General Engineering Company P.O. Box 340 916 Silver Lake Drive Portage, WI 53901

608-742-2169 (Office) 608-742-2592 (Fax) gec@generalengineering.net www.generalengineering.net

Engineers • Consultants • Inspectors

October 14, 2022

Ms. Roxanne Chronert Wisconsin Department of Natural Resources 2984 Shawano Avenue Green Bay, WI 54313

SUBJECT: STATUS UPDATE REPORT Montello Lodge 22 South Main Street Montello, Marquette County, Wisconsin GEC Project Number: 2-0120-74 WDNR BRRTS #02-39-283764

Dear Ms. Chronert,

Attached is the Status Update Report for the site investigation at the Montello Lodge, located at 22 South Main Street in the City of Montello, Wisconsin.

Please feel free to contact General Engineering Company with any questions at 608-742-2169.

Sincerely yours,

GENERAL ENGINEERING COMPANY

Brian Youngwirth, P.G. Senior Geologist

n M. Gradley

Lynn M. Bradley Environmental Project Manager

c: James Giese, 4845 Love Creek Avenue, Plover, Wisconsin 54467

Portage

Black River Falls

La Crosse

General Engineering Company P.O. Box 340 916 Silver Lake Drive Portage, WI 53901

Engineers • Consultants • Inspectors

TABLE OF CONTENTS MONTELLO LODGE	Dama
INTRODUCTION • General • Purpose • Scope	Page 1
SITE FEATURES AND BACKGROUND	1-3
Site FeaturesBackground	
FIELD ACTIVITIES AND PROCEDURES	3-4
 Scope Summary Field Exploration Field Volatile Vapor Emission Screening Soil Sample Collection Procedure 	
DESCRIPTION OF SUBSURFACE CONDITIONS	4-5
GeneralSoil Conditions	
GROUNDWATER MONITORING ACTIVITIES	5-6
 Monitoring Well Development Groundwater Sampling Groundwater Well Elevations VAPOR TESTING ACTIVITIES	6
	6 7
 NR 720 Soil Standards Laboratory Soil Results Groundwater Quality Standards Laboratory Groundwater Results Vapor Standards Vapor Air Quality Results 	0-1
CONCLUSIONS	7-8
GENERAL COMMENTS	8

General Engineering Company P.O. Box 340 916 Silver Lake Drive Portage, WI 53901

Engineers • Consultants • Inspectors

APPENDICES

APPENDIX A

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Soil Probe, Boring, and Monitoring Well Locations Map
- Figure 4 Groundwater Elevation Contour and Flow Direction Map September 28, 2022

APPENDIX B

- Table 1 Soil Analytical Results
- Table 2 Groundwater Analytical Results
- Table 3 Water Level Elevations
- Table 4 Vapor Analytical Table

APPENDIX C

• Soil Boring Logs, Monitoring Well Construction, and Development Forms

APPENDIX D

- Soil and Groundwater Analytical Report
- Chain-of-Custody Documentation

 Portage
 •
 Black River Falls
 •
 La Crosse

Status Update Report Montello Lodge Montello, Wisconsin Page 1

INTRODUCTION

<u>General</u>

This report presents the findings and conclusions of the subsurface investigation activities performed at the Montello Lodge located at 22 South Main Street in the City of Montello, Marquette County, Wisconsin (Site), performed since completion of the General Engineering Company's (GEC) Site Investigation Work Plan, dated January 20, 2020. The activities were performed at the request and authorization of Mr. James Giese, a member of the former Masonic Temple located at the Site, who is the responsible party (RP) for the release. It should be noted that substantial delays have occurred due to off-site property access issues, subsequent to preparation and submittal of the Site Investigation Work Plan. As of the date of this report, GEC has not been granted access to perform soil, groundwater, or vapor testing at the properties located 14, 16, 18, and 20 Main Street (northern adjoining properties) or Parcel ID 251002110000 (southern adjoining property). Therefore, the testing performed for this work scope was done at one accessible location on the Site, near the source area of the release (east of the Site building); and the others were performed within the Wisconsin Department of Transportation (WDOT) right-of-way (ROW) of South Main Street, and a WDOT owned parcel located northwest of the Site.

Purpose

The purpose of the investigation activities was to further evaluate the degree and extent of chlorinated volatile organic compounds (CVOCs) resulting from a former laundromat and dry-cleaning business on the Site. The purpose of the investigation activities was also to evaluate whether vapor migration is a potential concern.

<u>Scope</u>

The scope of the site investigation activities included the advancement of 4 soil borings, which were converted to groundwater monitoring wells, surveying, well development, collection of soil samples from the borings and groundwater samples from the monitoring wells, collection of ambient air samples from the Site building, laboratory analysis of the soil, groundwater, and vapor samples, and analysis of the data obtained, and preparation of this report.

The investigation activities were structured specifically to address the presence of chlorinated compounds associated with the known release, and thus, should not be considered an all-inclusive search for hazardous substances across the Site.

SITE FEATURES AND BACKGROUND

Site Features

The Site is a rectangular shaped parcel (Parcel ID 251-00209-0000), estimated to be approximately 0.1-acres in size. The Site is located in a predominantly commercial area near the center of the City of Montello, approximately 200 feet south of the intersection of Main (State Highway 22) and West Montello Streets (State Highway 22/23). A Site Location Map is shown in Figure 1, Appendix A.

Portage	•	Black River Falls	•	La Crosse
Consulting Engineer	ring • Structural Engin	eering • Building Design • Environmental Serv	ices • Building Insp	action GIS Services

The Site is currently developed with a commercial building, with a stone foundation and wooden floor. A door in the floor of the building revealed a crawl space beneath the structure, and a dirt floor. The building was reportedly constructed in 1908 by the Freemasonry organization as a meeting place to conduct business. The lodge was referred to as the Montello Lodge #141. It is understood that during the most recent operation of the lodge, the building remained vacant almost all year, with the exception of meetings held once a month approximately 6 to 8 times per year. It is also understood that in the past the upper level was used for meetings while the main level was leased to different businesses, one of which was a dry-cleaning business that operated from approximately 1959 to 1989. It was learned by GEC in September of 2022, the Site had been sold to JJ Drennan Construction, LLC, which currently utilizes the Site as a consignment shop. A Site Plan is shown on Figure 2, Appendix A.

The Site is relatively flat and is almost entirely covered by impermeable materials (building and asphalt/concrete) except for a small gravel and grass area behind the building (east side). The Site is bound to the north by residential and commercial properties, followed by a WDOT parcel and East Montello Street, to the south by a commercial parking lot, followed by residential properties and South Main Street; to the east by commercial and residential properties; and to the west by South Main Street, across which are commercial properties followed by the Fox River.

GEC identified potential receptors on or surrounding the Site. According to a review of the online Wisconsin Department of Natural Resources (WDNR) Well Constructor Reports database, there are no known potable wells within 1,200 feet of the Site.

No utilities were observed extending through the known area of contamination with the exception of a sanitary line near the east end of the Site building in the area of the known soil and groundwater contamination. Utilities identified in other areas of the Site included City water and sewer, natural gas, and communication lines. The utility lines will be further evaluated during the additional site investigation activities, pending access to off-site properties.

There does not appear to be the potential for impacts to threatened or endangered species; sensitive species, habitat, or ecosystems; wetlands; outstanding or exceptional resource waters; or sites of historical or archaeological significance. No immediate or interim actions have been taken, and none appear warranted at this time.

Background

The Wisconsin Department of Natural Resources (WDNR) first learned of contamination on the Site during investigative activities associated with a leaking underground storage tank (LUST) case on the adjacent property, southwest of S. Main Street. The LUST case was located at 32 Main Street and was referred to as Freitag & Sons Site #2 (BRRTS #03-39-002478). The case was closed by the WDNR in October 2002; however, the identification of CVOCs during groundwater monitoring performed for that case indicated further investigation was needed to identify the source of the non-petroleum contamination. Subsequent review of the history of the Site by the WDNR reportedly identified a former laundromat and dry-cleaning business that operated at the Site from 1959 to 1989.

As a result of the identified chlorinated contamination on the adjacent property, in September 2001, the WDNR utilized state funds to investigate the area east of the Montello Lodge building in an attempt to identify the source of the CVOCs. Environmental Compliance Consultants, Inc. (ECCI) installed four hydraulic probes (GP-1 to GP-4) near the east side of the Site building, and one hand auger boring (HA-1) in the soils of the crawl space below the location of the former dry-cleaning machine.

Portage	•	Black River Falls	•	La Crosse
Consulting Enginee	ering • Structural Engir	neering • Building Design • Environmental Ser	vices • Building Insp	ection • GIS Services
Grant Procureme	ent & Administration • I	Land Surveying • Zoning Administration • Mec	hanical Electrical &	Plumbing Services

Temporary wells were also installed at each location. The approximate locations of the sampling points from ECCI's historic map are shown on Figure 3 included in Appendix A.

The analytical results reported contaminant concentrations of tetrachloroethene (PCE) in all of the soil samples collected from the soil probes at depths of 2 to 4 feet below the ground surface (bgs), and 0 to 1.5 feet and 2 to 4 feet bgs in the hand auger boring, at concentrations ranging from 37 micrograms per kilogram (μ g/kg) to 9,600 μ g/kg. The results also identified trichloroethene (TCE) at GP-4 and HA-1 (2-4 feet) at concentrations of 120 μ g/kg to 370 μ g/kg, respectively. A table of the soil analytical results is included in Appendix B.

The groundwater samples collected form several of the sampling points also identified high concentrations of cis 1,2 dichloroethene (cis 1,2 DCE), PCE, and TCE. Specifically, PCE was identified at each location at concentrations ranging from 3.7 micrograms per liter (μ g/L) to 2,800 μ g/L. TCE was detected at GP-1, GP-4, and HA-1 at concentrations ranging from 2.4 μ g/L to 3,200 μ g/L. Cis 1,2 DCE was detected at GP-1 and HA-1 at concentrations of 85 μ g/L and 1,400 μ g/L, respectively. A table of the groundwater analytical results is included in Appendix B.

As a result of the testing, a responsible party (RP) letter was issued to Montello Lodge on November 26, 2001. The site investigation activities have remained idle since that time. The WDNR issued a Notice of Noncompliance (NON) on March 12, 2019. GEC was subsequently retained to perform the site investigation activities. A Site Investigation Work Plan was submitted to the WDNR on January 20, 2020. As indicated previously, the scope of work within the WDNR approved Work Plan was delayed due to access being denied at several of the proposed test locations on off-site properties.

The work discussed herein was subsequently performed.

FIELD ACTIVITIES AND PROCEDURES

Scope Summary

The initial planned scope of service included the performance of 7 soil borings to depths of 15 feet bgs with up to 7 converted to monitoring wells. Due to substantial delays with property access agreements, the work scope was revised to include vapor sampling within the Site building and the performance of only 4 soil borings/monitoring wells. The performed scope of work also included surveying, well development; collection of soil samples from the borings and 1 round of groundwater samples from the monitoring wells; laboratory analysis of soil, groundwater, and vapor samples, an analysis of the data obtained and preparation of this report. The soil, groundwater, and vapor samples were submitted for laboratory analysis for the presence of VOCs.

Field Exploration

Four soil borings (MW-1 to MW-4) were advanced on September 20, 2022, including one on the Site (MW-4), two within the western portion of the South Main Street ROW (MW-2 and MW-3), and one within a WDOT owned parcel located southeast of the intersection of East Montello Street and South Main Street. Soil borings MW-1 to MW-4 were converted to monitoring wells MW-1 to MW-4, respectively. The soil borings were performed by On-Site Environmental, Inc. of Sun Prairie, Wisconsin. The borings were performed with a track-mounted Geoprobe® unit, and soil samples were collected continuously by driving a 5-foot plastic sleeve within a metal sampler into undisturbed soils.

Status Update Report Montello Lodge

Montello, Wisconsin Page 4

The borings were converted to monitoring wells by advancing 8-inch diameter augers to depths of approximately 15 to 16 feet bgs. The soil boring and monitoring well locations are shown of Figure 3, Appendix A.

The monitoring well construction consisted of a 10-foot section of 2-inch diameter, machine slotted PVC screen placed at or near the bottom of the borehole. This was surrounded by a properly graded granular filter medium in the annular space, with un-slotted riser pipe extending from the screened section to a few inches below the ground surface. A bentonite seal of approximately 2 feet, was placed above the granular filter medium to approximately 1-foot bgs. The remaining annular space was filled to the ground surface with bentonite chips. The wells are protected by flush-mounted steel covers set in concrete. Well construction forms are included in Appendix C.

Field Volatile Vapor Emission Screening

Soil samples collected from the soil borings were screened for volatile organic vapor emissions with a Honeywell ppbRAE 3000+ Photoionization Detector (PID). This PID measure volatile vapor concentrations is parts per billion (ppb). The soil samples were placed in a plastic bag and permitted to equilibrate to at least 70 degrees Fahrenheit for a period of at least 15 minutes, based upon the ambient outdoor temperature. The screening was then performed by inserting the probe in the bag and measuring the headspace.

Soil Sample Collection and Preparation

The soil samples for chemical analyses were selected from the borings, based upon visual and olfactory observations, the PID screenings, the direct contact risk, the depth to groundwater, and the previous testing results to document the encountered soil conditions. The samples were submitted for laboratory analysis for the presence of VOCs.

The samples submitted for laboratory analysis for the presence of VOCs were extracted from the soils utilizing a sterile syringe and approximately 10 to 15 grams of soil were transferred into a laboratory prepared jar containing approximately 10 milliliters of methanol. The samples were immediately placed on ice, and chain-of-custody procedures were initiated. The samples were then submitted to Synergy Environmental Laboratory in Appleton, Wisconsin, for laboratory analysis.

DESCRIPTION OF SUBSURFACE CONDITIONS

<u>General</u>

A description of the subsurface conditions encountered at the soil boring locations is shown on the soil boring logs in Appendix C. The lines of demarcation shown on the logs represent an approximate boundary between the various soil classifications, but the transition is likely to be more gradual. It must be recognized that the soil descriptions are considered representative for the specific location, and that variations may occur between and beyond the sampling intervals and probing locations. A summary of the major soil profile components is described in the following paragraphs.

Soil Conditions

The surface at the test locations consisted of asphalt at MW-1, concrete at MW-2 and MW-3 and grass at MW-4. The asphalt and concrete were underlain by up to 1-foot of crushed gravel base course fill.

Portage	•	Black River Falls	•	La Crosse
Consulting Engineer	ing • Structural Engine	eering • Building Design • Environmental Serv	ices • Building Insp	ection • GIS Services
Grant Procuremer	nt & Administration • L	and Surveying • Zoning Administration • Mech	anical, Electrical, &	Plumbing Services

Status Update Report Montello Lodge Montello, Wisconsin Page 5

At MW-1 and MW-3, the near surface materials were underlain by fill or possible fill to depths of 8 feet bgs. The fill appeared variable consisting of light brown, brown and dark brown sand, sandy silt, and silty sand. The fill or possible at MW-1, MW-2, and MW-3 was underlain by possible buried topsoil consisting of dark brown to black sandy or clayey silt to depths of 2.5 feet (MW-2) to 8.5 feet (MW-1 and MW-3) bgs. Natural soils at the site were highly variable and consisted of primarily grayish brown sandy silt and light brown silty sand, silty clay, and clayey silt at MW-1; light brown silty sand, dark brown silt, and grayish brown sand at MW-2; brown and grayish brown silt and grayish brown silty sand at MW-3; and brown, dark brown, tan, and grayish brown sandy silt or sand with silt, brown and dark brown clayey silt, gray silty clay, and light brown silty sand at MW-4 to the termination depths of the borings at 15 feet to 16 feet bgs.

GROUNDWATER MONITORING ACTIVITIES

Monitoring Well Development

Monitoring wells MW-1 to MW-4 were developed on September 22, 2022. The monitoring wells were developed by alternately surging with a PVC bailer and purging with a pump. During the well development, groundwater was removed from the monitoring wells until relatively sediment free water was produced. Monitoring wells MW-1, MW-3, and MW-4 were purged dry several times but recharged relatively quickly. Monitoring well MW-2 could not be dried during purging. Monitoring well development forms are included in Appendix C.

Groundwater Sampling

Groundwater samples were collected from monitoring wells MW-1 to MW-4 on September 29, 2022. Groundwater samples were collected with a plastic bailer after purging four well volumes of groundwater from each monitoring well. The groundwater samples were submitted for laboratory analysis for the presence of VOCs.

Samples submitted for VOC analysis were transferred into a laboratory prepared 40-milliliter vials containing hydrochloric acid preservative. The sample containers were immediately placed on ice and standard chain-of-custody procedures were initiated. The groundwater samples were submitted to Synergy Environmental Laboratory in Appleton, Wisconsin.

Groundwater Well Elevations

The top of casing (TOC) at the monitoring wells were referenced to the mean sea level (MSL) datum by GEC's land surveying department.

Groundwater level measurements were performed at each of the monitoring wells during the well development performed on September 22, 2022, and prior to the groundwater sampling round performed on September 29, 2022. Groundwater levels have ranged from 5.30 feet below TOC at MW-1 (EL. 772.90) on September 22, 2022, to 8.05 feet below TOC at MW-3 (765.84) on September 22, 2022. Groundwater elevation data is summarized on Table 3 in Appendix B. A Groundwater Elevation Contour and Flow Direction Map for September 29, 2022, is included in Figure 4, Appendix A. Based on the initial groundwater sampling round, groundwater flow appears to be toward the southwest. However, additional groundwater sampling points and well gauging will be necessary to further evaluate the groundwater flow direction.

Portage	•	Black River Falls	•	La Crosse

Consulting Engineering • Structural Engineering • Building Design • Environmental Services • Building Inspection • GIS Services Grant Procurement & Administration • Land Surveying • Zoning Administration • Mechanical, Electrical, & Plumbing Services

VAPOR TESTING ACTIVIES

Vapor Testing

The ambient air samples were collected by placing a SUMMA[®] Canister in the crawl space of the Site building and on the first floor of the Site building and collecting vapor samples over a 24-hour period.

FIELD AND ANALYTICAL TESTING RESULTS

NR 720 Soil Standards

Chapter 720 of the NR700 series code established residual contaminant levels (RCLs) for soils intended to be protective of the direct contact (upper 4 feet of soil defined by human exposure to substances in soil through inhalation of particulate matter, dermal absorption, incidental ingestion, or inhalation of vapors from the soil) and soil-to-groundwater pathways. The direct contact levels are dependent on the planned use and zoning of the affected property. Although these individual RCLs have been established for a wide range of compounds, the WDNR requires that the cumulative effects of detected compounds be evaluated through use of a WDNR interactive table where individual concentrations can be entered to evaluate whether the target cancer risk has been exceeded. The individual RCLs provided by the WDNR were developed using standard default exposure assumptions. As an alternative, site specific calculations can be performed utilizing the U.S. EPA Regional Screening Level Web Calculator.

Laboratory Soil Results

Two soil samples were collected from each soil boring for laboratory analysis. The soil samples collected from soil boring MW-4 at depths of 1-foot and 2 feet to 3.5 feet bgs reported PCE at concentrations of 3,000 μ g/kg and 314 μ g/kg, respectively, which exceed its Wisconsin Administrative Code (WAC) NR 720 soil to groundwater RCL of 4.5 μ g/kg. The soils samples collected from MW-1 to MW-3 did not report detectable concentrations of VOCs.

The results of the chemical analyses of the soil samples are summarized in Table 1 included in Appendix B. Laboratory analytical results and chain of custody forms are included in Appendix D.

Groundwater Quality Standards

The enforcement standards (ES) and preventive action limits (PALs) are groundwater quality standards, which have been established in NR140 of the WAC. These standards are referenced when evaluating the need for further study or remedial activities. The PAL is the more stringent guideline, in terms of being lesser in magnitude than the ES but will typically require less response action when exceeded. The required action is determined by DNR regulations, based on various site-specific considerations.

Laboratory Groundwater Results

The groundwater samples collected from monitoring well MW-4 reported PCE (13 μ g/L) and vinyl chloride (63 μ g/L), which exceed their respective WAC NR 140 ES's of 5 μ g/L and 0.2 μ g/L. The

Portage	•	Black River Falls	•	La Crosse
Consulting Enginee	ering • Structural Engine	eering • Building Design • Environmental Serv	/ices • Building Insp	ection • GIS Services
Grant Procureme	nt & Administration • La	and Surveying • Zoning Administration • Mecl	nanical, Electrical, &	Plumbing Services

Status Update Report Montello Lodge Montello, Wisconsin Page 7

groundwater sample collected from MW-4 also reported concentrations of cis 1,2 DCE and TCE exceeding their respective WAC NR 140 PALs. The groundwater sample collected from MW-2 reported cis 1,2 DCE at a concentration below its respective WAC NR 140 PAL. The groundwater samples collected from MW-1 and MW-3 did not report detectable concentrations of VOCs.

The results of the chemical analyses of the groundwater samples are summarized in Table 2 in Appendix B. Laboratory analytical results and chain-of-custody forms are included in Appendix C.

Vapor Standards

The vapor standards utilized for this vapor investigation included the Small Commercial Indoor Air Vapor Action Levels (VALs).

Vapor Air Quality Results

The vapor air quality results from the ambient air samples collected from the first floor (VP-1) and the crawl space (VP-2) reported VOCs at concentrations below their respective small commercial VALs.

The results of the chemical analyses of the air samples are summarized in Table 4 in Appendix B.

CONCLUSIONS

No VOCs were detected in the soil samples collected by GEC at MW-1 to MW-3, however PCE (3,000 μ g/kg and 314 μ g/kg) was detected above the WAC NR 720 soil to groundwater RCL in the soil samples collected for laboratory analysis at MW-4 (source area) at depths of 1-foot and 2 to 3.5 feet bgs). Based on soil analytical results from soil samples collected during 2001 by ECCI, the extent of soil contamination has not been defined beyond GP-1 to GP-4 and HA-1.

With regard to the groundwater testing, VOCs were either not detected or were detected at concentrations below their respective standards at off-site monitoring wells in MW-1 to MW-3. At MW-4, within the source area, PCE (13 μ g/L) and vinyl chloride (63 μ g/L) were detected at concentrations exceeding their respective WAC NR 140 ES's. It should be noted that contaminant concentrations appear to be significantly degraded since the 2001 groundwater sampling round performed by ECCI. However, the extent of groundwater contamination has not been adequately defined beyond GP-1 to GP-4 and HA-1.

With regard to vapor testing, VOC vapors were not detected at concentrations exceeding their respective small commercial indoor air VALs at the time of the ambient vapor sampling performed by GEC on January 5, 2021. However, the building was not being utilized at that time. GEC was not made aware the Site property had been sold and is currently being utilized as a consignment shop.

Since GEC has been denied access to the off-site properties, needed to further define the extent of soil, groundwater, and potential vapor contamination, it is recommended that the WDNR begin to assist with acquiring access to these properties. Pending off-site access, GEC will prepare an additional Site Investigation Work Plan with proposed soil boring and monitoring well locations. It is also recommended that ambient vapor testing be performed within the Site building, soon after the heating, ventilation, and air conditioning (HVAC) system is activated for the year.

Portage	•	Black River Falls	•	La Crosse

GENERAL COMMENTS

The investigative activities have been conducted in a manner consistent with that level of care ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions. The findings, recommendations and opinions contained herein have been promulgated in accordance with generally accepted practice in similar fields. No other representations expressed or implied, and no warranty or guarantee is included or intended in this report.

The conclusions presented in this report were formulated from the data obtained during the course of exploratory work on the Site, which may result in a redirection of conclusions and interpretations where new information is obtained. The regulatory climate and interpretation may also have an effect on the outcome of the environmental investigation for this site. The information contained in this report may have an effect on the value of the property and is considered confidential. Copies of this report will be submitted to others only with authorization from the client.

APPENDIX A FIGURES

APPENDIX B TABLES

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS MONTELLO LODGE - 22 SOUTH MAIN STREET, MONTELLO, WISCONSIN GEC PROJECT #2-0919-429

Sample No.		WDNR Non-	WDNR Soil to	GP-1-2	GP-2-2	GP-3-2	GP-4-2	HA-1-1	HA-1-2
Sampling Date	NR 720 CANCER RCI	Industrial RCL	Groundwater	9/28/2001	9/28/2001	9/28/2001	9/28/2001	9/28/2001	9/28/2001
Sample Depth (feet)	OANOENNOE	(Direct Contact)	RCL	2-4 (U)	2-4 (U)	2-4 (U)	2-4 (U)	0-1.5 (U)	2-4 (U)
VOLATILE ORGANIC COMPOUNDS (VOCs) (µg/kg)									
cis 1,2 Dichloroethene	NE	156,000	41.2	<25	<25	<25	<25	<25	<25
trans 1,2 Dichloroethane	NE	1,560,000	62.6	<25	<25	<25	<25	<25	<25
Tetrachloroethene	33,000	33,000	4.5	1,100	1,600	600	9,600	37	180
Trichloroethene	1,300	1,300	3.6	<25	<25	<25	120	<25	370
Vinyl Chloride	67	67	0.1	<25	<25	<25	<25	<25	<25

Probes installed by Environmental Compliance Consultants, Inc. in September of 2001

Bold indicates analytical results exceed WAC NR 720 RCL for direct contact or soil to groundwater pathway

RCL = Residual Contaminant Level

DCL = Direct-Contact Levels

NE = NR 720 RCL not established

U=Unsaturated Soil Sample

S= Saturated Soil Sample

TABLE 1SUMMARY OF SOIL ANALYTICAL RESULTSMONTELLO LODGE - 22 SOUTH MAIN STREET, MONTELLO, WISCONSINGEC PROJECT #2-0919-429

Sample No.		WDNR Non-	WDNR Soil to	MV	V-1	MV	V-2	MV	V-3	MV	N-4
Sampling Date	NR 720	Industrial RCL	ndustrial RCI Groundwater	9/20/	2022	9/20/	2022	9/20/2022		9/20/2022	
Sample Depth (feet)	CANCER RCL	(Direct Contact)	RCL	1-3 (U)	6-8 (S)	2.5-4 (U)	5-7 (U)	1-3 (U)	5-7 (U)	1 (U)	2-3.5 (U)
VOLATILE ORGANIC (COMPOUNDS	(VOCs) (µg/kg)									
Benzene	1,600	1,600	5.1	<25	<25	<25	<25	<25	<25	<25	<25
1,1 Dichloroethane	5,060	5,060	483.4	<33	<33	<33	<33	<33	<33	<33	<33
cis 1,2 Dichloroethene	NE	156,000	41.2	<27	<27	<27	<27	<27	<27	<27	<27
trans 1,2 Dichloroethane	NE	1,560,000	62.6	<30	<30	<30	<30	<30	<30	<30	<30
Ethylbenzene	8,020	8,020	1,570	<23	<23	<23	<23	<23	<23	<23	<23
Methyl tert-butyl ether	63,800	63,800	27	<36	<36	<36	<36	<36	<36	<36	<36
Tetrachloroethene	33,000	33,000	4.5	<39	<39	<39	<39	<39	<39	3,000	314
Toluene	5,240,000	818,000	1,107.2	<31	<31	<31	<31	<31	<31	<31	<31
Trichloroethene	1,300	1,300	3.6	<39	<39	<39	<39	<39	<39	<39	<39
1,2,4-Trimethylbenzene	NE	219,000	1 270 7	<35	<35	<35	<35	<35	<35	<35	<35
1,3,5-Trimethylbenzene	NE	182,000	1,370.7	<31	<31	<31	<31	<31	<31	<31	<31
Vinyl Chloride	67	67	0.1	<36	<36	<36	<36	<36	<36	<36	<36
Xylenes, -m, -p Xylenes, -o	NE	260,000	3,960	<92	<92	<92	<92	<92	<92	<92	<92

J = Analyte detected above laboratory limit of detection but below limit of quantitation.

Bold indicates analytical results exceed WAC for direct contact or soil to groundwater pathway

RCL = Residual Contaminant Level

DCL = Direct-Contact Levels

S=Saturated U=Unsaturated

NE = NR 720 RCL not established

TABLE 2

GROUNDWATER ANALYTICAL RESULTS MONTELLO LODGE - 22 SOUTH MAIN STREET, MONTELLO, WISCONSIN GEC PROJECT #2-0120-74

Monitoring Well	NR	140	GP-1	GP-2	GP-3	GP-4	HA-1
Sampling Date	ES	PAL	9/28/2001	9/28/2001	9/28/2001	9/28/2001	9/28/2001
VOLATILE ORGANIC COMP	OUNDS (V	OC) (µg/L)					
cis 1,2 Dichloroethene	70	7	85	<0.73	<0.73	1.3	1,400
trans 1,2 Dichloroethene	100	20	<16	<0.79	<0.79	<0.79	22
Tetrachloroethene	5	0.5	2,800	32	3.7	130	1,100
Trichloroethene	5	0.5	45	<0.89	<0.89	2.4	2,700
Vinyl Chloride	0.2	0.02	<3.6	<0.18	<0.18	<0.18	<3.6

Groundwater Samples GP-1 to GP-4 and HA-1 were performed by Envrionmental Compliance Consultants, Inc.

J = Analyte detected above laboratory limit of detection but below limit of quantitation.

Italics indicated analytical results above NR 140 PAL

Bold indicates analytical results above NR 140 ES

TABLE 2GROUNDWATER ANALYTICAL RESULTSMONTELLO LODGE - 22 SOUTH MAIN STREET, MONTELLO, WISCONSINGEC PROJECT #2-0120-74

Monitoring Well	NR	140	MW-1	MW-2	MW-3	MW-4
Sampling Date	ES	PAL	9/29/2022	9/29/2022	9/29/2022	9/29/2022
VOLATILE ORGANIC COMP	OUNDS (V	OC) (µg/L)				
Benzene	5	0.5	<0.3	<0.3	<0.3	<0.3
1,1 Dichloroethane	850	85	<0.43	<0.43	<0.43	<0.43
cis 1,2 Dichloroethene	70	7	<0.32	2.72	<0.32	16.9
trans 1,2 Dichloroethene	100	20	<0.5	<0.5	<0.5	2.55
Ethylbenzene	700	140	<0.33	<0.33	<0.33	<0.33
Methyl tert-butyl ether	60	12	<0.47	<0.47	<0.47	<0.47
Tetrachloroethene	5	0.5	<0.47	<0.47	<0.47	13
Toluene	800	160	<0.33	<0.33	<0.33	<0.33
Trichloroethene	5	0.5	<0.38	<0.38	<0.38	4
1,2,4-Trimethylbenzene	480	96	<0.35	<0.35	<0.35	<0.35
1,3,5-Trimethylbenzene	400	90	<0.41	<0.41	<0.41	<0.41
Vinyl Chloride	0.2	0.02	<0.15	<0.15	<0.15	63
Xylenes, o	2000	400	<0.64	<0.64	<0.64	<0.64
Xylenes, -m, -p	2000	400	<0.37	<0.37	<0.37	< 0.37

Italics indicated analytical results above NR 140 preventive action limit (PAL)

Bold indicates analytical results above NR 140 enforcement standard (ES)

TABLE 3WATER LEVEL ELEVATIONSMONTELLO LODGE - 22 SOUTH MAIN STREET, MONTELLO, WISCONSINGEC PROJECT NO. 2-0120-74

Monitoring Well	Top of Well Casing	Screened Interval Below Ground	Date Measured	Depth To Water Below Top Of Casing	Groundwater Elevation
Number	Elevation	Surface (Ft.)		(Ft.)	(Ft.)
			9/22/2022	5.30	772.90
		772.58	9/29/2022	5.44	772.76
MW-1	778.2				
		762.58			
			9/22/2022	7.21	765.36
		767.91	9/29/2022	7.23	765.34
MW-2	772.57				
		757.91			
			9/22/2022	8.05	765.84
		768.92	9/29/2022	8.01	765.88
MW-3	773.89				
		758.92			
			9/22/2022	7.85	768.16
		772.98	9/29/2022	7.95	768.06
MW-4	776.01				
		762.98			

Elevations are referenced to mean sea level (MSL) by General Engineering Surveying Department.

ft = feet

TABLE 4 SUMMARY OF AMBIENT VAPOR ANALYTICAL RESULTS MONTELLO LODGE AND MASONIC TEMPLE, 22 SOUTH MAIN STREET, MONTELLO, WISCONSIN GEC PROJECT NO. 2-0120-74

TABLE 1 REGIONAL SCREENING LEVEL SUMMARY													
Sample No.	Residential	Residential Sub-Slab	Small Commercial	Small Commercial	VP-1 AMBIENT AIR FIRST FLOOR (24 HOUR)	VP-2 AMBIENT AIR- CRAWL SPACE (24 HOUR)							
	Indoor Air VAL	Vapor VAL	Indoor Air VAL	Sub-Slab Vapor VRSL	01/05/21	01/05/21							
Sampling Date				•									
	ug/m3	ug/m3	ug/m3	ug/m3									
VOLATILE ORGANIC COMPO	Cold file Organic Compounds (VOC) (ug/m3) Benzene 3.6 120 16 530 1.15 0.86												
Benzene	3.6	120	16	530	1.15	0.86							
Carbon Tetrachloride	4.7	160	20	670	0.69J	0.69J							
Chloroform	1.2	40	5.3	180	<0.3	<0.3							
Chloromethane	94	3,100	390	13,000	<0.831	<0.831							
Dichlorodifluoromethane	100	3,300	440	15,000	3.07	2.92							
1,1 Dichloroethane	18	600	77	2,600	<0.187	<0.187							
1,2 Dichloroethane	1.1	37	5	160	<0.24	<0.24							
1,1-Dichloroethene	210	7,000	880	29,000	<0.21	<0.21							
cis-1,2-Dichloroethene	NE	NE	NE	NE	<0.197	<0.197							
trans-1,2-Dichloroethene	NE	NE	NE	NE	<0.231	<0.231							
Ethylbenzene	11	370	49	1,600	<0.203	<0.203							
Methylene Chloride	630	21,000	2,600	87,000	<15	<15							
Methyl Tert Butyl Ether (MTBE)	110	3,700	470	16,000	<0.16	<0.16							
Naphthalene	0.83	28	4	120	<0.675	<0.675							
Tetrachloroethylene	42	1,400	180	6,000	0.95	2.1							
Toluene	5,200	170,000	22,000	730,000	0.68	0.56J							
1,1,1-Trichloroethane	5,200	170,000	22,000	730,000	<0.249	<0.249							
Trichloroethylene	2.1	70	9	290	<0.237	<0.237							
Trichlorofluoromethane	NE	NE	NE	NE	1.85	1.69							
1,2,4-Trimethylbenzene	7.3	240	31	1,000	0.39J	<0.283							
1,3,5-Trimethylbenzene	NE	NE	NE	NE	<0.232	<0.232							
Vinyl chloride	1.7	57	28	930	<0.148	<0.148							
m&p-Xylene	100	3,300	440	15,000	0.56J	<0.377							
o-Xylene	100	3,300	440	15,000	0.303J	<0.218							

UG/M^{3 -} Micrograms per Cubic Meter of Air

Bold indicates analytical results exceed vapor risk screeening level or vapor action level B=Analyte detected within the laboratory blank NE=Not Established

APPENDIX C SOIL BORING LOGS, WELL CONSTRUCTION, AND DEVELOPMENT FORMS

State of Wisconsin
Department of Natural Resources

Facility / Project Name

Montello Lodge

Route To:
Solid Waste
Emergency Response
Wastewater

GEC Project No.

2-0120-74

	Haz. Waste
	Underground Tanks
ים	Water Resources
	Other

Wis. Unique No.

N/A

Boring Number

Page 1 of 1

Boring Drilled By (Firm name and name of crew chief) Drilling Method							e Diar	neter	MW_1								
On-Site	Environm	ental			Direct Push					VI V V = 1							
Tony Ka	apugi			1	HSA			r									
Date Dril	ling Started		Date Drilling Ended	€ N,	E	v	574 ·	167 0	<u>`</u>	DINK County Code							
ę	9/20/2022	N, R10	E	Ŷ	368.9	942 50	<u>ן</u> ו		3	39							
Local Gr	id Location (If applic	cable)			Civil T	own / (City / V	illage								
Feet S		Feet	Ŵ	Ma	rquette			Mont	ello	•	•						
				100		Commis	r	Creatio		Diam	N	1					
Dept	h Below e/Elev. (ft)		Ground Surface Eleva	HOC	SIFICATION	Sample		Graphic	Well	Count	N	Odor	PID (ppm)	Remarks			
	(-)	2" - AS	PHALT	uion.		NU.	0303	LOG		Count	Value	 					
		3/4" CF	RUSHED GRAVEL baseco	urse,	, moist (Fill)			╏╫╫╫╫	┍┑┍╸				0				
1 —	-1.0	Liaht br	rown SAND moist (Fill)			-1											
	1	Light bi												Lah			
2	-2.0 —												0.333	sample			
_	_					SS-1		++++++++				No		•			
3—	-3.0	Dark br	own, Sandy SILT , moist ((Fill)		-											
-	-																
4	-4.0						FILL						0.141				
5	-5.0	Light br	own and dark brown, Silty	SAN	D, moist (Possible	e	1							I			
	_	Fill)															
6	-6.0							++++++++					0.000				
_	7.0								ΙH				0.022	Lab			
	-7.0					ee 2						No		sample			
_	8.0					33-2]				NO					
-	-0.0	Dark br	own, Sandy SILT , moist	(Poss	sible Buried Topsoil)		OL	1333	Έ				0.498				
9	-9.0	Grayish	h brown, Sandy SILT , wet						1 8								
-	-		·					† †	IH				0.516				
10	-10.0							I I I I I						1			
-	-	Light br	rown, Silty SAND , trace gra	avel, v	wet		SM	::	ΙH								
11 —	-11.0							† †					0.299				
_	-							I I I I I									
12	-12.0	1:			T	_		• •									
	_	Lighty d	brown, Slity CLAY to Claye	y SIL	I, wet	SS-3		1777,	IН			No					
13	-13.0							[///,	$ \mathbf{H} $								
								///.					0.191				
14.0	-14.0 —							1774	H								
	1																
15 —	-15.0	Drilled v	without sampling to 16.0 fe	et			1							I			
	1		1														
16.0	-16.0				G: 16 0'				┝╺┻╌┛								
]					0. 10.0												
17.0	-17.0																
-																	
18.0	-18.0																
I hereby c	certify that the	inform	ation on this form is true ar	nd cor	rrect to the best of my know	wledge											
Signature	-			,	Brian Youngwirth F	-irm	G	enera	l Eng	ineer	ng C	ompa	any				
	Br	ian	Goungwirth					916 Si	Iver Lal	ke Dr.,	P.O. B	OX 340)				
			// U						Porta	ge WI 🗄	53901						

Lines of demarcation represent approximate boundaries between soil types. Variations may occur between sampling intervals and between boring locations, and the transition may be gradual.

Facility / Project Name

12

13

-12.0

-13.0

Route To:
Solid Waste
Emergency Response
Wastewater

GEC Project No.

Haz. Waste
Underground Tanks
Water Resources
Other

Wis. Unique No.

Boring Number

Page 1 of 1

0.652

No

Montello Lodge				2-0	120-74	N/A				-							
Boring Drilled By (Firm name and name of crew chief) On-Site Environmental Tony Kapugi					Drilling Method Direct Push H S A	Borehole Diameter 2" / 8"			MW-2								
Date Dr	illing Started		Date Drilling Ended	Bori	ng Location State Plan	ne N,	Е		WT	M91	County	v Code					
	9/20/2022		9/20/2022	SW	1/4-SW1/4, Sec. 9,T1	5N, R10	E	X Y	574, 368,	167.9 942.5	0 0		39				
Local G Feet S	irid Location	(If applio Feet	cable) W	Cou Mar	nty rquette			Civil T Mont	Civil Town / City / Village Montello								
Dep	oth Below		VISUAL SOIL CL	ASS	SIFICATION	Sample		Graphic	Well	Blow	N	Odor	PID	Romarks			
Surfa	ce/Elev. (ft)		Ground Surface Eleva		No.	USCS	Log	Wen	Count	Value	Ouor	(ppm)	Remarks				
1	-1.0	6" - CC 3/4" CI	ONCRETE RUSHED GRAVEL, moist	(Fill)	+		FILL						0				
2	-2.0	(Possib	ble Buried Topsoil)	molo		SS_1	OL					No	0.195				
3	-3.0 —	Light bi	rown, Silty SAND , moist									No		Lab sample -			
4	-4.0							╽┥┊┊┥					0.507				
5 _	-5.0 —								H								
6—	-6.0						SM		B				0.498	Lab sample			
7	-7.0	Light bi	rown, Silty SAND and dark	brow	n SILT , moist	SS-2			H			No					
8	-8.0							╽┥┥┥	H				0.562				
9	-9.0								B								
10 —	-10.0 —	Grayish	n brown SAND , trace silt, w	et					B								
11	-11.0	-						• •						니 그			

14.0 -14.0 Dark brown SILT, wet ML 0.498 15 -15.0 END OF BORING: 15.0' 16.0 -16.0 17.0 -17.0 18.0 -18.0 hereby certify that the information on this form is true and correct to the best of my knowledge **General Engineering Company** Signature Brian Youngwirth Firm Brian Goungwirth 916 Silver Lake Dr., P.O. BOX 340 Portage WI 53901

SS-3

Lines of demarcation represent approximate boundaries between soil types. Variations may occur between sampling intervals and between boring locations, and the transition may be gradual.

State of Wisconsin
Department of Natural Resources

Route To:
Solid Waste
Emergency Response

Haz. Waste
Underground Tanks
Water Resources
Other

			Wastewate	r	_ Water R ☐ Other	esource	es								Page 1 of 1	
Facility / Project Name Montello Lodge				GEC Project No. 2-0120-74			Wis. Unique No. N/A				g Numl	ber				
Boring Drilled By (Firm name and name of crew chief) On-Site Environmental Tony Kapugi					Drilling Method Direct Push H S A	Bor	rehole 2'	Dian	neter				MW-3			
Date Dr	illing Started		Date Drilling Ended	Bor	ing Location State P	lane	N,	Е		WT	M91		DNR	County	Code	
	9/20/2022		9/20/2022	sw	1/4-SW1/4, Sec. 9,	T15N,	R10E	Ξ	X Y	574, 368,9	167.90 942.50))	- 39			
Local G Feet S	rid Location	(If appli Feet	cable) W	Cou Ma	n ty rquette				Civil Town / City / Village Montello							
Dep Surfa	oth Below ce/Elev. (ft)		VISUAL SOIL CL Ground Surface Eleva	ASS tion:	SIFICATION	S	ample No.	uscs	Graphic Log	Well	Blow Count	N Value	Odor	PID (ppm)	Remarks	
1	-1.0	6" - CC 3/4" CF Brown,	DNCRETE RUSHED GRAVEL, moist Silty SAND, moist (Possil	ill)									0	-		
2	-2.0					s	SS-1	FILL					No		Lab _ sample _	
3 4	-3.0 — -4.0 —													1.2		
5 - 6 -	- 5.0	Brown	and dark brown, Silty SANI										Lab			
7	-7.0					5	SS-2	SM					No	0.365	-	
8	-8.0	Black,	Clayey SILT , moist(Possik			OL						0.391	-			
9	-9.0	Grayisł	h brown, Silty SAND , wet					SM	<u></u>	B				0.450		
10	-10.0 —	Brown	and grayish brown SILT , tra	ace s	and and clay, wet					İĦ						
11	-11.0 —															
12	-12.0 —	-				s	SS-3	ML		H			No	1.256		
13 —	-13.0	-								I H	1		1		_	

11	-11.0 —										-
12	-12.0		55-3	м					No	1 256	-
13—	-13.0		00-0						NO	1.200	
14.0	-14.0					H					-
15 -	-15.0 —	Drilled without sampling to 16.0 feet									
16.0	-16.0 —	END OF BORING: 16.0'									
17.0	-17.0										-
- 18.0	-18.0 —										
I hereby	certify that the	e information on this form is true and correct to the best of my kno	owledge								
Signature	E	Brian Youngwirth	Firm	G	e nera 916 Si	I Engi Iver Lak	e Dr., l	ing C P.O. B 53901	ompa OX 340	any	
Lines of (demarcation	represent approximate boundaries between soil types. Variation	is may o	ccur b	etween	sampli	na inter	rvals ar	nd betv	veen bo	oring locations

typ аy ling and the transition may be gradual.

17.0

18.0

-17.0

-18.0

Route To:
Solid Waste
Emergency Response
Wastewater

Haz. Waste Underground Tanks Water Resources

					Other									Page 1 of 1
Facility / Project Name Montello Lodge			GEC 2-01	Project No. 120-74	Wis. Unique No. N/A			Boring	g Numb	ber				
Boring On-Sit Tony k	Drilled By (Finder Street St	rm nam nental	e and name of crew chief)		Drilling Method Direct Push H S A	Borehole Diameter			MW-4					
Date Dr	illing Started		Date Drilling Ended	Bori	ng Location State Pla	ane N,	Е		WTI	M91		DNR 0	County (Code
	9/20/2022		9/20/2022	SW	1/4-SW1/4, Sec. 9,T ⁻	15N, R108	Ξ	X Y	574, ² 368,9	167.90 942.50))	-	3	9
Local G Feet S	rid Location	(If appli Feet	cable) : W	Cou Mar	nty quette			Civil T Mont	own / (ello	City / Vi	illage			
Dep Surfa	oth Below ce/Elev. (ft)		VISUAL SOIL C	LASS	BIFICATION	Sample	110.00	Graphic	Well	Blow	N	Odor	PID (ppm)	Remarks
-	-	Brown	and dark brown, Sandy SI	LT, mo	pist (Topsoil)	NO.	OL			Count	vaiue		0.774	_
1	-1.0	Orangi	sh brown, Silty SAND , mo	ist		_								Lab sample
2	-2.0					SS-1	SM					No	0.700	– – Lab –
3	-3.0							┇┇┇						sample –
	-4.0	Tan an	nd grayish brown, SAND w	ith silt,	trace gravel, wet		SP						1.2	-
。 -	-5.0	No rec	ovey											-
6 — -	-6.0 —								H					
7	-7.0 —					SS-2			Ħ					-
8	-8.0 — -													
9	-9.0													
10	-10.0	Brown	and dark brown to black, (Clayey	SILT, wet				H					-
11	-11.0						ML						20	
12	-12.0					SS-3						Slight	∠ŏ	
13	-13.0	6" -Gra	ay, Silty CLAY , wet				CL							
14.0	-14.0 —	Light b	rown, Silty SAND , wet				SM						9	
15 —	-15.0 —		END OF BO	RING	G: 15.0'			1 7 7 1						
16.0	-16.0 —													

Lines of demarcation represent approximate boundaries between soil types. Variations may occur between sampling intervals and between boring locations, and the transition may be gradual.

I hereby certify that the information on this for	m
Signature	

the information on this form is true and co	prrect to the best of my knowledg	e
	Brian Youngwirth Firm	
Brian Goungwirth		

916 Silver Lake Dr., P.O. BOX 340 Portage WI 53901

General Engineering Company

State of Wisconsin Department of Natural Resources	MONITOF Form 4400-113	RING WELL CONSTRUCTION BA Rev. 4-90
Route To: Env. Respor	Solid Waste 🔄 Haz. Waste 🔄 Wast se & Repair 🔄 Underground Tanks 🔄	ewater Other
Facility / Project Name	Local Grid Location of Well	Well Name
Montello Lodge	Feet S Feet W	MW-1
License /Permit /GEC Project No.	Grid Origin Location	Wis. Unique No.
GEC No. 2-0120-74		N/A
Type Of Well	Section Location of Waste / Source	Date Well Installed
Water Table Observation X 11	SW1/4 -SW1/4, Sec. 9, T15N, R10E	9/20/2022
Distance Well is From Waste/Source Boundary	Location to Well Relative to Waste/Source	Well Installed By: (Persons Name & Firm)
,	u Upgradient s Sidegradient	One-Site Environmental
Is Well a Point of Enforcement Std. Application		Tony Kapugi
Yes No		
A Protective nine, ten elevation	1. Cap and Lock?	X Yes No
	a. Inside diame	eter: 9 in
B. Well casing, top elevation	ft. MSLb. Length:	1 ft
C. Land surface elevation	ft. MSL	Steel X 4 Other
	d. Additional pr	rotection? X Yes No
D. Surface seal, bottom ft. MSL	-tt. If yes, describe	Expandable locking plug
	3. Surface seal:	Bentonite 30
12. USCS Classification of soil near screen:		Concrete 1
Bedrock	4. Material betweer	well casing and protective pipe:
13.Sieve analysis attached?	No	Annular space seal
14. Drilling method used: Rotar	y50	
Hollow stem auge	r X 41 5. Annular space se	eal a. Granular Bentonite X 33
Direct Push Othe	bLbs/g cLbs/ga	al mud weightBentonite-sand slurry 35 al mud weightBentonite slurry 31
15. Drilling fluid used: Water 02 Ai	r50 d% Ber	toniteBentonite-cement grout 50
	e_X_41 eFt3 vo f. How installed:	lume added for any of the above Tremie 1
16. Drilling additives used? Yes X Describe	No	Tremie pumped 2 Gravity X 8
17. Source of water (attach analysis)	6. Bentonite seal:	a. Bentonite Granules X 33
E. Bentonite seal, topft. MSL or	7. Fine sand mate	erial: Manufacture, product name and mesh size
F. Fine sand, topft. MSL or	4.0 ft	1 bag ft3
G. Filter pack, topft. MSL or	5.0 ft. 8. Filter pack mat	erial: Manufacture, product name and mesh size
H. Screen joint, topft. MSL or	6.0 ft.	6 bags ft3
I. Well bottomft. MSL or	<u>16.0 ft.</u> 9.Well casing:	Flush threaded PVC schedule 40 X 23
J. Filter pack , bottomft. MSL or	<u>16.0 ft.</u>	Other
K. Borehole, bottomft. MSL or	16.0 ft. 10. screen Mater	al: <u>PVC</u> Factory Cut VI 11
L. Borehole, diameter <u>8</u> in		Continuous slot 1
M. O.D. Well casing 2.375 in	b: Manufacture c: Slot size:	<u>Monoflex</u> 0.01 in
N. I.D. Well casing 2.067 in	d. Slotted lengt	1000000000000000000000000000000000000
	11.Backfill Materi	al: None X 14 Other
I have been a subject to be a the standard standard standard the standard to the	us and correct to the best of multipourledge	

I hereby ce Signature Firm

Brian Goungwirth

General Engineering Company 916 Silver Lake Dr., P.O. Box 340 Portage, WI 53901

State of WisconsinMONITORING WELL CONSTRUCTIONDepartment of Natural ResourcesForm 4400-113ARev. 4-90							
Route To: Env. Respon	Solid Waste Haz. Waste Wast	ewater					
Eacility / Project Name		Well Name					
Montello Lodge	Feet S Feet W	MW-2					
License /Permit /GEC Project No.	Grid Origin Location	Wis. Unique No.					
GEC No. 2-0120-74		N/A					
Type Of Well	Section Location of Waste / Source	Date Well Installed					
Water Table Observation X 11 Piezometer 12	SW1/4 -SW1/4, Sec. 9, T15N, R10E	9/20/2022					
Distance Well is From Waste/Source Boundary	Location to Well Relative to Waste/Source	Well Installed By: (Persons Name & Firm)					
la Mall - Doint of Enforcement Std. Application	u Upgradient s Sidegradient	One-Site Environmental					
	d downgradient n Not Shown	i ony Kapugi					
A. Protective pipe, top elevation	ft. MSL 2. Protective cover	pipe:					
B Well easing ten elevation	a. Inside diame	eter: 9 in					
	C. Material	Steel X 4					
C. Land surface elevation	_ft. MSLd Additional pr	Other Other No					
D. Surface seal, bottomft. MSL	_ftIf yes, describe	Expandable locking plug					
12 LISCS Classification of soil poor scroop	3. Surface seal:	Bentonite 30					
GP GM GW SW		Concrete D T					
SM X SC ML X CL Bedrock	CH	well casing and protective pipe:					
13.Sieve analysis attached?	No	Bentonite X 30 Annular space seal Other					
14. Drilling method used: Rotary	/50						
Hollow stem auger Direct Push Other	X 41 5. Annular space so b. Lbs/d	eal a. Granular Bentonite X 33 al mud weightBentonite-sand slurry 35					
	cLbs/ga	al mud weightBentonite slurry 31					
15. Drilling fluid used: Vater 02 All Drilling Mud 03 None	50 d% Ber X 41 eFt3 vo	ItoniteBentonite-cement grout 50					
	f. How installed:						
Describe		Gravity X 8					
17. Source of water (attach analysis)	6. Bentonite seal:	a. Bentonite Granules 🔀 33					
	b <u>¼</u> in X	3/8 in. 1/2 in Bentonite pellets 32 Other					
E. Bentonite seal, topft. MSL or	0.5 ft. 7. Fine sand mate	erial: Manufacture, product name and mesh size					
F. Fine sand, topft. MSL or	3.0 ft. v. Volume added	1 bag ft3					
G. Filter pack, topft. MSL or	4.0 ft. 8. Filter pack mat	erial: Manufacture, product name and mesh size					
H. Screen joint, topft. MSL or	5.0 ft. v. Volume added	6 bags ft3					
I. Well bottomft. MSL or	15.0 ft. 9.Well casing:	Flush threaded PVC schedule 40 X 23 Flush threaded PVC schedule 80 24					
J. Filter pack , bottomft. MSL or	<u>15.0 ft.</u>	Other					
K. Borehole, bottomft. MSL or	15.0 ft. 10. screen Materia: Screen type:	al: PVC Factory Cut X 11					
L. Borehole, diameter <u>8</u> in		Continuous slot 1					
M. O.D. Well casing 2.375 in	b: Manufacture c: Slot size:	<u>Monoflex</u> 0.01 in					
N. I.D. Well casing 2.067 in	d. Slotted lengt	$\frac{1000}{10}$ tt.					
	11.Backfill Materi	al: None X 14 Other					
	is and correct to the best of my knowledge						

I hereby construction Signature Firm

Brian Goungwirth

General Engineering Company 916 Silver Lake Dr., P.O. Box 340 Portage, WI 53901

State of Wisconsin Department of Natural Resources	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 4-90				
Route To: Env. Respons	Solid Waste Haz. Waste Wast se & Repair Underground Tanks	Other			
Facility / Project Name	Local Grid Location of Well	Well Name			
Montello Lodge	Feet S Feet W	MW-3			
License /Permit /GEC Project No.	Grid Origin Location	Wis. Unique No.			
GEC No. 2-0120-74		N/A			
Type Of Well	Section Location of Waste / Source	Date Well Installed			
Piezometer 12	SW1/4 -SW1/4, Sec. 9, T15N, R10E	9/20/2022			
Distance Well is From Waste/Source Boundary	Location to Well Relative to Waste/Source	Well Installed By: (Persons Name & Firm)			
In Wall a Daint of Enforcement Otd Application	u Upgradient s Sidegradient	One-Site Environmental			
	d 🗌 downgradient n 🔄 Not Shown	Tony Kapugi			
A. Protective pipe, top elevation	ft. MSL	LX Yes No			
B Well casing top elevation	a. Inside diame	ter: 9 in			
	C. Material	Steel X 4			
C. Land surface elevation	ft. MSL	Other Other Other			
D. Surface seal, bottomft. MSL	ft. If yes, describe	Expandable locking plug			
12 LISCS Classification of soil pear screen:	3. Surface seal:	Bentonite 30 Concrete 1			
GP GM GW SW		Concrete Other X			
SM X SC ML X CL Bedrock	CH 4. Material between	well casing and protective pipe:			
13.Sieve analysis attached?	No	Bentonite X 30 Annular space seal Other			
14. Drilling method used: Rotary	50				
Hollow stem auger Direct Push Other	X 41 5. Annular space se	al a. Granular Bentonite X 33			
	cLbs/ga	I mud weightBentonite slurry 31			
15. Drilling fluid used: Water 02 Air Drilling Mud 03 None	50 d% Ben X 41 e. Ft3 vol	toniteBentonite-cement grout 50			
	f. How installed:	Tremie 1			
Describe		I remie pumped 2 Gravity X 8			
17 Source of water (attach analysis)	6 Bentonite seal	a Bentonite Granules X 33			
	b 24 in X	3/8 in. $1/2$ in Bentonite pellets 32			
		Other			
E. Bentonite seal, topft. MSL or	0.5 ft. 7. Fine sand mate	erial: Manufacture, product name and mesh size			
F. Fine sand, topft. MSL or	4.0 ft. v. Volume added	1 bag ft3			
G. Filter pack, topft. MSL or	5.0 ft. 8. Filter pack mat	erial: Manufacture, product name and mesh size			
H. Screen joint, topft. MSL or	6.0 ft. Volume added	6 bags ft3			
I. Well bottomft. MSL or	16.0 ft. 9.Well casing:	Flush threaded PVC schedule 40 X 23 Flush threaded PVC schedule 80 24			
J. Filter pack , bottomft. MSL or	<u>16.0 ft.</u>	Other			
K. Borehole, bottomft. MSL or	16.0 ft. 10. screen Materi a: Screen type:	al: <u>PVC</u> Factory Cut X 11			
L. Borehole, diameter <u>8</u> in		Continuous slot 1			
M. O.D. Well casing 2.375 in	b: Manufacture c: Slot size:	<u>Monoflex</u> 0.01 in.			
N. I.D. Well casing 2.067 in	d. Slotted lengt	$\frac{10}{10}$ tt.			
	∖11.Backfill Materia	al: None X 14 Other			

I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature Brian Goungwirth General Engineering Company 916 Silver Lake Dr., P.O. Box 340 Portage, WI 53901

State of Wisconsin Department of Natural Resources	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 4-90			
Route To: Env. Rest	: Solid Waste 🔄 Haz. Waste 🔄 Wa ponse & Repair 🗍 Underground Tanks 🗍	stewater 🛄 Other 🗔		
Facility / Project Name	Local Grid Location of Well	Well Name		
Montello Lodge	Feet S Feet W	MW-4		
License /Permit /GEC Project No.	Grid Origin Location	Wis. Unique No.		
GEC No. 2-0120-74		N/A		
Type Of Well Water Table Observation X 11	Section Location of Waste / Source	Date Well Installed		
Piezometer 12	SW1/4 -SW1/4, Sec. 9, T15N, R10E	9/20/2022		
Distance Well is From Waste/Source Boundar	ry Location to Well Relative to Waste/Source	Well Installed By: (Persons Name & Firm)		
Is Well a Point of Enforcement Std. Application	on Upgradient s Sidegradient	Tony Kapugi		
Yes No	d downgradient n Not Shown			
A. Protective pipe, top elevation B. Well casing, top elevation	ft. MSL ft. MSL ft. MSL ft. MSL	X Yes No er pipe:		
C. Land surface elevation	ft. MSL	Steel X 4 Other		
D. Surface seal, bottom ft. MSL	ft.	protection? X Yes No be: Expandable locking plug		
12. USCS Classification of soil near screen: GP GM GW SW SM X SC ML X CL X	3. Surface seal:	Bentonite 30 Concrete 1 Concrete 0ther		
Bedrock 13.Sieve analysis attached? Yes	✓ No	en well casing and protective pipe: Bentonite X 30 Annular space seal Other		
14. Drilling method used: Ro Hollow stem au Direct Push O 15. Drilling fluid used: Water 02 Drilling Mud 03 N	tary 50 Jger X 41 ther X 5. Annular space b Lbs/ c Lbs/ d % B one X 41	seal a. Granular Bentonite 33 /gal mud weight Bentonite-sand slurry 35 gal mud weight		
16. Drilling additives used? Yes	f. How installed	Tremie 1 Tremie pumped 2 Gravity X 8		
17. Source of water (attach analysis)	6. Bentonite seal: b 1/4 in.X	a. Bentonite Granules X 33 3/8 in. 1/2 in Bentonite pellets 32 Other 1		
E. Bentonite seal, topft. MSL or		terial: Manufacture, product name and mesh size		
F. Fine sand, topft. MSL or	3.0 ft.	d 1 bag ft3		
G. Filter pack, topft. MSL or	4.0 ft. 8. Filter pack m.	aterial: Manufacture, product name and mesh size		
H. Screen joint, topft. MSL or	5.0 ft.	d 6 bags ft3		
I. Well bottomft. MSL or	<u>15.0 ft.</u> 9.Well casing:	Flush threaded PVC schedule 40 X 23		
J. Filter pack , bottomft. MSL or	<u>15.0 ft.</u>			
K. Borehole, bottomft. MSL or	15.0 ft. 10. screen Mate	erial: PVC		
L. Borehole, diameter <u>8</u> in		Continuous slot 1 Other		
M. O.D. Well casing 2.375 in	b: Manufactu	re <u>Monoflex</u> in		
N. I.D. Well casing 2.067 in	d. Slotted len	gth: $10^{-0.01}$ ft.		
	11.Backfill Mate	rial: None X 14 Other		

I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature

Brian Goungwirth

General Engineering Company 916 Silver Lake Dr., P.O. Box 340 Portage, WI 53901

MONITORING WELL DEVELOPMENT

Department of Natural Resources		Form		Rev. 4-90	
Rout	e To: Solid Waste [Underground Ta	Haz. Waste	Wastewater		
Facility / Project Name	County Name		Well Na	me	
MONTELLO LODGE		Marquette	MW-	-1	
Facility License/ Permit No./GEC Project No.	County	Code Wis. Unique	Well Number	DNR Well Number	
GEC NO: 2-0120-74		39	n/a	n/a	
1. Can this well be purged dry?	res 🗌 No	Before Dev	velopment	After Develo	pment
2. Well development method surge with bailer and bailed 4 avrand with bailer and pumped	l	11. Depth to water From top of well casing	5.3 ft.	a. 14.27 ft.	
surged with block and pumped X 0 surged with block and bailed 42 surged with block and pumped 62	2	Date 9/22/22	b.	b. 9/22/22	
surge with block, bailed and pumped 70 compressed air 20 bailed only 10)))	Time 11:30	c. p.m. X a.m.	c. 12:20	p.m. Xa.m.
pumped only 5 pumped slowly 50	l)	12. Sediment in well bottom	inches		inches
3. Time spent developing well	40 min.	13.Water clarity			
4. Depth of Well (from top of casing)	15.62 ft.	Clear Turbid (Describe)	10 X 15	Clear Turbid (Describe)	10 X 15
5. Inside diameter of well	2.00 in.		Cloudy	, ,	Slightly Cloudy
6.Volume of water in filter pack and well casing	9.39 gal.	Fill in if fluids were use	d and wells is at solid	waste facility:	l
7. Volume of water removed from well	20 gal.				
8. Volume of water added (if any)	0 gal.	14. Total suspended solids	N/A mg/I	N/A	mg/l
9. Source of water added None					
		15. COD	N/A mg/I	N/A	mg/l
10. Analysis performed on water added? (If yes, attach results)	Yes No				

Well deve	oped by: Person's Name and Firm	I hereby certify that the above information is true and correct to the best of my knowledge.
Name:	Brian Youngwirth	Signature: Brian Goungwirth
		Print Initials: <u>BLY</u>
Firm _	General Engineering Company	Firm: General Engineering Company

MONITORING WELL DEVELOPMENT

Department of Natural Resources		F		Rev. 4-90	
Route	e To:	_ Г]		
_ [Solid Waste	Haz. Waste	Wastewater		
Env. Response & Repair	Underground Ta	nks Other			
	County Name				
Facility / Project Name	County Name		wenna	ame	
MONTELLO LODGE		Marquette	MW	-2	
Facility License/ Permit No./GEC Project No.	County	Code Wis. Uniq	ue Well Number	DNR Well Number	
GEC NO: 2-0120-74	:	39	n/a	n/a	
1. Can this wall be purged day?		Before	Development	After Develo	nment
			ovelopment		phone
2. Well development method		11. Depth to water	7.21 ft.	a. 8.88 ft.	
surge with bailer and bailed 41		From top of well cas	sing		
surged with bailer and pumped 🛛 🕅 61					
surged with block and bailed		Date 9/22/22	b.	b. 9/22/22	
surged with block and pumped 62		T ime 10:20		1.20	X nm
surge with block, balled and pumped		Time 12:30	с. <u>л</u> р.п	I. C. 1:30	
boiled only					
		12. Sediment in well			
pumped slowly		bottom	inches		inches
Other					I I
		13.Water clarity			
3. Time spent developing well	60 min.				
		Clear	10	Clear	10
4. Depth of Well (from top of casing)	14.66 ft.	Turbid	X 15	Turbid	X 15
		(Describe)		(Describe)	
5. Inside diameter of well	2.00 in.		Cloudy	4	Slightly Cloudy
6 Volume of water in filter pack and well casing	6 78 gal			I	
	ono gai	Fill in if fluids were	used and wells is at solic	d waste facility:	
7. Volume of water removed from well	20 gal.			, I	
8. Volume of water added (if any)	0 gal.	14. Total suspended			
		solids	N/A mg/I	N/A	mg/l
9. Source of water added None					
		15 COD	N/A/	NI/Δ	mall
		15. COD	IN/A mg/i	11/7	mg/i
10. Analysis performed on water added? [(If yes, attach results)	Yes 🗌 No				
				1	

Well develope	d by: Person's Name and Firm	I hereby certify that the above information is true and correct to the best of my knowled	ge.
Name:	Brian Youngwirth	Signature: Brian Goungwirth	
		Print Initials: <u>BLY</u>	
Firm	General Engineering Company	Firm: General Engineering Company	

MONITORING WELL DEVELOPMENT

Department of Natural Resources			Form 4400-113B							
Env. Response & R	Route To	o: Solid Waste [Underground Tai	Haz. Waste	Wastewa	ter					
·		0								
Facility / Project Name		County Name			Well Na	Vell Name				
MONTELLO LODGE		Marquette				MW-3				
Facility License/ Permit No./GEC P	roject No.	County	Code Wis. L	nique Well Num	ber	DNR Well Number				
GEC NO: 2-0120-74		3	39	n/a			n/a			
1. Can this well be purged dry?	X Yes	No	Befo	re Developme	ent	After D	Develo	pment		
2. Well development method surge with bailer and bailed	☐ 41 ⊠ 61		11. Depth to wat From top of we	er 8.05 Il casing	ft.	a. 14.02	ft.			
surged with baller and pumped surged with block and bailed surged with block and pumped	× 61 ↓ 42 ↓ 62		Date 9/22/2	2 b.		b. 9/22/22				
surge with block, bailed and pumped compressed air bailed only	☐ 70 ☐ 20 ☐ 10		Time 1:32	C.	X p.m. a.m.	c. 2:30		X p.m. a.m.		
pumped only pumped slowly Other	☐ 51 ☐ 50		12. Sediment in bottom	well	inches			inches		
Other			13.Water clarity							
3. Time spent developing well		58 min.	Clear	Г	10	Clear				
4. Depth of Well (from top of casing)		14.97 ft.	Turbid (Descri	be)	10 X 15	Turbid (Describe	e)	X 15		
5. Inside diameter of well		2.00 in.		Cloud	ý			Slightly Cloudy		
6.Volume of water in filter pack and wel	l casing	6.3 gal.	Fill in if fluids w	ere used and wel	ls is at solid	waste facility:				
7. Volume of water removed from well		20 gal.				,				
8. Volume of water added (if any)		0 gal.	14. Total suspen solids	ded N/A	mg/l		N/A	mg/l		
9. Source of water added N	one				-			-		
-			15. COD	N/A	mg/l		N/A	mg/l		
10. Analysis performed on water added (If yes, attach results)	?	Yes 🗌 No								

Well develope	ed by: Person's Name and Firm	I hereby certify that the above information is true and correct to the best of my knowledge.
Name:	Brian Youngwirth	Signature: Brian Goungwirth
		Print Initials: <u>BLY</u>
Firm	General Engineering Company	Firm: General Engineering Company

MONITORING WELL DEVELOPMENT

Department of Natural Resources				Form 4400	-113B		Rev. 4-90	
Ro	ute To:	sata [
Env. Response & Repair		und Ta	naz. wasi nks □0	ther	ewaler			
] 01.401.91							
Facility / Project Name	County	Name			Well Na	me		
MONTELLO LODGE			Marquet	te	MW-4			
Facility License/ Permit No./GEC Project No.		County	Code Wis	. Unique Well N	lumber	DNR Well Number		
GEC NO: 2-0120-74		3	39	n/a			n/a	
1. Can this well be purged dry?	Yes	No	Bef	ore Develop	ment	After De	velopment	
2. Well development method			11. Depth to w	vater 7.	85 ft.	a. 11.91 ft.		
surge with bailer and bailed	41		From top of	well casing				
surged with bailer and pumped	61			NOO h				
surged with block and bailed	42 62		Date 9/22	2/22 D.		b. 9/22/22		
surge with block, bailed and pumped	70		Time 12:	:20 c.	X p.m.	c. 2:30	X p.m.	
compressed air	20				a .m.		a .m.	
bailed only	10							
pumped only	51		12. Sediment i	in well	in the sec		in the set	
pumped slowly	50		bottom		Inches		Inches	
Other			13.Water clarit	tv				
3. Time spent developing well	130	min.		,				
			Clear	r	10	Clear	10	
4. Depth of Well (from top of casing)	13.03	ft.	Turbi	id	X 15	Turbid	X 15	
E Inside diameter of well	2.00	in	(Des	cribe)	oudv	(Describe)	Slightly Cloudy	
5. Inside diameter of wen	2.00				ouuy	+	Signity Cloudy	
6.Volume of water in filter pack and well casing	4.71	gal.				1		
			Fill in if fluids	were used and	wells is at solid	waste facility:		
7. Volume of water removed from well	25	gal.				1		
8. Volume of water added (if any)	0	gal.	14. Total susp	ended				
		0	solids	N	/A mg/l		N/A mg/l	
9. Source of water added None								
			15.000	N	/A ma/l		N/A ma/l	
			15. COD	IN)	n mg/i		IN/A IIg/I	
10. Analysis performed on water added? (If yes, attach results)	Yes [] No						
						l		

Well develop	ed by: Person's Name and Firm	I hereby certify that the above information is true and correct to the best of my knowledge.
Name:	Brian Youngwirth	Signature: Brian Goungwirth
		Print Initials: <u>BLY</u>
Firm	General Engineering Company	Firm: General Engineering Company

APPENDIX D ANALYTICAL RESULTS AND CHAIN OF CUSTODY DOCUMENTATION

Synergy Environmental Lab, LLC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PORTAGE. WI 53901

Report Date 27-Sep-22

Project Name M Project #	MONTELLC) LODGE					Invo	ice # E414	-56		
Lab Code Sample ID Sample Matrix Sample Date	5041456A MW-1 1-3' Soil 9/20/2022										
		Result	Unit	LOD I	LOQ I) 11	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		92.4	%			1	5021		9/21/2022	NJC	1
Organic											
VOC's											
Benzene		< 0.025	mg/kg	0.025	0.1	1	8260B		9/27/2022	CJR	1
Bromobenzene		< 0.04	mg/kg	0.04	0.16	1	8260B		9/27/2022	CJR	1
Bromodichlorometha	ane	< 0.046	mg/kg	0.046	0.19	1	8260B		9/27/2022	CJR	1
Bromoform		< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CJR	1
tert-Butylbenzene		< 0.033	mg/kg	0.033	0.14	1	8260B		9/27/2022	CJR	1
sec-Butylbenzene		< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
n-Butylbenzene		< 0.029	mg/kg	0.029	0.12	1	8260B		9/27/2022	CJR	1
Carbon Tetrachlorid	e	< 0.032	mg/kg	0.032	0.13	1	8260B		9/27/2022	CJR	1
Chlorobenzene		< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CJR	1
Chloroethane		< 0.1	mg/kg	0.1	0.41	1	8260B		9/27/2022	CJR	1
Chloroform		< 0.032	mg/kg	0.032	0.13	1	8260B		9/27/2022	CJR	1
Chloromethane		< 0.064	mg/kg	0.064	0.26	1	8260B		9/27/2022	CJR	1
2-Chlorotoluene		< 0.034	mg/kg	0.034	0.14	1	8260B		9/27/2022	CJR	1
4-Chlorotoluene		< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
1,2-Dibromo-3-chlor	ropropane	< 0.055	mg/kg	0.055	0.22	1	8260B		9/27/2022	CJR	1
Dibromochlorometh	ane	< 0.038	mg/kg	0.038	0.16	1	8260B		9/27/2022	CJR	1
1,4-Dichlorobenzene	e	< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CJR	1
1,3-Dichlorobenzene	e	< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1
1,2-Dichlorobenzene	e	< 0.026	mg/kg	0.026	0.11	1	8260B		9/27/2022	CJR	1
Dichlorodifluoromet	hane	< 0.046	mg/kg	0.046	0.19	1	8260B		9/27/2022	CJR	1
1,2-Dichloroethane		< 0.042	mg/kg	0.042	0.17	1	8260B		9/27/2022	CJR	1
1,1-Dichloroethane		< 0.033	mg/kg	0.033	0.13	1	8260B		9/27/2022	CJR	1

Invoice # E41456

 Lab Code
 5041456A

 Sample ID
 MW-1 1-3'

 Sample Matrix
 Soil

 Sample Date
 9/20/2022

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
1,1-Dichloroethene	< 0.049	mg/kg	0.049	0.2	1	8260B		9/27/2022	CJR	1
cis-1,2-Dichloroethene	< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CJR	1
trans-1,2-Dichloroethene	< 0.03	mg/kg	0.03	0.12	. 1	8260B		9/27/2022	CJR	1
1,2-Dichloropropane	< 0.04	mg/kg	0.04	0.16	5 1	8260B		9/27/2022	CJR	1
1,3-Dichloropropane	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
trans-1,3-Dichloropropene	< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CJR	1
cis-1,3-Dichloropropene	< 0.035	mg/kg	0.035	0.14	- 1	8260B		9/27/2022	CJR	1
Di-isopropyl ether	< 0.028	mg/kg	0.028	0.11	1	8260B		9/27/2022	CJR	1
EDB (1,2-Dibromoethane)	< 0.025	mg/kg	0.025	0.1	1	8260B		9/27/2022	CJR	1
Ethylbenzene	< 0.023	mg/kg	0.023	0.096	1	8260B		9/27/2022	CJR	1
Hexachlorobutadiene	< 0.1	mg/kg	0.1	0.42	. 1	8260B		9/27/2022	CJR	1
Isopropylbenzene	< 0.035	mg/kg	0.035	0.14	- 1	8260B		9/27/2022	CJR	1
p-Isopropyltoluene	< 0.03	mg/kg	0.03	0.12	. 1	8260B		9/27/2022	CJR	1
Methylene chloride	< 0.1	mg/kg	0.1	0.42	. 1	8260B		9/27/2022	CJR	1
Methyl tert-butyl ether (MTBE)	< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1
Naphthalene	< 0.12	mg/kg	0.12	0.38	1	8260B		9/27/2022	CJR	1
n-Propylbenzene	< 0.025	mg/kg	0.025	0.1	1	8260B		9/27/2022	CJR	1
1,1,2,2-Tetrachloroethane	< 0.03	mg/kg	0.03	0.12	. 1	8260B		9/27/2022	CJR	1
1,1,1,2-Tetrachloroethane	< 0.041	mg/kg	0.041	0.17	1	8260B		9/27/2022	CJR	1
Tetrachloroethene	< 0.039	mg/kg	0.039	0.16	5 1	8260B		9/27/2022	CJR	1
Toluene	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
1,2,4-Trichlorobenzene	< 0.045	mg/kg	0.045	0.18	1	8260B		9/27/2022	CJR	1
1,2,3-Trichlorobenzene	< 0.18	mg/kg	0.18	0.56	5 1	8260B		9/27/2022	CJR	1
1,1,1-Trichloroethane	< 0.03	mg/kg	0.03	0.12	. 1	8260B		9/27/2022	CJR	1
1,1,2-Trichloroethane	< 0.037	mg/kg	0.037	0.15	1	8260B		9/27/2022	CJR	1
Trichloroethene (TCE)	< 0.039	mg/kg	0.039	0.16	5 1	8260B		9/27/2022	CJR	1
Trichlorofluoromethane	< 0.066	mg/kg	0.066	0.27	1	8260B		9/27/2022	CJR	1
1,2,4-Trimethylbenzene	< 0.035	mg/kg	0.035	0.14	- 1	8260B		9/27/2022	CJR	1
1,3,5-Trimethylbenzene	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
Vinyl Chloride	< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1
m&p-Xylene	< 0.062	mg/kg	0.062	0.25	1	8260B		9/27/2022	CJR	1
o-Xylene	< 0.03	mg/kg	0.03	0.12	. 1	8260B		9/27/2022	CJR	1
SUR - Toluene-d8	86	Rec %			1	8260B		9/27/2022	CJR	1
SUR - 1,2-Dichloroethane-d4	98	Rec %			1	8260B		9/27/2022	CJR	1
SUR - 4-Bromofluorobenzene	97	Rec %			1	8260B		9/27/2022	CJR	1
SUR - Dibromofluoromethane	96	Rec %			1	8260B		9/27/2022	CJR	1

Project Name	MONTELLC) LODGE	Invoice # E41456								
Lab Code Sample ID Sample Matrix Sample Date	5041456B MW-1 6-8' Soil 9/20/2022	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Cananal				-	- L						
General Solida Paracent		95 1	0/			1	5021		0/21/2022	NIC	1
Solids Percent		83.4	%0			1	3021		9/21/2022	NJC	1
Organic VOC's											
Benzene		< 0.025	mg/kg	0.025	0.1	1	8260B		9/27/2022	CJR	1
Bromobenzene		< 0.04	mg/kg	0.04	0.16	1	8260B		9/27/2022	CJR	1
Bromodichlorometh	ane	< 0.046	mg/kg	0.046	0.19	1	8260B		9/27/2022	CJR	1
Bromoform		< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CJR	1
tert-Butylbenzene		< 0.033	mg/kg	0.033	0.14	1	8260B		9/27/2022	CJR	1
sec-Butylbenzene		< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
n-Butylbenzene		< 0.029	mg/kg	0.029	0.12	1	8260B		9/27/2022	CJR	1
Carbon Tetrachlorid	le	< 0.032	mg/kg	0.032	0.13	1	8260B		9/27/2022	CJR	1
Chlorobenzene		< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CJR	1
Chloroethane		< 0.1	mg/kg	0.1	0.41	1	8260B		9/27/2022	CJR	1
Chloroform		< 0.032	mg/kg	0.032	0.13	1	8260B		9/27/2022	CJR	1
Chloromethane		< 0.064	mg/kg	0.064	0.26	1	8260B		9/27/2022	CJR	1
2-Chlorotoluene		< 0.034	mg/kg	0.034	0.14	1	8260B		9/27/2022	CJR	1
4-Chlorotoluene		< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
1,2-Dibromo-3-chlo	oropropane	< 0.055	mg/kg	0.055	0.22	1	8260B		9/27/2022	CJR	1
Dibromochlorometh	nane	< 0.038	mg/kg	0.038	0.16	1	8260B		9/27/2022	CJR	1
1,4-Dichlorobenzen	e	< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CJR	1
1,3-Dichlorobenzen	e	< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1
1,2-Dichlorobenzen	e	< 0.026	mg/kg	0.026	0.11	1	8260B		9/27/2022	CJR	1
Dichlorodifluorome	thane	< 0.046	mg/kg	0.046	0.19	1	8260B		9/27/2022	CJR	1
1,2-Dichloroethane		< 0.042	mg/kg	0.042	0.17	1	8260B		9/27/2022	CJR	1
1,1-Dichloroethane		< 0.033	mg/kg	0.033	0.13	1	8260B		9/27/2022	CJR	1
1,1-Dichloroethene		< 0.049	mg/kg	0.049	0.2	1	8260B		9/27/2022	CJR	1
cis-1,2-Dichloroethe	ene	< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CJR	1
trans-1,2-Dichloroe	thene	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
1,2-Dichloropropan	e	< 0.04	mg/kg	0.04	0.16	1	8260B		9/27/2022	CJR	1
1,3-Dichloropropan	e	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
trans-1,3-Dichlorop	ropene	< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CJR	1
cis-1,3-Dichloropro	pene	< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CJR	1
Di-isopropyl ether		< 0.028	mg/kg	0.028	0.11	1	8260B		9/27/2022	CJR	1
EDB (1,2-Dibromo	ethane)	< 0.025	mg/kg	0.025	0.1	1	8260B		9/27/2022	CJR	1
Ethylbenzene		< 0.023	mg/kg	0.023	0.096	1	8260B		9/27/2022	CJR	1
Hexachlorobutadier	ne	< 0.1	mg/kg	0.1	0.42	1	8260B		9/27/2022	CJR	1
Isopropylbenzene		< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CJR	1
p-Isopropyltoluene		< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
Methylene chloride		< 0.1	mg/kg	0.1	0.42	1	8260B		9/27/2022	CJR	1
Methyl tert-butyl et	her (MTBE)	< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1
Naphthalene		< 0.12	mg/kg	0.12	0.38	1	8260B		9/27/2022	CJR	1
n-Propylbenzene		< 0.025	mg/kg	0.025	0.1	1	8260B		9/27/2022	CJR	1
1,1,2,2-Tetrachloro	ethane	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
1,1,1,2-Tetrachloro	ethane	< 0.041	mg/kg	0.041	0.17	1	8260B		9/27/2022	CJR	1
			-								

Invoice # E41456

 Lab Code
 5041456B

 Sample ID
 MW-1 6-8

 Sample Matrix
 S01

 Sample Date
 9/20/2022

~~~~ <u>r</u> ~ ~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Tetrachloroethene	< 0.039	mg/kg	0.039	0.16	1	8260B		9/27/2022	CJR	1
Toluene	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
1,2,4-Trichlorobenzene	< 0.045	mg/kg	0.045	0.18	1	8260B		9/27/2022	CJR	1
1,2,3-Trichlorobenzene	< 0.18	mg/kg	0.18	0.56	1	8260B		9/27/2022	CJR	1
1,1,1-Trichloroethane	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
1,1,2-Trichloroethane	< 0.037	mg/kg	0.037	0.15	1	8260B		9/27/2022	CJR	1
Trichloroethene (TCE)	< 0.039	mg/kg	0.039	0.16	1	8260B		9/27/2022	CJR	1
Trichlorofluoromethane	< 0.066	mg/kg	0.066	0.27	1	8260B		9/27/2022	CJR	1
1,2,4-Trimethylbenzene	< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CJR	1
1,3,5-Trimethylbenzene	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
Vinyl Chloride	< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1
m&p-Xylene	< 0.062	mg/kg	0.062	0.25	1	8260B		9/27/2022	CJR	1
o-Xylene	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
SUR - Toluene-d8	87	Rec %			1	8260B		9/27/2022	CJR	1
SUR - 1,2-Dichloroethane-d4	102	Rec %			1	8260B		9/27/2022	CJR	1
SUR - 4-Bromofluorobenzene	96	Rec %			1	8260B		9/27/2022	CJR	1
SUR - Dibromofluoromethane	98	Rec %			1	8260B		9/27/2022	CJR	1

Project Name M Proiect #	IONTELLO	LODGE		<b>Invoice</b> # E41456									
Lab Code Sample ID Sample Matrix Sample Date	5041456C MW-2 2.5-4 Soil 9/20/2022	l' Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code		
General													
General													
Solids Percent		94.0	%			1	5021		9/21/2022	NJC	1		
Organic													
VOC's													
Benzene		< 0.025	mg/kg	0.025	0.1	1	8260B		9/27/2022	CJR	1		
Bromobenzene		< 0.04	mg/kg	0.04	0.16	1	8260B		9/27/2022	CJR	1		
Bromodichlorometh	ane	< 0.046	mg/kg	0.046	0.19	1	8260B		9/27/2022	CJR	1		
Bromoform		< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CJR	1		
tert-Butylbenzene		< 0.033	mg/kg	0.033	0.14	1	8260B		9/27/2022	CJR	1		
sec-Butylbenzene		< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1		
n-Butylbenzene		< 0.029	mg/kg	0.029	0.12	1	8260B		9/27/2022	CJR	1		
Carbon Tetrachlorid	e	< 0.032	mg/kg	0.032	0.13	1	8260B		9/27/2022	CJR	1		
Chlorobenzene		< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CJR	1		
Chloroethane		< 0.1	mg/kg	0.1	0.41	1	8260B		9/27/2022	CJR	1		
Chloroform		< 0.032	mg/kg	0.032	0.13	1	8260B		9/27/2022	CJR	1		
Chloromethane		< 0.064	mg/kg	0.064	0.26	1	8260B		9/27/2022	CJR	1		
2-Chlorotoluene		< 0.034	mg/kg	0.034	0.14	1	8260B		9/27/2022	CJR	1		
4-Chlorotoluene		< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1		
1,2-Dibromo-3-chlor	opropane	< 0.055	mg/kg	0.055	0.22	1	8260B		9/27/2022	CJR	1		
Dibromochlorometh	ane	< 0.038	mg/kg	0.038	0.16	1	8260B		9/27/2022	CJR	1		
1.4-Dichlorobenzene		< 0.035	mg/kg	0.035	0.14	. 1	8260B		9/27/2022	CJR	1		
1.3-Dichlorobenzene		< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1		
1.2-Dichlorobenzene		< 0.026	mg/kg	0.026	0.11	1	8260B		9/27/2022	CJR	1		
Dichlorodifluoromet	hane	< 0.046	mg/kg	0.046	0.19	1	8260B		9/27/2022	CJR	1		
1.2-Dichloroethane		< 0.042	mg/kg	0.042	0.17	1	8260B		9/27/2022	CJR	1		
1.1-Dichloroethane		< 0.033	mg/kg	0.033	0.13	1	8260B		9/27/2022	CIR	1		
1.1-Dichloroethene		< 0.049	mg/kg	0.049	0.2	1	8260B		9/27/2022	CJR	1		
cis-1.2-Dichloroethe	ne	< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CJR	1		
trans-1.2-Dichloroet	hene	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CIR	1		
1.2-Dichloropropane	, ,	< 0.04	mg/kg	0.04	0.16	1	8260B		9/27/2022	CIR	1		
1.3-Dichloropropane		< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CIR	1		
trans-1.3-Dichloropr	opene	< 0.031	mg/kg	0.027	0.13	1	8260B		9/27/2022	CIR	1		
cis-1.3-Dichloropror	ene	< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CIR	1		
Di-isopropyl ether		< 0.028	mg/kg	0.028	0.11	1	8260B		9/27/2022	CIR	1		
EDB (1 2-Dibromoe	thane)	< 0.025	mg/kg	0.025	0.11	1	8260B		9/27/2022	CIR	1		
Ethylbenzene	(mane)	< 0.023	mg/kg	0.023	0.096	1	8260B		9/27/2022	CIR	1		
Hexachlorobutadien	e.	< 0.1	mg/kg	0.1	0.42	1	8260B		9/27/2022	CIR	1		
Isopropylbenzene		< 0.035	mg/kg	0.035	0.12	. 1	8260B		9/27/2022	CIR	1		
n-Isopropyltoluene		< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CIR	1		
Methylene chloride		< 0.05	mg/kg	0.05	0.12	1	8260B		9/27/2022	CIR	1		
Methyl tert-hutyl eth	er (MTBE)	< 0.036	mø/ko	0.036	0.15	1	8260B		9/27/2022	CJR	1		
Nanhthalene	(mibb)	< 0.050	mg/kg	0.030	0.15	1	8260B		9/27/2022	CIR	1		
n-Pronylbenzene		< 0.12	mg/kg	0.12	0.56	1	8260B		9/27/2022	CIR	1		
1 1 2 2-Tetrachlorog	thane	< 0.025	mg/kg	0.025	0.12	1	8260B		9/27/2022	CIR	1		
1 1 1 2-Tetrachloros	thane	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CIR	1		
1,1,1,2-1 cu aciii010e	mune	< 0.041	mg/ Kg	0.041	0.17	1	0200D		12112022	CJI	1		

**Invoice #** E41456

 Lab Code
 5041456C

 Sample ID
 MW-2 2.5-4'

 Sample Matrix
 Soil

 Sample Date
 9/20/2022

•	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Tetrachloroethene	< 0.039	mg/kg	0.039	0.16	1	8260B		9/27/2022	CJR	1
Toluene	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
1,2,4-Trichlorobenzene	< 0.045	mg/kg	0.045	0.18	1	8260B		9/27/2022	CJR	1
1,2,3-Trichlorobenzene	< 0.18	mg/kg	0.18	0.56	1	8260B		9/27/2022	CJR	1
1,1,1-Trichloroethane	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
1,1,2-Trichloroethane	< 0.037	mg/kg	0.037	0.15	1	8260B		9/27/2022	CJR	1
Trichloroethene (TCE)	< 0.039	mg/kg	0.039	0.16	1	8260B		9/27/2022	CJR	1
Trichlorofluoromethane	< 0.066	mg/kg	0.066	0.27	1	8260B		9/27/2022	CJR	1
1,2,4-Trimethylbenzene	< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CJR	1
1,3,5-Trimethylbenzene	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
Vinyl Chloride	< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1
m&p-Xylene	< 0.062	mg/kg	0.062	0.25	1	8260B		9/27/2022	CJR	1
o-Xylene	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
SUR - Toluene-d8	87	Rec %			1	8260B		9/27/2022	CJR	1
SUR - 1,2-Dichloroethane-d4	98	Rec %			1	8260B		9/27/2022	CJR	1
SUR - 4-Bromofluorobenzene	94	Rec %			1	8260B		9/27/2022	CJR	1
SUR - Dibromofluoromethane	99	Rec %			1	8260B		9/27/2022	CJR	1

Project Name Proiect #	MONTELLC	LODGE	<b>Invoice #</b> E41456								
Lab Code Sample ID Sample Matrix Sample Date	5041456D MW-2 5-7' Soil 9/20/2022	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Conoral				-							
General											
Solids Percent		84.7	%			1	5021		9/21/2022	NJC	1
Organic VOC's											
Benzene		< 0.025	mg/kg	0.025	0.1	1	8260B		9/27/2022	CJR	1
Bromobenzene		< 0.04	mg/kg	0.04	0.16	1	8260B		9/27/2022	CJR	1
Bromodichlorometh	nane	< 0.046	mg/kg	0.046	0.19	1	8260B		9/27/2022	CJR	1
Bromoform		< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CJR	1
tert-Butylbenzene		< 0.033	mg/kg	0.033	0.14	1	8260B		9/27/2022	CJR	1
sec-Butylbenzene		< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
n-Butylbenzene		< 0.029	mg/kg	0.029	0.12	1	8260B		9/27/2022	CJR	1
Carbon Tetrachlori	de	< 0.032	mg/kg	0.032	0.13	1	8260B		9/27/2022	CJR	1
Chlorobenzene		< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CJR	1
Chloroethane		< 0.1	mg/kg	0.1	0.41	1	8260B		9/27/2022	CJR	1
Chloroform		< 0.032	mg/kg	0.032	0.13	1	8260B		9/27/2022	CJR	1
Chloromethane		< 0.064	mg/kg	0.064	0.26	1	8260B		9/27/2022	CJR	1
2-Chlorotoluene		< 0.034	mg/kg	0.034	0.14	1	8260B		9/27/2022	CJR	1
4-Chlorotoluene		< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
1.2-Dibromo-3-chlo	oropropane	< 0.055	mg/kg	0.055	0.22	1	8260B		9/27/2022	CJR	1
Dibromochlorometl	hane	< 0.038	mø/kø	0.038	0.16	1	8260B		9/27/2022	CIR	1
1 4-Dichlorobenzer	ne.	< 0.035	mo/ko	0.035	0.14	1	8260B		9/27/2022	CIR	1
1.3-Dichlorobenzer	ne ne	< 0.035	mg/kg	0.036	0.15	1	8260B		9/27/2022	CIR	1
1.2-Dichlorobenzer	ie ie	< 0.026	mg/kg	0.026	0.15	1	8260B		9/27/2022	CIR	1
Dichlorodifluorome	athane	< 0.026	mg/kg	0.020	0.11	1	8260B		9/27/2022	CIR	1
1.2 Dichloroethane	anane	< 0.040	mg/kg	0.042	0.17	1	8260B		0/27/2022	CIP	1
1,2-Dichloroethane		< 0.042	mg/kg	0.042	0.17	1	8260D		0/27/2022	CIR	1
1,1-Dichloroethane		< 0.033	mg/kg	0.033	0.13	1	8260D		9/27/2022	CIR	1
i,1-Dichloroethene		< 0.049	mg/kg	0.049	0.2	1	8260D		9/27/2022	CIR	1
trans 1.2 Dishlares	there	< 0.027	mg/kg	0.027	0.11	1	8260D		9/27/2022	CIR	1
	ulelle	< 0.03	mg/kg	0.03	0.12	1	8200B		9/27/2022	CIR	1
1,2-Dichloropropan		< 0.04	mg/kg	0.04	0.10	1	8260D		9/27/2022	CIR	1
1,3-Dichloropropan	le	< 0.031	mg/kg	0.031	0.13	1	8200B		9/27/2022	CIR	1
sia 1.2 Dishlarana	oropene	< 0.027	mg/kg	0.027	0.11	1	8200D		9/27/2022	CIR	1
Di incorrecto ether	ppene	< 0.033	mg/kg	0.055	0.14	1	8200D		9/27/2022	CIR	1
DI-Isopropyl ether	a \	< 0.028	mg/kg	0.028	0.11	1	8200B		9/27/2022	CJR	1
EDB (1,2-Dibromo	ethane)	< 0.025	mg/kg	0.025	0.1	1	8260B		9/27/2022	CJR	1
Etnyibenzene		< 0.023	mg/kg	0.023	0.096	1	8200B		9/27/2022	CIR	1
Hexachiorobutadiei	ne	< 0.1	mg/kg	0.1	0.42	1	8200B		9/21/2022	CJK	1
IsopropyIbenzene		< 0.035	mg/kg	0.035	0.14	1	8260B		9/2//2022	CJK	1
p-Isopropyltoluene		< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
Methylene chloride		< 0.1	mg/kg	0.1	0.42	1	8260B		9/27/2022	CJR	1
Methyl tert-butyl et	ner (MTBE)	< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1
Naphthalene		< 0.12	mg/kg	0.12	0.38	1	8260B		9/27/2022	CJR	1
n-Propylbenzene		< 0.025	mg/kg	0.025	0.1	1	8260B		9/27/2022	CJR	1
1,1,2,2-Tetrachloro	ethane	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
1,1,1,2-Tetrachloro	ethane	< 0.041	mg/kg	0.041	0.17	1	8260B		9/27/2022	CJR	1

**Invoice #** E41456

 Lab Code
 5041456D

 Sample ID
 MW-2 5-7

 Sample Matrix
 Soil

 Sample Date
 9/20/2022

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Tetrachloroethene	< 0.039	mg/kg	0.039	0.16	1	8260B		9/27/2022	CJR	1
Toluene	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
1,2,4-Trichlorobenzene	< 0.045	mg/kg	0.045	0.18	1	8260B		9/27/2022	CJR	1
1,2,3-Trichlorobenzene	< 0.18	mg/kg	0.18	0.56	1	8260B		9/27/2022	CJR	1
1,1,1-Trichloroethane	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
1,1,2-Trichloroethane	< 0.037	mg/kg	0.037	0.15	1	8260B		9/27/2022	CJR	1
Trichloroethene (TCE)	< 0.039	mg/kg	0.039	0.16	1	8260B		9/27/2022	CJR	1
Trichlorofluoromethane	< 0.066	mg/kg	0.066	0.27	1	8260B		9/27/2022	CJR	1
1,2,4-Trimethylbenzene	< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CJR	1
1,3,5-Trimethylbenzene	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
Vinyl Chloride	< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1
m&p-Xylene	< 0.062	mg/kg	0.062	0.25	1	8260B		9/27/2022	CJR	1
o-Xylene	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
SUR - Dibromofluoromethane	104	Rec %			1	8260B		9/27/2022	CJR	1
SUR - 1,2-Dichloroethane-d4	100	Rec %			1	8260B		9/27/2022	CJR	1
SUR - 4-Bromofluorobenzene	102	Rec %			1	8260B		9/27/2022	CJR	1
SUR - Toluene-d8	84	Rec %			1	8260B		9/27/2022	CJR	1

Project Name Proiect #	MONTELLC	LODGE					Inv	roice # E414	156		
Lab Code Sample ID Sample Matrix Sample Date	5041456E MW-3 1-3' Soil 9/20/2022	Result	Unit	LOD	LOO	Dil	Method	Ext Date	Run Date	Analyst	Code
Conoral					<b>t</b>					, ~ ~	
General		00.4	0/			1	5021		0/21/2022	NIC	1
Solids Percent		88.4	%			1	5021		9/21/2022	NJC	1
Organic VOC's											
Benzene		< 0.025	mg/kg	0.025	0.1	1	8260B		9/27/2022	CJR	1
Bromobenzene		< 0.04	mg/kg	0.04	0.16	1	8260B		9/27/2022	CJR	1
Bromodichloromet	hane	< 0.046	mg/kg	0.046	0.19	1	8260B		9/27/2022	CJR	1
Bromoform		< 0.035	mg/kg	0.035	0.14	- 1	8260B		9/27/2022	CJR	1
tert-Butylbenzene		< 0.033	mg/kg	0.033	0.14	- 1	8260B		9/27/2022	CJR	1
sec-Butylbenzene		< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
n-Butylbenzene		< 0.029	mg/kg	0.029	0.12	1	8260B		9/27/2022	CJR	1
Carbon Tetrachlori	de	< 0.032	mg/kg	0.032	0.13	1	8260B		9/27/2022	CJR	1
Chlorobenzene		< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CJR	1
Chloroethane		< 0.1	mg/kg	0.1	0.41	1	8260B		9/27/2022	CJR	1
Chloroform		< 0.032	mg/kg	0.032	0.13	1	8260B		9/27/2022	CJR	1
Chloromethane		< 0.064	mg/kg	0.064	0.26	1	8260B		9/27/2022	CJR	1
2-Chlorotoluene		< 0.034	mg/kg	0.034	0.14	- 1	8260B		9/27/2022	CJR	1
4-Chlorotoluene		< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
1,2-Dibromo-3-chl	oropropane	< 0.055	mg/kg	0.055	0.22	1	8260B		9/27/2022	CJR	1
Dibromochloromet	hane	< 0.038	mg/kg	0.038	0.16	1	8260B		9/27/2022	CJR	1
1,4-Dichlorobenzer	ne	< 0.035	mg/kg	0.035	0.14	- 1	8260B		9/27/2022	CJR	1
1.3-Dichlorobenzer	ne	< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1
1.2-Dichlorobenzer	ne	< 0.026	mg/kg	0.026	0.11	1	8260B		9/27/2022	CJR	1
Dichlorodifluorom	ethane	< 0.046	mg/kg	0.046	0.19	1	8260B		9/27/2022	CJR	1
1.2-Dichloroethane		< 0.042	88 mø/kø	0.042	0.17	1	8260B		9/27/2022	CIR	1
1 1-Dichloroethane		< 0.033	mg/kg	0.033	0.13	1	8260B		9/27/2022	CIR	1
1 1-Dichloroethene		< 0.033	mg/kg	0.049	0.13	1	8260B		9/27/2022	CIR	1
cis-1 2-Dichloroeth	ene	< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CIR	1
trans-1 2-Dichloroe	thene	< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CIR	1
1.2-Dichloropropar	ne ne	< 0.03	mg/kg	0.04	0.12	1	8260B		9/27/2022	CIR	1
1.3 Dichloropropar		< 0.04	mg/kg	0.04	0.10	1	8260B		0/27/2022	CIP	1
trans-1 3-Dichloror	ropene	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CIR	1
cis-1 3-Dichloropro	mene	< 0.027	mg/kg	0.027	0.14	1	8260B		9/27/2022	CIR	1
Di-isopropyl ether	pene	< 0.033	mg/kg	0.028	0.14	1	8260B		9/27/2022	CIR	1
EDB (1.2 Dibrome	oethana)	< 0.028	mg/kg	0.028	0.11	1	8260B		9/27/2022	CIP	1
EDB (1,2-Dibioine	ethane)	< 0.023	mg/kg	0.023	0.006	1	8260B		9/27/2022	CIP	1
Heyachlorobutadie	ne	< 0.1	mg/kg	0.023	0.070	1	8260B		9/27/2022	CIR	1
Isopropulbonzono	ne	< 0.025	mg/kg	0.025	0.42	1	8260D		0/27/2022	CIR	1
n Isopropyitelizere		< 0.033	mg/Kg	0.055	0.14	1	0200B		9/27/2022	CIR	1
Mothylong shlarid		< 0.05	mg/Kg	0.03	0.12	1	0200B		9/27/2022	CIR	1
Mothyl tout hutul -	har (MTDE)	< 0.1	mg/Kg	0.026	0.42	1	0200B		9/27/2022	CIR	1
Nonhthalag -	nei (IVIIDE)	< 0.030	mg/Kg	0.050	0.15	1	0200B		0/27/2022	CIR	1
		< 0.12	mg/Kg	0.12	0.38	1	0200B		9/27/2022	CIR	1
	othone	< 0.025	mg/Kg	0.025	0.12	1	8260B		9/27/2022	CJK	1
1, 1, 2, 2 - 1 etrachioro	ethone	< 0.03	mg/Kg	0.03	0.12		8260B		9/27/2022	CJK	1
1,1,1,2-1 etrachloro	beinane	< 0.041	mg/kg	0.041	0.17	1	8260B		9/21/2022	CJK	1

**Invoice #** E41456

 Lab Code
 5041456E

 Sample ID
 MW-3 1-3'

 Sample Matrix
 Soil

 Sample Date
 9/20/2022

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Tetrachloroethene	< 0.039	mg/kg	0.039	0.16	1	8260B		9/27/2022	CJR	1
Toluene	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
1,2,4-Trichlorobenzene	< 0.045	mg/kg	0.045	0.18	1	8260B		9/27/2022	CJR	1
1,2,3-Trichlorobenzene	< 0.18	mg/kg	0.18	0.56	1	8260B		9/27/2022	CJR	1
1,1,1-Trichloroethane	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
1,1,2-Trichloroethane	< 0.037	mg/kg	0.037	0.15	1	8260B		9/27/2022	CJR	1
Trichloroethene (TCE)	< 0.039	mg/kg	0.039	0.16	1	8260B		9/27/2022	CJR	1
Trichlorofluoromethane	< 0.066	mg/kg	0.066	0.27	1	8260B		9/27/2022	CJR	1
1,2,4-Trimethylbenzene	< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CJR	1
1,3,5-Trimethylbenzene	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
Vinyl Chloride	< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1
m&p-Xylene	< 0.062	mg/kg	0.062	0.25	1	8260B		9/27/2022	CJR	1
o-Xylene	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
SUR - Toluene-d8	87	Rec %			1	8260B		9/27/2022	CJR	1
SUR - 1,2-Dichloroethane-d4	96	Rec %			1	8260B		9/27/2022	CJR	1
SUR - 4-Bromofluorobenzene	100	Rec %			1	8260B		9/27/2022	CJR	1
SUR - Dibromofluoromethane	94	Rec %			1	8260B		9/27/2022	CJR	1

Project Name Proiect #	MONTELLC	) LODGE					Inv	voice # E414	156		
Lab Code Sample ID Sample Matrix Sample Date	5041456F MW-3 5-7' Soil 9/20/2022	Result	Unit	LOD	LOO	Dil	Method	Ext Date	Run Date	Analyst	Code
General				-	- C						
General		02.7	0/			1	5021		0/21/2022	NIC	1
Solids Percent		95.7	%0			1	5021		9/21/2022	NJC	1
Organic VOC's											
Benzene		< 0.025	mg/kg	0.025	0.1	1	8260B		9/27/2022	CJR	1
Bromobenzene		< 0.04	mg/kg	0.04	0.16	1	8260B		9/27/2022	CJR	1
Bromodichloromet	hane	< 0.046	mg/kg	0.046	0.19	1	8260B		9/27/2022	CJR	1
Bromoform		< 0.035	mg/kg	0.035	0.14	- 1	8260B		9/27/2022	CJR	1
tert-Butylbenzene		< 0.033	mg/kg	0.033	0.14	- 1	8260B		9/27/2022	CJR	1
sec-Butylbenzene		< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
n-Butylbenzene		< 0.029	mg/kg	0.029	0.12	1	8260B		9/27/2022	CJR	1
Carbon Tetrachlori	de	< 0.032	mg/kg	0.032	0.13	1	8260B		9/27/2022	CJR	1
Chlorobenzene		< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CJR	1
Chloroethane		< 0.1	mg/kg	0.1	0.41	1	8260B		9/27/2022	CJR	1
Chloroform		< 0.032	mg/kg	0.032	0.13	1	8260B		9/27/2022	CJR	1
Chloromethane		< 0.064	mg/kg	0.064	0.26	1	8260B		9/27/2022	CJR	1
2-Chlorotoluene		< 0.034	mg/kg	0.034	0.14	- 1	8260B		9/27/2022	CJR	1
4-Chlorotoluene		< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
1,2-Dibromo-3-chl	oropropane	< 0.055	mg/kg	0.055	0.22	1	8260B		9/27/2022	CJR	1
Dibromochloromet	hane	< 0.038	mg/kg	0.038	0.16	1	8260B		9/27/2022	CJR	1
1,4-Dichlorobenzer	ne	< 0.035	mg/kg	0.035	0.14	- 1	8260B		9/27/2022	CJR	1
1,3-Dichlorobenzer	ne	< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1
1,2-Dichlorobenzer	ne	< 0.026	mg/kg	0.026	0.11	1	8260B		9/27/2022	CJR	1
Dichlorodifluorome	ethane	< 0.046	mg/kg	0.046	0.19	1	8260B		9/27/2022	CJR	1
1,2-Dichloroethane		< 0.042	mg/kg	0.042	0.17	1	8260B		9/27/2022	CJR	1
1,1-Dichloroethane		< 0.033	mg/kg	0.033	0.13	1	8260B		9/27/2022	CJR	1
1,1-Dichloroethene		< 0.049	mg/kg	0.049	0.2	1	8260B		9/27/2022	CJR	1
cis-1,2-Dichloroeth	ene	< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CJR	1
trans-1,2-Dichloroe	ethene	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
1,2-Dichloropropar	ne	< 0.04	mg/kg	0.04	0.16	1	8260B		9/27/2022	CJR	1
1,3-Dichloropropar	ne	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
trans-1,3-Dichlorop	propene	< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CJR	1
cis-1,3-Dichloropro	opene	< 0.035	mg/kg	0.035	0.14	- 1	8260B		9/27/2022	CJR	1
Di-isopropyl ether		< 0.028	mg/kg	0.028	0.11	1	8260B		9/27/2022	CJR	1
EDB (1,2-Dibromo	oethane)	< 0.025	mg/kg	0.025	0.1	1	8260B		9/27/2022	CJR	1
Ethylbenzene		< 0.023	mg/kg	0.023	0.096	1	8260B		9/27/2022	CJR	1
Hexachlorobutadie	ne	< 0.1	mg/kg	0.1	0.42	1	8260B		9/27/2022	CJR	1
Isopropylbenzene		< 0.035	mg/kg	0.035	0.14	- 1	8260B		9/27/2022	CJR	1
p-Isopropyltoluene		< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
Methylene chloride		< 0.1	mg/kg	0.1	0.42	1	8260B		9/27/2022	CJR	1
Methyl tert-butyl et	ther (MTBE)	< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1
Naphthalene		< 0.12	mg/kg	0.12	0.38	1	8260B		9/27/2022	CJR	1
n-Propylbenzene		< 0.025	mg/kg	0.025	0.1	1	8260B		9/27/2022	CJR	1
1,1,2,2-Tetrachloro	bethane	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
1,1,1,2-Tetrachloro	bethane	< 0.041	mg/kg	0.041	0.17	1	8260B		9/27/2022	CJR	1

**Invoice #** E41456

 Lab Code
 5041456F

 Sample ID
 MW-3 5-7

 Sample Matrix
 Soil

 Sample Date
 9/20/2022

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Tetrachloroethene	< 0.039	mg/kg	0.039	0.16	1	8260B		9/27/2022	CJR	1
Toluene	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
1,2,4-Trichlorobenzene	< 0.045	mg/kg	0.045	0.18	1	8260B		9/27/2022	CJR	1
1,2,3-Trichlorobenzene	< 0.18	mg/kg	0.18	0.56	1	8260B		9/27/2022	CJR	1
1,1,1-Trichloroethane	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
1,1,2-Trichloroethane	< 0.037	mg/kg	0.037	0.15	1	8260B		9/27/2022	CJR	1
Trichloroethene (TCE)	< 0.039	mg/kg	0.039	0.16	1	8260B		9/27/2022	CJR	1
Trichlorofluoromethane	< 0.066	mg/kg	0.066	0.27	1	8260B		9/27/2022	CJR	1
1,2,4-Trimethylbenzene	< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CJR	1
1,3,5-Trimethylbenzene	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
Vinyl Chloride	< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1
m&p-Xylene	< 0.062	mg/kg	0.062	0.25	1	8260B		9/27/2022	CJR	1
o-Xylene	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
SUR - Toluene-d8	87	Rec %			1	8260B		9/27/2022	CJR	1
SUR - 1,2-Dichloroethane-d4	101	Rec %			1	8260B		9/27/2022	CJR	1
SUR - 4-Bromofluorobenzene	96	Rec %			1	8260B		9/27/2022	CJR	1
SUR - Dibromofluoromethane	101	Rec %			1	8260B		9/27/2022	CJR	1

Project Name N Proiect #	MONTELLC	) LODGE					Invo	<b>ice #</b> E414	156		
Lab Code Sample ID Sample Matrix Sample Date	5041456G MW-4 1' Soil 9/20/2022	Docult	Unit	LOD	100	Dil	Mathod	Ext Data	Pun Data	Analyst	Code
		Kesuit	Unit	LOD	LUQ	DII	Wiethou	Ext Date	Kull Date	Anaryst	Coue
General											
Solids Percent		90.2	0%			1	5021		0/21/2022	NIC	1
Solids Fercent		90.2	70			1	5021		9/21/2022	NJC	1
Urganic VOC's											
VOUS		< 0.025		0.025	0.1	1	82COD		0/27/2022	CID	1
Benzene		< 0.025	mg/Kg	0.025	0.1	· 1	8260B		9/27/2022	CIR	1
Bromobenzene		< 0.04	mg/Kg	0.04	0.16		8260B		9/27/2022	CIR	1
Bromodicniorometra	ane	< 0.046	mg/Kg	0.046	0.19		8260B		9/27/2022	CIR	1
Bromotorm		< 0.035	mg/Kg	0.035	0.14	· 1	8260B		9/27/2022	CIR	1
tert-Butylbenzene		< 0.033	mg/Kg	0.033	0.14	· 1	8260B		9/27/2022	CIR	1
sec-Butylbenzene		< 0.03	mg/kg	0.03	0.12		8260B		9/27/2022	CJR	1
n-Butylbenzene		< 0.029	mg/kg	0.029	0.12		8260B		9/27/2022	CJR	1
Carbon Tetrachiorid	e	< 0.032	mg/kg	0.032	0.13	1	8200B		9/27/2022	CIR	1
Chlorootenzene		< 0.027	mg/kg	0.027	0.11	1	8200B		9/27/2022	CIR	1
Chloroftnane		< 0.1	mg/kg	0.1	0.41	. I	8200B		9/27/2022	CIR	1
Chlorotorm		< 0.032	mg/kg	0.052	0.13	· 1	8200B		9/27/2022	CIR	1
		< 0.064	mg/kg	0.064	0.20	) 1	8200B		9/27/2022	CIR	1
2-Chlorotoluene		< 0.034	mg/kg	0.034	0.14	· 1	8260B		9/27/2022	CJR	1
4-Chiorotoluene		< 0.031	mg/kg	0.051	0.13		8200B		9/27/2022	CIR	1
1,2-Dibromo-3-chloi	ropropane	< 0.055	mg/kg	0.055	0.22	· 1	8260B		9/27/2022	CJR	1
Dibromocniorometra	ane	< 0.038	mg/kg	0.038	0.16		8260B		9/27/2022	CJR	1
1,4-Dichlorobenzene	•	< 0.035	mg/kg	0.035	0.14	· 1	8260B		9/27/2022	CJR	1
1,3-Dichlorobenzene	•	< 0.036	mg/kg	0.036	0.15		8260B		9/27/2022	CJR	1
1,2-Dichlorobenzene	2	< 0.026	mg/kg	0.026	0.11		8260B		9/27/2022	CJR	1
Dichlorodifluoromet	hane	< 0.046	mg/kg	0.046	0.19		8260B		9/27/2022	CJR	1
1,2-Dichloroethane		< 0.042	mg/kg	0.042	0.17		8260B		9/27/2022	CJR	1
1,1-Dichloroethane		< 0.033	mg/kg	0.033	0.13		8260B		9/27/2022	CJR	1
1,1-Dichloroethene		< 0.049	mg/kg	0.049	0.2		8260B		9/27/2022	CJR	1
cis-1,2-Dichloroethe	ne	< 0.027	mg/kg	0.027	0.11		8260B		9/27/2022	CJR	1
trans-1,2-Dichloroet	nene	< 0.03	mg/kg	0.03	0.12		8260B		9/27/2022	CJR	1
1,2-Dichloropropane	2	< 0.04	mg/kg	0.04	0.16		8260B		9/27/2022	CJR	1
1,3-Dichloropropane	2	< 0.031	mg/kg	0.031	0.13		8260B		9/27/2022	CJR	1
trans-1,3-Dichlerene	opene	< 0.027	mg/kg	0.027	0.11	1	8200B		9/27/2022	CIR	1
CIS-1,5-Dichloroprop	bene	< 0.035	mg/kg	0.035	0.14	• 1	8200B		9/27/2022	CJR	1
Di-isopropyl etner	<b>d</b> )	< 0.028	mg/kg	0.028	0.11	1	8260B		9/27/2022	CJR	1
EDB (1,2-Dibromoe	thane)	< 0.025	mg/kg	0.025	0.006	. I	8200B		9/27/2022	CIR	1
Luiyibelizelle		< 0.025	mg/Kg	0.025	0.090	) I ) 1	0200D		9/27/2022	CIR	1
Hexachiorodutadien	e	< 0.1	mg/kg	0.1	0.42		8200B		9/27/2022	CJR	1
Isopropyibenzene		< 0.035	mg/kg	0.035	0.14	· 1	8260B		9/27/2022	CJR	1
p-IsopropyItoluene		< 0.03	mg/kg	0.03	0.12		8260B		9/27/2022	CJR	1
Methyl tort hydride	or (MTDE)	< 0.1	mg/Kg	0.1	0.42	, I	8200B		9/27/2022	СІК	1
Nonhthelen-		< 0.030	mg/Kg	0.030	0.15	· 1	0200B		9/27/2022	CIR	1
n Drosselle e		< 0.12	mg/kg	0.12	0.38	• 1	8260B		9/27/2022	CJK	1
n-Propyidenzene	thono	< 0.025	mg/kg	0.025	0.1		8260B		9/27/2022	CJK	1
1,1,2,2-1 etrachloroe	thome	< 0.03	mg/kg	0.03	0.12	. 1	8260B		9/27/2022	CJK	1
1,1,1,2-1 etrachloroe	etnane	< 0.041	mg/kg	0.041	0.17	1	8260B		9/21/2022	CJR	1

**Invoice #** E41456

Lab Code	5041456G
Sample ID	MW-4 1'
Sample Matrix	Soil
Sample Date	9/20/2022

•	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Tetrachloroethene	3.0	mg/kg	0.039	0.16	1	8260B		9/27/2022	CJR	1
Toluene	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
1,2,4-Trichlorobenzene	< 0.045	mg/kg	0.045	0.18	1	8260B		9/27/2022	CJR	1
1,2,3-Trichlorobenzene	< 0.18	mg/kg	0.18	0.56	1	8260B		9/27/2022	CJR	1
1,1,1-Trichloroethane	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
1,1,2-Trichloroethane	< 0.037	mg/kg	0.037	0.15	1	8260B		9/27/2022	CJR	1
Trichloroethene (TCE)	< 0.039	mg/kg	0.039	0.16	1	8260B		9/27/2022	CJR	1
Trichlorofluoromethane	< 0.066	mg/kg	0.066	0.27	1	8260B		9/27/2022	CJR	1
1,2,4-Trimethylbenzene	< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CJR	1
1,3,5-Trimethylbenzene	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
Vinyl Chloride	< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1
m&p-Xylene	< 0.062	mg/kg	0.062	0.25	1	8260B		9/27/2022	CJR	1
o-Xylene	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
SUR - Toluene-d8	85	Rec %			1	8260B		9/27/2022	CJR	1
SUR - 1,2-Dichloroethane-d4	105	Rec %			1	8260B		9/27/2022	CJR	1
SUR - 4-Bromofluorobenzene	94	Rec %			1	8260B		9/27/2022	CJR	1
SUR - Dibromofluoromethane	99	Rec %			1	8260B		9/27/2022	CJR	1

Project Name M Proiect #	MONTELLO	LODGE					Invo	i <b>ce</b> # E414	56		
Lab Code Sample ID Sample Matrix Sample Date	5041456H MW-4 2-3.5 Soil 9/20/2022	5' Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		84.1	%			1	5021		9/21/2022	NJC	1
Organic											
VOC's											
Benzene		< 0.025	mg/kg	0.025	0.1	1	8260B		9/27/2022	CJR	1
Bromobenzene		< 0.04	mg/kg	0.04	0.16	1	8260B		9/27/2022	CJR	1
Bromodichlorometha	ane	< 0.046	mg/kg	0.046	0.19	1	8260B		9/27/2022	CJR	1
Bromoform		< 0.035	mg/kg	0.035	0.14	. 1	8260B		9/27/2022	CJR	1
tert-Butylbenzene		< 0.033	mg/kg	0.033	0.14	1	8260B		9/27/2022	CJR	1
sec-Butylbenzene		< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
n-Butylbenzene		< 0.029	mg/kg	0.029	0.12	1	8260B		9/27/2022	CJR	1
Carbon Tetrachlorid	e	< 0.032	mg/kg	0.032	0.13	1	8260B		9/27/2022	CJR	1
Chlorobenzene		< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CJR	1
Chloroethane		< 0.1	mg/kg	0.1	0.41	1	8260B		9/27/2022	CJR	1
Chloroform		< 0.032	mg/kg	0.032	0.13	1	8260B		9/27/2022	CJR	1
Chloromethane		< 0.064	mg/kg	0.064	0.26	1	8260B		9/27/2022	CJR	1
2-Chlorotoluene		< 0.034	mg/kg	0.034	0.14	1	8260B		9/27/2022	CJR	1
4-Chlorotoluene		< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
1,2-Dibromo-3-chlor	ropropane	< 0.055	mg/kg	0.055	0.22	1	8260B		9/27/2022	CJR	1
Dibromochlorometh	ane	< 0.038	mg/kg	0.038	0.16	1	8260B		9/27/2022	CJR	1
1,4-Dichlorobenzene	e	< 0.035	mg/kg	0.035	0.14	- 1	8260B		9/27/2022	CJR	1
1,3-Dichlorobenzene	e	< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1
1,2-Dichlorobenzene	e	< 0.026	mg/kg	0.026	0.11	1	8260B		9/27/2022	CJR	1
Dichlorodifluoromet	hane	< 0.046	mg/kg	0.046	0.19	1	8260B		9/27/2022	CJR	1
1,2-Dichloroethane		< 0.042	mg/kg	0.042	0.17	1	8260B		9/27/2022	CJR	1
1.1-Dichloroethane		< 0.033	mg/kg	0.033	0.13	1	8260B		9/27/2022	CJR	1
1.1-Dichloroethene		< 0.049	mg/kg	0.049	0.2	1	8260B		9/27/2022	CJR	1
cis-1.2-Dichloroethe	ne	< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CJR	1
trans-1.2-Dichloroet	hene	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
1.2-Dichloropropane	•	< 0.04	mg/kg	0.04	0.16	1	8260B		9/27/2022	CJR	1
1.3-Dichloropropane		< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
trans-1.3-Dichloropr	opene	< 0.027	mg/kg	0.027	0.11	1	8260B		9/27/2022	CJR	1
cis-1.3-Dichloropror	bene	< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CJR	1
Di-isopropyl ether		< 0.028	mg/kg	0.028	0.11	1	8260B		9/27/2022	CJR	1
EDB (1.2-Dibromoe	thane)	< 0.025	mø/kø	0.025	0.1	1	8260B		9/27/2022	CIR	1
Ethylbenzene	(interio)	< 0.023	mø/kø	0.023	0.096	1	8260B		9/27/2022	CIR	1
Hexachlorobutadien	e	< 0.1	mø/kø	0.1	0.42	1	8260B		9/27/2022	CIR	1
Isopropylbenzene	•	< 0.035	mg/kg	0.035	0.14	. 1	8260B		9/27/2022	CIR	1
p-Isopropyioenzene		< 0.035	mo/ko	0.033	0.14	1	8260B		9/27/2022	CIR	1
Methylene chloride		< 0.05	mg/kg	0.05	0.12	1	8260B		9/27/2022	CIR	1
Methyl tert-butyl eth	er (MTRF)	< 0.036	mg/kg	0.036	0.42	1	8260B		9/27/2022	CIR	1
Nanhthalene		< 0.050	mg/kg	0.050	0.15	1	8260B		9/27/2022	CIR	1
n-Pronvlhenzene		< 0.12	mg/kg	0.12	0.56	1	8260B		9/27/2022	CIR	1
1 1 2 2-Tetrachloroe	thane	< 0.025	mg/kg	0.025	0.1	1	8260B		9/27/2022	CIR	1
1 1 1 2-Tetrachloroa	thane	< 0.03	mg/kg	0.03	0.12	· 1	8260B		9/27/2022	CIR	1
1,1,1,2-1 cuacinoi0e	mune	< 0.0 <del>4</del> 1	mg/ Kg	0.041	0.17	1	02000		12112022	CIK	1

**Invoice** # E41456

 Lab Code
 5041456H

 Sample ID
 MW-4 2-3.5'

 Sample Matrix
 Soil

 Sample Date
 9/20/2022

-	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Tetrachloroethene	0.314	mg/kg	0.039	0.16	1	8260B		9/27/2022	CJR	1
Toluene	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
1,2,4-Trichlorobenzene	< 0.045	mg/kg	0.045	0.18	1	8260B		9/27/2022	CJR	1
1,2,3-Trichlorobenzene	< 0.18	mg/kg	0.18	0.56	1	8260B		9/27/2022	CJR	1
1,1,1-Trichloroethane	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
1,1,2-Trichloroethane	< 0.037	mg/kg	0.037	0.15	1	8260B		9/27/2022	CJR	1
Trichloroethene (TCE)	< 0.039	mg/kg	0.039	0.16	1	8260B		9/27/2022	CJR	1
Trichlorofluoromethane	< 0.066	mg/kg	0.066	0.27	1	8260B		9/27/2022	CJR	1
1,2,4-Trimethylbenzene	< 0.035	mg/kg	0.035	0.14	1	8260B		9/27/2022	CJR	1
1,3,5-Trimethylbenzene	< 0.031	mg/kg	0.031	0.13	1	8260B		9/27/2022	CJR	1
Vinyl Chloride	< 0.036	mg/kg	0.036	0.15	1	8260B		9/27/2022	CJR	1
m&p-Xylene	< 0.062	mg/kg	0.062	0.25	1	8260B		9/27/2022	CJR	1
o-Xylene	< 0.03	mg/kg	0.03	0.12	1	8260B		9/27/2022	CJR	1
SUR - Toluene-d8	86	Rec %			1	8260B		9/27/2022	CJR	1
SUR - 1,2-Dichloroethane-d4	105	Rec %			1	8260B		9/27/2022	CJR	1
SUR - 4-Bromofluorobenzene	95	Rec %			1	8260B		9/27/2022	CJR	1
SUR - Dibromofluoromethane	97	Rec %			1	8260B		9/27/2022	CJR	1

"J" Flag: Analyte detected between LOD and LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

## Code Comment

1 Laboratory QC within limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

**Authorized Signature** 

Michaelphil

CHAIN OF	STODY RECOR	D		2		Dra	<						-	Cha	in #		4	6/		0				
Lah I.D. #			1		j.		4				_			Pag	0	- 11 -	9		-	'				
QUOTE # :			n	TIVITO		TECH L	du	A.		0			Я	ush w	An	alys	is la	D	ate	Rec	Juin	ed:	Ē.,	
Project #:	\$			1990 Pi	ospect Ct.	<ul> <li>Appleton, V</li> </ul>	VI 549	914				×	Rus	hes	acc	pte	don	ly w	ith p	rior	auth	oriz	ation	•
Sampler: (signature)	t			920-830	2455 • mrs	ynergy@wi.t	webe.	com	-			15	1 z	orn	a	1	A	Oun						
Project (Name / Loca	ation): Montello	1 ad ce						An	alys	SR	que	ste	-			1	1	1		0ª	ler ,	Anal	ysis	
Reports To: 131	IN NORMANN	0 10	voice To:									_			_		_							
Company G.C.	(10	Q	ompany											-	DS					-				
Address 9/6	Suba Later O	A	ddress				5)	,					NE		SOLI									
City State Zip	New WJ 53	701 O	ty State Zip				Sep 9	Jop c	E			)	ALE		DED		5)	5						
Phone 60860	0108 (1	P	hone				ROS		TRIT	SE	210)	8021	PHTH		PENI	260)	0 - 15	TALS						PID/
Email		E	mail				Mod D	inou c	TE/N	GREA		(EPA	+ NA	ATE	LSUS	EPA	AIR (T	RA ME						FID
Lab I.D.	Sample I.D.	Collection Date Time	Filtered Y/N	No. of Containers	Type (Matrix)*	Preservation	DRO (	LEAD	NITRA	OIL &	PCB	PVOC	PVOC	SULF	TOTA	VOC	VOC	8-RCF						1
Sours:271	1. CAM	al relation	-2	-12	en	HCC		+		-				-	-	1×	-							
20	2 CMM		_													×	F					$\left  \right $		
D	prived - by	+	<	¢	¢	4				-				-	-	~	1				-			
																	++							
							-	-		_		-			+	+	+				-	-		
											$\left  \right $						+							
								-		-	-	F				-	-				-	-		
Comments/Spec	ial Instructions (*Specify	y groundwater "GW	", Drinking	Water "DW", V	Vaste Water	"WW", Soil "S	, Air	A", 0	U.S.	ludg	e, e	<u>[</u> ]												
Sample Ir Meth	ntegrity - To be complete	ed by receiving lab.		Relinguis	ailed By; (sign)		Time		20	ate 25	- F	lece	ved	By: (	sign						me			ate
Cooler se	al intact upon receipt:	Yes No	I	Received	in Laboratory	By:		$\left( \right)$	/	1			-	ime:	7	6	p			Date	2:0	2	12	1

## Synergy Environmental Lab, LLC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PORTAGE. WI 53901

#### Report Date 05-Oct-22

Project Name Project #	MONTELLO	) LODGE					Invo	ice # E415	27		
Lab Code Sample ID Sample Matrix Sample Date	5041527A MW-1 Water 9/29/2022	Result	Unit	LOD I	00 D	il	Method	Ext Date	Run Date	Analyst	Code
Organic			0	202 2				2			coure
VOC's											
Benzene		< 0.3	119/1	0.3	1.25	1	8260B		10/4/2022	CIR	1
Bromobenzene		< 0.34	ug/l	0.34	1.4	1	8260B		10/4/2022	CJR	1
Bromodichlorome	thane	< 0.36	ug/l	0.36	1.47	1	8260B		10/4/2022	CJR	1
Bromoform		< 0.42	ug/l	0.42	1.72	1	8260B		10/4/2022	CJR	1
tert-Butylbenzene		< 0.37	ug/l	0.37	1.49	1	8260B		10/4/2022	CJR	1
sec-Butylbenzene		< 0.33	ug/l	0.33	1.34	1	8260B		10/4/2022	CJR	1
n-Butylbenzene		< 0.71	ug/l	0.71	2.9	1	8260B		10/4/2022	CJR	1
Carbon Tetrachlor	ide	< 0.34	ug/l	0.34	1.39	1	8260B		10/4/2022	CJR	1
Chlorobenzene		< 0.29	ug/l	0.29	1.19	1	8260B		10/4/2022	CJR	1
Chloroethane		< 0.62	ug/l	0.62	2.54	1	8260B		10/4/2022	CJR	1
Chloroform		< 0.33	ug/l	0.33	1.33	1	8260B		10/4/2022	CJR	1
Chloromethane		< 0.74	ug/l	0.74	3.03	1	8260B		10/4/2022	CJR	1
2-Chlorotoluene		< 0.34	ug/l	0.34	1.37	1	8260B		10/4/2022	CJR	1
4-Chlorotoluene		< 0.4	ug/l	0.4	1.63	1	8260B		10/4/2022	CJR	1
1,2-Dibromo-3-ch	loropropane	< 0.74	ug/l	0.74	3.01	1	8260B		10/4/2022	CJR	1
Dibromochlorome	thane	< 0.36	ug/l	0.36	1.46	1	8260B		10/4/2022	CJR	1
1,4-Dichlorobenze	me	< 0.49	ug/l	0.49	2.01	1	8260B		10/4/2022	CJR	1
1,3-Dichlorobenze	ne	< 0.35	ug/l	0.35	1.44	1	8260B		10/4/2022	CJR	1
1,2-Dichlorobenze	ne	< 0.4	ug/l	0.4	1.65	1	8260B		10/4/2022	CJR	1
Dichlorodifluorom	nethane	< 0.3	ug/l	0.3	1.23	1	8260B		10/4/2022	CJR	1
1,2-Dichloroethan	e	< 0.43	ug/l	0.43	1.75	1	8260B		10/4/2022	CJR	1
1,1-Dichloroethan	e	< 0.43	ug/l	0.43	1.74	1	8260B		10/4/2022	CJR	1
1,1-Dichloroethen	e	< 0.43	ug/l	0.43	1.76	1	8260B		10/4/2022	CJR	1
cis-1,2-Dichloroet	hene	< 0.32	ug/l	0.32	1.29	1	8260B		10/4/2022	CJR	1
trans-1,2-Dichloro	ethene	< 0.5	ug/l	0.5	2.02	1	8260B		10/4/2022	CJR	1

**Invoice #** E41527

 Lab Code
 5041527A

 Sample ID
 MW-1

 Sample Matrix
 Water

 Sample Date
 9/29/2022

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
1,2-Dichloropropane	< 0.39	ug/l	0.39	1.58	1	8260B		10/4/2022	CJR	1
1,3-Dichloropropane	< 0.38	ug/l	0.38	1.55	1	8260B		10/4/2022	CJR	1
trans-1,3-Dichloropropene	< 0.41	ug/l	0.41	1.67	1	8260B		10/4/2022	CJR	1
cis-1,3-Dichloropropene	< 0.41	ug/l	0.41	1.67	1	8260B		10/4/2022	CJR	1
Di-isopropyl ether	< 0.48	ug/l	0.48	1.96	1	8260B		10/4/2022	CJR	1
EDB (1,2-Dibromoethane)	< 0.39	ug/l	0.39	1.59	1	8260B		10/4/2022	CJR	1
Ethylbenzene	< 0.33	ug/l	0.33	1.37	1	8260B		10/4/2022	CJR	1
Hexachlorobutadiene	< 0.81	ug/l	0.81	3.44	1	8260B		10/4/2022	CJR	1
Isopropylbenzene	< 0.34	ug/l	0.34	1.38	1	8260B		10/4/2022	CJR	1
p-Isopropyltoluene	< 0.47	ug/l	0.47	1.91	1	8260B		10/4/2022	CJR	1
Methylene chloride	< 0.79	ug/l	0.79	3.23	1	8260B		10/4/2022	CJR	1
Methyl tert-butyl ether (MTBE)	< 0.47	ug/l	0.47	1.91	1	8260B		10/4/2022	CJR	1
Naphthalene	< 1.4	ug/l	1.4	5.56	1	8260B		10/4/2022	CJR	1
n-Propylbenzene	< 0.39	ug/l	0.39	1.6	1	8260B		10/4/2022	CJR	1
1,1,2,2-Tetrachloroethane	< 0.43	ug/l	0.43	1.77	1	8260B		10/4/2022	CJR	1
1,1,1,2-Tetrachloroethane	< 0.55	ug/l	0.55	2.25	1	8260B		10/4/2022	CJR	1
Tetrachloroethene	< 0.47	ug/l	0.47	1.91	1	8260B		10/4/2022	CJR	1
Toluene	< 0.33	ug/l	0.33	1.35	1	8260B		10/4/2022	CJR	1
1,2,4-Trichlorobenzene	< 0.63	ug/l	0.63	2.57	1	8260B		10/4/2022	CJR	1
1,2,3-Trichlorobenzene	< 1.4	ug/l	1.4	5.94	1	8260B		10/4/2022	CJR	1
1,1,1-Trichloroethane	< 0.33	ug/l	0.33	1.34	1	8260B		10/4/2022	CJR	1
1,1,2-Trichloroethane	< 0.42	ug/l	0.42	1.72	1	8260B		10/4/2022	CJR	1
Trichloroethene (TCE)	< 0.38	ug/l	0.38	1.55	1	8260B		10/4/2022	CJR	1
Trichlorofluoromethane	< 0.33	ug/l	0.33	1.35	1	8260B		10/4/2022	CJR	1
1,2,4-Trimethylbenzene	< 0.35	ug/l	0.35	1.44	1	8260B		10/4/2022	CJR	1
1,3,5-Trimethylbenzene	< 0.41	ug/l	0.41	1.66	1	8260B		10/4/2022	CJR	1
Vinyl Chloride	< 0.15	ug/l	0.15	0.61	1	8260B		10/4/2022	CJR	1
m&p-Xylene	< 0.64	ug/l	0.64	2.63	1	8260B		10/4/2022	CJR	1
o-Xylene	< 0.37	ug/l	0.37	1.51	1	8260B		10/4/2022	CJR	1
SUR - Toluene-d8	103	REC %			1	8260B		10/4/2022	CJR	1
SUR - 1,2-Dichloroethane-d4	98	REC %			1	8260B		10/4/2022	CJR	1
SUR - 4-Bromofluorobenzene	101	REC %			1	8260B		10/4/2022	CJR	1
SUR - Dibromofluoromethane	96	REC %			1	8260B		10/4/2022	CJR	1

Project NameMONTELLO LODGEInvoice #E41527Project #											
Lab Code Sample ID Sample Matrix Sample Date	5041527B MW-2 Water 9/29/2022	D	<b>T</b> I 94		100	<b>D</b> 'I	NG-411	E-4 D-4-	Dere De fe	Arrahart	Colo
- ·		Result	Unit	LOD	LUQ	DII	Method	Ext Date	Run Date	Analyst	Code
Organic VOC's											
Benzene		< 0.3	ug/l	0.3	1.25	5 1	8260B		10/4/2022	CJR	1
Bromobenzene		< 0.34	ug/l	0.34	1.4	. 1	8260B		10/4/2022	CJR	1
Bromodichlorometh	ane	< 0.36	19/1	0.36	1 47	· 1	8260B		10/4/2022	CIR	1
Bromoform		< 0.42	ug/1 110/1	0.30	1.17	1	8260B		10/4/2022	CIR	1
tert-Butylbenzene		< 0.12	ug/1	0.37	1 49	. 1	8260B		10/4/2022	CIR	1
sec-Butylbenzene		< 0.33	ug/1	0.37	1.49	. 1	8260B		10/4/2022	CIR	1
n-Butylbenzene		< 0.55	ug/1	0.55	2 9	1	8260B		10/4/2022	CIR	1
Carbon Totrachloric	la	< 0.71	ug/1	0.71	1 20	· 1	8260D		10/4/2022	CIR	1
Chlorobonzono	le	< 0.34	ug/1	0.34	1.39	· 1	8260B		10/4/2022	CIR	1
Chlorosthere		< 0.29	ug/1	0.29	1.19	1	8200D		10/4/2022	CIR	1
Chloroethane		< 0.62	ug/I	0.62	2.54	• 1	8200B		10/4/2022	CJR	1
Chloroform		< 0.33	ug/I	0.33	1.33		8260B		10/4/2022	CJR	1
		< 0.74	ug/I	0.74	3.03		8260B		10/4/2022	CJR	1
2-Chlorotoluene		< 0.34	ug/l	0.34	1.37		8260B		10/4/2022	CJR	1
4-Chlorotoluene		< 0.4	ug/l	0.4	1.63		8260B		10/4/2022	CJR	1
1,2-Dibromo-3-chlo	ropropane	< 0.74	ug/l	0.74	3.01	. 1	8260B		10/4/2022	CJR	I
Dibromochlorometh	nane	< 0.36	ug/l	0.36	1.46	5 1	8260B		10/4/2022	CJR	1
1,4-Dichlorobenzen	e	< 0.49	ug/l	0.49	2.01	1	8260B		10/4/2022	CJR	1
1,3-Dichlorobenzen	e	< 0.35	ug/l	0.35	1.44	- 1	8260B		10/4/2022	CJR	1
1,2-Dichlorobenzen	e	< 0.4	ug/l	0.4	1.65	1	8260B		10/4/2022	CJR	1
Dichlorodifluorome	thane	< 0.3	ug/l	0.3	1.23	1	8260B		10/4/2022	CJR	1
1,2-Dichloroethane		< 0.43	ug/l	0.43	1.75	1	8260B		10/4/2022	CJR	1
1,1-Dichloroethane		< 0.43	ug/l	0.43	1.74	- 1	8260B		10/4/2022	CJR	1
1,1-Dichloroethene		< 0.43	ug/l	0.43	1.76	5 1	8260B		10/4/2022	CJR	1
cis-1,2-Dichloroethe	ene	2.72	ug/l	0.32	1.29	1	8260B		10/4/2022	CJR	1
trans-1,2-Dichloroe	thene	< 0.5	ug/l	0.5	2.02	. 1	8260B		10/4/2022	CJR	1
1,2-Dichloropropan	e	< 0.39	ug/l	0.39	1.58	1	8260B		10/4/2022	CJR	1
1,3-Dichloropropan	e	< 0.38	ug/l	0.38	1.55	1	8260B		10/4/2022	CJR	1
trans-1,3-Dichlorop	ropene	< 0.41	ug/l	0.41	1.67	1	8260B		10/4/2022	CJR	1
cis-1,3-Dichloropro	pene	< 0.41	ug/l	0.41	1.67	1	8260B		10/4/2022	CJR	1
Di-isopropyl ether		< 0.48	ug/l	0.48	1.96	5 1	8260B		10/4/2022	CJR	1
EDB (1,2-Dibromo	ethane)	< 0.39	ug/l	0.39	1.59	1	8260B		10/4/2022	CJR	1
Ethylbenzene		< 0.33	ug/l	0.33	1.37	1	8260B		10/4/2022	CJR	1
Hexachlorobutadier	ne	< 0.81	ug/l	0.81	3.44	- 1	8260B		10/4/2022	CJR	1
Isopropylbenzene		< 0.34	ug/l	0.34	1.38	1	8260B		10/4/2022	CJR	1
p-Isopropyltoluene		< 0.47	ug/l	0.47	1.91	1	8260B		10/4/2022	CJR	1
Methylene chloride		< 0.79	ug/l	0.79	3.23	1	8260B		10/4/2022	CJR	1
Methyl tert-butyl etl	her (MTBE)	< 0.47	ug/l	0.47	1.91	1	8260B		10/4/2022	CJR	1
Naphthalene		< 1.4	ug/l	1.4	5.56	5 1	8260B		10/4/2022	CJR	1
n-Propylbenzene		< 0.39	ug/l	0.39	1.6	i 1	8260B		10/4/2022	CJR	1
1,1,2,2-Tetrachloro	ethane	< 0.43	ug/l	0.43	1.77	· 1	8260B		10/4/2022	CJR	1
1,1,1,2-Tetrachloro	ethane	< 0.55	ug/l	0.55	2.25	1	8260B		10/4/2022	CJR	1
Tetrachloroethene		< 0.47	ug/l	0.47	1.91	. 1	8260B		10/4/2022	CJR	1
Toluene		< 0.33	ug/1	0.33	1.35	i 1	8260B		10/4/2022	CJR	1
1.2.4-Trichlorobenz	ene	< 0.63	uø/l	0.63	2.57	· 1	8260B		10/4/2022	CJR	- 1
, ,			-8-	5.00	2.07	1					-

**Invoice #** E41527

Lab Code	5041527B
Sample ID	MW-2
Sample Matrix	Water
Sample Date	9/29/2022

Sumple Dute 772772022	-									
	Result	Unit	LOD I	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
1,2,3-Trichlorobenzene	< 1.4	ug/l	1.4	5.94	1	8260B		10/4/2022	CJR	1
1,1,1-Trichloroethane	< 0.33	ug/l	0.33	1.34	1	8260B		10/4/2022	CJR	1
1,1,2-Trichloroethane	< 0.42	ug/l	0.42	1.72	1	8260B		10/4/2022	CJR	1
Trichloroethene (TCE)	< 0.38	ug/l	0.38	1.55	1	8260B		10/4/2022	CJR	1
Trichlorofluoromethane	< 0.33	ug/l	0.33	1.35	1	8260B		10/4/2022	CJR	1
1,2,4-Trimethylbenzene	< 0.35	ug/l	0.35	1.44	1	8260B		10/4/2022	CJR	1
1,3,5-Trimethylbenzene	< 0.41	ug/l	0.41	1.66	1	8260B		10/4/2022	CJR	1
Vinyl Chloride	< 0.15	ug/l	0.15	0.61	1	8260B		10/4/2022	CJR	1
m&p-Xylene	< 0.64	ug/l	0.64	2.63	1	8260B		10/4/2022	CJR	1
o-Xylene	< 0.37	ug/l	0.37	1.51	1	8260B		10/4/2022	CJR	1
SUR - Dibromofluoromethane	100	REC %			1	8260B		10/4/2022	CJR	1
SUR - 1,2-Dichloroethane-d4	105	REC %			1	8260B		10/4/2022	CJR	1
SUR - 4-Bromofluorobenzene	100	REC %			1	8260B		10/4/2022	CJR	1
SUR - Toluene-d8	103	REC %			1	8260B		10/4/2022	CJR	1

Project Name	MONTELLC	) LODGE	<b>Invoice</b> # E41527											
Lab Code Sample ID Sample Matrix Sample Date	5041527C MW-3 Water 9/29/2022	Pocult	Unit	LOD	100	Dil	Mathod	Ext Data	Run Data	Analyst	Code			
Organic		Kesun	Unit	LOD	LUQ	DII	Wiethou	Ext Date	Kull Date	Anaryst	Coue			
VOC's														
Benzene		< 0.3	ug/l	0.3	1.25	1	8260B		10/4/2022	CJR	1			
Bromobenzene		< 0.34	ug/l	0.34	1.4	- 1	8260B		10/4/2022	CJR	1			
Bromodichlorometh	nane	< 0.36	ug/l	0.36	1.47	1	8260B		10/4/2022	CJR	1			
Bromoform		< 0.42	ug/l	0.42	1.72	. 1	8260B		10/4/2022	CJR	1			
tert-Butylbenzene		< 0.37	ug/l	0.37	1.49	1	8260B		10/4/2022	CJR	1			
sec-Butylbenzene		< 0.33	ug/l	0.33	1.34	- 1	8260B		10/4/2022	CJR	1			
n-Butylbenzene		< 0.71	ug/l	0.71	2.9	1	8260B		10/4/2022	CJR	1			
Carbon Tetrachlorid	de	< 0.34	ug/l	0.34	1.39	1	8260B		10/4/2022	CJR	1			
Chlorobenzene		< 0.29	ug/l	0.29	1.19	1	8260B		10/4/2022	CJR	1			
Chloroethane		< 0.62	ug/l	0.62	2.54	1	8260B		10/4/2022	CJR	1			
Chloroform		< 0.33	ug/l	0.33	1.33	1	8260B		10/4/2022	CJR	1			
Chloromethane		< 0.74	ug/l	0.74	3.03	1	8260B		10/4/2022	CJR	1			
2-Chlorotoluene		< 0.34	ug/l	0.34	1.37	· 1	8260B		10/4/2022	CJR	1			
4-Chlorotoluene		< 0.4	ug/l	0.4	1.63	1	8260B		10/4/2022	CJR	1			
1,2-Dibromo-3-chlo	propropane	< 0.74	ug/l	0.74	3.01	1	8260B		10/4/2022	CJR	1			
Dibromochlorometh	nane	< 0.36	ug/l	0.36	1.46	i 1	8260B		10/4/2022	CJR	1			
1,4-Dichlorobenzen	e	< 0.49	ug/l	0.49	2.01	1	8260B		10/4/2022	CJR	1			
1,3-Dichlorobenzen	e	< 0.35	ug/l	0.35	1.44	- 1	8260B		10/4/2022	CJR	1			
1,2-Dichlorobenzen	e	< 0.4	ug/l	0.4	1.65	1	8260B		10/4/2022	CJR	1			
Dichlorodifluorome	thane	< 0.3	ug/l	0.3	1.23	1	8260B		10/4/2022	CJR	1			
1,2-Dichloroethane		< 0.43	ug/l	0.43	1.75	1	8260B		10/4/2022	CJR	1			
1,1-Dichloroethane		< 0.43	ug/l	0.43	1.74	- 1	8260B		10/4/2022	CJR	1			
1.1-Dichloroethene		< 0.43	ug/1	0.43	1.76	5 1	8260B		10/4/2022	CJR	1			
cis-1,2-Dichloroethe	ene	< 0.32	ug/l	0.32	1.29	0 1	8260B		10/4/2022	CJR	1			
trans-1,2-Dichloroe	thene	< 0.5	ug/l	0.5	2.02	. 1	8260B		10/4/2022	CJR	1			
1,2-Dichloropropan	e	< 0.39	ug/l	0.39	1.58	1	8260B		10/4/2022	CJR	1			
1.3-Dichloropropan	e	< 0.38	ug/l	0.38	1.55	5 1	8260B		10/4/2022	CJR	1			
trans-1.3-Dichlorop	ropene	< 0.41	ug/1	0.41	1.67	· 1	8260B		10/4/2022	CJR	1			
cis-1.3-Dichloropro	pene	< 0.41	ug/1	0.41	1.67	′ 1	8260B		10/4/2022	CJR	1			
Di-isopropyl ether	I	< 0.48	ug/l	0.48	1.96	5 1	8260B		10/4/2022	CJR	1			
EDB (1.2-Dibromo	ethane)	< 0.39	ug/l	0.39	1.59	) 1	8260B		10/4/2022	CJR	1			
Ethylbenzene	)	< 0.33	ug/l	0.33	1.37	· 1	8260B		10/4/2022	CJR	1			
Hexachlorobutadier	ne	< 0.81	ug/l	0.81	3.44	. 1	8260B		10/4/2022	CJR	1			
Isopropylbenzene		< 0.34	ug/l	0.34	1.38	- 1	8260B		10/4/2022	CJR	1			
p-Isopropyltoluene		< 0.47	119/l	0.47	1.91	1	8260B		10/4/2022	CIR	1			
Methylene chloride		< 0.79	ug/1	0.79	3.23	1	8260B		10/4/2022	CIR	1			
Methyl tert-butyl et	her (MTRE)	< 0.47	ug/1	0.47	1 91	1	8260B		10/4/2022	CIR	1			
Naphthalene	iner (initibe)	< 1.4	ug/1	1.4	5.56	i 1	8260B		10/4/2022	CIR	1			
n-Pronvlbenzene		< 0.30	ug/l	0.30	1.6	1	8260B		10/4/2022	CJR	1			
1.1.2.2-Tetrachloro	ethane	< 0.43	ug/1 110/1	0.43	1 77	· 1	8260B		10/4/2022	CJR	1			
1.1.1.2.Tetrachloro	ethane	< 0.55	ug/1 110/1	0.55	2.25	1	8260B		10/4/2022	CJR	1			
Tetrachloroethere	culuite	< 0.55	ug/1 110/1	0.55	1 01	1	8260B		10/4/2022	CIR	1			
Toluene		< 0.33	110/l	0.33	1 35	1	8260B		10/4/2022	CIR	1			
1 2 4-Trichloroben	rene	< 0.55	ug/1 110/1	0.55	2 57	· 1	8260B		10/4/2022	CIR	1			
1,2,7 1101000012		< 0.05	ug/1	0.05	2.57	1	02000		10/ 7/2022	0.11	1			

**Invoice #** E41527

Lab Code	5041527C
Sample ID	MW-3
Sample Matrix	Water
Sample Date	9/29/2022

	Result	Unit	LOD L	OQ D	Dil	Method	Ext Date	Run Date	Analyst	Code
1,2,3-Trichlorobenzene	< 1.4	ug/l	1.4	5.94	1	8260B		10/4/2022	CJR	1
1,1,1-Trichloroethane	< 0.33	ug/l	0.33	1.34	1	8260B		10/4/2022	CJR	1
1,1,2-Trichloroethane	< 0.42	ug/l	0.42	1.72	1	8260B		10/4/2022	CJR	1
Trichloroethene (TCE)	< 0.38	ug/l	0.38	1.55	1	8260B		10/4/2022	CJR	1
Trichlorofluoromethane	< 0.33	ug/l	0.33	1.35	1	8260B		10/4/2022	CJR	1
1,2,4-Trimethylbenzene	< 0.35	ug/l	0.35	1.44	1	8260B		10/4/2022	CJR	1
1,3,5-Trimethylbenzene	< 0.41	ug/l	0.41	1.66	1	8260B		10/4/2022	CJR	1
Vinyl Chloride	< 0.15	ug/l	0.15	0.61	1	8260B		10/4/2022	CJR	1
m&p-Xylene	< 0.64	ug/l	0.64	2.63	1	8260B		10/4/2022	CJR	1
o-Xylene	< 0.37	ug/l	0.37	1.51	1	8260B		10/4/2022	CJR	1
SUR - Toluene-d8	104	REC %			1	8260B		10/4/2022	CJR	1
SUR - 1,2-Dichloroethane-d4	103	REC %			1	8260B		10/4/2022	CJR	1
SUR - 4-Bromofluorobenzene	100	REC %			1	8260B		10/4/2022	CJR	1
SUR - Dibromofluoromethane	98	REC %			1	8260B		10/4/2022	CJR	1

Project Name 1 Proiect #		<b>Invoice #</b> E41527									
Lab Code Sample ID Sample Matrix Sample Date	5041527D MW-4 Water 9/29/2022	Result	Unit	LOD	LOO	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic					<b>x</b>						
VOC's											
Benzene		< 0.3	ug/l	0.3	1.25	1	8260B		10/5/2022	CJR	1
Bromobenzene		< 0.34	ug/l	0.34	1.4	1	8260B		10/5/2022	CJR	1
Bromodichlorometh	ane	< 0.36	ug/l	0.36	1.47	1	8260B		10/5/2022	CJR	1
Bromoform		< 0.42	ug/l	0.42	1.72	1	8260B		10/5/2022	CJR	1
tert-Butylbenzene		< 0.37	ug/l	0.37	1.49	1	8260B		10/5/2022	CJR	1
sec-Butylbenzene		< 0.33	ug/l	0.33	1.34	1	8260B		10/5/2022	CJR	1
n-Butylbenzene		< 0.71	ug/l	0.71	2.9	1	8260B		10/5/2022	CJR	1
Carbon Tetrachloric	le	< 0.34	ug/l	0.34	1.39	1	8260B		10/5/2022	CJR	1
Chlorobenzene		< 0.29	ug/l	0.29	1.19	1	8260B		10/5/2022	CJR	1
Chloroethane		< 0.62	ug/l	0.62	2.54	- 1	8260B		10/5/2022	CJR	1
Chloroform		< 0.33	ug/l	0.33	1.33	1	8260B		10/5/2022	CJR	1
Chloromethane		< 0.74	ug/l	0.74	3.03	1	8260B		10/5/2022	CJR	1
2-Chlorotoluene		< 0.34	ug/l	0.34	1.37	1	8260B		10/5/2022	CJR	1
4-Chlorotoluene		< 0.4	ug/l	0.4	1.63	1	8260B		10/5/2022	CJR	1
1,2-Dibromo-3-chlo	ropropane	< 0.74	ug/l	0.74	3.01	1	8260B		10/5/2022	CJR	1
Dibromochlorometh	nane	< 0.36	ug/l	0.36	1.46	1	8260B		10/5/2022	CJR	1
1,4-Dichlorobenzen	e	< 0.49	ug/l	0.49	2.01	1	8260B		10/5/2022	CJR	1
1,3-Dichlorobenzen	e	< 0.35	ug/l	0.35	1.44	- 1	8260B		10/5/2022	CJR	1
1,2-Dichlorobenzen	e	< 0.4	ug/l	0.4	1.65	1	8260B		10/5/2022	CJR	1
Dichlorodifluorome	thane	< 0.3	ug/l	0.3	1.23	1	8260B		10/5/2022	CJR	1
1,2-Dichloroethane		< 0.43	ug/l	0.43	1.75	1	8260B		10/5/2022	CJR	1
1,1-Dichloroethane		< 0.43	ug/l	0.43	1.74	1	8260B		10/5/2022	CJR	1
1,1-Dichloroethene		< 0.43	ug/l	0.43	1.76	1	8260B		10/5/2022	CJR	1
cis-1,2-Dichloroethe	ene	16.9	ug/l	0.32	1.29	1	8260B		10/5/2022	CJR	1
trans-1,2-Dichloroe	thene	2.55	ug/l	0.5	2.02	1	8260B		10/5/2022	CJR	1
1,2-Dichloropropan	e	< 0.39	ug/l	0.39	1.58	1	8260B		10/5/2022	CJR	1
1,3-Dichloropropan	e	< 0.38	ug/l	0.38	1.55	1	8260B		10/5/2022	CJR	1
trans-1,3-Dichlorop	ropene	< 0.41	ug/l	0.41	1.67	1	8260B		10/5/2022	CJR	1
cis-1,3-Dichloropro	pene	< 0.41	ug/l	0.41	1.67	1	8260B		10/5/2022	CJR	1
Di-isopropyl ether		< 0.48	ug/l	0.48	1.96	1	8260B		10/5/2022	CJR	1
EDB (1,2-Dibromo	ethane)	< 0.39	ug/l	0.39	1.59	1	8260B		10/5/2022	CJR	1
Ethylbenzene		< 0.33	ug/l	0.33	1.37	1	8260B		10/5/2022	CJR	1
Hexachlorobutadier	ne	< 0.81	ug/l	0.81	3.44	1	8260B		10/5/2022	CJR	1
Isopropylbenzene		< 0.34	ug/l	0.34	1.38	1	8260B		10/5/2022	CJR	1
p-Isopropyltoluene		< 0.47	ug/l	0.47	1.91	1	8260B		10/5/2022	CJR	1
Methylene chloride		< 0.79	ug/l	0.79	3.23	1	8260B		10/5/2022	CJR	1
Methyl tert-butyl etl	her (MTBE)	< 0.47	ug/l	0.47	1.91	1	8260B		10/5/2022	CJR	1
Naphthalene		< 1.4	ug/l	1.4	5.56	1	8260B		10/5/2022	CJR	1
n-Propylbenzene		< 0.39	ug/l	0.39	1.6	1	8260B		10/5/2022	CJR	1
1,1,2,2-Tetrachloro	ethane	< 0.43	ug/l	0.43	1.77	1	8260B		10/5/2022	CJR	1
1,1,1,2-Tetrachloro	ethane	< 0.55	ug/l	0.55	2.25	1	8260B		10/5/2022	CJR	1
Tetrachloroethene		13	ug/l	0.47	1.91	1	8260B		10/5/2022	CJR	1
Toluene		< 0.33	ug/l	0.33	1.35	1	8260B		10/5/2022	CJR	1
1,2,4-Trichlorobenz	ene	< 0.63	ug/l	0.63	2.57	1	8260B		10/5/2022	CJR	1
			0								

**Invoice #** E41527

Lab Code	5041527D
Sample ID	MW-4
Sample Matrix	Water
Sample Date	9/29/2022

	Result	Unit	LOD I	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
1,2,3-Trichlorobenzene	< 1.4	ug/l	1.4	5.94	1	8260B		10/5/2022	CJR	1
1,1,1-Trichloroethane	< 0.33	ug/l	0.33	1.34	1	8260B		10/5/2022	CJR	1
1,1,2-Trichloroethane	< 0.42	ug/l	0.42	1.72	1	8260B		10/5/2022	CJR	1
Trichloroethene (TCE)	4.0	ug/l	0.38	1.55	1	8260B		10/5/2022	CJR	1
Trichlorofluoromethane	< 0.33	ug/l	0.33	1.35	1	8260B		10/5/2022	CJR	1
1,2,4-Trimethylbenzene	< 0.35	ug/l	0.35	1.44	1	8260B		10/5/2022	CJR	1
1,3,5-Trimethylbenzene	< 0.41	ug/l	0.41	1.66	1	8260B		10/5/2022	CJR	1
Vinyl Chloride	63	ug/l	0.15	0.61	1	8260B		10/5/2022	CJR	1
m&p-Xylene	< 0.64	ug/l	0.64	2.63	1	8260B		10/5/2022	CJR	1
o-Xylene	< 0.37	ug/l	0.37	1.51	1	8260B		10/5/2022	CJR	1
SUR - Toluene-d8	106	REC %			1	8260B		10/5/2022	CJR	1
SUR - 1,2-Dichloroethane-d4	93	REC %			1	8260B		10/5/2022	CJR	1
SUR - 4-Bromofluorobenzene	100	REC %			1	8260B		10/5/2022	CJR	1
SUR - Dibromofluoromethane	94	REC %			1	8260B		10/5/2022	CJR	1

"J" Flag: Analyte detected between LOD and LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

#### Code Comment

1

Laboratory QC within limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Authorized Signature

Michaelphil