

Annual Operation, Maintenance, and Monitoring Report

January 2023 through December 2023 Former Holtz Krause Landfill

City of Wausau

February 19, 2024

Project na	ame	City of Wausau-Hol	City of Wausau-Holtz Krause Landfill Operational Support								
Documen	t title	Annual Operation, N Former Holtz Kraus	Maintenance, and e Landfill	d Monitoring Rep	ort January 20	23 through Decer	mber 2023				
Project nu	umber	11228677									
File name		11228677-RPT-3-2	023 Annual OM&	M Report							
Status	Revision	Author	Reviewer		Approved for	issue					
Code			NameSignatureNameSignatureDate								
S3	00	Thomas Hobday	Johan Hedblom	John Hall	Tim Ree	tink	2/9/2024				
[Status code]											
[Status code]											
[Status code]											
[Status code]											

GHD

900 Long Lake Road, Suite 200

St. Paul, Minnesota 55112, United States

T +1 651 639 0913 | F +1 651 639 0923 | E info-northamerica@ghd.com | ghd.com

© GHD 2024

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorized use of this document in any form whatsoever is prohibited.

Contents

1.	Introd	duction	1
	1.1	Site Description	1
	1.2	Objectives, Requirements, Scope, and Limitations	2
2.	Gas E	Extraction System and Flare Station	2
	2.1	Overview and System Components	2
	2.2	Flare Station OM&M	3
		2.2.1 Unscheduled Flare Station Shutdowns	3
	2.3	Gas Extraction Well Monitoring	4
	2.4	Gas Probe Monitoring	4
	2.5	Landfill Gas Condensate	4
3.	Land	fill Cover	5
4.	Conc	lusions	5
5.	Reco	mmendations	5

Table index

- Table 1.1
 Revised Gas Extraction Well Monitoring Schedule
- Table 2.1Flare Station Operational Data
- Table 2.2 Landfill Gas Data
- Table 2.3 Landfill Gas Probe Data

Figure index

Figure 1.1 Site Plan

Appendices

- Appendix A Weekly Flare Station Inspection Forms
- Appendix B Semi-Annual Flare Station Maintenance Reports
- Appendix C Monthly Site Inspection Forms

i

1. Introduction

GHD Services, Inc. (GHD) has prepared this Operation, Maintenance, and Monitoring (OM&M) Report (Report) for the former Holtz Krause Landfill (Site) in Wausau, Wisconsin, on behalf of the City of Wausau. This Report presents the results of OM&M activities at the Site from January 2023 through December 2023 as required by the Operation and Maintenance (O&M) Plan.

Since 1995, the City of Wausau has operated the landfill gas system, maintained the cap, measured settlement, and monitored groundwater at and near the landfill. Under the September 25, 2012 Purchase Agreement, Marathon County purchased the landfill property and the Holtz Krause Steering Committee developed the landfill into a soccer complex. Figure 1.1 shows the landfill, soccer complex, and gas extraction system components.

The September 25, 2012 Purchase Agreement states that the City of Wausau will continue to operate and maintain the landfill gas collection system and landfill cap outside the soccer field area. The Parks department, serving the County and City, is responsible for operation and maintenance of the soccer complex, which includes the irrigation system, under-drains, field turf, concession building, maintenance building, parking lots, and championship field lights. As part of the 2012 Agreement, the Holtz Krause Steering Committee is to provide \$54,000 in funds to the County for the purpose of funding the future replacement of the flare which would likely occur after the flare is 15 to 20 years old (i.e., 2028 to 2033).

This report provides the results of the OM&M performed that is the responsibility of the City of Wausau (landfill gas collection system OM&M, site inspections, and landfill cover areas outside of the soccer complex).

1.1 Site Description

The Holtz Krause Landfill and vicinity is a 64 acre site that operated between 1957 and 1980. The Site is located at the end of East Kent Street, east of Grand Avenue. This landfill received approximately 2.0 million cubic yards (CY) of waste including municipal solid waste, non-combustible waste, demolition material, and wood waste.

The landfill is surrounded by a wetland (south), single residence, Curling Club (west), cemetery (northwest), cell tower (north), and railroad operations (north and east).

In 2013, construction of the soccer complex and modifications and repairs of the gas extraction system were completed. The landfill gas collection system now consists of the following:

- 32 landfill gas extraction wells housed in flush-mounted vaults
- Header pipe, control valves, and condensate drainage system
- Landfill gas flare consisting of blower skid, flare, controls, and other associated equipment
- 13 landfill gas monitoring probes

The landfill cover system consists of the following (from ground surface):

- A vegetative layer consisting of 6 to 8 inches of topsoil and 3 feet of rooting zone soil
- Primary barrier layer consisting of a 40-mil very low density polyethylene (VLDPE) geomembrane liner
- Secondary barrier layer consisting of 2 feet of compacted clay
- The 1982 soil cover (0 to 2 feet thick)

The soccer field utilities are installed entirely above the liner within the rooting zone. These include the irrigation system, under drains, storm drains, water, sanitary and electrical. The landfill gas header piping is installed below the liner.

1.2 Objectives, Requirements, Scope, and Limitations

As required in the O&M Plan for the Site, and as modified by prior approval of the Wisconsin Department of Natural Resources (WDNR), the City is responsible for the following OM&M items:

- Weekly inspections of the flare station from April through September
- Every other week inspections of the flare station from October through March
- Twice monthly monitoring of landfill gas composition at the flare station from November through February
- Monthly monitoring of landfill gas composition at the flare station from March through October
- Semi-annual preventative maintenance of the flare station
- Monitoring and inspection of landfill gas extraction wells (gas composition, flow rate, header vacuum, and well condition) by the WDNR-approved revised monitoring schedule provided in Table 1.1, and as follows:
 - Annual monitoring for extraction wells that are always off (wells EW-1, EW-2, EW-8, EW-9, EW-11, EW-13, EW-14, EW-15, EW-19, EW-22, EW-23, EW-24, EW-35, and EW-38), with the monitoring round split between the months of June and July.
 - Quarterly monitoring (February/March, May, August, and October/November) for extraction wells that are always on (wells EW-3, EW-4, EW-7, EW-10, EW-18, EW-20, EW-30, EW-31, EW-33, EW-36, and EW-37).
 - Monthly monitoring (April through September) and quarterly monitoring (October through March) for wells that are not consistently on or off (wells EW-5, EW-6, EW-12, EW-17, EW-21, EW-32, and EW-34).
- Quarterly gas probe monitoring
- Monthly general Site inspections

Results of the OM&M items noted above are presented in the following sections.

This report: has been prepared by GHD for City of Wausau and may only be used and relied on by City of Wausau for the purpose agreed between GHD and City of Wausau as set out in this report.

GHD otherwise disclaims responsibility to any person other than City of Wausau arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

2. Gas Extraction System and Flare Station

2.1 Overview and System Components

The landfill gas extraction system consists of the following components:

- 32 gas extraction wells housed in flush-mounted vaults
- Header pipe, control valves, and condensate drainage system
- Landfill gas flare consisting of blower skid, flare, controls, and other associated equipment
- 13 gas monitoring probes

Through the use of a blower at the flare station, vacuum is applied to the landfill gas extraction wells via the header pipe network to extract landfill gas from the landfill and transfer it to the flare station. At the flare station, extracted landfill gas is supplied to a candlestick flare for combustion and destruction. Landfill gas condensate that accumulates in the header piping or at the flare station drains to the City of Wausau sanitary sewer via a condensate sump and drip leg.

Gas monitoring probes are installed around the perimeter of the landfill to allow monitoring of soil gas for any potential landfill gas migration beyond the landfill limits.

The components of the gas extraction system are shown on Figure 1.1.

2.2 Flare Station OM&M

The required flare station OM&M consists of the following:

- Weekly inspection of the flare station operation from April through September
- Every other week inspections of the flare station operation from October through March
- Twice weekly remote flare station monitoring
- Twice monthly monitoring of flare station landfill gas composition from November through February
- Monthly monitoring of flare station landfill gas composition from March through October
- Semi-annual preventative maintenance of flare station

Weekly and every other week flare station inspections consist of recording all current operating conditions (flow rate, oxygen content, gas/flare temperatures, gas pressures, header vacuum, system hours, etc.) listed on the "Weekly Flare Station Inspection Form" (included in the O&M Plan). A summary of inspection results are presented in Table 2.1. Weekly and every other week flare inspection forms from the reporting period are included in Appendix A.

In addition to on-Site inspections, the flare station was monitored at least twice per week via the remote (internet) connection to verify operation. Any issues or shutdowns discovered during remote monitoring were logged and are detailed in Section 2.2.1.

Monitoring of landfill gas composition (percent each: methane, carbon dioxide, and oxygen) was completed a minimum of one time per month from April to September, and a minimum of two times per month from October to March. The results of landfill gas monitoring at the flare station are presented in Tables 2.1 and 2.2.

Semi-annual flare station maintenance consists of performing all flare manufacturer specified inspections and preventative maintenance. The semi-annual inspection and maintenance events were performed by GHD on behalf of the City of Wausau in April 2023 and October 2023. The semi-annual maintenance reports are included in Appendix B.

Prior to the April 2023 semi-annual maintenance visit, the flare station operator interface (touchscreen) was noted to be operating erratically and requiring frequent power cycling to restore normal operation. A replacement touchscreen was procured by GHD and installed in conjunction with the April 2023 semi-annual maintenance visit.

2.2.1 Unscheduled Flare Station Shutdowns

During the reporting period (January 2023 through December 2023), the flare station experienced 9 unscheduled shutdowns. Details of the shutdowns are as follows:

- July 24, 2023: The flare station shut down due to a low flow rate shutdown. The flare was restarted on July 24, 2023.
- August 6, 2023: The flare station shut down due to a low flow rate shutdown. The flare was restarted on August 7, 2023.
- August 13, 2023: The flare station shut down due to a low flow rate shutdown. The flare was restarted on August 14, 2023.

- August 16, 2023: The flare station shut down due to a low flow rate shutdown. The flare was restarted on August 18, 2023.
- August 21, 2023: The flare station shut down due to a low flow rate shutdown. The flare was restarted on August 21, 2023.
- September 1, 2023: The flare station shut down due to a thermocouple malfunction. The system power was cycled, PLC reset, and the flare station was restarted on September 4, 2023.
- September 24, 2023: The flare shut down due to a power failure resulting from a thunderstorm. The flare was
 restarted on September 25, 2023, following power restoration.
- October 16, 2023: The flare shut down due to a power failure resulting from a thunderstorm. The flare was
 restarted on October 16, 2023, following power restoration.
- October 19, 2023: During the semi-annual maintenance visit, the PLC digital input card was noted to have failed, preventing the flare from operating in automatic control. A replacement card was installed on October 20, 2023 and the flare was subsequently restarted.

The flare station operated for 8,459 of the 8,760 available hours (97-percent) during the reporting period.

2.3 Gas Extraction Well Monitoring

The gas extraction well monitoring schedule was modified in 2018 according to the WDNR-approved revised monitoring schedule provided in Table 1.1. Wells which are always off are monitored annually in June and July. Wells which are always on are monitored quarterly. Wells which operate intermittently are monitored on a monthly basis April through September, and on a quarterly basis October through March. Gas extraction well measurements consist of monitoring the landfill gas concentration, flow rate, and vacuum at each gas extraction well. Additionally, at the time of monitoring, the condition of each well is inspected and evaluated. Any maintenance needs found are then completed, as necessary. The wells within each monitoring category were further modified per recommendations in the "2022 Annual Operation, Maintenance, and Monitoring Report" that were approved by the WDNR via email on June 21, 2023.

During gas well monitoring, extraction well flow rates were adjusted based upon the composition of landfill gas within the individual wells. Wells were adjusted to supply landfill gas to the flare station with a nominal methane concentration of 30-percent. Landfill gas was extracted from the wellfield at approximately 67 cubic feet per minute (cfm) during the reporting period.

Results of the gas extraction well monitoring are presented in Table 2.2.

2.4 Gas Probe Monitoring

Landfill gas probe monitoring is conducted on a quarterly basis at the thirteen gas probes installed around the perimeter of the Site. Locations of the gas probes are presented on Figure 1.1. Monitoring at each probe consisted of measuring the gas composition (methane, carbon dioxide, oxygen, and balance) and static pressure. Probes were purged for a minimum of 210 seconds before a final measurement was recorded.

Gas probe monitoring results are presented in Table 2.3. Methane was non-detect at all probes during the reporting period monitoring events, indicating that the gas extraction system has been effective at controlling landfill gas migration from the Site.

2.5 Landfill Gas Condensate

Landfill gas condensate, collected in the landfill gas header and at the flare station, gravity drains to a drip leg near the flare station before draining to the City of Wausau sanitary sewer. Landfill gas condensate is not required to be sampled by the WDNR, and is only sampled at the direction/discretion of the City of Wausau Wastewater Treatment Facility.

3. Landfill Cover

In accordance with the O&M Plan, the City was responsible for completing general Site inspections on a monthly basis. Any issues identified in monthly inspections were then reported to the responsible party (i.e. County for soccer complex/field issues, City for landfill areas outside of the soccer complex, etc.).

The Site inspections focused on the following main components:

- Landfill cover area
- Landfill gas extraction wells
- Landfill gas monitoring probes
- Flare station area
- Access roads/paths associated with the Site

Inspections are completed on the "Landfill Site Inspection" form previously provided in the Site O&M Plan. Copies of the monthly inspection forms are provided in Appendix C.

General maintenance items completed during the reporting period included:

- Site mowing as necessary
- Replacement of wellhead vault covers as necessary

4. Conclusions

Based upon the OM&M activities performed in the reporting period, the following conclusions are made:

- The flare station provided consistent, reliable operation throughout the reporting period with 97-percent up-time from January 1, 2023 through December 31, 2023.
- The flare station controls allowed landfill gas extraction amounts to closely match landfill production (approximately 67 cfm at 27 to 37-percent methane). This resulted in minimal amounts of oxygen within the landfill waste, ensuring the landfill remains in anaerobic gas production and limiting the potential for subsurface fires.
- Landfill gas monitoring probes were all non-detect for methane during the reporting period, indicating that landfill gas extraction rates are sufficient to prevent off-Site gas migration.
- The general Site was noted to be in good condition throughout the reporting period, with no significant concerns.

5. Recommendations

Based upon the conclusions presented in Section 4, it is recommended that the operation, maintenance, and monitoring schedules for the Site be continued as currently approved.

Tables

Table 1.1

Revised Gas Extraction Well Monitoring Schedule Holtz Krause Closed Landfill - Wausau, Wisconsin

Well Condition	Total Number of Wells	1st Quarter (Feb/Mar)	April	Мау	June	July	August	September	4th Quarter (Oct/Nov)
Wells Always Off (Annual Monitoring) (June: EW-1, 2, 8, 9, 22, 23, and 24) (July: EW-11, 13, 14, 15, 19, 35, and 38)	14				Half Round (June wells)	Half Round (July wells)			
Wells Always On (Quarterly Monitoring) (EW-3, 4, 7, 10, 18, 20, 30, 31, 33, 36, and 37)	11	Х		Х			Х		Х
Wells with Intermittent Operation (Monthly/Quarterly monitoring) (EW-5, 6, 12, 17, 21, 32, and 34)	7	х	х	х	х	х	х	х	х

Flare Station Operational Data January 2023 through December 2023 Holtz Krause Closed Landfill - Wausau, Wisconsin

-	Header		Carbon	•	Flow	Inlet Gas	Flare	•	System
Date	Pressure	Methane	Dioxide	Oxygen	Rate	Temp (°⊑)	Temp (°⊏)	Status	Hours
	$(\Pi \Pi_2 O)$	(%)	(%)	(%)	(scim)	(1)	(1)	(on/off)	(nours)
1/3/2023	-2.3	NR	NR	NR	72	51	1,446	on	78,875
1/10/2023	-2.9	35.4	30.9	0.5	66	50	1,452	on	79,021
1/17/2024	-3.4	NR	NR	NR	65	50	1,372	on	79,210
1/24/2023	-3.8	33.5	30.1	0.6	66	50	1,136	on	79,378
1/31/2023	-3.1	NR	NR	NR	72	48	1,325	on	79,545
2/7/2023	-4.0	33.0	29.7	0.6	66	49	1,260	on	79,715
2/14/2023	-2.9	NR	NR	NR	73	49	1,329	on	79,882
2/21/2023	-5.0	31.8	29.7	0.7	65	48	1,244	on	80,051
2/28/2023	-4.6	NR	NR	NR	66	48	1,384	on	80,219
3/7/2023	-4.6	NR	NR	NR	72	48	1,303	on	80,386
3/14/2023	-4.1	NR	NR	NR	72	47	1,229	on	80,554
3/21/2023	-4.1	NR	NR	NR	70	47	1,351	on	80,721
3/28/2023	-3.9	31.1	29.7	0.7	73	48	1,319	on	80,890
4/4/2023	-4.8	NR	NR	NR	69	47	1,448	on	81,058
4/11/2023	-3.6	31.5	28.8	0.5	69	48	1,340	on	81,220
4/18/2023	-5.2	NR	NR	NR	70	48	1,289	on	81,388
4/25/2023	-4.4	NR	NR	NR	66	48	1,142	on	81,555
5/2/2023	-4.4	NR	NR	NR	72	49	1,288	on	81,723
5/9/2023	-4.5	29.4	28.7	0.6	67	50	1,067	on	81,892
5/16/2023	-2.3	NR	NR	NR	67	51	1,319	on	82,060
5/23/2023	-3.8	NR	NR	NR	68	52	1,122	on	82,228
5/30/2023	-3.7	NR	NR	NR	69	53	1,232	on	82,396
6/6/2023	-3.5	29.4	28.8	0.5	71	55	1,384	on	82,564
6/13/2023	-3.1	NR	NR	NR	70	55	1,346	on	82,732
6/20/2023	-4.3	NR	NR	NR	67	56	1,125	on	82,900
6/27/2023	-4.1	NR	NR	NR	68	57	1,268	on	83,068
7/3/2023	-3.8	NR	NR	NR	67	58	1,162	on	83,211
7/11/2023	-4.7	27.4	28.9	0.5	72	59	1,146	on	83,403
7/18/2023	-3.8	NR	NR	NR	70	59	1,028	on	83,572
7/25/2023	-3.5	NR	NR	NR	68	60	1,031	on	83,718
8/1/2023	-3.1	NR	NR	NR	69	61	1,056	on	83,876
8/8/2023	-3.1	28.8	28.8	0.5	68	62	1,145	on	84,022

Flare Station Operational Data January 2023 through December 2023 Holtz Krause Closed Landfill - Wausau, Wisconsin

Date	Header Pressure (in H ₂ O)	Methane (%)	Carbon Dioxide (%)	Oxygen (%)	Flow Rate (scfm)	Inlet Gas Temp (°F)	Flare Temp (°F)	Status (on/off)	System Hours (hours)
8/15/2023	-3.1	NR	NR	NR	62	62	1,173	on	84,154
8/22/2023	-3.0	NR	NR	NR	63	62	1,235	on	84,272
8/28/2023	-2.7	NR	NR	NR	61	62	1,080	on	84,407
9/5/2023	-3.0	NR	NR	NR	68	63	1,286	on	84,518
9/12/2023	-3.1	32.0	30.0	0.5	65	62	1,348	on	84,666
9/19/2023	-3.1	NR	NR	NR	69	61	1,292	on	84,833
9/25/2023	-2.6	NR	NR	NR	69	62	1,400	on	84,963
10/3/2023	-3.0	33.2	30.5	0.5	69	61	1,264	on	85,154
10/9/2023	-2.3	NR	NR	NR	68	61	1,304	on	85,303
10/18/2023	-2.2	NR	NR	NR	65	60	1,321	on	85,504
10/24/2023	-1.7	NR	NR	NR	60	60	1,320	on	85,627
10/31/2023	-2.2	NR	NR	NR	63	58	1,442	on	85,795
11/7/2023	-4.5	34.1	30.6	0.5	68	58	1,203	on	85,942
11/14/2023	-3.8	NR	NR	NR	69	57	1,217	on	86,133
11/21/2023	-2.3	37.5	32.0	0.4	66	56	1,260	on	86,302
11/28/2023	-3.9	NR	NR	NR	63	54	1,121	on	86,469
12/5/2023	-3.5	35.8	31.4	0.5	61	54	1,272	on	86,637
12/12/2023	-4.4	NR	NR	NR	60	53	1,345	on	86,803
12/19/2023	-3.3	36.0	31.9	0.5	70	53	1,356	on	86,950
12/27/2023	-3.5	NR	NR	NR	63	52	1,333	on	87,165

Landfill Gas Data January 2023 through December 2023 Holtz Krause Closed Landfill - Wausau, Wisconsin

			Carbon			Flow	Header	
ID	Date	Methane	Dioxide	Oxygen	Temp	Rate	Pressure	Status
		(%)	(%)	(%)	(°F)	(scfm)	(in. H ₂ O)	(on/off)
Flare	1/10/2023	35.4	30.9	0.5	50	66	-2.9	On
Flare	1/24/2023	33.5	30.1	0.6	50	66	-3.8	On
Flare	2/7/2023	33.0	29.7	0.6	49	66	-4.0	On
Flare	2/21/2023	31.8	29.7	0.7	48	65	-5.0	On
Flare	3/28/2023	31.1	28.9	0.5	48	73	-3.9	On
Flare	4/11/2023	31.5	28.8	0.5	48	69	-3.6	On
Flare	5/9/2023	29.4	28.7	0.6	50	67	-4.5	On
Flare	6/6/2023	29.4	28.8	0.5	55	71	-3.5	On
Flare	7/11/2023	27.4	28.9	0.5	59	72	-4.7	On
Flare	8/8/2023	28.8	28.8	0.5	62	68	-3.1	On
Flare	9/12/2023	32.0	30.0	0.5	62	65	-3.1	On
Flare	10/3/2023	33.2	30.5	0.5	60	65	-2.2	On
Flare	11/7/2023	34.1	30.6	0.5	58	68	-4.5	On
Flare	11/21/2023	37.5	32.0	0.4	56	66	-2.3	On
Flare	12/5/2023	35.8	31.4	0.5	54	61	-3.5	Ön
Flare	12/19/2023	36.0	31.9	0.5	53	70	-3.5	On
EW-01	6/6/2023	6.4	20.1	0.4	62	0	-3.0	Off
EW-02	6/6/2023	13.5	23.0	0.4	59	0	-3.0	Off
EW-03	3/28/2023	38.1	28.7	0.2	47	4	-2.2	On
EW-03	5/9/2023	35.6	28.1	0.3	48	4	-3.9	On
EW-03	8/8/2023	37.6	29.7	0.2	56	6	-2.6	On
EW-03	10/19/2023	43.7	32.3	0.3	53	10	-1.6	On
EW-04	3/28/2023	27.0	26.3	0.4	46	1	-2.7	On
EW-04	5/9/2023	26.8	25.9	0.4	48	20	-3.9	On
EW-04	8/8/2023	26.7	27.0	0.5	64	5	-2.5	On
EW-04	10/19/2023	31.1	29.3	0.4	57	4	-1.6	On
EW-05	3/28/2023	19.0	24.3	0.2	44	0	-2.8	Off
EW-05	4/11/2023	18.9	23.2	0.2	48	0	-2.3	Off
EW-05	5/9/2023	14.7	22.7	0.5	50	0	-3.9	Off
EW-05	6/6/2023	16.6	22.6	0.2	56	0	-2.9	Off
EW-05	7/11/2023	17.1	23.0	0.3	57	0	-3.9	Off
EW-05	8/8/2023	22.5	23.6	0.5	63	5	-2.4	On
EW-05	9/12/2023	28.0	24.7	0.5	59	0	-2.3	On
EW-05	10/19/2023	31.2	26.0	0.4	56	2	-1.7	On
EW-06	3/28/2023	23.7	26.9	0.2	47	0	-2.6	Off
	4/11/2023	23.6	25.7	0.2	51	29	-2.2	On
	5/9/2023	20.2	25.7	0.2	50	3	-3.8	On Or
	6/6/2023	19.1	25.0	0.2	58	0	-2.9	Off
EVV-06	7/11/2023	18.7	25.2	0.4	60	0	-3.9	UII

Landfill Gas Data January 2023 through December 2023 Holtz Krause Closed Landfill - Wausau, Wisconsin

			Carbon			Flow	Header	
ID	Date	Methane	Dioxide	Oxygen	Temp	Rate	Pressure	Status
		(%)	(%)	(%)	(°F)	(scfm)	(in. H ₂ O)	(on/off)
EW-06	8/8/2023	22.4	25.7	0.3	64	5	-2.4	On
EW-06	9/12/2023	25.8	26.6	0.3	58	2	-2.2	On
EW-06	10/19/2023	29.3	27.7	0.3	56	4	-1.5	On
EW-07	3/28/2023	30.1	27.2	0.4	45	0	-2.7	On
EW-07	5/9/2023	32.1	26.8	0.8	52	7	-3.7	On
EW-07	8/8/2023	29.6	28.0	0.4	63	6	-2.3	On
EW-07	10/19/2023	30.9	28.8	0.3	56	7	-1.6	On
EW-08	6/6/2023	9.2	20.8	0.3	64	0	-2.9	Off
EW-09	6/6/2023	13.8	22.3	0.3	59	0	-2.9	Off
EW-10	3/28/2023	29.9	28.2	0.2	43	0	-2.6	On
EW-10	5/9/2023	28.8	27.2	0.3	49	6	-3.9	On
EW-10	8/8/2023	27.7	27.3	0.4	61	5	-2.5	On
EW-10	10/19/2023	30.1	28.5	0.4	55	3	-1.6	On
EW-11	7/11/2023	0.7	17.9	0.5	66	0	-3.9	Off
EW-12	3/28/2023	17.1	26.1	0.1	42	0	-2.7	Off
EW-12	4/11/2023	17.4	25.0	0.3	46	0	-2.5	Off
EW-12	5/9/2023	16.0	24.7	0.5	49	0	-3.8	Off
EW-12	6/6/2023	17.5	24.9	0.3	62	0	-3.0	Off
EW-12	7/11/2023	19.3	25.8	0.5	62	0	-3.7	Off
EW-12	8/8/2023	21.4	26.3	0.4	65	6	-2.5	On
EW-12	9/12/2023	24.1	27.1	0.4	60	0	-2.3	On
EW-12	10/19/2023	25.9	28.3	0.1	56	0	-1.6	On
EW-13	7/11/2023	1.6	19.2	0.8	64	0	-3.1	Off
EW-14	7/11/2023	10.1	19.7	0.5	62	0	-3.7	Off
EW-15	7/11/2023	0.8	16.7	0.8	60	0	-3.6	Off
EW-17	3/28/2023	21.5	25.7	0.2	39	0	-2.7	On
EW-17	4/11/2023	25.4	23.8	1.3	52	0	-2.4	On
EW-17	5/9/2023	2.0	1.9	19.6	50	0	-3.8	Off
EW-17	6/6/2023	40.0	26.3	0.3	62	0	-2.8	On
EW-17	7/11/2023	27.3	26.0	0.4	58	5	-3.6	On
EW-17	8/8/2023	31.1	27.3	0.3	64	4	-2.4	On
EW-17	9/12/2023	36.0	28.9	0.4	58	0	-1.9	On
EW-17	10/19/2023	38.2	30.3	0.1	57	0	-1.5	On
EW-18	3/28/2023	41.2	31.8	0.4	43	0	-2.8	On
EW-18	5/9/2023	38.0	31.0	0.2	51	3	-3.8	On

Landfill Gas Data January 2023 through December 2023 Holtz Krause Closed Landfill - Wausau, Wisconsin

			Carbon			Flow	Header	
ID	Date	Methane	Dioxide	Oxygen	Temp	Rate	Pressure	Status
		(%)	(%)	(%)	(°F)	(scfm)	(in. H ₂ O)	(on/off)
EW-18	8/8/2023	45.1	33.1	0.2	67	3	-2.3	On
EW-18	10/19/2023	48.1	35.1	0.4	57	0	-1.5	On
EW-19	7/11/2023	0.1	0.1	21.2	67	0	-1.7	Off
EW-20	3/28/2023	44.7	35.4	0.3	48	17	-2.5	On
EW-20	5/9/2023	42.9	34.0	0.4	50	16	-3.7	On
EW-20	8/8/2023	39.9	34.5	0.3	59	16	-2.3	On
EW-20	10/19/2023	43.1	36.6	0.2	55	16	-1.5	On
EW-21	3/28/2023	27.5	27.2	0.2	33	0	-3.1	On
EW-21	4/11/2023	26.5	25.6	0.4	49	0	-2.4	On
EW-21	5/9/2023	22.0	24.7	0.9	50	5	-3.9	On
EW-21	6/6/2023	21.4	25.2	0.6	58	6	-2.9	On
EW-21	7/11/2023	20.2	25.8	0.9	61	5	-3.7	On
EW-21	8/8/2023	22.4	26.5	0.6	68	6	-2.4	On
EW-21	9/12/2023	26.1	28.4	0.5	60	16	-2.4	On
EW-21	10/19/2023	30.2	29.7	0.2	57	23	-1.6	On
EW-22	6/6/2023	6.1	20.2	0.2	62	0	-3.0	Off
EW-23	6/6/2023	0.0	1.1	20.7	64	0	-2.9	Off
EW-24	6/6/2023	7.7	20.9	0.5	63	0	-2.9	Off
EW-30	3/28/2023	25.7	32.1	0.5	42	0	-2.9	On
EW-30	5/9/2023	25.3	30.8	0.2	47	29	-3.8	On
EW-30	8/8/2023	23.2	30.8	0.5	64	5	-2.3	On
EW-30	10/19/2023	35.5	34.3	0.4	54	8	-1.5	On
EW-31	3/28/2023	32.1	33.1	0.4	44	0	-2.4	On
EW-31	5/9/2023	31.6	32.2	0.2	49	5	-3.9	On
EW-31	8/8/2023	27.0	31.1	0.5	63	5	-2.3	On
EW-31	10/19/2023	35.0	34.0	0.3	54	4	-1.7	On
EW-32	3/28/2023	1.7	3.3	18.6	45	0*	-1.7	Off
EW-32	4/11/2023	14.8	22.0	0.3	59	0	-2.4	Off
EW-32	5/9/2023	11.3	21.7	1.7	53	0	-3.8	Off
EW-32	6/6/2023	0.5	1.4	19.2	66	0	-2.4	Off
EW-32	7/11/2023	10.4	24.0	0.5	68	0	-3.6	Off
EW-32	8/8/2023	0.0	0.1	20.6	71	0	-2.3	Off
EW-32	9/12/2023	0.3	0.7	21.3	63	0	-2.3	Off
EW-32	10/19/2023	28.6	31.0	0.5	54	0	-1.5	Off
EW-33	3/28/2023	26.3	32.4	0.2	40	15	-1.6	On
EW-33	5/9/2023	21.8	30.5	0.2	47	0	-3.7	On

Landfill Gas Data January 2023 through December 2023 Holtz Krause Closed Landfill - Wausau, Wisconsin

ID	Date	Methane (%)	Carbon Dioxide (%)	Oxygen (%)	Temp (°F)	Flow Rate (scfm)	Header Pressure (in. H ₂ O)	Status (on/off)
EW-33	8/8/2023	23.3	31.5	0.4	64	5	-2.6	On
EW-33	10/19/2023	33.2	34.2	0.3	55	3	-1.7	On
EW-34	3/28/2023	15.9	26.4	0.2	36	0	0.1	Off
EW-34	4/11/2023	3.1	3.6	18.0	49	0	-0.2	Off
EW-34	5/9/2023	0.0	0.1	21.2	52	0	-1.2	Off
EW-34	6/6/2023	0.7	2.7	18.8	67	0	-0.3	Off
EW-34	7/11/2023	0.3	1.2	20.3	67	0	-0.5	Off
EW-34	8/8/2023	1.0	2.7	18.7	71	0	-0.2	Off
EW-34	9/12/2023	1.8	3.1	19.7	60	0	-0.2	Off
EW-34	10/19/2023	37.3	34.2	0.2	51	0	0.0	Off
EW-35	7/11/2023	1.8	3.2	18.8	64	0	-0.5	Off
EW-36	3/28/2023	37.5	31.8	0.2	41	0	-1.5	On
EW-36	5/9/2023	29.8	29.2	0.2	50	19	-2.9	On
EW-36	8/8/2023	28.2	30.3	0.2	71	5	-0.8	On
EW-36	10/19/2023	34.4	33.9	0.1	57	19	0.0	On
EW-37	3/28/2023	38.7	35.1	0.2	40	0	-1.5	On
EW-37	5/9/2023	33.3	33.5	0.2	48	0	-2.6	On
EW-37	8/8/2023	31.8	35.4	0.1	80	5	-1.8	On
EW-37	10/19/2023	42.1	38.1	0.2	55	2	0.0	On
EW-38	7/11/2023	0.8	5.6	12.8	64	0	-3.5	Off

Notes:

* - Sample port frozen

Landfill Gas Probe Data January 2023 through December 2023 Holtz Krause Closed Landfill - Wausau, Wisconsin

			Carbon		Static
ID	Date	Methane	Dioxide	Oxygen	Pressure
		(%)	(%)	(%)	(in. H ₂ O)
GP-1S	3/7/2023	0.0	0.1	21.2	-0.2
GP-1S	5/23/2023	0.0	0.4	20.2	0.0
GP-1S	8/24/2023	0.0	0.1	20.8	0.0
GP-1S	10/3/2023	0.0	6.3	13.0	-0.1
GP-1D	3/7/2023	0.0	0.1	21.3	-0.3
GP-1D	5/23/2023	0.0	0.1	20.5	-0.1
GP-1D	8/24/2023	0.0	1.6	19.1	-0.1
GP-1D	10/3/2023	0.0	1.0	19.4	-0.1
GP-2	3/7/2023	0.0	0.5	21.6	0.0
GP-2	5/23/2023	0.0	0.8	19.8	0.0
GP-2	8/24/2023	0.0	1.1	20.1	0.0
GP-2	10/3/2023	0.0	0.9	20.1	-0.1
GP-3S	3/7/2023	0.0	0.1	21.8	-0.2
GP-3S	5/23/2023	0.0	0.2	20.4	0.0
GP-3S	8/24/2023	0.0	1.2	19.6	0.0
GP-3S	10/3/2023	0.0	1.3	19.5	-0.1
GP-3D	3/7/2023	0.0	0.1	21.8	-0.2
GP-3D	5/23/2023	0.0	0.1	20.6	-0.1
GP-3D	8/24/2023	0.0	0.6	20.2	-0.1
GP-3D	10/3/2023	0.0	0.3	20.6	-0.1
GP-5	3/7/2023	0.0	1.5	20.8	0.0
GP-5	5/23/2023	0.0	0.1	20.4	0.0
GP-5	8/24/2023	0.0	0.1	20.7	0.0
GP-5	10/3/2023	0.0	0.1	20.8	-0.1
GP-6	3/7/2023	0.0	0.1	20.6	-0.1
GP-6	5/23/2023	0.0	0.2	20.4	0.0
GP-6	8/24/2023	0.0	0.9	20.0	0.0
GP-6	10/3/2023	0.0	0.7	20.5	-0.1
GP-7R	3/7/2023	0.0	0.4	21.7	0.0
GP-7R	5/23/2023	0.0	0.1	20.6	0.0
GP-7R	8/24/2023	0.0	0.9	20.1	0.0
GP-7R	10/3/2023	0.0	0.8	20.5	-0.1
GP-10	3/7/2023	0.0	0.5	20.8	0.0
GP-10	5/23/2023	0.0	0.4	19.9	0.0
GP-10	8/24/2023	0.0	0.6	20.5	0.0
GP-10	10/3/2023	0.0	0.8	20.3	-0.1

Landfill Gas Probe Data January 2023 through December 2023 Holtz Krause Closed Landfill - Wausau, Wisconsin

Л	Data	Mathana	Carbon	Owigen	Static
U	Date	wethane	Dioxide	Oxygen	Pressure
		(%)	(%)	(%)	(in. H ₂ O)
GP-11	3/7/2023	0.0	1.2	20.5	0.0
GP-11	5/23/2023	0.0	0.5	19.9	0.0
GP-11	8/24/2023	0.0	3.8	16.5	0.1
GP-11	10/3/2023	0.0	5.2	15.5	-0.1
GP-12	3/7/2023	0.0	0 1	20.2	-0 1
GP-12	5/23/2023	0.0	21	17.7	0.0
GP-12	8/24/2023	0.0	4.3	16.9	0.0
GP-12	10/3/2023	0.0	2.9	17.5	-0.1
GP-13	3/7/2023	0.0	0.1	20.3	0.0
GP-13	5/23/2023	0.0	0.1	20.3	0.0
GP-13	8/24/2023	0.0	0.4	18.8	0.0
GP-13	10/2/2023	0.0	2.1	10.0	0.0
GF-13	10/3/2023	0.0	1.4	19.4	-0.1
GP-14	3/7/2023	0.0	0.5	20.4	0.0
GP-14	5/23/2023	0.0	1.5	19.3	0.0
GP-14	8/24/2023	0.0	3.5	17.4	0.1
GP-14	10/3/2023	0.0	3.0	17.4	-0.1

Figure

CITY OF WAUSAU FORMER HOLTZ KRAUSE LANDFILL WAUSAU, WISCONSIN Project No. 11228677-24 Paper Size ANSI A 70 140 210 280 350 Revision No. 0 Date 02/01/2024 Feet Map Projection: Lambert Conformal Conic Horizontal Datum: North American 1983 HARN Grid: NAD 1983 HARN WISCRS Marathon County Feet FIGURE 1.1 SITE PLAN Q:\GIS\PROJECTS\11228000s\11228677\GIS\Maps\Deliverables\RPT\RPT003\11228677_RPT003_001_SitePlan.mxd Print date: 01 Feb 2024 - 17:21

Appendices

Appendix A Weekly Flare Station Inspection Forms

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Tester (Initials)	KSF	KSF	KSF	KSF
Date	1/3/2023	1/10/2023	1/17/2023	1/24/2023
Time	10:00 AM	10:00 AM	10:00 AM	10:00 AM
Sky Conditions	Clear	Cloudy	Cloudy	Cloudy
Ambient Temperature, deg F	25	30	35	25
Inlet Temperature, deg F (GHS-TI-301)	48	48	48	47
Demister Inlet Valve Position, % Open (GHS-HV-301)	100	100	100	100
LFG Vacuum, In WC (GHS-PI-301)	4	4	4	4
Demister Filter Delta P (GHS-PDI-301)	0.3	0.3	0.3	0.3
Blower 301 Inlet Valve Position, % Open (GHS-FCV-301)	100	100	100	100
Discharge Pressure, In WC (GHS-PI-302)	0.4	0.3	0.2	0.2
Discharge Temperature, deg F (GHS-TI-302)	46	56	58	56
Propane Pilot Supply Pressure, In WC (GHS-PI-101)	8	8	9	8
Flame Arrester Inlet Pressure, In WC (FLR-PI-301)	1.3	1.3	1.3	1.3
Flame Arrester Outlet Pressure, In WC (FLR-PI-301)	1.0	1.0	1.0	1.0
Flame Arrester Delta P, In WC (FLR-PI-301)	0.3	0.3	0.3	0.3
Blower 301 Frequency, Hz (CP-YIC-2)	14.1	14.9	16	16
Blower 301 Current, Amps (CP-YIC-2)	3.9	3.8	3.8	3.7
YIC-1 From Main Menu Screen				
ANALOG DATA MENU				
* PROCESS OVERVIEW				
Inlet Vacuum, In WC	2.3	2.9	3.4	3.8
Inlet Temp, DegF	51	50	50	50
Oxygen, %	0.2	0.2	0.4	0.6
Blower Speed, %	14	15	16	17
Blower Vibration, In/Sec	0	0	0	0
CP Temp, DegF	73	70	75	75
FLR Flame Temp, DegF	1446	1452	1372	1136
FLR Flow Press, In WC	0.1	1	0.1	1.1
FLR Flow Temp, DegF	60	59	62	60
Flow Rate, SCFM	72	66	65	66
* BACK				
* BLOWER DATA				
Status, Run/Stop	Run	Run	Run	Run
Run Time, Hr	78875	79021	79210	79378
Speed, %	14	15	16	17
Vibration, In/Sec	0.0	0.0	0.0	0.0
Outlet Temp, DegF	60	59	62	60
* BACK				
* FLARE DATA				
Flow Rate, SCFM	72	66	66	66
Flame Temp, DegF	1424	1482	1381	1108
BLR Speed, %	14	15	16	17
Flow Pressure, In WC	0.1	0.9	0.1	1.1
Hour Meter	78868	79035	79203	79731

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Run Clock	On	On	On	On
Pilot	Off	Off	Off	Off
SD Valve	Open	Open	Open	Open
Flame	On	On	On	On
Relight	Off	Off	Off	Off
Pilot	Ready	Ready	Ready	Ready
Vac Ramp	Off	Off	Off	Off
Forced Flow	Off	Off	Off	Off
* BACK				
* FLOW DATA				
Flow Rate, SCFM	71	66	65	66
Today's Total, MMSCF	0.04	0.03	0.03	0.03
This Month's Total, MMSCF	0.20	0.90	1.61	2.31
Total Flow, MMSCF	377.33	378.03	378.74	379.45
Flow Press, In WC	0.1	1	0.1	0.9
Flow Temp, DegF	60	59	62	60
Flow Delta P, In WC	0.44	0.37	0.36	0.37
* 7 DAY FLOW HISTORY				
Yesterday's Flow, MMSCF	0.04	0.03	0.03	0.03
2 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
3 Day's Ago Flow, MMSCF	0.11	0.10	0.10	0.11
4 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
5 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
6 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
7 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
* BACK				
* RESETTABLE FLOW				
Resettable Total Flow, MMSCF	377.33	378.03	378.74	379.45
Reset Time	0	0	0	0
Reset Date	0	0	0	0
* BACK & *BACK				
			Adequate	Needs Work
Check Propane and Nitrogen Cylinders and change/fill if nece	ssarv		X	
Inspect Blower, Flare and Demister Structures for Loose Bolts	/Cracks		х	
Drain Demister (if necessary)	, 010101		X	
Clean Demister Filter Material (if dP indicates it is necessary)			X	
Lubricate Grease Fittings (as necessary)				
Test Alarm Lights on Panel by pushing "RUN" and "Alarm/Shutdown" Lamps				
Check if any shutdowns/alarms need re-setting (note which ones in comments section)			Х	
Drain Flare Stack Condensate (if necessary)				Х
Comments: Drained Condensate				
Cianationa	Kovin & Fata	1		
Sidhature:	REVIII S. Fabe	1		l

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Tester (Initials)	KSF	KSF	KSF	KSF
Date	1/31/2023	2/7/2023	2/14/2023	2/21/2023
Time	10:00 AM	10:00 AM	10:00 AM	10:00 AM
Sky Conditions	Clear	Cloudy	Clear	Cloudy
Ambient Temperature, deg F	-10	35	35	20
Inlet Temperature, deg F (GHS-TI-301)	44	46	46	45
Demister Inlet Valve Position, % Open (GHS-HV-301)	100	100	100	100
LFG Vacuum, In WC (GHS-PI-301)	3	5	4	5
Demister Filter Delta P (GHS-PDI-301)	0.3	0.3	0.3	0.3
Blower 301 Inlet Valve Position, % Open (GHS-FCV-301)	100	100	100	100
Discharge Pressure, In WC (GHS-PI-302)	0.2	0.2	0.2	0.2
Discharge Temperature, deg F (GHS-TI-302)	44	58	57	51
Propane Pilot Supply Pressure, In WC (GHS-PI-101)	9	9	11	9
Flame Arrester Inlet Pressure, In WC (FLR-PI-301)	1.5	1.3	1.4	1.3
Flame Arrester Outlet Pressure, In WC (FLR-PI-301)	1.2	1.0	1.1	1.0
Flame Arrester Delta P, In WC (FLR-PI-301)	0.3	0.3	0.3	0.3
Blower 301 Frequency, Hz (CP-YIC-2)	15.3	17.2	15.1	18.1
Blower 301 Current, Amps (CP-YIC-2)	3.9	3.8	3.8	3.9
YIC-1 From Main Menu Screen				
ANALOG DATA MENU				
* PROCESS OVERVIEW				
Inlet Vacuum, In WC	3.1	4.0	2.9	5.0
Inlet Temp, DegF	48	49	49	48
Oxygen, %	0	0.5	0.2	0.3
Blower Speed, %	16	18	16	20
Blower Vibration, In/Sec	0	0	0	0
CP Temp, DegF	50	74	75	64
FLR Flame Temp, DegF	1325	1260	1329	1244
FLR Flow Press, In WC	0.1	0.1	0.4	0.6
FLR Flow Temp, DegF	50	61	59	57
Flow Rate, SCFM	72	66	73	65
* BACK				
* BLOWER DATA				
Status, Run/Stop	Run	Run	Run	Run
Run Time, Hr	79545	79715	79882	80051
Speed, %	16	18	16	20
Vibration, In/Sec	0.0	0	0.0	0.0
Outlet Temp, DegF	51	61	58	57
* BACK				
* FLARE DATA				
Flow Rate, SCFM	72	66	65	65
Flame Temp, DegF	1283	1270	1323	1266
BLR Speed, %	16	18	16	20
Flow Pressure, In WC	0.1	0.1	0.5	0.6
Hour Meter	79540	79708	79875	80043

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

			-	
Run Clock	On	On	On	On
Pilot	Off	Off	Off	Off
SD Valve	Open	Open	Open	Open
Flame	On	On	On	On
Relight	Off	Off	Off	Off
Pilot	Ready	Ready	Ready	Ready
Vac Ramp	Off	Off	Off	Off
Forced Flow	Off	Off	Off	Off
* BACK				
* FLOW DATA				
Flow Rate, SCFM	72	66	73	65
Today's Total, MMSCF	0.04	0.03	0.03	0.03
This Month's Total, MMSCF	3.02	0.61	1.32	2.04
Total Flow, MMSCF	380.17	380.87	381.59	382.31
Flow Press, In WC	0.1	0.1	0.5	0.6
Flow Temp, DegF	50	61	59	57
Flow Delta P, In WC	0.43	0.37	0.46	0.36
* 7 DAY FLOW HISTORY				
Yesterday's Flow, MMSCF	0.04	0.03	0.03	0.03
2 Day's Ago Flow, MMSCF	0.10	0.1	0.10	0.10
3 Day's Ago Flow, MMSCF	0.10	0.1	0.10	0.10
4 Day's Ago Flow, MMSCF	0.10	0.11	0.10	0.10
5 Day's Ago Flow, MMSCF	0.10	0.1	0.10	0.10
6 Day's Ago Flow, MMSCF	0.10	0.1	0.10	0.10
7 Day's Ago Flow, MMSCF	0.10	0.1	0.10	0.10
* BACK				
* RESETTABLE FLOW				
Resettable Total Flow, MMSCF	380.17	380.87	381.59	382.31
Reset Time	-	-	-	-
Reset Date	-	-	-	-
* BACK & *BACK				
			Adequate	Needs Work
Check Propane and Nitrogen Cylinders and change/fill if nece	essary		Х	
Inspect Blower, Flare and Demister Structures for Loose Bolts	s/Cracks		х	
Drain Demister (if necessary)			X	
Clean Demister Filter Material (if dP indicates it is necessary)				
Lubricate Grease Fittings (as necessary)				
Test Alarm Lights on Panel by pushing "RUN" and "Alarm/Shutdown" Lamps				
Check if any shutdowns/alarms need re-setting (note which ones in comments section)				
Drain Flare Stack Condensate (if necessary)				Х
Comments: Drained Condensate				
Signature:	Kevin S. Fabe			

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

KSF	KSF	KSF	KSF
2/28/2023	3/7/2023	3/14/2023	3/21/2023
10:00 AM	10:00 AM	10:00 AM	10:00 AM
Clear	Clear	Clear	Clear
30	35	20	25
46	46	44	44
100	100	100	100
5	5	4	4
0.3	0.3	0.3	0.3
100	100	100	100
0.3	0.3	0.2	0.2
56	58	52	50
12	10	18	9
1.3	1.4	1.4	1.3
1.0	1.1	1.1	1.0
0.3	0.3	0.3	0.3
17.2	17.3	16.6	16.5
3.8	3.7	3.7	3.8
4.6	4.6	4.1	4.1
48	48	47	47
0.4	0.7	0	0.2
19	19	18	18
0	0	0	0
75	74	58	64
1384	1303	1229	1351
0.9	0.1	0.1	0.1
60	57	51	55
66	72	72	70
Run	Run	Run	Run
80219	80386	80554	80721
19	19	18	18
0.0	0.0	0.0	0.0
60	57	51	55
66	72	72	70
1380	1381	1197	1416
19	19	18	18
0.9	0.1	0.1	0.1
80212	80379	80547	80714
	KSF 2/28/2023 10:00 AM Clear 30 46 100 5 0.3 100 0.3 100 0.3 100 0.3 100 0.3 100 0.3 12 1.3 1.0 0.3 17.2 3.8 4.6 48 0.4 19 0 75 1384 0.9 60 66 1380 19 0.0 60 60 60 60 60 60 60 9 9 9 9 9 9 9 9 9	KSFKSF2/28/20233/7/202310:00 AM10:00 AMClearClear30354646100100550.30.31001000.30.3565812101.31.41.01.10.30.317.217.33.83.74.64.648480.40.71919007574138413030.90.1605766721380138119190.00.0605766721380138119190.10.0605766721380138119190.10.0605766721380138119190.90.18021280379	KSF KSF KSF 2/28/2023 3/7/2023 3/14/2023 10:00 AM 10:00 AM 10:00 AM Clear Clear Clear 30 35 20 46 46 44 100 100 100 5 5 4 0.3 0.3 0.3 100 100 100 0.3 0.3 0.3 100 100 100 0.3 0.3 0.2 56 58 52 12 10 18 1.3 1.4 1.4 1.0 1.1 1.1 0.3 0.3 0.3 17.2 17.3 16.6 3.8 3.7 3.7 4.6 4.6 4.1 48 48 47 0.4 0.7 0 19 19 18 0.9 0.1 <t< td=""></t<>

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Run Clock	On	On	On	On
Pilot	Off	Off	Off	Off
SD Valve	Open	Open	Open	Open
Flame	On	On	On	On
Relight	Off	Off	Off	Off
Pilot	Ready	Ready	Ready	Ready
Vac Ramp	Off	Off	Off	Off
Forced Flow	Off	Off	Off	Off
* BACK				
* FLOW DATA				
Flow Rate, SCFM	66	73	72	70
Today's Total, MMSCF	0.03	0.03	0.03	0.03
This Month's Total, MMSCF	2.75	0.61	1.32	2.03
Total Flow, MMSCF	383.02	383.73	384.45	385.15
Flow Press, In WC	0.9	0.1	0.1	0.1
Flow Temp, DegF	60	57	51	55
Flow Delta P, In WC	0.38	0.45	0.43	0.42
* 7 DAY FLOW HISTORY				
Yesterday's Flow, MMSCF	0.03	0.03	0.03	0.03
2 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.11
3 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
4 Day's Ago Flow, MMSCF	0.11	0.10	0.10	0.10
5 Day's Ago Flow, MMSCF	0.10	0.10	0.11	0.10
6 Day's Ago Flow, MMSCF	0.10	0.10	0.11	0.10
7 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
* BACK				
* RESETTABLE FLOW				
Resettable Total Flow, MMSCF	383.02	383.73	384.45	385.15
Reset Time		-	_	-
Reset Date	-	-	-	-
* BACK & *BACK				
			Adequate	Needs Work
Check Propane and Nitrogen Cylinders and change/fill if nece	ssarv		X	
Inspect Blower, Flare and Demister Structures for Loose Bolts	Cracks		X	
Drain Demister (if necessary)	/ Ordono		x	
Clean Demister Filter Material (if dP indicates it is necessary)			X	1
Ubricate Grease Fittings (as necessary)			X	
Lubricate Grease Fillings (as necessary)				ł
Check if any shutdowns/alarms need to softing (note which once in commente section)				
Check II dry shutdowns/alarms need re-setting (note which of		Its section	~	× ×
Drain Flare Stack Condensate (If necessary)				X
Comments: Drained Condensate				
Signature:	Kevin S. Fabe			
				

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Tester (Initials)	KSF	KSF	KSF	KSF
Date	3/28/2023	4/4/2023	4/11/2023	4/18/2023
Time	10:00 AM	10:00 AM	10:00 AM	10:00 AM
Sky Conditions	Clear	Cloudy	Clear	Clear
Ambient Temperature, deg F	30	35	65	35
Inlet Temperature, deg F (GHS-TI-301)	45	45	48	46
Demister Inlet Valve Position, % Open (GHS-HV-301)	100	100	100	100
LFG Vacuum, In WC (GHS-PI-301)	4	6	4	4
Demister Filter Delta P (GHS-PDI-301)	0.3	0.3	0.3	0.3
Blower 301 Inlet Valve Position, % Open (GHS-FCV-301)	100	100	100	100
Discharge Pressure, In WC (GHS-PI-302)	0.2	0.2	0.2	0.2
Discharge Temperature, deg F (GHS-TI-302)	52	54	63	48
Propane Pilot Supply Pressure, In WC (GHS-PI-101)	10	8	14	10
Flame Arrester Inlet Pressure, In WC (FLR-PI-301)	1.4	1.4	1.0	1.0
Flame Arrester Outlet Pressure, In WC (FLR-PI-301)	1.1	1.1	0.7	0.7
Flame Arrester Delta P, In WC (FLR-PI-301)	0.3	0.3	0.3	0.3
Blower 301 Frequency, Hz (CP-YIC-2)	16.3	17.4	15.6	17.9
Blower 301 Current, Amps (CP-YIC-2)	3.8	3.8	3.9	3.9
YIC-1 From Main Menu Screen				
ANALOG DATA MENU				
* PROCESS OVERVIEW				
Inlet Vacuum, In WC	3.9	4.8	3.6	5.2
Inlet Temp, DegF	48	47	48	48
Oxygen, %	0.4	0.4	0.7	0
Blower Speed, %	18	20	16	21
Blower Vibration, In/Sec	0	0	0	0
CP Temp, DegF	72	72	82	71
FLR Flame Temp, DegF	1319	1448	1340	1289
FLR Flow Press, In WC	0.1	0.1	1.3	1
FLR Flow Temp, DegF	57	59	65	53
Flow Rate, SCFM	73	69	69	70
* BACK				
* BLOWER DATA				
Status, Run/Stop	Run	Run	Run	Run
Run Time, Hr	80890	81058	81220	81388
Speed, %	18	20	16	21
Vibration, In/Sec	0.0	0.0	0.0	0.0
Outlet Temp, DegF	57	59	65	53
* BACK				
* FLARE DATA				
Flow Rate, SCFM	73	68	69	71
Flame Temp, DegF	1284	1439	1323	1242
BLR Speed, %	18	20	16	21
Flow Pressure, In WC	0.1	0.1	1.3	1
Hour Meter	80883	81051	81213	81381

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Run Clock	On	On	On	On
Pilot	Off	Off	Off	Off
SD Valve	Open	Open	Open	Open
Flame	On	On	On	On
Relight	Off	Off	Off	Off
Pilot	Ready	Ready	Ready	Ready
Vac Ramp	Off	Off	Off	Off
Forced Flow	Off	Off	Off	Off
* BACK				
* FLOW DATA				
Flow Rate, SCFM	73	68	69	71
Today's Total, MMSCF	0.04	0.03	0.04	0.03
This Month's Total, MMSCF	2.74	0.30	0.99	1.69
Total Flow, MMSCF	385.87	386.58	387.27	387.98
Flow Press, In WC	0.1	0.1	1.3	1.1
Flow Temp, DegF	57	59	65	53
Flow Delta P, In WC	0.45	0.39	0.41	0.42
* 7 DAY FLOW HISTORY				
Yesterday's Flow, MMSCF	0.04	0.03	0.04	0.03
2 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
3 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
4 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
5 Day's Ago Flow, MMSCF	0.10	0.11	0.08	0.10
6 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
7 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
* BACK				
* RESETTABLE FLOW				
Resettable Total Flow, MMSCF	385.87	386.59	387.27	387.98
Reset Time	-	-	-	-
Reset Date	-	-	-	-
* BACK & *BACK				
			Adequate	Needs Work
Check Propane and Nitrogen Cylinders and change/fill if nece	essarv		Х	
Inspect Blower, Elare and Demister Structures for Loose Bolts	s/Cracks		x	
Drain Demister (if necessary)			X	
Clean Demister Filter Material (if dP indicates it is necessary)			х	
Lubricate Grease Fittings (as necessary)				
Test Alarm Lights on Panel by pushing "RUN" and "Alarm/Shutdown" Lamps				
Check if any shutdowns/alarms need re-setting (note which o	nes in comme	nts section)	Х	
Drain Flare Stack Condensate (if necessary)			Х	
Comments:				
Signature:	Kevin S. Fabe			

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Tester (Initials)	KSF	KSF	KSF	KSF
Date	4/25/2023	5/2/2023	5/9/2023	5/16/2023
Time	10:00 AM	10:00 AM	10:00 AM	10:00 AM
Sky Conditions	Clear	Clear	Clear	Clear
Ambient Temperature, deg F	45	45	50	65
Inlet Temperature, deg F (GHS-TI-301)	46	47	49	50
Demister Inlet Valve Position, % Open (GHS-HV-301)	100	100	100	100
LFG Vacuum, In WC (GHS-PI-301)	4	4	4	3
Demister Filter Delta P (GHS-PDI-301)	0.3	0.3	0.3	0.3
Blower 301 Inlet Valve Position, % Open (GHS-FCV-301)	100	100	100	100
Discharge Pressure, In WC (GHS-PI-302)	0.2	0.2	0.2	0.2
Discharge Temperature, deg F (GHS-TI-302)	48	50	56	55
Propane Pilot Supply Pressure, In WC (GHS-PI-101)	12	8	10	12
Flame Arrester Inlet Pressure, In WC (FLR-PI-301)	1	1.0	1.0	1.0
Flame Arrester Outlet Pressure, In WC (FLR-PI-301)	0.7	0.7	0.7	0.7
Flame Arrester Delta P, In WC (FLR-PI-301)	0.3	0.3	0.3	0.3
Blower 301 Frequency, Hz (CP-YIC-2)	16.6	16.9	16.7	13.4
Blower 301 Current, Amps (CP-YIC-2)	3.8	3.8	3.8	3.7
YIC-1 From Main Menu Screen				
ANALOG DATA MENU				
* PROCESS OVERVIEW				
Inlet Vacuum, In WC	4.4	4.4	4.5	2.3
Inlet Temp, DegF	48	49	50	51
Oxygen, %	0.1	0	0.2	0.1
Blower Speed, %	18	19	19	13
Blower Vibration, In/Sec	0	0	0	0
CP Temp, DegF	73	71	78	80
FLR Flame Temp, DegF	1142	1288	1067	1319
FLR Flow Press, In WC	0.1	0.1	1.3	1.3
FLR Flow Temp, DegF	52	54	57	56
Flow Rate, SCFM	66	72	67	67
* BACK				
* BLOWER DATA				
Status, Run/Stop	Run	Run	Run	Run
Run Time, Hr	81555	81723	81892	82060
Speed, %	18	19	19	13
Vibration, In/Sec	0.0	0.0	0.0	0.0
Outlet Temp, DegF	52	54	57	56
* BACK				
* FLARE DATA				
Flow Rate, SCFM	67	72	67	67
Flame Temp, DegF	1159	1294	1036	1314
BLR Speed, %	18	19	19	13
Flow Pressure, In WC	0.1	0.1	0.3	1.3
Hour Meter	81548	81717	81717	82053

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Run Clock	On	On	On	On
Pilot	Off	Off	Off	Off
SD Valve	Open	Open	Open	Open
Flame	On	On	On	On
Relight	Off	Off	Off	Off
Pilot	Ready	Ready	Ready	Ready
Vac Ramp	Off	Off	Off	Off
Forced Flow	Off	Off	Off	Off
* BACK				
* FLOW DATA				
Flow Rate, SCFM	67	71	67	67
Today's Total, MMSCF	0.03	0.03	0.04	0.03
This Month's Total, MMSCF	2.40	0.10	0.1	1.52
Total Flow, MMSCF	388.68	389.39	389.39	390.81
Flow Press, In WC	0.1	0.1	1.3	1.3
Flow Temp, DegF	52	54	57	56
Flow Delta P, In WC	0.37	0.43	0.38	0.38
* 7 DAY FLOW HISTORY				
Yesterday's Flow, MMSCF	0.03	0.03	0.03	0.03
2 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
3 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
4 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
5 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
6 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
7 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
* BACK				
* RESETTABLE FLOW				
Resettable Total Flow, MMSCF	388.68	389.39	389.39	390.81
Reset Time	-	-	-	-
Reset Date	-	-	-	-
* BACK & *BACK				
			Adequate	Needs Work
Check Propane and Nitrogen Cylinders and change/fill if nece	essary		X	
Inspect Blower, Flare and Demister Structures for Loose Bolts	s/Cracks		Х	
Drain Demister (if necessary)				
Clean Demister Filter Material (if dP indicates it is necessary)			Х	
Lubricate Grease Fittings (as necessary)				
Test Alarm Lights on Panel by pushing "RUN" and "Alarm/Shutdown" Lamps				
Check if any shutdowns/alarms need re-setting (note which ones in	comments sectio	n)	Х	
Drain Flare Stack Condensate (if necessary)			Х	
Comments: Turned off heat trace for yearTurned on A/C.				
Signature	Kevin S. Fabe	I		
Signature.	iteviii 0. i abe	1		

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

KSF	KSF	KSF	KSF
5/23/2023	5/30/2023	6/6/2023	6/13/2023
10:00 AM	10:00 AM	10:00 AM	10:00 AM
Clear	Clear	Cloudy	Cloudy
70	75	70	55
52	54	55	55
100	100	100	100
4	4	4	3
0.3	0.3	0.4	0.3
100	100	100	100.2
0.2	0.2	0.2	0.2
60	61	62	56
14	16	8	8
1.0	1.1	1.1	1
0.7	0.8	0.8	0.7
0.3	0.3	0.3	0.3
15.7	15.5	15.5	15
3.8	3.8	3.7	3.7
3.8	3.7	3.5	3.1
52	53	55	55
0.4	0.5	0.4	0
17	16	16	15
0	0	0	0
91	82	82	78
1122	1232	1384	1346
1.3	1.3	1.4	1.4
60	63	64	59
68	69	71	70
Run	Run	Run	Run
82228	82396	82564	82732
17	16	16	15
0.0	0.0	0.0	0.0
60	63	64	59
67	69	70	70
1117	1253	1379	1351
17	16	16	15
1.3	1.3	1.4	1.4
82221	82389	82558	82725
	KSF 5/23/2023 10:00 AM Clear 70 52 100 4 0.3 100 4 0.3 100 0.2 60 14 1.0 0.7 0.3 15.7 3.8 52 0.4 15.7 3.8 52 0.4 17 0 91 1122 1.3 60 68 70 0.0 61 1122 1.3 60 68 77 0.0 60 67 1117 17 0.0 60 70.0 67 1117 17 17	KSFKSF5/23/20235/30/202310:00 AM10:00 AMClearClear70755254100100440.30.31001000.20.2606114161.01.10.70.80.30.315.715.53.83.83.83.83.83.752530.40.51716009182112212321.31.36063686917160.00.09182112212321.31.3606367691117125317161.31.38222182389	KSFKSFKSF5/23/20235/30/20236/6/202310:00 AM10:00 AM10:00 AMClearCloudy7075705254551001001004440.30.30.41001001000.20.20.2606162141681.01.11.10.70.80.80.30.30.315.715.515.53.83.83.75253550.40.50.41716160009182821122123213841.31.31.46063646869716970111716160.00.0918238822882396825641716160.111712531379171616131.314822218238982558

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Run Clock	On	On	On	On
Pilot	Off	Off	Off	Off
SD Valve	Open	Open	Open	Open
Flame	On	On	On	On
Relight	Off	Off	Off	Off
Pilot	Ready	Ready	Ready	Ready
Vac Ramp	Off	Off	Off	Off
Forced Flow	Off	Off	Off	Off
* BACK				
* FLOW DATA				
Flow Rate, SCFM	68	68	70	70
Today's Total, MMSCF	0.30	0.03	0.03	0.03
This Month's Total, MMSCF	2.22	2.93	0.5	1.21
Total Flow, MMSCF	391.52	392.22	392.93	393.63
Flow Press, In WC	1.3	1.3	1.4	1.4
Flow Temp, DegF	60	63	64	59
Flow Delta P, In WC	0.39	0.40	0.43	0.42
* 7 DAY FLOW HISTORY				
Yesterday's Flow, MMSCF	0.03	0.03	0.04	0.03
2 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
3 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
4 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
5 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
6 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
7 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
* BACK				
* RESETTABLE FLOW				
Resettable Total Flow, MMSCF	391.52	392.22	392.93	393.63
Reset Time	-	-	-	-
Reset Date	-	-	-	-
* BACK & *BACK				
			Adequate	Needs Work
Check Propane and Nitrogen Cylinders and change/fill if nece	ssary		Х	
Inspect Blower, Elare and Demister Structures for Loose Bolts	/Cracks		х	
Drain Demister (if necessary)				
Clean Demister Filter Material (if dP indicates it is necessary)			х	
Lubricate Grease Fittings (as necessary)				
Test Alarm Lights on Panel by pushing "RUN" and "Alarm/Shutdown" Lamps				
Check if any shutdowns/alarms need re-setting (note which or	nes in commer	nts section)	X	
Drain Flare Stack Condensate (if necessary)			Х	
Comments:				
Sianature:	Kevin S. Fabe			

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

KSF	KSF	KSF	KSF
6/20/2023	6/27/2023	7/3/2023	7/11/2023
10:00 AM	10:00 AM	10:00 AM	10:00 AM
Clear	Clear	Clear	Clear
80	70	80	70
57	58	60	60
100	100	100	100
4	4	4	4
0.3	0.3	0.3	0.3
100	100	100	100
0.2	0.2	0.2	0.1
64	60	66	62
12	8	16	10
1.0	1.0	1.1	1.3
0.7	0.7	0.9	1.0
0.3	0.3	0.2	0.3
16.4	16.3	15.8	17.1
3.7	3.7	3.7	3.8
4.3	4.1	3.8	4.7
56	57	58	59
0.5	0.2	0.5	0.4
18	18	17	20
0	0	0	0
85	79	85	79
1125	1268	1162	1146
1.3	1.3	1.3	1.5
66	64	66	65
67	68	67	72
Run	Run	Run	Run
82900	83068	83211	83403
18	18	17	20
0.00	0.00	0.00	0.00
66	64	66	65
67	67	67	71
1099	1185	1185	1157
18	18	17	20
1.3	1.3	1.3	1.5
82893	83061	83204	83396
	KSF 6/20/2023 10:00 AM Clear 80 57 100 4 0.3 100 4 0.3 100 0.2 64 12 1.0 0.7 0.3 16.4 3.7 4.3 56 0.5 18 0 85 1125 1.3 66 67 18 0.00 66 7 1099 18 0.00 66 67 1099 18 0.3 66 67 1099 18 1.3 62 63 64 65 67 1099	KSFKSF6/20/20236/27/202310:00 AM10:00 AMClear80705758100100440.30.31001000.20.264601281.01.00.70.70.30.316.416.33.73.73.73.73.73.71.6416.33.73.73.73.73.73.716.416.33.73.716.416.33.73.73.73.73.73.73.73.7666467681.31.36664676818181818181818181.31.38289383061	KSFKSFKSF6/20/20236/27/20237/3/202310:00 AM10:00 AM10:00 AMClearClearClear8070805758601001001004440.30.30.31001001000.20.20.2646066128161.01.01.10.70.70.90.30.30.216.416.315.83.73.73.70004.34.13.85657580.50.20.51818170008579851125126811621.31.31.36664666768676867676767671099118511851818171.31.31.3828938306183204

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Run Clock	On	On	On	On
Pilot	Off	Off	Off	Off
SD Valve	Open	Open	Open	Open
Flame	On	On	On	On
Relight	Off	Off	Off	Off
Pilot	Ready	Ready	Ready	Ready
Vac Ramp	Off	Off	Off	Off
Forced Flow	Off	Off	Off	Off
* BACK				
* FLOW DATA				
Flow Rate, SCFM	67	66	67	72
Today's Total, MMSCF	0.03	0.03	0.03	0.03
This Month's Total, MMSCF	1.91	2.62	0.2	1.01
Total Flow, MMSCF	394.33	395.04	395.64	396.46
Flow Press, In WC	1.3	1.3	1.3	1.5
Flow Temp, DegF	66	64	66	65
Flow Delta P, In WC	0.39	0.38	0.39	0.44
* 7 DAY FLOW HISTORY				
Yesterday's Flow, MMSCF	0.03	0.03	0.03	0.03
2 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
3 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
4 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
5 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
6 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.10
7 Day's Ago Flow, MMSCF	0.10	0.10	0.09	0.10
* BACK				
* RESETTABLE FLOW				
Resettable Total Flow, MMSCF	394.33	395.04	395.64	396.46
Reset Time	-	-	-	-
Reset Date	-	-	-	-
* BACK & *BACK				
				Needs Work
Check Propane and Nitrogen Cylinders and change/fill if necessary			Х	
Inspect Blower, Flare and Demister Structures for Loose Bolts/Cracks			х	
Drain Demister (if necessary)			X	
Clean Demister Filter Material (if dP indicates it is necessary)			х	
Lubricate Grease Fittings (as necessary)			X	
Test Alarm Lights on Panel by pushing "RUN" and "Alarm/Shutdown" Lamps			х	
Check if any shutdowns/alarms need re-setting (note which ones in comments section)			Х	
Drain Flare Stack Condensate (if necessary)			Х	
Comments:				
Signature: Kevin S. Fabel				
Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Tester (Initials)	KSF	KSF	KSF	KSF
Date	7/18/2023	7/25/2023	8/1/2023	8/8/2023
Time	10:00 AM	10:00 AM	10:00 AM	10:00 AM
Sky Conditions	Clear	Clear	Clear	Clear
Ambient Temperature, deg F	70	80	70	70
Inlet Temperature, deg F (GHS-TI-301)	60	61	63	64
Demister Inlet Valve Position, % Open (GHS-HV-301)	100	100	100	100
LFG Vacuum, In WC (GHS-PI-301)	4	4	4	4
Demister Filter Delta P (GHS-PDI-301)	0.3	0.3	0.4	0.3
Blower 301 Inlet Valve Position, % Open (GHS-FCV-301)	100.0	100	100	100
Discharge Pressure, In WC (GHS-PI-302)	0.2	0.2	0.2	0.2
Discharge Temperature, deg F (GHS-TI-302)	63	66	64	67
Propane Pilot Supply Pressure, In WC (GHS-PI-101)	12	11	8	12
Flame Arrester Inlet Pressure, In WC (FLR-PI-301)	1.2	1.1	1.2	1.1
Flame Arrester Outlet Pressure, In WC (FLR-PI-301)	0.9	0.8	0.9	0.8
Flame Arrester Delta P, In WC (FLR-PI-301)	0.3	0.3	0.3	0.3
Blower 301 Frequency, Hz (CP-YIC-2)	15.9	15.5	15.7	14.8
Blower 301 Current, Amps (CP-YIC-2)	3.7	3.8	4.0	3.7
YIC-1 From Main Menu Screen				
ANALOG DATA MENU				
* PROCESS OVERVIEW				
Inlet Vacuum, In WC	3.8	3.5	3.1	3.1
Inlet Temp, DegF	59	60	61	62
Oxygen, %	0.3	0.6	1.1	0.6
Blower Speed, %	17	16	16	15
Blower Vibration, In/Sec	0	0	0	0
CP Temp, DegF	82	83	95	86
FLR Flame Temp, DegF	1028	1031	1056	1145
FLR Flow Press, In WC	1.4	1.4	1.4	1.3
FLR Flow Temp, DegF	66	68	73	69
Flow Rate, SCFM	70	68	69	68
* BACK				
* BLOWER DATA				
Status, Run/Stop	Run	Run	Run	Run
Run Time, Hr	83572	83718	83876	84022
Speed, %	17	16	16	15
Vibration, In/Sec	0.0	0.0	0.0	0.0
Outlet Temp, DegF	66	68	73	69
* BACK			-	
* FLARE DATA				
Flow Rate, SCFM	70	69	69	68
Flame Temp, DegF	1000	1030	1092	1149
BLR Speed, %	17	16	16	15
Flow Pressure, In WC	1.4	1.4	1.4	1.3
Hour Meter	83565	83710	83869	84015

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

				-
Run Clock	On	On	On	On
Pilot	Off	Off	Off	Off
SD Valve	Open	Open	Open	Open
Flame	On	On	On	On
Relight	Off	Off	Off	Off
Pilot	Ready	Ready	Ready	Ready
Vac Ramp	Off	Off	Off	Off
Forced Flow	Off	Off	Off	Off
* BACK				
* FLOW DATA				
Flow Rate, SCFM	70	69	69	68
Today's Total, MMSCF	0.03	0.03	0.04	0.03
This Month's Total, MMSCF	1.73	2.35	0	0.58
Total Flow, MMSCF	397.15	397.79	398.46	399.04
Flow Press, In WC	1.4	1.4	1.4	1.4
Flow Temp, DegF	66	68	73	69
Flow Delta P, In WC	0.42	0.41	0.42	0.40
* 7 DAY FLOW HISTORY				
Yesterday's Flow, MMSCF	0.03	0.03	0.40	0.04
2 Day's Ago Flow, MMSCF	0.10	0.05	0.10	0.06
3 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.09
4 Day's Ago Flow, MMSCF	0.10	0.10	0.07	0.09
5 Day's Ago Flow, MMSCF	0.10	0.10	0.08	0.09
6 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.09
7 Day's Ago Flow, MMSCF	0.10	0.10	0.10	0.09
* BACK				
* RESETTABLE FLOW				
Resettable Total Flow, MMSCF	397.12	397.79	398.46	399.04
Reset Time		-		Ϊ
Reset Date	_	_	-	-
* BACK & * BACK				
			Adequate	Needs Work
Check Propage and Nitrogen Cylinders and change/fill if pecessary				1
Inspect Blower, Elare and Demister Structures for Loose Bolts/Cracks				†
Drain Demister (if persenant)				
Drain Demister (if necessary)				
Clean Demister Filter Material (if dP indicates it is necessary)				
Lubricate Grease Fittings (as necessary)				ļ
Test Alarm Lights on Panel by pushing "RUN" and "Alarm/Shutdown" Lamps				
Check if any shutdowns/alarms need re-setting (note which or	nes in commer	nts section)	<u> </u>	
Drain Flare Stack Condensate (if necessary)			Х	
Comments: Drained Condensate				
Signature:	Kevin S. Fabe			
v				

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Tester (Initials) KSF KSF KSF KSF KSF Date Date 8/15/2023 8/28/2023 9/5/2023 9/5/2023 9/5/2023 Time 10:00 AM 10:00 AM 10:00 AM 10:00 AM 10:00 AM Sky Conditions Clear Cloudy Cloudy Cloudy Clear Ambient Temperature, deg F 60 75 60 80 Inlet Temperature, deg F (GHS-TI-301) 63 63 64 64 Demister Inlet Valve Position, % Open (GHS-HV-301) 100 100 100 100 LFG Vacuum, In WC (GHS-PI-301) 0.3 0.3 0.3 0.3 0.3 Blower 301 Inlet Valve Position, % Open (GHS-FCV-301) 100 100 100.0 100 Discharge Temperature, deg F (GHS-TI-302) 0.3 0.2 0.2 0.2 0.2 Discharge Temperature, deg F (GHS-FI-301) 0.3 0.3 0.3 0.3 0.3 Bischarge Temperature, deg F (GHS-FI-301) 0.6 0.7 0.5 0.7 <t< th=""></t<>
Date 8/15/2023 8/22/2023 8/22/2023 9/5/2023 Time 10:00 AM 10:00 AM 10:00 AM 10:00 AM 10:00 AM Sky Conditions Clear Cloudy Cloudy Clear Anbient Temperature, deg F 60 75 60 80 Inlet Temperature, deg F (GHS-TI-301) 63 63 64 64 Demister Inlet Valve Position, % Open (GHS-HV-301) 100 100 100 100 LFG Vacuum, In WC (GHS-PI-301) 0.3 0.3 0.3 0.3 0.3 Blower 301 Inlet Valve Position, % Open (GHS-FCV-301) 100 100 100.0 100 Discharge Temperature, deg F (GHS-TI-302) 0.3 0.2 0.2 0.2 Discharge Temperature, In WC (GHS-PI-101) 10 8 8 8 Flame Arrester Inlet Pressure, In WC (FLR-PI-301) 0.6 0.7 0.5 0.7 Flame Arrester Outlet Pressure, In WC (FLR-PI-301) 0.6 0.7 0.5 0.7 Flame Arrester Delta P, In WC (FLR-PI-301) 0.6 0.7
Time 10:00 AM 10:00 AM 10:00 AM 10:00 AM Sky Conditions Clear Cloudy Cloudy Clear Ambient Temperature, deg F 60 75 60 80 Inlet Temperature, deg F (GHS-TI-301) 63 63 64 64 Demister Inlet Valve Position, % Open (GHS-HV-301) 100 100 100 100 LFG Vacuum, In WC (GHS-PL301) 4 4 3 3 Demister Filter Delta P (GHS-PL301) 0.3 0.3 0.3 0.3 Blower 301 Inlet Valve Position, % Open (GHS-FCV-301) 100 100 100.0 100 Discharge Pressure, In WC (GHS-PL-302) 0.3 0.2 0.2 0.2 Discharge Temperature, deg F (GHS-PL-101) 10 8 8 8 Flame Arrester Inlet Pressure, In WC (FLR-PL-301) 0.6 0.7 0.5 0.7 Flame Arrester Outlet Pressure, In WC (FLR-PL-301) 0.3 0.3 0.3 0.3 0.3 Blower 301 Frequency, Hz (CP-YIC-2) 14.2
Sky Conditions Clear Cloudy Cloudy Clear Ambient Temperature, deg F 60 75 60 80 Inlet Temperature, deg F (GHS-TI-301) 63 63 64 64 Demister Inlet Valve Position, % Open (GHS-HV-301) 100 100 100 100 LFG Vacuum, In WC (GHS-PI-301) 4 4 3 3 Demister Filter Delta P (GHS-PDI-301) 0.3 0.3 0.3 0.3 Blower 301 Inlet Valve Position, % Open (GHS-FCV-301) 100 100 100.0 100 Discharge Pressure, In WC (GHS-PI-302) 0.3 0.2 0.2 0.2 0.2 Discharge Temperature, deg F (GHS-TI-302) 60 65 62 68 Propane Pilot Supply Pressure, In WC (FLR-PI-301) 0.9 1.0 0.8 1.0 Flame Arrester Dulta Pressure, In WC (FLR-PI-301) 0.6 0.7 0.5 0.7 Flame Arrester Dulta P, In WC (FLR-PI-301) 0.3 0.3 0.3 0.3 0.3
Ambient Temperature, deg F 60 75 60 80 Inlet Temperature, deg F G60 75 60 80 Inlet Temperature, deg F G63 G3 64 64 Demister Inlet Valve Position, % Open (GHS-HV-301) 100 100 100 100 LFG Vacuum, In WC (GHS-PI-301) 0.3 0.3 0.3 0.3 0.3 Blower 301 Inlet Valve Position, % Open (GHS-FCV-301) 100 100 100.0 100 Discharge Pressure, In WC (GHS-PI-302) 0.3 0.2 0.2 0.2 Discharge Temperature, deg F (GHS-TI-302) 60 65 62 68 Propane Pilot Supply Pressure, In WC (GHS-PI-101) 10 8 8 8 Flame Arrester Inlet Pressure, In WC (FLR-PI-301) 0.6 0.7 0.5 0.7 Flame Arrester Delta P, In WC (FLR-PI-301) 0.3 0.3 0.3 0.3 0.3 Blower 301 Frequency, Hz (CP-YIC-2) 14.2 14.4 13.8 14.7 Blower 301 Current, Amps (CP-YIC-2) 3.7 3.7
Inlet Temperature, deg F (GHS-TI-301) 63 63 64 64 Demister Inlet Valve Position, % Open (GHS-HV-301) 100 100 100 100 LFG Vacuum, In WC (GHS-PI-301) 4 4 3 3 Demister Filter Delta P (GHS-PDI-301) 0.3 0.3 0.3 0.3 Blower 301 Inlet Valve Position, % Open (GHS-FCV-301) 100 100.0 100.0 100.0 Discharge Pressure, In WC (GHS-PI-302) 0.3 0.2 0.2 0.2 Discharge Temperature, deg F (GHS-TI-302) 60 65 62 68 Propane Pilot Supply Pressure, In WC (GHS-PI-101) 10 8 8 8 Flame Arrester Inlet Pressure, In WC (FLR-PI-301) 0.6 0.7 0.5 0.7 Flame Arrester Outlet Pressure, In WC (FLR-PI-301) 0.6 0.7 0.5 0.7 Blower 301 Frequency, Hz (CP-YIC-2) 14.2 14.4 13.8 14.7 Blower 301 Current, Amps (CP-YIC-2) 3.7 3.7 3.7 3.9 YIC-1 From Main Menu Screen
Demister Inlet Valve Position, % Open (GHS-HV-301) 100 100 100 100 LFG Vacuum, In WC (GHS-PI-301) 4 4 3 3 Demister Filter Delta P (GHS-PDI-301) 0.3 0.3 0.3 0.3 Blower 301 Inlet Valve Position, % Open (GHS-FCV-301) 100 100 100.0 100 Discharge Pressure, In WC (GHS-PI-302) 0.3 0.2 0.2 0.2 Discharge Temperature, deg F (GHS-TI-302) 60 65 62 68 Propane Pilot Supply Pressure, In WC (GHS-PI-101) 10 8 8 8 Flame Arrester Inlet Pressure, In WC (FLR-PI-301) 0.9 1.0 0.8 1.0 Flame Arrester Delta P, In WC (FLR-PI-301) 0.3 0.3 0.3 0.3 Blower 301 Frequency, Hz (CP-YIC-2) 14.2 14.4 13.8 14.7 Blower 301 Current, Amps (CP-YIC-2) 3.7 3.7 3.7 3.9 YIC-1 From Main Menu Screen
LFG Vacuum, In WC (GHS-PI-301) 4 4 3 3 Demister Filter Delta P (GHS-PDI-301) 0.3 0.3 0.3 0.3 Blower 301 Inlet Valve Position, % Open (GHS-FCV-301) 100 100 100.0 100 Discharge Pressure, In WC (GHS-PI-302) 0.3 0.2 0.2 0.2 Discharge Temperature, deg F (GHS-FI-302) 60 65 62 68 Propane Pilot Supply Pressure, In WC (GHS-PI-101) 10 8 8 8 Flame Arrester Inlet Pressure, In WC (FLR-PI-301) 0.9 1.0 0.8 1.0 Flame Arrester Delta P, In WC (FLR-PI-301) 0.6 0.7 0.5 0.7 Flame Arrester Delta P, In WC (FLR-PI-301) 0.3 0.3 0.3 0.3 Blower 301 Frequency, Hz (CP-YIC-2) 14.2 14.4 13.8 14.7 Blower 301 Current, Amps (CP-YIC-2) 3.7 3.7 3.7 3.9 YIC-1 From Main Menu Screen
Demister Filter Delta P (GHS-PDI-301) 0.3 0.3 0.3 0.3 Blower 301 Inlet Valve Position, % Open (GHS-FCV-301) 100 100 100.0 100 Discharge Pressure, In WC (GHS-PI-302) 0.3 0.2 0.2 0.2 Discharge Temperature, deg F (GHS-TI-302) 60 65 62 68 Propane Pilot Supply Pressure, In WC (GHS-PI-101) 10 8 8 8 Flame Arrester Inlet Pressure, In WC (FLR-PI-301) 0.9 1.0 0.8 1.0 Flame Arrester Outlet Pressure, In WC (FLR-PI-301) 0.6 0.7 0.5 0.7 Flame Arrester Delta P, In WC (FLR-PI-301) 0.6 0.7 0.5 0.7 Blower 301 Frequency, Hz (CP-YIC-2) 14.2 14.4 13.8 14.7 Blower 301 Current, Amps (CP-YIC-2) 3.7 3.7 3.7 3.9 YIC-1 From Main Menu Screen
Blower 301 Inlet Valve Position, % Open (GHS-FCV-301) 100 100 100.0 100 Discharge Pressure, In WC (GHS-PI-302) 0.3 0.2 0.2 0.2 Discharge Temperature, deg F (GHS-TI-302) 60 65 62 68 Propane Pilot Supply Pressure, In WC (GHS-PI-101) 10 8 8 8 Flame Arrester Inlet Pressure, In WC (FLR-PI-301) 0.9 1.0 0.8 1.0 Flame Arrester Outlet Pressure, In WC (FLR-PI-301) 0.6 0.7 0.5 0.7 Flame Arrester Outlet Pressure, In WC (FLR-PI-301) 0.3 0.3 0.3 0.3 0.3 Blower 301 Frequency, Hz (CP-YIC-2) 14.2 14.4 13.8 14.7 Blower 301 Current, Amps (CP-YIC-2) 3.7 3.7 3.9 YIC-1 YIC-1 From Main Menu Screen
Discharge Pressure, In WC (GHS-PI-302) 0.3 0.2 0.2 0.2 Discharge Temperature, deg F (GHS-TI-302) 60 65 62 68 Propane Pilot Supply Pressure, In WC (GHS-PI-101) 10 8 8 8 Flame Arrester Inlet Pressure, In WC (FLR-PI-301) 0.9 1.0 0.8 1.0 Flame Arrester Dutlet Pressure, In WC (FLR-PI-301) 0.6 0.7 0.5 0.7 Flame Arrester Dutla P, In WC (FLR-PI-301) 0.3 0.3 0.3 0.3 0.3 Blower 301 Frequency, Hz (CP-YIC-2) 14.2 14.4 13.8 14.7 Blower 301 Current, Amps (CP-YIC-2) 3.7 3.7 3.7 3.9 YIC-1 From Main Menu Screen
Discharge Temperature, deg F (GHS-TI-302) 60 65 62 68 Propane Pilot Supply Pressure, In WC (GHS-PI-101) 10 8 8 8 Flame Arrester Inlet Pressure, In WC (FLR-PI-301) 0.9 1.0 0.8 1.0 Flame Arrester Outlet Pressure, In WC (FLR-PI-301) 0.6 0.7 0.5 0.7 Flame Arrester Delta P, In WC (FLR-PI-301) 0.3 0.3 0.3 0.3 Blower 301 Frequency, Hz (CP-YIC-2) 14.2 14.4 13.8 14.7 Blower 301 Current, Amps (CP-YIC-2) 3.7 3.7 3.7 3.9 YIC-1 From Main Menu Screen
Propane Pilot Supply Pressure, In WC (GHS-PI-101) 10 8 8 8 Flame Arrester Inlet Pressure, In WC (FLR-PI-301) 0.9 1.0 0.8 1.0 Flame Arrester Outlet Pressure, In WC (FLR-PI-301) 0.6 0.7 0.5 0.7 Flame Arrester Delta P, In WC (FLR-PI-301) 0.3 0.3 0.3 0.3 Blower 301 Frequency, Hz (CP-YIC-2) 14.2 14.4 13.8 14.7 Blower 301 Current, Amps (CP-YIC-2) 3.7 3.7 3.7 3.9 YIC-1 From Main Menu Screen
Flame Arrester Inlet Pressure, In WC (FLR-PI-301) 0.9 1.0 0.8 1.0 Flame Arrester Outlet Pressure, In WC (FLR-PI-301) 0.6 0.7 0.5 0.7 Flame Arrester Delta P, In WC (FLR-PI-301) 0.3 0.3 0.3 0.3 0.3 Blower 301 Frequency, Hz (CP-YIC-2) 14.2 14.4 13.8 14.7 Blower 301 Current, Amps (CP-YIC-2) 3.7 3.7 3.7 3.9 YIC-1 From Main Menu Screen
Flame Arrester Outlet Pressure, In WC (FLR-PI-301) 0.6 0.7 0.5 0.7 Flame Arrester Delta P, In WC (FLR-PI-301) 0.3 0.3 0.3 0.3 Blower 301 Frequency, Hz (CP-YIC-2) 14.2 14.4 13.8 14.7 Blower 301 Current, Amps (CP-YIC-2) 3.7 3.7 3.7 3.9 YIC-1 From Main Menu Screen
Flame Arrester Delta P, In WC (FLR-PI-301) 0.3 0.3 0.3 0.3 0.3 Blower 301 Frequency, Hz (CP-YIC-2) 14.2 14.4 13.8 14.7 Blower 301 Current, Amps (CP-YIC-2) 3.7 3.7 3.7 3.9 YIC-1 From Main Menu Screen
Blower 301 Frequency, Hz (CP-YIC-2) 14.2 14.4 13.8 14.7 Blower 301 Current, Amps (CP-YIC-2) 3.7 3.7 3.7 3.9 YIC-1 From Main Menu Screen
Blower 301 Current, Amps (CP-YIC-2) 3.7 3.7 3.7 3.7 3.7 3.9 YIC-1 From Main Menu Screen Image: CP-YIC-2) 3.7 3.7 3.7 3.7 3.7 3.9 ANALOG DATA MENU Image: CP-YIC-2) 3.7 3.7 3.7 3.7 3.7 3.7 3.9 * PROCESS OVERVIEW Image: CP-YIC-2) 3.1 3.0 2.7 3.0 Inlet Vacuum, In WC 3.1 3.0 2.7 3.0 Inlet Temp, DegF 62 62 62 63 Oxygen, % 0.3 0.3 0.2 0.3 Blower Speed, % 14 14 13 15 Blower Vibration, In/Sec 0 0 0 0 0 CP Temp, DegF 79 81 80 85 85 FLR Flame Temp, DegF 1173 1235 1080 1286 FLR Flow Press, In WC 1.1 1.2 1.1 1.4 FLR Flow Temp, DegF 65 68 65 71
YIC-1 From Main Menu Screen Image: Constraint of the stress of the s
ANALOG DATA MENU Image: marked state s
* PROCESS OVERVIEW 3.1 3.0 2.7 3.0 Inlet Vacuum, In WC 3.1 3.0 2.7 3.0 Inlet Temp, DegF 62 62 62 63 Oxygen, % 0.3 0.3 0.2 0.3 Blower Speed, % 14 14 13 15 Blower Vibration, In/Sec 0 0 0 0 CP Temp, DegF 79 81 80 85 FLR Flame Temp, DegF 1173 1235 1080 1286 FLR Flow Press, In WC 1.1 1.2 1.1 1.4 FLR Flow Temp, DegF 65 68 65 71
Inlet Vacuum, In WC 3.1 3.0 2.7 3.0 Inlet Temp, DegF 62 62 62 63 Oxygen, % 0.3 0.3 0.2 0.3 Blower Speed, % 14 14 13 15 Blower Vibration, In/Sec 0 0 0 0 CP Temp, DegF 79 81 80 85 FLR Flame Temp, DegF 1173 1235 1080 1286 FLR Flow Press, In WC 1.1 1.2 1.1 1.4 FLR Flow Temp, DegF 65 68 65 71
Inlet Temp, DegF 62 62 62 63 Oxygen, % 0.3 0.3 0.2 0.3 Blower Speed, % 14 14 13 15 Blower Vibration, In/Sec 0 0 0 0 CP Temp, DegF 79 81 80 85 FLR Flame Temp, DegF 1173 1235 1080 1286 FLR Flow Press, In WC 1.1 1.2 1.1 1.4 FLR Flow Temp, DegF 65 68 65 71
Oxygen, % 0.3 0.3 0.2 0.3 Blower Speed, % 14 14 13 15 Blower Vibration, In/Sec 0 0 0 0 CP Temp, DegF 79 81 80 85 FLR Flame Temp, DegF 1173 1235 1080 1286 FLR Flow Press, In WC 1.1 1.2 1.1 1.4 FLR Flow Temp, DegF 65 68 65 71
Blower Speed, % 14 14 13 15 Blower Vibration, In/Sec 0 0 0 0 0 CP Temp, DegF 79 81 80 85 FLR Flame Temp, DegF 1173 1235 1080 1286 FLR Flow Press, In WC 1.1 1.2 1.1 1.4 FLR Flow Temp, DegF 65 68 65 71
Blower Vibration, In/Sec 0 0 0 0 CP Temp, DegF 79 81 80 85 FLR Flame Temp, DegF 1173 1235 1080 1286 FLR Flow Press, In WC 1.1 1.2 1.1 1.4 FLR Flow Temp, DegF 65 68 65 71
CP Temp, DegF 79 81 80 85 FLR Flame Temp, DegF 1173 1235 1080 1286 FLR Flow Press, In WC 1.1 1.2 1.1 1.4 FLR Flow Temp, DegF 65 68 65 71
FLR Flame Temp, DegF 1173 1235 1080 1286 FLR Flow Press, In WC 1.1 1.2 1.1 1.4 FLR Flow Temp, DegF 65 68 65 71
FLR Flow Press, In WC 1.1 1.2 1.1 1.4 FLR Flow Temp, DegF 65 68 65 71
FLR Flow Temp. DegF 65 68 65 71
Flow Rate, SCFM 62 63 61 68
* BACK
* BLOWER DATA
Status, Run/Stop Run Run Run Run
Run Time, Hr 84154 84272 84407 84518
Speed, % 14 14 13 15
Vibration, In/Sec 0.0 0.0 0.0 0.0
Outlet Temp, DegF 65 68 65 71
* BACK
* FLARE DATA
Flow Rate, SCFM 62 63 61 68
Flame Temp, DegF 1173 1211 1068 1285
BLR Speed, % 14 14 13 15
Flow Pressure, In WC 1.1 1.2 1.1 1.4
Hour Meter 84147 84265 84400 84491

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Run Clock	On	On	On	On
Pilot	Off	Off	Off	Off
SD Valve	Open	Open	Open	Open
Flame	On	On	On	On
Relight	Off	Off	Off	Off
Pilot	Ready	Ready	Ready	Ready
Vac Ramp	Off	Off	Off	Off
Forced Flow	Off	Off	Off	Off
* BACK				
* FLOW DATA				
Flow Rate, SCFM	62	63	61	68
Today's Total, MMSCF	0.03	0.03	0.03	0.03
This Month's Total, MMSCF	1.11	1.58	2.11	0.1
Total Flow, MMSCF	399.56	400.03	400.56	400.99
Flow Press, In WC	1.1	1.2	1.1	1.4
Flow Temp, DegF	65	68	65	71
Flow Delta P, In WC	0.33	0.34	0.31	0.41
* 7 DAY FLOW HISTORY				
Yesterday's Flow, MMSCF	0.03	0.03	0.03	0.03
2 Day's Ago Flow, MMSCF	0.02	0.09	0.09	0.00
3 Day's Ago Flow, MMSCF	0.09	0.09	0.08	0.00
4 Day's Ago Flow, MMSCF	0.10	0.06	0.10	0.05
5 Day's Ago Flow, MMSCF	0.07	0.00	0.09	0.09
6 Day's Ago Flow, MMSCF	0.10	0.08	0.09	0.05
7 Day's Ago Flow, MMSCF	0.10	0.09	0.06	0.09
* BACK				
* RESETTABLE FLOW				
Resettable Total Flow, MMSCF	399.56	400.03	400.56	400.99
Reset Time	-		-	-
Reset Date	-	-	-	-
* BACK & *BACK				
			Adequate	Needs Work
Check Propage and Nitrogen Cylinders and change/fill if nece	×	1		
Inspect Blower, Elare and Demister Structures for Loose Bolts/Cracks				
		łł		
Drain Demister (if necessary)	<u> </u>	 		
Clean Demister Filter Material (if dP indicates it is necessary)				
Lubricate Grease Fittings (as necessary)				
Test Alarm Lights on Panel by pushing "RUN" and "Alarm/Shutdown" Lamps				
Check if any shutdowns/alarms need re-setting (note which or	nes in commer	nts section)	x	Γ
Drain Flare Stack Condensate (if necessary)			Х	
Comments:				
Signature:	Kevin S. Fabe			
olghadd o.	100111-0.1 0.00	<u> </u>		

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

	1			
Tester (Initials)	KSF	KSF	KSF	KSF
Date	9/12/2023	9/19/2023	9/25/2023	10/3/2023
Time	10:00 AM	10:00 AM	10:00 AM	10:00 AM
Sky Conditions	Clear	Clear	Cloudy	Clear
Ambient Temperature, deg F	50	60	60	60
Inlet Temperature, deg F (GHS-TI-301)	63	62	63	62
Demister Inlet Valve Position, % Open (GHS-HV-301)	100	100	100	100
LFG Vacuum, In WC (GHS-PI-301)	3	3.5	3	4
Demister Filter Delta P (GHS-PDI-301)	0.3	0.3	0.3	0.3
Blower 301 Inlet Valve Position, % Open (GHS-FCV-301)	100	100	100	100.0
Discharge Pressure, In WC (GHS-PI-302)	0.2	0.2	0.2	0.3
Discharge Temperature, deg F (GHS-TI-302)	60	59	58	62
Propane Pilot Supply Pressure, In WC (GHS-PI-101)	11	8	8	12
Flame Arrester Inlet Pressure, In WC (FLR-PI-301)	1.0	1.0	1.0	1.1
Flame Arrester Outlet Pressure, In WC (FLR-PI-301)	0.7	0.7	0.7	0.8
Flame Arrester Delta P, In WC (FLR-PI-301)	0.3	0.3	0.3	0.3
Blower 301 Frequency, Hz (CP-YIC-2)	14.7	14	14.2	14.7
Blower 301 Current, Amps (CP-YIC-2)	3.8	3.7	3.8	3.7
YIC-1 From Main Menu Screen				
ANALOG DATA MENU				
* PROCESS OVERVIEW				
Inlet Vacuum, In WC	3.1	3.0	2.6	3.0
Inlet Temp, DegF	62	61	62	61
Oxygen, %	0.1	0	0.2	0
Blower Speed, %	15	15	14	15
Blower Vibration, In/Sec	0	0	0	0
CP Temp, DegF	78	78	82	78
FLR Flame Temp, DegF	1348	1292	1400	1264
FLR Flow Press, In WC	1.3	1.4	1.4	1.4
FLR Flow Temp, DegF	64	64	62	65
Flow Rate, SCFM	65	69	69	69
* BACK				
* BLOWER DATA				
Status, Run/Stop	Run	Run	Run	Run
Run Time, Hr	84666	84833	84963	85154
Speed, %	15	15	14	15
Vibration, In/Sec	0.0	0.0	0.0	0.0
Outlet Temp, DegF	64	64	62	65
* BACK				
* FLARE DATA				
Flow Rate, SCFM	65	69	69	69
Flame Temp, DegF	1257	1288	1361	1245
BLR Speed, %	15	15	14	15
Flow Pressure, In WC	1.2	1.4	1.4	1.4
Hour Meter	84638	84806	84936	85127

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Run Clock	On	On	On	On
Pilot	Off	Off	Off	Off
SD Valve	Open	Open	Open	Open
Flame	On	On	On	On
Relight	Off	Off	Off	Off
Pilot	Ready	Ready	Ready	Ready
Vac Ramp	Off	Off	Off	Off
Forced Flow	Off	Off	Off	Off
* BACK				
* FLOW DATA				
Flow Rate, SCFM	65	70	69	68
Today's Total, MMSCF	0.03	0.03	0	0.03
This Month's Total, MMSCF	0.69	1.34	1.88	0.19
Total Flow, MMSCF	401.57	402.23	402.72	403.48
Flow Press, In WC	1.3	1.4	1.4	1.4
Flow Temp, DegF	64	64	62	65
Flow Delta P, In WC	0.37	0.42	0.40	0.40
* 7 DAY FLOW HISTORY				
Yesterday's Flow, MMSCF	0.03	0.03	0.00	0.03
2 Day's Ago Flow, MMSCF	0.09	0.09	0.09	0.09
3 Day's Ago Flow, MMSCF	0.06	0.09	0.09	0.09
4 Day's Ago Flow, MMSCF	0.06	0.09	0.09	0.09
5 Day's Ago Flow, MMSCF	0.09	0.10	0.09	0.10
6 Day's Ago Flow, MMSCF	0.09	0.09	0.10	0.10
7 Day's Ago Flow, MMSCF	0.10	0.09	0.10	0.09
* BACK				
* RESETTABLE FLOW				
Resettable Total Flow, MMSCF	401.57	402.23	402.72	403.48
Reset Time	-	-	-	-
Reset Date	-	-	-	-
* BACK & *BACK				
		Adequate	Needs Work	
Check Propane and Nitrogen Cylinders and change/fill if nece	Х			
Inspect Blower, Flare and Demister Structures for Loose Bolts/Cracks				
Drain Demister (if necessary)	Х			
Clean Demister Filter Material (if dP indicates it is necessarv)				
Lubricate Grease Fittings (as necessary)				
Test Alarm Lights on Panel by pushing "RUN" and "Alarm/Shutdown" Lamps				
Check if any shutdowns/alarms need re-setting (note which ones in comments section)				
Drain Flare Stack Condensate (if necessary)			Х	
Comments: Drained Condensate				
Signature:	Kevin S. Fabe			
Cignatare.		•		

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Tester (Initials)	KSF	KSF	KSF	KSF
Date	10/9/2023	10/18/2023	10/24/2023	10/31/2023
Time	10:00 AM	10:00 AM	10:00 AM	10:00 AM
Sky Conditions	Clear	Clear	Cloudy	Clear
Ambient Temperature, deg F	45	50	55	30
Inlet Temperature, deg F (GHS-TI-301)	60	58	60	56
Demister Inlet Valve Position, % Open (GHS-HV-301)	100	100	100	100
LFG Vacuum, In WC (GHS-PI-301)	3	3	2	2
Demister Filter Delta P (GHS-PDI-301)	0.3	0.3	0.3	0.2
Blower 301 Inlet Valve Position, % Open (GHS-FCV-301)	100.0	100	100	100
Discharge Pressure, In WC (GHS-PI-302)	0.2	0.2	0.2	0.2
Discharge Temperature, deg F (GHS-TI-302)	58	56	68	58
Propane Pilot Supply Pressure, In WC (GHS-PI-101)	9	10	10	8
Flame Arrester Inlet Pressure, In WC (FLR-PI-301)	1	1.0	0.8	0.7
Flame Arrester Outlet Pressure, In WC (FLR-PI-301)	0.7	0.7	0.5	0.4
Flame Arrester Delta P, In WC (FLR-PI-301)	0.3	0.3	0.3	0.3
Blower 301 Frequency, Hz (CP-YIC-2)	13.8	13.4	14.1	13.5
Blower 301 Current, Amps (CP-YIC-2)	3.7	3.7	3.6	3.7
YIC-1 From Main Menu Screen				
ANALOG DATA MENU				
* PROCESS OVERVIEW				
Inlet Vacuum, In WC	2.3	2.2	1.7	2.2
Inlet Temp, DegF	61	60	60	58
Oxygen, %	0	0	0.1	0
Blower Speed, %	13	13	10	12
Blower Vibration, In/Sec	0	0	0	0
CP Temp, DegF	73	76	78	71
FLR Flame Temp, DegF	1304	1321	1320	1442
FLR Flow Press, In WC	0.2	0.6	0.2	0.1
FLR Flow Temp, DegF	62	61	70	63
Flow Rate, SCFM	68	65	60	63
* BACK				
* BLOWER DATA				
Status, Run/Stop	Run	Run	Run	Run
Run Time, Hr	85303	85504	85627	85795
Speed, %	13	13	10	12
Vibration, In/Sec	0	0	0	0
Outlet Temp, DegF	62	61	70	63
* BACK				
* FLARE DATA				
Flow Rate, SCFM	69	65	60	63
Flame Temp, DegF	1304	1360	1283	1457
BLR Speed, %	13	13	10	12
Flow Pressure, In WC	0.2	0.6	0.2	0.1
Hour Meter	85276	85477	85505	85665

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Run Clock	On	On	On	On
Pilot	Off	Off	Off	Off
SD Valve	Open	Open	Open	Open
Flame	On	On	On	On
Relight	Off	Off	Off	Off
Pilot	Ready	Ready	Ready	Ready
Vac Ramp	Off	Off	Off	Off
Forced Flow	Off	Off	Off	Off
* BACK				
* FLOW DATA				
Flow Rate, SCFM	68	65	60	63
Today's Total, MMSCF	0.03	0.03	0.03	0.03
This Month's Total, MMSCF	0.75	1.54	2.04	2.7
Total Flow, MMSCF	404.07	404.85	405.33	406.00
Flow Press, In WC	0.2	0.6	0.2	0.1
Flow Temp, DegF	62	61	70	64
Flow Delta P, In WC	0.40	0.37	0.31	0.34
* 7 DAY FLOW HISTORY				
Yesterday's Flow, MMSCF	0.04	0.03	0.03	0.03
2 Day's Ago Flow, MMSCF	0.10	0.06	0.10	0.10
3 Day's Ago Flow, MMSCF	0.09	0.09	0.09	0.10
4 Day's Ago Flow, MMSCF	0.09	0.10	0.06	0.09
5 Day's Ago Flow, MMSCF	0.09	0.10	0.05	0.10
6 Day's Ago Flow, MMSCF	0.10	0.09	0.09	0.10
7 Day's Ago Flow, MMSCF	0.09	0.09	0.09	0.09
* BACK				
* RESETTABLE FLOW				
Resettable Total Flow, MMSCF	404.07	404.95	405.33	406.00
Reset Time				
Reset Date				
* BACK & * BACK				
			Adequate	Needs Work
Check Propane and Nitrogen Cylinders and change/fill if necessary				
Inspect Blower, Flare and Demister Structures for Loose Bolts/Cracks			X	†
Drain Demister (if necessary)				+
Clean Demister (il necessary)				
Clean Demister Filter Material (if dP indicates it is necessary)				
Lubricate Grease Fittings (as necessary)				
Test Alarm Lights on Panel by pushing "RUN" and "Alarm/Shi	utdown" Lamps	3	X	ļ
Check if any shutdowns/alarms need re-setting (note which o	nes in comme	nts section)	Х	
Drain Flare Stack Condensate (if necessary)			X	T
Comments: Drained Condensate				
Signature:	Kevin S. Fabe	اد		

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Tester (Initials)	KSF	KSF	KSF	KSF
Date	11/7/2023	11/14/2023	11/21/2023	11/28/2023
Time	10:00 AM	10:00 AM	10:00 AM	10:00 AM
Sky Conditions	Clear	Clear	Clear	Clear
Ambient Temperature, deg F	35	35	30	10
Inlet Temperature, deg F (GHS-TI-301)	56	54	54	50
Demister Inlet Valve Position, % Open (GHS-HV-301)	100	100	100	100
LFG Vacuum, In WC (GHS-PI-301)	3	2	2	2.5
Demister Filter Delta P (GHS-PDI-301)	0.3	0.3	0.3	0.3
Blower 301 Inlet Valve Position, % Open (GHS-FCV-301)	100	100	100	100
Discharge Pressure, In WC (GHS-PI-302)	0.2	0.1	0.1	0.1
Discharge Temperature, deg F (GHS-TI-302)	64	60	58	51
Propane Pilot Supply Pressure, In WC (GHS-PI-101)	10	10	10	9
Flame Arrester Inlet Pressure, In WC (FLR-PI-301)	0.9	1.0	0.9	0.9
Flame Arrester Outlet Pressure, In WC (FLR-PI-301)	0.6	0.7	0.6	0.6
Flame Arrester Delta P, In WC (FLR-PI-301)	0.3	0.3	0.3	0.3
Blower 301 Frequency, Hz (CP-YIC-2)	16.7	14.7	13.6	15.9
Blower 301 Current, Amps (CP-YIC-2)	3.7	3.7	3.7	3.8
YIC-1 From Main Menu Screen				
ANALOG DATA MENU				
* PROCESS OVERVIEW				
Inlet Vacuum, In WC	4.5	3.8	2.3	3.9
Inlet Temp, DegF	58	57	56	54
Oxygen, %	0.4	0.1	0.2	0
Blower Speed, %	18	15	13	17
Blower Vibration, In/Sec	0	0	0	0
CP Temp, DegF	72	73	74	56
FLR Flame Temp, DegF	1203	1217	1260	1121
FLR Flow Press, In WC	0.1	0.1	0.1	0.1
FLR Flow Temp, DegF	68	64	63	57
Flow Rate, SCFM	68	69	66	63
* BACK				
* BLOWER DATA				
Status, Run/Stop	Run	Run	Run	Run
Run Time, Hr	85942	86133	86302	86469
Speed, %	18	15	13	17
Vibration, In/Sec	0	0	0	0
Outlet Temp, DegF	68	64	63	57
* BACK				
* FLARE DATA				
Flow Rate, SCFM	61	70	66	62
Flame Temp, DegF	1178	1213	1255	1262
BLR Speed, %	18	15	13	17
Flow Pressure, In WC	0.1	0.1	0.1	0.1
Hour Meter	85665	86003	86172	86339

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

	-			
Run Clock	On	On	On	On
Pilot	Off	Off	Off	Off
SD Valve	Open	Open	Open	Open
Flame	On	On	On	On
Relight	Off	Off	Off	Off
Pilot	Ready	Ready	Ready	Ready
Vac Ramp	Off	Off	Off	Off
Forced Flow	Off	Off	Off	Off
* BACK				
* FLOW DATA				
Flow Rate, SCFM	61	70	66	62
Today's Total, MMSCF	0.03	0.03	0.04	0.03
This Month's Total, MMSCF	57.00	1.23	1.89	2.56
Total Flow, MMSCF	406.66	407.33	408.01	408.65
Flow Press, In WC	0.1	0.1	0.1	0.1
Flow Temp, DegF	68	64	63	57
Flow Delta P, In WC	0.32	0.41	0.39	0.33
* 7 DAY FLOW HISTORY				
Yesterday's Flow, MMSCF	0.03	0.03	0.04	0.03
2 Day's Ago Flow, MMSCF	0.10	0.10	0.09	0.09
3 Day's Ago Flow, MMSCF	0.10	0.10	0.09	0.10
4 Day's Ago Flow, MMSCF	0.09	0.09	0.10	0.10
5 Day's Ago Flow, MMSCF	0.10	0.09	0.10	0.09
6 Day's Ago Flow, MMSCF	0.10	0.09	0.09	0.09
7 Day's Ago Flow, MMSCF	0.09	0.10	0.10	0.09
* BACK				
* RESETTABLE FLOW				
Resettable Total Flow, MMSCF	406.66	407.33	408.01	408.65
Reset Time	-	-	-	-
Reset Date	-	-	-	-
* BACK & *BACK				
			Adequate	Needs Work
Check Propane and Nitrogen Cylinders and change/fill if necessary				
Inspect Blower, Elare and Demister Structures for Loose Bolts/Cracks			х	
Drain Demister (if necessary)			x	
Clean Demister Filter Material (if dP indicates it is necessary)			X	
Ulean Demisier Filler Material (il de Indicates It is necessary)				
Lubricate Grease Fittings (as necessary)				
Lest Alarm Lights on Panel by pushing "RUN" and "Alarm/Shutdown" Lamps			× ×	
Check if any shutdowns/alarms need re-setting (note which ones in comments section)			× ×	
				ļ
Comments: Drained Condensate				
Signature:	Kevin S. Fabe	I		

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

KSF	KSF	KSF	KSF
12/5/2023	12/12/2023	12/19/2023	12/27/2023
10:00 AM	10:00 AM	10:00 AM	10:00 AM
Clear	Clear	Clear	Clear
25	20	15	30
52	50	50	51
100	100	100	100
3	3	3	3
0.3	0.3	0.3	0.3
100	100	100	100
0.2	0.2	0.2	0.2
59	54	52	57
8	8	9	8
0.9	0.8	1.0	1.0
0.6	0.5	0.7	0.7
0.3	0.3	0.3	0.3
15.1	15.7	15.4	15.2
3.7	3.7	3.7	3.7
3.5	4.4	3.3	3.5
54	53	53	52
0.2	0.1	0	0.3
16	18	16	16
0	0	0	0
73	68	65	73
1272	1345	1356	1333
0.1	0.1	0.1	0.1
64	60	58	62
61	60	70	63
Run	Run	Run	Run
86637	86803	86950	87165
16	18	16	16
0	0	0	0
64	60	58	62
61	61	70	63
1269	1310	1382	1332
16	18	16	16
0.1	0.1	0.1	0.1
86507	86675	86843	87035
	KSF 12/5/2023 10:00 AM Clear 25 52 100 3 0.3 100 3 0.3 100 3 0.3 100 0.2 59 8 0.9 0.6 0.3 15.1 3.7 3.5 54 0.2 16 0 73 1272 0.1 64 61 0 61 0 64 61 1269 16 0.1 86507	KSFKSF12/5/202312/12/202310:00 AM10:00 AMClearClear25205250100100330.30.31001000.20.25954880.90.80.60.50.30.315.115.73.73.73.73.73.54.454530.20.11618007368127213450.10.164606161161800646061180.10.116180.10.116180.10.116180.10.116180.10.116180.10.116180.10.116180.10.116180.10.116180.10.116180.10.116180.10.116180.10.116180.10.116180.10.11618<	KSF KSF KSF 12/5/2023 12/12/2023 12/19/2023 10:00 AM 10:00 AM 10:00 AM Clear Clear Clear 25 20 15 52 50 50 100 100 100 3 3 3 0.3 0.3 0.3 100 100 100 3 3 3 0.3 0.3 0.3 100 100 100 0.2 0.2 0.2 59 54 52 8 8 9 0.9 0.8 1.0 0.6 0.5 0.7 0.3 0.3 0.3 15.1 15.7 15.4 3.7 3.7 3.7 3.5 4.4 3.3 54 53 53 0.2 0.1 0 1272 1345 <td< td=""></td<>

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Run Clock	On	On	On	On
Pilot	Off	Off	Off	Off
SD Valve	Open	Open	Open	Open
Flame	On	On	On	On
Relight	Off	Off	Off	Off
Pilot	Ready	Ready	Ready	Ready
Vac Ramp	Off	Off	Off	Off
Forced Flow	Off	Off	Off	Off
* BACK				
* FLOW DATA				
Flow Rate, SCFM	61	61	70	63
Today's Total, MMSCF	0.03	0.03	0.03	0.03
This Month's Total, MMSCF	0.38	1.04	1.69	2.45
Total Flow, MMSCF	409.31	409.97	410.63	411.38
Flow Press, In WC	0.1	0.1	0.1	0.1
Flow Temp, DegF	64	60	58	62
Flow Delta P, In WC	0.32	0.31	0.42	0.34
* 7 DAY FLOW HISTORY				
Yesterday's Flow, MMSCF	0.03	0.03	0.03	0.03
2 Day's Ago Flow, MMSCF	0.09	0.09	0.09	0.09
3 Day's Ago Flow, MMSCF	0.10	0.09	0.10	0.10
4 Day's Ago Flow, MMSCF	0.10	0.09	0.09	0.09
5 Day's Ago Flow, MMSCF	0.09	0.09	0.10	0.09
6 Day's Ago Flow, MMSCF	0.09	0.10	0.10	0.10
7 Day's Ago Flow, MMSCF	0.10	0.09	0.09	0.09
* BACK				
* RESETTABLE FLOW				
Resettable Total Flow, MMSCF	409.31	409.97	410.63	411.38
Reset Time				<u> </u>
Reset Date		-	-	-
* BACK & * BACK				
			Adequate	Needs Worl
Check Propane and Nitrogen Cylinders and change/fill if		X	1	
Inspect Blower, Flare and Demister Structures for Loose	Rolte/Cracks		X	
			+	
		 		
Clean Demister Filter Material (if dP indicates it is necess	X	 		
Lubricate Grease Fittings (as necessary)	Х	ļ		
Test Alarm Lights on Panel by pushing "RUN" and "Alarr	n/Shutdown" Lamps	3	Х	
Check if any shutdowns/alarms need re-setting (note wh	ich ones in comme	nts section)	x	Γ
Drain Flare Stack Condensate (if necessary)			X	1
			J	4
Comments: Drained Condensate				
Signa	ature: Kevin S. Fabe	۶l		

Appendix B Semi-Annual Flare Station Maintenance Reports

Inspector: Tom Hobday

ltem		Date Performed	Comments
BLOWE	R/FLARE SYSTEM		
-	Check igniter gap (should be 0.1" - regap if necessary).	4/6/2023	re-gapped
-	Verify that the spark is at the tip of the igniter.	4/6/2023	good spark
-	Inspect igniter wiring for heat damage, worn insulation and frayed wires.	4/6/2023	wiring in good shape
-	Test pilot switch to verify pilot lights and it doesn't blow out.	4/6/2023	strong winds, still showing good strong flame
-	Check thermocouple voltage to verity the temperature reading.	4/6/2023	0.9 mv @ 45 deg F, ok 23.5 mv @ 1090 deg F, good
-	Test blower and safety shutoff operation. The blower contactor/blower start operation and safety shutoff valves shall be fully tested.	4/6/2023	breaker to off, vfd fault works
-	Zero out all pressure, differential pressure, and vacuum gauges	4/6/2023	all zeroed to atmosphere
-	Check all components on the "set point sheet" to verify they have not changed. Make adjustments, if necessary.	4/6/2023	All ok, logged on set point form
-	Verify flow transmitter calibration (via differential pressure).	4/6/2023	0.0" @ 0 cfm 0.46" diff @ 73 cfm, calibration ok
-	Calibrate oxygen sensor.	4/6/2023	sensor is fine
-	Remove demister sump clean-out cover and remove any accumulated debris	4/6/2023	sump is clean and dry
-	If pressure drop across the demister reaches two times (2X) the original value, remove demister element for inspection. (pressure wash element as necessary).	4/6/2023	element is clean and dry
-	Test demister condensate level switch (close level switch hand valve, and add water via tee to verify operation)	4/6/2023	filled switch housing with water, works as it should
-	Test the pilot fail shutdown (turn off propane supply)	4/6/2023	works
-	Test the high outlet temperature shutdown while the flare is operating. (adjust PLC setpoint)	4/6/2023	adjusted PLC setpoint, works

Inspector: Tom Hobday

ltem		Date Performed	Comments
-	Test the oxygen safety shutdown while the flare is operating. (open O2 lines to atm.)	4/6/2023	opened valve to atmosphere, shutdown works
-	Test the low flow safety shutdown. (throttle blower inlet valve while in vacuum control)	4/6/2023	throttled valve to reduce flow, works
-	Test Blower Vibration alarm and shut down (adjust PLC setpoint)	4/6/2023	lowered timer, tapped sensor, shutdown works.
-	Test the inlet valve fail close shutdown while flare is operating. (closed nitrogen supply)	4/6/2023	closed nitrogen tank, works
-	Test the high inlet temperature failure (adjust PLC setpoint)	4/6/2023	adjusted PLC setpoint, works
-	Test the high vacuum shutdown (adjust PLC setpoint)	4/6/2023	adjusted PLC setpoint, works
-	Test the low temperature shutdown. (adjust PLC setpoint)	N/A	This is a non user-programmable set- point. Unable to get the flare to produce a low enough temp to test.
-	Inspect transmitter housings and piping. Replace O- rings, if necessary.	4/6/2023	all ok
-	Inspect and clean the solenoid valve.	4/6/2023	working well
-	Visually inspect for arcing contractor points. Check switches and contactors (annual).	4/6/2023	nothing arcing
-	Re-torque all electrical components. Double check at the thermocouple leads and the main power feed going to the blower (annual).	4/6/2023	leads tight
-	Check for loose bolts on structure and flanges. Tighten, as necessary.	4/6/2023	all ok
-	Remove, inspect, and clean if necessary air conditioner filter (semi-annually)	4/6/2023	
-	Remove and inspect flame arrestor element (annually - or based on diff. pressure).	4/6/2023	Removed/inspected element. Clean and dry
-	Grease blower bearings - remove old grease, re- pack bearing per manufacturer specifications	4/6/2023	completed, bearings in ok condition

Inspector: Tom Hobday

ltem		Date Performed	Comments
<u>BLOWE</u>	R/FLARE SYSTEM		
-	Check igniter gap (should be 0.1" - regap if necessary).	10/19/2023	gap is correct
-	Verify that the spark is at the tip of the igniter.	10/19/2023	good spark, strong flame
-	Inspect igniter wiring for heat damage, worn insulation and frayed wires.	10/19/2023	wiring in good shape
-	Test pilot switch to verify pilot lights and it doesn't blow out.	10/19/2023	good flame
-	Check thermocouple voltage to verity the temperature reading.	10/19/2023	0.6 mv @ 60 deg F, ok 29.3 mv @ 1320 deg F, ok
-	Test blower and safety shutoff operation. The blower contactor/blower start operation and safety shutoff valves shall be fully tested.	10/19/2023	turned off breaker, alarm functions
-	Zero out all pressure, differential pressure, and vacuum gauges	10/19/2023	all zeroed
-	Check all components on the "set point sheet" to verify they have not changed. Make adjustments, if necessary.	10/19/2023	set points good, adjusted gas composition numbers
-	Verify flow transmitter calibration (via differential pressure).	10/19/2023	0.0" @ 0 cfm 0.61" diff @ 67 cfm, calibration ok
-	Calibrate oxygen sensor.	10/19/2023	
-	Remove demister sump clean-out cover and remove any accumulated debris	10/19/2023	sump is clean, slightly damp
-	If pressure drop across the demister reaches two times (2X) the original value, remove demister element for inspection. (pressure wash element as necessary).	10/19/2023	element is clean, some powdery yellow dust
-	Test demister condensate level switch (close level switch hand valve, and add water via tee to verify operation)	10/19/2023	added water, works
-	Test the pilot fail shutdown (turn off propane supply)	10/19/2023	closed pilot fuel, works
-	Test the high outlet temperature shutdown while the flare is operating. (adjust PLC setpoint)	10/19/2023	adjusted PLC setpoint, works
	· · · · · · · · · · · · · · · · · · ·		•

Inspector: Tom Hobday

tem		Date Performed	Comments
-	Test the oxygen safety shutdown while the flare is operating. (open O2 lines to atm.)	10/19/2023	opened valve to atmosphere, shutdown works
-	Test the low flow safety shutdown. (throttle blower inlet valve while in vacuum control)	10/19/2023	throttled valve to reduce flow, works
-	Test Blower Vibration alarm and shut down (adjust PLC setpoint)	10/19/2023	adjusted timer, tapped sensor, works.
-	Test the inlet valve fail close shutdown while flare is operating. (closed nitrogen supply)	10/19/2023	closed nitrogen tank, bled residual pressure, works
-	Test the high inlet temperature failure (adjust PLC setpoint)	10/19/2023	adjusted PLC setpoint, works
-	Test the high vacuum shutdown (adjust PLC setpoint)	10/19/2023	adjusted PLC setpoint, works
-	Test the low temperature shutdown. (adjust PLC setpoint)	N/A	This is a non user-programmable set- point. Unable to get the flare to produce a low enough temp to test.
-	Inspect transmitter housings and piping. Replace O-rings, if necessary.	10/19/2023	all ok
-	Inspect and clean the solenoid valve.	10/19/2023	working as it should
-	Visually inspect for arcing contractor points. Check switches and contactors (annual).	10/19/2023	all ok
-	Re-torque all electrical components. Double check at the thermocouple leads and the main power feed going to the blower (annual).	10/19/2023	re-torqued all upper cabinet leads
-	Check for loose bolts on structure and flanges. Tighten, as necessary.	10/19/2023	all good
-	Remove, inspect, and clean if necessary air conditioner filter (semi-annually)	NA	AC turned to off, heat trace turned on
-	Remove and inspect flame arrestor element (annually - or based on diff. pressure).	10/19/2023	Removed/inspected element. Clean and dry
-	Grease blower bearings - remove old grease, re- pack bearing per manufacturer specifications	10/19/2023	completed, previous grease was somewhat dark/dirty on inlet side.
			1

Project # <u>1728</u>	Project Name:	Holtz Krause	(Min 30 SCFM, Max 200 SCFM)
-----------------------	---------------	--------------	-----------------------------

Tester	T. Hobda	T. Hobday
Date	4/6/23	10/19/23
Time	12:00	13:00
Sky Conditions	clear	cloudy/ light rain
Ambient Temperature, deg F	31° F	50°F
Inlet Temperature, deg F (GHS-TI-301)	46°F	59°F
Demister Inlet Valve Position, % Open (GHS-HV-301)	100%	100 %
LFG Vacuum, In WC (GHS-PI-301)	6"	2"
Demister Filter Delta P (GHS-PDI-301)	0,3"	0.3"
Blower 301 Inlet Valve Position, % Open (GHS-FCV-301)	100%	100 %
Discharge Pressure, In WC (GHS-PI-302)	0.0 "	0.0"
Discharge Temperature, deg F (GHS-TI-302)	54°F	58°F
Propane Pilot Supply Pressure, In WC (GHS-PI-101)	9"	9"
Flame Arrester Inlet Pressure, In WC (FLR-PI-301)	1.2"	1.5"
Flame Arrester Outlet Pressure, In WC (FLR-PI-301)	1.0"	1.2 "
Flame Arrester Delta P, In WC (FLR-PI-301)	0.2"	0.3"
Blower 301 Frequency, Hz (CP-YIC-2)	19,4 Hz	13.6Hz
Blower 301 Current, Amps (CP-YIC-2)	3.8 A	3.7A

YIC-1 From Main Menu Screen	4/6/23	10/19/23
ANALOG DATA MENU		
* PROCESS OVERVIEW		
Inlet Vacuum, In WC	6.2 "	2,3"
Inlet Temp, DegF	48°F	60° F
Oxygen, %	0.0%	0.0%
Blower Speed, %	23%	13%
Blower Vibration, In/Sec	0.00 "/sec	0.00 Tsec
CP Temp, DegF	66 ° F	75 7
FLR Flame Temp, DegF	1253°F	1327°F
FLR Flow Press, In WC	0.1 "	0.9"
FLR Flow Temp, DegF	60°F	65-7
Flow Rate, SCFM	72 cfm	66 cfm
* BACK		
* BLOWER DATA		
Status, Run/Stop	Run	Run
Run Time, Hr	81,110 hrs	85,532 hrs
Speed, %	23%	13%
Vibration, In/Sec	0.00 % cc	0.00 /su
Outlet Temp, DegF	60°F	63°F
* BACK		
* FLARE DATA		
Flow Rate, SCFM	72 cfm	66(fm
Flame Temp, DegF	1250°F	1385°F
BLR Speed, %	23%	13%
Flow Pressure, In WC	0,1"	1.0
Hour Meter	81, 103 hrs	85,505 hrs
Run Clock	On	On
Pilot	ott	0ff

Project # 1728 Project Name: Holtz Krause (Min 30 SCFM, Max 200 SCFM)

Project # <u>1728</u> Project Name: <u>Holtz Kr</u>	ause (Min 30 SCFM, Max 200 S 4/6/ 23	<u>IO/19/23</u>
SD Valve	Open	Open
Flame	On	Ôn
Relight	0 55	Oft
Pilot	Ready	Ready
Vac Ramp	0tt j	Off
Forced Flow	Off	Off
BACK		
FLOW DATA		
Flow Rate, SCFM	73 cfm	66 cfm
Today's Total, MMSCF	0.0504605	0.0495490
This Month's Total, MMSCF	0,502038	1.637711
Total Flow, MMSCF	386.804	404.953
Flow Press, In WC	0.1"	0.9"
Flow Temp, DegF	60°F	63°F
Flow Delta P, In WC	0.46 "	0.37"
7 DAY FLOW HISTORY		
Yesterday's Flow, MMSCF	0.0504605	0.0495490
2 Day's Ago Flow, MMSCF	0.1026675	0.0920145
3 Day's Ago Flow, MMSCF	0.0965480	0.0566763
4 Day's Ago Flow, MMSCF	0.1047219	0.0879622
5 Day's Ago Flow, MMSCF	0.0997839	0.0910891
6 Day's Ago Flow, MMSCF	0,1030774	0.0959928
7 Day's Ago Flow, MMSCF	0.1055587	0.0930812
BACK		
RESETTABLE FLOW		
Resettable Total Flow, MMSCF	3.86804 C	4.04953e
Reset Time	0:0:0	0:0:0
Reset Date	0/00/00	0/00/00
BACK		

Project #	1728	Project Name:	Holtz Krause	(Min 30 SCFM,	Max 200 SCFM)

*	ВАСК		

All Setpoints depend on Biogas Pressure and Flow

Project # 1728 Project Name: Holtz Krause Initials: T. Hobday

Description	Setnoint	DATE	Outraint	
SETPOINT MENU		DATE	Setpoint	DATE
* VACUUM/FLOW				
Vacuum/Flow	Flow	4/6/2	Flow	In lig his
* MANUAL/AUTO	110-0	1/2/20	1.000	10/11/23
Min % Speed	10%	4/6/23	10 %	10/19/22
Auto/Manual	Auto	1	Auto	10/11/20
Manual % Speed	20%		20%	
* BACK				¥
* VACUUM CONTROL				
* SETPOINTS				
Setpoint, In WC	2.9"	4/6/23	2.6"	10/19/23
Ramp Incriment, In WC	4.0 "	J.	4.0"	10/11/0-
* BACK				¥
* PID SPs				
Gain	2,50	4/6/23	2.50	10/19/12
Sample Rate, Sec	O.SO SEC	1	0.50 sec	10/11/05
Derative, Sec	0.01 Sec		0.01 sec	
Reset, Sec/Min	0,50 Sec		0,50 50	
Deadband, In WC	0.50 "	V	0.5"	N
* BACK		V		¥
* BACK				
FLOW CONTROL				
SETPOINTS				
Flow Control Setpoint, SCFM	70 cfm	4/6/22	65 cfm	10/19/23
BACK				10/11/02
PID SETPOINTS				
Gain	0.80	4/6/23	0.08	10/19/23
Sample Rate, Sec	0,70 sec		0.70 sec	10/11/20
Derative, Sec	0.01 sec		0.01 sec	
Reset, Sec/Min	1.10 sec		1.10 sec	
Deadband, SCFM	Scfm		Scfm	
ВАСК				V
ВАСК				
ВАСК				

8/29/2013

All Setpoints depend on Biogas Pressure and Flow

Project # <u>1728</u> Project Name: <u>Holtz Krause</u> Initials: <u>T. Hobd ay</u>

* START SPs	2			T
Pilot Enable, Secs	120 500	4/6/23	120 5 11	10/10/12
Pilot On Squence, Secs	10 SPC	1	10 Sec	10/11/25
Pilot Off Squence, Secs	3 sec		3500	
Delay Blower Start, Secs	3.ser		354	
Delay Shutdown Valve Open, Secs	3 541		3.511	
* BACK				v
* PILOT				
FLR Pilot Assumed on Above This Temp, DegF	2.50°F	4/6/23	250°F	10/19/22
* BACK		11-10-		1-11/05
* FLR RUN CLOCK				
Start Time of Day, Hr.Min	0.00	4/6/23	0.00	10/19/23
On Cycle Duration, Mins	1440		1440	
Off Cycle Duration, Mins	1		1	· ·
Cycles per Day	1		1	
* BACK				
* BACK				
* FLOW CALC				
CH4%	36.4%	4/6/23	36,4%	10/19/23
02%	0.1%		0.1%	
CO2%	31.1%		31,1%	
Elevation, Ft	1,225'		1,225'	
Manual Input	0.975		0.975	V
BACK		/		
BACK				
ALARMS & SHUTDOWNS				
INLET MENU				
HIGH VACUUM				
Alarm SP, In WC	52.0"	4/6/23	52.0"	10/19/23
Alarm Delay, Sec	45 sec		45 sec	
Shutdown SP, In WC	55,0 "		55.0"	
Shutdown Delay, Sec	45su	\checkmark	45 sec	V
ВАСК				
INLET TEMPERATURE				
Alarm SP, DegF	98°F	4/6/23	98°F	10/19/23

All Setpoints depend on Biogas Pressure and Flow

Project # _____ Project Name: __Holtz Krause _____ Initials: _____ Hobday

				~
Alarm Delay, Sec	45 sec	4/6/23	45 sec	10/19/23
Shutdown SP, DegF	100° F		100° F	10/1./25
Shutdown Delay, Sec	45 suc		45 Sec	
* BACK				
* BACK				
* FLT-301 COND LEVEL				
Shutdown Delay, Sec	35sec	4/6/23	35.500	10/19/23
* BACK				10/11/45
* BLOWER MENU				1
* VIBRATION			1	
Alarm SP, In/S	0.18 "/sec	4/6/23	0.18 1/50	10/19/23
Alarm Delay, Sec	45 Sec	1-100	45540	
Shutdown SP, In/S	0.20 "/sec		0.20 1/54	
Shutdown Delay, Sec	45 541		45 500	
* BACK			10 000	V
* HIGH OUTLET GAS TEMP				
Alarm SP, DegF	170° F	4/1/23	170°F	10/19/12
Alarm Delay, Sec	45511	1/8/0-	45 sec	10/11/23
Shutdown SP, DegF	174°F		174°F	
Shutdown Delay, Sec	45 SUC		45.5ec	
BACK			1- 00-	
BACK				
FLARE MENU				
HIGH FLAME TEMP				
Alarm SP, DegF				
Alarm Delay, Sec				
Shutdown SP, DegF				
Shutdown Delay, Sec				
BACK				
LOW FLAME TEMP				
Alarm SP, DegF	150°F	4/6/23	150°F	10/19/23
Alarm Delay, Sec	45 sec		45 sec	
Shutdown SP, DegF	200°F		200°F	
Shutdown Delay, Sec	45 Sec	V	45su	
BACK				7
HIGH FLOW RATE				
			1	

All Setpoints depend on Biogas Pressure and Flow

Project # <u>1728</u> Project Name: <u>Holtz Krause</u>	Initials: To Hobday				
Alarm SP, SCFM	220 cfn	4/6/23	220 cf	n 10/19/2	
Alarm Delay, Sec	45 sec		45511	10/11/~	
* BACK			1		
LOW FLOW RATE					
Alarm SP, SCFM	35 cfm	4/6/22	35 cfm	10/19/2	
Alarm Delay, Sec	35 546	1 1	3550	10/11/2.	
Shutdown SP, SCFM	30 cfm		30/fm	+	
Shutdown Delay, Sec	35511		35500		
ВАСК					
FLARE RELIGHT					
Relight Delay, Secs	600 sec	4/6/23	600cer	10/19/2	
Number of Relight Attempts	3	1	3	10/1/2	
ВАСК			<u> </u>		
ВАСК				1	
OXYGEN SENSOR					
HIGH OXYGEN OE-301					
Alarm SP, %	3.5%	4/6/23	350/0	10/19/23	
Alarm Delay, Sec	120 510	1	120510	10/11/23	
Shutdown SP, %	5.0%		5.0%		
Shutdown Delay, Sec	120 510		12051		
ВАСК		y	100 Sac	N. N	
ВАСК					
UTILITY OUTAGE RESTART DELAY					
System Restart Delay, Secs	600510	4/6/23	600511	10/19/22	
ВАСК		11 5/05	60034	10/11/23	
PANEL TEMP					
Low Temp Alarm SP, degF	35°F	4/6/23	35°F	10/19/23	
Low Temp Alarm Delay, Sec	120500	1 - 1 - 1 - 1	120500	1-11/00	
High Temp Alarm SP, degF	120°F		120°F		
High Temp Alarm Delay, Sec	120 Sec		120500		
BACK		V	MUSIC	V	
ВАСК					
ВАСК					
		1	1	1	

Appendix C Monthly Site Inspection Forms

Lai NBER 1.10.23

Inspector Date:

<u>Item</u>

Cover intact and free of erosion? Vegetation cover intact? Is cover free of surface water ponding? Is cover free of exposed refuse? Is cover free of leachate seeps? Is cover free of animal burrows? Is cover free of noxious weeds? Is cover in need of mowing? Evidence of settlement of fill? Nuisance odors present?

n n n n n n n n у n у n

 \underline{Yes}

No

n n n n n n n n n

n

Comments

On-site access road drivable?	(y
Fence around flare secured?	(y
Evidence of trespassers or encroachment?	y
Illegal disposal/dumping present?	У
Gas wells free of damage?	(y
Water mon wells secured/free of damage?	Y
Gas probes secured/free of damage?	Y

Flare station modem operational?

Comments:

8" Abour of Snow on.

EUm - NBEL 2.14.23

Inspector Date:

<u>Item</u>

Cover intact and free of erosion? Vegetation cover intact? Is cover free of surface water ponding? Is cover free of exposed refuse? Is cover free of leachate seeps? Is cover free of animal burrows? Is cover free of noxious weeds? Is cover in need of mowing? Evidence of settlement of fill? Nuisance odors present?

n n n n n n y n y n у у

n

n

'n

'n

n

n

n

n

No

Yes

Comments

On-site access road drivable?(y)Fence around flare secured?(y)Evidence of trespassers or encroachment?yIllegal disposal/dumping present?yGas wells free of damage?(y)Water mon wells secured/free of damage?(y)Gas probes secured/free of damage?(y)

Flare station modem operational?

Comments:

11 1. Jarm 4) FATHER DAOW TEL 01

Yes

y y y v

Evin LABER 3.28.23

Inspector Date:

<u>Item</u>

Cover intact and free of erosion? Vegetation cover intact? Is cover free of surface water ponding? Is cover free of exposed refuse? Is cover free of leachate seeps? Is cover free of animal burrows? Is cover free of noxious weeds? Is cover in need of mowing? Evidence of settlement of fill? Nuisance odors present?

On-site access road drivable? Fence around flare secured? Evidence of trespassers or encroachment? Illegal disposal/dumping present? Gas wells free of damage? Water mon wells secured/free of damage? Gas probes secured/free of damage?

Flare station modem operational?

 y
 n

 y
 n

 y
 n

 y
 n

 y
 n

 y
 n

 y
 n

 y
 n

 y
 n

 y
 n

 y
 n

 y
 n

 y
 n

 y
 n

 y
 n

 y
 n

No

n

n

n

n

n

n

Comments

Comments:

D	:4	Zu) au	One Toring	- 5411	4-6"	of	Show
on.	SITE	• •	Ξw	Wells	Metzer	e for	RU	ONT.

y

LANDFILL SITE INSPECTION FORMER HOLTZ KRAUSE LANDFILL

Yes

86° Toda

No

n

n

n

n

n

n

evin FABEZ 4.11.23

Inspector Date:

<u>Item</u>

Cover intact and free of erosion? Vegetation cover intact? Is cover free of surface water ponding? Is cover free of exposed refuse? Is cover free of leachate seeps? Is cover free of animal burrows? Is cover free of noxious weeds? Is cover in need of mowing? Evidence of settlement of fill? Nuisance odors present?

On-site access road drivable? Fence around flare secured? Evidence of trespassers or encroachment? Illegal disposal/dumping present? Gas wells free of damage? Water mon wells secured/free of damage? Gas probes secured/free of damage?

Record High

Flare station modem operational?

Comments:

074702 (17) APPE

y y y y		
y y y y y y y	n n n n n n	
(y)	n	· ·

LANDFILL SITE INSPECTION FORMER HOLTZ KRAUSE LANDFILL

10350 lein 5.9.23

Inspector Date:

<u>Item</u>

Item	Yes	<u>No</u>	<u>Comments</u>
Cover intact and free of erosion? Vegetation cover intact? Is cover free of surface water ponding? Is cover free of exposed refuse? Is cover free of leachate seeps? Is cover free of animal burrows? Is cover free of noxious weeds? Is cover in need of mowing? Evidence of settlement of fill? Nuisance odors present?	y y y y y y y y y y	n	
On-site access road drivable? Fence around flare secured? Evidence of trespassers or encroachment? Illegal disposal/dumping present? Gas wells free of damage? Water mon wells secured/free of damage? Gas probes secured/free of damage? Flare station modem operational?	y y y y y y y	n n n n n n n	
Comments:	seek.	007	Compliance
Englenning age of			

Jover

Sharld

be

neowed

1 m

nerr

MONTH

LANDFILL SITE INSPECTION FORMER HOLTZ KRAUSE LANDFILL

Yes

No

EUIN FASEL 6.6.23

Inspector Date:

<u>Item</u>

Y	n	
ý	n	Decrementation of the stand of the stand of the contract of the stand
(y)	n	
(y)	n	an man man na man ang ang ang ang ang ang ang ang ang a
y	n	perint di Antonya di Angele di Katalan unda Kantopati Batalan da Katalan yang di Katalan da Katalan da Katalan
Ý	n	Bene standarding an en ander ander an en angelen an en
y	n	
У	n	n an tha ann an ann ann ann ann an ann ann ann
у	n	
У	n	nn a chuir ann a tha chuir ann ann an ann ann ann an Chuir ann ann ann ann ann ann ann ann ann an
		nya A tanya yang yana atao manifa ananan yang baran Nazara ya anahor kata kata kata ya
v	n	
v	n	
v	n	
v	n	
V	n	Banda na katang katang katang na katang katang Katang katang katang
Ŷ	n	an a
v	n	Enter and a state of the state in the second state of the
v	n	
\bigcirc		In a fact that append on the state of the st
	y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y	y n y

Comments:

Looks Good. mowed. Tecenth 21

LANDFILL SITE INSPECTION FORMER HOLTZ KRAUSE LANDFILL

Yes

y y y y y y y y y

y

у

у

y y y v No

n

n

n

n

n

n

n

'n

n

n

n

'n

n

n

n

n

n

. -ASEC Sum

7.11.23

Inspector Date:

<u>Item</u>

Cover intact and free of erosion? Vegetation cover intact? Is cover free of surface water ponding? Is cover free of exposed refuse? Is cover free of leachate seeps? Is cover free of animal burrows? Is cover free of noxious weeds? Is cover in need of mowing? Evidence of settlement of fill? Nuisance odors present?

On-site access road drivable? Fence around flare secured? Evidence of trespassers or encroachment? Illegal disposal/dumping present? Gas wells free of damage? Water mon wells secured/free of damage? Gas probes secured/free of damage?

Flare station modem operational?

Comments:

ale TIELDS

LANDFILL SITE INSPECTION FORMER HOLTZ KRAUSE LANDFILL

Yes

No

ADVIN FABORL 8.8.23

Inspector Date:

<u>Item</u>

Cover intact and free of erosion? Vegetation cover intact? Is cover free of surface water ponding? Is cover free of exposed refuse? Is cover free of leachate seeps? Is cover free of animal burrows? Is cover free of noxious weeds? Is cover in need of mowing? Evidence of settlement of fill? Nuisance odors present?	y y y y	n n n n n n n n n n	
On-site access road drivable? Fence around flare secured? Evidence of trespassers or encroachment? Illegal disposal/dumping present? Gas wells free of damage? Water mon wells secured/free of damage? Gas probes secured/free of damage? Flare station modem operational?	y y y y y y y y y y	n n n n n n	

Comments:

Dry Summer Continues. Summer Rain 4-5" below Normal.

Kevin FABER 9.12.23

Inspector Date:

Item

Item	<u>Yes</u>	<u>No</u>	<u>Comments</u>
Cover intact and free of erosion? Vegetation cover intact? Is cover free of surface water ponding? Is cover free of exposed refuse? Is cover free of leachate seeps? Is cover free of animal burrows? Is cover free of noxious weeds? Is cover in need of mowing? Evidence of settlement of fill? Nuisance odors present?	y y y y y y y y y y y y y y y y	n n n n n n	
On-site access road drivable? Fence around flare secured? Evidence of trespassers or encroachment? Illegal disposal/dumping present? Gas wells free of damage? Water mon wells secured/free of damage? Gas probes secured/free of damage?	y y y y y y y	n n n n n	
Flare station modem operational?	(y)	n	

Comments:

Continue Conditions

LANDFILL SITE INSPECTION FORMER HOLTZ KRAUSE LANDFILL

No

Yes

ABEL

0.19.23

Inspector Date:

<u>Item</u>

Cover intact and free of erosion? n y y y y y y y y y y y y Vegetation cover intact? n Is cover free of surface water ponding? n Is cover free of exposed refuse? n Is cover free of leachate seeps? n Is cover free of animal burrows? n Is cover free of noxious weeds? n Is cover in need of mowing? у n n Evidence of settlement of fill? у Nuisance odors present? n у On-site access road drivable? n Fence around flare secured? y n Evidence of trespassers or encroachment? y y y y n Illegal disposal/dumping present? n Gas wells free of damage? n Water mon wells secured/free of damage? n Gas probes secured/free of damage? n PLC CARD MILFUNCTION Flare station modem operational? n

Comments:

low	Holday	GHA	here	for	SENI . Annual	MAIN	TENANCE	5
Digit.	While	DA-SI	te PLC	CARD	MALFUNCTIO	veg b	reventin	_q
operation	sa m	Auto	Mode.	Dew (Card ordered	È T-ep	placed	10 23.
Comments

LANDFILL SITE INSPECTION FORMER HOLTZ KRAUSE LANDFILL

No

n

n

n

n

n

n

n

n

n

n

n

n

n

n)

n

n

n

n

Yes

Y Y Y Y Y Y Y

у

у

у

y

у

y y y

EUIN PASEZ 11.14.23

Inspector Date:

<u>Item</u>

Cover intact and free of erosion? Vegetation cover intact? Is cover free of surface water ponding? Is cover free of exposed refuse? Is cover free of leachate seeps? Is cover free of animal burrows? Is cover free of noxious weeds? Is cover in need of mowing? Evidence of settlement of fill? Nuisance odors present?

On-site access road drivable? Fence around flare secured? Evidence of trespassers or encroachment? Illegal disposal/dumping present? Gas wells free of damage? Water mon wells secured/free of damage? Gas probes secured/free of damage?

Flare station modem operational?

Comments:

No Snow 00 TE

LANDFILL SITE INSPECTION FORMER HOLTZ KRAUSE LANDFILL

Louin FABOR

12.28.23

Inspector Date:

Item

<u>Item</u>	<u>Yes</u>	<u>No</u>	<u>Comments</u>
Cover intact and free of erosion? Vegetation cover intact? Is cover free of surface water ponding? Is cover free of exposed refuse? Is cover free of leachate seeps? Is cover free of animal burrows? Is cover free of noxious weeds? Is cover in need of mowing? Evidence of settlement of fill? Nuisance odors present?	y y y y y y y y y y y y y y	n n n n n n n	
On-site access road drivable? Fence around flare secured? Evidence of trespassers or encroachment? Illegal disposal/dumping present? Gas wells free of damage? Water mon wells secured/free of damage? Gas probes secured/free of damage?	y y y y y y	n n n n n n	
Flare station modem operational?	У	n	

Comments:

Site Snow 20 On ARMEST DECEMber 80 Karo -#11°F about AVERAGE land

ghd.com

→ The Power of Commitment