Wisconsin Department of Natural Resources

Case Closure – GIS Registry NR 4400-202

For: Browntown Oil

BRRTS # 03-23-001503 PECFA # 53522-9999-03

December 11, 2015

Excellence through experience™

Table of Contents

WDNR Case Summary and Case Closure – GIS Registry Form

Attachment A/Data Tables

Attachment B/Maps and Figures

Attachment C/Documentation of Remedial Action

Attachment D/Maintenance Plan(s)

Attachment E/Monitoring Well Information

Attachment F/Source Legal Documents

Attachment G/Notification to Owners of Affected Properties

State of Wisconsin Department of Natural Resources PO Box 7921, Madison WI 53707-7921 dnr.wi.gov

Form 4400-202 (R 3/15) Page 1 of 13

SUBMIT AS UNBOUND PACKAGE IN THE ORDER SHOWN

Notice: Pursuant to ch. 292, Wis. Stats., and chs. NR 726 and 746, Wis. Adm. Code, this form is required to be completed for case closure requests. The closure of a case means that the Department of Natural Resources (DNR) has determined that no further response is required at that time based on the information that has been submitted to the DNR. All sections of this form must be completed unless otherwise directed by the Department. DNR will consider your request administratively complete when the form and all sections are completed, all attachments are included, and the applicable fees required under ch. NR 749, Wis. Adm. Code, are included, and sent to the proper destinations. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records Law (ss. 19.31 - 19.39, Wis. Stats.). Incomplete forms will be considered "administratively incomplete" and processing of the request will stop until required information is provided.

Site Information		
BRRTS No.	VPLE No.	
03-23-001503		
Parcel ID No.		
2311001160000		
FID No.	WTM Coordinates	
	X 536892	234173
BRRTS Activity (Site) Name	WTM Coordinates Represent:	234173
Browntown Oil	Source Area	l Center
Site Address	City	State ZIP Code
303 N. Mill Street	Browntown	WI 53522
Acres Ready For Use	Browntown	<u></u>
(0.5	
Responsible Party (RP) Name	······································	
John Sigafus		
Company Name		
Mailing Address	City	State ZIP Code
P.O. Box 187	Browntown	WI 53522
Phone Number	Email	
(715) 501-8349		
Check here if the RP is the owner of the source property.		
Environmental Consultant Name		
Ron Anderson		
Consulting Firm		
METCO		
Mailing Address	City	State ZIP Code
709 Gillette Street Suite 3	La Crosse	WI 54603
Phone Number	Email	
(608) 781-8879	rona@metcohq.com	
Fees and Mailing of Closure Request		
 Send a copy of page one of this form and the applicable ch. N (Environmental Program Associate) at http://dnr.wi.gov/topic. 		
🔀 \$1,050 Closure Fee	🔀 \$300 Database Fee for Soil	
☐ \$350 Database Fee for Groundwater or	Total Amount of Payment \$ \$1,350.00	
Monitoring Wells (Not Abandoned)	·	
	Resubmittal, Fees Previously Paid	

 Send one paper copy and one e-copy on compact disk of the entire closure package to the Regional Project Manager assigned to your site. Submit as <u>unbound, separate documents</u> in the order and with the titles prescribed by this form. For electronic document submittal requirements, see http://dnr.wi.gov/files/PDF/pubs/rr/RR690.pdf.

03-23-001503	Browntown Oil	Case Closure - GIS	Registry
BRRTS No.	Activity (Site) Name	Form 4400-202 (R 3/15)	Page 2 of 13

Site Summary

If any portion of the Site Summary Section is not relevant to the case closure request, you must fully explain the reasons why in the relevant section of the form. All information submitted shall be legible. Providing illegible information will result in a submittal being considered incomplete until corrected.

1. General Site Information and Site History

- A. Site Location: Describe the physical location of the site, both generally and specific to its immediate surroundings. The subject property is located in the NW 1/4 of the NW 1/4 of Section 9, Township 1 N, Range 6 E, Village of Browntown, Green County, Wisconsin. The property consists of one tax parcel (PID #2311001160000), and is bound by Light Industrial properties on the south and west, by Foundry Street to the north and by N. Mill Street to the east.
- B. Prior and current site usage: Specifically describe the current and historic occupancy and types of use. A gas station/auto repair shop has operated on the subject property since the 1940's. John Sigafus has owned the property since the late 1970's, and operated the gas station until 1989. The gas station's petroleum storage tank systems consisted of a 12,000-gallon leaded gasoline, a 3,000-gallon unleaded gasoline, a 700-gallon leaded gasoline, a 500-gallon fuel oil, and a 300-gallon kerosene UST. The UST systems were removed on December 8, 1998.
- C. Current zoning (e.g., industrial, commercial, residential) for the site and for neighboring properties, and how verified (Provide documentation in Attachment G).

The subject property is zoned as M-1 Light Industrial and the surrounding properties are also zoned M-1 Light Industrial.

D. Describe how and when site contamination was discovered.

On December 8, 1998, during the UST removal, thirteen soil samples were collected for field and laboratory analysis (DRO, GRO, and/or PID). Petroleum contamination was confirmed in soil samples #3, which showed 1,900 ppm GRO in the area of the removed 12,000-gallon leaded gasoline UST. Elevated PID detects were recorded in soil samples #4 (700-gallon leaded gasoline), #11 (3,000-gallon unleaded gasoline), and Piping 1, however confimation samples were not subnmitted for laboratory analysis from these locations.

- E. Describe the type(s) and source(s) or suspected source(s) of contamination. The contamination source is the removed UST systems consisting of, a 12,000-gallon leaded gasoline, a 3,000-gallon unleaded gasoline, a 700-gallon leaded gasoline, a 500-gallon fuel oil, a 300-gallon kerosene UST and associated piping and dispensers.
- F. Other relevant site description information (or enter Not Applicable). The WDNR GIS Registry has incorrectly identified the locations of sites in this area. The GIS Registry shows an ERP site (Green County Ag Service, 212 N. Mill Street, 02-23-001152) in the location of the Browntown Oil site, which is incorrect. The GIS Registry also shows the Browntown Oil site to be approximately 500 feet to the south of its actual location.
- G. List BRRTS activity/site name and number for BRRTS activities at this source property, including closed cases. No other BRRTS activities exist at this source property.
- H. List BRRTS.activity/site name(s) and number(s) for all properties immediately adjacent to (abutting) this source property. No other BRRTS activities exist at any of the adjacent properties.

2. General Site Conditions

- A. Soil/Geology
 - i. Describe soil type(s) and relevant physical properties, thickness of soil column across the site, vertical and lateral variations in soil types.

Unconsolidated materials on the subject property consist of black to brown to tan to green to gray to orange, fine to coarse grained sand to silty sand from surface to depths ranging up to 8.5 feet below ground surface (bgs).

- ii. Describe the composition, location and lateral extent, and depth of fill or waste deposits on the site. There are no known fill or waste deposits on the subject property.
- iii. Describe the depth to bedrock, bedrock type, competency and whether or not it was encountered during the investigation. At depths ranging from 6 feet to at least 13 feet bgs exists a tan to pink, fine to coarse grained sandstone.
- iv. Describe the nature and locations of current surface cover(s) across the site (e.g., natural vegetation, landscaped areas, gravel, hard surfaces, and buildings).

The subject property consists of grass to the south and west of the on site building and asphalt and concrete to the north and east of the on site building.

B. Groundwater

03-23-001503	Browntown Oil	Case Closure - GIS Re	eaistry
BRRTS No.	Activity (Site) Name		Page 3 of 13

i. Discuss depth to groundwater and piezometric elevations. Describe and explain depth variations, including high and low water table elevation and whether free product affects measurement of water table elevation. Describe the stratigraphic unit(s) where water table was found or which were measured for piezometric levels.

Based on the data collected during the site investigation, depth to groundwater varies from 0.82 to 7.03 feet bgs, depending on well location and time of year. Free product was not encountered during this investigation.

Groundwater exists in the sandstone bedrock and also in the unconsolidated soil, which consist of mostly sand to silty sand.

ii. Discuss groundwater flow direction(s), shallow and deep. Describe and explain flow variations, including fracture flow if present.

The shallow groundwater flow direction is generally toward the northeast. Groundwater flow deeper in the aquifer is not known, as there were no piezometer wells installed as part of the site investigation.

iii. Discuss groundwater flow characteristics: hydraulic conductivity, flow rate and permeability, or state why this information was not obtained.

On September 26, 2012, METCO conducted slug tests on monitoring wells MW-1, MW-2, and MW-5. The slug test data was evaluated using the curve fitting program "Hydro-Test for Windows" Produced by Dakota Environmental, Inc. Slug test data was evaluated using the Bouwer and Rice method. Hydrogeologic parameters were estimated as the following:

Monitoring Well MW-1 Hydraulic Conductivity = 0.00180 cm/sec Transmissivity = 0.412. cm2/sec Flow Velocity (V=K1/n) = 33.56 m/yr

Monitoring Well MW-2 Hydraulic Conductivity = 0.00326 cm/sec Transmissivity = 0.836 cm2/sec Flow Velocity (V=Kl/n) = 60.66 m/yr

Monitoring Well MW-5 Hydraulic Conductivity = 0.00271 cm/sec Transmissivity = 0.527 cm2/sec Flow Velocity (V=K1/n) = 50.39 m/yr

Since the thickness of the unconfined aquifer was unknown, the bottoms of monitoring wells MW-1, -2, and -5 were assumed as the lower extent of the aquifer for calculation purposes.

iv. Identify and describe locations/distance of potable and/or municipal wells within 1200 feet of the site. Include general summary of well construction (geology, depth of casing, depth of screened or open interval).

The Village of Browntown has one municipal water supply well, which supplies potable water within the village limits. The village municipal well exists approximately 4,000 feet to the southeast of the subject property. METCO is not aware of any private potable wells in the area.

3. Site Investigation Summary

- A. General
 - i. Provide a brief summary of the site investigation history. Reference previous submittals by name and date. Describe site investigation activities undertaken since the last submittal for this project and attach the appropriate documentation in Attachment C, if not previously provided.

On December 8, 1998, Northern Environmental collected thirteen soil samples during the UST removal for field and laboratory analysis (DRO, GRO, and/or PID). (Site Investigation Report, September 2013)

On October 10-11, 2011, METCO completed seventeen geoprobe borings (G-1 thru G-17). Thirty-four soil samples and sixteen groundwater samples were collected for field and/or laboratory analysis. (Site Investigation Report, September 2013)

On June 4, 2012, METCO completed six soil borings and installed six monitoring wells (MW-1 thru MW-6). Fourteen soil samples were collected for field and/or laboratory analysis. Upon completion, the wells were properly developed. (Site Investigation Report, September 2013)

On September 26, 2012, METCO surveyed and collected groundwater samples for field and laboratory analysis from the six monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5 and MW-6). METCO also conducted slug tests on monitoring wells MW-1, MW-2, and MW-5. (Site Investigation Report, September 2013)

On March 20, 2013, METCO collected groundwater samples for field and laboratory analysis from the six monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5 and MW-6). (Site Investigation Report, September 2013)

03-23-001503	Browntown Oil	Case Closure - GIS	Registry
BRRTS No.	Activity (Site) Name	Form 4400-202 (R 3/15)	Page 4 of 13

On January 14, 2014, METCO collected groundwater samples for field and laboratory analysis from the six monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5 and MW-6). (Groundwater Monitoring Report, December 2014)

On April 14, 2014, METCO collected groundwater samples for field and laboratory analysis from the six monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5 and MW-6). (Groundwater Monitoring Report, December 2014)

On July 15, 2014, METCO collected groundwater samples for field and laboratory analysis from the six monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5 and MW-6). (Groundwater Monitoring Report, December 2014)

On October 15, 2014, METCO collected groundwater samples for field and laboratory analysis from the six monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5 and MW-6). (Groundwater Monitoring Report, December 2014)

- ii. Identify whether contamination extends beyond the source property boundary, and if so describe the media affected (e.g., soil, groundwater, vapors and/or sediment, etc.), and the vertical and horizontal extent of impacts.
 The petroleum contamination in soil and groundwater does not currently extend beyond the source property boundary.
- iii. Identify any structural impediments to the completion of site investigation and/or remediation and whether these impediments are on the source property or off the source property. Identify the type and location of any structural impediment (e.g., structure) that also serves as the performance standard barrier for protection of the direct contact or the groundwater pathway.

No structural impediments interfered with the completion of the site investigation.

B. Soil

i. Describe degree and extent of soil contamination. Relate this to known or suspected sources and known or potential receptors/migration pathways.

The extent of residual soil contamination which exceeds the NR720 Groundwater RCL's, consists of one oval shaped area in the area of the former dispenser island approximately 19 feet long, 8 feet wide and extending up to 3 feet bgs and one rectangular shaped area in the area of the removed USTs west of the on site building approximately 19 feet long, 18 feet wide and extending up to 3 feet bgs.

The area of soil contamination does not appear to intersect any utility corridors and does not appear to have an impact any buildings, basements, sumps, etc.

ii. Describe the concentration(s) and types of soil contaminants found in the upper four feet of the soil column. Soil samples collected within the upper four feet of the soil column exceeding the NR720 RCL's that remain include:

G-1-1 (3 feet bgs) - Lead (39 ppm)

G-2-1 (3 feet bgs) - Lead (45 ppm)

G-4-1 (3 feet bgs) - Naphthalene (12.5 ppm), Trimethylbenzenes (106.2 ppm) and Xylene (11.09 ppm)

iii. Identify the ch. NR 720, Wis. Adm. Code, method used to establish the soil cleanup standards for this site. This includes a soil performance standard established in accordance with s. NR 720.08, a Residual Contaminant Level (RCL) established in accordance with s. NR 720.10 that is protective of groundwater quality, or an RCL established in accordance with s. NR 720.12 that is protective of human health from direct contact with contaminated soil. Identify the land use classification that was used to establish cleanup standards. Provide a copy of the supporting calculations/ information in Attachment C.

Residual Contaminant Levels (RCL's) were established in accordance with NR720.10 and NR720.12. Soil RCL's for the protection of the groundwater pathway and for non-industrial direct contact were taken from the RR programs RCL's spreadsheet.

C. Groundwater

i. Describe degree and extent of groundwater contamination. Relate this to known or suspected sources and known or potential receptors/migration pathways. Specifically address any potential or existing impacts to water supply wells or interception with building foundation drain systems.

A dissolved phase contaminant plume exceeding the NR140 PAL Groundwater Quality Standards has formed at the watertable in the area of the removed USTs west of the on site building and has migrated to the north. The plume is approximately 121 feet long and 26 feet wide.

The area of groundwater contamination does not appear to intersect any utility corridors and does not appear to have an impact any buildings, basements, sumps, etc.

03-23-001503	Browntown Oil	Case Closure - GIS I	Registry
BRRTS No.	Activity (Site) Name	Form 4400-202 (R 3/15)	Page 5 of 13

ii. Describe the presence of free product at the site, including the thickness, depth, and locations. Identify the depth and location of the smear zone.

Free product was never encountered at this site.

D. Vapor

Describe how the vapor migration pathway was assessed, including locations where vapor, soil gas, or indoor air samples were collected. If the vapor pathway was not assessed, explain reasons why.
 Soil contamination does not appear to extend underneath any buildings. Groundwater contamination appears to extend underneath the on site building, which has a slab on grade foundation. Although the groundwater under the building is shallow (1.81-5.5 feet bgs), Benzene levels are well below 1,000 ppb. The highest recorded Benzene level in groundwater in a geoprobe or monitoring well during the investigation was from G-2 (14.6 ppb). Based on the limited extent of unsaturated soil contamination, and the low level Benzene contamination in groundwater, vapor intrusion does not appear to be a risk at this time.

- ii. Identify the applicable DNR action levels and the land use classification used to establish them. Describe where the DNR action levels were reached or exceeded (e.g., sub slab, indoor air or both). No vapor samples were collected as part of the site investigation.
- E. Surface Water and Sediment
 - Identify whether surface water and/or sediment was assessed and describe the impacts found. If this pathway was not assessed, explain why.

No surface water or sediment samples were collected during this investigation. Although the nearest surface water is Skinner Creek, which exists approximately 100 feet east of the subject property, monitoring wells MW-4 and MW-5 are located just west of Skinner Creek. MW-4 has never had any detects for any contaminants of concern and MW-5 has only shown a PAL exceedance during one round (1.28 ppb Benzene) and had no detects during the most recent round of sampling. Based on this it is unlikely that Skinner Creek is at risk of contamination.

 ii. Identify any surface water and/or sediment action levels used to assess the impacts for this pathway and how these were derived. Describe where the DNR action levels were reached or exceeded.
 No surface water or sediments were assessed as part of the site investigation.

4. Remedial Actions Implemented and Residual Levels at Closure

A. General: Provide a brief summary of the remedial action history. List previous remedial action report submittals by name and date. Identify remedial actions undertaken since the last submittal for this project and provide the appropriate documentation in Attachment C.

No remedial activities occurred as part of the site investigation.

- B. Describe any immediate or interim actions taken at the site under ch NR 708, Wis. Adm. Code. No immediate or interim activities occurred as part of the site investigation.
- C. Describe the *active* remedial actions taken at the source property, including: type of remedial system(s) used for each media affected; the size and location of any excavation or in-situ treatment; the effectiveness of the systems to address the contaminated media and substances; operational history of the systems; and summarize the performance of the active remedial actions. Provide any system performance documentation in Attachment A.7.

No active remedial activities occurred as part of the site investigation.

- D. Describe the alternatives considered during the Green and Sustainable Remediation evaluation in accordance with NR 722.09 and any practices implemented as a result of the evaluation.
 No alternatives were considered during the Green and Sustainable Remediation evaluation.
- E. Describe the nature, degree and extent of residual contamination that will remain at the source property or on other affected properties after case closure.

The extent of residual soil contamination which exceeds the NR720 Groundwater RCL's, consists of one oval shaped area in the area of the former dispenser island approximately 19 feet long, 8 feet wide and extending up to 3 feet bgs and one rectangular shaped area in the area of the removed USTs west of the on site building approximately 19 feet long, 18 feet wide and extending up to 3 feet bgs.

A dissolved phase contaminant plume exceeding the NR140 PAL Groundwater Quality Standards has formed at the watertable in the area of the removed USTs west of the on site building and has migrated to the north. The plume is approximately 121 feet long and 26 feet wide.

The petroleum contamination in soil and groundwater does not currently extend beyond the source property boundary

03-23-001503	Browntown Oil	Case Clo	sure _– GIS I	Registry
BRRTS No.	Activity (Site) Name	Form 4400-202	(R 3/15)	Page 6 of 13

- F. Describe the residual soil contamination within four feet of ground surface (direct contact zone) that attains or exceeds RCLs established under s. NR 720.12, Wis. Adm. Code, for protection of human health from direct contact. G-4-1 (3 feet bgs): Naphthalene
- G. Describe the residual soil contamination that is above the observed low water table that attains or exceeds the soil standard(s) for the groundwater pathway.

The following soil samples currently exceed NR720 Groundwater RCL's:

G-1-1 (3 feet bgs): Lead

G-2-1 (3 feet bgs): Lead

G-4-1 (3 feet bgs): Naphthalene, Trimethylbenzenes and Xylene

H. Describe how the residual contamination will be addressed, including but not limited to details concerning: covers, engineering controls or other barrier features; use of natural attenuation of groundwater; and vapor mitigation systems or measures.

Residual soil contamination exceeding the NR720 Groundwater RCL's and groundwater contamination exceeding the NR140 ES and/or PAL can be addressed through natural attenuation.

- If using natural attenuation as a groundwater remedy, describe how the data collected supports the conclusion that natural L. attenuation is effective in reducing contaminant mass and concentration (e.g., stable or receding groundwater plume). Overall contaminant trends in groundwater appear to be decreasing. Since the overall contaminant trends appear to be decreasing, natural attenuation appears to be effective in reducing contaminant mass and concentration.
- J. Identify how all exposure pathways (soil, groundwater, vapor) were removed and/or adequately addressed by immediate, interim and/or remedial action(s). Any remaining exposure pathways will be addressed via natural attenuation.

- K. Identify any system hardware anticipated to be left in place after site closure, and explain the reasons why it will remain. No system hardware was installed as part of the site investigation.
- Identify the need for a ch. NR 140, Wis. Adm. Code, groundwater Preventive Action Limit (PAL) or Enforcement Standard E. (ES) exemption, and identify the affected monitoring points and applicable substances. One monitoring well currently show NR140 PAL exceedances:

MW-2: Benzene and Naphthalene

M. If a DNR action level for vapor intrusion was exceeded (for indoor air, sub slab, or both) describe where it was exceeded and how the pathway was addressed.

No vapor samples were collected as part of the site investigation.

N. Describe the surface water and/or sediment contaminant concentrations and areas after remediation. If a DNR action level was exceeded, describe where it was exceeded and how the pathway was addressed. No surface waters or sediments were assessed during the site investigation.

03-23-001503	Browntown Oil	Case Closure - GIS	Registry
BRRTS No.	Activity (Site) Name	Form 4400-202 (R 3/15)	Page 7 of 13

5. Continuing Obligations: Situations where sites, including all affected properties and rights-of-way (ROWs), are included on the DNR's GIS Registry. In certain situations, maintenance plans are also required, and must be included in Attachment D.

Directions: For each of the 3 property types below, check all situations that apply to this closure request. (NOTE: Monitoring wells to be transferred to another site are addressed in Attachment E.)

		n applies to t r Right of Wa			
	Property Typ	be:		Case Closure Situation - Continuing Obligation Inclusion on the GIS Registry is Required (ii xiv.)	Maintenance Plan
	Source Property	Affected Property (Off-Source)	ROW		Required
i.		\boxtimes	\boxtimes	None of the following situations apply to this case closure request.	NA
ii.				Residual groundwater contamination exceeds ch. NR 140 ESs.	NA
iii.	\boxtimes			Residual soil contamination exceeds ch. NR 720 RCLs.	NA
iv.		L		Monitoring Wells Remain:	
				Not Abandoned (filled and sealed)	NA
				Continued Monitoring (requested or required)	Yes
v.	\boxtimes			Cover/Barrier/Engineered Cover or Control for (soil) direct contact pathways (includes vapor barriers)	Yes
vi.				Cover/Barrier/Engineered Cover or Control for (soil) groundwater infiltration pathway	Yes
vii.				Structural Impediment: impedes completion of investigation or remedial action (not as a performance standard cover)	NA
viii.				Residual soil contamination meets NR 720 industrial soil RCLs, land use is classified as industrial	NA
ix.			NA	Vapor Mitigation System (VMS) required due to exceedances of vapor risk screening levels or other health based concern	Yes
х.			NA	Vapor: Dewatering System needed for VMS to work effectively	Yes
xi.			NA	Vapor: Compounds of Concern in use: full vapor assessment could not be completed	NA
xii			NA	Vapor: Commercial/industrial exposure assumptions used.	NA
xiii.				Vapor: Residual volatile contamination poses future risk of vapor intrusion	NA
xiv.				Site-specific situation: (e. g., fencing, methane monitoring, other) (discuss with project manager before submitting the closure request)	Site specific

6. Underground Storage Tanks

A. Were any tanks, piping or other associated tank system components removed as part of the investigation O Yes I No or remedial action?

B. Do any upgraded tanks meeting the requirements of ch. ATCP 93, Wis. Adm. Code, exist on the property? () Yes () No

⊖Yes ⊖ No

C. If the answer to question 6.B. is yes, is the leak detection system currently being monitored?

Case Closure - GIS Registry

Form 4400-202 (R 3/15)

Page 8 of 13

General Instructions

All information shall be legible. Providing illegible information will result in a submittal being considered incomplete until corrected. For each attachment (A-G), provide a Table of Contents page, listing all 'applicable' and 'not applicable' items by Closure Form titles (e.g., A.1. Groundwater Analytical Table, A.2. Soil Analytical Results Table, etc.). If any item is 'not applicable' to the case closure request, you must fully explain the reasons why.

Data Tables (Attachment A)

Directions for Data Tables:

- Use bold and italics font for information of importance on tables and figures. Use bold font for ch. NR 140, Wis. Adm. Code ES attainments or exceedances, and italicized font for ch. NR 140, Wis. Adm. Code, PAL attainments or exceedances.
- Use bold font to identify individual ch. NR 720 Wis. Adm. Code RCL exceedances. Tables should also include the corresponding groundwater pathway and direct contact pathway RCLs for comparison purposes. Cumulative hazard index and cumulative cancer risk exceedances should also be tabulated and identified on Tables A.2 and A.3.
- Do not use shading or highlighting on the analytical tables.
- Include on Data Tables the level of detection for results which are below the detection level (i.e., do not just list as no detect (ND)).
- Include the units on data tables.
- Summaries of all data <u>must</u> include information collected by previous consultants.
- Do not submit lab data sheets unless these have not been submitted in a previous report. Tabulate all data required in s. NR 716.15 (3)(c), Wis. Adm. Code, in the format required in s. NR 716.15(4)(e), Wis. Adm. Code.
- Include in Attachment A all of the following tables, in the order prescribed below, with the specific Closure Form titles noted on the separate attachments (e.g., Title: A.1. Groundwater Analytical Table; A.2. Soil Analytical Results Table. etc.).
- For required documents, each table (e.g., A.1., A.2., etc.) should be a separate Portable Document Format (PDF).

A. Data Tables

- A.1. Groundwater Analytical Table(s): Table(s) showing the analytical results and collection dates for all groundwater sampling points (e.g., monitoring wells, temporary wells, sumps, extraction wells, potable wells) for which samples have been collected
- Soil Analytical Results Table(s): Table(s) showing all soil analytical results and collection dates. Indicate if sample was A.2. collected above or below the observed low water table (unsaturated versus saturated).
- Residual Soil Contamination Table(s): Table(s) showing the analytical results of only the residual soil contamination at A.3. the time of closure. This table shall be a subset of table A.2 and should include only the soil sample locations that exceed an RCL. Indicate if sample was collected above or below the observed low water table (unsaturated versus saturated). Table A.3 is optional only if a total of fewer than 15 soil samples have been collected at the site.
- A.4. Vapor Analytical Table(s): Table(s) showing type(s) of samples, sample collection methods, analytical method, sample results, date of sample collection, time period for sample collection, method and results of leak detection, and date, method and results of communication testing.
- Other Media of Concern (e.g., sediment or surface water): Table(s) showing type(s) of sample, sample collection A.5. method, analytical method, sample results, date of sample collection, and time period for sample collection.
- Water Level Elevations: Table(s) showing all water level elevation measurements and dates from all monitoring wells. If A.6. present, free product should be noted on the table.
- A.7. Other: This attachment should include: 1) any available tabulated natural attenuation data; 2) data tables pertaining to engineered remedial systems that document operational history, demonstrate system performance and effectiveness, and display emissions data; and (3) any other data tables relevant to case closure not otherwise noted above. If this section is not applicable, please explain the reasons why.

Maps, Figures and Photos (Attachment B)

Directions for Maps, Figures and Photos:

- Provide on paper no larger than 11 x 17 inches, unless otherwise directed by the Department. Maps and figures may be submitted in a larger electronic size than 11 x 17 inches, in a PDF readable by the Adobe Acrobat Reader. However, those larger-size documents must be legible when printed.
- Prepare visual aids, including maps, plans, drawings, fence diagrams, tables and photographs according to the applicable portions of ss. NR 716.15(4), 726.09(2) and 726.11(3), (5) and (6), Wis. Adm. Code.
- Include all sample locations.
- Contour lines should be clearly labeled and defined.
- Include in Attachment B all of the following maps and figures, in the order prescribed below, with the specific Closure Form titles noted on the separate attachments (e.g., Title: B.1. Location Map; B.2. Detailed Site Map, etc).
- For the electronic copies that are required, each map (e.g., B.1.a., B.2.a, etc.,) should be a separate PDF.
- Maps, figures and photos should be dated to reflect the most recent revision.
 - Location Maps B.1.
 - B.1.a. Location Map: A map outlining all properties within the contaminated site boundaries on a United States Geological Survey (U.S.G.S.) topographic map or plat map in sufficient detail to permit easy location of all affected and/or adjacent parcels. If groundwater standards are exceeded, include the location of all potable wells, including municipal wells, within 1200 feet of the area of contamination.
 - B.1.b. Detailed Site Map: A map that shows all relevant features (buildings, roads, current ground surface cover, individual property boundaries for all affected properties, contaminant sources, utility lines, monitoring wells and potable wells) within the contaminated area. This map is to show the location of all contaminated public streets, and highway and railroad rights-of-way in relation to the source property and in relation to the boundaries of groundwater contamination attaining or exceeding a ch. NR 140 ES, and/or in relation to the boundaries of soil contamination attaining or exceeding a RCL. Provide parcel identification numbers for all affected properties.
 - B.1.c. RR Sites Map: From RR Sites Map (http://dnrmaps.wi.gov/sl/?Viewer=RR Sites) attach a map depicting the source property, and all open and closed BRRTS sites within a half-mile radius or less of the property.

Case Closure - GIS Registry Page 9 of 13

Form 4400-202 (R 3/15)

B.2. Soil Figures

- B.2.a. Soil Contamination: Figure(s) showing the location of <u>all</u> identified unsaturated soil contamination. Use a single contour to show the horizontal extent of each area of contiguous soil contamination that exceeds a soil to groundwater pathway RCL as determined under ch. NR 720.Wis. Adm. Code. A separate contour line should be used to indicate the horizontal extent of each area of contiguous soil contamination that exceeds a direct contact RCL exceedances (0-4 foot depth).
- B.2.b. Residual Soil Contamination: Figure(s) showing only the locations of soil samples where unsaturated soil contamination remains at the time of closure (locations represented in Table A.3). Use a single contour to show the horizontal extent of each area of contiguous soil contamination that exceeds a soil to groundwater pathway RCL as determined under ch. NR 720 Wis. Adm. Code. A separate contour line should be used to indicate the horizontal extent of each area of contiguous soil contamination that exceeds a direct contact RCL exceedence (0-4 foot depth).

B.3. Groundwater Figures

- B.3.a. Geologic Cross-Section Figure(s): One or more cross-section diagrams showing soil types and correlations across the site, water table and piezometric elevations, and locations and elevations of geologic rock units, if encountered. Display on one or more figures all of the following:
 - Source location(s) and vertical extent of residual soil contamination exceeding an RCL. Distinguish between direct contact and the groundwater pathway RCLs.
 - Source location(s) and lateral and vertical extent if groundwater contamination exceeds ch. NR 140 ES.
 - Surface features, including buildings and basements, and show surface elevation changes.
 - Any areas of active remediation within the cross section path, such as excavations or treatment zones.
 - Include a map displaying the cross-section location(s), if they are not displayed on the Detailed Site Map (Map B.1.b.)
- B.3.b. Groundwater Isoconcentration: Figure(s) showing the horizontal extent of the post-remedial groundwater contamination exceeding a ch. NR 140, Wis. Adm. Code, PAL and/or an ES. Indicate the date and direction of groundwater flow based on the most recent sampling data.
- B.3.c. Groundwater Flow Direction: Figure(s) representing groundwater movement at the site. If the flow direction varies by more than 20° over the history of the site, submit two groundwater flow maps showing the maximum variation in flow direction.
- B.3.d. Monitoring Wells: Figure(s) showing all monitoring wells, with well identification number. Clearly designate any wells that: (1) are proposed to be abandoned; (2) cannot be located; (3) are being transferred; (4) will be retained for further sampling, or (5) have been abandoned.

B.4. Vapor Maps and Other Media

- B.4.a. Vapor Intrusion Map: Map(s) showing all locations and results for samples taken to investigate the vapor intrusion pathway in relation to residual soil and groundwater contamination, including sub-slab, indoor air, soil vapor, soil gas, ambient air, and communication testing. Show locations and footprints of affected structures and utility corridors. and/or where residual contamination poses a future risk of vapor intrusion.
- B.4.b. Other media of concern (e.g., sediment or surface water): Map(s) showing all sampling locations and results for other media investigation. Include the date of sample collection and identify where any standards are exceeded.
- B.4.c. Other: Include any other relevant maps and figures not otherwise noted above. (This section may remain blank).
- B.5. Structural Impediment Photos: One or more photographs documenting the structural impediment feature(s) which precluded a complete site investigation or remediation at the time of the closure request. The photographs should document the area that could not be investigated or remediated due to a structural impediment. The structural impediment should be indicated on Figures B.2.a and B.2.b.

Documentation of Remedial Action (Attachment C)

Directions for Documentation of Remedial Action:

- Include in Attachment C all of the following documentation, in the order prescribed below, with the specific Closure Form titles noted on the separate attachments (e.g., Title: C.1. Site Investigation Documentation; C.2. Investigative Waste, etc.).
- If the documentation requested below has already been submitted to the DNR, please note the title and date of the report for that particular document requested.
 - C.1. Site investigation documentation, that has not otherwise been submitted with the Site Investigation Report.
 - C.2. Investigative waste disposal documentation.
 - C.3. Provide a description of the methodology used along with all supporting documentation if the RCLs are different than those contained in the Department's RCL Spreadsheet available at:
 - http://dnr.wi.gov/topic/Brownfields/Professionals.html. Construction documentation or as-built report for any constructed remedial action or portion of, or interim action specified C.4.
 - in s. NR 724.02(1), Wis. Adm. Code.
 - Decommissioning of Remedial Systems. Include plans to properly abandon any systems or equipment. C.5.
 - Other. Include any other relevant documentation not otherwise noted above (This section may remain blank). C.6.

Maintenance Plan(s) and Photographs (Attachment D)

Directions for Maintenance Plans and Photographs:

Attach a maintenance plan for each affected property (source property, each off-source affected property) with continuing obligations requiring future maintenance (e.g., direct contact, groundwater protection, vapor intrusion). See Site Summary section 5 for all affected property(s) requiring a maintenance plan. Maintenance plan guidance and/or templates for: 1) Cover/barrier systems; 2) Vapor intrusion; and 3) Monitoring wells, can be found at: http://dnr.wi.gov/topic/Brownfields/Professionals.html#tabx3

- D.1. Descriptions of maintenance action(s) required for maximizing effectiveness of the engineered control, vapor mitigation system, feature or other action for which maintenance is required:
 - Provide brief descriptions of the type, depth and location of residual contamination.

03-23-001503	Browntown Oil	Case Closure - GIS Registry
BRRTS No.	Activity (Site) Name	Form 4400-202 (R 3/15) Page 10 of 13

- Provide a description of the system/cover/barrier/monitoring well(s) to be maintained.
- Provide a description of the maintenance actions required for maximizing effectiveness of the engineered control, vapor mitigation system, feature or other action for which maintenance is required.
- Provide contact information, including the name, address and phone number of the individual or facility who will be conducting the maintenance.
- D.2. Location map(s) which show(s): (1) the feature that requires maintenance; (2) the location of the feature(s) that require(s) maintenance on and off the source property; (3) the extent of the structure or feature(s) to be maintained, in relation to other structures or features on the site; (4) the extent and type of residual contamination; and (5) all property boundaries.
- D.3. **Photographs** for site or facilities with a cover or other performance standard, a structural impediment or a vapor mitigation system, include one or more photographs documenting the condition and extent of the feature at the time of the closure request. Pertinent features shall be visible and discernible. Photographs shall be submitted with a title related to the site name and location, and the date on which it was taken.
- D.4. **Inspection log**, to be maintained on site, or at a location specified in the maintenance plan or approval letter. The inspection and maintenance log is found at: http://dnr.wi.gov/files/PDF/forms/4400/4400-305.pdf.

Monitoring Well Information (Attachment E)

Directions for Monitoring Well Information:

For all wells that will remain in use, be transferred to another party, or that could not be located; attach monitoring well construction and development forms (DNR Form 4400-113 A and B: http://dnr.wi.gov/topic/groundwater/documents/forms/4400_113_1_2.pdf)

Select One:

O No monitoring wells were installed as part of this response action.

All monitoring wells have been located and will be properly abandoned upon the DNR granting conditional closure to the site

Select One or More:

- Not all monitoring wells can be located, despite good faith efforts. Attachment E must include a description of efforts made to locate the wells.
- One or more wells will remain in use at the site after this closure. Attachment E must include documentation as to the reason (s) the well(s) will remain in use. When one or more monitoring wells will remain in use this is considered a continuing obligation and a maintenance plan will be required and must be included in Attachment D.
- One or more monitoring wells will be transferred to another owner upon case closure being granted. Attachment E should include documentation identifying the name, address and email for the new owner(s). Provide documentation from the party accepting future responsibility for monitoring well(s).

Source Legal Documents (Attachment F)

Directions for Source Legal Documents:

Label documents with the specific closure form titles (e.g., F.1. Deed, F.2. Certified Survey Map, etc.). Include all of the following documents, in the order listed:

F.1. Deed: The most recent deed with legal description clearly listed.

Note: If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.

- F.2. Certified Survey Map: A copy of the certified survey map or the relevant section of the recorded plat map for those properties where the legal description in the most recent deed refers to a certified survey map or a recorded plat map. In cases where the certified survey map or recorded plat map are not legible or are unavailable, a copy of a parcel map from a county land information office may be substituted. A copy of a parcel map from a county land information office shall be legible, and the parcels identified in the legal description shall be clearly identified and labeled with the applicable parcel identification number.
- F.3. Verification of Zoning: Documentation (e.g., official zoning map or letter from municipality) of the property's or properties' current zoning status.
- F.4. **Signed Statement:** A statement signed by the Responsible Party (RP), which states that he or she believes that the attached legal description(s) accurately describe(s) the correct contaminated property or properties. This section applies to the source property only. Signed statements for Other Affected Properties should be included in Attachment G.

03-23-001503	Browntown Oil	Case Closure - GIS	Registry
BRRTS No.	Activity (Site) Name	Form 4400-202 (R 3/15)	Page 11 of 13

Notifications to Owners of Affected Properties (Attachment G)

Directions for Notifications to Owners of Affected Properties:

Complete the table on the following page for sites which require notification to owners of affected properties pursuant to ch. 292, Wis. Stats. and ch. NR 725 and 726, Wis. Adm. Code. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records law [ss. 19.31- 19.39,Wis. Stats.]. The DNR's "Guidance on Case Closure and the Requirements for Managing Continuing Obligations" (PUB-RR-606) lists specific notification requirements http://dnr.wi.gov/files/PDF/pubs/rr/RR606.pdf.

State law requires that the responsible party provide a 30-day, written advance notification to certain persons prior to applying for case closure. This requirement applies if: (1) the person conducting the response action does not own the source property; (2) the contamination has migrated onto another property; and/or (3) one or more monitoring wells will not be abandoned. Use form 4400-286, Notification of Continuing Obligations and Residual Contamination, at http://dnr.wi.gov/files/PDF/forms/4400/4400-286.pdf

Include a copy of each notification sent and accompanying proof of delivery, i.e., return receipt or signature confirmation. (These items will not be placed on the GIS Registry.)

Include the following documents for each property, keeping each property's documents grouped together and labeled with the letter G and the corresponding ID number from the table on the following page. (Source Property documents should only be included in Attachment F):

- **Deed:** The most recent deed with legal descriptions clearly listed for all affected properties. Note: If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.
- Certified Survey Map: A copy of the certified survey map or the relevant section of the recorded plat map for those properties where
 the legal description in the most recent deed refers to a certified survey map or a recorded plat map. In cases where the certified
 survey map or recorded plat map are not legible or are unavailable, a copy of a parcel map from a county land information office may
 be substituted. A copy of a parcel map from a county land information office shall be legible, and the parcels identified in the legal
 description shall be clearly identified and labeled with the applicable parcel identification number.
- Verification of Zoning: Documentation (e.g., official zoning map or letter from municipality) of the property's or properties' current zoning status.
- Signed Statement: A statement signed by the Responsible Party (RP), which states that he or she believes the attached legal description(s) accurately describe(s) the correct contaminated property or properties.

	<u> </u>		<u> </u>	=	
0	\cap	8		ō	
				Address of Affected Property	
				Parcel ID No.	
				Date of Letter	
				Type of Property Owner	
				WTMX	
				WTMY	
				Residual Groundwater Contamination = or > ES	
				Residual Soil Contamination Exceeds RCLs	
				Monitoring Wells: Not Abandoned	Re
				Monitoring Wells: Continued Monitoring	asor
				Cover/Barrier/Engineered Control	IS N
				Structural Impediment	otific
				Industrial RCLs Met/Applied	atio
				Vapor Mitigation System(VMS)	n Le
				Dewatering System Needed for VMS	tter
				Compounds of Concern in Use Commercial/Industrial Vapor Exposure	Reasons Notification Letter Sent:
				Assumptions Applied Residual Volatile Contamination Poses Future	1
				Residual Volatile Contamination Poses Future Risk of Vapor Intrusion	
				Site Specification Situation	

Case Closure-GIS Registry Form 4400-202 (R 3/15)

~ '

° u

03-23-001503 BRRTS No.

Browntown Oil Activity (Site) Name

Page 12 of 13

03-23-001503	Browntown Oil	Case Clos	sure - GIS	Registry
BRRTS No.	Activity (Site) Name	Form 4400-202	(R 3/15)	Page 13 of 13

Signatures and Findings for Closure Determination

Check the correct box for this case closure request, and have either a professional engineer or a hydrogeologist, as defined in ch. NR 712, Wis. Adm. Code, sign this document.

A response action(s) for this site addresses groundwater contamination (including natural attenuation remedies).

The response action(s) for this site addresses media other than groundwater.

Engineering Certification

I ________hereby certify that I am a registered professional engineer in the State of Wisconsin, registered in accordance with the requirements of ch. A–E 4, Wis. Adm. Code; that this case closure request has been prepared by me or prepared under my supervision in accordance with the Rules of Professional Conduct in ch. A–E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this case closure request is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code. Specifically, with respect to compliance with the rules, in my professional opinion a site investigation has been conducted in accordance with ch. NR 716, Wis. Adm. Code, and all necessary remedial actions have been completed in accordance with chs. NR 140, NR 718, NR 720, NR 722, NR 724 and NR 726, Wis. Adm. Codes."

Printed Name		Title
Signature	Date	P.E. Stamp and Number
Hydrogeologist Certification		
Ronald J. Anderson defined in s. NR 712.03 (1), Wis. Adm. Code, and this case closure request is correct and the docum supervision and, in compliance with all applicable with respect to compliance with the rules, in my pro- accordance with ch. NR 716, Wis. Adm. Code, and with chs. NR 140, NR 718, NR 720, NR 722, NR 7	nent was prepared by me or requirements in chs. NR 70 ofessional opinion a site inv d all necessary remedial act	prepared by me or prepared under my 0 to 726, Wis. Adm. Code. Specifically, vestigation has been conducted in tions have been completed in accordance
Royald L Anderson	Sonic	or Hydrogeologist/Project Manager

Printed Name

Signature

rogeologist/Project N Title

Date

Attachment A/Data Tables

A.1 Groundwater Analytical Table(s)

A.2 Soil Analytical Results Table(s)

A.3 Residual Soil Contamination Table(s)

- A.4 Vapor Analytical Table No vapor samples were assessed as part of the site investigation.
- A.5 Other Media of Concern (e.g., sediment or surface water) No surface waters or sediments were assessed as part of the site investigation.

A.6 Water Level Elevations

A.7 Other – Natural Attenuation data, Free Product Recovery

A.1 Groundwater Analytical Table Browntown Oil BRRTS# 03-23-001503

Well MW-1 PVC Elevation =

.

784.49 (feet) (MSL)

	Water	Depth			Ethyl		Naph-		Trimethyl-	Xylene
	Elevation	to Water	Lead	Benzene	Benzene	MTBE	thalene	Toluene	benzenes	(Total)
Date	(in feet msl)	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
09/26/12	778.99	5.50	<0.7	<0.74	16.7	<0.8	17.6	17	124.6	129
03/20/13	781.12	3.37	<0.7	3.2	17.5	< 0.37	18.4	17.3	116.4	<2.41
01/14/14	779.84	4.65	NS	<0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
04/17/14	781.29	3.20	NS	<0.27	<0.82	<0.37	<1.2	<0.8	1.29-2.15	<2.41
07/15/14	780.71	3.78	NS	<0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
10/15/14	781.87	2.62	NS	<0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
ENFORCE ME	NT STANDARD	ES = Bold	15	5	700	60	100	800	480	2000
PREVENTIVE	ACTION LIMIT F	PAL = Italics	1.5	0.5	140	12	10	160	96	400

(ppb) = parts per billion (ppm) = parts per million

ns = not sampled nm = not measured

Note: Elevations are presented in feet mean sea level (msl).

Well MW-2

PVC Elevation =

784.44 (feet) (MSL)

	Water	Depth			Ethyl		Naph-		Trimethyl-	Xylene
	Elevation	to Water	Lead	Benzene	Benzene	MTBE	thalene	Toluene	benzenes	(Total)
Date	(in feet msl)	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
09/26/12	779.82	4.62	<0.7	1.16	33	<0.8	16.1	3.6	176	63.4
03/20/13	782.63	1.81	20.8	1.52	1.79	<0.37	141	<0.8	60.3	56
01/14/14	781.27	3.17	NS	1.14	<0.82	<0.37	3.3	<0.8	31.6	24.5
04/17/14	782.87	1.57	NS	0.84	0.97	<0.37	2.98	<0.8	29.4	16.8
07/15/14	782.04	2.40	<0.7	1.88	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
10/15/14	783.61	0.83	<0.7	0.72	3.5	<0.37	12.2	<0.8	90.9	65.1
ENFORCE ME	ENT STANDARD	ES = Bold	15	5	700	60	100	800	480	2000
PREVENTIVE	ACTION LIMIT /	PAL = Italics	1.5	0.5	140	12	10	160	96	400

(ppb) = parts per billion

(ppm) = parts per million ns = not sampled nm = not measured

Note: Elevations are presented in feet mean sea level (msl).

Well MW-3

PVC Elevation =

785.62 (feet) (MSL)

	Water	Depth			Ethyl		Naph-		Trimethyl-	Xylene
	Elevation	to Water	Lead	Benzene	Benzene	MTBE	thalene	Toluene	benzenes	(Total)
Date	(in feet msl)	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
09/26/12	780.21	5.41	<0.7	<0.5	<0.78	<0.8	<2.1	<0.53	<1.54	<1.9
03/20/13	783.14	2.48	<0.7	<0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
01/14/14	781.70	3.92	NS	<0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
04/17/14	783.75	1.87	NS	<0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
07/15/14	782.74	2.88	NS	<0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
10/15/14	784.80	0.82	NS	<0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
	NT STANDARD		15	5	700	60	100	800	480	2000
PREVENTIVE	ACTION LIMIT F	PAL = Italics	1.5	0.5	140	12	10	160	96	400

(ppb) = parts per billion (ppm) = parts per million

ns = not sampled nm = not measured

A.1 Groundwater Analytical Table

Browntown Oil BRRTS# 03-23-001503

Well MW-4

PVC Elevation =

784.70 (feet) (MSL)

	Water	Depth			Ethyl		Naph-		Trimethyl-	Xylene
	Elevation	to Water	Lead	Benzene	Benzene	MTBE	thalene	Toluene	benzenes	(Total)
Date	(in feet msl)	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
09/26/12	777.67	7.03	<0.7	<0.5	<0.78	<0.8	<2.1	<0.53	<1.54	<1.9
03/20/13	779.28	5.42	<0.7	<0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
01/14/14	778.32	6.38	NS	< 0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
04/17/14	779.72	4.98	NS	< 0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
07/15/14	779.04	5.66	NS	< 0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
10/15/14	780.71	3.99	NS	< 0.24	<0.55	<0.23	<1.7	<0.69	<3.6	<1.32
ENFORCE ME	INT STANDARD	ES = Bold	15	5	700	60	100	800	480	2000
PREVENTIVE	ACTION LIMIT 7	PAL = Italics	1.5	0.5	140	12	10	160	96	400

(ppb) = parts per billion (ppm) = parts per million

ns = not sampled nm = not measured

Note: Elevations are presented in feet mean sea level (msl).

Well MW-5

PVC Elevation =

783.61 (feet) (MSL)

	Water	Depth		r	Ethyl		Naph-		Trimethyl-	Xylene
	Elevation	to Water	Lead	Benzene	Benzene	MTBE	thalene	Toluene	benzenes	(Total)
Date	(in feet msl)	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
09/26/12	776.99	6.62	<0.7	<0.5	2.06	<0.8	<2.1	<0.53	18.74	5.66
03/20/13	778.74	4.87	<0.7	<0.27	<0.82	< 0.37	<1.2	<0.8	1.63-2.49	<2.41
01/14/14	777.66	5.95	NS	<0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
04/17/14	778.99	4.62	NS	<0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
07/15/14	778.34	5.27	NS	1.28	7.7	<0.37	1.78	2.74	39-39.86	12.2
10/15/14	779.63	3.98	NS	<0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
ENFORCE ME	NT STANDARD	ES = Bold	15	5	700	60	100	800	480	2000
PREVENTIVE	ACTION LIMIT F	PAL = Italics	1.5	0.5	140	12	10	160	96	400
(ppb) = parts p	er billion	(ppm) = parts	per million							

ns = not sampled nm = not measured

Note: Elevations are presented in feet mean sea level (msl).

Well MW-6

PVC Elevation =

783.92 (feet) (MSL)

	Water	Depth			Ethyl		Naph-	1	Trimethyl-	Xylene
	Elevation	to Water	Lead	Benzene	Benzene	MTBE	thalene	Toluene	benzenes	(Total)
Date	(in feet msl)	(in feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
09/26/12	777.57	6.35	<0.7	<0.5	<0.78	<0.8	<2.1	<0.53	<1.54	<1.9
03/20/13	779.53	4.39	<0.7	<0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
01/14/14	778.50	5.42	NS	< 0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
04/17/14	779.68	4.24	NS	<0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
07/15/14	778.99	4.93	NS	<0.27	<0.82	<0.37	<1.2	<0.8	<1.69	<2.41
10/15/14	780.84	3.08	NS	<0.24	<0.55	<0.23	<1.7	<0.69	<3.6	<1.32
ENFORCE ME	NT STANDARD	ES = Bold	15	5	700	60	100	800	480	2000
PREVENTIVE	ACTION LIMIT /	PAL = Italics	1. <u>5</u>	0.5	140	12	10	160	96	400
ppb) = parts p	per billion	(ppm) = parts	per million							

(ppb) = parts per billion ns = not sampled

nm = not measured

A.1 Groundwater Analytical Table

(PAH)

Browntown Oil BRRTS# 03-23-001503

Well MW-1

PVC Elevation =

784.49 (feet) (MSL)

	Ace-	Acenaph-		Benzo(a)	Benzo(a)	Benzo(b)	Benzo(g.h.l)	Benzo(k)		Dibenzo(a,h)	Fluoran-		Indeno(1,2,3-cd)	1-Methyl-	2-Methyl-	Naph-	Phenan-	
	naphthene	thylene	Anthracene	anthracene	pyrene	fluoranthene	Perylene	fluoranthene	Chrysene	anthracene	thene	Fluorene	pyrene	naphthalene	naphthalene	thalene	threne	Pyrene
Date	(ppb)	(ppb)	(ppb)	(ppb)	(opb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
09/26/12	< 0.025	< 0.019	<0.018	< 0.024	<0.018	<0.02	<0.019	<0.022	< 0.019	<0.019	< 0.022	<0.02	<0.018	1.63	2.49	8.9	0.019	<0.02
ENFORCE M	ENT STANDARD	= ES Bold	3000	1	0.2	0.2	==	22	0.2		400	400	==	==	==	40	==	250
PREVENTIVE	ACTION LIMIT	= PAL Italics	600	==	0.02	0.020	==	==	0.02	==	80	80	==	==	==	8	==	50

(ppb) = parts per billion (ppm) = parts per million ns = not sampled nm = not measured

Note: Elevations are presented in feet mean sea level (msl).

Well MW-2

PVC Elevation =

784.44 (feet) (MSL)

(MSL)

	Ace-	Acenaph-		Benzo(a)	Benzo(a)	Benzo(b)	Benzo(g.h,l)	Benzo(k)		Dibenzo(a,h)	Fluoran-		Indeno(1.2,3-cd)	1-Methyl-	2-Methyl-	"Naph-	Phenan-	
	naphthene	thylene	Anthracene	anthracene	pyrene	fluoranthene	Perylene	fluoranthene	Chrysene	anthracene	thene	Fluorene	pyrene	naphthalene	naphthalene	thalene	threne	Pyrene
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)
09/26/12	<0.025	< 0.019	<0.018	< 0.024	<0.018	< 0.02	< 0.019	< 0.022	< 0.019	< 0.019	< 0.022	<0.02	<0.018	2.64	3.7	4.5	0.02	< 0.02
												[
ENFORCE ME	NT STANDAR) = ES Bold	3000	85	0.2	0.2	==	==	0.2	22	400	400	22	22	82	40	22	250
PREVENTIVE	ACTION LIMIT	= PAL Italics	600	==	0.02	0.020	==	==	0.02	20	80	80	==	22	22	8	==	50

(ppb) = parts per billion (ppm) = parts per million ns = not sampled nm = not measured

Note: Elevations are presented in feet mean sea level (msl).

Well MW-3 PVC Elevation =

785.62 (feet)

	Ace-	Acenaph-		Benzo(a)	Benzo(a)	Benzo(b)	Benzo(g.h.l)	Benzo(k)		Dibenzo(a,h)	Fluoran-		Indeno(1,2,3-cd)	1-Methyl-	2-Methyl-	Naph-	Phenan-	
	naphthene	thylene	Anthracene	anthracene	pyrene	fluoranthene	Perylene	fluoranthene	Chrysene	anthracene	thene	Fluorene	pyrene	naphthalene	naphthalene	thalene	threne	Pyrene
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
09/26/12	<0.025	<0.019	<0.018	< 0.024	<0.018	<0.02	<0.019	<0.022	<0.019	< 0.019	<0.022	<0.02	<0.018	<0.022	<0.024	<0.021	<0.019	<0.02
ENFORCE ME	NT STANDAR	D = ES Bold	3000	32	0.2	0.2	==	==	0.2	==	400	400	==	==	82	40	==	250
PREVENTIVE	ACTION LIMIT	= PAL Italics	600	55	0.02	0.020	==	==	0.02	==	80	80	==	==	==	8	==	50

3

(ppb) = parts per billion (ppm) = parts per million ns = not sampled nm = not measured

A.1 Groundwater Analytical Table (PAH) Browntown Oil BRRTS# 03-23-001503

Well MW-4

PVC Elevation =

784.70 (feet) (MSL)

(MSL)

01/26/12 <0.025 <0.019 <0.018 <0.024 <0.018 <0.02 <0.019 <0.018 <0.022 <0.019 <0.022 <0.019 <0.022 <0.019 <0.022 <0.019 <0.019 <0.022 <0.019 <0.018 <0.022 <0.019 <0.018 <0.022 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <
ENFORCE MENT STANDARD = ES Bold 3000 == 0.2 0.2 == x 0.2 == 400 400 == == 40 == 40 ==
PREVENTIVE ACTION LIMIT = PAL Italics 600 == 0.02 0.020 == == 0.02 == 0.02 == 80 80 == == == 8 ==

Well MW-5

PVC Elevation =	783.61	(feet)	
-----------------	--------	--------	--

	Ace-	Acenaph-		Benzo(a)	Benzo(a)	Benzo(b)	Benzo(g.h.l)	Benzo(k)		Dibenzo(a.h)	Fluoran-		Indeno(1,2,3-cd)	1-Methyl-	2-Methyl-	Naph-	Phenan-	
	naphthene	thylene	Anthracene	anthracene	pyrene	fluoranthene	Perylene	fluoranthene	Chrysene	anthracene	thene	Fluorene	pyrene	naphthalene	naphthalene	thalene	threne	Pyrene
Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
09/26/12	0.066	<0.019	<0.018	<0.024	< 0.018	<0.02	<0.019	< 0.022	< 0.019	< 0.019	< 0.022	0.041	<0.018	0.43	0.093	0.35	< 0.019	< 0.02
ENFORCE MEN	NT STANDAR) = ES Bold	3000	==	0.2	0.2	22	22	0.2	==	400	400	==	==	==	40	==	250
PREVENTIVE A	ACTION LIMIT	= PAL Italics	600	==	0.02	0.020	==	==	0.02	22	80	80	==	==	==	8	==	50

(ppb) = parts per billion (ppm) = parts per million ns = not sampled nm = not measured

Note: Elevations are presented in feet mean sea level (msl).

Well MW-6

PVC Elevation =	783.92	(feet)	(MSL)

Ace-	Acenaph-		Benzo(a)	Benzo(a)	Benzo(b)	Benzo(g.h.l)	Benzo(k)		Dibenzo(a.h)	Fluoran-		Indeno(1,2,3-cd)	1 1-Methyl-	2-Methyl-	Naph-	Phenan-	
naphthene	thylene	Anthracene	anthracene	pyrene	fluoranthene	Perylene	fluoranthene	Chrysene	anthracene	thene	Fluorene	pyrene	naphthalene	naphthalene	thalene	threne	Pyrene
(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
<0.025	< 0.019	<0.018	<0.024	< 0.018	< 0.02	< 0.019	<0.022	< 0.019	< 0.019	< 0.022	<0.02	<0.018	< 0.022	< 0.024	0.049	< 0.019	<0.02
NT STANDARI	D = ES Bold	3000	==	0.2	0.2	==	==	0.2	==	400	400	==	==	==	40	==	250
ACTION LIMIT	= PAL Italics	600	==	0.02	0.020	==	==	0.02	==	80	80	==	==	==	8	==	50
	naphthene (ppb) <0.025 NT STANDAR	naphthene thylene (ppb) (ppb)	naphthene thylene Anthracene (ppb) (ppb) (ppb) <0.025	naphthene thylene Anthracene anthracene (ppb) (ppb) (ppb) (ppb) <0.025	naphthene thylene Anthracene anthracene pyrene (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) <0.025	naphthene thylene Anthracene anthracene pyrene fluoranthene (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) <0.025	naphthene (ppb) thylene (ppb) Anthracene (ppb) anthracene (ppb) pyrene (ppb) fluoranthene (ppb) Perylene (ppb) <0.025	naphthene (ppb) thylene (ppb) Anthracene (ppb) anthracene (ppb) pyrene (ppb) fluoranthene (ppb) Perylene (ppb) fluoranthene (ppb) <0.025	naphthene (ppb) thylene (ppb) Anthracene (ppb) anthracene (ppb) pyrene (ppb) fluoranthene (ppb) Perylene (ppb) fluoranthene (ppb) Chrysene (ppb) <0.025	naphthene (ppb) thylene (ppb) Anthracene (ppb) anthracene (ppb) pyrene (ppb) fluoranthene (ppb) Perylene (ppb) fluoranthene (ppb) Chrysene (ppb) anthracene (ppb) <0.025	naphthene (ppb) thylene (ppb) Anthracene (ppb) anthracene (ppb) pyrene (ppb) fluoranthene (ppb) Perylene (ppb) fluoranthene (ppb) Chrysene (ppb) anthracene (ppb) thene (ppb) <0.025	naphthene (ppb) Anthracene (ppb) anthracene (ppb) pyrene (ppb) fluoranthene (ppb) Perylene (ppb) fluoranthene (ppb) Chrysene (ppb) anthracene (ppb) thene (ppb) Fluorene (ppb) <0.025	naphthene (ppb) Anthracene (ppb) anthracene (ppb) Anthracene (ppb) anthracene (ppb) fluoranthene (ppb) Perylene (ppb) fluoranthene (ppb) Chrysene (ppb) anthracene (ppb) Fluorene (ppb) Fluorene (ppb) Pyrene (ppb) <0.025	naphthene (ppb) Anthracene (ppb) Anthracene (ppb) Anthracene (ppb) Anthracene (ppb) Anthracene (ppb) Anthracene (ppb) Anthracene (ppb) Anthracene (ppb) Bluoranthene (ppb) Chrysene (ppb) anthracene (ppb) thene (ppb) Fluorene (ppb) pyrene (ppb) naphthalene (ppb) <0.025	naphthene (ppb) thylene (ppb) Anthracene (ppb) Anthracene (ppb) Anthracene (ppb) Iterational (ppb) Fluoranthene (ppb) naphthalene (ppb) naphthalene naphthalene naphthalene	naphthene (ppb) Anthracene (ppb) Anthracene (ppb) Anthracene (ppb) Anthracene (ppb) Iluoranthene (ppb) Chrysene (ppb) anthracene (ppb) Fluorene (ppb) Pyrene (ppb) naphthalene (ppb) naphthalene (ppb)	naphthene (ppb) Anthracene (ppb) Anthracene (ppb) Anthracene (ppb) Pyrene (ppb) Iluoranthene (ppb) Perylene (ppb) Iluoranthene (ppb) Chrysene (ppb) anthracene (ppb) Hene (ppb) Fluorene (ppb) Pyrene (ppb) naphthalene (ppb) naphthalene (ppb) naphthalene (ppb) naphthalene (ppb) naphthalene (ppb) naphthalene (ppb) threne (ppb) <0.025

(ppb) = parts per billion (ppm) = parts per mill ns = not sampled nm = not measured

A.1 Groundwater Analytical Table Browntown Oil BRRTS# 03-23-001503

Well Sampling Conducted on September 26, 2012

							ENFORCE MENT STANDARD =	
VOC's					B4147 5	1000	ES – Bold	PAL - Italics
Well Name	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6		
Panzanalaph	3.3	1.16 "J"	0.5	0.5	. 0.5	- 11 - 5	5	0.5
Benzene/ppb Bromehenzene/ppb				0.5	< 0.5	< 0.5		=
Bromobenzene/ppb	< ().74	< 0.74	• 0.74	< 0.74	< (),74	< 0.74		
Bromodichloromethane/ppb	< 0.68	< 0.68	0.68	< 0.68	< 0.68	< 0.68	0.6	0.06
Bromoform/ppb	< ().4.3	< 0.43	0.43	< 0.43	< 0.43	< 0.43	4.4	0.44
tert-Butylbenzene/ppb	< ().71	< 0.71	0.71	< 0.71	< 0.71	< 0.71	==	
sec-Butylbenzene/ppb	3.4	1.75 "J"	< 1	~ I	1.06 "J"	< 1	==	==
n-Butylbenzene/ppb	6.8	7.5	.: 0.9	< 0,9	1.07 "J"	< 0.9	==	==
Carbon Tetrachloride/ppb	< ().47	< 0.47	0.47	< 0,47	< (),47	< 0.47	5	0.5
Chlorobenzene/ppb	< 0.51	< 0.51	0.51	< 0.51	< 0.51	< 0.51	==	==
Chloroethane/ppb	< 1.4	< 1.4	- 1.4	~ 1.4	< 1.4	< 1.4	400	80
Chloroform/ppb	< 0.49	< 0.49	0,49	(),49	< 0,49	< 0,49	6	0.6
Chloromethane/ppb	< 1.9	< 1.9	- 1.9	< 1,9	~ 1.9	< 1.9	30	3
2-Chlorotoluene/ppb	< 0,7	< 0.7	0.7	· 0.7	< 0.7	< 0.7	==	2 2
4-Chlorotoluene/ppb	< 0.44	< 0.44	0,44	· 0,44	~ 0,44	< (),44	==	==
1,2-Dibromo-3-chloropropane/ppb	< 2.8	< 2.x	2.8	· 2,8	< 2.8	< 2.8	0.2	0.02
Dibromochloromethane/ppb	< 0.55	< 0.55	0.55	0.55	· 0.55	< 0.55	60	6
1,4-Dichlorobenzene/ppb	· 0.98	< 0.98	0,98	· 0.98	- 0,98	0,98	75	15
1,3-Dichlorobenzene/ppb	< 0.87	< 0,87	0.87	0.87	~ 0,87	+ 0.87	600	120
1,2-Dichlorobenzene/ppb	< 0.76	< 0,76	0.76	0.76	~ 0.76	~ 0.76	600	60
Dichlorodifluoromethane/ppb	- 1.8	- 1.8	1.8	× 1,8	· 1.8	· 1,8	1000	200
1,2-Dichloroethane/ppb	< 0.5	< 0.5	0.5	~ 0.5	- 0.5	< 0.5	5	0.5
1,1-Dichloroethane/ppb	< 0.98	< 0.98	0.98	0.98	0.98	0.98	850	85
1,1-Dichloroethene/ppb	~ 0,6	< 0.6	0.6	0.6	· 0.6	< 0.6	7	0.7
cis-1,2-Dichloroethene/ppb	< 0.74	~ 0.74	0,74	~ 0.74	· 0,74	0.74	70	7
trans-1,2-Dichloroethene/ppb	~ 0.79	< 0.79	0,79	0.79	0.79	< 0.79	100	20
1,2-Dichloropropane/ppb	< 0,4	< 0.4	0.4	0.4	< 0.4	< 0.4	5	0.5
2,2-Dichloropropane/ppb	< 1.9	< 1.9	1.9	·* 1.9	~ 1.9	< 1,9	==	==
1,3-Dichloropropane/ppb	< 0.71	< 0.71	0.71	~ 0.71	< 0.71	< 0.71	==	22
Di-isopropyl ether/ppb	< ().69	< ().69	- (),69	< 0.69	< (),69	< 0,69	==	==
EDB (1,2-Dibromoethane)/ppb	< ().63	< 0.63	0.63	< 0.63	< 0.63	< 0.63	0.05	0.005
Ethylbenzene/ppb	16.7	33	0.78	< 0.78	2.06 "J"	< 0.78	700	140
Hexachlorobutadiene/ppb	< 2.2	< 2.2	2.2	< 2.2	~ 2.2	< 2.2	==	==
lsopropylbenzene/ppb	9.4	5	0.92	< 0.92	1.42 "J"	< 0.92	==	==
p-isopropyitoluene/ppb	5.4	< 0.92	0.92	0.92	1.28 "J"	< 0.92		==
Methylene chloride/ppb	< 1.1	< 1.1	1.1	* 1.1	- 1.1	< 1.1	5	0.5
Methyl tert-butyl ether (MTBE)/ppb	< 0.X	< 0.8	0.8	- 0.8	· 0.8	< 0.8	60	12
Naphthalene/ppb	17.6	16.1	· 2,1	~ 2.1	· 2.1	< 2.1	100	10
n-Propylbenzene/ppb	14.7	20	0.59	0.59	2.25	< 0.59	==	==
1,1,2,2-Tetrachloroethane/ppb	< 0.53	< 0.53	0,53	< 0.53	< 0.53	< 0.53	0.2	0.02
1,1,1,2-Tetrachloroethane/ppb	~ }	< 1	< 1	·* 1	· 1	< 1	70	7
Tetrachloroethene (PCE)/ppb	0,44	< 0.44	0,44	0,44	< 0,44	0.44	5	0.5
Toluene/ppb	17	3.6	0.53	< 0.53	< 0.53	< 0.53	800	160
1,2,4-Trichlorobenzene/ppb	< 1.5	< 1.5	1.5	~ 1.5	~ 1.5	< 1.5	70	14
1,2,3-Trichlorobenzene/ppb	< 1.3	< 1.3	1.3	~ 1.3	< 1.3	< 1.3	==	==
1,1,1-Trichloroethane/ppb	< ().85	< 0.85	0,85	< 0.85	< 0.85	< 0.85	200	40
1,1,2-Trichloroethane/ppb	< 0.47	< 0.47	0.47	~ 0.47	< 0.47	< 0.47	5	0.5
Trichloroethene (TCE)/ppb	< 0.47	< 0.47	0.47	·: ().47	< ().47	< ().47	5	0.5
Trichlorofluoromethane/ppb	< 1.7	< 1,7	1.7	< 1.7	< 1.7	< 1.7	#=	=
1,2,4-Trimethylbenzene/ppb	97	135	· 0.8	~ 0.8	15.6	< 0.8	•	
1,3,5-Trimethylbenzene/ppb	27.6	41	0.74	< (),74	3.14	< (),74	Total TMB's 480	Total TMB's 96
Vinyl Chloride/ppb	< 0.18	< 0.18	0.18	< 0.18	< 0.18	< (), 1 8	0.2	0.02
m&p-Xylene/ppb	88	51	~ 1.1	< 1.1	3.11 "J"	< 1.1		
o-Xylene/ppb	41	12.4	.: 0.8	< 0.8	2.55 "J"	< 0.8	Total Xylenes 2000	Total Xylenes 400

NS = not sampled, NM = Not Measured Q = Analyte detected above laboratory method detection limit but below practical quantitation limit. = = No Exceedences

A.2. Soil Analytical Results Table Browntown Oil BRRTS# 03-23-001503

) (feet)					1	GRO	1	Ethyl	1	Naph-		1,2,4-Trime-	1,3,5-Trime		Other VOC's	1		Cumulat
(1001)	U/S			(ppm)	(ppm)	(ppm)	Benzene	Benzene	MTBE	thalene	Toluene	thylbenzene	thylbenzene	1 1	(ppm)	Exeedance	Hazard	Cance
11	S	12/08/98	3			I	(ppm)	(ppm)	(ppm)	(ppm) SAMPLED	(ppm)	(ppm)	(ppm)	(ppm)	ŃŚ	Count	Index	Risk
11	s	12/08/98	15	 						SAMPLED					NS			
11	S	12/08/98	916	NS	NS	1900	NS	NS	I NS	NS	NS	NS	NS	NS	NS			
8.5	S	12/08/98	556			1				SAMPLED					NS			
8.5	S	12/08/98	5		-				NOT	SAMPLED					NS			1
8.5	S	12/08/98	9						NOTS	SAMPLED					NS			1
8.5	S	12/08/98	27	NS	<10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS			
8.5	S	12/08/98	59							SAMPLED					NS			
8.5	S	12/08/98	33							SAMPLED					NS			
) 9	S	12/08/98	59							SAMPLED			······		NS			
l 9 Iq 1 2	U S	12/08/98	172							SAMPLED					NS			
ig 1 2 ig 2 2	U	12/08/98	636 24							SAMPLED					NS NS	· ······		
-1 3	U	10/10/11		39	NS	<10	<0.025	<0.025	<0.025	<0.025	0.045	<0.025	<0.025	0.058-0.083	NS			<u> </u>
-2 6	S	10/10/11	50	NS	NS	22	0.032	0.320	<0.025	0.470	0.125	2.67	1.11	2.23	NS			<u> </u>
-1 3	Ū	10/10/11	0	45.0	NS	<10	<0.025	< 0.025	<0.025	<0.025	0.079	<0.025	<0.025	< 0.075	NS			1
-2 6	S	10/10/11	100	NS	NS	<10	<0.025	0.091	<0.025	0.082	0.043	0.450	0.165	0.494	NS			[
-1 3	U	10/10/11	0	NS	12.8	NS	<0.025	<0.025	<0.025	<0.0108	< 0.025	<0.025	<0.025	0.068-0.118	NS			
-2 6	S	10/10/11	50	NS	27.3	NS	<0.025	1.43	<0.025	2.87	0.120	2.09	2.95	2.15	NS			
				1	1				1	1				1	SEE VOC			
.					1										SPREAD-			
-1 3	U	10/10/11	200	21.8	NS	2860	< 0.089	1.41	<0.120	<u>12.5</u>	<0.500	76	30.2	11.09	SHEET	1	1.02E+00	2.6E-0
-2 6	S	10/10/11	250	NS	NS	1140	0.810	8.4	<0.250	6.2	5.1	48	19	37.3	NS			
-1 3	U	10/10/11	0	25.4	NS	<10	<0.025	<0.025	<0.025	<0.025	0.036	<0.025	<0.025	<0.075	NS			
-2 6 -1 3	S U	10/10/11	150 0	NS	NS	370	0.460	4.6	<0.250	3.7 AMPLED	1.76	12.3	5.9	9.48	NS			
-2 6	S S	10/10/11	0							AMPLED					NS NS			
-1 3		10/10/11	0							AMPLED					NS		L	
-2 6	s	10/10/11	0	<u> </u>						AMPLED					NS			1
-1 3	U	10/11/11	0	<u> </u>						AMPLED					NS	······································		
-2 6	s	10/11/11	0				<u></u>			AMPLED			· · · ·		NS			
-1 3	Ū	10/11/11	10	14.2	NS	<10	<0.025	<0.025	<0.025	<0.025	0.036	<0.025	<0.025	<0.075	NS		······	
2 6	S	10/11/11	20	NS	NS	<10	<0.025	<0.025	<0.025	<0.025	0.036	<0.025	<0.025	<0.075	NS			
-1 3	U	10/11/11	0							AMPLED					NS			
-2 6	S	10/11/11	200	NS	NS	1150	0.580	12.4	<0.0250	1.09	4.8	10.1	5.1	12.62	NS			
-1 3	U	10/11/11	0	NS	NS	<10	<0.025	<0.025	<0.025	<0.025	0.036	<0.025	<0.025	<0.075	NS			
-2 6	S	10/11/11	0	NS	NS	<10	<0.025	<0.025	<0.025	<0.025	0.036	<0.025	<0.025	<0.075	NS			
-1 3	U	10/11/11	0							AMPLED					NS			
-2 6	S	10/11/11	0	· · · ·						AMPLED					NS			
-1 3		10/11/11	0 60	NS	NS	<10	<0.025	<0.025	<0.025	AMPLED	0.036	<0.025	<0.025	<0.075	NS NS			
-1 3		10/11/11	0	113	113	<10	<0.025	N.023		<0.025 AMPLED	0.030	<0.025	~0.025	. <0.075	NS			
-2 6	- ŭ	10/11/11	0	NS	NS	<10	<0.025	<0.025	<0.025	<0.025	0.036	<0.025	<0.025	<0.075	NS			
-1 3	Ū	10/11/11	0				0.010	0.020		AMPLED	0,000	0.020	0.020		NS			
-2 6	U	10/11/11	0							AMPLED					NS			
-1 3	U	10/11/11	0						NOT S	AMPLED					NS			
-2 5-7	U	10/11/11	0						NOT S	AMPLED					NS			
-1 3	U	10/11/11	0	15.5	NS	<10	<0.025	<0.025	<0.025	<0.025	0.036	<0.025	<0.025	<0.075	ŃŚ			
-2 6	S	10/11/11	250	NS	NS	<10	<0.025	0.570	<0.025	0.320	0.110	1.02	0.340	3.25	NS			
-1 3.5	U	06/04/12	0	5	NS	<10	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	< 0.075	NS			
-2 8	S	06/04/12	40	NS	NS	<10	<0.025	0.03	<0.025	0.0274	0.049	0.198	0.124	0.287	NS			
-3 13	S II	06/04/12	10												NS			
	s							N										
-3 13	s	06/04/12	0	·····						AMPLED					NS			
-1 3.5	Ŭ	06/04/12	Ő							AMPLED	··				NS			
-2 6.5	U	06/04/12	0							AMPLED		······			NS			
-3 13	S	06/04/12	0							AMPLED					NS			
-1 3	U	06/04/12	0							AMPLED					NS			
-2 6	U	06/04/12	0							AMPLED					NS			
-3 13	S	06/04/12	0	,					NOT S/	AMPLED								
							0.00540		0.007	0.050			0					
	Contract DC														- 1		1.005.00	1 000 0
and the second se																	1.00E+00	1.00E-0
3-1 3.5 3-2 6-8 3-3 13 -1 3.5 -3 13 -1 3.5 -2 6.5 -3 13 -1 3.5 -2 6.5 -3 13 -1 3	U S S U U S U U S Contact RCL U S Contact RCL C C Exceed a Industrial at Exceedar	06/04/12 06/04/12 06/04/12 06/04/12 06/04/12 06/04/12 06/04/12 06/04/12 06/04/12 06/04/12 06/04/12 06/04/12 06/04/12					0.00512 <u>1.49</u> 1820*	N4	NOT S, NOT S, NOT S, NOT S, O RECOVER NOT S, NOT S, NOT S, NOT S, NOT S, NOT S,	AMPLED AMPLED AMPLED AMPLED AMPLED AMPLED AMPLED AMPLED AMPLED	1.11 <u>818</u> 818*	1.3 89.8 219*	8 <u>182</u> 182 [*]	3.94 258 258*	NS NS NS NS NS NS NS NS NS NS NS NS NS N		1.00E+00	

A.2. Soil Analytical Results Table
(Geoprobe PAH)
Browntown Oil BRRTS# 03-23-001503

																						DIRECT CON	NTACT PVOC & PAH	I COMBINED
		Saturation		Acenaph-	Acenaph-		Benzo(a)	Benzo(a)	Benzo(b)	Benzo(g,h,l)	Benzo(k)		Dibenzo(a,h)			Indeno(1,2,3-cd)	1-Methyl-	2-Methyl-	Naph-	Phenan-				Cumulative
Sample	Depth	U/S	Date	thene	thylene	Anthracene	anthracene	pyrene	fluoranthene	perylene	fluoranthene	Chrysene	anthracene	Fluoranthene	Fluorene	pyrene	naphthalene	naphthalene	thalene	threne	Pyrene	Exeedance	Hazard	Cancer
	(feet)			(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	Count	Index	Risk
G-3-1	3		10/10/11	< 0.0097	< 0.0084	<0.0102	<0.0146	<0.0166	<0.0167	<0.0082	<0.0161	0.0115	<0.0105	0.0155	<0.0107	<0.0095	<0.0179	< 0.0096	<0.0108	<0.0098	0.0143			
roundwate	er RCL					197		0.47	0.48			0.145		88.8	14.8				0.659		54.5			
on-Industi	rial Direct Co	ontact RCL		<u>3440</u>		<u>17200</u>	<u>0.148</u>	0.0148	<u>0.148</u>		<u>1.48</u>	14.8	0.0148	<u>2290</u>	2290	0.148	<u>15.6</u>	229	5.15		1720	<u>0</u>	1.00E+00	1.00E-05
oil Saturat	tion Concent	tration (C-sat)*																					l	1
old = Grou	undwater RC	L Exceedance																						
old & Und	erline =Indu	strial Direct Co	ntact RCL Exc	eedance																				
		Exceedance																						

NS = Not Sampled

(ppm) = parts per million PAH = Polynuclear Aromatic Hydrocarbons PID = Photoionization Detector VOC's = Volatile Organic Compounds

A.2. Soil Analytical Results Table Browntown Oil BRRTS# 03-23-001503

Well Sampling Conducted on October 10, 2011

VOC's		Bold = Groundwater RCL	Underline & Bold = Direct Contact RCL	Asteric * & Bold =Soil Saturation (C-sat) RCL
Sample ID# Sample Depth/ft.	G-4-1 3			
Solids Percent	87.1	= =	= =	= =
Lead/ppm	21.8	27	400	= =
GRO/ppm	2860	= =	= =	= =
Benzene/ppm	< (),()89	0.00512	1.49	1820
Bromobenzene/ppm	< (),14()	= =	354	= =
Bromodichloromethane/ppm	<0.120	0.000326	0.39	= =
Bromoform/ppm	< ().2()()	0.00233	61.6	= =
tert-Butylbenzene/ppm	< ().540	= =	183	183
sec-Butylbenzene/ppm n-Butylbenzene/ppm	3.4 15.9	= =	145 108	145 108
Carbon Tetrachloride/ppm	< 0.120	0.00388	0.85	= =
Chlorobenzene/ppm	< (),()94	= =	392	= =
Chloroethane/ppm	< 1,420	0.227	<i>=</i> =	= =
Chloroform/ppm	< (),46()	0.0033	0.42	= =
Chloromethane/ppm	< .070	0.0155	171	= =
2-Chlorotoluene/ppm	<0.840	= =	= =	= =
4-Chlorotoluene/ppm	< ().760	= =		
1,2-Dibromo-3-chloropropane/ppm	< ().770	0.000173	0.01	= =
Dibromochloromethane/ppm	< ().095	0.032	0.93	= =
1,4-Dichlorobenzene/ppm	< ().520	0.144	3.48	2 =
1,3-Dichlorobenzene/ppm	< ().53()	1.15	297	297
1,2-Dichlorobenzene/ppm	< ().510	1.17	376	376
Dichlorodifluoromethane/ppm	< 0.120	3.08	135	= =
1,2-Dichloroethane/ppm	< 0.130 < 0.110	0.00284	0.61	540 = =
1,1-Dichloroethane/ppm	< 0.110	0.484	4.72	= =
1,1-Dichloroethene/ppm cis-1,2-Dichloroethene/ppm	< ().140	0.00502 0.0412	342 156	= =
trans-1,2-Dichloroethene/ppm	< ().22()	0.0588	211	
1,2-Dichloropropane/ppm	< 0.110	0.00332	1.33	= =
2,2-Dichloropropane/ppm	< 0.330	= =	527	527
1,3-Dichloropropane/ppm	< 0.110	= =	1490	1490
Di-isopropyl ether/ppm	< ().47()	= =	2260	2260
EDB (1,2-Dibromoethane)/ppm	< 0.170	0.0000282	0.05	= =
Ethylbenzene/ppm	1.410 "J"	1.57	7.47	480
Hexachlorobutadiene/ppm	<0.950	= =	6.23	= =
isopropylbenzene/ppm p-isopropyitoluene/ppm	2.65 11.1	= =	= = 162	= = 162
Methylene chloride/ppm	< 1.190	0.00256	60.7	
Methyl tert-butyl ether (MTBE)/ppm	< 0.120	0.027	59.4	8870
Naphthalene/ppm	<u>12.5</u>	0.659	5.15	= =
n-Propylbenzene/ppm	5.5	= =	= =	<u> </u>
1,1,2,2-Tetrachloroethane/ppm	< ().200 < ().410	0.000156 0.0533	0.75 2.59	= =
1,1,1,2-Tetrachloroethane/ppm Tetrachloroethene (PCE)/ppm	< ().240	0.00454	30.7	
Toluene/ppm	< 0.500	1.11	818	818
1,2,4-Trichlorobenzene/ppm	< ().740	0.408	22.1	= =
1,2,3-Trichlorobenzene/ppm	< 1.290	= =	48.9	= =
1,1,1-Trichloroethane/ppm	< ().110	0.14	= =	= =
1,1,2-Trichloroethane/ppm	< 0.160	0.00324	1.48	= =
Trichloroethene (TCE)/ppm	< ().170	0.00358	0.64	= =
Trichlorofluoromethane/ppm	< ().43()	= =	1120	= =
1,2,4-Trimethylbenzene/ppm	76	1.38	89.8	219
1,3,5-Trimethylbenzene/ppm Vinyl Chloride/ppm	30.2 < (), i 60	0.000138	182 0.07	182 = =
m&p-Xylene/ppm	9.6	3.94	258	258
o-Xylene/ppm	1.490 "J"	3.94	200	200

NS = not sampled, NM = Not Measured (ppm) = parts per million DRO = Diesel Range Organics GRO = Gasoline Range Organics = = No Exceedences

METCO Environmental Consulting, Fuel System Design, Installation and Service

•

A.3. Residual Soil Contamination Table Browntown Oil BRRTS# 03-23-001503

																	DIRECT CO	NTACT PVOC & PAI	H COMBINED
Sample	Depth	Saturation	Date	PID	Lead	DRO	GRO		Ethyl		Naph-		1,2,4-Trime-	1,3,5-Trime-	Xylene	Other VOC's			Cumulative
ID	(feet)	U/S			(ppm)	(ppm)	(ppm)	Benzene	Benzene	MTBE	thalene	Toluene	thylbenzene	thylbenzene	(Total)	(ppm)	Exeedance	Hazard	Cancer
								(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(pp m)		Count	Index	Risk
G-1-1	3	U	10/10/11	0	39	NS	<10	<0.025	<0.025	<0.025	<0.025	0.045	<0.025	<0.025	0.058-0.083	NS			
G-1-2	6	S	10/10/11	50	NS	NS	22	0.032	0.320	<0.025	0.470	0.125	2.67	1.11	2.23	NS			
G-2-1	3	U	10/10/11	0	45.0	NS	<10	<0.025	<0.025	<0.025	<0.025	0.079	<0.025	<0.025	<0.075	NS			
G-3-2	6	S	10/10/11	50	NS	27.3	NS	<0.025	1.43	<0.025	2.87	0.120	2.09	2.95	2.15	NS			
G-4-1	3	U	10/10/11	200	21.8	NS	2860	<0.089	1.41	<0.120	12.5	<0.500	76	30.2	11.09	SEE VOC SPREAD- SHEET	1	1.02E+00	2.6E-06
G-4-2	6	S	10/10/11	250	NS	NS	1140	0.810	8.4	<0.250	6.2	5.1	48	19	37.3	NS			
G-5-2	6	S	10/10/11	150	NS	NS	370	0.460	4.6	<0.250	3.7	1.76	12.3	5.9	9.48	NS	territor a sur enco		
G-10-2	6	S	10/11/11	200	NS	NS	1150	0.580	12.4	<0.0250	1.09	4.8	10.1	5.1	12.62	NS			
·																NS			
roundwate	r RCL				27	-	-	0.00512	1.57	0.027	0.659	1.11	1.	38	3.94	-			
on-Industri	ial Direct (Contact RCL			400	-	-	<u>1.49</u>	<u>7.47</u>	<u>59.4</u>	<u>5.15</u>	<u>818</u>	<u>89.8</u>	<u>182</u>	<u>258</u>	-	<u>0</u>	1.00E+00	1.00E-05
oil Saturati	on Concer	ntration (C-s	at)*		-	-	-	1820*	480*	8870*	_	818*	219*	182*	258*	-			

Bold = Groundwater RCL Exceedance

Bold & Underline = Non Industrial Direct Contact RCL Exceedance

NM = Not Measured

Bold & Asteric * = C-sat Exceedance

NS = Not Sampled

(ppm) = parts per million DRO = Diesel Range Organics

GRO = Gasoline Range Organics

PID = Photoionization Detector

PVOC's = Petroleum Volatile Organic Compounds

.

A.6 Water Level Elevations Browntown Oil BRRTS# 03-23-001503 Browntown, Wisconsin

	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6
Ground Surface (feet msl)	785.13	784.80	786.00	785.12	784.13	784.40
PVC top (feet msl)	784.49	784.44	785.62	784.70	783.61	783.92
Well Depth (feet)	13.00	13.00	13.00	13.00	13.00	13.00
Top of screen (feet msl)	762.13	761.80	763.00	762.12	761.13	761.40
Bottom of screen (feet msl)	772.13	771.80	773.00	772.12	771.13	771.40
Depth to Water From Top of PV	C (feet)					
09/26/12	5.50	4.62	5.41	7.03	6.62	6.35
03/20/13	3.37	1.81	2.48	5.42	4.87	4.39
01/14/14	4.65	3.17	3.92	6.38	5.95	5.42
04/17/14	3.20	1.57	1.87	4.98	4.62	4.24
07/15/14	3.78	2.40	2.88	5.66	5.27	4.93
10/15/14	2.62	0.83	0.82	3.99	3.98	3.08
Depth to Water From Ground Su	ırface (feet)					
09/26/12	6.14	4.98	5.79	7.45	7.14	6.83
03/20/13	4.01	2.17	2.86	5.84	5.39	4.87
01/14/14	5.29	3.53	4.30	6.80	6.47	5.90
04/17/14	3.84	1.93	2.25	5.40	5.14	4.72
07/15/14	4.42	2.76	3.26	6.08	5.79	5.41
10/15/14	3.26	1.19	1.20	4.41	4.50	3.56
Groundwater Elevation (feet ms	1)					
09/26/12	778.99	779.82	780.21	777.67	776.99	777.57
03/20/13	781.12	782.63	783.14	779.28	778.74	779.53
01/14/14	779.84	781.27	781.70	778.32	777.66	778.50
04/17/14	781.29	782.87	783.75	779.72	778.99	779.68
07/15/14	780.71	782.04	782.74	779.04	778.34	778.99
	781.87	102.01	102.11	110.04	110.04	110.00

Note: Elevations are presented in feet mean sea level (msl).

CNL = Could Not Locate

NI = Not Installed

-11,

NM = Not Measured

METCO Environmental Consulting, Fuel System Design, Installation and Service

•

A.7 Other Groundwater NA Indicator Results Browntown Oil BRRTS# 03-23-001503

Monitoring Well MW-1

	Dissolved					Nitrate +	Total	Dissolved	Man-
Date	Oxygen	pН	ORP	Temp	Specific	Nitrite	Sulfate	Iron	ganese
	(ppm)			(C)	Conductance	(ppm)	(ppm)	(ppm)	(ppm)
09/26/12	2.35	7.11	146.00	18.90	1684.00	3.12	24.8	<60	310
03/20/13	2.49	6.53	117.00	2.80	1298.00	NS	NS	NS	NS
01/14/14	3.13	6.61	109.00	6.90	819.00	NS	NS	NS	NS
04/17/14	3.11	6.68	300.00	3.80	1731.00	NS	NS	NS	NS
07/15/14	2.17	6.87	247.00	17.60	1551.00	NS	NS	NS	NS
10/15/14	2.16	6.17	262.00	14.40	917.00	NS	NS	NS	NS
NFORCE ME	NT STANDARD	= ES – Bold		L		10	-		300
REVENTIVE	ACTION LIMIT =	PAL - Italics				2	-	-	60

(ppm) = parts per million (ppb) = parts per billion

ns = not sampled nm = not measured

Note: Elevations are presented in feet mean sea level (msl).

Monitoring Well MW-2

	Dissolved					Nitrate +	Total	Dissolved	Man-
Date	Oxygen	ρН	ORP	Temp	Specific	Nitrite	Sulfate	Iron	ganese
	(ppm)			(C)	Conductance	(ppm)	(ppm)	(ppm)	(ppm)
09/26/12	0.98	7.17	9.00	19.30	1107.00	0.18	30.2	3020	840
03/20/13	1.71	6.50	156.00	2.80	448.50	NS	NS	NS	NS
01/14/14	3.69	6.95	79.00	5.50	713.00	NS	NS	NS	NS
04/17/14	1.68	7.05	227.00	5.80	550.00	NS	NS	NS	NS
07/15/14	0.89	7.04	3.00	18.30	621.00	NS	NS	NS	NS
10/15/14	2.10	5.86	246.00	13.30	347.00	NS	NS	NS	NS
NFORCE ME	NT STANDARD	= ES – Bold		_		10	-	-	300
REVENTIVE	ACTION LIMIT =	PAL - Italics	1			2	-	-	60

(ppb) = parts per billion nm = not measured

ns = not sampled

Note: Elevations are presented in feet mean sea level (msl).

Monitoring Well MW-3

	Dissolved					Nitrate +	Total	Dissolved	Man-
Date	Oxygen	ρН	ORP	Temp	Specific	Nitrite	Sulfate	Iron	ganese
	(ppm)			(C)	Conductance	(ppm)	(ppm)	(ppm)	(ppm)
09/26/12	2.44	6.55	279.00	16.60	1528.00	1.74	36.8	360	176
03/20/13	5.61	6.55	147.00	2.08	708.00	NS	NS	NS	NS
01/14/14	4.13	7.10	241.00	5.50	981.00	NS	NS	NS	NS
04/17/14	4.48	7,41	216.00	7.00	403.00	NS	NS	NS	NS
07/15/14	1.30	6.98	277.00	19.10	508.00	NS	NS	NS	NS
10/15/14	3.95	6.46	279.00	13.00	514.00	NS	NS	NS	NS
ENFORCE MEI	NFORCE MENT STANDARD = ES – Bold						-	-	300
PREVENTIVE	REVENTIVE ACTION LIMIT = PAL - Italics						~	-	60

(ppb) = parts per billion (ppm) = parts per million

ns = not sampled nm = not measured

A.7 Other

Groundwater NA Indicator Results Browntown Oil BRRTS# 03-23-001503

Monitoring Well MW-4

	Dissolved					Nitrate +	Total	Dissolved	Man-
Date	Oxygen	ρН	ORP	Temp	Specific	Nitrite	Sulfate	Iron	ganese
	(ppm)			(C)	Conductance	(ppm)	(ppm)	(ppm)	(ppm)
09/26/12	0.22	7.17	170.00	16.60	3156.00	2.42	50.1	<60	248
03/20/13	0.71	6.81	108.00	5.90	2497.00	NS	NS	NS	NS
01/14/14	1.61	6.72	209.00	7.40	2610.00	NS	NS	NS	NS
04/17/14	1.64	6.79	106.00	6.90	2027.00	NS	NS	NS	NS
07/15/14	1.40	6.73	259.00	17.60	2295.00	NS	NS	NS	NS
10/15/14	3.95	6.12	312.00	13.80	1227.00	NS	NS	NS	NS
ENFORCE ME	NFORCE MENT STANDARD = ES - Bold						-	-	300
PREVENTIVE	PREVENTIVE ACTION LIMIT = PAL - Italics						-	-	60

(ppb) = parts per billion (ppm) = parts per million

ns = not sampled nm = not measured

Note: Elevations are presented in feet mean sea level (msl).

Well MW-5

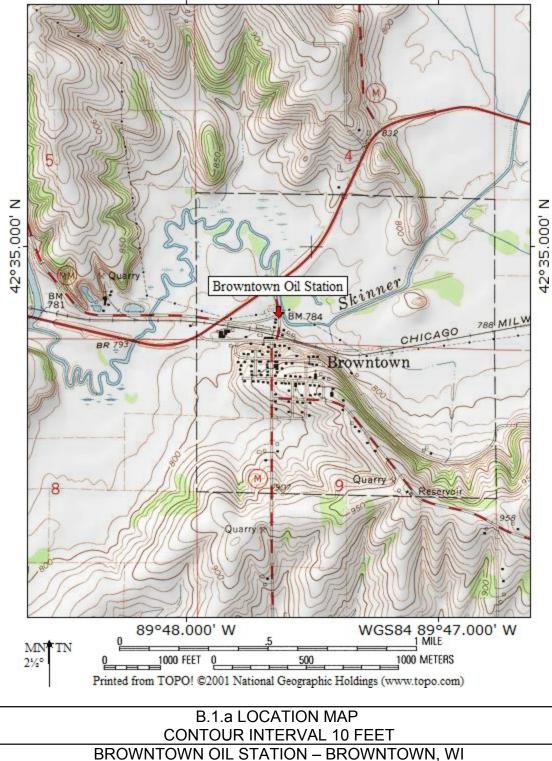
	Dissolved					Nitrate +	Total	Dissolved	Man-
Date	Oxygen	рН	ORP	Temp	Specific	Nitrite	Sulfate	Iron	ganese
	(ppm)			(C)	Conductance	(ppm)	(ppm)	(ppm)	(ppm)
09/26/12	1.90	6.41	161.00	17.00	2326.00	<0.1	17.6	650	<0.7
03/20/13	1.53	6.58	139.00	4.20	3006.00	NS	NS	NS	NS
01/14/14	3.85	6.87	180.00	4.70	2811.00	NS	NS	NS	NS
04/17/14	2.02	7.19	69.00	5.70	2836.00	NS	NS	NS	NS
07/15/14	1.09	6.42	-1.00	16.50	4084.00	NS	NS	NS	NS
10/15/14	1.62	6.32	39.00	13.60	2161.00	NS	NS	NS	NS
NFORCE MEN	10	-	-	300					
PREVENTIVE ACTION LIMIT = PAL - Italics						2	-	-	60

ns = not sampled nm = not measured

Note: Elevations are presented in feet mean sea level (msl).

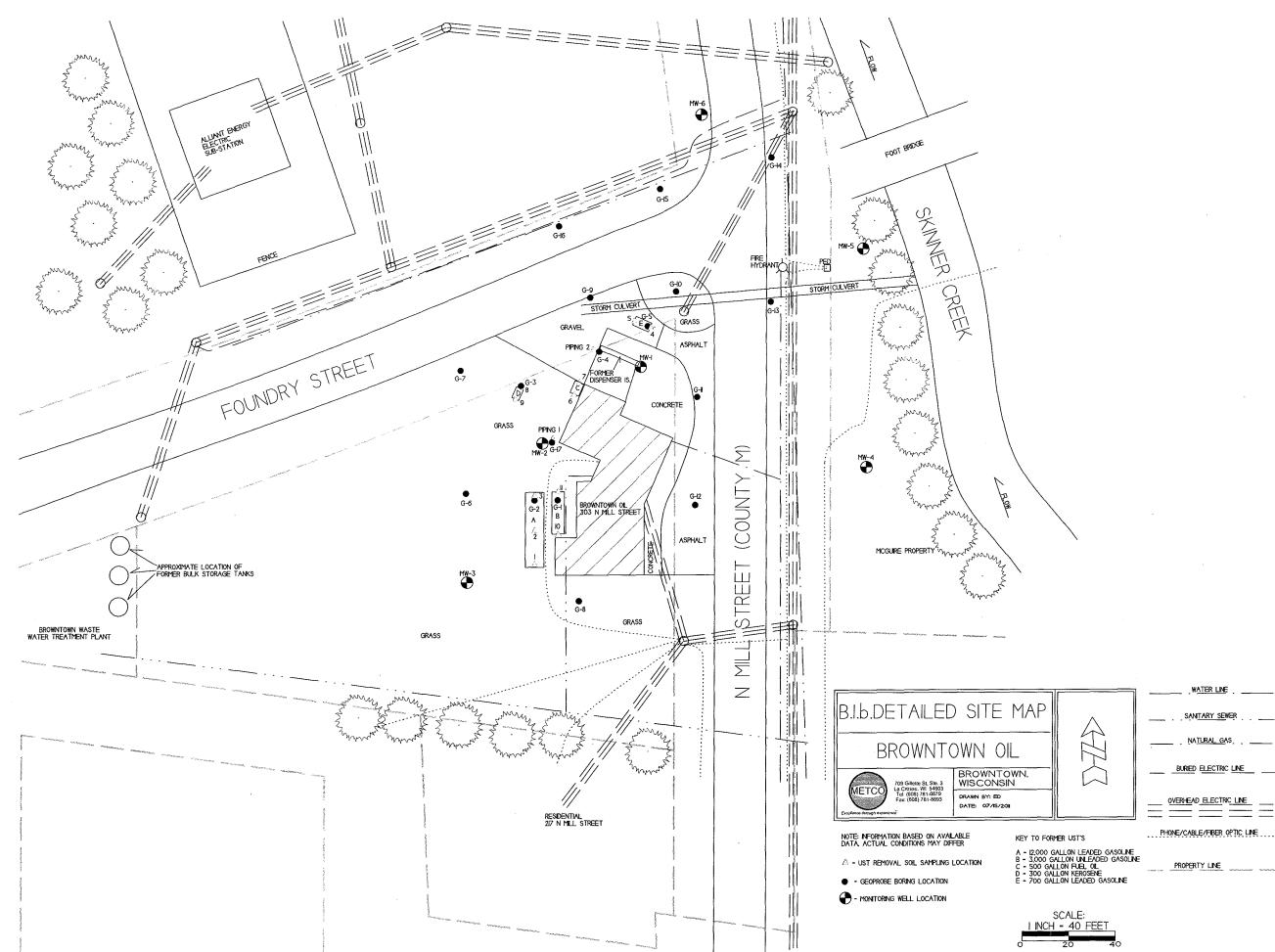
Monitoring Well MW-6

	Dissolved					Nitrate +	Total	Dissolved	Man-
Date	Oxygen	рН	ORP	Temp	Specific	Nitrite	Sulfate	Iron	ganese
	(ppm)			(C)	Conductance	(ppm)	(ppm)	(ppm)	(ppm)
09/26/12	0.12	7.15	226.00	18.20	1032.00	0.99	44.5	<60	526
03/20/13	5.84	6.78	325.00	3.90	1182.00	NS	NS	NS	NS
01/14/14	2.49	6.26	238.00	5.80	1130.00	NS	NS	NS	NS
04/17/14	7.60	6.58	223.00	7.00	609.00	NS	NS	NS	NS
07/15/14	1.51	6.58	276.00	19.50	473.00	NS	NS	NS	NS
10/15/14	3.36	7.88	292.00	14.10	396.00	NS	NS	NS	NS
ENFORCE MEN	NFORCE MENT STANDARD = ES – Bold						-	-	300
PREVENTIVE A	PAL - Italics	2	-	-	60				


(ppb) = parts per billion (ppm) = parts per million

ns = not sampled

nm = not measured

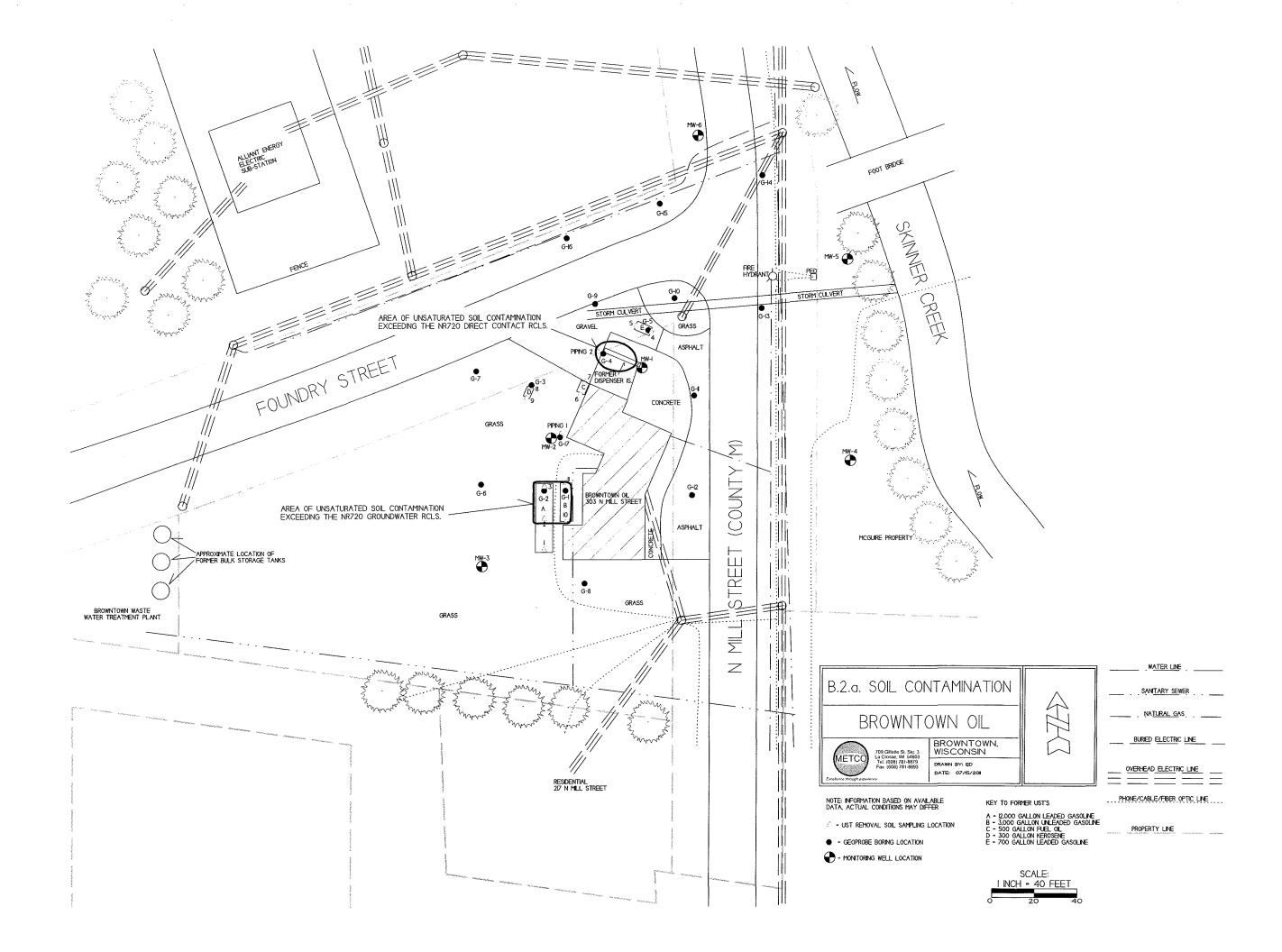

Attachment B/Maps and Figures

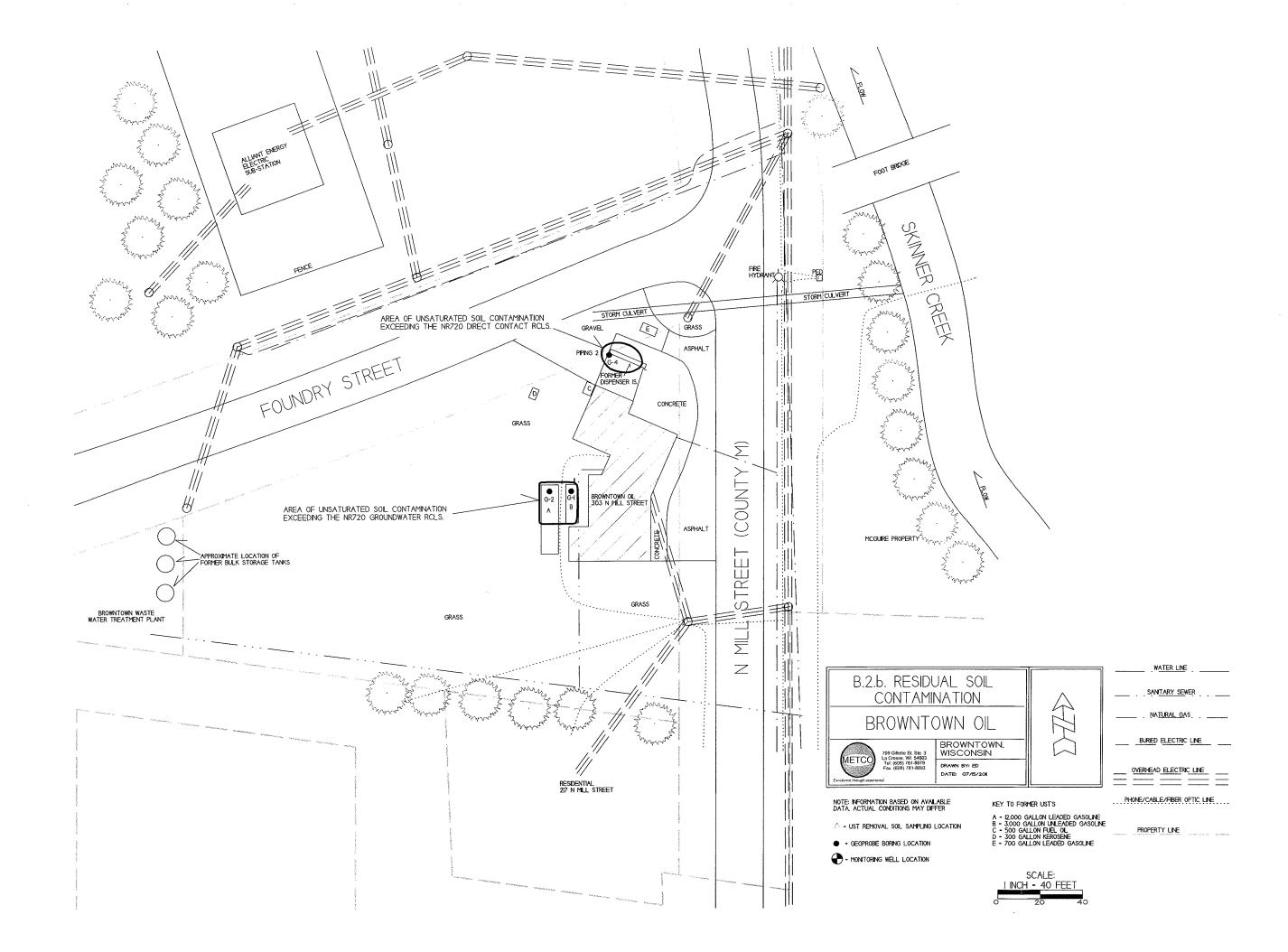
- B.1 Location Maps
 - **B.1.a Location Map**
 - B.1.b Detailed Site Map
 - B.1.c RR Site Map
- **B.2 Soil Figures**
 - **B.2.a Soil Contamination**
 - **B.2.b Residual Soil Contamination**
- **B.3 Groundwater Figures**
 - B.3.a Geologic Cross-Section Figure(s)
 - **B.3.b Groundwater Isoconcentration**
 - **B.3.c Groundwater Flow Direction**
 - B.3.d Monitoring Wells
- B.4 Vapor Maps and Other Media
 - B.4.a Vapor Intrusion Map No vapor samples were assessed as part of this site investigation.
 - B.4.b Other media of concern (e.g., sediment or surface water) No surface waters or sediments were sampled as part of this site investigation.
 - B.4.c Other No other relevant maps and/or figures are being included.

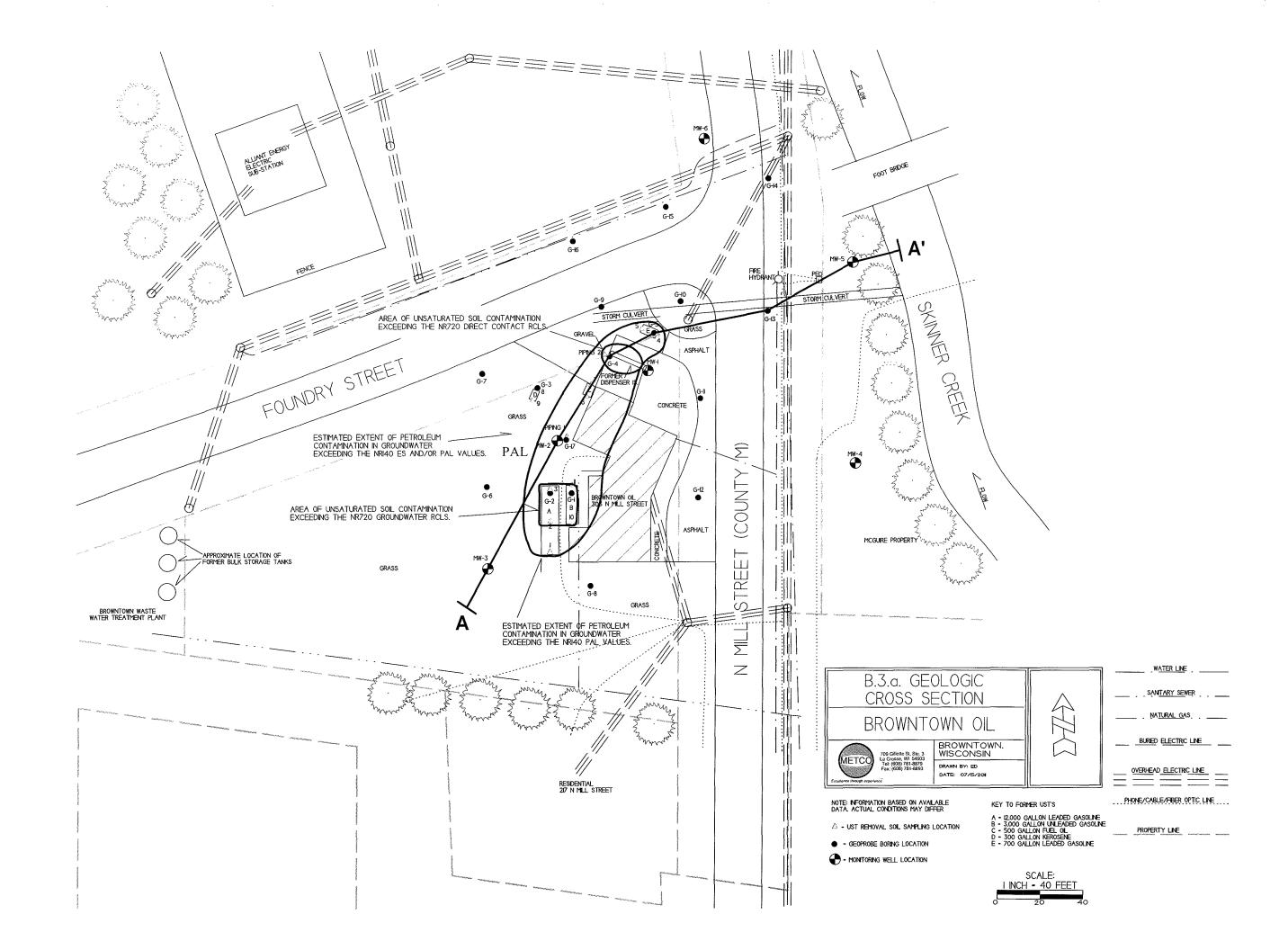

TOPO! map printed on 10/19/15 from "Wisconsin.tpo" and "Untitled.tpg" 89°48.000' W WGS84 89°47.000' W

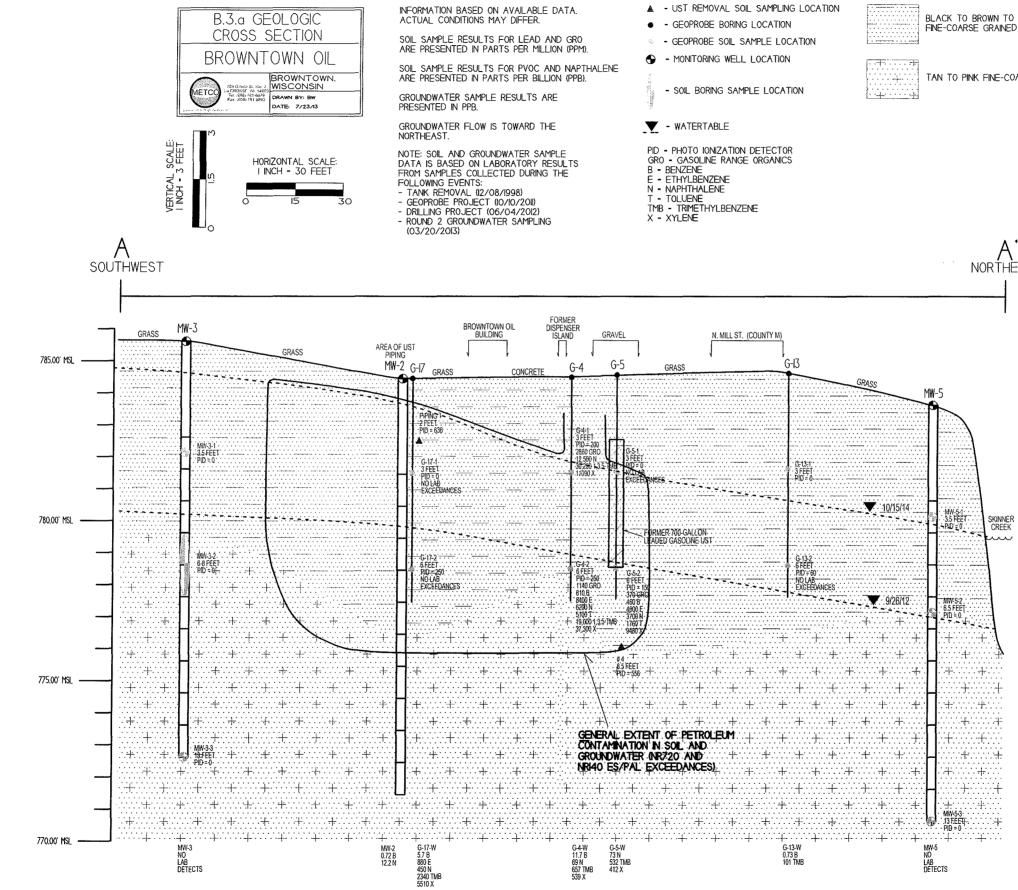

SEAMLESS USGS TOPOGRAPHIC MAPS ON CD-ROM

B.1.c. RR Sites Map

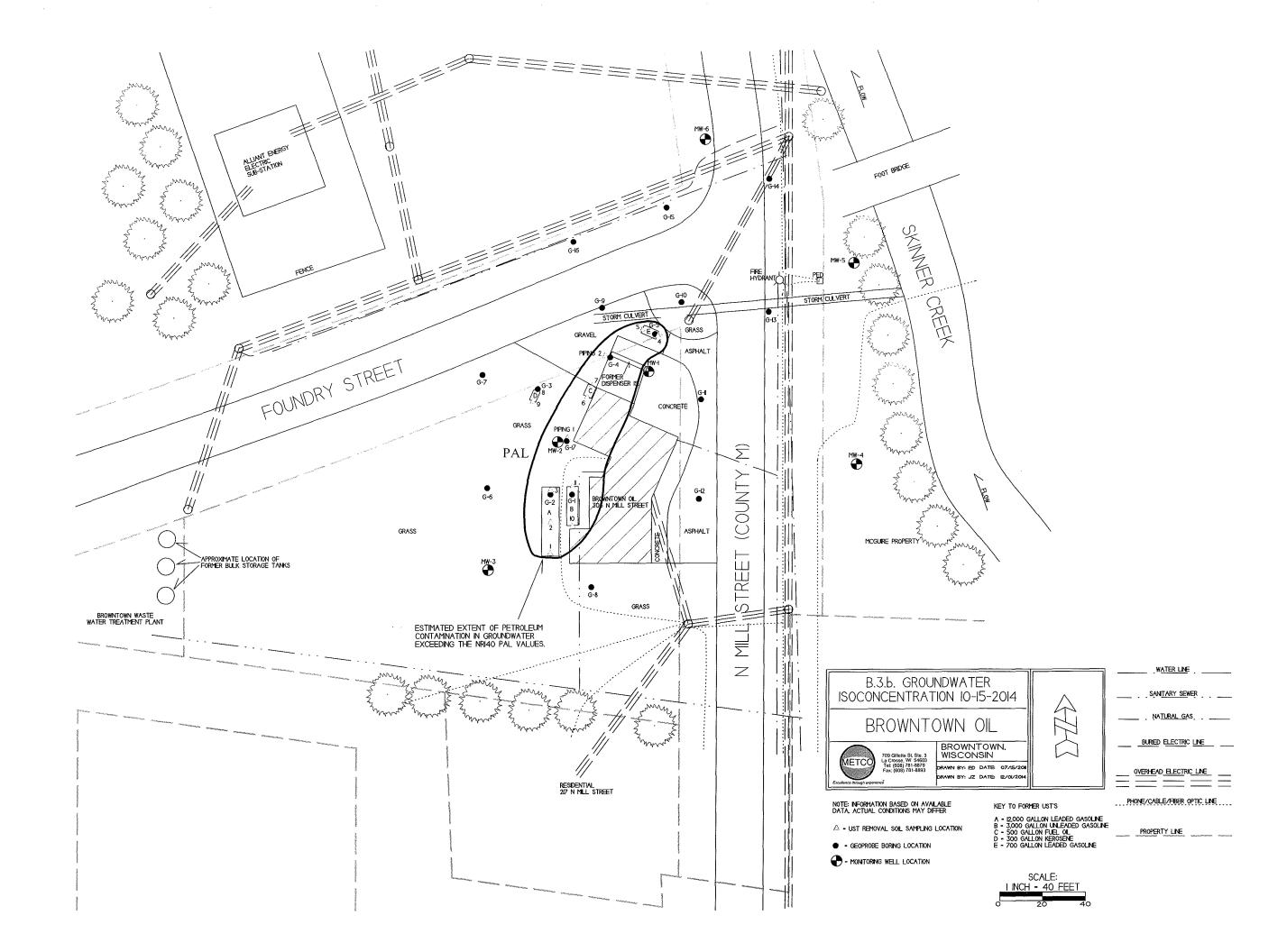


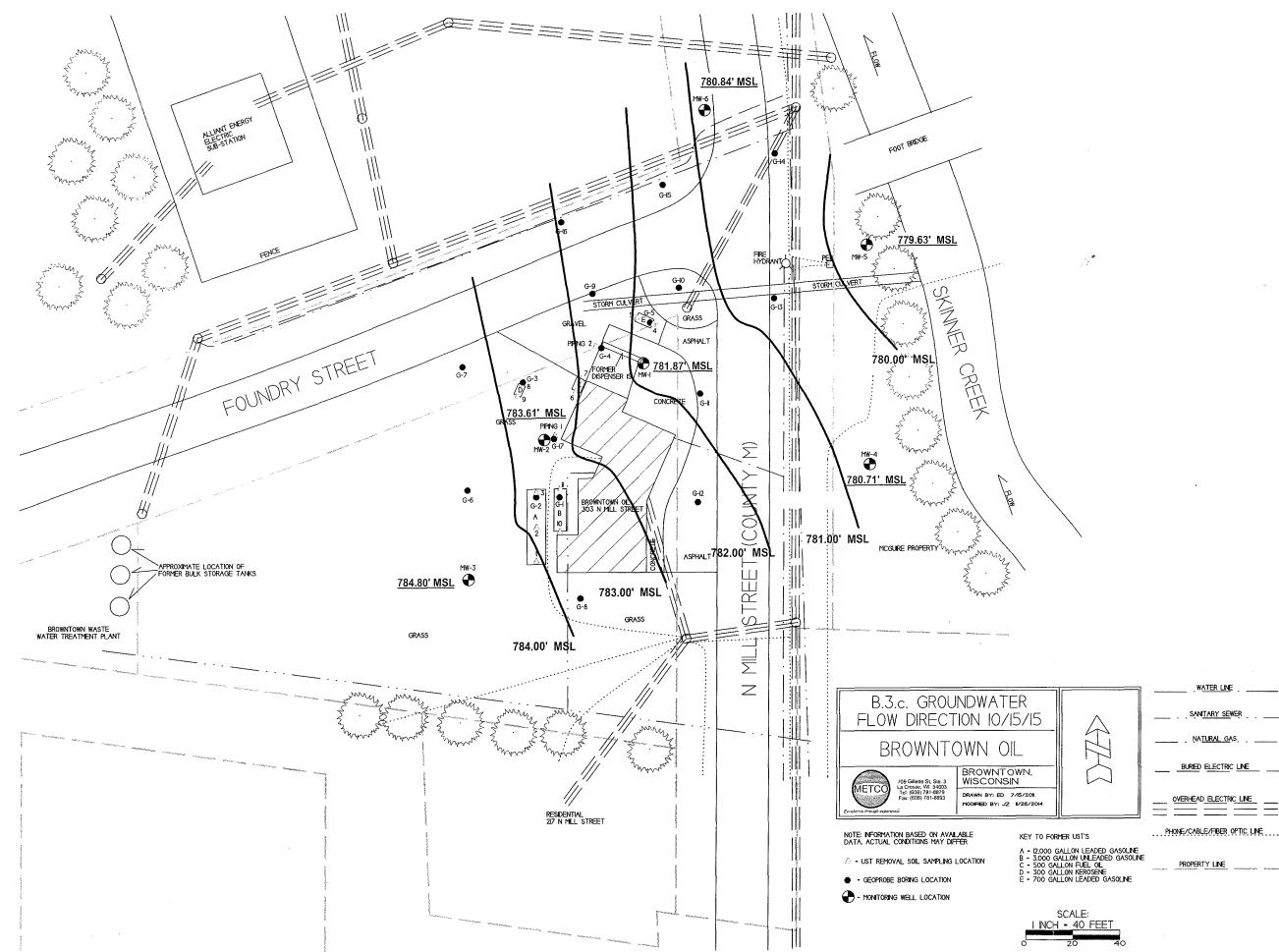


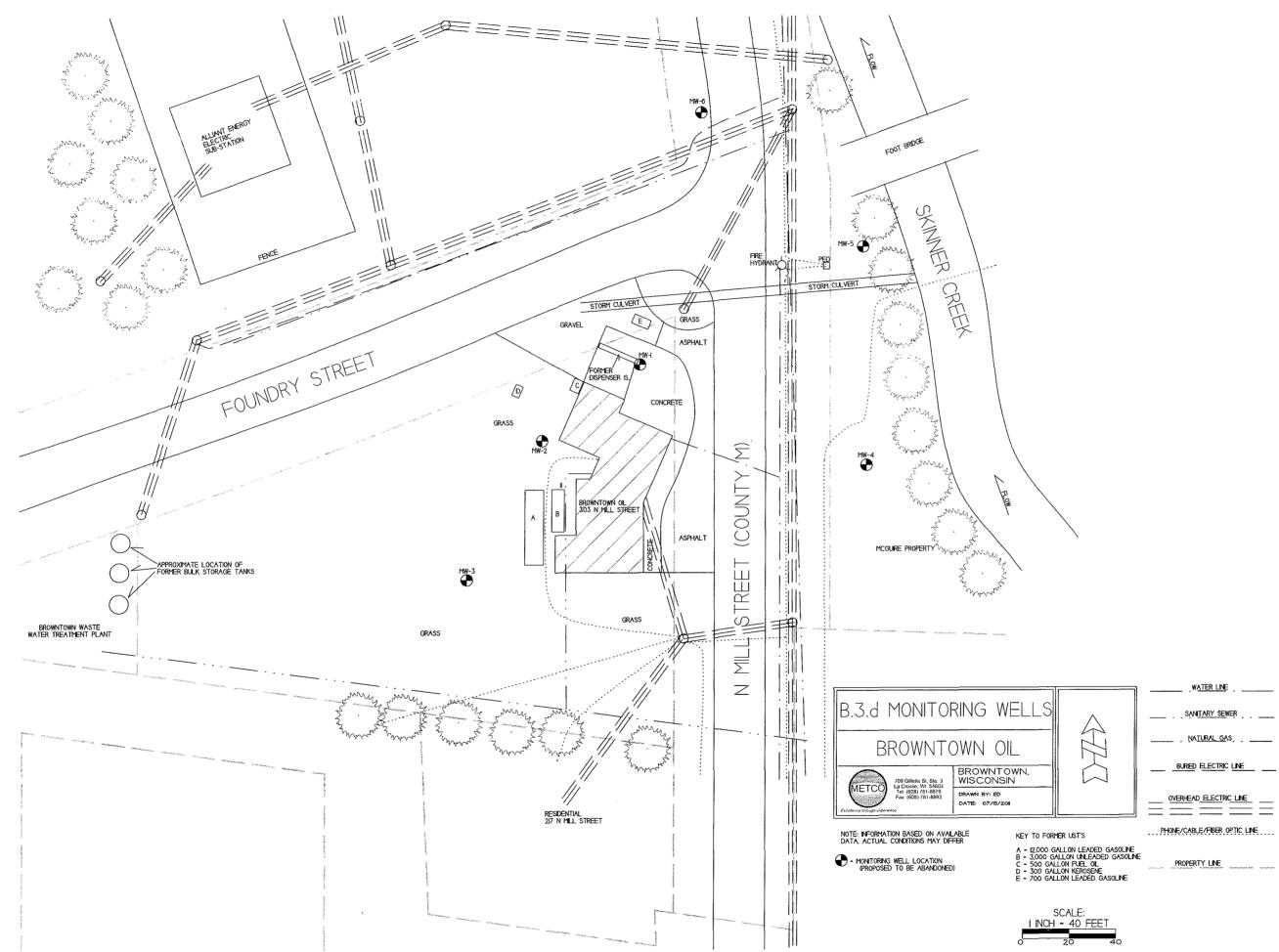

DISCLAIMER: The information shown on these maps has been obtained from various sources and are of varying age, reliability and resolution. These maps are not intended to be used for navigation, nor are these maps an authoritative source of information about legal land ownership or public access. No warranty, expressed or implied, is made aregarding accuracy, applicability for a particular use, completemense, or legality of the information depicted on this map. For more information, see the DNR Legal Notices web page: http://dnr.wi.gov/org/legal/


Note: Not all sites are mapped.

The GIS Registry shows an ERP site (Green County Ag Service) in the location of the Browntown Oil site, which is incorrect. The GIS Registry also shows the Browntown Oil site to be approximately 500 feet to the south of its actual location.






BLACK TO BROWN TO TAN TO GREEN TO GRAY TO ORANGE FINE-COARSE GRAINED SAND TO SILTY SAND

TAN TO PINK FINE-COARSE GRAINED SANDSTONE

NORTHEAST

Attachment C/Documentation of Remedial Action

- C.1 Site Investigation documentation All site investigation activities are documented in the following reports:
 - Site Investigation Report, September 2013
 - Groundwater Monitoring Report, December 2014

C.2 Investigative waste

- C.3 Provide a description of the methodology used along with all supporting documentation if the Residual Contaminant Levels are different than those contained in the Department's RCL Spreadsheet available at: <u>http://dnr.wi.goc/topic/brownfields.Professionals.html</u>\ Residual Contaminant Levels (RCLs) were established in accordance with NR720.10 and NR720.12. Soil RCLs for the protection of the groundwater pathway and for non-industrial direct contact were taken from the RR programs RCL speadsheet.
- C.4 Construction documentation No Remedial actions and/or interim actions specified in s.NR724.01(1) occurred at this site.
- C.5 Decommissioning of Remedial Systems No remedial systems were installed as part of this site investigation.

C.6 Other

Attachment D/Maintenance Plan(s)

しいしょう しんしょう しんしょう しんしょう しんしゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう	Investigative Waste INVOICE	9-8	20 K
Services, LLC	CUSTOMER	JOB NAME	
N7349 548th Street Menomonie, WI 54751	Bountary Oil % MARCO	303 N Mill ST	
715-556-2604	109 67/10te 57 La Crosse MF 54603	Brown town ht	
		IOUSE COUNT	

QUA		DESCRIPTION	QTY.	UNIT PR		AMOUN	т
DATE	SHIPPED		<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			AMOUT	1
		NObilakter	1	274	\square	274	
	2	Hay (soil dams to Vedor Louchill IN Ean CLAVE WIT	2	/03	~	a06	-
	2	MObilizather Hay (soil dams to Vedro Lauchill IV Bay Clave WI Hay (worter daws to Vedro Lauchill IN Ease clause WI	2	40	Ø	90	Zi
		·•• ··· ··· ··· ··· ··· ··· ··· ··· ···					
							1
		······································					
							1
							1
							1
						, 18 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 	
			+				
	ceipt of invoi	ice. Charge (18% Annual Percentage Rate) will be added to past due accounts.	1	لــــــــــــــــــــــــــــــــــــ	TAL	GLA	21

SIGNATURE _

En Washe Disposal Paisewed &/10/12 2/K

	Petroleum Contami		
ENVIRONMENTA		Indleu	PROFILE #
SERVICES	Soil Profile Sheet		Criginal submittat
asignated Facility. <u>Vaolia S</u>	ieven Mile Creek Landfill LLC Sales I	Representative: <u>Jim Daviş</u>	Cne lime project 🛛
	S-Browtown ();1 D3 N'M;11 St Dun/town/ 125 5352 NDC Schun (t2 75 556 2604		SCHMIFZ 548 ST MONIE NA ST RK SCHMITC 356 2604
Source of Contamination:	LURIBADED GABOLINE SALEADED GAB LUST O AST O Soill O C Frequency (Dihar	
D. Other Waste Dat	a or Comments , while S Man A	noutorate we	(15
	Ion	submitted	y Data Sheet Submitted
E. Sample Informat Check all that apply: Sample submitted with Laboratory Name F. Generator Certiff This waste is not a ha This waste does not o Sample does not o This waste does not o This waste does not o Sample does not o Sa	Ion h profile Cations Catio	in Administrative Code NR 661 or 4 es or pesticides. Wisconsin Administrative Code Ni is and all attached documents cont entative as defined in 40 CFR 261 -	y Data Sheet Submitted 40 CFR 261. R 526. tains true and accurate Appendix 1 and was
 D&II E. Sample Informat Check all that apply: Sample submitted with Laboratory Name F. Generator Certifit This waste is not a hat This waste does not of The best of my known descriptions of this waste does not of To the best of my known descriptions of this waste does not of this waste does not of 	Ion h profile Cations Catio	in Administrative Code NR 661 or 4 es or pesticides. Wisconsin Administrative Code Ni is and all attached documents cont entative as defined in 40 CFR 261 - Il relevant information regarding kn	y Data Sheet Submitted 40 CFR 261. R 526. tains true and accurate Appendix 1 and was
D&II E. Sample Informat Check all that apply: Sample submitted with Laboratory Name F. Generator Certifit This waste is not a hat This waste does not of The possession of the Generator's Signature On the possession of This waste does </td <td>Ion h profile Cations Zardous waste as defined in Wiscons cations Zardous waste as defined in Wiscons cntain regulated quantities of PCB's. ontain regulated quantities of PCB's. ontain regulated quantities of herbic.d cntain infectious wastes as defined in wiedge, all information submitted in the ists. Any sample submitted is represent or an equivalent sampling method. A generator has been ticclosed.</td> <td>in Administrative Code NR 661 or 4 es or pesticides. Wisconsin Administrative Code Ni is and all attached documents cont entative as defined in 40 CFR 261 - ill relevant information regarding kn Title</td> <td>y Data Sheet Submitted 40 CFR 261. R 526. tains true and accurate Appendix 1 and was hown or suspected hazards</td>	Ion h profile Cations Zardous waste as defined in Wiscons cations Zardous waste as defined in Wiscons cntain regulated quantities of PCB's. ontain regulated quantities of PCB's. ontain regulated quantities of herbic.d cntain infectious wastes as defined in wiedge, all information submitted in the ists. Any sample submitted is represent or an equivalent sampling method. A generator has been ticclosed.	in Administrative Code NR 661 or 4 es or pesticides. Wisconsin Administrative Code Ni is and all attached documents cont entative as defined in 40 CFR 261 - ill relevant information regarding kn Title	y Data Sheet Submitted 40 CFR 261. R 526. tains true and accurate Appendix 1 and was hown or suspected hazards
D&II E. Sample Informat Check all that apply: Sample submitted with Laboratory Name F. Generator Certiff This waste is not a hat This waste does not of	Ion h profile Laboratory Analysis Sample Date Cations Zardous waste as defined in Wiscons cntain regulated quantities of PCB's. ontain regulated quantities of PCB's. ontain regulated quantities of herbic.d cntain infectious wastes as defined in wiedge, all information submitted in the ists. Any sample submitted is represended or an equivalent sampling method. A generator has been disclosed. MARCHICE MARCHICE All h the laboratory analysis of a represended	in Administrative Code NR 661 or 4 es or pesticides. Wisconsin Administrative Code Ni is and all attached documents cont entative as defined in 40 CFR 261 - Il relevant information regarding kn Title	y Data Sheet Submitted 40 CFR 261. R 526. tains true and accurate Appendix 1 and was hown or suspected hazards
E. Sample Informat Check all that apply: Sample submitted with Laboratory Name F. Generator Certifit This waste lis not a ha This waste does not o This waste does not	Ion h profile Cations Catio	in Administrative Code NR 661 or 4 es or pesticides. Wisconsin Administrative Code Ni is and all attached documents cont entative as defined in 40 CFR 261 - ill relevant information regarding kn Title	y Data Sheet Submitted 40 CFR 261. R 526. tains true and accurate Appendix 1 and was nown or suspected hazards
D&II E. Sample Informat Check all that apply: Sample submitted with Laboratory Name F. Generator Certifity This waste is not a hat This waste does not of The possession of this was obtained by using this the possession of the Generator's Signature Print Name G. Landfill Approv My approval is based upon the generator. Landfill Signature Approvals Signature	Ion h profile Cations Catio	a submitted	y Data Sheet Submitted 40 CFR 261. R 526. tains true and accurate Appendix 1 and was forwn or suspected hazards

٠

. . . .

Attachment D/Maintenance Plan(s)

- D.1 Descriptions of maintenance action(s) required for maximizing effectiveness of the engineered control, vapor mitigation system, feature or other action for which maintenance is required
- D.2 Location map(s) which show(s) cap area
- **D.3 Photographs**
- **D.4 Inspection log**

D.1 Description of Maintenance Action(s)

CAP MAINTENANCE PLAN

October 20, 2015

Property Located at: 303 N Mill Street, Browntown, WI

WDNR BRRTS# 03-23-001503

TAX KEY# 2311001160000

Introduction

This document is the Maintenance Plan for a concrete/gravel cap at the above-referenced property in accordance with the requirements of s. NR 724.13(2), Wisconsin Administrative Code. The maintenance activities relate to the existing cap occupying the area over the contaminated soil on-site.

More site-specific information about this property may be found in:

- The case file in the DNR South Central regional office
- BRRTS on the Web (DNR's internet based data base of contaminated sites): <u>http://dnr.wi.gov/botw/SetUpBasicSearchForm.do</u>
- GIS Registry PDF file for further information on the nature and extent of contamination and
- The DNR project manager for Green County.

Description of Contamination

Soil contaminated by Petroleum Volatile Organic Compounds (PVOCs) is located at a depth of 0-3 feet below ground surface in the area of the former pump island. The extent of the soil contamination is shown on Attachment D.2.

Description of the Cap to be maintained

The Cap consists of concrete (approximately 6 inches thick) and gravel in the area of the former pump island on the northern edge of the on-site building, as shown on Attachment D.2.

Cover Barrier Purpose

The concrete/gravel cap over the contaminated soil serves as a barrier to minimize exposure to soil exceeding NR720 Direct Contact standards. Based on the current and future use of the property, the barrier should function as intended unless disturbed.

Annual Inspection

The concrete/gravel cap overlying the contaminated soil and as depicted in Attachment D.2 will be inspected once a year, normally in the spring after all snow and ice is gone, for deterioration, cracks and other potential problems that can cause exposure to underlying soils through the concrete and gravel. The inspections will be performed by the property owner or their designated representative. The inspections will be performed to evaluate damage due to settling, exposure to the weather, wear from traffic, increasing age and other factors. Any area where soils have become or are likely to become exposed and where infiltration from the surface will not be effectively minimized will be documented. A log of the inspections and any repairs will be maintained by the property owner and is included as Form 4400-305 Continuing Obligations and Maintenance Log. The log will include recommendations for necessary repair of any areas where underlying soils are exposed and where infiltration from the surface will not be effectively minimized will be kept at the address of the property owner and available for submittal or inspection by Wisconsin Department of Natural Resources ("WDNR") representatives upon their request.

Note: The WDNR may, in some instances, require in the case closure letter that the inspection log be submitted at least annually after every inspection. If the case closure letter requires that, then a copy of the inspection log must be submitted to the WDNR at least annually after every inspection.

Maintenance Activities

If problems are noted during the annual inspections or at any other time during the year, repairs will be scheduled as soon as practical. Repairs can include patching and filling or larger resurfacing or construction operations. In the event that necessary maintenance activities expose the underlying soil, the owner must inform maintenance workers of the direct contact exposure hazard and provide them with appropriate personal protection equipment ("PPE"). The owner must also sample any soil that is excavated from the site prior to disposal to ascertain if contamination remains. The soil must be treated, stored and disposed of by the owner in accordance with applicable local, state and federal law.

In the event the concrete/gravel cap overlying the contaminated soil plume is removed or replaced, the replacement barrier must be equally impervious. Any replacement barrier will be subject to the same maintenance and inspection guidelines as outlined in this Maintenance Plan unless indicated otherwise by the WDNR or its successor.

The property owner, in order to maintain the integrity of the concrete/gravel cap, will maintain a copy of this Maintenance Plan on-site and make it available to all interested parties (i.e. on-site employees, contractors, future property owners, etc.) for viewing.

Prohibition of Activities and Notification of DNR Prior to Actions Affecting a Cover or Cap

The following activities are prohibited on any portion of the property where the concrete/gravel cap is required as shown on the attached map, unless prior written approval has been obtained from the Wisconsin Department of Natural Resources: 1) removal of the existing barrier; 2) replacement with another barrier; 3) excavating or grading of the land surface; 4) filling on capped or paved areas; 5) plowing for agricultural cultivation; or 6) construction or placement of a building or other structure.

Amendment or Withdrawal of Maintenance Plan

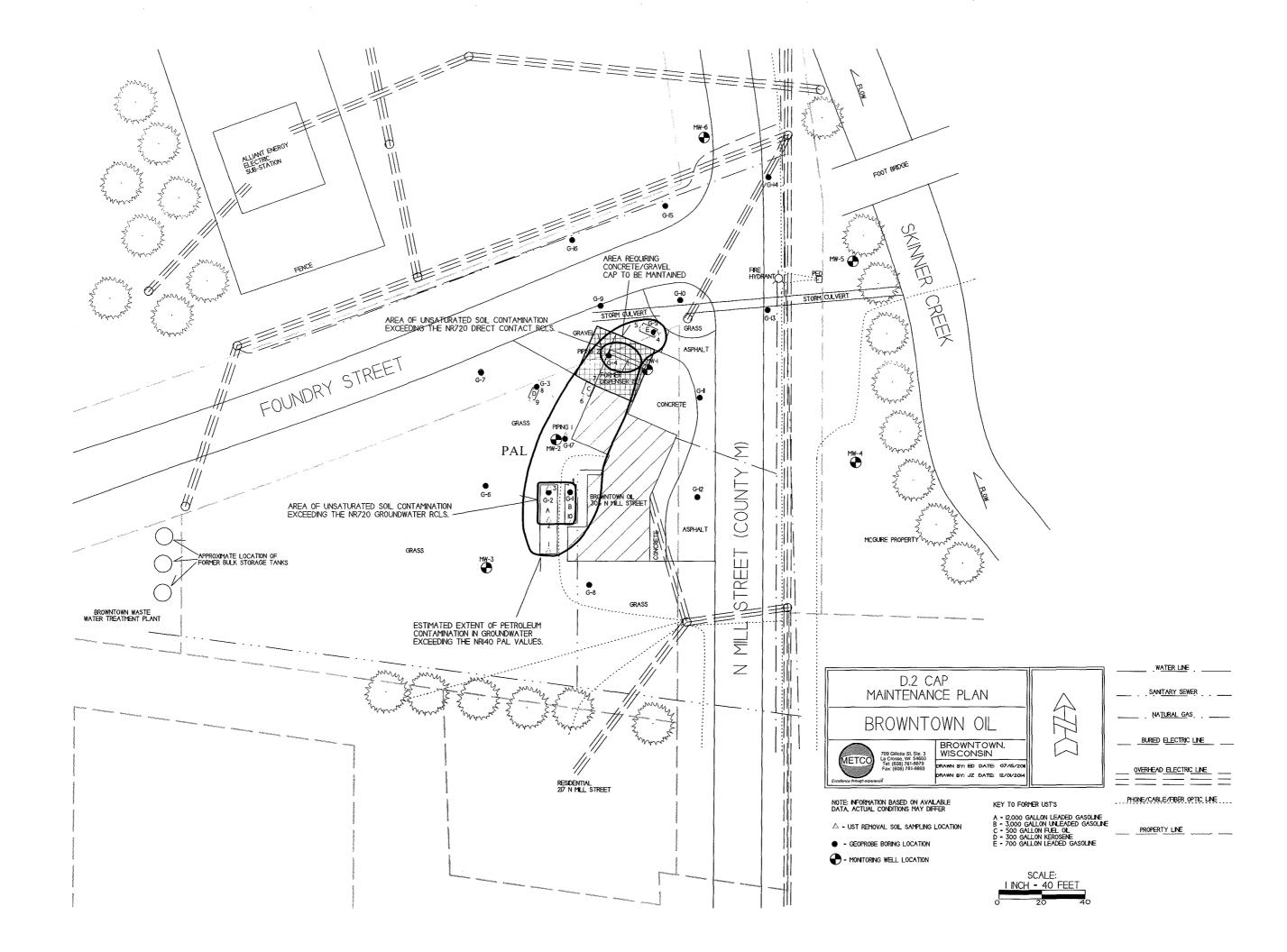
This Maintenance Plan can be amended or withdrawn by the property owner and its successors with the written approval of WDNR.

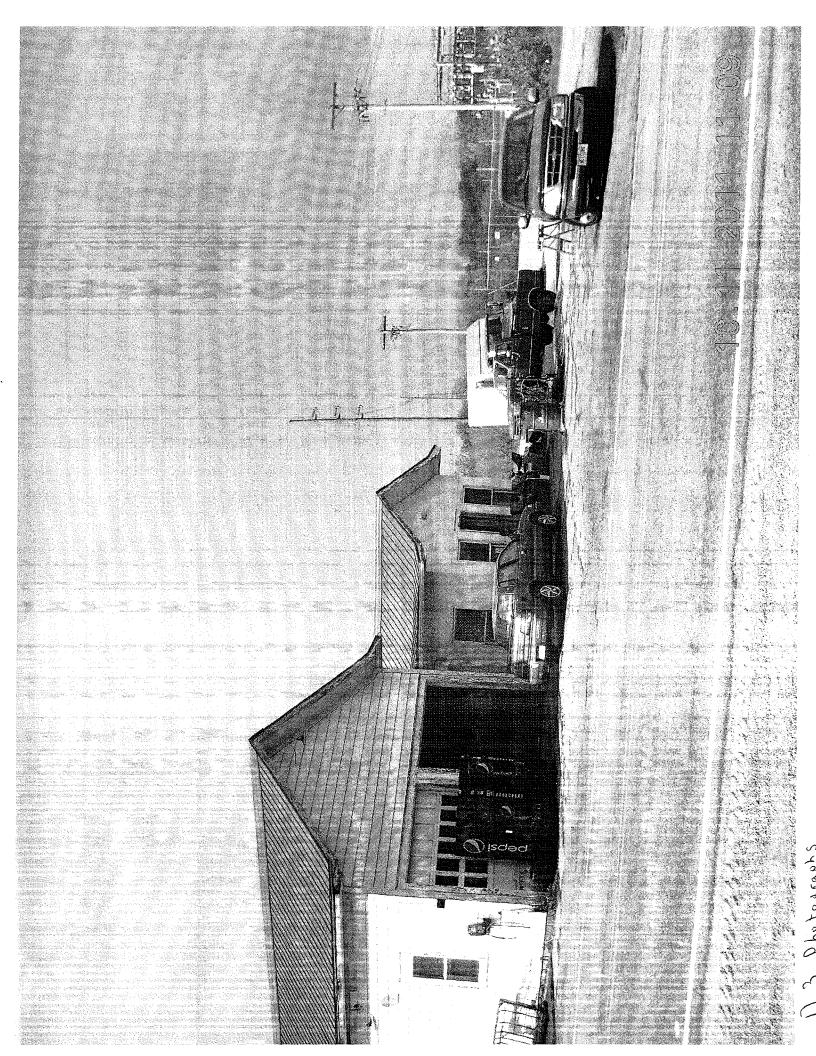
Contact Information October 2015

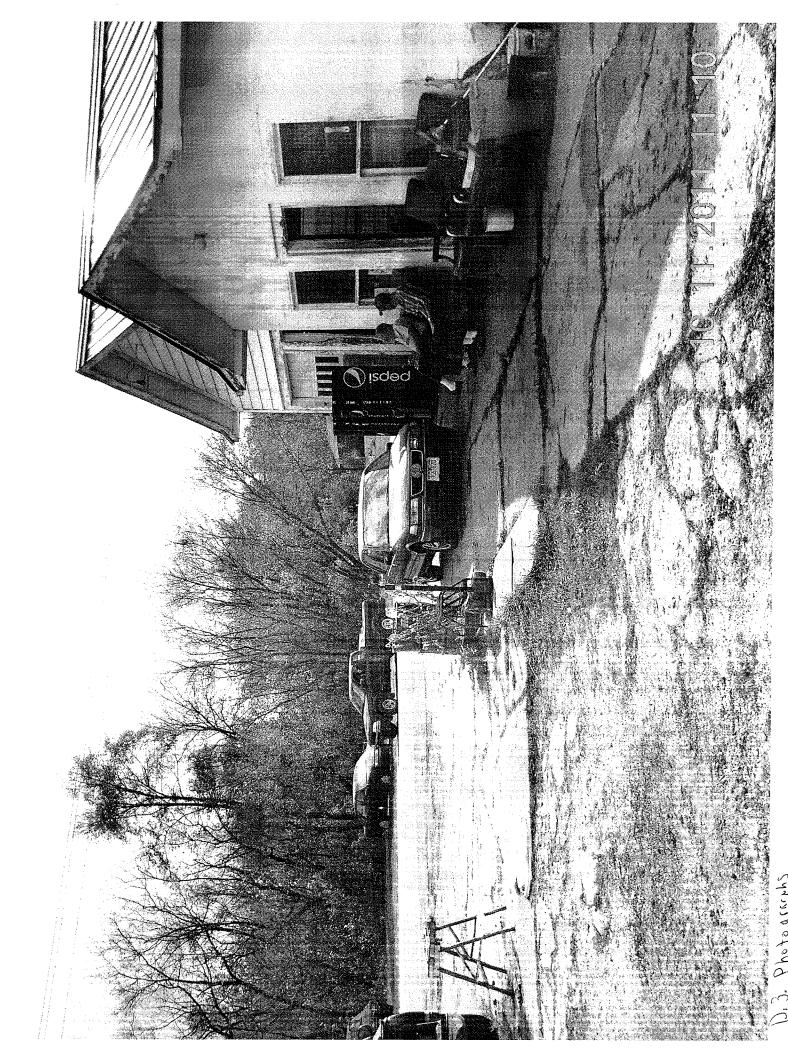
Current Site Owner and Operator:

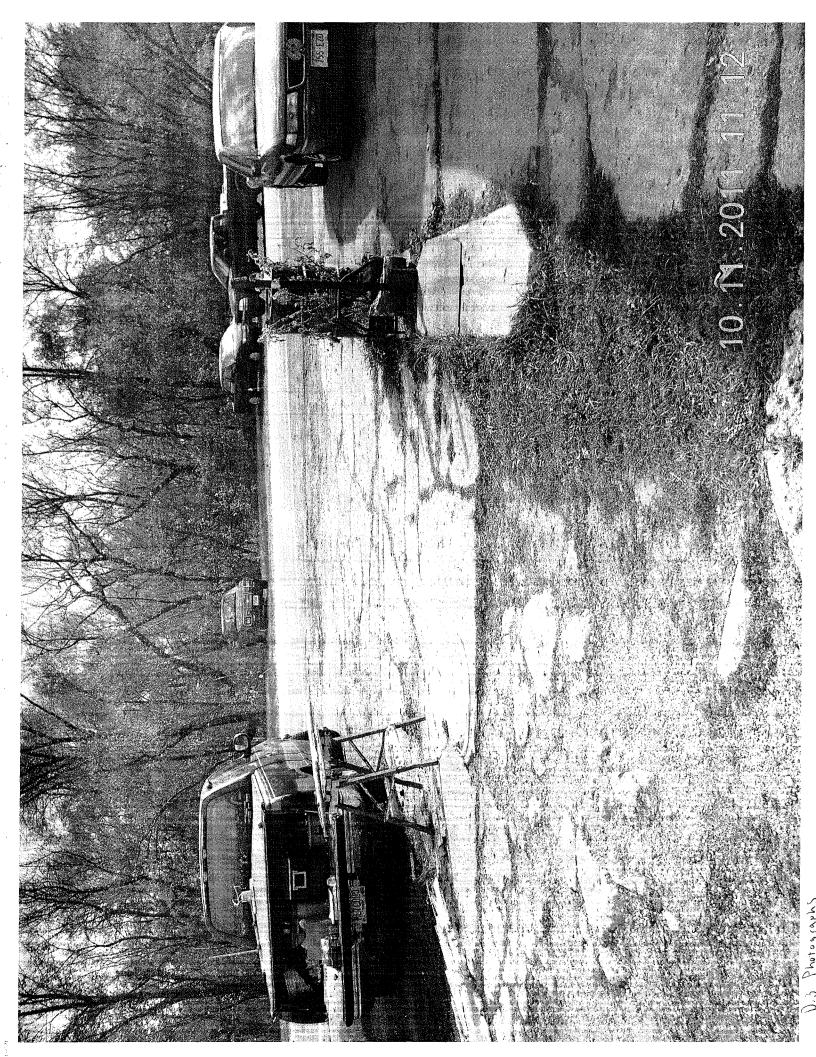
John Sigafus P.O. Box 187 Browntown, WI 53522 (608) 966-3312

Signature:


(DNR may request signature of affected property owners, on a case-by-case basis)


Consultant:


METCO Ron Anderson 709 Gillette Street, Suite 3 La Crosse, WI 54603 (608) 781-8879


WDNR:

Will Meyers 3911 Fish Hatchery Road Fitchburg, WI 53711 (608) 273-5613

State of Wisconsin Department of Natural Resources dnr.wi.gov

Continuing Obligations Inspection and Maintenance Log Page 1 of 2

Directions: In accordance with s. NR 727.05 (1) (b) 3., Wis. Adm. Code, use of this form for documenting the inspections and maintenance of certain continuing obligations is required. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records law [ss. 19.31-19.39, Wis. Stats.]. When using this form, identify the condition that is being inspected. See the closure approval letter for this site for requirements regarding the submittal of this form to the Department of Natural Resources. A copy of this inspection log is required to be maintained either on the property, or at a location specified in the closure approval letter. Do NOT delete previous inspection results. This form was developed to provide a continuous history of site inspection results. The Department of Natural Resources project manager is identified in the closure letter. The project manager may also be identified from the database, BRRTS on the Web, at http://dnr.wi.gov/botw/SetUpBasicSearchForm.do, by searching for the site using the BRRTS ID number, and then looking in the "Who" section.

Form 4400-305 (2/14)

Activity (Site) Name	BRRTS No.
Browntown Oil	03-23-001503
 annually semi-annually 	When submittal of this form is required, submit the form electronically to the DNR project manager. An electronic version of this filled out form, or a scanned version may be sent to the following email address (see closure approval letter):
O other – specify	will.myers@wi.gov

Inspection Date	Inspector Name	Item	Describe the condition of the item that is being inspected	Recommendations for repair or maintenance	Previous recommendations implemented?	Photographs taken and attached?	
		monitoring well cover/barrier vapor mitigation system other:			OY ON	O Y O N	
		monitoring well cover/barrier vapor mitigation system other:			OY ON	O Y O N	
		│ monitoring well │ cover/barrier │ vapor mitigation system │ other:			OY ON	⊖ y ⊖ n	
		monitoring well cover/barrier vapor mitigation system other:			OY ON	O Y O N	
		monitoring well cover/barrier vapor mitigation system other:			OY ON	⊖ Y ⊖ N	
		monitoring well cover/barrier vapor mitigation system other:			OY ON	O Y O N	

.

,

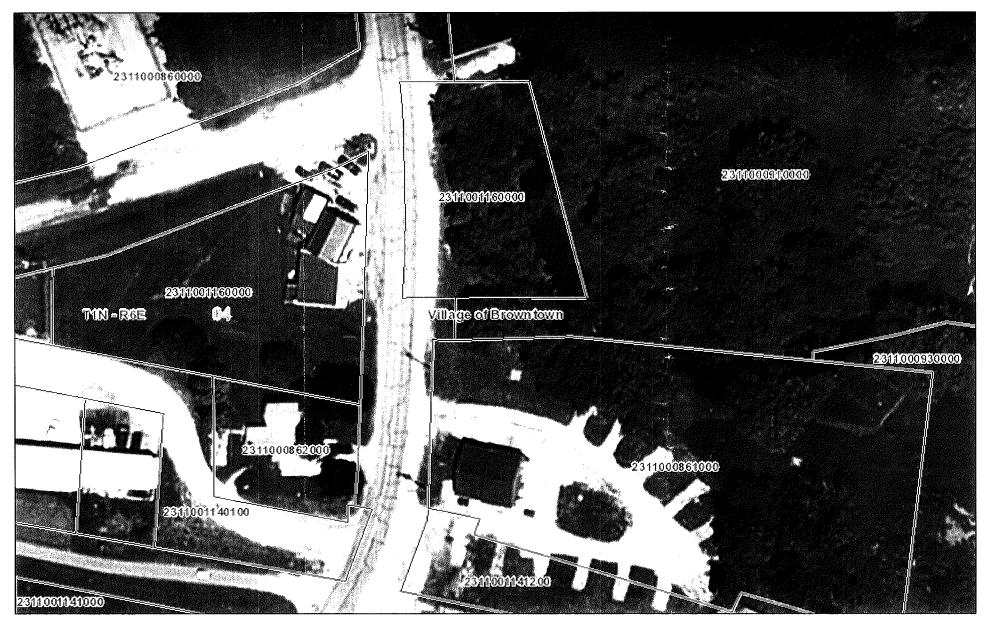
.

.

Attachment E/Monitoring Well Information

All monitoring wells have been located and will be properly abandoned upon WDNR granting closure to the site.

Attachment F/Source Legal Documents


- F.1 Deeds Source Property
- F.2 Certified Survey Map
- F.3 Verification of Zoning
- F.4 Signed Statement

Deed- Source Property VOL 345 PAGE 354 DOCUMENT NO. STATE BAR OF WISCONSIN-FORM 1 WARRANTY DEED THIS SPACE RESERVED FOR RECORDING DATA TRANSFER 278372 \$ 20.00 FEE THE DELASS GEFICE SS LEON ROCKOW THIS DEED, made between - OCN WILCONSIN Precedent mart 1545 18 day of A.U.1980 at 315 with R. M., and T Grantor in volume 345 of lun 4 on page 3 JOHN F. SIGAFUS and ahlen bastile head Grantee, Witnesseth, That the said Grantor, for a valuable consideration Chg. & Green conveys to Grantee the following described real estate in _ Benkert, Spielman, Asmus & Deininger County State of Wisconsin: Commencing at the intersection of the South line of State Trunk Highway Eleven (11) and the West line of Mill Street extended as Due 2. rd at present located in the Village of Browntown, thence South along the Street 148 feet, thence Tax Kev No. Northwesterly in a straight line and following the North line of the right for the setting in a setting in time and to have a stream of the fight of way of the Chicago, Milwaukee & St.Paul Railway to the South line of said State Trunk Highway Eleven (11), thence Easterly along the South line of said Highway to the place of beginning. Being part and parcel of the South half of the Southwest quarter $(S_2 SW_3)$ of Section Four (4), Town One (1) North, Range Six (6) East, Green County, Wisconsin. Commencing at a point in the center of Mill Street extended, said point being 318.99 feet North and 159.06 feet East of the Southwest corner of the Southeast quarter of the Southwest quarter (SE4 of SW4) of Section 4, Town One North, Range Six East, thence East 130 feet to creek bank, thence North along creek bank to South edge of bridge, said point being 160.5 feet North and 53 feet East of the point of beginning, thence West 53 feet to center of Mill Street extended, thence South along the said center line of Mill Street extension 160.5 feet to point of beginning, containing an area This is not homestead property. (continued on reverse) (is) (is not) Together with all and singular the hereditaments and appurtenances thereunto belonging; And ______Grantor warrants that the title is good, indefeasible in fee simple and free and clear of encumbrances except restrictions and easements of record and will warrant and defend the same. 18th Dated this . day of _____ July . 19 80 (SEAL) (SEAL) Leon Rockow (SEAL) (SEAL) ACKNOWLEDGMENT AUTHENTICATION 18th STATE OF WISCONSIN day of Signatures authenticated this 19 80 SS. County -44 Personally came before me, this day of • Ronald M. Spielman the above named TITLE: MEMBER STATE BAR OF WISCONSIN (If not, authorized by § 706.06, Wis. Stats.) This instrument was drafted by to me known to be the person ____ who executed the fore-Ronald M. Spielman, Atty. going instrument and acknowledged the same Monroe, WI 53566 (Signatures may be authenticated or acknowledged. Both Notary Public County, Wis. are not necessary.) 278372 My Commission is permanent. (If not, state expiration date:_ . 19_ *Names of persons signing in any capacity must be typed or printed be low their signatures.

Wat wanted and

WARRANTY DEED-STATE BAR OF WISCONSIN, FORM NO. 1-1977

ArcGIS Web Map

October 22, 2015

н я	• ,
, ,	8

PLSS Townships Parcels

PLSS Sections

Municipalities

F. 2 Certified Survey Map

Source: Esri, Digita/Gbbe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and

-

.

F.4. Signed Statement

WDNR BRRTS Case #: 03-23-001503

WDNR Site Name: Browntown Oil

Geographic Information System (GIS) Registry of Closed Remediation Sites

In compliance with the revisions to the NR 700 rule series requiring certain closed sites to be listed on the Geographic Information System (GIS) Registry of Closed Remediation Sites (Registry) effective Nov., 2001, I have provided the following information.

To the best of my knowledge the legal descriptions provided and attached to this statement are complete and accurate.

Responsible Party:

John Sigatus (print name/title) John Scipatus (signature) (date)

Attachment G/Notification to Owners of Impacted Properties

G.1 Deeds - Other Impacted Properties - No other properties were impacted.

G.2 Certified Survey Map - No other properties were impacted.

G.3 Verification of Zoning – No other properties were impacted.

G.4 Signed Statement – No other properties were impacted.