

February 14, 2017

Mr. John Hnat Wisconsin Department of Natural Resources 2300 N. Dr. Martin Luther King Jr. Drive Milwaukee, WI 53212

> Re: Supplemental Site Investigation Report Former Hoffman's Valet Cleaners 7215 W. Center Street Wauwatosa, Wisconsin 53210 BRRTS# 02-41-307576

Dear Mr. Hnat:

Environmental Forensic Investigations, Inc. (EnviroForensics) is pleased to submit this Supplemental Site Investigation Report (Report) for the former Hoffman's Valet Cleaners site located at 7215 W. Center Street in Wauwatosa, Wisconsin. One hardcopy and one electronic copy of the Report are enclosed. The Report has been prepared in accordance with the requirements of Wisconsin Administrative Code (WAC) Chapter NR 716. On behalf of Hoffman's Valet Cleaners, EnviroForensics is requesting a Technical Assistance review of the Report and written response to the recommendations contained in the Report. EnviroForensics understands that the Technical Assistance review fee is waived under WAC Chapter NR 169.11(1)(c)(7).

Sincerely, Environmental Forensic Investigations, Inc.

Wayn P Land

Wayne Fassbender, PG, PMP Senior Project Manager

cc: Ralph Hoffman

A thy

Brian Kappen, PG Project Manager

enclosures

Document: 6200-0397 Environmental Forensic Investigations, Inc. N16 W23390 Stone Ridge Dr, Suite G, Waukesha, WI 53188 Phone: 414-982-3988 • Fax 317-972-7875

SUPPLEMENTAL SITE INVESTIGATION REPORT

FORMER HOFFMAN'S VALET CLEANERS 7215 W. CENTER STREET WAUWATOSA, WISCONSIN 53210 WDNR BRRTS# 02-41-307576 FID# 241083150

February 14, 2017

Prepared For:

Mr. Ralph Hoffman 14000 N. 94th Street, Unit 3092 Scottsdale, AZ 85260

Prepared By:

Environmental Forensic Investigations, Inc. N16 W23390 Stone Ridge Drive, Suite G Waukesha, WI 53188 Phone: (414) 982-3988 <u>www.enviroforensics.com</u>

the

Brian Kappen, PG Project Manager

Wayne Fassbender, PG, PMP Senior Project Manager

TABLE OF CONTENTS

LIN	/ITATIONS	, iii
EX	ECUTIVE SUMMARY	1
1.0	GENERAL INFORMATION	1
2.0	BACKGROUND	2
	2.1 Case History	2
	2.2 Summary of Response Action Activities	2
3.0	ENVIROFORENSICS SITE INVESTIGATION METHODS	5
	3.1 Soil Boring and Sampling	5
	3.2 Groundwater Monitoring	5
	3.3 Soil Gas Sampling	6
	3.4 Vapor Intrusion Assessments	7
	3.4.1 Background Conditions Screening	7
	3.4.2 Vapor Sample Port Installation	8
	3.4.3 Sub-Slab Vapor Sampling	
	3.4.4 Indoor/Outdoor Air Sampling	
	3.5 Sub-Slab Depressurization System Installation	9
4.0	INVESTIGATION RESULTS	10
	4.1 Hydrogeology	10
	4.2 Soil Analytical Results	10
	4.3 Groundwater Analytical Results	11
	4.4 Soil Gas Analytical Results	11
	4.5 Sub-Slab Vapor Analytical Results	
	4.6 Indoor Air Analytical Results	12
5.0	CONCEPTUAL SITE MODEL	13
	5.1 Sources of Contamination	
	5.2 Potential Contaminant Transport Mechanisms	
	5.3 Potential Exposure Pathways and Receptors	
	5.3.1 Soil Direct Contact	14
	5.3.2 Groundwater Direct Contact	14
	5.3.3 Vapor Intrusion Exposure	14
6.0	CONCLUSIONS AND RECOMMENDATIONS	16

TABLES

- 1 Summary of Groundwater Elevation Data
- 2 Summary of Soil Sample Analytical Results
- 3 Summary of Groundwater Sample Analytical Results
- 4 Summary of Soil Gas Sample Analytical Results
- 5 Summary of Sub-Slab Vapor Sample Analytical Results
- 6 Summary of Indoor/Outdoor Air Sample Analytical Results

FIGURES

- 1 Site Location and Vicinity Map
- 2 Site Layout
- 3 Water Table Contour Map September 5, 2013
- 4 Water Table Contour Map September 15, 2016
- 5 Soil Sample Analytical Results
- 6 Groundwater Sample Analytical Results
- 7 Soil Gas and Vapor Intrusion Assessment Results Summary

APPENDICES

- Appendix A Property Deed and Plat Map
- Appendix B Soil Boring Log Forms (4400-122) and Borehole Sealing Forms (3300-005)
- Appendix C Field Sampling Forms
- Appendix D Waste Manifest
- Appendix E Vapor Mitigation System Installation Report
- Appendix F Geologic Cross-Sections
- Appendix G Soil and Groundwater Laboratory Analytical Reports
- Appendix H Soil Gas, Sub-Slab Vapor, and Air Laboratory Analytical Reports

LIMITATIONS

The purpose of a Site Investigation is to reasonably characterize the extents and magnitude of contaminants of concern based on the geology/hydrogeology of the area. In performing such a study, a balance must be struck between a reasonable investigation into the site conditions and an exhaustive analysis of each conceivable condition. The following paragraphs discuss the assumptions and parameters under which such a study is conducted.

No investigation is thorough enough to detect every geologic/hydrogeologic condition of interest at a given site. If conditions have not been identified during the study, such a finding should not therefore be construed as a guarantee of the absence of such conditions at the site, but rather as the result of the services performed within the scope, limitations, and cost of the work performed.

We are unable to report on or accurately predict events that may change the site conditions after the described services are performed, whether occurring naturally or caused by external forces. We cannot assume responsibility for conditions we were not authorized to evaluate, or conditions not generally recognized as predictable when services were performed.

Geologic/hydrogeologic conditions may exist at the site that cannot be identified solely by visual observation. Where subsurface exploratory work was performed, our professional opinions are based in part on interpretation of data from discrete sampling locations that may not represent actual conditions at unsampled locations.

HYDROGEOLOGIST CERTIFICATION

"I, Wayne P. Fassbender, certify I am a hydrogeologist as that term is defined in s NR 712.03 (1) Wisconsin Administrative Code, am registered in accordance with the requirements of ch. GHSS 2, Wisconsin Administrative Code, and that, to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements of chs. NR 700 to 726, Wisconsin Administrative Code."

Wayer P Land

Wayne P. Fassbender, P.G.

<u>2/14/2017</u> Date

Document Reference: Supplemental Site Investigation Report Former Hoffman's Valet Cleaners 7215 W. Center Street Wauwatosa, Wisconsin 53210 WDNR BRRTS# 02-41-307576 February 14, 2017

EXECUTIVE SUMMARY

Environmental Forensic Investigations, Inc. (EnviroForensics) has prepared this Site Investigation Report for the former Hoffman's Valet Cleaners (Hoffman's) facility located at 7215 W. Center Street in Wauwatosa, Wisconsin (Site). The Site is improved with a single twostory building with a partial basement, and paved driveway and parking areas. The Site is currently an active dry cleaning business operated as Best Cleaners by another proprietor. Hoffman's and Best Cleaners have used tetrachloroethene (PCE) as the dry cleaning solvent. Historically, the dry cleaning machine was located in the basement of the Site building.

Site investigation activities, including the collection of soil, groundwater, soil gas, sub-slab vapor, and indoor/outdoor air samples, were conducted by EnviroForensics and others between 2002 and 2016. The primary contaminants of concern (COCs) are PCE and its degradation products. The amount, duration, and circumstances of PCE released to the subsurface are unknown. However, the PCE source area is present beneath the area of former dry cleaning machine operations in the basement. Undocumented and likely incidental releases to the floor and /or sanitary sewer are likely causes of the identified impacts.

Site soil consists of clay with a laterally continuous 4 to 6-foot thick sand layer encountered at approximately 7 feet below ground surface (bgs). A second clay layer is encountered beneath the sand layer and extends to a depth of at least 20 feet bgs. Discontinuous seams of sand and silty sand are encountered within both clay units. The water table is encountered at a depth of 14 to 16 feet bgs, and resides below the sand layer. The apparent direction of groundwater flow is toward the southeast.

The greatest impacts of COCs in soil and soil gas occur beneath the basement and in the northern part of the Site, including along the sanitary sewer lateral. Soil and soil gas samples collected from this area contained the highest concentrations of COCs detected at the Site. Samples collected from all other areas of the Site contained concentrations of COCs below the applicable direct-contact standards and screening levels.

PCE impact to groundwater is relatively limited. Samples collected from two (2) of the three (3) groundwater monitoring wells contained PCE concentrations consistently below the ES. The PCE concentration in the third well was just above the enforcement standard (ES). Because the groundwater concentrations did not increase during the Site investigation, it appears that PCE impacts are stable.

Vapor intrusion assessments were conducted at the Site and adjacent buildings to evaluate the potential for human exposure. The results of the off-site assessments indicated that the occupants are not at risk of exposure. The results of the vapor intrusion assessment conducted at the Site building did indicate the potential for exposure. Based on this result, a sub-slab depressurization system (SSDS) was installed and a pressure field extension test was performed to verify performance. The SSDS has been shut down during the heating and cooling months for repeat sub-slab sampling and the concentrations of COCs in recent sub-slab vapor samples do not exceed the current screening levels.

Potential exposure pathways consist of direct contact with soil and groundwater, and inhalation of vapors. Because the Site is entirely covered by the building and paved surfaces, direct contact with soil or groundwater could only occur during excavation activities. The GIS Registry listing at closure will provide notification to potential developers and excavation workers of the residual contamination and exposure risk. The results of recent sub-slab vapor samples indicate that subsurface vapor concentrations are not above risk screening levels.

The extent of impacts to all contaminated media above the applicable standards has been defined. EnviroForensics considers the Site investigation to be complete and recommends that no further investigation activities be conducted. EnviroForensics also recommends that a case closure request be prepared and submitted. Due to the presence of PCE in soil, the Site will be placed on the WDNR GIS Registry per their requirement, and the closure request will need to include a cap maintenance plan that details how the integrity of the impervious surfaces at the Site will be kept in good condition. The SSDS is no longer needed and should be decommissioned.

1.0 GENERAL INFORMATION

Environmental Forensic Investigations, Inc. (EnviroForensics) has prepared this Supplemental Site Investigation Report (Report) on behalf of Mr. Ralph Hoffman for the former Hoffman's Valet Cleaners facility located at 7215 W. Center Street in the city of Wauwatosa, Wisconsin (Site). The location of the Site is depicted on **Figure 1**. This report follows guidelines for investigations and reporting set forth in the Wisconsin Department of Natural Resources (WDNR) Chapter NR 716 rule and other associated State of Wisconsin Chapter NR 700 series rules.

Property Information:

County:	Milwaukee
PLSS Location:	NE 1/4 of the SW 1/4 of Section 15, Township 07N, Range 21E
WTM Coords:	X = 682648, Y = 290286
Parcel ID#:	3310695000

Property Owner Information:

Owner Name:	Natalya Berdnikova
Address:	7600 Range Line Road, Glendale, WI 53209
Telephone:	414-659-6600

Consultant Information:

Company Name:	Environmental Forensic Investigations, Inc.
Address:	N16W23390 Stone Ridge Drive, Suite G, Waukesha, WI 53188
Contact:	Wayne Fassbender/ Project Manager
Telephone:	262-290-4001
E-mail Address:	wfassbender@enviroforensics.com

Copies of the most recent property deed and plat map are provided in **Appendix A**. The general Site location is shown on **Figure 1**. The layout of the Site, including Site features, and the surrounding area, is depicted on **Figure 2**. The Site consists of a two-story mixed use building with a partial basement, and paved driveway and parking areas. The Site is situated in an area of mixed commercial and residential land use. The Site is bordered by West Center Street to the north, an alley to the south, and commercial buildings to the east and west. The nearest surface water body is the Menomonee River, located approximately 1.3 miles south of the Site.

2.0 BACKGROUND

2.1 Case History

The Site investigation has been ongoing since 2002. The Site has continuously been occupied by an operating dry cleaning facility that uses tetrachloroethene (PCE) in the cleaning process. The contaminants of concern (COCs) at the Site are the dry cleaning solvent tetrachloroethene (PCE) and its degradation products. The amount of chemical released, the duration of the release, and the specific release areas or locations are unknown.

2.2 Summary of Response Action Activities

Site investigation activities were conducted by ARCADIS between 2002 and 2009, including the collection of soil, groundwater, soil gas, sub-slab soil vapor, and indoor air samples. EnviroForensics began further investigation activities in 2013. The following is a chronological sequence of site investigation activities:

February 2002	Soil samples were collected from two (2) interior soil borings (GP-1 and GP-2).
September 2002	Soil samples were collected from one (1) additional interior boring (GP-104) and four (4) exterior borings (GP-101, GP-102, GP-103, and GP-105). Grab groundwater samples were collected from three (3) of the borings.
January 2005	Monitoring wells MW-1 through MW-3 were installed, developed, and sampled. One (1) soil sample was also collected from each well location prior to installation.
July 2006	Soil gas sample SG-1 was collected. A sample of water was collected from the basement sump.
January – July 2007	Three (3) groundwater monitoring events were conducted on a quarterly basis. Soil samples were collected from one (1) additional boring (GP-3) in the basement of the Site building.

May - November 2009	Soil samples were collected from seven (7) off-site borings (GP-106 through GP-112). Sub-slab vapor samples SS-1 and SS-2 were collected from the adjacent structures to the east and west, respectively.
September 2013	A vapor intrusion assessment was conducted at the adjacent structure to the west, including two (2) sub-slab vapor samples (7219-SSV-1 and 7219-SSV-2) and one (1) indoor air sample (7219-IA-1). Groundwater monitoring activities were conducted on the three (3) existing monitoring wells.
February 2014	Two (2) sub-slab vapor samples (7215-SSV-1 and 7215-SSV-2) were collected from the basement of the Site building. Vapor intrusion assessment activities were repeated at the adjacent structure to the west.
February 2015	A sub-slab depressurization system was installed in the Site building.
September - November 2016	Soil and soil gas samples were collected from three (3) off-Site borings (6200-SB-1 through 6200-SB-3) to evaluate whether utilities had acted as conduits for preferential migration of contaminants. Groundwater monitoring activities were conducted on the three (3) existing monitoring wells. Sub-slab vapor sampling was repeated at the Site building.
January 2017	Sub-slab vapor sampling was repeated at the Site building.

The following is a chronological list of select reports and correspondence pertaining to the response action:

- Notification of Release, May 30, 2002;
- Responsible Party Letter, June 13, 2002;
- Site Investigation and Closure Report, ARCADIS, May 2, 2005;
- *Closure Denial Letter*, WDNR, July 28, 2005;
- Summary of Supplemental Investigation Activities and Revised Case summary and Close Out Request, ARCADIS, August 2, 2007;

- *Closure Denial Letter*, WDNR, September 19, 2007;
- Supplemental Investigation Results, ARCADIS, August 17, 2009;
- *Scope of Work and Cost Estimate for Closure Activities*, ARCADIS, February 10, 2010 (this document presents November 2009 investigation results); and
- *Further Site Investigation 1 Report*, EnviroForensics, October 29, 2013.

The data collected and reported by the previous consultant between 2002 and 2009 is incorporated throughout this Report. However, the Report focuses on EnviroForensics' investigation methods and recent results.

3.0 ENVIROFORENSICS SITE INVESTIGATION METHODS

EnviroForensics conducted Site investigation activities between September 2013 and November 2016, including the collection of soil, groundwater, soil gas, sub-slab vapor, and indoor air samples. Investigative methods are described in the following sections.

3.1 Soil Boring and Sampling

Soil borings SB-1 through SB-3 were advanced using direct-push methods to facilitate the collection of soil samples adjacent to the sanitary sewer extending east and west along Center Street. The soil boring locations are depicted on **Figure 2**. The borings were advanced to a depth of 10 feet bgs. Soil samples were continuously collected from each boring, screened with a photo-ionization detector (PID), and logged in accordance with the Unified Soil Classification System (USCS). Two (2) soil samples were collected from each boring for laboratory analysis. Soil samples were placed in a cooler on ice and submitted to Synergy Environmental Lab under chain-of-custody for analysis of VOCs according to SW-846 Test Method 8260. Soil boring logs are presented in **Appendix B**.

Decontamination of the direct-push tooling occurred between each boring. Soil cuttings were containerized in a 55-gallon drum and profiled for disposal. The drum will be transported to a disposal facility by a licensed contractor.

3.2 Groundwater Monitoring

Groundwater monitoring events were conducted by EnviroForensics during September 2013 and September 2016. During each sampling event, water level measurements and groundwater samples were collected from the entire existing monitoring well network.

Prior to sampling, the depth to water in each well was measured to the nearest 0.01 of a foot using an electronic water level indicator. The water level was allowed to equilibrate for at least 15 minutes after uncapping each well.

Groundwater recharge to the monitoring wells was not sufficient for low-flow sampling. Therefore, groundwater purging and sample collection was conducted using standard bailer methods. Field parameters including pH, specific conductivity, and turbidity were collected during purging. Samples were collected after three (3) well volumes of water had been removed

from each well. Groundwater purging and sampling information was recorded on groundwater field sampling data forms, included in **Appendix C**.

During each monitoring event, one (1) duplicate sample, one (1) equipment blank sample, and one (1) trip blank sample were collected and analyzed for quality assurance/quality control (QA/QC) purposes. Three (3) groundwater samples and the QA/QC samples were submitted to Synergy Environmental Lab and analyzed for volatile organic compounds (VOCs) according to US Environmental Protection Agency (EPA) SW-846 Method 8260.

Purge water generated during groundwater monitoring activities was containerized in a 55-gallon drum for profiling and disposal. The waste manifest is provided in **Appendix D**.

3.3 Soil Gas Sampling

Temporary soil gas sampling points were installed in borings SB-1 through SB-3 described in Section 3.1 after soil sampling was completed. Each sampling point was constructed of a 6-inch long stainless steel mesh screen set at the bottom of the boring, with 1/4-inch Teflon-lined polyethylene tubing attached to the screen and extending to the surface. A sand pack was placed around the screen in the open borehole approximately 6-inches above the screened interval. The remaining annular space interval was filled with hydrated bentonite chips to the surface.

The potential for ambient air to enter the sample through leaks in the sampling train or the sampling point annular seal can dilute the sample and lead to underestimation of concentration in the sample. To ensure that soil gas samples were representative of subsurface vapor conditions, leak testing and negative pressure testing were performed prior to sample collection. Testing was successful at all locations.

One (1) soil gas sample was collected from each of the three (3) temporary soil gas sampling points in a batch-certified clean 1-liter vacuum canister, regulated to withdraw a sample at no more than 200 milliliters per minute (mL/min). The soil gas samples, designated SG-2 through SG-4, were submitted to EnvisionAir laboratory under chain-of-custody for analysis of CVOCs according to EPA Test Method TO-15. The borings were abandoned after collection of the soil gas samples. Borehole filling and sealing forms are provided in **Appendix B**.

3.4 Vapor Intrusion Assessments

Vapor intrusion assessments were conducted at the Site building and adjacent commercial building to the west (7219 W Center Street). The assessment methods described in this section apply to both structures. In addition, the previous consultant collected one (1) sub-slab vapor sample from a house immediately east of the Site (7209 W. Center Street). The house was demolished in 2016 and a new commercial building was being constructed on that property.

EnviroForensics also requested access to the 7229 W. Center Street commercial property for the purpose of conducting a vapor intrusion assessment. The owner, Mr. Olm, denied access to the property.

EnviroForensics assessed the vapor intrusion exposure pathway by collecting sub-slab vapor samples and indoor/outdoor air samples at the locations depicted on **Figure 2**. Three (3) sampling events were performed at the Site building, and two (2) sampling events were performed at 7219 W. Center Street. The following samples were collected:

- Site Building
 - Two (2) sub-slab vapor samples designated 7215-SSV-1 and 7215-SSV-2 from the basement.
- 7219 W. Center Street
 - Two (2) sub-slab vapor samples (7219-SSV-1 and 7219-SSV-2) from the basement and one (1) indoor air sample (7219-IA) from the first floor of the building; and
 - One (1) outdoor background air sample (7219-OA) to evaluate background conditions.

Sampling activities were performed in consideration of the applicable methods in WDNR Publication RR-800: *Addressing Vapor Intrusion at Remediation & Redevelopment Sites in Wisconsin;* December 2010.

3.4.1 Background Conditions Screening

A visual inspection was conducted for cracks or other penetrations in the concrete basement floor (i.e. floor drains, sumps, etc.) that could act as direct conduits for impacted vapors to migrate

into the occupied space, or conversely, could act as "short circuits" allowing indoor air to enter canisters during sub-slab sampling. Basement walls were also visually inspected for cracks and penetrations of subsurface utilities that may be conduits for vapors to migrate into the buildings. This information was incorporated into the sample port placement strategy to avoid damage to sub-slab utilities and reduce the possibility of "short circuiting", which could have biased sample results.

3.4.2 Vapor Sample Port Installation

Temporary stainless steel Vapor Pin[™] sub-slab vapor sampling ports were installed to facilitate vapor sample collection. The sub-slab sampling points were installed by drilling a counter-sunk hole through the concrete slab using an electric hammer drill. The ports were capped during installation until sampling was initiated.

3.4.3 Sub-Slab Vapor Sampling

Testing the integrity of the sample ports and sampling train was conducted prior to sample collection by vacuum testing and leak testing. All tests passed successfully.

The sub-slab vapor samples were collected in batch-certified 1-Liter vacuum canisters fitted with a regulator to restrict the flow rate to less than 200 ml/minute. The vacuum canisters were connected to each vapor point using compression fittings and Teflon[®]-lined polyethylene tubing. The tubing was purged of all ambient air using a hand pump prior to initiating sub-slab sampling. The sub-slab vapor samples were submitted to an environmental laboratory for analysis of select CVOCs according to US EPA Method TO-15. All samples were transmitted under appropriate chain-of-custody protocol.

After sampling was completed, the ports were removed and the floors repaired immediately with an appropriate concrete material.

3.4.4 Indoor/Outdoor Air Sampling

The indoor air samples were collected prior to sub-slab vapor sampling to eliminate the possibility of sub-slab vapors from entering the building and influencing the indoor air sample results. The indoor air samples were collected from the breathable space (3-5 feet above the floor) using a 6-Liter vacuum canister, regulated to withdraw a time-integrated sample. The

outdoor air sample was collected from an upwind and secure location. All air samples were collected over an 8-hour time period. The vacuum canisters were individually-certified clean by the analytical laboratory for QA/QC purposes.

Following the completion of the indoor/outdoor air sampling activities, vacuum canisters were submitted to a laboratory under appropriate chain-of-custody procedures, for analysis of select CVOCs according US EPA Method TO-15.

Weather data, including temperature, wind speed, wind direction, humidity, barometric pressure, and rainfall was acquired from the nearest fixed weather station throughout the 8-hour sampling period to evaluate potential effects on the samples.

3.5 Sub-Slab Depressurization System Installation

A sub-slab depressurization system (SSDS) was installed at the Site building by Vapor Protection Services of Indianapolis, Indiana during February 3-5, 2016. The SSDS consists of two (2) extraction points routed to common piping that connects to a single fan mounted on an exterior wall of the Site building. Sub-slab pressure testing demonstrated that the SSDS induced a negative pressure across the entire basement floor slab. The SSDS installation report is provided as **Appendix E**.

4.0 INVESTIGATION RESULTS

4.1 Hydrogeology

Site sediment consists of clay to a depth of 7 feet below ground surface (bgs), followed by a 4 to 6-foot thick sand layer. The sand layer was not encountered to a depth of 10 feet in SB-1 and SB-2 which are located in the Center Street right-of-way. A second clay layer is encountered beneath the sand layer and extends to a depth of at least 20 feet bgs. Discontinuous seams of sand and silty sand are encountered within the clay units. Geologic cross-sections are presented in **Appendix F**.

The water table is encountered at a depth of 14 to 16 feet bgs, within the lower clay unit. The apparent direction of groundwater flow is toward the southeast. Groundwater elevation data are summarized on **Table 1**, and water table contour maps are presented in **Figures 3 and 4**.

4.2 Soil Analytical Results

Soil analytical results are summarized in **Table 2** and depicted graphically on **Figure 5**. The complete laboratory reports are presented in **Appendix G**. Soil contaminant concentrations are compared to industrial, non-industrial, and soil-to-groundwater Residual Contaminant Levels (RCLs). RCLs were calculated according to the procedures described in WDNR Publication RR-890.

PCE, trichloroethene (TCE), cis-1,2-dichloroethene, and methylene chloride were detected in one or more samples at concentrations above soil-to-groundwater RCLs. Other compounds were detected in a few samples at concentrations below RCLs. The PCE non-industrial direct contact RCL was exceeded in only one (1) sample: SB-3 (9-10 feet bgs) which contained 48 mg/kg PCE. Boring SB-3 is located just north of the Site building near the sanitary sewer lateral. The concentrations in borings SB-1 and SB-2, located east and west along the sanitary sewer, did not contain appreciable COC's indicating that the utilities had not acted as conduits for the preferential migration of contaminants.

The magnitude and extent of PCE impacts to soil is depicted on **Figure 5**. The impacts are greatest beneath the basement and in the northeast part of the Site, corresponding to the location of dry cleaning operations in the basement of the building. Several non-detect results in the southern part of the Site, and on adjacent properties to the east and west, define the horizontal

extent of impacts. Relatively minor concentrations of PCE may be present in soil near Site boundaries at the adjoining properties. Direct-contact RCL exceedances were identified only in the northern part of the Site.

4.3 Groundwater Analytical Results

Groundwater monitoring analytical results are summarized in **Table 3** and illustrated on **Figure 6**. The complete laboratory analytical report is included in **Appendix G**. The results are compared to public health standards listed in WAC Chapter NR 140.

Compounds detected during the monitoring events were PCE, TCE, cis-1,2-dichloroethene, methylene chloride, and chloroform. PCE was detected in monitoring well MW-1 (located near the northeast corner of the Site building) at concentrations just above the enforcement standard (ES) of 5 micrograms per liter (μ g/L). During the entire duration of the site investigation, the PCE concentration at MW-1 ranged from non-detect to 7.4 μ g/L. PCE was also detected in MW-2 (located near the southeast corner of the Site building) at concentrations below the ES but above the preventive action limit (PAL) of 0.5 μ g/L. VOCs were not detected in samples collected from MW-3, which is located south of the site building.

Overall, VOC impacts to groundwater are low, with concentrations below enforcement standards with the exception of one location (MW-1). This monitoring well is positioned very near the highest soil and soil gas contamination detected at the Site. VOC concentrations in the downgradient wells are lower, indicating a very small, stable plume that is limited in extent to the northern half of the Site.

4.4 Soil Gas Analytical Results

Soil gas sample analytical results are summarized and compared to vapor risk screening levels (VRSLs) on **Table 4**. The sample locations and results are also depicted on **Figure 7**. Sample SG-4, which was collected just north of the Site building along the sanitary lateral, contained PCE and TCE at concentrations of 142,000 micrograms per cubic meter (μ g/m³) and 3,180 μ g/m³, respectively, which exceed the applicable VRSLs for these compounds. PCE was also detected in samples SG-2 and SG-3, which were collected from beneath the sidewalk to the east and west of the Site. However, the concentrations at SG-2 and SG-3 were three orders of

magnitude less than SG-4 and well below VRSLs, again indicating that the utilities had not acted as conduits for the preferential migration of contaminants.

Soil gas impacts appear to be greatest in the northern part of the Site, including beneath the basement floor slab, and possibly along the sanitary sewer lateral. The decrease in concentrations with distance from the Site demonstrates that the extent of soil gas contamination above VRSLs is limited to the Site and part of the Center Street right-of-way immediately north of the Site boundary.

4.5 Sub-Slab Vapor Analytical Results

Sub-slab vapor sample analytical results are summarized and compared to VRSLs on **Table 5**. The sample locations and results are also depicted on **Figure 7**. The complete laboratory reports are presented in **Appendix H**.

The initial sub-slab vapor samples collected by the previous consultant from the Site building (sample SG-1) and commercial building to the west (sample SS-1) contained PCE at concentrations exceeding the VRSL for small commercial buildings. However, the concentrations of PCE in all subsequent vapor samples, collected between 2013 and 2016, from the basements of both buildings were below the VRSL.

One (1) of the eight (8) sub-slab vapor samples collected from the Site building between 2014 and 2017 contained TCE at a concentration exceeding the VRSL of 290 μ g/m³. As shown on **Table 5**, the TCE concentrations in all other sub-slab vapor samples collected from the Site building were below the VRSL, including the most recent samples collected in January 2017. Overall, the sub-slab vapor analytical results do not indicate the potential for vapor intrusion in the Site building.

4.6 Indoor Air Analytical Results

The indoor air analytical results are summarized and compared to vapor action levels (VALs) on **Table 6**, and depicted graphically on **Figure 7**. The complete laboratory reports are included in **Appendix H**. Because PCE is still used at the Site building, indoor air samples were collected only from the commercial building west of the Site. PCE was detected in both indoor air samples collected, and in the outdoor air sample collected during the first sampling event in 2013. All PCE concentrations were less that the VAL for small commercial buildings.

5.0 CONCEPTUAL SITE MODEL

5.1 Sources of Contamination

The conceptual site model demonstrates that the PCE source area is present beneath the area of previous dry cleaning machine operations in the basement. Undocumented and likely incidental releases to the floor and /or sanitary sewer are likely causes of the identified impacts.

5.2 Potential Contaminant Transport Mechanisms

PCE released to the subsurface can desorb from the soil and enter the groundwater, which is dependent upon various factors including the amount of organic matter in the soil and chemical specific properties such as volatility, solubility, and partitioning coefficients. In a free liquid state, PCE is considered a dense non-aqueous phase liquid (DNAPL), is heavier than water, and can pass through the water table causing impacts at depth. Contamination in the groundwater can also move through soil pore space and into building crawl spaces, basements, and/or indoors.

Contamination in the groundwater will follow natural preferential pathways such as high permeability sands, and will generally move in the direction of groundwater flow through advection. Although a laterally continuous sand layer is present at approximately 10 feet bgs, it appears the transport process has been limited at the Site by the low permeability of clay layers and lenses, and by the position of the water table within the deeper clay unit.

Contaminants may also follow anthropogenic preferential pathways such as fill material under structures, roads or parking areas, and underground utility trenches. Utility trenches that exist on the Site property are sanitary sewer, water, and gas lines. The soil and soil gas samples collected near the sanitary sewer lateral between the building and Center Street contained elevated VOC concentrations, indicating some migration along the sanitary sewer; however, migration appears to have been limited based on decreasing soil and soil gas impact with distance from the Site.

5.3 Potential Exposure Pathways and Receptors

Potential contaminant exposure pathways are considered to be ingestion, dermal absorption, and inhalation of vapors. More specifically, potential receptors are as follows:

• Direct contact with soil during excavation activities;

- Direct contact and ingestion of groundwater by residents and commercial/ industrial users; and
- Vapor inhalation by workers and residents.

There are no surface water features on the Site, which excludes ingestion of impacted surface water as an exposure pathway. Each potential exposure pathway is evaluated and discussed below.

5.3.1 Soil Direct Contact

Current and future anticipated land use at the Site is commercial. The concentrations of contaminants in soil did not exceed the RCLs for commercial land use at any sampling location. The building concrete slab and impervious surface materials surrounding the building prevent exposure to soil; therefore, direct contact could only occur during excavation activities in this area. A GIS Registry listing at closure will provide notification to potential developers and excavation workers of the residual soil contamination and exposure risk.

5.3.2 Groundwater Direct Contact

Evaluation of this exposure scenario is necessary because PCE concentrations in groundwater exceeded the ES in the northern part of the Site. Groundwater in the unconsolidated deposits is not used as a resource by the City of Wauwatosa or residents. Municipal water is supplied to the area and there are no potable water wells at the Site or adjacent properties. This exposure scenario would have the potential to be complete only if excavations extend to the water table and the shallow groundwater is intentionally ingested. This situation is very unlikely and does not merit further evaluation.

5.3.3 Vapor Intrusion Exposure

The potential for exposure through breathing contaminated vapor was evaluated by conducting vapor intrusion assessments at the Site building and one (1) commercial building. The results of the vapor intrusion assessment conducted at the Site building indicated the potential for exposure. Based on this result, an SSDS was installed and a pressure field extension test was performed to verify performance. However, in 2015, the United States Environmental Protection Agency re-evaluated and lowered the attenuation factor for evaluating the vapor intrusion risk.

This adjustment raised the vapor risk screening levels for the COCs and the concentrations of COCs in recent sub-slab vapor samples do not exceed the current vapor risk screening levels.

The results of the vapor intrusion assessments conducted at the two (2) nearest structures (7209 and 7219 W. Center Street) indicated that the occupants are not at risk of exposure. These findings indicate that assessment of structures located further from the Site are not warranted.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The source of impacts is beneath the basement in the vicinity of the previous dry cleaning machine operations. Undocumented and likely incidental releases to the floor and /or sanitary sewer are likely causes of the identified impacts. The concentrations of CVOCs in vadose zone soils are relatively low, with only one sample location exhibiting a PCE concentration above the non-industrial RCL. Likewise, only one (1) exterior soil gas sample contained CVOC concentrations above the applicable screening levels.

The concentrations of CVOCs in groundwater are relatively minor and stable. The water table is encountered within the lower clay unit, which likely inhibits migration. Minor concentrations of PCE daughter products have been detected in a few soil and groundwater samples, indicating that PCE is undergoing some degradation due to the action of naturally occurring microbes.

The highest concentrations of CVOCs in soil, soil gas, and groundwater are detected in a relatively small area below and adjacent to the basement. Direct-contact risks appear to be limited to this area of the Site and part of the Center Street right-of-way immediately north of the Site boundary. Samples collected from all other areas of the Site contained concentrations of CVOCs below the applicable direct-contact standards and screening levels. The concentrations of CVOCs in all subsurface media decrease quickly with distance from the source area. Soil and soil gas samples collected along the sanitary sewer both east and west along Center Street did not contain appreciable concentrations of CVOCs and have not acted as conduits for the preferential migration of contaminants.

Potential exposure pathways consist of direct contact with soil and groundwater, and inhalation of vapors. Because the Site is entirely covered by the building and paved surfaces, direct contact with soil or groundwater could only occur during excavation activities. The GIS Registry listing at closure will provide notification to potential developers and excavation workers of the residual contamination and exposure risk. The results of recent sub-slab vapor samples indicate that the Site building or off-Site structures are not at risk of vapor intrusion.

The extent of impacts to all contaminated media above the applicable standards has been defined. EnviroForensics considers the Site investigation to be complete and recommends that no further investigation activities be conducted. EnviroForensics also recommends that a case closure request be prepared and submitted. Due to the presence of PCE in soil, the Site will be placed on the WDNR GIS Registry per their requirement, and the closure request will need to

include a cap maintenance plan that details how the integrity of the impervious surfaces at the Site will be kept in good condition. The SSDS is no longer needed and should be decommissioned.

TABLES

TABLE 1SUMMARY OF GROUNDWATER ELEVATION DATA

Former Hoffman's Valet Cleaners 7215 W. Center Street, Wauwatosa, Wisconsin

Well ID	Well ID Date TOC (feet AMS		Depth to Water (feet below TOC)	Groundwater Elevation (feet AMSL)
	1/28/2005		16.53	717.38
	1/8/2007		13.91	720.00
MW-1	4/5/2007	733.91	13.96	719.95
IVI VV - I	7/3/2007	755.91	13.83	720.08
	9/5/2013		13.97	719.94
	9/15/2016		13.85	720.06
	1/28/2005		14.42	718.59
	1/8/2007	733.01	14.12	718.89
MW-2	4/5/2007		13.72	719.29
IVI VV -2	7/3/2007		14.25	718.76
	9/5/2013		15.46	717.55
	9/15/2016		15.09	717.92
	1/28/2005		14.61	718.52
	1/8/2007		14.20	718.93
MW-3	4/5/2007	733.13	14.01	719.12
IVI VV - 3	7/3/2007	/33.13	14.35	718.78
	9/5/2013		15.54	717.59
	9/15/2016		15.13	718.00

Notes:

2005 and 2007 data collected by ARCADIS All values are in feet AMSL = above mean sea level NA = Not Available TOC = Top of Casing

TABLE 2 SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS

Former Hoffman's Valet Cleaners

7215 W. Center Street, Wauwatosa, Wisconsin

Sample Identification	Sample Depth (ft bgs)	Date Sampled	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	Ethylbenzene	Methylene Chloride	Naphthalene	Trichlorofluoromethane	Total Xylenes
	ndustrial Contaminant	Level	153,000	8,810	2,040,000	37,000	1,070,00	26,000	1,230,000	260,000
	n-Industrial Contaminant	Level	30,700	1,260	156,000	7,470	60,700	5,150	1,230,000	260,000
	Groundwate Contaminant		4.5	3.6	41.2	1,570	2.6	658	NE	3,960
GP-1	6-8	2/7/2002	51	ND	53	<10	21 Q	ND	ND	<20
GP-2	4-6	2/7/2002	240	ND	<10	<10	14 Q	ND	ND	<20
GP-101	7-11	9/12/2002	<25	ND	<25	<25	<25	50 Q	<25	<50
	11-15	9/12/2002	<25	ND	<25	<25	<25	<25	<25	<50
GP-102	4-8	9/12/2002	150	ND	3.0	<25	<25	<25	<25	<50
	12-16	9/12/2002	<25	ND	<25	<25	<25	<25	<25	<50
GP-103	8-12	9/12/2002	400	ND	<25	<25	<25	<25	<25	<50
	12-16	9/12/2002	<25	ND	<25	<25	<25	<25	<25	<50
GP-104	4-6	9/12/2002	41 Q	ND	<25	<25	<25	<25	61	<50
	8-9	9/12/2002	45 Q	ND	<25	<25	<25	<25	<25	<50
GP-105	8-12	9/12/2002	130	ND	<25	<25	<25	<25	<25	<50
	12-16	9/12/2002	<25	ND	<25	<25	<25	<25	<25	<50
GP-106	10-12	5/1/2009	<26	ND	<26	<26	<53	<53	ND	100
GP-107	14-16	5/1/2009	<28	ND	<28	<28	<56	<56	ND	<95
GP-108	14-16	5/1/2009	<28	ND	<28	<28	<56	<56	ND	<95
GP-109	12-14	5/1/2009	<28	ND	<28	<28	<56	<56	ND	<96
GP-110	14-16 10-12	5/1/2009 11/13/2009	<29	ND	<29	<29 <25	<57	<57	ND	<98
GP-111	10-12	11/13/2009	<25 <25	<25 <25	<25 <25	<23	<25 <25	<25 <25	<25 <25	<50 <50
	10-12	11/13/2009	<25	<25	<25	<25	<25	<25	<25	<50
GP-112	14-16	11/13/2009	<25	<25	<25	<25	<25	<25	<25	<50
MW-1	10-12	1/19/2005	2,800	ND	<29	<29	72	<29	<29	<58
MW-2	10-12	1/19/2005	3,720	ND	<28	<28	96	<28	<29	<56
MW-3	10-12	1/19/2005	<31	ND	<31	<31	<62	<31	<31	<62
	8-10	1/8/2007	2,500	ND	<35	80	<69	<69	ND	320
GP-3	10-12	1/8/2007	5,200	ND	<54	130	<110	<110	ND	550
	2-3	9/15/2016	<54	<42	<21	NA	NA	NA	NA	NA
SB-1	9-10	9/15/2016	<54	<42	<21	NA	NA	NA	NA	NA
	2-3	9/15/2016	130 J	<42	<21	NA	NA	NA	NA	NA
SB-2	9-10	9/15/2016	<54	<42	<21	NA	NA	NA	NA	NA
6D 2	2-3	9/15/2016	320	<42	<21	NA	NA	NA	NA	NA
SB-3	9-10	9/15/2016	48,000	199	208	NA	NA	NA	NA	NA

Notes:

All data collected by ARCADIS. Some information not known at this time

All concentrations reported in units of micrograms per kilogram ($\mu g/kg)$

ft has - fast halow anound sumfass

ft bgs = feet below ground surface

Samples analyzed using EPA SW-846 Method 8260

Bolded values are above laboratory letection limits

Bolded and orange shaded values are above the Industrial RCL

Bolded and green shaded values are above the Non-Industrial RCL

Bolded and blue shaded values are above the Soil to Groundwater RCL

NA = Not analyzed

- ND = Compound not detected above the method detection limit
- Q = One or more quality control criteria failed
- RCL = Residual Contaminant Level

TABLE 3 SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS

Former Hoffman's Valet Cleaners

7215 W. Center St, Wauwatosa, Wisconsin

Sample Identification	Date Sampled	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	Methylene Chloride	Chloroform
GP-102	9/12/2002	< 0.63	< 0.48	ND	< 0.43	ND
GP-103	9/12/2002	2.9	< 0.48	ND	< 0.43	ND
GP-105	9/12/2002	< 0.63	< 0.48	ND	< 0.43	ND
	1/28/2005	< 0.50	< 0.48	< 0.50	<1.0	< 0.20
	1/8/2007 *	1.1	< 0.48	ND	< 0.43	ND
MW-1	4/5/2007 *	1.4 Q	< 0.48	ND	< 0.43	ND
101 00 - 1	7/3/2007 *	1.0 Q	0.81 Q	ND	0.73 Q	ND
	9/5/2013	5.2	< 0.33	< 0.38	<0.5	< 0.28
	9/15/2016 *	7.4	< 0.47	< 0.45	<1.3	< 0.43
	1/28/2005	< 0.50	< 0.20	< 0.50	<1.0	< 0.20
	1/8/2007	< 0.50	< 0.20	ND	<1.0	ND
MW-2	4/5/2007	5.5	< 0.48	ND	< 0.43	ND
WI W -2	7/3/2007	1.7	0.95 Q	ND	< 0.43	ND
	9/5/2013 *	3.9	< 0.33	0.44 J	<0.5	0.30 J
	9/15/2016	1.37 J	< 0.47	0.73 J	<1.3	< 0.43
	1/28/2005	< 0.50	< 0.20	< 0.50	<1.0	< 0.20
	1/8/2007	< 0.50	< 0.20	ND	<1.0	ND
MW-3	4/5/2007	< 0.45	< 0.48	ND	< 0.43	ND
101 00 - 3	7/3/2007	< 0.45	< 0.48	ND	< 0.43	ND
	9/5/2013	< 0.33	< 0.33	< 0.38	<0.5	< 0.28
	9/15/2016	< 0.49	< 0.47	< 0.45	<1.3	< 0.43
Preventive A	ction Limit	0.5	0.5	7	0.5	0.6
Enforcement	t Standard	5	5	70	5	6

Notes:

All concentrations reported in units of micrograms per liter (μ g/L)

2005 and 2007 data collected by ARCADIS

Samples analyzed using EPA SW-846 Method 8260

Bolded values are above laboratory detection limits

Bolded and blue shaded values are above NR 140 Public Health Preventive Action Limits

Bolded and orange shaded values are above NR 140 Public Health Enforcement Standards

* Indicates result is the highest concentration detected in duplicate samples

 $\mathbf{J}=\mathbf{Concentration}$ is greater than the method detection limit but less than the reporting limit

ND = Compound not detected; detection limit unknown

Q = One or more quality control criteria failed.

TABLE 4SUMMARY OF SOIL GAS SAMPLE ANALYTICAL RESULTS

Former Hoffman's Valet Cleaners 7215 W. Center Street, Wauwatosa, Wisconsin

Sample Identification	Sample Date	Applicable Criteria	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene
SG-2	9/15/2016	Shallow	222	<10.7	<39.6	<39.6
SG-3	9/15/2016	Shallow	54.3	<10.7	<39.6	<39.6
SG-4	9/15/2016	Utility	142,000	3,180	6,220	599
Shallov	Shallow Vapor Risk Screening Level ¹			290	NE	NE
Deep/Utility S	Deep/Utility Soil Gas Vapor Risk Screening Level ¹				NE	NE

Notes:

¹ The Vapor Risk Screeing Levels are based on U.S. EPA Regional Screening Levels for small commercial indoor air with an attenuation factor of 0.01 for utility corridor samples and 0.03 for shallow samples, and a 0.1 adjustment for $1 \times 10-5$ excess cancer risk for carcinogens.

All concentrations reported in until of micrograms per cubic meter $(\mu g/m^3)$ **Bolded** values are above laboratory detection limits

Bolded and blue shaded values exceed the Shallow Vapor Risk Screening Level

Bolded and orange shaded values exceed the Deep Vapor Risk Screening Level

NE = Not Established

TABLE 5SUMMARY OF SUB-SLAB VAPOR SAMPLE ANALYTICAL RESULTS

Former Hoffman's Valet Cleaners

7215 W. Center Street, Wauwatosa, Wisconsin

Property Address (W. Center St)	Sample Identification	Sample Date	Applicable Criteria	Tetrachloroethene	Trichloroethene	Carbon Disulfide	n-Hexane	Toluene
7209	SS-2	11/16/2009	Small Commercial	81	<2.7	2.6	3.42	2.4
	SG-1	7/28/2006		20,000	<110	<160	<180	<75
	7215-SSV-1 7215-SSV-2	2/20/2014		1,440	48.9	NA	NA	NA
		9/15/2016	Small Commercial	486	38.7	NA	NA	NA
		11/16/2016		594	50.5	NA	NA	NA
7215		1/12/2017		300	61.3	NA	NA	NA
		2/20/2014		3,600	12.4	NA	NA	NA
		9/15/2016		1,360	243	NA	NA	NA
		11/16/2016		1,320	377	NA	NA	NA
		1/12/2017		922	243	NA	NA	NA
	SS-1	10/21/2009		244,000	<110	<64	<70	<75
	7219-SSV-1	9/4/2013		298	8.54	NA	NA	NA
7219	1219-33 V-1	2/20/2014	Small Commercial	239	<10.7	NA	NA	NA
	7219-SSV-2	9/4/2013		36.6	<1.07	NA	NA	NA
	1219-33 V-2	2/20/2014		118	<10.7	NA	NA	NA
Small Comr	Small Commercial Sub-Slab Vapor Risk Screening Level ¹					103,000	103,000	733,000

Notes:

¹ The Vapor Risk Screeing Levels are based on U.S. EPA Regional Screening Levels for small commercial indoor air with an attenuation factor of 0.03 and a 0.1 adjustment for 1 x 10-5 excess cancer risk for carcinogens.

2006 and 2009 data collected by ARCADIS

All concentrations reported in until of micrograms per cubic meter ($\mu g/m^3$)

Bolded values are above laboratory detection limits

Bolded and blue shaded values exceed the Small Commercial Shallow Vapor Risk Screening Level

NA = Not Analyzed

TABLE 6 SUMMARY OF INDOOR/OUTDOOR AIR SAMPLE ANALYTICAL RESULTS

Former Hoffman's Valet Cleaners

7215 W. Center Street, Wauwatosa, Wisconsin

Property Address (W. Center St)	Sample Identification			Trichloroethene		
	7219-IA	9/4/2013	9.16	<1.07		
7219		2/19/2014	2.71	<1.07		
/219	7219-OA	9/4/2013	22.4	1.07		
	721 9- 0A	2/19/2014	<1.4	<1.07		
Small Comme	Small Commercial Vapor Action Level					

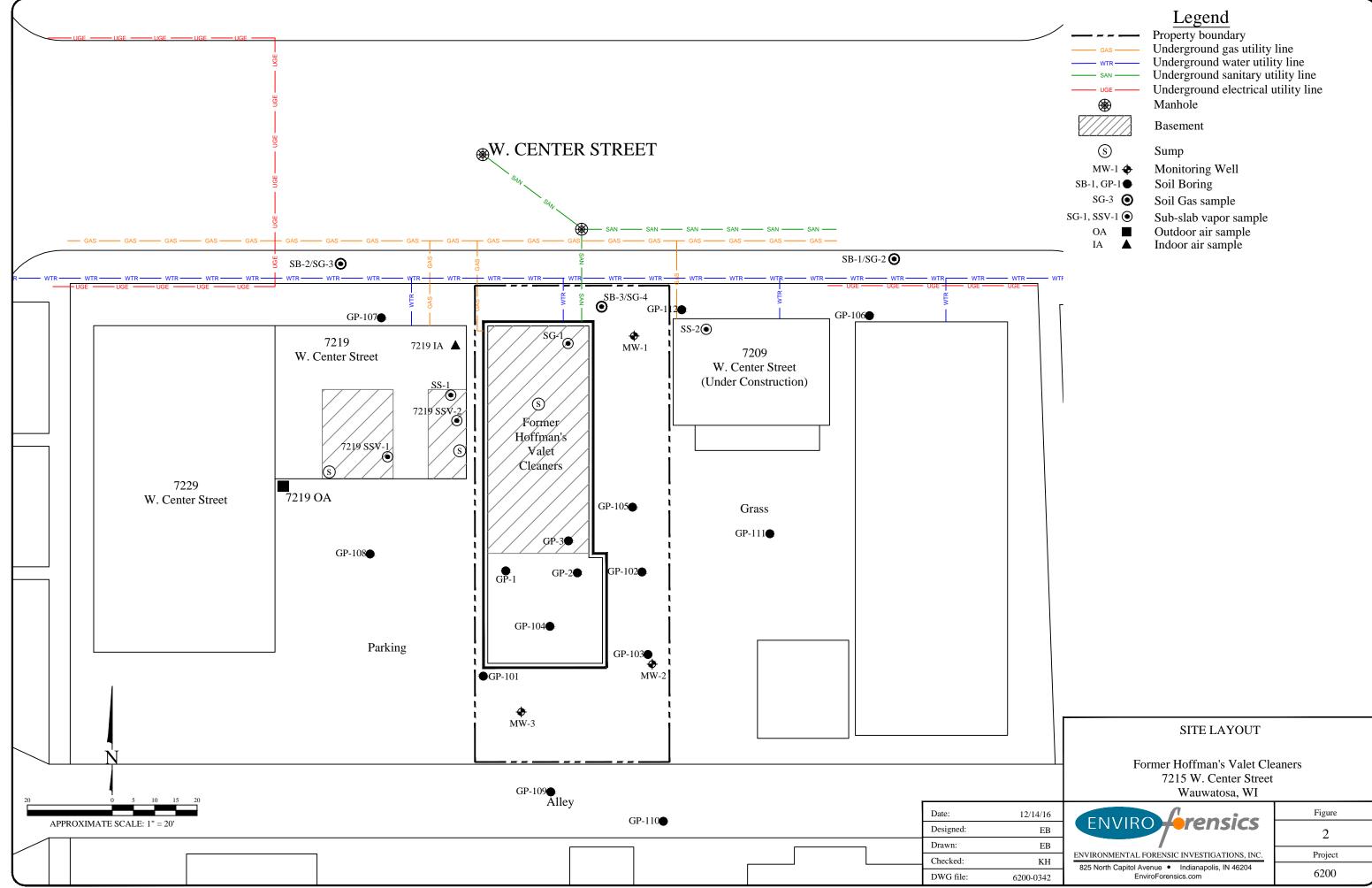
Notes:

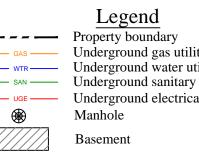
Results reported in microgragms per cubic meter ($\mu g/m^3$)

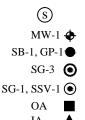
Samples analyzed according to EPA Method TO-15

Bolded values are above detection limits

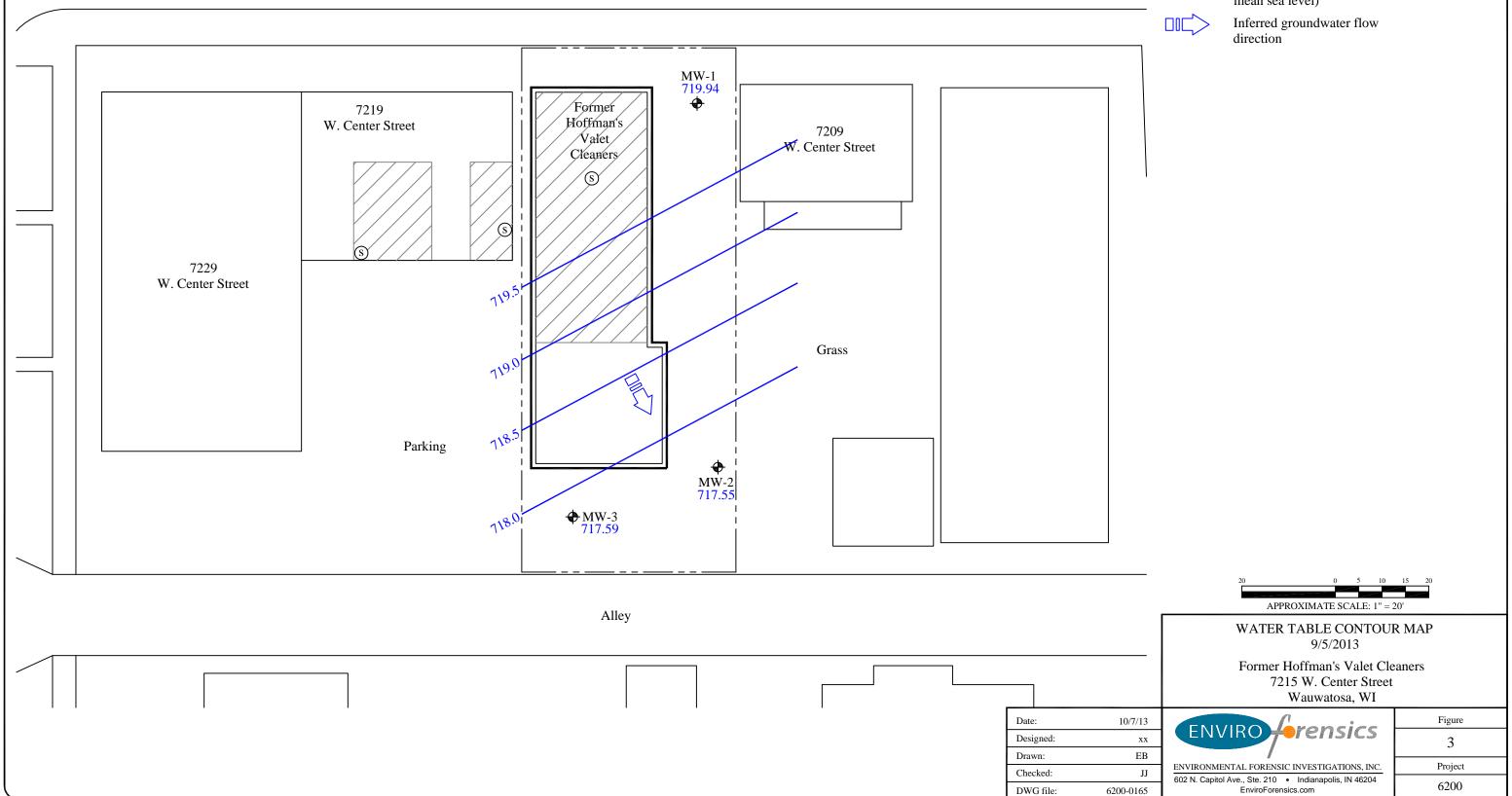
IA = Indoor Air

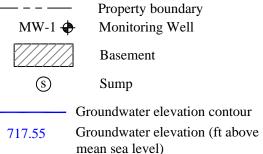

OA = Outdoor air (background)



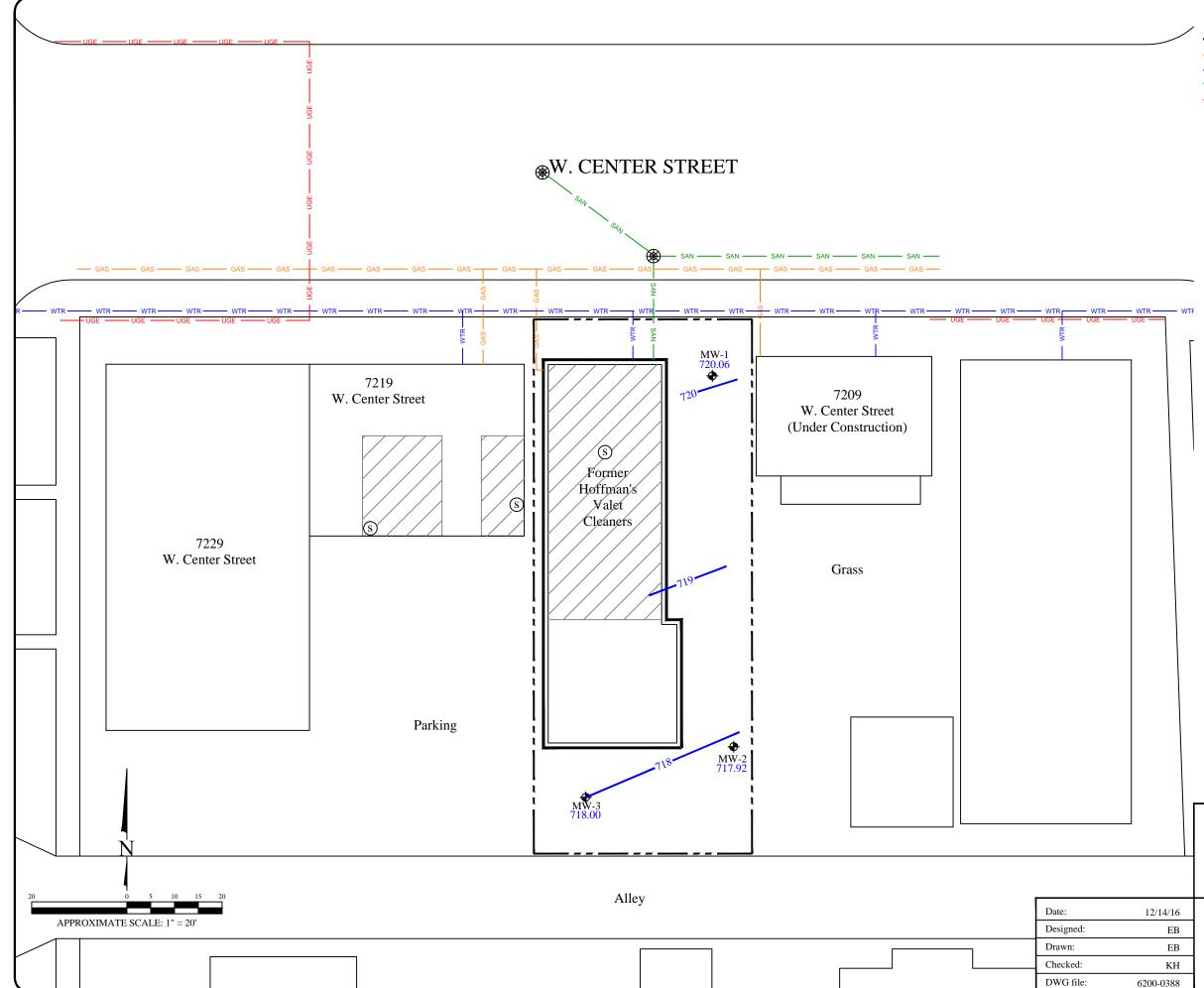


FIGURES

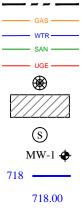




W. CENTER STREET



Legend



Ν

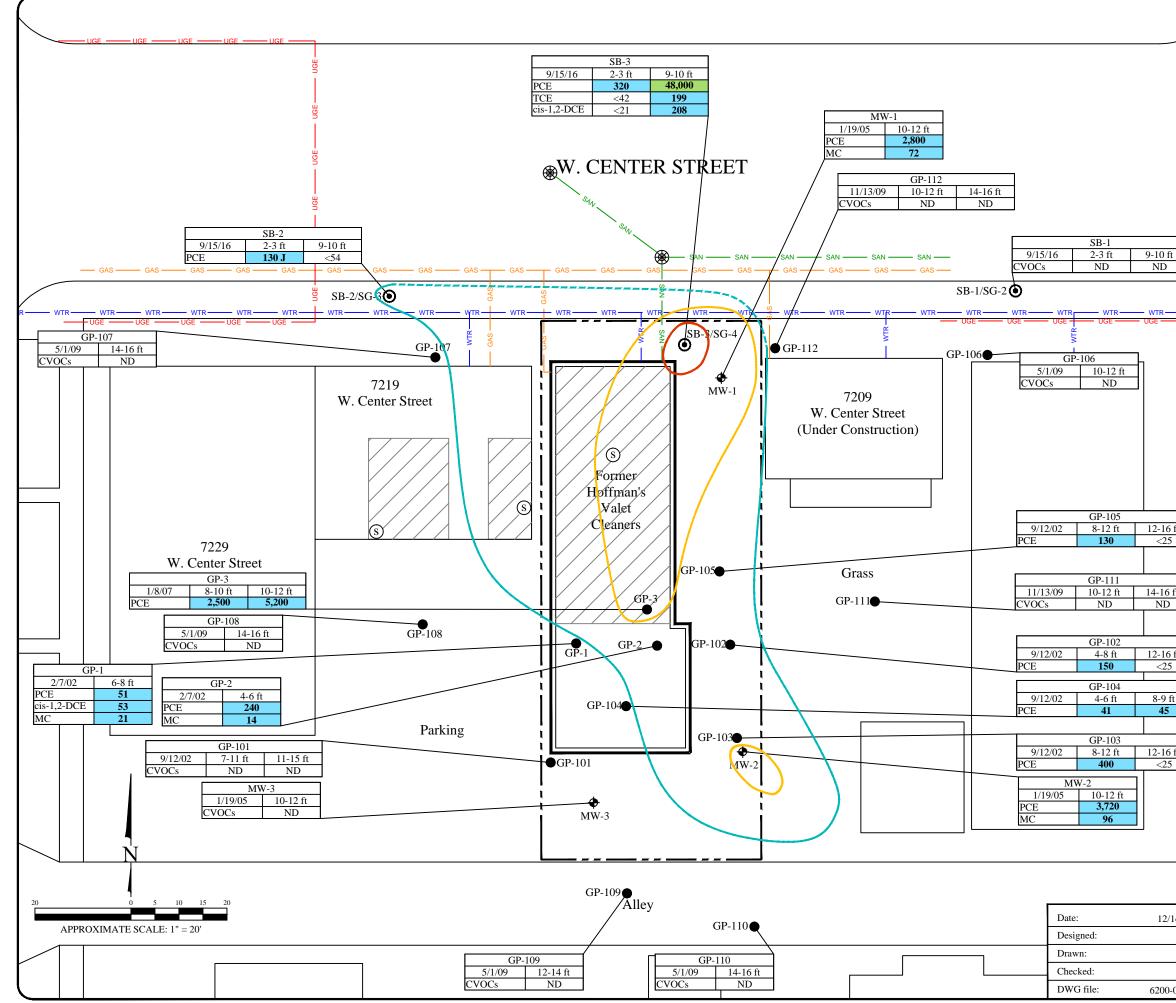
Property boundary Underground gas utility line Underground water utility line Underground sanitary utility line Underground electrical utility line Manhole

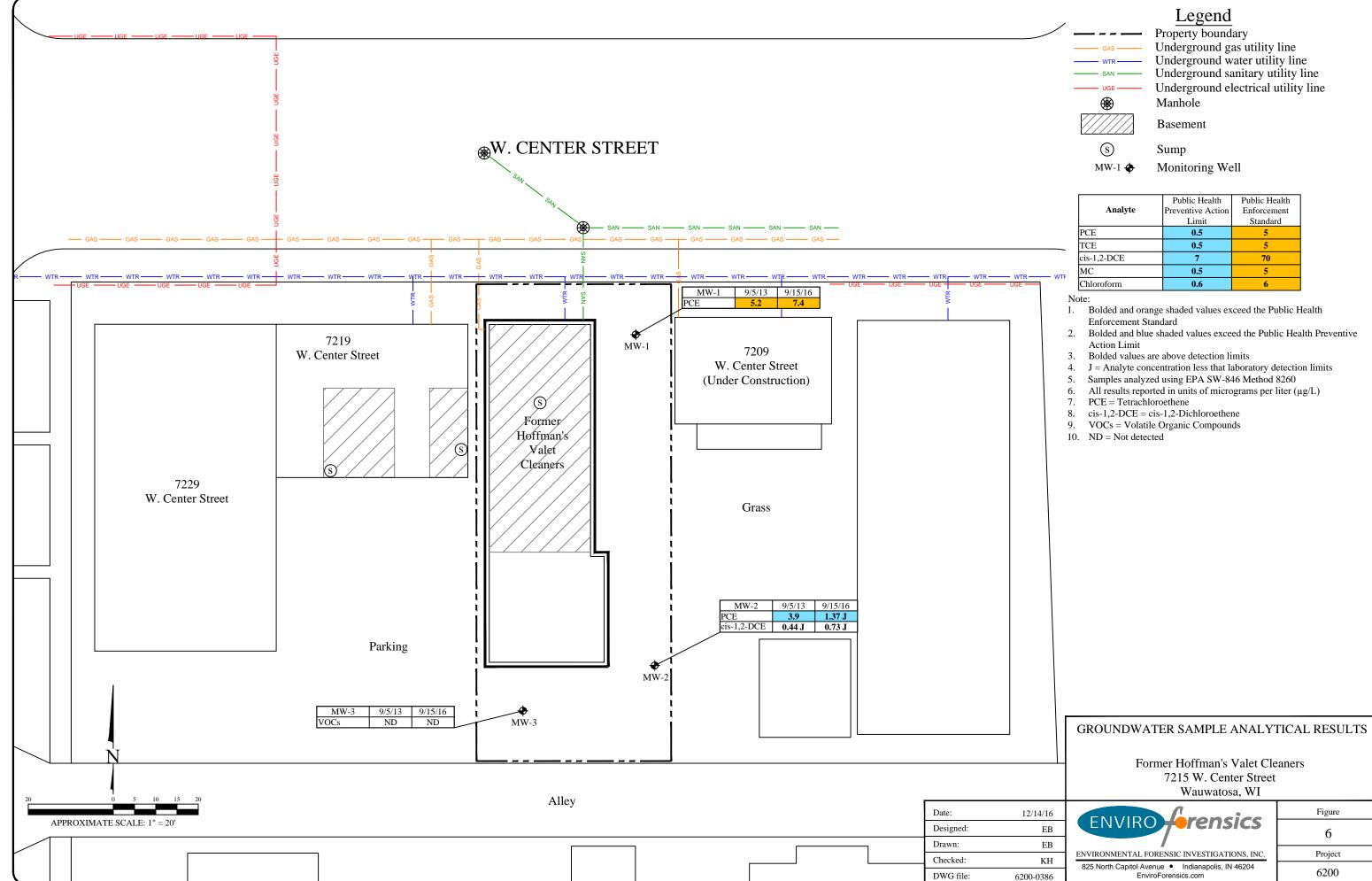
Basement

Sump

Monitoring Well

Groundwater elevation contour


Groundwater elevation (feet above mean sea level)


Former Hoffman's Valet Cleaners 7215 W. Center Street Wauwatosa, WI

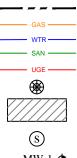
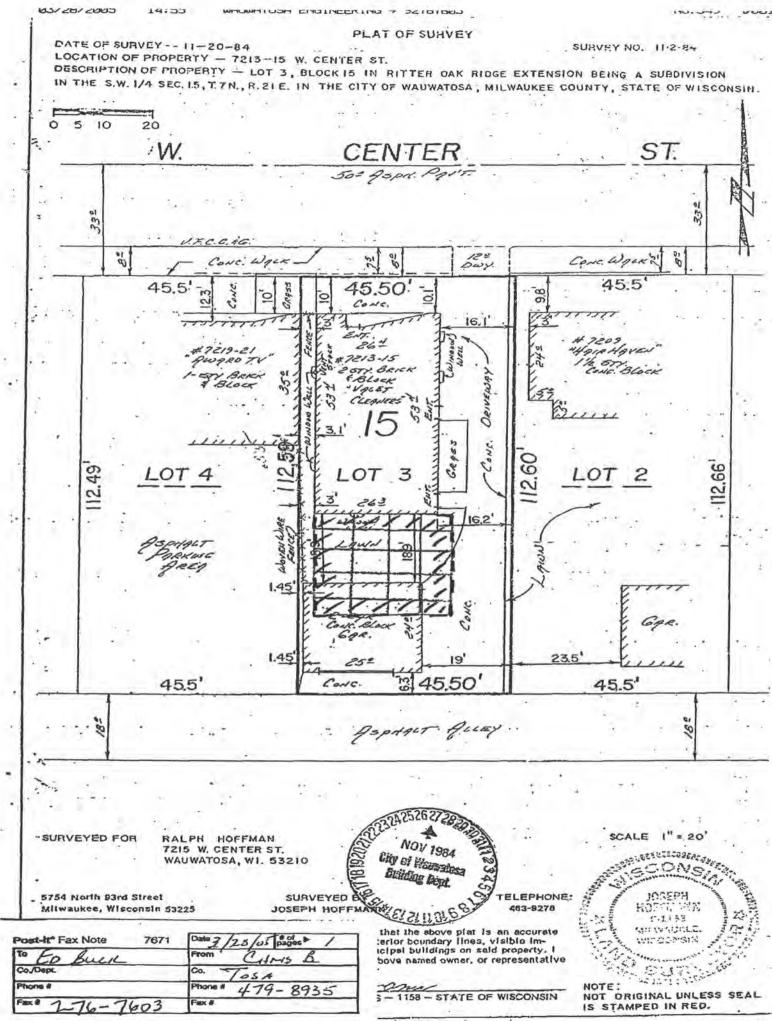

ENVIRO ENVIRONMENTAL FORENSIC INVESTIGATIONS, INC. 825 North Capitol Avenue • Indianapolis, IN 46204 EnviroForensics.com

Figure
4
Project
6200

	Note: 1. Bolded and Residual Cc 2. Bolded and Contaminar 3. Bolded valu 4. J = Analyte 5. Samples and 6. All results r 7. PCE = Tetr: 8. TCE = Tricl 9. cis-1,2-DCH 10. MC = Meth 11. ND = Not d 12. CVOCs = C PCE PCE PCE PCE PCE PCE PCE PC	 Underground Underground Manhole Basement Sump Monitoring Soil Boring Soil Boring Soil/Soil Ga Soil to Groundwater Residual Contaminant Level 4.5 3.6 41.2 2.6 blue shaded values ontaminant Level green shaded values at Level less are above detectic concentration less that alyzed using EPA Sy reported in units of m achloroethene a cis-1,2-Dichloro ylene Chloride letected Chlorinated Volatile Sisocontour <100 µg Sisocontour <10,000 blue boundaries are in 	Indary d gas utility lit d water utility d sanitary utility d sanitary utility d electrical utility Well Is sample Residential Residual Contaminant Leve 30,700 1,260 156,000 60,700 exceed the Soil to s exceed the Residential hat laboratory det W-846 Method 82 inicrograms per kil ethene Organic Compou g/kg µg/kg) µg/kg nferred ALYTICAL R	line ity line ility line Industrial Residual Contaminant Level 153,000 8,810 2,040,000 1,070,000 0 Groundwater dential Residual ection limits 260 logram (µg/kg) nds
1_			n's Valet Clear Center Street Itosa, WI	ners
14/16		0		Figure
EB	ENVIE	rer	nsics –	5
EB KH		L FORENSIC INVESTIC		Project
		I Avenue Indianapoli EnviroForensics.com	s, IN 46204	6200
EB KH 0385	825 North Capito	I Avenue • Indianapoli		Project



$\begin{array}{c c} & Legend \\ \hline \\ Property boundary \\ Underground gas utility line \\ Underground water utility line \\ Underground sanitary utility line \\ Underground electrical utility line \\ \hline \\ $									
	Indoor Air	Sub-slab vapor	So	il Gas					
Analyte	Small Commercial Vapor Action Level	Small Commercial Vapor Risk Screening Level	Shallow Vapor Risk Screening Level	Deep/Utility Soil Gas Vapor Risk Screening Level					
PCE TCE	180 8.8	6,000 290	6,000 290	18,000 880					
cis-1,2-DCE	NE	NE 290	NE	NE					
 Bolded and shaded green values exceed the Small Commercial Sub-Slab vapor Vapor Risk Screening Level All results reported in micrograms per cubic meter (µg/m³) NE = Not established Vapor risk screening level = US EPA Regional Screening Levels with an attenuation factor of 0.03 for sub-slab vapor to indoor air, and a 0.1 adjustment for carcinogens as described in WDNR Publication RR-800 PCE = Tetrachloroethene TCE = Trichloroethene cis-1,2-DCE = cis-1,2-Dichloroethene 									
SOIL GAS AND VAPOR INTRUSION ASSESSMENT RESULTS Former Hoffman's Valet Cleaners 7215 W. Center Street									
		Wauwatos	sa, WI						
24/17 EB	ENVIRO	ferens	ics –	Figure 7					
EB	RONMENTAL FOR	ENSIC INVESTICAT		Project					
KH 825	North Capitol Avenu	ENSIC INVESTIGATI							
-0387	EnviroF	orensics.com		6200					

APPENDIX A

Property Deed and Plat Map

RALPH L. HOFFMAN and HARLEENE S. HOFFMAN, TRUSTEES OR THEIR SUCCESSORS IN TRUST, UNDER THE RALPH AND HARLEENE HOFFMAN LIVING TRUST, DATED JANUARY 27, 2000 for a valuable consideration conveys, without warranty, to NATALYAL BERDNIKOVA a married person, Grantee, the following described real estate in MILWAUKEE County, State of Wisconsin:

LOT 3, IN BLOCK 15, IN RITTER OAK RIDGE EXTENSION, BEING A SUBDIVISION OF A PART OF THE SOUTHWEST 1/4 OF SECTION 15, IN TOWNSHIP 7 NORTH, RANGE 21 EAST, IN THE CITY OF WAUWATOSA, MILWAUKEE COUNTY, WISCONSIN.

This (is) (is not) homestead property.

Dated this 7-29-05

(Seal) Trustee

AUTHENTICATION

Signature(s)

authenticated this _____ day of _____

TITLE: MEMBER STATE BAR OF WISCONSIN (If not, _______ authorized by Section 706.06, Wis. Stats.) THIS INSTRUMENT WAS DRAFTED BY

Under the Supervision of Metropolitan Title Company 500 Elm Grove Elm Grove, Wisconsin 53122-5170

DOC.# 09080080

REGISTER'S OFFICE | SS Milwaukee County, WI

RECORDED 08/30/2005 03:00PM

JOHN LA FAVE REGISTER OF DEEDS

AHOUNT: 11.00

RETURN TO: NATALYA L. BERONIKOVA 4419 N. SHEFFIELD AVE MILWANCE, WI 53211

TAX PARCEL NO. 331-0695-00

TRANSFER

\$ 495.00

(Seal) HARLEENE S. HOFFMÁN

Trustee

ACKNOWLEDGMENT

State of Wisconsin

Milwaukee County.

Personality came before me this 7-29-05, the above named RALPH L. HOFFMAN and HARLEEME S. (HOFFMAN to me known to be the person(s) who executed the foregoing instrument and acknowledge the same.

Roger J. Knodl

Notary Public, Milwaukee County, Wis. (My commission expires on: 5-27-07)

(Signatures may be authenticated or acknowledged. Both are not necessary.)

*Names of persons signing in any capacity should be typed or printed below their signatures.

File Number 05070135 Loan Number _____

Doc Yr: 2005 Doc#09080080 Page#1 of 1

APPENDIX B

Soil Boring Log Forms (4400-122) and Borehole Sealing Forms (3300-005) State of Wisconsin Department of Natural Resources SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

> Tel: Fax:

Route To:	W

/atershed/Wastewater Remediation/Redevelopment \square

Waste Management Other

													Pag		of	1	
Facility/I							License/Permit/Monitoring Number 02-41-307576					Boring Number					
Former Hoffmans Valet Cleaners Boring Drilled By: Name of crew chief (first, last) and Firm				Date Dri				De	te Drilli	na Com	mlatad	SB		Drilling Method			
Tony		-		r crew chier (first, fast) a		Date Dill	ining St	arteu		Da		ing Con	ipieteu		Dim	ing method	
On-Si	ite Er	iviror	nment	al Services			9/15	/2016			(9/15/2	2016		Direct Push		
WI Uniq				DNR Well ID No.	Common Well Name	Final Sta				Surfac	e Elevat			Bo		Diameter	
							Feet N	MSL				t MSI			2.3	inches	
Local Gr		igin	□ (es		ring Location	La	t	0	,	"	Local G	irid Loc					
State Pla NE		c CV	1 7 1	,	E S/C/N			。	,			F (E		
TNE Facility I		of SV	/V 1	/4 of Section 15, County	t 7 N, R 21 E	Long County Co		Civil To	 wn/Ci	tv/ or V	/illage	Feet	□ S			Feet 🗌 W	
24108		0		Milwaukee		41	ae	Wauv		2	mage						
Samp												Soil	Prope	erties			
				Soil/B	Rock Description												
×	d (ji	unts	Fee		eologic Origin For						sive					ts	
ber Spe	ur A	Co	ı In		ch Major Unit		CS	hic	am	Q	gth	ture ent	م	city	-	men	
Number and Type	Lengur Au. & Recovered (in)	Blow Counts	Depth In Feet				U S O	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments	
	60	ш		(0'-0 3') CONCR	ETE : CONCRET	E CC	NCRE				0 S	<u> </u>	нн	ЦЦ	Р	<u> </u>	
	60		-		FILL, fine to coars	/	FILL										
SB-1 (2-3)			-1	grained Sánd, satu	rated, loose.	Γ				85							
GB			_	(1.0'-8.0') SILT a	and CLAY : Brow	n, SILT											
		-	-2	and CLAY, some	fine to coarse grain	ed											
			_	very stiff moderat	medium grained G ely platic, slightly r	noist											
			-3	, •••) 50111, 1110 00100	erj prove, sugar j												
		-	-							30							
			-4														
			- *														
		-	-				CL-MI										
	60		5 							0							
	60		_														
			-6														
		-	7							0							
		-	-														
			-8	(1 0' 8 0') SH T a	and CLAY : Gray,	SILT		$\int \int$									
			_	and CLAY. some	fine to coarse grain	ed	CL-MI										
SB-1 (9-10)		-	-9	Sand, trace fine to	medium grained G	ravel, _r				16							
GB			_		ely platic, slightly r		SW			10							
Ц		-	-10	(9.0'-10.0') SANI	D : Multicolored, fin ND, with fine to co	ne to			-								
				grained Gravel, de													
]											
				EOB @ 10 feet bg	gs												
Lharabu	cortifi	u that t	he info	rmation on this form is t	rue and correct to the h	peet of my b	nowled	 	I	I	1					<u> </u>	

ation on this form is true and correct to the

Signature	Firm EnviroForensics

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

State of Wisconsin Department of Natural Resources SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Route To:	W

Watershed/Wastewater

Waste Management
Other

Facility/Pr	rojaat 1	Nom				Liconso/) ormit/	Monito	ring Ni	mbor		Doring	Pag		of	1		
-	-			et Cleaners		License/Permit/Monitoring Number Boring Number SB-2						3_2						
										te Drilli	te Drilling Completed				Drilling Method			
Tony K	Tony Kapugi On-Site Environmental Services							/2016				9/15/2	-			Direct Push		
WI Uniqu				DNR Well ID No.	Common Well Name	Final Sta				Surfac	e Elevat		.010	F	Borehole Diameter			
iir olliqu							Feet N			Surray		t MSI				3 inches		
Local Grid	d Origi	in	(es	timated: 🗌) or Bor	ing Location	1		0			Local C							
State Plan				· · · · · ·	E S/C/N	La		- 	- -				□ N			Ε		
	1/4 of	SV SV	V 1.	4 of Section 15,	T 7 N, R 21 E	Long				<u>"</u>		Feet	□ S			Feet 🗌 W		
Facility ID 241083				County Milwaukee		County Co 41	de	Wauv		-	Village							
Sample	e											Soil	Prope	erties				
8	(ii)	s	st	Soil/R	ock Description						a							
Att.	ed (ount	I Fe	And Ge	eologic Origin For						SSIV			~		ats		
th /	ver	ŭ	h In	Eac	ch Major Unit		CS	ohic	ram	ED	pres ngth	sture	id id	icit.)/ mei		
Number and Type Length Att. &	Recovered (in)	Blow Counts	Depth In Feet		-		U S	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Indev	P 200	RQD/ Comments		
6	0	_		_(0'-0.3') CONCR	ETE : CONCRETE	<u>.</u> <u>cc</u>	NCRE	Π <u>P</u>										
6	0	-	_		FILL, fine to coarse	e	FILL											
SB-2 (2-3)		ł	-1	grained Sand, wet,				\bigotimes		341								
GÈ		-	-	(1.0'-8.0') SILT a	nd CLAY : Brown	, SILT												
			-2		fine to coarse graine medium grained Gra													
			_		ely platic, slightly m													
		ŀ	-3	, er j 50111, 1110 der ur														
			_							127								
							CL-MI											
		-	-4															
		-	-															
Η 6	60	-	-5							70								
	0	-	-															
		-	-6						-									
		-		(1.0 - 8.0) SILI a and CLAY some	and CLAY : Gray, S fine to coarse graine	d III												
			7	Sand, trace fine to	medium grained Gra	avel.												
		-	_		ely platic, slightly m					97								
		-	-															
			-8				CL-MI											
			_															
SB-2 (9-10) GB			-9							180								
GB		-	-															
Ц		F	-10						-		1							
					_				ł									
				EOB @ 10 feet bg	5													
I hereby c	ertifv t	that t	he info	rmation on this form is t	rue and correct to the be	st of mv k	nowled	.ge.				1	1	1		1		

Signature	Firm	EnviroForensics	Tel:
			Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

State of Wisconsin Department of Natural Resources SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Route To:	W

Watershed/Wastewater

Waste Management
Other

	1.	/ D		·			D :	Pag		of	1	
Facility/Project Name Former Hoffmans Valet Cleaners		License/Permit/Monitoring Number 02-41-307576					Boring Number SB-3					
Boring Drilled By: Name of crew chief (first, last) and Firm		rilling St			Da	te Drilli	ng Cor	nnleted			ing Method	
Tony Kapugi	Duit	ining of	uiteu		Du	C Dinn	ing con	iipieteu			ing method	
On-Site Environmental Services		9/15	/2016				9/15/2	2016		Direct Push		
WI Unique Well No. DNR Well ID No. Common Well Nam	ne Final St	atic Wa		el	Surfac	e Elevat			В		Diameter	
		Feet M	MSL				et MSI			2.3	inches	
Local Grid Origin (estimated:) or Boring Location State Plane N, E S/C/N 		at	0	,	"	Local C	frid Lo				_	
NE $1/4$ of SW $1/4$ of Section 15, T 7 N, R 21 F			0	,	"		Feet				□ E Feet □ W	
Facility ID County	County C		Civil To	own/Ci	ty/ or V	/illage	Tut	. 🗆 3				
241083150 Milwaukee	41			watosa		U						
Sample							Soil	Prope	erties			
Soil/Rock Description												
						sive					its	
action of the second se		CS	hic	ram	FID	pres	sture	t id	icity x	0	o/ mer	
Number and Type Aud Geologic Origin For Each Major Unit National States of the contraction Each Major Unit		N S	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments	
60 - (0'-0.3') CONCRETE : CONCRE	ETE. C	ONCRE	Ţ <u>E</u>									
60 (0.3'-5.0') SILT and CLAY : Bro	wn, SILT											
$rac{1}{2}$ space $rac{1}{2}$ and CLAY, some fine to coarse grave	ined				142							
GB Sand, trace fine to medium grained very stiff, moderately platic, slightly												
-2 very still, inductately plate, slightly	y moist.											
		CL-MI										
		CL-IVII										
					1088							
]								
60 -5 (0.3'-5.0') SILT and CLAY : Gra	y, SILT		I, I		81							
$\begin{bmatrix} 60 \end{bmatrix}$ = and CLAY, some fine to coarse gra	ined											
-6 Sand, trace fine to medium grained	Gravel,											
very stiff, moderately platic, slightly	moist.]								
]	29							
		CL-M										
SB-3 (9-10) GB				8	6154							
				8								
EOB @ 10 feet bgs				1								
I hereby certify that the information on this form is true and correct to the	e best of my	knowled	lge.									

Signature	Firm EnviroForensics	Tel:
		Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

State of Wis., Dept. of Natural Resources dnr.wi.gov

~

Well / Drillhole / Borehole Filling & Sealing Report Page 1 of 2

Form 3300-005 (R 4/2015)

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

	٦ ٦	Route to DNR Bureau:						•
Verification Only of Fill and	Seal	Drinking Water		Watershed/W	/astewater	🗙 Remedia	tion/Redeve	lopment
	ocui	Waste Manageme	nt 🗍	Other:				
1. Well Location Information			2. Facility	/ Owner Inf	ormation			
County WI Unique W		cap #	Facility Nam	e				
Removed We	ell		Hof	Imans	Valet Cle	aness	Inc	
Latitude / Longitude (see instructions)	 Format C	ada Mathad Cada	Facility ID (F	ID or PWS)				
			Z4	1083157	0			
43.067974	- _	SCR002	License/Perr	nit/Monitoring	#			
- 88.002040								
1/1/4 NE 1/4 SW Sec		ship Range 🔀 E	Original Well	Owner				
or Gov't Lot #	15 07	7 N ZI 🗌 W	Kalp	n Hotti	man			
Well Street Address	I	L	Present Well	Cia Ber	inan Anikova			
Well City, Village or Town		Well ZIP Code	Mailing Addr	ess of Presen	t Owner			
Waywatosa		53210	7213	W. Cer	ter St.			
Subdivision Name		Lot #	City of Prese				ZIP Code	
			wave			wI	53210	2
Reason for Removal from Service	/I Unique Well #	of Replacement Well			en, Casing & Sea			
)			· ·	l piping remov	ved?		ies No	N/A
3. Filled & Sealed Well / Drillhole			Liner(s) re				es No	X N/A
Monitoring Well Origin	al Construction	Date (mm/dd/yyyy)	Liner(s) pe				ies No	X N/A
	09/15/	2016	Screen re				ies No	
Water Well		n Report is available,		t in place?		<u> </u>	′es 🔄 No	X N/A
	e attach.	·		ng cut off belo			es No	X N/A
Construction Type:				g material rise		×Υ		N/A
Drilled X Driven (Sandp	oint)	Dug		ial settle after			es 🗙 No	<u></u> N/A
Other (specify):				was hole reto			'es 🗌 No	X N/A
Formation Type:					used, were they hyon n safe source?	rated 🗙 Y	'es 🗌 No	🗌 N/A
Vinconsolidated Formation	Bedroc	< .			ng Sealing Material			
Total Well Depth From Ground Surface (ameter (in.)		ctor Pipe-Grav		Pipe-Pumpe	ed	
10		J/A		ed & Poured nite Chips)		lain):		
Lower Drillhole Diameter (in.)	Casing De	•						
			Sealing Mate	ement Grout		Concrete		
2.3	N	IA				-		
Was well annular space grouted?	Yes 🕻	No Unknown		Cement (Conc	, L	Bentonite (Jnips	
				-	Monitoring Well Bor			
If yes, to what depth (feet)?	Depth to Water	(leet)	Benton	iite Chips		onite - Cemei		
e and a second secon		y nya zyyan na synya zana zyy na za haniya hali zahira.	Granul	ar Bentonite		onite - Sand S		ge officer and an experience
5. Material Used to Fill Well / Dril	lhole		From (ft.)	To (ft.)	No. Yards, Sacks Volume (circle		Mix Rat Mud W	
Concrete			Surface	0.5	0.06-			
Bentonite			0.5	10	1.01 f			
					• • •			<u></u>
6. Comments			1997. 				·····	
SB-(
7. Supervision of Work				enter e la composition de la compositio La composition de la c		DNR Use		
Name of Person or Firm Doing Filling &	Sealing Licer	1	lling & Sealing		n Date Received	N	loted By	
Enviro Forensics		(mm/dd/y		5/2016				
Street or Route	/ n /		elephone Num		Comments			
NIG WZ3390 Stone Ro City Wavkesha	Car Vr. 2		317)972		1)A/ork	IDete	Signed	
			Signature of	Person Doing	Work		Signed	
Wavkesha	UT	53188	12-	1			0/06/2	216

State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Report

Page 1 of 2

Form 3300-005 (R 4/2015)

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

	I	Route to	DNR Bureau:							
Verification Only of Fill and	Seal	Dr	inking Water		Watershed/W	Vastewater	🔀 Remea	tiation/Redeve	lopment	
		Wa	aste Managemer	ent Other:						
1. Well Location Information				2. Facility	/ Owner Inf	formation			,	
County WI Unique V Removed W	Vell # of H	icap #		Facility Nam						
Milwaukce	Cii					Valet C	leaness	Inc		
Latitude / Longitude (see instructions)	Format C	ode	Method Code	Facility ID (F	-	-				
43.067978			GPS008		108315					
-88.002694			SCR002	License/Perr	nit/Monitoring	ļ <i>#</i>				
	ction Town		OTH001	Original Well	Owner					
						,				
Well Street Address	13 0	7 N		Present Well	h Heff 1 Owner					
Weil Street Address				Nata	Cia Ber	<i>Anikova</i>				
Well City, Village or Town		Well Z	IP Code	Mailing Addr	ess of Preser	nt Owner				
Warwatosa	•		3210	7213	W. Cer	iter Sti				
Subdivision Name		Lot #		City of Prese			State	ZIP Code		
\setminus				•	vatosa		IL	3.50.0)	
Reason for Removal from Service V	VI Unique Weil #	of Rep	lacement Well			en, Casing &	Sealing Mat		E C DIA	
	<u></u>			Liner(s) re	I piping removed?	/ea?		Yes No	N/A	
3. Filled & Sealed Well / Drillhole	I Borehole In al Construction			Liner(s) re				Yes No		
Monitoring Well	•	•		Screen re			<u> </u>	Yes No	N/A	
Water Well	09/15/			Casing lef	t in place?			Yes No	X N/A	
	Vell Construction se attach.	n Repor	t is available,	Was casir	ig cut off belo	w surface?		Yes No	X N/A	
Construction Type:					g material rise		X	Yes No	N/A	
Drilled X Driven (Sandr	point)	Dug		Did mater	ial settle after	24 hours?	Ľ	Yes 🗙 No	N/A	
Other (specify):				lf yes,	was hole ret	opped?		Yes No	X N/A	
Formation Type:						used, were they n safe source?	hydrated	Yes 🗌 No	∏ N/A	
Vunconsolidated Formation	Bedroc	k				ng Sealing Mater		· · · · ·		
Total Well Depth From Ground Surface			(in.)		ctor Pipe-Gra		ctor Pipe-Pum	ped		
10		I/A	()		ed & Poured nite Chips)		(Explain):			
Lower Drillhole Diameter (in.)	Casing De			Sealing Mate						
Z.3	NI			l *	ement Grout)		
<u> </u>	10/1	7			Cement (Cond		Bentonite			
Was well annular space grouted?	🗌 Yes 🚺	🖉 No	Unknown			Monitoring Well		•		
If yes, to what depth (feet)?	Depth to Water	(feet)			ite Chips	-	entonite - Cem			
					ar Bentonite		entonite - Sano			
5. Material Used to Fill Well / Dril	lhole			From (ft.)	To (ft.)	No. Yards, Sa	cks Sealant or	Mix Rati		
Norman (A) and a first a first and a first a first and a first				Surface		Volume (c		Mud We	ight	
<u>Concrete</u> Bentonite				0.5	0.5	<u> </u>	6 <u>ft3</u>			
Dentealle				0.5	10	1,01	<u>_</u> 7T			
6. Comments			ayar ƙwaldin							
SB-2										
7. Supervision of Work			terretaria de la composición de la comp				DNR Use	Only		
Name of Person or Firm Doing Filling &	Sealing Licer	ise #	Date of Fill	ing & Sealing	or Verificatio	n Date Receiv		Noted By		
Enviro Forensics			(mm/dd/yy	yy) 09/1	5/2016					
Street or Route			1	lephone Num		Comments				
NIG W23390 Store Fre	Kar Dr. 2 State	Ste G		317)972						
NIG WZ3390 Stone Re City Warkesha	U			Signature of	Person Doing	Work		ate Signed		
Wavkesha	WI	5	3188	My h	1-			10/06/TC	ri 6	

State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Report

Page 1 of 2

Form 3300-005 (R 4/2015)

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

	Rout	e to DNR Bureau:					· · ·
Verification Only of Fill and Se	al 🗌	Drinking Water		Watershed/W	/astewater	🔀 Remedia	ation/Redevelopment
		Waste Managemer	nt 🗌	Other:			
1. Well Location Information			2. Facility	/ Owner Inf	ormation		
County WI Unique Well Removed Well	# of Hicap	#	Facility Nam			-	
Milwaukce					Valet Cle	anes s	Inc
Latitude / Longitude (see instructions)	Format Code	Method Code	Facility ID (F		^		
43.067966 N		GPS008		108315			
-88.002343 W		SCR002	License/Pen	mumoritoring	#		
Valva NE Va Sw Section	Township	Range 🔀 E	Original Wel				
or Gov't Lot # iS	071		Falp	h Heff	man		
Well Street Address		·	Present Wel	I Owner	<u> </u>		
					drikova		<u></u>
Well City, Village or Town		II ZIP Code		ess of Preser			
Warwatosa		53210	City of Prese		10 31	State	ZIP Code
Subdivision Name	Lot	#		satosa		WI	53210
					en, Casing & Sea	-	
Reason for Removal from Service WI U	nique vveil # of F	Replacement Well		piping remov			Yes No 🔀 N/A
3. Filled & Sealed Well / Drillhole / E	arehole Infor	mation	Liner(s) re	emoved?		Ū,	Yes 🗌 No 🔀 N/A
	Construction Date		Liner(s) p	erforated?		<u> </u>	Yes 🗌 No 🔀 N/A
Monitoring Well	09/15/20	46.	Screen re	moved?		Ŭ,	Yes 🗌 No 🔀 N/A
	Construction Re		Casing le	ft in place?		<u>ין</u>	Yes 🗌 No 🔀 N/A
Borehole / Drillhole please a		port is available,	Was casir	ng cut off belo	w surface?	` `	Yes No 🗙 N/A
Construction Type:			Did sealin	g material rise	e to surface?	<u>v</u>	
Drilled 🛛 🔀 Driven (Sandpoin	t) 🗌 🗆	ug		ial settle after			Yes XNo N/A
Other (specify):		<u> </u>	1 .	, was hole ret			Yes 🗌 No 🔀 N/A
Formation Type:		<u></u>			used, were they hyo n safe source?	Strated 🗹	Yes 🗌 No 🗌 N/A
X Unconsolidated Formation	Bedrock		Required Me	ethod of Placir	ng Sealing Material	<u> </u>	<u> </u>
Total Well Depth From Ground Surface (ft.)	Casing Diame	ter (in.)	لسبي	ctor Pipe-Gra	vity 🔲 Conductor	Pipe-Pump	ed
10	וארא	A	X Screer	ned & Poured nite Chips)	Other (Exp	olain):	
Lower Drillhole Diameter (in.)	Casing Depth	(ft.)	Sealing Mate				
2.3	N/A			Cement Grout	×	Concrete	
<u> </u>	10/11		Sand-(Cement (Cond	rete) Grout	Bentonite	Chips
Was well annular space grouted?	🗌 Yes 🛛 🔀 N	o 📋 Unknown	For Monitori	ng Wells and	Monitoring Well Bor	⊐ eholes Onlv	
If yes, to what depth (feet)? Dep	oth to Water (fee	t)	1	nite Chips	· · ·	onite - Ceme	
			Granul	ar Bentonite	Bento	onite - Sand	Slurry
5. Material Used to Fill Well / Drillho	de		From (ft.)	To (ft.)	No. Yards, Sacks		Mix Ratio or
			Surface	0.5	Volume (circle		Mud Weight
<u>Concrete</u> Bentonite			0.5		<u> </u>		· · · · · · · · · · · · · · · · · · ·
Denfenite			0.5	10	[, • (7]		
6. Comments						en an	
SB-3							
7. Supervision of Work	and the second	and the second				DNR Use	Only
Name of Person or Firm Doing Filling & Sea	ling License #	Date of Fil		g or Verificatio			Noted By
Enviro Forcasics		(mm/dd/yy	yy) 09/1	5/2016			
Street or Route		Te	lephone Nun		Comments		
Nil in 23390 Stere Fidg City Warkesha	<u>.</u> Dr. Ste	<u>G</u> (317)970	-1810			
City 0	State ZI	P Code	Signature of	Person Doing	Work 9	J.	e Signed
Wavkesha	UI	53188	1 Marca	1-			0/06/2016

APPENDIX C

Field Sampling Forms

ENVIRO Grensics

Indoor Air Field Sampling Form

602 N. Capitol Avenue, Ste. 210, Indianapolis, IN 46204 T:317-972-7870 F: 317-972-7875

PROJECT NAME LOCATION/ADDRESS PROJECT NO. CLIENT/CONTACT DATA COLLECTION:	START DATE	Hoffmane (1215 W Cente 4200 DWR 9/4/2013		SAMPLE DATE SAMPLE ID SAMPLE TIME CANISTER ID	19:35 91442	- 7615,01
Time	Vaccum Reading	Wind Direction	Wind Speed	Temperature ° F	Barometer	Relative Humidity
hh:mm	In. of H2O		mph	<u> </u>	Hg	%
		- <u></u> · .			·····	
11:35	-29.5	West	9.2	78.1	30.08	48
191.35	<u>- °S</u>	East Northeast	9.2	68.0	30.10	<u>98</u>
				. ~~~~		
				<u> </u>		;
	<u></u>					
		······		<u> </u>		
			<u></u>		······································	
		······································			·	
		· · · · · · · · · · · · · · · · · · ·				<u> </u>
		<u> </u>		·····	·	<u> </u>
	<u> </u>				<u> </u>	
		· · · · · · · · · · · · · · · · · · ·		·		
		· · · · · · · · · · · · · · · · · · ·				<u> </u>

602 N. Capitol Avenue, Ste. 210, Indianapolis, IN 46204 T:317-972-7870 F: 317-972-7875

PROJECT NAME LOCATION/ADDRESS PROJECT NO. CLIENT/CONTACT DATA COLLECTION:	START DATE	Huffman () 7215 W Can (0200 ? 9/4/2013	earing ter st	SAMPLE DATE SAMPLE ID SAMPLE TIME CANISTER ID END DATE	9/4/2013 4200 19:20 19:20 10:332 05:30	-7015-I
Time hh:mm	Vaccum Reading In. of H2O	Wind Direction	Wind Speed	Temperature ° F	Barometer Hg	Relative Humidity %
11:20	<u>.</u>	West	9.2	75	30.08	51
19:20	- 30	NorthEast	9.2	70	30.09	81
······						
		· · · · · · · · · · · · · · · · · · ·				
	······					
						<u></u>
	· <u>·····</u> ······························	·				
	·					
		· · · · · · · · · · · · · · · · · · ·				
	······					
		· · ·				

-22 = 0 pressure

ENVIRO forensics

200 S. Executive Dr, Suite 101 Brookfield, WI 53005 T: 414-982-3988 F: 262-789-6699

SAMPLER NAME		J. Jodan		SAMPLE ID	6200-7219-	5-12
LOCATION/ADDRESS		7219 NCent	er Sf	SAMPLE TIME	12:45	
PROJECT NO./ NAME		C 200 Hoffer	wig	CANISTER ID	83921	
CLIENT/CONTACT				FLOW CONTROL ID	<u> </u>	
DATA COLLECTION:	START DATE	9/5/2013		END DATE	95 2013	
Time	Vacuum Reading	Wind Direction	Wind Speed	Temperature	Barometer	Relative Humidity
hh:mm	In. of Hg		mph	°F	Hg	%
13:40	-29	ENE	9.2	<u>Cele.9</u>	30.30	_52_
12:45	-10	ENE	9.2	64.9	30,30	52
		<u></u>				
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	- <u></u>	<u></u>		· · · · · · · · · · · · · · · · · · ·	<u></u>	- <u></u>
						······
				· · · · · · · · · · · · · · · · · · ·		
					<u></u>	·····
	<u></u>			• • • • • • • • • • • • • • • • • • •		
		•		<u></u>	<u></u>	
	, ,					
	Helium	Leak Test		Pressure Test		
Date/Time performed		:25 9/5/20	13 /	Date/Time performed:		/
Background He conc			Ð	Negative pressure of at l	least -15 in. He induced	on sampling train?
Shroud He concentra			39,7%	(circle one):	(Ves)	no
	gas He concentration (p	ost halium insertion):	0	Did pressure hold?	(yes)	no
		es nerum miserion).	no	Did pressure hold?		
Helium Leak Test Pa						

Notes:

4

ENVIRO forensics

 $\overline{\}$

200 S. Executive Dr, Suite 101 Brookfield, WI 53005 T: 414-982-3988 F: 262-789-6699

SAMPLER NAME		J. Jordan		SAMPLE ID	62007219-	-ssu-1
LOCATION/ADDRESS			erst	SAMPLE TIME	12:10	
PROJECT NO./ NAME		4200 Hottau	· ·	CANISTER ID	8372	
CLIENT/CONTACT				FLOW CONTROL ID	, N	9
DATA COLLECTION:	START DATE	-9/10- 9/9	10013	END DATE	9/5/2013	
Time	Vacuum Reading	Wind Direction	Wind Speed	Temperature	Barometer	Relative Humidity
hh:mm	In. of Hg		mph	° F	Hg	%
12:05	-27	<u>ENE</u> ENE	11.5	66.9	30.30	51
12:10	-6.5	ENE	11.5	46.9	30,30	51
					<u></u>	
			· · · · · · · · · · · · · · · · · · ·			
		<u> </u>		- <u></u>		•
		<u></u>		• • • • • • • • • • • • • • • • • • •	,	
	<u></u>					
				-		
			·····			

	<u></u>			- <u></u>	<u></u>	
		<u></u>				
F	TT-li	n Leak Test		Pressure Test	1	
<u> </u>	richus			ressure lest		l
Date/Time performed	<u>1: 11 :</u>	50 9/5/2017	i	Date/Time performed:	9/9/200	3 /
Background He conc	entration (ppm):		0	Negative pressure of at le	ast -15 in. Hg induced on	sampling train?
Shroud He concentra	tion (%):		46.2	(circle one):	yes	no
Sub-slab vapor/soil-g	as He concentration (post helium insertion).	D	Did pressure hold?	yes	no
Helium Leak Test Pa		kes)	no			

GROUNDWATER SAMPLING FORM

602 N. Capital Ave Indianapolis, IN 46204 T: 317-972-7870 F: 317-972-7875

	Hoffmans				Mw	-[
PROJECT NAME	Tormans		Well/Surfa	ce Station I.D.					
LOCATION/ADDRESS	1215 4	J Cente	<u>r</u> H Samp	le Designation	6200-				
PROJECT NO.	10200			Date	9/5/2	613			
CLIENT/CONTACT				Personnel	J-Porc	la			
	EACUDENCENTES.						METHOD.		
WATER LEVEL M	Well Depth	1,47 _{feet}		er Column Heigł ls Gallons	it]	SAMPLING 1	METHOD:	Low-Flow	
	Depth to Water	1.97 feet	Factor	Diameter			· C	irab/No-purge	
		inches	0.163	2" Well			_	Bailer	<u>×</u>
	Casing Volume Volume Removed	gallons 3gallons	0.653	4" Well 6" Well				ristaltic pump	
Total No. of Casing	Volumes Removed			versions	-		3000	ersible Pump Other	
				= 0.0003 ga	1	Was dra	wdown greater tha		
			l gal	= <u>3,785 mL</u>]				
Stability Parameter	Readings: Rea	dings every thre	e minutes for at least	three readings to a	chieve stability f	for ALL parameters exc	cept as noted.		1
	m .		Oxidation-	Specific	· 1 · 10	Dissolved	~~~~	\Box	gal
Start Time_16: 70	Temperature (Celsius)	pH	Reduction Potential (mV)	Conductance (umhos/cm)	Turbidity (NTU)	Oxgen (mg/L)	DTW (ft)	Flow Rate (ml/mm)	Removed
Start Time	+/- 3%	+/- 0.1	+/- 10mV*	(unitios/ciii) +/- 3%	+/-10%*	+/- 10%*	<.0.3ft	250	Removed
11:00	16.09	7.00	88	7.24	375	10.06	14.67		1
11:10	15.50	7.16	100	7.09	401	7.24	14.2)		
11:00	14.92	7.04	100	7,34	1800	6,68	18,80		
<u> </u>				*		<u> </u>			
							·····		
·····									
	·						·		
				<u>_</u>					
							<u> </u>		
					<u>_</u>				
			<u> </u>				· <u> </u>		
			<u></u>			<u> </u>			<u></u>
·		<u></u>		<u>,</u>		<u> </u>			
* Only one (1) of these n	eed to reach stability.								
SAMPLING:	Date 9/5 20	13 Time	11:30						
			Number	Preservative	Reaction	Filter			
Sample Analysis	Volume	Type	of Containers	Type	(y/n)	Туре	Dupligate	MS/MSD	
UOCs	40ml	Uca	_3	HCL	$\underline{\nu}$	<u>_N</u>	N	\mathcal{D}	
							· · · · · · · · · · · · · · · · · · ·		
EQUIPMENT DEC	ONTAMINATION	PROCEDU	URES:						
-									
DECONTAMINATION MI	/	Ion Phosphatic Methanol rinse	detergent wash/distil	led water rinse					

NOTES: Signific ant trandown Sampler Signature: Griather John

ENVIRO forensics

GROUNDWATER SAMPLING FORM

602 N. Capital Ave Indianapolis, IN 46204 T: 317-972-7870 F: 317-972-7875

	A								
PROJECT NAME	P Hoff	mans	Well/Surfa	ce Station I.D.	MW-2	2			
LOCATION/ADDRESS	Alton WI	U. Cente	<u>s</u> f samp	le Designation(1200 - M	w-2			
PROJECT NO.	6200			Date	9/5/2	1013			
CLIENT/CONTACT			_	Personnel	T. Tord				
-									
WATER LEVEL ME				er Column Heigh	t	SAMPLING	METHOD:		
×	Well Depth 🧾 Depth to Water 🎜		Equal Factor	ls Gallons Diameter			(Low-Flow Grab/No-purge	
	Well Diameter		0.163	2" Well	-		,	Bailer	<u>~</u>
	Casing Volume		0.653	4" Well			Pe	ristaltic pump	f
	Volume Removed	gallons	1.469	6" Well			Subr	nersible Pump	
Total No. of Casing	Volumes Removed	<u>3</u>		versions				Other	
			1 1110	= 0.0003 ga = 3,785 mL		Was dr	awdown greater tha	an 0.3 ft? (y/n)	· _• _• _•
04-1-11:4- D	No. 19								
Stability Parameter R	Readings: Rea	adings every three	minutes for at least Oxidation-	three readings to a Specific	ichieve stability f	for ALL parameters ex Dissolved	cept as noted.	,	gal
0	Temperature		Reduction	Conductance	Turbidity	Oxgen	DTW	Flow Pate	٣,
Start Time 9:50	(Celsius)	pH	Potential (mV)	(umhos/cm)	(NTU)	(mg/L)	(ft)	(m/min)	Removed
1	+/- 3% [5.clo	+/- 0.1	+/- 10mV* 9D	0.8%	+/- 10%*	+/- 10%* 8:75	<.0.3ft	<250	A 11
10:00	14/109	7.35	-72	0,00	NA	7/22	18 16		<u> </u>
10:20	14.45	133	-72	0,96de	NA	6,03	19:21		0.66
	^								
							<u> </u>		
· · · · · · · · · · · · · · · · · · ·									
					·				
<u></u>		<u> </u>	<u></u>		<u></u>	- <u></u>	<u> </u>		<u></u> -
									·
				<u>_</u>					
	· · · · · · · · · · · · · · · · · · ·	<u> </u>		·					······
	· · · · · · · · · · · · · · · · · · ·								
	·							<u> </u>	
* Only one (1) of these ne	ed to reach stability.								
	0/10		10:30						
SAMPLING:	Date <u>9/5/20</u>	13 Time_	<u>/ 0' 30</u> Number	Preservative	Reaction	Filter			
Sample Analysis	Volume	Туре	of Containers	Туре	(y/n)	Туре	Duplicate	MS/MSD	
UCCs	40ml	Van		HCL	$\underline{\mathcal{N}}_{}$	\mathcal{N}_{-}	<u> </u>	N	
			<u> </u>						
	· · · · · · · · · · · · · · · · · · ·			<u> </u>					
	·				<u></u>				
	· · · · ·							<u> </u>	
EQUIPMENT DECO	ONTAMINATIO	N PROCEDU	RES:						
			letergent wash/distil	1 1 4 7					
DECONTAMINATION ME	~ ~	Non Phosphatic c Methanol rinse	ietergent wash/distil	led water rinse					
			/						
NOTES: 1	UP /	allee	ted ;	Here					
Sampler Signature:		-							
7/ 1/ /									
Unath 1/2	~ lan								
ponto-one opti									

GROUNDWATER SAMPLING FORM

602 N. Capital Ave	.								
Indianapolis, IN 462 T: 317-972-7870 F:					14/2013				
PROJECT NAME	Hoffman	Clean	Well/Surfa	ce Station I.D.		N-3			
LOCATION/ADDRESS	1215 W	1. Center	Samp	le Designation	1200-M	W-3			
PROJECT NO.	4200			Date	9/5/201	2			
CLIENT/CONTACT	3			Personnel	J.J.	orden			
WATER LEVEL M	EASUREMENTS Well Depth <u>/</u>	5: E,54 _{feet}		er Column Heigh s Gallons	nt	SAMPLING	METHOD:	Low-Flow	
	Depth to Water 🧘	4. Ffeet	Factor	Diameter			C	frab/No-purge	
	Well Diameter		0.163	2" Well]			Bailer	¥
	Casing Volume 🙋 Volume Removed		0.653	4" Well 6" Well				ristaltic pump	
Total No. of Casing	g Volumes Removed	3		versions	-1		5001	Other	
				= 0.0003 ga = 3,785 mL		Was dr	awdown greater tha	ın 0.3 ft? (y/n)	
Stability Parameter	Readings: Re	adings every thre	e minutes for at least	three readings to a	achieve stability f	or ALL parameters ex	cepit as noted.		
9:00			Oxidation-	Specific		Dissolved	ŝ	\mathcal{O}	
Start Time 9-3-	Temperature		Reduction	Conductance	Turbidity	Oxgen	DTW	Flow Bate (minin)	mL Removed
Start Thire	(Celsius) +/- 3%	рН +/- 0.1	Potential (mV) +/- 10mV*	(umhos/cm) +/- 3%	(NTU) +/- 10%*	(mg/L) +/- 10%*	(ft) <.0.3ft -	<250	Kemoved
<u>-9:35-9</u>	10 15.77	4.25	32	1,69	250	3,33	the	n.57	D.S.gal
9:80	- 16.51	7,38	43	1,48	355	959	- 10,17	•	0.51,
9:30	- 14.96	7.18	<u> </u>	1.70	300	7,00	19,01		_0.5
				<u></u>					
	·								
									
									
	- <u></u>								
							- <u></u>		
						<u></u>			
		~~~~~							
			<u> </u>		·				
				<u> </u>					
* Only one (1) of these n	need to reach stability.								
SAMPLING:	Date 9/5/5	DOI 3 Time_	9:40						
			Number	Preservative	Reaction	Filter			
Sample Analysis	Volume <u>Volume</u>	Type 100	of Containers 2	Type HC	(y/ŋ)	Type	Duplicate	MS/MSD	
	<u>906</u>	Den		HO	~~~~				
			·····						
EQUIPMENT DEC	ONTAMINATIO	N PROCED	URES:						
DECONTAMINATION M			detergent wash/distil	led water rinse					
	1	Methanol rinse							

NOTES: 5cope Sampler Signature;	Said	to	45 e	bailer. Frandourn	not significant =
Anthen	Inter	· · · · · · · · ·			Switch to parastaltie Puny

Indoor Air Field Sampling Form

N16 W23390 Stone Ridge Drive, Suite G Waukesha, WI 53188 T: 414-982-3988 F: 317-972-7875

SAMPLER NAME		J. Jorcha	<u> </u>	SAMPLE ID	6200-721	3-0A
LOCATION/ADDRESS		- 7215 (en	ter	SAMPLE TIME	16:10	
PROJECT NO./ NAME		Hottimes	6200	CANISTER ID	16024	
CLIENT/CONTACT		Kalph Ha	Amor	FLOW CONTROL ID	05219	
DATA COLLECTION:	START DATE	DIGIU		END DATE	2/19/14	
Time	Vaccum Reading	Wind Direction	Wind Speed	Temperature	Barometer	Relative Humidity
hh:mm	in. of H ₂ O		mph	°F	Hg	%
8:15	-28	WNW	11.5	34°F	29.83	70
16:10	-11.5	5w	10.4	44,1	29.94	40
	·					
	<u></u>					
						- 17.2m
			·			
	<u> </u>					

602 N. Capitol Avenu Indianapolis, IN 4620 T:317-972-7870 F: 3	ue, Ste. 210,)4				Jan	HJL
PROJECT NAME LOCATION/ADDRESS PROJECT NO. CLIENT/CONTACT DATA COLLECTION:	START DATE	Hoffmans 1219 Center 6200 Ralph Hof 2 19 2019	Aucon	SAMPLE DATE SAMPLE ID SAMPLE TIME CANISTER ID END DATE	2 19 2014 6200 16:00 15560 2119/14	-7219-58-IA
Time hh:mm	Vaccum Reading In. of H2O	Wind Direction	Wind Speed	Temperature ° F	Barometer	Relative Humidity %
8:05	-27	WNW	 11.5	34	Hg 	
16:00	-0.2	30	10.4	44,1	29,96	40
					······	
					<u> </u>	
					<u> </u>	
. <u></u>	<u> </u>			<u> </u>	<u></u>	
ar. 17*17.0000000		<u></u>				
			- <u></u>	<u> </u>		
	·				<u></u>	
			· <u> </u>	<u> </u>	- <u></u>	
					<u> </u>	
			·····	<u></u>		
					<u></u>	
		- <u></u>				
				· · · · · · · · · · · · · · · · · · ·		

•

-

N16 W23390 Stone Ridge Drive, Suite G Waukesha, W1 53188 T: 414-982-3988 F: 317-972-7875

SAMPLER NAME PROJECT NAME LOCATION/ADDRESS PROJECT NO. CLIENT/CONTACT		7219 Cen 10200	Amenus Jer Amar	SAMPLE DATE SAMPLE ID SAMPLE TIME CANISTER ID FLOW CONTROL ID	2/20/14 6700-7 11:3 83679 NA	1 219-55U-1 O
Time	Vacuum Reading	Wind Direction	Wind Speed	Temperature	Barometer	Relative Humidity
bh:mm	In. of Hg		mph	°F	Hg	%
11:25	-30	East	21.9	34	29.42	92
11:30	-10	East	21,q	34	29.62	_72
		<u> </u>				
	·			<u> </u>		
	<u></u> , , , , , ,			, <u> </u>		
	· · · · · · · · · · · · · · · · · · ·					
	· <u>+</u>			۰. 		
						
Г	Heliu	 m Leak Test		N	egative Pressure Test	\sim

Helium Leak Test	Negative Pressure Test			
Date/Time performed: 2/20/14 11:20	1	Date/Time performed: 8/20/14 11:15+		
Background He concentration (ppm):	U	Negative pressure of at least -15 in. Hg induced on sampling train?		
Shroud He concentration (%):	42,4	(circie one): no		
Sub-slab vapor/soil-gas He concentration (post helium insertion):	\mathcal{O}'	Did pressure hold? ves no		
Helium Leak Test Passed:	no			

N16 W23390 Stone Ridge Drive, Suite G Waukesha, WI 53188 T: 414-982-3988 F: 317-972-7875

SAMPLER NAME PROJECT NAME LOCATION/ADDRESS PROJECT NO. CLIENT/CONTACT		J. Jordan Hoffmans J219-Centu 6200 Ralph Hof	n	SAMPLE DATE SAMPLE ID SAMPLE TIME CANISTER ID FLOW CONTROL ID	2/20/14 6200 10:50 A8041 NA	- 7219-990- D
Time	Vacuum Reading	Wind Direction	Wind Speed	Temperature	Barometer	Relative Humidity
hh:mm	In. of Hg		mph	° F	Hg	%
10:45	-28.5	3 East	20.7	34	29,42	92
10:50	-10	East	19.10	34	29.44	
		<u></u>				
······						<u> </u>
						<u>_</u>
	<u></u>	,	<u> </u>			
	·					· · ·
		<u> </u>				·
			/****/******			<u> </u>
						<u> </u>
	· · · · · · · · · · · · · · · · · · ·					
		n Leak Test			egative Pressure Test	

Helium Leak Test	Neg	Negative Pressure Test			
Date/Time performed: 10:73	2/20/1	4 Date/Time performed:	10:40	2/20/14	
Background He concentration (ppm):	0	Negative pressure of at leas	t -15 in. Hg induced or	sampling train?	
Shroud He concentration (%):	2/2.1	67 (circle one):	(es)	no	
Sub-slab vapor/soil-gas He concentration (post helium insertion):	o	Did pressure hold?	(yes)	no	
Helium Leak Test Passed:	no	<u> </u>			

Notes:

.

N16 W23390 Stone Ridge Drive, Suite G . Waukesha, WI 53188 T: 414-982-3988 F: 317-972-7875

SAMPLER NAME PROJECT NAME LOCATION/ADDRESS PROJECT NO. CLIENT/CONTACT		J-Jorden Hoffman 1225 Con 10200		SAMPLE DATE SAMPLE ID SAMPLE TIME CANISTER ID FLOW CONTROL ID	220 6202-7215 13:27 520 MA	14 5-55V-1
Time	Vacuum Reading	Wind Direction	Wind Speed	Temperature ·	Barometer	Relative Humidity
hh:mm 13:22 13:27	In. of Hg - 23 - 10	East East	 	54 34 34	Hg 29.57 29.48	- 19:42 92 - 18:42 92
					<u> </u>	
		Leak Test			egative Pressure Test	
Date/Time performed: Background He conce	• •	0/14_13:2	0	Date/Time performed:	ast -15 in. Hg induced o	' ' 7

54.1

no

yes

(yes)

(yes

(circle one):

Did pressure hold?

no

no

Notes
Notes:

Shroud He concentration (%):

Helium Leak Test Passed:

Sub-slab vapor/soil-gas He concentration (post helium insertion):

N16 W23390 Stone Ridge Drive, Suite G Waukesha, WI 53188 T: 414-982-3988 F: 317-972-7875

SAMPLER NAME PROJECT NAME LOCATION/ADDRESS PROJECT NO. CLIENT/CONTACT		J-Jarda Hoffinns 1215 Center 4200		SAMPLE DATE SAMPLE ID SAMPLE TIME CANISTER ID FLOW CONTROL ID	2/20/2014 14:00 J1709 NA	1 72)5-55U-2
Time	Vacuum Reading	Wind Direction	Wind Speed	Temperature	Barometer	Relative Humidity
hh:mm	In. of Hg		mph	° F	Hg	%
<u> 3:55</u> <u> 4:00</u>	-28	East		<u> </u>	29,51 29,48	92 -968-94
	- <u></u>					
	- <u> </u>					
				·		
	·					
	Heliun	n Leak Test		N	egative Pressure Test	
Date/Time performed:		13:52	2 20/14	Date/Time performed:	13:52	2/20/14

Date/Time performed:	10-20	0 0019	Date/Time performed:	12:00	212/19	_
Background He concentration (ppm):		0	Negative pressure of at lea	st -15 in. Hg induced or	sampling train?	
Shroud He concentration (%):		42.8	(circle one):	yes	no	
Sub-slab vapor/soil-gas He concentration (post he	lium insertion):	\bigcirc	Did pressure hold?	\bigcirc	no	
Helium Leak Test Passed:	res	no				
						1

Sub-Slab Vapor Field Sampling Form

602 N. Capitol Avenue, Ste. 210, Indianapolis, IN 46204 T:317-972-7870 F: 317-972-7875

PROJECT NO.	5200	·	·····	SAMPLE ADDRESS	7215 W. Cin	ter st. War	venetosa UI
PROJECT NAME FO	mer Hoffin	m's Valet a	cleaners	SAMPLE ID	6200-7215	-551-1	
SITE ADDRESS	7215 W. Le	ter St. War	watosa, wi	CANISTER ID	2537		
	Relph Hof			FLOW CONTROLLER ID	NA	_	
Date Start/End	Time	Vacuum Reading	Wind Direction	Wind Speed	Temperature	Barometric Pressure	Relative Humidity
mm/dd/yyyy	hh:mm	In. of Hg		mph	° F	In. of Hg	%
09/15/2010	1415	-29	SE	5-15	73	30.20	_53
09/15/2010 09/16/2010	1420	-2					
					·		
<u> </u>				·			
			<u></u>				
					- <u></u>		

Negative Pressure Test					Water Dam Leak Test		
Date/Time performed:		09/0	5/16		Date/Time performed:	09/1	5/16
Negative pressure of at le	east -15 in. Hg induced	on sampling train?	(ye)	no	Air bubbles observed?:	yes	6
Did pressure hold?			(yes)	no	Water level drop?:	yes	©
	Sub-slab Vapor P	ressure Reading			Water present in the tubing during purging?	yes	no
Date/Time performed:	09/15/16	Pressure (in. H2O):	Θ		Water Dam Leak Test Passed:	(yes)	no

N. Side e TP-1

Sub-Slab Vapor Field Sampling Form

602 N. Capitol Avenue, Ste. 210, Indianapolis, IN 46204 T:317-972-7870 F: 317-972-7875

PROJECT NO.	6200			SAMPLE ADDRESS	7215 W Cm		ventesa cat
PROJECT NAME SITE ADDRESS CLIENT/ CONTACT				SAMPLE ID CANISTER ID FLOW CONTROLLER ID	6200-7215 		
Date Start/End	Time	Vacuum Reading	Wind Direction	Wind Speed	Temperature	Barometric Pressure	Relative Humidity
mm/dd/yyyy	hh:mm	In. of Hg		mph	° F	In. of Hg	%
CA115/16	1430	-29	_SE	5-15	73	30,20	53
calislic	1436	-2					
				- <u></u>			
				ბ <u></u>			

Neş	Water Dam Leak Test					
Date/Time performed:	da/15/14	>		Date/Time performed:	calist	16
Negative pressure of at least -15 in. Hg	induced on sampling train?	Geog	no	Air bubbles observed?:	yes	G
Did pressure hold?		G	no	Water level drop?:	yes	Ó
Sub-slab	Vapor Pressure Reading	_		Water present in the tubing during purging?	yes	Ø
Date/Time performed: 09/15/	16 Pressure (in. H2O):			Water Dam Leak Test Passed:	G	no

S. S. che C TP-3 PPB Fending 867

ENVIRO	6rensic	.s					In	02 N. Capitol ndianapolis, IN 2-7870 F: 31	46204
	mer Hoff.	monis Vale	+ <i>Cleanurs</i>	Well ID	MW-1		Pump Plac	ement:	
LOCATION/ADDRESS	7215	W. Center atosa, wi	st.	Sample ID	6200-r	10-1		evel is above to the pump in mic	
PROJECT NO.	6200	1050,000	<u> </u>	Screened Interv	ai 10.20	· · · · · · · · · · · · · · · · · · ·	-If water le	evel is below to	
CLIENT/CONTACT	Relph	Heffman	<u>. </u>	Sampler (print)	K. Herm	ustend	column.	ice pump in mic	dule of water
WATER LEVEL MEA	SUREMENTS I	DURING GAUGING	;; ;;			SAMPLING	G METHOD:		<u></u>
	•	20 . 00 feet		Conversion F	actor for Well			Low-Flow	×
	Depth to Water			Vol	ume		Gra	b/No-purge	
		2 inches		0.01025	0.75" Well			Bailer ¹	
	Casing Volume olume Removed			0.041	<u>1" Well</u>			taltic pump	<u>×</u>
tal No. of Casing Vol			5	0.163	2" Well 4" Well		Passive Diff	sible Pump fusion Bag ²	
		09/15/201	6					Other	
			-			Pump Depth (ft	below TOC) (if		
Stability Readings:	Collect reading		inutes for a minimum	of 20 minutes and	no less than 5 rea	dings. If not equ	ilibrated after 40) minutes, call	PM.
		MUST BE ST	Specific	Oxidation-	T ONE MUST BI Turbidity	Dissolved	Sampling	i	
	Tempera		Conductance	Reduction	(NTU)	Oxgen	DTW	Flow Rate	mL
Time	(Celsius) +/- 3%) (S.U.) +/- 0.1	(umSi/cm) +/- 3%	Potential (mV) +/- 10mV	<100 and +/- 10%	(mg/L) +/- 10%	(ft) <.0.3ft	(ml/min) <250	Removed
9:17	18.10	6 7.30	7.69	53	156	3.23	14.18	-150	750
9:23	17.49	1.20	7.79	43	30.3	2.70	14.33	~150	1500
9:28	17.3	H 7.20	7.77	પંપ	10.3	2.54	14.54	~150	2250
	_ Dreu	udens_	70.3'	Runged	dry				
	Feel	word o	~ 0.01° per	80 sec					<u></u>
<u> </u>	-	· ···		ļ					<u></u>
	-								<u> </u>
		. <u></u>			<u></u>				<u></u>
	_					· · · · · · · · · · · · · · · · · · ·		<u> </u>	
	-				<u> </u>				
		·		ļ				····-	
·····		· ····			<u></u>				
								<u> </u>	
	-	. <u> </u>			<u> </u>				
	-								
	-	·	· · · · · · · · · · · · · · · · · · ·						
	-	· · · · · · · · · · · · · · · · · · ·			<u> </u>				
	_ L		9/15/2016 Ti		*				
PURGE': SAMPLING:	START FINISH		115/2016 Tir						
			1151000	Number	Reaction	Filter			
Sample Analysis	Volume 40mL			of Containers	(y/n)	Type	Duplicate	MS/MSD	
				·					
				·· <u>·····</u> ·····························					

NOTES:

-C-C 1£ ch

Sampler Signature: Date: 09/15/2016 1. Monitoring wells sampled with a bailer require at least 3 to 5 well volumes to be purged prior to sampling unless the well bails dry prior to the removal of three (3) well volumes. Wells bailed dry should be sampled upon sufficient recovery of water in the well. Record the time of purging and the time of sampling on the Groundwater Sampling Form.

2. Include Date PDB Installed in well, and Date PDB removed and sampled in NOTES section.

ENVIRO for	ensics			——————————————————————————————————————			In	02 N. Capitol dianapolis, IN 2-7870 F: 31	46204
PROJECT NAME Erme	Haffman	is Vale	t <i>Lieanurs</i>	Well ID	MW-2	-	Pump Place	ement:	
LOCATION/ADDRESS 7215 W. Center St. Wavenatosa, wt PROJECT NO. 6200				Sample ID					op of well ddle of well
				Screened Interva	1 _ <u>9.73</u> .	19.73		vel is below to e pump in mic	-
CLIENT/CONTACT	.lph Hol	Finan		Sampler (print)	K. Herm	stead	column.	o pump in ini	
WATER LEVEL MEASUR	EMENTS DURIN	G GAUGING	······			SAMPLING	METHOD:		
	Well Depth 19			Conversion Fa	ctor for Well				_X
	th to Water			Volu	me		Grat	/No-purge	
	Il Diameter			0.01025	0.75" Well		A 1.		
	ng Volume 0.1			0.041	1" Well				<u>×</u>
volume tal No. of Casing Volume	e Removed 1.5	•	i	0.163	2" Well 4" Well		Submers Passive Diff	usion Bag ²	
tar No. of Casing Volume:		15/2010		0.033	4 Weit		1 455110 111		
							below TOC) (if	applicable)	
Stability Readings: Co		very 3 to 5 mi UST BE ST			ONE MUST BE		librated after 40	minutes, call	PM.
		001 0201	Specific	Oxidation-	Turbidity	Dissolved	Sampling		
	Temperature (Celsius)	рН (S.U.)	Conductance (umSi/cm)	Reduction Potential (mV)	(NTU) <100 and	Oxgen (mg/L)	DTW (ft)	Flow Rate (ml/min)	mL Removed
Time	+/- 3%	+/- 0.1	+/- 3%	+/- 10mV	+/- 10%	(mg/L) +/- 10%	<.0.3ft	<250	Removed
1010	17.31	7.77	Z.12	-57	53.7	301.04	15.32	-150	750
1015	16.15	7.42	1.95	- 74	14.0	0,94	15.52	~150	1500
1020	15.49	7.44	1.94	- 67	14.0	1.24	15.91	- 150	2250
	Drowdo	<u>~~ 70</u>	3' Purp	dry u	+ recharg	r to	s <u>-e</u> le	<u> </u>	
			· · · · ·	· · · · · ·	()	.		
					- <u></u>				
<u> </u>		<u> </u>							
		- <u> </u>							
					- <u></u>				<u> </u>
									·
		- <u></u>					<u></u>		
	 			<u> </u>					
······	<u> </u>				<u>*</u>		<u> </u>		
					- <u></u>			<u> </u>	
PURGE': ST	ART	Date C	A 15 2016 Tin	1e 1945	1005				<u> </u>
	NISH	Date C	7/15/2016 Tin		030				
		•	<u></u>	Number	Reaction	Filter			
Sample Analysis	Volume <u>40m L</u>	Туре V0А		of Containers	(y/n)	Type	Duplicate	MS/MSD	
······									
······································			· · · ····	· · · · · · · · · · · · · · · · · · ·					
NOTES:	1. 1. 90								
	1		151						
Sampler Signature:	15h	l-			Date:				
1. Monitoring wells samp	led with a bailer	require at lea	ast 3 to 5 well volume	s to be purged prior		ss the well bails	drv		

1. Monitoring wells sampled with a bailer require at least 3 to 5 well volumes to be purged prior to sampling unless the well bails dry prior to the removal of three (3) well volumes. Wells bailed dry should be sampled upon sufficient recovery of water in the well. Record the time of purging and the time of sampling on the Groundwater Sampling Form.

2. Include Date PDB Installed in well, and Date PDB removed and sampled in NOTES section.

ł

ENVIRO forensics	s	<u> </u>			In	02 N. Capitol / dianapolis, IN 2-7870 F: 317	46204
PROJECT NAME Ermer Hoffin LOCATION/ADDRESS 7215 L	unis Valet Cleaners J. Center St.	Weil ID Sample ID	MW-3			evel is above to	
	tosa, WI	Sample 10		_	screen.	ce pump in mid	
PROJECT NO. 6200	toffman	Screened Interva	9.79-	19.79		vel is below top ce pump in mid	
CLIENT/CONTACT Ralph t	10ffman	Sampler (print)	K. Herm	stead	column.		
WATER LEVEL MEASUREMENTS DI	URING GAUGING:			SAMPLING	METHOD:		
Well Depth	9.74 feet	Conversion Fa	ctor for Well			Low-Flow	_X
Depth to Water		Volu	me		Grai	b/No-purge	
	inches	0.01025	0.75" Well				
Casing Volume Volume Removed	<u>9.76</u> gallons	0.041	1" Well			altic pump	<u> </u>
tal No. of Casing Volumes Removed		0.163	<u>2" Well</u> 4" Well		Submers Passive Diff	ible Pump	
	09/15/2016	0.055			1 435110 2111	Other	
Build	e that a set		I	Pump Depth (ft b	elow TOC) (if		
Stability Readings: Collect reading					ibrated after 40	minutes, call F	PM.
	MUST BE STABLE Specific	AT LEAST Oxidation-	ONE MUST BE Turbidity	Dissolved	Sampling		
Temperat	ure pH Conductance	Reduction	(NTU)	Oxgen	DTW	Flow Rate	mL
(Celsius) Time +/- 3%	(S.U.) (umSi/cm) +/- 0.1 +/- 3%	Potential (mV) +/- 10mV	<100 and +/- 10%	(mg/L) +/- 10%	(ft) <.0.3ft	(ml/min) <250	Removed
1045 16.95	7.35 2.02	-19	15.0	0.97	15.51	~150	750
1050 16.80		~8	13.8	0.80	15.73	~150	1500
Drawd	own 70.31; Purged c	hor; let so	charge to	Sample	•		
	/		0				
			·		<u> </u>		<u> </u>
			_ <u></u>				
 							
					<u></u>		
 						<u> </u>	
 				<u> </u>			<u> </u>
 							<u> </u>
_							
_							
						- <u></u>	·
							
 		-	<u> </u>			- <u></u>	<u> </u>
 				·			
PURGE': START	Date 09/15/2016 Ti	ime 1040		ſ			
SAMPLING: FINISH	Date 0 ² /15/2016 Th						
		Number	Reaction	Filter	B		
Sample Analysis Volume	Туре 	of Containers 3	(y/n) N	Туре //А	Duplicate	MS/MSD	
	_ 						
	. <u></u>						
				<u> </u>		- <u></u>	

NOTES:

 Sampler Signature:
 Date:

 1. Monitoring wells sampled with a bailer require at least 3 to 5 well volumes to be purged prior to sampling unless the well bails dry
 prior to the removal of three (3) well volumes. Wells bailed dry should be sampled upon sufficient recovery of water in the well. Record the time of purging and the time of sampling on the Groundwater Sampling Form.

5

۰.

-0

2. Include Date PDB Installed in well, and Date PDB removed and sampled in NOTES section.

14

4

Soil Gas Vapor Field Sampling Form

602 N. Capitol Avenue, Ste. 210, Indianapolis, IN 46204 T:317-972-7870 F: 317-972-7875

PROJECT NO. <u>6200</u> PROJECT NAME FORMER HOFFman's Valet Cleaners SITE ADDRESS <u>7215 W. Center St.; Wawwatesa wT</u> CLIENT/ CONTACT <u>2alph Hoffman</u>			SAMPLE ADDRESS SAMPLE ID CANISTER ID FLOW CONTROLLER ID	6200-54-Z 53814 N/A			
Date Start/End	Time	Vacuum Reading	Wind Direction	Wind Speed	Temperature	Barometric Pressure	Relative Humidity
mm/dd/yyyy_	hh:mm	In. of Hg		mph	° F	In. of Hg	%
<u>entisteose</u> entisteose	1240	- 29	4E	5-15	72	30.21	57
09/15/2016	1248	- 2					
					······································	<u> </u>	
		·	<u> </u>		<u> </u>		
<u></u>	. <u></u>	·		·			

٠

1°*

**

Negative Pressure Test						
Negative pressure of at least -15 in. Hg induced on sampling train?	o no					
Did pressure hold?	(yes) no					
Helium Leak Test						
Date/Time performed:	9/15/16					
Background He concentration (ppm):	0					
Shroud He concentration (%):	52.1					
Soil-gas He concentration (post helium insertion):	0					
Helium Leak Test Passed:	no					

PPB Reading 3005

Soil Gas Vapor Field Sampling Form

602 N. Capitol Avenue, Ste. 210, Indianapolis, IN 46204 T:317-972-7870 F: 317-972-7875

PROJECT NO. <u>6200</u> PROJECT NAME Former Hoffman's Valet Cleaners SITE ADDRESS <u>7215 W. Center St., Waunatasa WI</u> CLIENT/ CONTACT <u>2.1ph Hoffman</u>			SAMPLE ADDRESS SAMPLE ID CANISTER ID FLOW CONTROLLER ID	6200-56-3 2222 N/A			
Date Start/End	Time	Vacuum Reading	Wind Direction	Wind Speed	Temperature	Barometric Pressure	Relative Humidity
mm/dd/yyyy	hh:mm	In. of Hg		mph	° F	In. of Hg	%
09/15/2016	1305	-29	SE	5-15	72	30.21	57_
09/15/2016	1310	-2					
			·		- <u> </u>		

Negative Pressure Test	
Negative pressure of at least -15 in. Hg induced on sampling train?	yes no
Did pressure hold?	yes no
Helium Leak Test	
Date/Time performed:	9/15/16 0
Background He concentration (ppm):	6
Shroud He concentration (%):	54.8
Soil-gas He concentration (post helium insertion):	U
Helium Leak Test Passed:	no

PPB Reading 2378

Soil Gas Vapor Field Sampling Form

602 N. Capitol Avenue, Ste. 210, Indianapolis, IN 46204 T:317-972-7870 F: 317-972-7875

PROJECT NO.	200			SAMPLE ADDRESS			
PROJECT NAME Former Hoffman's Valet Cleaners SITE ADDRESS 7215 W. Center St., Warratasa wI			SAMPLE ID	6200-56-4			
			CANISTER ID	83738			
	CLIENT/		FLOW CONTROLLER ID	NIA			
Date Start/End	Time	Vacuum Reading	Wind Direction	Wind Speed	Temperature	Barometric Pressure	Relative Humidity
mm/dd/yyyy	hh:mm	In. of Hg		mph	° F	In. of Hg	%
09/15/2016	1320	- 29	SE	5-15	72	30.71	57
09/15/2016	1326	- 2					
				······			
			·				<u></u>

Negative Pressure Test							
Negative pressure of at least -15 in. Hg induced on sampling train?	no no						
Did pressure hold?	то 🚱						
Helium Leak Test							
Date/Time performed:	9115/16						
Background He concentration (ppm):	9/15/16 0						
Shroud He concentration (%):	51.8						
Soil-gas He concentration (post helium insertion):	0						
Helium Leak Test Passed:	no						

PPB Reading

825 N. Capitol Avenue Indianapolis, IN 46204 T:317-972-7870 F: 317-972-7875

PROJECT NAME		Fromer Hoffman's Valet	Cleaners	SAMPLE DATE	11/16/2016	
LOCATION/ADDRESS		7215 W Center St. Wauv	vatosa, WI	SAMPLE ID	6200-7215-SSV- 'Z	
PROJECT NO.		6200		SAMPLE TIME		11:00
CLIENT/CONTACT				CANISTER ID	2097	•
DATA COLLECTION:	START DATE	11/16/2016		END DATE	11/16/2016	
Time	Vacuum Reading	Wind Direction	Wind Speed	Temperature ° F	Barometer	Relative Humidity
hh:mm	In. of Hg	<i></i>	mph		Hg	%
10:55	-28	ESE		_51_	29.95	72
11:00	-3					
					<u> </u>	
				<u> </u>		
		·				<u></u>
····						

Water Dam Lea	k Test	Negative Pressure Test			
Date/Time performed:	11/16/2016	Date/Time performed: 11-16-2016			
Air bubbles observed?:	yes no	Negative pressure of at least -15 in. Hg induced on sampling train?			
Water level drop?:	yes no	Did pressure hold?			
Water present in the tubing during purging?	yes no	Sub-slab Vapor Pressure Reading			
Water Dam Leak Test Passed:	yes no	Date/Time performed: Pressure (in. H2O):			

Notes:

825 N. Capitol Avenue Indianapolis, IN 46204 T:317-972-7870 F: 317-972-7875

PROJECT NAME	Fromer Hoffman's Valet	Cleaners	SAMPLE DATE	11/16/2016	
LOCATION/ADDRESS	7215 W Center St. Wauy	watosa, WI	SAMPLE ID	6200-7215-SSV-	
PROJECT NO.	6200		SAMPLE TIME	1125-11	30
CLIENT/CONTACT			CANISTER ID	83942	
DATA COLLECTION: START DATE	11/16/2016		END DATE	11/16/2016	
Time Vacuum Reading	Wind Direction	Wind Speed	Temperature	Barometer	Relative Humidity
hh:mm In. of Hg		mph	° F	Hg	%
11:25 -27	ESE		72	29.95+	<u> </u>
11:30 -3			51°		
	<u></u>				
				,	
					<u> </u>
		<u> </u>	<u></u>		
		<u> </u>			
<u></u>					
				· · · · · · · · · · · · · · · · · · ·	
	<u> </u>				
	i, <u>, , , , , , , , , , , , , , , , , , </u>				

Water Dam Le	ak Test	Negative Pressure Test		
Date/Time performed:	11/16/2016	Date/Time performed: 11-16-2016		
Air bubbles observed?:	yes no	Negative pressure of at least -15 in. Hg induced on sampling train?		
Water level drop?:	yes no	Did pressure hold?		
Water present in the tubing during purging?	yes no	Sub-slab Vapor Pressure Reading		
Water Dam Leak Test Passed:	yes no	Date/Time performed: Pressure (in. H2O):		

Notes:

APPENDIX D

Waste Manifest

NON-HAZARDOUS	1. Generator ID Number		2. Page 1 of	3. Emergency Response	Phone	4. Waste Tr	acking Nur	nder	
WASTE MANIFEST			1	414-236-108	3		1	2021	0.1
Generator's Name and M Hoffman Vale 7215 West Ce Wauwatosa W	t Cleaners anter Street	Att: R	alph Hoffma	Generator's Site Address	(if different t	an mailing addre:	SS)		
enerator's Phone:	80 451-6110					U.S. EPA ID I	Number	·	
	osal of Wi., inc.					U.S. EPA ID N		858	0.0.5
					-	0.5. EPAIDT	401110-61		
Designated Facility Name Badger Dispose 5611 West He Milwaukee W acility's Phone: 414	sal of VVI, Inc. emlock Street					U.S. EPAID		8 5 8	0.0.5
	ription (including Proper Shipping Na	me, Hazard Class, ID Num	nber,	10. Contai No.	ners Type	11. Total Quantity	12. Unit WL/Vol.		
^{1.} Non-regula	ated material			001	DM	055	G	NONE	
2.					- Lynwi				
3.			-						
4.			-						
	ctions and Additional Information 502, purge water Eme	rgency Contact:	Badger Disp	oosal 414-236-10	83				
1)(L) WS034	TIFICATION: I certify the materials of d/Typed Name	described above on this m	anifest are not subj	ect to federal regulations to		oper disposal of I	lazardous \	/ Mon	h Day 202
	TIFICATION: I certify the materials of d/Typed Name	described above on this m	anifest are not subj	ect to federal regulations for participe	or reporting pr	oper disposal of P	lazardous \	/ Mon	h Day 202
1)(L) WS034	TIFICATION: I certify the materials of d/Typed Name E Face Shere Import to U.S. xports only): ment of Receipt of Materials Name Mare Mare Mare Mare Mare Mare Mare Mar	described above on this m	anifest are not subj Come Sig Export from L Sign	ect to federal regulations for performent J.S. Port of englishing	or reporting pr	oper disposal of t	lazardous V	/ Mon	202 h Day 202
1)(L) WS034	TIFICATION: I certify the materials of d/Typed Name E Face Shere Import to U.S. xports only): ment of Receipt of Materials Name Mare Mare Mare Mare Mare Mare Mare Mar	described above on this m	anifest are not subj Come Sig Export from L Sign	ect to federal regulations for antitive J.S. Port of enj Date leavin nature	or reporting pr	oper disposal of h	lazardous V	Mon	202 Day 202
1)(L) WS034	TIFICATION: I certify the materials of TTYped Name Control of Materials Mame Materials Mame	described above on this m	anifest are not subj Come Sig Export from L Sign	ect to federal regulations for Residue	r reporting pr pylexit: ng U.S.: A A L	oper disposal of P and applied Partial Reje	h	Mon	202 Day 202
1)(L) WS034	502, purge water Eme TIFICATION: I certify the materials of d/Typed Name C D Import to U.S. xports only): ment of Receipt of Materials Name Mare Space Quantity	described above on this management to Construct the Construction of the Construction o	anifest are not subj Come Sig Export from L Sign	ect to federal regulations for performe J.S. Port of ent Date leaving nature nature	r reporting pr pylexit: ng U.S.: A A L	and	ection	Mon	202 h Day 202 h Day
1)(L) WSO34 GENERATOR'S CERT enerators/Offeror's Printed anaporter Signature (for e Transporter Acknowledge ansporter I Printed/Typed Tobscrepancy a. Discrepancy a. Discrepancy Indication b. Alternate Facility (or Generative cility's Phone:	502, purge water Eme TIFICATION: I certify the materials of dryped Name dryped Name Import to U.S. xports only): ment of Receipt of Materials Name Space Quantity	described above on this management to Construct the Construction of the Construction o	anifest are not subj Come Sig Export from L Sign	ect to federal regulations for Residue	r reporting pr pylexit: ng U.S.: A A L	and phen Partial Reje	ection	Mon	h Day 202 h Day h Day
1)(L) WSO34	502, purge water Eme TIFICATION: I certify the materials of dryped Name dryped Name Import to U.S. xports only): ment of Receipt of Materials Name Space Quantity	described above on this management to Construct the Construction of the Construction o	anifest are not subj Come Sig Export from L Sign	ect to federal regulations for Residue	r reporting pr pylexit: ng U.S.: A A L	and phen Partial Reje	ection	Mont	h Day 202 h Day h Day
1)(L) WSO34 GENERATOR'S CERT enerators/Offeror's Printed anaporter Signature (for e Transporter Acknowledge ansporter I Printed/Typed Tobscrepancy a. Discrepancy a. Discrepancy Indication b. Alternate Facility (or Generative cility's Phone:	502, purge water Eme TIFICATION: I certify the materials of dryped Name dryped Name Import to U.S. xports only): ment of Receipt of Materials Name Space Quantity	described above on this management to Construct the Construction of the Construction o	anifest are not subj Come Sig Export from L Sign	ect to federal regulations for Residue	r reporting pr pylexit: ng U.S.: A A L	and phen Partial Reje	ection	Mont	h Day 202 h Day h Day
1)(L) WSO34	502, purge water Eme TIFICATION: I certify the materials of dryped Name dryped Name Import to U.S. xports only): ment of Receipt of Materials Name Space Quantity	described above on this mathematical described above on the theory of the the	anifest are not subj Care Sig Export from L Sig Sig Sig	ect to federal regulations for active D.S. Port of en Date leavin hature Residue Manifest Reference	r reporting pr pylexit: ng U.S.: A A L	and phen Partial Reje	ection	Mont	h Day 202 h Day Full Rejecti

APPENDIX E

Vapor Mitigation System Installation Report

TABLE OF CONTENTS

Prepared for: Mr. Rob Hoverman & Mr. Brian Kappen EnviroForensics

Hoffman Cleaners 7215 W. Center St. Wauwatosa, WI

Table of Contents

Type of Documentation

Page Numbers

Cover Letter	2 - 3
As Built System Schematic	4
Installation Photos	5 - 6
Contractor Qualifications	7 - 8
Post-Installation Checklist	9 - 10
Operation & Maintenance	11
Energy Usage Chart	12
Fan Instructions & Warranty	13 - 20
MSDS	21 - 25

INSTALLATION REPORT

March 4, 2015

VPS Proposal No. 201404082 Sub-Slab Depressurization System (SSDS) with Supplemental Remediation Hoffman's Cleaners 7215 W. Center St. Wauwatosa, WI 53210

Mr. Rob Hoverman & Mr. Brian Kappen EnviroForensics 23390 Stone Ridge Dr., Suite G Waukesha, WI 53188 (262) 510-0612

Vapor Mitigation System Installation Report

7215 W. Center St. Wauwatosa, WI 53210

Date of SSDS Installation: February 3 -5, 2015

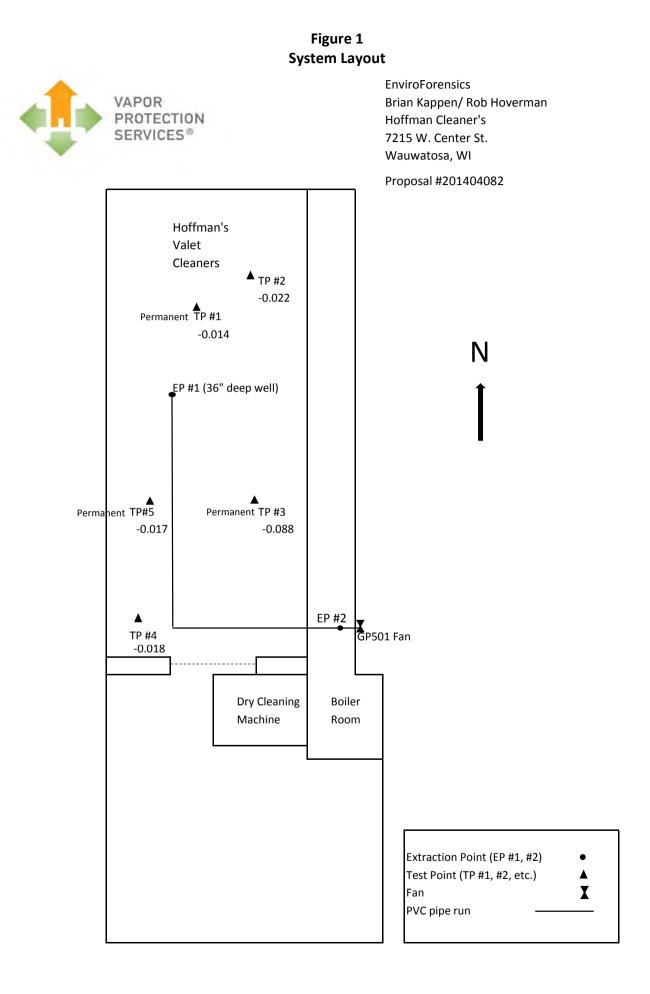
Vapor Protection Services (VPS) is pleased to provide a Vapor Mitigation System Installation Report that summarizes the scope of services performed at 7215 W. Center St., Wauwatosa, WI (Site). The scope of services performed at the Site is detailed in VPS Proposal No. 201404082 and is noted below.

Scope of Service:

- VPS utilized a sub-slab depressurization system (SSDS) and RadonAway Model GP501 Fan to depressurize the soil beneath concrete slab to meet performance criteria.
- The SSDS utilizes (2) Extraction points, approximately 140' of 4 inch schedule 40 PVC piping, and (1) model GP501 with (2) magnehelic gauges.
- The fan was hardwired to a dedicated circuit breaker in an existing electrical panel with dedicated on/off switches located next to the mitigation fan.

• Run Time meter was installed.

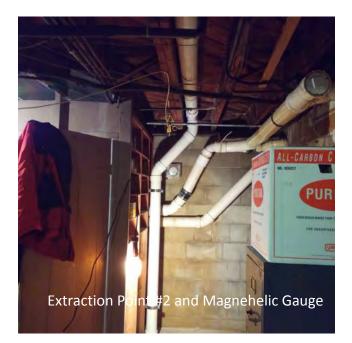
Please Note:


- A figure depicting the SSDS layout is included as Figure 1.
- Photos taken during the installation have been included as Attachment 1.
- VPS's radon mitigation certification is included as Attachment 2.
- VI Mitigation Installation Checklist is included as **Attachment 3**.
- O & M manual is included as Attachment 4.
- Annual Operating Costs is included as Attachment 5.
- RadonAway fan 5 year warranty is included as Attachment 6.
- MSDS sheet is included as Attachment 7.

Conclusion:

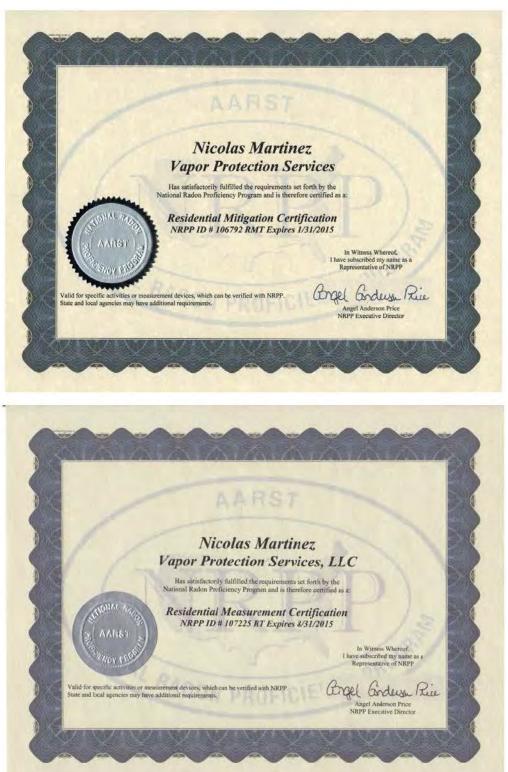
VPS submits this report as written and visual documentation that the contracted work scope for vapor mitigation as detailed in Proposal No. 201404082 was successfully completed to the approval of EnviroForensics at Site. Please do not hesitate to contact me with any questions you might have regarding this report.

Respectfully Submitted,


Nick Martinez Director of Technical Services nick@vaporprotection.com Vapor Protection Services® 6544 Ferguson Street Indianapolis, IN 46220 317.252.5295 www.vaporprotection.com NRPP Certification #106792 RMT Indiana Mitigator License #RTM 00633 Indianapolis Contractor License #0555673

Attachment 1 Installation Photos

Attachment 1 (cont'd) Installation Photos



Attachment 2 Mitigation Certifications

Attachment 2 (cont'd) Mitigation Certification

Attachment 3

Company: **EFI** -Rob Hoverman Name: **Hoffman Cleaners** Address: 7215 W. Center St. Wauwatosa, WI Proposal Number: Date: Fan Make/Model:

201404082 2/3/15 - 2/5/15 GP501

VI Mitigation Installation Checklist

Is the fan level and properly supported to prevent unnecessary vibration?XDoes the fan have a condensate by-pass installed?XHas the fan been mounted to piping using flexible connections?XIs the exhaust vent pipe at least 10 feet above grade, 10 feet from any doors or windows, and 2 feet above the top of any opening into the conditioned space?XIf vent pipe exits through a roof penetration, does it extend at least 12 inches above the surface?XIf vent pipe runs along the exterior wall, is it supported by brackets placed at least every 8 feet?XIs the vent stack made of schedule 40 PVC piping?X	Piping	Yes	No	N/A
Are the system pipes supported by existing ductwork, piping, or any X Do any of the system pipes obstruct windows, doors or service access points? X Are horizontal pipe supports installed at 6-4 foot increments? X Are vertical pipe runs supported properly in accordance to building code? X Extraction point vertical pipes supported and sealed permanently? X Do Horizontal pipe supported on extraction point suction pipes? X Are permanent test ports installed on extraction point suction pipes? X Cons Is the fan level and properly supported to prevent unnecessary vibration? X Does the fan have a condensate by-pass installed? X X Has the fan been mounted to piping using flexible connections? X I Is the exhaust vent pipe at least 10 feet above grade, 10 feet from any doors or windows, and 2 feet above the top of any opening into the conditioned space? X If vent pipe runs along the exterior wall, is it supported by brackets placed at least 12 inches above the surface? X Is the vent stack made of schedule 40 PVC piping? X X Varpet Barrier I crawl space(s) free or debris and obstruction that may prevent proper installation of vapor retarder or sub-slab depressurization system? X Is the vent stack made of schedule 40 PVC piping? X<	Are all pipes solid schedule 40 PVC?	Х		
equipment? X Do any of the system pipes obstruct windows, doors or service access points? X Are horizontal pipe supports installed at 6-4 foot increments? X Are vertical pipe runs supported properly in accordance to building code? X Extraction point vertical pipes supported and sealed permanently? X Do Horizontal pipes slope toward extraction pits for condensate drainage? X Are permanent test ports installed on extraction point suction pipes? X Fans Is the fan level and properly supported to prevent unnecessary vibration? X Does the fan have a condensate by-pass installed? X X Has the fan been mounted to piping using flexible connections? X X Is the exhaust vent pipe at least 10 feet above grade, 10 feet from any doors or windows, and 2 feet above the top of any opening into the conditioned space? X If vent pipe exits through a roof penetration, does it extend at least 12 incles above the surface? X I If vent stack made of schedule 40 PVC piping? X X I Vapor Barrier I I X I Icrawl space(s) free or debris and obstruction that may prevent proper installation of vapor retarder or sub-slab depressurization system? X I <t< td=""><td>Are all pipe connections permanently sealed?</td><td>Х</td><td></td><td></td></t<>	Are all pipe connections permanently sealed?	Х		
Do any of the system pipes obstruct windows, doors or service access points? X Are horizontal pipe supports installed at 6-4 foot increments? X Are vertical pipe runs supported properly in accordance to building code? X Extraction point vertical pipes supported and sealed permanently? X Do Horizontal pipes slope toward extraction pits for condensate drainage? X Are permanent test ports installed on extraction point suction pipes? X Fans Is the fan level and properly supported to prevent unnecessary vibration? X Does the fan have a condensate by-pass installed? X X Has the fan been mounted to piping using flexible connections? X I Is the exhaust vent pipe at least 10 feet above grade, 10 feet from any doors or windows, and 2 feet above the top of any opening into the conditioned space? X If vent pipe exits through a roof penetration, does it extend at least 12 inches above the surface? X I If vent stack made of schedule 40 PVC piping? X I I Vapor Barrier I I I I I crawl space(s) free or debris and obstruction that may prevent proper installation of vapor retarder or sub-slab depressurization system? X I Was 6mil or thicker reinforced skrim used as the vapor reta	Are the system pipes supported by existing ductwork, piping, or any			
Are horizontal pipe supports installed at 6-4 foot increments? X Are vertical pipe runs supported properly in accordance to building code? X Extraction point vertical pipes supported and sealed permanently? X Do Horizontal pipes slope toward extraction pits for condensate drainage? X Are permanent test ports installed on extraction pits for condensate drainage? X Are permanent test ports installed on extraction point suction pipes? X Cons Is the fan level and properly supported to prevent unnecessary vibration? X Does the fan have a condensate by-pass installed? X Image: Construct the conditioned space? Is the exhaust vent pipe at least 10 feet above grade, 10 feet from any doors or windows, and 2 feet above the top of any opening into the conditioned space? X If vent pipe exits through a roof penetration, does it extend at least 12 inches above the surface? X Image: Construct the conditioned space? If vent pipe runs along the exterior wall, is it supported by brackets placed at least every 8 feet? X Image: Construct the conditioned space? Is the vent stack made of schedule 40 PVC piping? X Image: Construct the conditioned space? X Is the vent stack made of substruction that may prevent proper installation of vapor retarder or sub-slab depressurization system? X Image: Construct the con	equipment?		Х	
Are vertical pipe runs supported properly in accordance to building code? X Extraction point vertical pipes supported and sealed permanently? X Do Horizontal pipes slope toward extraction pits for condensate drainage? X Are permanent test ports installed on extraction point suction pipes? X Fans X Is the fan level and properly supported to prevent unnecessary vibration? X Does the fan have a condensate by-pass installed? X Has the fan been mounted to piping using flexible connections? X Is the exhaust vent pipe at least 10 feet above grade, 10 feet from any doors or windows, and 2 feet above the top of any opening into the conditioned space? X If vent pipe exits through a roof penetration, does it extend at least 12 inches above the surface? X X If vent pipe runs along the exterior wall, is it supported by brackets placed at least 12 inches above the surface? X X Is the vent stack made of schedule 40 PVC piping? X X X Vapor Barrier X X X X Vaso Gil or thicker reinforced skrim used as the vapor retarder? X X X Has sub-membrane depressurization system been installed? X X X Has sub-membrane depressuri	Do any of the system pipes obstruct windows, doors or service access points?		Х	
Extraction point vertical pipes supported and sealed permanently? X Do Horizontal pipes slope toward extraction pits for condensate drainage? X Are permanent test ports installed on extraction point suction pipes? X Fans X Is the fan level and properly supported to prevent unnecessary vibration? X Does the fan have a condensate by-pass installed? X Has the fan been mounted to piping using flexible connections? X Is the exhaust vent pipe at least 10 feet above grade, 10 feet from any doors or windows, and 2 feet above the top of any opening into the conditioned space? X If vent pipe exits through a roof penetration, does it extend at least 12 inches above the surface? X X If vent pipe runs along the exterior wall, is it supported by brackets placed at least 12 inches above the surface? X X Is the vent stack made of schedule 40 PVC piping? X X X Vapor Barrier X X X X Was 6mil or thicker reinforced skrim used as the vapor retarder? X X X Was 6mil or thicker reinforced skrim used as the vapor retarder? X X X Has the membrane been secured to walls with tape, furring strips, and/or caulk? X X	Are horizontal pipe supports installed at 6-4 foot increments?	Х		
Do Horizontal pipes slope toward extraction pits for condensate drainage? X Are permanent test ports installed on extraction point suction pipes? X Fans Is the fan level and properly supported to prevent unnecessary vibration? X Does the fan have a condensate by-pass installed? X X Has the fan been mounted to piping using flexible connections? X X Is the exhaust vent pipe at least 10 feet above grade, 10 feet from any doors or windows, and 2 feet above the top of any opening into the conditioned space? X If vent pipe exits through a roof penetration, does it extend at least 12 inches above the surface? X X If vent pipe runs along the exterior wall, is it supported by brackets placed at least every 8 feet? X X Is the vent stack made of schedule 40 PVC piping? X X X //apor Barrier X X X X I crawl space(s) free or debris and obstruction that may prevent proper installation of vapor retarder or sub-slab depressurization system? X X Has sub-membrane depressurization system been installed? X X Are heavy traffic areas and/or storage areas protected from tears and punctures by carpet or heavy felt padding? X X Are heany traffic areas so verlapped at least 12 inches and sea	Are vertical pipe runs supported properly in accordance to building code?	Х		
Are permanent test ports installed on extraction point suction pipes? X Fans Is the fan level and properly supported to prevent unnecessary vibration? X Does the fan have a condensate by-pass installed? X Image: Condensate by-pass installed? Has the fan been mounted to piping using flexible connections? X Image: Condensate by-pass installed? Is the exhaust vent pipe at least 10 feet above grade, 10 feet from any doors or windows, and 2 feet above the top of any opening into the conditioned space? X If vent pipe exits through a roof penetration, does it extend at least 12 inches above the surface? X Image: Condensate by Pass is a condensate by Pass is a condensate by Condensate Condensate by Condensate by Condensate Condensate by Condensate by Condensate by Condensate Condensate by Condensate Con	Extraction point vertical pipes supported and sealed permanently?	Х		
Fans Is the fan level and properly supported to prevent unnecessary vibration? X Does the fan have a condensate by-pass installed? X Image: Content of	Do Horizontal pipes slope toward extraction pits for condensate drainage?	Х		
Is the fan level and properly supported to prevent unnecessary vibration? X Does the fan have a condensate by-pass installed? X Has the fan been mounted to piping using flexible connections? X Is the exhaust vent pipe at least 10 feet above grade, 10 feet from any doors or windows, and 2 feet above the top of any opening into the conditioned space? X If vent pipe exits through a roof penetration, does it extend at least 12 inches above the surface? X If vent pipe runs along the exterior wall, is it supported by brackets placed at least every 8 feet? X Is the vent stack made of schedule 40 PVC piping? X //opor Barrier X I crawl space(s) free or debris and obstruction that may prevent proper installation of vapor retarder or sub-slab depressurization system? X Has sub-membrane depressurization system been installed? X Was 6mil or thicker reinforced skrim used as the vapor retarder? X Are heavy traffic areas and/or storage areas protected from tears and punctures by carpet or heavy felt padding? X Are all membrane been secured to walls with tape, furring strips, and/or caulk? X Has the membrane been secured to walls with tape, furring strips, and/or caulk? X Does suction pipe have permanent test port installed? X	Are permanent test ports installed on extraction point suction pipes?		Х	
Does the fan have a condensate by-pass installed? X Has the fan been mounted to piping using flexible connections? X Is the exhaust vent pipe at least 10 feet above grade, 10 feet from any doors or windows, and 2 feet above the top of any opening into the conditioned space? X If vent pipe exits through a roof penetration, does it extend at least 12 inches above the surface? X X If vent pipe runs along the exterior wall, is it supported by brackets placed at least every 8 feet? X X Is the vent stack made of schedule 40 PVC piping? X X //opor Barrier X X X I crawl space(s) free or debris and obstruction that may prevent proper installation of vapor retarder or sub-slab depressurization system? X X Has sub-membrane depressurization system been installed? X X X Was Gmil or thicker reinforced skrim used as the vapor retarder? X X Are heavy traffic areas and/or storage areas protected from tears and punctures by carpet or heavy felt padding? X X Has the membrane been secured to walls with tape, furring strips, and/or caulk? X X Has a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization? X X Has a perforated/slotted pipe been installe	Fans			
Has the fan been mounted to piping using flexible connections? X Is the exhaust vent pipe at least 10 feet above grade, 10 feet from any doors or windows, and 2 feet above the top of any opening into the conditioned space? X If vent pipe exits through a roof penetration, does it extend at least 12 inches above the surface? X If vent pipe runs along the exterior wall, is it supported by brackets placed at least every 8 feet? X Is the vent stack made of schedule 40 PVC piping? X Vopor Barrier I crawl space(s) free or debris and obstruction that may prevent proper installation of vapor retarder or sub-slab depressurization system? X Has sub-membrane depressurization system been installed? X Was 6mil or thicker reinforced skrim used as the vapor retarder? X Are heavy traffic areas and/or storage areas protected from tears and punctures by carpet or heavy felt pading? X Are all membrane been secured to walls with tape, furring strips, and/or caulk? X Has a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization? X Does suction pipe have permanent test port installed? X	Is the fan level and properly supported to prevent unnecessary vibration?	Х		
Is the exhaust vent pipe at least 10 feet above grade, 10 feet from any doors or windows, and 2 feet above the top of any opening into the conditioned space? X If vent pipe exits through a roof penetration, does it extend at least 12 inches above the surface? X If vent pipe runs along the exterior wall, is it supported by brackets placed at least every 8 feet? X Is the vent stack made of schedule 40 PVC piping? X Vopor Barrier I crawl space(s) free or debris and obstruction that may prevent proper installation of vapor retarder or sub-slab depressurization system? X Has sub-membrane depressurization system been installed? X Was 6mil or thicker reinforced skrim used as the vapor retarder? X Are heavy traffic areas and/or storage areas protected from tears and punctures by carpet or heavy felt padding? X Has the membrane been secured to walls with tape, furring strips, and/or caulk? X Has a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization? X Does suction pipe have permanent test port installed? X	Does the fan have a condensate by-pass installed?	Х		
windows, and 2 feet above the top of any opening into the conditioned space? X If vent pipe exits through a roof penetration, does it extend at least 12 inches above the surface? X If vent pipe runs along the exterior wall, is it supported by brackets placed at least every 8 feet? X Is the vent stack made of schedule 40 PVC piping? X Vapor Barrier X I crawl space(s) free or debris and obstruction that may prevent proper installation of vapor retarder or sub-slab depressurization system? X Has sub-membrane depressurization system been installed? X Was 6mil or thicker reinforced skrim used as the vapor retarder? X Are heavy traffic areas and/or storage areas protected from tears and punctures by carpet or heavy felt padding? X Has the membrane been secured to walls with tape, furring strips, and/or caulk? X Has a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization? X Does suction pipe have permanent test port installed? X	Has the fan been mounted to piping using flexible connections?	Х		
windows, and 2 feet above the top of any opening into the conditioned space? X If vent pipe exits through a roof penetration, does it extend at least 12 inches above the surface? X If vent pipe runs along the exterior wall, is it supported by brackets placed at least every 8 feet? X Is the vent stack made of schedule 40 PVC piping? X Vapor Barrier X I crawl space(s) free or debris and obstruction that may prevent proper installation of vapor retarder or sub-slab depressurization system? X Has sub-membrane depressurization system been installed? X Was 6mil or thicker reinforced skrim used as the vapor retarder? X Are heavy traffic areas and/or storage areas protected from tears and punctures by carpet or heavy felt padding? X Has the membrane been secured to walls with tape, furring strips, and/or caulk? X Has a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization? X Does suction pipe have permanent test port installed? X	Is the subsust yeart aire at least 10 feet above grade, 10 feet from any dears or			
XXIf vent pipe exits through a roof penetration, does it extend at least 12 inches above the surface?XIf vent pipe runs along the exterior wall, is it supported by brackets placed at least every 8 feet?XIs the vent stack made of schedule 40 PVC piping?XVapor BarrierI crawl space(s) free or debris and obstruction that may prevent proper installation of vapor retarder or sub-slab depressurization system?XHas sub-membrane depressurization system been installed?XWas 6mil or thicker reinforced skrim used as the vapor retarder?XAre heavy traffic areas and/or storage areas protected from tears and punctures by carpet or heavy felt padding?XHas the membrane been secured to walls with tape, furring strips, and/or caulk?XHas a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization?XDoes suction pipe have permanent test port installed?X				
above the surface?XIf vent pipe runs along the exterior wall, is it supported by brackets placed at least every 8 feet?XIs the vent stack made of schedule 40 PVC piping?XVapor BarrierXI crawl space(s) free or debris and obstruction that may prevent proper installation of vapor retarder or sub-slab depressurization system?XHas sub-membrane depressurization system been installed?XWas 6mil or thicker reinforced skrim used as the vapor retarder?XAre heavy traffic areas and/or storage areas protected from tears and punctures by carpet or heavy felt padding?XAre all membrane been secured to walls with tape, furring strips, and/or caulk?XHas a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization?XDoes suction pipe have permanent test port installed?X	windows, and 2 reet above the top of any opening into the conditioned space:	Х		
If vent pipe runs along the exterior wall, is it supported by brackets placed at least every 8 feet?XIs the vent stack made of schedule 40 PVC piping?XVapor BarrierI crawl space(s) free or debris and obstruction that may prevent proper installation of vapor retarder or sub-slab depressurization system?XHas sub-membrane depressurization system been installed?XWas 6mil or thicker reinforced skrim used as the vapor retarder?XAre heavy traffic areas and/or storage areas protected from tears and punctures by carpet or heavy felt padding?XAre all membrane seams overlapped at least 12 inches and sealed properly?XHas a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization?XDoes suction pipe have permanent test port installed?X	If vent pipe exits through a roof penetration, does it extend at least 12 inches			
least every 8 feet?XIs the vent stack made of schedule 40 PVC piping?XIs the vent stack made of schedule 40 PVC piping?XVapor BarrierI crawl space(s) free or debris and obstruction that may prevent proper installation of vapor retarder or sub-slab depressurization system?XHas sub-membrane depressurization system been installed?XWas 6mil or thicker reinforced skrim used as the vapor retarder?XAre heavy traffic areas and/or storage areas protected from tears and punctures by carpet or heavy felt padding?XAre all membrane seams overlapped at least 12 inches and sealed properly?XHas the membrane been secured to walls with tape, furring strips, and/or caulk?XHas a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization?XDoes suction pipe have permanent test port installed?X	above the surface?			Х
Is the vent stack made of schedule 40 PVC piping?XIs the vent stack made of schedule 40 PVC piping?XVapor BarrierI crawl space(s) free or debris and obstruction that may prevent proper installation of vapor retarder or sub-slab depressurization system?XHas sub-membrane depressurization system been installed?XWas 6mil or thicker reinforced skrim used as the vapor retarder?XAre heavy traffic areas and/or storage areas protected from tears and punctures by carpet or heavy felt padding?XAre all membrane been secured to walls with tape, furring strips, and/or caulk?XHas a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization?XDoes suction pipe have permanent test port installed?X	If vent pipe runs along the exterior wall, is it supported by brackets placed at			
Vapor Barrier I crawl space(s) free or debris and obstruction that may prevent proper installation of vapor retarder or sub-slab depressurization system? X Has sub-membrane depressurization system been installed? X Was 6mil or thicker reinforced skrim used as the vapor retarder? X Are heavy traffic areas and/or storage areas protected from tears and punctures by carpet or heavy felt padding? X Are all membrane seams overlapped at least 12 inches and sealed properly? X Has the membrane been secured to walls with tape, furring strips, and/or caulk? X Has a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization? X Does suction pipe have permanent test port installed? X	least every 8 feet?	Х		
I crawl space(s) free or debris and obstruction that may prevent proper installation of vapor retarder or sub-slab depressurization system?XHas sub-membrane depressurization system been installed?XWas 6mil or thicker reinforced skrim used as the vapor retarder?XAre heavy traffic areas and/or storage areas protected from tears and punctures by carpet or heavy felt padding?XAre all membrane seams overlapped at least 12 inches and sealed properly?XHas the membrane been secured to walls with tape, furring strips, and/or caulk?XHas a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization?XDoes suction pipe have permanent test port installed?X	Is the vent stack made of schedule 40 PVC piping?	Х		
installation of vapor retarder or sub-slab depressurization system?XHas sub-membrane depressurization system been installed?XWas 6mil or thicker reinforced skrim used as the vapor retarder?XAre heavy traffic areas and/or storage areas protected from tears and punctures by carpet or heavy felt padding?XAre all membrane seams overlapped at least 12 inches and sealed properly?XHas the membrane been secured to walls with tape, furring strips, and/or caulk?XHas a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization?XDoes suction pipe have permanent test port installed?X	Vapor Barrier			
Has sub-membrane depressurization system been installed?XWas 6mil or thicker reinforced skrim used as the vapor retarder?XAre heavy traffic areas and/or storage areas protected from tears and punctures by carpet or heavy felt padding?XAre all membrane seams overlapped at least 12 inches and sealed properly?XHas the membrane been secured to walls with tape, furring strips, and/or caulk?XHas a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization?XDoes suction pipe have permanent test port installed?X	I crawl space(s) free or debris and obstruction that may prevent proper			
Was 6mil or thicker reinforced skrim used as the vapor retarder?XAre heavy traffic areas and/or storage areas protected from tears and punctures by carpet or heavy felt padding?XAre all membrane seams overlapped at least 12 inches and sealed properly?XHas the membrane been secured to walls with tape, furring strips, and/or caulk?XHas a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization?XDoes suction pipe have permanent test port installed?X	installation of vapor retarder or sub-slab depressurization system?			Х
Are heavy traffic areas and/or storage areas protected from tears and puncturesXby carpet or heavy felt padding?XAre all membrane seams overlapped at least 12 inches and sealed properly?XHas the membrane been secured to walls with tape, furring strips, and/or caulk?XHas a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization?XDoes suction pipe have permanent test port installed?X	Has sub-membrane depressurization system been installed?			х
by carpet or heavy felt padding?XAre all membrane seams overlapped at least 12 inches and sealed properly?XHas the membrane been secured to walls with tape, furring strips, and/or caulk?XHas a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization?XDoes suction pipe have permanent test port installed?X	Was 6mil or thicker reinforced skrim used as the vapor retarder?			Х
Are all membrane seams overlapped at least 12 inches and sealed properly? X Has the membrane been secured to walls with tape, furring strips, and/or caulk? X Has a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization? X Does suction pipe have permanent test port installed? X	Are heavy traffic areas and/or storage areas protected from tears and punctures			
Has the membrane been secured to walls with tape, furring strips, and/or caulk?XHas a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization?XDoes suction pipe have permanent test port installed?X	by carpet or heavy felt padding?			Х
Has a perforated/slotted pipe been installed under the membrane and above the soil for proper de-pressurization? X Does suction pipe have permanent test port installed? X	Are all membrane seams overlapped at least 12 inches and sealed properly?			Х
the soil for proper de-pressurization?XDoes suction pipe have permanent test port installed?X	Has the membrane been secured to walls with tape, furring strips, and/or caulk?			х
Does suction pipe have permanent test port installed? X	Has a perforated/slotted pipe been installed under the membrane and above			
	the soil for proper de-pressurization?			Х
Are all utility, foundation, or other penetrations sealed properly? X	Does suction pipe have permanent test port installed?			Х
	Are all utility, foundation, or other penetrations sealed properly?		1	Х

Attachment 3 (cont'd)

ectrical	Yes	No	N/#
Has electrical wiring/switching been performed by a licensed electrician?	Х		
Is the fan's power supply shutoff switch mounted in a weather tight enclosure?	Х		
Is the circuit breaker clearly labeled "Vapor Mitigation System"?	Х		
Has a run-time meter been installed, and is it in a weather tight enclosure?	Х		
Has a KW meter been installed?		Х	
mp Pit			
Is there a sump pit(s) in the basement or crawl space?			Х
Does sump pit have impermeable cover attached with proper sealant?			Х
Are sump lid penetrations properly sealed?			Х
Has sump pit been used as an extraction point?			Х
Does sump lid have a clear view port for pump/pit observation and			
maintenance?			Х
bels and Monitors			
Does each suction pipe have a u-tube manometer or magnehelic gage to			
measure pressure?	Х		
Does each suction pipe have a permanent test port?		Х	
Has an audible alarm to inform of possible system malfunction been installed?		Х	
Are labels placed on pipes, membrane(s), and prominent locations to identify			
system components?	Х		
Does label include name and number of person(s) to contact in case of system			
emergency?	х		
sting and Sealing			
Has PFE testing been completed to verify system performance?	Х		
Has foundation been smoke tested after mitigation system installation?	Х		
Have leaks in slab, walls or membrane been sealed properly?	Х		
port	-	-	-
Has an as built drawing been completed depicting system installation?	Х		
Have all test point reading been recorded and inserted into the drawing?	Х		
Has the system installation been recorded with photographs?	Х		

Attachment 4 Vapor Mitigation System Operation and Maintenance

We advise consultants, maintenance personnel or property owners to conduct routine visual inspections of all SSDS to verify that vapor mitigation system components are operating properly. The inspection should include but not be limited to the following:

- Observe the u tube or magnehelic gauges for pressure indication; a pressure of '0' indicates that there is a problem with system piping or fan operation.
- Observe the mitigation fan(s) and note any abnormal sounds or noises coming from the fan including buzzing, scraping, rattling, or et cetera. If any abnormal noises or sounds are audible, contact VPS.
- Most mitigation fans are factory sealed and designed to be maintenance free for the life of the fan. Should the fan's casing be opened or the factory seal broken, any service warranty may be voided. Factory maintenance documentation has been provided to consultant with recommended schedule for maintenance of fans if required.
- Inspect the PVC piping of the system for damage or cracks. If any damage occurs to the PVC piping, contact VPS Piping supports and Hangers should also be inspected for wear and integrity.
- Roof penetrations for system exhaust piping should be inspected to assure no moisture or other intrusion is apparent.
- Sub-membrane depressurization system (SMDS) components should also be periodically inspected to assure proper performance. Should a vapor barrier or membrane become damaged, loss of system pressure can occur affecting overall system performance. Tears should be repaired properly using approved methods.
- Any significant changes to building or structure can and may affect system performance. VPS should be advised of planned changes beforehand to avoid any possible performance issues or system failure.

Contact VPS for Additional Service & Maintenance should any occasion arise that may causes concern that the SMDS is not functioning properly as vapor intrusion may no longer be mitigated to meet performance criteria provided to VPS by consultant.

Attachment 5 ANNUAL OPERATING COSTS

RADONAWAY FANS	AVERAGE KWH	AVERAGE COST PER YEAR
RP140	\$0.0894	\$13.31
RP145	\$0.0894	\$42.29
RP260	\$0.0894	\$48.55
RP265	\$0.0894	\$88.50
RP380	\$0.0894	\$101.03
SF180	\$0.0894	\$42.29
GP201	\$0.0894	\$39.16
GP301	\$0.0894	\$56.39
GP401	\$0.0894	\$66.57
GP500	\$0.0894	\$78.31
GP501	<mark>\$0.0894</mark>	<mark>\$82.23</mark>
XP151	\$0.0894	\$40.72
XP201	\$0.0894	\$43.07
XP261	\$0.0894	\$66.57
HS2000	\$0.0894	\$164.46
HS3000	\$0.0894	\$117.47
HS5000	\$0.0894	\$250.61
FANTECH FANS		
HP2133	\$0.0894	\$13.31
HP2190	\$0.0894	\$56.78
HP175	\$0.0894	\$42.68
HP190	\$0.0894	\$56.78
HP220	\$0.0894	\$92.80

The World's Leading Radon Fan Manufaturer

GP/XP/XR Series Installation & Operating Instructions

<u>Please Read And Save These Instructions</u> DO NOT CONNECT POWER SUPPLY UNTIL FAN IS COMPLETELY INSTALLED. MAKE SURE ELECTRICAL SERVICE TO FAN IS LOCKED IN "OFF" POSITION. DISCONNECT POWER BEFORE SERVICING FAN.

- 1. **WARNING!** Do not use fan in hazardous environments where fan electrical system could provide ignition to combustible of flammable materials.
- 2. WARNING! Do not use fan to pump explosive or corrosive gases. See Vapor Intrusion Application Note #AN001 for important information on VI applications. <u>RadonAway.com/vapor-intrusion</u>
- 3. WARNING! Check voltage at the fan to insure it corresponds with nameplate.
- WARNING! Normal operation of this device may affect the combustion airflow needed for safe operation of fuel burning equipment. Check for possible backdraft conditions on all combustion devices after installation.
- 5. **NOTICE!** There are no user serviceable parts located inside the fan unit. **Do NOT attempt to open.** Return unit to the factory for service.
- 6. All wiring must be performed in accordance with the National Fire Protection Association's (NFPA)"National Electrical Code, Standard #70"-current edition for all commercial and industrial work, and state and local building codes. All wiring must be performed by a qualified and licensed electrician.
- 7. **WARNING!** Do not leave fan unit installed on system piping without electrical power for more than 48 hours. Fan failure could result from this non-operational storage.
- 8. WARNING TO REDUCE THE RISK OF FIRE, ELECTRIC SHOCK, OR INJURY TO PERSONS, OBSERVE THE FOLLOWING:

a) Use this unit only in the manner intended by the manufacturer. If you have questions, contact the manufacturer.b) Before servicing or cleaning unit, switch power off at service panel and lock the service disconnecting means to prevent power from being switched on accidentally. When the service disconnecting means cannot be locked, securely fasten a prominent warning device, such as a tag, to the service panel.

RadonAway

3 Saber Way | Ward Hill, MA 01835

www.radonaway.com

Installation & Operating Instructions IN014 Rev J

XP/XR Series **GP** Series p/n 23008-1 XP101 GP201 p/n 23007-1 XP151 p/n 23010-1 GP301 p/n 23006-1 XP201 p/n 23011-1 GP401 p/n 23009-1 p/n 23019-1GP501 p/n 23005-1 XR261

1.0 SYSTEM DESIGN CONSIDERATIONS

1.1 INTRODUCTION

The GP/XP/XR Series Radon Fans are intended for use by trained, professional, certified/licensed Radon mitigators. The purpose of this instruction is to provide additional guidance for the most effective use of a fan. This instruction should be considered as a supplement to EPA/radon industry standard practices, state and local building codes and state regulations. In the event of a conflict, those codes, practices and regulations take precedence over this instruction.

1.2 ENVIRONMENTALS

The GP/XP/XR Series Fans are designed to perform year-round in all but the harshest climates without additional concern for temperature or weather. For installations in an area of severe cold weather, please contact RadonAway for assistance. When not in operation, the fan should be stored in an area where the temperature is never less than 32 degrees F. or more than 100 degrees F.

1.3 ACOUSTICS

The GP/XP/XR Series Fan, when installed properly, operates with little or no noticeable noise to the building occupants. The velocity of the outgoing air should be considered in the overall system design. In some cases the "rushing" sound of the outlet air may be disturbing. In these instances, the use of a RadonAway Exhaust Muffler is recommended.

1.4 GROUND WATER

In the event that a temporary high water table results in water at or above slab level, water may be drawn into the riser pipes thus blocking air flow to the GP/XP/XR Series Fan. The lack of cooling air may result in the fan cycling on and off as the internal temperature rises above the thermal cutoff and falls upon shutoff. Should this condition arise, it is recommended that the fan be turned off until the water recedes allowing for return to normal operation.

1.5 SLAB COVERAGE

The GP/XP/XR Series Fan can provide coverage up to 2000+ sq. ft. per slab penetration. This will primarily depend on the sub-slab material in any particular installation. In general, the tighter the material, the smaller the area covered per penetration. Appropriate selection of the GP/XP/XR Series Fan best suited for the sub-slab material can improve the slab coverage. The GP & XP Series have a wide range of models to choose from to cover a wide range of subslab material. The higher static suction fans are generally used for tighter subslab materials. The XR Series is specifically designed for high flow applications such as stone/gravel and drain tile. Additional suction points can be added as required. It is recommended that a small pit (5 to 10 gallons in size) be created below the slab at each suction hole.

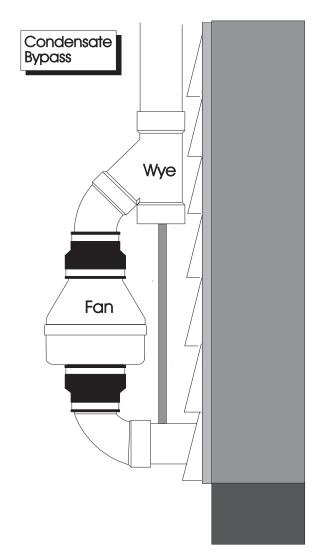
1.6 CONDENSATION & DRAINAGE

Condensation is formed in the piping of a mitigation system when the air in the piping is chilled below its dew point. This can occur at points where the system piping goes through unheated space such as an attic, garage or outside. The system design must provide a means for water to drain back to a slab hole to remove the condensation. The GP/XP/XR Series Fan MUST be mounted vertically plumb and level, with the outlet pointing up for proper drainage through the fan. Avoid mounting the fan in any orientation that will allow water to accumulate inside the fan housing. The GP/XP/XR Series Fans are **NOT** suitable for underground burial.

For GP/XP/XR Series Fan piping, the following table provides the minimum recommended pipe diameter and pitch under several system conditions.

Pipe Dia.	Minimun	n Rise per Fo	ot of Run*
Dia.	@25 CFM	@50 [°] CFM	@100 CFM
4″	1/8″	1/4″	3/8″
3"	1/4"	3/8"	11/2"

*Typical GP/XP/XR Series Fan operational flow rate is 25 - 90 CFM. (For more precision, determine flow rate by using the chart in the addendum.)


Under some circumstances in an outdoor installation a condensate bypass should be installed in the outlet ducting as shown. This may be particularly true in cold climate installations which require long lengths of outlet ducting or where the outlet ducting is likely to produce large amounts of condensation because of high soil moisture or outlet duct material. Schedule 20 piping and other thin-walled plastic ducting and Aluminum downspout will normally produce much more condensation than Schedule 40 piping.

The bypass is constructed with a 45 degree Wye fitting at the bottom of the outlet stack. The bottom of the Wye is capped and fitted with a tube that connects to the inlet piping or other drain. The condensation produced in the outlet stack is collected in the Wye fitting and drained through the bypass tube. The bypass tubing may be insulated to prevent freezing.

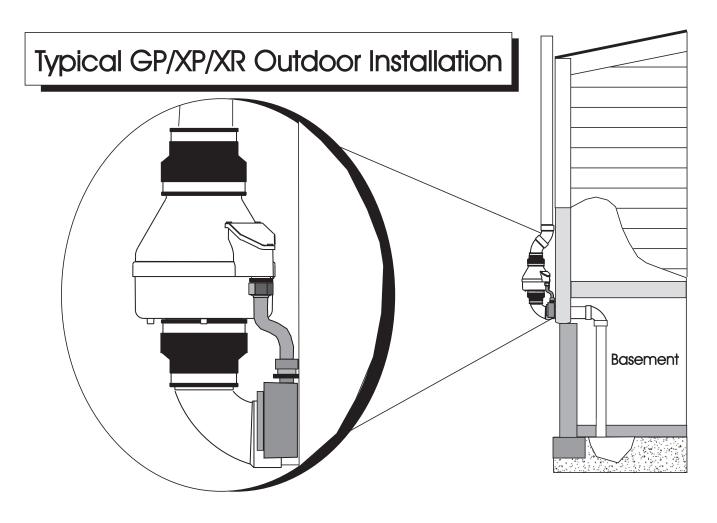
1.7 SYSTEM MONITOR & LABEL

A System Monitor, such as a manometer (P/N 50006-1) or audible alarm (P/N 28001-2) is required to notify the occupants of a fan system malfunction. A System Label (P/N 15022) with instructions for contacting the installing contractor for service and also identifying the necessity for regular radon tests to be conducted by the building occupants, must be conspicuously placed where the occupants frequent and can see the label.

15

Attachment 6 (cont'd)

1.8 ELECTRICAL WIRING


The GP/XP/XR Series Fans operate on standard 120V 60 Hz. AC. All wiring must be performed in accordance with the National Fire Protection Association's (NFPA)"National Electrical Code, Standard #70"-current edition for all commercial and industrial work, and state and local building codes. All wiring must be performed by a qualified and licensed electrician. Outdoor installations require the use of a U.L. listed watertight conduit. Ensure that all exterior electrical boxes are outdoor rated and properly sealed to prevent water penetration into the box. A means, such as a weep hole, is recommended to drain the box.

1.9 SPEED CONTROLS

The GP/XP/XR Series Fans are rated for use with electronic speed controls, however, they are generally not recommended. If used, the speed control recommended is Pass & Seymour Solid State Speed Control Cat. No. 94601-I.

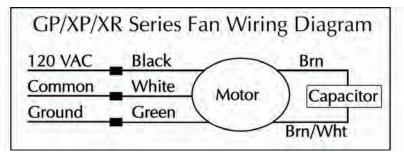
2.0 INSTALLATION

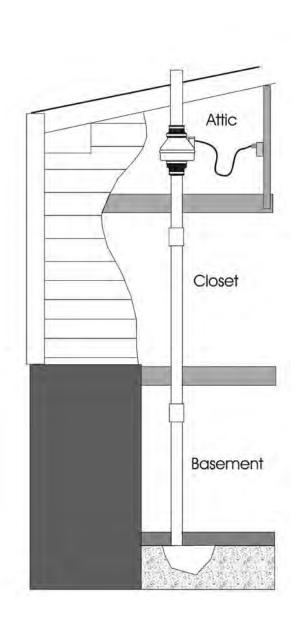
The GP/XP/XR Series Fan can be mounted indoors or outdoors. (It is suggested that EPA recommendations be followed in choosing the fan location.) The GP/XP/XR Series Fan may be mounted directly on the system piping or fastened to a supporting structure by means of optional mounting bracket.

2.1 MOUNTING

Mount the GP/XP/XR Series Fan vertically with outlet up. Insure the unit is plumb and level. When mounting directly on the system piping assure that the fan does not contact any building surface to avoid vibration noise.

2.2 MOUNTING BRACKET (optional)


The GP/XP/XR Series Fan may be optionally secured with the integral mounting bracket on the GP Series fan or with RadonAway P/N 25007-2 mounting bracket for an XP/XR Series Fan. Foam or rubber grommets may also be used between the bracket and mounting surface for vibration isolation.


2.3 SYSTEM PIPING

Complete piping run, using flexible couplings as means of disconnect for servicing the unit and vibration isolation.

2.4 ELECTRICAL CONNECTION

Connect wiring with wire nuts provided, observing proper connections (See Section 1.8):

2.5 VENT MUFFLER (optional)

Install the muffler assembly in the selected location in the outlet ducting. Solvent weld all connections. The muffler is normally installed at the end of the vent pipe.

2.6 OPERATION CHECKS AND ANNUAL SYSTEM MAINTENANCE

_____ Verify all connections are tight and leak-free.

Insure the GP/XP/XR Series Fan and all ducting is secure and vibration-free.

Verify system vacuum pressure with manometer. **Insure** vacuum pressure is within normal operating range and **less than** the maximum recommended operating pressure.

(Based on sea-level operation, at higher altitudes reduce by about 4% per 1000 Feet.) (Further reduce Maximum Operating Pressure by 10% for High Temperature environments) See Product Specifications. If this is exceeded, increase the number of suction points.

Verify Radon levels by testing to EPA protocol.

17

XP/XR SERIES PRODUCT SPECIFICATIONS

The following chart shows fan performance for the XP & XR Series Fan:

			Typica	al CFM V	s Static S	uction "W	С		
	0"	.25"	.5"	.75"	1.0"	1.25"	1.5"	1.75"	2.0"
XP101	125	118	90	56	5	-	-	-	-
XP151	180	162	140	117	78	46	10	-	-
XP201	150	130	110	93	74	57	38	20	-
XR261	250	215	185	150	115	80	50	20	-

Maximum Recommended Operating Pressure*						
XP101	0.9" W.C.	(Sea Level Operation)**				
XP151	1.3" W.C.	(Sea Level Operation)**				
XP201	1.7" W.C.	(Sea Level Operation)**				
XR261	1.6" W.C.	(Sea Level Operation)**				

*Reduce by 10% for High Temperature Operation

**Reduce by 4% per 1000 feet of altitude

	Power Consumption @ 120 VAC	
XP101	40 - 49 watts	
XP151	45 - 60 watts	
XP201	45 - 66 watts	
XR261	65 - 105 watts	

XP Series Inlet/Outlet: 4.5" OD (4.0" PVC Sched 40 size compatible)

XR Series Inlet/Outlet: 5.875" OD

Mounting: Mount on the duct pipe or with optional mounting bracket.

Recommended ducting: 3" or 4" Schedule 20/40 PVC Pipe

Storage temperature range: 32 - 100 degrees F.

Normal operating temperature range: -20 - 120 degrees F.

Maximum inlet air temperature: 80 degrees F.

Size: 9.5H" x 8.5" Dia.

Weight: 6 lbs. (XR261 - 7 lbs)

Continuous Duty Thermally Protected Class B Insulation 3000 RPM Rated for Indoor or Outdoor Use

Attachment 6 (cont'd)

GP SERIES PRODUCT SPECIFICATIONS

Typical CFM Vs Static Suction "WC								
	1.0"	1.5"	2.0"	2.5"	3.0"	3.5"	4.0"	
GP501	95	87	80	70	57	30	5	
GP401	93	82	60	38	12	-	-	
GP301	92	77	45	10	-	-	-	
GP201	82	58	5	-	-	-	-	

The following chart shows fan performance for the GP Series Fan:

Maximum Recommended Operating Pressure*								
GP501	3.8" W.C.	(Sea Level Operation)**						
GP401	3.0" W.C.	(Sea Level Operation)**						
GP301	2.4" W.C.	(Sea Level Operation)**						
GP201	1.8" W.C.	(Sea Level Operation)**						

*Reduce by 10% for High Temperature Operation **Reduce by 4% per 1000 feet of altitude

	Power Consumption @ 120 VAC	
GP501	70 - 140 watts	
GP401	60 - 110 watts	
GP301	55 - 90 watts	
GP201	40 - 60 watts	

Inlet/Outlet: 3.5" OD (3.0" PVC Sched 40 size compatible)

Mounting: Fan may be mounted on the duct pipe or with integral flanges.

Weight: 12 lbs.

Size: 13H" x 12.5" x 12.5"

Recommended ducting: 3" or 4" Schedule 20/40 PVC Pipe

Storage temperature range: 32 - 100 degrees F.

Normal operating temperature range: -20 - 120 degrees F.

Maximum inlet air temperature: 80 degrees F.

Continuous Duty Class B Insulation 3000 RPM Thermally Protected Rated for Indoor or Outdoor Use

Attachment 6 (cont'd) IMPORTANT INSTRUCTIONS TO INSTALLER

Inspect the GPx01/XP/XR Series Fan for shipping damage within 15 days of receipt. Notify RadonAway of any damages immediately. Radonaway is not responsible for damages incurred during shipping. However, for your benefit, Radonaway does insure shipments.

There are no user serviceable parts inside the fan. Do not attempt to open. Return unit to factory for service.

Install the GPx01/XP/XR Series Fan in accordance with all EPA standard practices, and state and local building codes and state regulations.

Provide a copy of this instruction or comparable radon system and testing information to the building occupants after completing system installation.

9	WARRANTY	
	Subject to any applicable consumer protection legislation, RadonAway warrants that lefects in materials and workmanship for a period of 90 days from the date of purch	
R re	adonAway will replace any Fan which fails due to defects in materials or workmans RadonAway factory. Any Fan returned to the factory will be discarded unless the Ow eturned regardless of whether or not the Fan is actually replaced under this warrant ervice under this Warranty.	ner provides specific instructions along with the Fan when it is
re	his Warranty is contingent on installation of the Fan in accordance with the instruction epairs or alterations have been made or attempted by others, or if the unit has been hipment unless the damage is due to the negligence of RadonAway.	
	5 YEAR EXTENDED WARRANTY WITH PROFE	SSIONAL INSTALLATION.
p F	RadonAway will extend the Warranty Term of the fan to 5 years from date of manufa rofessionally installed radon system or installed as a replacement fan in a professio Proof of purchase and/or proof of professional installation may be required for servic and Canada the extended Warranty Term is limited to one (1) year from the date of r	nally designed and professionally installed radon system. e under this warranty. Outside the Continental United States
R	adonAway is not responsible for installation, removal or delivery costs associated w	ith this Warranty.
	EXCEPT AS STATED ABOVE, THE GPx01/XP/XR SERIES FAN OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, W WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A F	ITHOUT LIMITATION, IMPLIED
	IN NO EVENT SHALL RADONAWAY BE LIABLE FOR ANY DIR OR CONSEQUENTIAL DAMAGES ARISING OUT OF, OR RELA PERFORMANCE THEREOF. RADONAWAY'S AGGREGATE LI ANY EVENT EXCEED THE AMOUNT OF THE PURCHASE PRIC EXCLUSIVE REMEDY UNDER THIS WARRANTY SHALL BE TH PRODUCT, TO THE EXTENT THE SAME DOES NOT MEET WIT PROVIDED ABOVE.	TING TO, THE FAN OR THE ABILITY HEREUNDER SHALL NOT IN E OF SAID PRODUCT. THE SOLE AND IE REPAIR OR REPLACEMENT OF THE
i	for service under this Warranty, contact RadonAway for a Return Mater nformation. No returns can be accepted without an RMA. If factory re- ost to and from factory.	
	RadonAway 3 Saber Way Ward Hill, MA 01835 TEL. (978) 521-3703 FAX (978) 521-3964	
F	Record the following information for your records:	GP501
	Serial No	
S	Purchase Date 2/2015	

MATERIAL SAFETY DATA SHEET

Date Issued: 08/03/2007 MSDS No: 68101 Date Revised: 03/07/2008 Revision No: 2

3300 Colors

1. PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: 3300 Colors

MANUFACTURER

Geocel Corporation P.O. Box 398 Elkhart IN 46515-0398 **Product Stewardship:** 574-264-0645

24 HR. EMERGENCY TELEPHONE NUMBERS

ChemTel - 800-255-3924

2. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

IMMEDIATE CONCERNS: This product is irritating to the eyes and skin. Thermal decomposition/burning may produce toxic gases and fume. Closed containers may rupture when exposed to high temperatures, or when the product has been contaminated with water.

Avoid breathing hot mists and vapors. This product contains a respiratory and skin sensitizer. Causes respiratory tract irritation and may cause allergic respiratory reaction. May cause permanent respiratory damage. Product vapors are potentially irritating to skin. May cause allergic skin reaction and dermatitis.

POTENTIAL HEALTH EFFECTS

EYES: This product may cause irritation to the eyes. May cause temporary corneal injury.

SKIN: Skin contact may cause irritation. Isocyanates may react with skin protein and moisture to cause itching, reddening, swelling, scaling or blistering. Individuals previously sensitized to this material may experience these sysptoms from exposure to very small amounts of liquid or vapor.

INGESTION: May cause irritation and corrosive action in the mouth, throat and digestive tract.

INHALATION: Single large does, and/or repeated exposures, may lead to sensitization to diisocyanates or polyisocyanates (asthma or asthma-like symptoms), causing an individual to experience adverse effects at exposure levels well below exposure limits or guidelines. Symptoms may include chest tightness, wheezing, shortness of breath, coughing or asthmatic attack, and may be delayed up to several hours. Extreme asthmatic reactions can be life threatening. Once sensitized, an individual may experience adverse symptoms upon exposure to dust, cold air or other irritants. Sensitization can last several months, years or be permanent in some cases.

SIGNS AND SYMPTOMS OF OVEREXPOSURE

EYES: Visual effects may include eye irritation, blurred vision, diplopia, changes in color perception, restricition of visual fields, and complete blindness.

SKIN: Irritation of the skin.

INGESTION: Diarrhea.

INHALATION: Irritation of upper respiratory tract, asthmatic symptoms, chest tightness, breathing difficulty, coughing, short throat.

TARGET ORGAN STATEMENT: The lungs and skin may be targeted and damaged by components of the product. Eyes.

HEALTH HAZARDS: This product contains Methylene Diphenyl Isocyanate (MDI) which is a potential skin sensitizer and has been shown to alter cells in certain experiments. Although inconclusive, these cellular changes are thought to indicate potential carcinogenicity. Risk to your health depends on duration and concentration of exposure.

COMMENTS: Signs and symptoms of overexposure to this product include headache, irritation of upper respiratory tract, asthmatic symptoms, chest tightness, breathing difficulty, coughing, dizziness, weakness, fatigue, eye irritation, skin irritation, diarrhea.

3. COMPOSITION / INFORMATION ON INGREDIENTS

Chemical Name	Wt.%	CAS	EINECS
Xylenes (o-,m-,p- Isomers)	1 - 5	001330-20-7	215-535-7
Ethyl Benzene	0.5 - 1.5	000100-41-4	
Methylene Disphenyl Isocyanate	0.1 - 1	000101-68-8	202-966-0

4. FIRST AID MEASURES

EYES: Immediately flush with plenty of water for at least 15 minutes. Get medical attention or advice.

- **SKIN:** Remove contaminated clothing to prevent further skin exposure and dispose of properly. In situations involving considerable skin contact, place the contaminated person in a deluge shower for at least 15 minutes. For minor exposures, wash thoroughly with soap and clean water. Get medical attention if irritation persists.
- **INGESTION:** If ingested, get immediate medical attention. Do not induce vomiting unless instructed to do so by medical personnel. Never give anything by mouth to a victim who is unconscious or is having convulsions.

INHALATION: Remove to fresh air. Get medical attention immediately for a large dose exposure or if cough or other symptoms develop. Administer oxygen or artifical respiration as needed.

NOTES TO PHYSICIAN: Treat symptomatically and supportively.

Eyes: Stain for evidence of corneal injury. If cornea is burned, apply antibiotic/steroid preparation as needed. Skin: This product contains a skin sensitizer. Treat symptomatically as for contact dermatitis or thermal burn. Ingestion: Treat symptomatically.

Inhalation: This material contains a known pulmonary sensitizer.

Any individual experiencing dermal or pulmonary sensitization should be removed from exposure to any diisocyanate. May aggravate existing heart conditions, particularly those with abnormal heart rhythms. If overexposure to the solvents in this product is suspected, testing should include nervous system and brain effects including recent memory, mood, concentration, headaches and altered sleep patterns. Liver and kidney function should be evaluated. This material, if aspirated into the lungs, may cause chemical pneumonitis; treat the affected person appropriately.

5. FIRE FIGHTING MEASURES

FLASHPOINT AND METHOD: 74.4°C (166°F)

EXTINGUISHING MEDIA: Use dry chemical, carbon dioxide, or foam. Water spray (fog).

HAZARDOUS COMBUSTION PRODUCTS: Additional decomposition products include oxides of nitrogen, amines, hydrogen cyanide and isocyanate-containing compounds.

EXPLOSION HAZARDS: None known.

FIRE FIGHTING EQUIPMENT: Firefighters should wear full protective clothing including self contained breathing apparatus.

SENSITIVE TO STATIC DISCHARGE: Not known.

SENSITIVITY TO IMPACT: Not known.

6. ACCIDENTAL RELEASE MEASURES

SMALL SPILL: Wearing the personal protective equipment designated in Section 8, carefully contain the spill and transfer to the appropriate container for disposal. Do not discharge to lakes, streams, ponds, or sewers. Dispose of in compliance with local, state, and federal regulations.

LARGE SPILL: Wearing the personal protective equipment designated in Section 8, carefully contain the spill and transfer to the appropriate container for disposal. Do not discharge to lakes, streams, ponds, or sewers. Dispose of in compliance with local, state, and federal regulations. Ventilate well while cleanup is in process and until fumes dissipate.

ENVIRONMENTAL PRECAUTIONS

WATER SPILL: Isolate spill area. Stop discharge if safe to do so. Stop material from entering sewers or water streams. Scrape up polyurethane and deposit into appropriate containers.

LAND SPILL: Isolate spill area. Stop discharge if safe to do so. Stop material from contaminating soil. Scrape up polyurethane and deposit into appropriate containers.

- **HANDLING:** Wash hands thoroughly after handling, especially before eating, drinking, smoking, and using restroom facilities. Wash contaminated goggles, face shields, and gloves. Professionally launder contaminated clothing before reuse. Do not breathe vapors, mists or dusts. Do not breathe fumes generated when the material is overheated or burned. Use adequate ventilation. Wear respiratory protection if the material is heated, sprayed, used in a confined space or if exposure limit is exceeded. This product can produce asthmatic sensitization. Individuals with lung or breathing problems or prior allergic reactions to isocyanate must avoid fumes from this product. Wear appropriate protective equipment to avoid contact with skin and eyes.
- **STORAGE:** Store in a cool, dry, well-ventilated area away from heat, ignition sources and direct sunlight. Water contamination should be avoided. Cool location should be 60-80 degrees F or 15-30 degrees C.
- **COMMENTS:** Attention! Follow label warnings even after container is emptied since empty containers may retain product residues. Do not reuse empty container for food, clothing, or products for human or animal consumption, or where skin contact can occur.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE GUIDELINES

OSHA HAZARDOUS COMPONENTS (29 CFR1910.1200)								
		EXPOSURE LIMITS						
	OSH	A PEL	ACGIH TLV					
Chemical Name		ppm	mg/m ³	ppm	mg/m ³			
Vulence (a. m. n. Incmarz)	TWA	100	435	100	434			
Xylenes (o-,m-,p- Isomers)	STEL			150	651			
	TWA	100	435	100	434			
Ethyl Benzene	STEL			125	543			
Methylene Disphenyl Isocyanate	TWA			0.005	0.051			

ENGINEERING CONTROLS: Use local exhaust or general ventilation where the potential exists to exceed the PEL or TLV exposure limits.

PERSONAL PROTECTIVE EQUIPMENT

EYES AND FACE: Wear safety glasses with side shields or goggles when handling this material.

SKIN: Wear appropriate clothing to minimize skin contact with this product.

RESPIRATORY: Avoid breathing vapor and/or mists. If airborne concentrations are above the applicable exposure limits, use NIOSH approved respiratory protection. High airborne concentrations may necessitate the use of self-contained breathing apparatus (SCBA) or a supplied air respirator.

OTHER USE PRECAUTIONS: Eyewash fountains and emergency showers should be readily available.

COMMENTS: Wash hands thoroughly after each use, especially before eating or smoking. Good personal hygiene practices should always be followed.

9. PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE: Paste

ODOR: Solvent

COLOR: Various

pH: Not Applicable

PERCENT VOLATILE: 4

FREEZING POINT: NA = Not Applicable

FLASHPOINT AND METHOD: 74.4°C (166°F)

DENSITY: 11.22

(VOC): 3.900 %

10. STABILITY AND REACTIVITY

STABLE: Yes

HAZARDOUS POLYMERIZATION: Yes

STABILITY: This product is stable under normal conditions but will react slightly with water to release some heat and carbon dioxide. The reaction is not violent. Carbon dioxide, carbon monoxide and in high temperature (800 °F) low oxygen atmospheres such as in fire situations, hydrogen cyanide may be released.

POLYMERIZATION: Hazardous polymerization can occur with elevated temperatures or contact with water.

CONDITIONS TO AVOID: Avoid strong acids. Avoid amines, strong bases, alcohols and metallic hydrides.

HAZARDOUS DECOMPOSITION PRODUCTS: Unknown due to the complex nature of this material. Fumes from complete or incomplete combustion may include carbon dioxide, carbon monoxide, water vapor, oxides of nitrogen and a wide variety of innocuous or toxic fumes. Additional decomposition products include oxides of nitrogen, amines, hydrogen cyanide and isocyanate-containing compounds.

11. TOXICOLOGICAL INFORMATION

EYE EFFECTS: Irritating to the eyes.

SKIN EFFECTS: Irritating to the skin.

CARCINOGENICITY

Chemical Name	IARC Status
Ethyl Benzene	2B

Notes: This product contains Methylene Diphenyl Isocyanate (MDI). MDI is not listed by the NTP, IARC or regulated by OSHA as a carcinogen. However, it has been shown to alter cells in certain experiments. Although inconclusive, these cellular changes are thought to indicate potential carcinogenicity.

REPEATED DOSE EFFECTS: Single large does, and/or repeated exposures, may lead to sensitization to diisocyanates or polyisocyanates (asthma or asthma-like symptoms), causing an individual to experience adverse effects at exposure levels well below exposure limits or guidelines. Symptoms may include chest tightness, wheezing, shortness of breath, coughing or asthmatic attack, and may be delayed up to several hours. Extreme asthmatic reactions can be life threatening. Once sensitized, an individual may experience adverse symptoms upon exposure to dust, cold air or other irritants. Sensitization can last several months, years or be permanent in some cases. Chronic exposure may cause lung damage, including fibrosis and decreased lung function, which may be permanent.

12. ECOLOGICAL INFORMATION

ECOTOXICOLOGICAL INFORMATION: Organic solvents produce slight to moderate toxicity to aquatic life. Insufficient data exists to evaluate the effect on plants, birds or land animals.

13. DISPOSAL CONSIDERATIONS

DISPOSAL METHOD: Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. US EPA guidelines for the classification determination are listed in 40 CFR Part 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification.

14. TRANSPORT INFORMATION

DOT (DEPARTMENT OF TRANSPORTATION)

OTHER SHIPPING INFORMATION: Generators must consult DOT laws and regulations to ensure the product is being transported appropriately.

COMMENTS: Not regulated as dangerous goods.

15. REGULATORY INFORMATION

UNITED STATES

SARA TITLE III (SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT)

a32.36328 HAZARDECATEGORIES: This 4 preduction oses it has not been by the start of the start of

CFR Part 370 and is subject to the requirements of sections 311 and 312 of Title III of the Superfund Amendments and Reauthorization Act of 1986:

FIRE: Yes PRESSURE GENERATING: No REACTIVITY: No ACUTE: Yes CHRONIC: Yes

313 REPORTABLE INGREDIENTS: This product contains the following toxic chemicals subject to the reporting requirements of Section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 and 40 CFR372. CAS #: 101-68-8 MDI, CAS #: 1330-20-7 Xylene and CAS #100-41-4 Ethyl Benzene.

EPCRA SECTION 313 SUPPLIER NOTIFICATION							
Chemical Name	Wt.%	CAS					
Xylenes (o-,m-,p- Isomers)	1 - 5	001330-20-7					
Ethyl Benzene	0.5 - 1.5	000100-41-4					

CERCLA (COMPREHENSIVE RESPONSE, COMPENSATION, AND LIABILITY ACT)

Chemical Name	Wt.%	CERCLA RQ
Xylenes (o-,m-,p- Isomers)	1 - 5	100
Ethyl Benzene	0.5 - 1.5	1,000
Methylene Disphenyl Isocyanate	0.1 - 1	5,000

TSCA (TOXIC SUBSTANCE CONTROL ACT)

Chemical Name	CAS
Xylenes (o-,m-,p- Isomers)	001330-20-7
Ethyl Benzene	000100-41-4
Methylene Disphenyl Isocyanate	000101-68-8

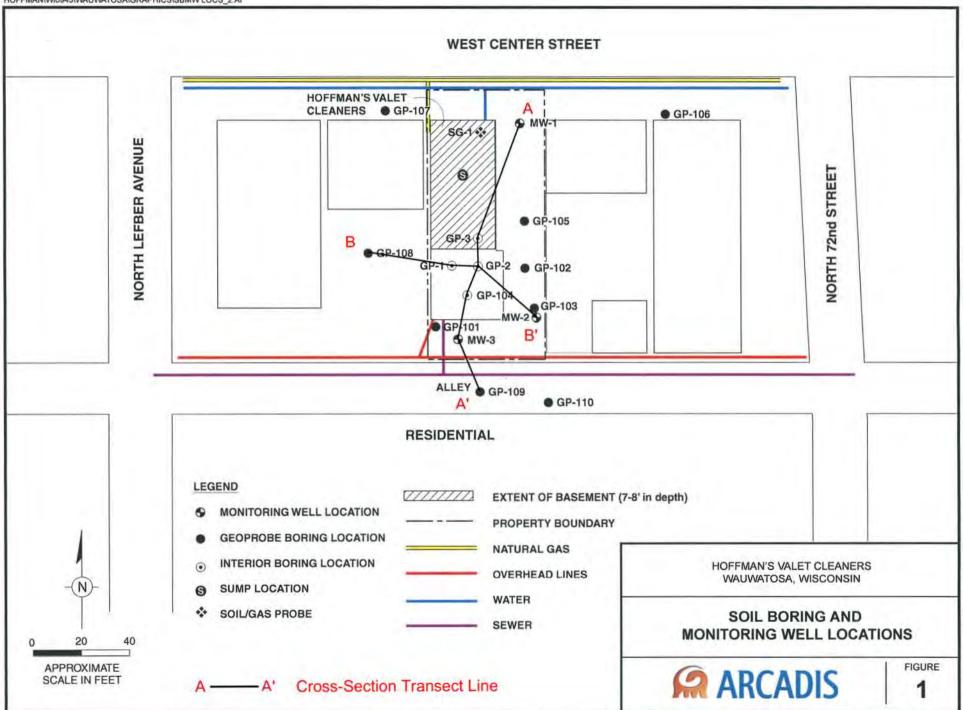
CALIFORNIA PROPOSITION 65: This product contains the following product on California's Proposition 65 List: CAS# 100-41-4 Ethyl Benzene.

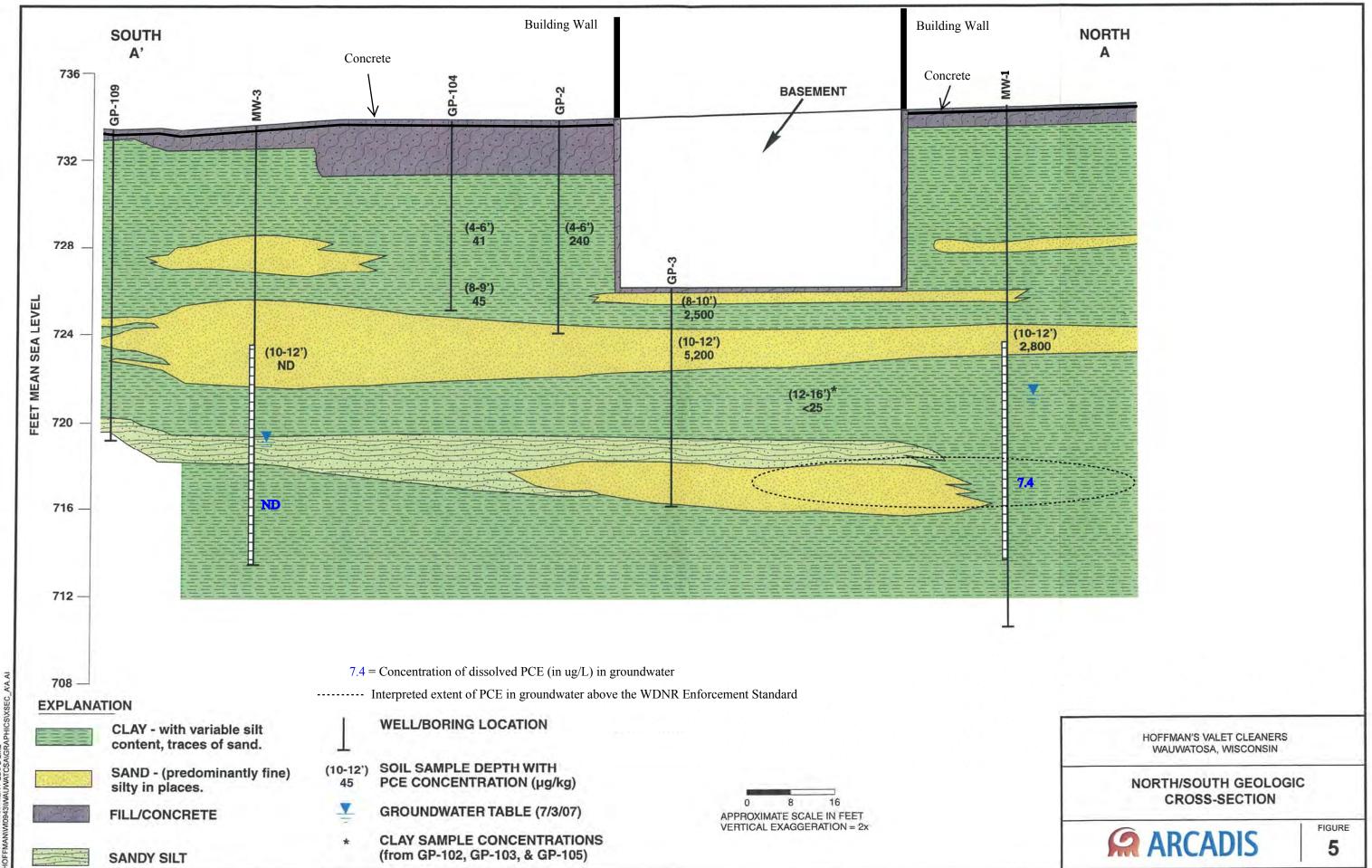
16. OTHER INFORMATION

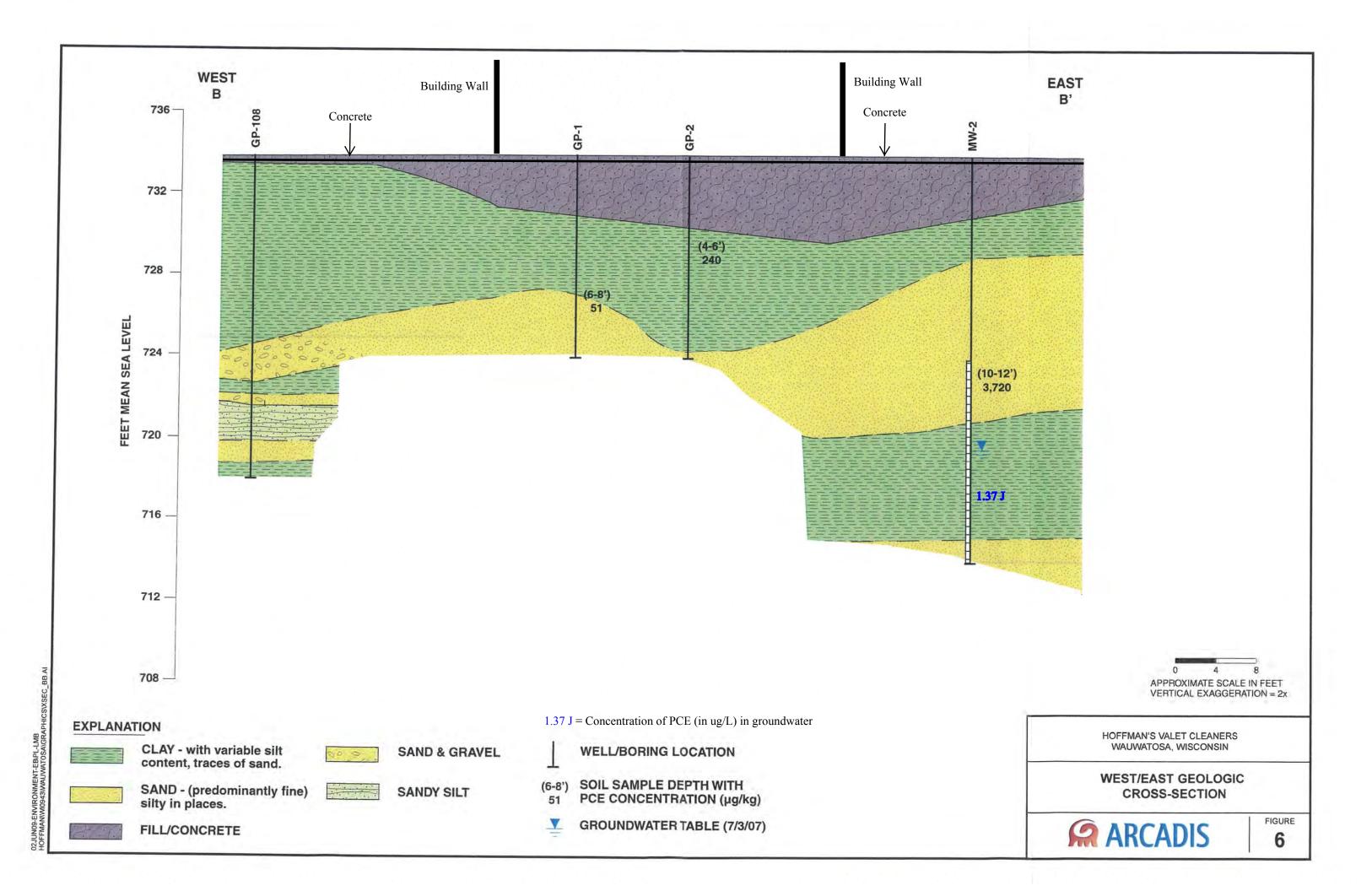
PREPARED BY: Technical Staff

REVISION SUMMARY: Revision #: 2 This MSDS replaces the November 12, 2007 MSDS. Any changes in information are as follows: In Section 1 Approval Date

NFPA STORAGE CLASSIFICATION: Health 2, Flammability 2, Physical Hazard 0


HMIS RATINGS NOTES: Health 2, Flammability 2, Physical Hazard 0, PPE X




APPENDIX F

Geologic Cross-Sections

12MAY09-ENVIRONMENT-EB\PL-LMB HOFFMAN\W0943\WAUWATOSA\GRAPHICS\SBMW LOCS_2.AI

APPENDIX G

Soil and Groundwater Laboratory Analytical Reports

Synergy Environmental Lab, INC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

BRIAN KAPPEN ENVIROFORENSICS N16 W23390 STONE RIDGE DRIVE WAUKESHA, WI 53188

Report Date 16-Sep-13

Project Name Project #	Invoice # E25721										
Lab Code Sample ID Sample Matrix Sample Date	5025721A 6200-MW- Water 9/5/2013	1									
		Result	Unit	LOD I	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic											
VOC's											
Benzene		< 0.24	ug/l	0.24	0.77	1	8260B		9/13/2013	CJR	1
Bromobenzene		< 0.24	ug/l	0.24	0.77	1	8260B		9/13/2013	CJR	1
Bromodichloromet	hane	< 0.32	ug/l	0.32	1.2	1	8260B		9/13/2013	CJR	1
Bromoform	nane	< 0.37	ug/l	0.37	1.2	1	8260B		9/13/2013	CJR	1
tert-Butylbenzene		< 0.36	ug/l	0.36	1.1	1	8260B		9/13/2013	CJR	1
sec-Butylbenzene		< 0.33	ug/l	0.33	1.2	1	8260B		9/13/2013	CJR	1
n-Butylbenzene		< 0.35	ug/l	0.35	1.1	1	8260B		9/13/2013	CJR	1
Carbon Tetrachlori	de	< 0.33	ug/l	0.33	1.1	1	8260B		9/13/2013	CJR	1
Chlorobenzene	ac	< 0.24	ug/l	0.24	0.77	1	8260B		9/13/2013	CJR	1
Chloroethane		< 0.63	ug/l	0.63	2	1	8260B		9/13/2013	CJR	1
Chloroform		< 0.28	ug/l	0.28	0.88	1	8260B		9/13/2013	CJR	1
Chloromethane		< 0.81	ug/l	0.81	2.6	1	8260B		9/13/2013	CJR	1
2-Chlorotoluene		< 0.21	ug/l	0.21	0.66	1	8260B		9/13/2013	CJR	1
4-Chlorotoluene		< 0.21	ug/l	0.21	0.68	1	8260B		9/13/2013	CJR	1
1,2-Dibromo-3-chl	oropropane	< 0.88	ug/l	0.88	2.8	1	8260B		9/13/2013	CJR	1
Dibromochloromet		< 0.22	ug/l	0.22	0.7	1	8260B		9/13/2013	CJR	1
1,4-Dichlorobenzer	ne	< 0.3	ug/l	0.3	0.96	1	8260B		9/13/2013	CJR	1
1,3-Dichlorobenzer	ne	< 0.28	ug/l	0.28	0.89	1	8260B		9/13/2013	CJR	1
1,2-Dichlorobenzer	ne	< 0.36	ug/l	0.36	1.2	1	8260B		9/13/2013	CJR	1
Dichlorodifluorom	ethane	< 0.44	ug/l	0.44	1.4	1	8260B		9/13/2013	CJR	1
1,2-Dichloroethane	2	< 0.41	ug/l	0.41	1.3	1	8260B		9/13/2013	CJR	1
1,1-Dichloroethane		< 0.3	ug/l	0.3	0.97	1	8260B		9/13/2013	CJR	1
1,1-Dichloroethene	•	< 0.4	ug/l	0.4	1.3	1	8260B		9/13/2013	CJR	1
cis-1,2-Dichloroeth	nene	< 0.38	ug/l	0.38	1.2	1	8260B		9/13/2013	CJR	1
trans-1,2-Dichloroe	ethene	< 0.35	ug/l	0.35	1.1	1	8260B		9/13/2013	CJR	1
1,2-Dichloropropa	ne	< 0.32	ug/l	0.32	1	1	8260B		9/13/2013	CJR	1
2,2-Dichloropropa	ne	< 0.36	ug/l	0.36	1.2	1	8260B		9/13/2013	CJR	8
1,3-Dichloropropa	ne	< 0.33	ug/l	0.33	1	1	8260B		9/13/2013	CJR	1
Di-isopropyl ether		< 0.23	ug/l	0.23	0.73	1	8260B		9/13/2013	CJR	1
EDB (1,2-Dibromo	ethane)	< 0.44	ug/l	0.44	1.4	1	8260B		9/13/2013	CJR	1
Ethylbenzene		< 0.55	ug/l	0.55	1.7	1	8260B		9/13/2013	CJR	1
Hexachlorobutadie	ne	< 1.5	ug/l	1.5	4.8	1	8260B		9/13/2013	CJR	1
Isopropylbenzene		< 0.3	ug/l	0.3	0.96	1	8260B		9/13/2013	CJR	1

Project Name HOFFMAN CLEANERS Project

Invoice # E	25721
-------------	-------

 Lab Code
 5025721A

 Sample ID
 6200-MW-1

 Sample Matrix
 Water

 Sample Date
 9/5/2013

Sample Date 7/5/2015										
	Result	Unit	LOD	LOQ D	Dil	Method	Ext Date	Run Date	Analyst	Code
p-Isopropyltoluene	< 0.31	ug/l	0.31	0.98	1	8260B		9/13/2013	CJR	1
Methylene chloride	< 0.5	ug/l	0.5	1.6	1	8260B		9/13/2013	CJR	1
Methyl tert-butyl ether (MTBE)	< 0.23	ug/l	0.23	0.74	1	8260B		9/13/2013	CJR	1
Naphthalene	< 1.7	ug/l	1.7	5.5	1	8260B		9/13/2013	CJR	1
n-Propylbenzene	< 0.25	ug/l	0.25	0.81	1	8260B		9/13/2013	CJR	1
1,1,2,2-Tetrachloroethane	< 0.45	ug/l	0.45	1.4	1	8260B		9/13/2013	CJR	1
1,1,1,2-Tetrachloroethane	< 0.33	ug/l	0.33	1.1	1	8260B		9/13/2013	CJR	1
Tetrachloroethene	5.2	ug/l	0.33	1.1	1	8260B		9/13/2013	CJR	1
Toluene	< 0.69	ug/l	0.69	2.2	1	8260B		9/13/2013	CJR	1
1,2,4-Trichlorobenzene	< 0.98	ug/l	0.98	3.1	1	8260B		9/13/2013	CJR	1
1,2,3-Trichlorobenzene	< 1.8	ug/l	1.8	5.8	1	8260B		9/13/2013	CJR	1
1,1,1-Trichloroethane	< 0.33	ug/l	0.33	1	1	8260B		9/13/2013	CJR	1
1,1,2-Trichloroethane	< 0.34	ug/l	0.34	1.1	1	8260B		9/13/2013	CJR	1
Trichloroethene (TCE)	< 0.33	ug/l	0.33	1	1	8260B		9/13/2013	CJR	1
Trichlorofluoromethane	< 0.71	ug/l	0.71	2.3	1	8260B		9/13/2013	CJR	1
1,2,4-Trimethylbenzene	< 2.2	ug/l	2.2	6.9	1	8260B		9/13/2013	CJR	1
1,3,5-Trimethylbenzene	< 1.4	ug/l	1.4	4.5	1	8260B		9/13/2013	CJR	1
Vinyl Chloride	< 0.18	ug/l	0.18	0.57	1	8260B		9/13/2013	CJR	1
m&p-Xylene	< 0.69	ug/l	0.69	2.2	1	8260B		9/13/2013	CJR	1
o-Xylene	< 0.63	ug/l	0.63	2	1	8260B		9/13/2013	CJR	1
SUR - 4-Bromofluorobenzene	105	REC %			1	8260B		9/13/2013	CJR	1
SUR - Dibromofluoromethane	96	REC %			1	8260B		9/13/2013	CJR	1
SUR - Toluene-d8	100	REC %			1	8260B		9/13/2013	CJR	1
SUR - 1,2-Dichloroethane-d4	95	REC %			1	8260B		9/13/2013	CJR	1

Project Name H Proiect #	HOFFMAN (CLEANERS				Invo	oice # E2572	21		
Lab Code Sample ID Sample Matrix Sample Date	5025721B 6200-MW-2 Water 9/5/2013	2 Result	Unit	LOD	LOQ Dil	Method	Eyt Data	Run Date	Anglyet	Code
Omennia		Kesuit	Umt	LOD	LUQ DI	Methou	Ext Date	Kun Date	Analyst	Coue
Organic										
VOC's		0.04				00.000		0 11 0 10 0 1 0	an	
Benzene Bromobenzene		< 0.24 < 0.32	ug/l	0.24 0.32	0.77 1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
Bromodichlorometh	nane	< 0.32	ug/l ug/l	0.32	1.2 1	8260B 8260B		9/13/2013	CJR	1
Bromoform		< 0.35	ug/l	0.35	1.1 1	8260B		9/13/2013	CJR	1
tert-Butylbenzene		< 0.36	ug/l	0.36	1.2 1	8260B		9/13/2013	CJR	1
sec-Butylbenzene		< 0.33	ug/l	0.33	1 1	8260B		9/13/2013	CJR	1
n-Butylbenzene		< 0.35	ug/l	0.35	1.1 1	8260B		9/13/2013	CJR	1
Carbon Tetrachloric Chlorobenzene	le	< 0.33 < 0.24	ug/l	0.33 0.24	1.1 1 0.77 1	8260B 8260B		9/13/2013	CJR CJR	1 1
Chloroethane		< 0.24	ug/l ug/l	0.24	2 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1
Chloroform		0.30 "J"	ug/l	0.28	0.88 1	8260B		9/13/2013	CJR	1
Chloromethane		< 0.81	ug/l	0.81	2.6 1	8260B		9/13/2013	CJR	1
2-Chlorotoluene		< 0.21	ug/l	0.21	0.66 1	8260B		9/13/2013	CJR	1
4-Chlorotoluene		< 0.21	ug/l	0.21	0.68 1	8260B		9/13/2013	CJR	1
1,2-Dibromo-3-chlo		< 0.88	ug/l	0.88	2.8 1	8260B		9/13/2013	CJR	1
Dibromochlorometh 1,4-Dichlorobenzen		< 0.22 < 0.3	ug/l	0.22 0.3	0.7 1 0.96 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
1,3-Dichlorobenzen		< 0.3	ug/l ug/l	0.3	0.96 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1
1,2-Dichlorobenzen		< 0.26	ug/l	0.36	1.2 1	8260B		9/13/2013	CJR	1
Dichlorodifluorome		< 0.44	ug/l	0.44	1.4 1	8260B		9/13/2013	CJR	1
1,2-Dichloroethane		< 0.41	ug/l	0.41	1.3 1	8260B		9/13/2013	CJR	1
1,1-Dichloroethane		< 0.3	ug/l	0.3	0.97 1	8260B		9/13/2013	CJR	1
1,1-Dichloroethene		< 0.4	ug/l	0.4	1.3 1	8260B		9/13/2013	CJR	1
cis-1,2-Dichloroeth trans-1,2-Dichloroe		0.44 "J" < 0.35	ug/l ug/l	0.38 0.35	1.2 1 1.1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
1,2-Dichloropropan		< 0.33	ug/l	0.33	1.1 1	8260B 8260B		9/13/2013	CJR	1
2,2-Dichloropropan		< 0.36	ug/l	0.36	1.2 1	8260B		9/13/2013	CJR	8
1,3-Dichloropropan	e	< 0.33	ug/l	0.33	1 1	8260B		9/13/2013	CJR	1
Di-isopropyl ether		< 0.23	ug/l	0.23	0.73 1	8260B		9/13/2013	CJR	1
EDB (1,2-Dibromo	ethane)	< 0.44	ug/l	0.44	1.4 1	8260B		9/13/2013	CJR	1
Ethylbenzene Hexachlorobutadier	he	< 0.55 < 1.5	ug/l ug/l	0.55 1.5	1.7 1 4.8 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1
Isopropylbenzene	ic	< 0.3	ug/l	0.3	4.8 I 0.96 I	8260B 8260B		9/13/2013	CJR	1
p-Isopropyltoluene		< 0.31	ug/l	0.31	0.98 1	8260B		9/13/2013	CJR	1
Methylene chloride		< 0.5	ug/l	0.5	1.6 1	8260B		9/13/2013	CJR	1
Methyl tert-butyl et	her (MTBE)	< 0.23	ug/l	0.23	0.74 1	8260B		9/13/2013	CJR	1
Naphthalene		< 1.7	ug/l	1.7	5.5 1	8260B		9/13/2013	CJR	1
n-Propylbenzene 1,1,2,2-Tetrachloro	athana	< 0.25 < 0.45	ug/l	0.25	0.81 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1
1,1,2,2-Tetrachloro		< 0.45 < 0.33	ug/l ug/l	0.45 0.33	1.4 1 1.1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
Tetrachloroethene	ethane	3.9	ug/l	0.33	1.1 1	8260B		9/13/2013	CJR	1
Toluene		< 0.69	ug/l	0.69	2.2 1	8260B		9/13/2013	CJR	1
1,2,4-Trichlorobenz		< 0.98	ug/l	0.98	3.1 1	8260B		9/13/2013	CJR	1
1,2,3-Trichlorobenz		< 1.8	ug/l	1.8	5.8 1	8260B		9/13/2013	CJR	1
1,1,1-Trichloroetha		< 0.33	ug/l	0.33	1 1	8260B		9/13/2013	CJR	1
1,1,2-Trichloroetha Trichloroethene (TC		< 0.34 < 0.33	ug/l ug/l	0.34 0.33	1.1 1 1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
Trichlorofluorometl	,	< 0.33	ug/l ug/l	0.33	2.3 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1
1,2,4-Trimethylben		< 2.2	ug/l	2.2	6.9 1	8260B		9/13/2013	CJR	1
1,3,5-Trimethylben		< 1.4	ug/l	1.4	4.5 1	8260B		9/13/2013	CJR	1
Vinyl Chloride		< 0.18	ug/l	0.18	0.57 1	8260B		9/13/2013	CJR	1
m&p-Xylene		< 0.69	ug/l	0.69		8260B		9/13/2013	CJR	1
o-Xylene	-41 14	< 0.63	ug/l	0.63	2 1	8260B		9/13/2013	CJR	1
SUR - 1,2-Dichloro SUR - 4-Bromofluo		100 101	REC % REC %		1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
SUR - 4-Bromofluo SUR - Dibromofluo		101	REC %		1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1
SUR - Toluene-d8		100	REC %		1	8260B		9/13/2013	CJR	1

Project Name H Proiect #	HOFFMAN	CLEANERS					Invo	bice # E2572	21		
Lab Code	5025721C										
Sample ID	6200-MW-	-3									
Sample Matrix Sample Date	Water 9/5/2013										
Sample Date)/5/2015	Result	Unit		LOQ D	11	Method	Evt Date	Run Date	Anglyst	Code
Organia		Kesuit	Umt	LOD	LOQ D	-11	Methou	Ext Date	Kull Date	Analysi	Coue
Organic VOC's											
VOC's											
Benzene		< 0.24	ug/l	0.24		1	8260B		9/13/2013	CJR	1
Bromobenzene		< 0.32	ug/l	0.32		1	8260B		9/13/2013	CJR	1
Bromodichlorometh Bromoform	nane	< 0.37 < 0.35	ug/l	0.37 0.35		1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
tert-Butylbenzene		< 0.35	ug/l ug/l	0.33		1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1
sec-Butylbenzene		< 0.33	ug/l	0.30		1	8260B		9/13/2013	CJR	1
n-Butylbenzene		< 0.35	ug/l	0.35		1	8260B		9/13/2013	CJR	1
Carbon Tetrachloric	le	< 0.33	ug/l	0.33		1	8260B		9/13/2013	CJR	1
Chlorobenzene		< 0.24	ug/l	0.24		1	8260B		9/13/2013	CJR	1
Chloroethane		< 0.63	ug/l	0.63		1	8260B		9/13/2013	CJR	1
Chloroform		< 0.28	ug/l	0.28	0.88	1	8260B		9/13/2013	CJR	1
Chloromethane		< 0.81	ug/l	0.81	2.6	1	8260B		9/13/2013	CJR	1
2-Chlorotoluene		< 0.21	ug/l	0.21	0.66	1	8260B		9/13/2013	CJR	1
4-Chlorotoluene		< 0.21	ug/l	0.21		1	8260B		9/13/2013	CJR	1
1,2-Dibromo-3-chlo		< 0.88	ug/l	0.88		1	8260B		9/13/2013	CJR	1
Dibromochlorometh		< 0.22	ug/l	0.22		1	8260B		9/13/2013	CJR	1
1,4-Dichlorobenzen		< 0.3	ug/l	0.3		1	8260B		9/13/2013	CJR	1
1,3-Dichlorobenzen		< 0.28	ug/l	0.28		1	8260B		9/13/2013	CJR	1
1,2-Dichlorobenzen		< 0.36	ug/l	0.36		1	8260B		9/13/2013	CJR	1
Dichlorodifluorome		< 0.44	ug/l	0.44		1	8260B		9/13/2013	CJR	1
1,2-Dichloroethane		< 0.41	ug/l	0.41 0.3	1.3 0.97	1	8260B 8260B		9/13/2013	CJR CJR	1 1
1,1-Dichloroethane 1,1-Dichloroethene		< 0.3 < 0.4	ug/l	0.5		1 1	8260B 8260B		9/13/2013 9/13/2013	CJR	1
cis-1,2-Dichloroeth	ene	< 0.4	ug/l ug/l	0.4		1	8260B 8260B		9/13/2013	CJR	1
trans-1,2-Dichloroe		< 0.35	ug/l	0.35		1	8260B		9/13/2013	CJR	1
1,2-Dichloropropan		< 0.32	ug/l	0.32		1	8260B		9/13/2013	CJR	1
2,2-Dichloropropan		< 0.36	ug/l	0.36		1	8260B		9/13/2013	CJR	8
1,3-Dichloropropan		< 0.33	ug/l	0.33		1	8260B		9/13/2013	CJR	1
Di-isopropyl ether		< 0.23	ug/l	0.23	0.73	1	8260B		9/13/2013	CJR	1
EDB (1,2-Dibromo	ethane)	< 0.44	ug/l	0.44	1.4	1	8260B		9/13/2013	CJR	1
Ethylbenzene		< 0.55	ug/l	0.55	1.7	1	8260B		9/13/2013	CJR	1
Hexachlorobutadier	ne	< 1.5	ug/l	1.5	4.8	1	8260B		9/13/2013	CJR	1
Isopropylbenzene		< 0.3	ug/l	0.3		1	8260B		9/13/2013	CJR	1
p-Isopropyltoluene		< 0.31	ug/l	0.31		1	8260B		9/13/2013	CJR	1
Methylene chloride		< 0.5	ug/l	0.5		1	8260B		9/13/2013	CJR	1
Methyl tert-butyl et	her (MTBE)	< 0.23	ug/l	0.23		1	8260B		9/13/2013	CJR	1
Naphthalene		< 1.7	ug/l	1.7 0.25		1 1	8260B 8260B		9/13/2013	CJR CJR	1 1
n-Propylbenzene 1,1,2,2-Tetrachloro	othono	< 0.25 < 0.45	ug/l	0.23		1	8260B 8260B		9/13/2013 9/13/2013	CJR	1
1,1,2,2-Tetrachloro		< 0.43	ug/l ug/l	0.43		1	8260B 8260B		9/13/2013	CJR	1
Tetrachloroethene	ethane	< 0.33	ug/l	0.33		1	8260B 8260B		9/13/2013	CJR	1
Toluene		< 0.69	ug/l	0.69		1	8260B		9/13/2013	CJR	1
1,2,4-Trichlorobenz	ene	< 0.98	ug/l	0.98		1	8260B		9/13/2013	CJR	1
1,2,3-Trichlorobenz		< 1.8	ug/l	1.8		1	8260B		9/13/2013	CJR	1
1,1,1-Trichloroetha	ne	< 0.33	ug/l	0.33	1	1	8260B		9/13/2013	CJR	1
1,1,2-Trichloroetha	ne	< 0.34	ug/l	0.34	1.1	1	8260B		9/13/2013	CJR	1
Trichloroethene (TO	CE)	< 0.33	ug/l	0.33	1	1	8260B		9/13/2013	CJR	1
Trichlorofluorometh		< 0.71	ug/l	0.71		1	8260B		9/13/2013	CJR	1
1,2,4-Trimethylben		< 2.2	ug/l	2.2		1	8260B		9/13/2013	CJR	1
1,3,5-Trimethylben	zene	< 1.4	ug/l	1.4		1	8260B		9/13/2013	CJR	1
Vinyl Chloride		< 0.18	ug/l	0.18		1	8260B		9/13/2013	CJR	1
m&p-Xylene		< 0.69	ug/l	0.69		1	8260B		9/13/2013	CJR	1
o-Xylene	romother -	< 0.63	ug/l PEC %	0.63	2	1	8260B		9/13/2013	CJR	1
SUR - Dibromofluo SUR - 1,2-Dichloro		99 95	REC % REC %			1 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
SUR - 4-Bromofluo		95 106	REC %			1	8260B 8260B		9/13/2013 9/13/2013	CJR	1
SUR - Toluene-d8		101	REC %			1	8260B 8260B		9/13/2013	CJR	1
			100 /0			•					-

Project Name H Proiect #	HOFFMAN	CLEANERS				Invo	oice # E2572	21		
Lab Code	5025721D									
Sample ID	6200-MW	-DUP								
Sample Matrix Sample Date	Water 9/5/2013									
_		Result	Unit	LOD	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code
Organic					_				-	
VOC's										
Benzene		< 0.24	ug/l	0.24	0.77 1	8260B		9/13/2013	CJR	1
Bromobenzene		< 0.24	ug/l	0.24	1 1	8260B		9/13/2013	CJR	1
Bromodichlorometh	nane	< 0.37	ug/l	0.37	1.2 1	8260B		9/13/2013	CJR	1
Bromoform		< 0.35	ug/l	0.35	1.1 1	8260B		9/13/2013	CJR	1
tert-Butylbenzene		< 0.36	ug/l	0.36	1.2 1	8260B		9/13/2013	CJR	1
sec-Butylbenzene		< 0.33	ug/l	0.33	1 1	8260B		9/13/2013	CJR	1
n-Butylbenzene Carbon Tetrachlorid	1.	< 0.35	ug/l	0.35 0.33	1.1 1 1.1 1	8260B 8260B		9/13/2013	CJR CJR	1 1
Chlorobenzene	le	< 0.33 < 0.24	ug/l ug/l	0.33	0.77 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1
Chloroethane		< 0.24	ug/l	0.24	2 1	8260B		9/13/2013	CJR	1
Chloroform		< 0.28	ug/l	0.28	0.88 1	8260B		9/13/2013	CJR	1
Chloromethane		< 0.81	ug/l	0.81	2.6 1	8260B		9/13/2013	CJR	1
2-Chlorotoluene		< 0.21	ug/l	0.21	0.66 1	8260B		9/13/2013	CJR	1
4-Chlorotoluene		< 0.21	ug/l	0.21	0.68 1	8260B		9/13/2013	CJR	1
1,2-Dibromo-3-chlo		< 0.88	ug/l	0.88	2.8 1	8260B		9/13/2013	CJR	1
Dibromochloromet		< 0.22	ug/l	0.22	0.7 1	8260B		9/13/2013	CJR	1
1,4-Dichlorobenzen 1,3-Dichlorobenzen		< 0.3 < 0.28	ug/l	0.3 0.28	0.96 1 0.89 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
1,2-Dichlorobenzen		< 0.28	ug/l ug/l	0.28	1.2 1	8260B 8260B		9/13/2013	CJR	1
Dichlorodifluorome		< 0.44	ug/l	0.44	1.4 1	8260B		9/13/2013	CJR	1
1,2-Dichloroethane		< 0.41	ug/l	0.41	1.3 1	8260B		9/13/2013	CJR	1
1,1-Dichloroethane		< 0.3	ug/l	0.3	0.97 1	8260B		9/13/2013	CJR	1
1,1-Dichloroethene		< 0.4	ug/l	0.4	1.3 1	8260B		9/13/2013	CJR	1
cis-1,2-Dichloroeth		0.40 "J"	ug/l	0.38	1.2 1	8260B		9/13/2013	CJR	1
trans-1,2-Dichloroe		< 0.35	ug/l	0.35	1.1 1	8260B		9/13/2013	CJR	1
1,2-Dichloropropan 2,2-Dichloropropan		< 0.32 < 0.36	ug/l	0.32 0.36	1 1 1.2 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 8
1,3-Dichloropropan		< 0.30	ug/l ug/l	0.30	1.2 1	8260B		9/13/2013	CJR	8 1
Di-isopropyl ether		< 0.23	ug/l	0.23	0.73 1	8260B		9/13/2013	CJR	1
EDB (1,2-Dibromo	ethane)	< 0.44	ug/l	0.44	1.4 1	8260B		9/13/2013	CJR	1
Ethylbenzene		< 0.55	ug/l	0.55	1.7 1	8260B		9/13/2013	CJR	1
Hexachlorobutadie	ne	< 1.5	ug/l	1.5	4.8 1	8260B		9/13/2013	CJR	1
Isopropylbenzene		< 0.3	ug/l	0.3	0.96 1	8260B		9/13/2013	CJR	1
p-Isopropyltoluene		< 0.31	ug/l	0.31	0.98 1	8260B		9/13/2013	CJR	1
Methylene chloride Methyl tert-butyl et		< 0.5 < 0.23	ug/l ug/l	0.5 0.23	1.6 1 0.74 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
Naphthalene	nei (withe)	< 1.7	ug/l	1.7	5.5 1	8260B		9/13/2013	CJR	1
n-Propylbenzene		< 0.25	ug/l	0.25	0.81 1	8260B		9/13/2013	CJR	1
1,1,2,2-Tetrachloro	ethane	< 0.45	ug/l	0.45	1.4 1	8260B		9/13/2013	CJR	1
1,1,1,2-Tetrachloro	ethane	< 0.33	ug/l	0.33	1.1 1	8260B		9/13/2013	CJR	1
Tetrachloroethene		3.8	ug/l	0.33	1.1 1	8260B		9/13/2013	CJR	1
Toluene		< 0.69	ug/l	0.69	2.2 1	8260B		9/13/2013	CJR	1
1,2,4-Trichlorobenz 1,2,3-Trichlorobenz		< 0.98 < 1.8	ug/l	0.98 1.8	3.1 1 5.8 1	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
1,1,1-Trichloroetha		< 0.33	ug/l ug/l	0.33	1 1	8260B 8260B		9/13/2013	CJR	1
1,1,2-Trichloroetha		< 0.34	ug/l	0.34	1.1 1	8260B		9/13/2013	CJR	1
Trichloroethene (TO		< 0.33	ug/l	0.33	1 1	8260B		9/13/2013	CJR	1
Trichlorofluoromet	,	< 0.71	ug/l	0.71	2.3 1	8260B		9/13/2013	CJR	1
1,2,4-Trimethylben		< 2.2	ug/l	2.2	6.9 1	8260B		9/13/2013	CJR	1
1,3,5-Trimethylben	zene	< 1.4	ug/l	1.4	4.5 1	8260B		9/13/2013	CJR	1
Vinyl Chloride		< 0.18	ug/l	0.18	0.57 1	8260B		9/13/2013	CJR	1
m&p-Xylene o-Xylene		< 0.69 < 0.63	ug/l ug/l	0.69 0.63	$ \begin{array}{ccc} 2.2 & 1 \\ 2 & 1 \end{array} $	8260B 8260B		9/13/2013 9/13/2013	CJR CJR	1 1
SUR - 4-Bromofluc	robenzene	< 0.63 105	ug/1 REC %	0.05	2 1	8260B 8260B		9/13/2013	CJR CJR	1
SUR - Dibromofluc		97	REC %		1	8260B		9/13/2013	CJR	1
SUR - Toluene-d8		100	REC %		1	8260B		9/13/2013	CJR	1
SUR - 1,2-Dichloro	ethane-d4	96	REC %		1	8260B		9/13/2013	CJR	1

Lab. cond SCONTEL DI BLOB LACK Sample Dim GOU-FIEL DI BLOB LACK Sample Dim Visit Visit Visit Sample Dim Rabu Tui LOD I.O Male Rabu Rabu Cole Openio Sample Dim Sample D	Project Name	HOFFMAN	CLEANERS				Inve	bice # E2572	21		
Organic Norse Barzare 0.24 0.71 1 8209B 912203 CIR 1 Bronnoberone 0.632 ug1 0.32 1 1 8209B 912203 CIR 1 Bronnoberone 0.633 ug1 0.33 1.1 1 8209B 912203 CIR 1 see haybhanzee 0.33 ug1 0.33 1.1 1 8209B 912203 CIR 1 see haybhanzee 0.033 ug1 0.33 1.1 1 8209B 912203 CIR 1 Choroner 0.033 ug1 0.33 1.1 1 8209B 912203 CIR 1 Choronerhane 0.033 ug1 0.34 1.4 1 8209B 912203 CIR 1 Choronerhane 0.034 ug1 0.4 1 8209B 912203 CIR 1 1.2 Dichoronborne 0.034	Sample ID Sample Matrix	6200-FIEL Water	LD BLANK								~ -
VOC's Bernom. <0.24			Result	Unit	LOD	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code
Benzerse <th< th=""><th>Organic</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Organic										
Bronschlowenhene 0.32 0.12 1 1 8200B 91/22013 C/R 1 Bronschlowenhene < 0.35 0.17 1.2 1 8200B 91/22013 C/R 1 Bronschlowenhene < 0.33 0.13 1.1 8200B 91/22013 C/R 1 Bronschlowenhene < 0.33 0.13 1.1 8200B 91/22013 C/R 1 Bronschlowenhene < 0.33 0.13 1.1 8200B 91/22013 C/R 1 Chlowenhene < 0.03 0.11 1 8200B 91/22013 C/R 1 Chlowenhene < 0.03 0.21 0.68 1 8200B 91/22013 C/R 1 Chlowenhene < 0.22 0.97 1 8200B 91/22013 C/R 1 Chlowenhene < 0.22 0.97 1 8200B 91/22013 C/R <t< td=""><td>VOC's</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	VOC's										
Bromocickidnomethane <0.07 up1 0.37 1.2 1 82008 91/22013 C/R 1 tert harylpenzene <0.36	Benzene		< 0.24	ug/l	0.24	0.77 1	8260B		9/12/2013	CJR	1
Broundorm <0.55 up1 0.35 1.1 1 82008 91/22013 C.R 1 sac-harybhanzne <0.33				-							
tert Burylhenzene <0.36 0.36 1.2 1 8200B 91/2013 CIR 1 n-Burylhenzene <0.35 0.11 1.8 8200B 91/2013 CIR 1 n-Burylhenzene <0.35 0.11 1.8 8200B 91/2013 CIR 1 Chlorochane <0.34 0.21 0.24 0.77 1.8 8200B 91/2013 CIR 1 Chlorochane <0.34 0.21 0.63 2 1 8200B 91/2013 CIR 1 Chlorochane <0.32 0.21 0.81 2.6 1 8200B 91/2013 CIR 1 Chlorochane <0.31 0.21 0.81 1 8200B 91/2013 CIR 1 Chlorochane <0.32 0.91 0.88 1 8200B 91/2013 CIR 1 1.2-bichorochane <0.33 0.91 0.8 1 8200B 91/2013 CIR 1 <tr< td=""><td></td><td>hane</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>		hane		-							
ssc.Baybhenzene < 0.33				-							
n-B-dy/barzene < 0.35	•			-							
Cachon Ternschloride < 0.33	•			-							
Chlaroschane	•	de		-							
Chlorondma < 0.28 up1 0.28 0.81 2.6 8.260B 9.12.013 C/R 1 2-Chlorondhane < 0.21	Chlorobenzene		< 0.24	ug/l	0.24	0.77 1	8260B		9/12/2013	CJR	1
Chloromethane < 0.81 ug1 0.81 2.6 dir 972013 CJR 1 4-Chloronlame < 0.21	Chloroethane		< 0.63	ug/l					9/12/2013	CJR	1
2-Chlorodolaren <0.21				-							
4-Chlorosobarene < 0.21				-							
1.2.Dibromoch-3-chloropopane < 0.88				-							
		oropropage		-							
1 +1-bichloodenzene< 0.3 $ug1$ 0.30.9618260B9/12/2013CJR11.3-Dichlorobenzene< 0.36				-							
1.2-Dichlorodenzene< 0.36ug/10.361.21820B9/122013C/R1Dichlorodifluoromethane< 0.44				-							1
	1,3-Dichlorobenzer	ne	< 0.28	ug/l	0.28	0.89 1	8260B		9/12/2013	CJR	1
1.2-Dickloroethane< 0.41ug10.411.318260B9/122013CJR11,1-Dickloroethane< 0.3	,			ug/l							
1.1-Dichloroethane< 0.3ug10.30.971\$260B9/12/2013CJR11.1-Dichloroethene< 0.38											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,										
cis-1,2-Dichlorosethene< 0.38ug/l0.381,218260B9/12/2013CJR1trans-1,2-Dichlorosethene< 0.35	,			-							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,			-							
2,2-Dichloropropane< 0.36ug/l0.361.218260B9/12/2013CJR81.3-Dichloropropane< 0.33	,			-							1
1,3-Dichloropropane < 0.33	1,2-Dichloropropar	ne	< 0.32	ug/l	0.32	1 1	8260B		9/12/2013	CJR	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			< 0.36	ug/l		1.2 1			9/12/2013		8
EDB (1,2-Dibromoethane)< 0.44ug/10.441.418 260B9/12/2013CJR1Ethylbenzene< 0.55		ne		-							
Ethylbenzene< 0.55 u_g/l 0.551.718260B $g/l2/2013$ CJR1Hexachlorobutadiene< 1.5		(athona)		-							
Hexachlorobutadiene< 1.5ug/l1.54.818260B9/12/2013CJR1Isopropylbenzene< 0.3		etnane)		-							1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	•	ne									1
p-Isopropyltoluene< 0.31ug/l0.310.9818260B9/12/2013CJR1Methylene chloride< 0.5				-							
Methyl tert-butyl ether (MTBE)< 0.23ug/l0.230.7418260B9/12/2013CJR1Naphthalene< 1.7			< 0.31		0.31	0.98 1	8260B		9/12/2013	CJR	1
Naphthalene<1.7 ug/l 1.75.51 $8260B$ $9/12/2013$ CJR 1n-Propylbenzene< 0.25	•			ug/l					9/12/2013		1
n-Fropylbenzene< 0.25ug/l0.250.8118260B9/12/2013CJR11,1,2,2-Tetrachloroethane< 0.45		ther (MTBE)		-							
1,1,2,2-Tetrachloroethane< 0.45ug/l0.451.418260B9/12/2013CJR1 $1,1,1,2$ -Tetrachloroethane< 0.33	-										
1,1,2-Tetrachloroethane < 0.33 ug/l 0.33 1.1 1 $8260B$ $9/12/2013$ CJR 1 Tetrachloroethene < 0.33 ug/l 0.33 1.1 1 $8260B$ $9/12/2013$ CJR 1 Toluene < 0.69 ug/l 0.69 2.2 1 $8260B$ $9/12/2013$ CJR 1 $1,2,4$ -Trichlorobenzene < 0.98 ug/l 0.98 3.1 1 $8260B$ $9/12/2013$ CJR 1 $1,2,3$ -Trichlorobenzene < 1.8 ug/l 0.33 1 1 $8260B$ $9/12/2013$ CJR 1 $1,1,1$ -Trichloroethane < 0.33 ug/l 0.33 1 1 $8260B$ $9/12/2013$ CJR 1 $1,1,2$ -Trichloroethane < 0.33 ug/l 0.33 1 1 $8260B$ $9/12/2013$ CJR 1 Trichloroethane < 0.33 ug/l 0.33 1 1 $8260B$ $9/12/2013$ CJR 1 Trichlorofluoromethane < 0.711 ug/l 0.71 2.3 1 $8260B$ $9/12/2013$ CJR 1 $1,3,5$ -Trimethylbenzene < 1.4 ug/l 0.4 4.5 1 $8260B$ $9/12/2013$ CJR 1 $1,3,5$ -Trimethylbenzene < 1.4 ug/l 0.18 0.57 1 $8260B$ $9/12/2013$ CJR 1 $mxp-Xylene$ < 0.63 ug/l 0.63 2 1 $8260B$ $9/12/2013$		athana		-							
Tetrachloroethene< 0.33ug/l0.331.118260B $9/12/2013$ CJR1Toluene< 0.69				-							-
Toluene < 0.69 ug/l 0.69 2.2 1 8260B 9/12/2013 CJR 1 1,2,4-Trichlorobenzene < 0.98				-							
1,2,3-Trichlorobenzene < 1.8	Toluene		< 0.69	-	0.69	2.2 1	8260B		9/12/2013	CJR	1
1,1,1-Trichloroethane < 0.33				ug/l							
1,1,2-Trichloroethane < 0.34				-							
Trichloroethene (TCE) < 0.33 ug/l 0.33 1 1 8260B 9/12/2013 CJR 1 Trichlorofluoromethane < 0.71				•							
Trichlorofluoromethane < 0.71 ug/l 0.71 2.3 1 8260B 9/12/2013 CJR 1 1,2,4-Trimethylbenzene < 2.2											
1,2,4-Trimethylbenzene < 2.2	· ·	,		-							
1,3,5-Trimethylbenzene < 1.4				-							
m&p-Xylene < 0.69 ug/l 0.69 2.2 1 8260B 9/12/2013 CJR 1 o-Xylene < 0.63	•			-							1
o-Xylene < 0.63	•			ug/l							
SUR - 1,2-Dichloroethane-d4 93 REC % 1 8260B 9/12/2013 CJR 1 SUR - 4-Bromofluorobenzene 108 REC % 1 8260B 9/12/2013 CJR 1 SUR - Dibromofluoromethane 97 REC % 1 8260B 9/12/2013 CJR 1				-							
SUR - 4-Bromofluorobenzene 108 REC % 1 8260B 9/12/2013 CJR 1 SUR - Dibromofluoromethane 97 REC % 1 8260B 9/12/2013 CJR 1	•	athor - 14			0.63						
SUR - Dibromofluoromethane 97 REC % 1 8260B 9/12/2013 CJR 1											

Project Name H Proiect #	HOFFMAN	CLEANERS					Invoice # E257	21		
Lab Code	5025721F									
Sample ID	TRIP BLA	NK								
Sample Matrix Sample Date	Water 9/5/2013									
		Result	Unit	LOD	LOQ Dil	Metho	d Ext Date	Run Date	Analyst	Code
Organic										
VOC's										
Benzene		< 0.24	ug/l	0.24	0.77 1	8260B		9/12/2013	CJR	1
Bromobenzene		< 0.32	ug/l	0.32	1 1			9/12/2013	CJR	1
Bromodichlorometh	nane	< 0.37	ug/l	0.37	1.2 1			9/12/2013	CJR	1
Bromoform		< 0.35	ug/l	0.35	1.1 1			9/12/2013	CJR	1
tert-Butylbenzene		< 0.36	ug/l	0.36	1.2 1			9/12/2013	CJR	1
sec-Butylbenzene n-Butylbenzene		< 0.33 < 0.35	ug/l ug/l	0.33 0.35	1 1 1.1 1			9/12/2013 9/12/2013	CJR CJR	1 1
Carbon Tetrachlorid	le	< 0.33	ug/l	0.33	1.1 1			9/12/2013	CJR	1
Chlorobenzene		< 0.24	ug/l	0.24	0.77 1			9/12/2013	CJR	1
Chloroethane		< 0.63	ug/l	0.63	2 1	8260B		9/12/2013	CJR	1
Chloroform		< 0.28	ug/l	0.28	0.88 1			9/12/2013	CJR	1
Chloromethane		< 0.81	ug/l	0.81	2.6 1			9/12/2013	CJR	1
2-Chlorotoluene		< 0.21 < 0.21	ug/l	0.21 0.21	0.66 1 0.68 1			9/12/2013	CJR CJR	1 1
4-Chlorotoluene 1,2-Dibromo-3-chlo	ronronane	< 0.21	ug/l ug/l	0.21	0.68 1 2.8 1			9/12/2013 9/12/2013	CJR CJR	1
Dibromochlorometl		< 0.33	ug/l	0.88	0.7 1			9/12/2013	CJR	1
1,4-Dichlorobenzen		< 0.3	ug/l	0.3	0.96 1			9/12/2013	CJR	1
1,3-Dichlorobenzen	ie	< 0.28	ug/l	0.28	0.89 1	8260B		9/12/2013	CJR	1
1,2-Dichlorobenzen	ie	< 0.36	ug/l	0.36	1.2 1	8260B		9/12/2013	CJR	1
Dichlorodifluorome	ethane	< 0.44	ug/l	0.44	1.4 1			9/12/2013	CJR	1
1,2-Dichloroethane		< 0.41	ug/l	0.41	1.3 1			9/12/2013	CJR	1
1,1-Dichloroethane 1,1-Dichloroethene		< 0.3 < 0.4	ug/l ug/l	0.3 0.4	0.97 1 1.3 1			9/12/2013 9/12/2013	CJR CJR	1 1
cis-1,2-Dichloroeth	ene	< 0.4	ug/l	0.38	1.2 1			9/12/2013	CJR	1
trans-1,2-Dichloroe		< 0.35	ug/l	0.35	1.1 1			9/12/2013	CJR	1
1,2-Dichloropropan	e	< 0.32	ug/l	0.32	1 1	8260B		9/12/2013	CJR	1
2,2-Dichloropropan	e	< 0.36	ug/l	0.36	1.2 1	8260B		9/12/2013	CJR	8
1,3-Dichloropropan	e	< 0.33	ug/l	0.33	1 1			9/12/2013	CJR	1
Di-isopropyl ether	4	< 0.23	ug/l	0.23	0.73 1			9/12/2013	CJR	1
EDB (1,2-Dibromo Ethylbenzene	ethane)	< 0.44 < 0.55	ug/l ug/l	0.44 0.55	1.4 1 1.7 1	8260B 8260B		9/12/2013 9/12/2013	CJR CJR	1 1
Hexachlorobutadie	ne	< 1.5	ug/l	1.5	4.8 1			9/12/2013	CJR	1
Isopropylbenzene		< 0.3	ug/l	0.3	0.96 1			9/12/2013	CJR	1
p-Isopropyltoluene		< 0.31	ug/l	0.31	0.98 1	8260B		9/12/2013	CJR	1
Methylene chloride		< 0.5	ug/l	0.5	1.6 1			9/12/2013	CJR	1
Methyl tert-butyl et	her (MTBE)	< 0.23	ug/l	0.23	0.74 1			9/12/2013	CJR	1
Naphthalene		< 1.7	ug/l	1.7	5.5 1			9/12/2013	CJR	1
n-Propylbenzene 1,1,2,2-Tetrachloro	athana	< 0.25 < 0.45	ug/l ug/l	0.25 0.45	0.81 1 1.4 1			9/12/2013 9/12/2013	CJR CJR	1 1
1,1,2,2-Tetrachloro		< 0.43	ug/l	0.43	1.4 1			9/12/2013	CJR	1
Tetrachloroethene		< 0.33	ug/l	0.33	1.1 1			9/12/2013	CJR	1
Toluene		< 0.69	ug/l	0.69	2.2 1			9/12/2013	CJR	1
1,2,4-Trichlorobenz	zene	< 0.98	ug/l	0.98	3.1 1			9/12/2013	CJR	1
1,2,3-Trichlorobenz		< 1.8	ug/l	1.8	5.8 1			9/12/2013	CJR	1
1,1,1-Trichloroetha		< 0.33	ug/l	0.33	1 1			9/12/2013	CJR	1
1,1,2-Trichloroetha Trichloroethene (TC		< 0.34 < 0.33	ug/l ug/l	0.34 0.33	1.1 1 1 1			9/12/2013 9/12/2013	CJR CJR	1 1
Trichlorofluoromet	,	< 0.33	ug/l ug/l	0.33	2.3 1			9/12/2013	CJR CJR	1
1,2,4-Trimethylben		< 2.2	ug/l	2.2	6.9 1			9/12/2013	CJR	1
1,3,5-Trimethylben		< 1.4	ug/l	1.4	4.5 1			9/12/2013	CJR	1
Vinyl Chloride		< 0.18	ug/l	0.18	0.57 1			9/12/2013	CJR	1
m&p-Xylene		< 0.69	ug/l	0.69	2.2 1			9/12/2013	CJR	1
o-Xylene		< 0.63	ug/l	0.63	2 1			9/12/2013	CJR	1
SUR - Toluene-d8 SUR - 1,2-Dichloro	ethane d4	100 95	REC % REC %		1			9/12/2013 9/12/2013	CJR CJR	1 1
SUR - 1,2-Dichloro		95 107	REC %		1			9/12/2013	CJR CJR	1
SUR - Dibromofluc		95	REC %		1			9/12/2013	CJR	1

Invoice # E25721

"J" Flag: Analyte d	etected betwe	en LOD and LOQ	LOD Limit of Detection	LOQ Limit of Quantitation
	Code	Comment		
	1	Laboratory QC within limits		
	8	Closing calibration standard	d not within established limits.	

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Authorized Signature

Michaelphil

Lab I.D. #						1		-	nerg		- C		Ċ.			L	Pa		-	of 1	- 10		
Account No.		Que	ote No.:			1 8	inviro	nme	ntal l	L, ż	яb	51	n	C,								Reque	
Project #:						1	1990	Prospect C	t. • Appleton	, WI	1 549	14				0	Rust						orization)
Sampler: isignature)	mathin Jul	*				1			• FAX 920-7										¥	Norn	nal Tur	n Aroun	d
Project (Name / Lo	cation)" Hot Fran	Ma	au ah	s- 1	Jan	1 tora	L)T				A	naly	sis	Req	uest	ed						Other An	nalysis
Reports To: Bei	m Kappan/Way	N To	cebourd	a Invo	ice To:	Holos	Shun	. Your			T	T		T		T			1		11		
	ofoneus: cs	10	a vice in				forensics										0						
	123390 Ston	, R.	1. Dr				V Cop. to	1 Au									OLID						
City State Zip 1 .	aukesha L	- 0-	Sevi	Gity	State Z	ip TI	iano polis	TI 4	1. Jack	Sep 95)	p.95				ENF		D S((i)					
Phone Jul C	122-3988	7 22	10B	Pho	ne 🥏	17-17	2-7870	-10 10	0007	O Se	(Mod GRO Sep 95)	ITE	III	(0	121) THA		INDE	542	(0)	N N			
FAX			_	FAX		11-91	0-18/0			HO P	d GB	NITP	EASE	827	A BC		JSPE	(EP.A	A 826	VEND			PID
Lab I.D.	Sample I.D.	1000	ection Time	Comp		Filtered Y/N	No. of Containers	Sample Type (Matrix)*	Preservation	DRO (Mod DRO	GRO (Mo	LEAD NITRATE/NITRITE	OIL & GREASE	PAH (EPA 8270)	PVOC (EPA 8021) PVOC + NAPHTHAI FNF	SULFATE	TOTAL SUSPENDED SOLIDS	VOC.DW (EPA 542.2)	VOC (EPA 8260)	B-HUHA METALS			FIE
5025721 A	1,200 - MW.1	9/5/13	\$ (1.30		K	N	3	GW	HCI							-			×				
B	6000-MW-2		10:30		+	N	E.F.	GW	HCI										×				
C	6200-MW-3		9.40	1	*	N,	3	GW	HCI			+							Y				
D	6200-MW-DU	1.			+	N	3	GW	+ICI			-			-	-		-	+ +				
EF	GOUD-Field Black						1					-							4				
	Ters I factures																		1				
										1		-											
												+		-	-			-	-		-		
Commonte/Spor	l cial Instructions (*S	pocifu	around	water	GW" F	Jeinking V	Vater "DW" M	Jaeto Water	"MMV" Soil "S'	· Air	r "A"	Oil	Slud	ne e	inte i	-			-				
Comments/Spec	Hal Instructions (*S	pecity	ground	water '	'GW', L	annking v	vater Dw , w	laste Water	"WW", Soil "S	, All	Г А.,	OII,	Siud	ge e	stG_)								
Met	y - To be complete	Din	Ian		- Rolif	quished B			Time 12:05	9		613	Bece	iyod FL	By:-(sign)	-					ime 205	Date
	ip. of Temp. Blank ict upon receipt:	-	°C On Id		Rec	eived in La	boratory By: (16	10	-	_					T	ime:	_	10	00	D	ate: a/	1/10

Synergy Environmental Lab, INC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

WAYNE FASSBENDER ENVIROFORENSICS 825 N. CAPITOL AVENUE INDIANAPOLIS, IN 46204

Report Date 28-Sep-16

Project Name Project #	FMR HOFF 6200 PO#20	MAN'S VALET 0169047	CLEANE	RS			Invo	oice # E3173	39		
Lab Code Sample ID Sample Matrix											
Sample Date	9/15/2016	Result	Unit		LOQ D		Method	Fyt Data	Run Date	Anglyet	Code
Organic		Result	Omt	LOD	LUQ D	-	Methou	LAt Dutt	Kun Date	1 Mai yst	Cout
VOC's											
		0.44		o			0.0.405		0.00.000.000	am	
Benzene		< 0.44	ug/l	0.44	1.4	1	8260B		9/24/2016	CJR	1
Bromobenzene		< 0.48	ug/l	0.48	1.5	1	8260B		9/24/2016	CJR	1
Bromodichlorome	ethane	< 0.46	ug/l	0.46	1.5	1	8260B		9/24/2016	CJR	1
Bromoform		< 0.46	ug/l	0.46	1.5	1	8260B		9/24/2016	CJR	1
tert-Butylbenzene		< 1.1	ug/l	1.1	3.4	1	8260B		9/24/2016	CJR	1
sec-Butylbenzene		< 1.2	ug/l	1.2	3.8	1	8260B		9/24/2016	CJR	1
n-Butylbenzene	• •	< 1	ug/l	1	3.3	1	8260B		9/24/2016	CJR	1
Carbon Tetrachlo	nde	< 0.51	ug/l	0.51	1.6	1	8260B		9/24/2016	CJR	1
Chlorobenzene		< 0.46	ug/l	0.46	1.4	1	8260B		9/24/2016	CJR CJR	1
Chloroethane		< 0.65	ug/l	0.65	2.1	1	8260B		9/24/2016		1
Chloroform		< 0.43	ug/l	0.43	1.4	1	8260B		9/24/2016	CJR	1
Chloromethane		< 1.9	ug/l	1.9	6	1	8260B		9/24/2016	CJR	1
2-Chlorotoluene		< 0.4	ug/l	0.4	1.3 2	1	8260B		9/24/2016	CJR CJR	1
4-Chlorotoluene	.1	< 0.63	ug/l	0.63	4.5	1	8260B 8260B		9/24/2016 9/24/2016	CJR CJR	1 1
1,2-Dibromo-3-ch Dibromochloromo		< 1.4 < 0.45	ug/l	1.4 0.45	4.5 1.4	1 1	8260B 8260B		9/24/2016 9/24/2016	CJR CJR	1
1.4-Dichlorobenz		< 0.43	ug/l	0.43	1.4 1.6	1	8260B 8260B		9/24/2016	CJR	1
1,3-Dichlorobenz		< 0.49	ug/l	0.49	1.6 1.6	1	8260B 8260B		9/24/2016	CJR CJR	1
1,3-Dichlorobenz		< 0.32	ug/l	0.32	1.6	1	8260B 8260B		9/24/2016	CJR	1
Dichlorodifluoror		< 0.46	ug/l	0.46	2.8	1	8260B 8260B		9/24/2016	CJR CJR	1
		< 0.87	ug/l	0.87	2.8 1.5	1	8260B 8260B		9/24/2016 9/24/2016	CJR	1
1,2-Dichloroethar 1.1-Dichloroethar		< 0.48	ug/l	0.48	1.5 3.6	1	8260B 8260B		9/24/2016	CJR	1
1,1-Dichloroether		< 0.65	ug/l	0.65	3.0 2.1	1	8260B 8260B		9/24/2010	CJR	1
cis-1,2-Dichloroe		< 0.65	ug/l ug/l	0.65	2.1 1.4	1	8260B 8260B		9/24/2016	CJR	1
trans-1,2-Dichlore		< 0.43	ug/l	0.43	1.4	1	8260B		9/24/2010	CJR	1
1,2-Dichloroprop		< 0.43	ug/l	0.34	1.37	1	8260B 8260B		9/24/2010	CJR	1
		< 3.1	e	3.1	9.8	1	8260B		9/24/2010	CJR	1
2,2-Dichloropropa 1,3-Dichloropropa		< 0.42	ug/l ug/l	0.42	9.8 1.3	1	8260B 8260B		9/24/2016	CJR CJR	1
Di-isopropyl ethe		< 0.42	ug/l	0.42	1.3	1	8260B 8260B		9/24/2010	CJR	1
EDB (1,2-Dibrom		< 0.44	ug/l	0.44	1.4	1	8260B 8260B		9/24/2016	CJR	1
EDB (1,2-Dibioi Ethylbenzene	ioculane)	< 0.03	ug/l	0.03	2.3	1	8260B		9/24/2010	CJR	1
Hexachlorobutadi	ene	< 0.71	ug/l	2.2	2.3 7.1	1	8260B		9/24/2010	CJR	1
Isopropylbenzene		< 0.82	ug/l	0.82	2.6	1	8260B		9/24/2010	CJR	1
isopropyidenzene		< 0.02	ug/1	0.62	2.0	1	0200 D		JI 27/2010	CJK	1

Project Name FMR HOFFMAN'S VALET CLEANERS

Project # 6200 PO#20169047

5031739A Lab Code Sample ID 6200 MW-1

Sample Matrix Water Sample Date 9/15/2016

Sumple Dute 9/15/2010										
	Result	Unit	LOD	LOQ D	Dil	Method	Ext Date	Run Date	Analyst	Code
p-Isopropyltoluene	< 1.1	ug/l	1.1	3.5	1	8260B		9/24/2016	CJR	1
Methylene chloride	< 1.3	ug/l	1.3	4.2	1	8260B		9/24/2016	CJR	1
Methyl tert-butyl ether (MTBE)	< 1.1	ug/l	1.1	3.7	1	8260B		9/24/2016	CJR	1
Naphthalene	< 1.6	ug/l	1.6	5.2	1	8260B		9/24/2016	CJR	1
n-Propylbenzene	< 0.77	ug/l	0.77	2.4	1	8260B		9/24/2016	CJR	1
1,1,2,2-Tetrachloroethane	< 0.52	ug/l	0.52	1.7	1	8260B		9/24/2016	CJR	1
1,1,1,2-Tetrachloroethane	< 0.48	ug/l	0.48	1.5	1	8260B		9/24/2016	CJR	1
Tetrachloroethene	6.3	ug/l	0.49	1.5	1	8260B		9/24/2016	CJR	1
Toluene	< 0.44	ug/l	0.44	1.4	1	8260B		9/24/2016	CJR	1
1,2,4-Trichlorobenzene	< 1.7	ug/l	1.7	5.6	1	8260B		9/24/2016	CJR	1
1,2,3-Trichlorobenzene	< 2.7	ug/l	2.7	8.6	1	8260B		9/24/2016	CJR	1
1,1,1-Trichloroethane	< 0.84	ug/l	0.84	2.7	1	8260B		9/24/2016	CJR	1
1,1,2-Trichloroethane	< 0.48	ug/l	0.48	1.52	1	8260B		9/24/2016	CJR	1
Trichloroethene (TCE)	< 0.47	ug/l	0.47	1.5	1	8260B		9/24/2016	CJR	1
Trichlorofluoromethane	< 0.87	ug/l	0.87	2.8	1	8260B		9/24/2016	CJR	1
1,2,4-Trimethylbenzene	< 1.6	ug/l	1.6	5	1	8260B		9/24/2016	CJR	1
1,3,5-Trimethylbenzene	< 1.5	ug/l	1.5	4.8	1	8260B		9/24/2016	CJR	1
Vinyl Chloride	< 0.17	ug/l	0.17	0.54	1	8260B		9/24/2016	CJR	1
m&p-Xylene	< 2.2	ug/l	2.2	6.9	1	8260B		9/24/2016	CJR	1
o-Xylene	< 0.9	ug/l	0.9	2.9	1	8260B		9/24/2016	CJR	1
SUR - Toluene-d8	92	REC %			1	8260B		9/24/2016	CJR	1
SUR - Dibromofluoromethane	148	REC %			1	8260B		9/24/2016	CJR	1
SUR - 4-Bromofluorobenzene	97	REC %			1	8260B		9/24/2016	CJR	1
SUR - 1,2-Dichloroethane-d4	139	REC %			1	8260B		9/24/2016	CJR	1

	FMR HOFF1 5200 PO#20	MAN'S VALE1 169047	Γ CLEANE	RS		Inve	oice # E3173	39		
Lab Code Sample ID Sample Matrix Sample Date	5031739B 6200 MW- Water 9/15/2016	2								
•		Result	Unit	LOD	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code
Organic			cille	202	202 22		2	2000 2000		cout
VOC's										
		0.44	a	0.44		02.000		0/04/0016	CID	
Benzene Bromobenzene		< 0.44 < 0.48	ug/l	0.44 0.48	1.4 1 1.5 1	8260B 8260B		9/24/2016 9/24/2016	CJR CJR	1 1
Bromodichlorometh	nane	< 0.48	ug/l ug/l	0.46	1.5 1	8260B 8260B		9/24/2010	CJR	1
Bromoform		< 0.46	ug/l	0.46	1.5 1	8260B		9/24/2016	CJR	1
tert-Butylbenzene		< 1.1	ug/l	1.1	3.4 1	8260B		9/24/2016	CJR	1
sec-Butylbenzene		< 1.2	ug/l	1.2	3.8 1	8260B		9/24/2016	CJR	1
n-Butylbenzene		< 1	ug/l	1	3.3 1	8260B		9/24/2016	CJR	1
Carbon Tetrachlorid	le	< 0.51	ug/l	0.51	1.6 1	8260B		9/24/2016	CJR	1
Chlorobenzene Chloroethane		< 0.46	ug/l	0.46	1.4 1 2.1 1	8260B 8260B		9/24/2016 9/24/2016	CJR CJR	1 1
Chloroform		< 0.65 < 0.43	ug/l ug/l	0.65 0.43	1.4 1	8260B 8260B		9/24/2016	CJR CJR	1
Chloromethane		< 1.9	ug/l	1.9	6 1	8260B		9/24/2016	CJR	1
2-Chlorotoluene		< 0.4	ug/l	0.4	1.3 1	8260B		9/24/2016	CJR	1
4-Chlorotoluene		< 0.63	ug/l	0.63	2 1	8260B		9/24/2016	CJR	1
1,2-Dibromo-3-chlo	propropane	< 1.4	ug/l	1.4	4.5 1	8260B		9/24/2016	CJR	1
Dibromochlorometl		< 0.45	ug/l	0.45	1.4 1	8260B		9/24/2016	CJR	1
1,4-Dichlorobenzen		< 0.49	ug/l	0.49	1.6 1	8260B		9/24/2016	CJR	1
1,3-Dichlorobenzen 1,2-Dichlorobenzen		< 0.52 < 0.46	ug/l ug/l	0.52 0.46	1.6 1 1.5 1	8260B 8260B		9/24/2016 9/24/2016	CJR CJR	1 1
Dichlorodifluorome		< 0.40	ug/l	0.40	2.8 1	8260B 8260B		9/24/2010	CJR	1
1,2-Dichloroethane		< 0.48	ug/l	0.48	1.5 1	8260B		9/24/2016	CJR	1
1,1-Dichloroethane		< 1.1	ug/l	1.1	3.6 1	8260B		9/24/2016	CJR	1
1,1-Dichloroethene		< 0.65	ug/l	0.65	2.1 1	8260B		9/24/2016	CJR	1
cis-1,2-Dichloroeth		0.73 "J"	ug/l	0.45	1.4 1	8260B		9/24/2016	CJR	1
trans-1,2-Dichloroe		< 0.54	ug/l	0.54	1.7 1	8260B		9/24/2016	CJR	1
1,2-Dichloropropan 2,2-Dichloropropan		< 0.43 < 3.1	ug/l ug/l	0.43 3.1	1.37 1 9.8 1	8260B 8260B		9/24/2016 9/24/2016	CJR CJR	1 1
1,3-Dichloropropan		< 0.42	ug/l	0.42	1.3 1	8260B 8260B		9/24/2010	CJR	1
Di-isopropyl ether		< 0.44	ug/l	0.44	1.4 1	8260B		9/24/2016	CJR	1
EDB (1,2-Dibromo	ethane)	< 0.63	ug/l	0.63	2 1	8260B		9/24/2016	CJR	1
Ethylbenzene		< 0.71	ug/l	0.71	2.3 1	8260B		9/24/2016	CJR	1
Hexachlorobutadie	ne	< 2.2	ug/l	2.2	7.1 1	8260B		9/24/2016	CJR	1
Isopropylbenzene		< 0.82	ug/l	0.82	2.6 1	8260B		9/24/2016	CJR	1
p-Isopropyltoluene Methylene chloride		< 1.1 < 1.3	ug/l ug/l	1.1 1.3	3.5 1 4.2 1	8260B 8260B		9/24/2016 9/24/2016	CJR CJR	1 1
Methyl tert-butyl et		< 1.1	ug/l	1.5	4.2 I 3.7 I	8260B 8260B		9/24/2010	CJR	1
Naphthalene		< 1.6	ug/l	1.6	5.2 1	8260B		9/24/2016	CJR	1
n-Propylbenzene		< 0.77	ug/l	0.77	2.4 1	8260B		9/24/2016	CJR	1
1,1,2,2-Tetrachloro		< 0.52	ug/l	0.52	1.7 1	8260B		9/24/2016	CJR	1
1,1,1,2-Tetrachloro	ethane	< 0.48	ug/l	0.48	1.5 1	8260B		9/24/2016	CJR	1
Tetrachloroethene Toluene		1.37 "J" < 0.44	ug/l	0.49	1.5 1 1.4 1	8260B 8260B		9/24/2016	CJR CJR	1 1
1,2,4-Trichlorobenz	vene	< 0.44	ug/l ug/l	0.44 1.7	1.4 1 5.6 1	8260B 8260B		9/24/2016 9/24/2016	CJR CJR	1
1,2,3-Trichlorobenz		< 2.7	ug/l	2.7	8.6 1	8260B		9/24/2016	CJR	1
1,1,1-Trichloroetha		< 0.84	ug/l	0.84	2.7 1	8260B		9/24/2016	CJR	1
1,1,2-Trichloroetha	ne	< 0.48	ug/l	0.48	1.52 1	8260B		9/24/2016	CJR	1
Trichloroethene (TO	,	< 0.47	ug/l	0.47	1.5 1	8260B		9/24/2016	CJR	1
Trichlorofluoromet		< 0.87	ug/l	0.87	2.8 1	8260B		9/24/2016	CJR	1
1,2,4-Trimethylben		< 1.6	ug/l	1.6	5 1	8260B		9/24/2016	CJR	1
1,3,5-Trimethylben Vinyl Chloride	zene	< 1.5 < 0.17	ug/l ug/l	1.5 0.17	4.8 1 0.54 1	8260B 8260B		9/24/2016 9/24/2016	CJR CJR	1 1
m&p-Xylene		< 2.2	ug/l	2.2		8260B 8260B		9/24/2010 9/24/2016	CJR	1
o-Xylene		< 0.9	ug/l	0.9	2.9 1	8260B		9/24/2016	CJR	1
SUR - 1,2-Dichloro	ethane-d4	103	REC %		1	8260B		9/24/2016	CJR	1
SUR - 4-Bromofluc		140	REC %		1	8260B		9/24/2016	CJR	1
SUR - Dibromofluc	promethane	101	REC %		1	8260B		9/24/2016	CJR	1
SUR - Toluene-d8		101	REC %		1	8260B		9/24/2016	CJR	1

J	FMR HOFF 6200 PO#20	MAN'S VALET 169047	CLEANE	RS		Invo	oice # E3173	39		
Lab Code Sample ID Sample Matrix Sample Date	5031739C 6200 MW- Water 9/15/2016							D		
		Result	Unit	LOD	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
VOC's										
Benzene		< 0.44	ug/l	0.44	1.4 1	8260B		9/26/2016	CJR	1
Bromobenzene		< 0.48	ug/l	0.48	1.5 1	8260B		9/26/2016	CJR	1
Bromodichloromet	hane	< 0.46	ug/l	0.46	1.5 1	8260B		9/26/2016	CJR	23
Bromoform		< 0.46	ug/l	0.46	1.5 1	8260B		9/26/2016	CJR	1
tert-Butylbenzene		< 1.1	ug/l	1.1	3.4 1	8260B		9/26/2016	CJR	1
sec-Butylbenzene		< 1.2	ug/l	1.2	3.8 1	8260B		9/26/2016	CJR	1
n-Butylbenzene	.a	< 1	ug/l	1	3.3 1	8260B		9/26/2016	CJR	1
Carbon Tetrachlori Chlorobenzene	ide	< 0.51 < 0.46	ug/l	0.51 0.46	1.6 1 1.4 1	8260B 8260B		9/26/2016 9/26/2016	CJR CJR	1 1
Chloroethane		< 0.40	ug/l ug/l	0.40	2.1 1	8260B 8260B		9/26/2016	CJR	1
Chloroform		< 0.43	ug/l	0.03	1.4 1	8260B		9/26/2016	CJR	1
Chloromethane		< 1.9	ug/l	1.9	6 1	8260B		9/26/2016	CJR	1
2-Chlorotoluene		< 0.4	ug/l	0.4	1.3 1	8260B		9/26/2016	CJR	1
4-Chlorotoluene		< 0.63	ug/l	0.63	2 1	8260B		9/26/2016	CJR	1
1,2-Dibromo-3-chl		< 1.4	ug/l	1.4	4.5 1	8260B		9/26/2016	CJR	1
Dibromochloromet		< 0.45	ug/l	0.45	1.4 1	8260B		9/26/2016	CJR	1
1,4-Dichlorobenze		< 0.49	ug/l	0.49	1.6 1	8260B		9/26/2016	CJR	1
1,3-Dichlorobenze		< 0.52	ug/l	0.52	1.6 1 1.5 1	8260B		9/26/2016	CJR CJR	1
1,2-Dichlorobenze Dichlorodifluorom		< 0.46 < 0.87	ug/l ug/l	0.46 0.87	1.5 1 2.8 1	8260B 8260B		9/26/2016 9/26/2016	CJR CJR	1 1
1,2-Dichloroethane		< 0.48	ug/l	0.37	1.5 1	8260B 8260B		9/26/2016	CJR	1
1,1-Dichloroethane		< 1.1	ug/l	1.1	3.6 1	8260B		9/26/2016	CJR	1
1,1-Dichloroethene		< 0.65	ug/l	0.65	2.1 1	8260B		9/26/2016	CJR	1
cis-1,2-Dichloroeth	nene	< 0.45	ug/l	0.45	1.4 1	8260B		9/26/2016	CJR	1
trans-1,2-Dichloro	ethene	< 0.54	ug/l	0.54	1.7 1	8260B		9/26/2016	CJR	1
1,2-Dichloropropa	ne	< 0.43	ug/l	0.43	1.37 1	8260B		9/26/2016	CJR	1
2,2-Dichloropropa		< 3.1	ug/l	3.1	9.8 1	8260B		9/26/2016	CJR	1
1,3-Dichloropropa	ne	< 0.42	ug/l	0.42	1.3 1	8260B		9/26/2016	CJR	1
Di-isopropyl ether	athana)	< 0.44	ug/l	0.44	1.4 1 2 1	8260B		9/26/2016	CJR	1 1
EDB (1,2-Dibromo Ethylbenzene	betnane)	< 0.63 < 0.71	ug/l ug/l	0.63 0.71	2 1 2.3 1	8260B 8260B		9/26/2016 9/26/2016	CJR CJR	1
Hexachlorobutadie	me	< 2.2	ug/l	2.2	7.1 1	8260B 8260B		9/26/2016	CJR	1
Isopropylbenzene	ine in the second se	< 0.82	ug/l	0.82	2.6 1	8260B		9/26/2016	CJR	1
p-Isopropyltoluene		< 1.1	ug/l	1.1	3.5 1	8260B		9/26/2016	CJR	1
Methylene chloride		< 1.3	ug/l	1.3	4.2 1	8260B		9/26/2016	CJR	1
Methyl tert-butyl e	ther (MTBE)	< 1.1	ug/l	1.1	3.7 1	8260B		9/26/2016	CJR	1
Naphthalene		< 1.6	ug/l	1.6	5.2 1	8260B		9/26/2016	CJR	1
n-Propylbenzene		< 0.77	ug/l	0.77	2.4 1	8260B		9/26/2016	CJR	1
1,1,2,2-Tetrachloro		< 0.52	ug/l	0.52	1.7 1	8260B		9/26/2016	CJR	1
1,1,1,2-Tetrachloro Tetrachloroethene	bethane	< 0.48	ug/l	0.48	1.5 1 1.5 1	8260B 8260B		9/26/2016	CJR CJR	1
Toluene		< 0.49 < 0.44	ug/l ug/l	0.49 0.44	1.5 1 1.4 1	8260B 8260B		9/26/2016 9/26/2016	CJR CJR	1 1
1,2,4-Trichloroben	zene	< 1.7	ug/l	1.7	5.6 1	8260B		9/26/2016	CJR	1
1,2,3-Trichloroben		< 2.7	ug/l	2.7	8.6 1	8260B		9/26/2016	CJR	1
1,1,1-Trichloroetha		< 0.84	ug/l	0.84	2.7 1	8260B		9/26/2016	CJR	1
1,1,2-Trichloroetha	ane	< 0.48	ug/l	0.48	1.52 1	8260B		9/26/2016	CJR	1
Trichloroethene (T	,	< 0.47	ug/l	0.47	1.5 1	8260B		9/26/2016	CJR	1
Trichlorofluoromet		< 0.87	ug/l	0.87	2.8 1	8260B		9/26/2016	CJR	1
1,2,4-Trimethylber		< 1.6	ug/l	1.6	5 1	8260B		9/26/2016	CJR	1
1,3,5-Trimethylber	nzene	< 1.5	ug/l	1.5	4.8 1	8260B		9/26/2016	CJR	1
Vinyl Chloride		< 0.17 < 2.2	ug/l	0.17 2.2	0.54 1	8260B 8260B		9/26/2016	CJR CJR	1
m&p-Xylene o-Xylene		< 2.2 < 0.9	ug/l ug/l	2.2 0.9	6.9 1 2.9 1	8260B 8260B		9/26/2016 9/26/2016	CJR CJR	1 1
SUR - 1,2-Dichlor	oethane-d4	< 0.9 98	REC %	0.9	2.9 1	8260B 8260B		9/26/2016	CJR	1
SUR - Toluene-d8		102	REC %		1	8260B		9/26/2016	CJR	1
SUR - 4-Bromoflu	orobenzene	104	REC %		1	8260B		9/26/2016	CJR	1
SUR - Dibromoflu	oromethane	92	REC %		1	8260B		9/26/2016	CJR	1

J	FMR HOFF1 5200 PO#20		ALET CLEANI	ERS		Inv	roice # E317.	39		
Lab Code Sample ID Sample Matrix Sample Date	5031739D 6200 DUP Water 9/15/2016	-1								
		Result	Unit	LOD	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code
Organic					-				-	
VOC's										
		.0.	14	0.44	14 1	92COD		0/26/2016	CID	1
Benzene Bromobenzene		< 0.4 < 0.4	U	0.44 0.48				9/26/2016 9/26/2016	CJR CJR	1 1
Bromodichloromet	hane	< 0.4	U	0.46				9/26/2016	CJR	23
Bromoform		< 0.4	U	0.46				9/26/2016	CJR	1
tert-Butylbenzene		< 1.1	ug/l	1.1	3.4 1	l 8260B		9/26/2016	CJR	1
sec-Butylbenzene		< 1.2	2 ug/l	1.2				9/26/2016	CJR	1
n-Butylbenzene		< 1	ug/l	1				9/26/2016	CJR	1
Carbon Tetrachlori	de	< 0.5	U	0.51				9/26/2016	CJR	1
Chlorobenzene Chloroethane		< 0.4 < 0.6	U	0.46 0.65				9/26/2016 9/26/2016	CJR CJR	1 1
Chloroform		< 0.4	U	0.03				9/26/2016	CJR	1
Chloromethane		< 1.9	U	1.9				9/26/2016	CJR	1
2-Chlorotoluene		< 0.4	-	0.4	1.3 1	l 8260B		9/26/2016	CJR	1
4-Chlorotoluene		< 0.6	53 ug/l	0.63	2 1	l 8260B		9/26/2016	CJR	1
1,2-Dibromo-3-chl		< 1.4	U	1.4				9/26/2016	CJR	1
Dibromochloromet		< 0.4	U	0.45				9/26/2016	CJR	1
1,4-Dichlorobenzer 1,3-Dichlorobenzer		< 0.4 < 0.5	U	0.49 0.52				9/26/2016 9/26/2016	CJR CJR	1 1
1,2-Dichlorobenzer		< 0.2	U	0.32				9/26/2016	CJR	1
Dichlorodifluorome		< 0.8	U	0.10				9/26/2016	CJR	1
1,2-Dichloroethane		< 0.4	U	0.48				9/26/2016	CJR	1
1,1-Dichloroethane		< 1.1	ug/l	1.1	3.6 1	8260B		9/26/2016	CJR	1
1,1-Dichloroethene		< 0.6	U	0.65				9/26/2016	CJR	1
cis-1,2-Dichloroeth		< 0.4	U	0.45				9/26/2016	CJR	1
trans-1,2-Dichloroe		< 0.5 < 0.4	U	0.54 0.43				9/26/2016 9/26/2016	CJR CJR	1 1
1,2-Dichloropropar 2,2-Dichloropropar		< 0.2	U	3.1				9/26/2016	CJR	1
1,3-Dichloropropar		< 0.4	U	0.42				9/26/2016	CJR	1
Di-isopropyl ether		< 0.4	U	0.44				9/26/2016	CJR	1
EDB (1,2-Dibromo	ethane)	< 0.6	53 ug/l	0.63	2 1	8260B		9/26/2016	CJR	1
Ethylbenzene		< 0.7	e	0.71				9/26/2016	CJR	1
Hexachlorobutadie	ne	< 2.2	U	2.2				9/26/2016	CJR	1
Isopropylbenzene		< 0.8 < 1.1	U	0.82				9/26/2016	CJR CJR	1
p-Isopropyltoluene Methylene chloride		< 1.3	U	1.1 1.3				9/26/2016 9/26/2016	CJR	1 1
Methyl tert-butyl et		< 1.1		1.5				9/26/2016	CJR	1
Naphthalene		< 1.6	U	1.6				9/26/2016	CJR	1
n-Propylbenzene		< 0.7	77 ug/l	0.77	2.4 1	8260B		9/26/2016	CJR	1
1,1,2,2-Tetrachloro		< 0.5	U	0.52				9/26/2016	CJR	1
1,1,1,2-Tetrachloro	ethane	< 0.4	e	0.48				9/26/2016	CJR	1
Tetrachloroethene Toluene		7.4 < 0.4	ug/l	0.49 0.44				9/26/2016 9/26/2016	CJR CJR	1 1
1,2,4-Trichlorobenz	zene	< 0.4	e	1.7				9/26/2016	CJR	1
1,2,3-Trichlorobenz		< 2.7	Ų	2.7				9/26/2016	CJR	1
1,1,1-Trichloroetha		< 0.8	e	0.84				9/26/2016	CJR	1
1,1,2-Trichloroetha	ne	< 0.4	48 ug/l	0.48	1.52 1	l 8260B		9/26/2016	CJR	1
Trichloroethene (To	<i>,</i>	< 0.4	e	0.47				9/26/2016	CJR	1
Trichlorofluoromet		< 0.8	U	0.87				9/26/2016	CJR	1
1,2,4-Trimethylben 1,3,5-Trimethylben		< 1.6	e	1.6				9/26/2016	CJR CJR	1
Vinyl Chloride	Zelle	< 1.5 < 0.1	U	1.5 0.17				9/26/2016 9/26/2016	CJR CJR	1 1
m&p-Xylene		< 0.1	e	2.2				9/26/2016	CJR	1
o-Xylene		< 0.9	0	0.9				9/26/2016	CJR	1
SUR - 1,2-Dichloro	ethane-d4	94	REC %		1			9/26/2016	CJR	1
SUR - 4-Bromofluo		102	REC %		1			9/26/2016	CJR	1
SUR - Dibromofluo	promethane	95 102	REC %		1			9/26/2016	CJR	1
SUR - Toluene-d8		103	REC %		1	8260B		9/26/2016	CJR	1

0	FMR HOFFN 6200 PO#20	MAN'S VALE 169047	T CLEANE	RS		Inve	bice # E3173	39		
Lab Code Sample ID Sample Matrix Sample Date	5031739E 6200 EB-1 Water 9/15/2016									
		Result	Unit	LOD	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
VOC's										
Benzene		< 0.44	ug/l	0.44	1.4 1	8260B		9/20/2016	CJR	1
Bromobenzene		< 0.48	ug/l	0.48	1.5 1	8260B		9/20/2016	CJR	1
Bromodichloromet	hane	< 0.46	ug/l	0.46	1.5 1	8260B		9/20/2016	CJR	1
Bromoform		< 0.46	ug/l	0.46	1.5 1	8260B		9/20/2016	CJR	1
tert-Butylbenzene		< 1.1	ug/l	1.1	3.4 1	8260B		9/20/2016	CJR	1
sec-Butylbenzene		< 1.2	ug/l	1.2	3.8 1	8260B		9/20/2016	CJR	1
n-Butylbenzene	1.	< 1	ug/l	1	3.3 1	8260B		9/20/2016	CJR	1
Carbon Tetrachlori Chlorobenzene	de	< 0.51 < 0.46	ug/l	0.51 0.46	1.6 1 1.4 1	8260B 8260B		9/20/2016 9/20/2016	CJR CJR	1 1
Chloroethane		< 0.40	ug/l ug/l	0.40	2.1 1	8260B		9/20/2010	CJR	1
Chloroform		< 0.43	ug/l	0.43	1.4 1	8260B		9/20/2016	CJR	1
Chloromethane		< 1.9	ug/l	1.9	6 1	8260B		9/20/2016	CJR	1
2-Chlorotoluene		< 0.4	ug/l	0.4	1.3 1	8260B		9/20/2016	CJR	1
4-Chlorotoluene		< 0.63	ug/l	0.63	2 1	8260B		9/20/2016	CJR	1
1,2-Dibromo-3-chl		< 1.4	ug/l	1.4	4.5 1	8260B		9/20/2016	CJR	1
Dibromochloromet		< 0.45	ug/l	0.45	1.4 1	8260B		9/20/2016	CJR	1
1,4-Dichlorobenzer		< 0.49	ug/l	0.49	1.6 1	8260B		9/20/2016	CJR	1
1,3-Dichlorobenzer 1,2-Dichlorobenzer		< 0.52 < 0.46	ug/l ug/l	0.52 0.46	1.6 1 1.5 1	8260B 8260B		9/20/2016 9/20/2016	CJR CJR	1 1
Dichlorodifluorom		< 0.40	ug/l ug/l	0.40	2.8 1	8260B 8260B		9/20/2010	CJR	1
1,2-Dichloroethane		< 0.48	ug/l	0.48	1.5 1	8260B		9/20/2016	CJR	1
1,1-Dichloroethane		< 1.1	ug/l	1.1	3.6 1	8260B		9/20/2016	CJR	1
1,1-Dichloroethene	e	< 0.65	ug/l	0.65	2.1 1	8260B		9/20/2016	CJR	1
cis-1,2-Dichloroeth	nene	< 0.45	ug/l	0.45	1.4 1	8260B		9/20/2016	CJR	1
trans-1,2-Dichloroe		< 0.54	ug/l	0.54	1.7 1	8260B		9/20/2016	CJR	1
1,2-Dichloropropa		< 0.43	ug/l	0.43	1.37 1	8260B		9/20/2016	CJR	1
2,2-Dichloropropa		< 3.1	ug/l	3.1	9.8 1	8260B		9/20/2016	CJR	1
1,3-Dichloropropa Di-isopropyl ether	ne	< 0.42 < 0.44	ug/l ug/l	0.42 0.44	1.3 1 1.4 1	8260B 8260B		9/20/2016 9/20/2016	CJR CJR	1 1
EDB (1,2-Dibromo	oethane)	< 0.44	ug/l	0.44	2 1	8260B		9/20/2016	CJR	1
Ethylbenzene	jetilalie)	< 0.71	ug/l	0.71	2.3 1	8260B		9/20/2016	CJR	1
Hexachlorobutadie	ne	< 2.2	ug/l	2.2	7.1 1	8260B		9/20/2016	CJR	1
Isopropylbenzene		< 0.82	ug/l	0.82	2.6 1	8260B		9/20/2016	CJR	1
p-Isopropyltoluene		< 1.1	ug/l	1.1	3.5 1	8260B		9/20/2016	CJR	1
Methylene chloride		< 1.3	ug/l	1.3	4.2 1	8260B		9/20/2016	CJR	1
Methyl tert-butyl e	ther (MTBE)	< 1.1	ug/l	1.1	3.7 1	8260B		9/20/2016	CJR	1
Naphthalene		< 1.6	ug/l	1.6	5.2 1 2.4 1	8260B 8260B		9/20/2016	CJR	1 1
n-Propylbenzene 1,1,2,2-Tetrachloro	ethane	< 0.77 < 0.52	ug/l ug/l	0.77 0.52	2.4 1 1.7 1	8260B 8260B		9/20/2016 9/20/2016	CJR CJR	1
1,1,1,2-Tetrachloro		< 0.52	ug/l	0.32	1.7 1	8260B 8260B		9/20/2016	CJR	1
Tetrachloroethene		< 0.49	ug/l	0.49	1.5 1	8260B		9/20/2016	CJR	1
Toluene		< 0.44	ug/l	0.44	1.4 1	8260B		9/20/2016	CJR	1
1,2,4-Trichloroben	zene	< 1.7	ug/l	1.7	5.6 1	8260B		9/20/2016	CJR	1
1,2,3-Trichloroben		< 2.7	ug/l	2.7	8.6 1	8260B		9/20/2016	CJR	1
1,1,1-Trichloroetha		< 0.84	ug/l	0.84	2.7 1	8260B		9/20/2016	CJR	1
1,1,2-Trichloroetha		< 0.48	ug/l	0.48	1.52 1	8260B		9/20/2016	CJR	1
Trichloroethene (T Trichlorofluoromet	,	< 0.47 < 0.87	ug/l ug/l	0.47 0.87	1.5 1 2.8 1	8260B 8260B		9/20/2016 9/20/2016	CJR CJR	1 1
1,2,4-Trimethylber		< 0.87	ug/l ug/l	1.6	2.8 I 5 I	8260B 8260B		9/20/2016 9/20/2016	CJR CJR	1
1,3,5-Trimethylber		< 1.5	ug/l	1.5	4.8 1	8260B		9/20/2016	CJR	1
Vinyl Chloride		< 0.17	ug/l	0.17	0.54 1	8260B		9/20/2016	CJR	1
m&p-Xylene		< 2.2	ug/l	2.2	6.9 1	8260B		9/20/2016	CJR	1
o-Xylene		< 0.9	ug/l	0.9	2.9 1	8260B		9/20/2016	CJR	1
SUR - Toluene-d8		99	REC %		1	8260B		9/20/2016	CJR	1
SUR - 1,2-Dichloro		98	REC %		1	8260B		9/20/2016	CJR	1
SUR - 4-Bromoflue SUR - Dibromoflue		94 106	REC % REC %		1	8260B 8260B		9/20/2016 9/20/2016	CJR CJR	1 1
SUK - DIDIDIDIDI	oromethalle	100	KEC %		1	0200 D		2120/2010	CJK	1

 #	020	0 F O#2	01020-	F/		

"J" Flag: Analyte detected between LOD and LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

Code	Comment
1	Laboratory QC within limits.
23	Area percent recovery less than 50%.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Authorized Signature

Michaelphil

CHAIN OF	JSTODY RE	CORD)					Svi	nerg		v										2				
Lab I.D. #								-			-		.3			Г	Pa		-	-	1_10		-		
Account No.		Quote	e No.:				Enviro	onme	ental l	L	ak	7,	11	10							Han				
Project #: 620	0	-					1990	Prospect (Ct. • Appleton	. W	1 54	914	0				(Rus				alysis ed only				zation)
	4/11	E.	e			-			5 • FAX 920-7										×	- 1	Norma	I Turr	Aro	und	
Project (Name / L	Scation): 5	4.00	-	1	+ 1		.1	1		Т		Ana	lysis	Ree	aues	ted						C	ther	Analy	sis
Reports To:	Scation): Former Formburger /	ner for		Invo	ice To:	the men	1 war	or resa	125	t	Π	1		T	İT	T	T			+	T	T		TT	1
Company E	Formaris	imsten	c/	Con	npany					1										Cust					
Address	Coronausics			-	1.2.1													CIDS		E.ME					
City State Zin	123590 Store R.	dys D.	· 54	City	State 2	lin				198	96)					- NIL		D SO	a	1 Clee					
Phone	toutestin her s	53/88		Pho						Sep) Sep		щ	-		(12	TVI I	NDEI	542.2)	0	in the				
Phone 317-	172-7870			FAX						DRO	GRO		ASE	8270)		A 800	Link	SPE	EPA.	8260) Dry (ETAI				PID/
Lab I.D.	Sample I.D.	Collec	Control 1	Inte	Grab	Filtered Y/N	No. of Containers	Sample Type (Matrix)*	Preservation	DRO (Mod	GRO (Mod GRO	LEAD	NITRATE/NITRITE OIL & GREASE	(EPA	PCB	PVOC (EPA 8021)	SULFATE	TOTAL SUSPENDED SOLIDS	VOC DW (EPA	VOC (EPA	8-RCRA METAL				FID
5031739A	6200-MW-1	Alis/ic			*	N	3	GW	444	10	0	-	20	10.	4	0. 0	L (0)	-	>		00	+	++	++	-
B	6200 142.2	Plistic			+	N	3	Gu	HLL	t						1	1	1		×				++	-
PC C	6200.140.3	7/15/16	1105		×	N	3	Gw	Hei											×			10.0		
0	6200 - Pup-1	2/5/16			×	N	3	Gew	1421				-							×	1				
E.	6200-EB-1	9/15/14	9:11	_	*	~	3	600	iter			-	-	-		-	-			×					
+	TRIPBLANK	-	-				1			-			-	-			-			×		-			
3			_	-	-					+		-	-	-		-	-			-		-			
Sample Integr	ecial Instructions (*S ity - To be complete athod of Shipment:	Ped by rec Sim	eiving	ZO	691	Drinking V 047 Inquished E	A		"WW", Soil "S fer PCE, T Time 1310			is	1, 2,			11		ZE			yl	Ti	me ://		Date
1	mp. of Temp. Blank tact upon receipt:				Rec	eived in La	boratory By:	af a				-	_				Time	n: 1e	91-	00		Da	te: 🦉	117	6

T.

Synergy Environmental Lab, INC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

WAYNE FASSBENDER ENVIROFORENSICS 825 N. CAPITOL AVENUE INDIANAPOLIS, IN 46204

Report Date 30-Sep-16

Project Name Project #	FMR HOFF 6200 PO#20	MAN'S VALET 0169047	CLEANE	RS			Invo	ice # E3174	40		
Lab Code Sample ID Sample Matrix	5031740A 6200 SB-1 x Soil										
Sample Date	9/15/2016										
-		Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		79.3	%			1	5021		9/19/2016	NJC	1
Organic											
VOC's											
cis-1,2-Dichloroe	thene	< 0.021	mg/kg	0.021	0.068	1	8260B		9/23/2016	CJR	1
trans-1,2-Dichlor	oethene	< 0.024	mg/kg	0.024	0.076	1	8260B		9/23/2016	CJR	1
Tetrachloroethene	e	< 0.054	mg/kg	0.054	0.17	1	8260B		9/23/2016	CJR	1
Trichloroethene (TCE)	< 0.042	mg/kg	0.042	0.13	1	8260B		9/23/2016	CJR	1
Vinyl Chloride		< 0.01	mg/kg	0.01	0.031	1	8260B		9/23/2016	CJR	1
SUR - 1,2-Dichlo	proethane-d4	98	Rec %			1	8260B		9/23/2016	CJR	1
SUR - 4-Bromofl	uorobenzene	102	Rec %			1	8260B		9/23/2016	CJR	1
SUR - Dibromofl	uoromethane	94	Rec %			1	8260B		9/23/2016	CJR	1
SUR - Toluene-d	8	98	Rec %			1	8260B		9/23/2016	CJR	1

0	FMR HOFF 5200 PO#20	MAN'S VALET 169047	CLEANE	RS			Invo	bice # E3174	40		
Lab Code Sample ID Sample Matrix Sample Date	5031740B 6200 SB-1 Soil 9/15/2016	9-10									
		Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		88.3	%			1	5021		9/19/2016	NJC	1
Organic											
VOC's											
cis-1,2-Dichloroeth	lene	< 0.021	mg/kg	0.021	0.068	1	8260B		9/23/2016	CJR	1
trans-1,2-Dichloroe		< 0.024	mg/kg	0.024	0.076	1	8260B		9/23/2016	CJR	1
Tetrachloroethene		< 0.054	mg/kg	0.054	0.17	1	8260B		9/23/2016	CJR	1
Trichloroethene (T	CE)	< 0.042	mg/kg	0.042	0.13	1	8260B		9/23/2016	CJR	1
Vinyl Chloride		< 0.01	mg/kg	0.01	0.031	1	8260B		9/23/2016	CJR	1
SUR - 1,2-Dichloro	oethane-d4	104	Rec %			1	8260B		9/23/2016	CJR	1
SUR - 4-Bromoflue	orobenzene	101	Rec %			1	8260B		9/23/2016	CJR	1
SUR - Dibromoflue	oromethane	99	Rec %			1	8260B		9/23/2016	CJR	1
SUR - Toluene-d8		96	Rec %			1	8260B		9/23/2016	CJR	1
Lab Code	5031740C										
Sample ID	6200 SB-2	2-3									
Sample Matrix	Soil										
Sample Date	9/15/2016										
Sumple Dute	<i>y</i> , 10, <u>2</u> 010	Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		79.4	%			1	5021		9/19/2016	NJC	1
Organic											
VOC's											
cis-1,2-Dichloroeth	iene	< 0.021	mg/kg	0.021	0.068	1	8260B		9/23/2016	CJR	1
trans-1,2-Dichloroe	ethene	< 0.024	mg/kg	0.024	0.076	1	8260B		9/23/2016	CJR	1
Tetrachloroethene		0.13 "J"	mg/kg	0.054	0.17	1	8260B		9/23/2016	CJR	1
Trichloroethene (To	CE)	< 0.042	mg/kg	0.042	0.13	1	8260B		9/23/2016	CJR	1
Vinyl Chloride		< 0.01	mg/kg	0.01	0.031	1	8260B		9/23/2016	CJR	1
SUR - Toluene-d8		94	Rec %			1	8260B		9/23/2016	CJR	1
SUR - 1,2-Dichloro		102	Rec %			1	8260B		9/23/2016	CJR	1
SUR - 4-Bromofluo		103	Rec %			1	8260B		9/23/2016	CJR	1
SUR - Dibromofluo	prometnane	102	Rec %			1	8260B		9/23/2016	CJR	1

U	FMR HOFF1 6200 PO#20	MAN'S VALET 169047	CLEANE	RS		Invo	bice # E3174	40		
Lab Code Sample ID Sample Matrix Sample Date	5031740D 6200 SB-2 Soil 9/15/2016	9-10								
-		Result	Unit	LOD	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code
General										
General										
Solids Percent		81.8	%		1	5021		9/19/2016	NJC	1
Organic										
VOC's										
cis-1,2-Dichloroeth trans-1,2-Dichloroeth Tetrachloroethene Trichloroethene (Tr Vinyl Chloride SUR - 1,2-Dichloro SUR - 4-Bromoflue SUR - Dibromoflue SUR - Toluene-d8 Lab Code Sample ID Sample Matrix Sample Date	ethene CE) pethane-d4 probenzene promethane 5031740E 6200 SB-3		mg/kg mg/kg mg/kg mg/kg Rec % Rec % Rec %	0.021 0.024 0.054 0.042 0.01	0.068 1 0.076 1 0.17 1 0.13 1 0.031 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B		9/23/2016 9/23/2016 9/23/2016 9/23/2016 9/23/2016 9/23/2016 9/23/2016 9/23/2016	CJR CJR CJR CJR CJR CJR CJR CJR CJR	1 1 1 1 1 1 1 1
-		Result	Unit	LOD	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code
General General										
Solids Percent		79.9	%		1	5021		9/19/2016	NJC	1
Organic VOC's										
cis-1,2-Dichloroeth trans-1,2-Dichloroe Tetrachloroethene Trichloroethene (T Vinyl Chloride SUR - 1,2-Dichloro SUR - 4-Bromoflue SUR - Dibromoflue SUR - Toluene-d8	ethene CE) pethane-d4 probenzene	<0.021 <0.024 0.32 <0.042 <0.01 97 102 95 95	mg/kg mg/kg mg/kg mg/kg Rec % Rec % Rec %	0.021 0.024 0.054 0.042 0.01	0.068 1 0.076 1 0.17 1 0.13 1 0.031 1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B		9/23/2016 9/23/2016 9/23/2016 9/23/2016 9/23/2016 9/23/2016 9/23/2016 9/23/2016	CJR CJR CJR CJR CJR CJR CJR CJR	1 1 1 1 1 1 1 1 1

0	FMR HOFFN 5200 PO#20	MAN'S VALET 169047	CLEANE	RS			Inv	oice # E3174	40		
Lab Code	5031740F	0.40									
Sample ID	6200 SB-3	9-10									
Sample Matrix											
Sample Date	9/15/2016	Result	Unit		100	D:I	Mathad	Ext Data	Dun Doto	Analyst	Codo
		Result	Unit	LOD	LOQ	DII	Method	Ext Date	Run Date	Analyst	Code
General											
General		05.6	0/				5021		0/10/2016	NIC	
Solids Percent		85.6	%			1	5021		9/19/2016	NJC	1
Organic VOC's											
		< 0.16	ma/ka	0.16	0.40	10	9260D		0/27/2016	CID	1
Benzene Bromobenzene		< 0.16	mg/kg mg/kg	0.16 0.39	0.49 1.2	10 10	8260B 8260B		9/27/2016 9/27/2016	CJR CJR	1
Bromodichlorometh	hane	< 0.15	mg/kg	0.15	0.48	10	8260B		9/27/2016	CJR	1
Bromoform		< 0.23	mg/kg	0.23	0.73	10	8260B		9/27/2016	CJR	1
tert-Butylbenzene		< 0.35	mg/kg	0.35	1.1	10	8260B		9/27/2016	CJR	1
sec-Butylbenzene n-Butylbenzene		< 0.36 < 0.86	mg/kg	0.36 0.86	1.1 2.7	10 10	8260B 8260B		9/27/2016 9/27/2016	CJR CJR	1 1
Carbon Tetrachloric	de	< 0.86	mg/kg mg/kg	0.80	0.67	10	8260B 8260B		9/27/2016	CJR CJR	1
Chlorobenzene		< 0.39	mg/kg	0.39	1.2	10	8260B		9/27/2016	CJR	1
Chloroethane		< 0.45	mg/kg	0.45	1.4	10	8260B		9/27/2016	CJR	1
Chloroform		< 0.26	mg/kg	0.26	0.81	10	8260B		9/27/2016	CJR	1
Chloromethane		< 2.5	mg/kg	2.5	7.8	10	8260B		9/27/2016	CJR	1
2-Chlorotoluene 4-Chlorotoluene		< 0.29 < 0.32	mg/kg mg/kg	0.29 0.32	0.93 1	10 10	8260B 8260B		9/27/2016 9/27/2016	CJR CJR	1 1
1,2-Dibromo-3-chlo	oropropane	< 0.32	mg/kg	0.32	2.5	10	8260B 8260B		9/27/2010	CJR	1
Dibromochlorometh		< 0.31	mg/kg	0.31	0.98	10	8260B		9/27/2016	CJR	1
1,4-Dichlorobenzen	ne	< 0.3	mg/kg	0.3	0.96	10	8260B		9/27/2016	CJR	1
1,3-Dichlorobenzen		< 0.3	mg/kg	0.3	0.97	10	8260B		9/27/2016	CJR	1
1,2-Dichlorobenzen Dichlorodifluorome		< 0.39 < 0.43	mg/kg	0.39 0.43	1.2 1.4	10 10	8260B 8260B		9/27/2016 9/27/2016	CJR CJR	1 1
1,2-Dichloroethane		< 0.43	mg/kg mg/kg	0.43	0.96	10	8260B 8260B		9/27/2010	CJR	1
1,1-Dichloroethane		< 0.25	mg/kg	0.25	0.79	10	8260B		9/27/2016	CJR	1
1,1-Dichloroethene		< 0.29	mg/kg	0.29	0.93	10	8260B		9/27/2016	CJR	1
cis-1,2-Dichloroeth		0.208	mg/kg	0.021	0.068	1	8260B		9/23/2016	CJR	1
trans-1,2-Dichloroe		< 0.024	mg/kg	0.024	0.076	1	8260B		9/23/2016	CJR	1
1,2-Dichloropropan 2,2-Dichloropropan		< 0.25 < 1	mg/kg mg/kg	0.25	0.78 3.3	10 10	8260B 8260B		9/27/2016 9/27/2016	CJR CJR	1 1
1,3-Dichloropropan		< 0.31	mg/kg	0.31	0.97	10	8260B 8260B		9/27/2016	CJR	1
Di-isopropyl ether		< 0.12	mg/kg	0.12	0.4	10	8260B		9/27/2016	CJR	1
EDB (1,2-Dibromo	ethane)	< 0.35	mg/kg	0.35	1.1	10	8260B		9/27/2016	CJR	1
Ethylbenzene		< 0.27	mg/kg	0.27	0.86	10	8260B		9/27/2016	CJR	1
Hexachlorobutadier Isopropylbenzene	ne	< 1.1 < 0.37	mg/kg mg/kg	1.1 0.37	3.6 1.2	10 10	8260B 8260B		9/27/2016 9/27/2016	CJR CJR	1
p-Isopropyltoluene		< 0.56	mg/kg	0.56	1.2	10	8260B 8260B		9/27/2016	CJR	1
Methylene chloride		< 2.2	mg/kg	2.2	7	10	8260B		9/27/2016	CJR	1
Methyl tert-butyl et	her (MTBE)	< 0.25	mg/kg	0.25	0.78	10	8260B		9/27/2016	CJR	1
Naphthalene		< 0.87	mg/kg	0.87	2.8	10	8260B		9/27/2016	CJR	1
n-Propylbenzene 1,1,2,2-Tetrachloro	othono	< 0.35 < 0.13	mg/kg	0.35 0.13	1.1 0.4	10 10	8260B 8260B		9/27/2016 9/27/2016	CJR CJR	1 1
1,1,2,2-Tetrachloro		< 0.13	mg/kg mg/kg	0.13	0.4	10	8260B 8260B		9/27/2016	CJR	1
Tetrachloroethene	ethane	48	mg/kg	0.54	1.7	10	8260B		9/27/2016	CJR	1
Toluene		< 0.31	mg/kg	0.31	0.99	10	8260B		9/27/2016	CJR	1
1,2,4-Trichlorobenz		< 0.85	mg/kg	0.85	2.7	10	8260B		9/27/2016	CJR	1
1,2,3-Trichlorobenz		< 1.2	mg/kg	1.2	3.8	10	8260B		9/27/2016	CJR	1
1,1,1-Trichloroetha 1,1,2-Trichloroetha		< 0.4 < 0.33	mg/kg mg/kg	0.4 0.33	1.3 1.1	10 10	8260B 8260B		9/27/2016 9/27/2016	CJR CJR	1 1
Trichloroethene (TC		0.199	mg/kg	0.042	0.13	1	8260B		9/23/2016	CJR	1
Trichlorofluorometh		< 0.6	mg/kg	0.6	1.9	10	8260B		9/27/2016	CJR	1
1,2,4-Trimethylben		< 0.78	mg/kg	0.78	2.5	10	8260B		9/27/2016	CJR	1
1,3,5-Trimethylben	zene	< 0.89	mg/kg	0.89	2.8	10	8260B		9/27/2016	CJR	1
Vinyl Chloride m&p-Xylene		< 0.01 < 0.7	mg/kg mg/kg	0.01 0.7	0.031 2.2	1 10	8260B 8260B		9/23/2016 9/27/2016	CJR CJR	1 1
o-Xylene		< 0.79	mg/kg	0.29	0.92	10			9/27/2010 9/27/2016	CJR	1
•			00								

Project Name Project #	FMR HOFF 6200 PO#20		ET CLEANE	RS			Invo	bice # E3174	40		
Lab Code Sample ID Sample Matrix Sample Date	5031740F 6200 SB-3 x Soil 9/15/2016	3 9-10									
-		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
SUR - Toluene-da	8	97	Rec %			1	8260B		9/23/2016	CJR	1
SUR - 1,2-Dichlo	roethane-d4	96	Rec %			1	8260B		9/23/2016	CJR	1
SUR - 4-Bromofl	uorobenzene	104	Rec %			1	8260B		9/23/2016	CJR	1
SUR - Dibromofl	uoromethane	92	Rec %			1	8260B		9/23/2016	CJR	1
"J" Flag:	Analyte detected	l between LOD a	and LOQ		LOD Lin	nit of De	tection	LOQ Lii	nit of Quantita	tion	

Code Comment

1

Laboratory QC within limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Authorized Signature

Michaelphul

CHAIN OF	JSTODY REC	COR	D					Syr	nerg		v										28	2			
Lab I.D. #								-		-	-		2			Г	Pag			01_			10.02		
Account No. ;		Que	ote No.:			7 4	inviro	onme	ental l	Li	ab	i, 1	In	C,							andlin sis Da	-			
Project #: 620	0	-					1990	Prospect C	t. • Appleton	. W	1 54	914				()		es a	cept	led of	nly wit	th pric	or auth	orizat	lion)
	My 12	5	e						• FAX 920-7									_	K_	Non	mal T	urn /	lroun	d	
Project (Name / L	ocation): France I	204		Val	4 11	leners	1 warm	toco 1	T	Τ	1	Analy	sis	Requ	lest	ed						Oth	er An	alysi	s
Reports To: W	ocation): Former 1.			Invo	ice To:		/ course	- near , e		1	TT	T	T	T	T	T	T	T	1	T			TT	Ť	1
Company F	VITO Formaics	mstc	ad		npany														eil v						
			-	-	10.1													FIDS	1						
City State Zin .	23390 Stenc Rd	gel	7. 5h	City	State 2	tin				88)	95)					ENE		OS O	CI.						
	wheshin, wit 5	5/88	1	Pho		-ψ				Sep	Sep.	H		-	110	HAL		NDEI	d	00					
Phone 317-9	72-7870			-						DRO	GHO	UTRI	GREASE	8270	A 805	THA		SUSPENDED SOLIDS	(EPA 8260) D	METAL					PID/
FAX	-	1.2.1.	120.07	FAX	-	-	1.000	Primite	1	Mod	(Mod	TEA	GRE	PA	(EP,	N+	H	INN IS	EPA	RA MI					FID
Lab I.D.	Sample I.D.		ection Time	Comp	Grab	Filtered Y/N	No. of Containers	Sample Type (Matrix)*	Preservation	DRO (GRO (LEAD NITRATE/NITRITE	OIL &	PAH (EPA 8270)	PVOC	PVOC + NAPHTHALENE	SULFATE	TOTAL SUSPENDED	VOC (8-RCH					
SOZAYOA	6200 -58 1-(e-3)	9/15/16	6 1135		×		2	5	MECH										×						
B	6200-58-1-(9-10)	1	1140	-	1	-	1	1	1	-		-			-	-		-	*	11					
c	6200 58-2-(2-3)	-	1200	-						+		-	-		+	+		-	4				++	-	
D	6200 58-2 (9-10)		1205		++	-		-		+	+	-	-	+	+	+	+	+	*			-	++	+	-
F	6200-58-3-(9-10)	51			V		V	V	V	1			+		-	+			x					1	
· · · ·				-						+		-	1		+	+			+					-	
Comments/Spo	ecial Instructions (*S)		ground				Water "DW", W An-Lys	Vaste Water ZC for	WW", Soil "S PEE, TCE	E,	ir "A" Ci	, Oil, 's <i>I</i> ,	sluc z/	lge ei Tr-n	tc.) .s 1,	z	DLI	E	U	~	1 66	. (de	0-	.y!
Me Te	ity - To be completed thod of Shipment: mp. of Temp. Blank tact upon receipt:	Sh	°C On I	-	4	nquished E	Faret	el.	Time 1310	9	Date	14	Reco	lived I	J.	7			-	-	_	Time /39	0	2/1	1e 12/1
					Rec	eived in La	iboratory By:	And	-M-							т	ime:	14	240	0		Date:	9/17	1/6	

APPENDIX H

Soil Gas, Sub-Slab Vapor, and Air Laboratory Analytical Reports

Mr. Brian Kappen Enviroforensics N16 W. 23390 Stone Ridge Dr Suite G Waukesha, WI 53188

September 20, 2013

ENVision Project Number: 2013-312 Client Project Name: Hoffmans Cleaners - 6200

Dear Mr. Kappen,

Please find the attached analytical report for the samples received September 9, 2013. All test methods performed were fully compliant with local, state, and federal EPA methods unless otherwise noted. The project was analyzed as requested on the enclosed chain of custody record. Please review the comments section for additional information about your results or Quality Control data.

Feel free to contact me if you have any questions or comments regarding your analytical report or service.

Thank you for your business. EnvisionAir looks forward to working with you on your next project.

Yours Sincerely,

David Norris

Client Services Manager EnvisionAir

Client Name:	ENVIROFORENSICS
onone manio.	

Project ID: HOFFMAN CLEANERS - 6200

Client Project Manager: BRIAN KAPPEN

EnvisionAir Project Number: 2013-312

Sample Summary

START START Lab Initial Field Final Field Received Sample Date Time End Date End Time Date Time (in. Hg) Laboratory Sample Number: Description: Matrix: Collected: Collected: Collected: Received: Received <u>(in. Hg)</u> <u>(in. Hg)</u> 13-1122 6200-7219-IA А 9/4/13 11:20 9/4/13 19:20 9/9/13 10:00 -30 13-1123 6200-7219-OA А 9/4/13 9/4/13 9/9/13 -29.5 -8 -8 19:35 10:00 11:35 13-1124 6200-7219-SSV-1 А 9/5/13 12:05 9/5/13 12:10 9/9/13 10:00 -27 -6.5 -6.5 6200-7219-SSV-2 13-1125 А 9/5/13 12:40 9/5/13 12:45 9/9/13 10:00 -29 -10 -10

Canister Pressure / Vacuum

Analyst Initials

ENVIROFORENSICS					
HOFFMAN CLEANERS	HOFFMAN CLEANERS - 6200				
BRIAN KAPPEN					
2013-312					
TO-15 091113CAIR					
6200-7219-IA	Sample Collection START Date/Time:	9/4/13	11:20		
13-1122 AIR	Sample Collection END Date/Time: Sample Received Date/Time:	9/9/13 9/9/13	19:20 10:00		
Sample Results ug/m ³ < 19.8 9.16 < 39.6 < 1.07 < 1.28 ate) 102% 9-12-13/12:23	Reporting Limit ug/m ³ 19.8 3.19 39.6 1.07 1.28	<u>Flaq</u>			
	HOFFMAN CLEANERS BRIAN KAPPEN 2013-312 TO-15 091113CAIR 6200-7219-IA 13-1122 AIR Sample Results ug/m ³ < 19.8 9.16 < 39.6 < 1.07 < 1.28 ate) 102%	HOFFMAN CLEANERS - 6200 BRIAN KAPPEN 2013-312 TO-15 091113CAIR 6200-7219-IA Sample Collection START Date/Time: 3-1122 AIR Sample Results ug/m ³ Reporting Limit ug/m ³ < 19.8 9.16 < 1.07 < 1.28 ME	HOFFMAN CLEANERS - 6200 BRIAN KAPPEN 2013-312 TO-15 091113CAIR 6200-7219-IA Sample Collection START Date/Time: 9/4/13 13-1122 AIR 9/4/13 Sample Collection END Date/Time: 9/4/13 9/4/13 9/4/13 9/4/13 9/4/13 9/4/13 9/4/13 9/4/13 9/4/13 9/9/13 Sample Results ug/m3 Reporting Limit ug/m3 Flag < 19.8 9.16 3.19 < 39.6 < 1.07 < 1.28 102%		

tjg

Client Name:	ENVIROFORENSICS			
Project ID:	HOFFMAN CLEANER	S - 6200		
Client Project Manager:	BRIAN KAPPEN			
EnvisionAir Project Number:	2013-312			
Analytical Method: Analytical Batch:	TO-15 091113CAIR			
Client Sample ID:	6200-7219-OA	Sample Collection START Date/Time: Sample Collection END Date/Time:	9/4/13 9/4/13	11:35 19:35
Envision Sample Number: Sample Matrix:	13-1123 AIR	Sample Received Date/Time:	9/9/13	10:00
<u>Compounds</u> cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichlorethene Vinyl Chloride 4-bromofluorobenzene (surroga Analysis Date/Time: Analyst Initials	Sample Results ug/m ³ < 19.8 22.4 < 39.6 1.07 < 1.28 ate) 100% 9-12-13/13:01 tjg	Reporting Limit ug/m ³ 19.8 3.19 39.6 1.07 1.28	<u>Flag</u>	

Client Name:	ENVIROFORENSICS			
Project ID:	HOFFMAN CLEANER	S - 6200		
Client Project Manager:	BRIAN KAPPEN			
EnvisionAir Project Number:	2013-312			
Analytical Method: Analytical Batch:	TO-15 091313TAIR			
Client Sample ID:	6200-7219-SSV-1	Sample Collection START Date/Time: Sample Collection END Date/Time:	9/5/13 9/5/13	12:05 12:10
Envision Sample Number: Sample Matrix:	13-1124 AIR	Sample Received Date/Time:	9/9/13	10:00
Compounds cis-1,2-Dichloroethene	<u>Sample Results ug/m³</u> < 19.8	Reporting Limit ug/m ³ 19.8	<u>Flag</u>	
Tetrachloroethene trans-1,2-Dichloroethene Trichlorethene Vinyl Chloride 4-bromofluorobenzene (surroga Analysis Date/Time: Analyst Initials	298 < 39.6 8.54 < 1.28 ate) 101% 9-14-13/13:24 tjg	31.9 39.6 1.07 1.28	1	

Client Name:	ENVIROFORENSICS			
Project ID:	HOFFMAN CLEANER	S - 6200		
Client Project Manager:	BRIAN KAPPEN			
EnvisionAir Project Number:	2013-312			
Analytical Method: Analytical Batch:	TO-15 091313TAIR			
Client Sample ID:	6200-7219-SSV-2	Sample Collection START Date/Time: Sample Collection END Date/Time:	9/5/13 9/5/13	12:40 12:45
Envision Sample Number: Sample Matrix:	13-1125 AIR	Sample Received Date/Time:	9/9/13	10:00
Compounds cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichlorethene Vinyl Chloride 4-bromofluorobenzene (surroga Analysis Date/Time: Analyst Initials	Sample Results ug/m ³ < 19.8 36.6 < 39.6 < 1.07 < 1.28 ate) 101% 9-14-13/14:04 tjg	Reporting Limit ug/m ³ 19.8 3.19 39.6 1.07 1.28	<u>Flag</u>	

Analytical Report

TO-15 Quality Control Data

EnvisionAir Batch Number: 091113CAIR

Method Blank (MB):	MB Results (ppbv)	Reporting Limit (ppbv)	<u>Flags</u>			
cis-1,2-Dichloroethene	< 5	5				
Tetrachloroethene	< 0.47	0.47				
trans-1,2-Dichloroethene	< 10	10				
Trichlorethene	< 0.2	0.2				
Vinyl Chloride	< 0.5	0.5				
4-bromofluorobenzene (surrogate)	102%					
Analysis Date/Time:	9-11-13/23:01					
Analyst Initials	tjg					
			LCS/D	LCS	LCSD	
LCS/LCSD	LCS Results (ppbv)	LCSD Results (ppbv)	Conc(ppbv)	Rec.	Rec.	
Vinyl Chloride	9.77	8.39	10	98%	84%	
trans-1.2-Dichloroothono	0.30	8 03	10	Q/1%	80%	

LCS/LCSD	LCS Results (ppbv)	LCSD Results (ppbv)	Conc(ppbv)	Rec.	Rec.	RPD Flag
Vinyl Chloride	9.77	8.39	10	98%	84%	15.2%
trans-1,2-Dichloroethene	9.39	8.93	10	94%	89%	5.0%
cis-1,2-Dichloroethene	10.5	10.3	10	105%	103%	1.9%
Trichlorethene	9.51	9.42	10	95%	94%	1.0%
Tetrachloroethene	9.24	9.06	10	92%	91%	2.0%
4-bromofluorobenzene (surrogate)	100%	97%				
Analysis Date/Time:	9-11-13/21:04	9-11-13/22:29				
Analyst Initials	tjg	tjg				

LCSD

Analytical Report

TO-15 Quality Control Data

091313TAIR

EnvisionAir Batch Number:

MB Results (ppbv)	Reporting Limit (ppbv)	<u>Flags</u>
< 5	5	
< 0.47	0.47	
< 10	10	
< 0.2	0.2	
< 0.5	0.5	
105%		
9-14-13/03:12		
tjg		
LCS Bequite (mphu)	LCSD Besults (millio)	LCS/D LCS Conc(ppby) Rec.
	< 5 < 0.47 < 10 < 0.2 < 0.5 105% 9-14-13/03:12	<5 5 < 0.47 0.47 < 10 10 < 0.2 0.2 < 0.5 0.5 105% 9-14-13/03:12 tjg

LCS/LCSD	LCS Results (ppbv)	LCSD Results (ppbv)	Conc(ppbv)	Rec.	Rec.	RPD	Flag
Vinyl Chloride	10.5	10.1	10	105%	101%	3.9%	
trans-1,2-Dichloroethene	9.36	8.81	10	94%	88%	6.1%	
cis-1,2-Dichloroethene	11	10.1	10	110%	101%	8.5%	
Trichlorethene	8.73	8.5	10	87%	85%	2.7%	
Tetrachloroethene	9.27	9.47	10	93%	95%	2.1%	
4-bromofluorobenzene (surrogate)	109%	121%					
Analysis Date/Time:	9-14-13/01:59	9-14-13/02:38					
Analyst Initials	tjg	tjg					

Flag Number 1 Comments Reported value is from a 10x dilution. TJG 9-19-13

EnvisionAir Proj# 2013-312 Page _____ of _____

CHAIN OF CUSTODY RECORD

EnvisionAir | 1437 Sadlier Circle West Drive | Indianapolis, IN 46239 | Phone: (317) 351-0885 | Fax: (317) 351-0882

Client: Enviroforensi	ĊS	P.O. N					FOUESTE		TFDS				
Report NIG W23390 Address:					(7.0	■ 	/				6910	the ea	54
Report To: Wayne Fassbende Brian Kappens	4	- Sample		<u>Cleaners</u> 2 - N						******	*	***	**
Phone: Wayne	J, Jorda Smathon;			: (circle if app			/ /	' / /		EN	VIS	SION	JAIR
414-982-34882 31	7-40-88		Leve	el III Lev	vel IV		×		Sampling Type:	******	**********	*****	******
Invoice Address: Indianapolis Offic	R	kug/m	mg/m	needed: (cir 1 ³ PPBV	cle) PPMV	Lin Lin			Soil-Gas: □ Sub-Slab: ≰	. qı		<i>air and</i> wision-air.c	·
Desired TAT: (Please Circle One 1 day 2 days 3 days Std (5	bus. days)	Media type	ELC = 1 Liter 6LC = 6 Liter TB = Tediar TD = Therm	Canister Canister Bag al Desorption Tub)e	2015 2015 2017	10.1.2 (10.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		Indoor-Air: 🙇	Canister	Pressure /		2011
Air Sample ID	Media Type (see code shove)	Coll. Date (Grab/Comp Start)	Coll. Time (Grab/Comp Start)	Coll. Date (Comp. End)	Coll. Time (Comp. End)			Canister Serial #	Flow Controller Serial #	Initial Field (in. Hg)	Final Field (in, Hg)	Lab Received (in. Hg)	EnvisionAir Sample Number
6200-7219-IA		9 4 13		9/4/13	.13° 19:30) ×		10332	05301	- ?	- 30		13-1122
6200-7219-04	6LC	9/4/13	11:35		19:35	¥		91442	05252	-29.5	-8	-8	13-1123
6200-7219-550-1	1 LC	9/5/13	12:05	9513	12:10	¥		83727	NA	227	-6.5	-6.5	13-1124
6200-7219-51-2	1	4			12:45	*		83921	NA	-29	-10	-10	13-1125
									-				-
							~						
Comments: Hease ref	bat a	mly	PCE	TCE/	cis-1,2.	DCF ta	ans-lo- for	DCE Vi - all sav	ingl Chlori nples	de/	Regulat Broke	or on $0 = -$	IA sample
	uished				Date	Time			ceived by:		Da	ate	Time
ynthe yn				- 9/	5/2013		Æ	Zal'	Man		9/9	//3	10:00
-//		<u></u>		L		L	<u>I</u>	·		·		I	

Mr. Jonathon Jordan Enviroforensics N16 W. 23390 Stone Ridge Dr Suite G Waukesha, WI 53188

March 6, 2014

ENVision Project Number: 2014-67 Client Project Name: 6200 – Hoffman's

Dear Mr. Jordan,

Please find the attached analytical report for the samples received February 25, 2014. All test methods performed were fully compliant with local, state, and federal EPA methods unless otherwise noted. The project was analyzed as requested on the enclosed chain of custody record. Please review the comments section for additional information about your results or Quality Control data.

Feel free to contact me if you have any questions or comments regarding your analytical report or service.

Thank you for your business. EnvisionAir looks forward to working with you on your next project.

Yours Sincerely,

David Norris

Client Services Manager EnvisionAir

Client Name:	ENVIROFORENSICS

Project ID:	6200 - HOFFMANS

Client Project Manager:	JONATHON JORDAN

EnvisionAir Project Number: 2014-67

Sample Summary

Canister Pressure / Vacuum

			START	START							Lab
			Date	Time	End Date	End Time	Date	Time	Initial Field	Final Field	Received
Laboratory Sample Number:	Sample Description:	Matrix:	Collected:	Collected:	Collected:	Collected:	Received:	Received	<u>(in. Hg)</u>	<u>(in. Hg)</u>	<u>(in. Hg)</u>
14-345	6200-7219-OA	А	2/19/14	8:15	2/19/14	16:10	2/25/14	12:00	-28	-11.5	-11.5
14-346	6200-7219-IA	А	2/19/14	8:05	2/19/14	16:00	2/25/14	12:00	-27	-0.2	-0.2
14-347	6200-7219-SSV-1	А	2/20/14	11:25	2/20/14	11:30	2/25/14	12:00	-30	-10	-10
14-348	6200-7219-SSV-2	А	2/20/14	10:45	2/20/14	10:50	2/25/14	12:00	-28.5	-10	-10

Analyst Initials

Client Name:	ENVIROFORENSICS			
Project ID:	6200 - HOFFMANS			
Client Project Manager:	JONATHON JORDAN			
EnvisionAir Project Number:	2014-67			
Analytical Method: Analytical Batch:	TO-15 030114AIR			
Client Sample ID:	6200-7219-OA	Sample Collection START Date/Time:	2/19/14	8:15
Envision Sample Number: Sample Matrix:	14-345 AIR	Sample Collection END Date/Time: Sample Received Date/Time:	2/19/14 2/25/14	16:10 12:00
<u>Compounds</u> cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichlorethene Vinyl Chloride 4-bromofluorobenzene (surroga	Sample Results ug/m ³ < 0.79 < 1.4 < 39.6 < 1.07 < 0.51 tte) 104%	Reporting Limit ug/m³ 0.79 1.4 39.6 1.07 0.51	<u>Flag</u>	
Analysis Date/Time:	3-1-14/20:15			

tjg

Analyst Initials

Client Name:	ENVIROFORENSICS			
Project ID:	6200 - HOFFMANS			
Client Project Manager:	JONATHON JORDAN			
EnvisionAir Project Number:	2014-67			
Analytical Method: Analytical Batch:	TO-15 030114AIR			
Client Sample ID:	6200-7219-IA	Sample Collection START Date/Time:	2/19/14	8:05
Envision Sample Number: Sample Matrix:	14-346 AIR	Sample Collection END Date/Time: Sample Received Date/Time:	2/19/14 2/25/14	16:00 12:00
<u>Compounds</u> cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichlorethene Vinyl Chloride 4-bromofluorobenzene (surroga Analysis Date/Time:	Sample Results ug/m ³ < 0.79 2.71 < 39.6 < 1.07 < 0.51 tte) 104% 3-1-14/20:52	Reporting Limit ug/m³ 0.79 1.4 39.6 1.07 0.51	<u>Flag</u>	
	5-1-14/20.52			

tjg

Client Name:	ENVIROFORENSICS			
Project ID:	6200 - HOFFMANS			
Client Project Manager:	JONATHON JORDAN			
EnvisionAir Project Number:	2014-67			
Analytical Method: Analytical Batch:	TO-15 022714AIR			
Client Sample ID:	6200-7219-SSV-1	Sample Collection START Date/Time: Sample Collection END Date/Time:	2/20/14 2/20/14	11:25 11:30
Envision Sample Number: Sample Matrix:	14-347 AIR	Sample Received Date/Time:	2/25/14	12:00
<u>Compounds</u>	Sample Results ug/m ³	<u>Reporting Limit ug/m³</u>	<u>Flag</u>	
cis-1,2-Dichloroethene	< 7.90	7.90	1	
Tetrachloroethene	239	14.0	1	
trans-1,2-Dichloroethene	< 396	396	1	
Trichlorethene	< 10.7	10.7	1	
Vinyl Chloride	< 5.10	5.10	1	
4-bromofluorobenzene (surroga	ate) 100%			
Analysis Date/Time:	2-28-14/07:18			
Analyst Initials	tjg			

Client Name:	ENVIROFORENSICS			
Project ID:	6200 - HOFFMANS			
Client Project Manager:	JONATHON JORDAN			
EnvisionAir Project Number:	2014-67			
Analytical Method: Analytical Batch:	TO-15 022714AIR			
Client Sample ID:	6200-7219-SSV-2	Sample Collection START Date/Time:	2/20/14 2/20/14	10:45
Envision Sample Number: Sample Matrix:	14-348 AIR	Sample Collection END Date/Time: Sample Received Date/Time:	2/25/14	10:50 12:00
<u>Compounds</u>	Sample Results ug/m ³	<u>Reporting Limit ug/m³</u>	<u>Flag</u>	
cis-1,2-Dichloroethene	< 7.90	7.90	1	
Tetrachloroethene	118	14.0	1	
trans-1,2-Dichloroethene	< 396	396	1	
Trichlorethene	< 10.7	10.7	1	
Vinyl Chloride	< 5.10	5.10	1	
4-bromofluorobenzene (surroga				
Analysis Date/Time:	2-28-14/07:50			
Analyst Initials	tjg			

Analytical Report

TO-15 Quality Control Data

022714AIR

EnvisionAir Batch Number:

Method Blank (MB):	MB Results (ppbv)	Reporting Limit (ppbv)	<u>Flags</u>
cis-1,2-Dichloroethene	< 0.2	0.2	
Tetrachloroethene	< 0.2	0.2	
trans-1,2-Dichloroethene	< 10	10	
Trichlorethene	< 0.2	0.2	
Vinyl Chloride	< 0.2	0.2	
4-bromofluorobenzene (surrogate)	104%		
Analysis Date/Time:	2-27-14/11:25		
Analyst Initials	tjg		
			LCS/D

			LCS/D	LCS	LCSD		
LCS/LCSD	LCS Results (ppbv)	LCSD Results (ppbv)	Conc(ppbv)	Rec.	Rec.	<u>RPD</u>	Flag
Vinyl Chloride	9.57	8.58	10	96%	86%	10.9%	
trans-1,2-Dichloroethene	9.57	9.49	10	96%	95%	0.8%	
cis-1,2-Dichloroethene	10	10.2	10	100%	102%	2.0%	
Trichlorethene	9.49	9.86	10	95%	99%	3.8%	
Tetrachloroethene	10.4	9.2	10	104%	92%	12.2%	
4-bromofluorobenzene (surrogate)	104%	100%					
Analysis Date/Time:	2-27-14/10:03	2-27-14/10:52					
Analyst Initials	tjg	tjg					

Analytical Report

TO-15 Quality Control Data

030114AIR

EnvisionAir Batch Number:

Method Blank (MB):	MB Results (ppbv)	Reporting Limit (ppbv)	<u>Flags</u>
cis-1,2-Dichloroethene	< 0.2	0.2	
Tetrachloroethene	< 0.2	0.2	
trans-1,2-Dichloroethene	< 10	10	
Trichlorethene	< 0.2	0.2	
Vinyl Chloride	< 0.2	0.2	
4-bromofluorobenzene (surrogate)	98%		
Analysis Date/Time:	3-1-14/17:08		
Analyst Initials	tjg		
			LCS/D

LCS/LCSD	LCS Results (ppbv)	LCSD Results (ppbv)	LCS/D Conc(ppbv)	<u>LCS</u> Rec.	LCSD Rec.	RPD	Flag
Vinyl Chloride	8.67	9.68	10	87%	97%	11.0%	
trans-1,2-Dichloroethene	8.46	9.18	10	85%	92%	8.2%	
cis-1,2-Dichloroethene	10.9	12.1	10	109%	121%	10.4%	
Trichlorethene	10.8	11	10	108%	110%	1.8%	
Tetrachloroethene	9.45	9.43	10	95%	94%	0.2%	
4-bromofluorobenzene (surrogate)	101%	109%					
Analysis Date/Time:	3-1-14/14:57	3-1-14/16:36					
Analyst Initials	tjg	tjg					

Flag Number 1 Comments Reported value is from a 10x dilution. TJG 3-6-14

CHAIN OF CUSTODY RECORD

EnvisionAir | 1437 Sadlier Circle West Drive | Indianapolis, IN 46239 | Phone: (317) 351-0885 | Fax: (317) 351-0882

Client: Enviroforeusi	(S	P.O. N			Wildow (]				FTEDO				
Report NILIN23390-	stone Kell	Project]	K	EQUES	TED PARAM			6810	the ea	S
Address: Waykesha WI Report To: J. Torcking	L 53181		200 - 3 od by: - 3	Hottme		-					****	*	***	~ //
Phone:	e Fasten		Required	Circle if appl	•	-					EN	VIS		JAIR
Phone: 317-972-78	570				vel IV			* /:	>//	Sampling Type	*******		air and	******
Invoice Address: 102 N Capitol Ave Two	licuration	Report ug/m		needed: (circ 1 ³ PPBV	-					Soil-Gas: □ Sub-Slab: □	<u>.</u> 90	•	1	~
Desired TAT: (Please Cir cle One 1 day 2 days 3 days Std (5		Media type	: 1LC = 1 Liter 6LC = 6 Liter TB = Tediar TD = Therm	Canister	e		,	53 57 57 57 57		Indoor-Air:	Canister	www.en r <i>Pressure /</i>	vision-air.c <i>Vacuum</i>	om
Air Sample ID	Media Type (see code sbove)	Coll. Date (Grab/Comp Start)	Coll. Time (Grash/Comp Start)	Coll. Date (Comp. End)	Coll. Time (Comp. End)				Canister Serial #	Flow Controller Serial #	Initial Field (in. Hg)	Final Field (in. Hg)	Lab Received (in. Hg)	EnvisionAir Sample Number
6200-7219-0A	6LC	ə]i9/14	8.15	ə)19/14	14:10		X		1002U	05219	-28	- 11.5	-11.5	14-345
6200-7219-IA	620	2/19/14	8:05	Dialig	16:00	>	4		15560	05713	-27	-0.2	-0.2	14-346
6200 - 7219 - 550-1	120	2/20/14	11:25	2/20/14	11:36		Y		83679	i NA	-30	-10	-10	14-347
6200-7219-55V-2	1LC	2/20/14	10.45	2/20/14	10,50		7		ABO4-	1 NA	-28.5	-10	-10	14-348
				, ,										
													1	
													-	
Comments: Report o	nig	PCE	E T C	E Cis	1,2)7	rains.	12	1vc			a h a mara an ang ang ang ang ang ang ang ang ang	<u>.</u>	• 	I
Relino	uished	by:			Date	-	Time		B	ceived by:		Da	ite, I	Time

Relinquished by:	Date	Time	Beceived by:	Date,	Time
			Kallas	2/25/14	12:00

Mr. Jonathon Jordan Enviroforensics N16 W. 23390 Stone Ridge Dr Suite G Waukesha, WI 53188

March 6, 2014

ENVision Project Number: 2014-68 Client Project Name: 6200 – Hoffman's

Dear Mr. Jordan,

Please find the attached analytical report for the samples received February 25, 2014. All test methods performed were fully compliant with local, state, and federal EPA methods unless otherwise noted. The project was analyzed as requested on the enclosed chain of custody record. Please review the comments section for additional information about your results or Quality Control data.

Feel free to contact me if you have any questions or comments regarding your analytical report or service.

Thank you for your business. EnvisionAir looks forward to working with you on your next project.

Yours Sincerely,

David Norris

Client Services Manager EnvisionAir

Client Name:	ENVIROFORENSICS

Project ID:	6200 - HOFFMANS

Client Project Manager:	JONATHON JORDAN

EnvisionAir Project Number: 2014-68

Sample Summary

Canister Pressure / Vacuum

			START	<u>START</u>							Lab
			Date	Time	End Date	End Time	Date	Time	Initial Field	Final Field	Received
Laboratory Sample Number:	Sample Description:	Matrix:	Collected:	Collected:	Collected:	Collected:	Received:	Received	<u>(in. Hg)</u>	<u>(in. Hg)</u>	<u>(in. Hg)</u>
14-349	6200-7215-SSV-1	Α	2/20/14	13:22	2/20/14	13:27	2/25/14	12:00	-23	-10	-10
14-350	6200-7215-SSV-2	Α	2/20/14	13:55	2/20/14	14:00	2/25/14	12:00	-28	-7	-7

Client Name:	ENVIROFORENSICS			
Project ID:	6200 - HOFFMANS			
Client Project Manager:	JONATHON JORDAN			
EnvisionAir Project Number:	2014-68			
Analytical Method: Analytical Batch:	TO-15 022714AIR			
Client Sample ID:	6200-7215-SSV-1	Sample Collection START Date/Time:	2/20/14	13:22
Envision Sample Number: Sample Matrix:	14-349 AIR	Sample Collection END Date/Time: Sample Received Date/Time:	2/20/14 2/25/14	13:27 12:00
<u>Compounds</u>	Sample Results ug/m ³	Reporting Limit ug/m ³	Flag	
cis-1,2-Dichloroethene	< 7.90	7.90	1	
Tetrachloroethene	1,440	28.0	2	
trans-1,2-Dichloroethene	< 396	396	1	
Trichlorethene	48.9	10.7	1	
Vinyl Chloride	< 5.10	5.10	1	
4-bromofluorobenzene (surroga	ate) 104%			
Analysis Date/Time:	2-28-14/08:22			
Analyst Initials	tjg			

Client Name:	ENVIROFORENSICS			
Project ID:	6200 - HOFFMANS			
Client Project Manager:	JONATHON JORDAN			
EnvisionAir Project Number:	2014-68			
Analytical Method: Analytical Batch:	TO-15 022714AIR			
Client Sample ID:	6200-7215-SSV-2	Sample Collection START Date/Time:	2/20/14 2/20/14	13:55
Envision Sample Number: Sample Matrix:	14-350 AIR	Sample Collection END Date/Time: Sample Received Date/Time:	2/20/14 2/25/14	14:00 12:00
<u>Compounds</u>	Sample Results ug/m ³	Reporting Limit ug/m ³	<u>Flag</u>	
cis-1,2-Dichloroethene	< 7.90	7.90	1	
Tetrachloroethene	3,600	56.0	3	
trans-1,2-Dichloroethene	< 396	396	1	
Trichlorethene	12.4	10.7	1	
Vinyl Chloride	< 5.10	5.10	1	
4-bromofluorobenzene (surroga	ate) 102%			
Analysis Date/Time:	2-28-14/08:54			
Analyst Initials	tjg			

Analytical Report

TO-15 Quality Control Data

022714AIR

EnvisionAir Batch Number:

Method Blank (MB):	MB Results (ppbv)	Reporting Limit (ppbv)	<u>Flags</u>
cis-1,2-Dichloroethene	< 0.2	0.2	
Tetrachloroethene	< 0.2	0.2	
trans-1,2-Dichloroethene	< 10	10	
Trichlorethene	< 0.2	0.2	
Vinyl Chloride	< 0.2	0.2	
4-bromofluorobenzene (surrogate)	104%		
Analysis Date/Time:	2-27-14/11:25		
Analyst Initials	tjg		
			LCS/D

			LCS/D	LCS	LCSD	
LCS/LCSD	LCS Results (ppbv)	LCSD Results (ppbv)	Conc(ppbv)	Rec.	Rec.	<u>RPD</u> Flag
Vinyl Chloride	9.57	8.58	10	96%	86%	10.9%
trans-1,2-Dichloroethene	9.57	9.49	10	96%	95%	0.8%
cis-1,2-Dichloroethene	10	10.2	10	100%	102%	2.0%
Trichlorethene	9.49	9.86	10	95%	99%	3.8%
Tetrachloroethene	10.4	9.2	10	104%	92%	12.2%
4-bromofluorobenzene (surrogate)	104%	100%				
Analysis Date/Time:	2-27-14/10:03	2-27-14/10:52				
Analyst Initials	tjg	tjg				

Flag Number

Comments

1	Reported value is from a 10x dilution. TJG 3-6-14
2	Reported value is from a 20x dilution. TJG 3-6-14
3	Reported value is from a 40x dilution. TJG 3-6-14

											EnvisionA	hir Proj#:	14-60	5 Page	of
				CHA	AIN C	DF C	CUS	ΤΟΓ	YC	RECO	RD				
Envi	isionAir	1437 Sa	adlier Cire	cle West D	Drive In	ndiana	polis, I	N 462	239	Phone: (3	17) 351-0885	Fax: (3	17) 351-	0882	
Client: Envire forences;		P.O. NI	umber:]									
Report Nik W23390 Str Address: Wantersho Wi	m Richge	Project	Name or	Number:		REQUESTED PARAMETERS				681	the ea	ea.			
Report To: Wayne F E	- 5318									******	*	****	*		
Phone:	hant		~~~	(circle if appli								ENVISIONAIR			
917-972-787	<u>ے</u>		Leve	el III Lev	el IV			*******	******						
Invoice Address:	46204	Reporti	ing Units r 3mg/m	needed: (circ 1 ³ PPBV	le) PPMV						Soil-Gas: □ Sub-Slab: ₽	<i>quality air analysis</i> www.envision-air.com <i>Canister Pressure / Vacuum</i>			<i>•</i>
Desired TAT: (Please Circle One) 1 day 2 days 3 days Std (5-		Media type	: 1LC = 1 Liter 6LC = 6 Liter TB = Tedlar TD = Therm	Canister				\$			Indoor-Air: 🗆				om
Air Sample ID		Coll. Date (Grab/Comp Start)	Coll. Time (Grab/Comp Start)	Coll. Date (Comp. End)	Coll. Time (Comp. End)					Canister Serial #	Flow Controller Serial #	Initial Field (in. Hg)	Final Field (in. Hg)	Lab Received (in. Hg)	EnvisionAir Sample Number
6200-7215-55U-1	1.15			2/00/14	3.21		X			520	NA	-23	-10	-16	14-349
6200-7215-550-2				2 Daly	14:00		4			J1709	NA	- 28	-7	-7	14-350
-		•••								JITA					
								,				·			,
Comments: Report	mly	PCE	TCE	El Cis-	1,2	tra	~s-17	2)	V:	yn) Chi	lovide		•		
					N			1					-	-	

v					
Relinquished by:	Date	Time	Received by:	Date	Time
			CANTOS	2/25/14	12:00
				, ,,,,,	

Mr. Fassbender Enviroforensics 825 N. Capitol Ave. Indianapolis, IN 46204

October 4, 2016

EnvisionAir Project Number: 2016-597 Client Project Name: 6200 / Former Hoffmans Valet Cleaners

Dear Mr. Fassbender,

Please find the attached analytical report for the samples received September 26, 2016. All test methods performed were fully compliant with local, state, and federal EPA methods unless otherwise noted. The project was analyzed as requested on the enclosed chain of custody record. Please review the comments section for additional information about your results or Quality Control data.

Feel free to contact me if you have any questions or comments regarding your analytical report or service.

Thank you for your business. EnvisionAir looks forward to working with you on your next project.

Yours Sincerely,

tranky a. Thinnicutt

Stan Hunnicutt

Project Manager EnvisionAir, LLC

Canister Pressure / Vacuum

Client Name: ENVIROFORENSICS

Project ID: 6200 / FORMER HOFFMANS VALET CLEANERS W FASSBENDER

Client Project Manager:

EnvisionAir Project Number: 2016-597

Sample Summary

			START Date	START Time	End Date	End Time	Date	Time	Initial Field	Final Field	Lab Received
Laboratory Sample Number:	Sample Description:	Matrix:	Collected:	Collected:	Collected:	Collected:	Received:	Received	<u>(in. Hg)</u>	<u>(in. Hg)</u>	<u>(in. Hg)</u>
16-2258	62007215-SSV-1	A	9/15/16	14:15	9/15/16	14:20	9/26/16	10:20	-29	-2	-2
16-2259	62007215-SSV-2	А	9/15/16	14:30	9/15/16	14:36	9/26/16	10:20	-29	-2	-2

Client Name:	ENVIROFORENSICS									
Project ID:	6200 / FORMER HOFF	200 / FORMER HOFFMANS VALET CLEANERS								
Client Project Manager:	W FASSBENDER									
EnvisionAir Project Number:	2016-597									
Analytical Method: Analytical Batch:	TO-15 100116AIR									
Client Sample ID:	6200-7215-SSV-1	Sample Collection START Date/Time: Sample Collection END Date/Time:	9/15/16 9/15/16	14:15 14:20						
Envision Sample Number: Sample Matrix:	16-2258 AIR	Sample Received Date/Time:	9/26/16	10:20						
Compounds cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl Chloride 4-bromofluorobenzene (surroga Analysis Date/Time: Analyst Initials	Sample Results ug/m ³ < 39.6 486 < 39.6 38.7 < 6.4 10-01-16/08:09 tjg	Reporting Limit ug/m³ 39.6 31.9 39.6 10.7 6.4	<u>Flag</u>							

Client Name:	ENVIROFORENSICS								
Project ID:	6200 / FORMER HOFF	200 / FORMER HOFFMANS VALET CLEANERS							
Client Project Manager:	W FASSBENDER								
EnvisionAir Project Number:	2016-597								
Analytical Method: Analytical Batch:	TO-15 100116AIR								
Client Sample ID:	6200-7215-SSV-2	Sample Collection START Date/Time:	9/15/16 9/15/16	14:30					
Envision Sample Number: Sample Matrix:	16-2259 AIR	Sample Collection END Date/Time: Sample Received Date/Time:	9/26/16	14:36 10:20					
Compounds cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl Chloride 4-bromofluorobenzene (surroga Analysis Date/Time: Analyst Initials	Sample Results ug/m ³ < 39.6 1,360 < 39.6 243 < 6.4 tte) 89% 10-01-16/08:43 tjg	Reporting Limit ug/m³ 39.6 31.9 39.6 10.7 6.4	<u>Flag</u>						

EnvisionAir Batch Number:

Analysis Date/Time:

Analyst Initials

Analytical Report

TO-15 Quality Control Data

100116AIR

09-30-16/21:39

tjg

Method Blank (MB):	MB Results (ppbv)	Reporting Limit (ppbv)	Flags		
cis-1,2-Dichloroethene	< 5	5			
Tetrachloroethene	< 0.47	0.47			
trans-1,2-Dichloroethene	< 10	10			
Trichlorethene	< 0.2	0.2			
Vinyl Chloride	< 0.5	0.5			
4-bromofluorobenzene (surrogate)	101%				
Analysis Date/Time:	09-30-16/22:15				
Analyst Initials	tjg				
			LCS/D	LCS	LCSD
LCS/LCSD	LCS Results (ppbv)	LCSD Results (ppbv)	Conc(ppbv)	Rec.	Rec.
Vinyl Chloride	11.4	11.5	10	114%	115%
trans-1,2-Dichloroethene	11.1	11.1	10	111%	111%
cis-1,2-Dichloroethene	9.81	9.93	10	98%	99%
Trichloroethene	10.2	9.34	10	102%	93%
Tetrachloroethene	11	11.4	10	110%	114%
4-bromofluorobenzene (surrogate)	82%	82%			

10-01-16/06:56

tjg

 RPD
 Flag

 0.9%

 0.0%

 1.2%

 8.8%

 3.6%

Flag Number

Comments

EnvisionAir Proj#: 2016-597 Page _____ of ____

CHAIN OF CUSTODY RECORD

EnvisionAir | 1441Sadlier Circle West Drive | Indianapolis, IN 46239 | Phone: (317) 351-0885 | Fax: (317) 351-0882

Client: EnviroForensico	s	P.O. N	umber: 2	016900	18		DEOL	IFOTE		TEDO	7			
Client: EnviroForensico Reportivile w23290 Ster Address: Wontesha m	F 53188			Number: <		hers	REQ		PARAME					
Report To: W. Fassberge	"stend		ed by: K	Heims	food		/	/ /	3/		E		SIC	NAIR
Phone: 317-972-7			Required	(circle if appli			/	19	1///	/ -		NVI	SIC	
Invoice Address:		Report ug/m		needed: (circ			1 CE	Toon I's	//	Soil-Gas: Sub-Slab:	<u>u</u>		vision-air.c	
Desired TAT: (Please Circle On 1 day 2 days 3 days Std (5 bus. days		: 1LC = 1 Liter 6LC = 6 Liter TB = Tedlar TD = Therm	Canister		10	TO 15 MILLIN	//	/	Indoor-Air:	Caniste	r Pressure /		om
Air Sample ID	Media Type (see code above)	Coll. Date (Grab/Comp Start)	Coll. Time (Grab/Comp Start)	Coll. Date (Comp. End)	Coll. Time (Comp. End)				Canister Serial #	Flow Controller Serial #	Initial Field (in. Hg)	Final Field (in. Hg)	Lab , Received (in. Hg)	EnvisionAir Sample Number
6200 - 7215-SSV- 1	122	9/15/16	1415	9/15/16			×		2539	-	- 292	-2	-2	16-2258
6200-7215-550-2	160	Pluslic	1430	Plistic	1436		×		83946	-	-29	-2	-2	16-2259
	-							_						
	-		-											
Comments:														
Belle H	quished	by:			Date	Ti	me	5		eived by:			ite	Time
ful -				9/26	116			to	Ex Thinn	ICUMO		9/26	116	1020

Mr. W Fassbender Enviroforensics N16 W. 23390 Stone Ridge Dr Suite G Waukesha, WI 53188

October 7, 2016

EnvisionAir Project Number: 2016-594 Client Project Name: 6200 / Former Hoffman's Valet Cleaners

Dear Mr. Fassbender,

Please find the attached analytical report for the samples received September 22, 2016. All test methods performed were fully compliant with local, state, and federal EPA methods unless otherwise noted. The project was analyzed as requested on the enclosed chain of custody record. Please review the comments section for additional information about your results or Quality Control data.

Feel free to contact me if you have any questions or comments regarding your analytical report or service.

Thank you for your business. EnvisionAir looks forward to working with you on your next project.

Yours Sincerely,

tranty O. Munnicutt

Stanley A Hunnicutt

Project Manager EnvisionAir, LLC

Client Name: ENVIROFORENSICS

6200 / FORMER HOFFMANS VALET CLEANERS Project ID: W FASSBENDER

Client Project Manager:

EnvisionAir Project Number: 2016-594

Sample Summary

START START Lab Date Time End Date End Time Date Time Initial Field Final Field Received Laboratory Sample Number: Sample Description: Collected: Collected: Collected: Received: Received <u>(in. Hg)</u> <u>(in. Hg)</u> <u>(in. Hg)</u> Matrix: 6200-SG-2 9/15/16 9/15/16 16-2228 А 12:40 12:48 9/22/16 10:35 -29 -2 -2 6200-SG-3 -2 -2 16-2229 А 9/15/16 13:05 9/15/16 13:10 9/22/16 10:35 -29 16-2230 6200-SG-4 А 9/15/16 13:20 9/15/16 13:26 9/22/16 10:35 -29 -2 -2

Canister Pressure / Vacuum

Client Name:	ENVIROFORENSICS			
Project ID:	6200 / FORMER HOFF	FMANS VALET CLEANERS		
Client Project Manager:	W FASSBENDER			
EnvisionAir Project Number:	2016-594			
Analytical Method: Analytical Batch:	TO-15 093016AIR			
Client Sample ID:	6200-SG-2	Sample Collection START Date/Time: Sample Collection END Date/Time:	9/15/16 9/15/16	12:40 12:48
Envision Sample Number: Sample Matrix:	16-2228 AIR	Sample Received Date/Time:	9/22/16	10:35
<u>Compounds</u> cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl Chloride 4-bromofluorobenzene (surroga Analysis Date/Time: Analyst Initials	Sample Results ug/m ³ < 39.6 222 < 39.6 < 10.7 < 6.4 tte) 95% 10-1-16/05:10 tjg	Reporting Limit ug/m ³ 39.6 31.9 39.6 10.7 6.4	<u>Flag</u>	

Client Name:	ENVIROFORENSICS									
Project ID:	6200 / FORMER HOFF	6200 / FORMER HOFFMANS VALET CLEANERS								
Client Project Manager:	W FASSBENDER									
EnvisionAir Project Number:	2016-594									
Analytical Method: Analytical Batch:	TO-15 093016AIR									
Client Sample ID:	6200-SG-3	Sample Collection START Date/Time: Sample Collection END Date/Time:	9/15/16 9/15/16	13:05 13:10						
Envision Sample Number: Sample Matrix:	16-2229 AIR	Sample Received Date/Time:	9/22/16	10:35						
<u>Compounds</u> cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl Chloride 4-bromofluorobenzene (surroga Analysis Date/Time: Analyst Initials	Sample Results ug/m ³ < 39.6 54.3 < 39.6 < 10.7 < 6.4 ate) 90% 10-1-16/05:43 tjg	Reporting Limit ug/m³ 39.6 31.9 39.6 10.7 6.4	<u>Flag</u>							

Client Name:	ENVIROFORENSICS			
Project ID:	6200 / FORMER HOFF	MANS VALET CLEANERS		
Client Project Manager:	W FASSBENDER			
EnvisionAir Project Number:	2016-594			
Analytical Method: Analytical Batch:	TO-15 093016AIR			
Client Sample ID:	6200-SG-4	Sample Collection START Date/Time: Sample Collection END Date/Time:	9/15/16 9/15/16	13:20 13:26
Envision Sample Number: Sample Matrix:	16-2230 AIR	Sample Received Date/Time:	9/22/16	10:35
<u>Compounds</u> cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl Chloride 4-bromofluorobenzene (surroga Analysis Date/Time: Analyst Initials	Sample Results ug/m ³ 6,220 142,000 599 3,180 < 6.4 te) 99% 10-1-16/06:17 tjg	Reporting Limit ug/m³ 6340 5100 39.6 1720 6.4	<u>Flaq</u> 1,2 1 1	

<u>Flags</u>

Analytical Report

Reporting Limit (ppbv)

82%

10-1-16/06:56

tjg

TO-15 Quality Control Data

82%

9-30-16/21:39

tjg

EnvisionAir Batch Number:	093016AIR
Method Blank (MB):	MB Results (ppbv)

4-bromofluorobenzene (surrogate)

Analysis Date/Time:

Analyst Initials

cis-1,2-Dichloroethene	< 5	5				
Tetrachloroethene	< 0.47	0.47				
trans-1,2-Dichloroethene	< 10	10				
Trichlorethene	< 0.2	0.2				
Vinyl Chloride	< 0.5	0.5				
4-bromofluorobenzene (surrogate)	101%					
Analysis Date/Time:	9-30-16/22:15					
Analyst Initials	tjg					
			LCS/D	LCS	LCSD	
LCS/LCSD	LCS Results (ppbv)	LCSD Results (ppbv)	Conc(ppbv)	Rec.	Rec.	<u>RPD</u>
LCS/LCSD Vinyl Chloride	LCS Results (ppbv) 11.4	LCSD Results (ppbv) 11.5	Conc(ppbv) 10	<u>Rec.</u> 114%		<u>RPD</u> 0.9%
					Rec.	_
Vinyl Chloride	11.4	11.5	10	114%	<u>Rec.</u> 115%	0.9%
Vinyl Chloride trans-1,2-Dichloroethene	11.4 11.1	11.5 11.1	10 10	114% 111%	<u>Rec.</u> 115% 111%	0.9% 0.0%

RPD Flag

Flag Number

1 2

Comments

- Reported value is from a 1600x dilution. TJG 10-7-16 Reported value is below the reporting limit but above the MDL.
 - TJG 10-7-16

CHAIN OF CUSTODY RECORD

EnvisionAir | 1441Sadlier Circle West Drive | Indianapolis, IN 46239 | Phone: (317) 351-0885 | Fax: (317) 351-0882

Client: Envire Forensi	cs Refer			201690			REG	QUESTED	PARAME	TERS				
Report NIG WZ3390 St Address: Wankesha	I TUSS	Form		Number: 4		ds.		1	1.1	11				
Address: Wowkeshon - Report To: W. Fassbard K. Hein	w/ nstead	Sample		Heimst				/ /	July /	//			SIC	NAIR
Phone: 317-972-78	170	QA/QC	Required:	(circle if appl		1	/	/	1/	/ -		NVI	310	
Invoice Address:		Report	ing Units r mg/m	needed: (circ ³ PPBV	cle) PPMV		all List	Choose and	//	Soil-Gas: 🕅 Sub-Slab: 🗆	<u>::</u>	www.v.er	vision-air c	om
Desired TAT: (Please Circle C 1 day 2 days 3 days Sto	(5 bus. days)		: 1LC = 1 Liter 6LC = 6 Liter TB = Tediar TD = Therm	Canister	e	1	TO IS Full List	Source Line	/	Indoor-Air:	Caniste	www.envision-air.com Canister Pressure / Vacuum		
Air Sample ID	Media Type (set code above)	Coll. Date (Grab/Comp start)	Coll. Time (Grab/Comp Start)	Coll. Date (Comp. End)	Coll. Time (Comp. End)				Canister Serial #	Flow Controller Serial #	Initial Field (in. Hg)	Final Field (in. Hg)	Lab Received (in. Hg)	EnvisionAir Sample Number
6200-561-2	140	9/15/16	1240	9/15/16	1248		+		83814	-	- 29	-2	-2	16-2228
6200.54-3	110	9/15/16	1305	9/15/16	1310		×		2222	-	-29	-2	-2	16-2229
6200-56-2 6200-56-3 6200-56-4	160	9/15/16		9/15/16	1326		×		83738	-	-29	-2	-2	16-2230
Comments:								-						
Reli	nquished	by:			Date	Т	ime		10	eived by:			ate	Time
- gr ll		~		7/2	416			All	in Aur	mecuto	-	19/2	2/16	1035

Mr. W. Fassbender Enviroforensics N16 W. 23390 Stone Ridge Dr Suite G Waukesha, WI 53188

November 30, 2016

EnvisionAir Project Number: 2016-658 Client Project Name: 6200

Dear Mr. Fassbender,

Please find the attached analytical report for the samples received November 18, 2016. All test methods performed were fully compliant with local, state, and federal EPA methods unless otherwise noted. The project was analyzed as requested on the enclosed chain of custody record. Please review the comments section for additional information about your results or Quality Control data.

Feel free to contact me if you have any questions or comments regarding your analytical report or service.

Thank you for your business. EnvisionAir looks forward to working with you on your next project.

Yours Sincerely,

tranty O. Munnicutt

Stanley A Hunnicutt

Project Manager EnvisionAir, LLC

Canister Pressure / Vacuum

Client Name: ENVIROFORENSICS

Project ID: 6200

Client Project Manager: W FASSBENDER

EnvisionAir Project Number: 2016-658

Sample Summary

			START Date	START <u>Time</u>	End Date	End Time	Date	Time	Initial Field	Final Field	Lab Received
Laboratory Sample Number:	Sample Description:	Matrix:	Collected:	Collected:	Collected:	Collected:	Received:	Received	<u>(in. Hg)</u>	<u>(in. Hg)</u>	<u>(in. Hg)</u>
16-2491	6200-7215-SSV-1	A	11/16/16	11:25	11/16/16	11:30	11/18/16	10:15	-27	-3	-3
16-2492	6200-7215-SSV-2	Α	11/16/16	10:55	11/16/16	11:00	11/18/16	10:15	-28	-3	-3

Client Name:	ENVIROFORENSICS			
Project ID:	6200			
Client Project Manager:	W FASSBENDER			
EnvisionAir Project Number:	2016-658			
Analytical Method: Analytical Batch:	TO-15 112216AIR			
Client Sample ID:	6200-7215-SSV-1	Sample Collection START Date/Time: Sample Collection END Date/Time:	11/16/16 11/16/16	11:25 11:30
Envision Sample Number: Sample Matrix:	16-2491 AIR	Sample Received Date/Time:	11/18/16	10:15
Compounds cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl Chloride 4-bromofluorobenzene (surroga Analysis Date/Time: Analyst Initials	Sample Results ug/m ³ < 39.6 594 < 39.6 50.5 < 6.4 tte) 89% 11-22-16/14:39 tjg	Reporting Limit ug/m³ 39.6 31.9 39.6 10.7 6.4	<u>Flag</u>	

Client Name:	ENVIROFORENSICS			
Project ID:	6200			
Client Project Manager:	W FASSBENDER			
EnvisionAir Project Number:	2016-658			
Analytical Method: Analytical Batch:	TO-15 112216AIR			
Client Sample ID:	6200-7215-SSV-2	Sample Collection START Date/Time: Sample Collection END Date/Time:	11/16/16 11/16/16	10:55 11:00
Envision Sample Number: Sample Matrix:	16-2492 AIR	Sample Received Date/Time:	11/18/16	10:15
Compounds cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl Chloride 4-bromofluorobenzene (surroga Analysis Date/Time: Analyst Initials	Sample Results ug/m ³ < 39.6 1,320 < 39.6 377 < 6.4 tte) 87% 11-22-16/15:16 tjg	Reporting Limit ug/m³ 39.6 31.9 39.6 10.7 6.4	<u>Flag</u>	

Analytical Report

TO-15 Quality Control Data

EnvisionAir Batch Number:	112216AIR			
Method Blank (MB):	MB Results (ppbv)	Reporting Limit (ppbv)	Flags	
cis-1,2-Dichloroethene	< 5	5		
Tetrachloroethene	< 0.47	0.47		
trans-1,2-Dichloroethene	< 10	10		
Trichlorethene	< 0.2	0.2		
Vinyl Chloride	< 0.5	0.5		
4-bromofluorobenzene (surrogate)	85%			
Analysis Date/Time:	11-22-16/12:10			
Analyst Initials	tjg			
			LCS/D	LCS
LCS/LCSD	LCS Results (ppbv)	LCSD Results (ppbv)	Conc(ppbv)	Rec.
Vinyl Chloride	10.6	10.9	10	106%
trans-1,2-Dichloroethene	8.91	9.33	10	89%
	1.0	10 7	10	4000/

			LCS/D	LCS	LCSD		
LCS/LCSD	LCS Results (ppbv)	LCSD Results (ppbv)	Conc(ppbv)	Rec.	Rec.	<u>RPD</u>	Flag
Vinyl Chloride	10.6	10.9	10	106%	109%	2.8%	
trans-1,2-Dichloroethene	8.91	9.33	10	89%	93%	4.6%	
cis-1,2-Dichloroethene	10	10.7	10	100%	107%	6.8%	
Trichloroethene	10.7	10.6	10	107%	106%	0.9%	
Tetrachloroethene	9.86	10.3	10	99%	103%	4.4%	
4-bromofluorobenzene (surrogate)	86%	90%					
Analysis Date/Time:	11-22-16/10:53	11-22-16/11:34					
Analyst Initials	tjg	tjg					

Flag Number

Comments

EnvisionAir Proj#: 2016-658 Page _ of _ 1

CHAIN OF CUSTODY RECORD WAF

EnvisionAir | 1441Sadlier Circle West Drive | Indianapolis, IN 46239 | Phone: (317) 351-0885 | Fax: (317) 351-0882

Client: NFO	1	P.O. N	umber: 7	20169	299		BEOUR		METEDC	-						
Report NIG W23390 Project Name or Number: Address: Stone Ridge Or 6200						REQUESTED PARAMETERS										
Report To: W. Fassber	nder	Sample	ed by:G	, Sch	rent]	/	//	///	FI	ENVISIONAIR					
Phone: 262-490-		QA/QC		: (circle if appli el III Lev	el IV]	1		/		NVI	SIC				
Invoice Address:	le .	Report ug/m	mg Units	needed: (circ n ³ PPBV	le) PPMV		and the		Soil-Gas: Sub-Slab:			nvision-air.c				
Desired TAT: (Please Circle Or 1 day 2 days 3 days Std (ne) (5 bus. days)		: 1LC = 1 Liter 6LC = 6 Liter TB = Tediar TD = Therm	Canister	B	12	70.15 million	//	Indoor-Air:		www.er		om			
Air Sample ID	Media Type (see code above)	Coll. Date (Grab/Comp Start)	Coll. Time (Grab/Comp Start)	Coll. Date (Comp. End)	Coll. Time (Comp. End)			Canis Seria		Initial Field (in. Hg)	Final Field (in. Hg)	Lab Received (in. Hg)	EnvisionAir Sample Number			
6200-7215-		11-16/6		11-16-16	1130		X	8394	12	-27	-3	-3	16-2491			
6200-7215-	1LC	11-16-16	1055	11-16-16	100		X	209	2 —	-28	-3	-3	16-2492			
										-						
Comments: Please	((G	s. Sch	scht	the	lab 1	res-H	rS	161				+	~			
	quished	by:			Date	Ti	me	FedEx	Received by:		Da	ate	Time			
share doll	uno.			11-10	0-10	1500	0	ton M	mailento	-	11/15	Alix	1015			

Mr. Wayne Fassbender Enviroforensics N16 W. 23390 Stone Ridge Dr Suite G Waukesha, WI 53188

January 20, 2017

EnvisionAir Project Number: 2017-23 Client Project Name: 6200 Former Hoffman's valet Cleaners

Dear Mr. Fassbender,

Please find the attached analytical report for the samples received January 16, 2017. All test methods performed were fully compliant with local, state, and federal EPA methods unless otherwise noted. The project was analyzed as requested on the enclosed chain of custody record. Please review the comments section for additional information about your results or Quality Control data.

Feel free to contact me if you have any questions or comments regarding your analytical report or service.

Thank you for your business. EnvisionAir looks forward to working with you on your next project.

Yours Sincerely,

tranty O. Hunnicutt

Stanley A Hunnicutt

Project Manager EnvisionAir, LLC

Client Name: ENVIROFORENSICS

Project ID: 6200 / FORMER HOFFMAN'S VALET CLEANERS W. FASSBENDER

Client Project Manager:

EnvisionAir Project Number: 2017-23

Sample Summary

			START Date	START <u>Time</u>	End Date	End Time	Date	Time	Initial Field	Final Field	Lab Received
Laboratory Sample Number:	Sample Description:	Matrix:	Collected:	Collected:	Collected:	Collected:	Received:	Received	<u>(in. Hg)</u>	<u>(in. Hg)</u>	<u>(in. Hg)</u>
17-102	6200-7215-SSV-1	А	1/12/17	13:21	1/12/17	13:28	1/16/17	11:02	-28	-4	-4
17-103	6200-7215-SSV-2	А	1/12/17	13:50	1/12/17	13:54	1/16/17	11:02	-28	-3.5	-3.5

Canister Pressure / Vacuum

Client Name:	ENVIROFORENSICS								
Project ID:	6200 / FORMER HOFFMAN'S VALET CLEANERS								
Client Project Manager:	W. FASSBENDER								
EnvisionAir Project Number:	2017-23								
Analytical Method: Analytical Batch:	TO-15 011717CAIR								
Client Sample ID:	6200-7215-SSV-1	Sample Collection START Date/Time: Sample Collection END Date/Time:	1/12/17 1/12/17	13:21 13:28					
Envision Sample Number: Sample Matrix:	17-102 AIR	Sample Received Date/Time:	1/16/17	11:02					
<u>Compounds</u> cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl Chloride 4-bromofluorobenzene (surroga Analysis Date/Time: Analyst Initials	Sample Results ug/m ³ < 39.6 300 < 39.6 61.3 < 6.4 tte) 98% 1-19-17/06:00 tjg	Reporting Limit ug/m³ 39.6 31.9 39.6 10.7 6.4	<u>Flag</u>						

Client Name:	ENVIROFORENSICS								
Project ID:	6200 / FORMER HOFFMAN'S VALET CLEANERS								
Client Project Manager:	W. FASSBENDER								
EnvisionAir Project Number:	2017-23								
Analytical Method: Analytical Batch:	TO-15 011717CAIR								
Client Sample ID:	6200-7215-SSV-2	Sample Collection START Date/Time: Sample Collection END Date/Time:	1/12/17 1/12/17	13:50 13:54					
Envision Sample Number: Sample Matrix:	17-103 AIR	Sample Received Date/Time:	1/16/17	11:02					
<u>Compounds</u> cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl Chloride 4-bromofluorobenzene (surroga Analysis Date/Time: Analyst Initials	Sample Results ug/m ³ < 39.6 922 < 39.6 243 < 6.4 te) 94% 1-19-17/06:39 tjg	Reporting Limit ug/m³ 39.6 31.9 39.6 10.7 6.4	<u>Flag</u>						

EnvisionAir Batch Number:

Analyst Initials

Analytical Report

TO-15 Quality Control Data

011717CAIR

tjg

Method Blank (MB):	MB Results (ppbv)	Reporting Limit (ppbv)	<u>Flags</u>				
cis-1,2-Dichloroethene	< 5	5					
Tetrachloroethene	< 0.47	0.47					
trans-1,2-Dichloroethene	< 10	10					
Trichlorethene	< 0.2	0.2					
Vinyl Chloride	< 0.5	0.5					
4-bromofluorobenzene (surrogate)	88%						
Analysis Date/Time:	1-18-17/20:03						
Analyst Initials	tjg						
			LCS/D	LCS	LCSD		
LCS/LCSD	LCS Results (ppbv)	LCSD Results (ppbv)	Conc(ppbv)	Rec.	Rec.	RPD	J
Vinyl Chloride	10.2	11.5	10	102%	115%	12.0%	
trans-1,2-Dichloroethene	9.03	10.1	10	90%	101%	11.2%	
cis-1,2-Dichloroethene	8.99	10.2	10	90%	102%	12.6%	
Trichloroethene	9.38	9.3	10	94%	93%	0.9%	
Tetrachloroethene	9.48	9.4	10	95%	94%	0.8%	
4-bromofluorobenzene (surrogate)	114%	100%					
Analysis Date/Time:	1-18-17/18:04	1-18-17/19:25					

tjg

RPD Flag

Flag Number

Comments

EnvisionAir Proj#: 2017-23 Page 1 of 1

CHAIN OF CUSTODY RECORD

EnvisionAir | 1441Sadlier Circle West Drive | Indianapolis, IN 46239 | Phone: (317) 351-0885 | Fax: (317) 351-0882

Client: Enviro Forensics Report NIG W25390 Stre Ridge Dr Address: 2014 - 2015 52189		P.O. N	P.O. Number: 2017052					FOURCE		TEDC	7			
Report Nil w23390 Sta	i Ridge	Project	t Name or	Number: 6	200		R	EQUEST	ED PARAME	/ /				
Address: Waukesha, a	UT SSI	SB Form	w Hoffin	inis vele	+ Clenne	15		/	12	11_	_			
Address: Warkesha, G Report To: W. Fassberge	K. Heins	Sample	ed by: G	. Sch	acht			/	UNIT /		FI	VVI	SIC	NAIR
Phone: 317-972-78	70	QA/QC	Required	: (circle if appl	icable) vel IV		1	1	st /	/ -			510	// // ////
Invoice Address:				needed: (circ n ³ PPBV			111	Stor List	///	Soil-Gas: Sub-Slab:	1	www.u.an	vision-air.c	om
Desired TAT: (Please Circle One 1 day 2 days 3 days 5td (5	bus. days		e: 1LC = 1 Lite 6LC = 6 Lite TB = Tediar TD = Therm	r Canister	e		10.15 Full	12.5 Month Sign	//	Indoor-Air:	Caniste	r Pressure /		.om
Air Sample ID	Media Type (see code above)	Coll. Date (Grab/Comp Start)	Coll. Time (Grab/Comp Start)	Coll. Date (Comp. End)	Coll. Time (Comp. End)				Canister Serial #	Flow Controller Serial #	Initial Field (in. Hg)	Final Field (in. Hg)	Lab Received (in. Hg)	EnvisionAir Sample Number
6200-7215-550-1	14C	1-12-17	13:21	1-12-17	13:28		×		84050		-28	-4	-4	17-102
6200-7215-554-2	14	1-12-17	13:50	1-12-17	13:54		x		2235		-28	-3.5	-3,5	17-103
									_					
	-													
Comments:														
Reline	quished	by:			Date	1 1	Time	1	A A Rec	ceived by:			ite	Time
Ante Dorox	C			1-1	2-17	11	00	- 1	pec			1116	117	11:02
						-		-/						