

November 6, 2014

John Hnat Wisconsin Department of Environmental Resources 2300 N. Dr. Martin Luther King Jr. Dr. Milwaukee, WI 53212

RE: Further Site Investigation 2 Work Scope Former Hoffman Valet Cleaners 7215 West Center Street Wauwatosa, Wisconsin FID # 241083150 BRRTS # 02-41-307576

Dear Mr. Hnat:

Environmental Forensic Investigations, Inc. (EnviroForensics) is pleased to provide this work scope for interim remedial actions and additional investigative requirements needed to establish environmental site closure at the former Hoffman Valet Cleaners (Hoffman's) property located at 7215 W. Center Street, Wauwatosa, Wisconsin (Site).

NOV 112014

Initial:-

Swx B& Erroul

BACKGROUND AND SITE CONDITIONS

The Site is located at 7215 W. Center Street in Wauwatosa, Wisconsin approximately seven (7) miles west of Lake Michigan. The Site is occupied by a two-story building, housing a dry cleaning business on the ground floor and a residential unit on the second floor. The building is constructed with a partial basement. A concrete parking area is present on the south side of the building. The Site is bound by Center Street to the north, a commercial property to the west, a residential property to the east, and an alley to the south. The Site is situated in an area of mixed commercial and residential land use. The Site is occupied by an active dry cleaning facility that uses tetrachloroethene (PCE) in the cleaning process. However, the property is currently up for sale, and future purchasers may not operate a dry cleaning business.

Site investigations were initially performed by Arcadis beginning in 2002. EnviroForensics continued the Site investigations beginning in 2010.

Site soil consists of clay with a 4 to 6-foot thick sand layer encountered at approximately 7 feet bgs. This sand layer may exist in contact with the basement slab of the dry cleaning building and may be in contact with floor drains, sanitary sewer connections, and other utilities associated with the dry cleaning building.

Document: 6200-0262 Environmental Forensic Investigations, Inc. N16 W23390 Stone Ridge Drive, Suite G, Waukesha, WI 53188 Phone: 414-982-3988 • Fax 317-972-7875

The sand layer likely has a much higher permeability than the clay soil and may act as a preferential migration pathway for PCE and PCE vapors. Discontinuous seams of sand and silty sand are present within the clay and could also act as preferential migration pathways if PCE has entered them. Concentrations of PCE in soil appear to reside in a 2-4 feet thick sand layer located just beneath the basement slab of the dry cleaning building (refer to geologic cross-sections in **Attachment 1**). The highest concentration of PCE in soil previously detected was 5,200 micrograms per kilogram (ug/kg) within the sand layer at a depth of 2-4 feet below the basement slab. Lateral movement of the PCE appears limited within the sand layer

The water table is encountered at a depth of 14 to 16 feet below ground surface (bgs) and the direction of groundwater movement is to the south/southeast. Dolomite bedrock of the Niagara Formation is encountered at depths between 100 and 150 feet bgs in the vicinity of the Site. The primary compound detected in groundwater at the Site is PCE in relatively low concentrations. As can be seen in the groundwater analytical results table in **Attachment 2**, PCE was present in groundwater samples collected from monitoring wells MW-1 and MW-2 at concentrations just exceeding the Enforcement Standard (ES) on two occasions.

The lateral extents of impact in soil, groundwater, and vapor have not been defined to the north and there is a potential for migration to utilities corridors aligned east to west along Center Street.

VAPOR INTRUSION SAMPLING

Additional sampling of sub-slab vapor and indoor air was conducted at the adjacent commercial property located at 7219 W. Center Street and also at the Site building in February, 2014 to assess the potential for vapor intrusion to these buildings. Below are descriptions of the sampling procedures performed and a summary of the vapor intrusion assessment findings.

Background Conditions Screening

A visual inspection was conducted for cracks or other penetrations in the concrete basement floor (i.e. floor drains, sumps, etc.) that could act as direct conduits for impacted vapors to migrate into the occupied space, or conversely, could act as "short circuits" allowing indoor air to enter canisters during sub-slab sampling. Basement walls were also visually inspected for cracks and penetrations of subsurface utilities that may be conduits for vapors to migrate into the buildings. This information was incorporated into the sample port placement strategy to avoid damage to sub-slab utilities and reduce the possibility of "short circuiting", which could have biased sample results.

Building and room dimensions were measured and a scaled hand drawing of the layout with sample locations and other observed conditions was prepared in the field. The results of all pre-sampling

2

inspection activities were recorded on the Indoor Air Building Survey and field sampling forms found in **Attachment 3**.

Sub-Slab Vapor Sampling

The basement of the off-site commercial building at 7219 W. Center Street is divided into two sections. One (1) permanent Vapor Pin^{TM} sub-slab vapor sampling port was installed in each basement space (refer to sketch in **Attachment 3**). In addition, two (2) permanent sampling ports were installed in the partial basement of the Site building (**Attachment 3**). The ports were capped during installation until sampling was initiated and left in place after sample collection for future use.

To ensure representative sub-slab vapor samples, leak testing was performed per methods presented in the *Standard Practice for Active Soil Gas Sampling in the Vadose Zone for Vapor Intrusion Evaluation*, ASTM Standard D7663-11 and in accordance with WDNR Publication RR-800. Testing the integrity of the sample ports was conducted utilizing helium tracer gas and the integrity of the sampling train was confirmed via a negative pressure test.

One (1) sample of sub-slab vapor was collected from each of the four (4) sub-slab vapor sampling ports using batch-certified 1-Liter vacuum canisters connected to the ports using compression fittings and Teflon-lined polyethylene tubing. Vacuum canisters were fitted with regulators to restrict flow rates to less than 200 ml/minute. Initial and final pressure readings were collected from the vacuum canisters and recorded on sub-slab vapor field sampling forms (**Attachment 3**), along with all other required information.

Following the completion of sub-slab vapor sampling activities, a total of four (4) vacuum canisters were submitted to EnvisionAir Laboratories, Inc. of Indianapolis, Indiana (EnvisionAir) for analysis of select chlorinated volatile organic compounds (CVOCs) according to US EPA Method TO-15. All samples were shipped under the appropriate chain-of-custody procedures.

Indoor/Outdoor Air Sampling

An indoor air sample was collected at the off-site commercial building prior to sub-slab vapor sampling to eliminate the possibility of sub-slab vapors from entering the building and influencing the indoor air sample results. The indoor air sample was collected from the breathable space (3-5 feet above the floor) using a 6-Liter vacuum canister, regulated to withdraw a time-integrated sample. In addition, an outdoor air sample was collected from the southwest corner the building, which was up-wind at the start of sampling and represented the most secure location on the property. Both air samples were collected over an 8-hour time period. The vacuum canisters were individually-certified clean by the analytical laboratory for QA/QC purposes.

Weather data, including temperature, wind speed, wind direction, humidity, barometric pressure, and rainfall was acquired from the nearest fixed weather station throughout the 8-hour sampling period to evaluate potential effects on the samples.

Initial and final pressure readings were collected from the vacuum canisters and recorded on indoor/outdoor field sampling forms provided in **Attachment 3**, along with all other pertinent information. Following the completion of the indoor/outdoor air sampling activities, a total of two (2) vacuum canisters were submitted to EnvisionAir under appropriate chain-of-custody procedures, for analysis of select chlorinated volatile organic compounds (CVOCs) according US EPA Method TO-15.

Vapor Intrusion Assessment Results

Site Building at 7215 W. Center Street

Samples 7215-SSV-1 and 7215-SSV-2 contained PCE at concentrations of 1,440 micrograms per cubic meter (ug/m³) and 3,600 ug/m³, respectively (refer to table of analytical results in **Attachment 4**). Samples 7215-SSV-1 and 7215-SSV-2 also contained trichloroethene (TCE) at concentrations of 48.9 ug/m³ and 12.4 ug/m³, respectively. The PCE concentration at 7215-SSV-2 exceeds the Vapor Risk Screening Level (VRSL) for a non-residential setting of 1,880 ug/m³.

Off-site Commercial Property at 7219 W. Center Street

Samples 7219-SSV-1 and 7219-SSV-2 contained PCE at concentrations of 239 ug/m³ and 118.0 ug/m³, respectively, which is below the VRSL for a non-residential setting of 1,880 ug/m³ (Attachment 4). Sample 7219-IA contained PCE at a concentration of 48.9 ug/m³ which is below VAL for a non-residential setting of 180 ug/m³. Sample 7219-OA did not contain laboratory detections of PCE or its break down products.

INTERIM REMEDIAL ACTIONS

The Site building was found to have a vapor intrusion risk based on the results of sub-slab sampling. A sub-slab depressurization system (SSDS) should be installed to mitigate this risk. If designed correctly with vertically extended extraction points, this mitigation system may also be effective in remediating unsaturated soil impacts within the sand layer located beneath the basement slab.

The horizontal and vertical extent of vacuum (negative pressure) influence will be tested either just prior to or during the installation of the SSDS to determine appropriate fan selection to provide influence on both the sub-slab environment and slightly deeper sand layer. A report will be submitted providing pictures and other details of the SSDS installation configuration, specifications, and operating statistics.

Details regarding the scope of work and costs associated with the testing and installation of the SSDS are described in Sub-phase 08c of the Work Scope that follows.

WORK SCOPE FOR ADDITIONAL SITE INVESTIGATIONS

Based on an evaluation of historical site investigation maps and data, utility corridors have not been specifically investigated as preferential pathways for contaminant migration. The locations and depths of Site utility laterals and connections with utility mains located in Center Street should be accurately identified and soil and soil gas samples should be collected to determine if they are acting as preferential migration pathways for PCE vapors. In addition soil and soil gas samples should be collected at a point close to where the sanitary lateral connects with the main in the alleyway behind the Site building to the south.

The locations of proposed soil and soil gas samples are presented on the figure in Attachment 1.

Sub-phase 08a:Work Scope Development

EnviroForensics has prepared this work scope that will serve as the procedures document for which the proposed activities will follow. The proposed investigations are divided into the following Sub-phases:

- Sub-phase 08a: Work Scope Development
- Sub-phase 08b: Utility Corridor Investigations
- Sub-phase 08c: System Installation & Installation Documentation
- Sub-phase 08d: Results Reports for Off-Site Property Owners
- Sub-phase 08e: Project Management

Sub-phase 08b:

Utility Corridor Investigations

Access

EnviroForensics will pursue access from the City of Wauwatosa for the soil borings and will complete any permit requirements that are necessary.

Subsurface Utility Survey

In accordance with safe work practices and as required by Wisconsin State Law, EnviroForensics will contact the State of Wisconsin One Call subsurface utility protection service at least 48-hours prior to the anticipated onset of subsurface work at the Site. As a result, subsurface utilities and structures owned or managed by member companies (e.g. telecommunications, electric and gas utilities) will be located by an independent contractor service. Those common utilities that are not member companies of the One Call

protection service will be contacted directly and requested to provide information regarding the location of onsite, adjacent or nearby underground structures (e.g. municipal water, sanitary sewer, storm sewer).

EnviroForensics will also contract with a private underground utility locating service to provide additional confidence regarding the position of potential underground hazards at the Site. The private locating service will use geophysical and/or electromagnetic equipment, as appropriate; to assist in clearing each planned boring location prior to sampling activities.

Soil Gas Point Installation

In order to further asses potential vapor migration along preferential pathways, EnviroForensics proposes that a total of three (3) temporary utility soil gas points be installed in the City Right of Way (ROW). Two (2) soil gas points will be installed along gas and water utility lines that extend east and west along the southern ROW of West Center Street. One (1) will be installed along the sanitary offset in the alley behind the site building (refer to figure showing soil boring locations in **Attachment 1**).

The construction and sampling methods for the temporary soil gas monitoring points will be conducted in accordance with Appendix V of the WDNR VI guidance document. Soil gas points located along underground utility corridors will be advanced with hand-auger drilling methods in the high permeable utility backfill, typically encountered at the depths of approximately five (5) ft bgs. Each soil gas point will constructed of a 6-inch long stainless steel mesh screen set at the bottom of the boring with ¼-inch Teflon[®]-lined polyethylene tubing attached to the screen that extends to the surface. A sand pack will be placed around the screen in the borehole to approximately 6-inches above the top of the screen. The remaining annular space in the borehole above the sand pack was filled with hydrated bentonite chips. Following sampling activities, the three (3) shallow soil gas points will be abandoned. The tubing will be removed and the hole will be topped off with bentonite.

Soil Gas Sampling

One (1) soil gas sample will be collected from each of the newly installed utility corridor soil gas points. All the utility soil gas samples will be collected using batch-certified clean 1-Liter canisters, regulated to withdraw a sample at no more than 200 milliliter per minute (ml/min).

A total of 3 soil gas samples and one (1) QA/QC sample will be submitted to an environmental laboratory for analysis of VOCs using US EPA Method TO-15. All samples will be delivered or shipped under appropriate chain-of-custody procedures. The analytical results for the soil gas samples will be compared to the US EPA Regional Screening Levels (RSLs).

Soil Gas Field Quality Control Methods

There is a potential for ambient air to enter the sample through leaks in the sampling train and thus potentially into the sampling port, diluting the sample and leading to underestimation of contaminant

concentrations in the sample. To ensure that soil gas samples are representative of subsurface vapor conditions, helium and negative pressure leak testing will be performed per methods presented in *Standard Practice for Active Soil Gas Sampling in the Vadose Zone for Vapor Intrusion Evaluation*, American Society of Testing and Materials (ASTM) Standard D7663-11.

Sub-phase 08c: Modified Sub-Slab Depressurization System Installation and Reporting

EnviroForensics has partnered with a qualified subcontractor that specializes in the design and installation of vapor mitigation systems to perform diagnostic testing with oversight by EnviroForensics. On-site diagnostic testing will consist of pressure-field extension testing to determine appropriate fan sizing for the SSDS.

A test hole will be cored through the slab and the hole will be completed using a hand auger to a depth of between 2-4 feet below the slab. Screened PVC extraction piping will be placed in the hole and to terminate within the sand layer containing PCE impacts. Filter pack sand will be placed on around the screened section of the extraction pipe and the portion of pipe extending through the basement slab will be sealed with cement. A fan will be connected to the extraction piping and used to impart a negative pressure to the subsurface.

Permanent Vapor Pin [™] sampling ports will be installed at two (2) locations to measure negative pressure just below the slab, and two (2) additional ports will be installed to measure negative pressure within the sand layer. The ports for sampling vapor in the sand layer will be constructed in the same manner as the soil gas points described in previous Sub-phase 08b. These ports will be used to measure negative pressure during the test, and can also be used for periodic monitoring of sub-slab vapor and vapor within the sand layer over time to determine mass contaminant reduction. Final design configurations will be determined once diagnostic testing is complete.

It is anticipated that the SSDS will have between two (2) and four (4) extraction points pending diagnostics and observations. The extraction points will be installed through the concrete floor and the sub-slab material will be removed to facilitate air flow. The extraction points will have separate pipes that manifold in the basement. One (1) or more of the extraction pipes will be installed to vent the fill material directly under the slab, and one (1) or more extraction pipes will be installed to vent the underlying sand layer. A single pipe will extend through the side of the basement wall to the outside, where it will be connected to one (1) high volume fan. The fan will be installed outside and the exhaust routed to a minimum of three (3) feet above the roof-line. All SSDS piping will be 3-inch diameter schedule 40 PVC. The subcontractor cost estimate is attached.

The fan that is to be utilized in the system is designed and fabricated for outside installation. The housing will be factory sealed. The connection of the fan to the vent piping will also be sealed to prevent leakage. The final determination of the appropriate fan size will be made following diagnostic testing and tuning of

l) 6

the system. The performance testing will optimize air pressure ratios to maximize the efficiency of the system. The pressure ratios will be measured in several extraction points. Negative pressure readings will be collected upon startup of the system to ensure that the system is properly operating and the installed fan and system configuration is adequate.

The WDNR recommends that verification samples be collected after the sub slab depressurization system has been installed and operating to confirm that the exposure pathway has been mitigated. Verification samples should be collected after the system has been running for at least 90 days. Once the post-mitigation verification testing results are available, EnviroForensics will provide the WDNR with the contractor's Vapor Mitigation System Installation Report that summarizes the work activities performed during system installation. The report will include details on the SSDS including as-built drawings, field measurements, manufacturer documentation for all components installed, and photographs. The report will also include tables, maps, figures, and appendices, as appropriate, to aid data presentations and interpretation and the findings of the mitigation activities.

Sub-phase 08d: Results Reports for Off-Site Property Owners

EnviroForensics will tabulate and evaluate the analytical data from soil and soil gas sampling within the City of Wauwatosa right-of-way. Sample results notifications will be prepared and submitted to the City of Wauwatosa and WDNR as required.

Sub-phase 08e: Project Management

Project management tasks must be completed to support execution of the proposed work scope activities, track and maintain the project budget, and ensure overall project progress. Project management tasks may include, but are not limited to: budget tracking; communication of project progress and budget status updates; communication with and responding to WDNR representatives, carriers, client and third parties; and unanticipated contingency items that may require attention. The estimated project management budget is based on costs incurred during previous phases of the site investigation and an assumed four (4) month work scope duration.

SCHEDULE

Ralph Hoffman has a WDNR approved revolving fund of \$23,690 to utilize for necessary environmental site actions. This amount was previously used for site investigations and it is anticipated that he will be reimbursed this amount from the Drycleaner Environmental Response Fund (DERF) on or about February 1, 2015. Given your approval of this work scope, we anticipate that field work can be initiated in early January, 2015. Delays in DERF reimbursement beyond February 1, 2015 may delay the start of field work. Standard laboratory turn times will be utilized, which will provide analytical results within two (2) weeks of sample collection. Installation of the utility corridor soil gas sampling ports (Phase 08b) will be

performed prior to installation of the SSDS (Phase 06c). A letter report summarizing the findings of the soil gas activities will be submitted within four (4) weeks of receipt of all laboratory analytical data. Once the post-mitigation verification testing results are available, EnviroForensics will provide the WDNR with the contractor's Vapor Mitigation System Installation Report that summarizes the work activities performed during system installation.

COST ESTIMATE

All services provided in support of this proposal will be billed on a time-and-materials basis. The estimated cost to complete access, utility corridor investigations, building diagnostics, project management, system installation, and the documentation of the installation is \$37,859. The estimated costs are itemized by Task in Table 1.

It should be recognized that some limitations are inherent in the evaluation of subsurface conditions, and that certain conditions may not be detected. Thus, this investigation cannot provide a guarantee that all possible Site contamination will be discovered. The proposed cost assumes that no additional access agreements are required; that permission will be granted by the City to conduct investigation activities; that normal conditions will be encountered; and that any delays, obstructions, or other limitations outside the control of EnviroForensics may result in additional cost to the Project.

We thank you for the opportunity to work with you on this project. If you have any questions regarding this FSI and Interim Remedial Action Work Scope, please do not hesitate to call us at (414) 982-3988.

Sincerely, Environmental Forensic Investigations, Inc.

Hyle Humstend

Kyle Heimstead, Staff Geologist

Attachments

Wayn P. Janla

Wayne Fassbender, PG, PMP Senior Project Manager

cc:

John Hnat, WDNR Project Manager

TABLE 1

٢,

Cost Estimate for Site Investigations and SSDS Installation Former Hoffman's Valet Cleaners 7215 W. Center Street, Wauwatosa, Wisconsin

TASK	LABOR COSTS	SUB-CONTRACTOR COSTS	DIRECT COSTS	TOTAL COST
	PHASE 08	8a:		
Work Scope Development	\$4,675	\$0	\$0	\$4,675
	PHASE 08	Bb:		
Utility Corridor Investigations	\$3,070	\$2,767	\$882	\$6,719
	PHASE 08	8c:		
Modified Sub-slab Depressuriztion System Installation & Reporting	\$5,745	\$15,100	\$1,178	\$22,023
	PHASE 08	8d:		
Results Reports for Off-site Property Owners	\$1,190	\$0	\$19	\$1,209
	PHASE 0	8e:		
Project Management (4-month duration)	\$3,233	\$0	\$0	\$3,233
TOTAL	\$17,913	\$17,867	\$2,079	\$37,859

Site Name: Former Hoffman's Valet Cleaners BRRTS #: 02-41-307576

Туре	of	Action:	Site	Investigation

TASKS			E	BUDGET								1.1	And the second second		The second second		
Bid / Budgeted Description		/ Budgeted Amount		l / Budgeted Amount		al Approved Budget	Previous Claims (DC-581)		iroForensics Invoice #13657		inviroForensics 13 Invoice #13798		viroForensics Invoice #13869		EnviroForensics 0/13 Invoice #13916		roForensics nvoice #14043
Consultant Costs	in owne		院前住	THE REAL PROPERTY.	Viene	NAME OF		no. Com		(Stiff)				A.		fait." Ath	
Further Site Investigation 1			_		127.00												
Work Scope Development and Health and Safety Plan (06a)	\$	6,125.00			\$	6,125.00		\$	5,972.50	\$	65.00	\$		\$		\$	
Off-Site Access Agreements (06b)	\$	1,474.00			\$	1,474.00		\$	-	\$	730.00	\$	722.50	\$	-	\$	-
Sub-Slab Vapor and Indoor/Outdoor Air Sampling (06c)	\$	3,641.00			\$	3,641.00		\$		\$	225.00	\$	2,012.65	\$	-	\$	-
Groundwater Monitoring (06d)	\$	1,572.00			\$	1,572.00		\$	-	\$	32.50	\$	1,516.25	\$		\$	-
Investigation-Derived Media Management (06e)	\$	895.00			\$	895,00		\$	-	\$	-	\$	47.50	\$		\$	192.5
Data Evaluation and Reporting (06f)	\$	4,773.00			\$	4,773.00		\$	-	\$	142.50	\$	1,652.50	\$	2,620,95	\$	-
Project Management (06g)	\$	2,800.00			\$	2,800,00		\$	-	\$	479.25	\$	394.00	\$	280.65	\$	575.0
Further Site Investigation 2 and SSDS Installation		2.1.2				1000	201200		1275		The La		1.1.2.1		State 25		
Work Scope Development (08a)			\$	4,675.00		19											
Utility Corridor Investigations (08b)		100	\$	3,952.00					LAN STREET		- 42				A DOMESTIC AND A DOMESTICANA AND A DOMESTIC AND A DOMESTICANA AND A DOMESTIC AND		1.000
Modified SSDS Installation and Reporting (08c)		2000	\$	6,923.00	1.1	A Carlo			(19 X X
Results Reports for Off-Site Property Owners (08d)		a der the	\$	1,209.00			· · · · · · · · · · · ·										1 mil 1 mil
Project Management (08e)		1	\$	3,233.00		1	· · · · · · · · · · · · · · · · · · ·	-				-	-		1		
Consultant Cost Total	\$	21,280.00	\$	19,992.00	\$	21,280.00	s -	\$	5,972.50	\$	1,674.25	\$	6,345.40	\$	2,901.60	\$	767.5
Sub-Contractor Costs	ST HELES		1000		Surgery of	Approvemente		Diamper	ALC DOM PROVIDENT	- North		Contract	Hilloch VII. Ktolus	201	The Control Margaret relation	Settier Annual	
Analytical	\$	2,410.00	\$	1,216,70	\$	2,410.00	2011 M 1 1 1 1 1 1	\$	-	\$		\$	830.00			100	
Driller		1.000	\$	1,350.00	1.1	- pro al	No. of Long		5	1.7	A second se						
Waste Disposal			s	200.00		- 1 A A		1000				-					
SSDS Installation			\$	15,100.00										-			
Sub-Contractor Cost Total	\$	2,410.00	\$	17,866.70	\$	2,410.00	\$ -	\$		\$		\$	830.00	\$		\$	-
DERF ELIGIBLE SUB-TOTALS	\$	23,690,00	\$	37,858.70	\$	23,690.00	\$ -	\$	5,972.50	\$	1,674.25	\$	7,175.40	\$	2,901.60	\$	767.5
Non-DERF Eligible Expenses					-						- 1.1			_			
	-						Charling the second	1.11	the second se		Here and the state of the	North Sector	al al surger the		And a set of the set of the set	in the Vector	THE WERE THE
DERF Reimbursement 1 (07)	85								and and and a	-	Contraction of the second					-	1000
Non-DERF Cost Total	100						s -	\$	eliste anti-sal	\$		\$	in a second second	\$	filosopholistic - ba	\$	- 100000
INVOICE GRAND TOTAL	1000						s -	\$	5,972.50	\$	1,674,25	\$	7,175,40	15	2,901.60	\$	767.5

Former Hoffman's Valet Cleaners BRRTS# 02-41-307576

Page 1 of 3

Site Name: Former Hoffman's Valet Cleaners

BRRTS #: 02-41-307576

Type of Action: Site Investigation

TASKS			I	BUDGET									In the second					
Bid / Budgeted Description		l / Budgeted Amount		d / Budgeted Amount	То	otal Approved Budget	Previous Claims (DC-581)		riroForensics Invoice #14119		EnviroForensics /14 Invoice #14162		nviroForensics 1 Invoice #14219	EnviroF 3/14 Invoi		EnviroForensics 4/14 Invoice #14219	To	tal Invoiced Costs
Consultant Costs	89 JUL		1100	SHAMP THE	100	A MARCHINE	ATTACK AND THE REAL	50019403		101	Standy Street Barrier Street	1942-1				I THE ALL AND A DESIGN	1000	
Further Site Investigation 1					10												No.	5025
Work Scope Development and Health and Safety Plan (06a)	\$	6,125.00			\$	6,125.00		\$	-								\$	6,037.50
Off-Site Access Agreements (06b)	\$	1,474.00			\$	1,474.00		\$	-			\$	456.20				\$	1,908,70
Sub-Slab Vapor and Indoor/Outdoor Air Sampling (06c)	\$	3,641.00			\$	3,641.00		\$	-			\$	1,972.65				\$	4,210.30
Groundwater Monitoring (06d)	\$	1,572.00			\$	1,572.00		\$	411.00								\$	1,959.75
Investigation-Derived Media Management (06e)	\$	895,00			\$	895,00		\$	531,81								\$	771.81
Data Evaluation and Reporting (06f)	\$	4,773.00			\$	4,773.00		\$	-								\$	4,415.95
Project Management (06g)	\$	2,800,00			\$	2,800.00		\$	233,50	\$	150.00	\$	268.50				\$	2,380,90
Further Site Investigation 2 and SSDS Installation	+			-		2.4	10000		14 March 14		12.22		1. N. C.			1.5	200	
Work Scope Development (08a)			\$	4,675.00				_		-							1995	and a left of the left
Utility Corridor Investigations (08b)		1883	\$	3,952.00	10	And the state	100 C				11000 States		S				1866	
Modified SSDS Installation and Reporting (08c)			\$	6,923,00		100 C	112 2 2 1										1998	delenate de las
Results Reports for Off-Site Property Owners (08d)		1.01	\$	1,209,00		10 10 10 10 10 10 10 10 10 10 10 10 10 1	100 C		· · · · · · · · · · · · · · · · · · ·		and the second second						- 160	- La terrere
Project Management (08e)		1.20	\$	3,233.00														Service and
Consultant Cost Total	\$	21,280.00	\$	19,992.00	\$	21,280.00	\$ -	\$	1,176.31	\$	150.00	\$	2,697.35	\$		\$ -	\$	21,684.91
Sub-Contractor Costs	1000		lings	Lymon in man	103880	Stream while or	WHEN STATISTICS	10-50-101		1000		CILCU.		terite, etcup	The state of the	Ning and the second second	in them	
Analytical	s	2,410.00	\$	1,216,70	s	2,410.00	1		a series of the	1	No. of the local data	s	1,170.00	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	\$	2,000.00
Driller			\$	1,350.00			a series (the series of	-		1							S	
Waste Disposal			s	200.00			10 m									-	\$	water in the set
SSDS Installation		11	\$	15,100.00							A second second second	-					\$	- 1 C
Sub-Contractor Cost Total	\$	2,410.00	\$	17,866.70	\$	2.410.00	\$ -	\$		\$		\$	1,170.00	\$	-	\$ -	5	2,000.00
DERF ELIGIBLE SUB-TOTALS	\$	23,690.00	\$	37,858.70	\$	23,690.00	s -	\$	1,176.31	\$	150.00	\$	3,867.35	\$	-	\$	\$	23,684.91
				1. I. I.	-	1	12 6 4-					3					_	-
Non-DERF Eligible Expenses							na an anna an	PROVINCE		in the second		all of the	Al Monthe Landson Ball (1941) 2.015	Part Part Part	Contraction of		_	
DERF Reimbursement 1 (07)								-		\$	190.00	-		\$	248.75	\$ 624.73	\$ \$	1,063,48
Non-DERF Cost Total	1.0						\$ -	\$		\$	190.00	\$	a la provisione a la	\$	248.75	\$ 624.73	3 5	1,063.48
INVOICE GRAND TOTAL							\$ -	\$	1,176.31	\$	340.00	\$	3,867.35	\$	248.75	\$ 624.73	\$ \$	24,748.39

Check Numbers

Former Hoffman's Valet Cleaners BRRTS# 02-41-307576

Page 2 of 3

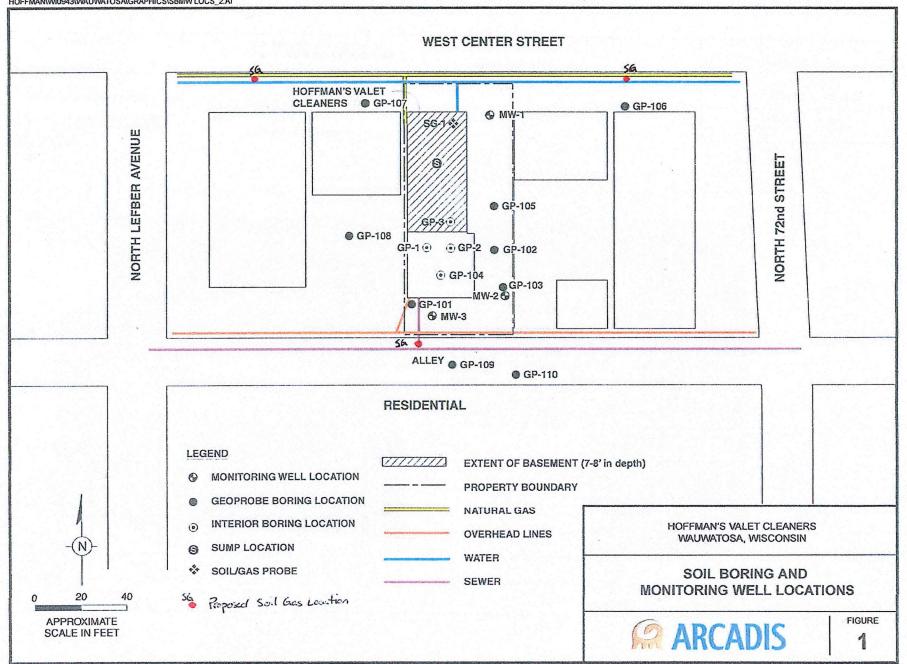
Site Name: Former Hoffman's Valet Cleaners BRRTS #: 02-41-307576

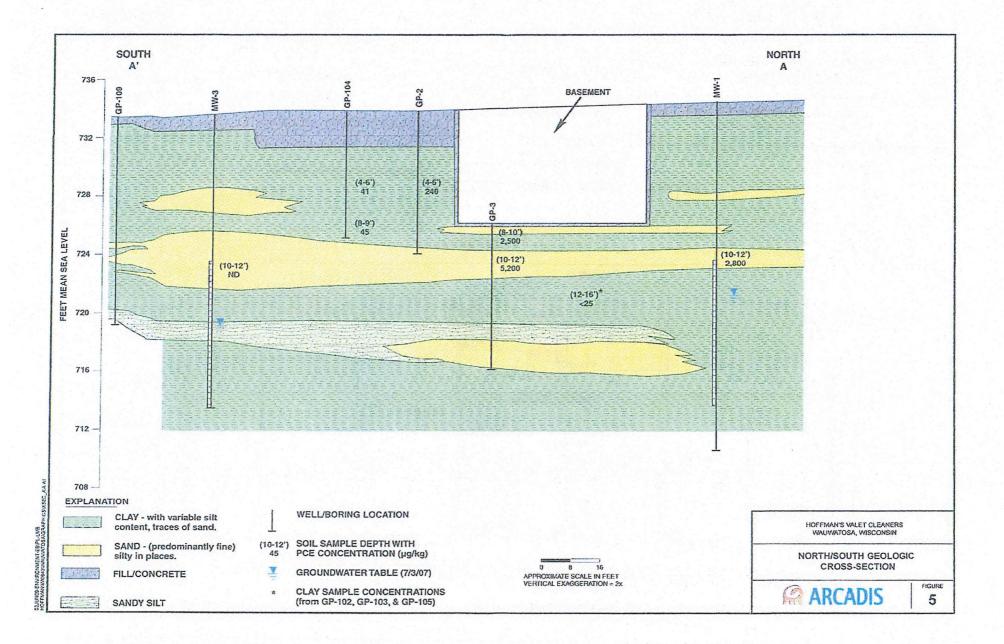
Type of Action: Site Investigation

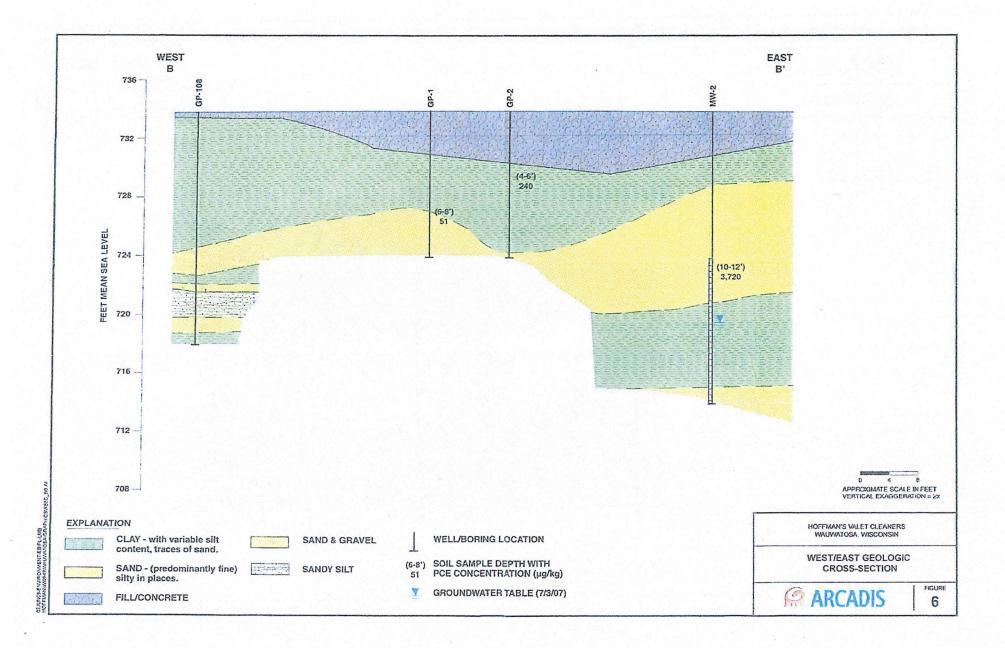
Dry Cleaner Environmental Response Program Reimbursement Cost Detail Linking Spreadsheet Form 4400-214D (R 08/12)

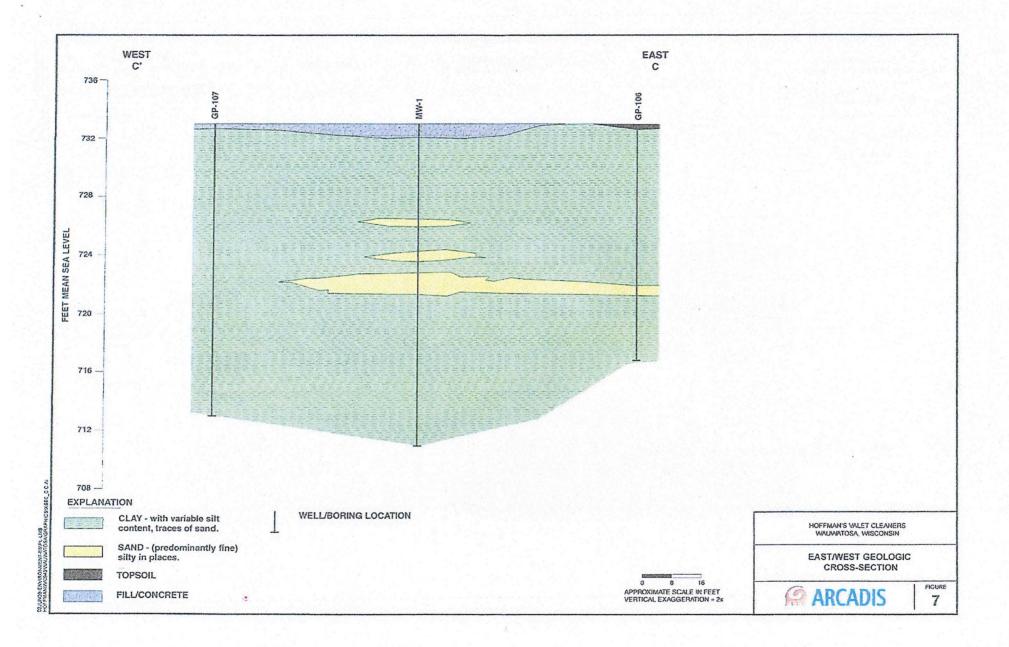
TASKS			BUDGET					DERF	COST BREAK	OUT (this cla	aim)				
Bid / Budgeted Description	Bid / Budgete Amount	d Bie	d / Budgeted Amount	Total Approved Budget	d Previous Claim: (DC-581)	A Soil Investigation	B Soil Remediation	C Groundwater Investigation	D Groundwater Remediation	E Air/Vapor Investigation	F Air/Vapor Remediation	G Lab & Other Analysis	H Miscellaneous Costs	Budget Remaining Use (-) to indicate cost over-run	% Task Complete, Remarks
Consultant Costs	and disal many	00 1000	ML HALL MY	DUMPERSON OF	1. Automation States	N. L. BROWN TANK	Contraction of the second	ALL REAL PROPERTY OF		Distance of the	and the second second	and the second second	and a serie working the	The second second second	The second second second second second
Further Site Investigation 1				and the second	9									And the second second	Task % Complete
Work Scope Development and Health and Safety Plan (06a)	\$ 6,125.0	00		\$ 6,125.0	0			\$ 1,992.00	2	\$ 4,045.50				\$ 87.50	1
Off-Site Access Agreements (06b)	\$ 1,474.0	00		\$ 1,474.0	0					\$ 1,908,70				\$ (434.70	11
Sub-Slab Vapor and Indoor/Outdoor Air Sampling (06c)	\$ 3,641.0	00		\$ 3,641.0	0					\$ 4,210,30				\$ (569.30	- 11
Groundwater Monitoring (06d)	\$ 1,572.0	00		\$ 1,572.0	0 .			\$ 1,959.75						\$ (387.75	11
Investigation-Derived Media Management (06e)	\$ 895.0	00		\$ 895.0	0			\$ 771.81						\$ 123.19	1
Data Evaluation and Reporting (06f)	\$ 4,773.0	00		\$ 4,773.0	0	1		\$ 1,455.00		\$ 2,960,95				\$ 357.05	11
Project Management (06g)	\$ 2,800.0	00		\$ 2,800.0	0			\$ 785.00		\$ 1,595,90				\$ 419.10	11
Further Site Investigation 2 and SSDS Installation															
Work Scope Development (08a)		\$	4,675,00			1	1							Contract of the second second	
Utility Corridor Investigations (D8b)		\$	3,952,00			1									
Modified SSDS Installation and Reporting (08c)		\$	6,923,00											denter and a second	
Results Reports for Off-Site Property Owners (08d)		\$	1,209,00												
Project Management (08e)		\$	3,233.00												
Consultant Cost Total	\$ 21,280.0	00 5	19,992.00	\$ 21,280.0	0 5 -						90 		· · · ·	\$ (404.91	
Sub-Contractor Costs		10.000		Contraction and the second second	C D D D D D D D D D D D D D D D D D D D	International Contractor	I I THE PROPERTY IN CASE	In the second of the	in a content of the second	PRINTER AND ADDRESS	CARL STORES	anno annatair	ALC: NO.		The Real State Constitution Statements
Analytical	\$ 2,410,0	00 \$	1,216,70	\$ 2,410,0	0	1						\$ 2,000,00		\$ 410.00	
Driller	1	S	1,350.00											s -	
Waste Disposal		s	200,00			1								\$ -	
SSDS Installation		\$	15,100.00							2.5				\$ -	
Sub-Contractor Cost Total	\$ 2,410.0	20 5	17,866.70	\$ 2,410.0	0 5 -									\$ 410.00	
DERF ELIGIBLE SUB-TOTALS			37,858.70			S -	s -	\$ 6,963.56	\$ -	\$ 14,721.35	s -	\$ 2,000.00	s -	\$ 5.09	i

Non-DERF Eligible Expenses	
DERF Reimbursement 1 (07)	
Non-DERF Cost Total	
INVOICE GRAND TOTAL	CARLON IN THE STREET S


Former Hoffman's Valet Cleaners BRRTS# 02-41-307576




ATTACHMENT 1


GEOLOGIC CROSS SECTION

12MAY09-ENVIRONMENT-EB\PL-LMB HOFFMAN\WI0943\WAUWATOSA\GRAPHICS\SBMW LOCS_2.AI

ATTACHMENT 2

GROUNDWATER LABORATORY REPORT

SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS

Former Hoffman's Valet Cleaners

Wauwatosa, Wisconsin

Sample Identification	Date Sampled	Tetrachloroethylene	Trichloroethylene	cis-1,2-Dichloroethylene	Methylene Chloride	Chloroform
GP-102	9/12/2002	<0.63	<0.48	ND	<0.43	ND
GP-103	9/12/2002	2.9	<0.48	ND	<0.43	ND
GP-105	9/12/2002	<0.63	<0.48	ND	<0.43	ND
	1/28/2005	< 0.50	<0.48	< 0.50	<1.0	<0.20
	1/8/2007 *	1.1	<0.48	ND	<0.43	ND
MW-1	4/5/2007 *	1.4 Q	<0.48	ND	<0.43	ND
8	7/3/2007 *	1.0 Q	0.81 Q	ND	0.73 Q	ND
	9/5/2013	5.2	< 0.33	< 0.38	<0.5	<0.28
	1/28/2005	< 0.50	<0.20	<0.50	<1.0	<0.20
	1/8/2007	< 0.50	<0.20	ND	<1.0	ND
MW-2	4/5/2007	5.5	<0.48	ND	<0.43	ND
	7/3/2007	1.7	0.95 Q	ND	<0.43	ND
	9/5/2013 *	3.9	<0.33	0.44 J	<0.5	0.30 J
	1/28/2005	<0.50	<0.20	<0.50	<1.0	<0.20
	1/8/2007	< 0.50	<0.20	ND	<1.0	ND
MW-3	4/5/2007	<0.45	<0.48	ND	<0.43	ND
	7/3/2007	<0.45	<0.48	ND	<0.43	ND
	9/5/2013	<0.33	< 0.33	<0.38	<0.5	<0.28
Enforcement	Standard	5	5	70	5	6
Preventive A	ction Limit	0.5	0.5	7.0	0.5	0.6

Notes:

All concentrations reported in units of micrograms per liter (ug/L)

2005 and 2007 data collected by ARCADIS

Samples analyzed using EPA SW-846 Method 8260

Bolded values are above detection limits

Bolded and orange shaded values are above NR 140 Public Health Enforcement Standards **Bolded** and blue shaded values are above NR 140 Public Health Preventive Action Limits

* Indicates result is the highest concentration detected in duplicate samples

 $\mathbf{J}=\mathbf{C}\mathbf{o}\mathbf{n}\mathbf{c}\mathbf{e}\mathbf{n}\mathbf{t}\mathbf{r}\mathbf{a}\mathbf{t}$ than the method detection limit but less than the reporting limit

ND = Compound not detected; detection limit unknown

Q = One or more quality control criteria failed.

Synergy Environmental Lab, INC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

BRIAN KAPPEN ENVIROFORENSICS N16 W23390 STONE RIDGE DRIVE WAUKESHA, WI 53188

Report Date 16-Sep-13

,

Project Name Project #	HOFFMAN	CLEANERS					Invo	bice # E2572	21		
Lab Code	5025721A										
Sample ID	6200-MW	-1									
Sample Matrix	Water										
Sample Date	9/5/2013										
Sumple Date	51512015	Result	Unit		loq d	:1	Method	Ext Data	Run Date	Analust	Cada
o :		Result	Umt	LUD	LUQ D	11	Methou	Ext Date	Kun Date	Analyst	Code
Organic											
VOC's											
Benzene		< 0.24	ug/l	0.24	0.77	1	8260B		9/13/2013	CJR	1
Bromobenzene		< 0.32	ug/l	0.32	1	1	8260B		9/13/2013	CJR	1
Bromodichloromet	hane	< 0.37	ug/l	0.37	1.2	1	8260B		9/13/2013	CJR	1
Bromoform		< 0.35	ug/l	0.35	1.1	1	8260B		9/13/2013	CJR	1
tert-Butylbenzene		< 0.36	ug/l	0.36	1.2	1	8260B		9/13/2013	CJR	1
sec-Butylbenzene		< 0.33	ug/l	0.33	1	1	8260B		9/13/2013	CJR	1
n-Butylbenzene		< 0.35	ug/l	0.35	1.1	1	8260B		9/13/2013	CJR	1
Carbon Tetrachlori	de	< 0.33	ug/l	0.33	1.1	1	8260B		9/13/2013	CJR	1
Chlorobenzene		< 0.24	ug/l	0.24	0.77	1	8260B		9/13/2013	CJR	1
Chloroethane		< 0.63	ug/l	0.63	2	1	8260B		9/13/2013	CJR	1
Chloroform		< 0.28	ug/l	0.28	0.88	1	8260B		9/13/2013	CJR	1
Chloromethane	•	< 0.81	ug/l	0.81	2.6	1	8260B		9/13/2013	CJR	1
2-Chlorotoluene		< 0.21	ug/l	0.21	0.66	1	8260B		9/13/2013	CJR	1
4-Chlorotoluene		< 0.21	ug/l	0.21	0.68	1	8260B		9/13/2013	CJR	1
1,2-Dibromo-3-chl	oropropane	< 0.88	ug/l	0,88	2.8	1	8260B		9/13/2013	CJR	1
Dibromochloromet		< 0.22	ug/l	0.22	0.7	1	8260B		9/13/2013	CJR	1
1,4-Dichlorobenzer	ne	< 0.3	ug/l	0.3	0.96	1	8260B		9/13/2013	CJR	1
1,3-Dichlorobenzer		< 0.28	ug/l	0.28	0.89	1	8260B		9/13/2013	CJR	1
1.2-Dichlorobenzer		< 0.36	ug/l	0.36	1.2	1	8260B		9/13/2013	CJR	1
Dichlorodifluorom		< 0.44	ug/l	0.44	1.4	1	8260B		9/13/2013	CJR	1
1,2-Dichloroethane	•	< 0.41	ug/l	0.41	1.3	1	8260B		9/13/2013	CJR	1
1,1-Dichloroethane		< 0.3	ug/l	0.3	0.97	1	8260B		9/13/2013	CJR	1
1,1-Dichloroethene		< 0.4	ug/l	0.4	1.3	1	8260B		9/13/2013	CJR	1
cis-1,2-Dichloroeth		< 0.38	ug/l	0.38	1.2	1	8260B		9/13/2013	CJR	1
trans-1,2-Dichloroe		< 0.35	ug/l	0.35	1.1	1	8260B		9/13/2013	CJR	1
1,2-Dichloropropar		< 0.32	ug/l	0.32	1	1	8260B		9/13/2013	CJR	1
2,2-Dichloropropar		< 0.36	ug/l	0.36	1.2	1	8260B		9/13/2013	CJR	8
1,3-Dichloropropar		< 0.33	ug/l	0.33	1	1	8260B		9/13/2013	CJR	1
Di-isopropyl ether		< 0.23	ug/l	0.23	0.73	1	8260B		9/13/2013	CJR	1
EDB (1,2-Dibromo	ethane)	< 0.44	ug/l	0.44	1.4	1	8260B		9/13/2013	CJR	1
Ethylbenzene	·······,	< 0.55	ug/l	0.55	1.7	1	8260B		9/13/2013	CJR	1
Hexachlorobutadie	ne	< 1.5	ug/l	1.5	4.8	1	8260B		9/13/2013	CJR	1
Isopropylbenzene		< 0.3	ug/l	0.3	0.96	1	8260B		9/13/2013	CJR	1
hoprop , com one		0.0	<u>-</u>		0.20	•				0011	•

WI DNR Lab Certification # 445037560

Project Name H Proiect #	HOFFMAN	CLEANERS					Invo	oice # E2572	21		e
Lab Code Sample ID Sample Matrix	5025721A 6200-MW- Water	1									
Sample Date	9/5/2013										
		Result	Unit	LOD	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code
p-Isopropyltoluene		< 0.31	ug/l	0.31	0.98	1	8260B		9/13/2013	CJR	1
Methylene chloride		< 0.5	ug/l	0.5	1.6	1	8260B		9/13/2013	CJR	1
Methyl tert-butyl et	her (MTBE)	< 0.23	ug/l	0.23	0.74	1	8260B		9/13/2013	CJR	1
Naphthalene		< 1.7	ug/l	1.7	5.5	1	8260B		9/13/2013	CJR	1
n-Propylbenzene		< 0.25	ug/l	0.25	0.81	1	8260B		9/13/2013	CJR	1
1,1,2,2-Tetrachloro	ethane	< 0.45	ug/l	0.45	1.4	1	8260B		9/13/2013	CJR	1
1,1,1,2-Tetrachloro	ethane	< 0.33	ug/l	0.33	1.1	1	8260B		9/13/2013	CJR	1
Tetrachloroethene		5.2	ug/l	0.33	1.1	1	8260B		9/13/2013	CJR	1
Toluene		< 0.69	ug/l	0.69	2.2	1	8260B		9/13/2013	CJR	1
1,2,4-Trichlorobenz	zene	< 0.98	ug/l	0.98	3.1	1	8260B		9/13/2013	CJR	1
1,2,3-Trichlorobenz	zene	< 1.8	ug/l	1.8	5.8	1	8260B		9/13/2013	CJR	1
1,1,1-Trichloroetha	ne	< 0.33	ug/l	0.33	1	1	8260B		9/13/2013	CJR	1
1,1,2-Trichloroetha	ne	< 0.34	ug/l	0.34	1.1	1	8260B		9/13/2013	CJR	1
Trichloroethene (TO	CE)	< 0.33	ug/l	0.33	1	1	8260B		9/13/2013	CJR	1
Trichlorofluoromet	hane	< 0.71	ug/l	0.71	2.3	1	8260B		9/13/2013	CJR	1
1,2,4-Trimethylben	zene	< 2.2	ug/l	2.2	6.9	1	8260B		9/13/2013	CJR	1
1,3,5-Trimethylben	zene	< 1.4	ug/l	1.4	4.5	1	8260B		9/13/2013	CJR	1
Vinyl Chloride		< 0.18	ug/l	0.18	0.57	1	8260B		9/13/2013	CJR	1
m&p-Xylene		< 0.69	ug/l	0.69	2.2	1	8260B		9/13/2013	CJR	1
o-Xylene		< 0.63	ug/l	0.63	2	1	8260B		9/13/2013	CJR	1
SUR - 4-Bromofluc		105	REC %			1	8260B		9/13/2013	CJR	1
SUR - Dibromofluc	promethane	96	REC %			1	8260B		9/13/2013	СJR	1
SUR - Toluene-d8		100	REC %			1	8260B		9/13/2013	CJR	1
SUR - 1,2-Dichloro	ethane-d4	95	REC %			1	8260B		9/13/2013	CJR	1

ç

Project Name H Proiect #	HOFFMAN (CLEANERS					Inv	bice # E2572	21		
Lab Code Sample ID Sample Matrix Sample Date	5025721B 6200-MW-2 Water 9/5/2013	2								,	
		Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
Organic											
VOC's											
Benzene		< 0.24	ug/l	0.24	0.77	1	8260B		9/13/2013	CJR	1
Bromobenzene		< 0.32	ug/l	0.32	1	1	8260B		9/13/2013	СJR	1
Bromodichlorometh	ane	< 0.37	ug/l	0.37	1.2	1	8260B		9/13/2013	CJR	1
Bromoform		< 0.35	ug/l	0.35		1	8260B		9/13/2013	CJR	1
tert-Butylbenzene sec-Butylbenzene		< 0.36 < 0.33	ug/l ug/l	0.36 0.33	1.2 1	1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
n-Butylbenzene		< 0.35	ug/l	0.35		1	8260B		9/13/2013	CJR	1
Carbon Tetrachloric	le	< 0.33	ug/l	0.33	1.1	1	8260B		9/13/2013	CJR	1
Chlorobenzene		< 0.24	ug/l	0.24	0.77	1	8260B		9/13/2013	CJR	1
Chloroethane		< 0.63	ug/l	0.63	2	1	8260B		9/13/2013	CJR	1
Chloroform		0.30 "J"	ug/l	0.28	0.88	1	8260B		9/13/2013	СЛ	1
Chloromethane 2-Chlorotoluene		< 0.81 < 0.21	ug/l ug/l	0.81 0.21	2.6 0.66	1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	· 1 1
4-Chlorotoluene		< 0.21	ug/l	0.21	0.68	1	8260B		9/13/2013	СЛ СЛ	1
1,2-Dibromo-3-chlo	ropropane	< 0.88	ug/l	0.88	2.8	1	8260B		9/13/2013	CJR	1
Dibromochlorometh	ane	< 0.22	ug/l	0.22	0.7	1	8260B		9/13/2013	CJR	1
1,4-Dichlorobenzen		< 0.3	ug/l	0.3	0.96	1	8260B		9/13/2013	СJR	1
1,3-Dichlorobenzen		< 0.28	ug/l	0.28	0.89	1	8260B		9/13/2013	CJR	1
1,2-Dichlorobenzen Dichlorodifluorome		< 0.36 < 0.44	ug/l ug/l	0.36 0.44	1.2 1.4	1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
1,2-Dichloroethane	unane	< 0.41	ug/l	0.41	1.4	1	8260B		9/13/2013	CJR	I I
1,1-Dichloroethane		< 0,3	ug/l	0.3	0.97	1	8260B		9/13/2013	CJR	1
1,1-Dichloroethene		< 0.4	ug/l	0.4	1.3	1	8260B		9/13/2013	CJR	1
cis-1,2-Dichloroethe		0.44 "J"	ug/l	0.38	1.2	1	8260B		9/13/2013	CJR	1
trans-1,2-Dichloroet		< 0.35	ug/l	0.35		1	8260B		9/13/2013	CJR	1
1,2-Dichloropropan 2,2-Dichloropropan		< 0.32 < 0.36	ug/l ug/l	0.32 0.36		1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 8
1,3-Dichloropropan		< 0.33	ug/l	0.33	1.2	1	8260B		9/13/2013	СЛ СЛ	8 1
Di-isopropyl ether	•	< 0.23	ug/l	0.23	0.73	1	8260B		9/13/2013	СJR	1
EDB (1,2-Dibromo	ethane)	< 0.44	ug/l	0.44	1.4	1	8260B		9/13/2013	CJR	1
Ethylbenzene		< 0.55	ug/l	0.55	1.7	1	8260B		9/13/2013	CJR	1
Hexachlorobutadien	e	< 1.5	ug/l	1.5	4.8	1	8260B		9/13/2013	CJR	1
Isopropylbenzene p-Isopropyltoluene		< 0.3 < 0.31	ug/l ug/l	0.3 0.31	0.96 0.98	1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
Methylene chloride		< 0.5	ug/l	0.51		1	8260B		9/13/2013	CJR	1
Methyl tert-butyl eth	ner (MTBE)	< 0.23	ug/l	0.23	0.74	1	8260B		9/13/2013	CJR	1
Naphthalene		< 1.7	ug/l	1.7	5.5	1	8260B		9/13/2013	CJR	1
n-Propylbenzene		< 0.25	ug/l	0.25	0.81	1	8260B		9/13/2013	CJR	1
1,1,2,2-Tetrachloroe		< 0.45	ug/l	0.45		1	8260B		9/13/2013	CJR	1
1,1,1,2-Tetrachloroe Tetrachloroethene	etnane	< 0.33 3.9	ug/l ug/l	0.33 0.33	1.1 1.1	1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1
Toluene		< 0.69	ug/l	0.69	2.2	1	8260B		9/13/2013	CJR	1
1,2,4-Trichlorobenz	ene	< 0.98	ug/l	0.98	3.1	1	8260B		9/13/2013	CJR	1
1,2,3-Trichlorobenz	ene	< 1.8	ug/l	1.8	5.8	1	8260B		9/13/2013	CJR	1
1,1,1-Trichloroethar		< 0.33	ug/l	0.33	1	1	8260B		9/13/2013	CJR	1
1,1,2-Trichloroethan		< 0.34	ug/l	0.34		1	8260B		9/13/2013	CJR	1
Trichloroethene (TC Trichlorofluorometh		< 0.33 < 0.71	ug/l ug/l	0.33 0.71	1 2,3	1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1
1,2,4-Trimethylbenz		< 2.2	ug/l	2.2	2.3 6.9	1	8260B		9/13/2013	CJR	1
1,3,5-Trimethylbenz		< 1.4	ug/l	1.4	4.5	1	8260B		9/13/2013	CJR	1
Vinyl Chloride		< 0.18	ug/l	0.18	0.57	1	8260B		9/13/2013	CJR	1
m&p-Xylene		< 0.69	ug/l	0.69	2.2	1	8260B		9/13/2013	CJR	1
o-Xylene	sthone dd	< 0.63	ug/l	0.63	2	1	8260B		9/13/2013	CJR	1
SUR - 1,2-Dichloro SUR - 4-Bromofluo		100 101	REC % REC %			1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
SUR - 4-Bromofluo		101	REC %			1	8260B 8260B		9/13/2013	CJR CJR	1
SUR - Toluene-d8		100	REC %			1	8260B		9/13/2013	CJR	1

٩

ang .

,

Project Name Proiect #	HOFFMAN	CLEANERS					Invo	bice # E257	21		
Lab Code	5025721C										
Sample ID	6200-MW-	3									
Sample Matrix	Water										
Sample Date	9/5/2013										
-		Result	Unit	LOD	LOQ Di	I	Method	Ext Date	Run Date	Analyst	Code
Organic						-					0000
VOC's											
Benzene Bromobenzene		< 0.24 < 0.32	ug/l	0.24 0.32		1	8260B		9/13/2013	CJR	1
Bromodichloromet	hane	< 0.32	ug/l ug/l	0.32		1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1
Bromoform	liano	< 0.35	ug/l	0.35		1	8260B		9/13/2013	CJR	1
tert-Butylbenzene		< 0.36	ug/l	0.36		1	8260B		9/13/2013	CJR	1
sec-Butylbenzene		< 0.33	ug/l	0.33	1	1	8260B		9/13/2013	CJR	1
n-Butylbenzene		< 0.35	ug/l	0.35		1	8260B		9/13/2013	CJR	1
Carbon Tetrachlorie	de	< 0.33	ug/l	0.33		1	8260B		9/13/2013	CJR	1
Chlorobenzene		< 0.24	ug/l	0.24		1	8260B		9/13/2013	CJR	1
Chloroethane Chloroform		< 0.63 < 0.28	ug/l	0.63	2	1 1	8260B		9/13/2013	CJR	1
Chloromethane		< 0.28	ug/l ug/l	0.28 0.81	0.88 2.6	1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1
2-Chlorotoluene		< 0.21	ug/l	0.31	0.66	1	8260B		9/13/2013	CJR	1
4-Chlorotoluene		< 0.21	ug/l	0.21	0.68	1	8260B		9/13/2013	CJR	1
1,2-Dibromo-3-chlo	oropropane	< 0.88	ug/l	0.88	2.8	1	8260B		9/13/2013	CJR	1
Dibromochloromet		< 0.22	ug/l	0.22		1	8260B		9/13/2013	CJR	1
1,4-Dichlorobenzer		< 0.3	ug/l	0.3	0.96	1	8260B		9/13/2013	CJR	1
1,3-Dichlorobenzer		< 0.28	ug/l	0.28		1	8260B		9/13/2013	CJR	1
1,2-Dichlorobenzer Dichlorodifluorome		< 0.36	ug/l	0.36		1	8260B		9/13/2013	CJR	1
1,2-Dichloroethane		< 0.44 < 0.41	ug/l ug/l	0.44 0.41	1.4 1.3	1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1
1,1-Dichloroethane		< 0.41	ug/l	0.41	0.97	1	8260B 8260B		9/13/2013	CJR	1
1,1-Dichloroethene		< 0.4	ug/l	0.4	1.3	1	8260B		9/13/2013	CJR	1
cis-1,2-Dichloroeth		< 0.38	ug/l	0.38	1.2	1	8260B		9/13/2013	CJR	1
trans-1,2-Dichloroe		< 0.35	ug/l	0.35	1.1	1	8260B		9/13/2013	CJR	1
1,2-Dichloropropan		< 0.32	ug/l	0.32		1	8260B		9/13/2013	CJR	1
2,2-Dichloropropan		< 0.36	ug/l	0.36		1	8260B		9/13/2013	CJR	8
1,3-Dichloropropan Di-isopropyl ether	le	< 0.33	ug/l	0.33 0.23		1 1	8260B		9/13/2013	CJR	1
EDB (1,2-Dibromo	ethane)	< 0.23 < 0.44	ug/l ug/l	0.25	0.73 1.4	1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1
Ethylbenzene	cthanc)	< 0.55	ug/l	0.55		1	8260B		9/13/2013	CJR	1
Hexachlorobutadier	ne	< 1.5	ug/l	1.5		1	8260B		9/13/2013	CJR	1
Isopropylbenzene		< 0.3	ug/l	0.3	0.96	1	8260B		9/13/2013	CJR	1
p-Isopropyltoluene		< 0.31	ug/l	0.31	0.98	1	8260B		9/13/2013	CJR	1
Methylene chloride		< 0.5	ug/l	0.5		1	8260B		9/13/2013	CJR	1
Methyl tert-butyl et Naphthalene	her (MTBE)	< 0.23	ug/l	0.23	0.74	1	8260B		9/13/2013	CJR	1
n-Propylbenzene		< 1.7 < 0.25	ug/l ug/l	1.7 0.25	5.5 0.81	1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
1,1,2,2-Tetrachloro	ethane	< 0.45	ug/l	0.45		1	8260B		9/13/2013	CJR	1
1,1,1,2-Tetrachloro		< 0.33	ug/l	0.33	1.1	1	8260B		9/13/2013	CJR	1
Tetrachloroethene		< 0.33	ug/l	0.33	1.1	1	8260B		9/13/2013	CJR	1
Toluene		< 0.69	ug/l	0.69	2.2	1	8260B		9/13/2013	CJR	1
1,2,4-Trichlorobenz		< 0.98	ug/l	0.98	3.1	1	8260B		9/13/2013	CJR	1
1,2,3-Trichlorobenz		< 1.8	ug/l	1.8	5.8	1	8260B		9/13/2013	CJR	1
1,1,1-Trichloroetha 1,1,2-Trichloroetha		< 0.33 < 0.34	ug/l ug/l	0.33 0.34	1 1.1	1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
Trichloroethene (T		< 0.33	ug/l	0.34	1.1	1	8260B 8260B		9/13/2013	CJR	1
Trichlorofluorometh		< 0.71	ug/l	0.55	2.3	1	8260B 8260B		9/13/2013	CJR	1
1,2,4-Trimethylben		< 2.2	ug/l	2.2	6.9	1	8260B		9/13/2013	CJR	1
1,3,5-Trimethylben	zene	< 1.4	ug/l	1.4	4.5	1	8260B		9/13/2013	CJR	1
Vinyl Chloride		< 0.18	ug/l	0.18	0.57	1	8260B		9/13/2013	CJR	1
m&p-Xylene		< 0.69	ug/l	0.69		1	8260B		9/13/2013	CJR	1
o-Xylene	romethan	< 0.63	ug/l	0.63	2	1	8260B		9/13/2013	CJR	1
SUR - Dibromofluo SUR - 1,2-Dichloro		99 95	REC % REC %			1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
SUR - 4-Bromofluo		106	REC %			1	8260B 8260B		9/13/2013	CJR	1
SUR - Toluene-d8		101	REC %			1	8260B		9/13/2013	CJR	1

2

ŧ

Project Name – H Project #		CLEANERS				IIIV	bice # E2572	- 1		
Lab Code	5025721D									
Sample ID	6200-MW-	-DUP								
Sample Matrix	Water									
Sample Date	9/5/2013									
Sample Date	9/3/2013	Result	Unit		LOQ Dil	Method	Ext Data	Run Date	Analyst	Cod
Organic		Result	Ont	LOD		Methou	Ext Date	Kun Date	Analyst	COU
VOC's										
Benzene		< 0.24	ug/l	0.24	0.77 1	8260B		9/13/2013	CJR	1
Bromobenzene		< 0.32	ug/l	0.32	1 1	8260B		9/13/2013	CJR	1
Bromodichlorometl	ane	< 0.37	ug/l	0.37	1.2 1	8260B		9/13/2013	CJR	
Bromoform		< 0.35	ug/l	0.35	1.1 1	8260B		9/13/2013	CJR	1
tert-Butylbenzene		< 0.36	ug/l	0.36	1.2 1	8260B		9/13/2013	CJR	1
sec-Butylbenzene		< 0.33	ug/l	0.33	1 1	8260B		9/13/2013	CJR	1
n-Butylbenzene		< 0.35	ug/l	0.35	1.1 1	8260B		9/13/2013	CJR	1
Carbon Tetrachloric	le	< 0.33	ug/l	0.33	1.1 1	8260B		9/13/2013	CJR	1
Chlorobenzene		< 0.24	ug/l	0.24	0.77 1	8260B		9/13/2013	CJR	1
Chloroethane		< 0.63	ug/l	0.63	2 1	8260B		9/13/2013	CJR	1
Chloroform		< 0.28	ug/l	0.28	0.88 1	8260B		9/13/2013	CJR	1
Chloromethane		< 0.81	ug/l	0.81	2.6 1	8260B		9/13/2013	CJR	1
2-Chlorotoluene		< 0.21	ug/i	0.21	0.66 1	8260B		9/13/2013	CJR	1
4-Chlorotoluene	ronronano	< 0.21 < 0.88	ug/l ug/l	0.21 0.88	0.68 1 2.8 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1
Dibromochlorometl	• •	< 0.22	ug/l ug/l	0.88	0.7 1	8260B 8260B		9/13/2013	CJR	1
1,4-Dichlorobenzen		< 0.22	ug/l	0.22	0.96 1	8260B 8260B		9/13/2013	CJR	1
1,3-Dichlorobenzen		< 0.28	ug/l	0.28	0.89 1	8260B		9/13/2013	CJR	1
1,2-Dichlorobenzen		< 0.36	ug/l	0.26	1.2 1	8260B		9/13/2013	CJR	1
Dichlorodifluorome		< 0.44	ug/l	0.44	1.4 1	8260B		9/13/2013	CJR	1
1,2-Dichloroethane		< 0.41	ug/l	0.41	1.3 1	8260B		9/13/2013	CJR	1
1,1-Dichloroethane		< 0.3	ug/l	0.3	0.97 1	8260B		9/13/2013	CJR	1
1,1-Dichloroethene		< 0.4	ug/l	0.4	1.3 1	8260B		9/13/2013	CJR	1
cis-1,2-Dichloroeth	ene	0.40 "J"	ug/l	0.38	1.2 1	8260B		9/13/2013	CJR	1
trans-1,2-Dichloroe		< 0.35	ug/l	0.35	1.1 1	8260B		9/13/2013	CJR	1
1,2-Dichloropropan		< 0.32	ug/l	0.32	1 1	8260B		9/13/2013	CJR	1
2,2-Dichloropropan		< 0.36	ug/l	0.36	1.2 1	8260B		9/13/2013	CJR	8
1,3-Dichloropropan	e	< 0.33	ug/l	0.33	1 1	8260B		9/13/2013	CJR	1
Di-isopropyl ether		< 0.23	ug/l	0.23	0.73 1	8260B		9/13/2013	CJR	1
EDB (1,2-Dibromo	ethane)	< 0.44	ug/l	0.44	1.4 1	8260B		9/13/2013	CJR	1
Ethylbenzene		< 0.55	ug/l	0.55	1.7 1	8260B		9/13/2013	CJR	1
Hexachlorobutadier	ie	< 1.5	ug/l	1.5	4.8 1	8260B		9/13/2013	CJR	1
Isopropylbenzene		< 0.3	ug/l	0.3	0.96 1	8260B		9/13/2013	CJR	1
p-Isopropyltoluene Methylene chloride		< 0.31 < 0.5	ug/l ug/l	0.31 0.5	0.98 1 1.6 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1
Methyl tert-butyl et	her (MTRE)	< 0.3	ug/l	0.3	0.74 1	8260B 8260B		9/13/2013	CJR	1
Naphthalene	ler (MTBE)	< 1.7	ug/l	1.7	5.5 1	8260B 8260B		9/13/2013	CJR	1
n-Propylbenzene		< 0.25	ug/l	0.25	0.81 1	8260B		9/13/2013	CJR	1
1,1,2,2-Tetrachloro	ethane	< 0.45	ug/l	0.45	1.4 1	8260B		9/13/2013	CJR	1
1,1,1,2-Tetrachloro		< 0.33	ug/l	0.33	1.1 1	8260B		9/13/2013	CJR	1
Tetrachloroethene		3.8	ug/l	0.33	1.1 1	8260B		9/13/2013	CJR	1
Toluene		< 0.69	ug/l	0.69	2.2 1	8260B		9/13/2013	CJR	1
1,2,4-Trichlorobenz	ene	< 0.98	ug/l	0.98	3.1 1	8260B		9/13/2013	CJR	1
1,2,3-Trichlorobenz	ene	< 1.8	ug/l	1.8	5.8 1	8260B		9/13/2013	CJR	1
1,1,1-Trichloroethat	ne	< 0.33	ug/l	0.33	1 1	8260B		9/13/2013	CJR	1
1,1,2-Trichloroethat	ne	< 0.34	ug/l	0.34	1.1 1	8260B		9/13/2013	CJR	1
Trichloroethene (TC		< 0.33	ug/l	0.33	1 1	8260B		9/13/2013	CJR	1
Trichlorofluorometl		< 0.71	ug/l	0.71	2.3 1	8260B		9/13/2013	CJR	1
1,2,4-Trimethylben:		< 2.2	ug/l	2.2	6.9 1	8260B		9/13/2013	CJR	1
1,3,5-Trimethylben:	zene	< 1.4	ug/l	1.4	4.5 1	8260B		9/13/2013	CJR	1
Vinyl Chloride		< 0.18	ug/l	0.18	0.57 1	8260B		9/13/2013	CJR	1
m&p-Xylene		< 0.69	ug/l	0.69	2.2 1	8260B		9/13/2013	CJR	1
o-Xylene		< 0.63	ug/l	0.63	2 1	8260B		9/13/2013	CJR	1
SUR - 4-Bromofluo		105	REC % REC %		1	8260B 8260B		9/13/2013	CJR	1
SUR - Dibromofluo SUR - Toluene-d8	rometnane	97 100	REC % REC %		1	8260B 8260B		9/13/2013 9/13/2013	СJR CJR	1
NUK = 1000000-0X		100	REC %		1	8260B 8260B		7/13/2013	CJR CJR	1

s T

Project Name	HOFFMAN	CLEANERS					Invo	oice # E2572	21		42
Lab Code Sample ID Sample Matrix Sample Date		LD BLANK									
		Result	Unit	LOD	LOQ Di	1	Method	Ext Date	Run Date	Analyst	Code
Organic											
VOC's											
Benzene		< 0.24	ug/l	0.24	0.77	1	8260B		9/12/2013	CJR	1
Bromobenzene		< 0.32	ug/l	0.32	1	1	8260B		9/12/2013	CJR	1
Bromodichloromet	hane	< 0.37	ug/l	0.37		1	8260B		9/12/2013	CJR	1
Bromoform		< 0.35	ug/l	0.35		1	8260B		9/12/2013	CJR	1
tert-Butylbenzene		< 0.36	ug/l	0.36 0.33		1 1	8260B		9/12/2013	CJR	1
sec-Butylbenzene n-Butylbenzene		< 0.33 < 0.35	ug/l ug/l	0.33		1	8260B 8260B		9/12/2013 9/12/2013	CJR CJR	1 1
Carbon Tetrachlori	de	< 0.33	ug/l	0.33		1	8260B		9/12/2013	CJR	1
Chlorobenzene		< 0.24	ug/l	0.24		1	8260B		9/12/2013	CJR	1
Chloroethane		< 0.63	ug/l	0.63		1	8260B		9/12/2013	CJR	1
Chloroform		< 0.28	ug/l	0.28	0.88	1	8260B		9/12/2013	CJR	1
Chloromethane		< 0.81	ug/l	0.81	2.6	1	8260B		9/12/2013	CJR	1
2-Chlorotoluene		< 0.21	ug/l	0.21	0.66	1	8260B		9/12/2013	CJR	1
4-Chlorotoluene		< 0.21	ug/l	0.21	0.68	1	8260B		9/12/2013	CJR	1
1,2-Dibromo-3-chl		< 0.88	ug/l	0.88		1 1	8260B		9/12/2013	CJR	1
Dibromochloromet 1,4-Dichlorobenzer		< 0.22 < 0.3	ug/l ug/l	0.22 0.3		1	8260B 8260B		9/12/2013 9/12/2013	CJR CJR	1
1,3-Dichlorobenzer		< 0.28	ug/l	0.28		1	8260B		9/12/2013	CJR	1
1,2-Dichlorobenzer		< 0.36	ug/l	0.36		1	8260B		9/12/2013	CJR	î
Dichlorodifluorom	ethane	< 0.44	ug/l	0.44	1.4	1	8260B		9/12/2013	CJR	1
1,2-Dichloroethane	;	< 0.41	ug/l	0.41	1.3	1	8260B		9/12/2013	CJR	1
1,1-Dichloroethane		< 0.3	ug/l	0.3		1	8260B		9/12/2013	CJR	1
1,1-Dichloroethene		< 0.4	ug/l	0.4		1	8260B		9/12/2013	CJR	1
cis-1,2-Dichloroeth		< 0.38	ug/l	0.38		1	8260B		9/12/2013	CJR	1
trans-1,2-Dichloroe 1,2-Dichloropropar		< 0.35 < 0.32	ug/l ug/l	0.35 0.32		1 1	8260B 8260B		9/12/2013 9/12/2013	CJR CJR	1 1
2,2-Dichloropropar		< 0.32	ug/i	0.32		1	8260B		9/12/2013	CJR	8
1,3-Dichloropropar		< 0.33	ug/l	0.33		1	8260B		9/12/2013	CJR	1
Di-isopropyl ether		< 0.23	ug/l	0.23		1	8260B		9/12/2013	CJR	1
EDB (1,2-Dibromo	ethane)	< 0.44	ug/l	0.44	1.4	1	8260B		9/12/2013	CJR	1
Ethylbenzene		< 0.55	ug/l	0.55		1	8260B		9/12/2013	CJR	1
Hexachlorobutadie	ne	< 1.5	ug/l	1.5		1	8260B		9/12/2013	CJR	1
Isopropylbenzene		< 0.3 < 0.31	ug/l	0.3		1	8260B		9/12/2013 9/12/2013	CJR	1
p-Isopropyltoluene Methylene chloride		< 0.51	ug/l ug/l	0.31 0.5		1 1	8260B 8260B		9/12/2013	CJR CJR	1 1
Methyl tert-butyl et		< 0.23	ug/l	0.23		1	8260B		9/12/2013	CJR	1
Naphthalene		< 1.7	ug/l	1.7		1	8260B		9/12/2013	CJR	1
n-Propylbenzene		< 0.25	ug/l	0.25	0.81	1	8260B		9/12/2013	CJR	1
1,1,2,2-Tetrachloro		< 0.45	ug/l	0.45		1	8260B		9/12/2013	CJR	1
1,1,1,2-Tetrachloro	ethane	< 0.33	ug/l	0.33		1	8260B		9/12/2013	CJR	1
Tetrachloroethene		< 0.33	ug/l	0.33		1	8260B	•	9/12/2013	CJR	1
Toluene 1,2,4-Trichloroben:		< 0.69 < 0.98	ug/l	0.69 0.98		1 1	8260B 8260B		9/12/2013	CJR	1
1,2,3-Trichloroben;		< 1.8	ug/l ug/l	1.8		1	8260B		9/12/2013 9/12/2013	CJR CJR	1
1,1,1-Trichloroetha		< 0.33	ug/l	0.33		1	8260B		9/12/2013	СЛ	1
1,1,2-Trichloroetha		< 0.34	ug/l	0.34		1	8260B		9/12/2013	CJR	1
Trichloroethene (To		< 0.33	ug/l	0.33		1	8260B		9/12/2013	CJR	1
Trichlorofluoromet		< 0.71	ug/l	0.71		1	8260B		9/12/2013	CJR	1
1,2,4-Trimethylben		< 2.2	ug/l	2.2		1	8260B		9/12/2013	CJR	1
1,3,5-Trimethylben	zene	< 1.4	ug/l	1.4		1	8260B		9/12/2013	CJR	1
Vinyl Chloride		< 0.18 < 0.69	ug/l	0.18		1	8260B		9/12/2013	CJR	1 1
m&p-Xylene o-Xylene		< 0.69	ug/l ug/l	0.69 0.63		1 1	8260B 8260B		9/12/2013 9/12/2013	CJR CJR	1
SUR - 1,2-Dichloro	oethane-d4	93	REC %	0.05	2	1	8260B		9/12/2013	CJR	1
SUR - 4-Bromoflue		108	REC %			1	8260B		9/12/2013	CJR	1
SUR - Dibromofluc		97	REC %			1	8260B		9/12/2013	СJR	1
SUR - Toluene-d8		100	REC %			1	8260B		9/12/2013	CJR	1

Lab Char FRIP BLANK Sample Du Vitre Sample Du Vitre Sample Du Vitre Sample Du Vitre Sample Du Reslu Lui Lui Kale Ran De Alays Cale Organic Sample Du	Project Name	HOFFMAN	CLEANERS				Inv	oice # E257	21		
Result Unit LOD LOD Di Method Ext Date Rum Date Analyse Code Organic VCC <t< th=""><th>Sample ID Sample Matrix</th><th>TRIP BLA Water</th><th>NK</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Sample ID Sample Matrix	TRIP BLA Water	NK								
Organic VOCS Brizzon <0.24 ug1 0.24 0.77 I 8260B 9/12/2013 C/R 1 Bremode-Ricomethane <0.32 ug1 0.32 1 I 8260B 9/12/2013 C/R 1 Bremode-Ricomethane <0.35 ug1 0.35 1.1 I 8260B 9/12/2013 C/R 1 see-Barylenzme <0.33 ug1 0.33 1.1 I 8260B 9/12/2013 C/R 1 e-Barylenzme <0.33 ug1 0.33 1.1 I 8260B 9/12/2013 C/R 1 Chronofterin <0.63 ug1 0.33 1.7 I 8260B 9/12/2013 C/R 1 Chronofterin <0.63 ug1 0.33 1.7 I 8260B 9/12/2013 C/R 1 2-Chronofterine <0.63 ug1 0.24 0.84 1 8260B 9/12/2013 C/R 1	Sample Date	9/5/2013		** •/	100				D D (a 1
VOCs Bronobarane <0.24	~ .		Result	Unit	LOD	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code
Bassme -0.24 up1 0.24 0.77 I 8260B 91/2013 C/R 1 Bronndnickhoroverkine -0.37 up1 0.37 1.2 I 8260B 91/2013 C/R 1 Bronndir -0.33 up1 0.35 1.2 I 8260B 91/2013 C/R 1 ac-Burythorzen -0.33 up1 0.35 1.1 I 8260B 91/2013 C/R 1 n-Wutythenzen -0.33 up1 0.35 1.1 I 8260B 91/2013 C/R 1 Curkon Tranchorie -0.33 up1 0.32 1.8 8260B 91/2013 C/R 1 Chioronchine -0.24 up1 0.24 0.7 1 8260B 91/2013 C/R 1 Chioronchine -0.21 up1 0.28 0.82 1 8260B 91/2013 C/R 1 L-Chioronchine -0.21 up1 0.28	0										
Bronackinomekano	VOC's										
Bromochchloromethane < 0.37 u.gl 0.37 1.2 1 8200B 9/12/2013 C/R 1 ter-Durylbenzene <				-							
Bronoforn < 0.35 ug1 0.35 1.1 I 8260B 97120113 CIR 1 such aughenzane < 0.33				-							
tert-Barythenzene < 0.36 up 0.36 1.2 1 8260B 9/12/2013 C/R 1 n-Burythenzene < 0.35 up/l 0.33 1.1 1 8260B 9/12/2013 C/R 1 Chlorochenzene < 0.35 up/l 0.33 1.1 1 8260B 9/12/2013 C/R 1 Chlorochenzene < 0.43 up/l 0.24 up/l 0.24 8260B 9/12/2013 C/R 1 Chlorochenzene < 0.48 up/l 0.28 0.88 1 8260B 9/12/2013 C/R 1 Chlorochentene < 0.21 up/l 0.21 0.66 1 8260B 9/12/2013 C/R 1 L'Chlorochhence < 0.21 up/l 0.83 2.8 1 8260B 9/12/2013 C/R 1 L'Chlorochenzene < 0.42 up/l 0.4 1.2 1 8260B 9/12/2013 C/R 1 1 L'D		nane		-							-
sec-Baythenzene <0.33				-							1
Carbon Teinchloride <0.33	•			-							1
Chlorobenzene <0.24 ug1 0.24 0.77 1 8.260B 9/12/2013 C/R 1 Chloroforn <0.28	n-Butylbenzene		< 0.35	ug/l	0.35	1.1 1	8260B		9/12/2013	CJR	1
Chloroschane < 0.63 ug/l 0.63 2 1 8 260B 9/12/2013 CIR 1 Chlorosmethane < 0.81		de		-							•
Chloronfam < 0.28 ug/l 0.88 0.8 1 8260B 9/12013 CIR I 2-Chlorotokene < 0.21				-							-
Chloromethane < 0.81 ug/l 0.81 2.6 1 8260B 9/12/013 CIR 1 2-Chloromolene < 0.21				-							•
2-Chlorosohuene < 0.21				-							-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-							-
	4-Chlorotoluene			-	0.21	0.68 1					1
1,4-Dichlorobenzene < 0.3	1,2-Dibromo-3-chl	oropropane	< 0.88	ug/l	0.88	2.8 1	8260B		9/12/2013	CJR	1
1.3-Dichlorobenzene < 0.28 ug/l 0.28 0.89 l $8260B$ $9/122013$ CIR l 1.2-Dichlorodifluoromethane < 0.44 ug/l 0.44 $l.2$ l $8260B$ $9/122013$ CIR l 1.2-Dichlorotethane < 0.44 ug/l 0.44 $l.3$ l $8260B$ $9/122013$ CIR l 1.1-Dichlorotethane < 0.44 ug/l 0.41 $l.3$ l $8260B$ $9/122013$ CIR l 1.1-Dichlorotethane < 0.44 ug/l 0.44 $l.3$ l $8260B$ $9/122013$ CIR l 1.1-Dichlorotethane < 0.33 ug/l 0.35 $l.2$ l $8260B$ $9/122013$ CIR l 1.2-Dichlorotethene < 0.32 ug/l 0.32 $l.2$ l $8260B$ $9/122013$ CIR l 1.2-Dichlorotpropane < 0.32 ug/l 0.33 $l.2$ l $8260B$ $9/122013$ CIR l 1.2-Dichlorotpropane < 0.33 ug/l 0.33 $l.3$ l $8260B$ $9/122013$ CIR l 1.2-Dichlorotpropane < 0.33 ug/l 0.3 0.96 l $8260B$ $9/122013$ CIR l 1.3-Dichlorothuta < 0.51 ug/l 0.55 $l.7$ l $8260B$ $9/122013$ CIR l 1.3-Dichlorothuta < 0.51 ug/l 0.55 $l.7$ l $8260B$ $9/122013$ CIR				-							•
1.2-Dichloroberzene< 0.36ug/l0.361.2l8260B9/12/2013CIR1Dichlorodifluoromethane< 0.44				-							•
				-							
1,2-Dickloroethane < 0.41				-							-
1,1-Dichloroethane< 0.3ug/l0.30.9718260B9/12/2013CJR11,1-Dichloroethene< 0.4				-							-
1,1-Dichloroethene< 0.4ug/l0.41.318260B9/12/2013CIR1cis-1,2-Dichloroethene< 0.38											-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,1-Dichloroethene		< 0.4	-	0.4	1.3 1	8260B		9/12/2013		1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,		< 0.38	-					9/12/2013		1
2,2-Dichloropropane< 0.36 ug/l 0.361.218260B9/12/2013CJR81,3-Dichloropropane< 0.33				-							
1,3-Dichloropropane< 0.33ug/l0.33118260B9/12/2013CJR1Di-isopropyl ether< 0.23				-							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-							
EDB (1,2-Dibromoethane)< 0.44ug/l0.441.41 $\$260B$ 9/12/2013CJR1Ethylbenzene< 0.55		ic .		-							•
Ethylbenzene < 0.55		ethane)		+							-
		,		-							1
p-isopropyltoluene< 0.31ug/l0.310.9818260B9/12/2013CJR1Methylene chloride< 0.5	Hexachlorobutadie	ne	< 1.5	ug/l		4.8 1	8260B		9/12/2013		1
Methylene chloride < 0.5 ug/l 0.5 1.6 1 $8260B$ $9/12/2013$ CJR 1 Methyl tert-butyl ether (MTBE) < 0.23 ug/l 0.23 0.74 1 $8260B$ $9/12/2013$ CJR 1 Naphthalene < 1.7 ug/l 1.7 5.5 1 $8260B$ $9/12/2013$ CJR 1 n-Propylbenzene < 0.25 ug/l 0.25 0.81 $8260B$ $9/12/2013$ CJR 1 $1,1,2,2$ -Tetrachloroethane < 0.45 ug/l 0.45 1.4 1 $8260B$ $9/12/2013$ CJR 1 $1,1,1,2$ -Tetrachloroethane < 0.33 ug/l 0.33 1.1 1 $8260B$ $9/12/2013$ CJR 1 Totuene < 0.33 ug/l 0.33 1.1 1 $8260B$ $9/12/2013$ CJR 1 $1,2,4$ -Trichloroethane < 0.33 ug/l 0.69 2.2 1 $8260B$ $9/12/2013$ CJR 1 $1,2,4$ -Trichloroethane < 0.69 ug/l 0.69 2.2 1 $8260B$ $9/12/2013$ CJR 1 $1,2,4$ -Trichloroethane < 0.33 ug/l 0.33 1 1 $8260B$ $9/12/2013$ CJR 1 $1,1,1$ -Trichloroethane < 0.33 ug/l 0.33 1 1 $8260B$ $9/12/2013$ CJR 1 $1,2,4$ -Trinethylbenzene < 0.33 ug/l 0.33 1 1 $8260B$ $9/12/2013$ <											•
Methyl tert-butyl ether (MTBE)< 0.23ug/l0.230.7418260B9/12/2013CJR1Naphthalene< 1.7				-							
Naphthalene< 1.7ug/l1.75.518260B $9/12/2013$ CJR1n-Propylbenzene< 0.25	•			-							-
n-Propylbenzene< 0.25ug/l0.250.8118260B9/12/2013CJR1 $1,1,2,2$ -Tetrachloroethane< 0.45				-							
1,1,2,2-Tetrachloroethane< 0.45ug/l0.451.41 $$260B$ 9/12/2013CJR1 $1,1,1,2$ -Tetrachloroethane< 0.33	•			-							
Tetrachloroethene< 0.33ug/l0.331.118260B $9/12/2013$ CJR1Toluene< 0.69		ethane		-					9/12/2013		1
Toluene< 0.69 ug/l 0.692.218260B9/12/2013CJR11,2,4-Trichlorobenzene< 0.98	1,1,1,2-Tetrachloro	ethane	< 0.33	-	0.33	1.1 1			9/12/2013	CJR	1
1,2,4-Trichlorobenzene < 0.98											-
1,2,3-Trichlorobenzene< 1.8 ug/l 1.85.81 $8260B$ $9/12/2013$ CJR 1 $1,1,1$ -Trichloroethane< 0.33				-							1
1,1,1-Trichloroethane < 0.33				•							1
1,1,2-Trichloroethane< 0.34 ug/l 0.341.11 $8260B$ $9/12/2013$ CJR 1Trichloroethene (TCE)< 0.33				-							
Trichloroethene (TCE)< 0.33ug/l0.33118260B $9/12/2013$ CJR1Trichlorofluoromethane< 0.71	, ,			-							-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-							1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-							1
Vinyl Chloride < 0.18 ug/l 0.18 0.57 1 8260B 9/12/2013 CJR 1 m&p-Xylene < 0.69				-							-
m&p-Xylene < 0.69 ug/l 0.69 2.2 1 8260B 9/12/2013 CJR 1 o-Xylene < 0.63		zene		-							
o-Xylene < 0.63 ug/l 0.63 2 1 8260B 9/12/2013 CJR 1 SUR - Toluene-d8 100 REC % 1 8260B 9/12/2013 CJR 1 SUR - 1,2-Dichloroethane-d4 95 REC % 1 8260B 9/12/2013 CJR 1 SUR - 4-Bromofluorobenzene 107 REC % 1 8260B 9/12/2013 CJR 1	•			-							
SUR - Toluene-d8 100 REC % 1 8260B 9/12/2013 CJR 1 SUR - 1,2-Dichloroethane-d4 95 REC % 1 8260B 9/12/2013 CJR 1 SUR - 4-Bromofluorobenzene 107 REC % 1 8260B 9/12/2013 CJR 1	• •			-							-
SUR - 1,2-Dichloroethane-d4 95 REC % 1 8260B 9/12/2013 CJR 1 SUR - 4-Bromofluorobenzene 107 REC % 1 8260B 9/12/2013 CJR 1				-	0.00						
SUR - 4-Bromofluorobenzene 107 REC % 1 8260B 9/12/2013 CJR 1		ethane-d4									1
SUR - Dibromofluoromethane 95 REC % 1 8260B 9/12/2013 CJR 1	SUR - 4-Bromofluc	orobenzene				1					
	SUR - Dibromofluc	promethane	95	REC %		1	8260B		9/12/2013	CJR	1

4 V

"J" Flag: Analyte detected between LOD and LOQ LOD Limit of Detection LOQ Limit of Quantitation

Code	Comment
1	Laboratory QC with
8	Closing calibration s

nin limits.

ing calibration standard not within established limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Authorized Signature

Nichoelfle

ATTACHMENT 3

SUB-SLAB VAPOR AND INDOOR/OUTDOOR AIR FIELD SAMPLING FORMS

ENVIRO	Grensics
	INDOOR AIR BUILDING SURVEY FORM
IDEM Site #	
Site Name	Aloffman Chearchs
Address	7215 w Center Ft
	Wanwatosa WI
Occupant Info	rmation
Name	Nor Occupied
Address	0
	:
Telephone No	() Home/Work/Mobile
	(Home/Work/Mobile
Number and Age of Occupants	
Does anyone smoke	inside the building?
Building Charac	cteristics
Type of building: (ci	rcle) Residential/Industrial/School/Commercial/Multi-use/Other?
If residential, what ty	ype (circle) Single family/Condo/Multi-family/Other?
If the property is con	nmercial, indicate the business? <u>Vacant - Offices</u>
How many floors do	es the building have?
Does the building ha	we a (circle) Basement/Crawl space/Slab-on-grade/Other?
	as a living/work space area?
What type of founda	tion does the building have (circle) Field stone/Poured concrete/Concrete block Other?
Describe the heating	system and type of fuel used? Oas - Forced Air
Is there an attached g	garage? <u>Ac</u>

Spill/Contaminant Source Information

Type of petroleum	LOC release? UOC
When did the release	e occur?
What areas of the bu	ilding have been impacted by the release?
Are there any odors?	If so describe the odors:
Where can release o	dors be detected? No
Sampling Inform	ation
Sample Date	9/4/2013
Sampler Type	Sorbent SUMMA (Please circle one)
Analysis Method	Mass APH TO-15Standard TO-15LL TO-15-SIM Other: (Please circle one)
IDEM program or Consulting Firm	WONR
Contact Person	
Telephone No	()
Laboratory	
Telephone No	

Pre-Sampling Background Screening and Inspection Information

List products or items which may be considered potential sources of VOCs such as paint cans, gasoline cans, gasoline powered equipment, cleaning solvents, furniture polish, moth balls, fuel tank, woodstove, fireplace, etc.

Date and time of pre-sampling inspection $\frac{9}{4}$

Field Removal Date and Time Location Potential VOC source Present screening Product (Y/N) Results Description and (ppm) Condition Paints or paint N thinners Gas powered equipment Gasoline storage cans $\sim \sim$ Cleaning solvents Furniture polish Moth balls Fuel tank Wood stove Fireplace Perfumes/colognes Glues Other: Other:

Table 3: Sampling Inspection Product Inventory

Table 4: Potential vapor migration entry point information

Potential Vapor entry points	Present (Y/N)	Field screening results (ppm)	Comments
Foundation penetrations in floor or walls	# 4		
Cracks in foundation floor or walls	· Y		
Sump	Ч		
Floor drain	Ч		
Other	[
Other			

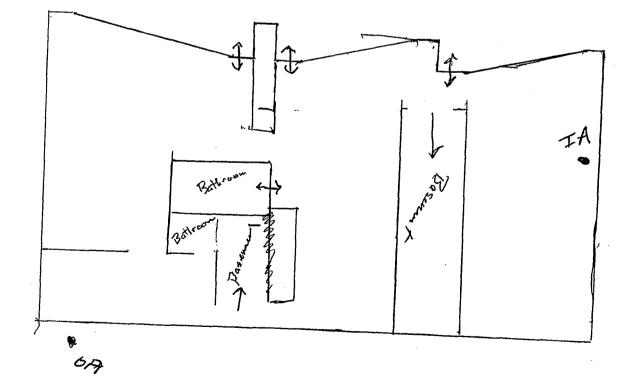
Sampling Information

Table 1: Sorbent Tube Sampler Information Tube ID# Sample ID# Pump ID# Volume (liters) Duration Floor Room Comments (minutes) Indoor Air Sampling Cheete Refer to torms Table 2: Canister Sampler Information Pressure* On-site Following Sample Collection Sample ID# Canister ID# Pressure Received at the Laboratory Initial On-Floor Room site Pressure*

*Indicate pressure in units of inches of mercury.

Please provide a sketch of spill area and location of sampler unit(s) on following page.

Was the building ventilated prior to sample collection?									
How long was the ventilation process?									
Were vapor control methods in effect while the samples were being collected?									
Windows open? Yes No Ventilation fans? Yes / 10 Vapor barriers? Yes / 10									
Vapor phase carbon treatment system? Yes / SSDS? Yes/ O Other site control measures									
Weather Conditions during Sampling									
Outside temperature (°F) Inside temperature (°F)									
Prevailing wind speed and direction									
Describe the general weather conditions (e.g. sunny, cloudy, rain)									
Significant precipitation (0.1 inches or more) within 12 hours of the sampling event?									



ې چ د شا

General Comments and Sketch Area

Is there any information you feel is important related to this site and the samples collected which would facilitate an accurate interpretation of the indoor air quality? Sketch floor plan, sample locations, location of background sources.

Comm ercial un't ac Comments: rafte 3 pane To Sivel sr 100 out Sketch:

5

Sub-Slab Vapor/ Soil Gas Field Sampling Form

200 S. Executive Dr, Suite 101 Brookfield, WI 53005 T: 414-982-3988 F: 262-789-6699

10-

*

SAMPLER NAME		J. Jordan 70 19 N Cent	fer Sf	SAMPLE ID	(0200-7219- 12:45	\$\$V-2
LOCATION/ADDRESS PROJECT NO./ NAME		6700 Hoffer		SAMPLE TIME	83921	
CLIENT/CONTACT		- ACO MORPO		CANISTER ID FLOW CONTROL ID	00 101	
DATA COLLECTION:	START DATE	9/5/2013		END DATE	9/5/2013	
Time	Vacuum Reading	Wind Direction	Wind Speed	Temperature ° F	Barometer	Relative Humidity
hh:mm	In. of Hg	- 10	mph		Hg	%
13:40	-29	<u> </u>	9,2	<u>Cele:9</u>	30.30	_52
12:45	-10	ENE	9.2	66.9	30,30	52
	•	······				
				. <u></u>	<u></u>	<u> </u>
						· <u>····································</u>
				and the state of the		
		<u></u>		· · · · · · · · · · · · · · · · · · ·	terre and a second s	
······································						
				· · · · · · · · · · · · · · · · · · ·	**************************************	-
		·····		d		
	·			. <u></u>		····
		n Leak Test		Pressure Test		T
ate/Time performed:	 ka	:25 9/5/20	131	Date/Time performed:		/
ackground He concer			0		least -15 in. Hg induced o	n sampling train?
hroud He concentrati			39,7%	(circle one):	Ves	по
		ost helium insertion):	0	Did pressure hold?	(yes)	no
elium Leak Test Pass		TES	no			
iotes:						

Notes:

Sub-Slab Vapor/ Soil Gas Field Sampling Form

1

200 S. Executive Dr, Suite 101 Brookfield, WI 53005 T: 414-982-3988 F: 262-789-6699

SAMPLER NAME		J. Jordan		SAMPLE ID	62027219-	-SSU-1		
	OCATION/ADDRESS 7219 W Cente			SAMPLE TIME	12:10			
PROJECT NO./ NAME		4200 Hoffman	>	CANISTER ID	83727			
CLIENT/CONTACT				FLOW CONTROL ID	, NA			
DATA COLLECTION:	START DATE	9/10- 9/9	P013	END DATE	9/5/2013			
Time	Vacuum	Wind Direction	Wind Speed	Temperature	Barometer	Relative		
hh:mm	Reading In. of Hg		- mph	°F	Hg	Humidity %		
12:05	-27	ENE	11.5	66.9	30.30	51		
1210	-6,5	ENE	11.5	46.9	30,30	51		
17:10	<u> </u>		11,7	<u> </u>		<u>J</u>		
								
				·				
					·			
				· ····································	····			
M								
·			······					
	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			· · · · · · · · · · · · · · · · · · ·				
		<u></u>	·····		<u></u>			
[Heliun	n Leak Test	-	Pressure Test	T			
Date/Time performed	i:)) ?	50 9/5/2017	1	Date/Time performed:	4 4 700	3 /		
			Ð					
Background He concentration (ppm):					east -15 in. Hg induced on			
Shroud He concentra	tion (%):		46.2	(circle one):	yes	no		
Sub-slab vapor/soil-g	as He concentration (p	oost helium insertion):	0	Did pressure hold?	yes	no		
Helium Leak Test Pa	ssed:	kes -	no		<u> </u>			

Notes:

ENVIRO-forensics

Indoor Air Field Sampling Form

×,

٩.,

602 N. Capitol Avenue, Ste. 210, Indianapolis, IN 46204 T:317-972-7870 F: 317-972-7875

PROJECT NAME LOCATION/ADDRESS PROJECT NO. CLIENT/CONTACT DATA COLLECTION:	START DATE	Hoffmans (1215 W Cente 420D DWR 9/4/2013	Jeannes er St	SAMPLE DATE SAMPLE ID SAMPLE TIME CANISTER ID	9/2/2013 (1200-7215.01 19:35 91442 05252			
Time hh:mm	Vaccum Reading In. of H2O	Wind Direction	Wind Speed 	Temperature ° F	Barometer Hg	Relative Humidity %		
11-20								
11:35	-29.5 -8	West East Northeast	9.2 9.2	78.1	30.08 30.10	48 \$8		
				<u></u>				
·								
				·				

Notes:

•

.

602 N. Capitol Avenue, Ste. 210, Indianapolis, IN 46204 T:317-972-7870 F: 317-972-7875

PROJECT NAME LOCATION/ADDRESS PROJECT NO. CLIENT/CONTACT DATA COLLECTION:	START DATE	Hoffman (1 7215 W Con 620 ? 9/4/2013	earther st	SAMPLE DATE SAMPLE ID SAMPLE TIME CANISTER ID END DATE	9/4/2013 4200-7015-I 19:20 10332 05301			
Time	Vaccum Reading In, of H2O	Wind Direction	Wind Speed	Temperature ° F	Barometer	Relative Humidity %		
11:20	<u>२</u> २	West	mph P. Z	75	Hg 	<u> </u>		
19:20	- 30	NorthEast	9.2	70	30,09	81		
<u> </u>								
		······						
		·····		· · · · · · · · · · · · · · · · · · ·		<u></u>		
		·	· · · · · · · · · · · · · · · · · · ·	·····	•	<u></u>		
· · · · · · · · · · · · · · · · · · ·					·			
	<u> </u>					<u></u>		
				······································		<u></u>		
<u> </u>			<u> </u>	<u></u>				
				<u> </u>		·		
				······				
					<u> </u>			
· · · · · · · · · · · · · · · · · · ·		• •						
			••••••••••••••••••••••••••••••••••••••					
				<u></u>				
totes: Reg	sulator	Not wo	rking (proper	12			

-22 = 0 pressure

ATTACHMENT 4

SUB-SLAB VAPOR AND INDOOR/OUTDOOR AIR LABORATORY REPORT

SUMMARY OF SUB-SLAB VAPOR SAMPLE ANALYTICAL RESULTS

Former Hoffman's Valet Cleaners

Wauwatosa, Wisconsin

Sample Identification	Sample Date	Property Address (W. Center St)	Tetrachloroethene	Trichloroethene	cis-1-2-Dichloroethene	Acetone	Carbon Disulfide	Cyclohexane	1,2-Dichloroethene	n-Hexane	Isopropyl Alcohol	Methyl Ethyl Ketone	Toluene
SS-2	11/16/2009	7209	81	<2.7	<1.7	NA	2.6	<1.7	<1.7	3.42	NA	NA	2.4
Basement Sump	7/26/2006	7215	5,100	54	28	550	120	180	28	110	980	53	49
SG-1	7/28/2006	7215	20,000	<110	<79	<1,200	<160	<69	<79	<180	<1,200	<150	<75
7215-SSV-1	2/20/2014	7215	1,440	48.9	<7.90	NA	NA	NA	NA	NA	NA	NA	NA
7215-SSV-2	2/20/2014	7215	3,600	12.4	<7.90	NA	NA	NA	NA	NA	NA	NA	NA
SS-1	10/21/2009	7219	244,000	<110	<79	<43	<64	<69	<79	<70	<1,200	<150	<75
7219-SSV-1	9/4/2013	7219	298	8.54	<19.8	NA	NA	NA	NA	NA	NA	NA	NA
7219-33V-1	2/20/2014	7219	239	<10.7	<7.90	NA	NA	NA	NA	NA	NA	NA	NA
7219-SSV-2	9/4/2013	7210	36.6	<1.07	<19.8	NA	NA	NA	NA	NA	NA	NA	NA
7219-55 -2	2/20/2014	7219	118.0	<10.7	<7.90	NA	NA	NA	NA	NA	NA	NA	NA
Vapor I	1,800	88	NE	1,400,000	31,000	260,000	47	31,000	310,000	220,000	220,000		

Notes:

¹ The Vapor Risk Screeing Levels are based on U.S. EPA Regional Screening Levels for non-residential indoor air with an attenuation factor of 0.1 and a 0.1 adjustment for $1 \times 10-5$ excess cancer risk for carcinogens.

2006 and 2009 data collected by ARCADIS

All concentrations reported in untis of micrograms per cubic meter (ug/m3)

Bolded and orange shaded values exceed the Vapor Risk Screening Level

Bolded values are above detection limits

NE = Not Established

Mr. Brian Kappen Enviroforensics N16 W. 23390 Stone Ridge Dr Suite G Waukesha, WI 53188

September 20, 2013

ENVision Project Number: 2013-312 Client Project Name: Hoffmans Cleaners - 6200

Dear Mr. Kappen,

Please find the attached analytical report for the samples received September 9, 2013. All test methods performed were fully compliant with local, state, and federal EPA methods unless otherwise noted. The project was analyzed as requested on the enclosed chain of custody record. Please review the comments section for additional information about your results or Quality Control data.

Feel free to contact me if you have any questions or comments regarding your analytical report or service.

Thank you for your business. EnvisionAir looks forward to working with you on your next project.

Yours Sincerely,

David Norris

Client Services Manager EnvisionAir

Client Name:	ENVIROFORENSICS

Envirior on Enoido

Project ID: HOFFMAN CLEANERS - 6200

Client Project Manager: BRIAN KAPPEN

EnvisionAir Project Number: 2013-312

Sample Summary

Canister Pressure / Vacuum

			START	START							Lab
	Sample_		Date	Time	End Date	End Time	Date	Time	Initial Field	Final Field	Received
Laboratory Sample Number:	Description:	Matrix:	Collected:	Collected:	Collected:	Collected:	Received:	Received	<u>(in. Hg)</u>	<u>(in. Hq)</u>	<u>(in. Hg)</u>
13-1122	6200-7219-IA	Α	9/4/13	11:20	9/4/13	19:20	9/9/13	10:00	-30		
13-1123	6200-7219-OA	А	9/4/13	11:35	9/4/13	19:35	9/9/13	10:00	-29.5	-8	-8
13-1124	6200-7219-SSV-1	А	9/5/13	12:05	9/5/13	12:10	9/9/13	10:00	-27	-6.5	-6.5
13-1125	6200-7219-SSV-2	A	9/5/13	12:40	9/5/13	12:45	9/9/13	10:00	-29	-10	-10

Client Name:	ENVIROFORENSICS		
Project ID:	HOFFMAN CLEANERS	S - 6200	
Client Project Manager:	BRIAN KAPPEN		
EnvisionAir Project Number:	2013-312		
Analytical Method: Analytical Batch:	TO-15 091113CAIR		
Client Sample ID:	6200-7219-IA	Sample Collection START Date/Time: Sample Collection END Date/Time:	9/4/13 11:20 9/4/13 19:20
Envision Sample Number: Sample Matrix:	13-1122 AIR	Sample Received Date/Time:	9/9/13 10:00
<u>Compounds</u> cis-1,2-Dichloroethene	<u>Sample Results ug/m³</u> < 19.8	Reporting Limit ug/m³ 19.8	Flag
Tetrachloroethene	9.16	3.19	
trans-1,2-Dichloroethene	< 39.6	39.6	
Trichlorethene	< 1.07	1.07	
Vinyl Chloride	< 1.28	1.28	
4-bromofluorobenzene (surroga			
Analysis Date/Time:	9-12-13/12:23		
Analyst Initials	tjg		

Client Name:	ENVIROFORENSICS		
Project ID:	HOFFMAN CLEANERS	6 - 6200	
Client Project Manager:	BRIAN KAPPEN		
EnvisionAir Project Number:	2013-312		
Analytical Method: Analytical Batch:	TO-15 091113CAIR		
Client Sample ID:	6200-7219-OA	Sample Collection START Date/Time:	9/4/13 11:35 9/4/13 19:35
Envision Sample Number: Sample Matrix:	13-1123 AIR	Sample Collection END Date/Time: Sample Received Date/Time:	9/9/13 10:00
cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichlorethene Vinyl Chloride 4-bromofluorobenzene (surrogate Analysis Date/Time:	9-12-13/13:01	Reporting Limit ug/m³ 19.8 3.19 39.6 1.07 1.28	<u>Flag</u>
Analyst Initials	tjg		

Client Name:	ENVIROFORENSICS			
Project ID:	HOFFMAN CLEANERS	S - 6200		
Client Project Manager:	BRIAN KAPPEN			
EnvisionAir Project Number:	2013-312			
Analytical Method: Analytical Batch:	TO-15 091313TAIR			
Client Sample ID:	6200-7219-SSV-1	Sample Collection START Date/Time:	9/5/13	12:05
Envision Sample Number: Sample Matrix:	13-1124 AIR	Sample Collection END Date/Time: Sample Received Date/Time:	9/5/13 9/9/13	12:10 10:00
<u>Compounds</u>	Sample Results ug/m ³	Reporting Limit ug/m ³	Flag	
cis-1,2-Dichloroethene	< 19.8	19.8		
Tetrachloroethene	298	31.9	1	
trans-1,2-Dichloroethene	< 39.6	39.6		
Trichlorethene	8.54	1.07		
Vinyl Chloride	< 1.28	1.28		
4-bromofluorobenzene (surroga	te) 101%			
Analysis Date/Time:	9-14-13/13:24			
Analyst Initials	tjg			

Client Name:	ENVIROFORENSICS		
Project ID:	HOFFMAN CLEANERS	S - 6200	
Client Project Manager:	BRIAN KAPPEN	· · · · · · · · · · · · · · · · · · ·	
EnvisionAir Project Number:	2013-312		
Analytical Method: Analytical Batch:	TO-15 091313TAIR		
Client Sample ID:	6200-7219-SSV-2	Sample Collection START Date/Time: Sample Collection END Date/Time:	9/5/13 12:40 9/5/13 12:45
Envision Sample Number: Sample Matrix:	13-1125 AIR	Sample Received Date/Time:	9/9/13 10:00
Compounds	Sample Results ug/m ³	Reporting Limit ug/m ³	Flag
cis-1,2-Dichloroethene	< 19.8	19.8	
Tetrachloroethene	36.6	3.19	
trans-1,2-Dichloroethene	< 39.6	39.6	
Trichlorethene	< 1.07	1.07	
Vinyl Chloride	< 1.28	1.28	
4-bromofluorobenzene (surrogate Analysis Date/Time:	e) 101% 9-14-13/14:04		
Analysis Date/Time.	9-14-13/14.04 tjg		
/ indigot initialo	19		

EnvisionAir 1437 Sadlier Circle West Drive Indianapolis, IN 46239 Ph: 317-351-0885 Fax: 317-351-0882 www.envision-air.com

Analytical Report

TO-15 Quality Control Data

EnvisionAir Batch Number:	091113CAIR				
Method Blank (MB):	MB Results (ppbv)	Reporting Limit (ppbv)	Flags		
cis-1,2-Dichloroethene	< 5	5			
Tetrachloroethene	< 0.47	0.47			
trans-1,2-Dichloroethene	< 10	10			
Trichlorethene	< 0.2	0.2			
Vinyl Chloride	< 0.5	0.5			
4-bromofluorobenzene (surrogate)	102%				
Analysis Date/Time:	9-11-13/23:01				
Analyst Initials	tjg				
			LCS/D	LCS LCSD	
LCS/LCSD	LCS Results (ppbv)	LCSD Results (ppbv)	Conc(ppbv)	Rec. Rec.	RPD Flag
Vinyl Chloride	9.77	8.39	10	98% 84%	15.2%
trans-1,2-Dichloroethene	9.39	8.93	10	94% 89%	5.0%
cis-1,2-Dichloroethene	10.5	10.3	10	105% 103%	1.9%
Trichlorethene	9.51	9.42	10	95% 94%	1.0%
Tetrachloroethene	9.24	9.06	10	92% 91%	2.0%
4-bromofluorobenzene (surrogate)	100%	97%			
Analysis Date/Time:	9-11-13/21:04	9-11-13/22:29			
Analyst Initials	tjg	tjg			

Analytical Report

TO-15 Quality Control Data

EnvisionAir Batch Number:	091313TAIR					
Method Blank (MB):	MB Results (ppbv)	Reporting Limit (ppbv)	Flags			
cis-1,2-Dichloroethene	< 5	5				
Tetrachloroethene	< 0.47	0.47				
trans-1,2-Dichloroethene	< 10	10				
Trichlorethene	< 0.2	0.2				
Vinyl Chloride	< 0.5	0.5				
4-bromofluorobenzene (surrogate)	105%					
Analysis Date/Time:	9-14-13/03:12					
Analyst Initials	tjg					
			LCS/D	LCS	LCSD	
LCS/LCSD	LCS Results (ppbv)	LCSD Results (ppbv)	Conc(ppbv)	Rec.	Rec.	
Vinyl Chloride	10.5	10.1	10	105%	101%	
trans-1,2-Dichloroethene	9.36	8.81	10	94%	88%	3
cis-1,2-Dichloroethene	11	10.1	10	110%	101%	
Trichlorethene	8.73	8.5	10	87%	85%	
Tetrachloroethene	9.27	9.47	10	93%	95%	
4-bromofluorobenzene (surrogate)	109%	121%				
Analysis Date/Time:	9-14-13/01:59	9-14-13/02:38				
Analyst Initials	tjg	tjg				

RPD Flag 3.9% 6.1% 8.5% 2.7% 2.1%

<u>Flag Number</u> 1 <u>Comments</u> Reported value is from a 10x dilution. TJG 9-19-13

EnvisionAir Proj# 2013-312 Page _____ of ____

CHAIN OF CUSTODY RECORD

EnvisionAir | 1437 Sadlier Circle West Drive | Indianapolis, IN 46239 | Phone: (317) 351-0885 | Fax: (317) 351-0882

Client: Enviroforensi	ċs	P.O. N	umber:]	PEOLIE	CTED	PARAME	TEDS	7			
Report N/4 W23390	Sulte		Name or		~		NLQUL					6812	the ea	.e.,
	<u>T</u> 3314				5 6200		/				*******	* ***	****	·····
Report To: Wayne Fass bunde Brian Kappens	2, 20.00		ed by:	·Jordu	<u>M</u>	-			/ /	/ /	EN	MIC		JAIR
Phone: Wayne	5-matuon; 7-400-98		Required: Leve	: (circle if ap	plicable) 2 vel IV						********	******		****
Invoice Address: Indianapolis Offic			ing Units r 3 mg/m	needed: (ci 1 ³ PPBV	rcle) PPMV	Soil-Gas: □ Soil-Gas: □ Sub-Slab: §1 Indoor-Air: pt			qt	quality air analysis				
Desired TAT: (Please Circle One 1 day 2 days 3 days Std (5) bus. days	Media type	CLC = 1 Liter GLC = 6 Liter TB = Tediar TD = Therm	Canister Canister Bag al Desorption To	ıbe		\$ \$	/		Indoor-Air: pt	Canister	• Pressure /		om
Air Sample ID	Media Type (see code abore)		Coll. Time	Coll. Date	Coll. Time				Canister Serial #	Flow Controller Serial #	Initial Field (in. Hg)	Final Field (in. Hg)	Lab Received (in. Hg)	EnvisionAir Sample Number
6200-7219-TA		9413		9/4/13	19e 19:2) ×	200 A.A.		10332	05301	?	-30		13-1122
6200-7219-04		9/4/13		9/4/13	2 19:35			. 4	41442	65252	-29.5	-8	-8	13-1123
6200-7219-550-1		9/5/13		9/5/13		4			83727	NA	-27	-6.5	-6.5	13-1124
6200-7219-551-2	1 LC	9/5/13	1	9/5/13		*			83921	NA	-29	-10	-10	13-1125
										*	-			
							~							
													· .	
Comments: Hease ref	bat .	mly	PCE	TCE/	cis-1,2	-DCF/+	ans-lj	D-D fa	CE Vi all san	nyi Chlor: 1ples	de/	Regulat Broke	or on 0 = -	IA sample 22
Relinc	uished	by:			Date	Time			Rec	eiver by:			ite	Time
- fatter you				9/	5/2013			Ð	2-3	Man		9/9	11'5	10:00
└ <u>─</u> /──/				L		1	1	<u>· · · · · · · · · · · · · · · · · · · </u>					I	

Hnat, John J - DNR

From:	Brian Kappen <bkappen@enviroforensics.com></bkappen@enviroforensics.com>
Sent:	Wednesday, August 06, 2014 9:23 AM
То:	Hnat, John J - DNR
Cc:	Wayne Fassbender
Subject:	Former Hoffman's Cleaners - BRRTS# 02-41-307576
Attachments:	2013 Investigation Results.pdf; 7219 W Center VI Results Feb 2014.pdf; Hoffmans VI
	Results Feb 2014.pdf; 2009 Extent of PCE in Soil.pdf
L	FID 241683 150

NAG MERES CO.

J,

I would like to discuss closure of the former Hoffman's Cleaners site. Attached are the most recent data, collected in 2013 and early 2014, and a map showing the extent of soil impacts. Here is a quick summary of recent activities and results:

- 1. 2013 conducted additional site investigation including groundwater monitoring and off-site vapor intrusion assessment at the neighboring commercial building. Groundwater has relatively low PCE and TCE impacts at or below the ES. Sub-slab vapor and indoor air results were below screening/ action levels.
- 2. February 2014 conducted winter vapor intrusion sampling at the site building and the neighboring commercial building. Sub-slab vapor below the site building contained PCE above the screening level. Sub-slab vapor and indoor air at the neighboring building were again well below screening/ action levels.

Overall, the subsurface impacts are minimal and limited to the site itself. Vapor intrusion appears to be the only potential exposure pathway.

5 2024 6

nanan's tota I will call you later today to discuss additional steps needed for case closure.

Best Regards,

Brian Kappen, P.G.

Project Manager

EnviroForensics | N16 W23390 Stone Ridge Drive, Suite G | Waukesha, WI 53188 P. 414.326.4412 | C. 262.745.5054 | F. 317.972.7875 www.enviroforensics.com

Turning Environmental Liabilities Into Assail disilors

ENVIRO / rensics

andoor air results and an er vapor intrusion som hill i Mälle build av

ersingation en en e

View my LinkedIn' Profile

词, 对象内容, 和中于二 1.20114

Privileged and Confidential

This communication and any attachments constitutes an electronic communication within the meaning of the Electronic Communications Privacy Act, 18 USC 2510, and its disclosure is strictly limited to the recipient intended by the sender of this message. This communication may contain confidential and privileged material for the sole use of the intended recipient and receipt by anyone other than the intended recipient does not constitute a loss of the confidential or privileged nature of the communication. Any interception, review, copying, disclosure, use or distribution of this communication by others is strictly prohibited. The sender takes no responsibility for any unauthorized reliance on this communication. If you have received this communication in error, please immediately notify the sender and delete the communication.

a de la presenta de la c

人中的 网络石匠石

1 - STASTE

This email has been scanned for email related threats and delivered safely by Mimecast. For more information please visit <u>http://www.mimecast.com</u>

2