	terial: Manufacturer, product name & mesh size
	4		D flint H15
G. Filter pack, top ft. MSL or		b. Volume ad	
H. Screen joint, top ft. MSL or	e5_ft	a0	aterial: Manufacturer, product name and mesh size
I. Well bottom ft. MSL or	K ft.	b. Volume ac 9. Well casing:	itiledft ³ Flush threaded PVC schedule 40 Z 23
		ie in the statig.	Flush threaded PVC schedule 80 24
J. Filter pack, bottom ft. MSL or		10. Screen mater	Other 🛛 🔛
K. Borehole, bottom ft. MSL or	(ft.	a. Screen typ	
L. Borehole, diameter 10"/(g in.			Continuous slot 🔲 01
		b. Manufactu	rer Mono flux
M. O.D. well casing _2.38_ in.		c. Slot size: d. Slotted len	0. <u>C2 16</u> in.
N. I.D. well casing 2.0 in.			rial (below filter pack): None 14
I hereby certify that the information on this	s form is true and cor	rect to the best of my	knowleage.
Signature Out arm		State Drilling	INC,

Please complete both sides of this form and return to the appropriate DNR/office listed at the top of this form as required by chs. 144, 147 and 160, Wis. Stats., and ch. NR 141, Wis. Ad. Code. In accordance with ch. 144, Wis Stats., failure to file this form may result in a forfeiture of not less than \$10, nor more than \$5000 for each day of violation. In accordance with ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. NOTE: Shaded areas are for DNR use only. See instructions for more information including where the completed form should be sent.

APPENDIX B

LABORATORY REPORTS

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

June 29, 2015

Robyn Seymour Seymour Environmental Services, INC. 2531 Dyreson Road Mc Farland, WI 53558

RE: Project: DT LIQUOR Pace Project No.: 40116998

Dear Robyn Seymour:

Enclosed are the analytical results for sample(s) received by the laboratory on June 23, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milent

Dan Milewsky dan.milewsky@pacelabs.com Project Manager

Enclosures

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: DT LIQUOR

Pace Project No.: 40116998

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 North Dakota Certification #: R-150 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 US Dept of Agriculture #: S-76505 Wisconsin Certification #: 405132750

SAMPLE SUMMARY

40116998001	MW-1	Water	06/18/15 08:00	06/23/15 08:15
Lab ID	Sample ID	Matrix	Date Collected	Date Received
Pace Project No	o.: 40116998			
Project:	DT LIQUOR			

SAMPLE ANALYTE COUNT

Project:	DT LIQUOR
Pace Project No.:	40116998

Lab ID	Sample ID	Method	Analysts Report			
40116998001	MW-1	EPA 8270 by HVI	TPO	20	PASI-G	
		EPA 8260	LAP	64	PASI-G	

PROJECT NARRATIVE

Project: DT LIQUOR Pace Project No.: 40116998

Method: EPA 8270 by HVI

Description:8270 MSSV PAH by HVIClient:SEYMOUR ENVIRONMENTAL SERVICES, INC.Date:June 29, 2015

General Information:

1 sample was analyzed for EPA 8270 by HVI. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

QC Batch: OEXT/27045

B: Analyte was detected in the associated method blank.

• BLANK for HBN 196715 [OEXT/270 (Lab ID: 1182061)

Chrysene

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: OEXT/27045

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 40117051001

- R1: RPD value was outside control limits.
 - MSD (Lab ID: 1182064)
 - Benzo(a)pyrene
 - Benzo(b)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(k)fluoranthene

PROJECT NARRATIVE

Project: DT LIQUOR Pace Project No.: 40116998

Method:EPA 8270 by HVIDescription:8270 MSSV PAH by HVIClient:SEYMOUR ENVIRONMENTAL SERVICES, INC.Date:June 29, 2015

QC Batch: OEXT/27045

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 40117051001

R1: RPD value was outside control limits.

- Dibenz(a,h)anthracene
- Indeno(1,2,3-cd)pyrene

Additional Comments:

PROJECT NARRATIVE

Project: DT LIQUOR

Pace Project No.: 40116998

Method: EPA 8260

Description:8260 MSVClient:SEYMOUR ENVIRONMENTAL SERVICES, INC.Date:June 29, 2015

General Information:

1 sample was analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: DT LIQUOR

Pace Project No.: 40116998

Sample: MW-1	Lab ID:	40116998001	Collected	d: 06/18/1	5 08:00	Received: 06/	23/15 08:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by HVI	Analytical	Method: EPA 8	270 by HVI	Preparatio	on Metho	od: EPA 3510			
Acenaphthene	<0.0045	ug/L	0.045	0.0045	1	06/24/15 09:50	06/26/15 14:11	83-32-9	
Acenaphthylene	<0.0045	ug/L	0.045	0.0045	1	06/24/15 09:50	06/26/15 14:11	208-96-8	
Anthracene	<0.0037	ug/L	0.045	0.0037	1	06/24/15 09:50	06/26/15 14:11	120-12-7	
Benzo(a)anthracene	<0.0047	ug/L	0.045	0.0047	1	06/24/15 09:50	06/26/15 14:11	56-55-3	
Benzo(a)pyrene	<0.0040	ug/L	0.045	0.0040	1	06/24/15 09:50	06/26/15 14:11	50-32-8	
Benzo(b)fluoranthene	<0.0048	ug/L	0.045	0.0048	1	06/24/15 09:50	06/26/15 14:11	205-99-2	
Benzo(g,h,i)perylene	<0.0032	ug/L	0.045	0.0032	1	06/24/15 09:50	06/26/15 14:11	191-24-2	
Benzo(k)fluoranthene	<0.0051	ug/L	0.045	0.0051	1	06/24/15 09:50	06/26/15 14:11	207-08-9	
Chrysene	0.032J	ug/L	0.045	0.0039	1	06/24/15 09:50	06/26/15 14:11	218-01-9	В
Dibenz(a,h)anthracene	<0.0051	ug/L	0.045	0.0051	1	06/24/15 09:50	06/26/15 14:11	53-70-3	
Fluoranthene	<0.0085	ug/L	0.045	0.0085	1	06/24/15 09:50	06/26/15 14:11		
Fluorene	<0.0037	ug/L	0.045	0.0037	1	06/24/15 09:50	06/26/15 14:11		
Indeno(1,2,3-cd)pyrene	<0.0033	ug/L	0.045	0.0033	1	06/24/15 09:50	06/26/15 14:11		
1-Methylnaphthalene	<0.0028	ug/L	0.045	0.0028	1	06/24/15 09:50	06/26/15 14:11		
2-Methylnaphthalene	<0.0025	ug/L	0.045	0.0025	1	06/24/15 09:50	06/26/15 14:11		
Naphthalene	<0.0041	ug/L	0.045	0.0041	1	06/24/15 09:50	06/26/15 14:11		
Phenanthrene	<0.0070	ug/L	0.045	0.0070	1	06/24/15 09:50	06/26/15 14:11		
Pyrene	<0.0070	ug/L	0.045	0.0070	1	06/24/15 09:50	06/26/15 14:11		
Surrogates	<0.0070	ug/L	0.040	0.0070		00/24/10 00:00	00/20/10 14.11	120 00 0	
2-Fluorobiphenyl (S)	58	%	40-130		1	06/24/15 09:50	06/26/15 14:11	321-60-8	
Terphenyl-d14 (S)	56	%	26-135		1	06/24/15 09:50	06/26/15 14:11		
8260 MSV		Method: EPA 8				00,2 ,, 10 00100	00,20,101111		
Benzene	<0.50		1.0	0.50	1		06/25/15 15:36	71 42 2	
	<0.50	ug/L		0.50					
Bromobenzene		ug/L	1.0		1 1		06/25/15 15:36		
Bromochloromethane	<0.34 <0.50	ug/L	1.0	0.34	1		06/25/15 15:36		
Bromodichloromethane		ug/L	1.0	0.50	1		06/25/15 15:36		
Bromoform	<0.50	ug/L	1.0	0.50			06/25/15 15:36		
Bromomethane	<2.4	ug/L	5.0	2.4	1		06/25/15 15:36		
n-Butylbenzene	<0.50	ug/L	1.0	0.50	1		06/25/15 15:36		
sec-Butylbenzene	<2.2	ug/L	5.0	2.2	1		06/25/15 15:36		
tert-Butylbenzene	<0.18	ug/L	1.0	0.18	1		06/25/15 15:36		
Carbon tetrachloride	<0.50	ug/L	1.0	0.50	1		06/25/15 15:36		
Chlorobenzene	<0.50	ug/L	1.0	0.50	1		06/25/15 15:36		
Chloroethane	<0.37	ug/L	1.0	0.37	1		06/25/15 15:36	75-00-3	
Chloroform	<2.5	ug/L	5.0	2.5	1		06/25/15 15:36		
Chloromethane	<0.50	ug/L	1.0	0.50	1		06/25/15 15:36		
2-Chlorotoluene	<0.50	ug/L	1.0	0.50	1		06/25/15 15:36		
4-Chlorotoluene	<0.21	ug/L	1.0	0.21	1		06/25/15 15:36		
1,2-Dibromo-3-chloropropane	<2.2	ug/L	5.0	2.2	1		06/25/15 15:36		
Dibromochloromethane	<0.50	ug/L	1.0	0.50	1		06/25/15 15:36		
1,2-Dibromoethane (EDB)	<0.18	ug/L	1.0	0.18	1		06/25/15 15:36		
Dibromomethane	<0.43	ug/L	1.0	0.43	1		06/25/15 15:36	74-95-3	
1,2-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		06/25/15 15:36	95-50-1	
1,3-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		06/25/15 15:36	541-73-1	
1,4-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		06/25/15 15:36	106 46 7	

Project: D	T LIQUOR
------------	----------

Pace Project No.: 40116998

Sample: MW-1	Lab ID:	40116998001	Collected	d: 06/18/1	5 08:00	Received: 06	6/23/15 08:15 I	Matrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
Dichlorodifluoromethane	<0.22	ug/L	1.0	0.22	1		06/25/15 15:3	6 75-71-8	
1,1-Dichloroethane	<0.24	ug/L	1.0	0.24	1		06/25/15 15:3	6 75-34-3	
1,2-Dichloroethane	<0.17	ug/L	1.0	0.17	1		06/25/15 15:3	6 107-06-2	
1,1-Dichloroethene	<0.41	ug/L	1.0	0.41	1		06/25/15 15:3	6 75-35-4	
cis-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		06/25/15 15:3	6 156-59-2	
trans-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		06/25/15 15:3	6 156-60-5	
1,2-Dichloropropane	<0.23	ug/L	1.0	0.23	1		06/25/15 15:3	6 78-87-5	
1,3-Dichloropropane	<0.50	ug/L	1.0	0.50	1		06/25/15 15:3	6 142-28-9	
2,2-Dichloropropane	<0.48	ug/L	1.0	0.48	1		06/25/15 15:3	6 594-20-7	
1,1-Dichloropropene	<0.44	ug/L	1.0	0.44	1		06/25/15 15:3	6 563-58-6	
cis-1,3-Dichloropropene	<0.50	ug/L	1.0	0.50	1		06/25/15 15:3	6 10061-01-5	
trans-1,3-Dichloropropene	<0.23	ug/L	1.0	0.23	1		06/25/15 15:3	6 10061-02-6	
Diisopropyl ether	<0.50	ug/L	1.0	0.50	1		06/25/15 15:3	6 108-20-3	
Ethylbenzene	<0.50	ug/L	1.0	0.50	1		06/25/15 15:3	6 100-41-4	
Hexachloro-1,3-butadiene	<2.1	ug/L	5.0	2.1	1		06/25/15 15:3	6 87-68-3	
Isopropylbenzene (Cumene)	<0.14	ug/L	1.0	0.14	1		06/25/15 15:3	6 98-82-8	
p-lsopropyltoluene	<0.50	ug/L	1.0	0.50	1		06/25/15 15:3	6 99-87-6	
Methylene Chloride	<0.23	ug/L	1.0	0.23	1		06/25/15 15:3	6 75-09-2	
Methyl-tert-butyl ether	<0.17	ug/L	1.0	0.17	1		06/25/15 15:3	6 1634-04-4	
Naphthalene	<2.5	ug/L	5.0	2.5	1		06/25/15 15:3	6 91-20-3	
n-Propylbenzene	<0.50	ug/L	1.0	0.50	1		06/25/15 15:3	6 103-65-1	
Styrene	<0.50	ug/L	1.0	0.50	1		06/25/15 15:3	6 100-42-5	
1,1,1,2-Tetrachloroethane	<0.18	ug/L	1.0	0.18	1		06/25/15 15:3	6 630-20-6	
1,1,2,2-Tetrachloroethane	<0.25	ug/L	1.0	0.25	1		06/25/15 15:3	6 79-34-5	
Tetrachloroethene	<0.50	ug/L	1.0	0.50	1		06/25/15 15:3	6 127-18-4	
Toluene	<0.50	ug/L	1.0	0.50	1		06/25/15 15:3	6 108-88-3	
1,2,3-Trichlorobenzene	<2.1	ug/L	5.0	2.1	1		06/25/15 15:3	6 87-61-6	
1,2,4-Trichlorobenzene	<2.2	ug/L	5.0	2.2	1		06/25/15 15:3	6 120-82-1	
1,1,1-Trichloroethane	<0.50	ug/L	1.0	0.50	1		06/25/15 15:3	6 71-55-6	
1,1,2-Trichloroethane	<0.20	ug/L	1.0	0.20	1		06/25/15 15:3	6 79-00-5	
Trichloroethene	<0.33	ug/L	1.0	0.33	1		06/25/15 15:3	6 79-01-6	
Trichlorofluoromethane	<0.18	ug/L	1.0	0.18	1		06/25/15 15:3	6 75-69-4	
1,2,3-Trichloropropane	<0.50	ug/L	1.0	0.50	1		06/25/15 15:3	6 96-18-4	
1,2,4-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		06/25/15 15:3	6 95-63-6	
1,3,5-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		06/25/15 15:3	6 108-67-8	
Vinyl chloride	<0.18	ug/L	1.0	0.18	1		06/25/15 15:3	6 75-01-4	
m&p-Xylene	<1.0	ug/L	2.0	1.0	1		06/25/15 15:3	6 179601-23-1	
o-Xylene	<0.50	ug/L	1.0	0.50	1		06/25/15 15:3	6 95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	103	%	70-130		1		06/25/15 15:3	6 460-00-4	
Dibromofluoromethane (S)	101	%	70-130		1		06/25/15 15:3		
Toluene-d8 (S)	101	%	70-130		1		06/25/15 15:3	6 2037-26-5	

Project: DT LIQUOR

Pace Project No.: 40116998

ce Project No.. 40110998

QC Batch:	MSV/29126	Analysis Method:	EPA 8260
QC Batch Method:	EPA 8260	Analysis Description:	8260 MSV
Associated Lab Sam	ples: 40116998001		

Matrix: Water

METHOD BLANK: 1182707

Associated Lab Samples: 40116998001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
,1,1,2-Tetrachloroethane	ug/L	<0.18	1.0	06/25/15 06:59	
,1,1-Trichloroethane	ug/L	<0.50	1.0	06/25/15 06:59	
,1,2,2-Tetrachloroethane	ug/L	<0.25	1.0	06/25/15 06:59	
,1,2-Trichloroethane	ug/L	<0.20	1.0	06/25/15 06:59	
,1-Dichloroethane	ug/L	<0.24	1.0	06/25/15 06:59	
,1-Dichloroethene	ug/L	<0.41	1.0	06/25/15 06:59	
,1-Dichloropropene	ug/L	<0.44	1.0	06/25/15 06:59	
,2,3-Trichlorobenzene	ug/L	<2.1	5.0	06/25/15 06:59	
,2,3-Trichloropropane	ug/L	<0.50	1.0	06/25/15 06:59	
,2,4-Trichlorobenzene	ug/L	<2.2	5.0	06/25/15 06:59	
,2,4-Trimethylbenzene	ug/L	<0.50	1.0	06/25/15 06:59	
,2-Dibromo-3-chloropropane	ug/L	<2.2	5.0	06/25/15 06:59	
,2-Dibromoethane (EDB)	ug/L	<0.18	1.0	06/25/15 06:59	
,2-Dichlorobenzene	ug/L	<0.50	1.0	06/25/15 06:59	
,2-Dichloroethane	ug/L	<0.17	1.0	06/25/15 06:59	
,2-Dichloropropane	ug/L	<0.23	1.0	06/25/15 06:59	
3,5-Trimethylbenzene	ug/L	<0.50	1.0	06/25/15 06:59	
,3-Dichlorobenzene	ug/L	<0.50	1.0	06/25/15 06:59	
,3-Dichloropropane	ug/L	<0.50	1.0	06/25/15 06:59	
,4-Dichlorobenzene	ug/L	<0.50	1.0	06/25/15 06:59	
2-Dichloropropane	ug/L	<0.48	1.0	06/25/15 06:59	
-Chlorotoluene	ug/L	<0.50	1.0	06/25/15 06:59	
Chlorotoluene	ug/L	<0.21	1.0	06/25/15 06:59	
enzene	ug/L	<0.50	1.0	06/25/15 06:59	
romobenzene	ug/L	<0.23	1.0	06/25/15 06:59	
romochloromethane	ug/L	<0.34	1.0	06/25/15 06:59	
romodichloromethane	ug/L	<0.50	1.0	06/25/15 06:59	
romoform	ug/L	<0.50	1.0	06/25/15 06:59	
romomethane	ug/L	<2.4	5.0	06/25/15 06:59	
arbon tetrachloride	ug/L	<0.50	1.0	06/25/15 06:59	
hlorobenzene	ug/L	<0.50	1.0	06/25/15 06:59	
Chloroethane	ug/L	<0.37	1.0	06/25/15 06:59	
Chloroform	ug/L	<2.5	5.0	06/25/15 06:59	
Chloromethane	ug/L	<0.50	1.0	06/25/15 06:59	
is-1,2-Dichloroethene	ug/L	<0.26	1.0	06/25/15 06:59	
is-1,3-Dichloropropene	ug/L	<0.20	1.0	06/25/15 06:59	
Vibromochloromethane	ug/L	<0.50	1.0	06/25/15 06:59	
Vibromomethane	ug/L	<0.43	1.0	06/25/15 06:59	
Vichlorodifluoromethane	ug/L	<0.43	1.0	06/25/15 06:59	
iisopropyl ether	ug/L	<0.22	1.0	06/25/15 06:59	
thylbenzene	ug/L	<0.50	1.0	06/25/15 06:59	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: DT LIQUOR Pace Project No.: 40116998

METHOD BLANK: 1182707		Matrix:	Water		
Associated Lab Samples: 4011699	98001				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Hexachloro-1,3-butadiene	ug/L	<2.1	5.0	06/25/15 06:59	
Isopropylbenzene (Cumene)	ug/L	<0.14	1.0	06/25/15 06:59	
m&p-Xylene	ug/L	<1.0	2.0	06/25/15 06:59	
Methyl-tert-butyl ether	ug/L	<0.17	1.0	06/25/15 06:59	
Methylene Chloride	ug/L	<0.23	1.0	06/25/15 06:59	
n-Butylbenzene	ug/L	<0.50	1.0	06/25/15 06:59	
n-Propylbenzene	ug/L	<0.50	1.0	06/25/15 06:59	
Naphthalene	ug/L	<2.5	5.0	06/25/15 06:59	
o-Xylene	ug/L	<0.50	1.0	06/25/15 06:59	
p-Isopropyltoluene	ug/L	<0.50	1.0	06/25/15 06:59	
sec-Butylbenzene	ug/L	<2.2	5.0	06/25/15 06:59	
Styrene	ug/L	<0.50	1.0	06/25/15 06:59	
tert-Butylbenzene	ug/L	<0.18	1.0	06/25/15 06:59	
Tetrachloroethene	ug/L	<0.50	1.0	06/25/15 06:59	
Toluene	ug/L	<0.50	1.0	06/25/15 06:59	
trans-1,2-Dichloroethene	ug/L	<0.26	1.0	06/25/15 06:59	
trans-1,3-Dichloropropene	ug/L	<0.23	1.0	06/25/15 06:59	
Trichloroethene	ug/L	<0.33	1.0	06/25/15 06:59	
Trichlorofluoromethane	ug/L	<0.18	1.0	06/25/15 06:59	
Vinyl chloride	ug/L	<0.18	1.0	06/25/15 06:59	
4-Bromofluorobenzene (S)	%	105	70-130	06/25/15 06:59	
Dibromofluoromethane (S)	%	106	70-130	06/25/15 06:59	
Toluene-d8 (S)	%	107	70-130	06/25/15 06:59	

LABORATORY CONTROL SAMPLE &	LCSD: 1182708		11	82709						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/L	50	57.2	59.7	114	119	70-130	4	20	
1,1,2,2-Tetrachloroethane	ug/L	50	44.6	44.7	89	89	70-130	0	20	
1,1,2-Trichloroethane	ug/L	50	50.1	51.0	100	102	70-130	2	20	
1,1-Dichloroethane	ug/L	50	54.0	52.8	108	106	70-130	2	20	
1,1-Dichloroethene	ug/L	50	52.3	54.6	105	109	70-130	4	20	
1,2,4-Trichlorobenzene	ug/L	50	51.5	53.0	103	106	70-130	3	20	
1,2-Dibromo-3-chloropropane	ug/L	50	44.6	47.9	89	96	50-150	7	20	
1,2-Dibromoethane (EDB)	ug/L	50	51.7	53.8	103	108	70-130	4	20	
1,2-Dichlorobenzene	ug/L	50	50.5	50.7	101	101	70-130	0	20	
1,2-Dichloroethane	ug/L	50	57.2	58.1	114	116	70-131	2	20	
1,2-Dichloropropane	ug/L	50	52.6	52.8	105	106	70-130	0	20	
1,3-Dichlorobenzene	ug/L	50	49.9	49.2	100	98	70-130	2	20	
1,4-Dichlorobenzene	ug/L	50	50.3	49.9	101	100	70-130	1	20	
Benzene	ug/L	50	51.3	51.7	103	103	70-130	1	20	
Bromodichloromethane	ug/L	50	57.4	57.3	115	115	70-130	0	20	
Bromoform	ug/L	50	43.4	45.3	87	91	68-130	4	20	
Bromomethane	ug/L	50	58.8	63.4	118	127	38-137	8	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

QUALITY CONTROL DATA

Project: DT LIQUOR Pace Project No.: 40116998

LABORATORY CONTROL SAMPLE & L	CSD: 1182708		11	82709						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Carbon tetrachloride	ug/L	50	62.3	64.0	125	128	70-130	3	20	
Chlorobenzene	ug/L	50	55.1	53.7	110	107	70-130	2	20	
Chloroethane	ug/L	50	53.0	50.8	106	102	70-136	4	20	
Chloroform	ug/L	50	55.2	55.9	110	112	70-130	1	20	
Chloromethane	ug/L	50	48.6	49.5	97	99	48-144	2	20	
cis-1,2-Dichloroethene	ug/L	50	50.4	50.9	101	102	70-130	1	20	
cis-1,3-Dichloropropene	ug/L	50	47.5	48.6	95	97	70-130	2	20	
Dibromochloromethane	ug/L	50	49.0	49.4	98	99	70-130	1	20	
Dichlorodifluoromethane	ug/L	50	49.6	49.7	99	99	33-157	0	20	
Ethylbenzene	ug/L	50	58.0	57.2	116	114	70-132	1	20	
Isopropylbenzene (Cumene)	ug/L	50	60.2	60.0	120	120	70-130	0	20	
m&p-Xylene	ug/L	100	117	116	117	116	70-131	1	20	
Methyl-tert-butyl ether	ug/L	50	44.6	46.3	89	93	48-141	4	20	
Methylene Chloride	ug/L	50	48.6	52.2	97	104	70-130	7	20	
o-Xylene	ug/L	50	55.5	57.6	111	115	70-131	4	20	
Styrene	ug/L	50	56.9	56.0	114	112	70-130	2	20	
Tetrachloroethene	ug/L	50	56.2	55.1	112	110	70-130	2	20	
Toluene	ug/L	50	55.3	55.7	111	111	70-130	1	20	
trans-1,2-Dichloroethene	ug/L	50	53.0	53.1	106	106	70-130	0	20	
trans-1,3-Dichloropropene	ug/L	50	47.7	48.7	95	97	70-130	2	20	
Trichloroethene	ug/L	50	57.4	58.2	115	116	70-130	1	20	
Trichlorofluoromethane	ug/L	50	55.5	56.3	111	113	50-150	1	20	
Vinyl chloride	ug/L	50	53.3	52.9	107	106	65-142	1	20	
4-Bromofluorobenzene (S)	%				105	102	70-130			
Dibromofluoromethane (S)	%				101	106	70-130			
Toluene-d8 (S)	%				105	105	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

EPA 8270 by HVI

8270 Water PAH by HVI

Analysis Method:

Analysis Description:

Project: DT LIQUOR

Pace Project No.: 40116998

QC Batch: OEXT/27045 QC Batch Method: EPA 3510

Associated Lab Samples: 40116998001

METHOD BLANK: 1182061 Matrix: Water Associated Lab Samples: 40116998001 Blank Reporting Limit Parameter Units Result Analyzed Qualifiers 1-Methylnaphthalene 0.0066J 0.050 06/24/15 20:17 ug/L 2-Methylnaphthalene ug/L 0.0088J 0.050 06/24/15 20:17 <0.0050 Acenaphthene ug/L 0.050 06/24/15 20:17 Acenaphthylene ug/L < 0.0049 0.050 06/24/15 20:17 Anthracene ug/L < 0.0040 0.050 06/24/15 20:17 Benzo(a)anthracene ug/L < 0.0051 0.050 06/24/15 20:17 Benzo(a)pyrene ug/L < 0.0044 0.050 06/24/15 20:17 Benzo(b)fluoranthene ug/L < 0.0053 0.050 06/24/15 20:17 Benzo(g,h,i)perylene ug/L < 0.0035 0.050 06/24/15 20:17 Benzo(k)fluoranthene < 0.0056 ug/L 0.050 06/24/15 20:17 Chrysene ug/L 0.036J 0.050 06/24/15 20:17 Dibenz(a,h)anthracene ug/L < 0.0056 0.050 06/24/15 20:17 Fluoranthene < 0.0094 0.050 ug/L 06/24/15 20:17 < 0.0040 Fluorene ug/L 0.050 06/24/15 20:17 ug/L Indeno(1,2,3-cd)pyrene < 0.0036 0.050 06/24/15 20:17 Naphthalene ug/L 0.014J 0.050 06/24/15 20:17 Phenanthrene ug/L 0.019J 0.050 06/24/15 20:17 Pyrene ug/L <0.0077 0.050 06/24/15 20:17

76

112

40-130

26-135

06/24/15 20:17

06/24/15 20:17

LABORATORY CONTROL SAMPLE: 1182062

2-Fluorobiphenyl (S)

Terphenyl-d14 (S)

LABORATORT CONTROL SAMFLE.	1102002					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/L	2	1.4	68	46-130	
2-Methylnaphthalene	ug/L	2	1.4	69	47-130	
Acenaphthene	ug/L	2	1.4	68	49-130	
Acenaphthylene	ug/L	2	1.3	64	44-130	
Anthracene	ug/L	2	1.5	77	53-130	
Benzo(a)anthracene	ug/L	2	1.5	76	49-130	
Benzo(a)pyrene	ug/L	2	1.9	95	47-130	
Benzo(b)fluoranthene	ug/L	2	2.0	102	54-133	
Benzo(g,h,i)perylene	ug/L	2	1.5	74	33-132	
Benzo(k)fluoranthene	ug/L	2	2.2	110	59-143	
Chrysene	ug/L	2	2.7	136	70-157	
Dibenz(a,h)anthracene	ug/L	2	1.3	63	24-130	
Fluoranthene	ug/L	2	1.9	93	59-130	
Fluorene	ug/L	2	1.3	67	49-130	
ndeno(1,2,3-cd)pyrene	ug/L	2	1.8	92	52-130	
Naphthalene	ug/L	2	1.2	61	45-130	

%

%

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: DT LIQUOR Pace Project No.: 40116998

LABORATORY CONTROL SAMPLE:	1182062					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Phenanthrene	ug/L	2	1.6	79	60-130	
Pyrene	ug/L	2	1.9	96	64-147	
2-Fluorobiphenyl (S)	%			69	40-130	
Terphenyl-d14 (S)	%			93	26-135	

MATRIX SPIKE & MATRIX SPIKE DI	JPLICAT	E: 118206	63		1182064							
			MS	MSD								
	40	117051001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter L	Inits	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene u	ıg/L	3.2	2	2	5.0	4.4	94	62	27-130	13	42	
2-Methylnaphthalene u	ıg/L	0.046J	2	2	1.9	1.7	92	81	33-130	13	37	
Acenaphthene u	ıg/L	7.7	2	2	9.8	8.4	105	38	32-130	15	35	
Acenaphthylene u	ıg/L	0.68	2	2	2.5	2.2	90	74	34-130	14	29	
Anthracene u	ıg/L	0.84	2	2	2.7	2.3	92	71	31-130	17	29	
Benzo(a)anthracene u	ıg/L	<0.0051	2	2	1.7	1.4	83	68	35-135	20	20	
Benzo(a)pyrene u	ıg/L	<0.0044	2	2	1.5	1.0	74	51	21-139	37	22	R1
Benzo(b)fluoranthene u	ıg/L	0.0073J	2	2	1.7	1.3	83	65	26-144	25	20	R1
Benzo(g,h,i)perylene u	ıg/L	<0.0035	2	2	1.3	0.89	63	45	10-142	35	20	R1
Benzo(k)fluoranthene u	ıg/L	<0.0056	2	2	1.7	1.3	87	66	21-155	28	20	R1
Chrysene u	ıg/L	0.10	2	2	2.4	2.0	117	97	46-157	17	20	
Dibenz(a,h)anthracene	ig/L	<0.0056	2	2	1.2	0.87	61	44	10-143	33	20	R1
Fluoranthene u	ıg/L	0.91	2	2	2.8	2.4	95	73	35-138	17	20	
Fluorene u	ıg/L	3.6	2	2	5.8	4.9	110	65	28-130	17	27	
	ıg/L	<0.0036	2	2	1.3	0.89	63	44	16-139	35	20	R1
Naphthalene u	ıg/L	1.4	2	2	2.9	2.6	75	59	35-130	11	39	
Phenanthrene u	ig/L	0.45	2	2	2.5	2.1	101	83	41-131	16	22	
	ig/L	1.3	2	2	3.5	2.9	106	79	50-151	16	20	
2-Fluorobiphenyl (S)	%						91	79	40-130			
Terphenyl-d14 (S)	%						91	76	26-135			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project: DT LIQUOR Pace Project No.: 40116998

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

- B Analyte was detected in the associated method blank.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: DT LIQUOR Pace Project No.: 40116998

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40116998001	MW-1	EPA 3510	OEXT/27045	EPA 8270 by HVI	MSSV/8033
40116998001	MW-1	EPA 8260	MSV/29126		

C019a(27Jun2006)

ORIGINAL

14/06	Version 6.0 06/14/06						
Present (Not Present)	Prese	Date/Time:	Received By:	Date/Time:	Relinquished By:	Samples on HOLD are subject to special pricing and release of Ilability	Samples on special pricing
Cooler Custody Seal	Cool						Fax:
OK / Adjusted		Date/Time:	Received By:	Date/Time:	Relinquished By:		Telephone:
Sample Receipt pH							Email #2:
Receipt Temp = 20 / °C	<u> </u> 0	LILANUL 6-25-1	Received By:		Relinquished By:	italishini riehini Rush Results by (complete what you want): tall #1:	Email #1:
82201102	515	NOKO Date/Time:		した した した した や へ)*	Date Needed:	Date
PACE Project No.		Date/Time:	Received By:	www. 6/22	Relinquished By:	(Rush TAT subject to approval/surcharge)	Rush Lumaroun (Rush TAT sub
							Duck Turnore
15 2-100m/10gt	3-40m/vs			× × ·	610 000 Crr	MW-1 6	
	(Lab Use Only)	ร					PACE LAB #
NTS Profile #	LAB COMMENTS	CLIENT		V P		your sample	
		Invoice To Phone:		DC Ah	C = Charcoal GW = Ground Water C = Charcoal GW = Ground Water SW = Surface Water	(billable)	
				0 	Matrix Codes	MS/MSD On your sample	Data Package Options (billable)
		Invoice To Address:				V V Regulatory Program:	PO #:
		Invoice To Company:				Roam Service	Sampled By (Sign):
		Invoice To Contact:			- PRESERVATION Pick (CODE)* Letwe	Row Seynar	Sampled By (Print):
Her P	mariand				FILTERED? (YES/NO) Y/N	Wildowsin	Project State:
san Road	2531 Pyreson	Mail To Address:		lution I=Sodium Thiosulfate J=Other	H=Sodium Bisulfate Solution	DT liaun	Project Name:
En la martina	Seymour	Mail To Company:	hanol G=NaOH	*Preservation Codes SO4 D=HNO3 E=DI Water	A=None B=HCL (Project Number:
8	P. Seyman	Mail To Contact:	YQC	CHAIN OF CUSTC		6082259407	Phone:
		Quote #:	Č			Kabyn Sumar	Project Contact:
DUN QQR e 17	101-		へ ř ン	ace Analytical /2			Branch/Location:
		MN: 612-607-1700 WI: 920-469-2436	MN: 612-607-170			Samar End:	Company Name:
1 of	Page	REGION	UPPER MIDWEST REGION			(Please Print Clearly)	(P)

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

March 24, 2015

Robyn Seymour Seymour Environmental Services, INC. 2531 Dyreson Road Mc Farland, WI 53558

RE: Project: DT LIQUOR Pace Project No.: 40111882

Dear Robyn Seymour:

Enclosed are the analytical results for sample(s) received by the laboratory on March 19, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tod holtemeyor

Tod Noltemeyer for Dan Milewsky dan.milewsky@pacelabs.com Project Manager

Enclosures

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: DT LIQUOR

Pace Project No.: 40111882

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 North Dakota Certification #: R-150 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 US Dept of Agriculture #: S-76505 Wisconsin Certification #: 405132750

SAMPLE SUMMARY

40111882001	 MW-1	Water	03/13/15 13:00	03/19/15 08:30
Lab ID	Sample ID	Matrix	Date Collected	Date Received
Pace Project No	o.: 40111882			
Project:	DT LIQUOR			

SAMPLE ANALYTE COUNT

Project:	DT LIQUOR
Pace Project No.:	40111882

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40111882001	MW-1	EPA 8270 by HVI	RJN	20	PASI-G
		EPA 8260	LAP	64	PASI-G

PROJECT NARRATIVE

Project: DT LIQUOR Pace Project No.: 40111882

Method: EPA 8270 by HVI

Description:8270 MSSV PAH by HVIClient:SEYMOUR ENVIRONMENTAL SERVICES, INC.Date:March 24, 2015

General Information:

1 sample was analyzed for EPA 8270 by HVI. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

QC Batch: OEXT/26047

B: Analyte was detected in the associated method blank.

• BLANK for HBN 187919 [OEXT/260 (Lab ID: 1129860)

• Pyrene

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: DT LIQUOR Pace Project No.: 40111882

Method: EPA 8260

Description:8260 MSVClient:SEYMOUR ENVIRONMENTAL SERVICES, INC.Date:March 24, 2015

General Information:

1 sample was analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

pH: Post-analysis pH measurement indicates insufficient VOA sample preservation.

• MW-1 (Lab ID: 40111882001)

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: MSV/27805

R1: RPD value was outside control limits.

• LCSD (Lab ID: 1129804)

Bromomethane

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: DT LIQUOR

Pace Project No.: 40111882

Sample: MW-1	Lab ID:	40111882001	Collecte	d: 03/13/1	5 13:00	Received: 03/	19/15 08:30 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by HVI	Analytica	Method: EPA 8	270 by HVI	Preparatio	on Meth	od: EPA 3510			
Acenaphthene	0.0096J	ug/L	0.050	0.0050	1	03/20/15 08:40	03/20/15 15:27	83-32-9	
Acenaphthylene	0.0065J	ug/L	0.050	0.0049	1	03/20/15 08:40	03/20/15 15:27	208-96-8	
Anthracene	<0.0040	ug/L	0.050	0.0040	1	03/20/15 08:40	03/20/15 15:27	120-12-7	
Benzo(a)anthracene	0.0095J	ug/L	0.050	0.0051	1	03/20/15 08:40	03/20/15 15:27	56-55-3	
Benzo(a)pyrene	<0.0044	ug/L	0.050	0.0044	1	03/20/15 08:40	03/20/15 15:27	50-32-8	
Benzo(b)fluoranthene	<0.0053	ug/L	0.050	0.0053	1	03/20/15 08:40	03/20/15 15:27	205-99-2	
Benzo(g,h,i)perylene	<0.0035	ug/L	0.050	0.0035	1	03/20/15 08:40	03/20/15 15:27	191-24-2	
Benzo(k)fluoranthene	<0.0056	ug/L	0.050	0.0056	1	03/20/15 08:40	03/20/15 15:27	207-08-9	
Chrysene	0.0055J	ug/L	0.050	0.0042	1	03/20/15 08:40	03/20/15 15:27	218-01-9	
Dibenz(a,h)anthracene	<0.0056	ug/L	0.050	0.0056	1	03/20/15 08:40	03/20/15 15:27	53-70-3	
Fluoranthene	0.0097J	ug/L	0.050	0.0094	1	03/20/15 08:40	03/20/15 15:27	206-44-0	
Fluorene	0.045J	ug/L	0.050	0.0040	1	03/20/15 08:40	03/20/15 15:27	86-73-7	
Indeno(1,2,3-cd)pyrene	<0.0036	ug/L	0.050	0.0036	1	03/20/15 08:40	03/20/15 15:27	193-39-5	
1-Methylnaphthalene	0.12	ug/L	0.050	0.0031	1	03/20/15 08:40	03/20/15 15:27	90-12-0	
2-Methylnaphthalene	0.026J	ug/L	0.050	0.0028	1	03/20/15 08:40	03/20/15 15:27	91-57-6	
Naphthalene	0.016J	ug/L	0.050	0.0045	1	03/20/15 08:40	03/20/15 15:27	91-20-3	
Phenanthrene	0.027J	ug/L	0.050	0.0077	1	03/20/15 08:40	03/20/15 15:27	85-01-8	
Pyrene	0.024J	ug/L	0.050	0.0077	1	03/20/15 08:40	03/20/15 15:27	129-00-0	В
Surrogates									
2-Fluorobiphenyl (S)	63	%	40-130		1	03/20/15 08:40	03/20/15 15:27	321-60-8	
Terphenyl-d14 (S)	74	%	26-135		1	03/20/15 08:40	03/20/15 15:27	1718-51-0	
8260 MSV	Analytica	Method: EPA 8	260						
Benzene	<0.50	ug/L	1.0	0.50	1		03/20/15 18:37	71-43-2	
Bromobenzene	<0.23	ug/L	1.0	0.23	1		03/20/15 18:37	108-86-1	
Bromochloromethane	<0.34	ug/L	1.0	0.34	1		03/20/15 18:37	74-97-5	
Bromodichloromethane	<0.50	ug/L	1.0	0.50	1		03/20/15 18:37	75-27-4	
Bromoform	<0.50	ug/L	1.0	0.50	1		03/20/15 18:37	75-25-2	
Bromomethane	<2.4	ug/L	5.0	2.4	1		03/20/15 18:37	74-83-9	
n-Butylbenzene	<0.50	ug/L	1.0	0.50	1		03/20/15 18:37	104-51-8	
sec-Butylbenzene	<2.2	ug/L	5.0	2.2	1		03/20/15 18:37	135-98-8	
tert-Butylbenzene	<0.18	ug/L	1.0	0.18	1		03/20/15 18:37	98-06-6	
Carbon tetrachloride	<0.50	ug/L	1.0	0.50	1		03/20/15 18:37	56-23-5	
Chlorobenzene	<0.50	ug/L	1.0	0.50	1		03/20/15 18:37	108-90-7	
Chloroethane	<0.37	ug/L	1.0	0.37	1		03/20/15 18:37		
Chloroform	<2.5	ug/L	5.0	2.5	1		03/20/15 18:37	67-66-3	
Chloromethane	<0.50	ug/L	1.0	0.50	1		03/20/15 18:37		
2-Chlorotoluene	<0.50	ug/L	1.0	0.50	1		03/20/15 18:37		
4-Chlorotoluene	<0.21	ug/L	1.0	0.21	1		03/20/15 18:37		
1,2-Dibromo-3-chloropropane	<2.2	ug/L	5.0	2.2	1		03/20/15 18:37		
Dibromochloromethane	<0.50	ug/L	1.0	0.50	1		03/20/15 18:37		
1,2-Dibromoethane (EDB)	<0.18	ug/L	1.0	0.18	1		03/20/15 18:37		
Dibromomethane	<0.43	ug/L	1.0	0.43	1		03/20/15 18:37		
1,2-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		03/20/15 18:37		
1,3-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		03/20/15 18:37		
1,4-Dichlorobenzene	<0.50	ug/L	1.0	0.50	1		03/20/15 18:37	106-46-7	

Project: DT L	IQUOR
---------------	-------

Pace Project No.: 40111882

Sample: MW-1	Lab ID: 40111882001		Collected: 03/13/15 13:00			Received: 03	Matrix: Water	r	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
Dichlorodifluoromethane	<0.22	ug/L	1.0	0.22	1		03/20/15 18:3	7 75-71-8	
1,1-Dichloroethane	<0.24	ug/L	1.0	0.24	1		03/20/15 18:3	7 75-34-3	
1,2-Dichloroethane	<0.17	ug/L	1.0	0.17	1		03/20/15 18:3	7 107-06-2	
1,1-Dichloroethene	<0.41	ug/L	1.0	0.41	1		03/20/15 18:3	7 75-35-4	
cis-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		03/20/15 18:3	7 156-59-2	
trans-1,2-Dichloroethene	<0.26	ug/L	1.0	0.26	1		03/20/15 18:3	7 156-60-5	
1,2-Dichloropropane	<0.23	ug/L	1.0	0.23	1		03/20/15 18:3	7 78-87-5	
1,3-Dichloropropane	<0.50	ug/L	1.0	0.50	1		03/20/15 18:3	7 142-28-9	
2,2-Dichloropropane	<0.48	ug/L	1.0	0.48	1		03/20/15 18:3	7 594-20-7	
1,1-Dichloropropene	<0.44	ug/L	1.0	0.44	1		03/20/15 18:3	7 563-58-6	
cis-1,3-Dichloropropene	<0.50	ug/L	1.0	0.50	1		03/20/15 18:3	7 10061-01-5	
trans-1,3-Dichloropropene	<0.23	ug/L	1.0	0.23	1		03/20/15 18:3	7 10061-02-6	
Diisopropyl ether	<0.50	ug/L	1.0	0.50	1		03/20/15 18:3	7 108-20-3	
Ethylbenzene	<0.50	ug/L	1.0	0.50	1		03/20/15 18:3	7 100-41-4	
Hexachloro-1,3-butadiene	<2.1	ug/L	5.0	2.1	1		03/20/15 18:3	7 87-68-3	
Isopropylbenzene (Cumene)	<0.14	ug/L	1.0	0.14	1		03/20/15 18:3	7 98-82-8	
p-lsopropyltoluene	<0.50	ug/L	1.0	0.50	1		03/20/15 18:3	7 99-87-6	
Methylene Chloride	<0.23	ug/L	1.0	0.23	1		03/20/15 18:3		
Methyl-tert-butyl ether	<0.17	ug/L	1.0	0.17	1		03/20/15 18:3		
Naphthalene	<2.5	ug/L	5.0	2.5	1		03/20/15 18:3	7 91-20-3	
n-Propylbenzene	<0.50	ug/L	1.0	0.50	1		03/20/15 18:3		
Styrene	<0.50	ug/L	1.0	0.50	1		03/20/15 18:3	7 100-42-5	
1,1,1,2-Tetrachloroethane	<0.18	ug/L	1.0	0.18	1		03/20/15 18:3	7 630-20-6	
1,1,2,2-Tetrachloroethane	<0.25	ug/L	1.0	0.25	1		03/20/15 18:3	7 79-34-5	
Tetrachloroethene	<0.50	ug/L	1.0	0.50	1		03/20/15 18:3	7 127-18-4	
Toluene	0.94J	ug/L	1.0	0.50	1		03/20/15 18:3	7 108-88-3	
1,2,3-Trichlorobenzene	<2.1	ug/L	5.0	2.1	1		03/20/15 18:3		
1,2,4-Trichlorobenzene	<2.2	ug/L	5.0	2.2	1		03/20/15 18:3	7 120-82-1	
1,1,1-Trichloroethane	<0.50	ug/L	1.0	0.50	1		03/20/15 18:3		
1,1,2-Trichloroethane	<0.20	ug/L	1.0	0.20	1		03/20/15 18:3		
Trichloroethene	<0.33	ug/L	1.0	0.33	1		03/20/15 18:3		
Trichlorofluoromethane	<0.18	ug/L	1.0	0.18	1		03/20/15 18:3		
1,2,3-Trichloropropane	<0.50	ug/L	1.0	0.50	1		03/20/15 18:3	7 96-18-4	
1,2,4-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		03/20/15 18:3	7 95-63-6	
1,3,5-Trimethylbenzene	<0.50	ug/L	1.0	0.50	1		03/20/15 18:3	7 108-67-8	
Vinyl chloride	<0.18	ug/L	1.0	0.18	1		03/20/15 18:3		
m&p-Xylene	<1.0	ug/L	2.0	1.0	1			7 179601-23-1	
o-Xylene	<0.50	ug/L	1.0	0.50	1		03/20/15 18:3		
Surrogates		0	-					-	
4-Bromofluorobenzene (S)	88	%	70-130		1		03/20/15 18:3	7 460-00-4	рН
Dibromofluoromethane (S)	107	%	70-130		1		03/20/15 18:3	7 1868-53-7	-
Toluene-d8 (S)	99	%	70-130		1		03/20/15 18:3		

Project: DT LIQUOR

Pace Project No.: 40111882

QC Batch:	MSV/27805	Analysis Method:	EPA 8260
QC Batch Method:	EPA 8260	Analysis Description:	8260 MSV
Associated Lab Samp	oles: 40111882001		

Matrix: Water

METHOD BLANK: 1129802

Associated Lab Samples: 40111882001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<0.18	1.0	03/20/15 08:45	
1,1,1-Trichloroethane	ug/L	<0.50	1.0	03/20/15 08:45	
1,1,2,2-Tetrachloroethane	ug/L	<0.25	1.0	03/20/15 08:45	
1,1,2-Trichloroethane	ug/L	<0.20	1.0	03/20/15 08:45	
1,1-Dichloroethane	ug/L	<0.24	1.0	03/20/15 08:45	
1,1-Dichloroethene	ug/L	<0.41	1.0	03/20/15 08:45	
1,1-Dichloropropene	ug/L	<0.44	1.0	03/20/15 08:45	
1,2,3-Trichlorobenzene	ug/L	<2.1	5.0	03/20/15 08:45	
1,2,3-Trichloropropane	ug/L	<0.50	1.0	03/20/15 08:45	
1,2,4-Trichlorobenzene	ug/L	<2.2	5.0	03/20/15 08:45	
1,2,4-Trimethylbenzene	ug/L	<0.50	1.0	03/20/15 08:45	
1,2-Dibromo-3-chloropropane	ug/L	<2.2	5.0	03/20/15 08:45	
1,2-Dibromoethane (EDB)	ug/L	<0.18	1.0	03/20/15 08:45	
1,2-Dichlorobenzene	ug/L	<0.50	1.0	03/20/15 08:45	
1,2-Dichloroethane	ug/L	<0.17	1.0	03/20/15 08:45	
1,2-Dichloropropane	ug/L	<0.23	1.0	03/20/15 08:45	
1,3,5-Trimethylbenzene	ug/L	<0.50	1.0	03/20/15 08:45	
1,3-Dichlorobenzene	ug/L	<0.50	1.0	03/20/15 08:45	
1,3-Dichloropropane	ug/L	<0.50	1.0	03/20/15 08:45	
1,4-Dichlorobenzene	ug/L	<0.50	1.0	03/20/15 08:45	
2,2-Dichloropropane	ug/L	<0.48	1.0	03/20/15 08:45	
2-Chlorotoluene	ug/L	<0.50	1.0	03/20/15 08:45	
4-Chlorotoluene	ug/L	<0.21	1.0	03/20/15 08:45	
Benzene	ug/L	<0.50	1.0	03/20/15 08:45	
Bromobenzene	ug/L	<0.23	1.0	03/20/15 08:45	
Bromochloromethane	ug/L	<0.34	1.0	03/20/15 08:45	
Bromodichloromethane	ug/L	<0.50	1.0	03/20/15 08:45	
Bromoform	ug/L	<0.50	1.0	03/20/15 08:45	
Bromomethane	ug/L	<2.4	5.0	03/20/15 08:45	
Carbon tetrachloride	ug/L	<0.50	1.0	03/20/15 08:45	
Chlorobenzene	ug/L	<0.50	1.0	03/20/15 08:45	
Chloroethane	ug/L	<0.37	1.0	03/20/15 08:45	
Chloroform	ug/L	<2.5	5.0	03/20/15 08:45	
Chloromethane	ug/L	<0.50	1.0	03/20/15 08:45	
cis-1,2-Dichloroethene	ug/L	<0.26	1.0	03/20/15 08:45	
cis-1,3-Dichloropropene	ug/L	<0.50	1.0	03/20/15 08:45	
Dibromochloromethane	ug/L	<0.50	1.0	03/20/15 08:45	
Dibromomethane	ug/L	<0.43	1.0	03/20/15 08:45	
Dichlorodifluoromethane	ug/L	<0.22	1.0	03/20/15 08:45	
Diisopropyl ether	ug/L	<0.50	1.0	03/20/15 08:45	
Ethylbenzene	ug/L	<0.50	1.0	03/20/15 08:45	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: DT LIQUOR Pace Project No.: 40111882

METHOD BLANK: 1129802		Matrix:	Water			
Associated Lab Samples: 40111882	2001					
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
Hexachloro-1,3-butadiene	ug/L	<2.1	5.0	03/20/15 08:45		
Isopropylbenzene (Cumene)	ug/L	<0.14	1.0	03/20/15 08:45		
m&p-Xylene	ug/L	<1.0	2.0	03/20/15 08:45		
Methyl-tert-butyl ether	ug/L	<0.17	1.0	03/20/15 08:45		
Methylene Chloride	ug/L	<0.23	1.0	03/20/15 08:45		
n-Butylbenzene	ug/L	<0.50	1.0	03/20/15 08:45		
n-Propylbenzene	ug/L	<0.50	1.0	03/20/15 08:45		
Naphthalene	ug/L	<2.5	5.0	03/20/15 08:45		
o-Xylene	ug/L	<0.50	1.0	03/20/15 08:45		
p-Isopropyltoluene	ug/L	<0.50	1.0	03/20/15 08:45		
sec-Butylbenzene	ug/L	<2.2	5.0	03/20/15 08:45		
Styrene	ug/L	<0.50	1.0	03/20/15 08:45		
tert-Butylbenzene	ug/L	<0.18	1.0	03/20/15 08:45		
Tetrachloroethene	ug/L	<0.50	1.0	03/20/15 08:45		
Toluene	ug/L	<0.50	1.0	03/20/15 08:45		
trans-1,2-Dichloroethene	ug/L	<0.26	1.0	03/20/15 08:45		
trans-1,3-Dichloropropene	ug/L	<0.23	1.0	03/20/15 08:45		
Trichloroethene	ug/L	<0.33	1.0	03/20/15 08:45		
Trichlorofluoromethane	ug/L	<0.18	1.0	03/20/15 08:45		
Vinyl chloride	ug/L	<0.18	1.0	03/20/15 08:45		
4-Bromofluorobenzene (S)	%	89	70-130	03/20/15 08:45		
Dibromofluoromethane (S)	%	104	70-130	03/20/15 08:45		
Toluene-d8 (S)	%	99	70-130	03/20/15 08:45		

LABORATORY CONTROL SAMPLE &	LCSD: 1129803		11	29804						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/L	50	56.9	57.0	114	114	70-130	0	20	
1,1,2,2-Tetrachloroethane	ug/L	50	50.6	50.6	101	101	70-130	0	20	
1,1,2-Trichloroethane	ug/L	50	52.2	52.0	104	104	70-130	0	20	
1,1-Dichloroethane	ug/L	50	54.6	54.8	109	110	70-130	0	20	
1,1-Dichloroethene	ug/L	50	57.3	58.1	115	116	70-130	1	20	
1,2,4-Trichlorobenzene	ug/L	50	49.1	49.4	98	99	70-130	1	20	
1,2-Dibromo-3-chloropropane	ug/L	50	40.9	40.3	82	81	50-150	2	20	
1,2-Dibromoethane (EDB)	ug/L	50	53.2	53.6	106	107	70-130	1	20	
1,2-Dichlorobenzene	ug/L	50	54.7	54.1	109	108	70-130	1	20	
1,2-Dichloroethane	ug/L	50	51.4	51.4	103	103	70-131	0	20	
1,2-Dichloropropane	ug/L	50	53.6	52.4	107	105	70-130	2	20	
1,3-Dichlorobenzene	ug/L	50	55.4	55.0	111	110	70-130	1	20	
1,4-Dichlorobenzene	ug/L	50	54.7	53.7	109	107	70-130	2	20	
Benzene	ug/L	50	50.9	50.9	102	102	70-130	0	20	
Bromodichloromethane	ug/L	50	53.5	53.4	107	107	70-130	0	20	
Bromoform	ug/L	50	51.2	51.5	102	103	68-130	0	20	
Bromomethane	ug/L	50	38.3	47.2	77	94	38-137	21	20 I	٦1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

QUALITY CONTROL DATA

Project: DT LIQUOR Pace Project No.: 40111882

LABORATORY CONTROL SAMPLE &	& LCSD: 1129803		11	29804						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Carbon tetrachloride	ug/L	50	56.9	57.9	114	116	70-130	2	20	
Chlorobenzene	ug/L	50	55.6	55.5	111	111	70-130	0	20	
Chloroethane	ug/L	50	55.3	54.7	111	109	70-136	1	20	
Chloroform	ug/L	50	55.2	55.8	110	112	70-130	1	20	
Chloromethane	ug/L	50	44.5	48.1	89	96	48-144	8	20	
cis-1,2-Dichloroethene	ug/L	50	53.2	54.1	106	108	70-130	2	20	
cis-1,3-Dichloropropene	ug/L	50	46.6	46.8	93	94	70-130	0	20	
Dibromochloromethane	ug/L	50	55.4	56.0	111	112	70-130	1	20	
Dichlorodifluoromethane	ug/L	50	53.4	53.8	107	108	33-157	1	20	
Ethylbenzene	ug/L	50	52.4	52.6	105	105	70-132	0	20	
Isopropylbenzene (Cumene)	ug/L	50	52.1	53.4	104	107	70-130	2	20	
m&p-Xylene	ug/L	100	108	110	108	110	70-131	1	20	
Methyl-tert-butyl ether	ug/L	50	47.9	48.6	96	97	48-141	1	20	
Methylene Chloride	ug/L	50	54.2	52.8	108	106	70-130	3	20	
o-Xylene	ug/L	50	53.4	54.3	107	109	70-131	2	20	
Styrene	ug/L	50	50.2	49.6	100	99	70-130	1	20	
Tetrachloroethene	ug/L	50	55.2	55.2	110	110	70-130	0	20	
Toluene	ug/L	50	54.0	54.2	108	108	70-130	0	20	
trans-1,2-Dichloroethene	ug/L	50	56.2	58.6	112	117	70-130	4	20	
trans-1,3-Dichloropropene	ug/L	50	44.2	45.5	88	91	70-130	3	20	
Trichloroethene	ug/L	50	55.8	55.4	112	111	70-130	1	20	
Trichlorofluoromethane	ug/L	50	62.4	62.3	125	125	50-150	0	20	
Vinyl chloride	ug/L	50	54.5	56.1	109	112	65-142	3	20	
4-Bromofluorobenzene (S)	%				91	93	70-130			
Dibromofluoromethane (S)	%				107	107	70-130			
Toluene-d8 (S)	%				97	100	70-130			

MATRIX SPIKE & MATRIX SP		ATE: 112982	29		1129830							
			MS	MSD								
	4	0111861001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	<0.50	50	50	55.3	56.1	111	112	70-130	1	20	
1,1,2,2-Tetrachloroethane	ug/L	<0.25	50	50	49.8	45.9	100	92	70-130	8	20	
1,1,2-Trichloroethane	ug/L	<0.20	50	50	51.8	51.2	104	102	70-130	1	20	
1,1-Dichloroethane	ug/L	<0.24	50	50	53.2	53.2	106	106	70-134	0	20	
1,1-Dichloroethene	ug/L	<0.41	50	50	56.3	55.6	113	111	70-139	1	20	
1,2,4-Trichlorobenzene	ug/L	<2.2	50	50	50.5	49.6	100	98	70-130	2	20	
1,2-Dibromo-3- chloropropane	ug/L	<2.2	50	50	39.7	36.5	79	73	50-150	8	20	
1,2-Dibromoethane (EDB)	ug/L	<0.18	50	50	53.2	50.4	106	101	70-130	5	20	
1,2-Dichlorobenzene	ug/L	<0.50	50	50	53.7	52.9	107	106	70-130	2	20	
1,2-Dichloroethane	ug/L	<0.17	50	50	51.0	49.8	102	100	70-132	2	20	
1,2-Dichloropropane	ug/L	<0.23	50	50	49.9	51.8	100	104	70-130	4	20	
1,3-Dichlorobenzene	ug/L	<0.50	50	50	53.7	53.4	107	107	70-130	0	20	
1,4-Dichlorobenzene	ug/L	<0.50	50	50	53.8	53.2	108	106	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

QUALITY CONTROL DATA

Project: DT LIQUOR Pace Project No.: 40111882

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1129829 1129830												
			MS	MSD								
	4	40111861001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	<0.50	50	50	50.0	50.0	100	100	70-130	0	20	
Bromodichloromethane	ug/L	<0.50	50	50	53.3	52.3	107	105	70-132	2	20	
Bromoform	ug/L	<0.50	50	50	51.4	47.0	103	94	68-130	9	20	
Bromomethane	ug/L	<2.4	50	50	41.2	46.7	82	93	38-141	12	20	
Carbon tetrachloride	ug/L	<0.50	50	50	56.9	56.8	114	114	70-130	0	20	
Chlorobenzene	ug/L	<0.50	50	50	54.9	53.8	110	108	70-130	2	20	
Chloroethane	ug/L	<0.37	50	50	54.6	52.0	109	104	66-152	5	20	
Chloroform	ug/L	<2.5	50	50	54.8	53.8	110	108	70-130	2	20	
Chloromethane	ug/L	<0.50	50	50	46.3	45.2	93	90	44-151	2	20	
cis-1,2-Dichloroethene	ug/L	<0.26	50	50	53.2	52.1	106	104	70-130	2	20	
cis-1,3-Dichloropropene	ug/L	<0.50	50	50	46.1	45.4	92	91	70-130	2	20	
Dibromochloromethane	ug/L	<0.50	50	50	55.2	53.8	110	108	70-130	3	20	
Dichlorodifluoromethane	ug/L	<0.22	50	50	51.6	50.1	103	100	29-160	3	20	
Ethylbenzene	ug/L	<0.50	50	50	52.1	51.4	104	103	70-132	1	20	
Isopropylbenzene (Cumene)	ug/L	<0.14	50	50	52.3	52.1	105	104	70-130	0	20	
m&p-Xylene	ug/L	<1.0	100	100	109	108	109	108	70-131	1	20	
Methyl-tert-butyl ether	ug/L	<0.17	50	50	48.6	45.1	97	90	48-143	7	20	
Methylene Chloride	ug/L	<0.23	50	50	52.2	51.1	104	102	70-130	2	20	
o-Xylene	ug/L	<0.50	50	50	53.7	53.3	107	107	70-131	1	20	
Styrene	ug/L	<0.50	50	50	51.8	50.3	104	101	70-130	3	20	
Tetrachloroethene	ug/L	<0.50	50	50	54.1	53.5	108	107	70-130	1	20	
Toluene	ug/L	<0.50	50	50	53.5	53.2	107	106	70-130	0	20	
trans-1,2-Dichloroethene	ug/L	<0.26	50	50	56.5	55.3	113	111	70-132	2	20	
trans-1,3-Dichloropropene	ug/L	<0.23	50	50	45.1	42.6	90	85	70-130	6	20	
Trichloroethene	ug/L	<0.33	50	50	54.2	54.5	108	109	70-130	0	20	
Trichlorofluoromethane	ug/L	<0.18	50	50	61.7	61.4	123	123	50-153	0	20	
Vinyl chloride	ug/L	<0.18	50	50	53.6	53.4	107	107	60-155	0	20	
4-Bromofluorobenzene (S)	%						93	93	70-130			
Dibromofluoromethane (S)	%						105	108	70-130			
Toluene-d8 (S)	%						98	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: DT LIQUOR

Pace Project No.: 40111882

QC Batch:OEXT/26047Analysis Method:EPA 8270 by HVIQC Batch Method:EPA 3510Analysis Description:8270 Water PAH by HVI

Associated Lab Samples: 40111882001

METHOD BLANK: 11298	60	Matrix:	Water		
Associated Lab Samples:	40111882001				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/L	<0.0031	0.050	03/20/15 14:20	
2-Methylnaphthalene	ug/L	<0.0028	0.050	03/20/15 14:20	
Acenaphthene	ug/L	<0.0050	0.050	03/20/15 14:20	
Acenaphthylene	ug/L	<0.0049	0.050	03/20/15 14:20	
Anthracene	ug/L	<0.0040	0.050	03/20/15 14:20	
Benzo(a)anthracene	ug/L	<0.0051	0.050	03/20/15 14:20	
Benzo(a)pyrene	ug/L	<0.0044	0.050	03/20/15 14:20	
Benzo(b)fluoranthene	ug/L	<0.0053	0.050	03/20/15 14:20	
Benzo(g,h,i)perylene	ug/L	<0.0035	0.050	03/20/15 14:20	
Benzo(k)fluoranthene	ug/L	<0.0056	0.050	03/20/15 14:20	
Chrysene	ug/L	< 0.0042	0.050	03/20/15 14:20	
Dibenz(a,h)anthracene	ug/L	<0.0056	0.050	03/20/15 14:20	
Fluoranthene	ug/L	<0.0094	0.050	03/20/15 14:20	
Fluorene	ug/L	<0.0040	0.050	03/20/15 14:20	
Indeno(1,2,3-cd)pyrene	ug/L	<0.0036	0.050	03/20/15 14:20	
Naphthalene	ug/L	<0.0045	0.050	03/20/15 14:20	
Phenanthrene	ug/L	<0.0077	0.050	03/20/15 14:20	
Pyrene	ug/L	0.012J	0.050	03/20/15 14:20	
2-Fluorobiphenyl (S)	%	56	40-130	03/20/15 14:20	
Terphenyl-d14 (S)	%	98	26-135	03/20/15 14:20	

LABORATORY CONTROL SAMPLE: 1129861

LADURATURT CONTROL SAMPLE.	1129001					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/L	2	1.1	54	46-130	
2-Methylnaphthalene	ug/L	2	1.1	55	47-130	
Acenaphthene	ug/L	2	1.3	63	49-130	
Acenaphthylene	ug/L	2	1.3	63	44-130	
Anthracene	ug/L	2	1.5	73	53-130	
Benzo(a)anthracene	ug/L	2	1.8	88	49-130	
Benzo(a)pyrene	ug/L	2	1.5	75	47-130	
Benzo(b)fluoranthene	ug/L	2	1.8	88	54-133	
Benzo(g,h,i)perylene	ug/L	2	1.4	70	33-132	
Benzo(k)fluoranthene	ug/L	2	1.5	74	59-143	
Chrysene	ug/L	2	1.9	93	70-157	
Dibenz(a,h)anthracene	ug/L	2	1.3	64	24-130	
Fluoranthene	ug/L	2	1.7	86	59-130	
Fluorene	ug/L	2	1.5	74	49-130	
Indeno(1,2,3-cd)pyrene	ug/L	2	1.7	87	52-130	
Naphthalene	ug/L	2	0.98	49	45-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: DT LIQUOR Pace Project No.: 40111882

LABORATORY CONTROL SAMPLE:	1129861					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Phenanthrene	ug/L	2	1.4	71	60-130	
Pyrene	ug/L	2	1.8	89	64-147	
2-Fluorobiphenyl (S)	%			57	40-130	
Terphenyl-d14 (S)	%			98	26-135	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1129862 1129863											
		MS	MSD								
	40111882001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene ug/L	0.12	2	2	1.2	1.0	55	45	27-130	17	42	
2-Methylnaphthalene ug/L	0.026J	2	2	1.2	0.99	58	48	33-130	17	37	
Acenaphthene ug/L	0.0096J	2	2	1.3	1.1	64	54	32-130	16	35	
Acenaphthylene ug/L	0.0065J	2	2	1.3	1.1	65	55	34-130	16	29	
Anthracene ug/L	<0.0040	2	2	1.4	1.2	69	59	31-130	16	29	
Benzo(a)anthracene ug/L	0.0095J	2	2	1.3	1.1	63	56	35-135	12	20	
Benzo(a)pyrene ug/L	<0.0044	2	2	0.91	0.82	46	41	21-139	11	22	
Benzo(b)fluoranthene ug/L	<0.0053	2	2	1.0	0.91	50	46	26-144	10	20	
Benzo(g,h,i)perylene ug/L	<0.0035	2	2	0.87	0.80	43	40	10-142	8	20	
Benzo(k)fluoranthene ug/L	<0.0056	2	2	0.89	0.77	45	39	21-155	14	20	
Chrysene ug/L	0.0055J	2	2	1.4	1.2	68	59	46-157	14	20	
Dibenz(a,h)anthracene ug/L	<0.0056	2	2	0.87	0.83	43	41	10-143	5	20	
Fluoranthene ug/L	0.0097J	2	2	1.4	1.2	69	60	35-138	15	20	
Fluorene ug/L	0.045J	2	2	1.5	1.3	74	62	28-130	17	27	
Indeno(1,2,3-cd)pyrene ug/L	<0.0036	2	2	0.95	0.84	47	42	16-139	12	20	
Naphthalene ug/L	0.016J	2	2	1.0	0.89	51	44	35-130	16	39	
Phenanthrene ug/L	0.027J	2	2	1.4	1.2	67	57	41-131	16	22	
Pyrene ug/L	0.024J	2	2	1.5	1.2	72	61	50-151	16	20	
2-Fluorobiphenyl (S) %						60	51	40-130			
Terphenyl-d14 (S) %						76	62	26-135			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project: DT LIQUOR Pace Project No.: 40111882

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

- B Analyte was detected in the associated method blank.
- R1 RPD value was outside control limits.
- pH Post-analysis pH measurement indicates insufficient VOA sample preservation.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:DT LIQUORPace Project No.:40111882

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40111882001	MW-1	EPA 3510	OEXT/26047	EPA 8270 by HVI	MSSV/7726
40111882001	MW-1	EPA 8260	MSV/27805		

C019a(27Jun2006)

Samples on HOLD are subject to Relinquished By: special pricing and release of liability	Fax:	Telephone: Relinquished By:	Email #1: Keiinquished by:	nit Prelim Rush Results by (complete what you want):	<u>}</u>	Rush TAT subject to approval/surcharge)							-1 3/13 1300	DATE TIME	EPA Level IV VOT needed on S = Suit WW = Waste With SI = Sludge WP = Withe	(billable) C = Charcoal	MS/MSD	PO #: / Regulatory Program:	ndenier	Sampled By (Print): Coby (code)		Project Name: 17-2,20,20		- 572	Project Contact: 1201000 Seumour		Company Name: Seymour Envi	
Date/Time: Received By:		Date/Time: Received By:		119/15/0820	2 Date/Time:	A Converse 3/17/15 Received By:											 Requ 2- <u>}</u> 1-1		L	TION Pick		H=Sodium Bisulfate Solution I=Sodium Thiosulfate J=Other	*Preservation Codes SO4 D=HNO3 E=DI Water	CHAIN OF CUSTODY		Face AV Halyucal	WIN:	
Date/Time:		Date/Time:		Received By: Date/Time:	No 11 David 1 Stater inter	Date/Time:								Ś	CLIENT	Invoice To Phone:		Invoice To Address:	Invoice To Company:	Invoice To Contact:		Mail To Address: 2	Mail To Company:	Mail To Contact:	Quote #:		012-007-1700 VH: 920-409-2430	
Version 60 06/14/06	Cooler Custory Stal	OK / Adjusted	Sample Receipt pH			Uniik 7	DACE Project No						 -1100 A 3-40m/6		LAB COMMENTS Profile #				Summer End.	Roph Schwon	ncraine or with	253) pyreson	1531 Sumour Env.	Copy Support	Pag		Total of 1	8

ORIGINAL

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

March 26, 2015

Robyn Seymour Seymour Environmental Services, INC. 2531 Dyreson Road Mc Farland, WI 53558

RE: Project: DT LIQUOR Pace Project No.: 40111544

Dear Robyn Seymour:

Enclosed are the analytical results for sample(s) received by the laboratory on March 12, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tod holtemeyor

Tod Noltemeyer for Dan Milewsky dan.milewsky@pacelabs.com Project Manager

Enclosures

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: DT LIQUOR

Pace Project No.: 40111544

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 North Dakota Certification #: R-150 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 US Dept of Agriculture #: S-76505 Wisconsin Certification #: 405132750

SAMPLE SUMMARY

Project: DT LIQUOR Pace Project No.: 40111544

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40111544001	B-5, 2-4	Solid	03/09/15 15:45	03/12/15 07:50
40111544002	B-5, 15-17	Solid	03/09/15 16:00	03/12/15 07:50
40111544003	B-6, 2-4	Solid	03/09/15 16:40	03/12/15 07:50
40111544004	B-6, 15-17	Solid	03/09/15 17:00	03/12/15 07:50

SAMPLE ANALYTE COUNT

Project:DT LIQUORPace Project No.:40111544

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40111544001	— — B-5, 2-4	WI MOD GRO	LCF	9
		EPA 6010	DLB	1
		EPA 8270 by SIM	ARO	20
		ASTM D2974-87	SKW	1
40111544002	B-5, 15-17	WI MOD GRO	LCF	9
		EPA 6010	DLB	1
		EPA 8270 by SIM	ARO	20
		ASTM D2974-87	SKW	1
40111544003	B-6, 2-4	WI MOD GRO	LCF	9
		EPA 6010	DLB	1
		EPA 8270 by SIM	ARO	20
		ASTM D2974-87	SKW	1
40111544004	B-6, 15-17	WI MOD GRO	LCF	9
		EPA 6010	DLB	1
		EPA 8270 by SIM	ARO	20
		ASTM D2974-87	SKW	1

Project: DT LIQUOR

Pace Project No.: 40111544

 Sample:
 B-5, 2-4
 Lab ID:
 40111544001
 Collected:
 03/09/15 15:45
 Received:
 03/12/15 07:50
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIGRO GCV	Analytical	Method: WI	MOD GRO P	reparation N	/lethod	I: TPH GRO/PVO	C WI ext.		
Benzene	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 18:11	71-43-2	W
Ethylbenzene	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 18:11	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 18:11	1634-04-4	W
Toluene	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 18:11	108-88-3	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 18:11	95-63-6	W
1,3,5-Trimethylbenzene	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 18:11	108-67-8	W
m&p-Xylene	<50.0	ug/kg	100	50.0	1	03/13/15 07:03	03/13/15 18:11	179601-23-1	W
o-Xylene	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 18:11	95-47-6	W
Surrogates									
a,a,a-Trifluorotoluene (S)	103	%	80-120		1	03/13/15 07:03	03/13/15 18:11	98-08-8	
6010 MET ICP	Analytical	Method: EP	A 6010 Prepa	ration Metho	od: EP	A 3050			
Lead	11.6	mg/kg	1.1	0.49	1	03/16/15 14:15	03/18/15 12:44	7439-92-1	
8270 MSSV PAH by SIM	Analytical	Method: EP	A 8270 by SIM	1 Preparatio	n Metl	hod: EPA 3546			
Acenaphthene	<10.4	ug/kg	20.8	10.4	1	03/18/15 08:32	03/24/15 17:14	83-32-9	
Acenaphthylene	<9.3	ug/kg	20.8	9.3	1	03/18/15 08:32	03/24/15 17:14	208-96-8	
Anthracene	<10.8	ug/kg	20.8	10.8	1	03/18/15 08:32	03/24/15 17:14	120-12-7	
Benzo(a)anthracene	<7.2	ug/kg	20.8	7.2	1	03/18/15 08:32	03/24/15 17:14	56-55-3	
Benzo(a)pyrene	<7.4	ug/kg	20.8	7.4	1	03/18/15 08:32	03/24/15 17:14	50-32-8	
Benzo(b)fluoranthene	<10.4	ug/kg	20.8	10.4	1	03/18/15 08:32	03/24/15 17:14	205-99-2	
Benzo(g,h,i)perylene	<7.9	ug/kg	20.8	7.9	1	03/18/15 08:32	03/24/15 17:14	191-24-2	
Benzo(k)fluoranthene	<11.5	ug/kg	20.8	11.5	1	03/18/15 08:32	03/24/15 17:14	207-08-9	
Chrysene	<9.6	ug/kg	20.8	9.6	1	03/18/15 08:32	03/24/15 17:14	218-01-9	
Dibenz(a,h)anthracene	<7.6	ug/kg	20.8	7.6	1	03/18/15 08:32	03/24/15 17:14	53-70-3	
Fluoranthene	<10.4	ug/kg	20.8	10.4	1	03/18/15 08:32	03/24/15 17:14	206-44-0	
Fluorene	<10.4	ug/kg	20.8	10.4	1	03/18/15 08:32	03/24/15 17:14	86-73-7	
Indeno(1,2,3-cd)pyrene	<7.9	ug/kg	20.8	7.9	1	03/18/15 08:32	03/24/15 17:14	193-39-5	
1-Methylnaphthalene	<10.4	ug/kg	20.8	10.4	1	03/18/15 08:32	03/24/15 17:14	90-12-0	
2-Methylnaphthalene	<10.4	ug/kg	20.8	10.4	1	03/18/15 08:32	03/24/15 17:14	91-57-6	
Naphthalene	<10.4	ug/kg	20.8	10.4	1	03/18/15 08:32	03/24/15 17:14	91-20-3	
Phenanthrene	<10.4	ug/kg	20.8	10.4	1	03/18/15 08:32	03/24/15 17:14	85-01-8	
Pyrene	<10.4	ug/kg	20.8	10.4	1	03/18/15 08:32	03/24/15 17:14	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	43	%	39-130		1	03/18/15 08:32	03/24/15 17:14		
Terphenyl-d14 (S)	42	%	37-130		1	03/18/15 08:32	03/24/15 17:14	1718-51-0	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
Percent Moisture	20.0	%	0.10	0.10	1		03/24/15 14:39		

Project: DT LIQUOR

Pace Project No.: 40111544

 Sample:
 B-5, 15-17
 Lab ID:
 40111544002
 Collected:
 03/09/15 16:00
 Received:
 03/12/15 07:50
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIGRO GCV	Analytical	Method: WI	MOD GRO F	Preparation I	Method	I: TPH GRO/PVO	C WI ext.		
Benzene	1890	ug/kg	721	361	10	03/13/15 07:03	03/13/15 13:54	71-43-2	
Ethylbenzene	26600	ug/kg	721	361	10	03/13/15 07:03	03/13/15 13:54	100-41-4	
Methyl-tert-butyl ether	<250	ug/kg	500	250	10	03/13/15 07:03	03/13/15 13:54	1634-04-4	W
Toluene	13200	ug/kg	721	361	10	03/13/15 07:03	03/13/15 13:54	108-88-3	
1,2,4-Trimethylbenzene	78400	ug/kg	721	361	10	03/13/15 07:03	03/13/15 13:54	95-63-6	
1,3,5-Trimethylbenzene	25500	ug/kg	721	361	10	03/13/15 07:03	03/13/15 13:54	108-67-8	
m&p-Xylene	100000	ug/kg	1440	721	10	03/13/15 07:03	03/13/15 13:54	179601-23-1	
o-Xylene	37400	ug/kg	721	361	10	03/13/15 07:03	03/13/15 13:54	95-47-6	
Surrogates									
a,a,a-Trifluorotoluene (S)	112	%	80-120		10	03/13/15 07:03	03/13/15 13:54	98-08-8	
6010 MET ICP	Analytical	Method: EP	A 6010 Prepa	ration Meth	od: EP	A 3050			
Lead	17.9	mg/kg	7.0	3.0	5	03/16/15 14:15	03/18/15 13:56	7439-92-1	
8270 MSSV PAH by SIM	Analytical	Method: EP	A 8270 by SIN	1 Preparatio	on Metl	hod: EPA 3546			
Acenaphthene	<240	ug/kg	481	240	20	03/18/15 08:32	03/23/15 19:16	83-32-9	
Acenaphthylene	<215	ug/kg	481	215	20	03/18/15 08:32	03/23/15 19:16	208-96-8	
Anthracene	<249	ug/kg	481	249	20	03/18/15 08:32	03/23/15 19:16	120-12-7	
Benzo(a)anthracene	<167	ug/kg	481	167	20	03/18/15 08:32	03/23/15 19:16	56-55-3	
Benzo(a)pyrene	<172	ug/kg	481	172	20	03/18/15 08:32	03/23/15 19:16	50-32-8	
Benzo(b)fluoranthene	<240	ug/kg	481	240	20	03/18/15 08:32	03/23/15 19:16	205-99-2	
Benzo(g,h,i)perylene	<183	ug/kg	481	183	20	03/18/15 08:32	03/23/15 19:16	191-24-2	
Benzo(k)fluoranthene	<266	ug/kg	481	266	20	03/18/15 08:32	03/23/15 19:16	207-08-9	
Chrysene	<222	ug/kg	481	222	20	03/18/15 08:32	03/23/15 19:16	218-01-9	
Dibenz(a,h)anthracene	<176	ug/kg	481	176	20	03/18/15 08:32	03/23/15 19:16	53-70-3	
Fluoranthene	<240	ug/kg	481	240	20	03/18/15 08:32	03/23/15 19:16	206-44-0	
Fluorene	<240	ug/kg	481	240	20	03/18/15 08:32	03/23/15 19:16	86-73-7	
Indeno(1,2,3-cd)pyrene	<183	ug/kg	481	183	20	03/18/15 08:32	03/23/15 19:16	193-39-5	
1-Methylnaphthalene	8430	ug/kg	481	240	20	03/18/15 08:32	03/23/15 19:16		
2-Methylnaphthalene	17900	ug/kg	481	240	20	03/18/15 08:32	03/23/15 19:16	91-57-6	
Naphthalene	14900	ug/kg	481	240	20	03/18/15 08:32	03/23/15 19:16	91-20-3	
Phenanthrene	<240	ug/kg	481	240	20	03/18/15 08:32	03/23/15 19:16		
Pyrene	<240	ug/kg	481	240	20	03/18/15 08:32	03/23/15 19:16	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	68	%	39-130		20	03/18/15 08:32	03/23/15 19:16		
Terphenyl-d14 (S)	65	%	37-130		20	03/18/15 08:32	03/23/15 19:16	1718-51-0	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
Percent Moisture	30.7	%	0.10	0.10	1		03/24/15 14:39		

REPORT OF LABORATORY ANALYSIS

Project: DT LIQUOR

Pace Project No.: 40111544

 Sample:
 B-6, 2-4
 Lab ID:
 40111544003
 Collected:
 03/09/15 16:40
 Received:
 03/12/15 07:50
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIGRO GCV	Analytical	Method: WI	MOD GRO P	reparation N	/lethoo	I: TPH GRO/PVO	C WI ext.		
Benzene	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 18:36	71-43-2	W
Ethylbenzene	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 18:36	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 18:36	1634-04-4	W
Toluene	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 18:36	108-88-3	W
1,2,4-Trimethylbenzene	136	ug/kg	64.0	32.0	1	03/13/15 07:03	03/13/15 18:36	95-63-6	
1,3,5-Trimethylbenzene	44.4J	ug/kg	64.0	32.0	1	03/13/15 07:03	03/13/15 18:36	108-67-8	
m&p-Xylene	86.9J	ug/kg	128	64.0	1	03/13/15 07:03	03/13/15 18:36	179601-23-1	
o-Xylene	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 18:36	95-47-6	W
Surrogates									
a,a,a-Trifluorotoluene (S)	103	%	80-120		1	03/13/15 07:03	03/13/15 18:36	98-08-8	
6010 MET ICP	Analytical	Method: EP/	A 6010 Prepa	ration Metho	od: EP	A 3050			
Lead	11.1	mg/kg	1.2	0.52	1	03/16/15 14:15	03/18/15 12:49	7439-92-1	
8270 MSSV PAH by SIM	Analytical	Method: EP/	A 8270 by SIM	Preparatio	on Met	hod: EPA 3546			
Acenaphthene	<10.7	ug/kg	21.3	10.7	1	03/18/15 08:32	03/24/15 16:39	83-32-9	
Acenaphthylene	<9.5	ug/kg	21.3	9.5	1	03/18/15 08:32	03/24/15 16:39	208-96-8	
Anthracene	<11.1	ug/kg	21.3	11.1	1	03/18/15 08:32	03/24/15 16:39	120-12-7	
Benzo(a)anthracene	<7.4	ug/kg	21.3	7.4	1	03/18/15 08:32	03/24/15 16:39	56-55-3	
Benzo(a)pyrene	<7.6	ug/kg	21.3	7.6	1	03/18/15 08:32	03/24/15 16:39	50-32-8	
Benzo(b)fluoranthene	<10.7	ug/kg	21.3	10.7	1	03/18/15 08:32	03/24/15 16:39	205-99-2	
Benzo(g,h,i)perylene	<8.1	ug/kg	21.3	8.1	1	03/18/15 08:32	03/24/15 16:39	191-24-2	
Benzo(k)fluoranthene	<11.8	ug/kg	21.3	11.8	1	03/18/15 08:32	03/24/15 16:39	207-08-9	
Chrysene	14.1J	ug/kg	21.3	9.9	1	03/18/15 08:32	03/24/15 16:39		
Dibenz(a,h)anthracene	<7.8	ug/kg	21.3	7.8	1	03/18/15 08:32	03/24/15 16:39	53-70-3	
Fluoranthene	<10.7	ug/kg	21.3	10.7	1	03/18/15 08:32	03/24/15 16:39	206-44-0	
Fluorene	<10.7	ug/kg	21.3	10.7	1	03/18/15 08:32	03/24/15 16:39	86-73-7	
Indeno(1,2,3-cd)pyrene	<8.1	ug/kg	21.3	8.1	1	03/18/15 08:32	03/24/15 16:39	193-39-5	
1-Methylnaphthalene	35.4	ug/kg	21.3	10.7	1	03/18/15 08:32	03/24/15 16:39	90-12-0	
2-Methylnaphthalene	75.8	ug/kg	21.3	10.7	1	03/18/15 08:32	03/24/15 16:39	91-57-6	
Naphthalene	38.8	ug/kg	21.3	10.7	1	03/18/15 08:32	03/24/15 16:39	91-20-3	
Phenanthrene	<10.7	ug/kg	21.3	10.7	1	03/18/15 08:32	03/24/15 16:39	85-01-8	
Pyrene	<10.7	ug/kg	21.3	10.7	1	03/18/15 08:32	03/24/15 16:39	129-00-0	
Surrogates	<u>.</u> .	•			-				
2-Fluorobiphenyl (S)	47	%	39-130		1	03/18/15 08:32	03/24/15 16:39		
Terphenyl-d14 (S)	43	%	37-130		1	03/18/15 08:32	03/24/15 16:39	1718-51-0	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
Percent Moisture	21.8	%	0.10	0.10	1		03/24/15 14:39		

Project: DT LIQUOR

Pace Project No.: 40111544

 Sample:
 B-6, 15-17
 Lab ID:
 40111544004
 Collected:
 03/09/15 17:00
 Received:
 03/12/15 07:50
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Image: Collected in the second sec

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIGRO GCV	Analytical	Method: WI	MOD GRO P	reparation N	/lethod	I: TPH GRO/PVO	C WI ext.		
Benzene	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 19:02	71-43-2	W
Ethylbenzene	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 19:02	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 19:02	1634-04-4	W
Toluene	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 19:02	108-88-3	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 19:02	95-63-6	W
1,3,5-Trimethylbenzene	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 19:02	108-67-8	W
m&p-Xylene	<50.0	ug/kg	100	50.0	1	03/13/15 07:03	03/13/15 19:02	179601-23-1	W
o-Xylene	<25.0	ug/kg	50.0	25.0	1	03/13/15 07:03	03/13/15 19:02	95-47-6	W
Surrogates									
a,a,a-Trifluorotoluene (S)	104	%	80-120		1	03/13/15 07:03	03/13/15 19:02	98-08-8	
6010 MET ICP	Analytical	Method: EP	A 6010 Prepai	ration Metho	od: EP	A 3050			
Lead	17.0	mg/kg	5.7	2.5	5	03/16/15 14:15	03/18/15 13:58	7439-92-1	
8270 MSSV PAH by SIM	Analytical	Method: EP	A 8270 by SIM	Preparatio	n Meth	hod: EPA 3546			
Acenaphthene	<10.6	ug/kg	21.1	10.6	1	03/23/15 08:55	03/23/15 19:33	83-32-9	
Acenaphthylene	<9.4	ug/kg	21.1	9.4	1	03/23/15 08:55	03/23/15 19:33	208-96-8	
Anthracene	<11.0	ug/kg	21.1	11.0	1	03/23/15 08:55	03/23/15 19:33	120-12-7	
Benzo(a)anthracene	<7.3	ug/kg	21.1	7.3	1	03/23/15 08:55	03/23/15 19:33	56-55-3	
Benzo(a)pyrene	<7.6	ug/kg	21.1	7.6	1	03/23/15 08:55	03/23/15 19:33	50-32-8	
Benzo(b)fluoranthene	<10.6	ug/kg	21.1	10.6	1	03/23/15 08:55	03/23/15 19:33	205-99-2	
Benzo(g,h,i)perylene	<8.0	ug/kg	21.1	8.0	1	03/23/15 08:55	03/23/15 19:33	191-24-2	
Benzo(k)fluoranthene	<11.7	ug/kg	21.1	11.7	1	03/23/15 08:55	03/23/15 19:33	207-08-9	
Chrysene	<9.8	ug/kg	21.1	9.8	1	03/23/15 08:55	03/23/15 19:33	218-01-9	
Dibenz(a,h)anthracene	<7.7	ug/kg	21.1	7.7	1	03/23/15 08:55	03/23/15 19:33	53-70-3	
Fluoranthene	<10.6	ug/kg	21.1	10.6	1	03/23/15 08:55	03/23/15 19:33	206-44-0	
Fluorene	<10.6	ug/kg	21.1	10.6	1	03/23/15 08:55	03/23/15 19:33	86-73-7	
Indeno(1,2,3-cd)pyrene	<8.0	ug/kg	21.1	8.0	1	03/23/15 08:55	03/23/15 19:33		
1-Methylnaphthalene	<10.6	ug/kg	21.1	10.6	1	03/23/15 08:55	03/23/15 19:33	90-12-0	
2-Methylnaphthalene	<10.6	ug/kg	21.1	10.6	1	03/23/15 08:55	03/23/15 19:33	91-57-6	
Naphthalene	<10.6	ug/kg	21.1	10.6	1	03/23/15 08:55	03/23/15 19:33	91-20-3	
Phenanthrene	<10.6	ug/kg	21.1	10.6	1	03/23/15 08:55	03/23/15 19:33		
Pyrene	<10.6	ug/kg	21.1	10.6	1	03/23/15 08:55	03/23/15 19:33	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	52	%	39-130		1	03/23/15 08:55	03/23/15 19:33		
Terphenyl-d14 (S)	50	%	37-130		1	03/23/15 08:55	03/23/15 19:33	1718-51-0	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
Percent Moisture	21.1	%	0.10	0.10	1		03/24/15 14:39		

Project: DT LIQUOR

Pace Project No.: 40111544

QC Batch: GC	//14068	Analysis Meth	iod: W	I MOD GRO	
QC Batch Method: TPH	I GRO/PVOC WI ext.	Analysis Desc	cription: W	IGRO Solid GCV	
Associated Lab Samples:	40111544001, 40111544002,	40111544003, 401	111544004		
METHOD BLANK: 11269	930	Matrix:	Solid		
Associated Lab Samples:	40111544001, 40111544002,	40111544003, 401	111544004		
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,2,4-Trimethylbenzene	ug/kg	<25.0	50.0	03/13/15 08:46	
1,3,5-Trimethylbenzene	ug/kg	<25.0	50.0	03/13/15 08:46	
Benzene	ug/kg	<25.0	50.0	03/13/15 08:46	
Ethylbenzene	ug/kg	<25.0	50.0	03/13/15 08:46	
m&p-Xylene	ug/kg	<50.0	100	03/13/15 08:46	
Methyl-tert-butyl ether	ug/kg	<25.0	50.0	03/13/15 08:46	
o-Xylene	ug/kg	<25.0	50.0	03/13/15 08:46	
Toluene	ug/kg	<25.0	50.0	03/13/15 08:46	
a,a,a-Trifluorotoluene (S)	%	104	80-120	03/13/15 08:46	

LABORATORY CONTROL SAMPI	LE & LCSD: 1126931		11	26932						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,2,4-Trimethylbenzene	ug/kg	1000	1030	1040	103	104	80-120	1	20	
1,3,5-Trimethylbenzene	ug/kg	1000	1010	1020	101	102	80-120	1	20	
Benzene	ug/kg	1000	1030	1050	103	105	80-120	2	20	
Ethylbenzene	ug/kg	1000	1050	1060	105	106	80-120	1	20	
m&p-Xylene	ug/kg	2000	2070	2080	103	104	80-120	1	20	
Methyl-tert-butyl ether	ug/kg	1000	1060	1080	106	108	80-120	2	20	
o-Xylene	ug/kg	1000	1030	1040	103	104	80-120	1	20	
Toluene	ug/kg	1000	1030	1040	103	104	80-120	2	20	
a,a,a-Trifluorotoluene (S)	%				103	104	80-120			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	DT LIQUOR											
Pace Project No.:	40111544											
QC Batch:	MPRP/11583		Analys	is Method:	E	EPA 6010						
QC Batch Method:	EPA 3050		Analys	is Descript	tion: 6	6010 MET						
Associated Lab Sar	nples: 4011154400	01, 40111544002,	401115440	03, 401118	544004							
METHOD BLANK:	1128254		Ν	Aatrix: Soli	id							
Associated Lab Sar	nples: 4011154400	01, 40111544002,	401115440	03, 401115	544004							
			Blank	K R	eporting							
Paran	neter	Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Lead		mg/kg	•	<0.43	1.0	03/18/15	12:16					
LABORATORY COI		1128255										
			Spike	LCS	5	LCS	% Red)				
Paran	neter	Units	Conc.	Resu	ılt	% Rec	Limits	s Qi	ualifiers			
Lead		mg/kg	50		51.3	103	80)-120		-		
MATRIX SPIKE & M	IATRIX SPIKE DUPL	ICATE: 11282	56		1128257							
			MS	MSD								
		40111375001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er Units	s Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Lead	mg/kg	g <0.43	50.1	50	50.5	50.8	100	101	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: DT LIQUOR

Pace Project No.: 40111544

QC Batch:	OEXT/26028	Analysis Method:	EPA 8270 by SIM
QC Batch Method:	EPA 3546	Analysis Description:	8270/3546 MSSV PAH by SIM
Associated Lab Sam	ples: 40111544001, 40111544002	, 40111544003	

Matrix: Solid

METHOD BLANK: 1128868 Matu Associated Lab Samples: 40111544001 40111544002 40111544003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	<8.3	16.7	03/20/15 12:11	
2-Methylnaphthalene	ug/kg	<8.3	16.7	03/20/15 12:11	
Acenaphthene	ug/kg	<8.3	16.7	03/20/15 12:11	
Acenaphthylene	ug/kg	<7.5	16.7	03/20/15 12:11	
Anthracene	ug/kg	<8.6	16.7	03/20/15 12:11	
Benzo(a)anthracene	ug/kg	<5.8	16.7	03/20/15 12:11	
Benzo(a)pyrene	ug/kg	<6.0	16.7	03/20/15 12:11	
Benzo(b)fluoranthene	ug/kg	<8.3	16.7	03/20/15 12:11	
3enzo(g,h,i)perylene	ug/kg	<6.3	16.7	03/20/15 12:11	
Benzo(k)fluoranthene	ug/kg	<9.2	16.7	03/20/15 12:11	
Chrysene	ug/kg	<7.7	16.7	03/20/15 12:11	
Dibenz(a,h)anthracene	ug/kg	<6.1	16.7	03/20/15 12:11	
Fluoranthene	ug/kg	<8.3	16.7	03/20/15 12:11	
Fluorene	ug/kg	<8.3	16.7	03/20/15 12:11	
ndeno(1,2,3-cd)pyrene	ug/kg	<6.3	16.7	03/20/15 12:11	
Naphthalene	ug/kg	<8.3	16.7	03/20/15 12:11	
Phenanthrene	ug/kg	<8.3	16.7	03/20/15 12:11	
Pyrene	ug/kg	<8.3	16.7	03/20/15 12:11	
2-Fluorobiphenyl (S)	%	62	39-130	03/20/15 12:11	
Terphenyl-d14 (S)	%	65	37-130	03/20/15 12:11	

LABORATORY CONTROL SAMPLE: 1128869

LABORATORY CONTROL SAMPLE.	1120009					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	333	210	63	53-130	
2-Methylnaphthalene	ug/kg	333	201	60	52-130	
Acenaphthene	ug/kg	333	218	65	54-130	
Acenaphthylene	ug/kg	333	215	65	55-130	
Anthracene	ug/kg	333	241	72	64-130	
Benzo(a)anthracene	ug/kg	333	235	71	50-130	
Benzo(a)pyrene	ug/kg	333	233	70	46-130	
Benzo(b)fluoranthene	ug/kg	333	245	74	43-130	
Benzo(g,h,i)perylene	ug/kg	333	196	59	48-130	
Benzo(k)fluoranthene	ug/kg	333	231	69	55-130	
Chrysene	ug/kg	333	237	71	62-130	
Dibenz(a,h)anthracene	ug/kg	333	227	68	49-130	
Fluoranthene	ug/kg	333	231	69	57-130	
Fluorene	ug/kg	333	218	65	57-130	
Indeno(1,2,3-cd)pyrene	ug/kg	333	224	67	50-130	
Naphthalene	ug/kg	333	197	59	48-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: DT LIQUOR Pace Project No.: 40111544

LABORATORY CONTROL SAMPLE:	1128869					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Phenanthrene	ug/kg	333	231	69	51-130	
Pyrene	ug/kg	333	233	70	55-130	
2-Fluorobiphenyl (S)	%			58	39-130	
Terphenyl-d14 (S)	%			64	37-130	

MATRIX SPIKE & MATRIX SI		TE: 11288	70		1128871							
			MS	MSD								
	4	0111728001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene	ug/kg	<10.9	434	434	259	260	59	59	50-130	0	30	
2-Methylnaphthalene	ug/kg	<10.9	434	434	250	249	57	56	44-130	0	32	
Acenaphthene	ug/kg	<10.9	434	434	273	253	63	58	46-130	7	26	
Acenaphthylene	ug/kg	<9.7	434	434	271	253	62	58	49-130	7	23	
Anthracene	ug/kg	<11.3	434	434	304	267	70	61	52-130	13	28	
Benzo(a)anthracene	ug/kg	<7.5	434	434	292	247	67	57	34-130	17	36	
Benzo(a)pyrene	ug/kg	<7.8	434	434	295	247	68	57	34-130	18	40	
Benzo(b)fluoranthene	ug/kg	<10.9	434	434	285	248	66	57	22-130	14	40	
Benzo(g,h,i)perylene	ug/kg	<8.3	434	434	229	176	53	40	24-130	26	35	
Benzo(k)fluoranthene	ug/kg	<12.0	434	434	307	250	71	58	41-130	21	37	
Chrysene	ug/kg	<10.1	434	434	297	253	68	58	49-130	16	33	
Dibenz(a,h)anthracene	ug/kg	<8.0	434	434	277	225	64	52	27-130	21	31	
Fluoranthene	ug/kg	<10.9	434	434	292	250	67	57	34-130	16	37	
Fluorene	ug/kg	<10.9	434	434	277	248	64	57	45-130	11	25	
Indeno(1,2,3-cd)pyrene	ug/kg	<8.3	434	434	271	215	62	49	30-130	23	34	
Naphthalene	ug/kg	<10.9	434	434	237	242	54	55	38-130	2	30	
Phenanthrene	ug/kg	<10.9	434	434	297	258	67	58	38-130	14	34	
Pyrene	ug/kg	<10.9	434	434	292	250	67	57	35-130	16	35	
2-Fluorobiphenyl (S)	%						52	50	39-130			
Terphenyl-d14 (S)	%						57	49	37-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: DT LIQUOR

Pace Project No.: 40111544

QC Batch: OEXT/26056 QC Batch Method: EPA 3546 Analysis Method: Analysis Description:

Matrix: Solid

: EPA 8270 by SIM tion: 8270/3546 MSSV PAH by SIM

Associated Lab Samples: 40111544004

METHOD BLANK:	1130800

Associated Lab Samples: 40111544004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	<8.3	16.7	03/23/15 13:16	
2-Methylnaphthalene	ug/kg	<8.3	16.7	03/23/15 13:16	
Acenaphthene	ug/kg	<8.3	16.7	03/23/15 13:16	
Acenaphthylene	ug/kg	<7.5	16.7	03/23/15 13:16	
Anthracene	ug/kg	<8.6	16.7	03/23/15 13:16	
Benzo(a)anthracene	ug/kg	<5.8	16.7	03/23/15 13:16	
Benzo(a)pyrene	ug/kg	<6.0	16.7	03/23/15 13:16	
Benzo(b)fluoranthene	ug/kg	<8.3	16.7	03/23/15 13:16	
Benzo(g,h,i)perylene	ug/kg	<6.3	16.7	03/23/15 13:16	
Benzo(k)fluoranthene	ug/kg	<9.2	16.7	03/23/15 13:16	
Chrysene	ug/kg	<7.7	16.7	03/23/15 13:16	
Dibenz(a,h)anthracene	ug/kg	<6.1	16.7	03/23/15 13:16	
Fluoranthene	ug/kg	<8.3	16.7	03/23/15 13:16	
Fluorene	ug/kg	<8.3	16.7	03/23/15 13:16	
Indeno(1,2,3-cd)pyrene	ug/kg	<6.3	16.7	03/23/15 13:16	
Naphthalene	ug/kg	<8.3	16.7	03/23/15 13:16	
Phenanthrene	ug/kg	<8.3	16.7	03/23/15 13:16	
Pyrene	ug/kg	<8.3	16.7	03/23/15 13:16	
2-Fluorobiphenyl (S)	%	67	39-130	03/23/15 13:16	
Terphenyl-d14 (S)	%	68	37-130	03/23/15 13:16	

LABORATORY CONTROL SAMPLE: 1130801

	E. 1100001	Chillen	1.00	1.00	% Rec	
-		Spike	LCS	LCS		o
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	333	260	78	53-130	
2-Methylnaphthalene	ug/kg	333	247	74	52-130	
Acenaphthene	ug/kg	333	266	80	54-130	
Acenaphthylene	ug/kg	333	265	79	55-130	
Anthracene	ug/kg	333	286	86	64-130	
Benzo(a)anthracene	ug/kg	333	262	79	50-130	
Benzo(a)pyrene	ug/kg	333	271	81	46-130	
Benzo(b)fluoranthene	ug/kg	333	265	79	43-130	
Benzo(g,h,i)perylene	ug/kg	333	295	89	48-130	
Benzo(k)fluoranthene	ug/kg	333	257	77	55-130	
Chrysene	ug/kg	333	272	82	62-130	
Dibenz(a,h)anthracene	ug/kg	333	294	88	49-130	
Fluoranthene	ug/kg	333	264	79	57-130	
Fluorene	ug/kg	333	258	77	57-130	
Indeno(1,2,3-cd)pyrene	ug/kg	333	303	91	50-130	
Naphthalene	ug/kg	333	246	74	48-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: DT LIQUOR Pace Project No.: 40111544

LABORATORY CONTROL SAMPLE: 1130801

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Phenanthrene	ug/kg	333	270	81	51-130	
Pyrene	ug/kg	333	251	75	55-130	
2-Fluorobiphenyl (S)	%			71	39-130	
Terphenyl-d14 (S)	%			70	37-130	

1130803

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1130802

			MS	MSD								
Parameter	4 Units	0111909005 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1-Methylnaphthalene	ug/kg	291	402	402	408	360	29	17	50-130	12	30	M1
2-Methylnaphthalene	ug/kg	387	402	402	438	364	13	-6	44-130	19	32	M1
Acenaphthene	ug/kg	36.0	402	402	317	299	70	65	46-130	6	26	
Acenaphthylene	ug/kg	<20.1	402	402	306	297	73	71	49-130	3	23	
Anthracene	ug/kg	<20.1	402	402	339	320	81	76	52-130	6	28	
Benzo(a)anthracene	ug/kg	<20.1	402	402	305	288	75	71	34-130	6	36	
Benzo(a)pyrene	ug/kg	<20.1	402	402	316	300	79	74	34-130	5	40	
Benzo(b)fluoranthene	ug/kg	<20.1	402	402	292	273	73	68	22-130	7	40	
Benzo(g,h,i)perylene	ug/kg	<20.1	402	402	337	317	84	79	24-130	6	35	
Benzo(k)fluoranthene	ug/kg	<20.1	402	402	320	306	79	76	41-130	4	37	
Chrysene	ug/kg	<20.1	402	402	313	301	77	74	49-130	4	33	
Dibenz(a,h)anthracene	ug/kg	<20.1	402	402	341	320	85	80	27-130	6	31	
Fluoranthene	ug/kg	<20.1	402	402	314	293	76	71	34-130	7	37	
Fluorene	ug/kg	62.2	402	402	318	298	64	59	45-130	6	25	
Indeno(1,2,3-cd)pyrene	ug/kg	<20.1	402	402	347	328	86	81	30-130	6	34	
Naphthalene	ug/kg	108	402	402	317	315	52	51	38-130	1	30	
Phenanthrene	ug/kg	104	402	402	364	323	65	54	38-130	12	34	
Pyrene	ug/kg	20.4	402	402	301	279	70	64	35-130	8	35	
2-Fluorobiphenyl (S)	%						63	63	39-130			
Terphenyl-d14 (S)	%						64	61	37-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	DT LIQUOR 40111544		
QC Batch:	PMST/10989	Analysis Method:	ASTM D2974-87
QC Batch Method:	ASTM D2974-87	Analysis Description:	Dry Weight/Percent Moisture
Associated Lab Sa	mples: 40111544001, 40111544002, 4	10111544003, 40111544004	
SAMPLE DUPLICA	TE: 1131299	10.1.10000001 D	

		40112066001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	7.1	7.3	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: DT LIQUOR Pace Project No.: 40111544

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

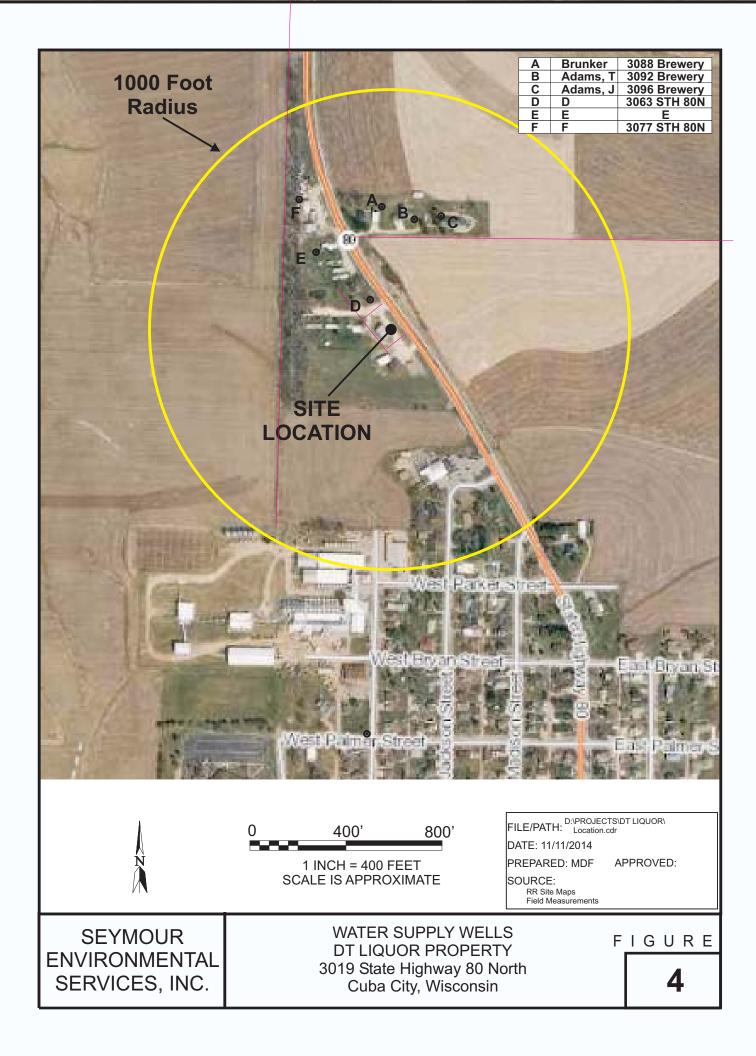
N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- W Non-detect results are reported on a wet weight basis.


QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: DT LIQUOR Pace Project No.: 40111544

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40111544001	B-5, 2-4	TPH GRO/PVOC WI ext.	GCV/14068	WI MOD GRO	GCV/14075
40111544002	B-5, 15-17	TPH GRO/PVOC WI ext.	GCV/14068	WI MOD GRO	GCV/14075
40111544003	B-6, 2-4	TPH GRO/PVOC WI ext.	GCV/14068	WI MOD GRO	GCV/14075
40111544004	B-6, 15-17	TPH GRO/PVOC WI ext.	GCV/14068	WI MOD GRO	GCV/14075
40111544001	B-5, 2-4	EPA 3050	MPRP/11583	EPA 6010	ICP/10296
40111544002	B-5, 15-17	EPA 3050	MPRP/11583	EPA 6010	ICP/10296
40111544003	B-6, 2-4	EPA 3050	MPRP/11583	EPA 6010	ICP/10296
40111544004	B-6, 15-17	EPA 3050	MPRP/11583	EPA 6010	ICP/10296
40111544001	B-5, 2-4	EPA 3546	OEXT/26028	EPA 8270 by SIM	MSSV/7718
40111544002	B-5, 15-17	EPA 3546	OEXT/26028	EPA 8270 by SIM	MSSV/7718
40111544003	B-6, 2-4	EPA 3546	OEXT/26028	EPA 8270 by SIM	MSSV/7718
40111544004	B-6, 15-17	EPA 3546	OEXT/26056	EPA 8270 by SIM	MSSV/7729
40111544001	B-5, 2-4	ASTM D2974-87	PMST/10989		
40111544002	B-5, 15-17	ASTM D2974-87	PMST/10989		
40111544003	B-6, 2-4	ASTM D2974-87	PMST/10989		
40111544004	B-6, 15-17	ASTM D2974-87	PMST/10989		

Ċ)
2	2
Ĝ	5
2	7
2	5
1	

Intact / Not Intact	a si na da				special pricing and release of liability	special pricing a	
Present / Not Present	Date/Time:	Received By:	Date/Time:	Relinquished By:	Samples on HOLD are subject to Reli	Samples on H	
Cooler Custedy Seal			-				Fax:
OK / Adjusted	Date/Time:	Received Bv:	Date/Time:	Relinguished By:	Reli	e:	Telephone:
Sample Receipt pH							Email #2:
Receip	Date/Time:		/Time:	Relinquished By:			Email #1:
	Never 1/2/12/15	MARIN	2012	Junnan (Jap	(complete what you want):	nit Prelim Rush Ro	Transm
	hanne			Call M Ky Mrs	pproval/surcharge)	Ush IAI subject to a Date Needed:	(ਸ
PACE Project No.	Date/Time:	Received By:	, jë	Relinquished By:	s	sh Turnaround	Rus
				4			
						1.4	
\checkmark	\mathbb{V}		<i>*</i>	1700 1	B-6, 15-17	T B	00
				1640 1	3.6.2.4	3 3	00
4			× × ×	1600 1 7	3-5 15-17	S B	$ \partial $
1-407DA 1-Inomian H	1-40M/VF		4 4	1545 5 1	3-5,2-4 3/9	3	001
	COMMENTS		Pł	Ř		LAB# C	PACE L
LAB COMMENTS Profile #	CLIENT		VC AF	\nah	your sample si = Suidge		
	Invoice To Phone:		1	xing Water Ind Water			
				trix Codes W = Water	MS/MSD	Data Package Options (billable)	Data P
	Invoice To Address:	****		ested		19	PO #:
	Invoice To Company:				Robin Simon	Sampled By (Sign):	Sampled
	Invoice To Contact:			PRESERVATION Pick (CODE)* Latter	lobynowinov	Sampled By (Print):	Sampled
mcfav-land, with				C	Wisconsin	State: /	Project State:
2531 Dyrzon liad	Mail To Address:		l=Sodium Thiosulfate J=Other	H=Sodium Bisulfate Solution	JTCIGUOC	Name:	Project Name:
Sentraur Env.	Mail To Company:	ol G=NaOH	*Preservation Codes D=HNO3 E=DI Water	A=None B=HCL C=H2SO4		Project Number:	Project N
Thomas Sermon	Mail To Contact:	DY	VOF CUSTOD	CHAIN OF			Phone:
Pag	Quote #:	A.			Robyn Sermour	Project Contact:	Project (
		~	ace Analytical	Aace An		Branch/Location:	Branch/l
of 19	612-607-1700 W1: 920-469-2436	MN: 612-607-1700			Sermour Env	Company Name:	Compan
Page 1 of	EGION	UPPER MIDWEST REGION			(Please Print Clearly)	(Plea	

