

1610 North 2nd Street
Suite 201
Milwaukee, Wisconsin 53212
United States
T+1.414.272.2426
F+1.414.272.4408
www.jacobs.com

October 15, 2024

Andrew Kleinberg U.S. Environmental Protection Agency Region 5 Land, Chemicals & Redevelopment Division 77 West Jackson Blvd, LR-16J Chicago, IL 60604-3590

Subject: Quarterly Progress Report (July through September 2024)

Administrative Order on Consent (February 26, 2009)

Tyco Fire Products LP, Stanton Street Facility, Marinette, Wisconsin

WID 006 125 215

Dear Mr. Kleinberg:

In accordance with Section VI, 21, b (page 10) of the Administrative Order on Consent (AOC), dated February 26, 2009, ¹ Tyco Fire Products LP (Tyco) has prepared this quarterly progress report for the U.S. Environmental Protection Agency (EPA) Region 5 and Wisconsin Department of Natural Resources (WDNR) (collectively referred to herein as the Agencies). Progress reports are required to document activities conducted as part of the Resource Conservation and Recovery Act (RCRA) corrective actions at the Tyco property on One Stanton Street in Marinette, Wisconsin (Figure 1). This report covers the period from July 1 through September 30, 2024, and presents a brief description of the work performed, data collected, problems encountered, and schedule of activities as required by the 2009 AOC and subsequent agreements.

1.0 Work Completed during This Reporting Period

Groundwater Collection and Treatment

The following subsections summarize the current status of the groundwater collection and treatment components and groundwater system operations during the third quarter 2024 reporting period. Attachment 1 provides a summary of the operational data for the groundwater collection and treatment system (GWCTS) during this reporting period and includes Table 1-1, which lists the estimated volumes of water extracted, treated, stored, discharged, and disposed of offsite. Attachment 2 contains the monthly Discharge Monitoring Reports for Wisconsin Pollutant Discharge Elimination System (WPDES) General Permit WI-0001040-08-01 for Outfall OF004 (Figure 2) and Sampling Point SP108 (GWCTS effluent).

-

¹ U.S. Environmental Protection Agency. 2009. *Resource Conservation and Recovery Act Administrative Order on Consent, Ansul, Incorporated*. EPA Docket No. RCRA-05-2009-0007542-S-02-001. February 26.

GWCTS Operations Status

The upgraded GWCTS treats groundwater extracted from the Main Plant (FD-1, EW-5, EW-6, and EW-7) and Wetlands Area (EW-1) to prevent surface flooding of the facility (Figures 1 and 2). The GWCTS also treats groundwater recovered from the pump down program (PDP) operations, which include the former Salt Vault (HW-1 and HW-2) and former 8th Street Slip (EW-8 and EW-9) areas (Figures 1 and 2). PDP water was also used to fill offsite disposal trucks (disposed of offsite at the Waste Management Vickery Deepwell Hazardous Waste disposal facility in Vickery, Ohio) if additional volume was needed when reject water was being filled into the trucks or when GWCTS operations were down for maintenance.

PDP operations continued under management of Endpoint Solutions (Endpoint) of Franklin, Wisconsin, during the reporting period, and Endpoint coordinated with Tyco on PDP settings and conveyance to the GWCTS.

GWCTS operations continued under management of Tyco operators. The GWCTS operated continuously except for select weekends and holidays and for short-term maintenance. During the reporting period, an extended maintenance and optimization configuration shutdown occurred from July 1 to July 8, 2024, for updates and cleaning (with a portion of that being over the long holiday weekend), which included the following:

- The two reaction tanks were drained and cleaned, including the associated tank pumps and piping.
- The clarifier was drained and cleaned.
- Piping for the clarifier effluent was modified to a larger-diameter 5-inch pipe to improve flow to the microfiltration (MF) units.
- Additional piping and connections were added between the two reaction tanks to facilitate cleaning of the piping.

Other GWCTS maintenance items that limited operations during the reporting period are as follows:

- MF Unit B had operational issues starting in June 2024 which limited treatment rates of the system
 during this time. Replacement MF Unit B membranes were ordered in second quarter, and installed on
 July 24, 2024, and were operational on July 25, 2024. This resolved the operational issues. Additional
 backup MF membranes will also be ordered to prevent significant downtime related to the MF unit
 from occurring in the future.
- The vibratory shear-enhanced processing (VSEP) units were shut down the weekend prior to August 26, 2024 to allow troubleshooting associated with high conductivity readings causing performance issues with the reverse osmosis (RO) system. Troubleshooting is ongoing to determine the root cause of this issue. During this time, the VSEP units have remained off, and will likely remain off, leading to an increase in reject water generation. The VSEP units will be evaluated further in fourth quarter.
- RO Unit 1 had issues returning to regular operations following routine cleaning since August 2024, likely due to the high VSEP permeate conductivity discussed above. As a result, RO Unit 1 has been turned off and the data are currently being reviewed to evaluate if replacement of the RO membranes is needed. Tyco has spare RO membranes in-house if replacement is determined necessary.

Other GWCTS activities during the reporting period are as follows:

As noted in the last quarterly report, on June 4 and June 24, 2024, Tyco's chemical supplier
 ChemTreat was onsite to conduct jar testing and follow-up laboratory testing to determine whether

the addition of ferric sulfate will help with optimization related to reducing solids loadings on the MF units. The report from ChemTreat with the initial jar testing results indicated that a dosage rate between 100 and 300 milligrams per liter will improve the clarification process. Details regarding the proposed chemical addition were emailed to the WDNR WPDES staff for review on September 4 and September 13, 2024, and is currently under their review. Details regarding an anti-foaming product (Foamtrol [AF2050]) were also included in the email. Foamtrol addition is proposed at the first reaction tank, and only when needed.

- After getting a few tears in the filter press cloths, change out of all the filter press cloths started in mid-September 2024, and the cloths are being replaced on a schedule of approximately two at a time over the next several weeks and will be completed in early fourth quarter 2024. This will allow for continued operations and no extended downtime of the GWCTS.
- In mid-September 2024, loose wiring at the contactor of a breaker in the panel of the hot water heater
 caused the breaker to fail. A backup hot water system was put in place and shortly after were able to
 set it back up to using the existing system. A new breaker was installed the week of September 30,
 2024, and the wiring at the contactors will be monitored over the next month.

Main Plant and Wetlands Area Extraction Well Maintenance

During the reporting period, the Main Plant and Wetlands Area extraction well maintenance and improvement activities were conducted as follows:

- EW-7, northwestern corner of the Main Plant: As noted in the previous quarterly report, a higher-capacity pump was installed in July 2024 to allow for increased capacity (instantaneous flows of 15 to 20 gallons per minute [gpm]) at EW-7, in case it is needed.
- EW-4, northeastern corner of the Main Plant: As noted in the previous quarterly report, the capacity of extraction well EW-4 is limited (typically 0.5 gpm or less). As such, this pump is not typically operated, and the focus of operations in the Main Plant is at EW-5, EW-6, and EW-7. Tyco submitted the design document on August 28, 2024, for instead using new horizontal extraction wells (HW-3 and HW-4), for the Agencies' review and approval. Additional email communication regarding EPA questions on the design occurred on September 6 and September 13, 2024. Based on the October 3, 2024 monthly meeting, the Agencies gave verbal approval to start planning for the installation of these wells, and the Agencies planned to follow up with a written approval prior to installation.
- New proposed EW-15, outside the wall in the northwestern corner of the site: As noted in the previous quarterly report, the intent of EW-15 is to extract groundwater outside the wall to reduce potential discharge of groundwater to the river between the western extents of the vertical barrier wall and the Fincantieri Marinette Marine Corporation property to the west. Tyco submitted the design document (in the same deliverable for horizontal wells HW-3 and HW-4) on August 28, 2024, for the proposed new extraction well for the Agencies' review and approval. Additional email communication regarding EPA questions on the design occurred on September 6 and September 13, 2024. Based on the October 3, 2024 monthly meeting, the Agencies were agreeable to installing EW-15 with the caveat of developing a pilot test program for the Agencies to evaluate and confirm that the new well will not interfere with the current RCRA remedy objectives.

GWCTS Operations

As summarized in Attachment 1, Table 1-1, a total of approximately 1,109,556 gallons of groundwater was extracted from the site with the sitewide extraction well network for the reporting period, with an overall average pumping rate of 8.4 gpm. The GWCTS operated 69 days during the reporting period and

treated approximately 960,130 gallons (overall average influent rate of 7.2 gpm) of this water, which was extracted from both the active Main Plant and Wetlands Area extraction wells, and a portion of the water from the PDP system wells (Figures 1 and 2). The GWCTS estimated effluent total for the reporting period is 793,505 gallons (overall average effluent rate of 6.0 gpm). The monthly Discharge Monitoring Report results from June 2024, July 2024, and August 2024 (Attachment 2) indicate that treated groundwater GWCTS effluent complies with both the permitted SP108 GWCTS effluent limits and Outfall OF004 discharge requirements.

An estimated 298,171 gallons of water (Attachment 1, Table 1-1) was removed from the site during the reporting period and disposed of at the Waste Management Vickery Deepwell Hazardous Waste disposal facility in Vickery, Ohio.

PDP Water Levels

Both the former Salt Vault and former 8th Street Slip areas have maintained average groundwater levels below the target elevation during the reporting period, except for the manual water level measurement average elevation on July 16, 2024, which was 0.02 foot above the target. These data are included in Attachment 3 (the target elevation calculation included in the manual water level measurements table) and Attachment 4 (one hydrograph with the manual water level measurement average elevations and the transducer data collected as part of the pump house system operations, and a hydrograph for each area that provides the individual manual water level data for each well and the average elevation relative to the river elevation). An inward hydraulic gradient was maintained for each of these areas during the entire reporting period.

Manual water level measurements were collected a minimum frequency of monthly in the PDP area, and the electronic PDP transducer data were reviewed and used to monitor the water levels on a weekly basis.

In addition, the SW001 PDP river transducer was still housed in the old SG4 stilling well that also housed the SG4 transducer (the old river transducer that was removed in May 2024 and replaced with SG4-2). A new stilling well was installed using 4-inch-diameter well screen material, and the SW001 PDP river transducer was installed here on July 23, 2024.

Barrier Wall Groundwater Monitoring Activities

As noted in the last quarterly report, EPA emailed a letter on February 14, 2024, with the Agencies' review comments on the 2022 Barrier Wall Groundwater Monitoring Annual Monitoring Report.² A memorandum was submitted on April 1, 2024, to respond to the comments; as noted in the response, the comments were addressed in the Five-Year Technical Review Report (Five-Year Review Report)³ or the 2023 Barrier Wall Groundwater Monitoring Annual Monitoring Report (included as Appendix A to the Five-Year Review Report) that was also submitted on April 1, 2024.

Document Control No.: D3838400.321

.

² Jacobs. 2023. 2022 Barrier Wall Groundwater Monitoring Annual Report. April 15.

³ Jacobs. 2024. *Five-Year Technical Review Report*. April 1.

The spring barrier wall groundwater monitoring and sampling event was conducted the week of June 17, 2024, by Endpoint. The sampling was conducted in accordance with the *Revised Barrier Wall Groundwater Monitoring Plan Update* (2015 Monitoring Plan)⁴ and the 2019 Addendum to the 2015 Monitoring Plan.⁵

Four additional monitoring wells were added to the collection of the sitewide water levels at the shallowand medium-depth wells at monitoring well nests MW028 and MW029 installed as part of the per- and polyfluoroalkyl substances (PFAS) project.

Pressure transducer-related activities were completed by Endpoint as follows:

- July 9, 2024: Pressure transducers that were removed on June 5, 2024, at seven monitoring wells (MW003S, MW003D, MW064D, MW100S, MW102S, MW107D, and MW118D-R), in advance of PFAS sampling, were reinstalled on July 9, 2024.
- Week of July 8, 2024: As noted in the previous quarterly report, during the week of May 6, 2024, Endpoint installed In-Situ Inc. VuLink data logger/cellular telemetry devices at nine pressure transducers (MW047S, MW120S, MW117S, MW117D, MW115S, MW124S, MW108S, MW118S, and MW064S) to allow for remote telemetry monitoring in the different contained areas. Two new VuLink/pressure transducer setups were also installed at MW042S and MW012S on September 25, 2024 to better evaluate water levels changes across the Main Plant. Tyco is waiting on additional equipment and will install two more setups at MW121S and MW068S in fourth quarter.

Maintenance Inspections

The following maintenance inspection field activities were completed in third quarter 2024.

Phyto-Plot Inspections

Routine maintenance visits were conducted by Sand County Environmental, Inc. of Rhinelander, Wisconsin, in the phyto-plot zones 4 and 7 (Figure 2) on July 3 and August 22, 2024, and a final maintenance and winterization visit was completed the week of September 30, 2024. The site visits included the following:

- Zone 4: Only fence maintenance was conducted.
- Zone 7: Weeds were cleared around the trees, and holes in the fence made by rabbits were patched.
 Nine trees planted in 2024 were identified as at risk of dying over the winter due to damage caused by
 rabbits. These locations will be assessed for replanting in the spring 2025, if needed. The irrigation
 system was winterized during the last visit.

Cover Area Inspections

The following updates are provided for cover areas (Figure 3) where issues were identified during the May 21, 2024 inspection:

- The former Salt Vault and former 8th Street Slip had minor asphalt sealing and crack repairs, which were completed by August 28, 2024.
- Cover Area K had a small area along Building 67 where a portion of the soil cover had eroded, which will be addressed in fourth quarter when ChemDesign completes the water line work in this same area.

⁴ CH2M HILL, Inc. 2015. *Revised Barrier Wall Groundwater Monitoring Plan Update*. September 3.

 $^{^{5}}$ Jacobs. 2019. Addendum to 2015 Barrier Wall Groundwater Monitoring Plan Update. June.

Vertical Barrier Wall Inspections

As noted in the last quarterly report, Endpoint completed the visual inspection for the barrier markers on the western, southern, and eastern sides of the site on April 26, 2024. Missing slurry barrier wall markers identified during the inspection were replaced by the week of June 13, 2024. The waterside (above water line) inspection of the sheet pile vertical barrier wall (Figure 1) along the Menominee River was completed by Endpoint during the week of June 17, 2024.

During the third quarter, the landside portion of the sheet pile vertical barrier wall was completed by Endpoint on July 8, 2024. The survey of the sheet pile vertical barrier wall was completed on July 17 and July 18, 2024. No major issues were identified during the waterside and landside sheet pile wall inspections or from the survey data. Findings identified during 2023 and 2024 inspections that required maintenance activities have the following updates:

- Cylindrical steel caps welded to the steel sheet piles: The missing epoxy sealant at the bottom of the
 cylindrical steel caps that are welded to the steel sheet piles where the tiebacks penetrate the wall,
 noted during the 2023 inspection, was replaced at seven locations on September 12, 2024.
- Steel bent plate cap: The steel bent plate cap appeared to be loose at several sections along the sheet pile vertical wall during the 2024 inspection. These areas were spot welded to keep the cap in place the week of September 30, 2024.
- Slurry wall settling: South of Building 29 (Figure 2), an area along the slurry wall vertical barrier wall had some settling that was noted during the 2024 inspection (which appears to be from construction equipment that went through the area) and was backfilled and reseeded during the week of September 30, 2024.
- Erosion on the land side: Asphalt work to address some of the erosion along the landside of the sheet pile vertical barrier wall in the northwestern corner of the site (near Weir #1, Figure 2), noted during the 2023 and 2024 inspections, is currently underway and will be completed in early fourth quarter 2024.
- Missing external waler tieback caps at the end of the tieback: The custom-made caps for the
 35 locations with missing caps noted during the 2023 inspection, plus 5 spares, were ordered and are
 expected to be shipped by the end of October 2024. If weather conditions and river levels allow, the
 tieback caps will be replaced in fourth quarter 2024.

Endpoint is preparing documentation to summarize the inspection and repair activities that will be provided in the annual report.

Monthly Meetings

Monthly teleconference meetings were attended by EPA, WDNR, Tyco, Jacobs, and Endpoint on July 11, August 8, and September 5, 2024. During each meeting, the status of deliverables and a brief update of completed or upcoming activities were discussed. During the August 2024 meeting, additional items were added to the agenda by the Agencies regarding vapor intrusion and are further discussed in the following section.

Vapor Intrusion Assessment and Work Plan Comments

As noted in the last quarterly report, the *Revised Vapor Intrusion Assessment and Work Plan*⁶ was submitted to EPA and WDNR on March 17, 2021, which included an updated evaluation of potential vapor intrusion at the site and a revised work plan for additional vapor intrusion evaluation activities to be conducted at the site. Comments on the work plan were provided by the Agencies on December 20, 2023. A meeting occurred on April 4, 2024, to discuss the comments with the Agencies. EPA sent an email on April 23, 2024, that indicated that it would send out an agenda to further discuss the vapor intrusion work plan. Subsequently, during the June 13, 2024 monthly meeting, EPA indicated that the discussion would occur during the August 8, 2024 monthly meeting. Following the August 2024 meeting, Tyco finalized and submitted the *Response to Comments on Vapor Intrusion Work Plan Review With Comments* memorandum (which also included the proposed work plan approach) on September 4, 2024. Tyco is preparing the updated work plan and will wait to submit the document until fourth quarter 2024 once the Agencies have approved the September 4, 2024 response to comments document that includes the general approach for inclusion in the revised work plan.

Additional Activities

Soil Management Plan Activities

No soil disposal occurred during this reporting period.

Tyco leases a portion of the site to ChemDesign. The new water line work to provide water to a new building constructed by ChemDesign (noted in the last quarterly report) has been postponed from later in third quarter 2024 to fourth quarter 2024.

2.0 Data Collected

Extraction and treatment volumes, analytical testing, and discharge data are required as part of WPDES Permit WI-0001040-08-0. Attachment 2 includes the GWCTS monthly WPDES Discharge Monitoring Reports for June 2024 through August 2024, and Attachment 1 contains additional data on GWCTS operations for the reporting period.

Monthly groundwater elevation data were collected from monitoring wells in the former 8th Street Slip and former Salt Vault areas in accordance with the PDP requirements, and the data are included in the 2024 PDP summary table (Attachment 3). Water level data from transducers in monitoring wells collected as part of the PDP pump house system are also summarized in hydrographs (Attachment 4). Although this is the post–drawdown monitoring phase (which requires quarterly manual water level measurements, instead of monthly), monthly water level measurements will continue to be collected through the end of 2024. Quarterly monitoring will begin in 2025.

Barrier wall groundwater monitoring event data will be included in the annual report. Groundwater elevation data recorded by transducers are being compiled and evaluated. The transducer data will also be provided in the annual report.

Document Control No.: D3838400.321

_

⁶ Jacobs. 2021. *Revised Vapor Intrusion Assessment and Work Plan*. March 17.

3.0 Problems Encountered

There were no problems encountered during this reporting period.

4.0 Schedule of Upcoming Activities

The following summarizes the activities to be conducted during the next reporting period:

- Submit the quarterly progress report.
- Continue operating the GWCTS, which includes PDP operations in the former Salt Vault and former 8th Street Slip areas.
- Continue measuring PDP water levels monthly in the former Salt Vault and former 8th Street Slip areas until the end of 2024, at which time monitoring will be converted to quarterly.
- Submit a revised vapor intrusion work plan.
- Address remaining inspection finding for cover Area K.
- Address remaining inspection findings for the sheet pile vertical barrier wall.
- Complete installation and connection to the GWCTS of horizontal wells HW-3 and HW-4 to replace EW-4 in order to provide more operational flexibility for maintaining groundwater levels across the Main Plant area.
- Complete installation and pilot testing of new extraction well EW-15 to evaluate the feasibility of extracting groundwater outside the wall to limit the discharge of groundwater to the river while limiting any impacts to the current remedy.
- Conduct the fourth quarter 2024 semiannual barrier wall water level monitoring event.
- Conduct transducer data download activities.
- ChemDesign will conduct the new water line work in cover Area J.

5.0 List of Key Correspondence and Document Submittals

Project-related documents submitted to and received from the Agencies during third quarter 2024 are summarized in Tables 1 and 2, respectively.

Table 1. Documents Submitted

Quarterly Progress Report (July through September 2024), Tyco Fire Products LP Facility, Marinette, Wisconsin

Description of Submittal	Submitted To	Date Submitted
Email—Documentation with confirmation of the established standby trust alongside the surety bond for the 2024 Financial Assurance	EPA	July 3, 2024
Email—July 11th Proposed RCRA Meeting Agenda Items	EPA and WDNR	July 10, 2024
Quarterly Progress Report (Second Quarter 2024)	EPA	July 15, 2024
Email—August 8th Proposed RCRA Meeting Agenda Items	EPA and WDNR	August 8, 2024

Table 1. Documents Submitted

Ouarterly Progress Report (July through September 2024) Tyco Fire Products LP Facility, Marine

Quarterly Progress Report (July through September 2024), Tyco Fire Products LP Facility, Marinette, Wisconsin

Description of Submittal	Submitted To	Date Submitted
Design for New Extraction Wells EW-15, HW-3 and HW-4	EPA	August 28, 2024
High capacity well application package for addition of new extraction wells EW-15, HW-3 and HW-4 and changes to existing extraction wells	WDNR	August 30, 2024
Response to Comments on Vapor Intrusion Work Plan Review With Comments	EPA	September 4, 2024
Email—September 5th Proposed RCRA Meeting Agenda Items	EPA and WDNR	September 4, 2024
Emails—Details to WDNR on proposed GWCTS chemicals for ferric sulfate and Foamtrol AF2050	WDNR	September 4 and September 13, 2024
Emails—Responding to EPA September 6, 2024 email regarding Design for New Extraction Wells EW-15, HW-3 and HW-4	EPA	September 6 and September 13, 2024
Emails—Responding to WDNR follow up regrading high capacity well application package for addition of new extraction wells EW-15, HW-3 and HW-4 and changes to existing extraction wells	WDNR	September 20 and September 23, 2024

Table 2. Correspondence from Agency

Quarterly Progress Report (July through September 2024), Tyco Fire Products LP Facility, Marinette, Wisconsin

Description of Correspondence	Submitted By	Date Submitted
WDNR Email—Follow up on High Capacity Well Application and WPDES Permit Modification Questions	WDNR	July 1, 2024
WDNR Email—Adding two agenda items to the July 11th Proposed RCRA Meeting Agenda Items	WDNR	July 11, 2024
EPA Email—Proposed vapor intrusion agenda items for the August 8th Proposed RCRA Meeting	EPA	August 1, 2024
WDNR Email—Requesting additional information on ferric sulfate and Foamtrol AF2050	WDNR	September 4, 2024
EPA Email—Regarding Design for New Extraction Wells EW-15, HW-3 and HW-4	EPA	September 6, 2024
WDNR Emails—Follow up regrading high capacity well application package for addition of new extraction wells EW-15, HW-3 and HW-4 and changes to existing extraction wells	WDNR	September 17 and September 20, 2024

If you have any questions or require additional information, please contact me at 262-644-6167 or Denice Nelson at 651-280-7259.

Respectfully Yours,

Jacobs

Heather Ziegelbauer Project Manager

cc: Angela Carey, WDNR

Sarah Krueger, WDNR

Huther J. Miegelbauer

Ryan Suennen, Tyco Fire Products Denice Nelson, Johnson Controls Scott Wahl, Tyco Fire Products

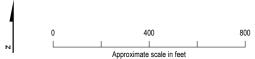
Mariel Carter, Stephenson Public Library

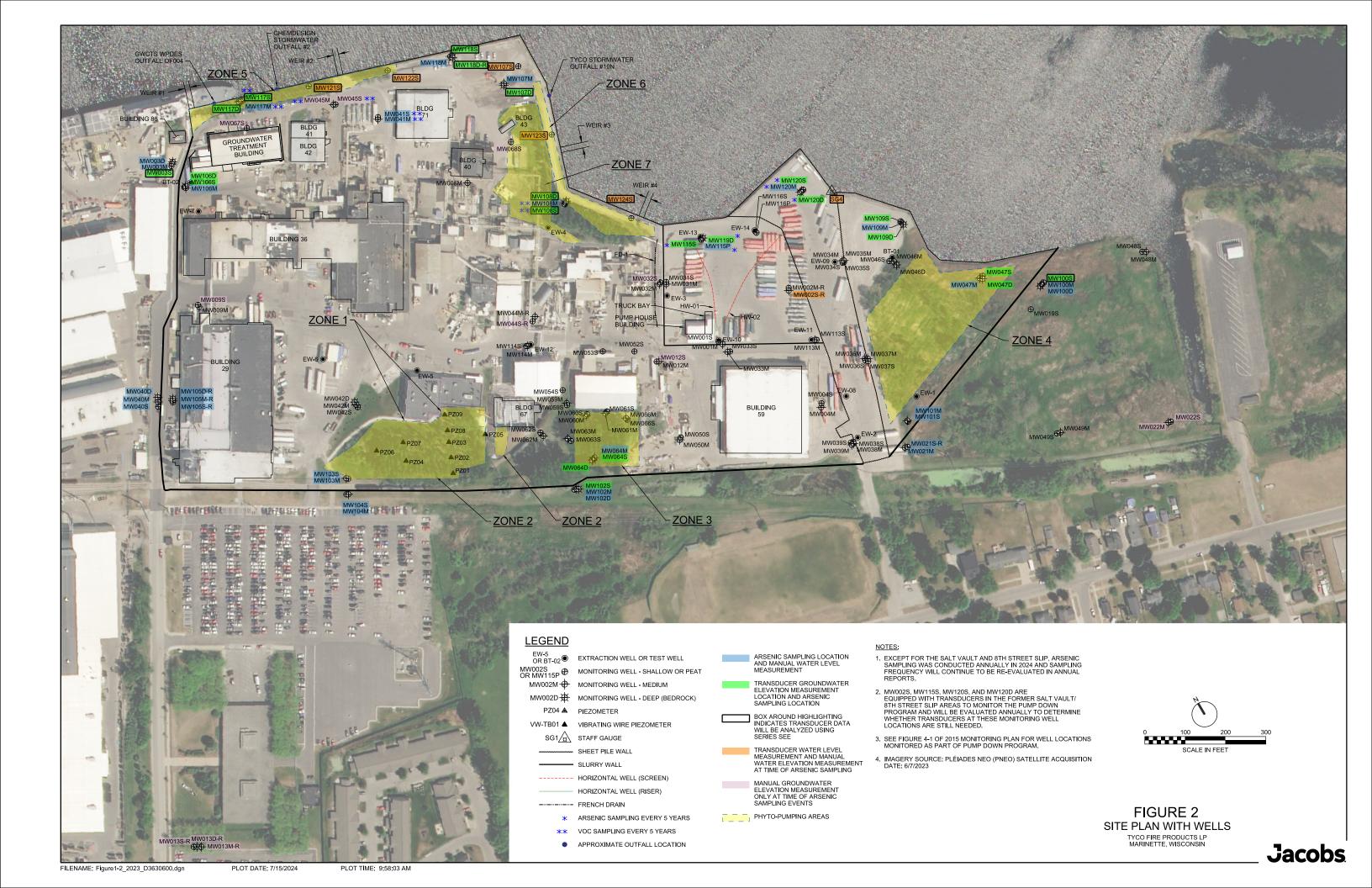
Figures

1 Site Map

2 Site Plan with Wells

3 Cover Area Location Map


Attachments


- 1 Groundwater Collection and Treatment System Operation Summary
- Discharge Monitoring Reports for the Groundwater Collection and Treatment System and Outfall OF004
- 3 2024 PDP Groundwater Elevation Monitoring
- 4 2024 PDP System Hydrographs

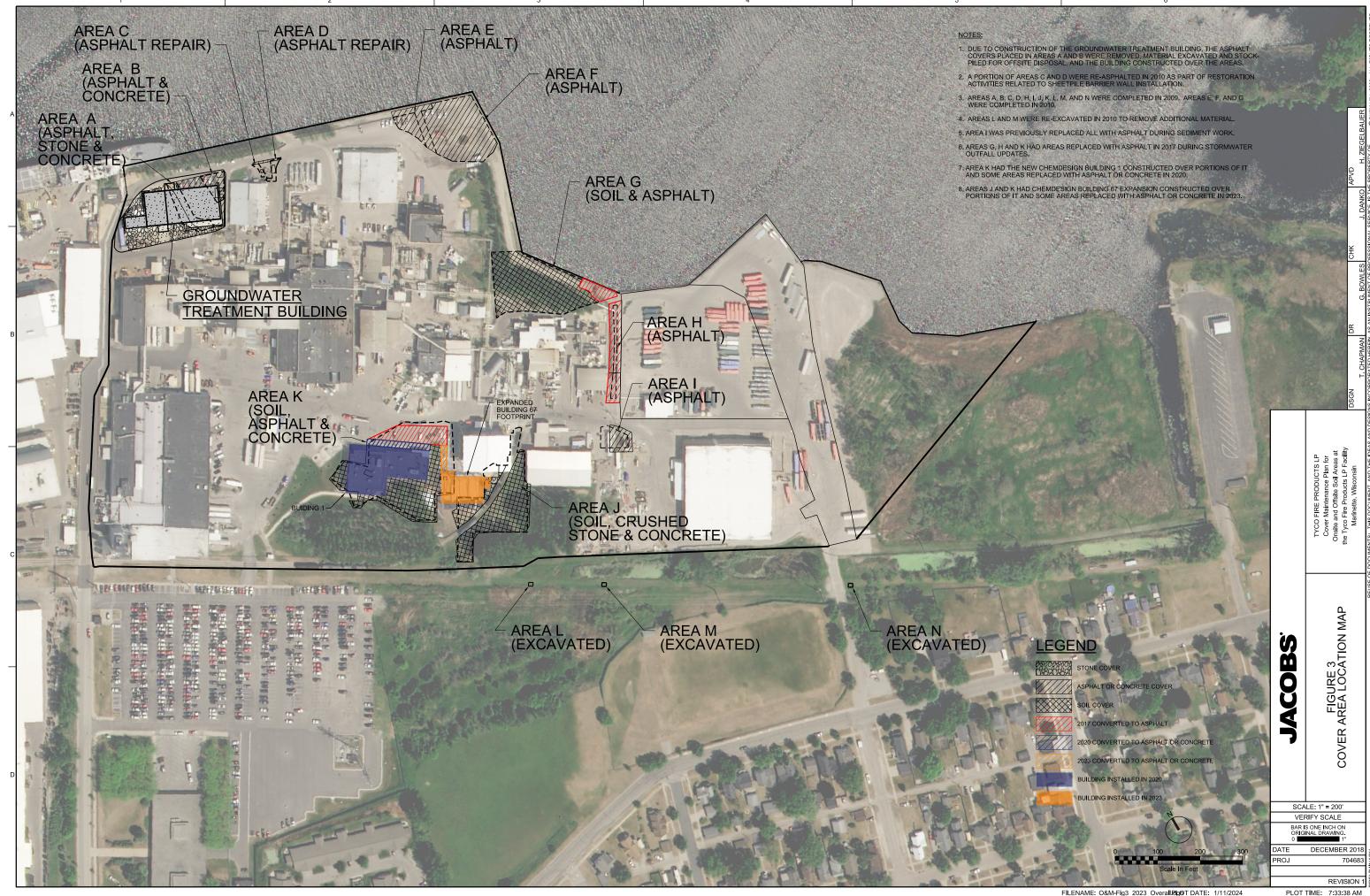

Figures

Figure 1. Site Map Tyco Fire Products LP Marinette, WI

Attachment 1
Groundwater Collection and Treatment System
Operation Summary

Groundwater Collection and Treatment System Operations for Tyco Fire Products LP, Marinette, Wisconsin, July through September 2024

The following summarizes groundwater collection and treatment system operations from July 1 through September 30, 2024, at the Tyco Fire Products LP facility on Stanton Street in Marinette, Wisconsin:

- The groundwater collection and treatment system operated for 18 days in July 2024, 23 days in August 2024, and 28 days in September 2024, for a total of 69 days.
- For the reporting period, the precipitation recorded from the weather station in Marinette, Wisconsin, was 5.59 inches of rain (https://www.weather.gov/wrh/Climate?wfo=grb).
- Table 1-1 lists the estimated volumes of water extracted, treated, and discharged under the Wisconsin Pollutant Discharge Elimination System permit as well as the volumes disposed of offsite and those currently stored onsite and awaiting treatment or disposal.

Table 1-1. GWCTS Operations Summary (July through September 2024) -DRAFT

Tyco Fire Products LP, Marinette, Wisconsin

Item Description	Beginning of 3rd	End of 3rd	Estimated Gallons,	Average Rate*	Comments
	Quarter 2024	Quarter 2024	3rd Quarter 2024	(gallons per minute)	
Total GW Extracted	-	-	1,109,556	8.4	Total GW extracted from the site at all extraction wells in all areas
PDP Total	-	-	282,253	2.1	Some PDP GW was treated at the GWCTS and the remainder disposed of offsite
SV Total	-	-	148,983	1.1	
SV - Totalizer HW-2-2	438,569	438,569	0	0.0	
SV - Totalizer HW-2-1	534,067	578,492	44,424	0.3	
SV - Totalizer HW-1-2	589,319	687,168	97,849	0.7	
SV - Totalizer HW-1-1	521,519	528,229	6,709	0.1	
8SS Total	-	-	133,271	1.0	
8SS - Totalizer Well #9	785,185	821,286	36,101	0.3	
8SS - Totalizer Well #8	675,798	772,967	97,169	0.7	
Totalizer FD-1 in MP	89,291	110,441	21,150	0.2	Some French drain GW was treated at the GWCTS and the remainder disposed of offsite
WA and MP Total	-	-	806,152	6.1	All treated by GWCTS
WA - Totalizer EW-1	8,669	70,155	61,486	0.5	
MP - Totalizer EW-4	0	0	0	0.0	
MP - Totalizer EW-5	208,982	344,715	135,733	1.0	
MP - Totalizer EW-6	326,674	581,410	254,736	1.9	
MP - Totalizer EW-7	524,288	878,485	354,197	2.7	
Additional Water Collected	-	-	0	-	No additional water was collected and disposed of offsite during the reporting period
(from Non-GWCTS Sources)					
Remaining Water Stored in Frac Tanks Onsite	0	0	0	-	No water remained stored in frac tanks at the end of the reporting period
GWCTS Operations	-	-	-	-	
Totalizer GWCTS Influent	3,528,620	4,488,750	960,130	7.2	Consists of WA and MP GW, and component of PDP and FD-1 GW
GWCTS Effluent	2,378,810	3,172,315	793,505	6.0	
GWCTS Reject Water	446,665	595,410	148,745	1.1	Water is disposed of offsite
Outfall OF004 Discharge	13,191,405	15,983,300	2,791,895	21.1	Combined GWCTS effluent and facility wastewater effluent discharged to river
Total Water Disposed of Offsite (based on	-	-	298,171	-	Consists of PDP and FD-1 GW that was not treated and reject water – Water was disposed of at the Waste Management
totalizer values)					Vickery Deepwell Hazardous Waste disposal facility in Vickery, Ohio

GWCTS = groundwater collection and treatment system PDP = pump down program

WA = Wetlands Area GW = groundwater

8SS = former 8th Street Slip

SV = former Salt Vault *Pumping averages are calculated as if the pump or system were operating 24-hours a day, 7-days a week Attachment 2
Discharge Monitoring Reports for the Groundwater
Collection and Treatment System and
Outfall OF004

Wastewater Discharge Monitoring Long Report

Facility Name: TYCO FIRE PRODUCTS LP Contact Address: □□ , \square Facility Contact: , 🗆 🗆 Phone Number: □□ Reporting Period: 06/01/2024 - 06/30/2024

Form Due Date: 07/21/2024 Permit Number: 0001040

Sample Point(s) active?

No - 703 sample point (Menominee River Intake) Yes - 101 sample point (Metal Finishing Effluent)

- 704 sample point (GWCTS Influent) Yes

Yes - 107 sample point (Mercury Field Blank Results) - 004 sample point (Combined Process WW & GW) Yes

- 108 sample point (GWCTS Effluent) Yes

For DNR Use Only

Date Received:

DOC: 546001 FIN: 7245

FID: 438039470 Region: Northeast Region

Permit Drafter: Laura K Rodriguez Alvarez

Reviewer: Laura A Gerold Office: Green Bay

Wastewater Discharge Monitoring Report Facility Name: TYCO FIRE PRODUCTS LP Reporting Period: 06/01/2024 to 06/30/2024

Page 1 of 24

Permit: 0001040

DOC: 546001

Wastewater Discharge Monitoring Long Report

Facility Name: TYCO FIRE PRODUCTS LP Contact Address:

,

Facility Contact:
,

Reporting Period: 06/01/2024 - 06/30/2024

Form Due Date: 07/21/2024 Permit Number: 0001040

Phone Number: □□

For DNR Use Only

Date Received:

DOC: 546001 FIN: 7245

FID: 438039470

Region: Northeast Region

Permit Drafter: Laura K Rodriguez Alvarez

Reviewer: Laura A Gerold
Office: Green Bay

	Sample Point	101	101	101	101	101
	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	211	373	374	379	376
	Description	Flow Rate	pH (Maximum)	pH (Minimum)	pH Total Exceedance Time Minutes	pH Exceedances Greater Than 60 Minutes
	Units	MGD	su	su	minutes	Number
	Sample Type	CONTINUOUS	CONTINUOUS	CONTINUOUS	CONTINUOUS	CONTINUOUS
	Frequency	DAILY	DAILY	DAILY	DAILY	DAILY
Sample Results	Day 1	0.002898	8.2	7.0		
	2	0				
	3	0.016665	8.2	7.6		
	4	0.032459	8.0	7.3		
	5	0.032514	8.0	6.7		
	6	0.031840	7.6	6.7		
	7	0.030369	8.0	7.1		
	8	0.007757	8.1	7.7		
	9	0				
	10	0.030016	8.5	6.8		
	11	0.036468	8.5	7.4		
	12	0.037051	8.2	7.2		
	13	0.028181	8.2	7.2		
	14	0.002883	7.5	6.8		
	15	0.003294	8.4	6.9		
	16	0				
	17	0.024697	8.0	7.4		
	18	0.025433	8.4	7.1		
	19	0.028209	8.0	7.1		
	20	0.025341	8.2	7.2		
	21	0.015637	8.4	7.4		
	22	0.002850	8.4	6.6		
	23	0				
	24	0.020084	8.0	7.5		
	25	0.031499	8.1	7.5		
	26	0.036585	8.1	7.1		
	27	0.029777	8.0	6.6		
	28	0.013856	7.9	6.8		
	29	0				
	30	0				
	31					

Wastewater Discharge Monitoring Report Facility Name: TYCO FIRE PRODUCTS LP Reporting Period: 06/01/2024 to 06/30/2024

	Sample Point	101	101		101		101		101	
	Description	Metal Finishing Effluent	Metal Finishin Effluent			Metal Finishing Effluent		ing	Metal Finishing Effluent	
	Parameter	211	373		374		379		376	
	Description	Flow Rate	pH (Maximum	1)	pH (Minimu	ım)	pH Total Excee Time Minute		pH Exceeda Greater Tha Minutes	ın 60
	Units	MGD	su		su		minutes		Number	-
Summary Values	Monthly Avg	0.0182121	8.12083333	33	7.1125					
	Monthly Total									
	Daily Max	0.037051	8.5		7.7					
	Daily Min	0	7.5		6.6					
Limit(s) in Effect	Monthly Avg									
	Monthly Total						446	0	0	0
	Daily Max		9	0						
	Daily Min				6	0				
QA/QC Information	LOD			•		•				
	LOQ									
	QC Exceedance	N	N		N		N		N	
	Lab Certification									

	Sample Point	101	101	101	101	101
	Description	Metal Finishing	Metal Finishing	Metal Finishing	Metal Finishing	Metal Finishing
	Description	Effluent	Effluent	Effluent	Effluent	Effluent
	Parameter	457	651	87	147	315
	Description	Suspended Solids, Total	Oil & Grease (Hexane)	Cadmium, Total Recoverable	Copper, Total Recoverable	Nickel, Total Recoverable
	Units	mg/L	mg/L	ug/L	ug/L	ug/L
	Sample Type	24 HR FLOW PROP	GRAB	24 HR FLOW PROP	24 HR FLOW PROP	24 HR FLOW PROP
	Frequency	3/WEEK	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3	4.2				
	4	<1.9				
	5	2.0		<0.49	4.3	4.9
	6					
	7					
	8					
	9					
	10	3.2	<1.3			
	11	3.0				
	12	2.6				
	13					
	14					
	15 16					
	16	2.8				
	18	2.8				
	19	3.2				
	20	3.2				
	21					
	22					
	23					
	24	4.2				
	25	3.6				
	26	<1.9				
	27	1.0				
	28					
	29					
	30					
	31					

	Sample Point	101		101		101		101	I	101		
	Description	Metal Finishir Effluent	ng		Metal Finishing Effluent		Metal Finishing Effluent		ing	Metal Finishing Effluent		
		457		Emdont		Lindont		Effluent		Lindon		
	Parameter			651	651		87		147			
	Description	Suspended Sol Total	ids,	Oil & Grease (He	exane)	Cadmium, To Recoverab		Copper, To Recoverab		Nickel, Tota Recoverabl		
	Units	mg/L		mg/L		ug/L		ug/L		ug/L		
Summary Values	Monthly Avg	2.58333333	33	0		0		4.3		4.9		
	Monthly Total											
	Daily Max	4.2		<1.3		<0.49		4.3		4.9		
	Daily Min	<1.9		<1.3		<0.49		4.3		4.9		
Limit(s) in Effect	Monthly Avg	31	0	26	0	260	0	2070	0	2380	0	
	Monthly Total											
	Daily Max	60	0	52	0	690	0	3380	0	3980	0	
	Daily Min											
QA/QC Information	LOD		<u>l</u>	1.3		0.49		1.7		1.5		
	LOQ			4.9		1		5		5		
	QC Exceedance	N		N		N		N		N		
	Lab Certification	99958001	0	99958001	999580010		999580010		999580010		999580010	

	Sample Point	101	101	101	101	101
	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	553	507	280	280	35
	Description	Zinc, Total Recoverable	Total Toxic Organics	Mercury, Total Recoverable	Mercury, Total Recoverable	Arsenic, Total Recoverable
	Units	ug/L	ug/L	ng/L	mg/day	ug/L
	Sample Type	24 HR FLOW PROP	24 HR FLOW PROP	GRAB	CALCULATED	24 HR FLOW PROP
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5	60				<2.1
	6					
	7					
	8					+
	9 10					
	11					+
	12					
	13					
	14					
	15					
	16					
	17					
	18					
	19					
	20 21					
	22					
	23					
	24					
	25					
	26			1.1	0.1525227	
	27					
	28					
	29					
	30					+
	31					

	Sample Point	101		101	101	101	101	
	Description	Metal Finishii Effluent	ng	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	
	Parameter	553		507	280	280	35	
	Description	Zinc, Total Recoverable		Total Toxic Organics		Mercury, Total Recoverable	Arsenic, Total Recoverable	
	Units	ug/L		ug/L	ng/L	mg/day	ug/L	
Summary Values	Monthly Avg	60			1.1	0.1525227	0	
	Monthly Total							
	Daily Max	60			1.1	0.1525227	<2.1	
	Daily Min	60			1.1	0.1525227	<2.1	
Limit(s) in Effect	Monthly Avg	1480	0					
	Monthly Total							
	Daily Max	2610	0	2130				
	Daily Min							
QA/QC Information	LOD	3.6		1	0.2		2.1	
	LOQ	10			0.5		5	
	QC Exceedance	N		N	N	N	N	
	Lab Certification	99958001	0		999580010		999580010	

	Sample Boint	101	704	704	704	704
	Sample Point Description	Metal Finishing	GWCTS Influent	GWCTS Influent	GWCTS Influent	GWCTS Influent
	Description	Effluent	GWC13 IIIIdeill	GWC13 IIIIIdeili	GWC13 IIIIdeill	GWC13 lillidelit
	Parameter	35	211	35	457	280
	Description	Arsenic, Total Recoverable	Flow Rate	Arsenic, Total Recoverable	Suspended Solids, Total	Mercury, Total Recoverable
	Units	lbs/day	gpd	ug/L	mg/L	ng/L
	Sample Type	CALCULATED	CONTINUOUS	24 HR FLOW PROP	24 HR FLOW PROP	GRAB
	Frequency	MONTHLY	DAILY	WEEKLY	WEEKLY	MONTHLY
Sample Results	Day 1		1545			
	2		0			
	3		11605			
ļ	4		9155	76000	900	
	5	0.000567	11850			
	6		19110			
	7		14515			
	8		5			
	9		5			
	10		0	36000	110	
İ	11		18100			
İ	12		11340			
	13		15265			
	14		24775			
İ	15		19085			
	16		0			
İ	17		0			
	18		14510			
	19		5955			
İ	20		11410	20000	100	
	21		17910			
	22		0			
ļ	23		0			
ļ	24		14570			
ļ	25		22845	3100	22	
ļ	26		15445			2.2
ļ	27		10650			
	28		11515			
ļ	29		10			
	30		255			
	31					

Page 8 of 24

	Sample Point	101	704	704	704	704
	Description	Metal Finishing Effluent	GWCTS Influent	GWCTS Influent	GWCTS Influent	GWCTS Influent
	Parameter	35	211	35	457	280
	Description	Arsenic, Total Recoverable	Flow Rate	Arsenic, Total Recoverable	Suspended Solids, Total	Mercury, Total Recoverable
	Units	lbs/day	gpd	ug/L	mg/L	ng/L
Summary Values	Monthly Avg	0.000567	9381	33775	283	2.2
	Monthly Total					
	Daily Max	0.000567	24775	76000	900	2.2
	Daily Min	0.000567	0	3100	22	2.2
Limit(s) in Effect	Monthly Avg					
	Monthly Total					
	Daily Max					
	Daily Min					
QA/QC Information	LOD	•		420		0.2
	LOQ			1000		0.5
	QC Exceedance	N	N	N	N	N
	Lab Certification			999580010	999580010	999580010

	Camania Baint	407	004	004	004	004
	Sample Point Description	107 Mercury Field Blank	004 Combined Process	004 Combined Process	004 Combined Process	004 Combined Process
	Description	Results	WW & GW	WW & GW	WW & GW	WW & GW
	Parameter	280	211	373	374	112
	Description	Mercury, Total Recoverable	Flow Rate	pH (Maximum)	pH (Minimum)	Chlorine, Total Residual
	Units	ng/L	MGD	su	su	ug/L
	Sample Type	BLANK	CONTINUOUS	CONTINUOUS	CONTINUOUS	GRAB
	Frequency	MONTHLY	DAILY	DAILY	DAILY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13					
	14					
	15					
	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23			6.5	6.2	
	24		0.045415	7.3	6.1	
	25		0.069310	6.7	6.1	<10
	26	<0.20	0.065130	7.2	6.2	
	27		0.051635	7.0	6.5	
	28		0.028550	6.6	6.2	
	29		0	6.6	6.2	
	30		0.003830	6.9	6.0	
	31					

	Sample Point	107	004	004	004	004	
	Description	Mercury Field Blank Results	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	
	Parameter	280	211	373	374	112	
	Description	Mercury, Total Recoverable	Flow Rate	pH (Maximum)	pH (Minimum)	Chlorine, Total Residual	
	Units	ng/L	MGD	su	su	ug/L	
Summary Values	Monthly Avg	0	0.037695714	6.85	6.1875	0	
	Monthly Total						
	Daily Max	<0.2	0.06931	7.3	6.5	<10	
	Daily Min	<0.2	0	6.5	6	<10	
Limit(s) in Effect	Monthly Avg					38 0	
	Monthly Total						
	Daily Max			9 0		38 0	
	Daily Min				6 0		
QA/QC Information	LOD	0.2		•		30	
	LOQ	0.5				100	
	QC Exceedance	N	N	N	N	N	
	Lab Certification	999580010					

	Sample Point	004	004	004	004	004
	Description	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW
	Parameter	35	35	280	280	87
	Description	Arsenic, Total	Arsenic, Total	Mercury, Total	Mercury, Total	Cadmium, Total
		Recoverable	Recoverable	Recoverable	Recoverable	Recoverable
	Units	ug/L	lbs/day	ng/L	mg/day	ug/L
	Sample Type	24 HR FLOW PROP	CALCULATED	GRAB	CALCULATED	24 HR FLOW PROP
Sample Results	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Nesults	Day 1					
	3					
	4					
	5 6					
	7					
	8					
	9	<2.1	0.000006			<0.49
	11	\Z.1	0.00000			\0.49
	12					
	13					
	14 15					
	16					
	17					
	18 19					
	20					
	21					
	22					
	23 24					
	25					
	26			0.52	0.12835836	
	27					
	28 29					
	30					
	31					

	Sample Point	004		004		004		004	0	04	
	Description	Combined Proc WW & GW	ess	Combined Process WW & GW		Combined Process WW & GW		Combined Process WW & GW		d Process & GW	
				۵ 0 0 0		www.a.ow					
	Parameter	35		35		280		280	8	37	
	Description	Arsenic, Total Recoverable		Arsenic, Total Recoverable		Mercury, Total Recoverable		Mercury, Total Recoverable		m, Total verable	
	Units	ug/L		lbs/day	lbs/day			mg/day	uç	g/L	
Summary Values	Monthly Avg	0		6E-06		ng/L 0.52		0.12835836		0	
	Monthly Total										
	Daily Max	<2.1		6E-06		0.52		0.12835836	<0	.49	
	Daily Min	<2.1		6E-06		0.52		0.12835836	<0.49		
Limit(s) in Effect	Monthly Avg								57	0	
	Monthly Total										
	Daily Max	194	0	0.22	0	18	0		57	0	
	Daily Min										
QA/QC Information	LOD	2.1				0.2			0.	49	
	LOQ	5				0.5				1	
	QC Exceedance	N		N		N		N	1	N	
	Lab Certification	999580010)			999580010			9995	999580010	

	Sample Point	004	004	004	004	004
	Description	Combined Process	Combined Process	Combined Process	Combined Process	Combined Process
	Description	WW & GW	WW & GW	WW & GW	WW & GW	WW & GW
	Parameter	87	147	147	315	315
	Description	Cadmium, Total Recoverable	Copper, Total Recoverable	Copper, Total Recoverable	Nickel, Total Recoverable	Nickel, Total Recoverable
	Units	lbs/day	ug/L	lbs/day	ug/L	lbs/day
	Sample Type	CALCULATED	24 HR FLOW PROP	CALCULATED	24 HR FLOW PROP	CALCULATED
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5					
	7					
	8					
	9					
	10	0.00000147	3.6	0.0000108	<1.5	0.0000045
	11	0.00000111	0.0	0.0000100	1.0	0.0000010
	12					
	13					
	14					
	15					
	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23 24					
	25					
	26					
	27					
	28					
	29					
	30					
	31					

	Sample Point	004		004		004		004		004	
	Description	Combined Proce	ess	Combined Process WW & GW		Combined Process WW & GW		Combined Process WW & GW		Combined Process WW & GW	
					****		WW & GW		, www.a.ow		
	Parameter	87	87		147		147		315		
	Description	Cadmium, Total Recoverable		Copper, Total Recoverable		Copper, Total Recoverable		Nickel, Total Recoverable		Nickel, Total Recoverable	
	Units	lbs/day		ug/L	ug/L			ug/L		lbs/day	
Summary Values	Monthly Avg	1.47E-06		3.6		1.08E-05 ug/L			4.5E-06		
	Monthly Total										
	Daily Max	1.47E-06 1.47E-06		3.6		1.08E-05 1.08E-05		<1.5 <1.5		4.5E-06 4.5E-06	
	Daily Min										
Limit(s) in Effect	Monthly Avg			69	0			2000	0		
	Monthly Total										
	Daily Max	0.23	0	69	0	0.28	0	2000	0	8.1	0
	Daily Min										
QA/QC Information	LOD			1.7	-1		-	1.5			
	LOQ			5				5			
	QC Exceedance	N		N		N		N		N	
	Lab Certification			99958001	0			9995800	10		

	Sample Point	004	004	004	004	004
	Description	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW
	Parameter	553	553	152	152	231
	Description	Zinc, Total Recoverable	Zinc, Total Recoverable	Cyanide, Amenable	Cyanide, Amenable	Hardness, Total as CaCO3
	Units	ug/L	lbs/day	ug/L	lbs/day	mg/L
	Sample Type	24 HR FLOW PROP	CALCULATED	24 HR FLOW PROP	CALCULATED	24 HR FLOW PROP
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10	26	0.000078	5.9	0.0000177	390
	11					
	12					
	13					
	14					
	15					
	16					
	17					
	18 19					
	20					
	21					
	22					
	23					
	23					
	25					
	26					
	26					
	28					
	29					
	30					
	31					

	Sample Point	004		004		004		004		004	
	Description	Combined Process WW & GW		Combined Process WW & GW		Combined Process WW & GW		Combined Process WW & GW		Combined Process WW & GW	
				*****		WWW & GW		WW & GW		, www.a.sw	
	Parameter	553		553	553			152		231	$\overline{}$
	Description	Zinc, Total Recoverable	9	Zinc, Total Recoverable		152 Cyanide, Amenable		Cyanide, Amenable		Hardness, Total a CaCO3	as
	Units	ug/L		lbs/day		ug/L		lbs/day		mg/L	$\overline{}$
Summary Values	Monthly Avg	26		7.8E-05		5.9		1.77E-05		390	
	Monthly Total										
	Daily Max	26	26		7.8E-05		5.9		1.77E-05		
	Daily Min	26		7.8E-05		5.9		1.77E-05		390	
Limit(s) in Effect	Monthly Avg	520	0			92	0				
	Monthly Total										
	Daily Max	520	0	2.1	0	92	0	0.37	0		
	Daily Min										
QA/QC Information	LOD	3.6	Į.		Į.	3.6			Į.		
	LOQ	10				5					
	QC Exceedance	N	N N		N		N		N		
	Lab Certification	99958001	0			999580010				999580010	

	Sample Point	004	004	004	004	108
	Description	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	GWCTS Effluent
	Parameter	480	1352	1353	1353	211
	Description	Temperature Maximum	PFOA	PFOS	PFOS	Flow Rate
	Units	degF	ng/L	ng/L	mg/day	MGD
	Sample Type	MEASURE	24 HR FLOW PROP	24 HR FLOW PROP	CALCULATED	CONTINUOUS
	Frequency	WEEKLY	MONTHLY	MONTHLY	MONTHLY	DAILY
ample Results	Day 1	81				0
	2	84				0
	3	82				0.008809
	4	82				0.009558
	5	82				0.009818
	6	78				0.013833
	7	79				0.013511
	8	81				0
	9	81				0
	10	82	2.0	1.2	0.001614	0
	11	80				0.013406
	12	76				0.008855
	13	84				0.012976
	14	85				0.018856
	15	81				0.015079
	16	84				0
	17	85				0
	18	87				0.011330
	19	85				0.006393
	20	85				0.008476
	21	83				0.013887
	22					0
	23	87				0
	24	85				0.012005
	25	88				0.019430
	26	84				0.008825
	27	81				0.009885
	28	81				0.003003
	29	87				0.007034
	30	78				0.000822
	31	10				0.000022

	Sample Point	004	004	004	004	108
	Description	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	GWCTS Effluent
	Parameter	480	1352	1353	1353	211
	Description	Temperature Maximum	PFOA	PFOS	PFOS	Flow Rate
	Units	degF	ng/L	ng/L	mg/day	MGD
Summary Values	Monthly Avg	82.689655172	2	1.2	0.001614	0.007426933
	Monthly Total					
	Daily Max	88	2	1.2	0.001614	0.01943
	Daily Min	76	2	1.2	0.001614	0
Limit(s) in Effect	Monthly Avg			11 0	2.1 0	
	Monthly Total					
	Daily Max			11 0		
	Daily Min					
QA/QC Information	LOD		0.76	0.48	•	·
	LOQ		1.8	1.8		
	QC Exceedance	N	N	N	N	N
	Lab Certification		998204680	998204680		

	Sample Point	108	108	108	108	108
	Description	GWCTS Effluent	GWCTS Effluent	GWCTS Effluent	GWCTS Effluent	GWCTS Effluent
	Parameter	457	35	35	280	280
	Description	Suspended Solids, Total	Arsenic, Total Recoverable	Arsenic, Total Recoverable	Mercury, Total Recoverable	Mercury, Total Recoverable
	Units	mg/L	ug/L	lbs/day	ng/L	mg/day
	Sample Type	24 HR FLOW PROP	24 HR FLOW PROP	CALCULATED	24 HR FLOW PROP	CALCULATED
	Frequency	WEEKLY	WEEKLY	WEEKLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4	<1.9	3.1	0.000248		
	5					
	6					
	7					
	8					
	9					
	10	<1.9	<2.1			
	11					
	12					
	13					
	14					
	15					
	16					
	17					
	18					
	19					
	20	<1.9	<2.1			
	21					
	22					
	23					
	24	, -				
	25	<1.9	<2.1	0.000336		0.000000
	26				0.28	0.00936516
	27					
	28					
	29					
	30					
	31					

	Sample Point	108	108	108	108	108
	Description	GWCTS Effluent	GWCTS Effluent	GWCTS Effluent	GWCTS Effluent	GWCTS Effluent
	Parameter	457	35	35	280	280
	Description	Suspended Solids, Total	Arsenic, Total Recoverable	Arsenic, Total Recoverable	Mercury, Total Recoverable	Mercury, Total Recoverable
	Units	mg/L	ug/L	lbs/day	ng/L	mg/day
Summary Values	Monthly Avg	0	0.775	0.000292	0.28	0.00936516
	Monthly Total					
	Daily Max	<1.9	3.1	0.000336	0.28	0.00936516
	Daily Min	<1.9	<2.1	0.000248	0.28	0.00936516
Limit(s) in Effect	Monthly Avg					
	Monthly Total					
	Daily Max		500 0	0.17 0	24 0	
	Daily Min					
QA/QC Information	LOD	•	2.1		0.2	•
	LOQ		5		0.5	
	QC Exceedance	N	N	N	N	N
	Lab Certification	999580010	999580010		999580010	

	Sample Point	108	108
	Description	GWCTS Effluent	GWCTS Effluent
	Parameter	1352	1353
	Description	PFOA	PFOS
	Units	ng/L	ng/L
	Sample Type	24 HR FLOW PROP	24 HR FLOW PROP
	Frequency	MONTHLY	MONTHLY
Sample Results	Day 1		
	2		
	3		
	4		
	5		
	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
	14		
	15		
	16		
	17		
	18		
	19	10.70	10.10
	20	<0.73	<0.46
	21		
	22		
	23		
	24		
	25		
	26		
	27		
	28		
	29		
	30		
	31		

	Sample Point	108	108	
	Description	GWCTS Effluent	GWCTS Effluent	
	Parameter	1352	1353	
	Description	PFOA	PFOS	
	Units	ng/L	ng/L	
Summary	Monthly	0	0	
Values	Avg	•	-	
	Monthly			
	Total			
	Daily Max	<0.73	<0.46	
	Daily Min	<0.73	<0.46	
Limit(s) in	Monthly			
Effect	Avg			
	Monthly			
	Total			
	Daily Max			
	Daily Min			
QA/QC	LOD	0.73	0.46	
Information				
	LOQ	1.7	1.7	
	QC	N	N	
	Exceedance			
	Lab	998204680	998204680	
	Certification			

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.)
General Remarks
Laboratory Quality Control Comments

Submitted by Anne Fleury(afleury16) on 7/18/2024 10:34:44 AM

TYCO FIRE PRODUCTS LP Facility Name: Contact Address: □□ , \square Facility Contact: , 🗆 🗆 Phone Number: □□

Reporting Period: 07/01/2024 - 07/31/2024

Form Due Date: 08/21/2024 Permit Number: 0001040

Sample Point(s) active?

No - 703 sample point (Menominee River Intake) Yes - 101 sample point (Metal Finishing Effluent)

- 704 sample point (GWCTS Influent) Yes

Yes - 107 sample point (Mercury Field Blank Results) - 004 sample point (Combined Process WW & GW) Yes

- 108 sample point (GWCTS Effluent) Yes

For DNR Use Only

Date Received:

DOC: 550627 FIN: 7245 FID:

438039470 Region: Northeast Region

Permit Drafter: Laura K Rodriguez Alvarez

Reviewer: Laura A Gerold Office: Green Bay

Wastewater Discharge Monitoring Report Facility Name: TYCO FIRE PRODUCTS LP Reporting Period: 07/01/2024 to 07/31/2024

Permit: 0001040 DOC: 550627

Page 1 of 24

Phone Number: □□
Reporting Period: 07/01/2024 - 07/31/2024

Form Due Date: 08/21/2024 Permit Number: 0001040

For DNR Use Only

Date Received:

DOC: 550627 FIN: 7245

FID: 438039470 Region: Northeast Region

Permit Drafter: Laura K Rodriguez Alvarez

Reviewer: Laura A Gerold

Office: Green Bay

	Sample Point	101	101	101	101	101
	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	211	373	374	379	376
	Description	Flow Rate	pH (Maximum)	pH (Minimum)	pH Total Exceedance Time Minutes	pH Exceedances Greater Than 60 Minutes
	Units	MGD	su	su	minutes	Number
	Sample Type	CONTINUOUS	CONTINUOUS	CONTINUOUS	CONTINUOUS	CONTINUOUS
	Frequency	DAILY	DAILY	DAILY	DAILY	DAILY
Sample Results	Day 1	0.027044	8.4	7.4		
	2	0.020133	8.4	6.8		
	3	0.014863	8.7	7.2		
	4	0				
	5	0				
	6	0				
	7	0.009793	8.1	7.7		
	8	0.027374	8.1	6.9		
	9	0.020693	7.8	6.6		
	10	0.017197	8.0	6.8		
Ì	11	0.017380	8.0	6.9		
Ì	12	0.007131	7.8	6.7		
	13	0.003242	8.0	7.1		
	14	0				
	15	0.022945	8.0	7.6		
	16	0.018849	7.8	7.0		
	17	0.014216	8.5	6.9		
	18	0.017583	8.0	6.5		
	19	0.062530	8.0	6.8		
	20	0.004065	8.0	6.9		
	21	0				
	22	0.016708	8.1	7.8		
	23	0.023320	7.9	7.1		
	24	0.021796	8.0	7.0		
	25	0.012687	8.0	7.2		
ľ	26	0.008980	8.0	7.1		
	27	0.001684	8.0	7.0		
	28	0				
	29	0.020929	7.8	7.2		
	30	0.020407	8.3	6.8		
	31	0.016142	8.0	7.2		

Wastewater Discharge Monitoring Report Facility Name: TYCO FIRE PRODUCTS LP Reporting Period: 07/01/2024 to 07/31/2024

	Sample Point	101	101		101		101		101	
	Description	Metal Finishing Effluent	Metal Finishin Effluent	g	Metal Finish Effluent	ing	Metal Finishing Effluent		Metal Finishing Effluent	
	Parameter	211	373		374	374			376	
	Description	Flow Rate	pH (Maximum	1)	pH (Minimu	pH (Minimum)		dance es	pH Exceedances Greater Than 60 Minutes	
	Units	MGD	su		su		minutes		Number	r
Summary Values	Monthly Avg	0.014441645	8.068		7.048					
	Monthly Total									
	Daily Max	0.06253	8.7		7.8					
	Daily Min	0	7.8		6.5					
Limit(s) in Effect	Monthly Avg									
	Monthly Total						446	0	0	0
	Daily Max		9	0						
	Daily Min				6	0				
QA/QC Information	LOD			•		•		•		•
	LOQ									
	QC Exceedance	N	N		N		N		N	
	Lab Certification									

	Sample Point	101	101	101	101	101
	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	457	651	87	147	315
	Description	Suspended Solids, Total	Oil & Grease (Hexane)	Cadmium, Total Recoverable	Copper, Total Recoverable	Nickel, Total Recoverable
	Units	mg/L	mg/L	ug/L	ug/L	ug/L
	Sample Type	24 HR FLOW PROP	GRAB	24 HR FLOW PROP	24 HR FLOW PROP	24 HR FLOW PROP
	Frequency	3/WEEK	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1	2.6				
	2	3.2				
	3	3.8				
	4					
	5					
	6					
	7					
	8	2.8				
	9	<1.9	<1.3			
	10	<1.9				
	11					
	12					
	13					
	14					
	15	2.6		<0.49	5.9	4.8
	16	<1.9				
	17	<1.9				
	18					
	19					
	20					
	21					
	22	4.0				
	23	<1.9				
	24	2.8				
	25					
	26					
	27					
	28					
	29					
	30					
	31					

	Sample Point	101		101		101		101		101	
	Description	Metal Finishir Effluent	ng	Metal Finishi Effluent	ng	Metal Finish Effluent	ing	Metal Finish Effluent	ing	Metal Finishi Effluent	ng
		Lindon		Lindon		Lindon				Lindon	
	Parameter	457		651		87		147		315	
	Description			Oil & Grease (He	exane)		Cadmium, Total Copper, Total Recoverable Recoverable			Nickel, Total Recoverable	
	Units	mg/L		mg/L		ug/L		ug/L		ug/L	
Summary Values	Monthly Avg	1.81666666	67	0		0		5.9		4.8	
	Monthly Total										
	Daily Max	4		<1.3		<0.49		5.9		4.8	
	Daily Min	<1.9		<1.3		<0.49		5.9		4.8	
Limit(s) in Effect	Monthly Avg	31	0	26	0	260	0	2070	0	2380	0
	Monthly Total										
	Daily Max	60	0	52	0	690	0	3380	0	3980	0
	Daily Min										
QA/QC Information	LOD		-	1.3		0.49	1	1.7	-	1.5	
	LOQ			5.1		1		5		5	
	QC Exceedance	N		N		N		N		N	
	Lab Certification	99958001	0	99958001	0	99958001	10	9995800	10	99958001	0

	Sample Point	101	101	101	101	101
	Description Description	Metal Finishing	Metal Finishing	Metal Finishing	Metal Finishing	Metal Finishing
	Description	Effluent	Effluent	Effluent	Effluent	Effluent
	Parameter	553	507	280	280	35
	Description	Zinc, Total Recoverable	Total Toxic Organics	Mercury, Total Recoverable	Mercury, Total Recoverable	Arsenic, Total Recoverable
	Units	ug/L	ug/L	ng/L	mg/day	ug/L
	Sample Type	24 HR FLOW PROP	24 HR FLOW PROP	GRAB	CALCULATED	24 HR FLOW PROP
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13					
	14					
	15	180				<2.1
	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23					
	24			1.7	0.1404319	
	25					
	26					
	27					
	28					
	29					
	30					
	31					

	Sample Point	101		101		101	101	101
	Description	Metal Finishir Effluent	ng	Metal Finishing Effluent	1	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	553		507		280	280	35
	Description	Zinc, Total Recoverable		Total Toxic Organics	s	Mercury, Total Recoverable	Mercury, Total Recoverable	Arsenic, Total Recoverable
	Units	ug/L		ug/L		ng/L	mg/day	ug/L
Summary Values	Monthly Avg	180				1.7	0.1404319	0
	Monthly Total							
	Daily Max	180				1.7	0.1404319	<2.1
	Daily Min	180				1.7	0.1404319	<2.1
Limit(s) in Effect	Monthly Avg	1480	0					
	Monthly Total							
	Daily Max	2610	0	2130				
	Daily Min							
QA/QC Information	LOD	3.6				0.2		2.1
	LOQ	10				0.5		5
	QC Exceedance	N		N		N	N	N
	Lab Certification	99958001	0			999580010		999580010

	Sample Point	101	704	704	704	704
	Description	Metal Finishing Effluent	GWCTS Influent	GWCTS Influent	GWCTS Influent	GWCTS Influent
	Parameter	35	211	35	457	280
	Description	Arsenic, Total Recoverable	Flow Rate	Arsenic, Total Recoverable	Suspended Solids, Total	Mercury, Total Recoverable
	Units	lbs/day	gpd	ug/L	mg/L	ng/L
	Sample Type	CALCULATED	CONTINUOUS	24 HR FLOW PROP	24 HR FLOW PROP	GRAB
	Frequency	MONTHLY	DAILY	WEEKLY	WEEKLY	MONTHLY
ample Results	Day 1		0			
	2		0			
	3		0			
	4		0			
	5		0			
	6		0			
	7		0			
	8		0			
	9		12055			
	10		11070	31000	680	
	11		7900			
	12		2950			
	13		5640			
	14		0			
	15	0.000399	15425	37000	460	
	16		12450			
	17		18790			
	18		17725			
	19		9270			
	20		0			
	21		0			
	22		7870			
	23		7035	8900	120	
	24		17925			7.5
	25		2860			
	26		19300			
	27		0			
	28		0			
	29		11505			
	30		23030			
	31		27685			

	Sample Point	101	704	704	704	704
	Description	Metal Finishing Effluent	GWCTS Influent	GWCTS Influent	GWCTS Influent	GWCTS Influent
	Parameter	35	211	35	457	280
	Description	Arsenic, Total Recoverable	Flow Rate	Arsenic, Total Recoverable	Suspended Solids, Total	Mercury, Total Recoverable
	Units	lbs/day	gpd	ug/L	mg/L	ng/L
Summary Values	Monthly Avg	0.000399	7435	25633.333333333	420	7.5
	Monthly Total					
	Daily Max	0.000399	27685	37000	680	7.5
	Daily Min	0.000399	0	8900	120	7.5
Limit(s) in Effect	Monthly Avg					
	Monthly Total					
	Daily Max					
	Daily Min					
QA/QC Information	LOD			210	,	0.2
	LOQ			500		0.5
	QC Exceedance	N	N	N	N	N
	Lab Certification			999580010	999580010	999580010

	OI- D-I-4	407	004	1 004	004	004
	Sample Point Description	107 Mercury Field Blank	004 Combined Process	004 Combined Process	004 Combined Process	004 Combined Process
	Description	Results	WW & GW	WW & GW	WW & GW	WW & GW
	Parameter	280	211	373	374	112
	Description	Mercury, Total Recoverable	Flow Rate	pH (Maximum)	pH (Minimum)	Chlorine, Total Residual
	Units	ng/L	MGD	su	su	ug/L
	Sample Type	BLANK	CONTINUOUS	CONTINUOUS	CONTINUOUS	GRAB
	Frequency	MONTHLY	DAILY	DAILY	DAILY	MONTHLY
Sample Results	Day 1		0			
	2		0			
	3		0			
	4		0			
	5		0			
	6		0			
	7		0			
	8		0			
	9		0.045420	8.1	6.0	
	10		0.041300	8.1	6.0	
	11		0.040530	7.3	6.2	
	12		0.014180	7.0	6.3	
	13		0.010595	6.7	6.2	
	14		0			
	15		0.059215	7.1	6.1	
	16		0.041660	6.8	6.0	
	17		0.044315	6.7	6.3	
	18		0.047800	6.9	6.2	
	19		0.017335	6.7	6.1	
	20		0.007570	6.9	6.3	
	21		0			
	22		0.038425	6.8	6.5	
ļ	23		0.054570	7.0	6.6	
ļ	24	<0.20	0.055280	7.1	6.3	<9
	25		0.045630	7.7	5.7	
ļ	26		0.027440	7.8	6.3	
ļ	27		0.003345	6.7	6.3	
ļ	28		0			
ļ	29		0.058300	6.6	6.1	
ļ	30		0.059700	6.4	6.1	
	31		0.056560	7.4	6.0	

	Sample Point	107	004	004	004	004
	Description	Mercury Field Blank Results	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW
	Parameter	280	211	373	374	112
	Description	Mercury, Total Recoverable	Flow Rate	pH (Maximum)	pH (Minimum)	Chlorine, Total Residual
	Units	ng/L	MGD	su	su	ug/L
Summary Values	Monthly Avg	0	0.024811935	7.09	6.18	0
	Monthly Total					
	Daily Max	<0.2	0.0597	8.1	6.6	<9
	Daily Min	<0.2	0	6.4	5.7	<9
Limit(s) in Effect	Monthly Avg					38 0
	Monthly Total					
	Daily Max			9 0		38 0
	Daily Min				6 5	
QA/QC Information	LOD	0.2				30
	LOQ	0.5				100
	QC Exceedance	N	N	N	N	N
	Lab Certification	999580010				

	Sample Point	004	004	004	004	004
	Description	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW
	Parameter	35	35	280	280	87
	Description	Arsenic, Total Recoverable	Arsenic, Total Recoverable	Mercury, Total Recoverable	Mercury, Total Recoverable	Cadmium, Total Recoverable
	Units	ug/L	lbs/day	ng/L	mg/day	ug/L
	Sample Type	24 HR FLOW PROP	CALCULATED	GRAB	CALCULATED	24 HR FLOW PROP
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results						
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10	2.5	0.00085			<0.49
	11					
	12					
	13					
	14					
	15					
	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23			0.00	0.40007700	
	24			0.66	0.13827726	
	25					
	26					
	27					
	28					
	29					
	30					
	31					

	Sample Point	004		004		004		004		004	
	Description	Combined Proc	ess	Combined Proc	ess	Combined Pro WW & GW		Combined Process WW & GW		nbined Pro	
							•	۵		a o	
	Parameter	35		35		280		280		87	
	Description	Arsenic, Tota Recoverable		Arsenic, Tota Recoverable		Mercury, To Recoverabl		Mercury, Total Recoverable		dmium, To Recoverabl	
	Units	ug/L		lbs/day		ng/L		mg/day		ug/L	
Summary Values	Monthly Avg	2.5		0.00085		0.66		0.13827726		0	
	Monthly Total										
	Daily Max	2.5		0.00085		0.66		0.13827726		<0.49	
	Daily Min	2.5		0.00085		0.66		0.13827726		<0.49	
Limit(s) in Effect	Monthly Avg									57	0
	Monthly Total										
	Daily Max	194	0	0.22	0	18	0			57	0
	Daily Min										
QA/QC Information	LOD	2.1	•		•	0.2	•	•		0.49	•
	LOQ	5				0.5				1	
	QC Exceedance	N		N		N		N		N	
	Lab Certification	99958001	0			99958001	10		9:	9958001	0

	Sample Point	004	004	004	004	004
	Description Description	Combined Process	Combined Process	Combined Process	Combined Process	Combined Process
		WW & GW	WW & GW	WW & GW	WW & GW	WW & GW
	Parameter	87	147	147	315	315
	Description	Cadmium, Total Recoverable	Copper, Total Recoverable	Copper, Total Recoverable	Nickel, Total Recoverable	Nickel, Total Recoverable
	Units	lbs/day	ug/L	lbs/day	ug/L	lbs/day
	Sample Type	CALCULATED	24 HR FLOW PROP	CALCULATED	24 HR FLOW PROP	CALCULATED
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
ample Results	Day 1					
	2					
	3					
	4					
	5					
	6 7					
	8					
	9					
	10	0.1666	4.1	0.001394	1.8	0.000612
	11	0000		0.001.001		0.0000.2
	12					
	13					
	14					
	15					
	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23 24					
	25					
	26					
	27					
	28					
	29					
	30					
	31					

	Sample Point	004		004		004		004		004	
	Description	Combined Proc WW & GW	ess	Combined Prod WW & GW		Combined Pro WW & GV		Combined Pro WW & GW		Combined Pro WW & GW	
		**** 4 6 11		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	*****	
	Parameter	87		147		147		315		315	
	Description	Cadmium, Tot Recoverable		Copper, Tota Recoverable		Copper, To Recoverab		Nickel, Tota Recoverabl		Nickel, Tota Recoverab	
	Units	lbs/day		ug/L		lbs/day		ug/L		lbs/day	
Summary Values	Monthly Avg	0.1666		4.1		0.00139	4	1.8		0.000612	2
	Monthly Total										
	Daily Max	0.1666		4.1		0.001394	4	1.8		0.000612	2
	Daily Min	0.1666		4.1		0.00139	4	1.8		0.000612	2
Limit(s) in Effect	Monthly Avg			69	0			2000	0		
	Monthly Total										
	Daily Max	0.23	0	69	0	0.28	0	2000	0	8.1	0
	Daily Min										
QA/QC Information	LOD		1	1.7				1.5			
	LOQ			5				5			
	QC Exceedance	N		N		N		N		N	
	Lab Certification			99958001	0			99958001	10		

	Sample Point	004	004	004	004	004
	Description Description	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW
		www.a.cw	WW & GW	WW d GW	WW Q GW	www.a.cw
	Parameter	553	553	152	152	231
	Description	Zinc, Total Recoverable	Zinc, Total Recoverable	Cyanide, Amenable	Cyanide, Amenable	Hardness, Total as CaCO3
	Units	ug/L	lbs/day	ug/L	lbs/day	mg/L
	Sample Type	24 HR FLOW PROP	CALCULATED	24 HR FLOW PROP	CALCULATED	24 HR FLOW PROP
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	- ,					
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10	15	0.0051	<5.0	0.0017	100
	11					
	12					
	13					
	14					
	15					
	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23					
	24					
	25					
	26					
	27					
	28					
	29					
	30					
	31					

	Sample Point	004		004		004		004		004
	Description	Combined Proc WW & GW		Combined Proc WW & GW		Combined Pro WW & GV		Combined Pro WW & GW		Combined Process WW & GW
		www a ow		, , , , , , , , , , , , , , , , , , ,		, www.a.ov	•	, www.a.ov	•	WW & OW
	Parameter	553		553		152		152		231
	Description	Zinc, Total Recoverable		Zinc, Total Recoverable		Cyanide, Ame	nable	Cyanide, Amer	nable	Hardness, Total as CaCO3
	Units	ug/L		lbs/day		ug/L		lbs/day		mg/L
Summary Values	Monthly Avg	15		0.0051		0		0.0017		100
	Monthly Total									
	Daily Max	15		0.0051		<5		0.0017		100
	Daily Min	15		0.0051		<5		0.0017		100
Limit(s) in Effect	Monthly Avg	520	0			92	0			
	Monthly Total									
	Daily Max	520	0	2.1	0	92	0	0.37	0	
	Daily Min									
QA/QC Information	LOD	3.6			-	3.6				
	LOQ	10				5				
	QC Exceedance	N		N		N		N		N
	Lab Certification	99958001	0			9995800	10			999580010

<u> </u>	0 1 5 1 1	1 004	004	004	204	100
	Sample Point	004	004	004 Combined Process	004	108
	Description	Combined Process WW & GW	Combined Process WW & GW	WW & GW	Combined Process WW & GW	GWCTS Effluent
	Parameter	480	1352	1353	1353	211
	Description	Temperature Maximum	PFOA	PFOS	PFOS	Flow Rate
	Units	degF	ng/L	ng/L	mg/day	MGD
	Sample Type	MEASURE	24 HR FLOW PROP	24 HR FLOW PROP	CALCULATED	CONTINUOUS
	Frequency	WEEKLY	MONTHLY	MONTHLY	MONTHLY	DAILY
Sample Results	Day 1					0
	2					0
	3					0
	4					0
	5					0
	6					0
	7					0
	8					0
	9	85				0.007480
Ì	10	85	2.7	0.76	0.11896052	0.010630
	11	86				0.007645
	12	89				0.002340
	13	89				0.005325
	14					0
	15	89				0.014035
	16	86				0.009395
	17	87				0.016385
	18	80				0.015335
	19	84				0.006845
	20					0
	21					0
ľ	22	86				0.005220
ļ	23	84				0.008655
	24	82				0.015745
	25	85				0.018620
	26	83				0.014055
	27					0
	28					0
ľ	29	86				0.010200
ļ	30	90				0.019670
	31	88				0.022140

	Sample Point	004	004	004	004	108	
	Description	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	GWCTS Effluent	
		WWW & GW	WWW & GW	WWW & GW	WWW & GW		
	Parameter	480	1352	1353	1353	211	
	Description	Temperature Maximum	PFOA	PFOS	PFOS	Flow Rate	
	Units	degF	ng/L	ng/L	mg/day	MGD	
Summary	Monthly	85.777777778	2.7	0.76	0.11896052	0.006765161	
Values	Avg						
	Monthly Total						
	Daily Max	90	2.7	2.7 0.76		0.02214	
	Daily Min	80	2.7	0.76	0.11896052	0	
Limit(s) in Effect	Monthly Avg			11 0	2.1 0		
	Monthly Total						
	Daily Max			11 0			
	Daily Min						
QA/QC Information	LOD	 	0.88	0.56		-	
	LOQ		2.1	2.1			
	QC Exceedance	N	N	N	N	N	
	Lab Certification		998204680	998204680			

	Sample Point	108	108	108	108	108
	Description	GWCTS Effluent	GWCTS Effluent	GWCTS Effluent	GWCTS Effluent	GWCTS Effluent
	Parameter	457	35	35	280	280
	Description	Suspended Solids, Total	Arsenic, Total Recoverable	Arsenic, Total Recoverable	Mercury, Total Recoverable	Mercury, Total Recoverable
	Units	mg/L	ug/L	lbs/day	ng/L	mg/day
	Sample Type	24 HR FLOW PROP	24 HR FLOW PROP	CALCULATED	24 HR FLOW PROP	CALCULATED
	Frequency	WEEKLY	WEEKLY	WEEKLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	5					
	6					
	7					
	8					
	9					
	10 11	<1.9	<2.1	0.000189		
-	12					
	13					
	14					
	15	<1.9	<2.1	0.000252		
	16					
	17					
-	18 19					
	20					
	21					
	22					
	23	<1.9	2.6	0.000182		
	24				0.42	0.02506308
-	25					
	26 27					
	28				 	
	29					
	30					
	31					

	Sample Point	108	108		108		108	Ι	108	
	Description	GWCTS Effluent	GWCTS Effluer	nt	GWCTS Effluent		GWCTS Effluent		GWCTS Effluen	nt
	Parameter	457	35		35		280		280	
	Description	Suspended Solids, Total	Arsenic, Total Recoverable	Arsenic, Total		Arsenic, Total Recoverable		al e	Mercury, Total Recoverable	
	Units	mg/L	ug/L		lbs/day		ng/L		mg/day	
Summary Values	Monthly Avg	0	0.866666667		0.000207667		0.42		0.02506308	,
	Monthly Total									
	Daily Max	<1.9	2.6		0.000252 0.000182		0.42		0.02506308	
	Daily Min	<1.9							0.02506308	,
Limit(s) in Effect	Monthly Avg									
	Monthly Total									
	Daily Max		500	0	0.17	0	24	0		
	Daily Min									
QA/QC Information	LOD	1	2.1			1	0.2		-	
	LOQ		5				0.5			
	QC Exceedance	N	N		N		N		N	
	Lab Certification	999580010	999580010				999580010			

	Sample Point	108	108
	Description	GWCTS Effluent	GWCTS Effluent
	Parameter	1352	1353
	Description	PFOA	PFOS
	Heite	n a/l	n a/l
	Units	ng/L 24 HR FLOW PROP	ng/L 24 HR FLOW PROP
	Sample Type	24 HR FLOW PROP	24 HR FLOW PROP
	Frequency	MONTHLY	MONTHLY
Sample Results		MONTHLT	WONTHLT
Sample Results	Day 1		
	2		
	3		
	4		
	5		
	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
	14		
	15	<0.75	<0.48
	16		
	17		
	18		
	19		
	20		
	21		
	22		
	23		
	24		
	25		
	26		
	27		
	28		
	29		
	30		
	31		

	Sample Point	108	108
	Description	GWCTS Effluent	GWCTS Effluent
	Parameter	1352	1353
	Description	PFOA	PFOS
	Units	ng/L	ng/L
Summary	Monthly	0	0
Values	Avg		
	Monthly Total		
	Daily Max	<0.75	<0.48
	Daily Min	<0.75	<0.48
Limit(s) in Effect	Monthly Avg		
	Monthly Total		
	Daily Max		
	Daily Min		
QA/QC Information	LOD	0.75	0.48
	LOQ	1.8	1.8
	QC Exceedance	N	N
	Lab Certification	998204680	998204680

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.)
General Remarks
The Groundwater system was down due to maintenance issues and the Holiday July 1-8.
The Groundwater system was down add to maintenance issues and the Holiday bury 1 o.
Laboratory Quality Control Comments
We did have the pH drop below or at 6.0 a couple times at OF004, but the system does into recycle
Exceedence Comments
pH went low but the system is set to go in recycle so nothing went out. pH probes were checked.
Production and the system is set to go in residue of meaning mean can proper the control of th
Submitted by Anne Fleury(afleury16) on 8/15/2024 12:19:23 PM

Permit: 0001040 DOC: 550627

Reporting Period: 08/01/2024 - 08/31/2024

Form Due Date: 09/21/2024 Permit Number: 0001040

Sample Point(s) active?

No - 703 sample point (Menominee River Intake)
Yes - 101 sample point (Metal Finishing Effluent)

Yes - 704 sample point (GWCTS Influent)

Yes - 107 sample point (Mercury Field Blank Results)
Yes - 004 sample point (Combined Process WW & GW)

Yes - 108 sample point (GWCTS Effluent)

For DNR Use Only

Date Received:

DOC: 550628 FIN: 7245 FID: 438039470

Region: Northeast Region

Permit Drafter: Laura K Rodriguez Alvarez

Reviewer: Laura A Gerold Office: Green Bay

Permit: 0001040

Reporting Period: 08/01/2024 - 08/31/2024

Form Due Date: 09/21/2024 Permit Number: 0001040

For DNR Use Only

Date Received: 5506

DOC: 550628 FIN: 7245

FID: 438039470 Region: Northeast Region

Permit Drafter: Laura K Rodriguez Alvarez

Reviewer: Laura A Gerold
Office: Green Bay

	Sample Point	101	101	101	101	101
	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	211	373	374	379	376
	Description	Flow Rate	pH (Maximum)	pH (Minimum)	pH Total Exceedance Time Minutes	pH Exceedances Greater Than 60 Minutes
	Units	MGD	su	su	minutes	Number
	Sample Type	CONTINUOUS	CONTINUOUS	CONTINUOUS	CONTINUOUS	CONTINUOUS
	Frequency	DAILY	DAILY	DAILY	DAILY	DAILY
Sample Results	Day 1	0.016343	8.0	7.3		
	2	0.010025	8.4	6.8		
	3	0.003251	8.8	6.7		
	4	0				
	5	0.014747	7.8	7.0		
	6	0.011169	8.2	6.6		
	7	0.015788	8.0	7.2		
	8	0.015977	8.4	6.9		
	9	0.006720	7.6	6.9		
	10	0.003584	7.8	7.0		
	11	0				
	12	0.009487	7.5	6.8		
	13	0.013179	7.8	6.5		
	14	0.010437	8.2	7.0		
	15	0.028240	7.8	6.6		
	16	0.015408	8.0	6.3		
	17	0.004972	8.2	7.2		
	18	0				
	19	0.042192	7.3	6.6		
	20	0.061901	7.3	6.6		
	21	0.048975	7.5	6.2		
	22	0.034466	7.9	6.4		
	23	0.016957	7.9	6.5		
	24	0.006794	8.2	6.8		
	25	0				
	26	0.033090	7.6	6.6		
	27	0.050695	7.2	6.5		
	28	0.045229	7.6	6.9		
	29	0.032108	7.9	7.1		
	30	0.010825	7.2	6.8		
	31	0				

Wastewater Discharge Monitoring Report Facility Name: TYCO FIRE PRODUCTS LP Reporting Period: 08/01/2024 to 08/31/2024

Permit: 0001040 DOC: 550628

	Sample Point	101	101		101		101		101		
	Description	Metal Finishing Effluent	Metal Finishin Effluent	Metal Finishing Effluent		Metal Finishing Effluent		Metal Finishing Effluent		Metal Finishing Effluent	
	Parameter	211	373		374		379		376		
	Description	Flow Rate	pH (Maximum	pH (Maximum)		pH (Minimum)		pH Total Exceedance Time Minutes		inces in 60	
	Units	MGD	su		su		minutes		Number	-	
Summary Values	Monthly Avg	0.018147065	7.85	7.85		6.761538462					
	Monthly Total										
	Daily Max	0.061901	8.8		7.3						
	Daily Min	0	7.2	7.2		6.2					
Limit(s) in Effect	Monthly Avg										
	Monthly Total						446	0	0	0	
	Daily Max		9	0							
	Daily Min				6	0					
QA/QC Information	LOD	'		1							
	LOQ										
	QC Exceedance	N	N		N		N		N		
	Lab Certification										

	Cample Daint	101	101	101	101	101
	Sample Point	101	The state of the s	101	101	-
	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	457	651	87	147	315
	Description	Suspended Solids, Total	Oil & Grease (Hexane)	Cadmium, Total Recoverable	Copper, Total Recoverable	Nickel, Total Recoverable
	Units	mg/L	mg/L	ug/L	ug/L	ug/L
	Sample Type	24 HR FLOW PROP	GRAB	24 HR FLOW PROP	24 HR FLOW PROP	24 HR FLOW PROP
	Frequency	3/WEEK	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	- ,					
	2					
	3					
	4					
	5	11.0				
	6	3.8				
	7	2.8				
	8					
	9					
	10					
	11					
	12	4.8				
	13	2.0		<0.49	5.3	3.9
	14	<1.9	2.9			
	15					
	16					
	17					
	18					
	19	<1.9				
	20	<1.9				
	21	<1.9				
	22					
	23					
	24					
	25					
	26	2.6				
	27	2.0				
	28	2.6				
	29					
	30					
	31					

	Sample Point	101		101		101		101		101	
	Description	Metal Finishir Effluent	ng	Metal Finishing Effluent		Metal Finishing Effluent		Metal Finishing Effluent		Metal Finishing Effluent	
					Lindont		Emacin				
	Parameter	457		651		87		147		315	
	Description	Suspended Sol Total	ids,	Oil & Grease (Hexane)		Cadmium, Total Recoverable		Copper, Total Recoverable		Nickel, Total Recoverable	
	Units	mg/L		mg/L		ug/L		ug/L		ug/L	
Summary Values	Monthly Avg	2.63333333	33	2.9		0				3.9	
	Monthly Total										
	Daily Max	ax 11 2.9			<0.49		5.3		3.9		
	Daily Min	<1.9		2.9		<0.49		5.3		3.9	
Limit(s) in Effect	Monthly Avg	31	0	26	0	260	0	2070	0	2380	0
	Monthly Total										
	Daily Max	60	0	52	0	690	0	3380	0	3980	0
	Daily Min										
QA/QC Information	LOD		<u>l</u>	1.3		0.49		1.7		1.5	
	LOQ			5		1		5		5	
	QC Exceedance	N		N		N		N		N	
	Lab Certification	99958001	0	99958001	0	999580010		999580010		999580010	

	Sample Point	101	101	101	101	101
	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	553	507	280	280	35
	Description	Zinc, Total Recoverable	Total Toxic Organics	Mercury, Total Recoverable	Mercury, Total Recoverable	Arsenic, Total Recoverable
	Units	ug/L	ug/L	ng/L	mg/day	ug/L
	Sample Type	24 HR FLOW PROP	24 HR FLOW PROP	GRAB	CALCULATED	24 HR FLOW PROP
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results		-			-	
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13	100				<2.1
	14					
	15					
	16					
	17					
	18					
	19					
	20					
	21			0.81	0.15034815	
	22					
	23					
	24					
	25					1
	26					1
	27					
	28					<u> </u>
	29 30					1
	30					
	31					

	Sample Point	101		101	101	101	101
	Description	Metal Finishir Effluent			Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	553		507	280	280	35
	Description	Zinc, Total	Zinc, Total To Recoverable			Mercury, Total Recoverable	Arsenic, Total Recoverable
	Units	ug/L		ug/L	ng/L	mg/day	ug/L
Summary Values	Monthly Avg	100	_		0.81	0.15034815	0
	Monthly Total						
	Daily Max	100			0.81	0.15034815	<2.1
	Daily Min	100	100		0.81	0.15034815	<2.1
Limit(s) in Effect	Monthly Avg	1480	0				
	Monthly Total						
	Daily Max	2610	0	2130			
	Daily Min						
QA/QC Information	LOD	3.6	•	'	0.2		2.1
	LOQ	10			0.5		5
	QC Exceedance	N		N	N	N	N
	Lab Certification	99958001	0		999580010		999580010

	Sample Point	101	704	704	704	704
	Description	Metal Finishing Effluent	GWCTS Influent	GWCTS Influent	GWCTS Influent	GWCTS Influent
	Parameter	35	211	35	457	280
	Description	Arsenic, Total Recoverable	Flow Rate	Arsenic, Total Recoverable	Suspended Solids, Total	Mercury, Total Recoverable
	Units	lbs/day	gpd	ug/L	mg/L	ng/L
	Sample Type	CALCULATED	CONTINUOUS	24 HR FLOW PROP	24 HR FLOW PROP	GRAB
	Frequency	MONTHLY	DAILY	WEEKLY	WEEKLY	MONTHLY
ample Results	Day 1		24035	31000	25	
	2		0			
ľ	3		0			
	4		0			
	5		14275			
	6		18835			
	7		8770			
	8		16375			
	9		7980			
	10		0			
	11		0			
	12		12030			
	13	0.000231	22205	13000	34	
	14		8695			
	15		0			
	16		2775			
	17		0			
	18		0			
	19		8410			
	20		15080	20000	58	
	21		15825		-	
ļ	22		15395			
	23		16325			
	24		16455			
ł	25		9540			
	26		6385			
ł	27		16595	17000	33	
	28		16360	1.000		15
ŀ	29		12675			
ŀ	30		8490			
	31		0			

	Sample Point	101	704	704	704	704
	Description	Metal Finishing Effluent	GWCTS Influent	GWCTS Influent	GWCTS Influent	GWCTS Influent
	Parameter	35	211 35		457	280
	Description	Arsenic, Total Recoverable	Flow Rate	Arsenic, Total Recoverable	Suspended Solids, Total	Mercury, Total Recoverable
	Units	lbs/day	gpd	ug/L	mg/L	ng/L
Summary Values	Monthly Avg	0.000231	9468.064516129	20250	37.5	15
	Monthly Total					
	Daily Max	0.000231	24035	31000	58	15
	Daily Min	0.000231	0	13000	25	15
Limit(s) in Effect	Monthly Avg					
	Monthly Total					
	Daily Max					
	Daily Min					
QA/QC Information	LOD	•		100		0.2
	LOQ			500		0.5
	QC Exceedance	N	N	N	N	N
	Lab Certification			999580010	999580010	999580010

			201			
	Sample Point	107	004	004	004	004
	Description	Mercury Field Blank Results	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW
	Parameter	280	211	373	374	112
	Description	Mercury, Total Recoverable	Flow Rate	pH (Maximum)	pH (Minimum)	Chlorine, Total Residual
-	Units	ng/L	MGD	su	su	ug/L
	Sample Type	BLANK	CONTINUOUS	CONTINUOUS	CONTINUOUS	GRAB
	Frequency	MONTHLY	DAILY	DAILY	DAILY	MONTHLY
Sample Results	Day 1		0.051485	7.0	6.4	
	2		0.022250	6.5	6.1	
	3		0.007045	6.1	5.9	
	4		0			
	5		0.048400	7.7	5.9	
	6		0.042980	6.6	6.1	
	7		0.042450	8.4	6.0	
	8		0.055280	7.8	6.2	
	9		0.017455	7.0	6.0	
	10		0.008745	6.5	6.3	
	11		0			
	12		0.040420	6.7	5.8	
•	13		0.046870	6.7	6.3	
	14		0.033660	7.9	6.4	
	15		0.031630	7.5	6.8	
	16		0.015390	7.0	6.3	
-	17		0.004310	6.5	6.2	
	18		0			
	19		0.048080	6.9	5.7	
-	20		0.068195	6.9	6.5	
	21	<0.20	0.054295	6.7	6.3	
	22		0.045415	7.4	6.3	<5
-	23		0.027295	6.7	6.4	
Ī	24		0.019595	6.7	6.0	
ļ	25		7960	8.9	5.8	
	26		0.039815	6.6	5.3	
ļ	27		0.062105	7.2	6.2	
ļ	28		0.053375	7.4	6.4	
	29		0.038645	7.4	6.3	
ļ	30		0.018560	6.4	6.1	
-	31		0			

Page 10 of 24

	Sample Point	107	004	004	004	004
	Description	Mercury Field Blank Results	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW
		000	011	0.70	074	110
	Parameter	280	211	373	374	112
	Description	Mercury, Total Recoverable	Flow Rate	pH (Maximum)	pH (Minimum)	Chlorine, Total Residual
	Units	ng/L	MGD	su	su	ug/L
Summary Values	Monthly Avg	0	256.804636935	7.07777778	6.148148148	0
	Monthly Total					
	Daily Max	<0.2	7960	8.9	6.8	<5
	Daily Min	<0.2	0	6.1	5.3	<5
Limit(s) in Effect	Monthly Avg					38 0
	Monthly Total					
	Daily Max			9 0		38 0
	Daily Min				6 9	
QA/QC Information	LOD	0.2			,	30
	LOQ	0.5				100
	QC Exceedance	N	N	N	N	N
	Lab Certification	999580010				

Page 11 of 24

	Sample Point	004	004	004	004	004
	Description	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW
	Parameter	35	35	280	280	87
	Description	Arsenic, Total Recoverable	Arsenic, Total Recoverable	Mercury, Total Recoverable	Mercury, Total Recoverable	Cadmium, Total Recoverable
	Units	ug/L	lbs/day	ng/L	mg/day	ug/L
	Sample Type	24 HR FLOW PROP	CALCULATED	GRAB	CALCULATED	24 HR FLOW PROP
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5 6					
	7					
	8					
	9					
	10					
	11					
	12					
	13	<2.1	0.000819			<0.49
	14					
	15					
	16					
	17					
	18					
	19					
	20			0.61	0.40550450	
	21 22			0.61	0.12552458	
	23					
	23					+
	25					
	26					
	27					
	28					
	29					
	30					
	31					

	Sample Point	004		004		004		004		004	
	Description	Combined Proc	ess	Combined Prod WW & GW		Combined Pro WW & GV		Combined Proces WW & GW	s	Combined Proc	
		WW & OW		, , , , , , , , , , , , , , , , , , ,		WW & OV	•	WW a GW		www a ow	
	Parameter	35		35		280		280	\dashv	87	-
	Description	Arsenic, Tota Recoverable		Arsenic, Tota Recoverable		Mercury, To Recoverab		Mercury, Total Recoverable		Cadmium, To Recoverable	
	Units	ug/L		lbs/day		ng/L		mg/day		ug/L	
Summary Values	Monthly Avg	0		0.000819)	0.61		0.12552458		0	
	Monthly Total										
	Daily Max	<2.1		0.000819)	0.61		0.12552458		<0.49	
	Daily Min	<2.1		0.000819)	0.61		0.12552458		<0.49	
Limit(s) in Effect	Monthly Avg									57	0
	Monthly Total										
	Daily Max	194	0	0.22	0	18	0			57	0
	Daily Min										
QA/QC Information	LOD	2.1	·			0.2	-			0.49	
	LOQ	5				0.5				1	
	QC Exceedance	N		N		N		N		N	
	Lab Certification	999580010	0			9995800	10			99958001	0

	Sample Point	004	004	004	004	004
	Description	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW
	Parameter	87	147	147	315	315
	Description	Cadmium, Total Recoverable	Copper, Total Recoverable	Copper, Total Recoverable	Nickel, Total Recoverable	Nickel, Total Recoverable
	Units	lbs/day	ug/L	lbs/day	ug/L	lbs/day
	Sample Type	CALCULATED	24 HR FLOW PROP	CALCULATED	24 HR FLOW PROP	CALCULATED
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13	0.0001911	2.3	0.000897	3.3	0.001287
	14					
	15					
	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23					
	24					
	25					
	26 27					
	28					
	29					
	30					
	31					
	J 71					

	Sample Point	004		004		004		004		004	
	Description	Combined Proce	ess	Combined Prod WW & GW		Combined Pro WW & GV		Combined Pro WW & GW		Combined Pro WW & GV	
		www.a.ow		, www.a.ow		*******	•	*********		*****	'
	Parameter	87		147		147		315		315	
	Description	Cadmium, Tot		Copper, Tota		Copper, To		Nickel, Tota		Nickel, Tot	
		Recoverable	!	Recoverable	е	Recoverab	le	Recoverab	le	Recoverab	le
	Units	lbs/day		ug/L		lbs/day		ug/L		lbs/day	
Summary Values	Monthly Avg	0.0001911		2.3		0.00089	7	3.3		0.00128	7
	Monthly Total										
	Daily Max	0.0001911		2.3		0.00089	7	3.3		0.00128	7
	Daily Min	0.0001911		2.3		0.00089	7	3.3		0.00128	7
Limit(s) in Effect	Monthly Avg			69	0			2000	0		
	Monthly Total										
	Daily Max	0.23	0	69	0	0.28	0	2000	0	8.1	0
	Daily Min										
QA/QC Information	LOD			1.7	<u> </u>			1.5			
	LOQ			5				5			
	QC Exceedance	N		N		N		N		N	
	Lab Certification			99958001	0			99958001	10		

	Sample Point	004	004	004	004	004
	Description	Combined Process	Combined Process	Combined Process	Combined Process	Combined Process
		WW & GW	WW & GW	WW & GW	WW & GW	WW & GW
	Parameter	553	553	152	152	231
	Description	Zinc, Total Recoverable	Zinc, Total Recoverable	Cyanide, Amenable	Cyanide, Amenable	Hardness, Total as CaCO3
	Units	ug/L	lbs/day	ug/L	lbs/day	mg/L
	Sample Type	24 HR FLOW PROP	CALCULATED	24 HR FLOW PROP	CALCULATED	24 HR FLOW PROP
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	- ,					
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	11					
	12					
	13	20	0.0078	<5.0	0.00195	280
	14	20	0.0076	\	0.00193	200
	15					
	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23					
	24					
	25					
	26					
	27					
	28					
	29					
	30					
	31					

	Sample Point	004		004		004		004		004	
	Description	Combined Proc WW & GW			Combined Process WW & GW		ocess V	Combined Pro WW & GW		Combined Process WW & GW	
	Parameter	553		553		152		152		231	
	Description	Zinc, Total Recoverable			•	Cyanide, Ame	nable	Cyanide, Amenable		Hardness, Total as CaCO3	
	Units	ug/L	ug/L			ug/L		lbs/day		mg/L	
Summary Values	Monthly Avg	20		0.0078		0		0.00195		280	
	Monthly Total										
	Daily Max	20		0.0078		<5		0.00195		280	
	Daily Min	20		0.0078		<5		0.00195		280	
Limit(s) in Effect	Monthly Avg	520	0			92	0				
	Monthly Total										
	Daily Max	520	0	2.1	0	92	0	0.37	0		
	Daily Min										
QA/QC Information	LOD	3.6			<u> </u>	3.6	ļ.				
	LOQ	10	10			5					
	QC Exceedance	N	N			N		N		N	
	Lab Certification	99958001	0			999580010				999580010	

	Sample Point	004	004	004	004	108
	Description	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	GWCTS Effluent
	Parameter	480	1352	1353	1353	211
	Description	Temperature Maximum	PFOA	PFOS	PFOS	Flow Rate
	Units	degF	ng/L	ng/L	mg/day	MGD
	Sample Type	MEASURE	24 HR FLOW PROP	24 HR FLOW PROP	CALCULATED	CONTINUOUS
	Frequency	WEEKLY	MONTHLY	MONTHLY	MONTHLY	DAILY
ample Results	Day 1	86				0.019295
	2	92				0.000750
	3	90				0
	4					0
	5	84				0.013800
	6	80				0.016105
	7	87				0.005925
	8	84				0.016615
	9	82				0.005275
	10	81				0
	11					0
	12	85				0.013640
	13	87	6.7	1.2	0.2131644	0.018070
	14	88				0.009265
	15	86				0
	16	85				0.001885
	17	84				0
	18					0
	19	83				0.007535
	20	79				0.015100
	21	79				0.014090
	22	82				0.013175
	23	81				0.014590
	24	85				0.013520
	25					0.007950
	26	91				0.006820
	27	87				0.015840
	28	83				0.012020
	29	81				0.012245
	30	85				0.008545
	31	- 55				0.000343

	Sample Point	004	004	004	004	108
	Description	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	Combined Process WW & GW	GWCTS Effluent
		WWW & GW	WWW & GW	WWW & GW	WW & GW	
	Parameter	480	1352	1353	1353	211
	Description	Temperature Maximum	PFOA	PFOS	PFOS	Flow Rate
	Units	degF	ng/L	ng/L	mg/day	MGD
Summary Values	Monthly Avg	84.5	6.7	1.2	0.2131644	0.008453387
	Monthly Total					
	Daily Max	92	6.7	1.2	0.2131644	0.019295
	Daily Min	79	6.7	1.2	0.2131644	0
Limit(s) in Effect	Monthly Avg			11 0	2.1 0	
	Monthly Total					
	Daily Max			11 0		
	Daily Min					
QA/QC Information	LOD	1	0.72	0.45		
	LOQ		1.7	1.7		
	QC Exceedance	N	N	N	N	N
	Lab Certification		998204680	998204680		

	Cample Date	400	400	400	1 400 1	400
	Sample Point	108	108	108	108	108
	Description	GWCTS Effluent	GWCTS Effluent	GWCTS Effluent	GWCTS Effluent	GWCTS Effluent
	Parameter	457	35	35	280	280
	Description	Suspended Solids,	Arsenic, Total	Arsenic, Total	Mercury, Total	Mercury, Total
		Total	Recoverable	Recoverable	Recoverable	Recoverable
	Units	mg/L	ug/L	lbs/day	ng/L	mg/day
	Sample Type	24 HR FLOW PROP	24 HR FLOW PROP	CALCULATED	24 HR FLOW PROP	CALCULATED
	Frequency	WEEKLY	WEEKLY	WEEKLY	MONTHLY	MONTHLY
ample Results	Day 1	<1.9	2.8	0.001204		
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13	<1.9	<2.1	0.000315		
	14					
	15					
	16					
	17					
	18					
	19					
	20	<1.9	<2.1	0.000273		
	21				0.46	0.02456446
	22					
	23					
	24					
	25					
	26		_			
	27	<1.9	<2.1	0.000273		
	28					
	29					
	30					
	31					

	Sample Point	108	108		108		108		108
	Description	GWCTS Effluent	GWCTS Effluent		GWCTS Efflue	ent	GWCTS Efflue	nt	GWCTS Effluent
	Parameter	457	35		35		280		280
	Description	Suspended Solids,	Arsenic, Total		Arsenic, Tota		Mercury, Tota		Mercury, Total
		Total	Recoverable		Recoverable	;	Recoverable	•	Recoverable
	Units	mg/L	ug/L		lbs/day		ng/L		mg/day
Summary	Monthly	0	0.7		0.0005162	5	0.46		0.02456446
Values	Avg								
	Monthly Total								
	Daily Max	<1.9	2.8		0.001204		0.46		0.02456446
	Daily Min	<1.9	<2.1		0.000273		0.46		0.02456446
Limit(s) in Effect	Monthly Avg								
	Monthly Total								
	Daily Max		500	0	0.17	0	24	0	
	Daily Min								
QA/QC Information	LOD		2.1				0.2		<u> </u>
	LOQ		5				0.5		
	QC Exceedance	N	N		N		N		N
	Lab Certification	999580010	999580010				999580010)	

	Sample Point	108	108
	Description	GWCTS Effluent	GWCTS Effluent
	Parameter	1352	1353
	Description	PFOA	PFOS
	Units	ng/L	ng/L
	Sample Type	24 HR FLOW PROP	24 HR FLOW PROP
0	Frequency	MONTHLY	MONTHLY
Sample Results	Day 1	<0.79	<0.50
	2		
	3		
	4		
	5		
	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
	14		
	15		
	16		
	17		
	18		
	19		
	20		
	21		
	22		
	23		
	24		
	25		
	26		
	27		
	28		
	29		
	30		
	31		

Permit: 0001040

DOC: 550628

	Sample Point	108	108
	Description	GWCTS Effluent	GWCTS Effluent
	Parameter	1352	1353
	Description	PFOA	PFOS
	Units	ng/L	ng/L
Summary	Monthly	0	0
Values	Avg		
	Monthly Total		
	Daily Max	<0.79	<0.5
	Daily Min	<0.79	<0.5
Limit(s) in Effect	Monthly Avg		
	Monthly Total		
	Daily Max		
	Daily Min		
QA/QC Information	LOD	0.79	0.5
	LOQ	1.9	1.9
	QC Exceedance	N	N
	Lab Certification	998204680	998204680

Permit: 0001040

DOC: 550628

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.)
General Remarks
Laboratory Quality Control Comments
OF004 had low pH issues a few times but nothing went out because the system goes into recycle.
Exceedence Comments
when the pH probe hits 6.0 it goes in recycle so nothing went out. Still working on this issue.
Submitted by Anne Fleury(afleury16) on 9/17/2024 12:34:21 PM

Attachment 3 2024 PDP Groundwater Elevation Monitoring

Document Control No.: D3838400.321

Attachment 3. 2024 Pump Down Program Groundwater Elevation Monitoring Tyco Fire Products LP, Marinette, Wisconsin

Target Elevation 577.9

	1		2 2024	I		1	22 2024	1	20.2024		(2024	F.1	42 2024	F.1	10.2027	F.1	27 202/		-l- / 202/		42.2027		1. 20. 2027		1 24 2024		
		Janu	ary 3, 2024	Janua	ary 8, 2024	Janua	ry 23, 2024	Janua	ry 30, 2024	Februa	ary 6, 2024	Febru	ary 13, 2024	Februa	ry 19, 2024	Februa	ry 27, 2024	Mar	ch 4, 2024	March	n 12, 2024	Marc	h 20, 2024	Marci	h 26, 2024	Apri	l 2, 2024
	Mean Conductivity		Corrected		Corrected		Corrected		Corrected		Corrected		Corrected		Corrected		Corrected		Corrected		Corrected		Corrected		Corrected		Corrected
Well ID	(mS/cm-		Groundwater																								
Wellin	measured) Last 5	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for
	Years		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh
			water)																								
Wells Inside Former Salt Va																											
MW001M	6.394	10.42	576.72	10.20	576.94	9.78	577.36	10.47	576.67	10.17	576.97	9.94	577.20	10.22	576.92	10.62	576.52	10.79	576.35	10.84	576.30	10.85	576.29	10.53	576.61	10.70	576.44
MW001S	6.023	10.42	576.53	10.43	576.78	9.88	577.33	10.75	576.46	10.41	576.80	10.18	577.03	10.89	576.32	10.02	576.30	11.08	576.13	11.14	576.07	11.10	576.11	10.77	576.44	10.97	576.24
MW002M-R	14.800	13.73	576.67	13.53	576.87	13.10	577.31	13.76	576.64	13.51	576.89	13.26	577.14	13.94	576.46	13.90	576.50	14.14	576.26	14.17	576.23	14.14	576.26	13.90	576.50	14.02	576.38
MW002S-R	3.467	13.66	576.62	13.46	576.82	13.03	577.25	13.67	576.61	13.43	576.85	13.19	577.09	13.87	576.41	13.89	576.39	14.08	576.20	14.11	576.17	14.08	576.20	13.85	576.43	13.97	576.31
MW031M	8.950	11.16	576.80	10.98	576.98	10.49	577.47	11.23	576.73	10.90	577.06	10.69	577.27	11.46	576.49	11.49	576.46	11.61	576.34	11.69	576.26	11.63	576.32	11.26	576.70	11.46	576.49
MW031S	1.014	12.35	576.52	12.08	576.79	11.62	577.25	11.57	577.30	11.17	577.70	11.23	577.64	11.80	577.07	12.11	576.76	12.47	576.40	12.67	576.20	12.73	576.14	12.66	576.21	12.67	576.20
MW113S	0.791	13.60	576.66	13.39	576.87	12.96	577.30	13.55	576.71	13.33	576.93	13.12	577.14	13.77	576.49	13.77	576.49	13.96	576.30	14.00	576.26	14.02	576.24	13.76	576.50	13.87	576.39
MW113M MW115P	0.742 1.909	11.77	578.46	11.69	578.54	11.46	578.77	11.58	578.65	11.48	578.75	11.37	578.86	11.81	578.42	11.84	578.39	11.91	578.32	11.96	578.27	12.04	578.19	11.59	578.64	11.74	578.49
MW115P MW115S	1.335	12.29	576.78	12.18	576.89	11.76	577.31	11.73	577.34	11.76	577.31	11.51	577.56	12.15	576.92	12.33	576.74	12.51	576.56	12.59	576.48	12.54	576.53	12.29	576.78	12.42	576.65
MW116P	4.295	12.43 12.95	576.52 576.90	12.17 12.94	576.78 576.91	11.71 12.90	577.24 576.95	11.74 12.70	577.21 577.15	12.18 12.86	576.77 576.99	11.91 12.79	577.04 577.06	12.70 12.82	576.25 577.03	12.69 12.84	576.26 577.01	12.88 12.89	576.07 576.96	12.90 12.90	576.05 576.95	12.92 12.91	576.03 576.94	12.57 12.82	576.38 577.03	12.65	576.30 577.01
MW116S	1.716	13.28	576.55	13.03	576.80	12.58	577.25	13.02	576.81	13.17	576.66	12.79	577.05	13.61	576.22	13.54	576.29	13.79	576.04	13.81	576.02	13.75	576.08	13.50	576.33	13.59	576.24
MW119D	6.257	9.33	579.39	9.36	579.36	9.42	579.30	9.41	579.31	9.41	579.31	9.40	579.32	9.44	579.28	9.45	579.27	9.51	579.21	9.52	579.20	9.58	579.14	9.56	579.16	9.54	579.18
EW-3	No Data	7.55	-	7.50	-	7.42	-	2.41	-	7.71	-	7.40	-	7.44	-	7.43		7.51		7.52	-	7.50	-	7.50	-	7.5	-
EW-10	No Data	10.38	576.67	10.24	576.81	9.77	577.28	10.31	576.74	10.07	576.98	9.90	577.15	10.68	576.37	10.73	576.32	10.87	576.18	10.96	576.09	10.81	576.24	10.52	576.53	10.68	576.37
EW-11	3.066	9.36	577.32	9.21	577.47	8.76	577.92	9.23	577.45	9.01	577.67	8.86	577.82	9.44	577.24	9.49	577.19	9.64	577.04	9.66	577.02	9.71	576.97	9.34	577.34	9.49	577.19
EW-13	5.580	8.46	576.65	8.38	576.73	7.89	577.22	8.33	576.78	8.15	576.96	8.00	577.11	8.72	576.39	8.78	576.33	8.90	576.21	9.00	576.10	8.82	576.29	8.63	576.48	8.61	576.50
EW-14	5.011	9.43	576.64	9.30	576.77	8.81	577.27	9.57	576.50	9.25	576.82	8.97	577.11	9.80	576.27	9.82	576.25	9.97	576.10	10.02	576.05	9.89	576.18	9.60	576.47	9.77	576.30
Wells Inside Former 8th Str MW034M	reet Slip 0.53																										
MW034M MW034S	1.991	12.42	575.80	11.94	576.28	11.71	576.51	11.66	576.56	12.37	575.85	12.38	575.84	12.79	575.43	12.65	575.57	13.13	575.09	13.08	575.14	13.34	574.88	13.14	575.08	13.16	575.06
MW0343 MW036M	30.975	12.61 12.79	575.57 575.70	12.27 12.78	575.91 575.71	12.01 12.53	576.17 575.97	11.95 12.69	576.23 575.81	12.53 12.86	575.65 575.63	12.56 12.95	575.62 575.54	12.99 13.33	575.19 575.16	12.82 13.37	575.36 575.12	13.42 13.65	574.76 574.83	13.37 13.75	574.81 574.73	13.60 13.83	574.58 574.65	13.46 13.85	574.72 574.63	13.47 13.94	574.71 574.54
MW036S	0.921	12.79	575.95	12.78	575.95	12.55	576.20	12.69	576.07	12.38	575.87	12.45	575.80	12.87	575.38	12.83	575.42	13.19	575.06	13.75	574.94	13.41	574.84	13.39	574.86	13.46	574.79
MW038M	0.124	10.06	576.08	10.08	576.06	9.88	576.26	10.16	575.98	10.27	575.87	10.33	575.81	10.82	575.32	10.94	575.20	11.11	575.03	11.31	574.83	11.24	574.90	11.29	574.85	11.51	574.63
MW038S	1.213	11.78	576.04	11.79	576.03	11.58	576.24	11.95	575.87	12.02	575.80	12.10	575.72	12.57	575.25	12.67	575.15	12.93	574.89	13.06	574.76	12.98	574.84	13.08	574.74	13.27	574.55
MW120D	11.349	9.14	579.63	9.12	579.65	9.06	579.71	9.11	579.66	9.12	579.65	9.11	579.66	9.16	579.61	9.29	579.47	8.99	579.78	9.32	579.44	9.76	579.00	9.65	579.11	9.73	579.03
MW120M	28.409	13.09	575.73	13.08	575.74	12.89	575.94	12.77	576.06	12.96	575.86	12.99	575.83	13.31	575.51	13.21	575.61	13.57	575.25	13.59	575.23	13.87	574.94	13.70	575.11	13.32	575.50
MW120S	2.867	12.36	576.16	12.49	576.03	12.35	576.17	12.12	576.40	12.16	576.36	12.13	576.39	12.42	576.10	12.32	576.20	12.64	575.88	12.58	575.94	12.95	575.57	12.65	575.87	12.45	576.07
EW-2	No Data		-		-		-		-		-		-		-		-		-		-		-		-		-
EW-8 EW-9	No Data 4.234	8.21	575.89	8.17	575.93	7.98	576.12	10.68	573.41	10.69	573.40	10.70	573.39	12.13	571.96	11.92	572.17	12.09	572.00	12.33	571.76	12.45	571.64	12.11	571.98	12.80	571.29
Wells Outside Pump Down I		10.04	573.32	9.51	573.85	7.19	576.17	7.18	576.18	12.60	570.75	12.16	571.19	13.50	569.85	13.23	570.12	14.44	568.91	12.71	570.64	13.41	569.94	13.02	570.33	13.21	570.14
MW004M	No Data		T - T		T -		T - I		T - T				T - T		T - T				T - T				T - T				_
MW004S	1.813	5.75	582.99	5.88	582.86	6.09	582.65	5.56	583.18	5.41	583.33	5.30	583.44	5.38	583.36	5.47	583.27	5.62	583.12	5.52	583.22	5.84	582.90	5.29	583.45	5.14	583.60
MW032M	7.113	6.84	581.47	6.86	581.45	7.08	581.23	6.55	581.76	6.52	581.79	6.49	581.82	6.76	581.55	6.77	581.54	6.75	581.56	6.79	581.52	7.11	581.20	6.40	581.91	6.37	581.94
MW032S	2.508	5.54	582.95	5.75	582.74	6.02	582.47	5.13	583.36	5.19	583.30	5.15	583.34	5.45	583.04	5.52	582.97	5.58	582.91	5.47	583.02	5.84	582.65	4.91	583.58	4.92	583.57
MW033M	10.388	4.52	582.87	4.65	582.74	4.85	582.54	4.28	583.11	4.16	583.23	4.07	583.32	4.22	583.17	4.29	583.10	4.43	582.96	4.32	583.07	4.62	582.77	4.03	583.36	3.88	583.51
MW033S	1.087	4.32	583.00	4.47	582.85	4.68	582.64	4.10	583.22	3.98	583.34	3.87	583.45	4.02	583.30	4.11	583.21	4.23	583.09	4.16	583.16	4.43	582.89	3.89	583.43	3.72	583.60
MW039M	No Data		-		-		-		-		-		-		-		-		-		-		-		-		
MW039S MW035M	1.786 No Data	3.20	583.00	3.32	582.88	3.52	582.68	3.09	583.11	2.85	583.35	2.72	583.48	2.82	583.38	2.90	583.30	3.04	583.16	2.95	583.25	3.25	582.95	2.68	583.52	2.56	583.64
MW035M MW035S	No Data 1.692	7.42		7.47		7.55				4.24						4.25						(/ [F F 7		F 0/	F01.70
MW0355 MW037M	No Data	7.13	580.52	7.16	580.49	7.55	580.10	6.44	581.21	6.31	581.34	6.16	581.49	6.57	581.08	6.35	581.30	6.17	581.48	6.13	581.52	6.45	581.20	5.57	582.08	5.86	581.79
MW037N	1.264	6.40	580.67	6.47	580.60	6.86	580.20	5.65	581.42	5.54	581.53	5.35	581.72	5.77	581.30	5.64	581.43	5.29	581.78	5.29	581.78	5.33	581.74	4.82	582.25	5.06	582.01
SG4	No Data	8.40	579.05	0.41	-	0.00	-	3.03	-	J.J4	-	رد.د	-	3.11	-	3.04	-	J.Z 7	-	8.20	579.25	5.55	-	7.70	579.75	7.65	579.80
	Target Elev	vation Calc S			577.02		577.45		576.98		577.14		577.35		576.70		576.64		576.44		576.38		576.39		576.67		576.55
	Target Eleva				575.96		576.18		576.12		575.86		575.82		575.42		575.45		575.10		575.05		574.90		574.98		574.98
	Target Elevati				577.90		577.90		577.90		577.90		577.90		577.90		577.90		577.90		577.90		577.90		577.90		577.90
		SV Variano			-0.88		-0.45		-0.92		-0.76		-0.55		-1.20		-1.26		-1.46		-1.52		-1.51		-1.23		-1.35
		8SS Variano	e -2.02		-1.94		-1.72		-1.78		-2.04		-2.08		-2.48		-2.45		-2.80		-2.85		-3.00		-2.92		-2.92

Attachment 3. 2024 Pump Down Program Groundwater Elevation Monitoring

Tyco Fire Products LP, Marinette, Wisconsin

Target Elevation 577.9

											•																
		Apı	ril 9, 2024	Apri	l 16, 2024	Apri	l 23, 2024	Apri	l 30, 2024	May	7, 2024	May	14, 2024	May	21, 2024	May	28, 2024	Jui	ne 5, 2024	June	11, 2024	June	e 17, 2024	July	16, 2024	Augu	ust 7, 2024
	Mean Conductivity		Corrected		Corrected		Corrected		Corrected		Corrected		Corrected		Corrected		Corrected		Corrected		Corrected		Corrected		Corrected		Corrected
Well ID	(mS/cm-		Groundwater		Groundwater		Groundwater		Groundwater		Groundwater		Groundwater		Groundwater		Groundwater		Groundwater		Groundwater		Groundwater		Groundwater		Groundwater
well ID	measured) Last 5	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for	DTW	Elevation (for
	Years		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh		equivalent fresh
			water)		water)		water)		water)		water)		water)		water)		water)		water)		water)		water)		water)		water)
Wells Inside Former Salt Va	nult						1										1										
MW001M	6.394	10.52	576.62	10.65	576.49	10.34	576.80	10.55	576.59	10.52	576.62	10.31	576.83	10.42	576.72	10.38	576.76	9.85	577.29	10.05	577.09	10.14	577.00	9.39	577.75	9.71	577.43
MW001S	6.023	10.75	576.46	10.91	576.30	10.61	576.60	10.83	576.38	10.75	576.46	10.62	576.59	10.69	576.52	10.66	576.55	10.13	577.08	10.32	576.89	10.37	576.84	9.62	577.59	9.98	577.23
MW002M-R MW002S-R	14.800 3.467	13.87	576.53	13.97	576.43	13.67	576.73	13.95	576.45	13.81	576.59	13.64	576.76	13.72	576.68	13.73	576.67	13.20	577.20	13.39	577.01	13.46	576.94	12.69	577.72	13.03	577.38
MW0025-R MW031M	8.950	13.82	576.46 576.68	13.94 11.47	576.34 576.48	13.63 11.03	576.65 576.93	13.87 11.33	576.41 576.62	13.78 11.33	576.50 576.62	13.58 11.73	576.70 576.22	13.66	576.62 576.17	13.68 11.73	576.60 576.22	13.13	577.15 577.35	13.31	576.97 577.13	13.43	576.85 577.01	12.62	577.66 577.87	12.95	577.33 577.46
MW031M	1.014	11.27 12.54	576.33	12.58	576.29	12.52	576.35	12.48	576.39	12.50	576.37	12.43	576.44	11.78 12.33	576.54	12.18	576.69	10.61 11.90	576.97	10.83 11.88	576.99	10.95 12.07	576.80	10.09 10.88	577.99	10.50 11.47	577.40
MW113S	0.791	13.73	576.53	13.83	576.43	13.53	576.73	13.77	576.49	13.73	576.53	13.49	576.77	13.52	576.74	13.59	576.67	13.06	577.20	13.21	577.05	13.37	576.89	12.54	577.72	12.88	577.38
MW113M	0.742	11.46	578.77	11.52	578.71	11.32	578.91	11.40	578.83	11.39	578.84	11.26	578.97	11.28	578.95	11.22	579.01	10.87	579.36	11.08	579.15	11.22	579.01	10.61	579.62	11.05	579.18
MW115P	1.909	12.13	576.94	11.06	578.01	10.84	578.23	11.39	577.68	11.57	577.50	11.54	577.53	11.66	577.41	11.56	577.51	11.26	577.81	11.48	577.59	11.61	577.46	11.78	577.29	11.23	577.84
MW115S	1.335	12.55	576.40	12.67	576.28	12.32	576.63	12.60	576.35	12.52	576.43	12.37	576.58	12.47	576.48	12.44	576.51	11.87	577.08	12.12	576.83	12.18	576.77	11.36	577.59	11.77	577.18
MW116P MW116S	4.295 1.716	12.59	577.26	12.69	577.16	12.61	577.24	12.59	577.26	12.67	577.18	12.58	577.27	12.48	577.37	12.43	577.42	12.27	577.58	12.27	577.58	12.22	577.63	11.80	578.05	11.81	578.04
MW119D	6.257	13.45 9.51	576.38 579.21	13.56 9.52	576.27 579.20	13.26 9.46	576.57 579.26	13.52 9.38	576.31 579.34	13.36 9.36	576.47 579.36	13.21 9.28	576.62 579.44	13.39 9.23	576.44 579.49	13.34 9.14	576.49 579.58	12.73 9.09	577.10 579.63	13.02 9.04	576.81 579.68	13.06 9.01	576.77 579.71	12.19 8.74	577.64 579.98	12.67 8.64	577.16 580.08
EW-3	No Data	7.51	-	7.32	-	7.40	-	7.36	-	9.36	-	7.20	-	7.23	- 377.47	7.14	-	7.07	-	9.04	-	7.01		0.74	-	0.04	- 360.06
EW-10	No Data	10.32	576.73	10.62	576.43	10.13	576.92	10.32	576.73	10.24	576.81	9.94	577.11	9.83	577.22	9.74	577.31	9.37	577.68	9.59	577.46	9.58	577.47	9.37	577.68	9.70	577.35
EW-11	3.066	9.28	577.40	9.40	577.28	9.11	577.57	9.31	577.37	9.23	577.45	9.06	577.62	9.15	577.53	9.12	577.56	8.65	578.03	8.85	577.83	8.92	577.76	8.23	578.45	8.62	578.06
EW-13	5.580	8.37	576.74	8.71	576.40	8.30	576.81	8.59	576.52	8.64	576.47	8.43	576.68	8.52	576.59	8.42	576.69	7.95	577.16	8.15	576.96	8.17	576.94	7.42	577.69	7.82	577.29
EW-14 Wells Inside Former 8th Str	5.011	9.52	576.55	9.77	576.30	9.31	576.76	9.64	576.43	9.62	576.45	9.40	576.67	9.53	576.54	9.47	576.60	8.86	577.22	9.17	576.90	9.28	576.79	8.33	577.75	8.81	577.27
MW034M	eet Sup 0.53	12.07	575.18	12.39	575.83	12.27	575.98	12.12	576.10	12.0/	576.18	11.96	576.26	1271	575.61	12.57	575.66	12.21	575.91	12.49	575.73	12.10	576.04	11.33	576.89	12.01	576.21
MW034S	1.991	13.04 13.28	574.90	12.78	575.40	12.24 12.60	575.58	12.12	575.71	12.04 12.40	575.78	12.32	575.86	12.61 12.81	575.37	12.56 12.77	575.41	12.31 12.50	575.68	12.49	575.47	12.18 12.64	575.54	11.64	576.54	12.01 12.18	576.00
MW036M	30.975	13.82	574.66	13.67	574.81	13.40	575.09	13.33	575.16	13.25	575.24	13.14	575.35	13.15	575.34	12.86	575.63	12.50	576.00	12.64	575.86	12.87	575.62	12.93	575.56	12.10	576.01
MW036S	0.921	13.37	574.88	13.19	575.06	12.95	575.30	12.84	575.41	12.77	575.48	12.65	575.60	12.70	575.55	12.45	575.80	12.06	576.19	12.16	576.09	12.42	575.83	11.82	576.43	11.97	576.28
MW038M	0.124	11.30	574.84	11.24	574.90	10.88	575.26	10.84	575.30	10.69	575.45	10.61	575.53	10.52	575.62	10.02	576.12	9.54	576.60	9.73	576.41	10.13	576.01	9.66	576.48	9.81	576.33
MW038S	1.213	13.07	574.75	12.98	574.84	12.59	575.23	12.61	575.21	12.48	575.34	12.32	575.50	12.22	575.60	11.67	576.15	11.21	576.61	11.45	576.37	11.83	575.99	11.40	576.42	11.55	576.27
MW120D MW120M	11.349 28.409	8.97	579.80 575.41	8.70	580.07	9.00	579.77	8.48	580.29	8.28	580.49	8.44	580.33	8.42	580.35	8.39	580.38	8.22	580.55	8.24	580.53	8.05	580.72	8.25	580.52 576.40	7.99	580.78
MW120M MW120S	28.409	13.41 12.21	575.41	13.29 12.35	575.53 576.17	13.19 12.22	575.63 576.30	13.13 12.25	575.69 576.27	13.02 12.14	575.80 576.38	12.97 12.17	575.85 576.35	13.15 12.20	575.67 576.32	13.09 12.23	575.73 576.29	12.91 12.06	575.91 576.46	13.01 12.16	575.81 576.36	13.10 12.22	575.72 576.30	12.43 11.73	576.40	12.65 11.86	576.18 576.66
EW-2	No Data	12.21	-	12.33	-	12.22	-	12.25	-	12.14	-	12.17	-	12.20	-	12.23	-	12.00	-	12.16	-	12.22	-	11.73	-	11.00	-
EW-8	No Data	12.15	571.94	12.74	571.35	12.27	571.82	12.49	571.60	12.51	571.58	12.43	571.66	12.47	571.62	8.20	575.90	7.70	576.40	11.17	572.92	8.42	575.68	11.31	572.78	11.04	573.05
EW-9	4.234	13.05	570.30	7.95	575.41	7.74	575.62	7.62	575.74	7.67	575.69	7.52	575.84	12.35	571.00	12.38	570.97	12.12	571.23	13.74	569.61	7.86	575.50	7.81	575.55	11.31	572.04
Wells Outside Pump Down															<u> </u>												
MW004M MW004S	No Data						-		-		-		-				-						-				
MW0045 MW032M	1.813 7.113	4.55	584.19 582.34	4.72	584.02 582.07	4.49	584.25 582.36	4.36	584.38 582.59	4.35	584.39 582.45	4.30	584.44 582.43	4.37	584.37 582.43	4.06	584.68 582.68	4.02	584.72 582.75	4.39	584.35 582.43	4.68	584.06 582.31	4.32	584.42 582.57	5.28	583.46 582.01
MW032M MW032S	2.508	5.97 4.40	584.09	6.24 4.80	583.69	5.95 4.43	584.06	5.72 4.24	584.25	5.86 4.37	584.12	5.88 4.43	584.06	5.88 4.46	584.03	5.63 4.03	584.46	5.56 4.15	584.34	5.88 5.55	582.94	6.00 4.79	583.70	5.74 4.55	583.94	6.30 5.46	583.03
MW033M	10.388	3.29	584.10	3.52	583.87	3.29	584.10	3.13	584.26	3.15	584.24	3.12	584.27	3.23	584.16	2.81	584.59	2.88	584.52	3.24	584.15	3.15	584.24	3.20	584.19	4.14	583.25
MW033S	1.087	3.11	584.21	3.36	583.96	3.20	584.12	2.94	584.38	4.38	582.94	4.14	583.18	3.01	584.31	3.53	583.79	3.24	584.08	3.05	584.27	3.33	583.99	2.98	584.34	3.99	583.33
MW039M	No Data		-		-		-		-		-		-		-		-		-		-		-		-		-
MW039S	1.786	1.98	584.22	2.14	584.06	1.91	584.29	1.76	584.44	1.76	584.44	1.73	584.47	1.78	584.42	1.44	584.76	1.43	584.77	1.79	584.41	2.08	584.12	1.75	584.45	2.69	583.51
MW035M MW035S	No Data						-				-		-								-						
MW0355 MW037M	1.692 No Data	5.78	581.87	5.89	581.76	5.84	581.81	5.64	582.01	5.76	581.89	5.82	581.83	5.83	581.82	5.64	582.01	5.74	581.91	5.97	581.68	6.20	581.45	6.07	581.58	7.48	580.17
MW037M MW037S	1.264	4.89	582.18	5.07	582.00	5.00	582.07	4.83	582.24	4.97	582.10	4.99	582.08	5.02	582.05	4.78	582.29	4.94	582.13	5.16	581.91	5.48	581.59	5.28	581.79	5.03	582.04
SG4	No Data	8.20	579.25	7.70	579.75	8.20	579.25	7.40	580.05	7.10	580.35	7.35	580.10	7.30	580.15	7.30	580.15	7.10	580.35	7.05	580.40	7.10	580.35	7.10	580.35	6.90	580.55
	Target Elev	ation Calc S	V 576.72		576.60		576.89		576.68		576.74		576.85		576.79		576.82		577.38		577.19		577.09		577.92		577.51
	Target Eleva				575.32		575.55		575.61		575.71		575.79		575.64		575.85		576.17		576.01		575.88		576.44		576.24
	Target Elevation				577.90		577.90		577.90		577.90		577.90		577.90		577.90		577.90		577.90		577.90		577.90		577.90
		SV Varianc 8SS Varianc			-1.30 -2.58		-1.01 -2.35		-1.22 -2.29		-1.16 -2.19		-1.05 -2.11		-1.11 -2.26		-1.08 -2.05		-0.52 -1.73		-0.71 -1.89		-0.81 -2.02		0.02 -1.46		-0.39 -1.66
		oss varianc	e -2.78		-2.58		-2.35		-2.29		-2.19		-2.11		-2.26		-2.05		-1./3		-1.89		-2.02		-1.46		-1.66

Attachment 3. 2024 Pump Down Program Groundwater Elevation Monitoring Tyco Fire Products LP, Marinette, Wisconsin

		Augus	t 14, 2024	Septen	nber 10, 2024
Well ID	Mean Conductivity (mS/cm- measured) Last 5 Years	DTW	Corrected Groundwater Elevation (for equivalent fresh water)	DTW	Corrected Groundwater Elevation (for equivalent fresh water)
ells Inside Former Salt	Vault		<u> </u>		
MW001M	6.394	9.52	577.62	10.05	577.09
MW001S	6.023	9.71	577.50	10.28	576.93
MW002M-R	14.800	12.79	577.62	13.34	577.06
MW002S-R	3.467	12.74	577.54	13.28	577.00
MW031M	8.950	10.26	577.70	10.80	577.16
MW031S	1.014	11.50	577.37	11.80	577.07
MW113S	0.791	12.67	577.59	13.21	577.05
MW113M	0.742	11.06	579.17	11.55	578.68
MW115P	1.909	11.17	577.90	11.62	577.45
MW115S	1.335	11.50	577.45	12.04	576.91
MW116P	4.295	11.76	578.09	11.94	577.91
MW116S	1.716	12.33	577.50	12.93	576.90
MW119D	6.257	8.63	580.09	8.74	579.98
EW-3	No Data		-		-
EW-10	No Data	9.55	577.50	10.16	576.89
EW-11	3.066	8.50	578.18	9.05	577.63
EW-13	5.580	7.63	577.48	8.12	576.99
EW-14	5.011	8.56	577.52	9.12	576.95
ells Inside Former 8th 9					
MW034M	0.53	12.17	576.05	12.17	576.05
MW034S	1.991	12.34	575.84	12.37	575.81
MW036M	30.975	12.67	575.83	12.90	575.59
MW036S	0.921	12.18	576.07	12.39	575.86
MW038M	0.124	10.06	576.08	10.38	575.76
MW038S	1.213	11.79	576.03	12.12	575.70
MW120D	11.349	8.29	580.48	8.52	580.25
MW120M	28.409	12.79	576.04	12.91	575.91
MW120S	2.867	11.99	576.53	12.10	576.42
EW-2	No Data		-		-
EW-8	No Data	11.34	572.75	11.86	572.23
EW-9	4.234	11.43	571.92	10.34	573.01
ells Outside Pump Dow MW004M	No Data				1
MW004M MW004S	1.813				
MW032M	7.113	5.56	583.18	6.14	582.60
MW032M MW032S	2.508	6.60	581.71	6.20	582.11
MW0325 MW033M	10.388	5.77	582.72	6.97	581.51
MW033N	1.087	4.43	582.96	4.97	582.41
MW039M	No Data	4.30	583.02	7.86	579.45
MW039N	1.786	2.00		2.54	
MW0395 MW035M	No Data	2.99	583.21	3.56	582.64
MW035M MW035S	1.692	0.44		0.04	F70.7C
MW0353 MW037M	No Data	8.11	579.54	8.86	578.79
MW037M MW037S	1.264	7.50	579.47	0.20	578.68
SG4	No Data	7.59		8.38	
304		7.22 ration Calc SV	580.23 577.71	7.40	580.05 577.18
		ration Calc SV ation Calc 8SS	576.06		575.89
			576.06 577.90		575.89 577.90
	Target Elevati				
		SV Variance	-0.19		-0.72

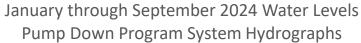
Measurements were collected from top of casing (TOC). All depth measurements are in feet.

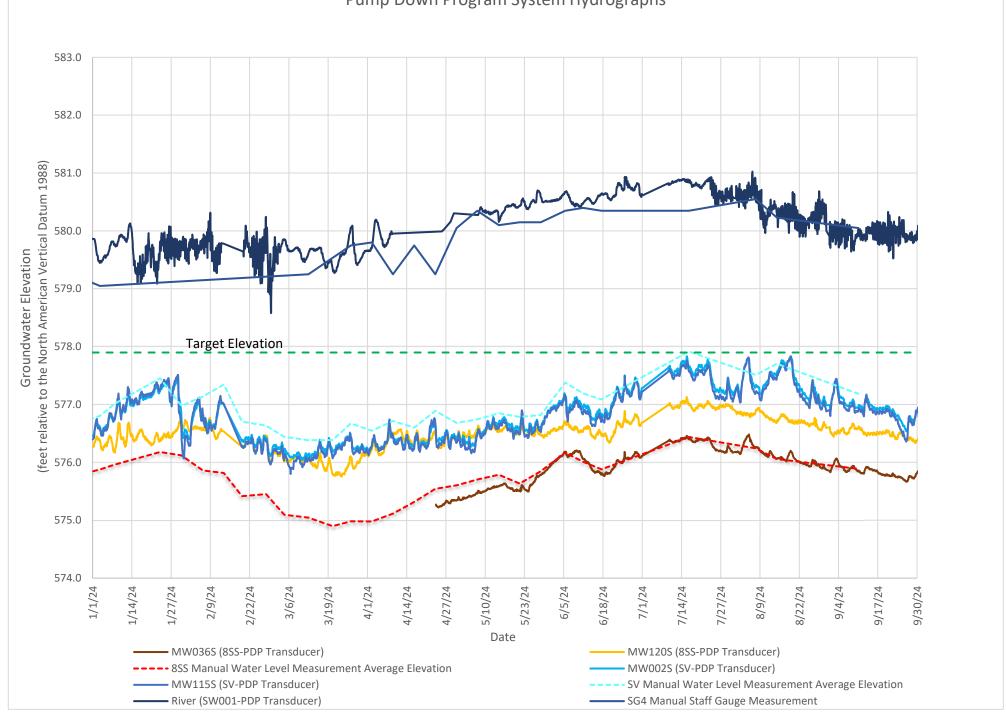
Elevations are reported in feet relative to the North American Vertical Datum 1988 (NAVD88)

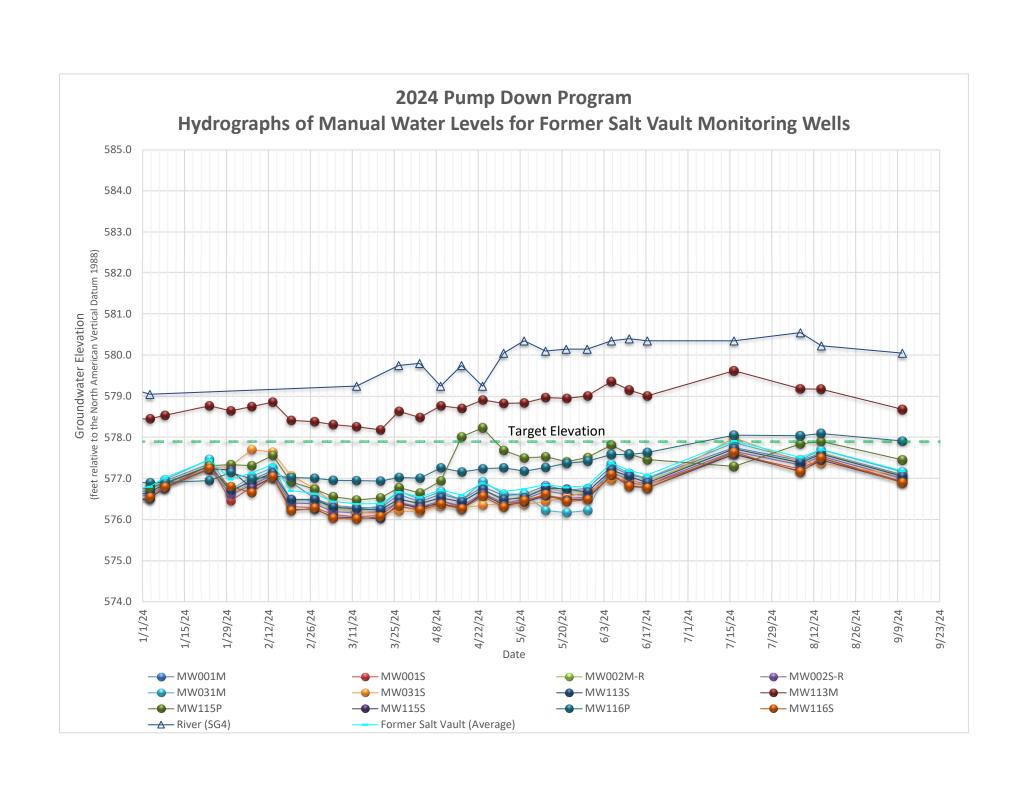
Shaded/Bold = Well part of Target Elevation calculation

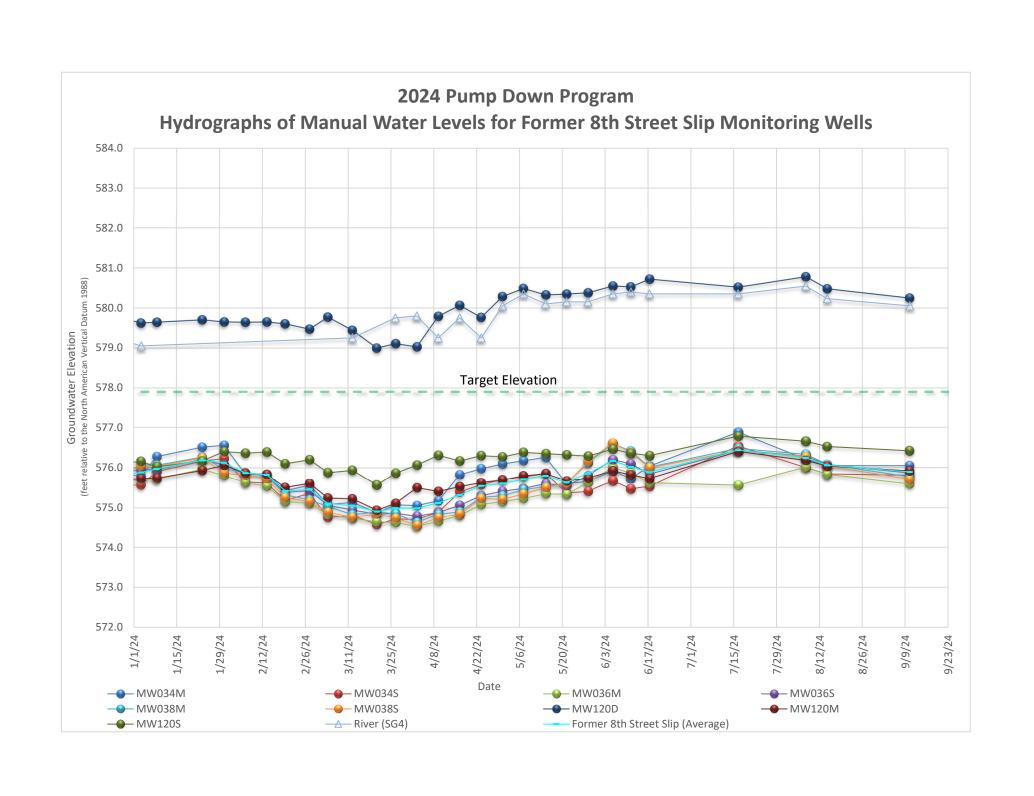
- = Information not applicable or not collected

Area Definitions - SV - former Salt Vault, 8SS - former 8th Street Slip


Corrected groundwater elevation is calculated using the 2024 calculated mean conductivity value (last 5 years of data)


ID = identification; DTW = depth to water


NM = Not Measured; MW = Monitoring Well


Attachment 4 2024 PDP System Hydrographs

Document Control No.: D3838400.321

