SEMI-ANNUAL OPERATION & MAINTENANCE REPORT January through June – 2015

APPLETON WIRE FORMER ALBANY INTERNATIONAL Chrome Plant Groundwater Treatment System

> 908 North Lawe Street Appleton, Wisconsin WDNR ERP# 02-45-000015

Prepared for the WISCONSIN DEPARTMENT OF NATURAL RESOURCES

August 1, 2015

Ms. Jennifer Borski Wisconsin Department of Natural Resources 625 East County Road Y, Suite No. 700 Oshkosh, WI 54901-9731

Re: Appleton Wire, Former Albany International Chrome Plant – Appleton, WI Semi-Annual Operation & Maintenance Report January through June, 2015 WDNR ERP# 02-45-000015

Dear Ms. Borski:

Enclosed, please find Badger Laboratories and Engineering Co., Inc.'s "Semi-Annual Operation and Maintenance Report" for the Appleton Wire, Former Albany International Chrome Plant, 908 North Lawe Street Street, Appleton, Wisconsin, (WDNR ERP# 02-45-000015). Our report covers the time period from January 1, 2015 through June 30, 2015.

This report includes a site history, a summary of treatment system performance and monitoring, results of any compliance sampling, operation and maintenance activities over the last six months, historical analytical data and conclusions and recommendations for the site.

If you have any questions or require additional information, feel free to contact me.

Very truly yours,

Badger Laboratories and Engineering Co., Inc.

David J. Casper

John M. Stoeger

David J. Casper Project Manager John M. Stoeger Stoeger and Associates, LLC

Enclosure: "Semi-Annual Operation & Maintenance Report" cc: Ron Buck, Albany International Amy Monk, Albany International Joe Gaug, Albany International Ron Moddes, Luvata Brian Kreski, City of Appleton Wastewater Division

SEMI-ANNUAL OPERATION & MAINTENANCE REPORT

Year January through June - 2015

APPLETON WIRE

FORMER ALBANY INTERNATIONAL CHROME PLANT GOUNDWATER TREATMENT SYSTEM 908 North Lawe Street Appleton, Wisconsin

Appleton, Wisconsin WDNR ERP# 02-45-000015

Prepared for the WISCONSIN DEPARTMENT OF NATURAL RESOURCES

> Prepared by Badger Laboratories & Engineering Co., Inc. Neenah, Wisconsin

> > And

Stoeger & Associates, LLC Appleton, Wisconsin

August 1, 2015

Table of Contents

HYDROGEOLOGIST CERTIFICATION

- I. SITE BACKGROUND
- II. BATCH TREATMENT PROCESS
 - A. Groundwater Treatment System
 - B. Permit Monitoring & Reporting
 - 1. Quarterly Reporting
 - a. City of Appleton Quarterly Discharge Reports
 - b. Wisconsin DNR Quarterly Groundwater Sampling Reports
 - 2. Semi-Annual Operation & Maintenance Summary
 - C. Compliance Sampling
 - D. Routine Operation & Maintenance Activities
 - E. Significant Operation & Maintenance Activities
 - F. Emergency Operation Shut Downs

III. GROUNDWATER SAMPLING

- A. Groundwater Sampling Procedures
- B. Groundwater Sampling Results

IV. GROUNDWATER COLLECTION SYSTEM

V. CONCLUSIONS & RECOMMENDATIONS

List of Tables

Table #1	-City of Appleton Effluent Compliance Limits / Effluent Point 001
Table #2	-Laboratory Analytical Results / Effluent Point 001
Table #3	-Batch Discharges January 1, 2015 through June 30, 2015
Table #4	-Groundwater Analytical Results / Total and Hexavalent Chromium -
	Monitoring Wells
Table #5	-Groundwater Analytical Results / Total and Hexavalent Chromium- Manhole
	and Sump
Table #6	-Groundwater Elevations
Table #7	-Total Pounds Chromium Removed
Table #8	-Groundwater Analytical Results- Geoprobe Monitoring Wells

List of Figures

Figure #1	-Site Layout Map and Monitoring Well Locations
Figure #2	-Chromium Concentration Map - April 21, 2015
Figure #3	-Groundwater Elevation Contour – January 13, 2015
Figure #4	-Groundwater Elevation Contour – April 21, 2015
Figure #5	-2005 Aerial Photograph

List of Appendices

Appendix A	-Concentration Versus Time Graphs – All Wells, Sump and French Drain
Appendix B	-Groundwater Elevations versus Time / All Wells
Appendix C	-Operation & Maintenance Report / Form 4400-194
Appendix D	-Historical Soil Boring and Groundwater Monitoring Well Data, Abandoned
	Borings and Wells
Appendix E	-Laboratory Analytical Data

HYDROGEOLOGIST CERTIFICATION

"I, James Kauer, hereby certify I am a Hydrogeologist as that term is defined in s NR 712.03 (1) Wisconsin Administrative Code; and that to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements of chs. NR 700 to 726, Wisconsin Administrative Code."

James W. Kang Associate Geologist James W. Kauer

August 28, 2015 Date

Document Reference: Semi-annual Operation and Maintenance Report – January through June, 2015 Albany International Former Chrome Site, Appleton, WI

SEMI-ANNUAL OPERATION & MAINTENANCE REPORT January through June - 2015

APPLETON WIRE Former Albany International Chrome Plant Groundwater Treatment System 908 North Lawe Street Appleton, Wisconsin WDNR ERP# 02-45-000015

Prepared for the WISCONSIN DEPARTMENT OF NATURAL RESOURCES

I. SITE BACKGROUND

The Appleton Wire, Former Albany International, Chrome Plant, located at 908 North Lawe, Appleton, Wisconsin, was utilized as a chrome plating facility from 1963 to 1982. The chrome plant building and a parking lot north of the building were sold to Valley Cast in 1984. The address of the Valley Cast portion of the site is 908 North Lawe Street. The loading dock area near the chrome plating area was referred to as 831 North Meade Street. An office building and parking lot south of the former chrome plant were sold to Appleton Papers (now Appvion) between 1985 and 1990. The address of the office building is 714 East Hancock Street. Reporting related to the release of chromium on the site has been referenced under the Meade Street, Hancock Street and Lawe Street addresses. As of June, 2009, the physical address (for reporting purposes) of the former chrome plant site was changed to 908 North Lawe Street. An aerial photograph of the site delineating current property ownership is shown in Figure #5.

Valley Cast became a fully owned subsidiary of Outokumpu in 1985. The facility name was changed to Outokumpu in 2001. In 2006, the company was sold and currently operates under the name Luvata Appleton.

In 1985, Valley Cast employees noted groundwater collecting in the basement of the building. Subsequent tests indicated concentrations of chromium in the collected groundwater.

STS Consultants, Inc. conducted an investigation of the former chrome plant site on January 19, 1987. The purpose of the investigation was to determine the horizontal and vertical extent of the chromium contamination and to evaluate the effectiveness of the facility's basement sump to collect contaminated groundwater from the north and south sides of the building.

The results of the investigation indicated that the chromium contamination appeared limited to areas along the northeast and southeast ends of the building and to a depth of approximately 15-feet below grade. The existing basement sump was found to be adequate for collection of groundwater along the south end of the building. The consultant proposed installation of a collection system along the north side of the building to improve groundwater collection.

In 1988, a chemical precipitation process was installed to treat the groundwater collecting in the facility basement sump. The system was operated until 1998, when it was replaced by an ion exchange treatment system.

In 1992, a groundwater collection system was installed along the north side of the building. The system consists of approximately 110 feet of perforated piping, placed 14 feet below grade. The piping empties into a manhole, located at the northeast corner of the facility. Collected groundwater is pumped from the manhole to two storage tanks, located in the basement of the facility. Groundwater flowing to the basement sump is also pumped to the storage tanks.

A total of 16 groundwater monitoring wells exist on the former chrome plant property to monitor the subsurface chromium contamination. Additionally, the groundwater collection system (French Drain) and basement sump are monitored to track the effectiveness of the treatment system

In 2003, eleven geoprobe monitoring wells were installed in and around the two source areas in an attempt to better define the vertical and horizontal extent of the chromium contamination. Periodic sampling was conducted from the geoprobe monitoring wells until their abandonment in April, 2008. The results of the sampling are contained in Figure 8.

On June 30, 2009, groundwater monitoring wells MW-19 and MW-19A were placed in the warehouse portion of the Luvata facility, west of the basement area. MW-19 was placed to a depth of 20 feet below the facility floor. MW-19A was placed to a depth of approximately 40 feet below the facility floor. The resultant groundwater sampling data indicated that chromium contaminated groundwater is present to the west of the former plating area and under the current Luvata Appleton warehouse building.

Between May 12, 2014 and May 14, 2014, eleven Geoprobe borings were placed in the interior of the former chrome plant building and in the current Luvata Appleton production area to further delineate the extent of subsurface Chromium contamination. As part of the investigation, Monitoring Well MW-20 and Piezometer MW-20A were installed in the Luvata warehouse area. Monitoring well MW-21 and Piezometer MW-21A were installed in the Luvata production area. The Geoprobe and monitoring well locations are shown on Figure #1.

The results of the May, 2014 investigation indicated that subsurface chromium contamination was present in the northeastern portion of the Luvata Appleton warehouse area. Several former employees were interviewed regarding these findings and it was discovered that there had been a second plating operation to the north of the main chrome plating line. Groundwater samples collected from monitoring wells MW-20 and MW-20A, in the area of the second plating line, recorded high levels of total chromium. Groundwater sampling from the Luvata production area at monitoring wells MW-21 and MW-21A, recorded little to no total chromium. With the data provided by the addition of the 4 monitoring wells in 2014, the extent of the chromium concentration has been confirmed to lie under the warehouse building.

The monitoring well and soil boring locations are shown on Figure #1. Historical investigation data in regard to soil borings and abandoned monitoring wells is contained in Appendix D. The current property and adjacent property ownership information, monitoring well locations and soil boring locations are shown on Figure #1.

II. BATCH TREATMENT PROCESS

A. Groundwater Treatment System

The impacted groundwater on the site is collected in a basement sump and a groundwater collection system (French Drain). The collected water is pumped to two-2000 gallon storage tanks, located in the basement of the facility. The groundwater is treated in batches at the operator's discretion. Prior to initiation of the treatment process, the pH in the basement storage tanks is adjusted down to a pH of around 4.00 to maximize the efficiency of the ion exchange resin. The water is pumped at a flow rate of 8-12 gallons per minute through a series of filters and two (2) ion exchange canisters. The water then flows to another tank where the pH is adjusted back up to a pH between 6.0 and 7.0. The treated water then decants to the City of Appleton Sanitary Sewer System.

B. Permit Monitoring and Reporting

The discharge from the groundwater treatment system is tested for Hexavalent Chromium during each batch discharge using a Hach Hexavalent Chromium test kit. The effluent is tested monthly for Total Chromium and annually for the parameters listed in Table #1. The parameters are a requirement of the City of Appleton Industrial Use Permit Number 04-17, issued for the site in May, 2014 and are valid through May 31, 2017.

The reporting requirements for compliance with the City of Appleton Industrial User Permit and the Wisconsin DNR are summarized below.

1. Quarterly Reporting

a. City of Appleton Quarterly Discharge Reports

Quarterly reports are submitted to the City of Appleton Wastewater Division covering the time periods of January through March, April through June, July through September, and October through December. The City Reports include batch process discharge volumes; discharge pHs, Hexavalent chromium as measured with the Hach test kit and the monthly laboratory analytical results.

b. Wisconsin DNR Quarterly Groundwater Sampling Reports

As of April, 2009, quarterly groundwater sampling reports are no longer required by the Wisconsin DNR.

2. <u>Semi-Annual Operation and Maintenance Summary</u>

With the elimination of quarterly groundwater monitoring reports to the Wisconsin DNR, semi annual reports are prepared. The semiannual operation and maintenance summary consists of a review of the treatment process, an overview of operation and maintenance activities, a summary of the treatment system analytical results and a summary of the analytical results from the groundwater monitoring wells.

C. Compliance Sampling

Compliance sampling of the treatment system effluent is conducted twice per year by the City of Appleton. The effluent is analyzed for all the parameters listed in Table #1, except hexavalent chromium. During the first quarter of each year, Stoeger & Associates, LLC collects one sample at the system outfall and tests for the parameters listed in Table #1. The compliance sampling laboratory results are summarized on Table #2. Table #3 summarizes the monthly batch discharge volumes by month and totaled by quarter.

D. Routine Operation and Maintenance Activities

The groundwater treatment system is operated in batches, at the operator's discretion. Site visits are conducted 1-2 times per week to check on the water levels in the storage tanks. When sufficient water is collected to run a batch, the system is operated. Each batch discharge is tested for Hexavalent Chromium using a Hach test kit. The monthly and quarterly volumes of treated groundwater are shown on Table #3.

Additionally a walk through of the building is conducted to check the equipment or look for any obvious problems. Site activities are documented on log sheets. The log sheets are kept on-site.

The pH probes are cleaned and calibrated monthly. The in-line filters are changed when an increase in system pressure is noted. The ion exchange canisters are changed out when the total chromium concentration in the outfall exceeds 2 mg/l.

E. Significant Operation and Maintenance Activities

Between January 1, 2015 and June 30, 2015, there were no significant operational or maintenance activities performed at the site.

The operation and maintenance summary form 4400-194 is contained in Appendix C.

F. Emergency Shut Downs

There were no emergency shut downs of the system during the reporting period.

III. GROUNDWATER SAMPLING

G. Groundwater Sampling Procedures

A total of 16 groundwater monitoring wells are associated with the groundwater treatment system. Monitoring Wells MW-20, MW-20A, MW-21 and MW-21A were installed between May 12 and 14, 2014 and were first sampled on, June 2, 2014. Monitoring wells, MW-19 and MW-19A were installed on June 30, 2009 and were first sampled on July 13, 2009. Sampling of MW-20, MW-20A, MW-21, MW-21A, MW-19 and MW-19A is conducted quarterly along with the two source area wells, MW-05 and MW-05A. The remainder of the monitoring wells are sampled annually.

Groundwater levels are measured in the monitoring wells and piezometers relative to the north side of the top of the well casing. The groundwater elevations are collected from each monitoring well prior to sampling. A dedicated 12-volt submersible pump is installed in each well. Each well is slowly pumped dry, allowed to recharge and sampled. Purge water is collected and treated in the treatment system.

The laboratory analytical data is contained in Tables #4, and #5. The analytical data sheets are contained in Appendix E.

Graphs of the chromium contaminant concentrations for each monitoring well, the building sump and French Drain are contained in Appendix A.

Table #6 summarizes the historical groundwater elevation data collected from each monitoring well during the quarterly sampling. Groundwater elevation contours are calculated based upon the observed elevations of the monitoring wells, basement sump and French Drain. The groundwater elevation contour maps from the January and April sampling events are presented in Figures #3 and #4. Groundwater elevation versus time graphs is presented in Appendix B.

H. Groundwater Sampling Results

The collected groundwater samples are analyzed for Total and Hexavalent chromium.

A total of two sampling events took place during the reporting period. On January 13, 2015, monitoring wells MW-05, MW5A, MW19, MW-19A, MW-20, MW-20A, MW-21 and MW-21A were sampled as part of the regularly schedule quarterly sampling. Monitoring wells MW-05 (784 ug/l), MW-19 (18,050 ug/l), MW-19A (321 ug/l) and MW-20 (199,000 ug/l) had exceedances of the NR 140.10 Enforcement Standard (ES) for Total Chromium. Monitoring Well MW 20A (11 ug/l) had an exceedance of the NR140.10 Preventative Action limit (PAL) for total chromium.

On April 21, 2014, all 12 monitoring wells associated with the site were sampled. Exceedences of the ES for total chromium were detected in monitoring wells MW-05 (576 ug/l), MW-19 (18,587 ug/l) and MW-20 (248,000 ug/l). MW-18A (15 ug/l) had an exceedance of the PAL

A chromium isoconcentration map is developed once per year with the results from the April sampling. The April sampling is the only event where all the wells attributed to the property are sampled and therefore is the most accurate representation of the data as a whole. The chromium isoconcentration map from the April 21, 2015 sampling is shown on Figure #2.

Samples are collected monthly from the Manhole (French Drain) and basement Collection Sump. All samples collected from the Manhole and basement Collection Sump during the period from January 1, 2015 through June 30, 2015 had exceedances of the ES for Total Chromium. The laboratory analytical results for the Manhole and Collection Sump are shown in Table #5. Current and historical groundwater elevation data is contained in Table #6.

A review of the historical analytical data shows decreasing concentrations of chromium in monitoring wells MW-05 and MW-05A. Historical data from the French Drain and Building Sump also show stable or decreasing chromium concentrations. Historical data collected for MW-19 shows a stable or increasing chromium concentrations and data from MW-19A is too inconsistent to develop a trend line.

There are only five data points on MW-20 and MW-20A. While the chromium concentrations in MW-20A are decreasing, concentrations in MW-20 do not present a consistent pattern.

The groundwater treatment system is effectively removing chromium from the groundwater on the site. With the information gathered from sampling the four new groundwater wells, a study of remediation options to speed up the chromium removal process in the areas of MW-19 and MW-20 has been presented to Albany International and is currently under review.

The yearly chromium removal quantities were calculated utilizing the monthly analytical data and flow quantities from the building sump and French Drain. From January 1, 2015 through June 30, 2015, 4.36 pounds of chromium was removed from the building sump and 0.41 pounds of chromium removed from the French Drain. The pounds of chromium removed from the sump and French Drain is calculated using the chromium concentrations (in mg/L) from the sump and French Drain from each months sampling; times the total volume (in millions of gallons) of groundwater treated during each month from the two extraction points; times 8.34 pounds per gallon of water treated. The historical chromium removal quantities are summarized in Table #7. The Wisconsin DNR Operation and Maintenance form 4400-194 is included in Appendix C.

IV. GROUNDWATER COLLECTION SYSTEM

The groundwater collection system (French Drain) was installed in 1992 to collect contaminated groundwater from the north side of the property. The collection system consists of approximately 110-feet of perforated piping, placed 14-feet below grade. The collected groundwater flows by gravity to a collection sump, where it is pumped to the storage tanks in the basement of the facility. The collection trench creates a capture zone for contaminated groundwater along the north end of the building.

The building sump creates a capture zone for contaminants along the south side and under the building. The building sump is located at the northeast corner of the building basement.

V. CONCLUSIONS AND RECOMMENDATIONS

A 2014 site investigation discovered an area of previously unknown chromium contamination under the warehouse floor and north of the assumed contaminant area. Interviews with former employees confirmed that a second chrome plating line had been utilized in that area and may have contributed to the subsurface contamination. Groundwater samples were collected from the source area monitoring wells on January 13, 2014 and April 21, 2015. Samples collected from source area wells, MW-05 and MW-20 as well as MW-19, the nearest monitoring well west of the two source areas, recorded detections for total chromium in excess of the NR 140.10 Enforcement Standard (ES). MW-19A had an exceedance of the ES (321 ug/l) during the January 13, 2015 sampling and no exceedances of the ES or PAL during the April sampling. MMW-20 had and exceedance for the PAL (11 ug/l) during the January sampling and MW-18A (15 ug/l) during the April sampling.

All monthly samples collected during the monitoring period from the French Drain and collection sump had exceedances of the NR 140.10 ES for Total Chromium.

Data collected to date from the groundwater wells on the exterior of the building, the collection sump and French drain show stable, if not decreasing, concentrations of chromium in the groundwater monitoring wells. Monitoring well MW-19 has shown stable, if not increasing concentrations of total chromium. MW-19 has recorded inconsistent analytical results and a trend line cannot be reasonably created. Monitoring well MW-20 has been sampled 5 times and the data is too inconsistent to draw a trend line. MW-20A has shown a significant decrease in total chromium over the 5 sampling times.

A remedial action plan has been submitted to Albany International identifying potential options to more efficiently remove the chromium contamination under the warehouse floor. While the chromium contamination is within the capture zone of the collection sump and French Drain, the collection system could be made more efficient to speed up the chromium removal. The remedial options plan is currently being reviewed by Albany International

Prior to issuance of the current three year wastewater discharge permit, the City of Appleton was petitioned to allow the direct discharge of flows from the French Drain (Manhole). Total chromium concentrations in the Manhole have remained close to an average of 7 mg/l, which is the current upper limit for direct discharge to the City of Appleton Wastewater Treatment Facility. The City of Appleton determined that there was not enough historical data to allow the direct discharge and will again reevaluate the option when the current permit expires in 2017.

Based upon the historical analytical results from the groundwater monitoring wells and treatment systems, Badger Laboratories and Engineering Co., Inc., recommends continued operation of the groundwater treatment system at the Appleton Wire, Former Albany International Chrome Plant.

CITY OF APPLETON EFFLUENT COMPLIANCE LIMITS Effluent Point 001 Appleton Wire Former Albany International Chrome Plant

Effluent Limits Permit #11-17

Aluminum (mg/l)	Arsenic (mg/l)	Cadmium (mg/l)	Chromium Total (mg/l)	Copper (mg/l)	Cyanide (mg/l)	Lead (mg/l)	Mercury (mg/l)	Nickel (mg/l)	Zinc (mg/l)	Hexavalent Chromium (mg/l)
70	1.0	0.3	7.0	3.5	0.3	2.0	0.002	2.0	10.0	4.5

mg/l = milligram / liter

LABORATORY ANALYTICAL RESULTS Effluent Point 001 Appleton Wire Former Albany International Chrome Plant

Date	Cyanide (mg/l)	Aluminum (mg/l)	Arsenic (mg/l)	Cadmium (mg/l)	Chromium (mg/l)	Hexavalent Chromium (mg/l)	Copper (mg/l)	Lead (mg/l)	Mercury (mg/l)	Nickel (mg/l)	Zinc (mg/l)
2/26/03 ***	<0.0014	<0.027	<0.0082	<0.00053	1.0	NA	0.011	0.0075	< 0.000028	0.0045	0.0057
4/24/03 **	<0.0015	<0.027	<0.0081	<0.0053	0.049	N/A	0.1	0.0017	< 0.00003	<0.0021	<0.0072
10/23/03 ***	<2.7	0.0500	<0.0012	<0.0001	1.588	NA	0.034	0.0033	<0.0002	0.0046	<0.010
03/18/04 **	<.005	0.001	<.0012	<.0001	0.399	NA	0.019	0.0053	<.0002	0.0034	0.02
04/19/04 ***	<.005	<.01	<.0012	<.01	0.32	<.002	0.02	<.05	<.0002	<.03	0.01
01/13/05 ***	<0.005	0.012	0.009	<0.0001	1.651	NA	0.024	0.0051	<0.0002	0.0035	<0.010
04/11/05**	<0.005	<0.07	<0.0012	<0.01	0.0027	< 0.002	0.02	<0.05	<0.0002	<0.03	0.03
10/12/05 ***	0.014	0.132	<0.006	<0.0005	0.0032	NA	0.0087	0.0089	< 0.0002	0.0046	0.05
01/31/06 ***	<0.005	0.068	<0.0012	0.0002	1.887	NA	0.038	0.051	<0.0002	0.0071	0.03
04/11/06 **	<0.005	<0.07	<0.0011	<0.01	1.3	0.004	0.06	<0.05	0.0006	<0.03	0.05
9/26/06 ***	0.004	0.152	0.0016	<0.0001	5.59	NA	0.156	0.019	<0.0002	0.0086	0.03
02/28/07 ***	0.010	0.096	<0.001	<0.0001	1.222	NA	0.019	0.0042	<.0002	0.0077	0.050
04/29/07 **	0.005	<0.07	<0.001	<.01	0.12	< 0.002	0.12	<0.03	<0.0002	<0.04	0.03
10/30/07 ***	<0.004	<0.07	<1.0	<0.01	0.04	NA	<0.01	<0.03	<0.0002	<0.04	0.03
2/17/08 ***	<.004	<.07	<.001	<.01	2.4	NA	0.25	<.03	<.0002	<.04	0.98
4/23/08 **	<.008	<.08	<.001	<.01	0.36	<.002	0.05	<.03	<.0002	<.02	0.81
11/20/08 ***	<.008	<.08	<.08	<.01	0.72	NA	0.03	<.03	<.0002	0.02	0.07
2/24/09 ***	<0.008	<0.09	<0.09	<0.01	3.9	NA	0.04	0.05	<0.0002	<0.02	0.07
4/07/09 **	<0.008	<0.09	<0.0012	<0.01	0.07	<0.001	<0.01	<0.05	< 0.0002	<0.02	0.15
10/08/09 ***	<0.008	<0.08	<0.012	<0.01	0.03	NA	<0.01	<0.05	<0.0002	<0.02	0.01
2/24/10 ***	<0.008	<0.06	<0.0002	<0.01	0.11	NA	<0.01	<0.03	<0.0002	<0.01	0.06
4/13/10 **	<0.008	<0.06	<0.0019	<0.01	0.2	0.047	0.05	<0.03	<0.0002	<0.01	0.06
2/17/11 ***	<0.008	<0.08	<0.001	<0.001	0.15	NA	0.05	< 0.04	<0.0002	0.02	0.08
4/27/11**	<0.008	0.33	<0.01	<0.01	0.47	0.008	0.84	< 0.04	<0.0002	<0.02	0.27
11/15/11***	<0.007	<0.008	<0.005	<0.01	0.27	NA	0.05	< 0.04	<0.0002	<0.02	0.05
3/19/12***	<0.007	<0.11	<0.001	<0.01	0.1	NA	0.02	<0.02	<0.0002	<0.02	0.05
Appleton Permit Limits	0.30	70	1.0	0.30	7.0	4.5	3.5	2.0	0.002	2.0	10.0

LABORATORY ANALYTICAL RESULTS Effluent Point 001 Appleton Wire Former Albany International Chrome Plant

Date	Cyanide (mg/l)	Aluminum (mg/l)	Arsenic (mg/l)	Cadmium (mg/l)	Chromium (mg/l)	Hexavalent Chromium (mg/l)	Copper (mg/l)	Lead (mg/l)	Mercury (mg/l)	Nickel (mg/l)	Zinc (mg/l)
04/10/12**	<0.007	<0.08	<0.001	<0.01	0.07	0.023	<0.01	< 0.04	<0.0002	<0.02	0.08
08/07/12***	0.0046	3.38	0.044	0.0012	0.336	NA	0.462	<0.0014	<0.0001	0.171	0.0699
4/15/13**	<.006	<0.1	<0.001	0.01	0.16	0.073	<0.01	<0.02	<0.0002	<0.02	0.01
5/22/13***	0.0039	<0.714	<0.0042	<0.00048	0.389	NA	0.01	<0.0027	<0.0001	0.006	0.0188
11/18/13***	<0.0038	<0.714	<0.0042	<0.00048	0.0185	NA	0.0156	<0.0027	<0.0001	0.0054	0.0192
04/09/14**	<0.006	<0.05	<0.0015	<0.01	0.1	0.04	<0.01	<0.03	<0.0002	<0.02	0.04
5/12/2014***	<0.020	0.102*	<0.0068	<0.001	0.0724	NA	0.017	<0.0016	<0.0001	0.0033	0.025*
9/25/14***	<0.01	<0.0655	<0.0068	<0.001	0.0075*	NA	0.0075*	0.0023*	<0.001	0.0058*	0.0141*
4/21/2015	<0.007	<0.1	<0.0015	<0.01	0.24	0.162	0.03	<0.03	<0.0002	<0.03	0.03
Appleton Permit Limits	0.30	70	1.0	0.30	7.0	4.5	3.5	2.0	0.002	2.0	10.0

mg/I = milligram / liter (ppm)

NA = Not Analyzed

* = Analyte detected between Limit of Detection and Limit of Quantitation

** = Sampled by Operator

*** = Sampled by the City of Appleton

BATCH DISCHARGES

January 1, 2015 Through June 30, 2015 Appleton Wire Former Albany International Chrome Plant Appleton, Wisconsin

Month	Monthly (gallons)	Quarterly Flow (gallons)
January	4,880	
February	2,340	11,030
March	3,810	
April	7,940	
May	8,420	26,960
June	10,600	
TOTAL	37,990	

		Adjusted	Total	Hexavalent
Well		Chromium	Chromium	Chromium
Name	Sample Date	Value	(ug/l)	(ug/l)
	02/09/87	50	50	
MW-1	07/29/87	20	<40	
	09/25/87	50	<100	
	12/11/87	50	<100	
	03/21/88	1.6	1.6	
	06/13/88	3.0	3.0	
	09/08/88	9	9	
	12/15/88	2.5	2.5	
	03/26/92	20	<40	
	06/16/92	4.9	4.9	
	09/04/92	50	50	
	03/25/93	40	<80	
	09/16/93	40	<80	
	03/15/94	35	<70	
	09/20/94	13	13	
	03/31/95	39	39	
	09/07/95	7.2	7.2	
	03/15/96	15	15	
	09/05/96	6.4	6.4	
	04/26/97	11	11	
	04/30/98	60	60	
	10/22/98	7	7	
	04/16/99	12	12	
	10/19/99	9.3	9.3	
	04/17/00	11	22**	
	04/06/01	5.5	<11	
	04/18/02	5.5	<11	
	04/16/03	2.9	2.9	
	04/19/04	2.8	2.8	<2.0
	04/11/05	82	82	16
	07/18/05	15	<30	<2
	04/11/06	1.7	1.7	<2.0
	04/29/07	4	4	<2.0
	04/23/08	4.4	4.4	<2.0
	4/7/2009	4.6	4.6	<0.1
	4/13/2010	26	26	<3.0
	4/27/2011	3	3	<3
	4/10/2012	1.7	1.7	<3
	4/15/2013	2.6	2.6	<2.6
	4/9/2014	4.2	4.2	<3.0
	4/21/2015	0.5	0.5	<0.5

		Adjusted	Total	Hexavalent
Well		Chromium	Chromium	Chromium
Name	Sample Date	Value	(ug/l)	(ug/l)
	02/09/87	70	70	(37
MW-2	07/29/87	20	<40	
	09/25/87	100	100	
	12/11/87	100	100	
	03/21/88	85	85	
	06/13/88	140	140	
	09/08/88	70	71	
	12/15/88	130	130	
	03/26/92	20	<40	
	06/16/92	17	17	
	09/04/92	20	<40	
	03/25/93	40	<80	
	09/16/93	40	<80	
	03/15/94	35	<70	
	09/20/94	19	19	
	03/31/95	19	19	
	09/07/95	14	14	
	03/15/96	11	11	
	09/05/96	29	29	
	04/26/97	9.2	9.2	
	10/29/97	10	10	
	04/30/98	11	11	
	10/22/98	9.3	9.3	
	04/16/99	7.7	7.7	
	10/19/99	6.8	6.8	
	04/17/00	11	22**	
	04/06/01	5.5	<11	
	04/18/02	5.5	<11	
	04/16/03	0.55	<1.1	
	04/19/04	1.0	1.0	<2.0
	04/11/05	1.3	1.3	<2.0
	04/11/06	0.4	0.4	<2.0
	04/29/07	1.5	1.5	<2.0
	04/23/08	2.4	2.4	<2.0
	4/7/2009	8.3	8.3	<.1
	4/13/2010	5	5	<3.0
	4/27/2011	3	3	<3.0
	4/10/2012	0.7	0.7	<3.0
	4/15/2013	0.4	0.4	<.4
	4/9/2014	0.6	0.6	<0.6
	4/21/2015	0.94	0.94	<0.94

		Adjusted	Total	Hexavalent
Well		Chromium	Chromium	Chromium
Name	Sample Date	Value	(ug/l)	(ug/l)
	03/26/92	20	<40	
MW-2A	06/16/92	1.5	1.5	
	09/04/92	20	<40	
	03/25/93	40	<80	
	09/16/93	40	<80	
	03/15/94	35	<70	
	09/20/94	14	14	
	03/31/95	17	17	
	09/07/95	3.9	3.9	
	03/15/96	3.6	3.6	
	09/05/96	1.2	1.2	
	04/26/97	0.3	0.3	
	04/30/98	2.5	2.5	
	04/16/99	2.4	2.4	
	04/17/00	11.5	23**	
	04/06/01	5.5	<11	
	04/18/02	5.5	<11	
	04/16/03	0.55	<1.1	
	04/19/04	0.6	0.6	<2.0
	04/11/05	0.4	0.4	<2.0
	04/11/06	0.1	0.1	<2.0
	04/29/07	0.7	0.7	<2.0
	04/23/08	0.2	<0.4	<2.0
	4/7/2009	1.5	1.5	<0.1
	4/13/2010	5	5	<3.0
	4/27/2011	2	2	<3.0
	4/10/2012	0.5	0.5	<3.0
	4/15/2013	0.1	<0.2	<0.2
	4/9/2014	0.4	0.4	<0.4
	4/21/2015	0.11	0.11	<0.11
	03/26/92	33,000	33,000	
MW-5	06/16/92	27,000	27,000	
	09/04/92	33,000	33,000	
	12/17/92	28,000	28,000	
	03/25/93	29,000	29,000	
	06/22/93	24,000	24,000	
	09/16/93	25,000	25,000	
	12/03/93	26,000	26,000	
	03/15/94	26,000	26,000	
	06/16/94	2,013	2,013	
	09/20/94	2,013	2,013	
	12/13/94	29,000 19,000	29,000 19,000	
		•	•	
	03/31/95	19,960	19,960	

		Adjusted	Total	Hexavalent
Well		, Chromium	Chromium	Chromium
Name	Sample Date	Value	(ug/l)	(ug/l)
	06/15/95	21,190	21,190	,
MW-5	09/07/95	25,400	25,400	
Cont.	12/11/95	18,000	18,000	
	03/15/96	15,830	15,830	
	06/27/96	18,000	18,000	
	09/05/96	14,000	14,000	
	12/03/96	24,000	24,000	
	01/23/97	22,000	22,000	
	04/26/97	17,000	17,000	
	07/16/97	20,000	20,000	
	10/29/97	1,600	1,600	
	01/20/98	18,000	18,000	
	04/30/98	15,000	15,000	
	07/10/98	18,000	18,000	
	10/22/98	21,000	21,000	
	01/19/99	14,000	14,000	
	04/16/99	15,000	15,000	
	07/23/99	14,000	14,000	
	10/19/99	18,175	18,175	
	01/10/00	12,000	12,000	
	04/17/00	8,500	8,500	
	07/20/00	11,000	11,000	
	10/25/00	8,500	8,500	
	01/17/01	14,000	14,000	
	04/06/01	7,900	7,900	
	07/20/01	10,000	10,000	
	10/16/01	12,000	12,000	
	01/14/02	11,000	11,000	
	04/18/02	5,500	5,500	
	07/23/02	788	788	
	10/30/02	1,500	1,500	
	01/20/03	19,000	19,000	
	04/16/03	7,000	7,000	
	07/10/03	33	33	
	10/07/03	3,300	3,300	
	01/30/04	1,200	1,200	
	04/19/04	7,900	7,900	10000
	07/26/04	6,700	6,700	6300
	10/11/04	6,500	6,500	6500

	-	-		
		Adjusted	Total	Hexavalent
Well		Chromium	Chromium	Chromium
Name	Sample Date	Value	(ug/l)	(ug/l)
	01/12/05	6,460	6,460	6300
MW-5	04/11/05	5,085	5,085	4500
Cont.	07/18/05	4,900	4,900	4900
	10/11/05	5,100	5,100	4900
	01/10/06	10,880	10,880	10000
	04/11/06	4,455	4,455	3880
	07/27/06	3,190	3,190	3400
	10/18/06	5,100	5,100	4500
	01/09/07	2,900	2,900	2800
	04/29/07	2,895	2,895	2500
	07/24/07	2,465	2,465	2465
	10/24/07	3,205	3,205	2700
	01/16/08	2,335	2,335	2300
	04/23/08	2,067	2,067	1700
	07/15/08	2,425	2,425	1700
	10/23/08	2,400	2,400	1800
	1/22/09	2,024	2,024	1900
	4/7/09	2,116	2,116	1700
	7/7/09	2,200	2,200	2000
	10/11/09	2,500	2,500	2300
	1/19/10	2,015	2,015	1900
	4/13/10	1,600	1,600	1400
	7/29/10	1,800	1,800	1300
	10/19/10	1,700	1,700	1400
	1/13/11	1,500	1,500	1400
	4/27/11	1,200	1,200	1200
	7/19/11	1,100	1,100	1000
	10/11/11	1,100	1,100	1000
	1/10/12	1,140	1,140	950
	4/10/12	1,200	1,200	1100
	8/8/12	1,200	1,200	49
	10/9/12	1,139	1,139	1100
	1/8/13	1,500	1,500	1310
	4/15/13	1,166	1,166	1166
	7/10/13	1,300	1,300	1300
	10/14/13	1,338	1,338	1300
	1/15/14	1,594	1,594	1730
	4/9/14	1,430	1,430	1280
	7/8/14	1,300	1,300	1180
	10/14/14	960	960	960
	1/13/15	784	784	670
	4/21/15	576	576	514

		Adjusted	Total	Hexavalent
Well		Chromium	Chromium	Chromium
Name	Sample Date	Value	(ug/l)	(ug/l)
	02/09/87	80	80	(**3**)
MW-5A*	07/29/87	8,000	8,000	
	09/25/87	2,100	2,100	
	12/11/87	14,400	14,400	
	03/21/88	26,000	26,000	
	06/13/88	7,800	7,800	
	09/08/88	3,000	3,000	
	12/15/88	7,100	7,100	
	03/26/92	5,600	5,600	
	06/16/92	7,600	7,600	
	09/04/92	13,000	13,000	
	12/17/92	1,500	1,500	
	03/25/93	2,200	2,200	
	06/22/93	1,400	1,400	
	09/16/93	3,800	3,800	
	12/03/93	10,000	10,000	
	03/15/94	900	900	
	06/16/94	312	312	
	09/20/94	350	350	
	12/13/94	580	580	
	03/31/95	568	568	
	06/15/95	228	228	
	09/07/95	1,928	1,928	
	12/11/95	24	24	
	03/15/96	552	552	
	06/27/96	490	490	
	09/05/96	2,200	2,200	
	12/03/96	1,600	1,600	
	01/23/97	170	170	
	04/26/97	68	68	
	07/16/97	40	40	
	10/29/97	140	140	
	01/20/98	1,500	1,500	
	04/30/98	130	130	
	07/10/98	150	150	
	10/22/98	160	160	
	01/19/99	900	900	
	04/16/99	99	99	
	07/23/99	76	76	
	10/19/99	104	104	

			Tatal	Hevevelent
\A/		Adjusted	Total	Hexavalent
Well	Samula Data	Chromium Value	Chromium	Chromium
Name	Sample Date		(ug/l)	(ug/l)
	01/10/00	1,200	1,200	
MW-5A*	04/17/00	880	880	
Cont.	07/20/00	400	400	
	10/25/00	1,100	1,100	
	01/17/01	280	280	
	04/06/01	65	65	
	07/20/01	11	11	
	10/16/01	8	16**	
	01/14/02	78	78	
	04/18/02	380	380	
	07/23/02	207	207	
	10/30/02	45	45	
	01/20/03	1,200	1,200	
	04/16/03	270	270	
	07/10/03	1,200	1,200	
	10/07/03	16	16	
	01/30/04	23	23	
	04/19/04	480	480	82
	07/26/04	40	40	<4
	10/11/04	12	12	12
	01/12/05	30	30	<2
	04/11/05	13	13	10
	07/18/05	15	<30	<2
	10/11/05	26	26	<2
	01/10/06	1	<2	
	04/11/06	1	<2	
	07/27/06	720	720	
	10/18/06	5.2	5.2	
	01/09/07	2.3	2.3	<2.0
	04/29/07	12	12	10
	07/24/07	2.4	2.4	<2.0
	10/24/07	2.7	2.7	<2.0
	01/16/08	10	10	<2.0
	04/23/08	167	167	20
	07/15/08	6.4	6.4	<1.0
	10/23/08	18	18	10
	01/22/09	248	248	210
	4/7/2009	630	630	590
	7/7/2009	7	7	<4.0
	10/11/2009	33	33	<3.0

		Adjusted	Total	Hexavalent
Well		Chromium	Chromium	Chromium
Name	Sample Date	Value	(ug/l)	(ug/l)
	1/19/2010	24	24	<3.0
MW-5A*	4/13/2010	7	7	7
Cont.	7/29/2010	6	6	<3.0
	10/19/2010	5	5	5
	1/13/2011	5	5	5
	4/27/2011	27	27	14
	7/19/2011	1.5	<3	<3
	10/11/2011	11	11	7
	1/10/2012	94	94	60
	4/10/2012	4.2	4.2	<3.0
	8/8/2012	49	49	<3.0
	10/9/2012	39	39	26
	1/8/2013	7.9	7.9	<3.0
	4/15/2013	3.7	3.7	<3.0
	7/10/2013	1300	1300	<3.0
	10/14/2013	65	65	67
	1/15/2014	23	23	21
	4/9/2014	12	12	7
	7/8/2014	4	4	<3
	10/14/2014	5	5	<3
	1/13/2015	3.1	3.1	<3
	4/21/2015	1.2	1.2	<1.2
	01/19/99	3.7	3.7	
MW-10R	04/16/99	4.4	4.4	
	07/23/99	8.3	8.3	
	10/19/99	1	1	
	01/10/00	5.5	<11	
	04/17/00	6.5	13**	
	07/20/00	8	16**	
	10/25/00	5.5	<11	
	01/17/01	5.5	<11	
	04/06/01	5.5	<11	
	04/18/02	5.5	<11	
	04/30/03	1.1	1.1	.
	04/19/04	1.2	1.2	<2.0
	04/11/05	1.2	1.2	<2.0
	07/18/05	15	<30	<2.0
	04/11/06	1	1	<2.0
	04/29/07	1.5	1.5	1.5

		Adjusted	Total	Hexavalent
Well		Chromium	Chromium	Chromium
Name	Sample Date	Value	(ug/l)	(ug/l)
	04/23/08	3.5	3.5	3.5
MW-10R	4/7/09	3.5 4.4	4.4	<0.1
	4/13/10	11	11	<3.0
	4/27/11	5	5	<3.0
	4/10/12	5.5	5.5	<3.0
	4/15/13	0.5	0.5	<0.5
	4/9/14	0.5	0.5	<0.5
	4/21/15	0.41	0.41	<0.41
	03/26/92	20	<40	
MW-17	06/16/92	1.3	1.3	
	09/04/92	20	<40	
	03/25/93	40	<80	
	09/16/93	40	<80	
	03/15/94	35	<70	
	09/20/94	15	15	
	03/31/95	9.8	9.8	
	09/07/95	8.1	8.1	
	03/15/96	3.6	3.6	
	09/05/96	2.4	2.4	
	04/26/97	0.5	0.5	
	04/30/98	1.7	1.7	
	04/16/99	2.9	2.9	
	04/17/00	5.5	<11	
	04/06/01	5.5	<11	
	04/18/02	5.5	<11	
	04/16/03	0.55	<1.1	
	04/19/04	1.7	1.7	<2.0
	04/11/05	0.3	0.3	<2.0
	04/11/06	1.5	1.5	<2.0
	04/29/07	0.8	0.8	<2.0
	04/23/08	0.2	< 0.4	<2.0
	4/7/2009 4/13/2010	1.7 12	1.7 12	<0.1 <3.0
	4/13/2010 4/27/2011	2	2	
	4/27/2011 4/10/2012			<3.0 <3.0
	4/10/2012 4/15/2013	0.4 0.1	0.4 <0.2	<3.0 <0.2
	4/15/2013 4/9/2014	0.1	<0.2 0.8	<0.2 <0.8
	4/9/2014 4/21/2015	0.8	0.8	<0.8 <0.39
	7/21/2013	0.55	0.33	NO.33

Well Name	Sample Date	Adjusted Chromium Value	Total Chromium (ug/l)	Hexavalent Chromium (ug/l)
Name	•			(ug/i)
	03/26/92	20	<40	
MW-17A	06/16/92	26	26	
	09/04/92	20	<40	
	03/25/93	40	<80	
	09/16/93	40	<80	
	03/15/94	35	<70	
	09/20/94	22	22	
	03/31/95	14	14	
	09/07/95	6.4	6.4	
	03/15/96	3.4	3.4	
	09/05/96	0.7	0.7	
	04/26/97	0.1	<.2	
	04/30/98	1.5	1.5	
	04/16/99	0.9	0.9	
	04/17/00	5.5	<11	
	04/06/01	5.5	<11	
	04/18/02	5.5	<11	
	04/16/03	0.55	<1.1	
	04/19/04	0.2	0.2	<2.0
	04/11/05	0.3	0.3	<2.0
	04/11/06	0.05	<0.1	<2.0
	04/29/07	0.2	0.2	<2.0
	04/23/08	0.2	<0.4	<2.0
	04/07/09	0.3	0.3	<0.1
	04/13/10	0.9	0.9	<3.0
	04/27/11	3	3	<3.0
	04/10/12	0.5	0.5	<3.0
	04/15/13	0.1	0.2	0.2
	04/09/14	0.2	0.2	<0.2
	04/21/15	0.17	0.17	<0.17

		Adjusted	Total	Hexavalent
Well		Chromium	Chromium	Chromium
Name	Sample Date	Value	(ug/l)	(ug/l)
	08/13/02	6	<12	
MW-18	04/16/03	0.55	<1.1	
	04/19/04	0.1	<0.2	<2.0
	04/11/05	0.1	<0.2	<2.0
	04/11/06	0.55	<0.1	<2.0
	04/29/07	0.55	0.1	2
	04/23/08	0.2	<0.4	<2.0
	04/07/09	0.3	0.3	<0.1
	04/13/10	8.1	8.1	<3.0
	04/27/11	0.3	0.3	<3.0
	04/10/12	0.2	0.2	<3.0
	04/15/13	0.1	<0.2	<0.2
	04/09/14	0.4	0.4	<0.4
	04/21/15	0.05	<0.1	<0.1
	08/13/02	6	<12	
MW-18A	04/16/03	0.55	<1.1	
	04/19/04	0.1	<0.2	<2.0
	04/11/05	0.4	0.4	<2.0
	04/11/06	1.5	1.5	<2.0
	04/29/07	0.3	0.3	<2.0
	04/23/08	1.1	1.1	<4.0
	04/07/09	3.8	3.8	<2.0
	04/13/10	6.9	6.9	<3.0
	04/27/11	0.4	0.4	<3.0
	04/10/12	0.2	0.2	<3.0
	04/15/13	0.1	<0.2	<0.2
	04/09/14	3.3	3.3	<3.0
	04/21/15	15	15	<3.0

Well Name	Sample Date	Adjusted Chromium Value	Total Chromium (ug/l)	Hexavalent Chromium (ug/l)
	07/40/00	12000	40000	45000
MW-19	07/13/09	13000	13000	15000
	07/28/09	22000	22000	20000
	10/11/09	5300	5300	4000
	01/19/10	3030	3030	2600
	04/13/10	5270	5270	5270
	07/29/10	6400	6400	3900
	10/19/10	7100	7100	4800
	01/13/11	7100	7100	7100
	04/27/11	15000	15000	15000
	07/19/11	9400	9400	8700
	10/11/11	21000	21000	17000
	01/10/12	41100	41100	40000
	04/10/12	21672	21672	23000
	08/08/12	26000	26000	26000
	10/09/12	14187	14187	13000
	01/08/13	12575	12575	11000
	04/15/13	16300	16300	16300
	07/10/13	19000	19000	19000
	10/14/13	15440	15440	16000
	04/09/14	20005	20005	20005
	07/08/14	18000	18000	17000
	10/14/14	21600	21600	21300
	01/13/15	18050	18050	15000
	04/21/15	18587	18587	18000

		Adjusted	Total	Hexavalent
Well		Chromium	Chromium	Chromium
Name	Sample Date	Value	(ug/l)	(ug/l)
	07/13/09	30	30	50
MW-19A	07/28/09	40	40	40
	10/11/09	3	3	<3.0
	01/19/10	4.3	4.3	<3.0
	04/13/10	8.2	8.2	<3.0
	07/29/10	3	3	<3.0
	10/19/10	1	1	<3.0
	01/13/11	1	1	1
	04/27/11	3	3	3
	07/19/11	143	143	<3
	10/11/11	4	4	4
	01/10/12	4	4	<3.0
	04/10/12	1.8	1.8	<3.0
	08/08/12	6100	6100	5400
	10/09/12	22	22	40
	01/08/13	8.1	8.1	<3.0
	04/15/13	500	500	<3.0
	04/09/14	1.8	1.8	<1.8
	07/08/14	3.8	3.8	<3
	10/14/14	4	4	<3
	01/13/15	321	321	<3
	04/21/15	1.5	1.5	<1.5
	06/02/14	338000	338000	338000
MW-20	07/08/14	283000	283000	89000
10100-20	10/14/14	330000	330000	297000
	01/13/15	199000	199000	155000
	04/21/15	248900	248900	248900
	07/21/1J	270300	270300	270300
	06/02/14	1200	1200	1060
MW-20A	07/08/14	230	230	15
	10/14/14	117	117	<3
	01/13/15	11	11	<3
	04/21/15	1.1	1.1	<1.1

Well Name	Sample Date	Adjusted Chromium Value	Total Chromium (ug/l)	Hexavalent Chromium (ug/l)
MW-21	06/02/14	2.6	2.6	<30
	07/08/14	210	210	<3
	10/14/14	0.05	<0.1	<3
	01/13/15	0.63	0.63	<3
	04/21/15	5.9	5.9	<3.0
MW-21A	06/02/14	1.8	1.8	<30
	07/08/14	1.1	1.1	<3
	10/14/14	0.05	<0.1	<3
	01/13/15	0.05	<0.1	<3
	04/21/15	0.54	0.54	<0.54

		Manhole		•
	Manhole	(French Drain)	Sump	Sump
	(French Drain)	Hexavalent	Total	Hexavalent
	Total Chromium	Chromium	Chromium	Chromium
Date	ug/l	ug/l	ug/l	ug/l
1989*			9,700	
1990*			129,000	
1991*			94,000	
1992*	125,000		101,000	
1993*	71,000		72,000	
1994*	58,000		76,000	
1995*	36,000		88,000	
1996*	44,000		35,000	
1997*	32,000		41,000	
1998*	37,000		61,000	
12/9/1999	21,000		76,000	
3/8/2000	13,000		33,000	
1/17/2001	20,000		6,000	
2/15/2001	11,000		35,000	
3/15/2001	19,000		38,000	
4/6/2001	8,300		21,000	
5/18/2001	15,000		48,000	
6/18/2001	15,000		51,000	
7/20/2001	31,000		74,000	
8/14/2001	17,000		70,000	
9/18/2001	16,000		55,000	
10/16/2001	13,000		38,000	
11/12/2001	17,000		53,000	
12/25/2001	15,000		39,000	
1/11/2002	15,000		54,000	
2/12/2002	16,000		43,000	
3/13/2002	11,000		27,000	
4/18/2002	11,000		17,000	
5/20/2002	17,000		49,000	
6/20/2002	14,000		35,000	
7/15/2002	16,000		61,000	
8/15/2002	19,000		63,000	
9/18/2002	13,000		61,000	
10/30/2002	18,000		12,000	
11/20/2002	13,000		38,000	
12/12/2002	13,000		44,000	
1/20/2003	16,000		47,000	
2/19/2003	22,000		37,000	
3/17/2003	9000		30,000	

		Manhala		
	Manhole	Manhole (French Drain)	Sump	Sumn
		(French Drain) Hexavalent	Sump Total	Sump Hexavalent
	(French Drain) Total Chromium	Chromium	Chromium	Chromium
D. ()				
Date	ug/l	ug/l	ug/l	ug/l
4/16/2003	8,800		5,300	
5/28/2003	11,000		32,000	
6/10/2003	10,000		66,000	
7/10/2003	9,600		27,000	
8/20/2003	13,000		55,000	
9/12/2003	16,000		64,000	
10/7/2003	9,800		32,000	
11/18/2003	8,100		29,000	
12/8/2003	8,700		31,000	
1/30/2004	9,700		44,000	
2/12/2004	11,260		42,175	
3/25/2004	9,200		55,000	
4/19/2004	13,000	14,000	41,000	41,000
5/10/2004	10,000		17,000	
6/14/2004	5,400	5,000	16,000	15,000
7/19/2004	8,700	8,700	52,000	52,000
8/17/2004	11,000	10,000	79,000	66,000
9/14/2004	12,000	12,000	76,000	43,000
10/11/2004	9,900	8,900	80,000	73,000
11/16/2004	11,000	10,500	55,000	53,000
12/8/2004	15,000		7,700	
1/12/2005	8,900	7,200	33,000	13,100
2/16/2005	6,200	5,600	25,000	22,000
3/7/2005	9,900	8,500	9,800	7,600
4/11/2005	5,700	5,800	33,000	31,000
5/18/2005	12,000	9,200	33,000	33,000
6/13/2005	11,000	8,000	42,000	42,000
7/18/2005	10,000	10,000	82,000	40,000
8/19/2005	10,000	9,500	76,000	80,000
9/15/2005	8,900	7,600	64,000	60,000
10/11/2005	8,100	7,400	46,000	46,000
11/16/2005	8,200	6,500	14,000	13,000
12/15/2005	7,900	7,000	43,000	40,000
1/10/2006	5,600	5,100	17,000	15,000
02/01/06	7,000	5,800	15,000	14,000
03/13/06	3,800	3,400	9,000	7,200
04/11/06	8,000	8,000	25,000	23,900
05/17/06	6,800	6,800	23,000	23,000
06/21/06	6,900	6,800	66,000	67,000
07/27/06	7,400	7,200	67,000	67,000
08/11/06	11,000	9,800	80,000	59,000
09/12/06	6,800	6,000	19,000	17,000

		Manhole		
	Manhole	(French Drain)	Sump	Sump
		(French Drain) Hexavalent	Sump Total	Hexavalent
	(French Drain) Total Chromium	Chromium	Chromium	Chromium
Date	ug/l	ug/l	ug/l	ug/l
10/18/06	8,200	6,500	9,100	6,900
11/14/06	7,800	4,200	47,000	22,900
12/13/06	7,800	7,000	32,000	26,000
01/09/07	6,900	6,900	32,000	32,000
02/14/07	7,100	6,900	48,000	48,000
03/06/07	5,100	4,500	29,000	29,000
04/29/07	7,500	7,400	31,000	16,200
05/14/07	8,400	6,600	45,000	17,800
06/17/07	7,600	3,900	18,000	9,800
07/24/07	8,000	7,300	103,000	103,000
08/09/07	11,000	8,200	95,000	95,000
09/20/07	7,100	6,200	58,000	50,000
10/24/07	5,800	5,600	22,000	18,700
11/27/007	6,400	4,000	65,000	26,500
12/12/07	5,500	4,700	60,000	60,000
01/16/08	4,700	3,700	25,000	27,000
02/07/08	6,000	4,300	45,000	9,600
03/05/08	6,100	5,600	15,000	9,600
04/23/08	5,900	5,100	48,000	48,000
05/21/08	5,900	1,500	49,000	25,000
06/16/08	4,900	3,900	34,000	23,000
07/15/08	6,600	3,900	68,000	52,000
08/21/08	7,500	6,200	94,000	69,000
09/09/08	5,565	4,600	94,800	64,000
10/23/08	5,900	4,700	89,000	88,000
11/20/08	6,400	3,600	48,000	21,000
12/16/08	4,900	3,700	21,000	8,900
01/22/09	5,200	3,200	40,000	18,000
02/10/09	5,200	3,600	5,800	4,000
03/16/09	3,100	1,700	8,900	3,800
04/07/09	3,900	2,800	33,000	15,000
05/12/09	3,400	1,600	41,000	19,000
06/17/09	3,200	2,300	47,000	39,000
07/07/09	6,000	4,000	91,000	49,000
08/11/09	4,900	3,500	95,000	94,000
09/08/09	7,200	2,900	99,000	61,000
10/08/09	7,800	3,100	38,000	15,000
11/10/09	4,900	4,400	49,000	42,000
12/15/09	5,000	3,600	47,000	17,000

		Manhole		
	Manhole	(French Drain)	Sump	Sump
	(French Drain)	Hexavalent	Total	Hexavalent
	Total Chromium	Chromium	Chromium	Chromium
Date	ug/l	ug/l	ug/l	ug/l
	•	-	-	
01/19/10	5,300	5,300	43,000	44,000
02/09/10	4,400	4,100	36,000	31,000
03/15/10	2,000	1,800	19,000	16,000
04/13/10	3,900	2,800	31,000	20,000
05/11/10	5,000	4,200	23,000	20,000
06/08/10	5,500	5,100	52,000	42,000
07/14/10	5,800	3,800	66,000	27,000
08/24/10	7,700	2,700	66,000	26,000
09/15/10	5,700	2,900	85,000	39,000
10/19/10	5,800	2,300	81,000	62,000
11/04/10	5,000	3,500	53,000	53,000
12/14/10	4,800	3,000	49,000	65,000
01/13/11	320	3,200	39,000	36,000
02/08/11	5,700	4,000	46,000	43,000
03/15/11	3,500	3,300	9,500	7,100
04/27/11	2,400	2,400	20,000	20,000
05/16/11	5,500	5,300	25,000	25,000
06/07/11	5,500	5,200	56,000	62,000
07/19/11	4,200	3,600	105,000	51,000
08/23/11	4,900	4,100	98,000	89,000
09/13/11	5,300	3,900	100,000	61,000
10/11/11	31,000	26,000	88,000	72,000
11/08/11	4,300	2,800	54,000	39,000
12/13/11	3,600	3,400	57,000	52,000
01/10/12	5,400	3,800	60,000	49,000
02/14/12	420	360	41,000	39,000
03/13/12	2,000	1,500	20,000	18,000
04/10/12	4,800	4,200	44,000	32,000
05/22/12	5,300	5,100	84,000	37,000
06/18/12	5,000	4,400	111,000	88,000
07/18/12	4,800	4,200	122,000	90,000
08/08/12	6,100	5,500	63,000	18,000
09/11/12	4,100	4,100	101,000	92,000
10/09/12	620	505	89,000	92,000
11/20/12	3,500	3,400	43,000	44,000
12/18/12	3,600	3,200	30,000	30,000

			· · · · ·				
		Manhole					
	Manhole	(French Drain)	Sump	Sump			
	(French Drain)	Hexavalent	Total	Hexavalent			
	Total Chromium	Chromium	Chromium	Chromium			
Date	ug/l	ug/l	ug/l	ug/l			
01/08/13	<30	<3	41,000	33,000			
02/11/13	3,300	3,000	13,000	14,000			
03/12/13	2,600	2,200	12,000	7,500			
04/15/13	3,900	3,490	25,000	25,000			
05/07/13	3,900	3,900	38,000	35,000			
06/20/13	3,900	3,900	48,000	50,000			
07/10/13	4,300	4,300	9,000	41,506			
08/20/13	5,100	5,000	84,000	80,000			
09/19/13	6,000	6,000	76,000	76,000			
10/14/13	3,800	3,800	75,000	85,000			
11/12/13	3,900	3,700	27,000	29,000			
12/17/13	3,700	3,500	46,000	48,000			
01/15/14	170	126	27,000	27,600			
02/18/14	12,000	2,900	39,000	38,000			
03/11/14	2,300	2,400	7,300	6,100			
04/09/14	1,900	1,570	19,000	17,000			
05/12/14	2,200	2,200	4,400	4,400			
06/02/14	1,500	1,500	7,000	6,800			
07/08/14	3,800	3,200	27,000	27,000			
08/05/14	4,200	3,300	64,000	41,000			
09/09/14	4,700	4,000	67,000	61,000			
10/16/14	3,300	3,300	8,000	6,800			
11/4/14	2,600	2,600	37,000	37,000			
12/16/14	3000	2700	15000	12000			
1/13/15	2400	2100	36000	31000			
2/10/15	3200	2500	39000	33000			
3/10/15	2700	2400	25000	18000			
4/21/15	1800	1600	16000	4400			
5/18/15	2700	1800	1900	8600			
6/9/15	1900	1700	56000	9100			
** Entimated result based	on Encham Laborator	v Poport					
** Estimated result based on Enchem Laboratory Report* Number are average over 1-year.							
Max. Contaminant Level	100		100				
NR 140.10 ES	100 100						
NR 140.10 PAL	10	10					
102	Indicates exceedance of NR 140.10 ES & PAL						
14	Indicates exceedance of NR 140.10 PAL						

Table #6Groundwater ElevationsAppleton Wire Former Albany International Chrome Plant

		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
	7/23/99	6.61	(************	763.40	
MW-1	10/19/99	9.10	770.01	760.91	757.96
	1/10/00	10.03	110.01	759.98	101.00
	4/17/00	8.05		761.96	
	7/20/00	9.44		760.57	
	10/25/00	9.98		760.03	
	1/17/01	10.38		759.63	
	4/6/01	6.70		763.31	
	7/20/01	9.28		760.73	
	10/16/01	9.03		760.98	
	1/14/02	9.70		760.31	
	4/18/02	6.98		763.03	
	8/13/02	9.69		760.32	
	10/30/02	9.04		760.97	
	1/20/03	10.55		759.46	
	4/16/03	6.62		763.39	
	7/10/03	10.73		759.28	
	10/7/03	8.72		761.29	
	1/30/04	9.55		760.46	
	4/19/04	8.15		761.86	
	7/26/04	9.01		761.00	
	10/11/04	10.13		759.88	
	10/19/04	10.21		759.80	
	1/12/05	8.72		761.29	
	4/11/05	7.42		762.59	
	7/18/05	9.52		760.49	
	10/11/05	8.55		761.46	
	1/10/06	8.04		761.97	
	4/11/06	8.75		761.26	
	7/27/06	9.97		760.04	
	10/18/06	7.50		762.51	
	1/9/07	7.75		762.26	
	4/29/07	7.71		762.30	
	7/24/07	9.66		760.35	
	10/24/07	7.11		762.90	
	1/16/08	7.51		762.50	
	4/23/08	7.58		762.43	
	7/15/08	5.31		764.70	
	10/23/08	8.97		761.04	
	1/22/09	10.00		760.01	
	4/7/09 7/7/00	8.18		761.83	
	7/7/09	9.30		760.71	
	7/28/09	9.98		760.03	
	10/11/09	7.98 9.48		762.03	
	1/19/10 4/13/10	9.48 8.21		760.53 761.80	
	4/13/10 7/29/10	8.21 9.28		761.80	
	10/19/10	9.28 7.31		760.73 762.70	
	10/19/10	1.31		102.10	

		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
	1/13/11	7.94		762.07	
MW-1 Cont.	4/27/11	6.86		763.15	
	7/19/11	5.51		764.50	
	10/11/11	7.41		762.60	
	1/10/12	9.32		760.69	
	4/10/12	8.45		761.56	
	8/8/12	9.88		760.13	
	10/9/12	9.83		760.18	
	1/18/13	9.17		760.84	
	4/15/13	7.30		762.71	
	7/10/13	8.22		761.79	
	11/14/13	9.32		760.69	
	1/15/14	10.32		759.69	
	4/9/14	7.42		762.59	
	6/2/14	8.16		761.85	
	7/8/14	7.80		762.21	
	10/14/14	8.18		761.83	
	1/13/15	9.22		760.79	
	4/21/15	8.68		761.33	
	7/23/99	6.50		764.26	
MW-2	10/19/99	8.72	770.76	762.04	759.04
	1/10/00	9.05		761.71	
	4/17/00	8.21		762.55	
	7/20/00	8.95		761.81	
	10/25/00	8.72		762.04	
	1/17/01	7.62		763.14	
	4/6/01	7.27		763.49	
	7/20/01 10/16/01	8.03		762.73	
	1/14/02	8.80 9.11		761.96 761.65	
	4/18/02	9.11 6.84		761.65	
	4/18/02 8/13/02	0.84 8.86		763.92	
	10/30/02	7.98		762.78	
	1/20/03	10.01		760.75	
	4/16/03	6.64		764.12	
	7/10/03	9.15		761.61	
	10/7/03	7.71		763.05	
	1/30/04	9.05		761.71	
	4/19/04	7.71		763.05	
	7/26/04	8.61		762.15	
	10/11/04	9.51		761.25	
	10/19/04	9.58		761.18	
	1/12/05	7.88		762.88	
	4/11/05	7.86		762.90	
	7/18/05	9.05		761.71	
	10/11/05	8.08		762.68	
	1/10/06	6.70		764.06	

		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
	4/11/06	7.44		763.32	
MW-2 Cont.	7/27/06	9.30		761.46	
	10/18/06	8.22		762.54	
	1/9/07	7.17		763.59	
	4/29/07	7.52		763.24	
	7/24/07	9.03		761.73	
	10/24/07	6.81		763.95	
	1/16/08	6.20		764.56	
	4/23/08	6.45		764.31	
	7/15/08	4.18		766.58	
	10/23/08	8.81		761.95	
	1/22/09	8.53		762.23	
	4/7/09	6.42		764.34	
	7/7/09	8.90		761.86	
	7/28/09	9.18		761.58	
	10/11/09	7.72		763.04	
	1/19/10	8.42		762.34	
	4/13/10	8.31		762.45	
	7/29/10	9.00		761.76	
	10/19/10	5.00 7.03		763.73	
	1/13/11	8.81		761.95	
	4/27/11	7.51		763.25	
	7/19/11	4.41		766.35	
	10/11/11	7.20		763.56	
	1/10/12	8.70		762.06	
	4/10/12	7.54		762.00	
	8/8/12	7.54 8.57		762.19	
	10/9/12	8.57 9.21		762.19	
	1/8/13	9.21 8.20		762.56	
	4/15/13	8.20 5.30		762.56	
	7/10/13	7.42		763.34	
	10/14/13	8.71		763.34 762.05	
	1/15/14			762.05	
	4/9/14	8.98 6.53		764.23	
	4/9/14 6/2/14	0.55 7.10			
	6/2/14 7/8/14	7.10 7.48		763.66 763.28	
	7/8/14 10/14/14	7.48 7.82			
	1/13/15	7.82 8.52		762.94 762.24	
	4/21/15	6.63		762.24	
	4/21/13	0.03		704.13	
	7/23/99	15.42		755.22	
MW-2A	10/19/99	15.44	770.64	755.20	733.72
	1/10/00	15.78		754.86	
	4/17/00	16.23		754.41	
	7/20/00	17.27		753.37	
	10/25/00	15.32		755.32	
	1/17/01	15.70		754.94	
	4/6/01	16.04		754.60	

		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
	7/20/01	15.81	· · /	754.83	-
MW-2A Cont.	10/16/01	15.72		754.92	
	1/14/02	16.78		753.86	
	4/18/02	15.45		755.19	
	8/13/02	16.28		754.36	
	10/30/02	15.35		755.29	
	1/20/03	14.31		756.33	
	4/16/03	16.10		754.54	
	7/10/03	16.44		754.20	
	10/7/03	15.56		755.08	
	1/30/04	15.75		754.89	
	4/19/04	15.82		754.82	
	7/26/04	15.93		754.71	
	10/11/04	16.25		754.39	
	10/19/04	16.25		754.39	
	1/12/05	15.30		755.34	
	4/11/05	15.86		754.78	
	7/18/05	16.62		754.02	
	10/11/05	15.45		755.19	
	1/10/06	14.92		755.72	
	4/11/06	15.79		754.85	
	7/27/06	16.67		753.97	
	10/18/06	15.88		754.76	
	1/9/07	15.26		755.38	
	4/29/07	16.02		754.62	
	7/24/07	16.60		754.04	
	10/24/07	15.07		755.57	
	1/16/08	14.33		756.31	
	4/23/08	15.26		755.38	
	7/15/08	14.03		756.61	
	10/23/08	15.86		754.78	
	1/22/09	16.66		753.98	
	4/7/2009	6.21		764.43	
	7/7/09	16.97		753.67	
	7/28/09	16.48		754.16	
	10/11/09	15.74		754.90	
	1/19/10	15.39		755.25	
	4/13/10	15.55		755.09	
	7/29/10	15.55		755.09	
	10/19/10	13.62		757.02	
	1/13/11	17.13		753.51	
	4/27/11	16.22		754.42	
	7/19/11	15.21		755.43	
	10/11/11	14.16		756.48	
	1/10/12	15.03		755.61	
	4/10/12	15.32		755.32	
	8/8/12	16.54		754.10	
	10/9/12	15.41		755.23	

		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
	1/8/13	14.84		755.80	-
MW-2A Cont.	4/15/13	14.57		756.07	
	7/10/13	15.20		755.44	
	10/14/13	15.20		755.44	
	1/15/14	15.22		755.42	
	4/9/14	15.12		755.52	
	6/2/14	15.18		755.46	
	7/8/14	15.11		755.53	
	10/14/14	14.63		756.01	
	1/13/15	14.63		756.01	
	4/21/15	15.23		755.41	
	7/23/99	5.22		765.94	
MW-5	10/19/99	7.34	771.16	763.82	756.73
	1/10/00	10.41		760.75	
	4/17/00	7.17		763.99	
	7/20/00	6.71		764.45	
	10/25/00	7.69		763.47 764.08	
	1/17/01 4/6/01	7.08 6.05		764.08 765.11	
	4/6/01 7/20/01	8.20		765.11 762.96	
	10/16/01	6.96		762.90	
	1/14/02	10.14		761.02	
	4/18/02	6.30		764.86	
	8/13/02	8.02		763.14	
	10/30/02	6.78		764.38	
	1/20/03	9.90		761.26	
	4/16/03	6.04		765.12	
	7/10/03	9.18		761.98	
	10/7/03	5.99		765.17	
	1/30/04	10.36		760.80	
	4/19/04	6.56		764.60	
	7/26/04	8.22		762.94	
	10/11/04	10.73		760.43	
	10/19/04	10.81		760.35	
	1/12/05	8.21		762.95	
	4/11/05	6.65		764.51	
	7/18/05	8.89		762.27	
	10/11/05	6.55 5.06		764.61	
	1/10/06 4/11/06	5.96 6.40		765.20 764.76	
	4/11/06 7/27/06	6.40 10.26		760.90	
	10/18/06	6.65		764.51	
	1/9/07	6.48		764.68	
	4/29/07	5.86		765.30	
	7/24/07	9.63		761.53	
	10/24/07	5.84		765.32	
	1/16/08	5.35		765.81	

		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
			(10 10)	. ,	
	4/23/08	5.85		765.31	
MW-5 Cont.	7/15/08	3.80		767.36	
	10/23/08	8.95		762.21	
	1/22/09	6.84		764.32	
	4/7/2009	6.04		765.12	
	7/7/09	8.90		762.26	
	7/28/09	10.33		760.83	
	10/11/09	6.27		764.89	
	1/19/10	11.25		759.91	
	4/13/10	5.50		765.66	
	7/29/10	10.13		761.03	
	10/19/10	8.44		762.72	
	1/13/11	7.17		763.99	
	4/27/11	6.20		764.96	
	7/19/11	4.16		767.00	
	10/11/11	8.50		762.66	
	1/10/12	8.79		762.37	
	4/10/12	8.82		762.34	
	8/8/12	11.72		759.44	
	10/9/12	12.52		758.64	
	1/8/13	8.36		762.80	
	4/15/13	5.39		765.77	
	7/10/13	7.04		764.12	
	10/14/13	11.67		759.49	
	1/15/14	9.74		761.42	
	4/9/14	6.08		765.08	
	6/2/14	5.96		765.20	
	7/8/14	7.69		763.47	
	10/14/14	6.48		764.68	
	1/13/15	8.28		762.88	
	4/21/15	5.48		765.68	
	7/23/99	4.58		765.36	
MW-5A	10/19/99	7.60	769.94	762.34	732.83
	1/10/00	11.26		758.68	
	4/17/00	4.47		765.47	
	7/20/00	5.27		764.67	
	10/25/00	6.62		763.32	
	1/17/01	3.72		766.22	
	4/6/01	3.47		766.47	
	7/20/01	6.05		763.89	
	10/16/01	6.02		763.92	
	1/14/02	11.42		758.52	
	4/18/02	4.00		765.94	
	8/13/02	7.26		762.68	
	10/30/02	5.70		764.24	
	1/20/03	13.86		756.08	
	4/16/03	3.25		766.69	

		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
	7/10/03	9.33	· · · ·	760.61	· ·
MW-5A Cont.	10/7/03	11.34		758.60	
	1/30/04	13.71		756.23	
	4/19/04	4.10		765.84	
	7/26/04	6.40		763.54	
	10/11/04	10.65		759.29	
	10/19/04	10.93		759.01	
	1/12/05	8.25		761.69	
	4/11/05	4.87		765.07	
	7/18/05	8.70		761.24	
	10/11/05	9.62		760.32	
	1/10/06	4.72		765.22	
	4/11/06	7.10		762.84	
	7/27/06	13.98		755.96	
	10/18/06	10.14		759.80	
	1/9/07	9.56		760.38	
	4/29/07	5.50		764.44	
	7/24/07	10.89		759.05	
	10/24/07	11.40		758.54	
	1/16/08	9.08		760.86	
	4/23/08	7.42		762.52	
	7/15/08	7.01		762.93	
	10/23/08	15.02		754.92	
	1/22/09	15.57		754.37	
	4/7/2009	4.30		765.64	
	7/7/2009	7.46		762.48	
	7/28/2009	10.97		758.97	
	10/11/2009	6.32		763.62	
	1/19/2010	8.90		761.04	
	4/13/2010	5.81		764.13	
	07/29/10	8.31		761.63	
	10/19/10	10.24		759.70	
	01/13/11	14.98		754.96	
	04/27/11	3.72		766.22	
	07/19/11	8.12		761.82	
	10/11/11	9.95		759.99	
	01/10/12	13.08		756.86	
	04/10/12	6.70		763.24	
	08/08/12	14.15		755.79	
	10/09/12	14.04		755.90	
	01/08/13	11.24		758.70	
	04/15/13	4.32		765.62	
	07/10/13	6.77		763.17	
	10/14/13	16.42		753.52	
	01/15/14	13.80		756.14	
	04/09/14	4.40		765.54	
	06/02/14	5.48		764.46	
	07/08/14	6.72		763.22	

		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
	10/14/14	13.73		756.21	
MW-5A Cont.	01/13/15	7.61		762.33	
	04/21/15	4.04		765.90	
	7/23/99	7.48		759.65	
MW-10R	10/19/99	5.72	767.13	761.41	757.51
	1/10/00	6.69		760.44	
	4/17/00	5.28		761.85	
	7/20/00	5.71		761.42	
	10/25/00	5.97		761.16	
	1/17/01 4/6/01	4.91		762.22	
		4.62 6.20		762.51	
	7/20/01 10/16/01	6.20		760.93 760.82	
	1/14/02	6.88		760.82	
	4/18/02	8.13		759.00	
	8/13/02	9.37		757.76	
	10/30/02	7.91		759.22	
	1/20/03	10.11		757.02	
	4/16/03	6.75		760.38	
	7/10/03	10.13		757.00	
	10/7/03	5.78		761.35	
	1/30/04	n/a		n/a	
	4/19/04	5.11		762.02	
	7/26/04	4.91		762.22	
	10/11/04	10.91		756.22	
	10/19/04	11.13		756.00	
	1/12/05	8.63		758.50	
	4/11/05	4.95		762.18	
	7/18/05	6.20		760.93	
	10/11/05	5.23		761.90	
	1/10/06	4.96		762.17	
	4/11/06	3.87		763.26	
	7/27/06	7.17		759.96	
	10/18/06	3.48		763.65	
	1/9/07 4/29/07	3.02 4.89		764.11 762.24	
	4/29/07 7/24/07	4.89 5.01		762.24 762.12	
	10/24/07	5.16		762.12	
	1/16/08	4.45		762.68	
	4/23/08	4.48		762.65	
	7/15/08	3.04		764.09	
	10/23/08	5.03		762.10	
	1122/09	13.22		753.91	
	4/7/09	4.64		762.49	
	7/7/09	6.41		760.72	
	7/28/09	7.21		759.92	
	10/11/09	5.75		761.38	

		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
	1/19/10	7.88		759.25	
MW-10R Cont.	4/13/10	4.84		762.29	
	7/29/10	6.98		760.15	
	10/19/10	5.59		761.54	
	1/13/11	4.80		762.33	
	4/27/11	4.81		762.32	
	7/19/11	3.36		763.77	
	10/11/11	5.68		761.45	
	1/10/12	5.41		761.72	
	4/10/12	5.37		761.76	
	8/8/12	6.01		761.12	
	10/9/12	8.14		758.99	
	1/8/13	8.03		759.10	
	4/15/13	2.32		764.81	
	7/10/13	4.38		762.75	
	10/14/13	5.86		761.27	
	1/15/14	7.92		759.21	
	4/9/14	4.53		762.60	
	6/2/14	4.51		762.62	
	7/8/14	5.54		761.59	
	10/14/14	5.08		762.05	
	1/13/15	6.35		760.78	
	4/21/15	5.02		762.11	
	7/23/99	7.50		764.47	
MW-17	10/19/99	7.50 8.50	771.97	763.47	759.39
10100-17	1/10/00	9.78	111.91	762.19	759.59
	4/17/00	7.41		764.56	
	7/20/00	9.76		762.21	
	10/25/00	8.89		763.08	
	1/17/01	9.12		762.85	
	4/6/01	7.74		764.23	
	7/20/01	9.01		762.96	
	10/16/01	8.53		763.44	
	1/14/02	9.67		762.30	
	4/18/02	8.15		763.82	
	8/13/02	9.04		762.93	
	10/30/02	7.79		764.18	
	1/20/03	10.36		761.61	
	4/16/03	8.94		763.03	
	7/10/03	10.04		761.93	
	10/7/03	7.07		764.90	
	1/30/04	10.79		761.18	
	4/19/04	8.23		763.74	
	7/26/04	9.10		762.87	
	10/11/04	8.62		763.35	
	10/19/04	9.02		762.95	
	1/12/05	9.68		762.29	

		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
			(10 10 1 1 0)	. ,	
MW-17 Cont.	4/11/05	8.27		763.70	
www-17 Cont.	7/18/05	8.32		763.65	
	10/11/05	7.52		764.45	
	1/10/06	8.02		763.95	
	4/11/06	8.18		763.79 763.75	
	7/27/06	8.22			
	10/18/06	7.42		764.55	
	1/9/07	7.68		764.29	
	4/29/07	8.28		763.69	
	7/24/07	8.95		763.02	
	10/24/07	7.12		764.85	
	1/16/08	7.66		764.31	
	4/23/08	7.80		764.17	
	7/15/08	5.97		766.00	
	10/23/08	8.40		763.57	
	01/22/09	10.30		761.67	
	04/07/09	8.00		763.97	
	07/07/09	9.73		762.24	
	07/28/09	9.42		762.55	
	10/11/09	7.73		764.24	
	01/19/10	9.58		762.39	
	04/13/10	6.36		765.61	
	07/29/10	8.61		763.36	
	10/29/10	7.11		764.86	
	01/13/11	8.06		763.91	
	04/27/11	7.92		764.05	
	07/19/11	6.30		765.67	
	10/11/11	7.20		764.77	
	01/10/12	9.25		762.72	
	04/10/12	8.24		763.73	
	08/08/12	8.23		763.74	
	10/09/12	9.46		762.51	
	01/08/13	9.76		762.21	
	04/15/13	7.78		764.19	
	07/10/13	8.18		763.79	
	10/14/13	8.38		763.59	
	01/15/14	9.71		762.26	
	04/09/14	7.90		764.07	
	06/02/14	7.82		764.15	
	07/08/14	7.96		764.01	
	10/14/14	7.96		764.01	
	01/13/15	6.14		765.83	
	04/21/15	6.68		765.29	
	7/23/99	15.02		756.24	
MW-17A	10/19/99	15.38	771.26	755.88	733.85
	1/10/00	16.32		754.94	
	4/17/00	16.89		754.37	

		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
	7/20/00	17.99	、 i	753.27	•
MW-17A Cont.	10/25/00	16.17		755.09	
	1/17/01	17.30		753.96	
	4/6/01	17.88		753.38	
	7/20/01	15.79		755.47	
	10/16/01	16.35		754.91	
	1/14/02	16.40		754.86	
	4/18/02	17.18		754.08	
	8/13/02	17.20		754.06	
	10/30/02	16.11		755.15	
	1/20/03	17.31		753.95	
	4/16/03	18.05		753.21	
	7/10/03	17.31		753.95	
	10/7/03	16.56		754.70	
	1/30/04	16.85		754.41	
	4/19/04	17.45		753.81	
	7/26/04	16.40		754.86	
	10/11/04	16.48		754.78	
	10/19/04	16.40		754.86	
	1/12/05	15.85		755.41	
	4/11/05	16.87		754.39	
	7/18/05	17.01		754.25	
	10/11/05	15.91		755.35	
	1/10/06	16.10		755.16	
	4/11/06	17.15		754.11	
	7/27/06	17.14		754.12	
	10/18/06	16.06		755.20	
	1/9/07	16.18		755.08	
	4/29/07	17.45		753.81	
	7/24/07	17.02		754.24	
	10/24/07	15.69		755.57	
	1/16/08	16.45		754.81	
	4/23/08	16.98		754.28	
	7/15/08	15.93		755.33	
	10/23/08	16.34		754.92	
	01/22/09	16.88		754.38	
	04/07/09	17.08		754.18	
	07/07/09	16.72		754.54	
	07/28/09	17.30		753.96	
	10/11/09	16.46		754.80	
	01/19/10	16.32		754.94	
	04/13/10	16.58		754.68	
	07/29/10	14.28		756.98	
	10/19/10	16.97		754.29	
	01/13/11	17.20		754.06	
	04/27/11	18.02		753.24	
	07/19/11	17.21		754.05	
	10/11/11	16.82		754.44	

		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
Weir Name				. ,	
	01/10/12	15.50		755.76	
MW-17A Cont.	04/10/12	16.16		755.10	
	08/08/12	16.00		755.26	
	10/09/12	15.56		755.70	
	01/08/13	15.60		755.66	
	04/15/13	16.29		754.97	
	07/10/13	15.32		755.94	
	10/14/13	15.32		755.94	
	01/15/14	15.91 16.32		755.35	
	04/09/14	15.48		754.94	
	06/02/14	15.46		755.78 756.05	
	07/08/14	-			
	10/14/14 01/13/15	6.60 15.02		764.66 756.24	
	01/13/15 04/21/15	15.02		756.24 755.18	
	04/21/15	10.00		755.16	
	8/13/02	11.75		758.28	
MW-18	10/30/02	8.92	770.03	761.11	757.23
	1/20/03	13.49		756.54	
	4/16/03	8.50		761.53	
	7/10/03	9.38		760.65	
	10/7/03	8.82		761.21	
	1/30/04	9.91		760.12	
	4/19/04	8.86		761.17	
	7/26/04	9.14		760.89	
	10/11/04	10.80		759.23	
	10/19/04	9.94		760.09	
	1/12/05	9.26		760.77	
	4/11/05	8.97		761.06	
	7/18/05	9.45		760.58	
	10/11/05	8.78		761.25	
	1/10/06	8.29		761.74	
	4/11/06	8.67		761.36	
	7/27/06	9.98		760.05	
	10/18/06	8.78		761.25	
	1/9/07	8.59		761.44	
	4/29/07	8.88		761.15	
	7/24/07	9.48		760.55	
	10/24/07	8.44		761.59	
	1/16/08	8.00		762.03	
	4/23/08	8.30		761.73	
	7/15/08	6.22 8.02		763.81	
	10/23/08	8.92		761.11	
	01/22/09	10.02		760.01	
	04/07/09	8.11		761.92	
	07/07/09 07/28/09	9.48 9.78		760.55 760.25	
	07/28/09 10/11/09	9.78 8.72		760.25 761.31	
	10/11/09	8.72		101.31	

		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
	01/19/10	9.60		760.43	-
MW-18 Cont.	04/13/10	7.80		762.23	
	07/29/10	9.57		760.46	
	10/19/10	8.63		761.40	
	1/13/11	8.35		761.68	
	4/27/11	8.82		761.21	
	7/19/11	6.42		763.61	
	10/11/11	8.60		761.43	
	1/10/12	9.27		760.76	
	4/10/12	8.80		761.23	
	8/8/12	9.31		760.72	
	10/9/12	9.85		760.18	
	1/8/13	9.22		760.81	
	4/15/13	7.06		762.97	
	7/10/13	8.78		761.25	
	10/14/13	9.04		760.99	
	1/15/14	10.35		759.68	
	4/9/14	8.20		761.83	
	6/2/14	8.75		761.28	
	7/8/14	8.62		761.41	
	10/14/14	8.71		761.32	
	1/13/15	9.32		760.71	
	4/21/15	8.00		762.03	
	8/13/02	39.88		730.79	
MW-18A	10/30/02	33.94	770.67	736.73	732.37
	1/20/03	24.89	110101	745.78	102101
	4/16/03	29.10		741.57	
	7/10/03	27.41		743.26	
	10/7/03	28.73		741.94	
	1/30/04	27.76		742.91	
	4/19/04	28.17		742.50	
	7/26/04	28.88		741.79	
	10/11/04	28.40		742.27	
	10/19/04	28.40		742.27	
	1/12/05	27.58		743.09	
	4/11/05	28.04		742.63	
	7/18/05	29.41		741.26	
	10/11/05	28.40		742.27	
	1/10/06	27.38		743.29	
	4/11/06	28.18		742.49	
	7/27/06	26.68		743.99	
	10/18/06	28.51		742.16	
	1/9/07	27.60		743.07	
	4/29/07	28.59		742.08	
	7/24/07	28.90		741.77	
	10/24/07	28.20		742.47	
	1/16/08	28.19		742.48	

		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
	4/23/08	27.87	(742.80	
MW-18A Cont.	7/15/08	25.31		742.80	
WW-TOA COIL.	10/23/08	28.32		743.30	
	1/22/09	20.32		742.35	
	4/7/09	27.05		743.62	
	7/7/09	28.52		742.15	
	7/28/09	28.61		742.06	
	10/11/09	28.37		742.30	
	1/19/10	27.48		743.19	
	4/13/10	27.72		742.95	
	7/29/10	27.93		742.74	
	10/19/10	27.72		742.95	
	1/13/11	29.44		741.23	
	4/27/11	29.44		741.23	
	7/19/11	28.87		741.80	
	10/11/11	28.33		742.34	
	1/10/12	26.43		744.24	
	4/10/12	26.80		743.87	
	8/8/12	27.45		743.22	
	10/9/12	27.97		742.70	
	1/8/13	26.11		744.56	
	4/15/13	26.48		744.19	
	7/10/13	27.18		743.49	
	10/14/13	27.32		743.35	
	1/15/14	26.32		744.35	
	4/9/14	27.03		743.64	
	6/2/14	29.62		741.05	
	7/8/14	28.14		742.53	
	10/14/14	26.88		743.79	
	1/13/15	9.32		761.35	
	4/21/15	26.92		743.75	
	0= 10= 100				
MW-19	07/07/09	8.24	768.19	759.95	758.27
	07/28/09	6.98		761.21	
	10/11/09	15.74		752.45	
	01/19/10 04/13/10	5.20 5.33		762.99	
	04/13/10 07/29/10	5.33 6.57		762.86 761.62	
	07/29/10 10/19/10	6.57 5.50		761.62	
	01/13/11	5.50 7.29		762.89	
	01/13/11 04/27/11	7.29 5.60		760.90	
	07/19/11	5.60 6.63		762.59	
	10/11/11	0.03 5.55		761.56	
	01/10/12	5.55 5.97		762.64	
	01/10/12	5.97 4.78		762.22	
	04/10/12 08/08/12	4.78 6.38		763.41	
	10/09/12	6.70		761.49	
	10/03/12	0.70		101.43	

		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured		(to top PVC)	(feet)	Top of Screen
		(feet)		. ,	Top of Screen
	01/08/13	5.74		762.45	
MW-19 Cont.	04/15/13	2.40		765.79	
	07/10/13	4.25		763.94	
	10/14/13	6.30		761.89	
	01/15/14	6.22		761.97	
	04/09/14	4.47		763.72	
	06/02/14	4.11		764.08	
	07/08/14	4.40		763.79	
	10/14/14	4.70		763.49	
	01/13/15	5.78		762.41	
	04/21/15	4.20		763.99	
	07/07/09	27.72	768.04	740.32	731.10
MW-19A	07/28/09	22.93		745.11	
	10/11/09	18.12		749.92	
	01/19/10	18.36		749.68	
	04/13/10	18.33		749.71	
	07/29/10	18.22		749.82	
	10/19/10	18.40		749.64	
	01/13/11	20.47		747.57	
	04/27/11	18.40		749.64	
	07/19/11	18.44		749.60	
	10/11/11	18.42		749.62	
	01/10/12	16.58		751.46	
	04/10/12	16.98		751.06	
	08/08/12	20.13		747.91	
	10/09/12	16.56		751.48	
	01/08/13	15.40		752.64	
	04/15/13	16.22		751.82	
	07/10/13	16.37		751.67	
	10/14/13	16.83		751.21	
	01/15/14	18.73		749.31	
	04/09/14	17.24		750.80	
	06/02/14	16.80		751.24	
	07/08/14	16.84		751.20	
	10/14/14	16.24		751.80	
	01/13/15	16.23		751.81	
	04/21/15	18.21		749.83	
	0.121/10				
	06/02/14	7.36	768.29	760.93	764.29
MW-20	07/08/14	5.63		762.66	
	10/14/14	5.57		762.72	
	01/13/15	7.91		760.38	
	04/21/15	5.68		762.61	
	0	0.00			
			I		

Well Name	Date Measured	Depth Water (feet)	Reference Elevation (to top PVC)	Groundwater Elevation (feet)	Elevation Top of Screen
MW-20A	06/02/14 07/08/14 10/14/14 01/13/15 04/21/15	32.73 20.88 12.61 17.04 18.06	768.36	735.63 747.48 755.75 751.32 750.30	739.02
MW-21	06/02/14 07/08/14 10/14/14 01/13/15 04/21/15	4.96 5.02 6.82 6.18 5.34	768.85	763.89 763.83 762.03 762.67 763.51	764.8
MW-21A	06/02/14 07/08/14 10/14/14 01/13/15 04/21/15	32.18 16.27 15.98 14.80 15.52	768.85	736.67 752.58 752.87 754.05 753.33	739.85

Table #7

			Yearly	Historic
Year	Sump	Manhole	Total	Total
1988-1998*				550.00
1998**	10.68	13.26	23.94	573.94
1999	21.81	8.4	30.21	604.15
2000	NA	NA	22.00	626.15
2001	18.75	8.69	27.64	653.79
2002	13.1	9.98	23.08	676.87
2003	12.94	4.95	17.89	694.76
2004	12.83	5.29	18.12	712.88
2005	8.07	4.57	12.64	725.52
2006	7.36	4.27	11.63	736.88
2007	11.72	2.87	14.59	751.47
2008	16.40	3.40	19.80	771.27
2009	13.79	2.66	16.45	796.03
2010	17.09	3.36	20.45	816.48
2011	16.26	2.60	18.86	835.34
2012	11.66	2.39	14.05	849.39
2013	8.24	1.78	10.02	859.37
2014	8.10	1.30	9.4	868.77
2015***	4.36	0.41	4.76	473.53
*Chemical Precipitation proces During that period 550# of chro ** Partial Year - Ion exo *** Partial Year NA - Data not available	omium was change Sys	removed in t	he form of	chromium sulfate

Appleton Wire Former Albany international Chrome Plant Total Pounds Chromium Removed

Table #8

Geoprobe Monitoring Wells Groundwater Analytical Results Total Chromium and Hexavalent Chromium

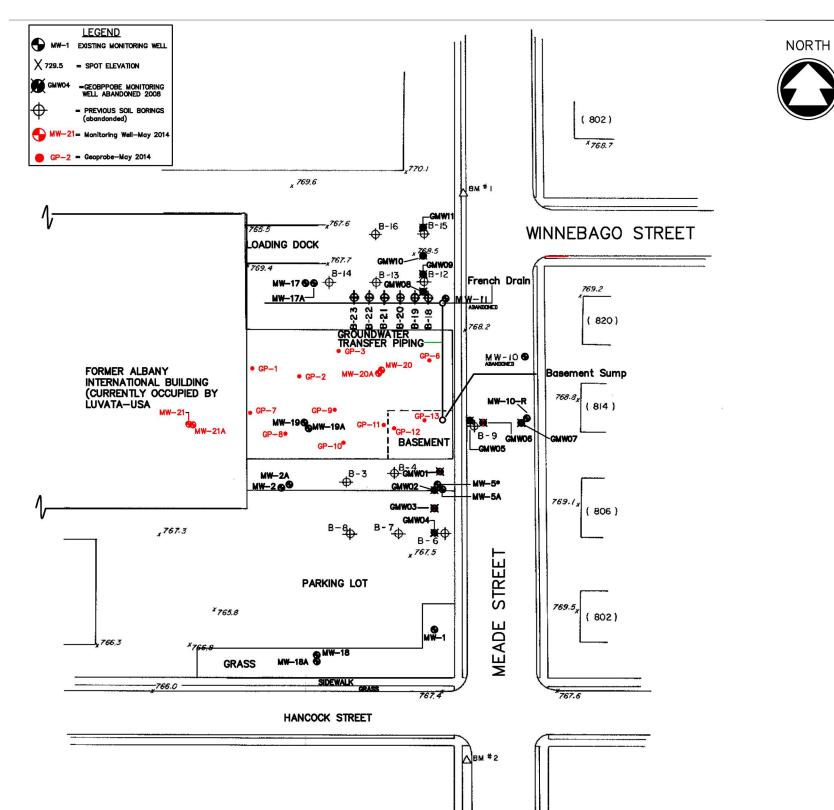
		Total	
		Chromium	Hexavalent Chromium
Well Name	Sample Date	(ug/l)	(ug/l)
GMW-01	06/30/04	5300	5100
	08/01/07	8490	N/A
	10/24/07	3085	1900
	01/16/08	3020	2260
	04/23/08	2001	2000
GMW-02	06/30/04	5700	4700
	08/01/04	6355	N/A
	10/24/07	6115	6115
	01/16/08	7040	6800
	04/23/08	6600	4900
GMW-03	06/30/04	5000	4700
	08/01/04	4790	N/A
	10/24/07	3545	2300
	01/16/08	4550	3100
	04/23/08	3320	1400
GMW-04	06/30/04	52	52
	08/01/04	56	N/A
	10/24/07	14	<2.0
	01/16/08	31	<.002
	04/23/08	3.7	<2.0
	06/30/04	40	34
GMW-05		55	N/A
	08/01/04		
	10/24/07	5.6	<2.0
	01/16/08	8.5	<.002
	04/23/08	31.0	<2.0
GMW-06	06/30/04	3.3	<2
	08/01/04	4.2	N/A
	10/24/07	3.5	<2.0
	01/16/08	3.3	<.002
	04/23/08	5.2	<2.0
GMW-07	06/30/04	0.8	<2
	08/01/04	1.7	N/A
	10/24/07	2.3	<2.0
	01/16/08	13.0	<.002
	04/23/08	3.1	<2.0
GMW-08	06/30/04	0.4	<2
	08/01/04	1.4	N/A
	10/24/07	489.0	270
	01/16/08	8.6	<.002
	04/23/08	101.0	20
GMW-09	06/30/04	1.3	<2
	08/01/04	1.5	N/A
	10/24/07	2.8	<2.0

Table #8

Geoprobe Monitoring Wells Groundwater Analytical Results Total Chromium and Hexavalent Chromium

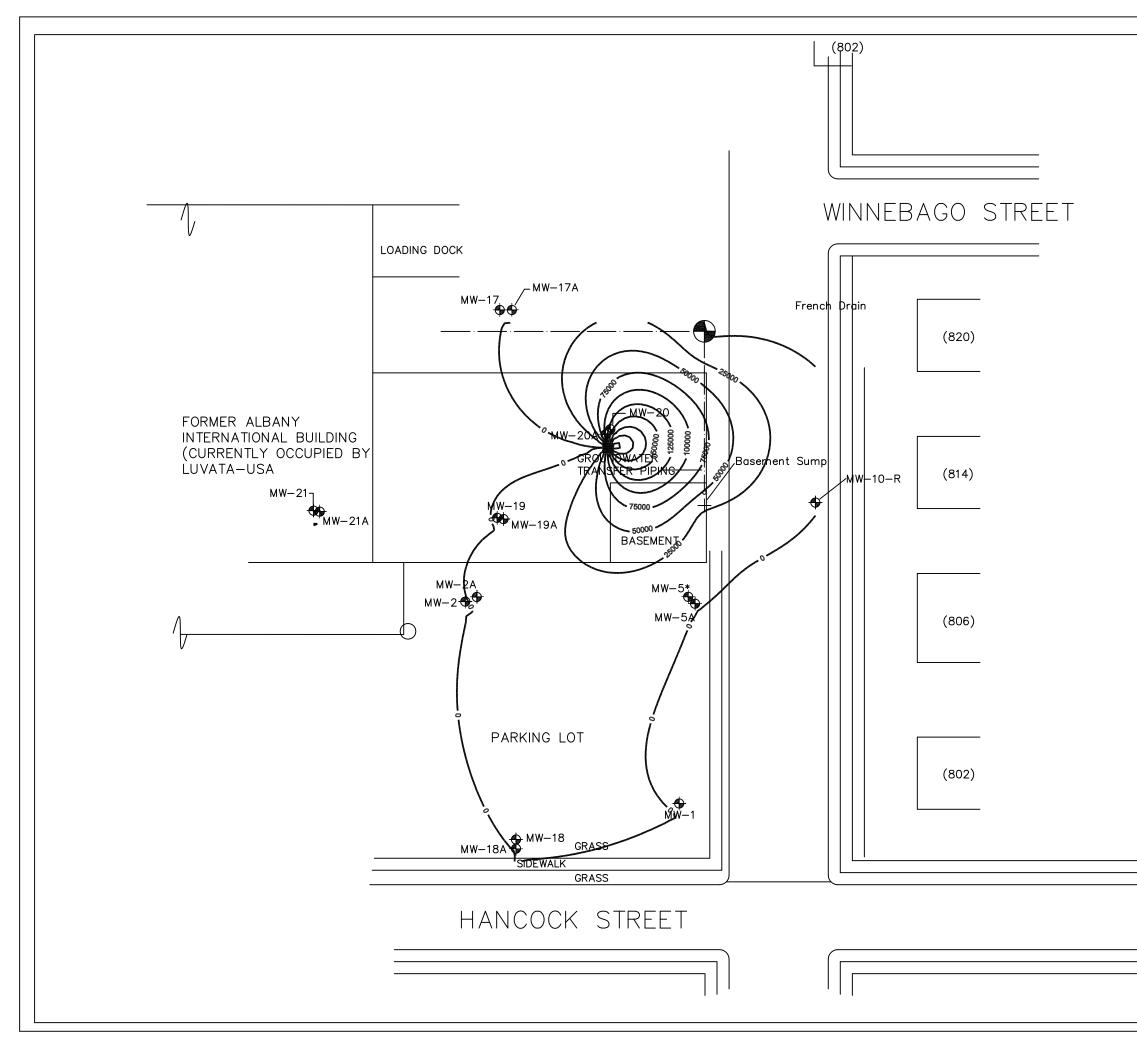
	01/16/08	9.3	<.002
	04/23/08	4.2	<2.0
GMW-10	06/30/04	0.5	<2
	08/01/04	0.6	N/A
	10/24/07	11.0	<2.0
	01/16/08	0.5	<.002
	04/23/08	2.6	<2.0
GMW-11	06/30/04	1.1	<2
	08/01/04	1.9	N/A
	10/24/07	3.6	<2.0
	01/16/08	5.6	<.002
	04/23/08	4.1	<2.0
Enforcement Standard, Chapter NR140		100.0	****
Preventive Action	Limit, Chpater NR 140	10.0	****

Notes

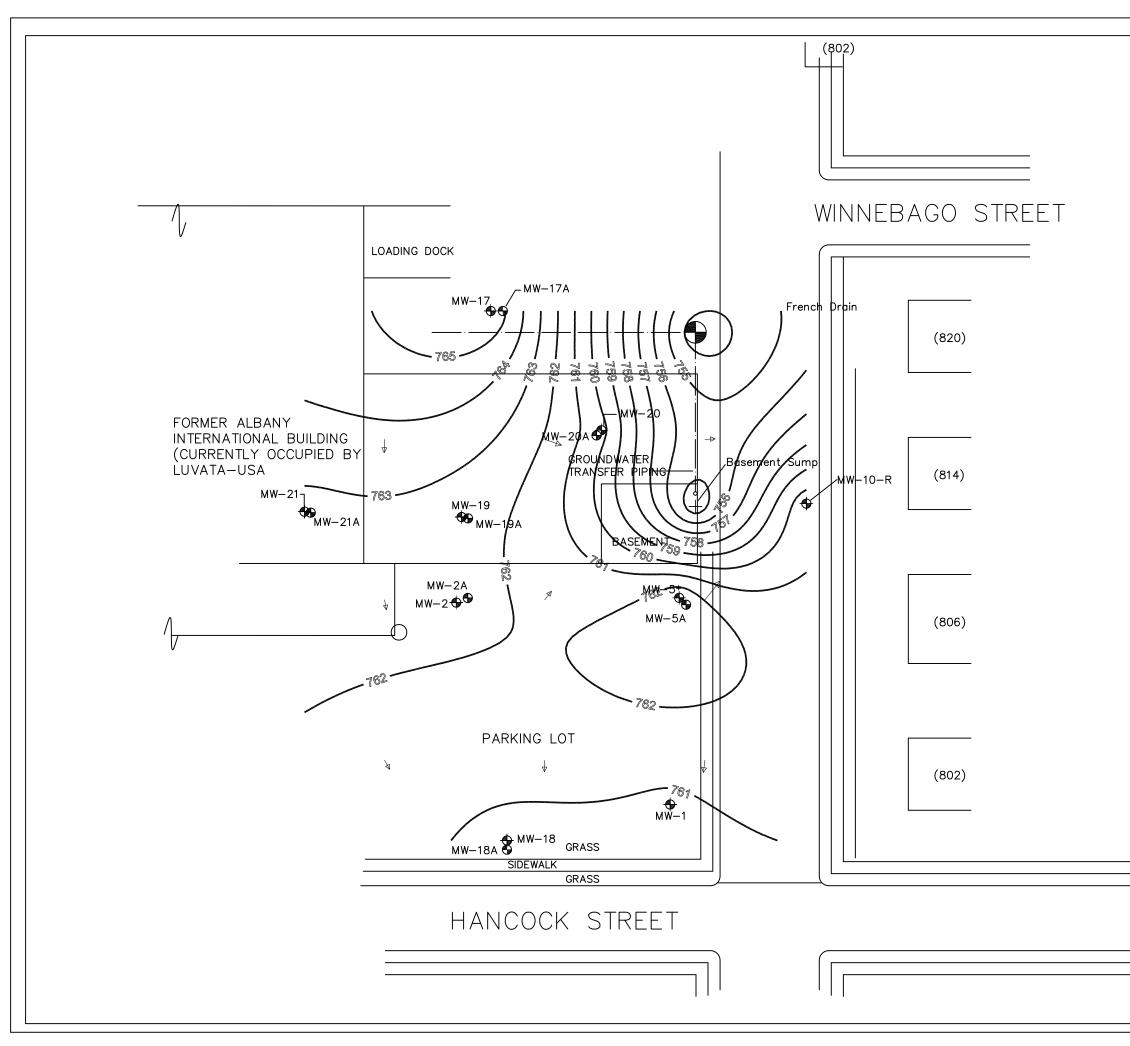

N/A = Not Analyzed

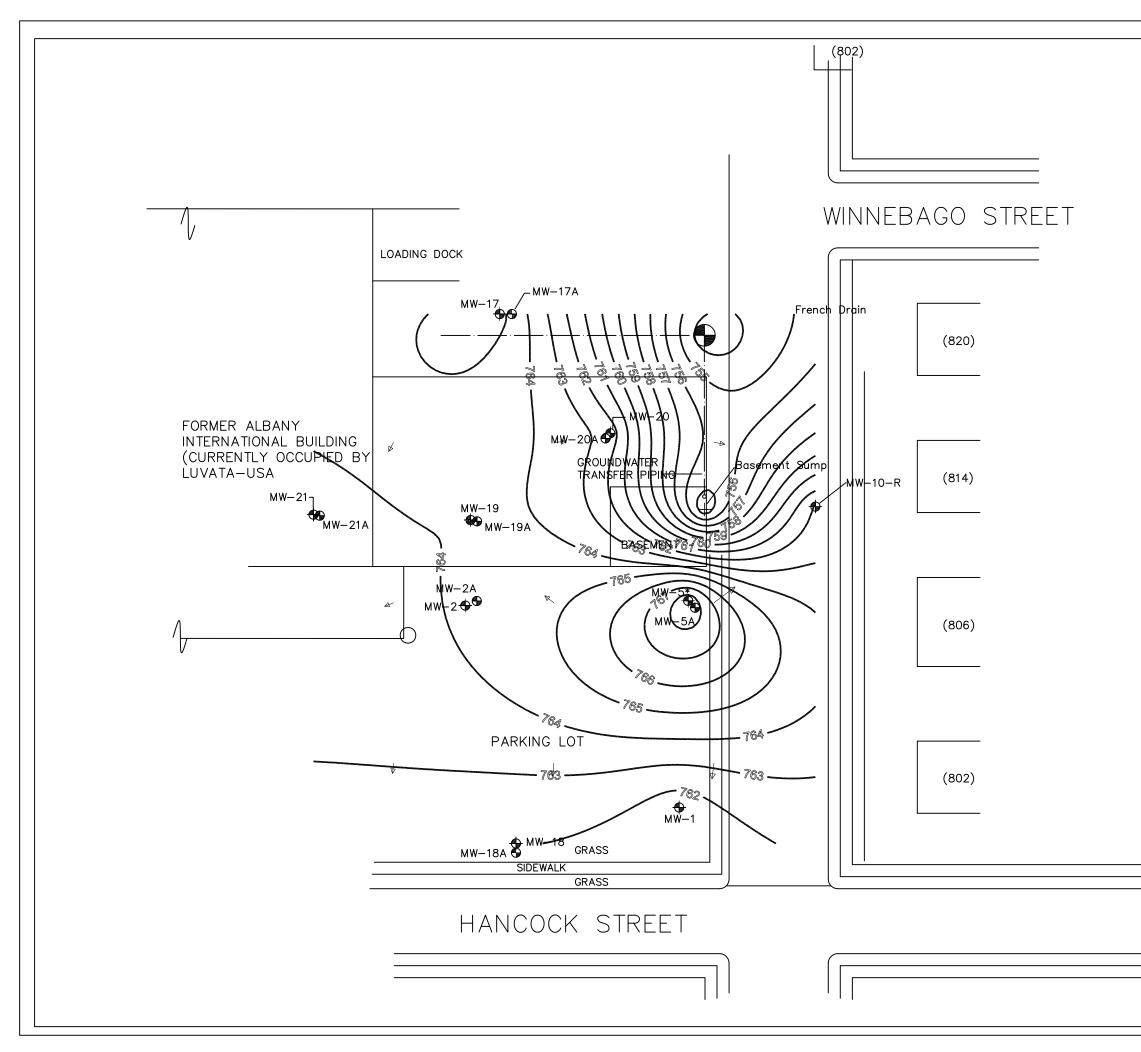
ug/I = Microgram / Liter (ppb)

100 = Exceeds Enforcement Standards (ES), Chapter NR 140of the Wis. Admin. Codes


121 = Exceeds Preventive Action Limit (PAL), Chapter NR 140 of the Wis. Admin. Codes

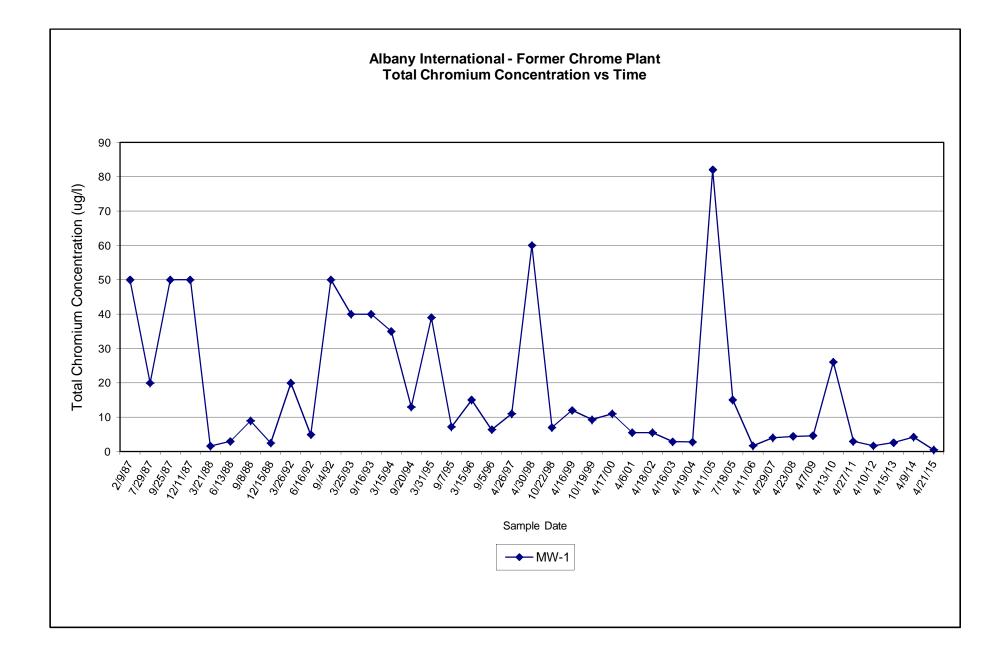
^{**** =} Hexavalent Chromium does not have a State Groundwater Quality Standard. However, Hexavalent Chromium is part of total chromium, which has a State Groundwater Quality Standard.

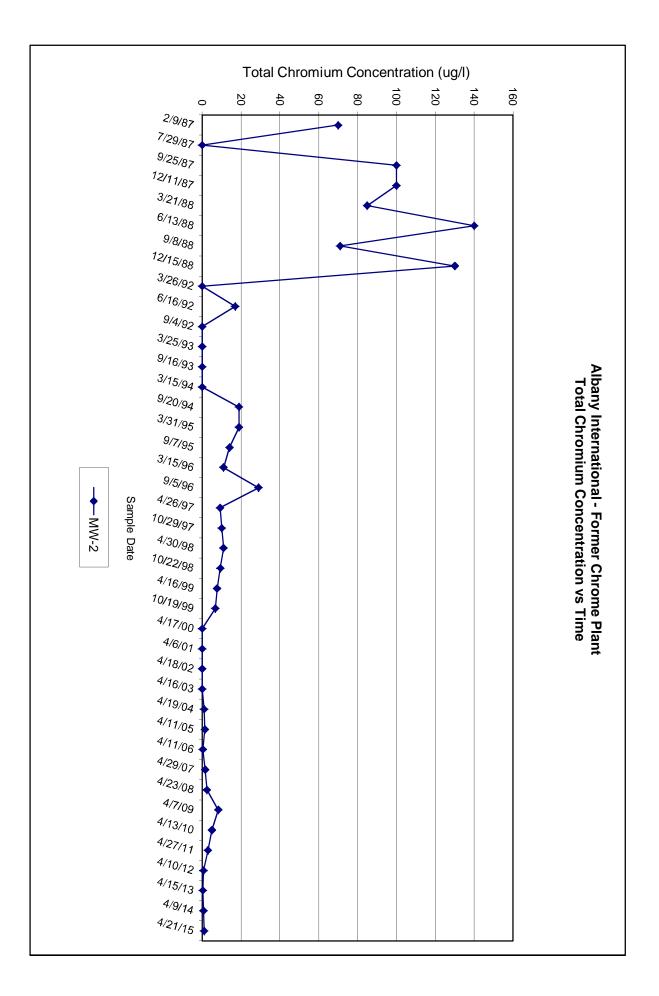


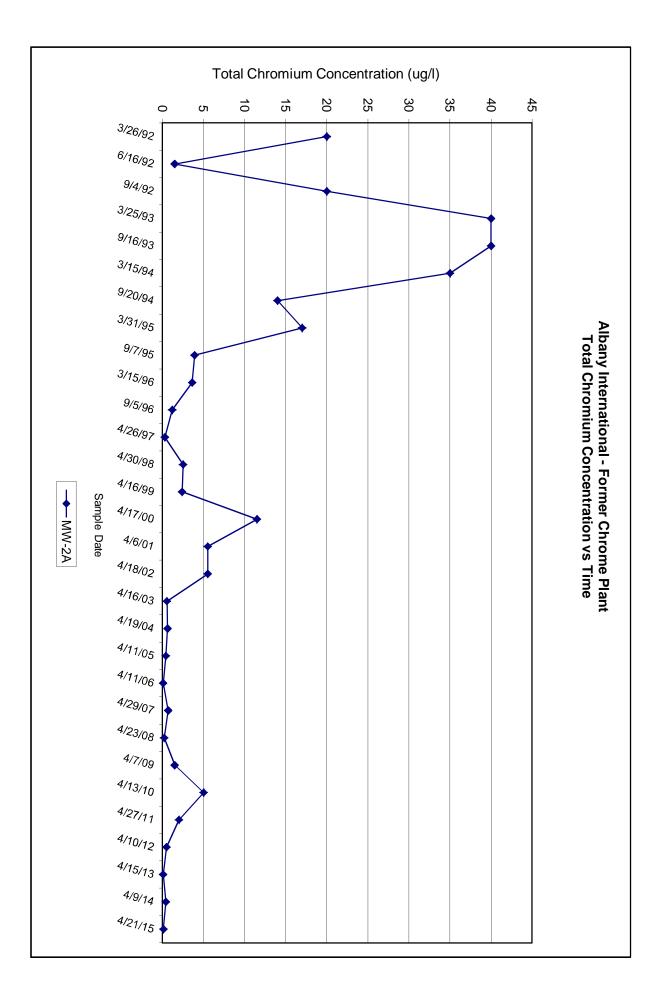

A DATE REMINON	ONDELY 2005 ADDAL		
B	Engineering Co. Inc.	501 W. Bell St., Neenah W 54956	TEL: (820) 729-1100 FAX: (820) 729-1945
AB	This drawing developed from The base drawing provided by	AECOM/STS by Badger Laboratories and Engineering	CHECKED BY Co. Inc.
A8 G3N9530	1 Appleton Wire Former Albany International Towner	Chrome Plant	Site Map with Monitoring Wells Locations
THOM	T = 60		
		 10. 110.	

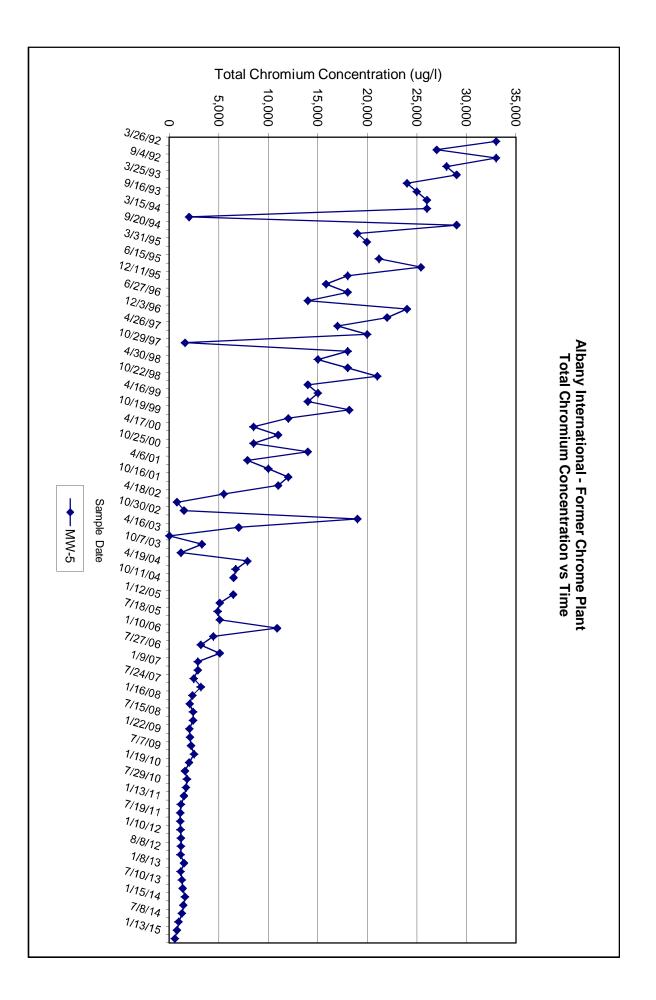
					-	
	REVISION	Overlay 2005 Arerial Photo				
	DATE	8/20/09				
	ġ			<u></u>		
* AS OF 8/13/02 THE DESCRIPTION FOR MW-05 AND MW-05A WERE EXCHANGED NORTH	Badaer Laboratories &	Engineering Co. Inc.		501 W. Bell St., Neenah WI 54956		IEL: (920) /29-1100 FAX: (920) /29-4945
		This drawing developed from	base drawing provided by McMahan Associates Inc. hv	Badger Laboratories and	Engineering Co. Inc.	
	DESIGNED BY		DRAWN BY	_	CHECKED BY	KDC
		Appleton Wire Former Albany International Chrome Plant	Anril 27 2011 Groundwater		iotai unromium isoconcentration map (ug/i)	
0' 10' 20' 30 40' Scale 1" = 40'	SCALE L	NO SCALE		 	O PROJECT NO.	Albany Int. Cr02

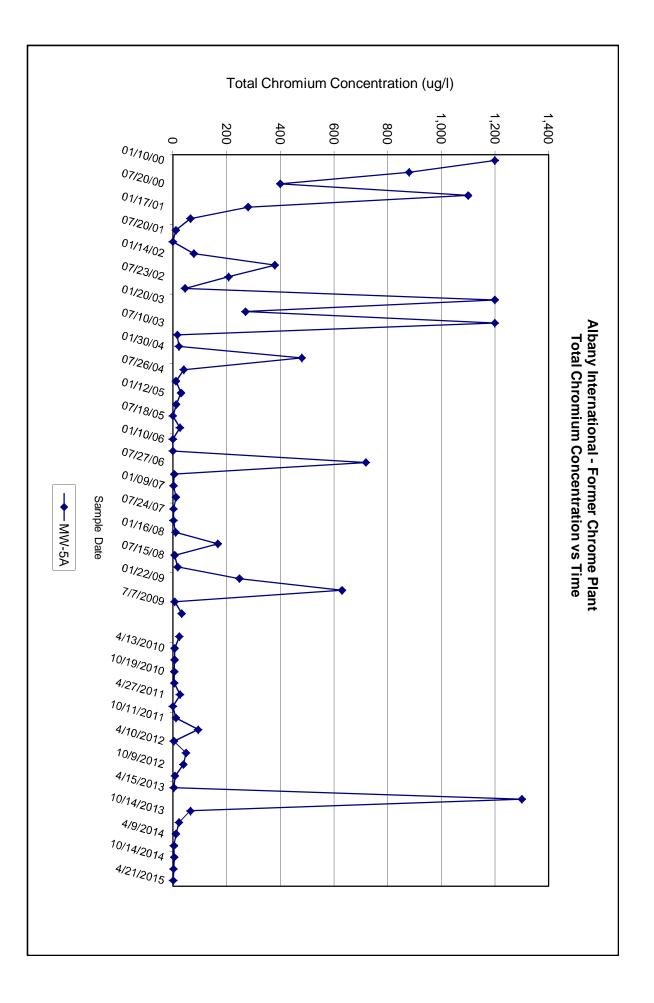
	REVISION	Overlay 2005 Arerial Photo		
	DATE	8/20/09		
	ġ			
* AS OF 8/13/02 THE DESCRIPTION FOR MW-05 AND MW-05A WERE EXCHANGED NORTH	Badaer Laboratories &	Engineering Co. Inc.	501	TEL: (920) 729-1100 FAX: (920) 729-4945
		This drawing developed from	McMahon Associates Inc. by	Engineering Co. Inc.
	DESIGNED BY		DUC DUC	CHECKED BY KDC
				<u> </u>
		Appleton Wire	Former Albany International Chrome Plant	Groundwater Elevation Contours 1/13/2015
0' 10' 20' 30 40' Scale 1" = 40'	H SCALE	TIGU		° ₹
	-			

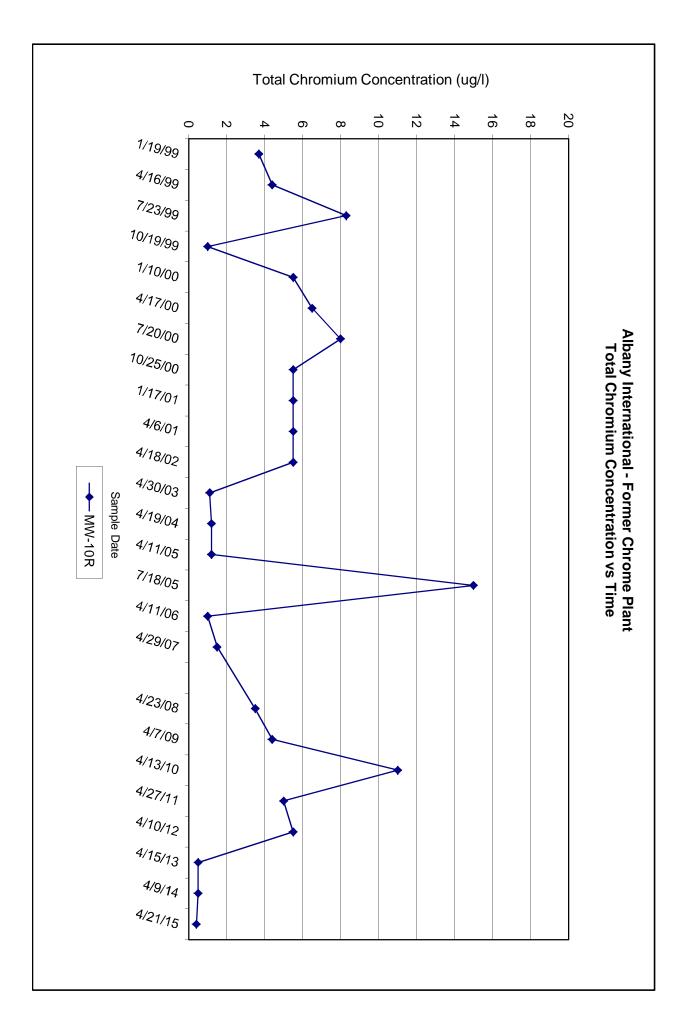

	REVISION Overlay 2005 Averial Photo
* AS OF 8/13/02 THE DESCRIPTION FOR MW-05 AND MW-05A WERE EXCHANGED NORTH	Badger Laboratories & Mo. Date loped from dided by tes inc. Engineering Co. Inc. 9/20/06 seinc. by tes and bic. 51956 Inc. 10/20/06
	DESIGNED BY DRAWN BY DRAWN BY DRAWN BY DCP DC DC Badger Laborationes and CHECKED BY Engineering Co. Inc.
	Appleton Wire Former Albany International Chrome Plant Groundwater Elevation Contours 4/21/2015
0' 10' 20' 30 40'	SCALE No SCALE DATE 4/2/09 PROLECT NO. Abany Int. CrO2

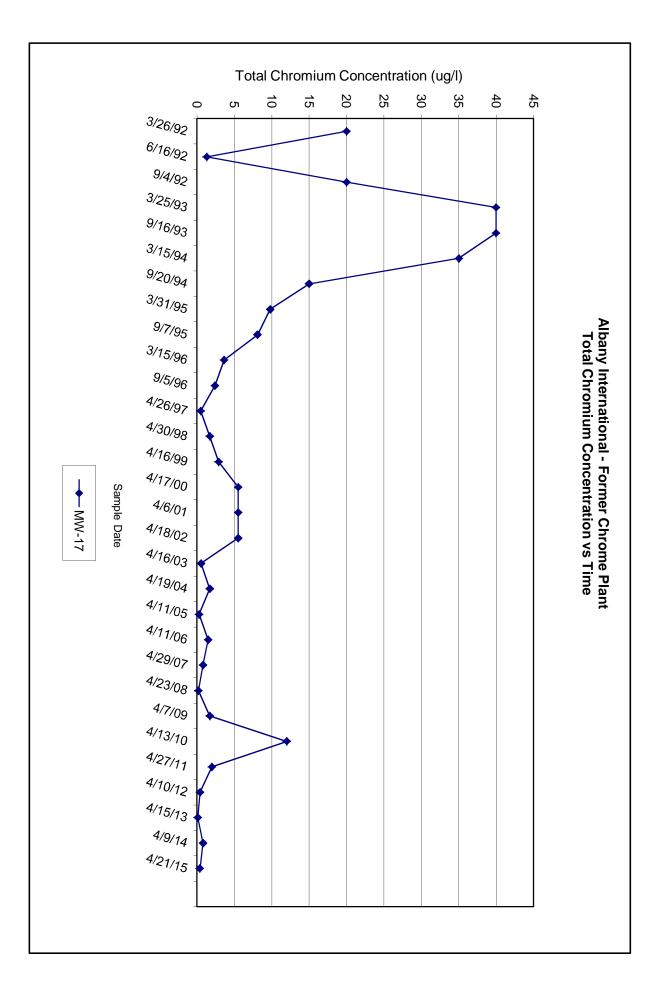


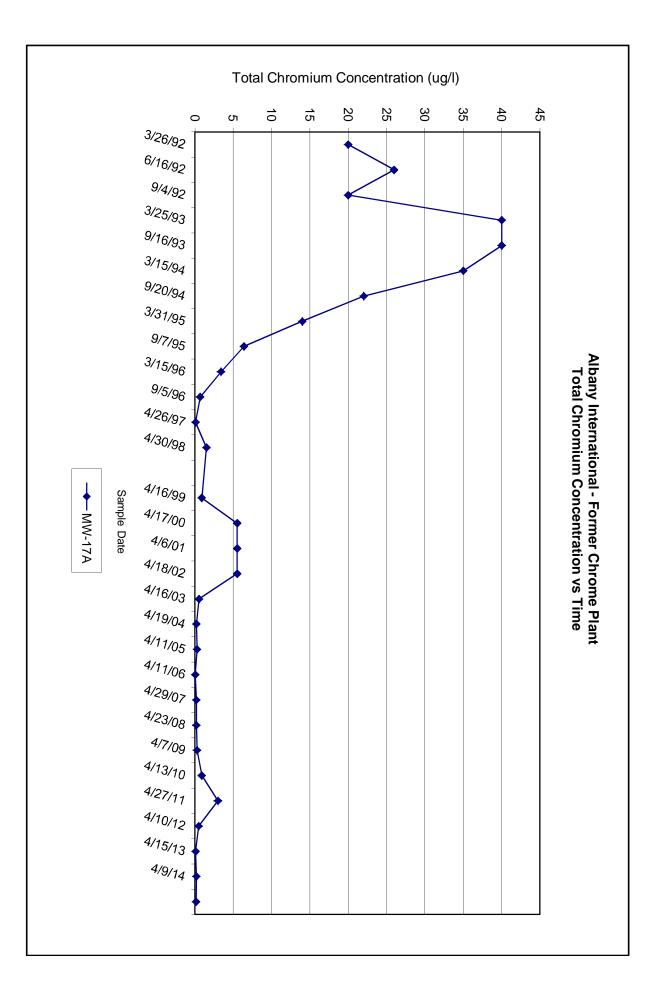

NORTH ¥ ¥ This drowing developed from Duran SY bore drowing developed from Nadedhorn Association for by 50 Bedger Laborationes and Pablow at Engineering Co. Inc. Appleton Wire Former Albany International Chrome Plant Site Layout on 2005 Aerial Photo ¥ a FIGURE NO. 6' 20' 40' 60 80' Scole 1" = 80' 5 FLE HO.

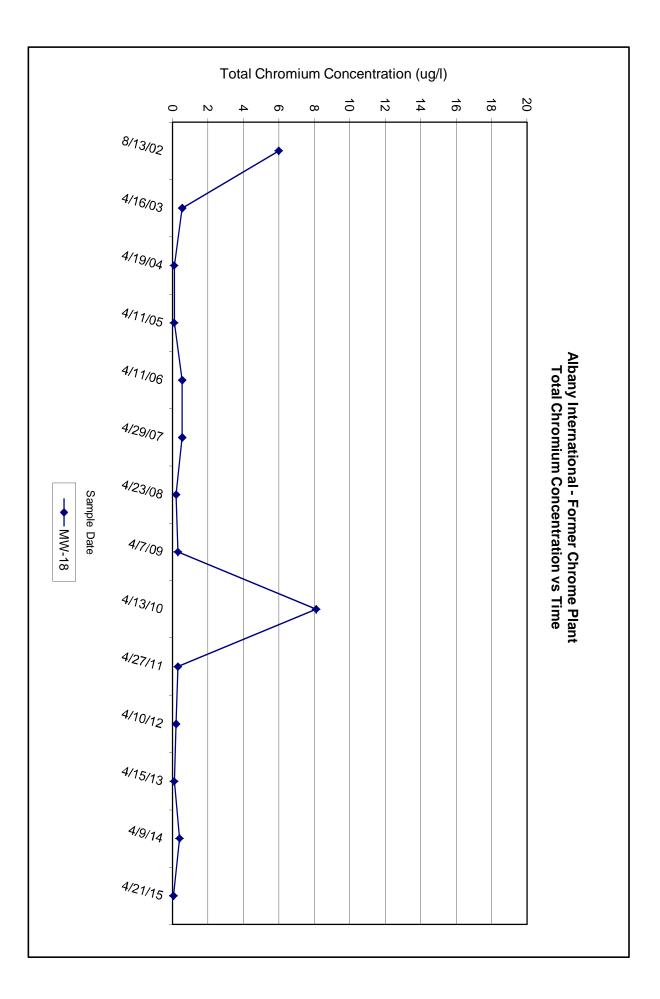

APPENDIX A

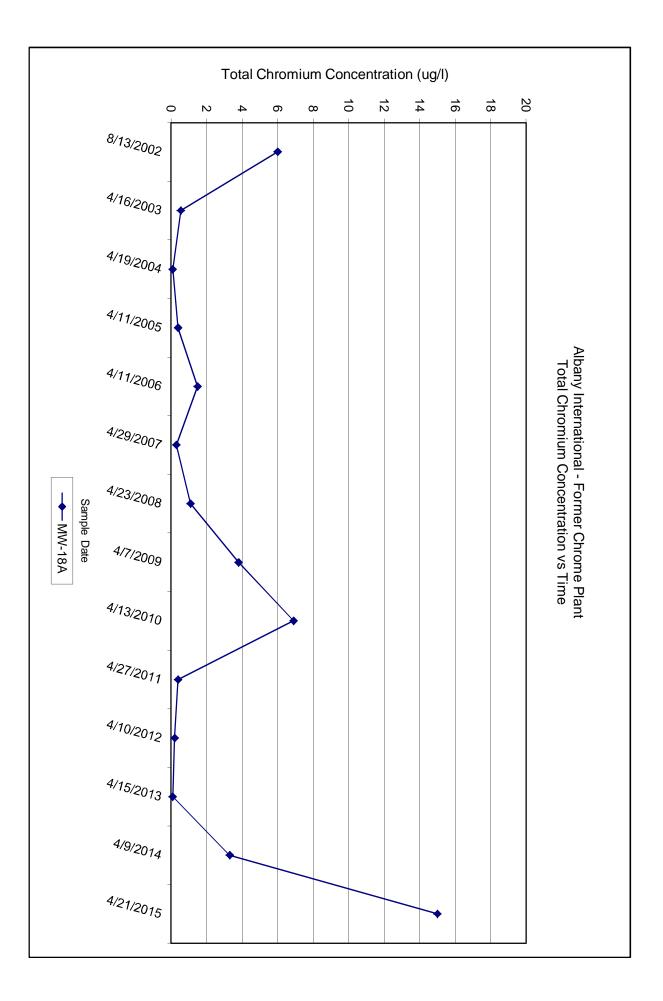

Concentration Versus Time Graphs – All Wells, Sump and French Drain

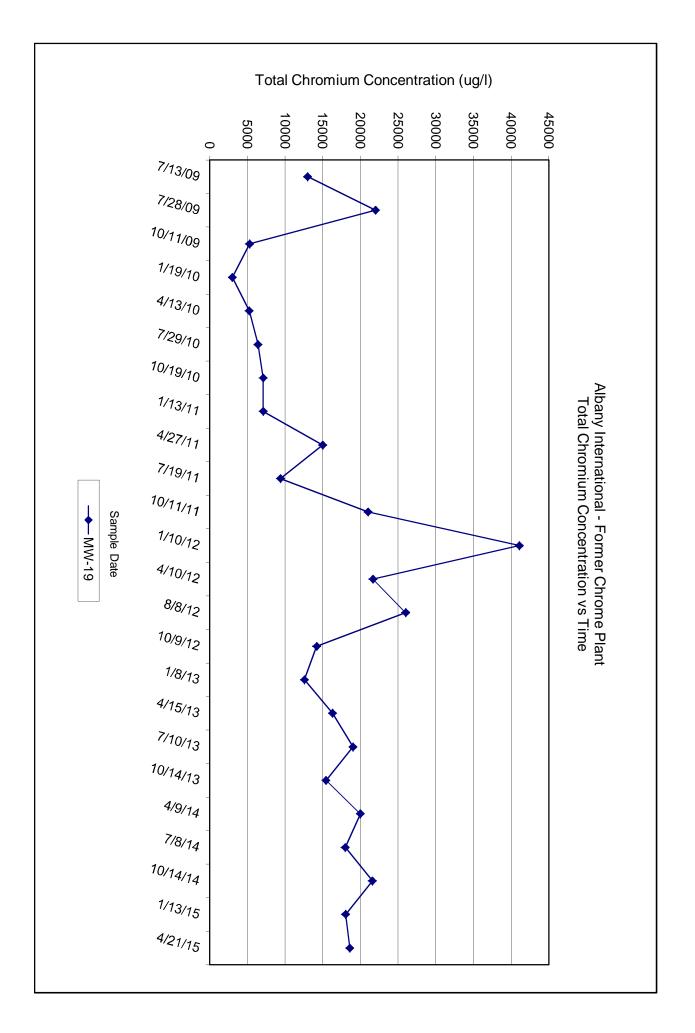


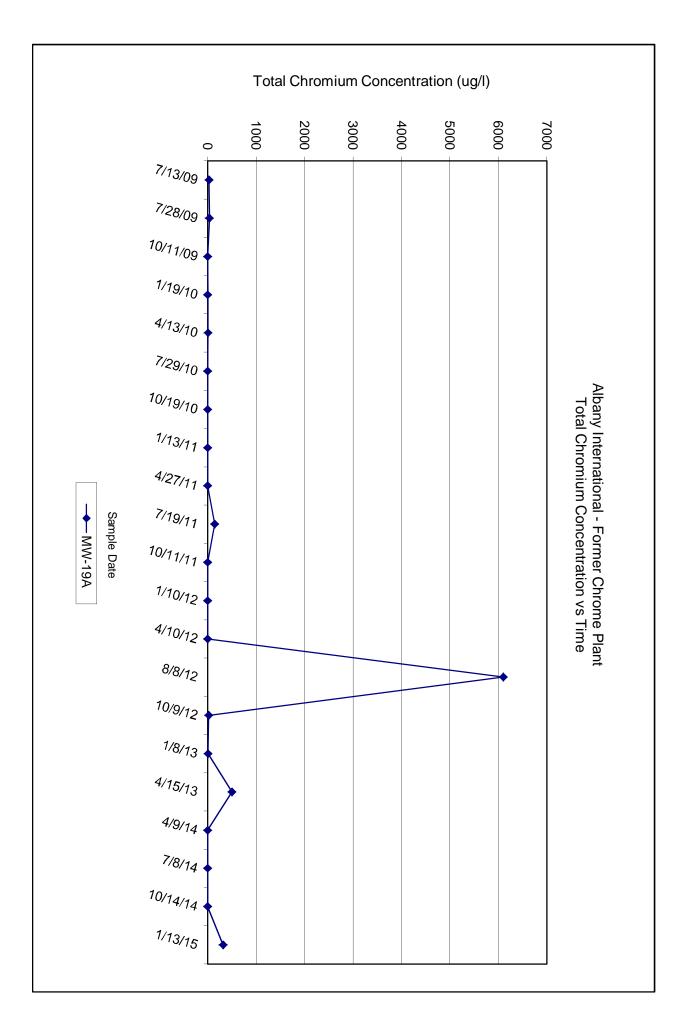


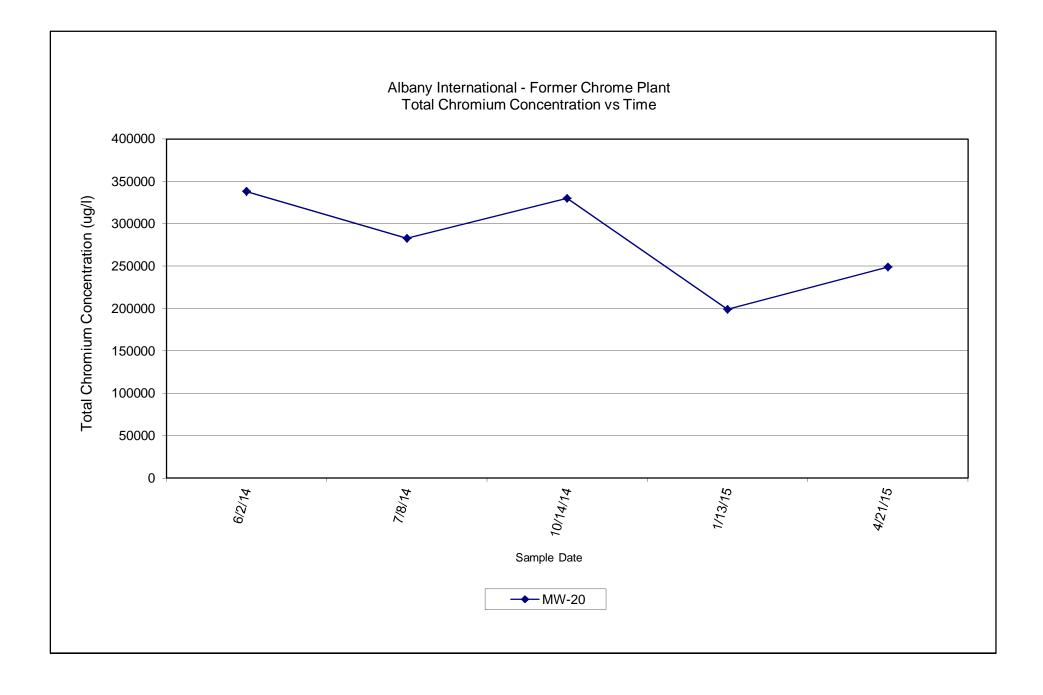


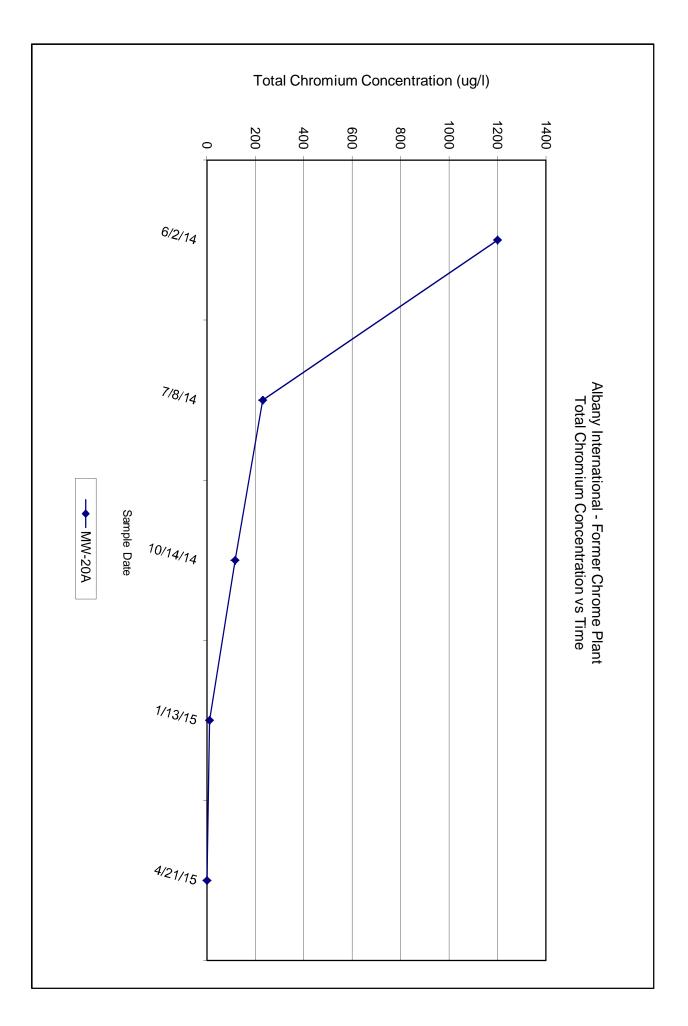


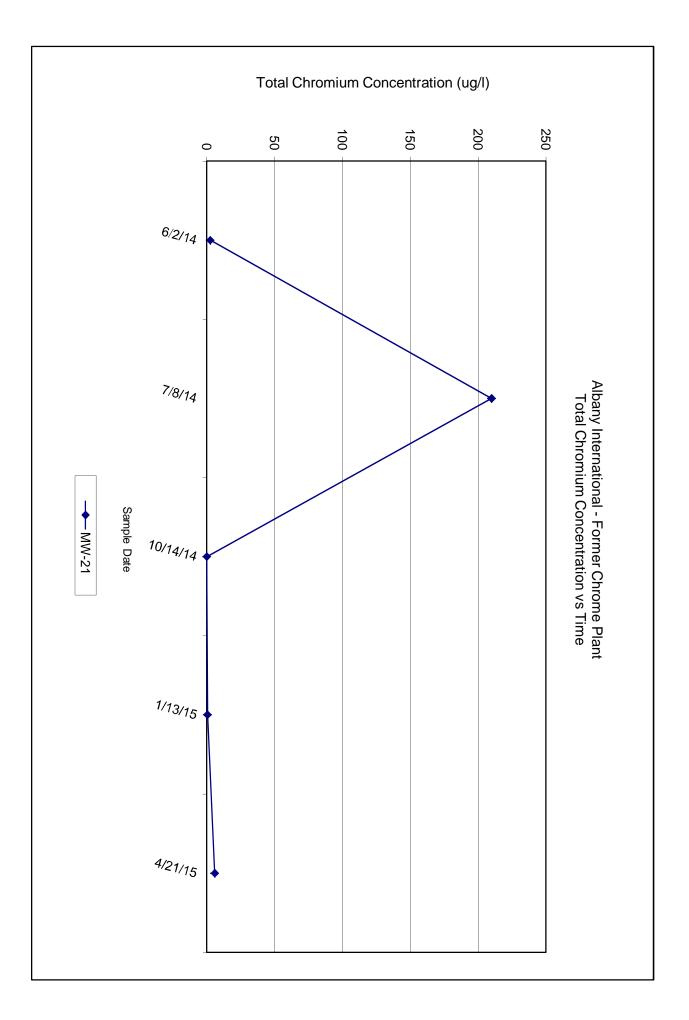


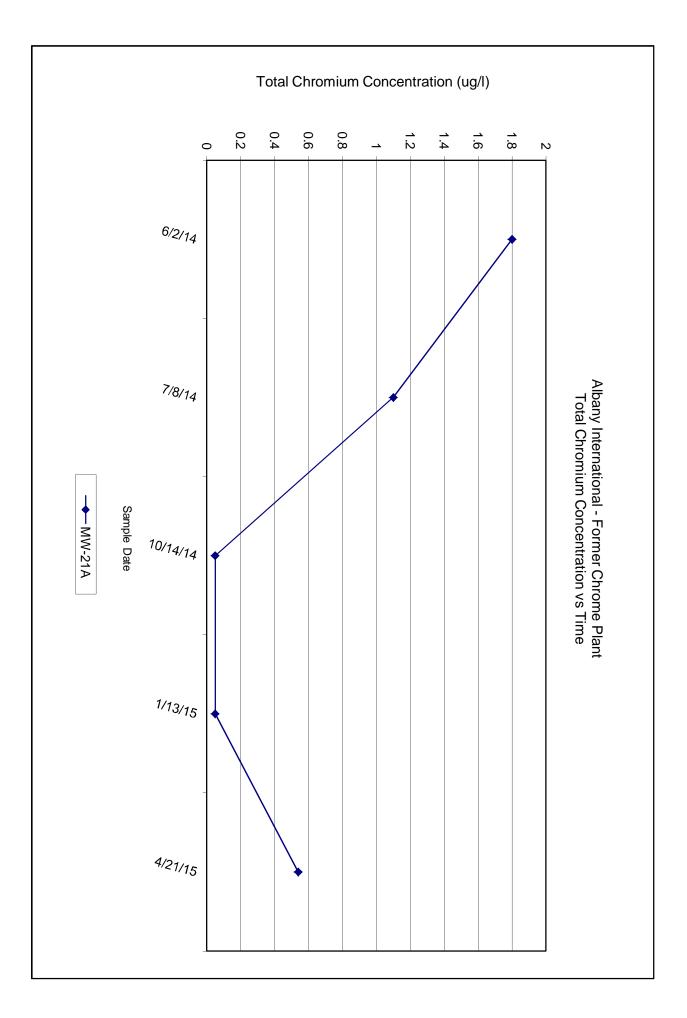


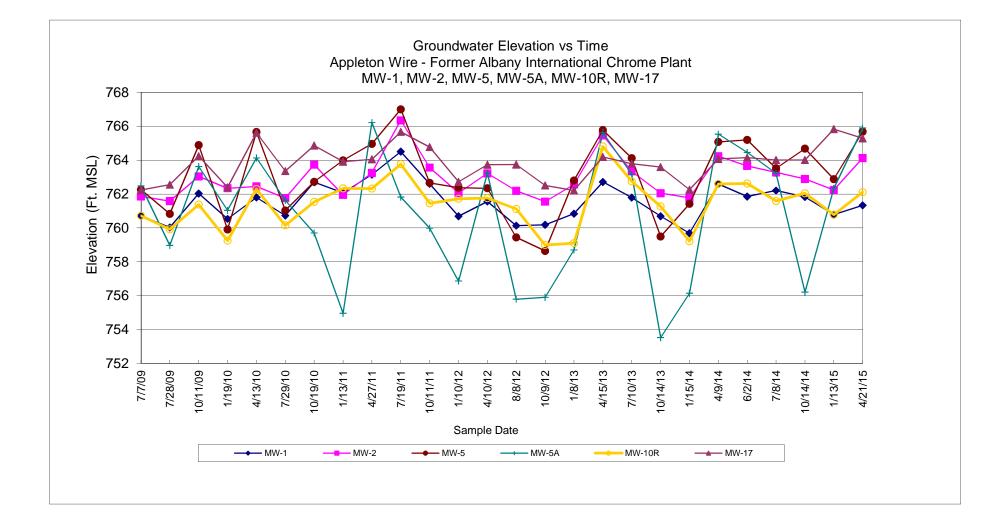


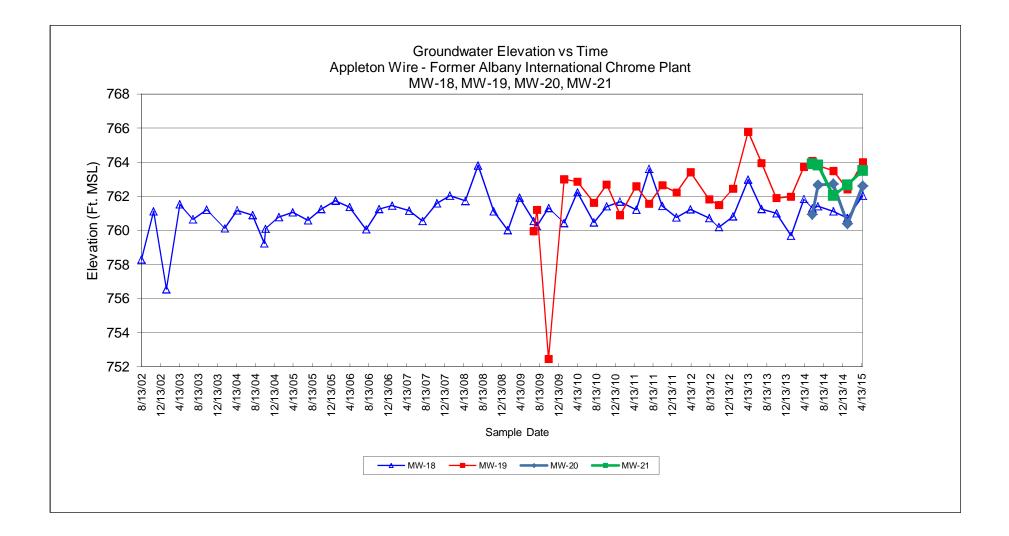












APPENDIX B

Groundwater Elevations Versus Time – All Wells

APPENDIX C

Operation & Maintenance Report Form 4400-194 State of Wisconsin Department of Natural Resources PO Box 7921, Madison WI 53707-7921 dnr.wi.gov

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization Report

Report Form 4400-194 (R 1/14)

Page 1 of 29

Notice: Pursuant to ss. NR 700.11(1) and 724.13(3), Wis. Adm. Code, this form is required to be completed or a narrative report or letter containing the equivalent information required in this form may be submitted in lieu of the actual form. Failure to submit this form as required is a violation and is subject to the penalties as stated in s. 292.99, Wis. Stats. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records Law (ss. 19.31-19.39, Wis. Stats.). Unless otherwise noted, all citations refer to Wisconsin Administrative Code.

GENERAL INSTRUCTIONS, PURPOSE AND APPLICABILITY OF THIS FORM: Completion of this form is required under s. NR 700.11(1) and s. NR 724.13(3), Wis. Adm. Code. A narrative report or letter containing the equivalent information required in this form may be submitted in lieu of the actual form. Failure to submit this form as required is a violation of s. NR 700.11(1) and s. NR 724.13(3), Wis. Adm. Code, and is subject to the penalties in s. 292.99, Wis. Stats. This form must be submitted every six months for remediation projects that are regulated under the NR 700 series of Wis. Adm. Code. Specifically, for sites meeting any of the following criteria:

- Any site where a discharge has occurred that report progress in accordance with s. NR 700.11(1), Wis. Adm. Code until site closure is granted. This
 includes sites where no response activities occurred during the six month reporting period. Attach, if applicable, a separate brief summary of the
 work completed during the reporting period and the anticipated future work.
- Soil or groundwater remediation projects that report operation and maintenance progress in accordance with s. NR 724.13(3), Wis. Adm. Code.

Note: Long-term monitoring results submitted in accordance with s. NR 724.17(3), Wis. Adm. Code are required to be submitted within 10 business days of receiving sampling results and are not required to be submitted using this form. However, portions of this form require monitoring data summary information that may be based on information previously submitted in accordance with s. NR 724.17(3), Wis. Adm. Code.

Note: Responsible parties should check with the State Project Manager assigned to the site to determine if this form is required to be submitted at sites responded to under the Federal Comprehensive Environmental Response and Compensation Act (commonly known as Superfund) or an equivalent State lead Superfund response.

Note: Responsible parties should check with the State Project Manager assigned to the site to determine if any of the information required in this form may be omitted or changed and obtain prior written approval for any omissions or changes.

Submittal of this form is not a substitute for reporting required by Department programs such as Waste Water or Air Management. Personally identifiable information on this form is not intended to be used for any other purpose than tracking progress of the remediation by the Bureau for Remediation and Redevelopment.

Only complete and submit all of page GI-1 and Section E on pages 3 and 4 for sites where a discharge has been reported but no response, monitoring or remediation has begun or occurred during the six month reporting period that are required to report only under s. NR 700.11(1), Wis. Adm. Code and attach, if applicable, a summary of the anticipated future work.

Section GI - General Site Information

A. General Information

1. Site name

Apleton Wire-Albany International Former Chrome Plant

2. Reporting period from:	01/01/2015	то: Об	5/30/2015	Days in	period:		1	82	
3. Regulatory agency (enter DNR, DCOM, DATCP and/or other)			4. BRRTS ID No	. (2 digit pr	(2 digit program-2 digit county-6 digit site specific)				specific)
WDNR 02-45-000015									
5. Site location Region	Address								
Northeast Region	Outagamie		908 North L	awe Stree	t				
Municipality name City () 	Town 🔿 Village		***************************************	Township	Range	ΘE	Section	1/4	1/4 1/4
Appleton				21 N	17	OW	25	NW	NW
6. Responsible party Name			7. Consultant	e following	informat	tion h	as change	ed since 1	the last
Albany International Forming Fabrics Division									
Mailing address			Company name						
PO Box 1939, Appleton, WI 54913-1939			Stoeger & Associates, LLC						
Phone number		Mailing address Phone number			nber				
(920) 725-2600		527 South Story St, Appleton, WI 54914 (920) 428-9513			8-9513				
D. Cantaminanta									

8. Contaminants

Chromium

Site name: Apleton Wire-Albany International Forme	r Chrome Plant		lite Progress ar	
Reporting period from: 01/01/2015 T	o: <u>06/30/2015</u>		Monitoring & O	ptimization
Days in period: <u>182</u>		Report Form 4400-194 (R 1/1	4)	Page 2 of 29
9. Soil types (USCS or USDA) Clay/Silty Clay				an a
10. Hydraulic conductivity(cm/sec):	11. ,	Average linear velocity	of groundwater (ft/yr)	<u></u>
1 X 10 -2	0.00	02		
12. If soil is treated ex situ, is the treatment loc	cation off site? O Yes			
If yes, give location: Region		County		
Municipality name O City O Town O V	Village	Township F	Range OE Section	1/4 1/4 1/4
B. Remediation Method				
Only submit sections that apply to an individua	I site. Check all that apply	r;		
Groundwater extraction (submit a complete	ed Section GW-1).			
Free product recovery (submit a completed	d Section GW-1).			
In situ air sparging (submit a completed Se	ection GW-2).			
Groundwater natural attenuation (submit a	completed Section GW-3).		
Other groundwater remediation method (su	ubmit a completed Section	n GW-4).		
Soil venting (including soil vapor extraction	building venting and biov	enting submit a comple	ted Section IS-1).	
Soil natural attenuation (submit a complete	ed Section IS-2).			
Other in situ soil remediation method (subr	nit a completed Section IS	S-3).		
Biopiles (submit a completed Section ES-1	·			
Landspreading/thinspreading of petroleum			:S-2).	
Other ex situ remediation method (submit a	•).		
Site is a landfill (submit a completed Section				
C. General Effectiveness Evaluation for Al	······································			
If the remediation is active (not natural attentua	· · · · · ·	_		
1. Is the system operating at design rates and	· · · ·	s 🔿 No		
If the answer is no, explain whether or not n	nodifications are necessar	ry to achieve the goal th	at was previously est	ablished in design.
O Are readilized to the surface upwerted to				
2. Are modifications to the system warranted to	5 improve enectiveness	🔿 Yes 💿 No		
If yes, explain:				
3. Is natural attenuation an effective low cost o	option at this time?) Yes 💿 No		
4. Is closure sampling warranted at this time?	Yes No			
5. Are there any modifications that can be mad	~ ~	prove cost effectivenes	ss? () Yes () N	No
If yes, explain:				
A study is underway to determine the few arehouse area to collect groundwater		_		•

Site name: Apleton Wire-Albany International For	mer Chrome Plant	Remediation Site Progress and Operation,		
Reporting period from: 01/01/2015	To: 06/30/2015	Maintenance, Monitor	ing & Optimization	
Days in period: 182		Report Form 4400-194 (R 1/14)	Page 3 of 29	
D. Economic and Cost Data to Date				
1. Total investigation cost: \$45,000.0	0			
2. Implementation costs (design, capital and	d installation costs, excludin	g investigation costs: \$10,0	00.00	
3. Total costs during the previous reporting	period: \$10,000.00			
4. Total costs during this reporting period:	\$10,000.00	*		
5. Total anticipated costs for the next report	ing period: \$10,000).00		
6. Are any unusual or one-time costs listed	in the reporting periods cov	ered by D.3., D.4. or D.5. above?	🔿 Yes 🛞 No	
If yes, explain:				

7. If closure is anticipated within 12 months, estimated costs for project closeout:

E. Name(s), Signature(s) and Date of Person(s) Submitting Form

Legibly print name, date and sign. Only persons gualified to submit reports under ch. NR 712 Wis. Adm. Code are to sign this form for sites with any ongoing active remediation, monitoring or an investigation. Other persons may sign this form for sites with no response activities during the six month reporting period.

Registered Professional Engineers:

I hereby certify that I am a registered professional engineer in the State of Wisconsin, registered in accordance with the requirements of ch. A-E 4, Wis, Adm. Code: that this document has been prepared in accordance with the rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Print name	Title
	х. -
Signature	Date

Hydrogeologists:

I hereby certify that I am a hydrogeologist as that term is defined in s. NR 712.03(1), Wis. Adm. Code, and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Print name	Title	alariti filore d'a social
James W. Kauer	Associate Geologist	
Signature W Kacces	Date 8/28/2015	0
Scieptists:	()	

I hereby certify that I am a scientist as that term is defined in s. NR 712.03(3), Wis. Adm. Code, and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Print name	Title
Signature	Date
Other Persons:	
Print name	Title
Signature	Date

Table of Contents

HYDROGEOLOGIST CERTIFICATION

- I. SITE BACKGROUND
- II. BATCH TREATMENT PROCESS
 - A. Groundwater Treatment System
 - B. Permit Monitoring & Reporting
 - 1. Quarterly Reporting
 - a. City of Appleton Quarterly Discharge Reports
 - b. Wisconsin DNR Quarterly Groundwater Sampling Reports
 - 2. Semi-Annual Operation & Maintenance Summary
 - C. Compliance Sampling
 - D. Routine Operation & Maintenance Activities
 - E. Significant Operation & Maintenance Activities
 - F. Emergency Operation Shut Downs

III. GROUNDWATER SAMPLING

- A. Groundwater Sampling Procedures
- B. Groundwater Sampling Results

IV. GROUNDWATER COLLECTION SYSTEM

V. CONCLUSIONS & RECOMMENDATIONS

List of Tables

hole

List of Figures

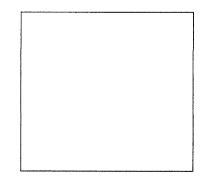
Figure #1	-Site Layout Map and Monitoring Well Locations
Figure #2	-Chromium Concentration Map - April 21, 2015
Figure #3	-Groundwater Elevation Contour – January 13, 2015
Figure #4	-Groundwater Elevation Contour – April 21, 2015
Figure #5	-2005 Aerial Photograph

List of Appendices

Appendix A	-Concentration Versus Time Graphs – All Wells, Sump and French Drain
Appendix B	-Groundwater Elevations versus Time / All Wells
Appendix C	-Operation & Maintenance Report / Form 4400-194
Appendix D	-Historical Soil Boring and Groundwater Monitoring Well Data, Abandoned
	Borings and Wells
Appendix E	-Laboratory Analytical Data

To: 06/30/2015

Reporting period from: 01/01/2015


Days in period: <u>182</u>

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization

Report Form 4400-194 (R 1/14)

Page 4 of 29

Professional Seal(s), if applicable:

Site name: <u>Apleton Wire-Albany International Former Chrome Plant</u> Reporting period from: <u>01/01/2015</u> To: <u>06/30/2015</u> Days in period: <u>182</u>	Remediation Site Progress Maintenance, Monitoring 8 Report Form 4400-194 (R 1/14)	
Section GW-1, Groundwater Pump and Treat Systems a	nd Free Product Recovery Systems	
 A. Groundwater Extraction System Operation: 1. Total number of groundwater extraction wells or trenches av 	ailable: 2 and the number in use during	g period: 2
 Potal number of globaldwater extraction wens of itercrites av Number of days of operation (only list the number of days th 182 		g penod. <u>2</u>
3. System utilization in percent (days of operation divided by re 100	porting time period multiplied by 100). If < 80%, e	xplain:
4. Quantity of groundwater extracted during this time period:	37,990 gallons	
5. Average groundwater extraction rate: 0.14	_gpm	
 Quantity of dissolved phase contaminants removed during the B. Free Product Recovery System Operation 	his time period in pounds: 4.77	lbs
If yes, explain: 2. Quantity of free product extracted during this time period (e	nter none if none): 0 gal	lons
	1	
3. Average free product extraction rate:	gpm	
 3. Average free product extraction rate: C. System Effectiveness Evaluation 1. Is a contaminated groundwater plume fully contained in the If no, explain: 		● Yes () No
C. System Effectiveness Evaluation1. Is a contaminated groundwater plume fully contained in the	e capture zone?	● Yes ○ No ○ Yes ○ No
 C. System Effectiveness Evaluation 1. Is a contaminated groundwater plume fully contained in the If no, explain: 2. If free product is present, is the free product fully contained 	e capture zone?	◯ Yes ◯ No
 C. System Effectiveness Evaluation 1. Is a contaminated groundwater plume fully contained in the If no, explain: 2. If free product is present, is the free product fully contained If no, explain: 	e capture zone? in capture zone? oduct was not recovered during reporting period, e nant that requires the greatest percent reduction to hat were present at the site that have ch. NR 140 s	 Yes ○ No explain: achieve ch. NR 140 standards. Use the
 C. System Effectiveness Evaluation Is a contaminated groundwater plume fully contained in the If no, explain: If free product is present, is the free product fully contained If no, explain: If free product is present in any wells at the site, but free product free product is present, determine the single contamined ES and PAL. Perform this calculation for all contaminants thighest contaminant concentration measured in any sample 	e capture zone? in capture zone? oduct was not recovered during reporting period, e nant that requires the greatest percent reduction to hat were present at the site that have ch. NR 140 s	 Yes ○ No explain: achieve ch. NR 140 standards. Use the
 C. System Effectiveness Evaluation 1. Is a contaminated groundwater plume fully contained in the If no, explain: 2. If free product is present, is the free product fully contained If no, explain: 3. If free product is present in any wells at the site, but free product is present in any wells at the site, but free product is and PAL. Perform this calculation for all contaminants thighest contaminant concentration measured in any sample PRODUCT" in C.4.a. 	e capture zone? in capture zone? oduct was not recovered during reporting period, e nant that requires the greatest percent reduction to hat were present at the site that have ch. NR 140 s ng points during reporting period. If free product is Chromium	 Yes ○ No explain: achieve ch. NR 140 standards. Use the
 C. System Effectiveness Evaluation Is a contaminated groundwater plume fully contained in the If no, explain: If free product is present, is the free product fully contained If no, explain: If free product is present in any wells at the site, but free product is present in any wells at the site, but free product is and PAL. Perform this calculation for all contaminants thighest contaminant concentration measured in any sample PRODUCT" in C.4.a. Contaminant: 	e capture zone? in capture zone? oduct was not recovered during reporting period, e nant that requires the greatest percent reduction to hat were present at the site that have ch. NR 140 s ng points during reporting period. If free product is <u>Chromium</u> d PAL:99.99%	 Yes ○ No explain: achieve ch. NR 140 standards. Use the

Reporting period from: 01/0	1/2015	To: 06/30/2015

Days in period: 182

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization Report

Report Form 4400-194 (R 1/14)

Page 6 of 29

e. If the maximum concentration in a monitoring well is more that one order of magnitude above the concentration measured in an extraction well, explain why the extracted groundwater contamination levels are significantly less than the levels at other locations within the aquifer.

D. Additional Attachments

Attach the following to this form:

- · Most recent report to the DNR Wastewater Program, if applicable.
- Groundwater contour map with capture zone indicated.
- · Groundwater contaminant distribution map (may be combined with contour map).
- Graph of cumulative contaminant removal, if both free product recovery and ground water extraction are used, provide separate graphs.
- Time versus groundwater contaminant concentration graphs for the contaminant listed in C.4.a. (above), as follows:
 - -- Graph of contaminant concentrations versus time for each extraction well in use during the period.
 - -- Graph of contaminant concentrations versus time for the monitoring well with the greatest level of contamination.
- Groundwater contaminant chemistry table.
- · Groundwater elevations table.
- · System operational data table.

Reporting period from: 01/01/2015 To:06/30/2015

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization Report

Days in period: 182

Page 7 of 20

		101114400-134 (1	(() (+)	Fage / 0123
153875920	ction GW-2, In Situ Air Sparging Systems In Situ Air Sparging System Operation	•		
	Number of air injection wells at the site and th	e number actually in use during the period	: 0	
	Number of days of operation (only list the num			
3.	System utilization in percent (days of operatio	n divided by reporting time period multiplie	d by 100). If < 80%, explain:	:
B.	System Effectiveness Evaluation			
1.	If free product is not present, determine the si ES and PAL. Perform this calculation for all con- highest contaminant concentration measured PRODUCT" in B.1.a.	ontaminants that were present at the site th	nat have ch. NR 140 standard	ds. Use the
	a. Contaminant:			
	b. Percent reduction necessary to reach ch. N	IR 140 ES and PAL: %		
	c. Maximum contaminant concentration level i	in any monitoring well:	µg/L	
2.	Is there any evidence that air is short circuiting If yes, explain:	g through natural or man-made pathways?	Yes No	
3.	Is the size of the plume: O Increasing O S If increasing, explain:	Stabalized () Decreasing ?		
C.	Additional Attachments			

Attach the following to this form:

- Groundwater contour map. .
- Groundwater contaminant distribution map (may be combined with contour map). .
- When contaminants are aerobically biodegradable, attach a dissolved oxygen in groundwater map (dissolved oxygen may be ٠ combined with the contaminant data on a single map).
- Site map with all air injection wells and groundwater monitoring points. .
- Graph of contaminant concentrations versus time for the contaminant listed in B.1.a. (above) for the monitoring point with the . greatest level of contamination.
- Groundwater contaminant chemistry table. ٠
- Groundwater elevations table.
- System operational data table.

Site name: Apleton Wire-Albany International Former Chrome Plant	Remediation Site		
Reporting period from: 01/01/2015 To: 06/30/2015	 Maintenance, Mor Report 	nitoring & Optim	ization
Days in period: <u>182</u>	Form 4400-194 (R 1/14)		Page 8 of 29
Section GW-3, Natural Attenuation (Passive Bioremediation) A. Effectiveness Evaluation	in Groundwater		
 If free product is not present, determine the single contaminant that require Perform this calculation for all contaminants that were present at the site th concentration measured in any sampling points during reporting period. If 	at have ch. NR 140 standards. Use	e the highest contaminan	
a. Contaminant:	Chromium		
b. Percent reduction necessary to reach ch. NR 140 ES and PAL:	99.99 %		
c. Maximum contaminant concentration level in any monitoring we	Il of that contaminant:	2,480,000	µg/L
2. Aquifer parameters:	-		
a. Hydraulic conductivity:		1 X 10-7	cm/sec
b. Groundwater average linear velocity:	-	0.002	ft/yr
3. Is there a downgradient monitoring well that meets ch. NR 140 star	ndards?	na na manana ang aka Prosensi na mang aka manana ang aka na sa	
4. Based on water chemistry results, is the plume: () Expanding ()) Stabalized () Contracting	?	
5. If the answer in 4. (above) is "expanding," is natural attenuation still fyes, explain:	II the best option? O Yes O	No	
6. Biodegradation parameters:			
a. Upgradient (or other site specific background) DO level:	_		µg/L
b. DO levels in the part of the plume that is most heavily contamina	ated		µg/L
7. Is site closure a viable option within 12 months from the date of this	s form? 🔿 Yes 💿 No		
8. Are there any modifications that can improve cost effectiveness? If yes, explain:	🔿 Yes 💿 No		
9. Have groundwater table fluctuations changed the contaminant level If yes, explain:	el trends over time? Yes 🤇	No No	
10. Has the direction of groundwater flow changed during the reportir	ng period? 🔿 Yes 🖲 No		
If yes, approximate change in degrees:			
B. Additional Attachments			
Attach the following:			
 Groundwater contour map. Groundwater contaminant distribution map (may be combined When contaminants are aerobically biodegradable, attach a combined with the contaminant data on a single map). Graph of contaminant concentrations versus time for the con greatest level of contamination. Graph of contaminant concentrations versus distance. Groundwater contaminant chemistry table. Groundwater biological parameters. 	dissolved oxygen in groundwat		

Groundwater elevations table.

Site name: Apleton Wire-Albany Internation	nal Former Chrome Plant			and Operation,
Reporting period from: 01/01/2015	To: <u>06/30/2015</u>	Maintenance, Monitoring & Optimization		
Days in period: <u>182</u>		Report Form 4400-194 (R 1	/14)	Page 9 of 29
Section GW-4, Other Groundwate	r Remediation Methods			
A. Effectiveness Evaluation				
 If free product is not present, determine Perform this calculation for all contamin concentration measured in any sampline a. Contaminant: 	ants that were present at the site that h g points during reporting period. If free	ave ch. NR 140 standard	ds. Use the highest cor	ntaminant
b. Percent reduction necessary:	9.99 %			
c. Maximum contaminant concentra	ation level in any monitoring well:	248,000	µg/L	
2. Is the size of the plume: O Increa	sing 💿 Stabalized 🔿 Decreasin	g ?		
3. Describe the method used to remea Groundwater from underneath t	•	cted into a building	sump or french dra	ain and the

chromium is removed through an ion exchange process. Wastewater from the process is discharged to the City of Appleton wastewater facility and the captured chrome within the ion exchanger canisters is shipped off site to be recycled.

4. List any additional information required by the DNR for this method for this site:

B. Additional Attachments

Attach the following:

- Groundwater contour map.
- Groundwater contaminant distribution map (may be combined with contour map).
- When contaminants are aerobically biodegradable, attach a dissolved oxygen in groundwater map (dissolved oxygen may be combined with the contaminant data on a single map).
- Graph of contaminant concentrations versus time for the contaminant listed in A.1.a. (above) for the monitoring point with the greatest level of contamination.
- Groundwater contaminant chemistry table.
- Groundwater elevations table.
- Any other attachments required by the DNR for this remediation method.

Reporting period from: 01/01/2015 To: 06/30/2015

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization Report Form 4400-194 (R 1/14)

Days in period: 182

Section IS-1, Soil Venting (Including Soil Vapor Extraction, Building Venting and Bioventing)

A. Soil Venting Operation

Note: This form is not required for building vapor mitigation systems that are installed proactively to protect building occupants/users and are not considered part of ongoing active soil remediation.

1. Number of air extraction wells available and number of wells actually in use during the period:

2. Number of days of operation (only list the number of days the system actually operated, if unknown explain):

3. System utilization in percent (days of operation divided by reporting time period multiplied by 100). If < 80%, explain:

4. Average depth to groundwater:

gpm B. Building Basement/Subslab Venting System Operation

1. Number of venting points available and number of points actually in use during the period:

2. Number of days of operation (only list the number of days the system actually operated, if unknown explain):

3. System utilization in percent (days of operation divided by reporting time period multiplied by 100). If < 80%, explain:

If the venting system is passive, note that here and describe if any part of the system was not functioning and what was done to restore it.

C. Effectiveness Evaluation

1. Average contaminant removal rate for the entire system: pounds per day

2. Average contaminant removal rate per well or venting point: pounds per day

- 3. If the average contaminant removal rate is less than one pound per day for the entire system, or if the average contaminant removal rate per well is less than one tenth of a pound per day, evaluate the following:
 - a. If contaminants are aerobically biodegradable and confirmation borings have not been drilled in the past year:

i. Oxygen levels in extracted air: percent

ii. Methane levels in extracted air (ppm_V) If over 10 ppm_V, explain:

iii. If methane is not present above 10 ppmv and if oxygen is greater than 20 percent in extracted air, you should either:

• Drill confirmation borings during the next reporting period, if the entire site should be considered for closure.

- Or, perform an in situ respirometry test in a zone of high contamination. Do not perform the test in an air extraction well, use a gas probe or water table well. If a zero order rate of decay based on oxygen depletion is less than 2 mg/kg per day, then you should drill confirmation borings, if the entire site should be considered for closure. If the rate of decay is between 2 and 10 mg/kg, operate for one more reporting period before evaluating further. If the zero order rate of decay is greater than 10 mg/kg total hydrocarbons, continue operating the system in a manner than maximizes aerobic biodegradation.
- b. If contaminants are not aerobically biodegradable and confirmation borings have not been recently drilled during the past year. you should drill confirmation borings during the next reporting period if the entire site should be considered for closure.
- c. If soil borings were drilled during the past year and soil contamination remains above acceptable levels, explain if the system effectiveness can be increased and/or if other options need to be considered to achieve cleanup criteria.

D. Additional Attachments

Attach the following to this form:

- Well and soil sample location map indicating all air extraction wells. If forced air injection wells are also in use, identify those wells.
- If water table monitoring wells are present at the site, a map of well locations.
- Time versus vapor phase contaminant concentration graph.
- Time versus cumulative contaminant removal graph.
- Groundwater elevations table, if water table wells are present at the site; also list screen lengths and elevations.
- Table of soil contaminant chemistry data.
- Soil gas data, if gas probes are used to monitor subsurface conditions in locations other than where air is extracted.
- System operational data table.

Site name: Apleton Wire-Albany International F	ormer Chrome Plant	Remediation Site Progres	
Reporting period from: 01/01/2015	To: <u>06/30/2015</u>	 Maintenance, Monitoring Report 	& Optimization
Days in period: <u>182</u>		Form 4400-194 (R 1/14)	Page 11 of 29
Section IS-2, Natural Attenuation (Pa A. Effectiveness Evaluation	ssive Bioremediation) in	i Soil	
1. Soil gas information in the soil that is m	ost contaminated from a pe	ermanently installed gas probe(s) or water	table monitoring well(s).
a. Hydrocarbon levels:	ppm, with an	FID	
b. Oxygen levels:pe	ercent		
c. Carbon dioxide levels(specify ppm o	r percent):		
d. Methane levels:	ppm		
2. Soil gas information in background (und	contaminated soil) from per	manently installed gas probe(s)or water ta	able monitoring well(s):
a. Hydrocarbon levels:	ppm, with an	FID	
b. Oxygen levels: pe	ercent		
c. Carbon dioxide levels(specify ppm o	r percent):		
d. Methane levels:	ppm		
	is used to assess progress	lled periodically, list the most recent data s based on the most recent soil sampling e	
b. Specific compounds (µg/kg):	· · · · · · · · · · · · · · · · · · ·		
i. Benzene:	µg/kg		
ii. 1,2 Dichloroethane:	μg/kg		
iii. Ethylbenzene:	μg/kg		
iv. Toluene:	μg/kg		
v. Total xylenes:	μg/kg		
4. Is there any evidence that contaminants If the answer is yes and if groundwater		0 0	
5. Is site closure a viable option within 12	months from the date of thi	s form? 🔿 Yes 🔿 No	
6. Are there any modifications that can be If yes, explain:	made to the remediation to	o improve cost effectiveness? () Yes() No

B. Additional Attachments

Attach the following to this form:

- Well and soil sample location map.
- Cross sections showing the water table, soil sampling locations, screened intervals for gas probes or water table wells, geologic contacts, and any former excavation boundaries.
- Graphs of contaminant concentrations, oxygen, carbon dioxide and methane levels over time.
- Groundwater elevations table, if water table wells are present at the site.
- Table of soil contaminant chemistry.
- Table of soil gas readings.

 Site name: Apleton Wire-Albany International Former Chrome Plant
 Remediation Site Progress and Operation,

 Reporting period from: 01/01/2015
 To: 06/30/2015

 Days in period: 182
 To: 06/30/2015

 Section IS-3, Other In Situ Soil Remediation Methods

 A. Effectiveness Evaluation

1. Describe the method used to remediate soil at the site:

2. List all information required by the DNR for this remediation method for this site:

B. Additional Attachments

Attach the following to this form:

• Any other attachments required by the DNR for this remediation method.

Site name: <u>Apleton Wire-Albany Internationa</u> Reporting period from: 01/01/2015	al Former Chrome Plant To: <u>06/30/2015</u>	 Remediation Site Progree Maintenance, Monitoring 	
Days in period: 182		Report Form 4400-194 (R 1/14)	Page 13 of 2
Section ES-1, Ex Situ Soil Treatme	nt Using Biopiles		
A. Effectiveness Evaluation 1. Volume of soil in the biopile (if multip	le bieniles, list number of nil		
r. volume of soil in the bioplie (if multip	ie bioplies, list number of plie	es and total volume):	
2. Monitoring used to assess progress	and verify optimal conditions	for biodegradation.	<u></u>
a. Vapor phase measurements of ga	ises (average of all readings	from most recent sampling event):	
i. VOCs by FID:	ppm		
ii. Oxygen: percent			
iii. Carbon dioxide: pe	ercent		
iv. Methane:	ppm		
b. Soil temperature:	°F		
c. Soil moisture sensors, if used:	percent		
3. Treatment amendments added to the	e soil during construction:		
a. Artificial nutrients, excluding manu	ire.		
i. Types and total pounds added:			
ii Nitrogon and phoophorous cont	ant of the added amondmen	ti noraont	······································
ii. Nitrogen and phosphorous cont		t:percent	
b. Manure: c. Natural organic materials (straw, w	total pounds	al nounde):	
e. Natural organic materials (straw, w	vood Grips, etc.)(type and tot		
. Forced air biopiles only answer the fo	ollowing:		
a. Total air flow rate of the ventilation	n system:	scfm	
b. Average contaminant removal rate	e:	pounds per day	
c. Average biodegradation rate base	d on oxygen utilization:	pounds per da	ау
5. If soil samples have been taken to m	onitor progress, list results.	Only list the most recent results. If none	collected enter NA.
a. Total hydrocarbons. Specify if GR	O and/or DRO:	µg/kg	
b. Specific compounds (µg/kg);			
i. Benzene:	µg/kg		
ii. 1,2 Dichloroethane:	μg/kg		
iii. Ethylbenzene:	µg/kg		
iv. Toluene:	µg/kg		
v. Total xylenes:	μg/kg		
3. Additional Attachments			
Attach the following to this form:			
		ny sampling locations within the biopile.	

Site name: Apleton Wire-Albany Internation	onal Former Chrome Plant	Remediation Site Progres	
Reporting period from: 01/01/2015	To: <u>06/30/2015</u>	Maintenance, Monitoring	& Optimization
Days in period: <u>182</u>		Form 4400-194 (R 1/14)	Page 14 of 29
Section ES-2, Ex Situ Soil Treatm	ient Using Landspreading/T	hinspreading	
A. Effectiveness Evaluation			
1. Method used: O landspreading	thinspreading		
		contaminated soil on native topsoil, incorpo m "thinspreading" refers to placing contami	
2. Was any progress monitoring using	g field screening on soil conduc	ted during this reporting period? \bigcirc Yes (◯ No
3. If the answer to A.2. (above) is yes	s:		
i. List monitoring method:			
ii. List monitoring results:	,,		
n. Electriciticenny recurs.			
4. Is there any evidence of soil erosic	n at the landspreading/thinspre	ading location? O Yes O No	
5. Spreading thickness:	inches		
6. Type of crop planted (if thinspread	ing with no crop planted, so sta	te):	
7. Confirmation sampling date:	Anticipate	ed confirmation sampling date:	
8. Most recent soil sample results, if a result of the most recent sampling		ysis have been collected to monitor progres in collected, enter NA.	s. Only list the highest
a. Total hydrocarbons. Specify if G	RO and/or DRO:	µg/kg	
b. Specific compounds (µg/kg):			
i. Benzene:	µg/kg		
ii. 1,2 Dichloroethane:	µg/kg		
iii. Ethylbenzene:	µg/kg		
iv. Toluene:	µg/kg		
v. Total xylenes:	µg/kg		
B Additional Attachments			

B. Additional Automments
Attach the following to this form:

Map of the landspreading/thinspreading area. If soil samples have been collected, specify locations of samples and dates of sampling.
Table of soil contaminant chemistry data.
Table of any field screening results with dates of sample collection.

Reporting period from: 01/01/2015

Days in period: 182

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization Report Form 4400-194 (R 1/14)

Page 15 of 29

Section ES-3, Landfills

Note: Reporting forms or reporting requirements in a Department approved Operation and Maintenance Plan for a landfill may take the place of this form.

To: 06/30/2015

Specific Inspection Items	Potential Problem Areas	Status	Notes
Perimeter Security Fencing	Broken or missing wood slats, torn chain link fabric, barbed wire, other - list		
Entrance Gate and Locking Mechanism	Lock broken/missing, mechanism inoperative.		
Monitoring Wells and Wellhead Covers	Signs of tampering, casing damaged, lock missing.		
Final Cover Vegetation	Bare spots, stressed vegetation, deep rooted vegetation.		
Final Cover Slope (explain below)	Gullies, lack of vegetation, subsidence, ponding.		
Evidence of Burrowing Animals	Damage to final cover, evidence of waste.		
Stormwater Drainage Channels	Gullies, erosion, debris, culvert blocked.		
Passive Landfill Gas Venting System	Damaged or blocked vent risers, stressed vegetation.		
Active Landfill Gas Extraction System	Damaged or blocked piping, cleanouts, other blower flare, knockouts, etc.		
Leachate Collection System	Pumps, connection piping, collection system piping, extraction wells, collection tanks, tanker truck loading system or sanitary sewer discharge piping.		
Access Road Cover Mowing; Tall Vegetation Removal	Ponding, rutting, erosion, cracked or damaged pavement. Mowing and tall vegetation removal done to specified vegetation.		

Summary of Deficiencies and/or Corrective Actions:

Reporting period from: 01/01/2015

Days in period: 182

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization

Report Form 4400-194 (R 1/14)

Page 16 of 29

B. Additional Attachments

- Attach the following to this form:
 - Any photographs documenting problems and maintenance activities.

To:06/30/2015

- Maps, drawings showing site features requiring maintenance.
- Records for leachate pumping/discharge/hauling.
- Records for active gas extraction volumes.

Site name: Apleton Wire-Albany International Former Chrome Plant		
Reporting period from: 01/01/2015	To: <u>06/30/2015</u>	_ M
Days in period: 182		- R

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization

Report Form 4400-194 (R 1/14)

Section INS-1, Section by Section Instructions and Information

Specific Section by Section Instructions for This Form. The site name and reporting period is listed on every page. Then if the pages are inadvertently separated, that information can be used to determine which pages form the report.

General Site Information

- -- A.1. List the name as it appears on the DNR tracking system. If the person filling out the form does not know what the name on the tracking system is, use the name that the DNR used in the most recent correspondence.
- -- A.2. The reporting period should be either from January 1 to June 30 or July 1 to December 31 for active systems. For passive systems, use a calendar year basis. If however the report covers a newly installed system, list the actual startup date instead of January 1 or July 1. For new passive systems, use the first date that monitoring data is available as the date of startup.
- -- A.3. Enter all regulatory agencies that regulate the site.
- -- A.4. This form is a DNR form. For that reason, list the DNR site number. If there are other agencies regulating the site, listing identification numbers for other agencies is also recommended, but not mandatory, unless specified by those other agencies.
- -- A.5. If the information listed for the site location is not sufficient information for a person to use to drive to a site (example: no street address in a rural area), also include a map that is sufficient for a person to use to drive to the site. A U.S. G.S. topographic map that shows the site location may be used.
- -- A.8. List the contaminants that have at one time exceeded the PALs or Table Values in ch. NR 720. If GRO and/or DRO exceed the ch. NR 720 standards, also list GRO and/or DRO. Do not list other contaminants that have never exceeded state standards at the site. If more room is necessary, write "SEE ATTACHED SHEETS" and list all contaminants on a separate sheet.
- -- A.9. List the predominant soil types that are contaminated. If there is both contaminated soil and groundwater at the site, list soil types both above and below the water table. If only some soil is contaminated, do not list the soil types that are uncontaminated. If the site soils meet soil cleanup criteria, but groundwater is contaminated, so state that. Specify if the USCS or USDA system is used for soil descriptions. This line specifies soil because the vast majority of contaminated sites do not have contaminated bedrock. If bedrock is contaminated, also list that bedrock type.
- A.10.If the groundwater meets ch. NR 140 standards, enter "NA NO NR 140 EXCEEDANCES". Otherwise, list the
 estimated hydraulic conductivity and the method used to estimate it (bail-down tests, calculations based on grain
 size, pumping test, etc.) If the hydraulic conductivity has not been determined, state when the tests are to be
 conducted. When a number of test results are available, list the range of results and the geometric mean. If
 however some results have a low level of accuracy and some results have a high level of accuracy, you should only
 list the most accurate results. See the Section on aquifer testing in the *Guidance on Design, Installation and
 Operation of Ground Water Extraction and Product Recovery Systems* for more information.
- A.11.If the groundwater meets ch. NR 140 standards, enter "NA NO NR 140 EXCEEDANCES". Otherwise, enter groundwater average linear velocity as a function of hydraulic conductivity, effective porosity and the groundwater gradient. You should use the geometric mean from A.11. (above) and the most representative value for the gradient at the site. Estimate the effective porosity based on soil types and geologic origin of the soil. If there are reasons to believe that the average liner velocity estimate is less than the actual rate at the site, so state that reason. Secondary porosity effects, flow through submerged utility trenches, widespread contaminant distribution in low permeability soils, etc., are reasons to assume that the actual migration rate is much greater than the predicted average linear velocity. In such cases, you should explain the reasoning for doubting the predicted average linear velocity.
- -- A.12.If the information listed for the soil treatment location is not sufficient information for a person to use to drive to a site, also include a map that is sufficient for a person to use to drive to the site. A U.S.G.S. topographic map or a plat map that shows the site location may be used.

Site name: Apleton Wire-Albany International Former Chrome Plant				
Reporting period from: 01/01/2015	To: 06/30/2015			
Days in period: 182				

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization

Report Form 4400-194 (R 1/14)

Page 18 of 29

- -- B. Check all methods used at a site. For example, if groundwater extraction, free product recovery and soil venting are used, check all three methods and submit the additional pages for those methods. If dual-phase or bioslurping are used, these methods extract both air and groundwater, check boxes for and attach additional pages for both soil venting and pump and treat.
- -- C. Remediation systems that use any form of enhancement are considered "active" and sites where there are no enhancements of any kind are considered "passive" forms of remediation. For purposes of these forms, natural attenuation (also called naturally occurring bioremediation) is "passive" and all other remediation methods are "active" methods.
- -- C.1. Design flow rates refers to flow rates such as gallons per minute extracted by a ground water extraction system, standard cubic feet per minute extracted by a soil venting system, standard cubic feet per minute injected by an in situ air sparging system, etc. If the actual flow rate is within 80 percent of the rate predicted in the design, consider that as meeting the design specification.
- -- D. The cost data in this section is used by DNR staff to evaluate whether or not the selected remedy is the most cost effective remedy and whether or not system modifications may be warranted to improve efficiency and/or cost effectiveness. Responsible parties and consultants are encouraged to submit cost information so that DNR staff may assist responsible parties and consultants accomplish environmental cleanups in the most cost effective manner.

Total costs for past costs are all costs to date. This information is for all costs that were incurred to investigate and/ or remediate the site. These costs include but are not limited to: consulting labor and supplies, laboratory testing, transportation, equipment, etc. If the consultant does not pass all costs through the consulting firm, the consultant will need to contact their client for other non-consulting costs to determine total costs. Exceptions include costs for attorney fees, accounting, claim assistance in preparing claims to state reimbursement funds, or other indirect expenses that are not essential to remediating the site.

- -- D.2. The initial implementation costs are all costs that are incurred to start implementing a remedy at a site. Costs for the investigation however are excluded because those costs are incurred prior to remedy selection. Since costs for treatability and/or pilot testing are used to procure data for remedial design and are specific to different remediation methods, these costs should be included in implementation costs and not investigation costs. Startup or shakedown costs are also considered implementation costs and should not be considered operation and maintenance costs.
- -- D.3. Costs for implementation or investigation should not be repeated here or they will be double counted.
- -- D.4. Costs for implementation or investigation should not be repeated here or they will be double counted.
- -- D.5. Costs for implementation or investigation should not be repeated here or they will be double counted.
- -- D.6. Examples of one-time or unusual costs include the following:
 - Replacing a burned out motor on a pump.
 - Replacement of a well that was destroyed by a snowplow.
 - Confirmation sampling to determine if the site meets closeout criteria. This type of cost is considered an unusual cost because this type of sampling is not conducted during most reporting periods.
- -- D.7. This estimate of costs is for all costs to close out a site minus the salvage value of any remediation equipment. Pertinent costs include items such as well abandonment, equipment removal from the site, consulting costs associated with these items, etc. Do not include any costs that will not be paid by a state reimbursement fund, such as repaying.

Site name: Apleton Wire-Albany International Former Chrome Plant			
Reporting period from: 01/01/2015	To: <u>06/30/2015</u>		
Days in period: 182			

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 1/14)

Page 19 of 29

Section GW-1, Groundwater Extraction and Product Recovery

- -- A.1. List two numbers, the total number of extraction wells at the site and the number that were in actual use during the period. If all wells were in use, state that on the form.
- -- A.2. The number of days of operation are the number of days that the system was actually operated. If the system was shut down for reasons such as: repairs were necessary, piping froze, shut down to provide time for subsurface conditions to equilibrate before sampling, etc., do not list those days as being in operation.
- -- A.3. System utilization is a measure of the amount of time that the system operated relative to the amount of time that it could have operated.
- -- A.5. The average is for the entire site, not per well or trench. For purposes of determining the average ground water extraction rate, calculate the average based on the total volume of groundwater extracted divided by the time of the reporting period. For example, if the system operated at 10 gallons per minute for one month, the amount of water extracted would be approximately 432,000 gallons. If the reporting period was six months long, then the time period is approximately 260,000 minutes. Therefore, the average flow rate over six months is 432,000 divided by 260,000 minutes for an average flow rate of 1.67 gallons per minute (gpm).
- -- A.6. Calculate the total dissolved contaminants removed in pounds. If the estimate is a sum of BTEX and not based on a total hydrocarbon test (GRO and/or DRO), so state that on the form.
- -- B.3. The average should be based on the entire site over the entire reporting period. See instructions above for A.5. List the free product recovery rate as gallons per day (gpd), not gallons per minute (gpm).
- -- C.1. To answer this question, a thorough evaluation of water levels and chemical analyses in all monitoring points at the site is necessary.
- -- C.2. If the capture zone has not been determined mathematically, it will need to be determined to answer this question. See the *Guidance on Design, Installation and Operation of Ground Water Extraction and Product Recovery Systems* for and any recent update or errata sheets for more information on plume capture.
- C.4. When free product is present, line C.4.a. should state "FREE PRODUCT" and lines C.4.b. through C.4.d. are left blank. Otherwise, complete the following calculations. There typically are several compounds at most contaminated sites that exceed the standards in ch. NR 140. The purpose of this question is to focus on the single contaminant that requires the most treatment to achieve groundwater quality standards on a percent reduction basis. For example, the most recent round of sampling at an example site demonstrated the highest levels of contaminants were 1,000 µg/L benzene and 1,000 µg/L toluene in the most heavily contaminated monitoring well. The ES and PAL for benzene is 5 µg/L and 0.5 µg/L (respectively) and for toluene the ES and PAL is 343 µg/L and 68.6 µg/L (ES and PAL data as of August 1995). Therefore the percent reduction to meet the ES and PAL for benzene is 99.5 and 99.95 percent and for toluene it is 65.7 and 93.14 percent. For that reason, the single contaminant that is most critical to reaching state groundwater standards is benzene. Therefore benzene is entered on line a. In this example, 99.5 and 99.95 percent is entered on line b. In this example, 1,000 µg/L is entered on line c. In this example, benzene is the driving factor, therefore enter the maximum benzene level in the single most heavily contaminated extraction well during the most recent sampling period on line d.
- -- D. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

Section GW-2, In Situ Air Sparging

- -- B.1. See instructions for Section GW-1, Item C.4.
- -- C. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

Reporting period from: 01/01/2015 To: 06/30/2015

Days in period: 182

Section GW-3, Natural Attenuation in Groundwater

- -- A.1. See instructions for Section GW-1, Item C.4.
- -- A.2.a. List the estimated hydraulic conductivity that was listed on line A.11 in Section GI-1.
- -- A.2.b. List the groundwater average linear velocity that was listed on line A.12 in Section GI-1.
- -- A.3. Assess the monitoring well network to determine if there is a down gradient well that has not been impacted by the contaminants. Consider the possibility of a submerged (or diving) plume in that assessment. If all evidence indicates that the plume does not extend to the farthest "clean" downgradient well, indicate "YES" on the form. Otherwise indicate "NO" on the form. If there are not plans to install such a well, explain.
- -- A.4. Based on the contaminant distribution, evaluate whether or not the plume is expanding, stabilized, or contracting. When making this determination, consider the contaminant that requires the greatest percent reduction to achieve ch. NR 140 standards.
- -- A.5. If the plume is expanding and a justification is necessary, add additional sheets justifying why natural attenuation is still the appropriate remedy. If it is not, further describe in the explanation the plans to use a different remedy.
- -- A.6.a. Enter the upgradient dissolved oxygen (DO) level(s). If however there are contaminants measured in the upgradient well, it is not a true background measurement. In that case enter "UNKNOWN" on the form.
- -- A.6.b. Enter the range of DO values measured in wells within the plume.
- -- B. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

Section GW-4, Other Groundwater Remediation Methods

- -- A.1. See instructions for Section GW-1, Item C.4.
- -- A.2. Self explanatory.
- -- A.3-4. Enter the information specified by the DNR for this method at this site.

Section IS-1, Soil Venting (Including both Soil Vapor Extraction and Bioventing)

- B.3. This subsection is used as a trigger for determining if the system requires an evaluation for future activities, such as improvements, converting the site to monitoring for natural attenuation, closure, etc. If an in situ respiration test must be performed, see Hinchee, R.E. and Ong, S.K. 1992. A Rapid In Situ Respiration Test for Measuring Aerobic Biodegradation Rates of Hydrocarbons in Soil. *Journal of the Air and Waste Management Association*. Volume 42, Number 10. Pages 1305 to 1312 for general procedures. For a discussion of methane monitoring, see the instructions for Section IS-2, item A.1.d., below. If the contaminant extraction rate in B.3. is greater than the trigger levels, leave lines B.3.a.i. and B.3.a.ii. blank.
- -- C. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization

Report Form 4400-194 (R 1/14)

Page 20 of 29

Site name: Apleton Wire-Albany Internation	onal Former Chrome Plant
Reporting period from: 01/01/2015	To:06/30/2015

Days in period: 182

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization

Report Form 4400-194 (R 1/14)

Page 21 of 29

Section IS-2, Natural Attenuation in Soil

- -- A.1. This data is used to assess subsurface conditions based on soil gas data. Whenever possible, a permanently installed gas probe should be used. If at all possible, the gas probe should be located in the part of the site that is most heavily contaminated, since that is the part of the site that is likely to take the longest amount of time to meet ch. NR 720 standards. Water table wells that have screen exposed above the water table are also good measuring points. When installing permanent gas probes, you should install the screen deep enough that a true measure of the most heavily contaminated soil is possible, but install the screen shallow enough to assure that it is not submerged by groundwater table fluctuations. In some situations where the depth of contamination is variable, consideration should be given to using nested gas probes instead of only using probes at a single depth. Measuring points that should not be used include temporary gas probes because these points are less repeatable from one monitoring event to the next. Also, if there has been an active soil venting system in use at the site, the air extraction wells should not be used because these wells are in locations that have had much more aggressive treatment than the rest of the site.
- -- A.1.a. A flame ionization detector (FID) is specified instead of a photo ionization detector (PID) because PIDs often read inaccurately in moist oxygen deficient/carbon dioxide rich atmospheres. Also, PIDs do not detect some petroleum compounds.
- -- A.1.d. Methane readings are used to measure for anaerobic conditions. When the original product that is lost is a refined petroleum product (not crude oil), there should not be any methane within the product. Methane however may be produced under very anaerobic conditions. Any method may be used for measuring methane provided that the detection limit is less than a few ppm_V. One convenient method is to use an FID that is equipped with a granular activated carbon filter to filter out non-methane components. Some instrument manufacturers make these filters available as options. In some cases an FID will flame out due to an oxygen deficiency. Some instrument manufacturers offer a dilution device as an accessory that is designed to prevent flameouts and also raises the upper limit of measurement to 10,000 ppm_V or higher. If the meter "pegs" at 10,000 ppm_V (or one percent), enter ">10,000 ppm_V."
- -- A.2. The background monitoring point is predominantly used to measure natural oxygen and carbon dioxide levels in soil over time. For this reason, the background monitoring point should be reasonably close to the site, but not so close that the conditions are no longer representative. Considerable variations over time can occur, this background point should be measured during every sample event. Considerations for determining if a background point is representative include:
 - If an on-site background point has minor levels of VOCs in it due to gas phase diffusion, that is acceptable, but if the levels are high, it may not be representative of true background conditions.
 - Background oxygen and carbon dioxide levels vary with soil type and natural organic carbon content. For this
 reason, if at all possible, the soil types should be identical within the screened interval of all gas probes.
 - The same depths should be used for all gas probes to allow comparison from one location to the next. If the depth to water varies greatly across the site, a certain amount of confusion in the data is likely. In this case, use professional judgement to provide the best data possible at a reasonable cost.
- -- A.3. Enter this data for petroleum fuel sites. For other sites, provide the data that is most appropriate for the situation.
- -- B. Cross sections are self explanatory, see the generic discussion at the end of the instructions (below) for other attachments.

Section IS-3, Other In Situ Soil Treatment Methods

-- A.2. Enter the information specified by the DNR for this method at this site.

Site name: Apleton Wire-Albany International Former Chrome Plant Reporting period from: 01/01/2015 To: 06/30/2015

Days in period: 182

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization

Report Form 4400-194 (R 1/14)

Page 22 of 29

Section ES-1, Ex Situ Soil Treatment Using Biopiles

- -- A.3.a. The term "artificial nutrients" essentially means agricultural fertilizers or any other fertilizer products.
- -- A.3.a.i. The types of fertilizers that are added should be listed here by chemical names, not by vendor trade names.
- -- A.3.a.ii. List nitrogen content as N, list phosphorous content as phosphoric acid (P2O5). Note: Fertilizer ratings are based not on actual content of N, P and K, but on nitrogen (as N), phosphorous (as P2O5) and potassium (as K2O).
- See example calculations at the end of this set of instructions. -- A.4.c.
- -- A.5. Enter this data for petroleum fuel sites. For other sites, provide the data that is most appropriate for the situation.
- The figure is self explanatory. See the generic discussion at the end of the instructions (below) for instructions for -- B. the tables.

Section ES-2, Ex Situ Soil Treatment Using Landspreading/Thinspreading

--- B. A map to scale of the landspreading location including and landmarks or benchmarks. When samples have been collected, the distances to any landmarks or benchmarks should be indicated.

Section ES-3, Other Ex Situ Soil Treatment Methods

-- A.2. Enter the information specified by the DNR for this method at this site.

Site name: Apleton Wire-Albany International Former Chrome Plant			
Reporting period from: 01/01/2015	To: 06/30/2015		
Days in period: 182			

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 1/14)

Section INS- 2, Figures, Graphs and Tables

When figures and graphs are specified, they should at a minimum contain the following information, or an explanation as to why the information is not necessary.

Maps. All maps should include the applicable information specified in s. NR 724.11(6), Wis. Adm. Code. In most cases, all information can be combined into a single map. There are times that a single map will have so much data that it is essentially unreadable. The consultant should use professional judgement when determining if a single map or multiple maps best portray the information necessary.

- Groundwater Contour Map Guidelines.
 - -- List groundwater elevations for each measuring point on the map.
 - -- Use the most recent data available.
 - -- For water table maps, do not use data from deeper piezometers. If piezometer data is shown, use a different symbol for the piezometers than used for water table wells.
 - -- If any wells are dry, indicate that on the map.
 - -- If free product is present at site, shade the area where free product is estimated to be present.
 - -- If groundwater is extracted with a pump and treat system, also denote plume capture zone.
 - -- If in situ air sparging or soil venting is in use, specify on the map if the system was operating or shut down during the water level measurements. See the Subsection on water table maps in the *Guidance on Design, Installation and Operation of Ground Water Extraction and Product Recovery Systems* for more information on this topic.
- Groundwater Contaminant Distribution Map Guidelines.
 - -- Only contaminants that exceed the ch. NR 140 ES or PAL should be shown on the map. When contaminants are above the PAL or ES at some data points and below the PAL or ES at other data points, list the data for all locations to portray which areas of the site meet ch. NR 140 groundwater quality standards.
 - -- If a well is not sampled due to the presence of free product indicate "FREE PRODUCT" at those data points.
 - -- If more than five contaminants exceed ch. NR 140 ES, only the five contaminants that require the greatest percent reduction to achieve ch. NR 140 ES or PAL should be shown on the map.
 - -- Drawing isoconcentration lines is optional, unless specified for the site on a site specific basis.
 - -- If the contamination has crossed the property line, that property line should be clearly denoted on the map.
 - -- If in situ air sparging is used, water samples from ch. NR 141 type monitoring wells may not represent aquifer water quality as a whole. For that reason, groundwater data should be obtained from driven probes with no filter pack. If there are no driven probes and conventional ch. NR 141 monitoring wells are used, shut down the air injection system at least two weeks prior to collecting groundwater samples. See the *Guidance on Design, Installation and Operation of In Situ Air Sparging Systems* and the August 1995 update sheets for more information on this topic.
- Dissolved Oxygen Map Guidelines.
 - -- Dissolved oxygen data may be shown on the contaminant concentration graphs or on a separate graph.
 - -- Dissolved oxygen maps are optional for ground water extraction and product recovery systems.
 - --- When in situ air sparging is used, monitoring points may not represent aquifer water quality as a whole. For that reason, groundwater data should be obtained from driven probes with no filter pack. If there are no driven probes and conventional ch. NR 141 monitoring wells are used, shut down the air injection system at least two weeks prior to collecting groundwater samples for DO. See the *Guidance on Design, Installation and Operation of In Situ Air Sparging Systems* and the August 1995 update sheets for more information on this topic.
- <u>Well and Soil Sample Location Map Guidelines.</u> Well and sample location maps for all methods should clearly indicate the location(s) of the release or the area where soil contamination historically has been highest. Also, if part of the contamination has been excavated, the pit boundaries.

The recommended documentation for each remedial method is as follows:

- -- Groundwater Extraction and Product Recovery separate well location maps should not be provided, instead the wells should be indicated on the groundwater contour and contaminant distribution maps.
- -- In Situ Air Sparging the map should indicate all air injection wells, soil venting extraction wells, and all groundwater monitoring points.

Site name: Apleton Wire-Albany Internation	nal Former Chrome Plant	
Reporting period from: 01/01/2015	To: <u>06/30/2015</u>	
Days in period: 182		

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization

Report Form 4400-194 (R 1/14)

Page 24 of 29

Maps (Continued).

- -- Natural Attenuation in Groundwater separate well location maps should not be provided, instead the wells should be indicated on the groundwater contour maps.
- -- Soil Venting indicate all air extraction wells. If any gas probes are used to assess subsurface conditions in either contaminated zones or background locations, also indicate those data points with a different symbol. If soil samples have been collected recently to track progress, indicate those locations with the date of sampling noted on the map.
- -- Natural Attenuation in Soil show all monitoring points. Indicate which data points are background measuring points. If soil samples have been collected recently to track progress, indicate those locations with the date of sampling noted on the map. If the site was previously treated by soil venting, the locations of former air extraction wells should also be shown since these are areas where aggressive treatment has been applied. Also show area(s) of paved and unpaved ground surface. If pavement is significantly broken to allow significant water infiltration and air diffusion, map that area as broken pavement.

Graphs. All graphs that show time versus contaminant concentration or cumulative contaminant removal should be based on total time, not only operation time. All graphs that denote cumulative removal should use pounds of contaminant removed. Graphs should accurately show the time period(s) when the system was not operating. Plot time on the X axis, concentration or cumulative removal data on the Y axis.

- <u>Time Versus Cumulative Removal.</u> The recommended documentation for each remedial method is as follows:
 - -- Groundwater Extraction and Product Recovery separate graphs should be used for free product recovery and dissolved phase recovery. A single graph for each phase is adequate, per well graphs are only necessary when specified by the Department on a site specific basis.
 - -- In Situ Air Sparging no graph is necessary (removal data is shown on the graphs for the soil venting system).
 - -- Natural Attenuation in Groundwater no graph is necessary.
 - -- Soil Venting provide a graph of cumulative removal for total VOCs for the total system.
 - -- Natural Attenuation in Soil no graph is necessary.
 - -- Ex Situ Soil Treatment Using Biopiles Provide two graphs, one showing cumulative removal of total VOCs and a second graph showing total contaminant biodegradation over time.
 - -- Ex Situ Soil Treatment Using Landspreading/Thinspreading no graphs are needed.
- <u>Time Versus Contamination Concentration Graphs.</u> Create graphs with contamination level on the y axis (semilog scale) and time on the x axis (linear scale). If free product is present, time versus contamination concentration graphs are not necessary.

The recommended documentation for each remedial method is as follows:

- -- Groundwater Extraction and Product Recovery graph the contaminant level over time for the groundwater that is extracted by the extraction system. List all compounds that exceed ch. NR 140 ES or PAL. If over five contaminants exceed ch. NR 140 ES or PAL, only list the five contaminants that exceed ch. NR 140 standards by the greatest percent.
- -- In Situ Air Sparging provide a graph for the single monitoring well that is most heavily contaminated. If over five contaminants exceed ch. NR 140 ES or PAL, only list the five contaminants that exceed ch. NR 140 standards by the greatest percent.
- -- Natural Attenuation in Groundwater provide a graph for all monitoring wells that contain any compounds that exceed ch. NR 140 standards. If over five contaminants exceed ch. NR 140 ES or PAL, only list the five contaminants that exceed ch. NR 140 standards by the greatest percent.
- -- Soil Venting provide a graph of contaminant concentration over time for the entire system for total VOCs. If any gas probes are used to assess subsurface conditions in either contaminated zones, also provide a graph with the data from the most heavily contaminated gas probe.
- --- Natural Attenuation in Soil provide a graph of contaminant concentration over time for total vapor phase VOCs as measured with an FID, oxygen, carbon dioxide and methane in an gas probe.
- -- Ex Situ Soil Treatment Using Biopiles no graph is necessary.
- -- Ex Situ Soil Treatment Using Landspreading/Thinspreading no graphs are needed.

 Reporting period from:
 01/01/2015
 To:
 06/30/2015

Days in period: 182

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 1/14)

Page 25 of 29

Graphs (Continued).

Graph of Contaminant Concentrations Versus Distance. If free product is present, a graph of contaminant concentrations versus distance is not necessary.

The recommended documentation for each remedial method is as follows:

- -- Groundwater Extraction and Product Recovery no graph is necessary.
- -- In Situ Air Sparging and Natural Attenuation in Groundwater plot a graph with distance (on the x axis, linear scale) and contaminant concentrations (y axis, log scale) from the upgradient measurement point to the farthest downgradient data point along the centerline of the plume. List the same contaminants as shown on the Time Versus Contaminant Concentration Graphs. Clearly show the source area on the graph. If free product has been present, label the data points that previously contained free product. For in situ air sparging, see comments above about samples collected from conventional monitoring wells with filter packs versus driven probes.

Tables. Whenever possible, data over the life of the project should be listed.

The recommended documentation for each type of table is as follows:

Groundwater Contaminant Chemistry Data.

List:

- -- Contamination levels for all contaminants that exceed ch. NR 140 standards.
- -- Dissolved oxygen levels if applicable.
- -- Other biological parameters, if applicable (nitrogen, phosphorous, manganese, sulphate, iron, dissolved methane, redox potential, pH, microbial population size, etc.). See instructions for page GW-3 for more information on these parameters. Also, list the dates the samples were collected and the standard methods used to analyze the samples.
- Groundwater Biological Parameters.

For natural attenuation in groundwater only, these measurements should be listed (if known) to provide information on biodegradation. This table is not necessary for free product extraction, groundwater extraction or in situ air sparging.

Provide a table that includes any results of tests conducted for dissolved oxygen, nitrate, manganese, iron, sulphate, methane, redox potential, heterotrophic and/or hydrocarbon degrading microorganism populations. Identify on the table if the monitoring locations are upgradient, side gradient, downgradient, or within the plume, dates of sampling, and the analytical methods used for those parameters. Include all data for the life of the project. Since some of these tests are only conducted once, or periodically - enter "NS" in the table for not sampled for any parameters that were not sampled during a particular round of sampling.

When asked to list the standard methods, list the method if a standard method exists. There are however some tests (for example dissolved methane) where there are no official standard laboratory or field methods. In this case the laboratory will have to create their own standard procedures. In these cases list the name of the laboratory and that laboratory's name for that test.

Specific considerations for each parameter are as follows:

- -- Dissolved oxygen (mg/L). The most efficient mechanism for natural or enhanced biodegradation of petroleum compounds is aerobic biodegradation.
- -- Nitrate (mg/L as N). Nitrate (NO3⁻¹) is a potential electron acceptor for denitrification and also serves as a nutrient for heterotrophic microbial populations to enhance aerobic biodegradation. Decreasing nitrate levels from background wells to wells within the plume are an indication of either aerobic or anaerobic biodegradation.
- -- Manganese as Mn⁺² (mg/L). Manganese as Mn⁺⁴ is converted to soluble manganese as Mn⁺² under anaerobic biodegradation. For this reason, total manganese analysis is not appropriate, only soluble manganese as Mn⁺². When the levels of soluble manganese are higher in wells within the plume than in background wells, that is an indication of anaerobic biodegradation.
- -- Iron as Fe⁺² (mg/L). Iron as Fe⁺³ is converted to soluble iron as Fe⁺² under anaerobic biodegradation. For this reason, total iron analysis is not appropriate, only soluble iron as Fe⁺². When the levels of soluble iron are higher in wells within the plume than in background wells, that is an indication of anaerobic biodegradation.

Reporting period from: 01/01/2015

Days in period: 182

Remediation Site Progress and Operation. Maintenance, Monitoring & Optimization Report Form 4400-194 (R 1/14)

Page 26 of 29

Tables (Continued).

- Dissolved sulphate (SO4⁻², mg/L). Sulphate (SO4⁻²) is a potential electron acceptor. Decreasing sulphate levels from background wells to wells within the plume are an indication of anaerobic biodegradation.
- Dissolved methane (mg/L). Methane is produced under anaerobic conditions. Since background methane levels can usually be assumed to be zero, in most cases only measurements within the plume are used. Exceptions are when the natural soils have very high levels of TOC (for example peat), background methane levels are also warranted. When the contaminant is crude oil instead of a refined petroleum product, methane measurements may however cause erratic results. Significant amounts of methane may be created when other electron acceptors (NO3⁻¹, Mn⁺⁴, Fe⁺³ and SO4⁻²)

are exhausted. For this reason, significant levels of methane are indicative of very very anaerobic conditions. -- Redox potential (millivolts, include + or - sign). Redox potential is another measure of the level of aerobic/anaerobic

conditions, however it is a much more sensitive measurement than DO at very low levels of DO.

To: 06/30/2015

-- Heterotrophic and hydrocarbon degrading microorganism populations (CFU/mL). Heterotrophic and specific hydrocarbon degrader population sizes should be listed for both background locations and locations within the plume, if there is information available. There is disagreement by many of the experts within the field as to the merits of sampling for this parameter. Refer to other DNR guidance documents on natural attenuation (or passive bioremediation) for more information on this topic.

Soil Gas Data.

The recommended documentation for each remedial method is as follows:

- -- When natural attenuation in soil is used, provide a graph of all soil gas readings over time for every data point.
- -- When soil venting is used, if a cas probe is used to assess subsurface conditions over time in a location where air is not extracted, provide that data in a table.

System Operational Data.

The recommended documentation for each remedial method is as follows:

- -- Groundwater Extraction and Product Recovery:
 - Well by well flow rates in gpm for each extraction well. If a well is off line, list flow rate as "ZERO." Clearly denote on ò the table periods of system shutdown.
- -- In Situ Air Sparging:
 - Air pressure and injection flow rates in scfm for each well. If a well is off line, list flow rate as "ZERO." Clearly o denote on the table periods of system shutdown.
- Natural Attenuation in Groundwater no table needed.
- -- Soil Venting:
 - Vacuum readings and extraction rates in scfm for each well. If a well is off line, list flow rate as "ZERO." Clearly 0 denote on the table periods of system shutdown.
 - Air concentrations in ppmy or in mg/L for total VOCs.
 - Total system contaminants removed in pounds and the pounds per day removal rate. o
- -- Natural Attenuation in Soil no table needed.

Reporting period from: 01/01/2015	To: 06/30/2015
Days in period: <u>182</u>	

Tables (Continued).

- -- Ex Situ Soil Treatment Using Biopiles:
 - If forced air ventilation is used:
 - System extraction rates in scfm.
 - Air concentrations in ppmv for total VOCs.
 - Total system contaminants removed in pounds and the pounds per day removal rate.
 - Temperature.
 - If passive ventilation is used, a table of temperatures.
- -- Ex Situ Soil Treatment Using Landspreading/Thinspreading no table is needed.

Acronyms and Abbreviations:

CFU/mL colony forming units per milliliter

- cm/sec centimeters per second
- DATCP Department of Agriculture, Trade and Consumer Protection
- DCOM Department of Commerce
- DNR Department of Natural Resources
- DO Dissolved Oxygen
- DRO Diesel Range Organics
- ES Enforcement Standards in NR 140
- FID Flame Ionization Detector
- ft/yr feet per year
- gpd gallons per day
- gpm gallons per minute
- GRO Gasoline Rage Organics
- mg/kg milligrams per kilogram

mg/Lmilligrams per liter

- NR prefix for rules established by the DNR
- P.E. Registered Professional Engineer
- P.G. Registered Professional Geologist
- PAL Preventative Action Limit in NR 140
- PECFA the state sponsored cleanup fund for certain petroleum contaminated sites
- ppmv parts per million by volume (vapor phase only)
- scfm standard cubic feet per minute
- TOC Total Organic Carbon
- USCS Unified Soil Classification System
- USDA United States Department of Agriculture
- µg/kg micrograms per kilogram
- µg/mL micrograms per milliliter
- VOC Volatile Organic Compounds
- Y/N Yes or No

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization

Report Form 4400-194 (R 1/14)

Page 27 of 29

Site name: Apleton Wire-Albany International Former Chrome Plant
Reporting period from: 01/01/2015 To: 06/30/2015

Days in period: 182

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 1/14)

Page 28 of 29

Section INS-3, Example Calculations for Determining the Biodegradation Rate on Forced Air Biopiles

Important Note: This page uses a nonproportional font and characters that are unique to WordPerfect. If the user received this document electronically, this page may need to be converted to a different font for the formulas to print correctly. The original font used for this page was prestige elite with 16.67 characters per inch.

Assumptions:

- The measurements at the stack are as follows:
 - -- Average flow rate is 20 scfm.
 - -- Average oxygen level extracted from biopile is 14.0 percent by volume.
 - -- Average carbon dioxide level extracted from biopile is 3.5 percent by volume or 35,000 ppmv.
- Atmospheric air contains 21 percent oxygen by volume and 400 ppmv (or 0.04 percent) carbon dioxide. (Note: On each site visit, the consultant should check atmospheric air to assure that the instrument is spanned correctly.)
- Atmospheric air weight 0.0763 pounds per cubic foot at standard temperature and pressure (Gibbs, 1971).
- Average molecular weight of air is 28.97 (Gibbs, 1971) which is rounded off to 29, molecular weight of O2 is 32, molecular weight of CO2 is 44.
- For every pound of contaminants biodegraded, 3.3 pounds of oxygen is utilized and up to 3.2 pounds of carbon dioxide is generated.
 - -- The stoichiometry of aerobic benzene biodegradation can be described as follows:

C6H6 + 7.5 O2 -- -- > 6 CO2 + 3 H2O

Based on this, benzene biodegradation requires that 3.07 pounds of oxygen are utilized to fully oxidize one pound of benzene, assuming no electron acceptors other than oxygen are used. Assuming no biomass is produced and no geochemical reactions consume carbon dioxide, 3.38 pounds of carbon dioxide is generated from one pound of benzene.

-- The stoichiometry of aerobic hexane biodegradation can be described as follows:

Based on the above assumptions, hexane biodegradation requires 3.52 pounds of oxygen and generates up to 3.06 pounds of carbon dioxide.

Other hydrocarbons also require a similar ratio of oxygen for aerobic biodegradation. For purposes of this guidance it is assumed that a pound of petroleum contamination requires 3.3 pounds of oxygen and generates up to 3.2 pounds of carbon dioxide and 1.1 pounds of water in the biodegradation reaction.

Calculations:

Oxygen utilization rate:

Carbon dioxide production rate:

Site name: Apleton Wire-Albany International Former Chrome Plant

Reporting period from: 01/01/2015 To: 06/30/2015 Days in period: 182

Calculations (Continued):

Biodegradation rate based on oxygen:

7.07 / 3.3 = 2.1 pounds per hour

Biodegradation rate based on carbon dioxide:

4.81 / 3.2 = 1.5 pounds per hour

Since the biodegradation rate is based on oxygen utilization and/or carbon dioxide generation, it is a measure of the overall biodegradation rate of all carbon sources, including natural organic carbon and any organic materials that were added. For this reason, the biodegradation rate is not specific to hydrocarbons and it is likely that the measured biodegradation rate will overestimate the rate of contaminant reduction.

Commonly the measured biodegradation rate based on carbon dioxide generation is less than the rate estimated with oxygen. Because of geochemical interferences and biomass formation, estimates based on carbon dioxide measurements are often low. If however the biodegradation rate estimate based on carbon dioxide is significantly greater than the estimate based on oxygen, it is likely that there is a measurement or calculation error. In this way, the carbon dioxide measurements can be used to double check the oxygen measurements and calculations.

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization

Report Form 4400-194 (R 1/14)

Page 29 of 29

Appendix D

Historical Soil Boring and Groundwater Monitoring Well Data Abandoned Borings and Wells

1	C	-			İ	OWNER		· · ·			LC	G	OF BO	RING N	UMBE	R			J
•		١Ň			ļ		ny Interna	ational					W-1		· ·				
. 1		<u> </u>				PROJECT	NAME				E	NGI	NEER						
	STSC					Chro	nium Conta	amination	Assessmen	t			,						
	SITE	LOC	CATI	OV	1														
r			,			N. Me	eade Stree	et, Applet		· _ · · · · · · · · · · · · · · · · · ·			NO	EIVI	\$		E		
									WELL INSTA	LLATION PIPE EL. + 769.98			STANDARD PENETRATION TEST, N (B/F1)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT*)	1. %	BHT	LIQUID/PLASTIC LIMIT	UNG	×
. •		1		Ч С Ч								I	(B/I	MO 01)	TEN	WEI(2	ASS EVE	λ Ω
÷	No		ЪЕ	STAP			DESC	RIPTION OF M	ATERIAL				d N	Öð að	WATER CONTENT.	UNIT DRY WEIGHT (1 BS/FT)	LAS L/P	PERCENT PASSING #200 SIEVE	PERMEABILITY, (CM/SEC)
	DEPTH ELEVATION	SAMPLE NO	SAMPLE TYPE	Ö	₹								DAR	GTHE	ER	1	4/0	#20 #20	BME CI
•	DEPTH ELEVAI	MPLI	APLI	MPLI	Š								TAN	REN	WAI	- N	Inol	PEI	8
	<u>x</u>	SAI	SAI	SAMPLE DISTANCE	E	SURFACE EL	EVATION 7	67.89 (U	SGS)]		s	NS S					
		1	SS		ii l	Dark brow	n sandy s	ilt (ML) ·	- little 1	oots and		Ĺ	12				}		
; !		1À	SS	11	H			se - tops		/		5							
. •		2	ss		<u> 11</u>	Fill: Br	own silty	clay (CL) - trace	of sand and		ţ	21/6"						
		+		Π		- gravel -	medium de	nse		ſ		ţ_							
. 1		3	SS								1	}	15						
		$\frac{1}{1}$		Ш	\mathbf{H}							ŧ				l			
·		14	SS	μ	Щ							Ç.	36					1	
:		5	ss	Π	Π							1	37						
:				#	屵											l			
		6	SS		Ш							H	29						
.		77	SS	Π		Brown sil	ty clay (CL) - tra	ce of gra	vel - medium rated at 13.0		∄	15			1			
			55			feet	dense - g	Iaciai Ci	II - Sucu	Lated at 15.0		Ħ	1.2						
•	-15-	18	ss	İΠ	Π								8						
••				<u> </u>	Ш							Ħ							
	·	- 9	SS	111							1	Ħ	6						
•				TT	TH I													1	
		10	ss	Щ	Ш							Ħ	6						
			<u> </u>				·				+	<u>151</u>	1	†		+	1	1	
•	\square	-	1.			End of Bo	oring												
	[3		ŀ			lvanced fi	com 0.0 to	20.0 fee	t by <u>c</u> ower		•							·
		-				auger 2 inch di	Lameter P	VC observa	tion well	installed									
:.		-						protector								1			
														1					
	, <u></u>	-																	
•		-									1		ł						
													1						
•	•	7									Ì			1		1			
	, <u> </u>	Ξ											1			1			
		1											1						
		3	1										1	1					
		7													ł	1			
	<u> </u>	4													1	1	1		
	:	Ξ			.										1]		j	
	,	1													ļ				
		Ę	1						•					1			1	1	
•		E																	
]													1				
		1											1		1			1	
		Ξ												[
		<u>-</u>				<u> </u>							L	1	1				<u> </u>
		tratifica	tion h	ne3	19019		nete boundary b	etween soil type		nsition may be gradual.	Wate	r level	is were me	sured at th	e times H				
	WL-T I	PIPE	<u> </u>	1475		BCR	WL-T. PIPE	DATE	ACR	BORING STARTED	1	-19	-87	STS OFF	ICE			au Str , WI.	
						(1916	15.3	2-9-87	TIME	BORING COMPLETED	<u>1</u>	-19	-87	DRAWN	BY JJ		т <u>1</u>		
	1	ry ry	1-2				9.0	3-26-87		RIG Joy 15									L.
		<u>1</u> 6.1	2-4			1		1		FOREMAN RER				APP'D. E	WL Y	K STS	JOB NO.	13685	
	L: 5-983			_		·								*****					

67	İ	OWNER	· · · · · · · · · · · · · · · · · · ·				LC			RING	UMBI	ER			
	-	····	y Interna	tional					N-2					·····	
		PROJECT I		mination		_	E	NGI	NEER						
STS Consultants L				anina cion	Assessmen					1		r			{
SHE LOCATIO	EN .	N. Me	ade Stree	t, Applet	on, Wisco	nsin			~	35					
	TT		······		WELL INSTA				STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT*)	%	L	11	G	
	,				TOP STANDP	IPE EL. + 770.63) FT	IPRE ONS	NT.	UNIT ORY WEIGHT (LBS/FT3)	LIQUID/PLASTIC LIMIT LL/PL	PERCENT PASSING #200 SIEVE	×.
C UEPTH ELEVATION SAMPLE NO. SAMPLE TYPE SAMPLE DISTANCE									N (B	AC D d	WATER CONTENT.	NE	PL	PAS	PERMEABILITY. (CM/SEC)
LIEPTH ELEVATION SAMPLE NO. SAMPLE TYPE SAMPLE DISTU			DESCF	IPTION OF M	ATERIAL				ST.	H.	н С	DR. LBS	51	200 200	MEA CM/
A DEPTH ELEVATIC SAMPLE NO SAMPLE TYP SAMPLE TYP	RECOVERY								NO H	ING	ATE	LIND	an	ERC #	PERI
AMF		SURFACE ELE					i		ST/	STRE	3		3		
					GS)	_			<u> </u>			ļ			
				silt (ML) ose - tops		of gravel,		£	9						
		110010 10	<i>NCS</i> - 10	<u> 36 - CO</u>			-	}_					{	<u> </u>	
· 2 SS !!	111					nd and gravel -		ł	10						
3 SS		trace or	roots - r	nedium der	ise - poss	ible fill		ł	25						
		• • • • • • • • • • • • • • • • • • •	······									<u> </u>		<u> </u>	
4 SS	ШЦ							Ł	26						
5 SS	nd							- 	29						
	Щ														
6 55	IЩ							i i i	23						1
	171					avel - medium 14.0 feet		H							
7 SS	ШЦ							Ħ	23						
	Ш							Ħ	7						
							ļ	H							
• 9 ss	IЩ						ĺ		6						
	πh							Ħ							
10 SS	ЩЦ							Ħ	7						
		****					Τ		1	1	1	1	1		1
		End of B	-	rom 0 0 t	0 20 0 Fa	et by power									
		auger				-									
						l installed			1						
		ac 20.0	Teet with	protecto	r brbe				Ì						
											1				
										1					
									1						
													1		
														1	
;====1										1					
					•					1					
·=====											1				
							1								
		l													
															
	IS INDE		nate boundary b	etween soil type		nsition may be gradual.	Wate	er leve	is were me	asured at th	ne times i				
WL-T. PIPE DA	TE	BCR	WILT DIDE	DATE	ACR	BORING STARTED	1	-19	-87	STS OF	FICE			au Str , WI.	
14.3 1-21		I INC	WL-T. PIPE 8.1	2-9-87	TIME	BORING COMPLETED	<u>)</u>	-19	-87	DRAWN	BY JJ			OF	1
11.4 1-22			6.1	3-26-87		RIG Joy	15	5		}					
7.7 2-4-	87					FOREMAN	REF	٤		APP'D.	BY JW	K STS	JOB NO.	13685	
· : 5-983															

					OWNER			· .		LOG	OF BO	RING	IUMBE	R			1
1						ternation	al		······	MW-							
	_				PROJECT						INEER						
STS Co	msul	tant	s Lt	d.	Site Reme	diation				STS	Consul	ltants,	Ltd.				
ITE	-00	ATI	ON	1		lbany Inte Wisconsi		L Chromium	Facility		N	11) EVE			, .		
îH Elevarion	SAMPLE NO.	SAMPLE TYPE	LE DISTANCE	RECOVERY	-	DESC	RIPTION OF N		LLATION IPE EL. + <u>764.7</u>	4	STANDARD PENETRATION TEST. N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT')	WATER CONTENT, %	UNIT DRY WEIGHT (LBS/FT ¹)	LIQUID/PLASTIC LIMIT I.L/PL	PERCENT PASSING #200 SIEVE	PERMEABILITY, K (CM/SEC)
	SAMF	SAMP	SAMP	RECO	SURFACE EL	EVATION +7	62.80				ST/	STRE	3	-	רוס	•	-
		нз															
		RB			No sampl	es collect	ceđ - See	boring lo	og of Boring 2								
20		 		$\frac{1}{11}$		·	<u></u>				_						
		51			Brown si wet - ti		(CL) - tr	ace of gr	avel - firm -		-	1.5					
	3	S										1.0					
	4	s:										.75					
	5	s	r	Ш								.75	5				
	auto				with room while d	advanced t ck bit - & rilling -	3.0 feet 2 inch d	of 6 inch iameter mo	ower auger and diameter tem pritoring well nsilon may be graduel	orary inst	casing alled a	instal t 40.0	Led Eeet	hcated. W	ater ievels	may vary s	easonaliy.
μ					BCR		<u> </u>	ACR	BORING STARTED	1-29		STS OFF		5	40 Lan	beau S	treet
VL-T. P	IPE		DAT	E	TIME	WL-T. PIPE	DATE	TIME	BORING COMPLETE				JUE	G	reen B	ay, WI	54303
8.9	6'	2	-5-	90								DRAWN	BY RLS	SHEE	11	OF	1
۱ <u> </u>		ļ			. <u> </u>	ļ	ļ	ļ	RIG CME 75			APP'D. E	Y MAB	STS	OB NO.	16898X	н
: 5-983		I			4	l	L	1	FOREMAN BZ			1		1			

	OWNER					LO	G	OF BO	RING N	NUMBI	ER			ł
	Albany PROJECT N	Internat	ional			EN	3-		<u> </u>	······································				
STS Consultants Ltd.		um Contam	ination	Assessmen	t		GI	NEER						
ITE LOCATION			· · · · · · · · · · · · · · · · · · ·			1	-		1		{			
	N. Mea	de Street	, Applet	on, Wisco	nsin			NO	SIVE			-		
СE				WELL INSTA TOP STANOF	LLATION IPE EL. +	_I	ĺ	PENETRATION N (B/FT)	MPRES	EN1, %	/EIGHT	וכ רואו.	SSING	τ c)
ELEVATION ELEVATION SAMPLE NO SAMPLE TYPE SAMPLE DISTANCE RECOVERY		DESCRIP	PTION OF M	ATERIAL				STANDARD PEI TEST, N (UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT?)	WATER CONTENT.	UNIT DRY WEIGHT (LBS/FT+)	רוסטוס/פראצווכ רואוז רוישו	PERCENT PASSING #200 SIEVE	PERMEABILITY. K (CM/SEC)
ELEVATION ELEVATION SAMPLE NO SAMPLE TYPE SAMPLE DIST	SURFACE ELEV	ATION				1		STAN	UNCON	WAT	N N	rioni	PEF	ä
	Dark brown							5						
	Brown silty	y clay (CI			vel - topsoil/			6						
3 SS	possible fi	111						30			 			
4 ss								26						
5 SS								24						
6 SS	Brown silty	y clay (C	L) - trac	ce of gra	vel - medium			20						
7 55	dense - gla	aciai tili	1 - satu	cated at	to.U leet			18						
8 55								11						
9 SS								6						
<u>9.5</u> 10 SS								9						
	End of Bor				- •							1		
	Boring adv auger Boring bac				t by power		•							
	0012109 200													
The stratification lines repr	resent the approxima BCR	te boundary betw	veen soil type:	a. In situ, the tra ACR					T		_		may vary s au Str	a second and a second as a second as a second as a second as a second as a second as a second as a second as a
ILT. PIPE DATE		WL-T. PIPE	DATE	TIME	BORING STARTED		-14-		STS OFF		Gre	en Bay	, WI.	
					RiG Joy 1	5			DRAWN		- tere	L	OF	1
5-983	_ <u></u>				FOREMAN RE	R				WL T	<u> </u>	JOB NO.	13685	

63	OWNER Albany International		DG 0 3-4		RING	NUMB	ER			
	PROJECT NAME			EER						
STS Consultants Ltd.	Chromium Contamination Assessment									
SITE LOCATION										
	N. Meade Street, Appleton, Wisconsin			NOI	SIVE FT ²)	_		-		
X. IH ELEVATION SAMPLE NO. SAMPLE TYPE SAMPLE DISTANCE RECOVERY	WELL INSTALLATION TOP STANDPIPE EL. + DESCRIPTION OF MATERIAL			STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT ²)	WATER CONTENT. %	(LBS/FT)	LIQUID/PLASTIC LIMIT LL/PL	PERCENT PASSING #200 SIEVE	PERMEABILITY. K (CM/SEC)
AMP	SURFACE ELEVATION	_		STA	NCO! TRE!	WA	5	E OC	2	đ
N N N N A					5s					
1 SS	Dark brown clayey sandy silt (ML) - trace of gravel, little grass, roots - loose - topsoil			7						
2 55			\vdash	9						·
		1	'	,						
3 SS	Brown silty clay (CL) - trace of gravel - loose			25	·					
4 ss 1	to medium dense - possible fill			24						
4 33				24						
5 SS				6			1			
	4			17						
7 SS	Brown silty clay (CL) - trace of gravel - loose			9						
	to medium dense - glacial till - saturated at									
-15 8 SS	10.0 feet			9						
9 ss		1		7						
				,						
10 SS				7						
	End of Boring Boring advanced from 0.0 to 19.5 feet by power auger Boring backfilled with bentonite		-							
								ļ		
								1	[
	· ·	[1	[
							1			
							1			
								1		
						L	<u> </u>			
The strainication lines repri	ISENT the approximate boundary between soil types. In situ, the transition may be gradua BCR ACR BORING STARTED								u Stre	
VL-T PIPE DATE	TIME WL-T. PIPE DATE TIME BORING COMPLETE		19-8		STS OFFI	CE			WI. 5	
}			19-8.		DRAWN B	y JJT	SHEET	1	OF 1	
!				f	APP'D. B	<u>ر</u>	OL STS	B NO. 1	3685	~~~
5-983	FOREMAN RE	к			·	JWK	1			

65	2	1	OWNER	y Interna	tional				OF BC	RING	NUMBI	ER]
	V	ł	PROJECT						NEER	·····					
STS Consul	tants	110			mination	Assessmen	t								
SITE LOC								l	<u> </u>	<u> </u>					
			N. Me	ade Stree	t, Applet	on, Wisco	nsin		z	ŽE					
						WELL INSTA	LLATION		PENETRATION N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT ²)	*	Ę	IIW	9	×
		., I				TOP STAND	IPE EL. + 769.88	₁	B/FI	MPR	WATER CONTENT.	UNIT DRY WEIGHT (LBS/FT3)	LIQUID/PLASTIC LIMIT	PERCENT PASSING #200 SIEVE	PERMEABILITY, ((CM/SEC)
z	ш I	SAMPLE DISTANCE RECOVERY							N EN	88	INO	×1.3	AST /PL	SIE	SEC 1
N N	ĮΥΡ	£ ≧		DESCH	IPTION OF M	AIERIAL			ST.	BE	B C B	89	μ, Η	200	N N N
UEPTH ELEVATION AMPLE NO.	ц Ц	늰뜅							STANDARD TEST.	ENG.	ATE	INN	and	ER.	EE
ELEVATIC SAMPLE NO	SAMPLE TYPE	RECOVERY	SURFACE EL	EVATION 768	00 (117)		· · · · · · · · · · · · · · · · · · ·	1	STI	STR	5		Ē		
×1 "					3,08 (05)	321			<u> </u>						I
			-Concrete						1						
			Fill: Cru	ished stor	le		Stational test and a second and	}	ļ		ļ	ļ			
1 1	ss							ł	12						
						ce of grav	vel - medium			1					
2	ss		dense - po	ossible f:	.11				15]	
									<u> </u>	 		ļ			
3	ss	TIT							26	{				}	
	┝─┼	чщ								1			l		
	ss	mhn							12						
*		ЩЩ													
	┢╌┥	mm										1	ł		
5	SS	ШШ						ł	14						
-15		n In I						! {				}			
6	ss							1	5	1	1				
											1	1	1		
7	ss							1	6					1	
													1		
8	ss								6						
	$\left - \right $	thr					. .		1	1	1				
							vel - loose urated at				1				
			18.0 feet		graciar i	,LTT - 300	aracea ac	1							
	$\left - \right $	$\frac{1}{1}$								1					
9	SS	ЩЦ						i i	5						
								1							
30			1					1 f		1	1		}	}	
10	ss							1	6	•		1			1
			1							1				1	
			1							1		1	1	1	
			ļ					1		}	1		1		1
	. ss	ΠШ	1					I A	6	5			1		1
	+	щи	4										1	1	
						• .							1	l	
;									1		1				
40	+	h	4					#							
41 5 12	ss ss	ШШ	<u> </u>						<u> </u>	2	1		1		
·			End of B	oring		- 17 E F-	at her marine								
			Boring a	avanced f Boring ad	vanced fr	0 ± 7.5 re om 17.5 t	et by power o 41.5 feet	1			ł	1			
			by rolle	r bit and	water			1							
			2 inch d	liameter P	VC piezom	eter inst	alled at 40 f W casing used	니			1		1	1	1
The stratific	1 ation lu	Tes repr					naltion may be gradual.		la were me	asured at 1	L he times i	ndicated. W	l ater levels	may vary	seasonally.
WL			BCR			ACR	BORING STARTED	1-20		STS OF		540	Lambe	au Str	eet
WL.T. PIPE		ATE	TIME	WL.T. PIPE	DATE	TIME	BORING COMPLETED			1			en Bay	, WI.	54303
5.2	1-2	1-87		25.3	2-9-87			1-29	~01	DRAWN	TUL YB	SHEE	T 1	OF	1
15.4	1-2	2-87		16.8	3-26-87		RIG Joy 15				BY JWK			13685	
		-87				2 · · · · · · · · · · · ·	FOREMAN RER								

مادر بعد مراجع الراحية والمالية والمحاطية والمحاطية المحاطية والمحاطية والمحاط والمحاط والمحاط والمحاط

					OWNER					LOG	OF BC	RING	NUMB	ER			
					Albany 1	Internatio	nal			MW-	SA						
					PROJECT	ΓΝΑΜΕ				ENG	INEER					·················	
STSC	onsu	Itani	s LI	ld.	Site Ren	nediation				STS	Consu	ltants	, Ltd.				
TTE	LOC	CAT	101	A.	Former J	Albany Int	ernationa	l Chromin	um Facility		T	1					
	·	q				n, Wiscons					Z	ZE					
								WELL INST	ALLATION DPIPE EL. +765.		I E.	S/F	8	Ę	MIT	5	×
ŀ	Ì		ы					TOP STANE	DPIPE EL. +	<u>29</u>	S-FI	HAN	IN	3) 101	1 0	SSIN /E	ź
z			AN								N EN	8 <u>.</u>	IIN	Υ W	LST .	PAS	SEC
- 8	No.	Z	DIS	≻		DESC	RIPTION OF	MATERIAL			ST.	HEO H	1 De la	LBS	L'P	200 200	NA A
TH	FE	SAMPLE TYPE	ы Б	RECOVERY							STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT ³)	WATER CONTENT.	UNIT DRY WEIGHT (LBS/FT3)	LIQUID/PLASTIC LIMIT	PERCENT PASSING #200 SIEVE	PERMEABILITY, K (CM/SEC)
	AM	AM	AM	2	SUDEACE E		760 45			-	STA	N N N	× ×		C.I.O.	٩	~
		1 0	IS IS	a	SUNFAUL E		-/62.41				ļ	20					
ļ																	
			li I							1		1					
E —											1						
										12	1						
É		}								1							
												1					
										💥			, i				
;												1					
10		нs			No sampl	es colled	ted - see	e log of h	oring log]	1				
					MW-5												
===																	
		l									1						
		[ĺ				
$[\equiv$											1						
·											1						
-20-											1						
[da <u></u>			- 		t					
					End of I Boring	Boring advanced 1		at with .	power auger	1	}				1		
					2 inch	diameter m	o 20.0 10	g well ins	power auger stalled		·		ļ				
					at 20.0						1		1				
F															ļ		
		1	1								1						
											1]]	1	
]		1		
			1								1						
[ł			1	
													ļ		1]	
	l		[]				
													1			1	
[1						
		İ															
									-				1	l			
:====			İ							1						1	
														l			
									-	1		1		1			
⊧ =∃													Į	1			
 	l															1	
														ł	1	1	
													ļ				
The stre	tifica	non lu	103 /	epres		nate boundary b	atween soll type	s. In situ, the tra	nsition may be gradual.	Water levels	ware mea	sured at the	times inc				
*	Dry				BCR			ACR	BORING STARTED	1-29-	90	STS OFFI	CE			eau St	
-T. PI	PE	D	ATE		TIME	WL-T. PIPE	DATE	TIME	BORING COMPLETED	1-29-	90			T		ay, WI	
<u> </u>							L		RIG CME 75			DRAWN E	BY RLS	SHEET	1	OF]	
••••••••••••••••••••••••••••••••••••••	-+								FOREMAN BZ			APP'D. B	Y MAB	STS JO	8 NQ.	6898XI	t
-062	ł					برجوني ويسترب ومستعم مستعم	يوديد والبريج محمد المروم ا	L	<u> </u>					.I			

C	2]		Ì	OWNER							-	RING I	NUMBI	ER	<u></u>	- <u></u>	
		ų				y Internat	tional			+								
					PROJECT	NAME nium Contar				E	VGII	NEER						
STS Cons		_		_	Chron	nium Contai	aination	Assessmen	1					·····				
5112 20	.0,		0	•	N. Me	eade Stree	t, Applet	on, Wisco	msin			N	3 2 1					
	Τ							WELL INSTA	LLATION			STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, OP (TONS/FT*)	. %	H	LIQUID/PLASTIC LIMIT	DN	×
			NCE					TUP STANUP	17C CL. +			(B/F	OMP (TO	WATER CONTENT.	UNIT DRY WEIGHT (*T=7,511)	101	PERCENT PASSING #200 SIEVE	PERMEABILITY. (CM/SEC)
N		u L	SAMPLE DISTANCE			DESCR	IPTION OF M	ATERIAL				a z	ED C	CON	BS/I	LL/P	N P	EABI M/S
UEPTH ELEVATION MPLE NO			۵ ۳	ERΥ								TES	4FIN 1GTF	ITER	LIN LIN	l de	PCE S	ERM (C
ELEVATIO		SAMPLE TYPE	MPL	RECOVERY								STAN	NCO ¹	WA	5	Lio L	1	ā
X *	; 	ŝ	Ś	R.	SURFACE EL	EVATION				₋			Ξs	-	ļ		ļ	
	4				Blacktop	and crushe	d stone					ļ					ļ	
	╉	_	Π	\mathbf{H}								18						
1	-	SS	11	Ш														
2		ss	Π	ш								20						
▶ <u></u>	┽		Ш															ļ
3	Ţ	ss	Π	$\ $								23						[
10	4		TT															
4	-	ss		Ľ	Brown sil	ty clay (C dense - g	L) - tra lacial +	ce of gra ill - sat	vel - loose urated at			15					1	
·	+		Π	-	15.0 feet													
5	-	SS	Ш	┨──	· ·							9		1				
	1	ss	Π	İΠ								4				1		
	-									1		ļ						
7	'	SS	\prod	11								5						
			—	Γ.		•												
1 71.5	3	SS	Ш	μ	<u> </u>							5		ļ		1	ļ	ļ
	İ				End of Bo	oring					•							
-				ļ	Boring ad auger	dvanced fr	om 0.0 to	o 21.5 fee	et by power									
						ackfilled	with ben	tonite				i						
																1		
·																		1
					1													
								•									1	
																		1
			1															1
The strate	fica	tion 1		1001	esent the approxi	mate boundary be	tween soil type	s. In situ, the tri	insition may be gradue	I. Wate	r leve	is wore me	asured at ti	he turnes r	ndicated. 1	Vater lovel	s may vary	seasonally
WL					BCR			ACR	BORING STARTED		20-		STS OF		540	Lambe	au Str	eet
WL-T. PIPE	4		DAT	E	TIME	WL-T. PIPE	DATE	TIME	BORING COMPLET	ED 1-	20-	.87	 				OF	
									AIG JOY I				<u>}</u>	BY JJ1		-		1
					1				FOREMAN RE				APP'D.	BY JWH	(STS	JOB NO.	13685)
· .: 5-983																		

(C)					UWNER	LU			KING I	IOWRE	:H			
	6			┢	Albany International PROJECT NAME	EN	- <u>-</u> IGI	NEER						
STS Con					Chromium Contamination Assessment									
TE LO	oc	ATI	ON	l	N. Meade Street, Appleton, Wisconsin				μ_					
	-1			T	WELL INSTALLATION			STANDARD PENETRATION TEST. N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT')	%	F	IIW		¥
			щ		TOP STANOPIPE EL. +	₁		IETR/ 3/FT]	MPRE	WATER CONTENT, %	UNIT DRY WEIGHT (LBS/FT ³)	LIQUID/PLASTIC LIMIT	PERCENT PASSING #200 SIEVE	PERMEABILITY. 1 (CM/SEC)
z		SAMPLE TYPE	TANC		DECODICTION OF MATERIAL			N (I	b b c c	INO	S/FT	AS1 /PL	T PA	/SEC
H ATIO	ŝ	TΥΡ	DIS	ž	DESCRIPTION OF MATERIAL			DARD EST.	FINE(STH.	ER C	(LB (LB	10/11	CEN #200	RME/ (CM
ELEVATION	SAMPLE NO.	MPLE	NPLE	RECOVERY				TANI	RENC	WAT	NN	IO	PEP	Be
11	SAI	SAI	SAI	ЯË.	SURFACE ELEVATION			ŝ	NIS			1		
					Blacktop and crushed stone									
													[
	1	SS	Ш	Щ		'		30						
	_			Ш										
=	2	SS	Щ					14						
	-	SS	Π	Ш				20						
			Ш	Щ	Brown silty clay (CL) - trace of gravel - loose to medium dense - glacial till - saturated at 15.0									
	4	SS		Ш	feet			15						
·														
	5	ss						9						
15			I ,											
	6	ss	Ш	Ш				9						
<u>}</u>			$\frac{1}{11}$	\mathbb{H}				6						
	7	SS	Ψ	Щ				Ů						
20	8	ss	₩	Ш				5						
4.5			μι	Ш		+			<u> </u>			+		
					End of Boring Boring advanced from 0.0 to 21.5 feet by power									
					auger									
					Boring backfilled with bentonite									
Ē														
									.					
												1		
										·				
			1											
								1						
										}				
The strat	tifica	1 Ition I	unes.		ent the approximate boundary between soil types. In situ, the transition may be pradual.	Water	level:	s wore me	L asured at 1	e times in				
WL	DE				BCR ACR BORING STARTED]	1-20)87	STS OF	FICE	540 Gre	Lambe en Bay	au Str , WI.	eet 54303
"L-T. PIP	r*E		DATE		TIME WUT, PIPE DATE TIME BORING COMPLETER)	1-20	0-87	DRAWN	BY JJ	1		OF	
					RIG Joy 15				APP'D.			JOB NO.		
5-983					FOREMAN RER				1	∎v JW	K		13082	

	OWNER	t Star			1	LOG	OF BO	RING I	NUMBI	ER			
	·····	y Internat	tional				-8						
	PROJECT					ENG	INEER						
TS Consultants Ltd.	Chron	ium Conta	mination	Assessmen	it		+						
ITE LOCATION	N. Me	ade Stree	t, Applet	con, Wisco	nsin		z	(11)					
u u				WELL INSTA TOP STAND	LLATION IPE EL. +	,	FTRATI /FT)	PRESS ONS/F	NT. %	1HD		SING	× ×
ELEVATION SAMPLE NO. SAMPLE TYPE SAMPLE DISTANCE RECOVERY		DESCR	IPTION OF M	ATERIAL			STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT*)	WATER CONTENT.	UNIT DRY WEIGHT (LBS/FT ³)	LIQUID/PLASTIC LIMIT	PERCENT PASSING #200 SIEVE	PERMEABILITY.
ELEVATION SAMPLE NO. SAMPLE TYPE SAMPLE DIST/ RECOVERY							TES	CONFIN	WATEF	UNIT (rianin/	PERCI #2	PERN
R S S S	SURFACE EL	EVATION					00	NS			-		
	Fill: Bla	acktop, st	one and	clay									
1 SS							19						
2 SS					ayey silt (ML) at 5.0 feet -		16						
3 SS	medium de		dise sam	d - morse	at 5.0 reet -		28						
104 SS	 						17				<u> </u>		
5 SS	Brown sil	ty clay (0	CL) - tra	ce of fin	e to medium		8						
15 6 SS	sand - tr	ace of org dense - m	ganics at				7						
7 SS	-						7						
						·····							
					- trace of		5						
21.5 8 SS	rine sand	and wood	- pare c		ood - moist								
21.5 8 SS []]]	End of Bo Boring ad auger		om 0.0 to	o 21.5 fee	t by power								
		acfilled w	vith bent	onite							}		
					1						1		
									1				1
	1											ļ	1
								ļ					
							ł	1				ł	
								1				1	
	1			,			1					ŀ	ł
	ļ						1						1
						[1				ł	1	l
	1											1	
	1						1	1	ł			1	
	1						1	[1	1	1	1	
							1				1		
The stratification lines rep	resent the approxim	nate boundary be	tween soil type	a. in situ, the tra	nsition may be gradual. W	l later leve	is were me	asured at ti	times i				
WL	BCR			ACR	BORING STARTED	1-20	-87	STS OF	FICE			au Str , WI.	
NL-T. PIPE DATE	TIME	WL-T, PIPE	DATE	TIME	BORING COMPLETED	1-20)87	DRAWN	BY JJ	eue		OF	1
				ļ	RIG JOY 15 FOREMAN RER			APP'D.	BY JW	ere	OB NO.	13685	

63	OWNER Albany International	LOG (RING N	UMBE	R			÷
	PROJECT NAME	ENGI	NEER					·	
STS Consultants Ltd. SITE LOCATION	Chromium Contamination Assessment	<u> </u>		r					
	N. Meade Street, Appleton, Wisconsin		NOI	SSIVE	*		۲		
	WELL INSTALLATION TOP STANDPIPE EL. +	I	ETRA1 V/FT)	APRES TONS/	INI.	EIGHT	C LIM	SSING /E	×. ₹.
ON PE	DESCRIPTION OF MATERIAL		D PEN	0 COI	CONTI	IRV W BS/FT	L/PL	VT PA	ABILI M/SEC
DEPTH ELEVATION SAMPLE NO. SAMPLE TYPE SAMPLE DISTANCE BECOVERV			STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT*)	WATER CONTENT. %	UNIT ORY WEIGHT (LBS/FT)	LIQUID/PLASTIC LIMIT	PERCENT PASSING #200 SIEVE	PERMEABILITY. (CM/SEC)
SAMP SAMP	SURFACE ELEVATION		ST/	STRE	3	-	3	L.	
	Fill: Yellowish brown silty gravelly fine		F						
	(SM) - little fine gravel - little silt - 1 to medium dense	oose	5						
2 SS 11 1			18						
3 SS			27						
10									
4 SS	Brown silty clay (CL) - trace of fine sand		16						
5 SS	of coarse sand - thin streaks of gray clay to 14.0 feet - streaks of fine to medium sa 15.0 to 16.5 feet - moist at 19.0 feet - 1	nd at	9						
	to medium dense	ose	6						
7 SS			6						
20 			5						
	End of Boring								1
	Boring advanced from 0.0 to 215. feet by p auger	wer							
	Boring backfilled with bentonite]	
								1	
								Ì	
]				
						1			
The stratification lines ret WL	esent the approximate boundary between soil types, in situ, the transition ma BCR ACR BORING		_	sts off		540	Lambe	au Str	eet
WL-T. PIPE DATE	TIME WILT PIPE DATE TIME	COMPLETED 1-21		ORAWN			en Bay ^{ET} 1	, WI. OF 1	
	AIG	Joy 15		APP'D.		STS	JOB NO.	13685	
JL: 5-983	FOREMA	RER		J	JWK	<u> </u>			

CT.	3		OWNER					LOG	OFBC	RING	NUMB	ER			
b] b	,		PROJECT	ny Interr	national			····	MW-10				•	•	
								ENC	SINEER						
STS Consul SITE LOC			Care	omium Cont	caminatio	n Assessm	ent	L		.		,			
	A 110	54	•**	Meade Stre	not Appl	oton Wie									
		ТТ		· ·	ser, whit				STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT ²)					ļ
						TOP STAN	TALLATION DPIPE EL. + 767.46		TAT (1	NS/	WATER CONTENT. %	H	LIQUID/PLASTIC LIMIT	NG NG	×
	SAMPLE TYPE SAMPLE DISTANCE							<u> </u>	NET (B/)	ME.	EN	UNIT DRY WEIGHT (LBS/FT3)	10	PERCENT PASSING #200 SIEVE	PERMEABILITY. (CM/SEC)
NO O	PE STA			DESC	CRIPTION OF	MATERIAL			a d	28	NOC	S/F	ASI /PI	1 P	SE BIL
ELEVATION SAMPLE NO.		È							DARI	NH.	ER (10/Pi	V200	CON
ELEVATIO	SAMPLE TYPE	RECOVERY							ANI	ENG	VAT	INN	Ino	PER .	PER -
2 8	SA SA	Ē	SURFACE E	LEVATION	767.80 (USGS)	······································		SI	STE	-		1		
												<u> </u>			<u> </u>
		11													
	ss I	rfml	Brown cla	ayey sandy	y silt (M	L) - trac	e of fine								
		凹	gravel -	medium de	ense				23						
5		+													
2	ss								22						
	<u>_</u>	\downarrow													
3	ss				. –				18						
10		Ľ							1		1				
4	SS							Ē	11						ł
		++													
5	ss	m	Brown si	ty clay	(CT) = +r	and of an	nd - fractured	₩	111						
	-+	ΨЧ	at 10.0	feet - mo:	ist at 20	.0 feet -	loose to	Ħ							ł
	ss	ıнн	medium â						11						
		ЩЩ													
		-													Į –
'	ss	Ш							6						[
20		4.4													
8	ss								5						
			End of B												ļ
			auger	avanced I	rom U.U t	o 21.5 ie	et by power								
		11	2 inch đ				l installed								
			at 20.0	feet with	protecto	r pipe									
						•									ļ
															ł
						•								Ì	
	[i							[l	
						•						1		ł	
													.	1	
														1	
												ļ		1	
		Ш													
	ion lines	repres	ent the approxim	nate boundary bi	stween soil type		nsition may be gradual. W	ater leve	is were meas	ured at the	times ind				
ne suanicat			BCR	L	· ·····	ACR	BORING STARTED	1-21	1	STS OFFI		540 1	Lambeau		et
····		e	TILLE											WL . 74	ະວບວ
VL-T. PIPE	DAT		TIME	WL-T. PIPE	DATE	TIME	BORING COMPLETED	1-21	-87			1			
NL-T. PIPE		87	TIME	WL-T. PIPE 6.1	3-26-87	TIME	BORING COMPLETED	1-21	-87	DRAWN B	V JJT	SHEET			1

67	OWNER					ł	OF BC	RING	NUMB	ER			
		ny Interna	tional			<u></u>	W-11						
	PROJECT					ENG	INEER						
STS Consultants Ltd.	Chro	mium Conta	mination	Assessmen	it	l		·····		·	,		
SITE LOCATION	N. M	eade Stree	et, Applet	con, Wisco	onsin		R	3) 13)					
				WELL INSTA	LLATION PIPE EL. + 768.65	<u></u>	STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT ¹)	11, %	GHT	LIQUID/PLASTIC LIMIT	SING	×
ANCE							PENE) N (B/	D (TC	ONTEN	V WEI	ASTIC /PL	PASS	SEC)
ELEVATION MPLE NO. MPLE TYPE MPLE DIST		DESCI	RIPTION OF M	ATERIAL			DARD TEST,	FINED GTH,	WATER CONTENT.	UNIT DRY WEIGHT (LBS/FT)		PERCENT PASSING #200 SIEVE	PERMEABILITY. K (CM/SEC)
A LEVATION ELEVATION SAMPLE TYPE SAMPLE TYPE SAMPLE DISTANCE		EVATION 7				,	STAN	INCON	WA	5	rion	PE	2
			68.90 (0)	565)									
1 SS							20						
2 SS	Brown sil	ty clay (CL) - 2"	topsoil -	medium		24						
	dense												
	-						24						
4 SS	[17						
5 SS	l			·····			8						
	L L												
6 SS		lty clay (15.0 feet		ce of san	d and gravel		5						
7 ss							6						
20	П					E							
21 5 8 SS	4						6						+
	End of B Boring a	oring dvanced fi	com 0.0 to	o 21.5 fee	t by power								
	auger				installed			1					
\equiv	at 20.0	feet with	protecto:	r pipe									
						ĺ							
								1					
	}												
											Į		
The stratification times rec	resent the approxi	mate boundary b	stween soli type	s, in situ, the tra	nsition may be gradual.	Water iev	xa were me	esured at U	ne simes i	ndicated. V	later levels	may vary	seasonaliy.
wL	BCR	[· · · · · · · · · · · · · · · · · · ·	ACR	BORING STARTED	1-21	-87	STS OF		540	Lambe	au Str , WI.	eet
Dry 1-21-87	TIME	WL-T. PIPE	0ATE 3-26-87	TIME	BORING COMPLETE	2-21	-87	DRAWN	BY JJI	1		OF	1
Dry 1-22-87 _6.3 2-9-87	,				RIG JOY 12 FOREMAN REI			APP'D.	BY JWI	, STS.	JOB NO.	1368	35
<u>6.3</u> 2-9-87 5-983			I	L	KEJ			<u> </u>		<u> </u>			

63	OWNER Albany International	LO	G OF BC	RING	NUMBI	ER			
	PROJECT NAME	EN	GINEER						
	Chromium Contamination Assessment	EN	GINEEN						
STS Consultants Ltd.		L		<u> </u>					
	N. Meade Street, Appleton, Wisconsin		N	SIVE FT ¹)			Ŀ		
	WELL INSTALLATION TOP STANDPIPE EL. +	,	STANDARD PENETRATION TEST. N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT ²)	ENT. %	UNIT DRY WEIGHT (LBS/FT ³)	LIOUID/PLASTIC LIMIT	PERCENT PASSING #200 SIEVE	Υ. K
LEVETH ELEVATION SAMPLE NO. SAMPLE TYPE SAMPLE DISTANCE RECOVERY			PEN N (B	00 00	WATER CONTENT.	NH N	ASTI /PL	SIEV	PERMEABILITY. I (CM/SEC)
LEEVATION ELEVATION SAMPLE NO. SAMPLE TYPE SAMPLE DIST RECOVERY	DESCRIPTION OF MATERIAL		ARD EST.	INEC TH,	ERC	E E		CEN1	(CM
LEEVATIO ELEVATIO SAMPLE NO. SAMPLE TYP SAMPLE TYP RECOVERY			DIA	ENG	VAT	NS.	Ino	PER	PEF
SAM E	SURFACE ELEVATION	1	ST	STR	_		=		
		┠━╾╂							
	Dark brown silty clay (CL) - medium dense					ł			
1 ss			12						
		\vdash		1			<u> </u>	1	
2 SS			23	ł					
3 SS			23	ŀ					
-10				1					
4 SS	Brown silty clay (CL) - trace of sand and gravel fractured - moist at 15.0 feet - loose to medium	1	_ 16		{		1		
	dense						1	1]
5 SS			12						
15-1	4]				
6 SS			6						
		1							1
7 ss 111			5						
				1					
			5						
ZI.5 8 SS		<u> </u>			ļ			_	
	End of Boring			1					
	Boring advanced from 0.0 to 21.5 feet by power				Ì				
	auger Boring backfilled with bentonite								
	Loting Montriced and Lotin Provide				1				1
			1						
									1
	•	i							
		Ì		1					
				1					
					1			1	
'===									1
		1		1					1
									1
					1	1	1		
				1				ļ	1
								1	1
	resent the approximate boundary between soil types. In altu, the transition may be gradual			asured at t	he times i	ndicated. 1	Vater level	t may vary au Str	easonall
WL-T PIPE DATE	BCR ACR BORING STARTED		-21-87	STS OF	FICE			, WI.	
	BORING COMPLETE	> 1-	-21-87	DRAWN	BY JJ	TSHE	ET 1	OF	1
	RIG Joy 12			APP'D.					
	FOREMAN RER			1	BY JV	IK 313	JOB NO.	13685	
L: 5-983									

	OWNER				ιo	G	OF BO	RING I	UMBI	ER			
	Albany Inte	rnational					-13						
	PROJECT NAME				EN	IGII	NEER						
STS Consultants Ltd.	Chromium Co	ntamination	Assessmer		l			T					l
SITE LOCATION	N. Meade Si	reet, Apple	ton. Wisco	msin			~	¥-					
		Luce, appro					STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT*)	%		H		
			WELL INSTA TOP STANDE	PIPE EL. +			FT)	DNS NS	Ë	UNIT DRY WEIGH1 (LBS/FT ³)	LIQUID/PLASTIC LIMIT	PERCENT PASSING #200 SIEVE	PERMEABILITY. K (CM/SEC)
C DEPTH ELEVATION SAMPLE NO. SAMPLE TYPE SAMPLE DISTANCE RECOVERY							ENE (B/	WE .	WATER CONTENT.	ET3	110	ASS IEVE	ЦÜ
SIA CON	D	ESCRIPTION OF	MATERIAL				С. И Р	00	Ś	BS/		NT F	M/S
DEPTH ELEVATION SAMPLE NO. SAMPLE TYPE SAMPLE DIST							TES	6TH	TER		1/01	#2CE	NR O
A DEPTH ELEVAT SAMPLE NV SAMPLE TV RECOVERY							TAN	LENCO	WA	5	nor	be	R.
	SURFACE ELEVATION	<u></u>					S	N IS					
										<u> </u>			
	Fill: Dark bro			7 (CL) -									
	trace of gravel	- mealum a	ense				10						
												l	
	9-112-11-11-11-1-1-1-1-1-1-1-1-1-1-1-1-1									1			
2 SS							27					1	
										· ·			
· 3 SS						1	26					1	
·	Brown silty cla	··· (CT)	and of car	d and gravel -							ł		
4 SS	moist at 15.0 f			u and graver -			20						
, F												1	
5 SS							13			{			
							17						
6 SS					İ								
	Gray to brown s	ilty clay (CL) - trac	e of sand -						1			
7 55	some wood - loc						4					}	
20	Brown silty cla	y (CL) - tr	ace of coa	rse sand -	1						1	1	1
ZI.5 8 55	loose				_		6		L		ļ	ļ	
	End of Boring							ļ					
	Boring advanced	from 0.0 t	o 21.5 fee	et by power									
	auger Boring backfil	led with her	tonite					1	ļ			1	
	DULING DUCKILL											1	
							1						
							1					1	
										}		1	
			•					ł					
]	1				
					1						1		
	[1				
								ł	1				
								1		1			
													1
	1				1			1	1	1			1
												1	
	1												
								1	1		1		1
									1				
	l						1		}				1
				terrepting to service and states			<u> </u>	<u> </u>	<u> </u>		<u> </u>		
		ary between soit typ	es. In situ, the tra	nsition may be gradual.	Water	level	s were me	sured at th	e times i				
			100			-		1		540	Lampe	au str	
Twi,	BCR			BORING STARTED		21-		STS OFF	ICE			au Str , WI.	
			ACR							Gre	en Bay	, WI.	54303
1 w.	BCR			BORING STARTED					BY JJJ	Gre Shee	en Bay		

-: 5-983

			1	OWNER					j LOG	OF B	DRING	NUMB	ER			i
21					any Intern	ational				B-14						
				PROJECT					ENG	INEER				-		
TE LO				Chro	omium Cont	aminatio	on Assessme	ent	<u> </u>		·					
				N. 3	Meade Stre	et, Appl	leton, Wise	consin		-	2					
	T						WELL INST	ALLATION		STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT*)	*	-	Ę		
		벙					TOP STAN	OPIPE EL. +		ETR/	TONS	WATER CONTENT,	UNIT DRY WEIGHT (LBS/FT ¹)	רוסטוס/PLASTIC נואוו בוסטוס/PLASTIC נואוו	PERCENT PASSING #200 SIEVE	PERMEABILITY, K (CM/SEC)
- N	H ۲	SAMPLE DISTANCE			DESC	RIPTION OF	MATERIAL			N (1	0 C C C C C	INO	V M	ASTI /PL	SIEV	SEC /
ELEVATION MPLE NO.	E TY	E Di	₹		5240		MAILMAL			EST.	THE	ERC	101	L'A	V200	MEA (CM.
ELEVATIO	SAMPLE TYPE	MPL	RECOVERY							TAND	BENG	WAT	Ň	lig	PER	l a
S S	SA	SA	Ħ	SURFACE E	LEVATION				7.1	N N	INN					
				F()). P	noum ciltu		(T)			T	T		1			
·			$\overline{\mathbf{H}}$	of grave	l - slight	yellow	stain on o	sand - trace gravel - medium						}		
1	SS	Ш	Щ	dense						11			ļ	 		
<u> </u>			Щ											ļ		
$=$ $\frac{2}{2}$	SS	Щ	끡							27			4	1		
	+	$\left \right $														
3	ss	Щ	_							20	1		1	ļ		
<u>, et</u>	1	\mathbb{H}	Щ									[[
4	SS	μЩ	쒸	Brown si	lty clay ((CL) - t	race to a	little sand -	1	20	1	ł				
5	SS		Щ	trace of moist at	gravel - 15.0 feet	fractur t - loos	ed to 14.0 e to mediu	feet - m dense	1	12	1	1			1	
		Щ	Щ	-												
6	SS	Πİ	Щ						1	6	1					
	+	μ	Щ						Ì				1	[
7	ss	Π	Π							6				1		
20-			щ													
AT.5 8	ss		Π		•					13						
	1		1		······································				<u> </u>	+	<u> </u>		╂		<u> </u>	<u> </u>
				End of B		rom 0 0	to 21 5 fo	et by power		1						
				auger				er by power							ļ	
				Boring b	ackfilled	with be	entonite		ļ					{		
														1		
	ļ															
									1							
									1		1					
													1			
									1	[1	1			1	
									1				ľ			
	1														ł	
									1		1		1	ł		
									1			1				
												1	}			
=									}			1			1	[
The straulica	ation la	103 r	ioras		nate boundary be	tween soil ty		nsition may be gradual. I	Vator level	is were me	sured at the	e times inc				
		ATE		BCR	WL-T. PIPE	DATE	ACR	BORING STARTED	1-21-		STS OFF	ICE		Lambea en Bay,		
L-T PIPE	1 0						111111	BORING COMPLETED	1-21-	87		·····	1			·····
	0								1-21-		ORAWN I	BY J.TT	SHEET)	OF	1
L-T PIPE								RIG JOY 12 FOREMAN RER	1-21		ORAWN I	BY JJT	SHEET	1 08 NO. 1		1

67	OWNER	1. <u>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</u>	. :			LO	G O	FВO	RING N	UMBE	R			
		any Interna	ational				B-1	_			····· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
	PROJEC		· 	_		EN	GINI	EER						1
STS Consultants Lto		omium Conta	mination	ASSESSME	it	1								
SITE LOCATION		Meade Stree	et, Apple	ton, Wisco	nsin			~	5-					
				WELL INSTA	LLATION			STANDARD PENETRATION TEST. N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT ¹)	%	-	TIM	9	¥
				WELL INSTA TOP STAND	IPE EL. +	,		S/FT	TONS	WATER CONTENT.	UNIT DRY WEIGHT (LBS/FT?)	LIOUID/PLASTIC LIMIT LL/PI.	PERCENT PASSING #200 SIEVE	
SAMPLE NO.								N (IEN	0.0	ONT	V W S/F1	ASTI /PI.	SIE	PERMEABILITY. (CM/SEC)
ELEVATION SAMPLE NO. SAMPLE TYPE	≿	UESUI	RIPTION OF N	IATERIAL				EST.	IH.	ERC		4/2	CEN #200	C ME
LUL TH	SURFACE							T	SONE	WAT	NN	Ino	PER	PEI
SAN SAN	SURFACE	ELEVATION				1		S	STI			-		
		<u>, , , , , , , , , , , , , , , , , , , </u>				<u>†-</u> †								
1 ss	Щ							16						
╞═╤╡┼┼╨		ilty clay (tle sand	- trace of									
2 55	LS Gravel	- medium de	nse					26						
·														
3 SS							ĺ	26						
4 ss								17						
5 SS						1		9						
		ilty clay (t 15.0 to]			d and gravel·	-	ļ	•						
6 SS	dense	t 15.0 to 1	lo.j leeu	- 10056 0		1		6						
<u>−−−−−</u> <u>↓</u> <u>↓</u>							I							
7 55	Ш							6						
20 21.5 8 SS		•						-						
3 SS								5			ļ	ļ		
	End of	Boring					.							
	Boring	advanced f:	rom 0.0 t	o 21.5 fee	et by power									
	auger Boring	backfilled	with ben	tonite		Ì	ļ							
						i	1							
											1			
							ļ							
						1								
				•									1	1
									1					
						1			1					
											1			
									1	1				
The stratification lines			etween soll type	بجزرا باطرا المرك فتك مرجا أعربهم	nsition may be gradual			vere me	sured at th	e times u			au Str	
WL DATE	BC TIME	WL-T. PIPE	DATE	ACR	BORING STARTED		1-87		STS OFF	ICE	Gre	en Bay	, WI.	54303
					BORING COMPLETE	0 2-4	4-87		DRAWN	8Y JJ	eve		OF	1
					RiG #12				<u> </u>		⁴┤			
		1	l	1	FOREMAN RER				APP'D. E	JW	IK SIS	JOB NO.	13685	
u: 5-983														

	OWNER	<u>.</u>	1		.]		OF BO	RING	UMBI	ER			- <u></u>
		y Interna	tional				3-16						
	PROJECT I					ENG	SINEER						
STS Consultants Ltd.	Chrom	ium Conta	mination	Assessmen	t l		-1			1	r	r1	
	N. Me	ade Stree	t, Applet	on, Wisco	nsin		NO	UNCONFINED COMPRESSIVE STRENGTH, OP (FONS/F17)	.9		-		
				WELL INSTAL			STANDARD PENETRATION TEST, N (B/FT)	RES NS/	1 %	H	LIQUID/PI.ASTIC LIMIF	ING	×
ELEVATION SAMPLE NO. SAMPLE TYPE SAMPLE DISTANCE RECOVERY						-	(B/I	OMP CTO	WATER CONTENT.	UNIT ORY WEIGHI (LBS/FT)	E -	PERCENT PASSING #200 SIEVE	PERMEABILITY. K (CM/SEC)
STA D. ON		DESCR	IPTION OF M	ATERIAL			G N.	6.	co	BS/	PL AS	NT F	M/S
ELEVATION SAMPLE NO. SAMPLE TYPE SAMPLE DIST							TES	4FIN 4GTF	VTER		VOI1	#2	C ERV
ELE MPI							STAI	THEI	W	"		a a	a
X 3 3 3 8	SURFACE ELE	EVATION						28					
	Fill: Bro			- trace	of sand -								
1 ss	some grave	el - loose	•			ł	. 5						
											 		
2 55							24						
3 SS	· ·						28						
10-1]												
4 SS							13						
	Brown sil	ty clay ((CL) - tra	ce of sand	d and gravel -								
5 SS	fractured to medium		at 12.0 t	o 15.5 fe	et - loose		9				1		
-15-1	to meatum	dense					-				1		
6 SS]						7						
	1					i							
7 SS	7						6]					
20-1	1						ļ						
·	1	•					6						
21.5 0 35									1	1	+	+	+
	End of Bo	oring		21 5 fee	t by power		·			Ì			
	auger				c by power	ļ		l	l			1	
	Boring ba	ackfilled	with bent	conite									
									1				
						İ							
	[
									1				
						[1		1		
				•								i	
				-					1				
\equiv											1		
	1									1			1
	1											1	
								1					
The stratification lines rep	resent the approxim	nata boundary h	NWOOD SOIL NOT	a in Artu the tree	Stinn may be graduat	 Natar I-	wels were me	ASURAL -* **	times -	ndicated 4	Valor Level	S may yare	
VL	BCR		and the second s	ACR	BORING STARTED	2-4-		T		540	Lambe	au Str	eet
	TIME	WL-T. PIPE	DATE	TIME				STS OF			en Bay	/, WI.	54303
WL-T. PIPE DATE													
					BORING COMPLETED	2-4-	-07	DRAWN	BY JJT	SHE	²⁷ 1	OF	1
					RIG #12	2-4-	-07	DRAWN APP'D.	·		^{ЕТ} 1 ЈОВ NO.	OF 	

16					OWNER							ORING	NUMB	ER			· ·	······································
	<u>`</u> •	P.			Albany Ir PROJECT	to the second second second second second second second second second second second second second second second	nal		······		-17 SINEER							
STSC	Consu	dtan	ts L	td.	Site Reme							ultants	, Ltđ.					
SITE		_		-	C			3. Channel			<u> </u>			1	<u> </u>	<u> </u>		
				•	Appleton	lbany int , Wiscons	ernationa in	1 Chromiu	m Facility		z	W.F						
		Γ	Γ	Г				WELL INST	ALLATION PIPE EL. + 771		STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT*)	*	-	IW	6		
F			w W	[TOP STAND	PIPE EL. + 771	.84	LETR	IONS	NT.	E E	5	SIN	7	
, Z		_	SAMPLE DISTANCE								N (B	No d	WATER CONTENT.	UNIT DRY WEIGHT (LBS/FT ³)	LIQUID/PLASTIC LIMIT	PERCENT PASSING #200 SIEVE	PERMEABILITY, K (CM/SEC)	
ELEVATION	2 N	SAMPLE TYPE	DIS	≿		DESL	RIPTION OF	MATERIAL			ST.	E E	B C C B	DR	L'P	Son I	CM/	
TH TH	SAMPLE NO	FE	PLE	RECOVERY							ANDI	ING	ATE	IN IN	010	ERC	EB	
<u>لہ</u> ا	SAM	SAM	SAM	R	SURFACE EL	EVATION +	769 07				ST/	STRE	3	-	2			
<u>A</u>														ļ	 	ļ		
					No sample	es collec	ted - see	e boring 1	og of MW-177									
	1	HS ·						·										
-20-	<u>!</u>	–	Щ								<u> </u>		ļ	ļ	<u> </u>	<u> </u>		
	1	l			End of B		~~ ~ ~			1	1	1	1					
]				Boring a 2 inch d	dvanced t iameter S	chedule 4	et with p 40 PVC mor	ower auger			· .			1			
	1						20.0 fee											
<u> </u>															}			
ļ																		
	1																	
<u> </u>	1	1													Į			
		l														Į		
· · · · · · · · · · · · · · · · · · ·	1									•								
	1														}			
	1														1			
<u> </u>	1																	
·. ······	1	1			1						1		1	1				
	1																	
	1												1					
	1	[1	1	1				
]	1											1	1			1	
	1											1		1	1		1	
	1															1		
	1	<u> </u>	1										<u> </u>					
The str	atilica	tion li	nes r	epre	sent the approxim	ate boundary b	tween soll type		nsition may be gradu			esured at th	e times m	dicated. Wi	iter levels r	nay very se	asonally.	1
VL-T. P	IPE		ATE		TIME	WL-T. PIPE	DATE	TIME	BORING STARTED		L-90	STS OFF	ICE			beau St ay, WI		
				·					BORING COMPLET	ED 1-3	L-90	DRAWN	BY RLS	SHEET		OF 3		1
									RIG CME 4	5								-
5-983		······			<u> </u>	•		l	FOREMAN B	z		APP'D. 8	Y MAB	STS JO)B NO.	168982	CH]

Allowy International DM-17A PROJECT NAME ENGINEER SIG Committants Ltd Site Resolution ITE LOCATION Parmer Albany International Chromium Facility Well INSTALLION Parmer Albany International Chromium Facility Well INSTALLION Parmer Albany International Chromium Facility Well INSTALLION Well INSTALLION I Set INSTALLION Well INSTALLION <		1			OWNER					LOG	OF	BORING	NU	MBE	R	hin ers a traggerin dite		
STSCONUMENTALE ENGINEER STS Consultants. Ltd. ITE LOGATION STSCONUMENTAL Maileton, Wisconsin Former Albany International Chronium Facility Aculeton, Wisconsin Itel Sts Consultants. Ltd. WELL INSTALLATION STSCONSINT Aculeton, Wisconsin WELL INSTALLATION TOP STANDIFE L. + 771.07 Itel StsConsultants. Ltd. USESCRIPTION OF MATERNAL STSCONSINT Aculeton, Wisconsin Itel StsConsultants. Ltd. Itel StsConsultants. Ltd. USESCRIPTION OF MATERNAL STSCONSINT STSCONSISTENCE Itel StsConsultants. Ltd. Itel StsConsultants. Ltd. USESCRIPTION OF MATERNAL STSCONSISTENCE Itel StsConsultants. Ltd. Itel StsConsultants. Ltd. USESCRIPTION OF MATERNAL STSCONSISTENCE Itel StsConsultants. Ltd. Itel StsConsultants. Ltd. USESCRIPTION OF MATERNAL StsConsultants. Itel StsConsultants. Ltd. Itel StsConsultants. Ltd. USESCRIPTION OF MATERNAL StsConsultants. Itel StsConsultants. Itel StsConsultants. Itel StsConsultants. Itel StsConsultants. Itel StsConsultants. Itel StsConsultants. Itel StsConsultants. Itel StsConsultants. Itel StsConsultants. Itel StsConsultants. Itel StsConsultants. Itel StsConsultants. Itel StsConsultants. Itel StsConsultants. Itel StsConsultants. Itel StsConsultants. Itel StsConsultants. Itel StsConsultants. Itel StsConsultants. StsConsultants. Itel StsConsultants.	1414					ernationa	.1											
SISCOMMANS(B) FOR CALL CALL CALL AND A DECEMBENCIAL CALL OF A DECEMBENCIAL AND A DECEMBEN		4								ENC	GINEE	R			******			
Normier Allandy internetional contactor set/11/y Net internetional contactor set/11/y Maximum disconsist Number of the set of t	STS Consult	tants	s L ta	1.	Site Remed	iiation				ST	S Cons	ultant	5, L ⁴	td.				
1 pA Brown sand and gravel - fill 2 GT Black pest - trace of roots - trace of cinders - dry - topcoil 3 sr H 4 sr H 4 sr H 4 sr H 5 sr 4.5+ 4 sr H 5 sr 3.75 6 gr Brown silty clay (CL) - stiff - damp - till 1.0 5 sr 1.0 1.0 7 Sr Brown silty clay (CL) - trace of gravel - trace of silt and very fine sand layers-moist-firm-till 1.0 9 sr 1.0 .5 10 sr .5 .5 11 sr .5 .5 12 sr Brown silty clay (CL) - trace of gravel - very soft to soft - wet - till .5 10 sr .5 .5 11 sr .5 .5 12 sr .5 .5 13 sr .5 .5 14 sr .5 .5	ITE LOC	ATI	ON					Chromium	Facility		NO	SIVE				-		
1 pa Brown sand and gravel - fill 2 or Black pest - trace of roots - trace of cinders - day - trapeoil 3 sr Beddish brown silty clay (CL) - trace of gravel - trace of cobbles - very stiff to very hard - dam - till 5 sr 3.75 20 Brown silty clay (CL) - stiff - damp - till 1.0 21 sr Brown silty clay (CL) - trace of gravel - trace of gravel - trace of silt and very fine sand layers-moist-firm-till 22 sr 1.0 23 sr 1.0 24 sr 1.0 25 sr 1.0 26 sr 1.0 27 sr Brown silty clay (CL) - trace of gravel - trace of silt and very fine sand layers-moist-firm-till 26 sr 1.0 27 sr 1.0 28 sr 1.0 29 sr 1.0 20 sr .5 21 sr .5 22 .5 .5 23 .5 .5 24 .5 .5 25 .5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>WELL INSTA</td><td>LLATION IPE EL. + 771.07</td><td></td><td>LIAT</td><td>PRES</td><td></td><td></td><td>GHT</td><td>IWI</td><td>ING</td><td>¥</td></td<>								WELL INSTA	LLATION IPE EL. + 771.07		LIAT	PRES			GHT	IWI	ING	¥
1 pA Brown sand and gravel - fill 2 GT Black pest - trace of roots - trace of cinders - dry - topcoil 3 sr H 4 sr H 4 sr H 4 sr H 5 sr 4.5+ 4 sr H 5 sr 3.75 6 gr Brown silty clay (CL) - stiff - damp - till 1.0 5 sr 1.0 1.0 7 Sr Brown silty clay (CL) - trace of gravel - trace of silt and very fine sand layers-moist-firm-till 1.0 9 sr 1.0 .5 10 sr .5 .5 11 sr .5 .5 12 sr Brown silty clay (CL) - trace of gravel - very soft to soft - wet - till .5 10 sr .5 .5 11 sr .5 .5 12 sr .5 .5 13 sr .5 .5 14 sr .5 .5			INCE								ENE			NTEN	(FT3)	STIC PL	PASS	EC)
1 pA Brown mand and gravel - fill 2 or Black peat - trace of roots - trace of cinders - dry - topcoil 3 sr Bed silty clay (CL) - trace of gravel - trace of cobbles - very stiff to very hard - damp - till 5 sr 3.75 6 sr Brown silty clay (CL) - stiff - damp - till 1.0 23 sr Brown silty clay (CL) - trace of gravel - trace of silt and very fine sand layers-moist-firm-till 1.0 24 sr 1.0 1.0 25 sr 1.0 1.0 26 sr 1 still and very fine sand layers-moist-firm-till 1.0 25 soft to soft - wet - till .5 .5 .5 26 sr 1 .5 .5 .5 27 sr Brown silty clay (CL) - trace of gravel - very soft to soft - wet - till .5 .5 27 sr .5 .5 .5 .5 28 .1 .5 .5 .5 .5 29 .1 .5 .5 .5 .5 20 .1 .5 .5	NOL O	γPE	IST A			DESCR	IPTION OF M	ATERIAL			RO P			8	DAY LBS/	PLA:	ENI 00	IEAB M/S
1 pA Brown sand and gravel - fill 2 GT Black pest - trace of roots - trace of cinders - dry - topcoil 3 sr H 4 sr H 4 sr H 4 sr H 5 sr 4.5+ 4 sr H 5 sr 3.75 6 gr Brown silty clay (CL) - stiff - damp - till 1.0 5 sr 1.0 1.0 7 Sr Brown silty clay (CL) - trace of gravel - trace of silt and very fine sand layers-moist-firm-till 1.0 9 sr 1.0 .5 10 sr .5 .5 11 sr .5 .5 12 sr Brown silty clay (CL) - trace of gravel - very soft to soft - wet - till .5 10 sr .5 .5 11 sr .5 .5 12 sr .5 .5 13 sr .5 .5 14 sr .5 .5	LE N	LE]	Щ	KE							NDA	NFI NGT		ATEI	Ξų į	nı D	ERC	PERA.
1 ph Brown sand and gravel - fill 2 off Red silty clay - fill 3 st n 3 st n 4 st st 3 st n 4 st st 4 st n 3 st n 4 st n 4 st n 4 st n 10 st st 11 st n 12 st n 13 st n 14 st n 15 st n 16 st n 17 st n 18 st n 19 st n 10 st n 11 st n 11 st n 11 st n 11 st n 12 st	SAMIF	SAMF	SAMF	影	SURFACE ELE	EVATION +7	69.02				STA	UNCO		3		ГIO	a.	-
2 97 Ped silty clay - fill 2 97 Black peat - trace of roots - trace of cinders - 3 57 4.5+ Peddish brown silty clay (CL) - trace of gravel - 4.5+ 4 57 4.5+ reddish brown silty clay (CL) - trace of gravel - 3.75 3 57 3.5 5 57 3.5 6 57 10 7 5* Brown silty clay (CL) - stiff - damp - 1.0 1.0 1.0 23 57 1.0 4 57 5 8 57 1.0 1.0 5 5 1.0 1.0 1.0 20 57 1.0 1.0 5 5 21 57 1.0 22 57 1.0 23 57 1.0 24 57 1.0 25 57 1.0 26 57 1.0 27 57 .5 28 5			Ш	\uparrow	· · · · · · · · · · · · · · · · · · ·			1		ť								
3 S7 H 3 S7 H Reddish brown silty clay (CL) - trace of gravel - damp - till 3.75 3 S7 3.5 5 S7 3.5 6 S7 1.0 7 S7 9 9 S7 1.0 9 S7 1.0 9 S7 1.0 9 S7 1.0 10 S7 5.5 9 S7 1.0 10 S7 5.5 9 S7 1.0 10 S7 5.5 10 S7 5.5 10 S7 5.5 11 S7 5.5 12 S7 1.5 13 S7 1.5 14 S7 1.5 15 1.5 1.5 12 S7 1.5 13 S7 1.5 14 S7 1.5 15 1.5 1.5	·			_	D -1 -/1+	-1											·······	
3 57 H Reddish brown silty clay (CL) - trace of gravel - trace of cobbles - very stiff to very hard - 3.75 4 57 H Reddish brown silty clay (CL) - stiff - damp - 1.0 5 57 H Reddish brown silty clay (CL) - stiff - damp - 1.0 7 57 H Brown silty clay (CL) - trace of gravel - trace of gravel - trace of silt and very fine sand layers-moist-firm-till 1.0 8 57 H Brown silty clay (CL) - trace of gravel - very soft to soft - wet - till .5 9 57 H Brown silty clay (CL) - trace of gravel - very soft to soft - wet - till .5 9 57 H Brown silty clay (CL) - trace of gravel - very soft to soft - wet - till .5 10 57 H .5 .5 11 57 H .5 20 57 .5 .5 21 57 .5 .5 22 .5 .5 .5 23 .5 .5 .5 24 .5 .5 .5 25 .5 .5 .5 26 .5 .5 .5 <td>· <u>- 2</u></td> <td>.97</td> <td>H</td> <td>⊞-</td> <td>Black pea</td> <td>t - trace</td> <td></td> <td>- trace</td> <td>of cinders -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	· <u>- 2</u>	.97	H	⊞-	Black pea	t - trace		- trace	of cinders -									
2 0 1 Peddish brown silty clay (CL) - trace of gravel - trace of cobbles - very stiff to very hard - dam - till 3.75 10 1 3.5 3.5 6 51 11 1.0 11 11 1.0 1.0 12 51 11 1.0 13 From silty clay (CL) - trace of gravel - trace of silt and very fine sand layers-moist-firm-till 1.0 9 51 1.0 1.0 9 51 1.0 1.0 9 51 1.0 1.0 9 51 1.0 1.0 9 51 1.0 1.0 10 51 1.0 1.0 10 51 1.0 1.0 10 51 1.5 1.5 11 51 1.5 1.5 11 51 1.5 1.5 12 51 1.5 1.5 13 51 1.5 1.5 11 51 1.5 1.5 12 51 1.5 1.5					dry - to	psoil												
Reddish brown silty clay (CL) - trace of gravel - trace of cobbles - very stiff to very hard - dam - till 3.75 10 10 10 1.0 25 11 26 st 7 st 8 st 9 st 10 st 20 st 9 st 10 st 10 st 10 st 10 st 10 st 11 st 10 st 11 st 11 st 10 st 11 st 11 st 11 st 11 st 11 st 12 st 11 st 12 st 13 st 14 st 15 st 16 st 11 st 12 st <tr< td=""><td></td><td>ST</td><td>Ш</td><td>Ш</td><td></td><td></td><td></td><td></td><td></td><td>ł</td><td></td><td>4.5</td><td>+</td><td>}</td><td></td><td></td><td></td><td>1 1</td></tr<>		ST	Ш	Ш						ł		4.5	+	}				1 1
4 ST 3.75 30 3.5 3.5 5 ST 3.5 6 ST 10 22 10 Reddish brown silty clay (CL) - stiff - damp - till 22 10 ST 10 23 Brown silty clay (CL) - trace of gravel - trace of silt and very fine sand layers-moist-firm-till 1.0 4 ST 10 1.0 9 ST 1.0 1.0 9 ST 1.0 1.0 20 ST 1.0 1.0 9 ST 1.0 1.0 25 ST .5 .5 30 ST .5 .5 31 ST .5 .5 30 11 ST .5 31 ST .5 .5 31 ST .5 .5 11 ST .5 .5 30 11 .5 .5 31 ST .5 .5 12 ST .5 .5 <td></td> <td></td> <td></td> <td></td> <td>Reddish b</td> <td>rown silt;</td> <td>y clay (C</td> <td>L) - trac</td> <td>e of gravel -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					Reddish b	rown silt;	y clay (C	L) - trac	e of gravel -									
10 Comp - Chil 10 5 5 5 6 5 7 557 Brown silty clay (CL) - trace of gravel - trace 7 557 8 57 9 57 9 57 10 1.0 20 9 21 57 9 57 10 5 20 9 21 57 10 57 11 57 12 57 11 57 12 57 13 57 11 57 12 57 13 57 14 10 15 .5 16 6 17 .5 18 .5 19 .5 11 .5 12 .5 12 .5 13 .5 12	4	ST	İΠ	Ш			very sti	ff to ver	y hard -			3.1	5					
Brown silty clay (CL) - stiff - damp - 1.0 12 57 Brown silty clay (CL) - trace of gravel - trace of silt and very fine sand layers-moist-firm-till 8 57 9 57 10 57 11 57 10 57 11 57 11 57 11 57 11 57 12 57 13 57 11 57 12 57 13 57 14 57 15 5 16 57 17 57 18 57 19 57 10 57 11 57 12 57 13 57 13 57 13 57 13 57 13 57 14 57 15 1.5 16 57 175 1.5			μ		uamp - ci	**												
Brown silty clay (CL) - stiff - damp - 1.0 12 57 Brown silty clay (CL) - trace of gravel - trace of silt and very fine sand layers-moist-firm-till 8 57 9 57 10 57 11 57 10 57 11 57 11 57 11 57 11 57 12 57 13 57 11 57 12 57 13 57 14 57 15 5 16 57 17 57 18 57 19 57 10 57 11 57 12 57 13 57 13 57 13 57 13 57 13 57 14 57 15 1.5 16 57 175 1.5			Π	П						K				1				
6 ST 1.0 7 ST Brown silty clay (CL) - trace of gravel - trace of silt and very fine sand layers-moist-firm-till 1.0 8 ST 1.0 .5 9 ST .5 .5 9 ST .5 .5 10 ST .5 .5 30 .1 .5 .5 31 ST .5 .5 32 .5 .5 .5 33 .5 .5 .5 11 ST .5 .5 12 ST .5 .5 23 .5 .5 .5 12 ST .5 .5 24 13 ST .5 24 13 ST .5 .5 10.0 feet of 5 .5 .5 .5 10.0 feet of 6 .5 .5 .5 12 ST .5 .5 .5 12 .5 .5 .5 .5 10.0		ST	Ш	₿.									<u>_</u>					
25 Brown silty clay (CL) - trace of gravel - trace of silt and very fine sand layers-moist-firm-till 1.0 8 ST 1.0 20 9 ST 1.0 25 .5 .5 30 .5 .5 30 .5 .5 30 .5 .5 30 .5 .5 30 .5 .5 30 .5 .5 30 .5 .5 30 .5 .5 31 ST .5 42 .5 .5 10 ST .5 31 ST .5 42 .5 .5 12 ST .5 42 .5 .5 32 .5 .5 .12 ST .5 .13 ST .5 .10 .5 .5 .12 .5 .5 .13 .5 .5 .10 .5 .5 <		ST		Ш		orown silt	y clay ((CL) - stif	f - damp -			1.						
7 ST 0 of silt and very fine sand layers-moist-firm-till 8 ST 1.0 9 ST 1.0 9 ST .5 10 ST .5 30 .5 .5 11 ST .5 30 .5 .5 11 ST .5 30 .5 .5 11 ST .5 12 ST .5 12 ST .5 30 .5 .5 12 ST .5 31 ST .5 32 .5 .5 33 .5 .5 34 .5 .5 35 .5 .5 12 .5 .75 34 .5 .5 12 .5 .5 35 .5 .5 12 .5 .5 35 .5 .5 12 .5 .5	15		Щ														ļ	
8 ST 9 ST 9 ST 10 ST 10 ST 11 ST 11 ST 12 ST 11 ST 12 ST 11 ST 12 ST 11 ST 12 ST 11 ST 12 ST 12 ST 13 ST 10 Get with power auger and from 50.0 to 42.0 feet with rock bit 10.0 feet of 6 inch diameter temporary casing installed while dilling		ST								ł								
20 5 9 5T 10 5T 10 5T 11 5T 11 5T 11 5T 12 5T 11 5T 12 5T 11 5T 12 5T 400 12 13 5T 13 5T 13 5T 13 5T 10.0 feet of 6 inch diameter temporary casing installed while drilling		-	Π	Ш							1							
9 sr 25 .5 25 .25 10 sr 11 sr 30 .5 11 sr 11 sr 12 sr 12 sr 30 .5 11 sr 12 sr 30 .5 11 sr 12 sr 31 sr 12 sr 13 sr 13 sr 13 sr 14 sr 15 .5 16 form solution of the solutio	· · · · · · · · · · · · · · · · · · ·	SI		Ш			. •					1.	0					
30 Brown silty clay (CL) - trace of gravel - very soft to soft - wet - till .25 10 ST .25 30 .5 .5 11 ST .5 12 ST .75 30 .75 .75 12 ST 1.5 30 .15 .75 13 ST 1.5 End of Boring Boring advanced to 20.0 feet with power auger and from 20.0 to 42.0 feet with rock bit 10.0 feet of 6 inch diameter temporary casing installed while drilling	- 20		Π	Frid.		•												
soft to soft - wet - till 10 sT 10 sT 11 sT 11 sT 12 sT 40 40 40 40 5 5 5 5 5 1.5 1.5 5 1.5 1.5	9	57		Ш						l		•	5					
25 soft to soft - wet - till .25 10 ST .5 30 .5 .5 11 ST .5 32 .75 .75 40 .5 .75 40 .5 .75 40 .5 .75 40 .5 .75 40 .5 .75 40 .5 .75 40 .5 .75 40 .5 .75 40 .5 .75 40 .5 .75 40 .5 .75 41 .5 .75 50 .5 .75 50 .5 .75 40 .5 .75 50 .5 .75 50 .5 .75 50 .5 .75 50 .5 .5 50 .5 .5 50 .5 .5 50 .5 .5										{								
10 st .25 30 .5 31 st .5 35 .5 35 .75 30 .75<								ace of gra	avel - very									
30 .5 11 5T 325 .5 325 .75 32 .75 32 13 32 13 5 .75 1.5 .75 1.5 .75 1.5 .75 1.5 .75 1.5 .75 1.5 .75 1.5 .75 1.5 .75 1.5 .75 1.5 .75 1.5 .75 1.5 .75 1.5 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75			Π	Π	SOLT TO S	soit - wet				1								
42 13 ST 1.5 42 13 ST 1.5 End of Boring Boring advanced to 20.0 feet with power auger and from 20.0 to 42.0 feet with rock bit 10.0 feet of 6 inch diameter temporary casing installed while drilling	10	S:	Щ	凹								1.	25			1	1	1
42 13 ST 1.5 42 13 ST 1.5 End of Boring Boring advanced to 20.0 feet with power auger and from 20.0 to 42.0 feet with rock bit 10.0 feet of 6 inch diameter temporary casing installed while drilling	, III																	
42 13 ST 1.5 42 13 ST 1.5 End of Boring Boring advanced to 20.0 feet with power auger and from 20.0 to 42.0 feet with rock bit 10.0 feet of 6 inch diameter temporary casing installed while drilling	30									{								
42 13 ST 1.5 End of Boring Boring advanced to 20.0 feet with power auger and from 20.0 to 42.0 feet with rock bit 10.0 feet of 6 inch diameter temporary casing installed while drilling				Π									-					
42 13 ST 1.5 End of Boring Boring advanced to 20.0 feet with power auger and from 20.0 to 42.0 feet with rock bit 10.0 feet of 6 inch diameter temporary casing installed while drilling		S?	Щ	Щ									2					
42 13 ST 1.5 End of Boring Boring advanced to 20.0 feet with power auger and from 20.0 to 42.0 feet with rock bit 10.0 feet of 6 inch diameter temporary casing installed while drilling																		
42 13 ST 1.5 End of Boring Boring advanced to 20.0 feet with power auger and from 20.0 to 42.0 feet with rock bit 10.0 feet of 6 inch diameter temporary casing installed while drilling	- 35																	
42 13 ST 1.5 End of Boring Boring advanced to 20.0 feet with power auger and from 20.0 to 42.0 feet with rock bit 10.0 feet of 6 inch diameter temporary casing installed while drilling		er	,										.75					
42 13 ST 1.5 42 13 ST 1.5 End of Boring Boring advanced to 20.0 feet with power auger and from 20.0 to 42.0 feet with rock bit 10.0 feet of 6 inch diameter temporary casing installed while drilling			-111	╨┦									1			1	ļ	
42 13 ST 1.5 42 13 ST 1.5 End of Boring Boring advanced to 20.0 feet with power auger and from 20.0 to 42.0 feet with rock bit 10.0 feet of 6 inch diameter temporary casing installed while drilling		1														1	ŀ	
End of Boring Boring advanced to 20.0 feet with power auger and from 20.0 to 42.0 feet with rock bit 10.0 feet of 6 inch diameter temporary casing installed while drilling	40		+	$\left \right $												1		
End of Boring Boring advanced to 20.0 feet with power auger and from 20.0 to 42.0 feet with rock bit 10.0 feet of 6 inch diameter temporary casing installed while drilling	13	s s										1	.5		1			
Boring advanced to 20.0 feet with power auger and from 20.0 to 42.0 feet with rock bit 10.0 feet of 6 inch diameter temporary casing installed while drilling	· · · · · · · · · · · · · · · · · · ·	+	╨	ΨH						+			-+-		<u> </u>	1		+
10.0 feet of 6 inch diameter temporary casing installed while drilling							o 20.0 fe	et with n	Ower auger and	I fro	m 20.		. 0 6	eet .	ith -	dek h	i t	
					10.0 fee	t of 6 in	ch diamet	er tempor	ary casing ins	tall:	ed wh	ile dri	111n	q	1	1 .	1	
2 inch diameter Schedule 40 PVC monitoring well installed at 60.0 feet		1			L											<u> </u>		
The stratification lines represent the approximate boundary between soll types. In situ, the transition may be gradual, Water levels were measured at the times indicated. Water levels may vary season VL BCR ACR BORING STARTED 1-30-00 540 Lambeau Stree	the second second second second second second second second second second second second second second second s	ation	hnes	19019		nate boundary be	stween soil type											
MUT PIPE DATE TIME WIT PIPE DATE TIME STARLED 1-30-90 STS OFFICE Green Bay, WI 543		T	DAT	E		WL-T. PIPE	DATE					STS	OFFICE	E				
BORING COMPLETED 1-30-90 DRAWN BY RLS SHEET 1 OF 1	` <u>}</u>									T~3	20-30	DRA	NN BY	RLS	SHEE	r 1	OF	1
RIG CME 75 FOREMAN BZ APPD. BY MAB STS JOB NO. 16898XH		<u> </u>			ļ			ļ					D. 8Y	мар	STS J	OB NO.	168989	н
5-983	. 5-983	1			I	L	L	I	FUHEMAN BZ					FIAB				••

63		OWNER	•		·				RING	NUMBE	ER			
	ł	· · · · · · · · · · · · · · · · · · ·	ternation	al			5-1		·····	·····				
		PROJECT Site Reme				1		INEER	ltants,	ī.td.				
STS Consultants	_					<u>i</u>		1						
SITE LOCATIO			lbany Inte Wisconsi		l Chromium	Facility		NO	SIVE FT7)	_		~		
		•			WELL INSTA TOP STANDP	LLATION IPE EL. +	₁	ETRAT 3/FT)	MPRES TONS/	ENT. %	EIGH1	C LIMI	SSING /E	1Y. K
ELEVATION SAMPLE NO. SAMPLE TYPE	ERY		DESC	RIPTION OF N	ATERIAL			STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT')	WATER CONTENT.	UNIT DRY WEIGHT (LBS/FT*)	LIQUID/PLASTIC LIMIT	PERCENT PASSING #200 SIEVE	PERMEABILITY. (CM/SEC)
SAMPI	RECOVERY	SURFACE EL	EVATION	+768.94		1		STAI	UNCOL	WA	5	LIQ	32	æ
1 PA		Fill: B	rown sand	and grav	el					****. 3				
2 ST	Ш								4.5+					
3 ST	Ш					ce of gravel - very stiff			3.75					
4 ST	Ш	to very	hard - dai	mp - frac	tured - t	.11			3.75					
5 ST									1.75					
6 ST									3,50			 		
7 ST	Щ	Reddish moist -		brown sil	lty clay (CL) - stiff -			.75				ļ	<u> </u>
8 ST	Щ	Brown si	lty clay	(CL) - f:	irm - wet	- till			.50					
9 ST			107 217 1 						1.75					
			advanced t		eet with g anular ber	ower auger tonite		-						
The stratification line	s repre	sent the approxim	nate boundary b	etween soil type	s. In situ, the tra	naition may be gradual. Y	l fator lev	i sis were me	asured at th	e times ii	i ndicated. V	l Valer levels	may vary :	leasonall
NL	270,00	808			ACR	BORING STARTED	2-1-		T			540 La	mbeau	Stree
WL-T. PIPE DA	TE	TIME	WL-T. PIPE	DATE	TIME	BORING COMPLETED	2-1-	<u>~~~~</u>	STS OFF			Green	Bay, W	
				<u> </u>	 	RIG CME 75			DRAWN	BY RL	S SHEE	T 1	OF	1
				1						 				the second second second second second second second second second second second second second second second s

		ļ	OWNER			· ·		LC)G	OF BC	RING I	NUMB	ER			
		ŀ		Internatio	nal				B-1							
		1	PROJECT					E	NGI	NEER						
TS Consu			Site Rep	mediation			-		STS	Consu	ltants	, Ltd.				
ITE LO	CATIO	N	Former Appletor	Albany Int 1, Wiscons	ernation	al Chromiu	m Facility			z	VE 1]					
						WELL INST TOP STAN	ALLATION PIPE EL. +			TRATIO /FT)	PRESSI ONS/F1	VT. %	1H3	LIMIT	SING	У.К
VIION	TYPE	RECOVERY		DESC	RIPTION OF	MATERIAL				STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT ³)	WATER CONTENT.	UNIT DRY WEIGHT (LBS/FT ³)	LIQUID/PLASTIC LIMIT	PERCENT PASSING #200 SIEVE	PERMEABILITY. K (CM/SEC)
ELEVATION	SAMPLE TYPE	SER								ANDA	ONFIN	VATEF	UNIT (I	/QIN	PERCE	PERM (C
J Š	SAA		SURFACE E	LEVATION +	768.98		*****]		ST	UNC	~		L L	-	
1	AS		Fill: E	rown sand	and grav	/el										
2	ST	Щ			_				1		4.5+					
3	ST	凹	Reddish trace of	brown sil medium s	ty clay (and from	(CL) - tra 10.0 to 1	ce of gravel · 2.0 feet -	-			4.5+					
4	ST	Щ	very har	d - damp	- fractur	red - till					4.5+					
5	ST	凹									4.5+					
6	ST	F									4.5+					
7	ST	囬									.75					<u> </u>
8	ST	Π	Brown si	lty clay	(CL) - fi	.rm - wet	- till				.75					
20	ST	Ī									.75					
9 22 			End of B	oring				\uparrow						[
			Boring a Boring b	dvanced to ackfilled	o 22.0 fe with gra	et with p nular ben	ower auger tonite									
						• .										
								1					1			
						-		1								
The stratifica	tion lines	repres	ent the approxim BCR	nate boundary be	stween soli type	a. In situ, line tra ACR	nsition may be gradual.									
L-T PIPE	DAT	E	TIME	WL-T. PIPE	DATE	TIME	BORING STARTED BORING COMPLETED		31-9 91-9		STS OFFI		540 Gre) Lambe en Bay	au Sti , WI :	eet 54303
							RIG CME 75				DRAWN B		SHEET	1	0F]	L
FOREMAN							FOREMAN BZ				APP'D. 81		STS JC			

65		OWNER							F BO	RING N	IUMBE	ER			1
		the second second second second second second second second second second second second second second second s	Internation	al.				-20			··				
		PROJECT	ediation						EER	ltants,	Ltđ.				
STS Consult SITE LOC		1 of co new	active 101												
SITE LOC			Albany Inte 1, Wisconsi		Chromium	Facility			NO	31VE 511			F		
					WELL INSTA	ILLATION PIPE EL. +			STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT*)	NT. %	UNIT DRY WEIGHT (LBS/FT3)	LIQUID/PLASTIC LIMIT	PERCENT PASSING #200 SIEVE	¥
	ANCE							İ	PENE N (BJ		INTE	/ WE	Pr STIC	PAS	
ELEVATION MPLE NO.	LVPE	-	DESCA	RIPTION OF M	IATERIAL				ARD ST.	UED.	WATER CONTENT.	LBS (LBS	LL /PL	200	PERMEABILITY. (CM/SEC)
ELEVAT	LE LE								TE	ENG	VATE	INN	0 no	PERC	PERI
ELEVATIO	SAMPLE TYPE SAMPLE DISTANCE	SURFACE I	ELEVATION +7	69.01					SI	STR	>		13		
	PA	Fill:	Brown sand	and grave	21										
		1 1	·····				-+				-				
2	ST					e of gravel - ns from 3.0 to				4.5+					
3	ST	3.5 fee feet -	t - trace o 1/4 inch th	of coarse nick yelle	sand from Swish brow	a 5.0 to 7.0 Mn fine sand				4.5+			6		
		lense a till	t 8.0 feet	- very ha	ard - damı	- fractured-									
: -10 4	ST	Ц								4.5+					
5	ST		brown silt fractured		CL) - very	y stiff -				3.5					
6	ST		brown silt - very sti			ce'of				2.25					
15			very ser			·····		-				<u> </u>			
	ST		ilty clay							.75					
8	ST	15.0 tc	17.0 feet	- firm -	wet - t1	11				.5					
-20		Ц П	•												
9	ST	<u> </u>								.5			ļ	ļ	ļ
			Boring advanced t	o 22.0 fe	et with p	ower auger									
			backfilled			-		i							
													1		
			•												
										· ·					
											1				
		1]]			
										1	}				
							1								1
										1	1		1		
·											1		1	1	
⊢							1					ļ	1		
									1	}			1		1
		1								1	1	<u> </u>		<u> </u>	1
The stratifica	tion lines re	present the appro BC	1	etween soil type	ns. In situ, the tra ACR	BORING STARTED		L-90		1				mbeau :	
WL-T. PIPE	DATE	TIME	WL-T. PIPE	DATE	TIME	BORING COMPLETED				STS OFF	·····				1 54303
						RIG CME 75					BY RLS			OF	1
					I	FOREMAN BZ				APP'D.	BY MAI	B STS	JOB NO.	16898	XH
± 5-983														•	

67	OWNER		· · /			F BO	RING N	UMBE	R			
	Albany International PROJECT NAME				-21 GIN	EER				·		
STS Consultants Ltd.	Site Remediation			SI	rs c	Consul	tants,	Ltd.				
SITE LOCATION	Former Albany Internation Appleton, Wisconsin	onal Chromium	Facility			NOI	SIVE FT ³)			н		
		WELL INSTAL TOP STANDPI	LATION PE EL.+	,		ETRAT (/FT)	APRES TONS/	NT. %	EIGHT	C LIMI	SSING	Υ.K
ELEVATION ELEVATION SAMPLE NO. SAMPLE TYPE SAMPLE DISTANCE	DESCRIPTION	OF MATERIAL				STANDARD PENETRATION TEST, N (8/FT)	UNCONFINED COMPRESSIVE STRENGTH. Op (TONS/FT?)	WATER CONTENT.	UNIT DRY WEIGHT (LBS/FT3)	LIQUID/PLASTIC LIMIT LL/PL	PERCENT PASSING #200 SIEVE	PERMEABILITY. ((CM/SEC)
SAM FEC	SURFACE ELEVATION +769.04					sı	STR			5		
	Fill: Brown sand and g	ravel										
2 ST				-1-			4.5+					
3 ST	Reddish brown silty cla gravel - very hard - da						4.5+			т.		
4 ST	5.0 to 10.0 feet - till	L					4.5+					
5 ST							4.5+					
6 ST	Reddish brown silty cl sand - trace of gravel						1.75					
7 ST							1.0					
8 ST	Brown silty clay (CL) wet - till	- trace of gra	vel - firm -				.5					
9 ST	End of Boring Boring advanced to 22. Boring backfilled with		ower auger									
The stratification times rep VL	esent the approximate boundary between a BCR	oil types. In situ, the tran ACR		Vater) 2-1	_		sured at th			540 La	mbeau	Street
WL-T. PIPE DATE	TIME WL-T. PIPE DA	re time	BORING COMPLETED	2-1	-90		¦	BY RL				1 5430
			RIG CME 75				APP'D. E				····	
- 5-983			FOREMAN BZ					MA	3 313.		168982	.ri

				OWNER					LOC	G OF B	DRING I	UMB	ER			
アド			Ļ	Albany In		al				22		······				
				PROJECT						GINEER	ltants,	7+4				1
TS Consu		_	_	Site Reme					51	.s const	Teants,	LCQ,	1	[1	
					bany Inte: Wisconsi			Facility		lion	SSIVE /FT*)	%				
				WELL INSTALLATION TOP STANDPIPE EL. +						(ETRA) B/FT)	MPRE		(FIGHT	IC LIM	SSING	۲. K
ELEVATION SAMPLE NO.	SAMPLE TYPE	MPLE DISTAN	RECOVERY			IPTION OF M	IATERIAL			L STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT*)	WATER CONTENT.	UNIT DRY WEIGHT (LBS/FT)	LIQUID/PLASTIC LIMIT	PÉRCENT PASSING #200 SIEVE	PERMEABILITY, K (CM/SEC)
1 8	SA	SA	Ë	SURFACE ELI	EVATION +7	69.07		·····			50		ļ	ļ	ļ	
<u></u> 1	PA			Fill: Br	own sand	and grave	21									
2	ST	\prod	Щ						1		4.5+					
3	ST	Π	Ш	trace of	coarse sa	nd from	CL) - trac 7.0 to 9.0 ed from 5.				4.5+					
4	ST	Π	Ш	feet - ti	-						4.5+					
10 5	ST		Щ								4.5+					
6	ST		Π		orown silt Ef - moist		CL) - trad	ce of gravel -			2.75					
15	ST		Ш			- <u></u> 1	_		1		. 50					+
8	SI		Π					avel from wet - till			.75					
20 9	57		Ш								.50					
				-				ower auger		•						
				ent the sporous	nate boundary bi	itween soil type	19, In Situ the Pro	nation may be gradual.	Water		veasured at t	he times	indicated.	Water Java		Seasonaliv
VL				BCR			ACR	BORING STARTED		-90	STS OF		-	540 La	mbeau s	Street
WL.T. PIPE		DAT		TIME	WL.T. PIPE	DATE	TIME	BORING COMPLETE	2-1	-90					Bay, W.	
							<u> </u>	RIG CME 75			DRAWN	BY RL	S SHE	ЕТ 1	OF	1
				1			L	FOREMAN BZ			-	BY MAT		JOB NO.	16898	

.

AD	• ·]	• • •	OWNER					LO	GC	OF BO	RING I	UMBI	ER					
Albany International								в-23										
PROJECT NAME									ENGINEER									
STS Consulta	ints	Ltd.	Site Reme	diation				S	rs (Consul	tants,	Ltd.				ł		
SITE LOCA				bany Inter Wisconsir		Chromium	Facility			z	Э́Е							
		"		ALLATION PIPE EL. +	,		ETRATIC	APRESS TONS/F	NT, %	EIGHT	C LIMIT	SING	τ. Έ					
ELEVATION SAMPLE NO.	SAMPLE TYPE	SAMPLE UISTANCE RECOVERY	DESCRIPTION OF MATERIAL							STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, OP (TONS/FT)	WATER CONTENT.	UNIT DRY WEIGHT (LBS/FTT)	LIQUID/PLASTIC LIMIT	PERCENT PASSING #200 SIEVE	PERMEABILITY. (CM/SEC)		
Ne la	NS 3	N N	SURFACE EL	EVATION +7	69.12					<u>دن</u>	STI							
	?A		Fill: Br	cown sand a	and grave	1							×					
2 5	ST										4.5+							
3 8	5T	Ш		brown silt coarse sa			e of gravel - feet -				4.5+							
	ST		very hard feet - t	d - damp - ill	fracture	d from 5.	0 to 7.0				4.5+							
5 9	ST	T									4.5+							
6	ST	ΠΠ		brown silt ff - moist		CL) - trad	ce of gravel -				2.0					1		
			Boring a	End of Boring Boring advanced to 14.5 feet with power auger Boring backfilled with bentonite														
				•						-								
									•									
The stratthcate	ion lin	85 180	resent the approxi	mate boundary be	stween soil type	is. In situ, the tri	nsition may be gradual.	Water	level	were me	asured at th	18 111195 1	the state of the s	the second second second second second second second second second second second second second second second s		the second second second second second second second second second second second second second second second s		
NL.			BCA	<u> </u>		ACR	BORING STARTED	2-1	1-90)	STS OFF	ю			beau S			
WL-T. PIPE	D	ATE	TIME	WL-T. PIPE	DATE	TIME	BORING COMPLETED	2-2	1-90)	1	SY RI	-1	reen H		54303 1		
						Į	RIG CME 75 FOREMAN BZ				APP'D. I	ач ма	B STS	JOB NO.	168982	 (H		
.: 5-983					1	1,	FOREMAN BZ				1			. <u></u>				

BADGER LABORATORIES & ENGINEERING Rate

CHEMISTS

1110 S. ONEIDA STREET • APPLETON, WISCONSIN 54915 • (414) 739-9213 FAX (414) 739-5399 • TOLL FREE PHONE IN WISCONSIN 1-800-242-3556

STS Project No. 16898XH Forty-Five (45) Soil Samples Received February 5, 1990 Sampled By: Client

Our Report No. 200856 Issued February 26, 1990

STS CONSULTANTS, LID. 540 Lambeau Street Green Bay, WI 54303

Att'n: Mr. Mark Bergeron

<u>Request</u>: Total and EP Toxicity Chromium determination as listed below.

<u>Results:</u>

	Chromium, Total ppm. Wet Weight Basis	Chromium, EP Toxicity mg/1.
18-2	26.1	NR
18-3	46.7	NR
18-4	38.7	NR
18-5	40.0	NR
186	26.6	NR
18-7	23.9	NR
18-8	20.9	NR
18-9	20.2	NR
19-2	164	<0.04
19-3	105	0.40
19-4	138	1.7
19-5	103	- 2.8
19-6	42.8	NR
19-7	24.7	NR
19-8	23.6	NR
19-9	22.6	NR
20-2	96.2	NR
20-3	111	0.97
20-4	138	4.0
20–5	340	10.1
20-6	. 167	4.5
20-7	20.5	NR
20-8	22.2	NR
20-9	22.2	NR
21-2	138	<0.04
21-3	148	0.24
21-4	170	4.3
21-5	439	10.9

WI Reg. Engineers (Corp.) #CE00601 WI DNR Centiled Lab #45023150 WI Div. Heath Cert. Lab #205, Bacteria water/milk USDA Centiled Lab #5585, Various tests for (Meat & Poulity) foods

Members WI Environmental Labs: Am Chemical Soc.; Water Pollution Control Fed., TA P.P.I.; WI Food Processors Assn.; Wisc. Paper Council

STS CONSULTANTS, LTD. Att'n: Mr. Mark Bergeron

... ;. •

٠..

÷...

1

·•.

.

•

Our Report No. 200856 Issued February 26, 1990 Page #2

	Chromium, Total ppm. Wet Weight Basis	Chromium, EP Toxicity mg/l.
21-6	596	21.5
21-7	280	1.8
21-8	20.4	NR
21-9	19.6	NR
22-2	472	<0.04
22-3	150	<0.04
22-4	121	1.2
22-5	184	5.0
22-6	510	15.0
22-7	21.0	NR
22-8	20.9	NR
22-9	21.8	NR
23-2	20.4	NR
23-3	108	0.83
23-4	142	3.4
23-5	203	7.0
23-6	140	4.1

Method: Test Methods for Evaluating Solid Waste, EPA, 1982, SW-846.

BADGER LABORATORIES & ENGINEERING WDNR Certified Lab #445023150

Carla M. Brown

Carla M. Brown Lab Analyst

CMB:mw

Chain of Custody Enclosed.

WELL DATA SUMMARY SHEET June 11, 1991

Total Chromium* (parts per million)

Well No.	3-31-89	6-30-89	9-28-89	12-14-89	3-30-90	6-21-90	9-27-90	12-12-90	3-26-91	6-11-91	
MW-1	<.001	.0037	<.10	<.04	.06	<0.04	<0.04	<0.04	0.07	<0.04	
MW-2	.083	.073	.13	.05	.07	0.09	0.05	0.05	<0.04	0.04	
MW-2A					<.04	<0.04	0.05	0.06	0.05	<0.04	
MW-5	18.80	1.55	3.4	4.4	14.1	1.8	0.75	1.32	2.69	1.8	
MW-5A					34.4	39.3	57.1	47.8	43.3	· 41	
MW-10	**	<.10	<.10	<.04	.07	0.05	<0.04	<0.04	<0.04	<0.04	
MW-11	14.30	40.90	24.5	9.2	18.0	31.3	28.1	19.1	11.2	14	
MW-17					<.04	0.09	<0.04	<0.04	<0.04	<0.04	
MW-17A					.04	<0.04	<0.04	<0;04	<0.04	<0.04	

* Analyses were run by Badger Laboratories

** Flush mounted well cap jammed

المسيب التعنيقا المسير

•

Appendix E

Laboratory Analytical Data

CHEMISTS Engineers		STBELL	STREET • I		H, WIS	CONSIN	ENGINE	
ALBANY INTERNATIO 253 TROY RD RENSSLEAER, NY 121							Report Number: Report Date: Sampled By:	1501400 1/22/2015 Client
Attn: John Stoeger							PO#: # Samples:	4500 385679 12
Sample Number: Description: Sample Date: Date Received:	45003211 MANHOLE 1/13/2015 1/13/2015							
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,TOTAL I HEX CHROME TURBIDITY-LAB	REC	2.4 2.1 0.25	mg/l mg/l NTU		0.07 0.06 0	0.23 0.20 0		01/15/15 01/14/15 01/14/15
Sample Number: Description: Sample Date: Date Received:	45003212 SUMP 1/13/2015 1/13/2015							
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,TOTAL I HEX CHROME METALS DIGESTION	REC	36 31 DONE	mg/l mg/l		0.97 0.60 0	3.2 2.0 0	SM3111D SM3500CrD EPA200.2	01/21/15 01/14/15 01/15/15
Sample Number: Description: Sample Date: Date Received:	45003213 CANISTER 1/13/2015 1/13/2015							
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,TOTAL I TURBIDITY-LAB	REC	0.97 0.20	mg/l NTU		0.03 0	0.10 0	SM3111D EPA180.1	01/15/15 01/14/15

BADGER LABORATORIES & ENGINEERING INC.

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: Description: Sample Date: Date Received:	4500321 001 OUT 1/13/201 1/13/201	FALL L5						
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,TOTAL I TURBIDITY-LAB	REC	0.10 0.15	mg/l NTU		0.03 0	0.10 0	SM3111D EPA180.1	01/15/15 01/14/15
Sample Number: Description: Sample Date: Date Received:	4500321 MW-05 1/13/201 1/13/201	15						
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,DISSOL HEX CHROME	VED	784 0.67	ug/l mg/l		30 0.03	100 0.10	SM3111D SM3500CrD	01/15/15 01/14/15
Sample Number: Description: Sample Date: Date Received:	4500321 MW-05A 1/13/201 1/13/201	15						
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,DISSOL HEX CHROME	/ED	3.1 <0.003	ug/l mg/l		0.10 0.003	0.33 0.009	SM3113B SM3500CrD	01/21/15 01/14/15
Sample Number: Description: Sample Date: Date Received:	4500321 MW-19 1/13/201 1/13/201	15						
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,DISSOL HEX CHROME	VED.	18050 15	ug/l mg/l		514 0.30	1712 1.0	SM3111D SM3500CrD	01/15/15 01/14/15

WI DNR Certified Lab #445023150 WI Reg. Engineers (Corp.) #CE00601 WI DATCP Certified #205 (Bacteria-Water)

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: Description: Sample Date: Date Received:	45003213 MW-19A 1/13/201 1/13/201	.5						
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,DISSOL HEX CHROME	VED	321 <0.003	ug/l mg/l		30 0.003	100 0.009	SM3111D SM3500CrD	01/15/15 01/14/15
Sample Number: Description: Sample Date: Date Received:	45003219 MW-20 1/13/201 1/13/201	.5						
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,DISSOL HEX CHROME	VED	199000 155	ug/l mg/l		5850 1.2	19480 4.0	SM3111D SM3500CrD	01/15/15 01/14/15
Sample Number: Description: Sample Date: Date Received:	45003220 MW-20A 1/13/201 1/13/201	.5						
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,DISSOL HEX CHROME	VED	11 <0.003	ug/l mg/l		0.20 0.003	0.67 0.009	SM3113B SM3500CrD	01/21/15 01/14/15
Sample Number: Description: Sample Date: Date Received:	4500322 MW-21 1/13/201 1/13/201	.5						
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,DISSOL HEX CHROME	VED	0.63 <0.003	ug/l mg/l		0.10 0.003	0.33 0.009	SM3113B SM3500CrD	01/21/15 01/14/15

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

CHROMIUM,DISSOLV HEX CHROME	/ED	<0.10 <0.003	ug/l mg/l		0.10 0.003	0.33 0.009	SM3113B SM3500CrD	01/21/15 01/14/15
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
Sample Number: Description: Sample Date: Date Received:	45003222 MW-21A 1/13/2015 1/13/2015							

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffrey M. Wagner

JMW:jc

WI DNR Certified Lab #445023150 WI Reg. Engineers (Corp.) #CE00601 WI DATCP Certified #205 (Bacteria-Water) 4

Members WI Environmental Labs; Am. Chemical Soc.; T.A.P.P.I.; WI Food Processors Assn.; Wisc. Paper Council CHEMISTS

ENGINEERS

BADGER LABORATORIES & ENGINEERING, INC.

501 WEST BELL STREET - NEENAH, WISCONSIN 54956-4868 - EST. 1966 (920) 729-1100 - Fax (920) 729-4945 - 1-800-776-7196

SAMPLE RECEIPT FORM

CLIENT	INFO	RMATI	ON
--------	------	-------	----

COMPANY: Alberty Toternational TURN AROUND TIME: SAMPLE TYPE: NAME: ADDRESS: 253 Trop Read Read Rush (Approval) Wastewater Lab Filtered ADDRESS: 253 Trop Read Read Rush (Approval) Wastewater Field Filtered Grab		
ADDRESS: 423 107 Kourd Rush (Approval) X Wastewater R Pield Pillered		
PHONE:		
P.O. #: 4500 321 596		
PROJECT/SITE: Application Site Did Waste Difference From Time Proportional		
REPORT & BILL TO: Monthly Billing No Report To Albeng		
ADDITIONAL REPORTS TO: John Stokger & Dyc		
CONT DELIVERY METHOD PRESERVATION		-
CUSTOMER SAMPLE ID DATE/TIME REC'D REPORT # SAMPLE + S Y/N BL&E CLIENT UPS OTHER PIF PIL PRES H2SO4 HNO3 NAOH OTHER ANALYTICAL REQUESTS	pH ok E	EP
Manhole 1/13/15 1/13 1400 3241 12 K T X X Tot + Het Clim		
Sump gilan 312 2 K K K to to		
Constar A 3213 1 K Z X Total Christian		
Outfill will Brul I K K to the		
MU-05 Sht 2 L X X Jotald Her Chrone		
MU-USA $3114/2 K K$		
MU-19 317-12 K X K		
$MU-19\Lambda$ $31LY$ 2 K K K		
MW-20 3219 2 L K K		
NG-201 7 320 2 (X 4 7 7		

CHAIN OF CUSTODY RECORD

FILLED IN BY CUSTOMER									
SAMPLED BY:	<u>`~</u>	Stuc	<u>sc</u>						
DATE/TIME SAMPLED:	1 13	15	"40- A.						
RELINQUISHED BY:	' [Y⁄	\sim						

FILLED IN BY BADGE	ER LABS & ENG
RECEIVED BY: URSI	<u>ca</u>
DATE/TIME RECEIVED: //	13/15 11:50
LOGGED IN:	í Adn

* Temperature over 4°C are above EPA/DNR Protocol unless received on ice.

* EP= If pH was not correct, extra preservation was added until correct pH was achieved.

* PIF= Preserved in field. * PIL= Preserved in lab.

1 of 2

BADGER LABORATORIES & ENGINEERING, INC.

501 WEST BELL STREET - NEENAH, WISCONSIN 54956-4868 - EST. 1966 (920) 729-1100 - Fax (920) 729-4945 - 1-800-776-7196

SAMPLE RECEIPT FORM

CLIENT INFORMATION

COMPANY: AIL	5647	TAt	ernat	160001				TUR	RN A	ROU	ND 7	TIME	i i		SAN	<u>IPLE</u>	: T Y	PE:			
NAME:								Ŕ		Nor	mal				叉	Grou	ndwa	ter	□ Lab Filtered		
ADDRESS:	753 Leviss 14			Read	4				Rus	h (A	pprov	/al _					ewat ES		 Field Filtered Grab 		
PHONE:			/													Cooli	ng Wa	ater	Composite		
P.O. #: 4500	3213	196														Drinki	ng Wa		Flow Proportional		
PROJECT/SITE:	Applit	s- (0.26:32	Sit													Naste	9	Time Proportional		
REPORT & BILL TO ADDITIONAL REPO	" Month	$\frac{1}{2}$ B	llin	NE RO	lor ^d	TO	14	Ke.	~7												
ADDITIONAL REPO	RTS TO: J	2 ha	Stoke	er i Dy	<u> </u>				1							Other					
			<u>/</u>			CONT		DE	LIVERY	METH	IOD	Ĺ	F	RESER	RVATIC	N				<u> </u>	
CUSTOMER SAMPLE ID	SAMPLE DATE/TIME	DATE REÇ'D	BL&E REPORT#	BL & E SAMPLE #	TEMP	AINER S	ice Y/N	BL&E	CLIENT	UPS	OTHER	PIF	PIL	NON- PRES	H2SO4	HNO3	NAOH	OTHER	ANALYTICAL REQUESTS	рН о	k EP
MW-21	1/13/15	43	1400	3221	2	2	Y		X			\mathcal{L}		X		X			Tot & Hex Chrom		
MU-JIA	G: ~ An			322		2	/		4			Y		\checkmark		X			4 +		
<u> </u>																					
						i													· · · · · · · · · · · · · · · · · · ·		

CHAIN OF CUSTODY RECORD

FILLED IN BY CUSTOMER										
SAMPLED BY: John	struce									
DATE/TIME SAMPLED: 113	15 9: 44									
RELINQUISHED BY:										

* PIF= Preserved in field.

20f2

* Temperature over 4°C are above EPA/DNR Protocol unless received on ice.

* EP= If pH was not correct, extra preservation was added until correct pH was achieved.

* PIL= Preserved in lab.

CHEMISTS Engineers	3ADG 501 WE				н, WIS	CONSIN	ENGIN 54956-4868 • E 1-800-776-719	EST. 1966	
ALBANY INTERNATIO 253 TROY RD RENSSLEAER, NY 121							Report Number: Report Date: Sampled By:	15023 2/18/ Client	2015
Attn: JOHN STOEGER							PO#: # Samples:	45003 4	385679
Sample Number: Description: Sample Date: Date Received:	45005359 MANHOLE 2/10/2015 2/10/2015								
Parameter		Results	Units	Flags	LOD	LOO	Method		Analyzed
CHROMIUM,TOTAL R HEX CHROME METALS DIGESTION		3.2 2.5 DONE	mg/l mg/l		0.10 0.06 0	0.33 0.20 0		CrD	02/17/15 02/10/15 02/16/15
Sample Number: Description: Sample Date: Date Received:	45005360 SUMP 2/10/2015 2/10/2015								
Parameter		Results	Units	Flags	LOD	LOO	Method		Analyzed
CHROMIUM,TOTAL R HEX CHROME METALS DIGESTION		39 33 DONE	mg/l mg/l		1.2 0.60 0	4.0 2.0 0	SM3111 SM3500 EPA200.1	CrD	02/17/15 02/10/15 02/16/15
Sample Number: Description: Sample Date: Date Received:	45005361 CANISTER / 2/10/2015 2/10/2015	Ą							
Parameter		Results	Units	Flags	LOD	LOO	Method		Analyzed
CHROMIUM,TOTAL R TURBIDITY-LAB		0.93 0.25	mg/l NTU		0.03 0	0.10 0	SM3111 EPA180.3		02/13/15 02/11/15

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: Description: Sample Date: Date Received:	45005362 001 OUTFALL 2/10/2015 2/10/2015	-						
Parameter	Re	sults	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,TOTAL F TURBIDITY-LAB		07 10	mg/l NTU		0.03 0	0.10 0	SM3111D EPA180.1	02/13/15 02/11/15

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffrey M. Wigner

JMW:jc

Members

1	105 Y		4 4 4 4 4		
100 C 100 C	an # 1 m			Sec. 3.1	10.00
	며ㅋㅋㅋ		10	Sec. 1	5.10
	and Different	10000000	and the second	100	1.2

BADGER LABORATORIES & ENGINEERING, INC.

501 WEST BELL STREET - NEENAH, WISCONSIN 54956-4868 - EST. 1966 (920) 729-1100 - Fax (920) 729-4945 - 1-800-776-7196

SAMPLE RECEIPT FORM

CLIENT INFORMATION

COMPANY: A	2617	Tnt	ernat	16.001				TUR	<u> N A</u>	ROU	IND :	TIME	<u>-</u>		SAN	NPL L	: TY	PE;			
NAME:				,				R		Nor	mal				R	Grou	ndwa	ater	Lab Filtered		
ADDRESS: PHONE: P.O. #: 4500 PROJECT/SITE: REPORT & BILL TO ADDITIONAL REPO	Anniet	<u>eaer</u> 196 1- (, <u>NY</u>	Specid 1214 Site No Reg er i Dy		+	А					val _)		Wast WPD Coolii Drinki Solid Oil	ewat ES ng Wi ng Wi Waste	er ater ater	 Field Filtered Grab Composite Flow Proportional Time Proportional 		
					1	CONT		DE	IVERY	METH	IOD		1	PRESER	RVATIC	Ň				<u> </u>	-
CUSTOMER SAMPLE ID	SAMPLE DATE/TIME	DATE REC'D	BL&E REPORT#	BL & E SAMPLE #	TEMP	AINER S		BL&E	CLIENT	UPS	OTHER	PiF	PIL	NON- PRES	H2SO4	нлоз	NAOH	OTHER	ANALYTICAL REQUESTS	pH ok	EF
Manholy	2/10/17 9:36 A	2/10	234	5359	h	2	Y		X			7		X		X			Tota Hex CLAMY		
Sump	j			5360)			X					4		X			* *		
Conster A				5761					L							X			Total Chromium		
Outfall WI	+7	-		Solez		1			٤							L					
							Ŋ					Ţ									
																	_				

CHAIN OF CUSTODY RECORD

FILLED IN BY CUSTOME	R
SAMPLED BY: John)	trest
DATE/TIME SAMPLED: 2/18	0/15 9:30 M
RELINQUISHED BY:	$\alpha \lambda_{1}$

FILLED IN BY BADGER LABS & ENG	
RECEIVED BY:	12100
DATE/TIME RECEIVED: 2-10-15	10:50
LOGGED IN:	

* Temperature over 4°C are above EPA/DNR Protocol unless received on ice.

* EP= If pH was not correct, extra preservation was added until correct pH was achieved.

* PIF= Preserved in field. * PIL= Preserved in lab.

CHEMISTS Engineers	3ADG 501 WE		STREET • 1		H, WIS	CONSIN	ENGINE 54956-4868 • EST • 1-800-776-7196	
ALBANY INTERNATIO 253 TROY RD RENSSLEAER, NY 121							Report Number: Report Date: Sampled By:	1503301 3/16/2015 BL&E
Attn: JOHN STOEGER							PO#: # Samples:	4500 385679 4
Sample Number: Description: Sample Date: Date Received:	45007353 MANHOLE 3/10/2015 3/9/2015	Ē						
Parameter		Results	Units	Flags	LOD	LOO	Method	Analyzed
CHROMIUM,TOTAL R HEX CHROME METALS DIGESTION	EC	2.7 2.4 DONE	mg/l mg/l		0.08 0.06 0	0.27 0.20 0		03/13/15 03/10/15 03/11/15
Sample Number: Description: Sample Date: Date Received:	45007354 SUMP 3/10/2015 3/9/2015							
Parameter		Results	Units	Flags	LOD	LOO	Method	Analyzed
CHROMIUM,TOTAL R HEX CHROME TURBIDITY-LAB	EC	25 18 0.35	mg/l mg/l NTU		0.75 0.60 0	2.5 2.0 0	SM3111D SM3500CrD EPA180.1	03/13/15 03/10/15 03/10/15
Sample Number: Description: Sample Date: Date Received:	45007355 CANISTER 3/10/2015 3/9/2015	A						
Parameter		Results	Units	Flags	LOD	LOO	Method	Analyzed
CHROMIUM,TOTAL R TURBIDITY-LAB	EC	1.7 0.30	mg/l NTU		0.03 0	0.10 0	SM3111D EPA180.1	03/13/15 03/10/15

Members WI Environmental Labs; Am. Chemical Soc.; T.A.P.P.I.; WI Food Processors Assn.; Wisc. Paper Council

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: Description: Sample Date: Date Received:	45007356 001 OUTFALL 3/10/2015 3/9/2015							
Parameter	Re	sults	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,TOTAL F TURBIDITY-LAB		09 15	mg/l NTU		0.03 0	0.10 0	SM3111D EPA180.1	03/13/15 03/10/15

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffrey M. Wigner

JMW:jc

BADGER LABORATORIES & ENGINEERING, INC.

501 WEST BELL STREET - NEENAH, WISCONSIN 54956-4868 - EST. 1966 (920) 729-1100 - Fax (920) 729-4945 - 1-800-776-7196

SAMPLE RECEIPT FORM

CLIENT INFORMATION

COMPANY: AL		TAt	ernat	16.001				<u>TUR</u>	IN A	ROU	IND 1	TIME	2		SAN	MPLL	. TY	P <u>E:</u>				
NAME:				, , , , , , , , , , , _ , , _ , _				Ŕ		Nor	mal				R	Grou	ndwa	ter	Lab Filtered			
ADDRESS:	253 20155/1		10-7 1	Road	4				Rus	h (Aj	pprov	/al _)		Wast WPD	ewate ES	er	□ Field Filtered □ Grab			
PHONE:			/				1									Cooli	ng Wa	ater	🗆 Composite			
P.O. #: 4500	3213	196													\Box	Drinki	ng Wa	ater	Flow Proportional			
PROJECT/SITE:	Applict	6- (626:32	_Sitz_													Naste	9	Time Proportional			
REPORT & BILL TO	: Montl	nly B	llin	NE RO	lor!	t To	A	Be.	~7							Oil						
REPORT & BILL TO ADDITIONAL REPO	RTS TO: J	2 ha	Stoke	er i Dy	(1							Other						
[]		[<u> </u>	1		CONT		DE	LIVERY	METH	IOD		1	PRESE	RVATIC)N			99799799999999999999999999999999999999			
CUSTOMER SAMPLE ID	SAMPLE DATE/TIME	DATE REC'D	BL&E REPORT#	BL&E SAMPLE#	TEMP	AINER S	ice Y/N	BL&E	CUENT	UPS	OTHER	PIF	PIL	NON- PRES		HNO3	NAOH	OTHER	ANALYTICAL REC	UESTS	pH ok	EP
Manhih	3/10/15	3/10	3701	7753	1	2	Y_		X			Ĺ		X		X			Here Ca	Ch		
Sump		/		7384)	Ľ		X					7	 	K						
Constr A				7355		1			X							X				ь к р		
outful al	4			774		1			K							X				1		
							ľ															
																1						

CHAIN OF CUSTODY RECORD

FILLED IN BY CUS	TOMER	
SAMPLED BY: Joh	Strige_	
DATE/TIME SAMPLED:	3/10/15	9: - 4-
RELINQUISHED BY:	ON A	

FILLED IN BY BADGER LABS & ENG	G
RECEIVED BY:	12.05
DATE/TIME RECEIVED	10.00
LOGGED IN AD I U 2015	

* PIF= Preserved in field. * PIL= Preserved in lab. 1503301

* Temperature over 4°C are above EPA/DNR Protocol unless received on ice.

* EP= If pH was not correct, extra preservation was added until correct pH was achieved.

CHEMISTS ENGINEERS		WEST BELL S	TREET • I		H, WISC	CONSIN 5495	NGINEE 56-4868 • EST. 00-776-7196							
ALBANY INTERNA 253 TROY RD RENSSLEAER, NY						Repo	ort Date:	Date: 5/1/2015						
Attn: JOHN STOE	GER					PO#: # Sar		4500385679 23						
Sample Number: Description: Sample Date: Date Received:	450109 MW-03 4/21/2 4/21/2	1 015												
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed						
CHROMIUM,DISS HEX CHROME	OLVED	0.50 <0.50	ug/l ug/l		0.10 0.50	0.33 1.7	SM3113B SM3500CrD	04/30/15 04/21/15						
Sample Number: Description: Sample Date: Date Received:	450109 MW-0 4/21/2 4/21/2	2 015												
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed						
CHROMIUM,DISS HEX CHROME	OLVED	0.94 <0.94	ug/l ug/l		0.10 0.94	0.33 3.1	SM3113B SM3500CrD	04/30/15 04/21/15						
Sample Number: Description: Sample Date: Date Received:	450109 MW-02 4/21/2 4/21/2	2A 015												
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed						
CHROMIUM,DISS HEX CHROME	OLVED	0.11 <0.11	ug/l ug/l		0.10 0.11	0.33 0.36	SM3113B SM3500CrD	04/30/15 04/21/15						

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: Description: Sample Date: Date Received:	4501090 MW-05 4/21/20 4/21/20	15						
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,DISSOL HEX CHROME	VED	576 514	ug/l ug/l		30 30	100 100	SM3111D SM3500CrD	04/27/15 04/21/15
Sample Number: Description: Sample Date: Date Received:	4501090 MW-05> 4/21/20 4/21/20	(15						
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,DISSOL HEX CHROME	VED	573 539	ug/l ug/l		30 30	100 100	SM3111D SM3500CrD	04/27/15 04/21/15
Sample Number: Description: Sample Date: Date Received:	4501090 MW-054 4/21/20 4/21/20	A 15						
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,DISSOL HEX CHROME	VED	1.2 <1.2	ug/l ug/l		0.10 1.2	0.33 4.0	SM3113B SM3500CrD	04/30/15 04/21/15
Sample Number: Description: Sample Date: Date Received:	4501091 MW-10F 4/21/20 4/21/20	؟ 15						
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,DISSOL HEX CHROME	VED	0.41 <0.41	ug/l ug/l		0.10 0.41	0.33 1.4	SM3113B SM3500CrD	04/30/15 04/21/15

CHEMISTS	BADGER LABORATORIES & ENGINEERING INC.
ENGINEERS	501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966
	(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: Description: Sample Date: Date Received:	45010911 MW-17 4/21/201 4/21/201	5									
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed			
CHROMIUM,DISSOL' HEX CHROME	VED	0.39 <0.39	ug/l ug/l		0.10 0.39	0.33 1.3	SM3113B SM3500CrD	04/30/15 04/21/15			
Sample Number: Description: Sample Date: Date Received:	45010912 MW-17A 4/21/201 4/21/201	5									
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed			
CHROMIUM,DISSOL HEX CHROME	VED	0.17 <0.17	ug/l ug/l		0.10 0.17	0.33 0.56	SM3113B SM3500CrD	04/30/15 04/21/15			
Sample Number: Description: Sample Date: Date Received:	45010913 MW-18 4/21/201 4/21/201	5									
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed			
CHROMIUM,DISSOL HEX CHROME	VED	<0.10 <0.10	ug/l ug/l		0.10 0.10	0.33 0.33	SM3113B SM3500CrD	04/30/15 04/21/15			
Sample Number: Description: Sample Date: Date Received:	45010914 MW-18A 4/21/201 4/21/201	5									
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed			
CHROMIUM,DISSOL HEX CHROME	VED	15 <3.0	ug/l ug/l		0.20 3.0	0.67 9.9	SM3113B SM3500CrD	04/30/15 04/21/15			

CHEMISTS	BADGER LABORATORIES & ENGINEERING INC.
ENGINEERS	501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966
	(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Description: MW-19 Sample Date: 4/21/2015 Parameter: Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 18587 ug/l 540 1800 SM3111D HEX CHROME 18000 ug/l 300 1000 SM3500CrD Sample Number:: 45010916 Description: MW-19A Sample Date: 4/21/2015 Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 1.5 ug/l 0.10 0.33 SM3113B Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 1.5 ug/l 0.10 0.33 SM3113B HEX CHROME <1.5 ug/l 1.5 5.0 SM3500CrD Sample Number:: 45010917 Description: MW-20 Sample Date: 4/21/2015 Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 248900 ug/l 7545<			ug/l ug/l	/ED 2318 2318	CHROMIUM,DISSOLVED HEX CHROME
Description: MW-19 Sample Date: 4/21/2015 Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 18587 ug/l 540 1800 SM3111D HEX CHROME 18000 ug/l 300 1000 SM3500CrD Sample Number: 45010916 Description: MW-19A Sample Date: 4/21/2015 Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 1.5 ug/l 0.10 0.33 SM3113B Sample Date: 4/21/2015 ug/l 1.5 5.0 SM3500CrD Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 1.5 ug/l 1.5 5.0 SM3500CrD Sample Number: 45010917 Description: MW-20 Sample Date: 4/21/2015 Parameter Results Units Flags LOD LOQ Method	Units Flags LOD LOQ Method Analyzed	Flags	Units	Resul	Parameter
Description: MW-19 Sample Date: 4/21/2015 Date Received: 4/21/2015 Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 18587 ug/l 540 1800 SM3111D HEX CHROME 18000 ug/l 300 1000 SM3500CrD Sample Number: 45010916 Description: MW-19A Sample Date: 4/21/2015 Date Received: 4/21/2015 Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 1.5 ug/l 0.10 0.33 SM3113B HEX CHROME 45010917 Description: MW-20 Sample Date: 4/21/2015 Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 1.5 ug/l 1.5 5.0 SM3500CrD Sample Number: 45010917 Description: MW-20 Sample Date: 4/21/2015 Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 248900 ug/l 7545 25125 SM3111D				MW-20X 4/21/2015	Description: N Sample Date: 4
Description: MW-19 Sample Date: 4/21/2015 Date Received: 4/21/2015 Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 18587 ug/l 540 1800 SM3111D HEX CHROME 18000 ug/l 300 1000 SM3500CrD Sample Number: 45010916 Description: MW-19A Sample Date: 4/21/2015 Date Received: 4/21/2015 Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 1.5 ug/l 0.10 0.33 SM3113B HEX CHROME <1.5 ug/l 1.5 5.0 SM3500CrD Sample Number: 45010917 Description: MW-20 Sample Date: 4/21/2015 Date Received: 4/21/2015					
Description: MW-19 Sample Date: 4/21/2015 Date Received: 4/21/2015 Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 18587 ug/l 540 1800 SM3111D HEX CHROME 18000 ug/l 300 1000 SM3500CrD Sample Number: 45010916 Description: MW-19A Sample Date: 4/21/2015 Date Received: 4/21/2015 Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 1.5 ug/l 0.10 0.33 SM3113B HEX CHROME <1.5 ug/l 1.5 5.0 SM3500CrD Sample Number: 45010917 Description: MW-20 Sample Date: 4/21/2015	Units Flags LOD LOQ Method Analyzed	Flags	Units	Resul	Parameter
Description: MW-19 Sample Date: 4/21/2015 Date Received: 4/21/2015 Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 18587 ug/l 540 1800 SM3111D HEX CHROME 18000 ug/l 300 1000 SM3500CrD Sample Number: 45010916 Description: MW-19A Sample Date: 4/21/2015 Date Received: 4/21/2015 Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 1.5 ug/l 0.10 0.33 SM3113B				MW-20 4/21/2015	Description: N Sample Date: 4
Description: MW-19 Sample Date: 4/21/2015 Date Received: 4/21/2015 Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 18587 ug/l 540 1800 SM3111D HEX CHROME 18000 ug/l 300 1000 SM3500CrD Sample Number: 45010916 Description: MW-19A Sample Date: 4/21/2015 Date Received: 4/21/2015					
Description: MW-19 Sample Date: 4/21/2015 Date Received: 4/21/2015 Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 18587 ug/l 540 1800 SM3111D HEX CHROME 18000 ug/l 300 1000 SM3500CrD Sample Number: 45010916 Description: MW-19A Sample Date: 4/21/2015	Units Flags LOD LOQ Method Analyzed	Flags	Units	Resul	Parameter
Description: MW-19 Sample Date: 4/21/2015 Date Received: 4/21/2015 Parameter Results Units Flags LOD LOQ Method CHROMIUM,DISSOLVED 18587 ug/l 540 1800 SM3111D				MW-19A 4/21/2015	Description: N Sample Date: 4
Description:MW-19Sample Date:4/21/2015Date Received:4/21/2015					
Description: MW-19 Sample Date: 4/21/2015	Units Flags LOD LOQ Method Analyzed	Flags	Units	Resul	Parameter
Sample Number: 45010915				MW-19 4/21/2015	Description: N Sample Date: 4

CHEMISTS ENGINEERS		WEST BELL S	TREET • I		H, WISC	ONSIN 549	ENGINEEF 56-4868 • EST. 19 300-776-7196	
Sample Number: Description: Sample Date: Date Received:	45010 MW-2 4/21/2 4/21/2	0A 2015						
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,DISSO HEX CHROME	DLVED	1.1 <1.1	ug/l ug/l		0.10 1.1	0.33 3.6	SM3113B SM3500CrD	04/30/15 04/21/15
Sample Number: Description: Sample Date: Date Received:	45010 MW-2 4/21/2 4/21/2	1 2015						
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,DISSO HEX CHROME	DLVED	5.9 <3.0	ug/l ug/l		0.10 3.0	0.33 9.9	SM3113B SM3500CrD	04/30/15 04/21/15
Sample Number: Description: Sample Date: Date Received:	45010 MW-2 4/21/2 4/21/2	1A 2015						
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,DISSO HEX CHROME	DLVED	0.54 <0.54	ug/l ug/l		0.10 0.54	0.33 1.8	SM3113B SM3500CrD	04/30/15 04/21/15
Sample Number: Description: Sample Date: Date Received:	45010 MANH 4/21/2 4/21/2	IOLE 2015						
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM, TOTA HEX CHROME	AL REC	1.8 1.6	mg/l mg/l		0.03 0.06	0.10 0.20	SM3111D SM3500CrD	04/27/15 04/21/15 04/22/15

0.30

NTU

TURBIDITY-LAB

04/22/15

EPA180.1

5

0

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: Description: Sample Date: Date Received:	45010923 SUMP 4/21/2015 4/21/2015						
Parameter	Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,TOTAL F HEX CHROME METALS DIGESTION	REC 16 4.4 DONE	mg/l mg/l		0.47 0.60 0	1.6 2.0 0	SM3111D SM3500CrD EPA200.2	04/27/15 04/21/15 04/24/15
Sample Number: Description: Sample Date: Date Received:	45010924 CANISTER A 4/21/2015 4/21/2015						
Parameter	Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,TOTAL F TURBIDITY-LAB	REC 2.6 0.20	mg/l NTU		0.08 0	0.27 0	SM3111D EPA180.1	04/27/15 04/22/15
Sample Number: Description: Sample Date: Date Received:	45010925 001-CN 4/21/2015 4/21/2015						
Parameter	Results	Units	Flags	LOD	LOQ	Method	Analyzed
CYANIDE, TOTAL	<0.007	mg/l		0.007	0.023	EPA335.4	04/28/15

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

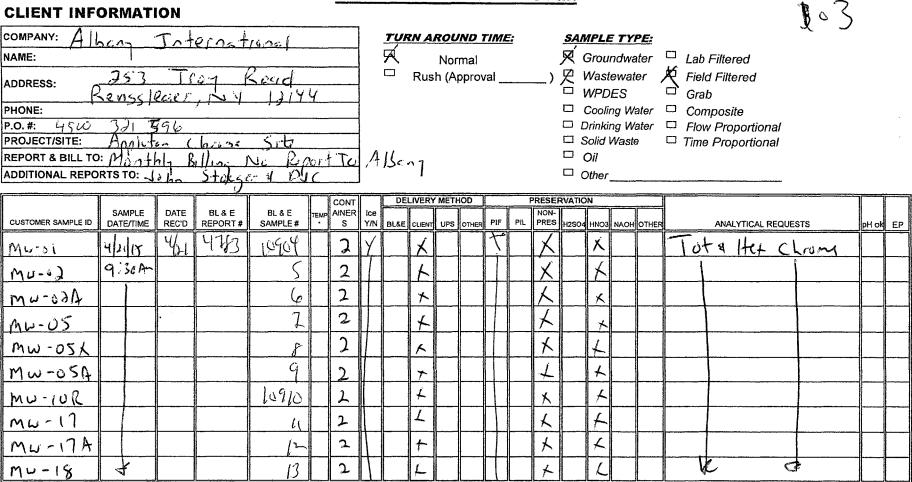
Sample Number:	45010926
Description:	001 OUTFALL
Sample Date:	4/21/2015
Date Received:	4/21/2015

Parameter	Results	Units	Flags	LOD	LOQ	Method	Analyzed
ALUMINUM, TOTAL	<0.10	mg/l		0.10	0.33	SM3111D	04/30/15
ARSENIC, TOTAL REC.	<0.0015	mg/l		0.002	0.005	SM3113B	04/28/15
CADMIUM, TOTAL REC	< 0.01	mg/l		0.01	0.03	SM3111B	04/28/15
CHROMIUM, TOTAL REC	0.24	mg/l		0.03	0.10	SM3111D	04/27/15
COPPER,TOTAL REC	0.03	mg/l		0.01	0.03	SM3111B	04/28/15
HEX CHROME	0.162	mg/l		0.003	0.009	SM3500CrD	04/21/15
LEAD,TOTAL REC	<0.03	mg/l		0.03	0.10	SM3111B	04/28/15
MERCURY, TOTAL REC	<0.0002	mg/l		0.0002	0.0008	SM3112B	04/28/15
NICKEL,TOTAL REC	<0.03	mg/l		0.03	0.09	SM3111B	04/28/15
TURBIDITY-LAB	0.15	NTU		0	0	EPA180.1	04/22/15
ZINC,TOTAL REC	0.03	mg/l		0.01	0.03	SM3111B	04/28/15

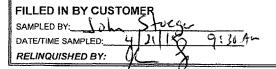
BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffrey M. Wagner

JMW:jc


ì				P	1	E)	1	z	9		2	ŝ	Ϋ́	н	ŝ,		p		1		2				2		
â	ŝ	Ċ.			e.	τ.	×.	Ľ	a,	2	1	1	7	4	ł	1		Ì	1	ſ	•	a		2	2	2	
ŝ		5	2	ð		Ľ	•	1	5	5	1	1	٢.	1	ł	3	e.	з	11	P		1		Ż		i,	
	ř,	2	7			1			4	a												÷.		2			

BADGER LABORATORIES & ENGINEERING, INC.


501 WEST BELL STREET - NEENAH, WISCONSIN 54956-4868 - EST. 1966 (920) 729-1100 - Fax (920) 729-4945 - 1-800-776-7196

SAMPLE RECEIPT FORM

CLIENT INFORMATION

CHAIN OF CUSTODY RECORD

FILLED IN BY BADGER WABS & ENG RECEIVED BY: DATE/TIME RECEIVED: 1214 LOGGED IN:

1504783

* Temperature over 4°C are above EPA/DNR Protocol unless received on ice.

* EP= If pH was not correct, extra preservation was added until correct pH was achieved.

* PIF= Preserved in field. * PIL= Preserved in lab.

BADGER LABORATORIES & ENGINEERING, INC.

501 WEST BELL STREET - NEENAH, WISCONSIN 54956-4868 - EST. 1966 (920) 729-1100 - Fax (920) 729-4945 - 1-800-776-7196

SAMPLE RECEIPT FORM

COMPANY: AIL										ROU	ND	TIME	ł		<u>SA/</u>	MPLE	<u>. TY</u>	PE;		
NAME:				н				R		Norr	mal				R	Grou	ndwa	ter	Lab Filtered	
ADDRESS:			en f	Soud 1714	4			□ Rush (Approval)										Field Filtered		
PHONE:	HONE:															Coolir	ng W	ater	Composite	
P.O. #: 4500		196																ater	Flow Proportional	
PROJECT/SITE:	Applit	<u> (</u>	42632	_Sitz_												Solid \	Naste	9	Time Proportional	
REPORT & BILL TO ADDITIONAL REPO	"Month	1 B	Illeri	Vi Rep	lor!	Tu	14	Be.	17											
ADDITIONAL REPO	RTS TO:	2ha	Stoka	· I PU	<u>C</u>				1						□ (Other				
<u> </u>					<u> </u>	CONT		DEI	IVERY	METH	OD]	<u> </u>		RESER	RVATIO	DN N			1	
CUSTOMER SAMPLE ID	SAMPLE DATE/TIME	DATE REC'D	BL & E REPORT #	BL & E SAMPLE#	TEMP	AINER S	lce Y/N	BL&E	CLIENT	UPS	OTHER	PIF	PIL	NON- PRES	H2SO4	HNO3	NAOH	OTHER	S ANALYTICAL REQUESTS PH of	EP
MW-18A	4/21/15	4/1	4783	10914	\square	2	Y,		X			Ĭ		X	 	X			Tota Het Clown	
MU-19	9:30 M			r f	Ш	2			1					X		K				
MU-19A	<u> </u>			<u> </u>		2			×					Ł		K				
MW-20				7		2			\star					X		7				
mu-zot				F		2			+					1		\times				
MU-20A				9		2			4					X		X				ļ
mu-21				10920		2			7					4		7				
MU-21A				21		2			\checkmark					F		K				
Marhoh				22		2			4					*	 	L				
Sump	¥	L		23	Ш	2		L	L				L	+		K	L		P F	

CHAIN OF CUSTODY RECORD

FILLED IN BY BADGER HABS & ENG RECEIVED BY:______ DATE/TIME RECEIVED:_______

2 of 3

* Temperature over 4°C are above EPĂ/DNR Protocol unless received on ice.

* EP= If pH was not correct, extra preservation was added until correct pH was achieved.

* PIF= Preserved in field. * PIL= Preserved in lab.

d,		CH	VIII	1	c -		
		 S I	VII.	21	Э-		

BADGER LABORATORIES & ENGINEERING, INC.

501 WEST BELL STREET - NEENAH, WISCONSIN 54956-4868 - EST. 1966 (920) 729-1100 - Fax (920) 729-4945 - 1-800-776-7196

SAMPLE RECEIPT FORM

CLIENT INFORMATION

COMPANY: Alber Interation	TURN AROUND TIME:	<u>SAMPLE TYPE:</u>	
NAME:	Normal	🕅 Groundwater 🛛 Lab Filtered	
ADDRESS:	Other TAT*	🖾 Wastewater 🖳 Field Filtered	
ADDRESS.		U WPDES Grab	
FAX/PHONE/EMAIL:	*REQUIRES PRIOR	Cooling Water Composite	
P.O. #:	APPROVAL	🗖 Drinking Water 📮 Flow Proportional	
PROJECT/SITE:	·.	Solid Waste	
REPORT & BILL TO:	· ·	□ Oil	
ADDITIONAL REPORTS TO:]	□ Other	
Солт		ERVATION	

сията	OMER SAMPLE ID	SAMPLE DATE/TIME	DATE REC'D	BL & E REPORT #	BL & E SAMPLE #	TEMP	AINER S	ice Y/N	BLAE	CLIENT	UPS	OTHER	PIF	PIL	NON- PRES	H2SO4	HNO3	NAOH	OTHER	ANALYTICAL REQUESTS	pH ok	EP	
Can	isk A	4/21/15	4/21	4743	10924		1	4		X			4				X			Total chronium			
Out	fall 001	9:300-			10925		3	/.					1		\succ		X	X.		Total chronium See Below #			
		•			10926								/										
				· ·																· · · ·			
								[ŀ
																					1.		
									·														l: ,
																							ļ

CHAIN OF CUSTODY RECORD

FILLED IN BY C	UST	OMER		
SAMPLED BY: 4	21	15	9:30	AL
DATE/TIME SAMPLED	·	Sola	Sł	Tollar.
RELINQUISHED BY	:	_ M		N/

FILLED IN BY BAD	GER LABS & ENG
RECEIVED BY:	AAA
DATE/TIME RECEIVED:	1 Junn
LOGGED IN:	

* Aluminum, Arsenic, Codmium, Total Chanjum, Her Chromium, Copper, Cyanida, Local, Mercury, Kickel Zinc

30f3

* Temperature over 4°C are above EPA/DNR Protocol unless received on ice.

* EP= If pH was not correct, extra preservation was added until correct pH was achieved.

* PIF= Preserved in field. * PIL= Preserved in lab.

CHROMIUM,TOTAL R TURBIDITY-LAB	EC	5.6 0.30	mg/l NTU		0.16 0	0.53 0	SM3111D EPA180.1	05/22/15 05/19/15
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
Sample Date: Date Received:	5/18/2015 5/18/2015							
Sample Number: Description:	45013170 CANISTER	۵						
HEX CHROME METALS DIGESTION		8.6 DONE	mg/l		0.60 0	2.0 0	SM3500CrD EPA200.2	05/18/15 05/13/15
CHROMIUM,TOTAL R	EC	19	mg/l		0.53	1.8	SM3111D	05/22/15
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
Sample Date: Date Received:	5/18/2015 5/18/2015							
Sample Number: Description:	45013169 SUMP							
TURBIDITY-LAB		0.70	NTU		0	0	EPA180.1	05/19/15
CHROMIUM,TOTAL R HEX CHROME	EC	2.7 1.8	mg/l mg/l		0.08 0.06	0.27 0.20	SM3111D SM3500CrD	05/22/15 05/18/15
Parameter		Results	Units	Flags	LOD	LOQ	Method	Analyzed
Sample Number: Description: Sample Date: Date Received:	45013168 MANHOLE 5/18/2015 5/18/2015							
Attn: JOHN STOEGER							PO#: # Samples:	4500 385679 4
ALBANY INTERNATIO 253 TROY RD RENSSLEAER, NY 121	44						Report Number: Report Date: Sampled By:	1505743 5/22/2015 Client
		(920) 729	∋ -1100 ∙	FAX (9)	20) 729-	4945 •	1-800-776-7196	

Members WI Environmental Labs; Am. Chemical Soc.; T.A.P.P.I.; WI Food Processors Assn.; Wisc. Paper Council

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: Description: Sample Date: Date Received:	45013171 OUTFALL 001 5/18/2015 5/18/2015						
Parameter	Resu	lts Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,TOTAL I TURBIDITY-LAB	REC 0.52 0.25	0,		0.03 0	0.10 0	SM3111D EPA180.1	05/22/15 05/19/15

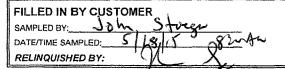
BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffrey M. Wagner

JMW:jc

	ŝ.	М	÷.,	- 1			3 in -		- 2										
				Υ.		T	E	17	σ.	П					\mathbb{T}^{2}				
			2	L٩	6			11	14				λ.	12	12.1		1	21	
2	â	2		Đ.	di.	e.	i uni		1		-	84	2.0			ω,		1	

BADGER LABORATORIES & ENGINEERING, INC.


501 WEST BELL STREET - NEENAH, WISCONSIN 54956-4868 - EST. 1966 (920) 729-1100 - Fax (920) 729-4945 - 1-800-776-7196

SAMPLE RECEIPT FORM

CLIENT INFORMATION

COMPANY: AIL	any International						TURN AROUND TIME:						SAMPLE TYPE:								
NAME:				,]	Ŕ		Nor	mal				R.	Grou	ndwa	ter	□ Lab Filtered		
ADDRESS:	253 Levissi			Soud 1714	4				Rus	h (Ar		/al _)	G	WPD		er	Field FilteredGrab		
PHONE:																Cooli	ng Wa	ater	Composite		
P.O. #: 4500		196					}												Flow Proportional		
REPORT & BILL TO: Monthly Billing No Report TC ADDITIONAL REPORTS TO: John Stokser & DIC					1											Waste	•	Time Proportional			
REPORT & BILL TO	"Mont	rlz B	المايمن	Ne Rep	or	t To	14	Be	~7							Oil					
ADDITIONAL REPO	RTS TO: J	2 ha	Stoke	er a 109	<u> </u>]		1						ц (Other			<u></u>		
[1			[]	<u> </u>	CONT	1	DE	LIVERY	METH			F	RESER	VATIO	DN	1240 <u>- ar ins</u>		1	<u> </u>	
CUSTOMER SAMPLE ID	SAMPLE DATE/TIME	DATE REC'D	BL & E REPORT #	BL & E SAMPLE #	TEMP		Ice	BL&E	CLIENT	UPS	OTHER	PIF	PIL	NON- PRES	HZSO	нюз	NAOH	OTHER	ANALYTICAL REQUESTS	pH ok	EF
Manhah	5/18/5	5/18	5745	13/64	\square	2	Y,		X					X		X			Tota Her Chrone		
Sump				13169	Ц	2			L					L		L			+ +		
				13170					L							X			Total Chaman		
Canister A Outfall 001	82天12			13771		(L							¥					
							1														

CHAIN OF CUSTODY RECORD

FILLED IN BY BADGER LABS & ENG

DATE/TIME RECEIVED: MAT 1.8

LOGGED IN:

* Temperature over 4°C are above EPA/DNR Protocol unless received on ice.

* EP= If pH was not correct, extra preservation was added until correct pH was achieved.

* PIF= Preserved in field.

* PIL= Preserved in lab.

CHEMISTS Engineers	3ADG 501 WE	ST BELL S		NEENA	H, WIS	CONSIN	54956-4868 • ES • 1-800-776-7196	T. 1966
ALBANY INTERNATIO 253 TROY RD RENSSLEAER, NY 121							Report Number: Report Date: Sampled By:	1506514 6/11/2015 Client
Attn: JOHN STOEGER							PO#: # Samples:	4500 385679 4
Sample Number: Description: Sample Date: Date Received:	45015031 MANHOLI 6/9/2015 6/9/2015							
Parameter		Results	Units	Flags	LOD	LOC	Q Method	Analyzed
CHROMIUM,TOTAL R HEX CHROME TURBIDITY-LAB	REC	1.9 1.7 0.35	mg/l mg/l NTU		0.03 0.03 0	0.10 0.10 0		06/11/15 06/09/15 06/10/15
Sample Number: Description: Sample Date: Date Received:	45015032 SUMP 6/9/2015 6/9/2015							
Parameter		Results	Units	Flags	LOD	LOC) Method	Analyzed
CHROMIUM,TOTAL R HEX CHROME METALS DIGESTION	REC	56 9.1 DONE	mg/l mg/l		0.80 0.30 0	2.7 1.0 0	SM3111D SM3500CrB EPA200.2	06/11/15 06/09/15 06/10/15
Sample Number: Description: Sample Date: Date Received:	45015033 CANISTER 6/9/2015 6/9/2015							
Parameter		Results	Units	Flags	LOD	LOC	Q Method	Analyzed
CHROMIUM,TOTAL R TURBIDITY-LAB	REC	0.50 0.35	mg/l NTU		0.03 0	0.10 0) SM3111D EPA180.1	06/11/15 06/10/15

Members WI Environmental Labs; Am. Chemical Soc.; T.A.P.P.I.; WI Food Processors Assn.; Wisc. Paper Council

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: Description: Sample Date: Date Received:	45015034 001 OUTFAL 6/9/2015 6/9/2015	-L						
Parameter	R	esults	Unit	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,TOTAL I TURBIDITY-LAB).22).30	mg/l NTU		0.03 0	0.10 0	SM3111D EPA180.1	06/11/15 06/10/15

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffrey M. Wagner

JMW:jc

31.233.44	12/08/1	1.1	a data prov		1.15
1000		-1.7	11.	IS	
576123	- M & I	- 11	11	P 102	(

BADGER LABORATORIES & ENGINEERING, INC.

501 WEST BELL STREET - NEENAH, WISCONSIN 54956-4868 - EST. 1966 (920) 729-1100 - Fax (920) 729-4945 - 1-800-776-7196

SAMPLE RECEIPT FORM

CLIENT INFORMATION

COMPANY: Albern International								TUR	RN A	ROU	ND 1	TIME			<u>SAN</u>	<u>IPLE</u>	. TYI	<u>°E:</u>				
NAME:				,				R		Nor	mal				叉	Grou	ndwa	ter	□ Lab Filtered			
ADDRESS:	753 evissi	Ts laer		Soud 1214	4				Rus	h (Aj	oprov	/al)		NPD			□ Field Filtered □ Grab			
PHONE:																Coolii	ng Wa	ater	Composite			
P.O. #: 4500		196																	Flow Proportional			
PROJECT/SITE:	Applict	0- (hiss.	_Sitz_													Waste	}	Time Proportional			
REPORT & BILL TO ADDITIONAL REPO	"Month	hly B	Illing 1	Vi Rep	or	<u>t To</u>	14	Be	<u>~ 7</u>							Cil						
ADDITIONAL REPO	RTS TO: _]	> ha	Stokes	: 1 DY	<u>(</u>				1							Other						
					l.	CONT		DE	LIVERY	METH	IOD		F	RESER	VATIC	N	********]		http://www.com		
CUSTOMER SAMPLE ID	SAMPLE DATE/TIME	DATE REC'D	BL & E REPORT #	BL & E SAMPLE #	TEMP	AINER S	ice Y/N	BL&E	CLIENT	UPS	OTHER	PIF	PIL	NON- PRES	H2SO4	HNO3	NAOH	OTHER	ANALYTICAL REQUESTS		pH ok	EP
Manhoy	6415	uc,	10/14	15031	1	2	Y		L			7		\mathbf{X}		X			Tota Hex Chrom			
Suma				72		2			F					4		$\left \right\rangle$						
Canister A Outfall Out				33		1			L							X			Total (Lronin	n		
Outfull au	47			Ĥ		1			L							L			4 4			
				X	ł																	
																						L

CHAIN OF CUSTODY RECORD

FILLED IN BY CUST	OME	R	
SAMPLED BY: JOhn		struck	
DATE/TIME SAMPLED:	69	15	8:4 ML
RELINQUISHED BY:	΄ Δ	Λ	X1

FILLED IN BY BADGER LABS & ENG	. 60
RECEIVED BY: AT HIN A & DOIT	Cioi
DATE/TIME RECEIVED: JUNU 5 2015	1

* Temperature over 4°C are above EPA/DNR Protocol unless received on ice.

* EP= If pH was not correct, extra preservation was added until correct pH was achieved.

* PIF= Preserved in field.

* PIL= Preserved in lab.