SEMI-ANNUAL OPERATION & MAINTENANCE REPORT July through December – 2014

APPLETON WIRE
FORMER ALBANY INTERNATIONAL
Chrome Plant
Groundwater Treatment System

908 North Lawe Street Appleton, Wisconsin WDNR ERP# 02-45-000015

Prepared for the WISCONSIN DEPARTMENT OF NATURAL RESOURCES

February 1, 2015

Ms. Jennifer Borski Wisconsin Department of Natural Resources 625 East County Road Y, Suite No. 700 Oshkosh, WI 54901-9731

Re: Appleton Wire, Former Albany International Chrome Plant – Appleton, WI

Semi-Annual Operation & Maintenance Report

July through December, 2014 WDNR ERP# 02-45-000015

Dear Ms. Borski:

Enclosed, please find Badger Laboratories and Engineering Co., Inc.'s "Semi-Annual Operation and Maintenance Report" for the Appleton Wire, Former Albany International Chrome Plant, 908 North Lawe Street, Appleton, Wisconsin, (WDNR ERP# 02-45-000015). Our report covers the time period from July 1, 2014 through December 31, 2014.

This report includes a site history, a summary of treatment system performance and monitoring, results of any compliance sampling, operation and maintenance activities over the last six months, historical analytical data and conclusions and recommendations for the site.

If you have any questions or require additional information, feel free to contact me.

Very truly yours,

Badger Laboratories and Engineering Co., Inc.

David J. Casper John M. Stoeger

David J. Casper John M. Stoeger

Project Manager Stoeger and Associates, LLC

Enclosure: "Semi-Annual Operation & Maintenance Report"

cc: Ron Buck, Albany International

Amy Monk, Albany International Joe Gaug, Albany International

Ron Moddes, Luvata

Brian Kreski, City of Appleton Wastewater Division

SEMI-ANNUAL OPERATION & MAINTENANCE REPORT Year

July through December - 2014

APPLETON WIRE

FORMER ALBANY INTERNATIONAL
CHROME PLANT
GROUNDWATER TREATMENT SYSTEM
908 North Lawe Street
Appleton, Wisconsin

Appleton, Wisconsin WDNR ERP# 02-45-000015

Prepared for the

WISCONSIN DEPARTMENT OF NATURAL RESOURCES

Prepared by
Badger Laboratories & Engineering Co., Inc.
Neenah, Wisconsin

And

Stoeger & Associates, LLC Appleton, Wisconsin

February 1, 2015

Table of Contents

HYDROGEOLOGIST CERTIFICATION

T	SITE	RA	CK	GR	\cap I	IND

II. BATCH TREATMENT PROCESS

- A. Groundwater Treatment System
- B. Permit Monitoring & Reporting
 - 1. Quarterly Reporting
 - a. City of Appleton Quarterly Discharge Reports
 - b. Wisconsin DNR Quarterly Groundwater Sampling Reports
 - 2. Semi-Annual Operation & Maintenance Summary
- C. Compliance Sampling
- D. Routine Operation & Maintenance Activities
- E. Significant Operation & Maintenance Activities
- F. Emergency Operation Shut Downs

III. GROUNDWATER SAMPLING

- A. Groundwater Sampling Procedures
- B. Groundwater Sampling Results

IV. GROUNDWATER COLLECTION SYSTEM

V. CONCLUSIONS & RECOMMENDATIONS

List of Tables

Table #1 Table #2	-City of Appleton Effluent Compliance Limits / Effluent Point 001 -Laboratory Analytical Results / Effluent Point 001
Table #3	-Batch Discharges July 1 through December 31, 2014
Table #4	-Groundwater Analytical Results / Total and Hexavalent Chromium –
	Monitoring Wells
Table #5	-Groundwater Analytical Results / Total and Hexavalent Chromium- Manhole and Sump
Table #6	-Groundwater Elevations
Table #7	-Total Pounds Chromium Removed
Table #8	-Groundwater Analytical Results- Geoprobe Monitoring Wells

List of Figures

Figure #1	-Site Layout Map and Monitoring Well Locations
Figure #2	-Chromium Concentration Map - April 9, 2014
Figure #3	-Groundwater Elevation Contour – July 8, 2014
Figure #4	-Groundwater Elevation Contour – October 14, 2014
Figure #5	-2005 Aerial Photograph

List of Appendices

Appendix A	-Concentration Versus Time Graphs – All Wells, Sump and French Drain
Appendix B	-Groundwater Elevations versus Time / All Wells
Appendix C	-Operation & Maintenance Report / Form 4400-194
Appendix D	-Historical Soil Boring and Groundwater Monitoring Well Data, Abandoned
	Borings and Wells
Appendix E	-Laboratory Analytical Data

HYDROGEOLOGIST CERTIFICATION

"I, James Kauer, hereby certify I am a Hydrogeologist as that term is defined in s NR 712.03 (1) Wisconsin Administrative Code; and that to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements of chs. NR 700 to 726, Wisconsin Administrative Code."

James W. Kauer Associate Geologist 2/1/2015
Date

Document Reference: Semi-annual Operation and Maintenance Report –

July through December, 2014

Albany International Former Chrome Site, Appleton, WI

SEMI-ANNUAL OPERATION & MAINTENANCE REPORT July through December – 2014

APPLETON WIRE
Former Albany International
Chrome Plant
Groundwater Treatment System
908 North Lawe Street
Appleton, Wisconsin
WDNR ERP# 02-45-000015

Prepared for the WISCONSIN DEPARTMENT OF NATURAL RESOURCES

I. SITE BACKGROUND

The Appleton Wire Former Albany International Chrome Plant, located at 908 North Lawe Street, Appleton, Wisconsin, was utilized as a chrome plating facility from 1963 to 1982. The chrome plant building and a parking lot north of the building were sold to Valley Cast in 1984. The address of the Valley Cast portion of the site is 908 North Lawe Street. The loading dock area near the chrome plating area was referred to as 831 North Meade Street. An office building and parking lot south of the former chrome plant were sold to Appleton Papers (now Appvion) between 1985 and 1990. The address of the office building is 714 East Hancock Street. Reporting related to the release of chromium on the site has been referenced under the Meade Street, Hancock Street and Lawe Street addresses. As of June, 2009, the physical address (for reporting purposes) of the former chrome plant site was changed to 908 North Lawe Street. An aerial photograph of the site delineating current property ownership is shown in Figure #5.

Valley Cast became a fully owned subsidiary of Outokumpu in 1985. The facility name was changed to Outokumpu in 2001. In 2006, the company was sold and currently operates under the name Luvata Appleton.

In 1985, Valley Cast employees noted groundwater collecting in the basement of the building. Subsequent tests indicated concentrations of chromium in the collected groundwater.

STS Consultants, Inc. conducted an investigation of the former chrome plant site on January 19, 1987. The purpose of the investigation was to determine the horizontal and vertical extent of the chromium contamination and to evaluate the effectiveness of the facility's basement sump to collect contaminated groundwater from the north and south sides of the building.

The results of the investigation indicated that the chromium contamination appeared limited to areas along the northeast and southeast ends of the building and to a depth of approximately 15-feet below grade. The existing basement sump was found to be adequate for collection of groundwater along the south end of the building. The consultant proposed installation of a collection system along the north side of the building to improve groundwater collection.

In 1988, a chemical precipitation process was installed to treat the groundwater collecting in the facility basement sump. The system was operated until 1998, when it was replaced by an ion exchange treatment system.

In 1992, a groundwater collection system was installed along the north side of the building. The system consists of approximately 110 feet of perforated piping, placed 14 feet below grade. The piping empties into a manhole, located at the northeast corner of the facility. Collected groundwater is pumped from the manhole to two storage tanks, located in the basement of the facility. Groundwater flowing to the basement sump is also pumped to the storage tanks.

A total of 16 groundwater monitoring wells exist on the former chrome plant property to monitor the subsurface chromium contamination. Additionally, the groundwater collection system (French Drain) and basement sump are monitored to track the effectiveness of the treatment system.

In 2003, eleven geoprobe monitoring wells were installed in and around the two source areas in an attempt to better define the vertical and horizontal extent of the chromium contamination. Periodic sampling was conducted from the geoprobe monitoring wells until their abandonment in April, 2008. The results of the sampling are contained in Table # 8.

On June 30, 2009, groundwater monitoring wells MW-19 and MW-19A were placed in the warehouse portion of the Luvata facility, west of the basement. MW-19 was placed to a depth of 20 feet below the facility floor. MW-19A was placed to a depth of approximately 40 feet below the facility floor. The resultant groundwater sampling data indicated that chromium contaminated groundwater is present to the west of the former plating area under the current Luvata Appleton warehouse building.

Between May 12, 2014 and May 14, 2014, eleven Geoprobe borings were placed in the interior of the former chrome plant building and current Luvata Appleton production area to further delineate the extent of subsurface Chromium contamination. As part of the investigation, Monitoring Well MW-20 and Piezometer MW-20A were installed in the former warehouse area. Monitoring well MW-21 and Piezometer MW-21A were installed in the Luvata Appleton production area

Groundwater samples were collected from the monitoring wells MW-20 and MW-21, as well as Piezometers MW-20A and MW-21A, on June 2, 2014, July 8, 2014 and October 14, 2014. The samples showed high levels of Total Chromium in MW-20. Further inquiry into the past use of the site in the area of MW-20 found that a smaller, second plating line, had at one time been located in that section of the building. The remaining three monitoring wells had significantly less or no detections for Total Chromium.

The monitoring well and soil boring locations are shown on Figure #1. The May 2014 Geoprobe and monitoring well locations have been added to Figure #1. Historical investigation data in regard to soil borings and abandoned monitoring wells is contained in Appendix D. The current property and adjacent property ownership information, are also shown on Figure #1.

II. BATCH TREATMENT PROCESS

A. Groundwater Treatment System

The impacted groundwater on the site is collected in a basement sump and a groundwater collection system (French Drain). The collected water is pumped to two 2000-gallon storage tanks, located in the basement of the facility. The groundwater is treated in batches at the operator's discretion. Prior to initiation of the treatment process, the pH in the basement storage tanks is adjusted down to a pH of around 4.0 to maximize the efficiency of the ion exchange resin. The water is pumped at a flow rate of 8-12 gallons per minute through a series of filters and two (2) ion exchange canisters. The water then flows to another tank where the pH is adjusted back up to a pH between 6.0 and 7.0. The treated water then decants to the City of Appleton Sanitary Sewer System.

B. Permit Monitoring and Reporting

The discharge from the groundwater treatment system is tested for Hexavalent Chromium during each batch discharge using a Hach Hexavalent Chromium test kit. The effluent is tested monthly for Total Chromium and annually for the parameters listed in Table #1. The parameters are a requirement of the City of Appleton Industrial Use Permit Number 14-17, issued for the site in May, 2014. The permit is valid through May 31, 2017.

The reporting requirements for compliance with the City of Appleton Industrial User Permit and the Wisconsin DNR are summarized below.

1. Quarterly Reporting

a. City of Appleton Quarterly Discharge Reports

Quarterly reports are submitted to the City of Appleton Wastewater Division covering the time periods of January through March, April through June, July through September, and October through December. The City Reports include batch process discharge volumes; discharge pHs, Hexavalent chromium, as measured with the Hach test kit and the monthly laboratory analytical results.

b. Wisconsin DNR Quarterly Groundwater Sampling Reports

As of April, 2009, quarterly groundwater sampling reports are no longer required by the Wisconsin DNR.

2. Semi-Annual Operation and Maintenance Summary

With the elimination of quarterly groundwater monitoring reports to the Wisconsin DNR, semi-annual reports are prepared. The semi-annual operation and maintenance summary consists of a review of the treatment process, an overview of operation and maintenance activities, a summary of the treatment system analytical results and a summary of the analytical results from the groundwater monitoring wells.

C. Compliance Sampling

Compliance sampling of the treatment system effluent is conducted twice per year by the City of Appleton. The effluent is analyzed for all the parameters listed in Table #1, except hexavalent chromium. During the first quarter of each year, Stoeger & Associates, LLC collects one sample at the system outfall and tests for the parameters listed in Table #1. The compliance sampling laboratory results are summarized on Table #2. Table #3 summarizes the monthly batch discharge volumes by month and totals by quarter.

D. Routine Operation and Maintenance Activities

The groundwater treatment system is operated in batches, at the operator's discretion. Site visits are conducted 1-2 times per week to check on the water levels in the storage tanks. When sufficient water is collected to run a batch, the system is operated. Each batch discharge is tested for Hexavalent Chromium using a Hach test kit. The monthly and quarterly volumes of treated groundwater are shown on Table #3.

Additionally a walk through of the building is conducted to check the equipment or look for any obvious problems. Site activities are documented on log sheets. The log sheets are kept on-site.

The pH probes are cleaned and calibrated monthly. The in-line filters are changed when an increase in system pressure is noted. The ion exchange canisters are changed out when the total chromium concentration in the outfall exceeds 2 mg/l.

E. Significant Operation and Maintenance Activities

Between July 1, 2014 and December 31, 2014, there were no significant changes in the operation or maintenance of the site.

The operation and maintenance summary form 4400-194 is contained in Appendix C.

F. <u>Emergency Shut Downs</u>

There were no emergency shut downs of the system during the reporting period.

III. GROUNDWATER SAMPLING

G. Groundwater Sampling Procedures

A total of 16 groundwater monitoring wells are associated with the groundwater treatment system. Monitoring Wells MW-20, MW-20A, MW-21 and MW-21A were installed between May 12 and 14, 2014 and were first sampled on June 2, 2014. Monitoring wells, MW-19 and MW-19A were installed on June 30, 2009 and were first sampled on July 13, 2009. Sampling of MW-20, MW-20A, MW-21, MW-21A, MW-19 and MW-19A will be conducted quarterly along with the two source area wells, MW-05 and MW-05A. The remainder of the monitoring wells are sampled annually.

Groundwater levels are measured in the monitoring wells and piezometers relative to the north side of the top of the well casing. The groundwater elevations are collected from each monitoring well prior to sampling. A dedicated 12-volt submersible pump is installed in each well. Each well is slowly pumped dry, allowed to recharge and sampled. Purge water is collected and treated in the treatment system.

The laboratory analytical data is contained in Tables #4, and #5. The analytical data sheets are contained in Appendix E.

Graphs of the chromium contaminant concentrations for each monitoring well, the building sump and French Drain are contained in Appendix A.

Table #6 summarizes the historical groundwater elevation data collected from each monitoring well during the quarterly sampling. Groundwater elevation contours are calculated based upon the observed elevations of the monitoring wells, basement sump and French Drain. The groundwater elevation contour maps from the July and October sampling events are presented in Figures #3 and #4. Groundwater elevation versus time graphs is presented in Appendix B.

H. Groundwater Sampling Results

The collected groundwater samples are analyzed for Total and Hexavalent chromium.

A total of two sampling events took place during the reporting period. On July 8, 2014, monitoring wells MW-05, MW-5A, MW-19, MW-19A, MW-20, MW-20A, MW-21 and MW-21A were sampled as part of the regularly scheduled quarterly sampling. Monitoring wells MW-05 (1,300 ug/l), MW-19 (18,000 ug/l), MW-20 (283,000 ug/l), MW-20A (230 ug/l) and MW-21 (210 ug/l) had exceedances of the NR 140.10 Enforcement Standard (ES) for Total Chromium. There were no exceedances of the ES or NR140.10 Preventative Action limit (PAL) for the remaining three monitoring wells.

On October 14, 2014, those same eight monitoring wells were again sampled. Exceedances of the ES were recorded in MW-05 (960 ug/l), MW-19 (21,600 ug/l), MW-20 (330,000) ug/l) and MW-20A (117 ug/l). There were no exceedances of the ES or PAL in the four remaining monitoring wells

A chromium isoconcentration map is developed once per year with the results from the April sampling. The April sampling is the only event where all the wells attributed to the property are sampled and therefore is the most accurate representation of the data as a whole. The chromium isoconcentration map from the April 9, 2014 sampling is shown on Figure #2.

Samples are collected monthly from the Manhole (French Drain) and basement Collection Sump. All samples collected from the Manhole and basement Collection Sump during the period from July 1, 2014 through December 31, 2014 had exceedances of the ES for Total Chromium. The laboratory analytical results for the Manhole and Collection Sump are shown in Table #5. Current and historical groundwater elevation data is contained in Table #6.

A review of the historical analytical data shows decreasing concentrations of chromium in monitoring wells MW-05 and MW-05A. Historical data from the French Drain and Building Sump also show stable or decreasing chromium concentrations. Historical data collected for MW-19 shows an increasing chromium concentration.

Data from MW-19A indicates a slightly increasing concentration trend. Monitoring Wells MW-20, MW-20A, MW-21 and MW-21A have only been sampled three times so not enough data is available to establish a statistically valid trend. However, when the 3 available data points are evaluated using either a linear trend or rolling average approach, MW-20, MW-20A and MW-21A show evidence of decreasing concentrations. MW-21 data contains too much variability for such analyses.

The groundwater treatment system is effectively removing chromium from the groundwater on the site. Discussions with Albany International regarding remediation options to enhance the removal of the subsurface contamination in the area of MW-19 and MW-20 are currently underway.

The yearly chromium removal quantities were calculated utilizing the monthly analytical data and flow quantities from the building sump and French Drain. From July 1, 2014 through December 31, 2014, 3.73 pounds of chromium was removed from the building sump and 0.79 pounds of chromium removed from the French Drain. The pounds of chromium removed from the sump and French Drain is calculated using the chromium concentrations (in mg/L) from the sump and French Drain from each months sampling; times the total volume (in millions of gallons) of groundwater treated during each month from the two extraction points; times 8.34 pounds per gallon of water treated. The historical chromium removal quantities are summarized in Table #7. The Wisconsin DNR Operation and Maintenance form 4400-194 is included in Appendix C.

IV. GROUNDWATER COLLECTION SYSTEM

The groundwater collection system (French Drain) was installed in 1992 to collect contaminated groundwater from the north side of the property. The collection system consists of approximately 110-feet of perforated piping, placed 14-feet below grade. The collected groundwater flows by gravity to a collection sump, where it is pumped to the storage tanks in the basement of the facility. The collection trench creates a capture zone for contaminated groundwater along the north end of the building.

The building sump creates a capture zone for contaminants along the south side and under the building. The building sump is located at the northeast corner of the building basement.

V. CONCLUSIONS AND RECOMMENDATIONS

Two sets of groundwater samples were collected during this sampling period. On July 8, 2014, groundwater samples collected from monitoring wells, MW-05, MW-19, MW-20, MW-20A and MW-21 had residual chromium contamination above the WDNR NR140.10 Enforcement Standards (ES). On October 14, 2014, groundwater samples collected from monitoring wells MW-05, MW-19, MW-20 and MW-20A had residual chromium contamination above the WDNR NR 140.10 ES for total chromium. All monthly samples collected during the monitoring period from the French Drain (Manhole) and collection sump had exceedances of the NR 140.10 ES for Total Chromium.

Data collected, to date, from the groundwater wells on the exterior of the building, the collection sump and French drain show stable, if not decreasing, concentrations of chromium in the groundwater monitoring wells. Monitoring well MW-19 has shown a stable, if not increasing concentrations of total chromium. Piezometer MW-19 has recorded inconsistent analytical results and a trend line cannot be reasonably

created. Only three rounds of groundwater samples have been collected from MW-20, MW-20A, MW-21 and MW-21A. There is some indication from this small sample set that MW-20, MW-20A and MW-21A show decreasing concentrations.

Based upon the historical analytical results from the groundwater monitoring wells and treatment systems, it is the opinion of Badger Laboratories and Engineering, that the chromium contamination remains contained within the foundation walls of the warehouse building and is being collected and treated by the current collection system.

Badger Laboratories and Engineering is currently developing a remedial analysis to determine if the installation of an additional groundwater collection trench would improve the efficiency of the chromium removal process.

Because the chromium contamination is being contained within the foundation walls of the warehouse building and the and the current collection system is removing and treating chromium contaminated groundwater, Badger Laboratories and Engineering recommends the continued operation of the groundwater treatment system at the Appleton Wire, Former Albany International Chrome Plant.

Table #1

CITY OF APPLETON EFFLUENT COMPLIANCE LIMITS

Effluent Point 001

Appleton Wire Former Albany International Chrome Plant

	Aluminu m (mg/l)	Arsenic (mg/l)	Cadmium (mg/l)	Chromiu m Total (mg/l)	Copper (mg/l)	Cyanide (mg/l)	Lead (mg/l)	Mercury (mg/l)	Nickel (mg/l)	Zinc (mg/l)	Hexavalent Chromium (mg/L)
Effluent Limits Permit #14-17	70	1.0	0.3	7.0	3.5	0.3	2.0	0.002	2.0	10.0	4.5

mg/l = milligram / liter ug/l = microgram / liter

LABORATORY ANALYTICAL RESULTS

Effluent Point 001

Appleton Wire Former Albany International Chrome Plant

Date	Cyanide (mg/l)	Aluminum (mg/l)	Arsenic (mg/l)	Cadmium (mg/l)	Chromium (mg/l)	Hexavalent Chromium (mg/l)	Copper (mg/l)	Lead (mg/l)	Mercury (mg/l)	Nickel (mg/l)	Zinc (mg/l)
2/26/03 ***	< 0.0014	< 0.027	<0.0082	< 0.00053	1.0	NA	0.011	0.0075	<0.000028	0.0045	0.0057
4/24/03 **	<0.0015	< 0.027	<0.0081	< 0.0053	0.049	N/A	0.1	0.0017	< 0.00003	< 0.0021	< 0.0072
10/23/03 ***	<2.7	0.0500	< 0.0012	< 0.0001	1.588	NA	0.034	0.0033	<0.0002	0.0046	< 0.010
03/18/04 **	<.005	0.001	<.0012	<.0001	0.399	NA	0.019	0.0053	<.0002	0.0034	0.02
04/19/04 ***	<.005	<.01	<.0012	<.01	0.32	<.002	0.02	<.05	<.0002	<.03	0.01
01/13/05 ***	<0.005	0.012	0.009	<0.0001	1.651	NA	0.024	0.0051	<0.0002	0.0035	<0.010
04/11/05**	<0.005	< 0.07	< 0.0012	< 0.01	0.0027	< 0.002	0.02	< 0.05	< 0.0002	< 0.03	0.03
10/12/05 ***	0.014	0.132	<0.006	< 0.0005	0.0032	NA	0.0087	0.0089	<0.0002	0.0046	0.05
01/31/06 ***	<0.005	0.068	< 0.0012	0.0002	1.887	NA	0.038	0.051	< 0.0002	0.0071	0.03
04/11/06 **	<0.005	< 0.07	<0.0011	<0.01	1.3	0.004	0.06	< 0.05	0.0006	< 0.03	0.05
9/26/06 ***	0.004	0.152	0.0016	< 0.0001	5.59	NA	0.156	0.019	< 0.0002	0.0086	0.03
02/28/07 ***	0.010	0.096	<0.001	< 0.0001	1.222	NA	0.019	0.0042	<.0002	0.0077	0.050
04/29/07 **	0.005	< 0.07	<0.001	<.01	0.12	< 0.002	0.12	< 0.03	< 0.0002	< 0.04	0.03
10/30/07 ***	< 0.004	< 0.07	<1.0	<0.01	0.04	NA	<0.01	< 0.03	<0.0002	< 0.04	0.03
2/17/08 ***	<.004	<.07	<.001	<.01	2.4	NA	0.25	<.03	<.0002	<.04	0.98
4/23/08 **	<.008	<.08	<.001	<.01	0.36	<.002	0.05	<.03	<.0002	<.02	0.81
11/20/08 ***	<.008	<.08	<.08	<.01	0.72	NA	0.03	<.03	<.0002	0.02	0.07
2/24/09 ***	<0.008	< 0.09	< 0.09	< 0.01	3.9	NA	0.04	0.05	< 0.0002	< 0.02	0.07
4/07/09 **	<0.008	< 0.09	< 0.0012	< 0.01	0.07	< 0.001	< 0.01	< 0.05	< 0.0002	< 0.02	0.15
10/08/09 ***	<0.008	<0.08	< 0.012	<0.01	0.03	NA	<0.01	< 0.05	<0.0002	< 0.02	0.01
2/24/10 ***	<0.008	< 0.06	< 0.0002	< 0.01	0.11	NA	< 0.01	< 0.03	< 0.0002	< 0.01	0.06
4/13/10 **	<0.008	< 0.06	< 0.0019	< 0.01	0.2	0.047	0.05	< 0.03	< 0.0002	<0.01	0.06
2/17/11 ***	<0.008	<0.08	<0.001	< 0.001	0.15	NA	0.05	< 0.04	< 0.0002	0.02	0.08
4/27/11**	<0.008	0.33	<0.01	<0.01	0.47	0.008	0.84	< 0.04	<0.0002	< 0.02	0.27
11/15/11***	< 0.007	<0.008	< 0.005	<0.01	0.27	NA	0.05	< 0.04	<0.0002	< 0.02	0.05
3/19/12***	< 0.007	<0.11	<0.001	<0.01	0.1	NA	0.02	< 0.02	< 0.0002	< 0.02	0.05
Appleton Permit Limits	0.30	70	1.0	0.30	7.0	4.5	3.5	2.0	0.002	2.0	10.0

LABORATORY ANALYTICAL RESULTS

Effluent Point 001

Appleton Wire Former Albany International Chrome Plant

Date	Cyanide (mg/l)	Aluminum (mg/l)	Arsenic (mg/l)	Cadmium (mg/l)	Chromium (mg/l)	Hexavalent Chromium (mg/l)	Copper (mg/l)	Lead (mg/l)	Mercury (mg/l)	Nickel (mg/l)	Zinc (mg/l)
04/10/12**	< 0.007	<0.08	< 0.001	< 0.01	0.07	0.023	<0.01	< 0.04	< 0.0002	< 0.02	0.08
08/07/12***	0.0046	3.38	0.044	0.0012	0.336	NA	0.462	< 0.0014	<0.0001	0.171	0.0699
4/15/13**	<.006	<0.1	<0.001	0.01	0.16	0.073	<0.01	< 0.02	<0.0002	< 0.02	0.01
5/22/13***	0.0039	< 0.714	< 0.0042	<0.00048	0.389	NA	0.01	< 0.0027	<0.0001	0.006	0.0188
11/18/13***	<0.0038	<0.714	< 0.0042	<0.00048	0.0185	NA	0.0156	< 0.0027	<0.0001	0.0054	0.0192
04/09/14**	<0.006	< 0.05	< 0.0015	< 0.01	0.1	0.04	<0.01	< 0.03	< 0.0002	< 0.02	0.04
05/12/2014***	<0.020	0.102	<0.0068	<0.001	0.0724	NA	0.017	<0.0016	<0.0001	0.0033	0.025
Appleton Permit Limits	0.30	70	1.0	0.30	7.0	4.5	3.5	2.0	0.002	2.0	10.0

mg/l = milligram / liter (ppm)

NA = Not Analyzed

- * = Analyte detected between Limit of Detection and Limit of Quantitation
- ** = Sampled by Operator
- *** = Sampled by the City of Appleton

BATCH DISCHARGES

July 1, 2014 Through December 31, 2014
Appleton Wire Former Albany International Chrome Plant
Appleton, Wisconsin

Month	Monthly (gallons)	Quarterly Flow (gallons)
July	8,070	
August	5,570	19,770
September	6,130	
October	6,670	
November	5,040	22,170
December	10,460	
TOTAL	41,940	

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

Well Name	Sample Date	Adjusted Chromium Value	Total Chromium (ug/l)	Hexavalent Chromium (ug/l)
MW-1	02/09/87	50	50	
	07/29/87	20	<40	
	09/25/87	50	<100	
	12/11/87	50	<100	
	03/21/88	1.6	1.6	
	06/13/88	3.0	3.0	
	09/08/88	9	9	
	12/15/88	2.5	2.5	
	03/26/92	20	<40	
	06/16/92	4.9	4.9	
	09/04/92	50	50	
	03/25/93	40	<80	
	09/16/93	40	<80	
	03/15/94	35	<70	
	09/20/94	13	13	
	03/31/95	39	39	
	09/07/95	7.2	7.2	
	03/15/96	15	15	
	09/05/96	6.4	6.4	
	04/26/97	11	11	
	04/30/98	60	60	
	10/22/98	7	7	
	04/16/99	12	12	
	10/19/99	9.3	9.3	
	04/17/00	11	22**	
	04/06/01	5.5	<11	
	04/18/02	5.5	<11	
	04/16/03	2.9	2.9	
	04/19/04	2.8	2.8	<2.0
	04/11/05	82	82	16
	07/18/05	15	<30	<2
	04/11/06	1.7	1.7	<2.0
	04/29/07	4	4	<2.0
	04/23/08	4.4	4.4	<2.0
	4/7/2009	4.6	4.6	<0.1
	4/13/2010	26	26	<3.0
	4/27/2011	3	3	<3
	4/10/2012	1.7	1.7	<3
	4/15/2013 4/9/2014	2.6 4.2	2.6 4.2	<2.6 <3.0

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

Well Name	Sample Date	Adjusted Chromium Value	Total Chromium (ug/l)	Hexavalent Chromium (ug/l)
			(-9)	(=3-7
MW-2	02/09/87	70	70	
	07/29/87	20	<40	
	09/25/87	100	100	
	12/11/87	100	100	
	03/21/88	85	85	
	06/13/88	140	140	
	09/08/88	70	71	
	12/15/88	130	130	
	03/26/92	20	<40	
	06/16/92	17	17	
	09/04/92	20	<40	
	03/25/93	40	<80	
	09/16/93	40	<80	
	03/15/94	35	<70	
	09/20/94	19	19	
	03/31/95	19	19	
	09/07/95	14	14	
	03/15/96	11	11	
	09/05/96	29	29	
	04/26/97	9.2	9.2	
	10/29/97	10	10	
	04/30/98	11	11	
	10/22/98	9.3	9.3	
	04/16/99	7.7	7.7	
	10/19/99	6.8	6.8 22**	
	04/17/00	11 5.5		
	04/06/01 04/18/02	5.5 5.5	<11 <11	
	04/16/03	0.55	<1.1	
	04/19/04	1.0	1.0	<2.0
	04/11/05	1.3	1.3	<2.0
	04/11/06	0.4	0.4	<2.0
	04/29/07	1.5	1.5	<2.0
	04/23/08	2.4	2.4	<2.0
	4/7/2009	8.3	8.3	<.1
	4/13/2010	5	5	<3.0
	4/27/2011	3	3	<3.0
	4/10/2012	0.7	0.7	<3.0
	4/15/2013	0.4	0.4	<.4
	4/9/2014	0.6	0.6	<0.6

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

Well Name	Sample Date	Adjusted Chromium Value	Total Chromium (ug/l)	Hexavalent Chromium (ug/l)
MW-2A	03/26/92 06/16/92 09/04/92 03/25/93 09/16/93 03/15/94 09/20/94 03/31/95 09/07/95 03/15/96 09/05/96 04/26/97 04/30/98 04/16/99 04/17/00 04/06/01 04/18/02 04/16/03 04/19/04 04/11/05 04/11/06 04/29/07 04/23/08 4/7/2009 4/13/2010 4/27/2011 4/10/2012 4/15/2013 4/9/2014	20 1.5 20 40 40 35 14 17 3.9 3.6 1.2 0.3 2.5 2.4 11.5 5.5 5.5 0.55 0.4 0.1 0.7 0.2 1.5 5 5 0.4 0.1	<40 1.5 <40 <80 <80 <70 14 17 3.9 3.6 1.2 0.3 2.5 2.4 23** <11 <1.1 0.6 0.4 0.1 0.7 <0.4 1.5 5 2 0.5 <0.2 0.4	<2.0 <2.0 <2.0 <2.0 <2.0 <0.1 <3.0 <3.0 <3.0 <0.2 <0.4
MW-5	03/26/92 06/16/92 09/04/92 12/17/92 03/25/93 06/22/93 09/16/93 12/03/93 03/15/94 06/16/94 09/20/94 12/13/94 03/31/95	33,000 27,000 33,000 28,000 29,000 24,000 25,000 26,000 2,013 29,000 19,000 19,960	33,000 27,000 33,000 28,000 29,000 24,000 25,000 26,000 2,013 29,000 19,000 19,960	

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

Well		Adjusted Chromium	Total Chromium	Hexavalent Chromium
Name	Sample Date	Value	(ug/l)	(ug/l)
	-			
MW-5	06/15/95	21,190	21,190	
Cont.	09/07/95	25,400	25,400	
	12/11/95	18,000	18,000	
	03/15/96	15,830	15,830	
	06/27/96	18,000	18,000	
	09/05/96	14,000	14,000	
	12/03/96	24,000	24,000	
	01/23/97	22,000	22,000	
	04/26/97	17,000	17,000	
	07/16/97	20,000	20,000	
	10/29/97	1,600	1,600	
	01/20/98	18,000	18,000	
	04/30/98	15,000	15,000	
	07/10/98	18,000	18,000	
	10/22/98	21,000	21,000	
	01/19/99	14,000	14,000	
	04/16/99	15,000	15,000	
	07/23/99	14,000	14,000	
	10/19/99	18,175	18,175	
	01/10/00	12,000	12,000	
	04/17/00	8,500	8,500	
	07/20/00	11,000	11,000	
	10/25/00	8,500	8,500	
	01/17/01	14,000	14,000	
	04/06/01	7,900	7,900	
	07/20/01	10,000	10,000	
	10/16/01	12,000	12,000	
	01/14/02	11,000	11,000	
	04/18/02	5,500	5,500	
	07/23/02	788	788	
	10/30/02	1,500	1,500	
	01/20/03	19,000	19,000	
	04/16/03	7,000	7,000	
	07/10/03	33	33	
	10/07/03	3,300	3,300	
	01/30/04	1,200	1,200	
	04/19/04	7,900	7,900	10000
	07/26/04	6,700	6,700	6300
	10/11/04	6,500	6,500	6500

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

		Adjusted	Total	Hexavalent
Well		Chromium	Chromium	Chromium
Name	Sample Date	Value	(ug/l)	(ug/l)
	01/12/05	6,460	6,460	6300
MW-5	04/11/05	5,085	5,085	4500
Cont.	07/18/05	4,900	4,900	4900
	10/11/05	5,100	5,100	4900
	01/10/06	10,880	10,880	10000
	04/11/06	4,455	4,455	3880
	07/27/06	3,190	3,190	3400
	10/18/06	5,100	5,100	4500
	01/09/07	2,900	2,900	2800
	04/29/07	2,895	2,895	2500
	07/24/07	2,465	2,465	2465
	10/24/07	3,205	3,205	2700
	01/16/08	2,335	2,335	2300
	04/23/08	2,067	2,067	1700
	07/15/08	2,425	2,425	1700
	10/23/08	2,400	2,400	1800
	1/22/09	2,024	2,024	1900
	4/7/09	2,116	2,116	1700
	7/7/09	2,200	2,200	2000
	10/11/09	2,500	2,500	2300
	1/19/10	2,015	2,015	1900
	4/13/10	1,600	1,600	1400
	7/29/10	1,800	1,800	1300
	10/19/10	1,700	1,700	1400
	1/13/11	1,500	1,500	1400
	4/27/11	1,200	1,200	1200
	7/19/11	1,100	1,100	1000
	10/11/11	1,100	1,100	1000
	1/10/12	1,140	1,140	950
	4/10/12	1,200	1,200	1100
	8/8/12	1,200	1,200	49
	10/9/12	1,139	1,139	1100
	1/8/13	1,500	1,500	1310
	4/15/13	1,166	1,166	1166
	7/10/13	1,300	1,300	1300
	10/14/13	1,338	1,338	1300
	1/15/14	1,594	1,594	1730
	4/9/14	1,430	1,430	1280
	7/8/14	1,300	1,300	1180
	10/14/14	960	960	960

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

		Adjusted	Total	Hexavalent
Well		Chromium	Chromium	Chromium
Name	Sample Date	Value	(ug/l)	(ug/l)
	02/09/87	80	80	
MW-5A*	07/29/87	8,000	8,000	
	09/25/87	2,100	2,100	
	12/11/87	14,400	14,400	
	03/21/88	26,000	26,000	
	06/13/88	7,800	7,800	
	09/08/88	3,000	3,000	
	12/15/88	7,100	7,100	
	03/26/92	5,600	5,600	
	06/16/92	7,600	7,600	
	09/04/92	13,000	13,000	
	12/17/92	1,500	1,500	
	03/25/93	2,200	2,200	
	06/22/93	1,400	1,400	
	09/16/93	3,800	3,800	
	12/03/93	10,000	10,000	
	03/15/94	900	900	
	06/16/94	312	312	
	09/20/94	350	350	
	12/13/94	580	580	
	03/31/95	568	568	
	06/15/95	228	228	
	09/07/95	1,928	1,928	
	12/11/95	24 552	24 552	
	03/15/96	552 400	552 400	
	06/27/96 09/05/96	490 2,200	490 2,200	
	12/03/96	2,200 1,600	2,200 1,600	
	01/23/97	1,000	170	
	04/26/97	68	68	
	07/16/97	40	40	
	10/29/97	14 0	140	
	01/20/98	1,500	1,500	
	04/30/98	130	130	
	07/10/98	150	150	
	10/22/98	160	160	
	01/19/99	900	900	
	04/16/99	99	99	
	07/23/99	<i>7</i> 6	<i>7</i> 6	
	10/19/99	104	104	
	01/10/00	1,200	1,200	
	04/17/00	880	880	
	07/20/00	400	400	
	10/25/00	1,100	1,100	

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

Well Name	Sample Date	Adjusted Chromium Value	Total Chromium (ug/l)	Hexavalent Chromium (ug/l)
	01/17/01	280	280	
MW-5A*	04/06/01	65	65	
Cont.	07/20/01	11	11	
	10/16/01	8	16**	
	01/14/02	78	78	
	04/18/02	380	380	
	07/23/02	207	207	
	10/30/02	<i>4</i> 5	<i>4</i> 5	
	01/20/03	1,200	1,200	
	04/16/03	270	270	
	07/10/03	1,200	1,200	
	10/07/03	16	16	
	01/30/04	23	23	
	04/19/04	480	480	82
	07/26/04	40	40	<4
	10/11/04	12	12	12
	01/12/05	30	30	<2
	04/11/05	13	13	10
	07/18/05	15	<30	<2
	10/11/05	26	26	<2
	01/10/06	1	<2	<2
	04/11/06	720	720	720
	07/27/06	5.2	5.2	5.2
	10/18/06	5.2	5.2	5
	01/09/07	2.3	2.3	<2.0
	04/29/07	12	12	10
	07/24/07	2.4	2.4	<2.0
	10/24/07	2.7	2.7	<2.0
	01/16/08	10	10	<2.0
	04/23/08	167	167	20
	07/15/08	6.4	6.4	<1.0
	10/23/08	18	18	10
	01/22/09	248	248	210
	4/7/2009	630	630	590
	7/7/2009	7	7	<4.0
	10/11/2009	33	33	<3.0
	1/19/2010	24	24	<3.0
	4/13/2010	7	7	7
	7/29/2010	6	6	<3.0
	10/19/2010	5	5	5

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

		A dimata d	Total	Hoveyslant
Well		Adjusted Chromium	Total Chromium	Hexavalent Chromium
Name	Sample Date	Value	(ug/l)	(ug/l)
Name				
N 41\ A /	1/13/2011	5	5 27	5
MW-5A*	4/27/2011	27	27	14
Cont.	7/19/2011 10/11/2011	1.5 11	<3 11	<3 7
	1/10/2012	94	94	, 60
	4/10/2012	4.2	4.2	<3.0
	8/8/2012	49	49	<3.0
	10/9/2012	39	39	26
	1/8/2013	7.9	7.9	<3.0
	4/15/2013	3.7	3.7	<3.0
	7/10/2013	3	3	<3.0
	10/14/2013	65	65	67
	1/15/2014	23	23	21
	4/9/2014	12	12	7
	7/8/2014	4	4	<3.0
	10/14/2014	5	5	<3.0
	04/16/99 07/23/99 10/19/99 01/10/00 04/17/00 07/20/00 10/25/00 01/17/01 04/06/01 04/18/02 04/30/03 04/19/04 04/11/05 07/18/05 04/11/06	4.4 8.3 1 5.5 6.5 8 5.5 5.5 5.5 1.1 1.2 1.2 1.5	4.4 8.3 1 <11 13** 16** <11 <11 <11 1.2 1.2 <30 1	<2.0 <2.0 <2.0 <2.0 <2.0
	04/29/07 04/23/08 4/7/09 4/13/10 4/27/11 4/10/12 4/15/13 4/9/14	1.5 3.5 4.4 11 5 5.5 0.5	1.5 3.5 4.4 11 5 5.5 0.5	1.5 3.5 <0.1 <3.0 <3.0 <3.0 <0.5 <0.5

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

Well Name	Sample Date	Adjusted Chromium Value	Total Chromium (ug/l)	Hexavalent Chromium (ug/l)
MW-17	03/26/92	20	<40	
	06/16/92	1.3	1.3	
	09/04/92	20	<40	
	03/25/93	40	<80	
	09/16/93	40	<80	
	03/15/94	35	<70	
	09/20/94	15	15	
	03/31/95	9.8	9.8	
	09/07/95	8.1	8.1	
	03/15/96	3.6	3.6	
	09/05/96	2.4	2.4	
	04/26/97	0.5	0.5	
	04/30/98	1.7	1.7	
	04/16/99	2.9	2.9	
	04/17/00	5.5	<11	
	04/06/01	5.5	<11	
	04/18/02	5.5	<11	
	04/16/03	0.55	<1.1	
	04/19/04	1.7	1.7	<2.0
	04/11/05	0.3	0.3	<2.0
	04/11/06	1.5	1.5	<2.0
	04/29/07	0.8	0.8	<2.0
	04/23/08	0.2	<0.4	<2.0
	4/7/2009	1.7	1.7	<0.1
	4/13/2010	12	12	<3.0
	4/27/2011	2	2	<3.0
	4/10/2012	0.4 0.1	0.4	<3.0
	4/15/2013 4/9/2014	0.1	<0.2 0.8	<0.2 <0.8
	4/9/2014	0.6	0.6	<0.6
MW-17A	03/26/92	20	<40	
	06/16/92	26	26	
	09/04/92	20	<40	
	03/25/93	40	<80	
	09/16/93	40	<80	
	03/15/94	35	<70	
	09/20/94	22	22	
	03/31/95	14	14	
	09/07/95	6.4	6.4	
	03/15/96	3.4	3.4	
	09/05/96	0.7	0.7	
	04/26/97	0.1	<.2	
	04/30/98	1.5	1.5	

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

Well Name	Sample Date	Adjusted Chromium Value	Total Chromium (ug/l)	Hexavalent Chromium (ug/l)
MW-17A Cont.	04/16/99 04/17/00 04/06/01 04/18/02 04/16/03 04/19/04 04/11/05 04/11/06 04/29/07 04/23/08 04/07/09 04/13/10 04/27/11 04/10/12 04/15/13 04/09/14	0.9 5.5 5.5 5.5 0.25 0.3 0.05 0.2 0.2 0.3 0.9 3 0.5 0.1	0.9 <11 <11 <1.1 0.2 0.3 <0.1 0.2 <0.4 0.3 0.9 3 0.5 0.2 0.2	<2.0 <2.0 <2.0 <2.0 <2.1 <3.0 <3.0 <3.0 <3.0 <3.0
MW-18	08/13/02 04/16/03 04/19/04 04/11/05 04/11/06 04/29/07 04/23/08 04/07/09 04/13/10 04/27/11 04/10/12 04/15/13 04/09/14	6 0.55 0.1 0.1 0.55 0.55 0.2 0.3 8.1 0.3 0.2 0.1	<12 <1.1 <0.2 <0.2 <0.2 <0.1 0.1 <0.4 0.3 8.1 0.3 0.2 <0.2 <0.2	<2.0 <2.0 <2.0 2 <2.0 <0.1 <3.0 <3.0 <3.0 <0.2 <0.4
MW-18A	08/13/02 04/16/03 04/19/04 04/11/05 04/11/06 04/29/07 04/23/08 04/07/09 04/13/10 04/27/11 04/10/12 04/15/13 04/09/14	6 0.55 0.1 0.4 1.5 0.3 1.1 3.8 6.9 0.4 0.2 0.1 3.3	<12 <1.1 <0.2 0.4 1.5 0.3 1.1 3.8 6.9 0.4 0.2 <0.2 3.3	<2.0 <2.0 <2.0 <2.0 <4.0 <2.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

		Adjusted	Total	Hexavalent
Well		Chromium	Chromium	Chromium
Name	Sample Date	Value	(ug/l)	(ug/l)
MW-19	07/13/09	13000	13000	15000
	07/28/09	22000	22000	20000
	10/11/09	5300	5300	4000
	01/19/10	3030	3030	2600
	04/13/10	5270	5270	5270
	07/29/10	6400	6400	3900
	10/19/10	7100	7100	4800
	01/13/11	7100	7100	7100
	04/27/11	15000	15000	15000
	07/19/11	9400	9400	8700
	10/11/11	21000	21000	17000
	01/10/12	41100	41100	40000
	04/10/12	21672	21672	23000
	08/08/12	26000	26000	26000
	10/09/12	14187	14187	13000
	01/08/13	12575	12575	11000
	04/15/13	16300	16300	16300
	07/10/13	19000	19000	19000
	10/14/13	15440	15440	16000
	04/09/14	20005	20005	20005
	07/08/14	18000	18000	17000
	10/14/14	21600	21600	21300
MW-19A	07/12/00	20	20	50
WW-19A	07/13/09	30 40	30 40	50 40
	07/28/09			
	10/11/09 01/19/10	3 4.3	3 4.3	<3.0 <3.0
	04/13/10	4.3 8.2	4.3 8.2	<3.0 <3.0
	07/29/10	3	3	<3.0 <3.0
	10/19/10	1	1	<3.0
	01/13/11	1	1	1
	04/27/11	3	3	3
	07/19/11	143	143	<3
	10/11/11	4	4	4
	01/10/12	4	4	<3.0
	04/10/12	1.8	1.8	<3.0
	08/08/12	6100	6100	5400
	10/09/12	22	22	40
	01/08/13	8.1	8.1	<3.0
	04/15/13	500	500	<3.0
	04/09/14	1.8	1.8	<1.8
	07/08/14	3.8	3.8	<3.0
	10/14/14	4	4	<3.0

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

Well Name	Sample Date	Adjusted Chromium Value	Total Chromium (ug/l)	Hexavalent Chromium (ug/l)
MW-20	06/02/14	338000	338000	338000
	07/08/14	283000	283000	89000
	10/14/14	330000	330000	297000
MW-20A	06/02/14	1200	1200	1060
	07/08/14	230	230	150
	10/14/14	117	117	<3.0
MW-21	06/02/14	2.6	2.6	<30
	07/08/14	210	210	<3.0
	10/14/14	0.05	<.10	<3.0
MW-21A	06/02/14	1.8	1.8	<30
	07/08/14	1.1	1.1	<3.0
	10/14/14	0.05	<.10	<3.0

Table #5

Groundwater Analytical Results Total and Hexavalent Chromium Manhole and Sump Appleton Wire Former Albany International Chrome Plant

		Manhole		
	Manhala		Cump	Cumn
	Manhole	(French Drain) Hexavalent	Sump Total	Sump Hexavalent
	(French Drain)			
	Total Chromium	Chromium	Chromium	Chromium
Date	ug/l	ug/l	ug/l	ug/l
1989*	-		9,700	
1990*	-		129,000	
1991*	-		94,000	
1992*	125,000		101,000	
1993*	71,000		72,000	
1994*	58,000		76,000	
1995*	36,000		88,000	
1996*	44,000		35,000	
1997*	32,000		41,000	
1998*	37,000		61,000	
12/09/99	21,000		76,000	
03/08/00	13,000		33,000	
01/17/01	20,000		6,000	
02/15/01	11,000		35,000	
03/15/01	19,000		38,000	
04/06/01	8,300		21,000	
05/18/01	15,000		48,000	
06/18/01	15,000		51,000	
07/20/01	31,000		74,000	
08/14/01	17,000		70,000	
09/18/01	16,000		55,000	
10/16/01	13,000		38,000	
11/12/01	17,000		53,000	
12/25/01	15,000		39,000	
01/11/02	15,000		54,000	
02/12/02	16,000		43,000	
03/13/02	11,000		27,000	
04/18/02	11,000		17,000	
05/20/02	17,000		49,000	
06/20/02	14,000		35,000	
07/15/02	16,000		61,000	
08/15/02	19,000		63,000	
09/18/02	13,000		61,000	
10/30/02	18,000		12,000	
11/20/02	13,000		38,000	
12/12/02	13,000		44,000	

Groundwater Analytical Results
Total and Hexavalent Chromium Manhole and Sump
Appleton Wire Former Albany International Chrome Plant

		Manhole		
	Manhole	(French Drain)	Sump	Sump
	(French Drain)	Hexavalent	Total	Hexavalent
	Total Chromium	Chromium	Chromium	Chromium
Date	ug/l	ug/l	ug/l	ug/l
01/20/03	16,000		47,000	
02/19/03	22,000		37,000	
03/17/03	9000**		30,000	
04/16/03	8,800		5,300	
05/28/03	11,000		32,000	
06/10/03	10,000		66,000	
07/10/03	9,600		27,000	
08/20/03	13,000		55,000	
09/12/03	16,000		64,000	
10/07/03	9,800		32,000	
11/18/03	8,100		29,000	
12/08/03	8,700		31,000	
01/30/04	9,700		44,000	
02/12/04	11,260		42,175	
03/25/04	9,200		55,000	
04/19/04	13,000	14,000	41,000	41,000
05/10/04	10,000	NA	17,000	NA
06/14/04	5,400	5,000	16,000	15,000
07/19/04	8,700	8,700	52,000	52,000
08/17/04	11,000	10,000	79,000	66,000
09/14/04	12,000	12,000	76,000	43,000
10/11/04	9,900	8,900	80,000	73,000
11/16/04	11,000	10,500	55,000	53,000
12/08/04	15,000	NA	7,700	NA
01/12/05	8,900	7,200	33,000	13,100
02/16/05	6,200	5,600	25,000	22,000
03/07/05	9,900	8,500	9,800	7,600
04/11/05	5,700	5,800	33,000	31,000
05/18/05	12,000	9,200	33,000	33,000
06/13/05	11,000	8,000	42,000	42,000
07/18/05	10,000	10,000	82,000	40,000
08/19/05	10,000	9,500	76,000	80,000
09/15/05	8,900	7,600	64,000	60,000
10/11/05	8,100	7,400	46,000	46,000
11/16/05	8,200	6,500	14,000	13,000
12/15/05	7,900	7,000	43,000	40,000

Table #5

Groundwater Analytical Results

Total and Hexavalent Chromium Manhole and Sump

Appleton Wire Former Albany International Chrome Plant

		Manhole		
	Manhole	(French Drain)	Sump	Sump
	(French Drain)	Hexavalent	Total	Hexavalent
	Total Chromium	Chromium	Chromium	Chromium
Date	ug/l	ug/l	ug/l	ug/l
01/10/06	5,600	5,100	17,000	15,000
02/01/06	7,000	5,800	15,000	14,000
03/13/06	3,800	3,400	9,000	7,200
04/11/06	8,000	8,000	25,000	23,900
05/17/06	6,800	6,800	23,000	23,000
	6,900	6,800	66,000	
06/21/06	-		_	67,000
07/27/06	7,400	7,200	67,000	67,000
08/11/06	11,000	9,800	80,000	59,000
09/12/06	6,800	6,000	19,000	17,000
10/18/06	8,200	6,500	9,100	6,900
11/14/06	7,800	4,200	47,000	22,900
12/13/06	7,800	7,000	32,000	26,000
01/09/07	6,900	6,900	32,000	32,000
02/14/07	7,100	6,900	48,000	48,000
03/06/07	5,100	4,500	29,000	29,000
04/29/07	7,500	7,400	31,000	16,200
05/14/07	8,400	6,600	45,000	17,800
06/17/07	7,600	3,900	18,000	9,800
07/24/07	8,000	7,300	103,000	103,000
08/09/07	11,000	8,200	95,000	95,000
09/20/07	7,100	6,200	58,000	50,000
10/24/07	5,800	5,600	22,000	18,700
11/27/007	6,400	4,000	65,000	26,500
12/12/07	5,500	4,700	60,000	60,000
01/16/08	4,700	3,700	25,000	27,000
02/07/08	6,000	4,300	45,000	9,600
03/05/08	6,100	5,600	15,000	9,600
04/23/08	5,900	5,100	48,000	48,000
05/21/08	5,900	1,500	49,000	25,000
06/16/08	4,900	3,900	34,000	23,000
07/15/08	6,600	3,900	68,000	52,000
08/21/08	7,500	6,200	94,000	69,000
09/09/08	5,565	4,600	94,800	64,000
10/23/08	5,900	4,700	89,000	88,000
11/20/08	6,400	3,600	48,000	21,000
12/16/08	4,900	3,700	21,000	8,900

Table #5

Groundwater Analytical Results

Total and Hexavalent Chromium Manhole and Sump

Appleton Wire Former Albany International Chrome Plant

		Manhole		
	Manhole	(French Drain)	Sump	Sump
	(French Drain)	Hexavalent	Total	Hexavalent
	Total Chromium	Chromium	Chromium	Chromium
Date	ug/l	ug/l	ug/l	ug/l
01/22/09	5,200	3,200	40,000	18,000
02/10/09	5,200	3,600	5,800	4,000
03/16/09	3,100	1,700	8,900	3,800
04/07/09	3,900	2,800	33,000	15,000
05/12/09	3,400	1,600	41,000	19,000
06/17/09	3,200	2,300	47,000	39,000
07/07/09	6,000	4,000	91,000	49,000
08/11/09	4,900	3,500	95,000	94,000
09/08/09	7,200	2,900	99,000	61,000
10/08/09	7,800	3,100	38,000	15,000
11/10/09	4,900	4,400	49,000	42,000
12/15/09	5,000	3,600	47,000	17,000
01/19/10	5,300	5,300	43,000	44,000
02/09/10	4,400	4,100	36,000	31,000
03/15/10	2,000	1,800	19,000	16,000
04/13/10	3,900	2,800	31,000	20,000
05/11/10	5,000	4,200	23,000	20,000
06/08/10	5,500	5,100	52,000	42,000
07/14/10	5,800	3,800	66,000	27,000
08/24/10	7,700	2,700	66,000	26,000
09/15/10	5,700	2,900	85,000	39,000
10/19/10	5,800	2,300	81,000	62,000
11/04/10	5,000	3,500	53,000	53,000
12/14/10	4,800	3,000	49,000	65,000

Table #5

Groundwater Analytical Results

Total and Hexavalent Chromium Manhole and Sump

Appleton Wire Former Albany International Chrome Plant

	Manhala	Manhole	Cumn	Cumm
	Manhole	(French Drain)	Sump	Sump
	(French Drain)	Hexavalent	Total	Hexavalent
	Total Chromium	Chromium	Chromium	Chromium
Date	ug/l	ug/l	ug/l	ug/l
01/13/11	320	3,200	39,000	36,000
02/08/11	5,700	4,000	46,000	43,000
03/15/11	3,500	3,300	9,500	7,100
04/27/11	2,400	2,400	20,000	20,000
05/16/11	5,500	5,300	25,000	25,000
06/07/11	5,500	5,200	56,000	62,000
07/19/11	4,200	3,600	105,000	51,000
08/23/11	4,900	4,100	98,000	89,000
09/13/11	5,300	3,900	100,000	61,000
10/11/11	31,000	26,000	88,000	72,000
11/08/11	4,300	2,800	54,000	39,000
12/13/11	3,600	3,400	57,000	52,000
01/10/12	5,400	3,800	60,000	49,000
02/14/12	420	360	41,000	39,000
03/13/12	2,000	1,500	20,000	18,000
04/10/12	4,800	4,200	44,000	32,000
05/22/12	5,300	5,100	84,000	37,000
06/18/12	5,000	4,400	111,000	88,000
07/18/12	4,800	4,200	122,000	90,000
08/08/12	6,100	5,500	63,000	18,000
09/11/12	4,100	4,100	101,000	92,000
10/09/12	620	505	89,000	92,000
11/20/12	3,500	3,400	43,000	44,000
12/18/12	3,600	3,200	30,000	30,000

Table #5

Groundwater Analytical Results Total and Hexavalent Chromium Manhole and Sump Appleton Wire Former Albany International Chrome Plant

		Manhole			
	Manhole	(French Drain)	Sump	Sump	
	(French Drain)	Hexavalent	Total	Hexavalent	
	Total Chromium	Chromium	Chromium	Chromium	
Date	ug/l	ug/l	ug/l	ug/l	
01/08/13	<30	<3		33,000	
02/11/13	3,300	3,000	13,000	14,000	
03/12/13	2,600	2,200	12,000	7,500	
04/15/13	3,900	3,490	25,000	25,000	
05/07/13	3,900	3,900	38,000	35,000	
06/20/13	3,900	3,900	48,000	50,000	
07/10/13	4,300	4,300	9,000	41,506	
08/20/13	5,100	5,000	84,000	80,000	
09/19/13	6,000	6,000	76,000	76,000	
10/14/13	3,800	3,800	75,000	85,000	
11/12/13	3,900	3,700	27,000	29,000	
12/17/13	3,700	3,500	46,000	48,000	
01/15/14	170	126	27,000	27,600	
02/18/14	12,000	2,900	39,000	38,000	
03/11/14	2,300	2,400	7,300	6,100	
04/09/14	1,900	1,570	19,000	17,000	
05/12/14	2,200	2,200	4,400	4,400	
06/02/14	1,500	1,500	7,000	6,800	
06/02/14	1,500	1,500	7,000	6,800	
07/08/14	3,800	3,200	27,000	27,000	
08/05/14	4,200	3,300	64,000	41,000	
09/09/14	4,700	4,000	67,000	61,000	
10/16/14	3,300	3,300	8,000	6,800	
11/4/14	2300	2600	37000	40000	
12/13/14	3000	2700	15000	12000	

^{**} Estimated result based on Enchem Laboratory Report

 Max. Contaminant Level
 100
 100

 NR 140.10 ES
 100
 100

 NR 140.10 PAL
 10
 10

 102
 Indicates exceedance of NR 140.10 ES & PAL

 14
 Indicates exceedance of NR 140.10 PAL

^{*} Number are average over 1-year.

Table #6

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

			D (
		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
	7/23/99	6.61	,	763.40	
MW-1	10/19/99	9.10	770.01	760.91	757.96
	1/10/00	10.03		759.98	
	4/17/00	8.05		761.96	
	7/20/00	9.44		760.57	
	10/25/00	9.98		760.03	
	1/17/01	10.38		759.63	
	4/6/01	6.70		763.31	
	7/20/01	9.28		760.73	
	10/16/01	9.03		760.98	
	1/14/02	9.70		760.31	
	4/18/02	6.98		763.03	
	8/13/02	9.69		760.32	
	10/30/02	9.04		760.97	
	1/20/03	10.55		759.46	
	4/16/03	6.62		763.39	
I	7/10/03	10.73		759.28	
I	10/7/03	8.72		761.29	
1	1/30/04	9.55		760.46	
I	4/19/04	8.15		761.86	
1					
I	7/26/04	9.01		761.00	
1	10/11/04	10.13		759.88	
1	10/19/04	10.21		759.80	
	1/12/05	8.72		761.29	
	4/11/05	7.42		762.59	
	7/18/05	9.52		760.49	
	10/11/05	8.55		761.46	
	1/10/06	8.04		761.97	
	4/11/06	8.75		761.26	
	7/27/06	9.97		760.04	
		7.50		762.51	
	10/18/06				
	1/9/07	7.75		762.26	
	4/29/07	7.71		762.30	
	7/24/07	9.66		760.35	
	10/24/07	7.11		762.90	
	1/16/08	7.51		762.50	
	4/23/08	7.58		762.43	
	7/15/08	5.31		764.70	
	10/23/08	8.97		761.04	
	1/22/09	10.00		760.01	
	4/7/09	8.18		761.83	
I	7/7/09	9.30		760.71	
I	7/28/09	9.98		760.03	
1	10/11/09	7.98		762.03	
1	1/19/10	9.48		760.53	
I	4/13/10	8.21		761.80	
I	7/29/10	9.28		760.73	
1					
1	10/19/10	7.31		762.70	
I	1/13/11	7.94		762.07	
1	4/27/11	6.86		763.15	
1	7/19/11	5.51		764.50	
I	10/11/11	7.41		762.60	
1					
1	1/10/12	9.32		760.69	
I	4/10/12	8.45		761.56	
I	8/8/12	9.88		760.13	
1	10/9/12	9.83		760.18	
I	1/18/13	9.17		760.84	
I				762.71	
1	4/15/13	7.30		-	
I	7/10/13	8.22		761.79	
1	11/14/13	9.32		760.69	
1	1/15/14	10.32		759.69	
I	4/9/14	7.42		762.59	
I	6/2/14	8.16		761.85	
1					
1	7/8/14	7.80		762.21	
1	10/14/14	8.18		761.83	
I					
1					
L	<u> </u>				

Table #6

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

	, фриссии	Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
	7/23/99	6.50		764.26	
MW-2	10/19/99	8.72	770.76	762.04	759.04
	1/10/00 4/17/00	9.05 8.21		761.71 762.55	
	7/20/00	8.95		761.81	
	10/25/00	8.72		762.04	
	1/17/01	7.62		763.14	
	4/6/01	7.27		763.49	
	7/20/01	8.03		762.73	
	10/16/01	8.80		761.96	
	1/14/02	9.11		761.65	
	4/18/02 8/13/02	6.84 8.86		763.92 761.90	
	10/30/02	7.98		762.78	
	1/20/03	10.01		760.75	
	4/16/03	6.64		764.12	
	7/10/03	9.15		761.61	
	10/7/03	7.71		763.05	
	1/30/04	9.05		761.71	
	4/19/04	7.71		763.05	
	7/26/04 10/11/04	8.61 9.51		762.15 761.25	
	10/11/04	9.58		761.25 761.18	
	1/12/05	7.88		762.88	
	4/11/05	7.86		762.90	
	7/18/05	9.05		761.71	
	10/11/05	8.08		762.68	
	1/10/06	6.70		764.06	
	4/11/06	7.44		763.32	
	7/27/06	9.30		761.46	
	10/18/06 1/9/07	8.22 7.17		762.54 763.59	
	4/29/07	7.52		763.24	
	7/24/07	9.03		761.73	
	10/24/07	6.81		763.95	
	1/16/08	6.20		764.56	
	4/23/08	6.45		764.31	
	7/15/08	4.18		766.58	
	10/23/08 1/22/09	8.81 8.53		761.95 762.23	
	4/7/09	6.42		762.23 764.34	
	7/7/09	8.90		761.86	
	7/28/09	9.18		761.58	
	10/11/09	7.72		763.04	
	1/19/10	8.42		762.34	
	4/13/10	8.31		762.45	
	7/29/10	9.00		761.76	
	10/19/10 1/13/11	7.03 8.81		763.73 761.95	
	4/27/11	7.51		761.95 763.25	
	7/19/11	4.41		766.35	
	10/11/11	7.20		763.56	
	1/10/12	8.70		762.06	
	4/10/12	7.54		763.22	
	8/8/12	8.57		762.19	
	10/9/12	9.21		761.55	
	1/8/13 4/15/13	8.20 5.30		762.56 765.46	
	7/10/13	5.30 7.42		763.34	
	10/14/13	8.71		762.05	
	1/15/14	8.98		761.78	
	4/9/14	6.53		764.23	
	6/2/14	7.10		763.66	
	7/8/14	7.48		763.28	
	10/14/14	7.87		762.89	
	l	l			

Table #6

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

		Depth	Reference	Groundwater	
Well Name	Date Measured	Water (feet)	Elevation (to top PVC)	Elevation (feet)	Elevation Top of Screen
	7/23/99	15.42	(10 10)	755.22	
MW-2A	10/19/99	15.44	770.64	755.20	733.72
	1/10/00	15.78		754.86	
	4/17/00 7/20/00	16.23 17.27		754.41 753.37	
	10/25/00	15.32		755.32	
	1/17/01	15.70		754.94	
	4/6/01	16.04		754.60	
	7/20/01 10/16/01	15.81		754.83	
	1/14/02	15.72 16.78		754.92 753.86	
	4/18/02	15.45		755.19	
	8/13/02	16.28		754.36	
	10/30/02	15.35		755.29	
	1/20/03 4/16/03	14.31 16.10		756.33 754.54	
	7/10/03	16.10		754.34 754.20	
	10/7/03	15.56		755.08	
	1/30/04	15.75		754.89	
	4/19/04	15.82		754.82	
	7/26/04 10/11/04	15.93 16.25		754.71 754.39	
	10/11/04	16.25		754.39 754.39	
	1/12/05	15.30		755.34	
	4/11/05	15.86		754.78	
	7/18/05	16.62		754.02	
	10/11/05	15.45		755.19	
	1/10/06 4/11/06	14.92 15.79		755.72 754.85	
	7/27/06	16.67		753.97	
	10/18/06	15.88		754.76	
	1/9/07	15.26		755.38	
	4/29/07	16.02		754.62	
	7/24/07 10/24/07	16.60 15.07		754.04 755.57	
	1/16/08	14.33		756.31	
	4/23/08	15.26		755.38	
	7/15/08	14.03		756.61	
	10/23/08 1/22/09	15.86 16.66		754.78 753.98	
	4/7/2009	6.21		764.43	
	7/7/09	16.97		753.67	
	7/28/09	16.48		754.16	
	10/11/09	15.74		754.90	
	1/19/10 4/13/10	15.39 15.55		755.25 755.09	
	7/29/10	15.55		755.09	
	10/19/10	13.62		757.02	
	1/13/11	17.13		753.51	
	4/27/11	16.22 15.21		754.42	
	7/19/11 10/11/11	15.21		755.43 756.48	
	1/10/12	15.03		755.61	
	4/10/12	15.32		755.32	
	8/8/12	16.54		754.10	
	10/9/12 1/8/13	15.41 14.84		755.23 755.80	
ĺ	4/15/13	14.84		755.80 756.07	
	7/10/13	15.20		755.44	
	10/14/13	15.20		755.44	
	1/15/14	15.22		755.42	
	4/9/14 6/2/14	15.12 15.18		755.52 755.46	
	6/2/14 7/8/14	15.18		755.46 755.53	
	10/14/14	14.63		756.01	

Table #6

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

		Depth	Reference	Groundwater	
Well Name	Date Measured	Water (feet)	Elevation (to top PVC)	Elevation (feet)	Elevation Top of Screen
	7/23/99	5.22	(12.12)	765.94	
MW-5	10/19/99	7.34	771.16	763.82	756.73
	1/10/00	10.41		760.75 763.99	
	4/17/00 7/20/00	7.17 6.71		763.99 764.45	
	10/25/00	7.69		763.47	
	1/17/01	7.08		764.08	
	4/6/01	6.05		765.11	
	7/20/01 10/16/01	8.20 6.96		762.96 764.20	
	1/14/02	10.14		761.02	
	4/18/02	6.30		764.86	
	8/13/02	8.02		763.14	
	10/30/02 1/20/03	6.78 9.90		764.38 761.26	
	4/16/03	6.04		765.12	
	7/10/03	9.18		761.98	
	10/7/03	5.99		765.17	
	1/30/04	10.36		760.80	
	4/19/04 7/26/04	6.56 8.22		764.60 762.94	
	10/11/04	10.73		760.43	
	10/19/04	10.81		760.35	
	1/12/05	8.21		762.95	
	4/11/05 7/18/05	6.65 8.89		764.51 762.27	
	10/11/05	6.55		762.27 764.61	
	1/10/06	5.96		765.20	
	4/11/06	6.40		764.76	
	7/27/06	10.26		760.90	
	10/18/06 1/9/07	6.65 6.48		764.51 764.68	
	4/29/07	5.86		765.30	
	7/24/07	9.63		761.53	
	10/24/07	5.84		765.32	
	1/16/08 4/23/08	5.35 5.85		765.81 765.31	
	7/15/08	3.80		767.36	
	10/23/08	8.95		762.21	
	1/22/09	6.84		764.32	
	4/7/2009 7/7/09	6.04 8.90		765.12 762.26	
	7/28/09	10.33		760.83	
	10/11/09	6.27		764.89	
	1/19/10	11.25		759.91	
1	4/13/10 7/29/10	5.50 10.13		765.66 761.03	
	10/19/10	8.44		762.72	
	1/13/11	7.17		763.99	
	4/27/11	6.20		764.96	
	7/19/11 10/11/11	4.16 8.50		767.00 762.66	
	1/10/12	8.79		762.37	
	4/10/12	8.82		762.34	
	8/8/12	11.72		759.44	
	10/9/12 1/8/13	12.52 8.36		758.64 762.80	
	4/15/13	5.39		765.77	
	7/10/13	7.04		764.12	
	10/14/13	11.67		759.49	
1	1/15/14 4/9/14	9.74 6.08		761.42 765.08	
	6/2/14	5.96		765.08 765.20	
	7/8/14	7.64		763.52	
	10/14/14	6.48		764.68	
<u> </u>					

Table #6

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

	Dete	Depth	Reference	Groundwater	Floretion
Well Name	Date Measured	Water (feet)	Elevation (to top PVC)	Elevation (feet)	Elevation Top of Screen
	7/23/99	4.58		765.36	-
MW-5A	10/19/99	7.60	769.94	762.34	732.83
	1/10/00 4/17/00	11.26 4.47		758.68 765.47	
	7/20/00	5.27		764.67	
	10/25/00	6.62		763.32	
	1/17/01	3.72		766.22	
	4/6/01 7/20/01	3.47 6.05		766.47 763.89	
	10/16/01	6.02		763.92	
	1/14/02	11.42		758.52	
	4/18/02	4.00		765.94	
	8/13/02 10/30/02	7.26 5.70		762.68 764.24	
	1/20/03	13.86		756.08	
	4/16/03	3.25		766.69	
	7/10/03	9.33		760.61	
	10/7/03 1/30/04	11.34 13.71		758.60 756.23	
	4/19/04	4.10		765.84	
	7/26/04	6.40		763.54	
	10/11/04	10.65		759.29	
	10/19/04 1/12/05	10.93 8.25		759.01 761.69	
	4/11/05	4.87		765.07	
	7/18/05	8.70		761.24	
	10/11/05	9.62		760.32	
	1/10/06 4/11/06	4.72 7.10		765.22 762.84	
	7/27/06	13.98		755.96	
	10/18/06	10.14		759.80	
	1/9/07	9.56		760.38	
	4/29/07 7/24/07	5.50 10.89		764.44 759.05	
	10/24/07	11.40		758.54	
	1/16/08	9.08		760.86	
	4/23/08	7.42		762.52	
	7/15/08 10/23/08	7.01 15.02		762.93 754.92	
	1/22/09	15.57		754.37	
	4/7/2009	4.30		765.64	
	7/7/2009	7.46		762.48	
	7/28/2009 10/11/2009	10.97 6.32		758.97 763.62	
	1/19/2010	8.90		761.04	
	4/13/2010	5.81		764.13	
	07/29/10	8.31		761.63	
	10/19/10 01/13/11	10.24 14.98		759.70 754.96	
	04/27/11	3.72		766.22	
	07/19/11	8.12		761.82	
	10/11/11 01/10/12	9.95		759.99	
	04/10/12	13.08 6.70		756.86 763.24	
	08/08/12	14.15		755.79	
	10/09/12	14.04		755.90	
	01/08/13 04/15/13	11.24 4.32		758.70 765.62	
1	04/15/13	4.32 6.77		763.17	
1	10/14/13	16.42		753.52	
	01/15/14	13.80		756.14	
	04/09/14 06/02/14	4.40 5.48		765.54 764.46	
	06/02/14	5.48 6.72		764.46 763.22	
	10/14/14	13.73		756.21	

Table #6

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
MW-10R	7/23/99	7.48 5.72	767.13	759.65 761.41	757.51
IVIVV-TOR	10/19/99 1/10/00	6.69	767.13	761.41 760.44	757.51
	4/17/00	5.28		761.85	
	7/20/00	5.71		761.42	
	10/25/00	5.97		761.16	
	1/17/01	4.91		762.22	
	4/6/01 7/20/01	4.62 6.20		762.51 760.93	
	10/16/01	6.31		760.82	
	1/14/02	6.88		760.25	
	4/18/02	8.13		759.00	
	8/13/02	9.37		757.76	
	10/30/02 1/20/03	7.91 10.11		759.22 757.02	
	4/16/03	6.75		760.38	
	7/10/03	10.13		757.00	
	10/7/03	5.78		761.35	
	1/30/04	n/a		n/a	
	4/19/04 7/26/04	5.11 4.91		762.02 762.22	
	10/11/04	10.91		756.22	
	10/19/04	11.13		756.00	
	1/12/05	8.63		758.50	
	4/11/05	4.95		762.18	
	7/18/05	6.20		760.93	
	10/11/05 1/10/06	5.23 4.96		761.90 762.17	
	4/11/06	3.87		763.26	
	7/27/06	7.17		759.96	
	10/18/06	3.48		763.65	
	1/9/07 4/29/07	3.02 4.89		764.11 762.24	
	7/24/07	5.01		762.12	
	10/24/07	5.16		761.97	
	1/16/08	4.45		762.68	
	4/23/08	4.48		762.65	
	7/15/08 10/23/08	3.04 5.03		764.09 762.10	
	1122/09	13.22		753.91	
	4/7/09	4.64		762.49	
	7/7/09	6.41		760.72	
	7/28/09 10/11/09	7.21 5.75		759.92 761.38	
	1/19/10	7.88		759.25	
	4/13/10	4.84		762.29	
	7/29/10	6.98		760.15	
	10/19/10	5.59		761.54	
	1/13/11 4/27/11	4.80 4.81		762.33 762.32	
	7/19/11	3.36		763.77	
	10/11/11	5.68		761.45	
	1/10/12	5.41		761.72	
	4/10/12	5.37		761.76	
	8/8/12 10/9/12	6.01 8.14		761.12 758.99	
	1/8/13	8.03		759.10	
	4/15/13	2.32		764.81	
	7/10/13	4.38		762.75	
	10/14/13	5.86		761.27	
	1/15/14 4/9/14	7.92 4.53		759.21 762.60	
	6/2/14	4.51		762.62	
	7/8/14	5.54		761.59	
	10/14/14	5.08		762.05	
	i				

Table #6

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

	Date	Depth Water	Reference Elevation	Groundwater Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
	7/23/99	7.50		764.47	
MW-17	10/19/99	8.50	771.97	763.47	759.39
	1/10/00 4/17/00	9.78 7.41		762.19 764.56	
	7/20/00	9.76		762.21	
	10/25/00	8.89		763.08	
	1/17/01	9.12		762.85	
	4/6/01	7.74		764.23	
	7/20/01	9.01		762.96	
	10/16/01 1/14/02	8.53 9.67		763.44 762.30	
	4/18/02	8.15		763.82	
	8/13/02	9.04		762.93	
	10/30/02	7.79		764.18	
	1/20/03 4/16/03	10.36 8.94		761.61 763.03	
	7/10/03	10.04		761.93	
	10/7/03	7.07		764.90	
	1/30/04	10.79		761.18	
	4/19/04	8.23		763.74	
	7/26/04 10/11/04	9.10 8.62		762.87 763.35	
	10/11/04	9.02		762.95	
	1/12/05	9.68		762.29	
	4/11/05	8.27		763.70	
	7/18/05	8.32		763.65	
	10/11/05 1/10/06	7.52 8.02		764.45 763.95	
	4/11/06	8.18		763.79	
	7/27/06	8.22		763.75	
	10/18/06	7.42		764.55	
	1/9/07	7.68 8.28		764.29 763.69	
	4/29/07 7/24/07	8.26 8.95		763.09	
	10/24/07	7.12		764.85	
	1/16/08	7.66		764.31	
	4/23/08	7.80		764.17	
	7/15/08 10/23/08	5.97 8.40		766.00 763.57	
	01/22/09	10.30		761.67	
	04/07/09	8.00		763.97	
	07/07/09	9.73		762.24	
	07/28/09	9.42		762.55	
	10/11/09 01/19/10	7.73 9.58		764.24 762.39	
	04/13/10	6.36		765.61	
	07/29/10	8.61		763.36	
	10/29/10	7.11		764.86	
	01/13/11 04/27/11	8.06 7.92		763.91 764.05	
	07/19/11	6.30		765.67	
	10/11/11	7.20		764.77	
	01/10/12	9.25		762.72	
	04/10/12	8.24		763.73	
	08/08/12 10/09/12	8.23 9.46		763.74 762.51	
	01/08/13	9.76		762.21	
	04/15/13	7.78		764.19	
	07/10/13	8.18		763.79	
	10/14/13	8.38		763.59	
	01/15/14 04/09/14	9.71 7.90		762.26 764.07	
	06/02/14	7.82		764.15	
	07/08/14	7.96		764.01	
	10/14/14	7.96		764.01	
	1		İ		

Table #6

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

		Depth	Reference	Groundwater	
Well Name	Date Measured	Water (feet)	Elevation (to top PVC)	Elevation (feet)	Elevation Top of Screen
	7/23/99	15.02	(10 10 10 10)	756.24	
MW-17A	10/19/99	15.38	771.26	755.88	733.85
	1/10/00	16.32		754.94	
	4/17/00 7/20/00	16.89 17.99		754.37 753.27	
	10/25/00	16.17		755.09	
	1/17/01	17.30		753.96	
	4/6/01	17.88		753.38	
	7/20/01 10/16/01	15.79		755.47	
	1/14/02	16.35 16.40		754.91 754.86	
	4/18/02	17.18		754.08	
	8/13/02	17.20		754.06	
	10/30/02	16.11		755.15	
	1/20/03 4/16/03	17.31 18.05		753.95 753.21	
	7/10/03	17.31		753.95	
	10/7/03	16.56		754.70	
	1/30/04	16.85		754.41	
	4/19/04 7/26/04	17.45 16.40		753.81 754.86	
	10/11/04	16.48		754.78	
	10/19/04	16.40		754.86	
	1/12/05	15.85		755.41	
	4/11/05	16.87		754.39	
	7/18/05 10/11/05	17.01 15.91		754.25 755.35	
	1/10/06	16.10		755.16	
	4/11/06	17.15		754.11	
	7/27/06	17.14		754.12	
	10/18/06	16.06 16.18		755.20 755.08	
	1/9/07 4/29/07	17.45		753.81	
	7/24/07	17.02		754.24	
	10/24/07	15.69		755.57	
	1/16/08	16.45		754.81	
	4/23/08 7/15/08	16.98 15.93		754.28 755.33	
	10/23/08	16.34		754.92	
	01/22/09	16.88		754.38	
	04/07/09	17.08		754.18	
	07/07/09 07/28/09	16.72 17.30		754.54 753.96	
	10/11/09	16.46		754.80	
	01/19/10	16.32		754.94	
	04/13/10	16.58		754.68	
	07/29/10 10/19/10	14.28 16.07		756.98 754.29	
	01/13/11	16.97 17.20		754.29 754.06	
	04/27/11	18.02		753.24	
	07/19/11	17.21		754.05	
	10/11/11	16.82 15.50		754.44 755.76	
	01/10/12 04/10/12	15.50 16.16		755.76 755.10	
	08/08/12	16.00		755.26	
	10/09/12	15.56		755.70	
1	01/08/13	15.60		755.66	
	04/15/13 07/10/13	16.29 15.32		754.97 755.94	
	10/14/13	15.32		755.94 755.94	
	01/15/14	15.91		755.35	
	04/09/14	16.32		754.94	
	06/02/14	15.48 15.21		755.78	
	07/08/14 10/14/14	15.21 6.60		756.05 764.66	
1	.5/11/17	5.55		. 0 1.00	

Table #6

Groundwater Elevations

Appleton Wire Former Albany International Chrome Plant

		Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
	8/13/02	11.75	(10 10 1 10)	758.28	
MW-18	10/30/02	8.92	770.03	761.11	757.23
IVIVV-10	1/20/03	13.49	770.03	756.54	737.23
	4/16/03	8.50		761.53	
	7/10/03	9.38		760.65	
	10/7/03	8.82		761.21	
	1/30/04	9.91		760.12	
	4/19/04	8.86		761.17	
	7/26/04	9.14		760.89	
	10/11/04	10.80		759.23	
	10/11/04	9.94		760.09	
	1/12/05	9.26		760.77	
	4/11/05	8.97		761.06	
	7/18/05	9.45		760.58	
	10/11/05	8.78		761.25	
	1/10/06	8.29		761.74	
	4/11/06	8.67		761.74 761.36	
	7/27/06	9.98		760.05	
	10/18/06	8.78		760.05 761.25	
	1/9/07	8.59		761.23 761.44	
	4/29/07	8.88		761.44 761.15	
	7/24/07	9.48		760.55	
	10/24/07	9.46 8.44		760.55 761.59	
		8.00			
	1/16/08			762.03	
	4/23/08	8.30		761.73 763.81	
	7/15/08	6.22			
	10/23/08	8.92		761.11	
	01/22/09 04/07/09	10.02 8.11		760.01 761.92	
	07/07/09	9.48			
	07/07/09	9.48 9.78		760.55 760.25	
	10/11/09	9.76 8.72		760.25 761.31	
	01/19/10	9.60		760.43	
	04/13/10			760.43 762.23	
	07/29/10	7.80 9.57		762.23	
	10/19/10	8.63			
	1/13/11	8.35		761.40 761.68	
	4/27/11				
	7/19/11	8.82 6.42		761.21 763.61	
	10/11/11	8.60		763.61 761.43	
	1/10/12	9.27		761.43 760.76	
	4/10/12	9.27 8.80		760.76 761.23	
	8/8/12	9.31		761.23 760.72	
	10/9/12	9.85		760.72 760.18	
	1/8/13	9.63		760.16	
	4/15/13	7.06		762.97	
	7/10/13	8.78		762.97 761.25	
	10/14/13	9.04		760.99	
	1/15/14	10.35		759.68	
	4/9/14	8.20		761.83	
	6/2/14	8.75		761.83 761.28	
	7/8/14	8.75 8.62		761.28 761.41	
	10/14/14	8.91		761.41 761.12	
	10/14/14	0.31		701.12	

Table #6

Groundwater Elevations

Appleton Wire Former Albany International Chrome Plant

	_	Depth	Reference	Groundwater	
	Date	Water	Elevation	Elevation	Elevation
Well Name	Measured	(feet)	(to top PVC)	(feet)	Top of Screen
	8/13/02	39.88		730.79	
MW-18A	10/30/02	33.94	770.67	736.73	732.37
	1/20/03	24.89		745.78	
	4/16/03	29.10		741.57	
	7/10/03	27.41		743.26	
	10/7/03	28.73		741.94	
	1/30/04	27.76		742.91	
	4/19/04	28.17		742.50	
	7/26/04	28.88		741.79	
	10/11/04	28.40		742.27	
	10/19/04	28.40		742.27	
	1/12/05	27.58		743.09	
	4/11/05	28.04		742.63	
	7/18/05	29.41		741.26	
	10/11/05	28.40		742.27	
	1/10/06	27.38		743.29	
	4/11/06	28.18		742.49	
	7/27/06	26.68		743.99	
	10/18/06	28.51		742.16	
	1/9/07	27.60		743.07	
	4/29/07	28.59		742.08	
	7/24/07	28.90		741.77	
	10/24/07	28.20		742.47	
	1/16/08	28.19		742.48	
	4/23/08	27.87		742.80	
	7/15/08	25.31		745.36	
	10/23/08	28.32		742.35	
	1/22/09	27.44		743.23	
	4/7/09	27.05		743.62	
	7/7/09	28.52		742.15	
	7/28/09	28.61		742.06	
	10/11/09	28.37		742.30	
	1/19/10	27.48		743.19	
	4/13/10	27.72		742.95	
	7/29/10	27.93		742.74	
	10/19/10	27.72		742.95	
	1/13/11	29.44		741.23	
	4/27/11	29.44		741.23	
	7/19/11	28.87		741.80	
	10/11/11	28.33 26.43		742.34 744.24	
	1/10/12 4/10/12	26.43		744.24 743.87	
	8/8/12	26.80 27.45		743.87 743.22	
	10/9/12	27.45 27.97		743.22 742.70	
	1/8/13	26.11		744.56	
	4/15/13	26.11		744.56 744.19	
	7/10/13	26.48		744.19	
	10/14/13	27.18		743.49 743.35	
	1/15/14	26.32		743.35 744.35	
	4/9/14	26.32		744.35 743.64	
	6/2/14	27.03		743.64 741.05	
	7/8/14	29.62		741.05 742.53	
	10/14/14	26.14		742.53 743.79	
	10/14/14	20.00		170.13	
	J				

Table #6

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

Well Name	Date Measured	Depth Water (feet)	Reference Elevation (to top PVC)	Groundwater Elevation (feet)	Elevation Top of Screen
MW-19	07/07/09 07/28/09 10/11/09 01/19/10 04/13/10 07/29/10 10/19/10 01/13/11 04/27/11 10/11/11 10/11/11 01/10/12 04/10/12 08/08/12 10/09/12 01/08/13 04/15/13 07/10/13 10/14/13 01/15/14 04/09/14 06/02/14 07/08/14	8.24 6.98 15.74 5.20 5.33 6.57 5.50 7.29 5.60 6.63 5.55 5.97 4.78 6.38 6.70 5.74 2.40 4.25 6.30 6.22 4.47 4.11 4.40 4.70	768.19	759.95 761.21 752.45 762.99 762.86 761.62 762.69 760.90 762.59 761.56 762.64 762.22 763.41 761.81 761.49 762.45 765.79 763.94 761.97 763.72 764.08 763.79 763.49	758.27
MW-19A	07/07/09 07/28/09 10/11/09 01/19/10 04/13/10 07/29/10 10/19/10 01/13/11 04/27/11 07/19/11 10/11/11 01/10/12 04/10/12 08/08/12 10/09/12 01/08/13 04/15/13 01/15/14 04/09/14 06/02/14 07/08/14	27.72 22.93 18.12 18.36 18.33 18.22 18.40 20.47 18.40 18.44 18.42 16.58 16.58 20.13 16.56 15.40 16.22 16.37 16.83 18.73 17.24 16.80 16.84 16.24	768.04	740.32 745.11 749.92 749.68 749.71 749.82 749.64 747.57 749.64 749.60 749.62 751.46 751.06 747.91 751.48 752.64 751.67 751.21 749.31 750.80 751.24 751.20 751.80	731.10
MW-20	06/02/14 07/08/14 10/14/14	7.36 5.63 5.57	768.29	760.93 762.66 762.72	764.29
MW-20A	06/02/14 07/08/14 10/14/14	32.73 20.88 12.61	768.36	735.63 747.48 755.68	739.02

Table #6

Groundwater Elevations

Appleton Wire Former Albany International Chrome Plant

Well Name	Date Measured	Depth Water (feet)	Reference Elevation (to top PVC)	Groundwater Elevation (feet)	Elevation Top of Screen
MW-21	06/02/14 07/08/14 10/14/14	4.96 5.02 6.82	768.85	763.89 763.83 762.03	764.8
MW-21A	06/02/14 07/08/14 10/14/14	32.18 16.27 15.98	768.85	763.89 752.58 752.87	739.85

Table #7

Appleton Wire Former Albany international Chrome Plant
Total Pounds Chromium Removed

			Yearly	Historic
Year	Sump	Manhole	Total	Total
1988-1998*				550.00
1998**	10.68	13.26	23.94	573.94
1999	21.81	8.4	30.21	604.15
2000	NA	NA	22.00	626.15
2001	18.75	8.69	27.64	653.79
2002	13.1	9.98	23.08	676.87
2003	12.94	4.95	17.89	694.76
2004	12.83	5.29	18.12	712.88
2005	8.07	4.57	12.64	725.52
2006	7.36	4.27	11.63	736.88
2007	11.72	2.87	14.59	751.47
2008	16.40	3.40	19.80	771.27
2009	13.79	2.66	16.45	796.03
2010	17.09	3.36	20.45	816.48
2011	16.26	2.60	18.86	835.34
2012	11.66	2.39	14.05	849.39
2013	8.24	1.78	10.02	859.37
2014	8.10	1.30	9.4	868.77

^{*}Chemical Precipitation process was utilized from June 29, 1988 to April 20, 1998. During that period 550# of chromium was removed in the form of chromium sulfate.

^{**} Partial Year - Ion exchange System on-line April 20, 1998

^{***} Partial Year

NA - Data not available

Table #8 Geoprobe Monitoring Wells GROUNDWATER ANALYTICAL RESULTS

Total Chromium and Hexavalent Chromium

Appleton Wire Former Albany International Chrome Plant

Appleton, Wisconsin

	Appleton, Wiscons	Total	Hexavalent
Well Name	Sample Date	Chromium	Chromium (ug/l)
GMW-01	06/30/04	5300	5100
	08/01/07	8490	N/A
	10/24/07	3085	1900
	01/16/08	3020	2260
	04/23/08	2001	2000
GMW-02	06/30/04	5700	4700
	08/01/04	6355	N/A
	10/24/07	6115	6115
	01/16/08	7040	6800
	04/23/08	6600	4900
GMW-03	06/30/04	5000	4700
	08/01/04	4790	N/A
	10/24/07	3545	2300
	01/16/08	4550	3100
	04/23/08	3320	1400
GMW-04	06/30/04	52	52
	08/01/04	56	N/A
	10/24/07	14	<2.0
	01/16/08	31	<.002
	04/23/08	3.7	<2.0
GMW-05	06/30/04	40	34
	08/01/04	55	N/A
	10/24/07	5.6	<2.0
	01/16/08	8.5	<.002
	04/23/08	31.0	<2.0
GMW-06	06/30/04	3.3	<2
	08/01/04	4.2	N/A
	10/24/07	3.5	<2.0
	01/16/08	3.3	<.002
	04/23/08	5.2	<2.0
GMW-07	06/30/04	8.0	<2
	08/01/04	1.7	N/A
	10/24/07	2.3	<2.0
	01/16/08	13.0	<.002
	04/23/08	3.1	<2.0
GMW-08	06/30/04	0.4	<2
	08/01/04	1.4	N/A
	10/24/07	489.0	270
	01/16/08	8.6	<.002
	04/23/08	101.0	20
GMW-09	06/30/04	1.3	<2
	08/01/04	1.5	N/A
	10/24/07	2.8	<2.0
	01/16/08	9.3	<.002

Table #8

Geoprobe Monitoring Wells GROUNDWATER ANALYTICAL RESULTS

Total Chromium and Hexavalent Chromium

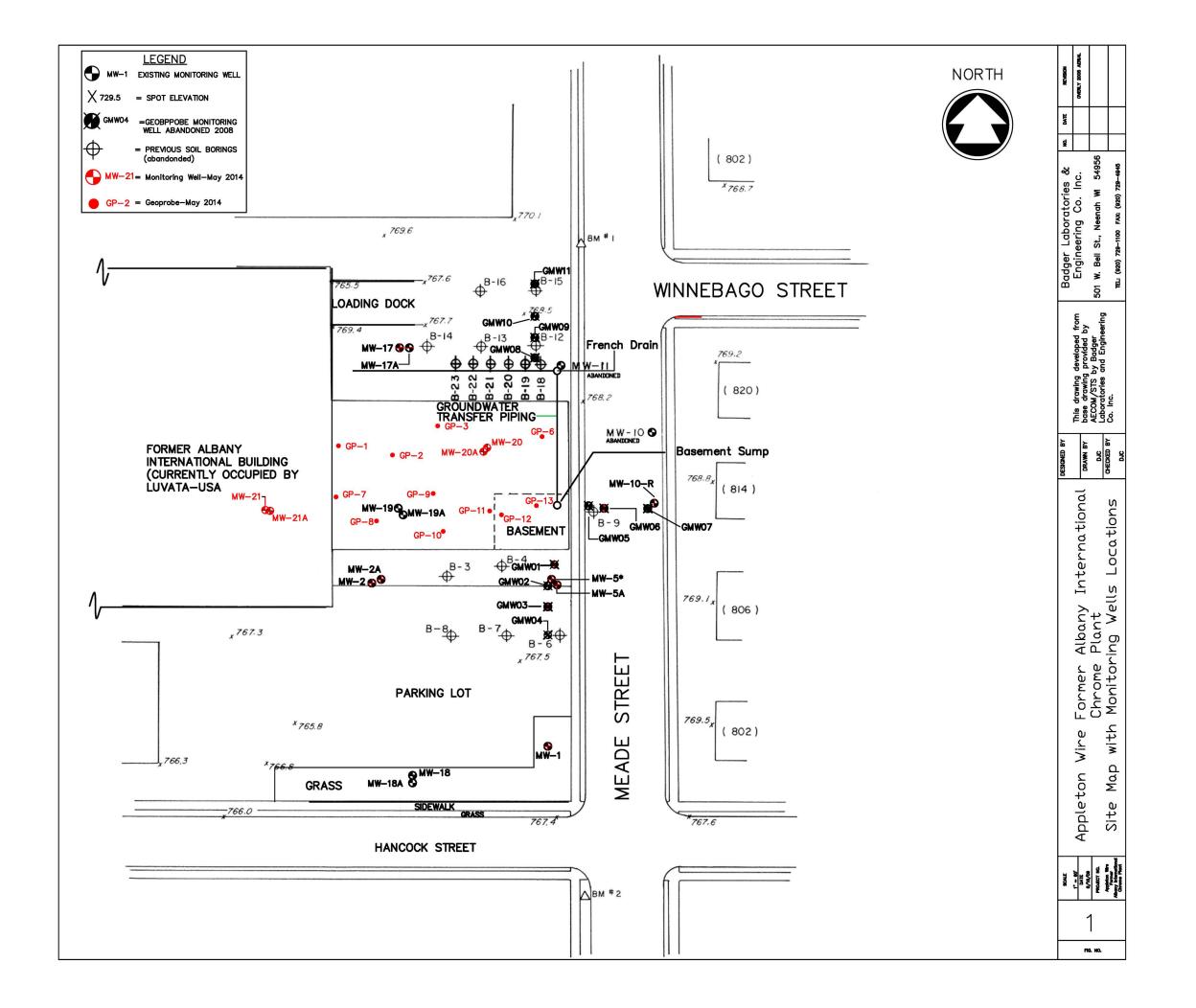
Appleton Wire Former Albany International Chrome Plant

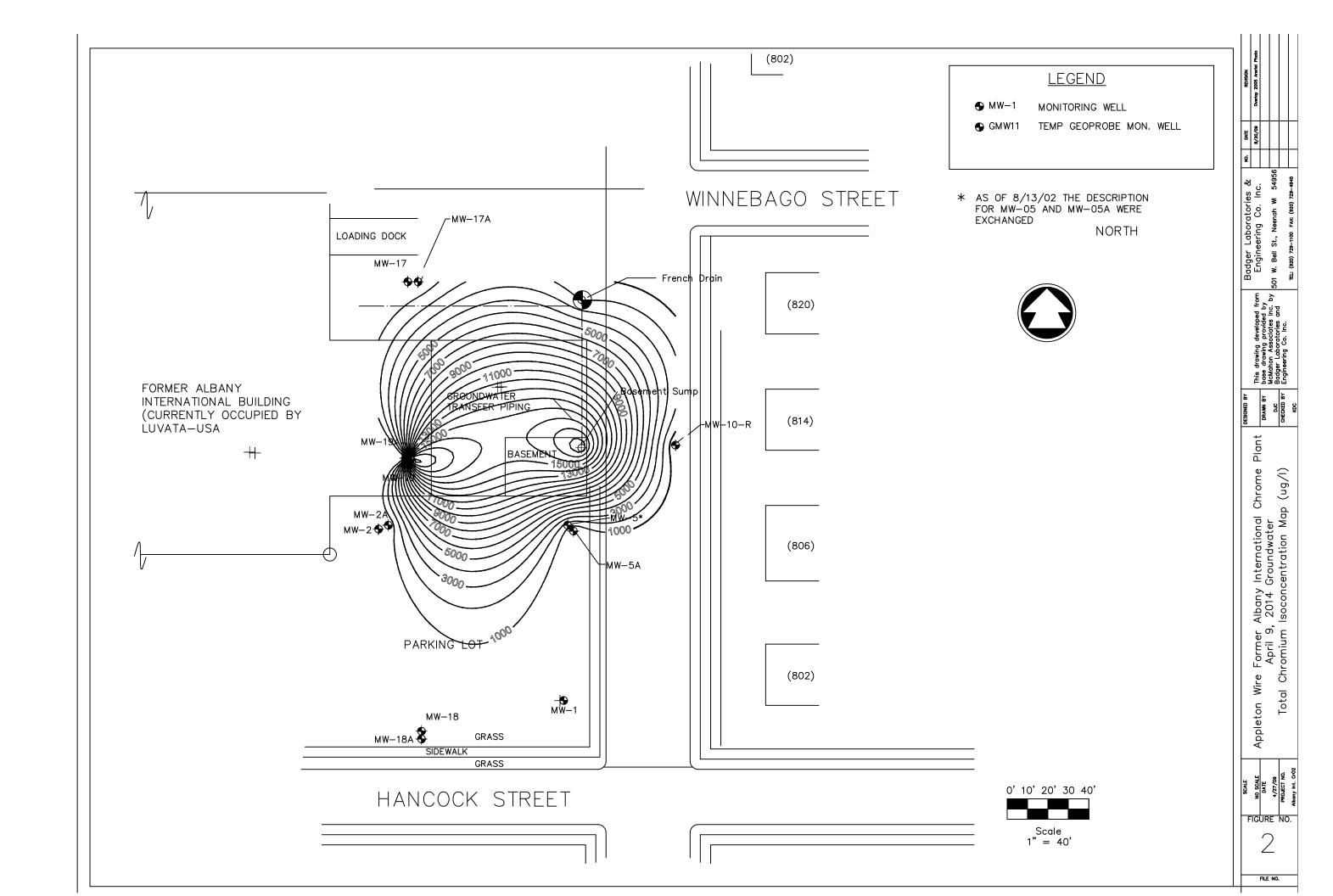
Appleton, Wisconsin

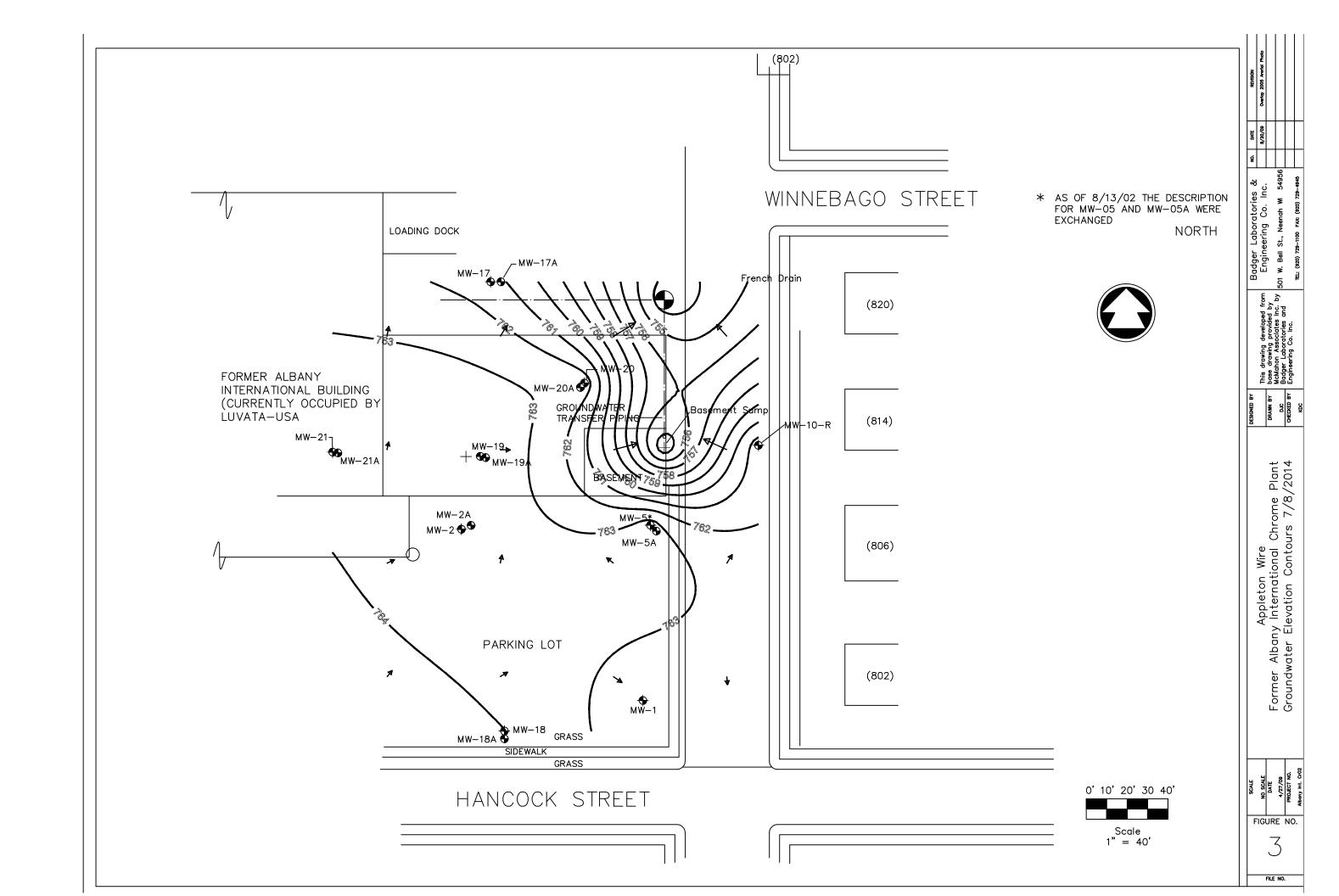
	pp.::-,		
	04/23/08	4.2	<2.0
GMW-10	06/30/04	0.5	<2
	08/01/04	0.6	N/A
	10/24/07	11.0	<2.0
	01/16/08	0.5	<.002
	04/23/08	2.6	<2.0
GMW-11	06/30/04	1.1	<2
	08/01/04	1.9	N/A
	10/24/07	3.6	<2.0
	01/16/08	5.6	<.002
	04/23/08	4.1	<2.0
Enforcement Standard, Chapter NR140		100.0	***
Preventive Action Limit, Chpater NR 140		10.0	****

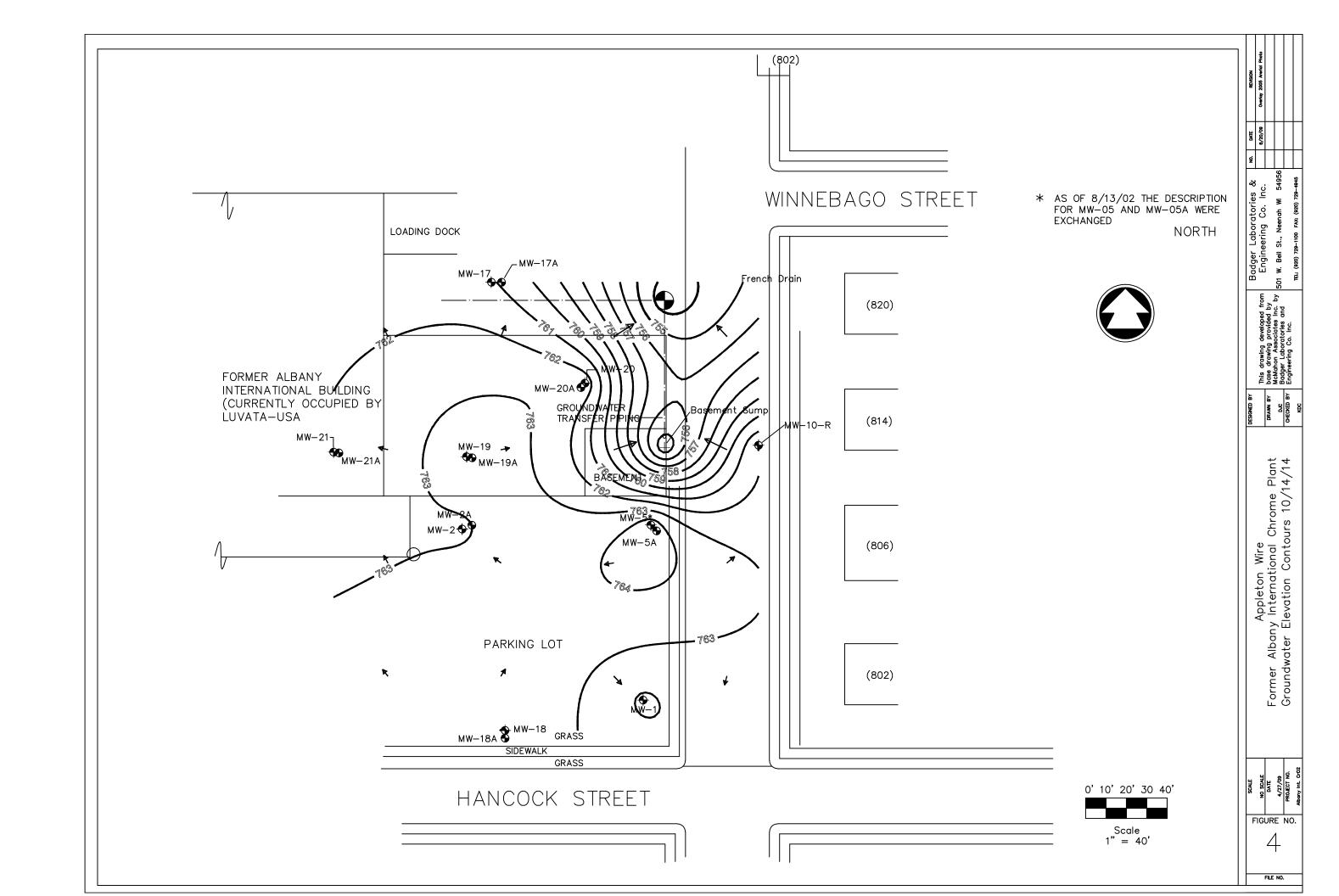
EXPLANATION:

**** = Hexavalent Chromi not have a State G Groundwater Quality Standard.


However, Hexavalent Chromium is part of total chromium, which has a
State Groundwater Quality Standard.


N/A = Not Analyzed

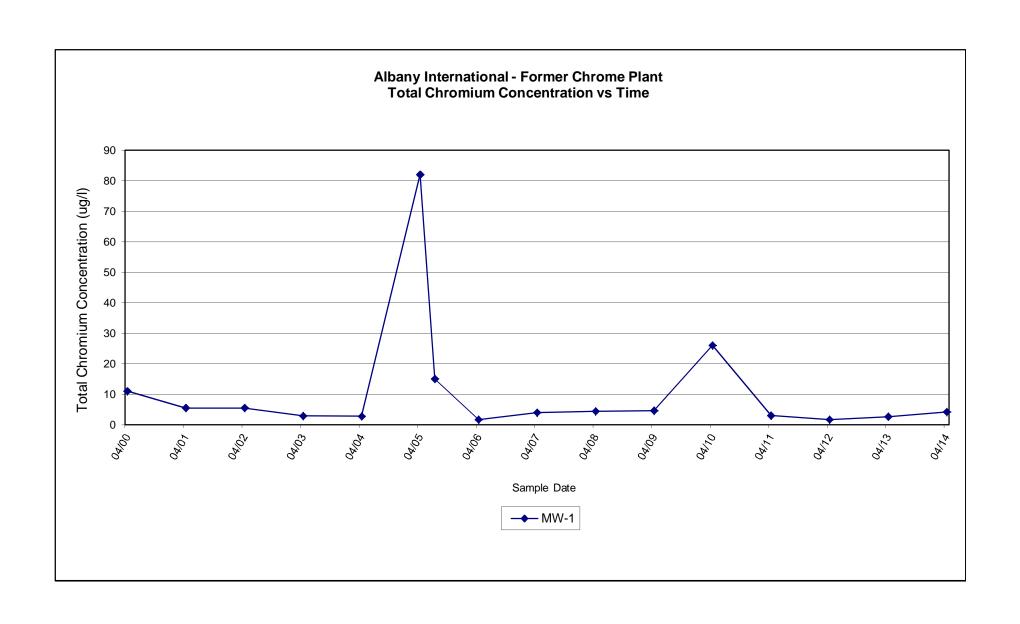

ug/I = Microgram / Liter (ppb)

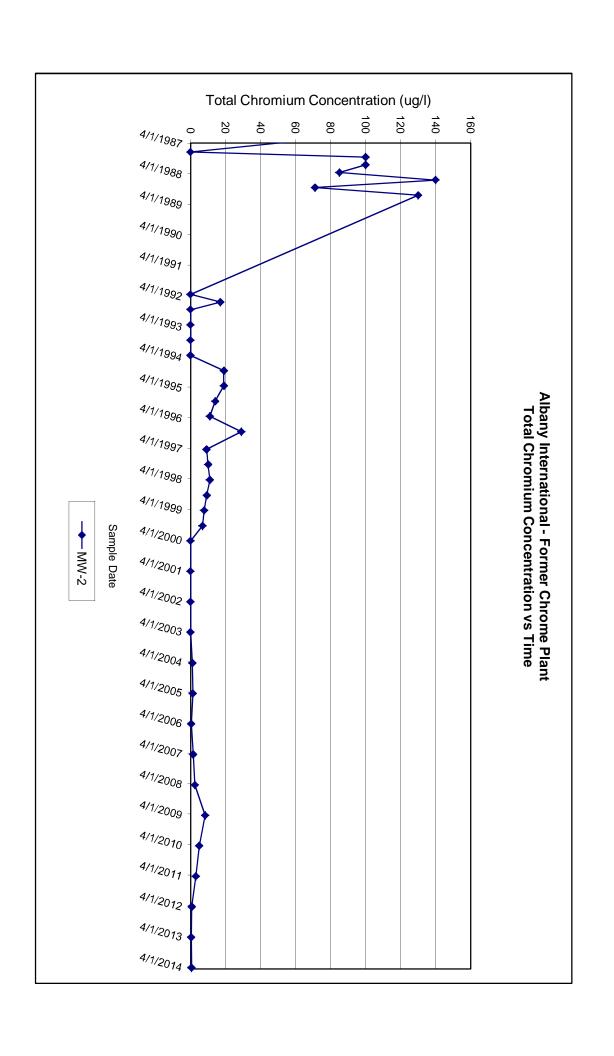

100 = Exceeds Enforcement Standards (ES), Chapter NR 140of the Wis. Admin. Cc

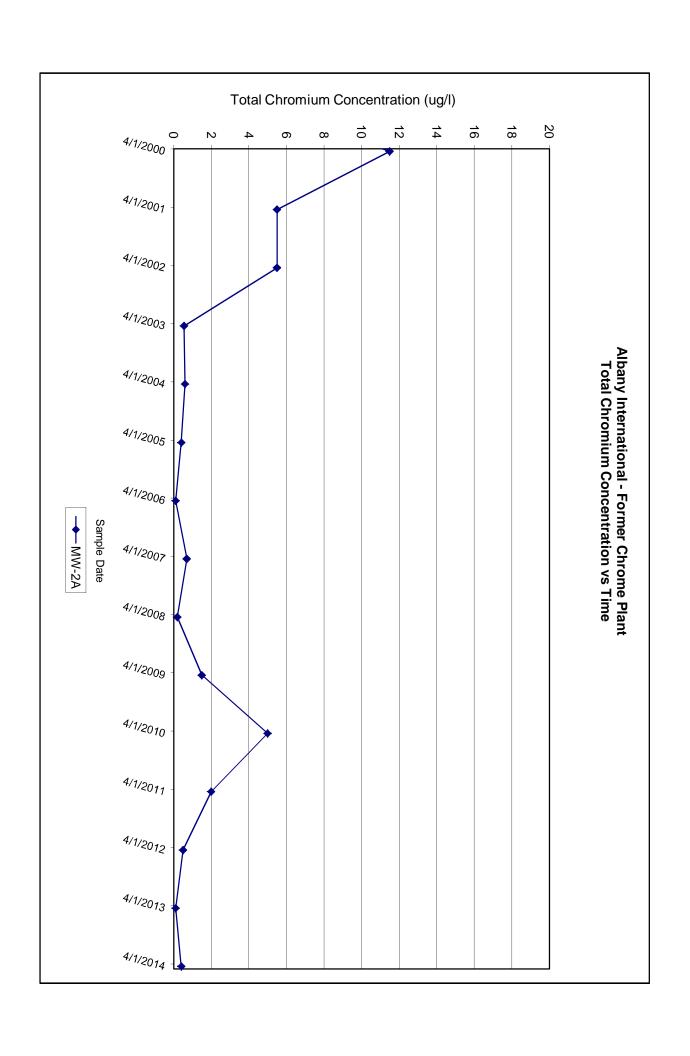
121 = Exceeds Preventive Action Limit (PAL), Chapter NR 140 of the Wis. Admin. (

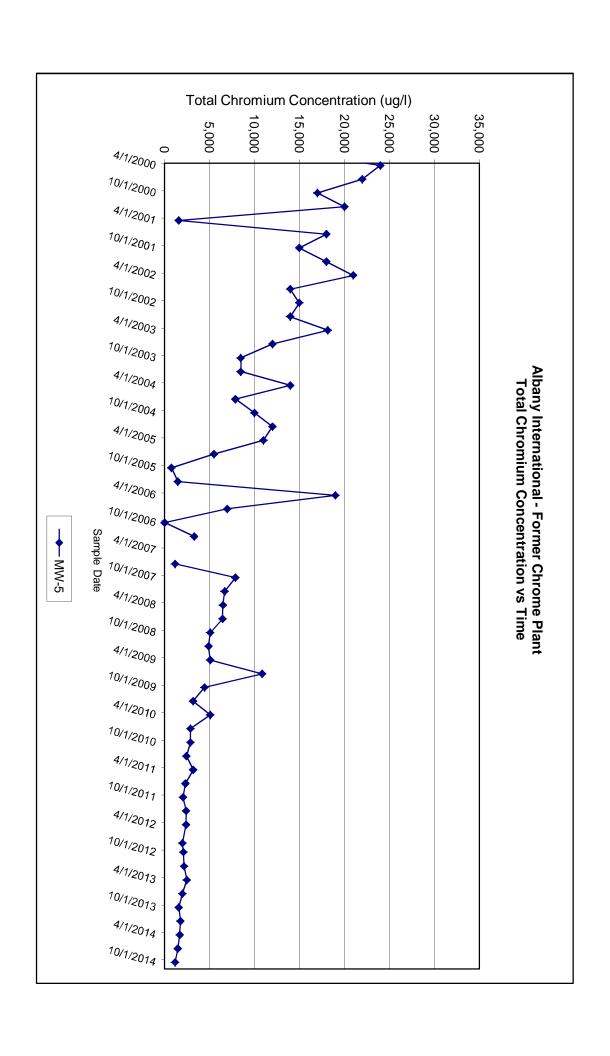
NORTH

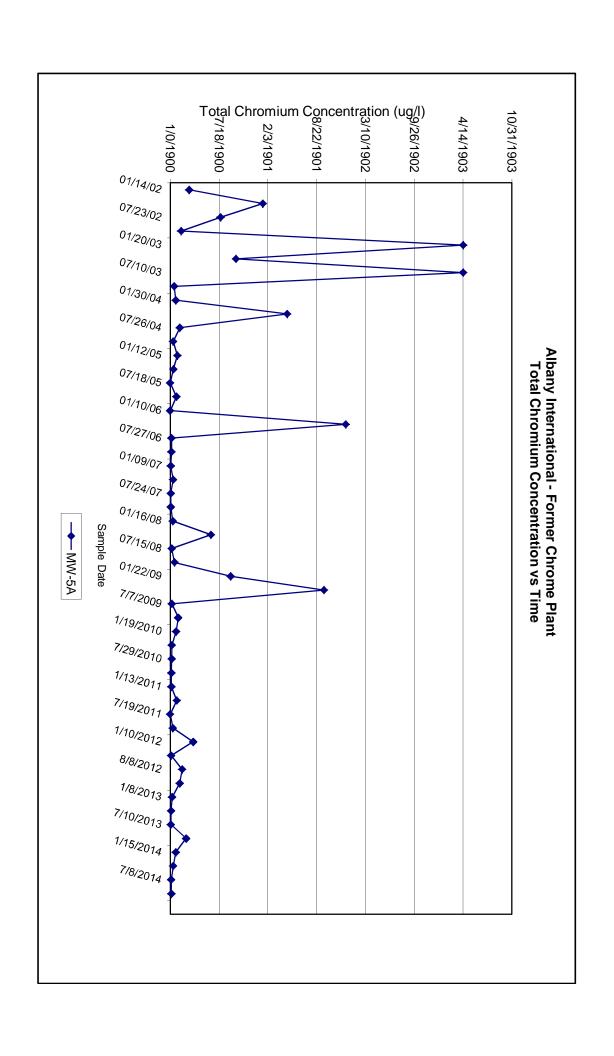
Appleton Wire Former Albany International Chrome Plant Site Layout on 2005 Aerial Photo

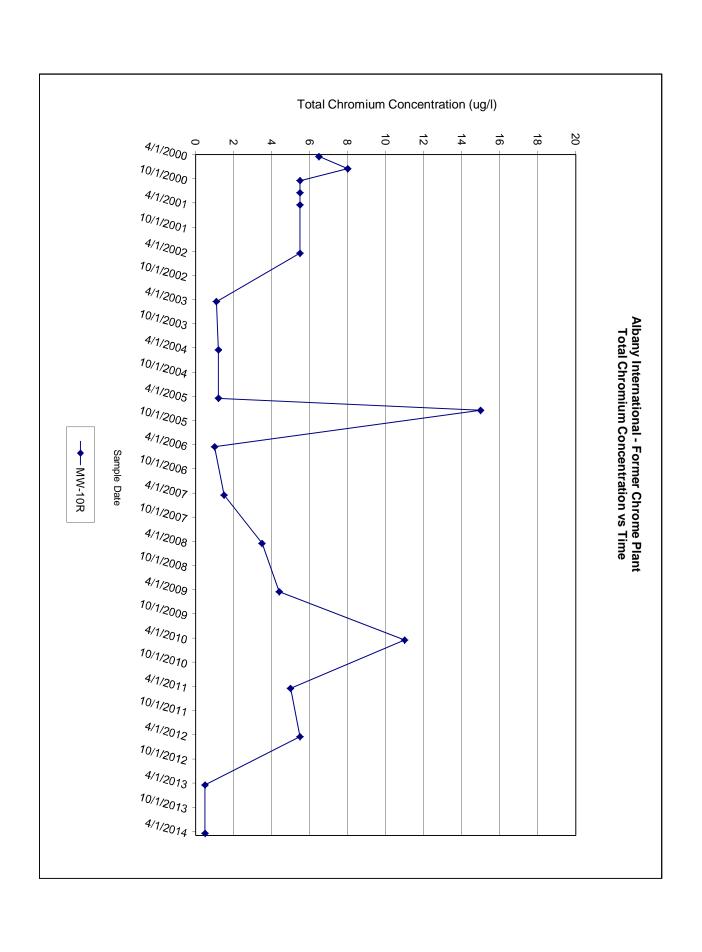

FIGURE NO.

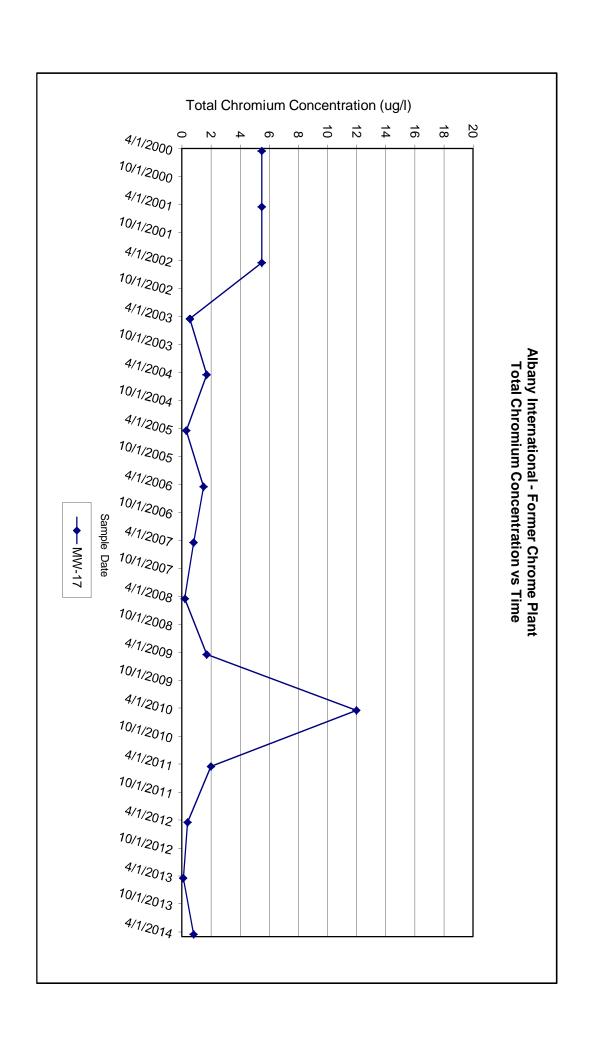

5 FILE HO.

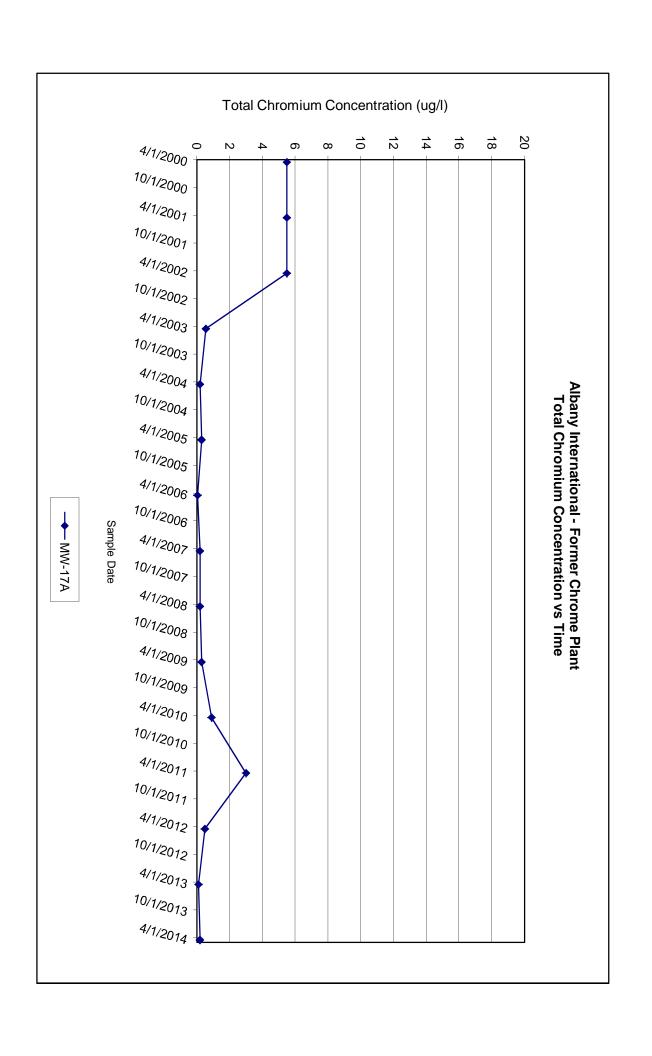

0' 20' 40' 60 80' Scole 1" = 80'

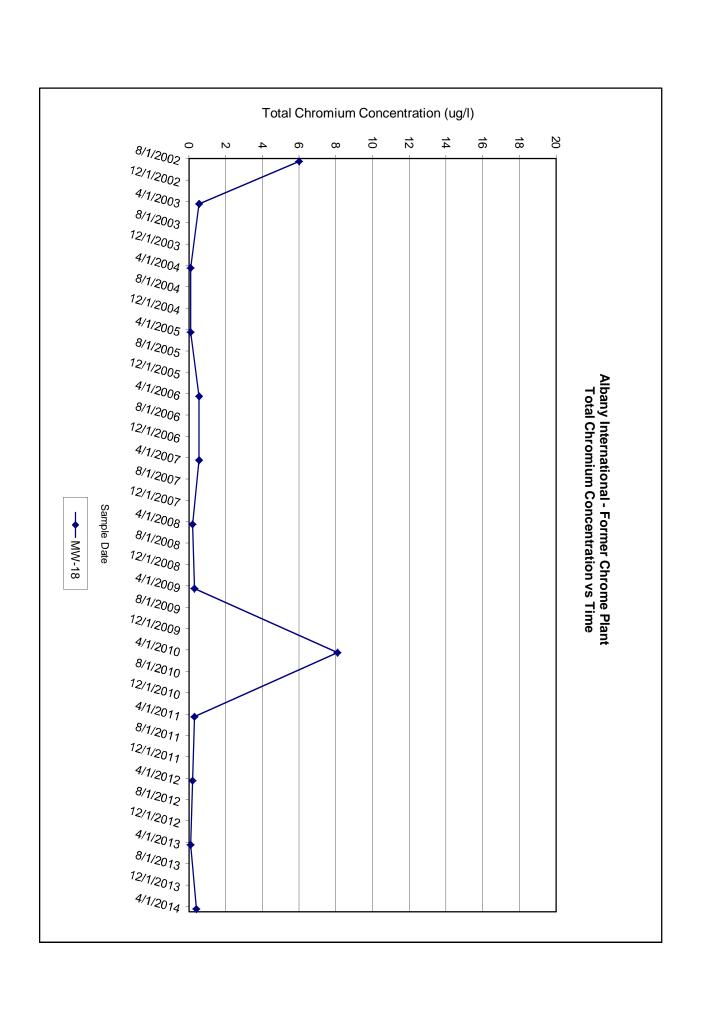

APPENDIX A

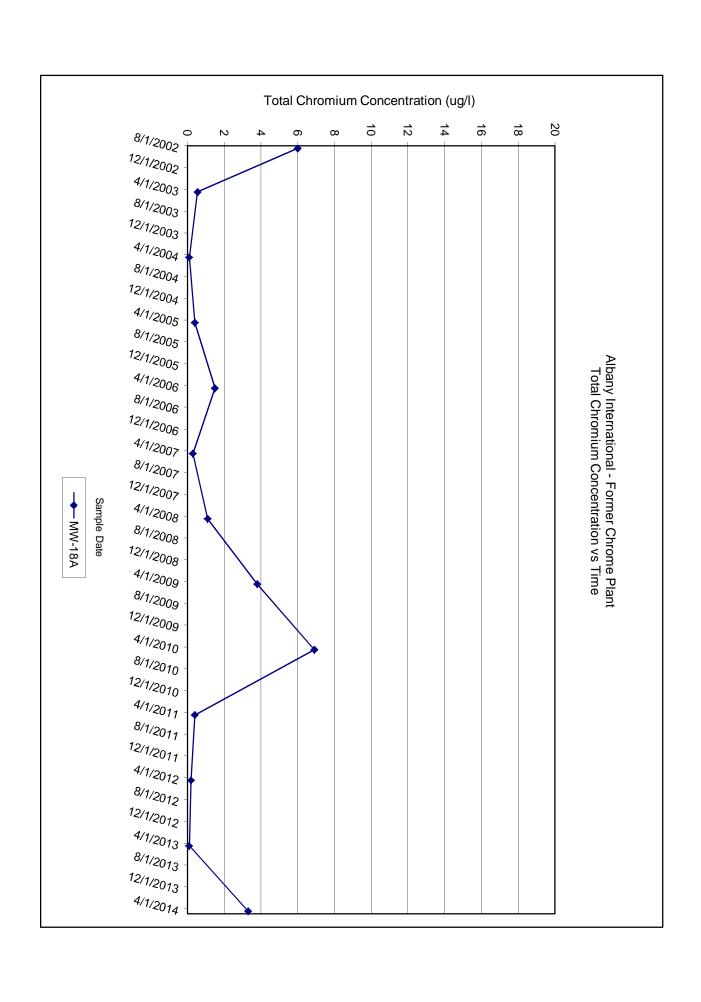

Concentration Versus Time Graphs – All Wells, Sump and French Drain

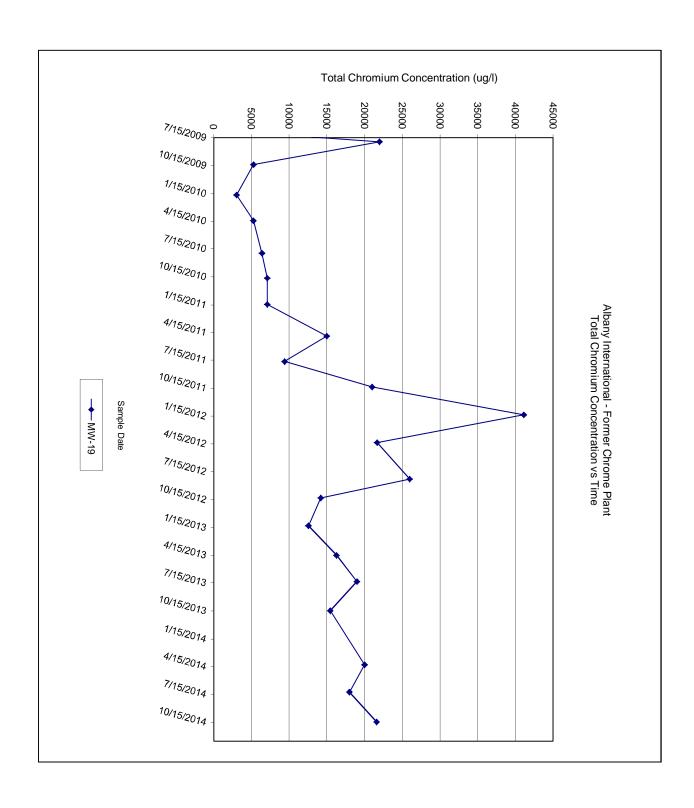


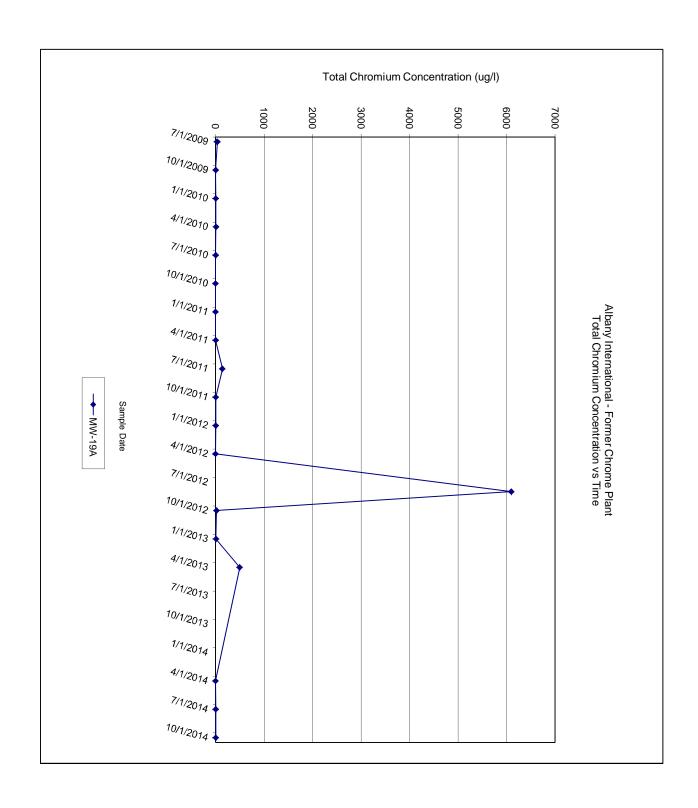


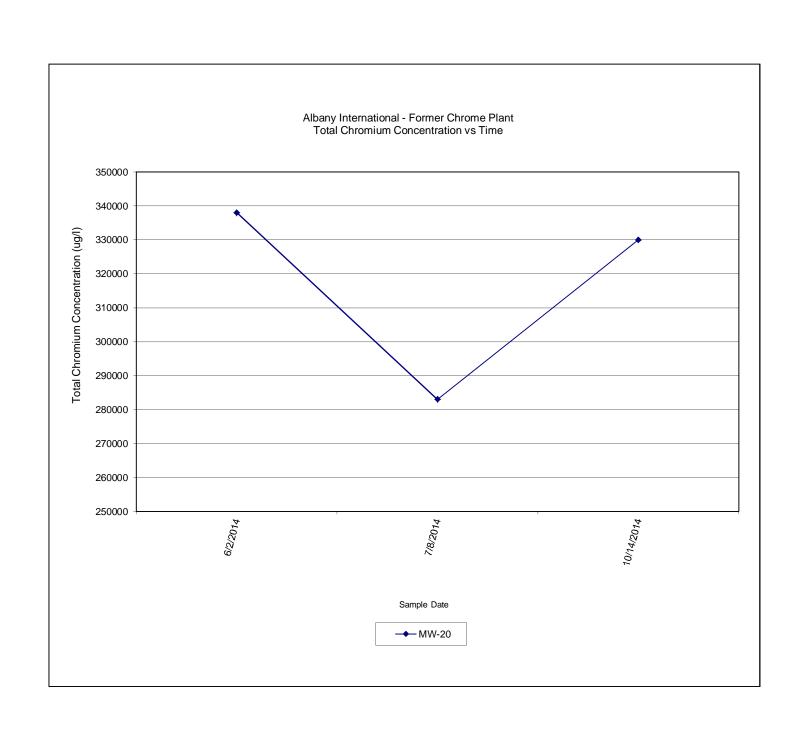


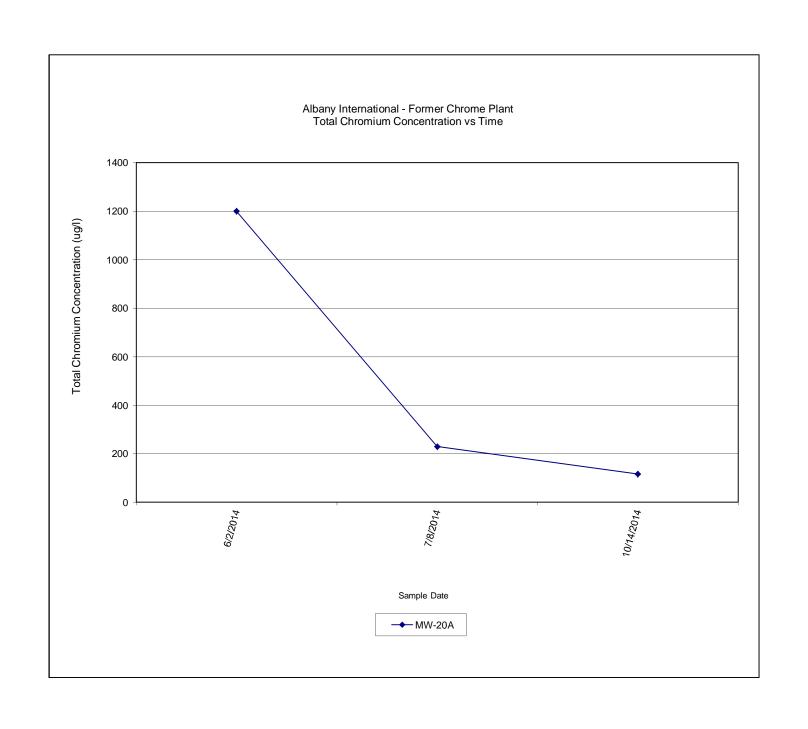


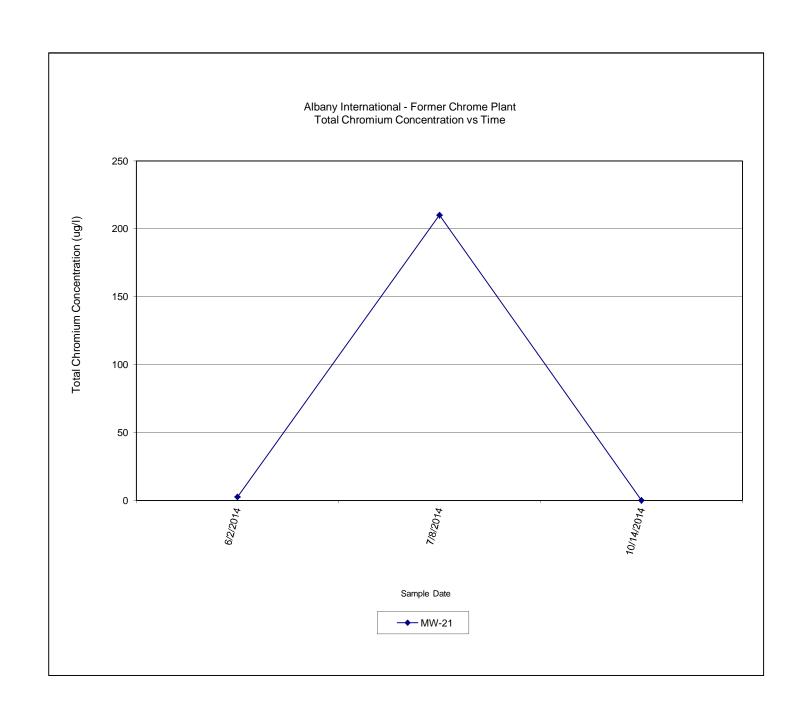


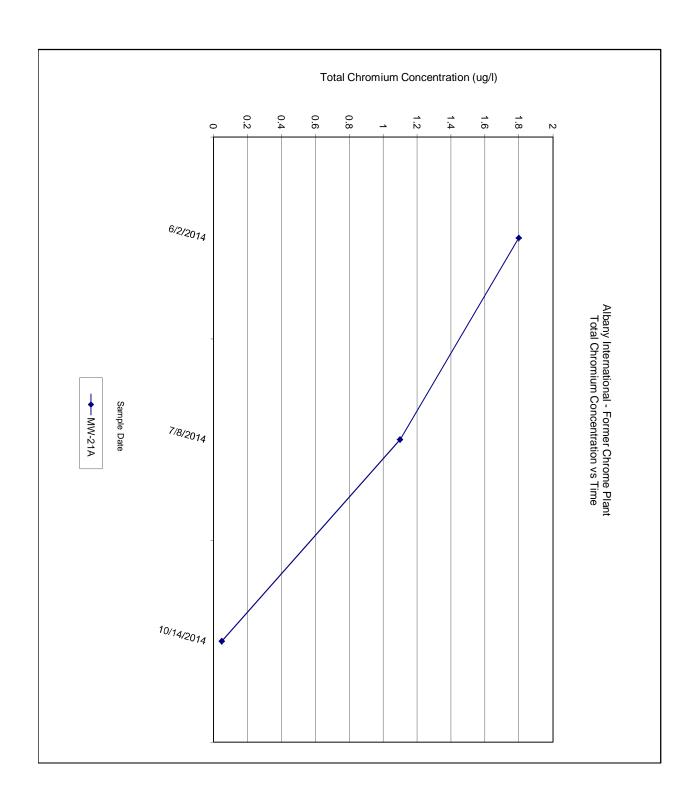


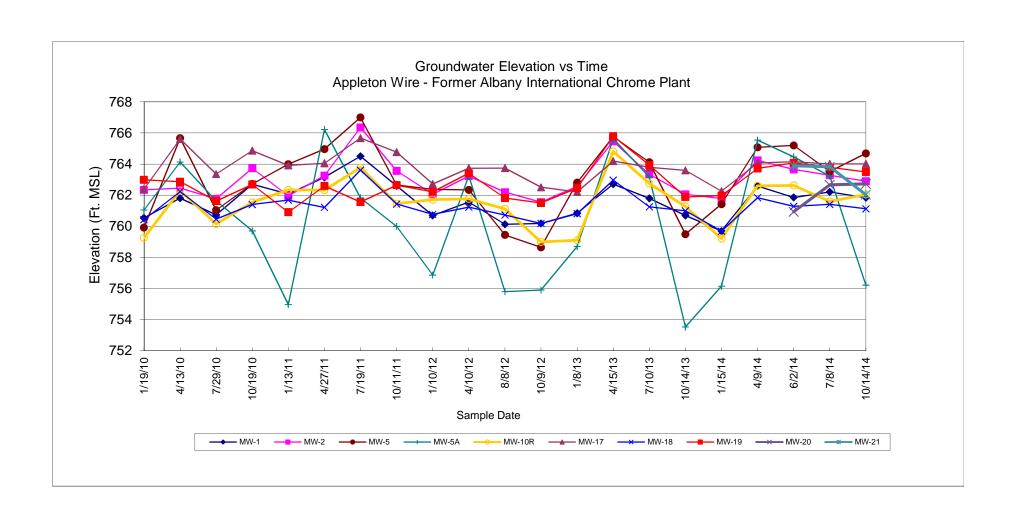












APPENDIX B

Groundwater Elevations Versus Time – All Wells

APPENDIX C

Operation & Maintenance Report Form 4400-194 State of Wisconsin Department of Natural Resources PO Box 7921, Madison WI 53707-7921 dnr.wi.gov

Chromium

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 1/14)

Page 1 of 29

Notice: Pursuant to ss. NR 700.11(1) and 724.13(3), Wis. Adm. Code, this form is required to be completed or a narrative report or letter containing the equivalent information required in this form may be submitted in lieu of the actual form. Failure to submit this form as required is a violation and is subject to the penalties as stated in s. 292.99, Wis. Stats. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records Law (ss. 19.31-19.39, Wis. Stats.). Unless otherwise noted, all citations refer to Wisconsin Administrative Code.

GENERAL INSTRUCTIONS, PURPOSE AND APPLICABILITY OF THIS FORM: Completion of this form is required under s. NR 700.11(1) and s. NR 724.13(3), Wis. Adm. Code. A narrative report or letter containing the equivalent information required in this form may be submitted in lieu of the actual form. Failure to submit this form as required is a violation of s. NR 700.11(1) and s. NR 724.13(3), Wis. Adm. Code, and is subject to the penalties in s. 292.99, Wis. Stats. This form must be submitted every six months for remediation projects that are regulated under the NR 700 series of Wis. Adm. Code. Specifically, for sites meeting any of the following criteria:

- Any site where a discharge has occurred that report progress in accordance with s. NR 700.11(1), Wis. Adm. Code until site closure is granted. This
 includes sites where no response activities occurred during the six month reporting period. Attach, if applicable, a separate brief summary of the
 work completed during the reporting period and the anticipated future work.
- · Soil or groundwater remediation projects that report operation and maintenance progress in accordance with s. NR 724.13(3), Wis. Adm. Code.

Note: Long-term monitoring results submitted in accordance with s. NR 724.17(3), Wis. Adm. Code are required to be submitted within 10 business days of receiving sampling results and are not required to be submitted using this form. However, portions of this form require monitoring data summary information that may be based on information previously submitted in accordance with s. NR 724.17(3), Wis. Adm. Code.

Note: Responsible parties should check with the State Project Manager assigned to the site to determine if this form is required to be submitted at sites responded to under the Federal Comprehensive Environmental Response and Compensation Act (commonly known as Superfund) or an equivalent State lead Superfund response.

Note: Responsible parties should check with the State Project Manager assigned to the site to determine if any of the information required in this form may be omitted or changed and obtain prior written approval for any omissions or changes.

Submittal of this form is not a substitute for reporting required by Department programs such as Waste Water or Air Management. Personally identifiable information on this form is not intended to be used for any other purpose than tracking progress of the remediation by the Bureau for Remediation and Redevelopment.

Only complete and submit all of page GI-1 and Section E on pages 3 and 4 for sites where a discharge has been reported but no response, monitoring or remediation has begun or occurred during the six month reporting period that are required to report only under s. NR 700.11(1), Wis. Adm. Code and attach, if applicable, a summary of the anticipated future work.

Section Gi - General Site Info A. General Information	rmation				-		2017		
Site name									
Appleton Wire-Albany Intern	national Former (Chrome Plant							
2. Reporting period from:	07/01/2014	To: 12	2/31/2014	Days in	period:		1	83	
3. Regulatory agency (enter DN	R, DCOM, DATCP	and/or other)	4. BRRTS ID No	. (2 digit pr	ogram-2	digit	county-6	digit site	specific)
WDNR			02-45-000015						
5. Site location :>	-	100	i salika		110	1 4 6 6			
Region	County		Address						
Northeast Region	Outagamie		908 North L	awe Stree	t				
Municipality name City	Town O Village			Township	Range	⊙ E	Section	1/4	1/4 1/4
Appleton				21 N	17	○W	25	NW	NW
6. Responsible party Name			7. Consultant	e following	informa	lion h	as change	ed since t	he last
Albany International Forming	g Fabrics Divisio	n	submittal	• ·-···································					
Mailing address	6 Tutties Divisio		Company nam	е					
PO Box 1939, Appleton, WI	54913-1939		Stoeger & As	s <u>oci</u> ates,	LLC _				
Phone number			Mailing addres	s			Pi	hone nun	nber
	725-2600		527 South Sto	ory St, Ap	pleton,	WI 5	4914	(920) 42	8-9513
8. Contaminants									

Site name: Appleton Wire-Albany International Former Chrome Plant	Remediation Site Progress and Operation	
Reporting period from: <u>07/01/2014</u> To: <u>12/31/2014</u>	Maintenance, Monitoring & Optimization	ı
Days in period: 183	Report Form 4400-194 (R 1/14) Page 2 o	f 29
9. Soil types (USCS or USDA)		
Clay/Silty Clay		
10. Hydraulic conductivity(cm/sec): 11.	. Average linear velocity of groundwater (ft/yr)	
1 X 10 -2	002	
12. If soil is treated ex situ, is the treatment location off site? Yes		
If yes, give location: Region	County	
Municipality name City Town Village	Township Range OE Section 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	_
B. Remediation Method		
Only submit sections that apply to an individual site. Check all that appl	ly:	
Groundwater extraction (submit a completed Section GW-1).		
Free product recovery (submit a completed Section GW-1).		
In situ air sparging (submit a completed Section GW-2).		
Groundwater natural attenuation (submit a completed Section GW-	3).	
Other groundwater remediation method (submit a completed Section	•	
Soil venting (including soil vapor extraction building venting and bio	•	
Soil natural attenuation (submit a completed Section IS-2).	renting each in a completed dealer to 1).	
Other in situ soil remediation method (submit a completed Section I	15-3)	
Biopiles (submit a completed Section ES-1).	(-).	
Landspreading/thinspreading of petroleum contaminated soil (subm	nit a completed Section ES 2)	
Other ex situ remediation method (submit a completed Section ES-		
Site is a landfill (submit a completed Section LF-1).	<i>5).</i>	
C. General Effectiveness Evaluation for All Active Systems		
If the remediation is active (not natural attentuation), complete this subs	section.	
Is the system operating at design rates and specifications?	'es ○ No	
If the answer is no, explain whether or not modifications are necessar	ary to achieve the goal that was previously established in desi	gn.
2. Are modifications to the system warranted to improve effectiveness If yes, explain:	Yes No	
 3. Is natural attenuation an effective low cost option at this time? 4. Is closure sampling warranted at this time? Yes No 5. Are there any modifications that can be made to the remediation to in 		
If yes, explain: A study is underway to determine the feasibility of installing warehouse area to collect groundwater from areas containing	an additional groundwater collection trench system in the	ne

Site name: Appleton Wire-Albany International Former Ch		Remediation Site Progres Maintenance, Monitoring	
Reporting period from: <u>07/01/2014</u> To: <u>12/</u> Days in period: <u>183</u>	/31/2014	Report	•
		Form 4400-194 (R 1/14)	Page 3 of 29
D. Economic and Cost Data to Date			
1. Total investigation cost: \$45,000.00			
2. Implementation costs (design, capital and installa	ation costs, exclu	uding investigation costs: \$10,000.00) Hanjanjunan i i uumana _n
3. Total costs during the previous reporting period:	\$15,000	.00	·
4. Total costs during this reporting period:\$1	0,000.00		
5. Total anticipated costs for the next reporting period	od: \$10,	00.00	
 Are any unusual or one-time costs listed in the re- If yes, explain: Site Investigation Costs, May 2014. 	eporting periods	covered by D.3., D.4. or D.5. above?	Yes () No
7. If closure is anticipated within 12 months, estimate. E. Name(s), Signature(s) and Date of Person(s)	and the second of the second		
Legibly print name, date and sign. Only persons que sites with any ongoing active remediation, monitoring activities during the six month reporting period.	alified to submit	reports under ch. NR 712 Wis. Adm. Code a	
Registered Professional Engineers:			
I hereby certify that I am a registered professional e of ch. A-E 4, Wis. Adm. Code; that this document has 8, Wis. Adm. Code; and that, to the best of my know prepared in compliance with all applicable requirements.	as been prepare vledge, all inform ents in chs. NR	d in accordance with the rules of Professiona nation contained in this document is correct a 700 to 726, Wis. Adm. Code.	al Conduct in ch. A-E
Print name		Title	
Signature	Ĺ	Date	ng again a a consistent an ann an ann an an ann an an an an an
Hydrogeologists:		and the second s	
I hereby certify that I am a hydrogeologist as that te knowledge, all information contained in this docume requirements in chs. NR 700 to 726, Wis. Adm. Cod	ent is correct and		
Print name	7	itle	ette kille film ette er til som til gen i greger a nn gyrger der til fri frammante der en tek ette film det til de
James W. Kauer		Associate Geologist	
Signature James W. Kanes		3/18/2015	
Sølentists:	orani di manda di ma		
hereby certify that I am a scientist as that term is deall information contained in this document is correct chs. NR 700 to 726, Wis. Adm. Code.	and the docume	nt was prepared in compliance with all applic	
Print name	T	itle	
Signature		ate	
Other Persons:			A STATE OF THE STA
Print name	T	it le	у <mark>а құмақардың жаға ұма қаман жаға жаға жаға жаға жаға</mark> қақа қаза жаға жаға жаға жаға жаға жаға жаға ж
Signature	D	ate	ب به المنطقة المنظمة المنطقة ا

Site name: Appleton Wire-Albany Intern	ational Former Chrome Plant	Remediation Site Progress and Operation		
Reporting period from: 07/01/2014	To: 12/31/2014	Maintenance, Monitoring & Optimization		
ays in period: 183		Report Form 4400-194 (R 1/14)	Page 4 of 29	
Professional Seal(s), if applicable	e:			

Sit	te name: Appleton Wire-Albany International Former Chrome Plant				and Operation,
Re	eporting period from: <u>07/01/2014</u> To: <u>12/31/2014</u>			Monitoring &	Optimization
Da	ays in period: 183	Form 4	o rt 400-194 (R 1/1	4)	Page 5 of 29
	ection GW-1, Groundwater Pump and Treat Systems and Groundwater Extraction System Operation:	Free Product	Recovery Sy	stems	
	Total number of groundwater extraction wells or trenches availal	ble: 2	and the nur	nber in use during	period: 2
2.	Number of days of operation (only list the number of days the sy 183	rstem actually o	 pperated, if unk	known explain:	
3.	System utilization in percent (days of operation divided by report 100	ting time period	I multiplied by	100). If < 80%, exp	łain:
4.	Quantity of groundwater extracted during this time period:	41,990	gallon	S	
5.	Average groundwater extraction rate: 0.16 gpr	n			
6.	Quantity of dissolved phase contaminants removed during this ti	ime period in p	ounds:	4.82	Ibs
1.	Is free product (nonaqueous phase liquid) being recovered at thi If yes, explain:	is site?	Yes No		
2.	Quantity of free product extracted during this time period (enter	none if none):		galio	าร
3.	Average free product extraction rate:	gpm			
	System Effectiveness Evaluation				
1.	Is a contaminated groundwater plume fully contained in the cap If no, explain:	oture zone?			Yes No
2.	If free product is present, is the free product fully contained in c If no, explain:	apture zone?			○ Yes ○ No
3.	If free product is present in any wells at the site, but free produc	d was not reco	vered during re	eporting period, exp	olain:
4.	If free product is not present, determine the single contaminant ES and PAL. Perform this calculation for all contaminants that whighest contaminant concentration measured in any sampling percoduct in C.4.a.	vere present at	the site that h	ave ch. NR 140 sta	indards. Use the
	a. Contaminant:	Chromiu	m		
	b. Percent reduction necessary to reach ch. NR 140 ES and PA	AL: 99.99	%		
	c. Maximum contaminant concentration level in any monitoring	well of that cor	ntaminant:	330,000	μg/L
	d. Maximum contaminant concentration level in any extraction v	well of that con	taminant:	67,000	μg/L

Site name: Appleton Wire-Albany International Former Chrome Plant		Remediation Site Progres	
Reporting period from: 07/01/2014	To: 12/31/2014	Maintenance, Monitoring	& Optimization
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 6 of 29

e. If the maximum concentration in a monitoring well is more that one order of magnitude above the concentration measured in an extraction well, explain why the extracted groundwater contamination levels are significantly less than the levels at other locations within the aquifer.

D. Additional Attachments

Attach the following to this form:

- · Most recent report to the DNR Wastewater Program, if applicable.
- · Groundwater contour map with capture zone indicated.
- Groundwater contaminant distribution map (may be combined with contour map).
- Graph of cumulative contaminant removal, if both free product recovery and ground water extraction are used, provide separate graphs
- Time versus groundwater contaminant concentration graphs for the contaminant listed in C.4.a. (above), as follows:
 - Graph of contaminant concentrations versus time for each extraction well in use during the period.
 - -- Graph of contaminant concentrations versus time for the monitoring well with the greatest level of contamination.
- · Groundwater contaminant chemistry table.
- · Groundwater elevations table.
- System operational data table.

Sit	e name: Appleton Wire Albany Internation	nal Former Chrome Plant	Remediation Site Pro	
Re	eporting period from: 07/01/2014	To: 12/31/2014	Maintenance, Monitor	ring & Optimization
Da	ays in period: 183		Report Form 4400-194 (R 1/14)	Page 7 of 29
Ši	ection GW-2, in Situ Air Spargin	j Systems		
A.	In Situ Air Sparging System Ope	ration		
1.	Number of air injection wells at the	site and the number actually i	in use during the period:	0
2.	Number of days of operation (only	list the number of days the sys	stem actually operated, if unknown ex	plain):
3.	System utilization in percent (days	of operation divided by reporti	ing time period multiplied by 100). If	< 80%, explain:
_				
	System Effectiveness Evaluation			
1.	ES and PAL. Perform this calculation	on for all contaminants that we	hat requires the greatest percent reducere present at the site that have ch. No ints during reporting period. If free pro-	R 140 standards. Use the
	a. Contaminant:			
	b. Percent reduction necessary to r	each ch. NR 140 ES and PAL	.: %	
	c. Maximum contaminant concentra	ation level in any monitoring w	vell:µg/L	
2.	Is there any evidence that air is sho If yes, explain:	ort circuiting through natural or	r man-made pathways? O Yes O	No
3.	Is the size of the plume: \(\) Increasing, explain:	asing () Stabalized () Decr	reasing ?	
	Additional Attachments			
ΑĦ	tach the following to this form:			
	 Groundwater contour map. Groundwater contaminant dis When contaminants are aerot 	oically biodegradable, attach a	ed with contour map). I dissolved oxygen in groundwater ma	p (dissolved oxygen may be

- combined with the contaminant data on a single map).

 Site map with all air injection wells and groundwater monitoring points.

 Graph of contaminant concentrations versus time for the contaminant listed in B.1.a. (above) for the monitoring point with the greatest level of contaminant chemistry table.

 Groundwater contaminant chemistry table.

 System operational data table.

- System operational data table.

Site name: Appleton Wire-Albany International Fo	rmer Chrome Plant	Remediation Site	Progress and O	peration,
Reporting period from: 07/01/2014	To: 12/31/2014	Maintenance, Mon	itoring & Optim	ization
Days in period: 183		Report Form 4400-194 (R 1/14)		Page 8 of 29
Section GW-3, Natural Attenuation (Pas	ssive Bioremediation) in	Groundwater		
A. Effectiveness Evaluation				10
 If free product is not present, determine the sir Perform this calculation for all contaminants the concentration measured in any sampling points 	at were present at the site that	have ch. NR 140 standards. Use	e the highest contaminan	
a. Contaminant:		Chromium		
b. Percent reduction necessary to reach of	ch. NR 140 ES and PAL:	99.99 %		
c. Maximum contaminant concentration le	evel in any monitoring well o	of that contaminant:	330,000	μg/L
2. Aquifer parameters:		_		
a. Hydraulic conductivity:			1 X 10-7	cm/sec
b. Groundwater average linear velocity:		_	0.002	ft/yr
3. Is there a downgradient monitoring well th	nat meets ch. NR 140 stand	lards?		
4. Based on water chemistry results, is the p	olume: () Expanding ()	Stabalized Contracting ?	,	
5. If the answer in 4. (above) is "expanding,"	' is natural attenuation still t	he best option? O Yes O	No	
If yes, explain:				
6. Biodegradation parameters:				
a. Upgradient (or other site specific backg	ground) DO level:			μg/L
b. DO levels in the part of the plume that i	is most heavily contaminate	ed		 µg/∟
7. Is site closure a viable option within 12 mc	onths from the date of this f	orm? O Yes O No		
8. Are there any modifications that can impro	ove cost effectiveness? () Yes ● No		
If yes, explain:				
Have groundwater table fluctuations changed by the second of the se	ged the contaminant level t	rends over time? O Yes 🤇) No	
10. Has the direction of groundwater flow cha	anged during the reporting	period? Yes • No		

B. Additional Attachments

Attach the following:

· Groundwater contour map.

If yes, approximate change in degrees:

- Groundwater contaminant distribution map (may be combined with contour map).
- When contaminants are aerobically biodegradable, attach a dissolved oxygen in groundwater map (dissolved oxygen may be combined with the contaminant data on a single map).
- Graph of contaminant concentrations versus time for the contaminant listed in A.1.a. (above) for the monitoring point with the
 greatest level of contamination.
- Graph of contaminant concentrations versus distance.
- Groundwater contaminant chemistry table.
- Groundwater biological parameters.
- Groundwater elevations table.

Site name: Appleton Wire-Albany International Former Chrome Plant		Remediation Site Progress and Operation			
Reporting period from: 07/01/2014	To: 12/31/2014	Maintenance, Monitoring	3 & Optimization		
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 9 of 29		
Section GW-4, Other Groundwate	r Remediation Methods	Mark 22 Comment of Early Early State of the State of the Comment of the Comment of the Comment of the Comment			
A. Effectiveness Evaluation					
Perform this calculation for all contamin	ants that were present at the site	ires the greatest percent reduction to achieve of that have ch. NR 140 standards. Use the highe If free product is present, write "FREE PRODUC	est contaminant		
a. Contaminant:		Chromium			
b. Percent reduction necessary:	9.99 %				
c. Maximum contaminant concentra	ation level in any monitoring w	rell: 330,000 µg/L			
2. Is the size of the plume: O Increa	sing Stabalized Decre	easing ?			
chromium is removed through a	he former chrome plant is on ion exchange process. W	collected into a building sump or frenc astewater from the process is discharg ain the ion exchanger canisters is shipp	ged to the City of		
4. List any additional information requi	red by the DNR for this metho	od for this site:			

B. Additional Attachments

Attach the following:

- Groundwater contour map.
- Groundwater contaminant distribution map (may be combined with contour map).

 When contaminants are aerobically biodegradable, attach a dissolved oxygen in groundwater map (dissolved oxygen may be combined with the contaminant data on a single map).
- Graph of contaminant concentrations versus time for the contaminant listed in A.1.a. (above) for the monitoring point with the greatest level of contamination.
- Groundwater contaminant chemistry table.
- Groundwater elevations table.
- Any other attachments required by the DNR for this remediation method.

Site name: Appleton Wire-Albany International Former Chrome Plant	onal Former Chrome Plant	Remediation Site Progress and Operation,			
Reporting period from: 07/01/2014	To: 12/31/2014	Maintenance, Monitoring	& Optimization		
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 10 of 29		
Section IS-1, Soil Venting (Includ	ing Soil Vapor Extraction, I	Building Vanting and Bloventing)			
A. Soil Venting Operation	ilding vapor mitigation system	s that are installed proactively to protect bu	ilding cooungets/upon		
and are not considered part of ongoin	g active soil remediation.		liding occupants/users		
 Number of air extraction wells avail 	able and number of wells actu	ally in use during the period:			
2. Number of days of operation (only l	ist the number of days the sys	tem actually operated, if unknown explain):			
3. System utilization in percent (days	of operation divided by reporting	ng time period multiplied by 100). If < 80%	, explain:		
4. Average depth to groundwater:	gpm				
B. Building Basement/Subslab Ve	nting System Operation				
1. Number of venting points available	and number of points actually	in use during the period:			
2. Number of days of operation (only I	ist the number of days the sys	tem actually operated, if unknown explain):			
3. System utilization in percent (days	of operation divided by reporti	ng time period multiplied by 100). If < 80%	, explain:		
If the venting system is passive, note treature it.	that here and describe if any p	art of the system was not functioning and v	vhat was done to		
C. Effectiveness Evaluation					
1. Average contaminant removal rate	for the entire system:	pounds per day			
2. Average contaminant removal rate	per well or venting point:	pounds per day			
3. If the average contaminant removal rate per well is less than one tenth	rate is less than one pound po of a pound per day, evaluate the	er day for the entire system, or if the average	ge contaminant removal		
•	• • •	borings have not been drilled in the past y	ear [,]		
i. Oxygen levels in extracted air:	percent	John go have not book almos in allo pacty	54. .		
ii. Methane levels in extracted air	'	ain.			
ii. Weather to retail in extracted an	(pping) if over to pping, exp	anı.			
		eater than 20 percent in extracted air, you			
 Drill confirmation borings of 	luring the next reporting period	f, if the entire site should be considered for	closure.		
		contamination. Do not perform the test in a of decay based on oxygen depletion is less			
then you should drill confir	mation borings, if the entire sit	e should be considered for closure. If the r	ate of decay is between		
2 and 10 mg/kg, operate for	or one more reporting period b	efore evaluating further. If the zero order re e system in a manner than maximizes aero	ate of decay is greater		
	-	tion borings have not been recently drilled	•		

effectiveness can be increased and/or if other options need to be considered to achieve cleanup criteria. D. Additional Attachments

Attach the following to this form:

- Well and soil sample location map indicating all air extraction wells. If forced air injection wells are also in use, identify those wells.
- If water table monitoring wells are present at the site, a map of well locations.
- Time versus vapor phase contaminant concentration graph.
- · Time versus cumulative contaminant removal graph.
- · Groundwater elevations table, if water table wells are present at the site; also list screen lengths and elevations.
- Table of soil contaminant chemistry data.
- Soil gas data, if gas probes are used to monitor subsurface conditions in locations other than where air is extracted.

you should drill confirmation borings during the next reporting period if the entire site should be considered for closure.

c. If soil borings were drilled during the past year and soil contamination remains above acceptable levels, explain if the system

System operational data table.

Demonstrate manifest frages and a constraint	Site name: Appleton Wire-Albany International Former Chrome Plant		Remediation Site Progress and Operation,			
Reporting period from: 07/01/2014	To: <u>12/31/2014</u>	Maintenance, Monitoring Report	& Optimization			
Days in period: 183		Form 4400-194 (R 1/14)	Page 11 of 29			
Section 15-2, Natural Attenuation	(Passive Bioremediation) i	n Soll				
A. Effectiveness Evaluation			4			
	•	ermanently installed gas probe(s) or water	table monitoring well(s).			
a. Hydrocarbon levels:	ppm, with ar	1 FID				
b. Oxygen levels:	percent 					
c. Carbon dioxide levels(specify pp	m or percent):					
d. Methane levels:	ppm					
2. Soil gas information in background	(uncontaminated soil) from pe	rmanently installed gas probe(s)or water ta	ble monitoring well(s):			
a. Hydrocarbon levels:	ppm, with ar	FID				
b. Oxygen levels:	percent					
c. Carbon dioxide levels(specify pp	m or percent):					
d. Methane levels:	ppm					
from prior sampling events.	, ,	. 5	·			
a. Total hydrocarbons (Specify if Gl	RO and/or DRO):		µg/kg			
a. Total hydrocarbons (Specify if Glb. Specific compounds (µg/kg):	RO and/or DRO):		µg/kg			
	RO and/or DRO):µg/kg		µg/kg			
b. Specific compounds (μg/kg):	· · · · · · · · · · · · · · · · · · ·		µg/kg			
b. Specific compounds (µg/kg): i. Benzene:	pg/kg		µg/kg			
b. Specific compounds (µg/kg): i. Benzene: ii. 1,2 Dichloroethane:	pg/kg		µg/kg			
b. Specific compounds (µg/kg): i. Benzene: ii. 1,2 Dichloroethane: iii. Ethylbenzene:	þg/kg þg/kg		μg/kg			
b. Specific compounds (µg/kg): i. Benzene: ii. 1,2 Dichloroethane: iii. Ethylbenzene: iv. Toluene: v. Total xylenes:	pg/kg pg/kg pg/kg pg/kg	vater? () Yes () No	µg/kg			
b. Specific compounds (µg/kg): i. Benzene: ii. 1,2 Dichloroethane: iii. Ethylbenzene: iv. Toluene: v. Total xylenes:	µg/kg µg/kg µg/kg µg/kg µg/kg	• •	μg/kg			
b. Specific compounds (µg/kg): i. Benzene: ii. 1,2 Dichloroethane: iii. Ethylbenzene: iv. Toluene: v. Total xylenes: 4. Is there any evidence that contamin	µg/kg µg/kg µg/kg µg/kg µg/kg	• •	µg/kg			
b. Specific compounds (µg/kg): i. Benzene: ii. 1,2 Dichloroethane: iii. Ethylbenzene: iv. Toluene: v. Total xylenes: 4. Is there any evidence that contamin	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg ants are leaching into grounds ater quality is not being monito	red, explain:	µg/kg			
b. Specific compounds (µg/kg): i. Benzene: ii. 1,2 Dichloroethane: iii. Ethylbenzene: iv. Toluene: v. Total xylenes: 4. Is there any evidence that contamin If the answer is yes and if groundwa	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg ants are leaching into grounds ater quality is not being monito	red, explain:				

B. Additional Attachments

- Attach the following to this form:

 Well and soil sample location map.
 - Cross sections showing the water table, soil sampling locations, screened intervals for gas probes or water table wells, geologic contacts, and any former excavation boundaries.
 - Graphs of contaminant concentrations, oxygen, carbon dioxide and methane levels over time.
 - Groundwater elevations table, if water table wells are present at the site.
 - Table of soil contaminant chemistry.
 - Table of soil gas readings.

Site name: Appleton Wire-Albany International Reporting period from: 07/01/2014 Days in period: 183	ational Former Chrome Plant To: 12/31/2014	Remediation Site Progr Maintenance, Monitorin Report Form 4400-194 (R 1/14)	ess and Operation, g & Optimization Page 12 of 29
Section IS-3, Other In Situ Soil I A. Effectiveness Evaluation 1. Describe the method used to rem		nance (S. 1996) 1997 - S. 1997 - S.	
List all information required by the	e DNR for this remediation metho	od for this site:	

Site name: Appleton Wire-Albany International Former Chrome Plant		Remediation Site Progress and Operation	
Reporting period from: 07/01/2014	To: 12/31/2014	Maintenance, Monitoring	& Optimization
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 13 of 29
Section ES 1, Ex Situ Soil Treatment L	Ising Biopiles	The state of the s	
A. Effectiveness Evaluation 1. Volume of soil in the biopile (if multiple b	ionilae liet number of pile	oc and total volume):	\(\frac{1}{2}\)
1. Volume of soil in the biophe (if multiple b	topiles, list number of pile	es and total voidine).	
2. Monitoring used to assess progress and	verify optimal conditions	for biodegradation.	
a. Vapor phase measurements of gases	(average of all readings	from most recent sampling event):	
i. VOCs by FID:	ppm		
ii. Oxygen: percent			
iii. Carbon dioxide: perce	nt		
iv. Methane:	ppm		
b. Soil temperature: °F			
c. Soil moisture sensors, if used:	percent		
3. Treatment amendments added to the so	<u>'</u>		
a. Artificial nutrients, excluding manure.			
i. Types and total pounds added:			
ii. Nitrogen and phosphorous content	of the added amendment	::percent	
b. Manure:	total pounds		
c. Natural organic materials (straw, wood	d chips, etc.)(type and tot	al pounds):	
4. Forced air biopiles only answer the follow	vina:		
a. Total air flow rate of the ventilation sys	_	scfm	
b. Average contaminant removal rate:		pounds per day	
c. Average biodegradation rate based or	ovvden utilization:	pounds per day	
•		Only list the most recent results. If none coll	lected enter NA.
a. Total hydrocarbons. Specify if GRO ar	· ·	μg/kg	
b. Specific compounds (µg/kg):			
i. Benzene:	μg/kg		
ii. 1,2 Dichloroethane:	µg/kg		
iii. Ethylbenzene:	 µg/kg		
iv. Toluene:	pa-g µg/kg		

v. Total xylenes:

B. Additional Attachments

Attach the following to this form:

Figure showing the construction details of the biopile and any sampling locations within the biopile.

Table of soil contaminant chemistry data.

Table of operational data.

µg/kg

Site name: Appleton Wire-Albany International Former Chrome Plant		Remediation Site Progress and Operation,		
Reporting period from: <u>07/01/2014</u>	To: 12/31/2014	Maintenance, Monitoring	& Optimization	
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 14 of 29	
Section ES-2, Ex Situ Soil Treatment A. Effectiveness Evaluation		Thinspreading		
1. Method used: landspreading th				
		f contaminated soil on native topsoil, incorp rm "thinspreading" refers to placing contam		
2. Was any progress monitoring using field	l screening on soil condu	cted during this reporting period? O Yes	○ No	
3. If the answer to A.2. (above) is yes:				
i. List monitoring method:				
ii. List monitoring results:				
5. Spreading thickness: 6. Type of crop planted (if thinspreading with the content of the conte	inches th no crop planted, so sta			
7. Confirmation sampling date:	Anticipat	ed confirmation sampling date:		
Most recent soil sample results, if soil sa result of the most recent sampling round	amples for laboratory ana I. If no samples have been	lysis have been collected to monitor progresen collected, enter NA.	ss. Only list the highest	
a. Total hydrocarbons. Specify if GRO a	nd/or DRO:	μg/kg		
b. Specific compounds (µg/kg):				
i. Benzene:	μg/kg			
ii. 1,2 Dichloroethane:	µg/kg			
iii. Ethylbenzene:	µg/kg			
iv. Toluene:	μ g/k g			
v. Total xylenes:	µ g/ kg			

B. Additional Attachments

- Attach the following to this form:

 Map of the landspreading/thinspreading area. If soil samples have been collected, specify locations of samples and dates of sampling.

 Table of soil contaminant chemistry data.

 Table of any field screening results with dates of sample collection.

Site name: Appleton Wire-Albany International Former Chrome Plant		Plant	Remediation Site Progress and Operation	
Reporting period from: <u>07/01/2014</u> To: <u>12/31/2014</u>)14	Maintenance, Monitoring & Optimiz	
Days in period: 183			Report Form 4400-194 (R 1/14)	Page 15 of 29
Section ES-3, Landfills	191		Service of the service of the	
	eporting requirements in a D	Department appl	roved Operation and Maintenance	e Plan for a landfill may take
the place of this form				
On a Control to the second	B-tt-1 Bt A	04-4		N - 4
Specific Inspection Items		Status	,	Notes
Perimeter Security Fencing	Broken or missing wood slats, torn chain link fabric, barbed wire, other - list			
Entrance Gate and Locking Mechanism	Lock broken/missing, mechanism inoperative.			
Monitoring Wells and Wellhead Covers	Signs of tampering, casing damaged, lock missing.			
Final Cover Vegetation	Bare spots, stressed vegetation, deep rooted vegetation.			
Final Cover Slope (explain below)	Gullies, lack of vegetation, subsidence, ponding.			
Evidence of Burrowing Animals	Damage to final cover, evidence of waste.			
Stormwater Drainage Channels	Gullies, erosion, debris, culvert blocked.			
Passive Landfill Gas Venting System	Damaged or blocked vent risers, stressed vegetation.			
Active Landfill Gas Extraction System	Darnaged or blocked piping, cleanouts, other blower flare, knockouts, etc.			
Leachate Collection System	Pumps, connection piping, collection system piping, extraction wells, collection tanks, tanker truck loading system or sanitary sewer discharge piping.			
Access Road Cover Mowing; Tall Vegetation Removal	Ponding, rutting, erosion, cracked or damaged pavement. Mowing and tall vegetation removal done to specified vegetation.			
Summary of Deficiencies an	d/or Corrective Actions:			

Site name: Appleton Wire-Albany Internation	onal Former Chrome Plant	Remediation Site Progre	
Reporting period from: 07/01/2014	To: <u>12/31/2014</u>	Maintenance, Monitoring	g & Optimization
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 16 of 29

- B. Additional Attachments

 Attach the following to this form:

 Any photographs documenting problems and maintenance activities.

 Maps, drawings showing site features requiring maintenance.

 Records for leachate pumping/discharge/hauling.

 Records for active gas extraction volumes.

Site name: Appleton Wire-Albany Internati	onal Former Chrome Plant	Remediation Site Progres	•
Reporting period from: 07/01/2014	To: <u>12/31/2014</u>	Maintenance, Monitoring & Optimizati	
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 17 of 29

Section INS-1, Section by Section Instructions and Information

<u>Specific Section by Section Instructions for This Form.</u> The site name and reporting period is listed on every page. Then if the pages are inadvertently separated, that information can be used to determine which pages form the report.

General Site Information

- -- A.1. List the name as it appears on the DNR tracking system. If the person filling out the form does not know what the name on the tracking system is, use the name that the DNR used in the most recent correspondence.
- A.2. The reporting period should be either from January 1 to June 30 or July 1 to December 31 for active systems. For passive systems, use a calendar year basis. If however the report covers a newly installed system, list the actual startup date instead of January 1 or July 1. For new passive systems, use the first date that monitoring data is available as the date of startup.
- A.3. Enter all regulatory agencies that regulate the site.
- A.4. This form is a DNR form. For that reason, list the DNR site number. If there are other agencies regulating the site, listing identification numbers for other agencies is also recommended, but not mandatory, unless specified by those other agencies.
- A.5. If the information listed for the site location is not sufficient information for a person to use to drive to a site (example: no street address in a rural area), also include a map that is sufficient for a person to use to drive to the site. A U.S. G.S. topographic map that shows the site location may be used.
- A.8. List the contaminants that have at one time exceeded the PALs or Table Values in ch. NR 720. If GRO and/or DRO exceed the ch. NR 720 standards, also list GRO and/or DRO. Do not list other contaminants that have never exceeded state standards at the site. If more room is necessary, write "SEE ATTACHED SHEETS" and list all contaminants on a separate sheet.
- -- A.9. List the predominant soil types that are contaminated. If there is both contaminated soil and groundwater at the site, list soil types both above and below the water table. If only some soil is contaminated, do not list the soil types that are uncontaminated. If the site soils meet soil cleanup criteria, but groundwater is contaminated, so state that. Specify if the USCS or USDA system is used for soil descriptions. This line specifies soil because the vast majority of contaminated sites do not have contaminated bedrock. If bedrock is contaminated, also list that bedrock type.
- -- A.10.If the groundwater meets ch. NR 140 standards, enter "NA NO NR 140 EXCEEDANCES". Otherwise, list the estimated hydraulic conductivity and the method used to estimate it (bail-down tests, calculations based on grain size, pumping test, etc.) If the hydraulic conductivity has not been determined, state when the tests are to be conducted. When a number of test results are available, list the range of results and the geometric mean. If however some results have a low level of accuracy and some results have a high level of accuracy, you should only list the most accurate results. See the Section on aquifer testing in the Guidance on Design, Installation and Operation of Ground Water Extraction and Product Recovery Systems for more information.
- A.11.If the groundwater meets ch. NR 140 standards, enter "NA NO NR 140 EXCEEDANCES". Otherwise, enter groundwater average linear velocity as a function of hydraulic conductivity, effective porosity and the groundwater gradient. You should use the geometric mean from A.11. (above) and the most representative value for the gradient at the site. Estimate the effective porosity based on soil types and geologic origin of the soil. If there are reasons to believe that the average liner velocity estimate is less than the actual rate at the site, so state that reason. Secondary porosity effects, flow through submerged utility trenches, widespread contaminant distribution in low permeability soils, etc., are reasons to assume that the actual migration rate is much greater than the predicted average linear velocity. In such cases, you should explain the reasoning for doubting the predicted average linear velocity.
- A.12.If the information listed for the soil treatment location is not sufficient information for a person to use to drive to a site, also include a map that is sufficient for a person to use to drive to the site. A U.S.G.S. topographic map or a plat map that shows the site location may be used.

Site name: Appleton Wire-Albany International Fo	ormer Chrome Plant	Remediation Site Progre	
Reporting period from: 07/01/2014	To: 12/31/2014	Maintenance, Monitorin	g & Optimization
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 18 of 29

- -- B. Check all methods used at a site. For example, if groundwater extraction, free product recovery and soil venting are used, check all three methods and submit the additional pages for those methods. If dual-phase or bioslurping are used, these methods extract both air and groundwater, check boxes for and attach additional pages for both soil venting and pump and treat.
- -- C. Remediation systems that use any form of enhancement are considered "active" and sites where there are no enhancements of any kind are considered "passive" forms of remediation. For purposes of these forms, natural attenuation (also called naturally occurring bioremediation) is "passive" and all other remediation methods are "active" methods.
- -- C.1. Design flow rates refers to flow rates such as gallons per minute extracted by a ground water extraction system, standard cubic feet per minute extracted by a soil venting system, standard cubic feet per minute injected by an in situ air sparging system, etc. If the actual flow rate is within 80 percent of the rate predicted in the design, consider that as meeting the design specification.
- D. The cost data in this section is used by DNR staff to evaluate whether or not the selected remedy is the most cost effective remedy and whether or not system modifications may be warranted to improve efficiency and/or cost effectiveness. Responsible parties and consultants are encouraged to submit cost information so that DNR staff may assist responsible parties and consultants accomplish environmental cleanups in the most cost effective manner.

Total costs for past costs are all costs to date. This information is for all costs that were incurred to investigate and/ or remediate the site. These costs include but are not limited to: consulting labor and supplies, laboratory testing, transportation, equipment, etc. If the consultant does not pass all costs through the consulting firm, the consultant will need to contact their client for other non-consulting costs to determine total costs. Exceptions include costs for attorney fees, accounting, claim assistance in preparing claims to state reimbursement funds, or other indirect expenses that are not essential to remediating the site.

- D.2. The initial implementation costs are all costs that are incurred to start implementing a remedy at a site. Costs for the investigation however are excluded because those costs are incurred prior to remedy selection. Since costs for treatability and/or pilot testing are used to procure data for remedial design and are specific to different remediation methods, these costs should be included in implementation costs and not investigation costs. Startup or shakedown costs are also considered implementation costs and should not be considered operation and maintenance costs.
- D.3. Costs for implementation or investigation should not be repeated here or they will be double counted.
- D.4. Costs for implementation or investigation should not be repeated here or they will be double counted.
- D.5. Costs for implementation or investigation should not be repeated here or they will be double counted.
- D.6. Examples of one-time or unusual costs include the following:
 - Replacing a burned out motor on a pump.
 - Replacement of a well that was destroyed by a snowplow.
 - Confirmation sampling to determine if the site meets closeout criteria. This type of cost is considered an unusual
 cost because this type of sampling is not conducted during most reporting periods.
- D.7. This estimate of costs is for all costs to close out a site minus the salvage value of any remediation equipment.
 Pertinent costs include items such as well abandonment, equipment removal from the site, consulting costs associated with these items, etc. Do not include any costs that will not be paid by a state reimbursement fund, such as repaving.

Site name: Appleton Wire-Albany International Former Chrome Plant		Remediation Site Progre	
Reporting period from: 07/01/2014	To: 12/31/2014	Maintenance, Monitoring & Optimization	
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 19 of 29

Section GW-1, Groundwater Extraction and Product Recovery

- A.1. List two numbers, the total number of extraction wells at the site and the number that were in actual use during the period. If all wells were in use, state that on the form.
- -- A.2. The number of days of operation are the number of days that the system was actually operated. If the system was shut down for reasons such as: repairs were necessary, piping froze, shut down to provide time for subsurface conditions to equilibrate before sampling, etc., do not list those days as being in operation.
- A.3. System utilization is a measure of the amount of time that the system operated relative to the amount of time that it
 could have operated.
- A.5. The average is for the entire site, not per well or trench. For purposes of determining the average ground water extraction rate, calculate the average based on the total volume of groundwater extracted divided by the time of the reporting period. For example, if the system operated at 10 gallons per minute for one month, the amount of water extracted would be approximately 432,000 gallons. If the reporting period was six months long, then the time period is approximately 260,000 minutes. Therefore, the average flow rate over six months is 432,000 divided by 260,000 minutes for an average flow rate of 1.67 gallons per minute (gpm).
- A.6. Calculate the total dissolved contaminants removed in pounds. If the estimate is a sum of BTEX and not based on a
 total hydrocarbon test (GRO and/or DRO), so state that on the form.
- B.3. The average should be based on the entire site over the entire reporting period. See instructions above for A.5. List
 the free product recovery rate as gallons per day (gpd), not gallons per minute (gpm).
- C.1. To answer this question, a thorough evaluation of water levels and chemical analyses in all monitoring points at the site is necessary.
- C.2. If the capture zone has not been determined mathematically, it will need to be determined to answer this question. See the Guidance on Design, Installation and Operation of Ground Water Extraction and Product Recovery Systems for and any recent update or errata sheets for more information on plume capture.
- C.4. When free product is present, line C.4.a. should state "FREE PRODUCT" and lines C.4.b. through C.4.d. are left blank. Otherwise, complete the following calculations. There typically are several compounds at most contaminated sites that exceed the standards in ch. NR 140. The purpose of this question is to focus on the single contaminant that requires the most treatment to achieve groundwater quality standards on a percent reduction basis. For example, the most recent round of sampling at an example site demonstrated the highest levels of contaminants were 1,000 μg/L benzene and 1,000 μg/L toluene in the most heavily contaminated monitoring well. The ES and PAL for benzene is 5 μg/L and 0.5 μg/L (respectively) and for toluene the ES and PAL is 343 μg/L and 68.6 μg/L (ES and PAL data as of August 1995). Therefore the percent reduction to meet the ES and PAL for benzene is 99.5 and 99.95 percent and for toluene it is 65.7 and 93.14 percent. For that reason, the single contaminant that is most critical to reaching state groundwater standards is benzene. Therefore benzene is entered on line a. In this example, 99.5 and 99.95 percent is entered on line b. In this example, 1,000 μg/L is entered on line c. In this example, benzene is the driving factor, therefore enter the maximum benzene level in the single most heavily contaminated extraction well during the most recent sampling period on line d.
- D. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

Section GW-2, In Situ Air Sparging

- B.1. See instructions for Section GW-1, Item C.4.
- C. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

Site name: Appleton Wire-Albany Internati	onal Former Chrome Plant	Remediation Site Progre	
Reporting period from: 07/01/2014	To: <u>12/31/2014</u>	Maintenance, Monitoring	& Optimization
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 20 of 29

Section GW-3, Natural Attenuation in Groundwater

- A.1. See instructions for Section GW-1, Item C.4.
- -- A.2.a. List the estimated hydraulic conductivity that was listed on line A.11 in Section GI-1.
- A.2.b. List the groundwater average linear velocity that was listed on line A.12 in Section GI-1.
- -- A.3. Assess the monitoring well network to determine if there is a down gradient well that has not been impacted by the contaminants. Consider the possibility of a submerged (or diving) plume in that assessment. If all evidence indicates that the plume does not extend to the farthest "clean" downgradient well, indicate "YES" on the form. Otherwise indicate "NO" on the form. If there are not plans to install such a well, explain.
- A.4. Based on the contaminant distribution, evaluate whether or not the plume is expanding, stabilized, or contracting.
 When making this determination, consider the contaminant that requires the greatest percent reduction to achieve ch. NR 140 standards.
- -- A.5. If the plume is expanding and a justification is necessary, add additional sheets justifying why natural attenuation is still the appropriate remedy. If it is not, further describe in the explanation the plans to use a different remedy.
- A.6.a. Enter the upgradient dissolved oxygen (DO) level(s). If however there are contaminants measured in the
 upgradient well, it is not a true background measurement. In that case enter "UNKNOWN" on the form.
- -- A.6.b. Enter the range of DO values measured in wells within the plume.
- B. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

Section GW-4, Other Groundwater Remediation Methods

- -- A.1. See instructions for Section GW-1, Item C.4.
- A.2. Self explanatory.
- A.3-4. Enter the information specified by the DNR for this method at this site.

Section IS-1, Soil Venting (Including both Soil Vapor Extraction and Bioventing)

- B.3. This subsection is used as a trigger for determining if the system requires an evaluation for future activities, such as improvements, converting the site to monitoring for natural attenuation, closure, etc. If an in situ respiration test must be performed, see Hinchee, R.E. and Ong, S.K. 1992. A Rapid In Situ Respiration Test for Measuring Aerobic Biodegradation Rates of Hydrocarbons in Soil. *Journal of the Air and Waste Management Association*. Volume 42, Number 10. Pages 1305 to 1312 for general procedures. For a discussion of methane monitoring, see the instructions for Section IS-2, item A.1.d., below. If the contaminant extraction rate in B.3. is greater than the trigger levels, leave lines B.3.a.i. and B.3.a.ii. blank.
- C. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

Site name: Appleton Wire-Albany Internati	onal Former Chrome Plant	Remediation Site Progre	•
Reporting period from: 07/01/2014	To: <u>12/31/2014</u>	Maintenance, Monitoring	& Optimization
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 21 of 29

Section IS-2, Natural Attenuation in Soil

- A.1. This data is used to assess subsurface conditions based on soil gas data. Whenever possible, a permanently installed gas probe should be used. If at all possible, the gas probe should be located in the part of the site that is most heavily contaminated, since that is the part of the site that is likely to take the longest amount of time to meet ch. NR 720 standards. Water table wells that have screen exposed above the water table are also good measuring points. When installing permanent gas probes, you should install the screen deep enough that a true measure of the most heavily contaminated soil is possible, but install the screen shallow enough to assure that it is not submerged by groundwater table fluctuations. In some situations where the depth of contamination is variable, consideration should be given to using nested gas probes instead of only using probes at a single depth. Measuring points that should not be used include temporary gas probes because these points are less repeatable from one monitoring event to the next. Also, if there has been an active soil venting system in use at the site, the air extraction wells should not be used because these wells are in locations that have had much more aggressive treatment than the rest of the site.
- A.1.a. A flame ionization detector (FID) is specified instead of a photo ionization detector (PID) because PIDs often read
 inaccurately in moist oxygen deficient/carbon dioxide rich atmospheres. Also, PIDs do not detect some
 petroleum compounds.
- -- A.1.d. Methane readings are used to measure for anaerobic conditions. When the original product that is lost is a refined petroleum product (not crude oil), there should not be any methane within the product. Methane however may be produced under very anaerobic conditions. Any method may be used for measuring methane provided that the detection limit is less than a few ppmy. One convenient method is to use an FID that is equipped with a granular activated carbon filter to filter out non-methane components. Some instrument manufacturers make these filters available as options. In some cases an FID will flame out due to an oxygen deficiency. Some instrument manufacturers offer a dilution device as an accessory that is designed to prevent flameouts and also raises the upper limit of measurement to 10,000 ppmy or higher. If the meter "pegs" at 10,000 ppmy (or one percent), enter ">10,000 ppmy."
- -- A.2. The background monitoring point is predominantly used to measure natural oxygen and carbon dioxide levels in soil over time. For this reason, the background monitoring point should be reasonably close to the site, but not so close that the conditions are no longer representative. Considerable variations over time can occur, this background point should be measured during every sample event. Considerations for determining if a background point is representative include:
 - If an on-site background point has minor levels of VOCs in it due to gas phase diffusion, that is acceptable, but if the levels are high, it may not be representative of true background conditions.
 - Background oxygen and carbon dioxide levels vary with soil type and natural organic carbon content. For this
 reason, if at all possible, the soil types should be identical within the screened interval of all gas probes.
 - The same depths should be used for all gas probes to allow comparison from one location to the next. If the
 depth to water varies greatly across the site, a certain amount of confusion in the data is likely. In this case, use
 professional judgement to provide the best data possible at a reasonable cost.
- A.3. Enter this data for petroleum fuel sites. For other sites, provide the data that is most appropriate for the situation.
- B. Cross sections are self explanatory, see the generic discussion at the end of the instructions (below) for other attachments.

Section IS-3, Other In Situ Soil Treatment Methods

A.2. Enter the information specified by the DNR for this method at this site.

Site name: Appleton Wire-Albany International Former Chrome Plant		Remediation Site Progre	
Reporting period from: 07/01/2014	To: 12/31/2014	Maintenance, Monitoring	ı & Optimization
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 22 of 29

Section ES-1, Ex Situ Soil Treatment Using Biopiles

- A.3.a. The term "artificial nutrients" essentially means agricultural fertilizers or any other fertilizer products.
- A.3.a.i. The types of fertilizers that are added should be listed here by chemical names, not by vendor trade names.
- A.3.a.ii. List nitrogen content as N, list phosphorous content as phosphoric acid (P2O5). Note: Fertilizer ratings are based not on actual content of N, P and K, but on nitrogen (as N), phosphorous (as P2O5) and potassium (as K2O).
- A.4.c. See example calculations at the end of this set of instructions.
- A.5. Enter this data for petroleum fuel sites. For other sites, provide the data that is most appropriate for the situation.
- B. The figure is self explanatory. See the generic discussion at the end of the instructions (below) for instructions for the tables.

Section ES-2, Ex Situ Soil Treatment Using Landspreading/Thinspreading

 B. A map to scale of the landspreading location including and landmarks or benchmarks. When samples have been collected, the distances to any landmarks or benchmarks should be indicated.

Section ES-3, Other Ex Situ Soil Treatment Methods

- A.2. Enter the information specified by the DNR for this method at this site.

Site name: Appleton Wire-Albany Internati	onal Former Chrome Plant	Remediation Site Progre	ss and Operation,
Reporting period from: 07/01/2014	To: <u>12/31/2014</u>	Maintenance, Monitoring	& Optimization
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 23 of 29

Section INS- 2, Figures, Graphs and Tables

When figures and graphs are specified, they should at a minimum contain the following information, or an explanation as to why the information is not necessary.

Maps. All maps should include the applicable information specified in s. NR 724.11(6), Wis. Adm. Code. In most cases, all information can be combined into a single map. There are times that a single map will have so much data that it is essentially unreadable. The consultant should use professional judgement when determining if a single map or multiple maps best portray the information necessary.

- Groundwater Contour Map Guidelines.
 - List groundwater elevations for each measuring point on the map.
 - Use the most recent data available.
 - For water table maps, do not use data from deeper piezometers. If piezometer data is shown, use a different symbol for the piezometers than used for water table wells.
 - -- If any wells are dry, indicate that on the map.
 - If free product is present at site, shade the area where free product is estimated to be present.
 - If groundwater is extracted with a pump and treat system, also denote plume capture zone.
 - If in situ air sparging or soil venting is in use, specify on the map if the system was operating or shut down during the
 water level measurements. See the Subsection on water table maps in the Guidance on Design, Installation and
 Operation of Ground Water Extraction and Product Recovery Systems for more information on this topic.
- Groundwater Contaminant Distribution Map Guidelines.
 - Only contaminants that exceed the ch. NR 140 ES or PAL should be shown on the map. When contaminants are above the PAL or ES at some data points and below the PAL or ES at other data points, list the data for all locations to portray which areas of the site meet ch. NR 140 groundwater quality standards.
 - -- If a well is not sampled due to the presence of free product indicate "FREE PRODUCT" at those data points.
 - If more than five contaminants exceed ch. NR 140 ES, only the five contaminants that require the greatest percent reduction to achieve ch. NR 140 ES or PAL should be shown on the map.
 - Drawing isoconcentration lines is optional, unless specified for the site on a site specific basis.
 - If the contamination has crossed the property line, that property line should be clearly denoted on the map.
 - If in situ air sparging is used, water samples from ch. NR 141 type monitoring wells may not represent aquifer water quality as a whole. For that reason, groundwater data should be obtained from driven probes with no filter pack. If there are no driven probes and conventional ch. NR 141 monitoring wells are used, shut down the air injection system at least two weeks prior to collecting groundwater samples. See the Guidance on Design, Installation and Operation of In Situ Air Sparging Systems and the August 1995 update sheets for more information on this topic.
- Dissolved Oxygen Map Guidelines.
 - Dissolved oxygen data may be shown on the contaminant concentration graphs or on a separate graph.
 - Dissolved oxygen maps are optional for ground water extraction and product recovery systems.
 - When in situ air sparging is used, monitoring points may not represent aquifer water quality as a whole. For that reason, groundwater data should be obtained from driven probes with no filter pack. If there are no driven probes and conventional ch. NR 141 monitoring wells are used, shut down the air injection system at least two weeks prior to collecting groundwater samples for DO. See the *Guidance on Design, Installation and Operation of In Situ Air Sparging Systems* and the August 1995 update sheets for more information on this topic.
- Well and Soil Sample Location Map Guidelines. Well and sample location maps for all methods should clearly indicate the
 location(s) of the release or the area where soil contamination historically has been highest. Also, if part of the contamination
 has been excavated, the pit boundaries.

The recommended documentation for each remedial method is as follows:

- Groundwater Extraction and Product Recovery separate well location maps should not be provided, instead the wells should be indicated on the groundwater contour and contaminant distribution maps.
- In Situ Air Sparging the map should indicate all air injection wells, soil venting extraction wells, and all groundwater monitoring points.

Site name: Appleton Wire-Albany International Former Chrome Plant		Remediation Site Progre	• ,
Reporting period from: 07/01/2014	To: 12/31/2014	Maintenance, Monitoring	& Optimization
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 24 of 29

Maps (Continued).

- Natural Attenuation in Groundwater separate well location maps should not be provided, instead the wells should be indicated on the groundwater contour maps.
- Soil Venting indicate all air extraction wells. If any gas probes are used to assess subsurface conditions in either
 contaminated zones or background locations, also indicate those data points with a different symbol. If soil samples have
 been collected recently to track progress, indicate those locations with the date of sampling noted on the map.
- Natural Attenuation in Soil show all monitoring points. Indicate which data points are background measuring points. If soil samples have been collected recently to track progress, indicate those locations with the date of sampling noted on the map. If the site was previously treated by soil venting, the locations of former air extraction wells should also be shown since these are areas where aggressive treatment has been applied. Also show area(s) of paved and unpaved ground surface. If pavement is significantly broken to allow significant water infiltration and air diffusion, map that area as broken pavement.

Graphs. All graphs that show time versus contaminant concentration or cumulative contaminant removal should be based on total time, not only operation time. All graphs that denote cumulative removal should use pounds of contaminant removed. Graphs should accurately show the time period(s) when the system was not operating. Plot time on the X axis, concentration or cumulative removal data on the Y axis.

- Time Versus Cumulative Removal. The recommended documentation for each remedial method is as follows:
 - Groundwater Extraction and Product Recovery separate graphs should be used for free product recovery and dissolved
 phase recovery. A single graph for each phase is adequate, per well graphs are only necessary when specified by the
 Department on a site specific basis.
 - In Situ Air Sparging no graph is necessary (removal data is shown on the graphs for the soil venting system).
 - Natural Attenuation in Groundwater no graph is necessary.
 - Soil Venting provide a graph of cumulative removal for total VOCs for the total system.
 - Natural Attenuation in Soil no graph is necessary.
 - Ex Situ Soil Treatment Using Biopiles Provide two graphs, one showing cumulative removal of total VOCs and a second graph showing total contaminant biodegradation over time.
 - -- Ex Situ Soil Treatment Using Landspreading/Thinspreading no graphs are needed.
- <u>Time Versus Contamination Concentration Graphs.</u> Create graphs with contamination level on the y axis (semilog scale) and time on the x axis (linear scale). If free product is present, time versus contamination concentration graphs are not necessary.

The recommended documentation for each remedial method is as follows:

- Groundwater Extraction and Product Recovery graph the contaminant level over time for the groundwater that is
 extracted by the extraction system. List all compounds that exceed ch. NR 140 ES or PAL. If over five contaminants
 exceed ch. NR 140 ES or PAL, only list the five contaminants that exceed ch. NR 140 standards by the greatest percent.
- -- In Situ Air Sparging provide a graph for the single monitoring well that is most heavily contaminated. If over five contaminants exceed ch. NR 140 ES or PAL, only list the five contaminants that exceed ch. NR 140 standards by the greatest percent.
- Natural Attenuation in Groundwater provide a graph for all monitoring wells that contain any compounds that exceed ch.
 NR 140 standards. If over five contaminants exceed ch.
 NR 140 ES or PAL, only list the five contaminants that exceed ch.
 NR 140 standards by the greatest percent.
- Soil Venting provide a graph of contaminant concentration over time for the entire system for total VOCs. If any gas probes are used to assess subsurface conditions in either contaminated zones, also provide a graph with the data from the most heavily contaminated gas probe.
- -- Natural Attenuation in Soil provide a graph of contaminant concentration over time for total vapor phase VOCs as measured with an FID, oxygen, carbon dioxide and methane in an gas probe.
- Ex Situ Soil Treatment Using Biopiles no graph is necessary.
- -- Ex Situ Soil Treatment Using Landspreading/Thinspreading no graphs are needed.

Site name: Appleton Wire-Albany International Fo	rmer Chrome Plant	Remediation Site Progr	
Reporting period from: 07/01/2014	To: 12/31/2014	Maintenance, Monitorin	g & Optimization
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 25 of 29

Graphs (Continued).

Graph of Contaminant Concentrations Versus Distance. If free product is present, a graph of contaminant concentrations versus distance is not necessary.

The recommended documentation for each remedial method is as follows:

- Groundwater Extraction and Product Recovery no graph is necessary.
- In Situ Air Sparging and Natural Attenuation in Groundwater plot a graph with distance (on the x axis, linear scale) and contaminant concentrations (y axis, log scale) from the upgradient measurement point to the farthest downgradient data point along the centerline of the plume. List the same contaminants as shown on the Time Versus Contaminant Concentration Graphs. Clearly show the source area on the graph. If free product has been present, label the data points that previously contained free product. For in situ air sparging, see comments above about samples collected from conventional monitoring wells with filter packs versus driven probes.

Tables. Whenever possible, data over the life of the project should be listed.

The recommended documentation for each type of table is as follows:

Groundwater Contaminant Chemistry Data.

List:

- Contamination levels for all contaminants that exceed ch. NR 140 standards.
- Dissolved oxygen levels if applicable.
- Other biological parameters, if applicable (nitrogen, phosphorous, manganese, sulphate, iron, dissolved methane, redox potential, pH, microbial population size, etc.). See instructions for page GW-3 for more information on these parameters.
 Also, list the dates the samples were collected and the standard methods used to analyze the samples.
- Groundwater Biological Parameters.

For natural attenuation in groundwater only, these measurements should be listed (if known) to provide information on biodegradation. This table is not necessary for free product extraction, groundwater extraction or in situ air sparging.

Provide a table that includes any results of tests conducted for dissolved oxygen, nitrate, manganese, iron, sulphate, methane, redox potential, heterotrophic and/or hydrocarbon degrading microorganism populations. Identify on the table if the monitoring locations are upgradient, side gradient, downgradient, or within the plume, dates of sampling, and the analytical methods used for those parameters. Include all data for the life of the project. Since some of these tests are only conducted once, or periodically - enter "NS" in the table for not sampled for any parameters that were not sampled during a particular round of sampling.

When asked to list the standard methods, list the method if a standard method exists. There are however some tests (for example dissolved methane) where there are no official standard laboratory or field methods. In this case the laboratory will have to create their own standard procedures. In these cases list the name of the laboratory and that laboratory's name for that test.

Specific considerations for each parameter are as follows:

- Dissolved oxygen (mg/L). The most efficient mechanism for natural or enhanced biodegradation of petroleum compounds is aerobic biodegradation.
- Nitrate (mg/L as N). Nitrate (NO3⁻¹) is a potential electron acceptor for denitrification and also serves as a nutrient for heterotrophic microbial populations to enhance aerobic biodegradation. Decreasing nitrate levels from background wells to wells within the plume are an indication of either aerobic or anaerobic biodegradation.
- -- Manganese as Mn⁺² (mg/L). Manganese as Mn⁺⁴ is converted to soluble manganese as Mn⁺² under anaerobic biodegradation. For this reason, total manganese analysis is not appropriate, only soluble manganese as Mn⁺². When the levels of soluble manganese are higher in wells within the plume than in background wells, that is an indication of anaerobic biodegradation.
- Iron as Fe⁺² (mg/L). Iron as Fe⁺³ is converted to soluble iron as Fe⁺² under anaerobic biodegradation. For this reason, total iron analysis is not appropriate, only soluble iron as Fe⁺². When the levels of soluble iron are higher in wells within the plume than in background wells, that is an indication of anaerobic biodegradation.

Site name: Appleton Wire-Albany International Fo	rmer Chrome Plant	Remediation Site Progre	
Reporting period from: 07/01/2014	To: 12/31/2014	Maintenance, Monitoring	ı & Optimization
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 26 of 29

Tables (Continued).

- Dissolved sulphate (SO4⁻², mg/L). Sulphate (SO4⁻²) is a potential electron acceptor. Decreasing sulphate levels from background wells to wells within the plume are an indication of anaerobic biodegradation.
- Dissolved methane (mg/L). Methane is produced under anaerobic conditions. Since background methane levels can usually be assumed to be zero, in most cases only measurements within the plume are used. Exceptions are when the natural soils have very high levels of TOC (for example peat), background methane levels are also warranted. When the contaminant is crude oil instead of a refined petroleum product, methane measurements may however cause erratic results. Significant amounts of methane may be created when other electron acceptors (NO3⁻¹, Mn⁺⁴, Fe⁺³ and SO4⁻²) are exhausted. For this reason, significant levels of methane are indicative of very very anaerobic conditions.
- Redox potential (millivolts, include + or sign). Redox potential is another measure of the level of aerobic/anaerobic conditions, however it is a much more sensitive measurement than DO at very low levels of DO.
- -- Heterotrophic and hydrocarbon degrading microorganism populations (CFU/mL). Heterotrophic and specific hydrocarbon degrader population sizes should be listed for both background locations and locations within the plume, if there is information available. There is disagreement by many of the experts within the field as to the merits of sampling for this parameter. Refer to other DNR guidance documents on natural attenuation (or passive bioremediation) for more information on this topic.

Soil Gas Data.

The recommended documentation for each remedial method is as follows:

- When natural attenuation in soil is used, provide a graph of all soil gas readings over time for every data point.
- When soil venting is used, if a gas probe is used to assess subsurface conditions over time in a location where air is not
 extracted, provide that data in a table.

System Operational Data.

The recommended documentation for each remedial method is as follows:

- Groundwater Extraction and Product Recovery:
 - Well by well flow rates in gpm for each extraction well. If a well is off line, list flow rate as "ZERO." Clearly denote on the table periods of system shutdown.
- In Situ Air Sparging:
 - Air pressure and injection flow rates in scfm for each well. If a well is off line, list flow rate as "ZERO." Clearly denote on the table periods of system shutdown.
- Natural Attenuation in Groundwater no table needed.
- Soil Venting:
 - Vacuum readings and extraction rates in scfm for each well. If a well is off line, list flow rate as "ZERO." Clearly
 denote on the table periods of system shutdown.
 - Air concentrations in ppmy or in mg/L for total VOCs.
 - Total system contaminants removed in pounds and the pounds per day removal rate.
- Natural Attenuation in Soil no table needed.

Site name: Appleton Wire-Albany International For	mer Chrome Plant	Remediation Site Progress and Operatio						
Reporting period from: 07/01/2014	To: 12/31/2014	Maintenance, Monitoring & Optin Report	nization					
Days in period: 183		Form 4400-194 (R 1/14)	Page 27 of 29					

Tables (Continued).

- Ex Situ Soil Treatment Using Biopiles:
 - If forced air ventilation is used:
 - System extraction rates in scfm.
 - Air concentrations in ppmy for total VOCs.
 - Total system contaminants removed in pounds and the pounds per day removal rate.
 - Temperature.
 - If passive ventilation is used, a table of temperatures.
- -- Ex Situ Soil Treatment Using Landspreading/Thinspreading no table is needed.

Acronyms and Abbreviations:

CFU/mL colony forming units per milliliter cm/sec centimeters per second DATCP Department of Agriculture, Trade and Consumer Protection DCOM Department of Commerce DNR Department of Natural Resources Dissolved Oxygen DO DRO Diesel Range Organics ES Enforcement Standards in NR 140 FID Flame Ionization Detector feet per year ft/yr gallons per day gpd gallons per minute gpm GRO Gasoline Rage Organics mg/kg milligrams per kilogram mg/Lmilligrams per liter NR prefix for rules established by the DNR Registered Professional Engineer P.E. P.G. Registered Professional Geologist Preventative Action Limit in NR 140 PAL PECFA the state sponsored cleanup fund for certain petroleum contaminated sites parts per million by volume (vapor phase only) ppmy standard cubic feet per minute scfm TOC **Total Organic Carbon** USCS Unified Soil Classification System USDA United States Department of Agriculture micrograms per kilogram μg/kg micrograms per milliliter μg/mL Volatile Organic Compounds VOC Yes or No Y/N

Site name: Appleton Wire-Albany International Fo	rmer Chrome Plant	Remediation Site Progress			
Reporting period from: 07/01/2014	To: 12/31/2014	Maintenance, Monitoring &	ւ Optimization		
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 28 of 29		

Section INS-3, Example Calculations for Determining the Biodegradation Rate on Forced Air Bioplies

Important Note: This page uses a nonproportional font and characters that are unique to WordPerfect. If the user received this document electronically, this page may need to be converted to a different font for the formulas to print correctly. The original font used for this page was prestige elite with 16.67 characters per inch.

Assumptions:

- · The measurements at the stack are as follows:
 - Average flow rate is 20 scfm.
 - Average oxygen level extracted from biopile is 14.0 percent by volume.
 - Average carbon dioxide level extracted from biopile is 3.5 percent by volume or 35,000 ppmy.
- Atmospheric air contains 21 percent oxygen by volume and 400 ppm_V (or 0.04 percent) carbon dioxide. (Note: On each site
 visit, the consultant should check atmospheric air to assure that the instrument is spanned correctly.)
- Atmospheric air weight 0.0763 pounds per cubic foot at standard temperature and pressure (Gibbs, 1971).
- Average molecular weight of air is 28.97 (Gibbs, 1971) which is rounded off to 29, molecular weight of O2 is 32, molecular weight of CO2 is 44.
- For every pound of contaminants biodegraded, 3.3 pounds of oxygen is utilized and up to 3.2 pounds of carbon dioxide is generated.
 - The stoichiometry of aerobic benzene biodegradation can be described as follows:

Based on this, benzene biodegradation requires that 3.07 pounds of oxygen are utilized to fully oxidize one pound of benzene, assuming no electron acceptors other than oxygen are used. Assuming no biomass is produced and no geochemical reactions consume carbon dioxide, 3.38 pounds of carbon dioxide is generated from one pound of benzene.

- The stoichiometry of aerobic hexane biodegradation can be described as follows:

Based on the above assumptions, hexane biodegradation requires 3.52 pounds of oxygen and generates up to 3.06 pounds of carbon dioxide.

Other hydrocarbons also require a similar ratio of oxygen for aerobic biodegradation. For purposes of this guidance it is assumed that a pound of petroleum contamination requires 3.3 pounds of oxygen and generates up to 3.2 pounds of carbon dioxide and 1.1 pounds of water in the biodegradation reaction.

Calculations:

Oxygen utilization rate:

Carbon dioxide production rate:

Site name: Appleton Wire-Albany International Fo	ormer Chrome Plant	Remediation Site Progress and Operatio Maintenance, Monitoring & Optimization								
Reporting period from: 07/01/2014	To: 12/31/2014	•	& Optimization							
Days in period: 183		Report Form 4400-194 (R 1/14)	Page 29 of 29							
Calculations (Continued):										
Biodegradation rate based on oxygen:										

4.81 / 3.2 = 1.5 pounds per hour

7.07 / 3.3 = 2.1 pounds per hour

Biodegradation rate based on carbon dioxide:

Since the biodegradation rate is based on oxygen utilization and/or carbon dioxide generation, it is a measure of the overall biodegradation rate of all carbon sources, including natural organic carbon and any organic materials that were added. For this reason, the biodegradation rate is not specific to hydrocarbons and it is likely that the measured biodegradation rate will overestimate the rate of contaminant reduction.

Commonly the measured biodegradation rate based on carbon dioxide generation is less than the rate estimated with oxygen. Because of geochemical interferences and biomass formation, estimates based on carbon dioxide measurements are often low. If however the biodegradation rate estimate based on carbon dioxide is significantly greater than the estimate based on oxygen, it is likely that there is a measurement or calculation error. In this way, the carbon dioxide measurements can be used to double check the oxygen measurements and calculations.

Appendix D

Historical Soil Boring and Groundwater Monitoring Well Data Abandoned Borings and Wells

LOG OF BORING NUMBER **OWNER** 4W-1 Albany International **PROJECT NAME ENGINEER** S Consultants Ltd. Chromium Contamination Assessment SITE LOCATION N. Meade Street, Appleton, Wisconsin UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT*) STANDARD PENETRATION TEST, N (B/F1) LIQUID/PLASTIC LIMIT LL/PL WATER CONTENT. % WELL INSTALLATION TOP STANDPIPE EL. + 769.98 PERMEABILITY, K (CM/SEC) UNIT DRY WEIGHT (1 BS/FT³) SAMPLE DISTANCE SAMPLE TYPE DESCRIPTION OF MATERIAL SAMPLE NO. SURFACE ELEVATION 767.89 (USGS) SS SS 12 Dark brown sandy silt (ML) - little roots and grass - medium dense - topsoil Fill: Brown silty clay (CL) - trace of sand and 21/6" ss gravel - medium dense 15 ss 36 lss 5 SS 37 ss 29 6 Brown silty clay (CL) - trace of gravel - medium dense to dense - glacial till - saturated at 13.0 7 ss 15 feet 8 SS 8 9 SS 6 μo SS 6 End of Boring Boring advanced from 0.0 to 20.0 feet by power 2 inch diameter PVC observation well installed at 20.0 feet with protector pipe

	The stratifica	ition lines represe	nt the approxim	ate boundary be	rtween soil types	in situ, the tra	nsition may be gradual. W	later levels were me	sured at the times indi	cated. Water revels may vary seasonally.			
T	WL BCR		BCR			ACR	BORING STARTED	1-19-87	STS OFFICE	540 Lambeau Street			
	WL-T PIPE	DATE	TIME	WL-T. PIPE	DATE	TIME	BORING COMPLETED			Green Bay, WI. 54303			
•	Dry	1-21-87		15.3	2-9-87		BONING COMPLETED	1-19-87	DRAWN BY JJT	SHEET 1 OF 1			
Γ	Drv	1-22-87		9.0	3-26-87		RIG Joy 15						
1_	16.1	2-4-87					FOREMAN RER		APP'D. BY JWK	STS JOB NO. 13685			

İ	OWNER	LOG OF BORING NUMBER
ĺ	Albany International	MW−2
	PROJECT NAME	ENGINEER
	Chromium Contamination Assessment	

	PROJECT NAME	ENGINEER									
STS Consultants Ltd.	Chromium Contamination Assessment										
SITE LOCATION	N. Meade Street, Appleton, Wisconsin		×.	3₹							
SAMPLE TYPE SAMPLE TYPE SAMPLE DISTANCE RECOVERY	WELL INSTALLATION TOP STANDPIPE EL. + 770.63 DESCRIPTION OF MATERIAL		STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH. Op (TONS/FT*)	WATER CONTENT. %	UNIT ORY WEIGHT (LBS/FT*)	LIQUID/PLASTIC LIMIT LL/PL	PERCENT PASSING #200 SIEVE	PERMEABILITY, K (CM/SEC)		
SAM SAM	SURFACE ELEVATION 768.53 (USGS)		SI	STR			1				
1 ss	Dark brown sandy silt (ML) - trace of gravel, little roots - loose - topsoil		9								
2 SS	Brown silty clay (CL) - trace of sand and gravel- trace of roots - medium dense - possible fill		10 25								
4 SS	Brown silty clay (CL) - trace of gravel - medium dense - glacial till - saturated at 14.0 feet		26 29 23 23 7 6								
	End of Boring Boring advanced from 0.0 to 20.0 feet by power auger 2 inch diameter PVC observation well installed at 20.0 feet with protector pipe										

The stratific	ation lines repres	ent the approxim	nate boundary be	tween soil types	. In situ, the tra	nsition may be gradual. Wate	er levels were mea	isured at the times indi-	cated. Water levels may vary seasonally.
WL BC		BCR			ACR	BORING STARTED 1-19-87		STS OFFICE	540 Lambeau Street
WL-T. PIPE	DATE	TIME	WL-T. PIPE	DATE	TIME			0.0002	Green Bay, WI. 54303
1 14.3	1-21-87		8.1	2-9-87		BONING COMPLETED 1	-19-87	DAAWN BY JJT	SHEET 1 OF 1
11.4	1-22-87		6.1	3-26-87		RIG Joy 15	5		
7.7	2-4-87					FOREMAN REF	₹	APP'D. BY JWK	STS JOB NO. 13685

		2			OWNER		BORING NUMBER										
5	6	4		-		nternation	al			-WM-						·	
	┺¯.			.	PROJECT Site Reme						NEER Consul	ltants,	Ltd.				
STS Co					SILE VEWE	EGIACION	· · · · · · · · · · · · · · · · · · ·			313	CONSU	T	T T	— т		 1	
ITE	LOC	A 11	<u></u>			lbany Inte , Wisconsi		Chromium	Facility		NO	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT¹)			_		
		1		ĺ				WELL INSTA	LLATION IPE EL. + 764.74	1	STANDARD PENETRATION TEST, N (B/FT)	NS/	%	E	LIQUID/PLASTIC LIMIT LL/PL	NG	¥
r .			岁					TOT GIANO		_	(B/F	좋은	WATER CONTENT,	UNIT DRY WEIGHT (LBS/FT ²)	21.7	PERCENT PASSING #200 SIEVE	PERMEABILITY. (CM/SEC)
8		H	STAP			DESCI	RIPTION OF M	ATERIAL			0. ·	9 B	NO CO	3S/F	LAS L/P	11 P	A/SI
TH ELEVATION	SAMPLE NO.	SAMPLE 1YPE	SAMPLE DISTANCE	≩							DAR	ST.	EB	틸리	P/01	3CE)	E 0
ELE .	APL.	Æ	AP.	RECOVERY							N.	SSS	WA	Š	ION	PE.	2
12	SA	SAN	SAR	띭	SURFACE EL	LEVATION +7	762.80				S	NS IS	ļ	i			
	i										 						
										1]]]				
. ==																	
		HS								3			1				
5-										}	1		}				
										ł			ł				
<u> </u>			Ш	\dashv			_			1	1						
					No sample	es collect	ted - see	boring 10	og of Boring 2	1			ĺ				1
																l	
<u> </u>											}		}				
<u> </u>																	
]	RB	$\ \ $														
			$\ \ $							1		(
15															1		
15			ll i							i 🖁]			}		
	1		$\ \ $														
1	1									1							
	1	ST	П	Ш		·				1	 	1.5				 	11
	1 -	31								{		1					1 1
-			Π							5	l						
	1									1		1					1
	.	!	 								1				l		1 1
	. 2	: j st	$\ \ $	Ш						1 1	1	1.0					1 1
	-		111		Brown si	ilty clay	(CL) - tr	ace of gr	avel - firm -	1	1				1	l	1 1
	1	İ	İ		wet - ti	LII				1 \$	1	1				į	1 1
30	<u> </u>	<u> </u>								<u> </u>							
	3	SI	\prod	Ш						×		1.0					
	<u> </u>		Щ	Щ								1		İ	1		
	1														1		
	}											1	1				
35	1	1	\forall	Ш													1
	4	SI	4	11								.75					1 1
	1		Τ	1												1	
]	1										1					1
40	1	L	ļ.,	 													
	5	51		$\ \ $.75					
42]	1	Ш	F						+		+	 	 	-	 	-
	1				End of 1	Boring											
L	1				Boring a	advanced t	to 7.0 fee	et with po	wer auger and	from	7.0 to	42.0 1	eet				1
` 	1				with room	ck bit - 8 rilling -	2 inch di	or o inch Lameter mo	diameter temp onitoring well	orary insta	uasing Hed a	unstal t 40.0	LLEC Eeet			1	
The se	ratifica-	1			<u> </u>				nsition may be gradual.	1	<u> </u>			Reated W	ater invers	may years a	easonativ
/L	- mica		3	- WIS	BCR			ACR	BORING STARTED	1-29-		1				beau S	
VL-T. F	PIPE	IPE DATE TIME WILT PIPE DATE TIME								STS OFF	ICE	G	reen B	ay, WI	54303		
8.9			-5-						BORING COMPLETED	1-29-	.A0	DRAWN	BY RLS	SHEE	[†] 1	OF	1
									RIG CME 75			}		 			
					1	T	1		F00514411			I APP'D. E	Y MAR	ISTSJ	OB NO.	16898X	н

1		2		Ì	OWNER	v Interm	tions!			LOG OF BORING NUMBER								
		7		f	PROJECT	y Interna NAME	CIONAL			ENGINEER								
STSC	onsul	ltant	s L 1d			uium Conta	mination	Assessmen	t		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
HTE		_			N Mc	ade Stree	t Applet	on Wisco	nein			l						
				7	N. He		r, appre		-,,,,		- S	UNCONFINED COMPRESSIVE STRENGTH, Qp (10NS/FT?)	×*		=			
r								WELL INSTA TOP STANDE	IPE EL. +	 .	STANDARD PENETRATION TEST, N (B/FT)	PRE:		UNIT DRY WEIGHT (LBS/FT ³)	LIOUID/PLASTIC LIMIT LL/PL	PERCENT PASSING #200 SIEVE	× ×	
			S								ENE (B)	COM p (T	NTE	¥F.	STIC	PAS	SEC)	
	9	7 PE	JSIC.	_		DESCA	IPTION OF M	ATERIAL		-	ST.	H. O	00 %	LBS	4,7 1,1	ENT 200	Ø¥EA €	
TH ELEVATION	F.E.	<u>=</u>	빌	KE							NO TE	NE	WATER CONTENT.	IN)	ĝ	ERC	PERMEABILITY. (CM/SEC)	
<u></u>	SAMPLE NO	SAMPLE TYPE	SAMPLE DISTANCE	띭	SURFACE EL	EVATION				i	ST/	UNCC	\$		31	<u> </u>		
	1	SS	Ш	\coprod	Dark brown						5							
			П	H					vel - loose -									
	2	ss		11	possible						6			L	ļ			
	3	SS	Ш	Щ							30							
	4	ss	Ш	Ш							26							
	5	ss	Ш	Ιi							24					1		
1.0	6	ss		Π	Brown sil	ty clay (CL) - tra	ce of gra	vel - medium		20							
	7	ss	iii	Ï	dense - g	lacial ti	ll - satu	rated at :	l6.0 feet		18		ı					
15	8	ss	 	Ш	·						11							
		=	111	Ш														
	9	SS	Щ	11						j	6]					
	110	ss	Ш	\prod							9							
	1				End of Bo					1	1				1			
	1				Boring ad		om 0.0 to	19.5 fee	t by power									
<u> </u>	1				auger Boring ba	ckfilled	with bent	conite			•							
	=																	
	1				1								} !					
=											İ		l					
	7										!							
																Ì		
	3									1								
]												1					
	1																	
	3																	
	=											1					}	
=	_			ļ						1							}	
	3													-				
	=							•									ļ	
	\exists																	
	7														l			
	=												1					
	1_			L										1			1	
The s	tratific	ation	lines	ebr		nate boundary be	tween soil type		nsition may be gradual.			easured at the	e times in		Vater levels Lambe			
10.7.	PIPE		DATE	BCR ACR BORING STARTED E TIME WL-T. PIPE DATE TIME BORING COMPLETE							4-87	STS OF	FICE		en Bay			
-		\vdash		AIG Joy							4-87	DRAWN	BY JJ'	SHEE	1	OF	1	
		士							FOREMAN RE			APP'D.	WL YE	sts.	JOB NO.	13685		
E 5-983	3																	

63	OWNER Albany International	LO			RING	NUMB	ER			
	PROJECT NAME	 	3E	IEER					······································	
STS Consultants Ltd.	Chromium Contamination Assessment	En	YGIN	IEEH						
SITE LOCATION		٠	T						ſ	
	N. Meade Street, Appleton, Wisconsin WELL INSTALLATION		\dashv	ATION	ESSIVE S/FT ¹)	%	-	Ti W	_O	×
ELEVATION SAMPLE NO. SAMPLE TYPE SAMPLE DISTANCE RECOVERY				STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (10NS/FT²)	WATER CONTENT.	UNIT DRY WEIGHT (LBS/FT ³)	LIQUID/PLASTIC LIMIT LL/PL	PERCENT PASSING #200 SIEVE	PERMEABILITY. ! (CM/SEC)
SAMP SAMP SAMP SAMP	SURFACE ELEVATION	7		STA	UNCO	W	,	LIOI	ď	ă.
1 SS	Dark brown clayey sandy silt (ML) - trace of gravel, little grass, roots - loose - topsoil	\prod		7						
2 SS				9						
3 SS	Brown silty clay (CL) - trace of gravel - loose to medium dense - possible fill		İ	25						
4 55	• • • • • • • • • • • • • • • • • • • •			24						
5 SS				6						
6 SS				17						
7 SS	Brown silty clay (CL) - trace of gravel - loose to medium dense - glacial till - saturated at			9						
8 SS	10.0 feet			9						
9 ss				7						
10 ss i			_	7				<u> </u>		
	End of Boring Boring advanced from 0.0 to 19.5 feet by power auger Boring backfilled with bentonite		-						:	
	·									
	·									
The stratification lines repre	sent the approximate boundary between soil types. In situ, the transition may be gradual.	Nater L	evels :-	ere mas	Wed at the	times in	Brater W-	lar lawis -	NAV VAC	and all-
v-1.	BCR ACR BORING STARTED		19-8		STS OFFI		540	Lambea	u Stre	≥t
VLT PIPE DATE	TIME WL-T, PIPE DATE TIME BORING COMPLETED		19-8		DRAWN B		Gree SHEET		WI. 5	1303
!	RIG Joy 15	·····			APP'D. BY			B NO. 1		~~~
5-983	FOREMAN RER					JWK	1	~ · · · · T	2000	

Albany International PROJECT NAME ENGINEER Chromium Contamination Assessment STS Consultants Ltd. SITE LOCATION N. Meade Street, Appleton, Wisconsin UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT*) STANDARD PENETRATION TEST. N (B/FT) LIQUID/PLASTIC LIMII LL/PL PERMEABILITY, K (CM/SEC) WELL INSTALLATION UNIT DRY WEIGHT (LBS/FT³) PERCENT PASSING #200 SIEVE TOP STANDPIPE EL. + 769.88 WATER CONTENT. SAMPLE DISTANCE SAMPLE TYPE **DESCRIPTION OF MATERIAL** SAMPLE NO. SURFACE ELEVATION 768.08 (USGS) Concrete Fill: Crushed stone 12 1 55 Brown silty clay (CL) - trace of gravel - medium dense - possible fill 15 2 55 26 3 lss 12 SS 14 5 SS 5 6 ss 6 7 8 55 Brown silty clay (CL) - trace of gravel - loose to medium dense - glacial till - saturated at 18.0 feet 9 ss || || 10 SS ||| ss 9 SS 12 End of Boring Boring advanced from 0.0 to 17.5 feet by power auger - Boring advanced from 17.5 to 41.5 feet by roller bit and water 2 inch diameter PVC piezometer installed at 40 ft.
with protector pipe - 7.0 feet of HW casing used
cation lines represent the approximate boundary between soil types. In situ, the transition may be graduet. Water levels were measured at the times indicated. Water levels may vary seasonally. 540 Lambeau Street WL BORING STARTED 1-20-87 STS OFFICE Green Bay, WI. 54303 WL-T. PIPE DATE TIME WL-T. PIPE DATE TIME BORING COMPLETED 1-29-87 TUL VE NWARD 25.3 2-9-87 SHEET 1-21-87 1 Joy 15 16.8 3-26-87 1-22-87 APP'D. BY JWK STS JOB NO. 13685 FOREMAN

OWNER

LOG OF BORING NUMBER

		4			OWNER					Ī	LOG	OF BC	RING	NUMBI	ER		·	
1	L	4				Internatio	nal				MW-							1
		1			PROJECT							NEER						
STSC	onsu	tant	sit	a		mediation							ltants	. Ltd.				- 1
ITE												1		, <u></u>	· · · · · ·		·····	——
''-				-				l Chromiu	m Facility	•			w					1
-	<u> </u>		Γ		Appletor	n, Wiscons	IN	WITH THE	'All ATION			STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT*)	%	}	<u> </u> =		
,								WELL INST	ALLATION PIPE EL. +7	65.29	•	₹£	SES.		동	LIQUID/PLASTIC LIMIT LL/PL	5N3	×
			2									E 9	18E	<u> </u>	UNIT DRY WEIGHT (LBS/FT ³)	일	ASS	PERMEABILITY, (CM/SEC)
S S	٠.	띪	¥.			DESC	RIPTION OF	MATERIAL				6 ≥	္မခ	Š	S/F	AS I	1 P	IB /
YATI	ž	_	ā	≥							l	EST	NET.	£.	25	<u>~</u>	ZOCEN 1200	CNE
THELEVATION	4P.L	PLE	교	8								NA L	ENG	WATER CONTENT	Š	ă	PERCENT PASSING #200 SIEVE	£
1	SAMPLE NO	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY	SURFACE E	LEVATION .	762 41		 			S	STR	>		5	_	1
			Н						····			 			ļ			
15		нѕ			No sampl MW-5	es collec	rted – sea	≥ log of l	poring log		Заийпшишиния инивипичнания инивиния инивиписка поделения и выправления и выправления и выправления и выправления и выправления и выправления и выправления и выправления выправлени							
-20]			Ì	l		
							·		~~~~~~ <u>~~</u>		- 25			<u> </u>	 	 	 	
					End of I		- 20 0 5					}				1	<u> </u>	
					2 inch	advanced 1 diameter m	co 20.0 fe	et with p well in:	power auger	:		ŀ	1		1			
					at 20.0		OHIT COLLIN	, werr in	scarred					ĺ		-	[
												•		ł	1	İ	ļ	
										1			· ·		1	1		
														1				
=												['	1		1		1
													1		İ			
=																}		
																Ì		
													1		1			
											:			1				1 1
														ļ				1
												ļ)]				
		i								-		-						
:=								•						l	1		i	
上二																		
									•]						
$E = \exists$																	1	
															1			
												1]			1	
; =													1					
														1				
The stra	tricat	ion lir	03 /	pres	ent the approxim	nate boundary b	riween soli type	s. In situ, the tra	naltion may be gr	nduel. W	ater levels	were mea	sured at the	times ind	icated. Wa	tor levels r	nay vary se	asonally.
	Dry	WD			BCA			ACR	BORING START		1-29-9		STS OFFI		54	O Lamb	eau St	reet
T. Pi	PE	D	ATE		TIME	WL-T. PIPE	DATE	TIME	BORING COMP	LETED	1-29-9	0			G ₁	reen Ba	ay, WI	54303
<u></u>									RIG CME				DRAWN E	Y RLS	SHEET	1	OF]	
-	\dashv								FOREMAN				APP'D. B'	Υ μπ.	STS JC	8 NO. 1	L6898XI	
-		-				l		L	- UTILIMAN	BZ		l		MAB	1 44	- · · · · ·	OAL	•

	7			OWNER	LC	OG (OF BO	RING N	IUMBE	R		 	
7	4			Albany International		В-							
	,			PROJECT NAME	E	NGII	NEER						
STS Consu				Chromium Contamination Assessment							,		
SITE LO	CAT	101	1	N. Meade Street, Appleton, Wisconsin			z	3.E					
	T	Π		WELL INSTALLATION TOP STANDPIPE EL.+			STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT*)	%	=	E E	9	×
		۳		TOP STANDPIPE EL.+		1	IETR B/F1	MPR (TON	WATER CONTENT.	UNIT DRY WEIGHT (LBS/FT ²)	LIQUID/PLASTIC LIMIT LL/PL	PERCENT PASSING #200 SIEVE	PERMEABILITY, I
. ≥	سا	SAMPLE DISTANCE		DESCRIPTION OF MATERIAL			PE)	000	INO	37 M S/FI	AST /Pt	PA I	VSE VBIL
UEPTH ELEVATION MPLE NO.	SAMPLE TYPE	SE	£	DESCRIPTION OF MATERIAL			SARC EST.	TH.	EB (10 21	77	CEN 7200	CON CON
UEPTH ELEVAT AMPLE N	12	FE	RECOVERY				ANC	ENG	WAT	Š	no	PER	E
ELEVATION SAMPLE NO.	SAN	SAN	REC	SURFACE ELEVATION	٦		S.	STS		: I	-		
	Ť	十	T	Blacktop and crushed stone	\top								
	╫	╁	+	Diacrop and Classed Stone	+	+			-				
	ss	Ш	III	•			18						
	133	╨	╨										
2	ss	m	世				20						
· / =====	+	Ш	\vdash										l
, = 3	SS	П	\prod				23						
10	+	+	╨										
	ss	Ш	世	Brown silty clay (CL) - trace of gravel - loose			15						
	+-	†'	†	to medium dense - glacial till - saturated at			İ						
=======================================	ss	Ш	T	15.0 feet			9						
15	1	1"	\dagger	·									
: = 6	ss	\prod	\prod		1		4						
	\top	╨			1								
== 7	SS	\prod	lil				5						
-0	\top	1	Τ.,										
8	SS		Ш	·			5			1			
71.5	1	1			1								
				End of Boring Boring advanced from 0.0 to 21.5 feet by power									
-			i	auger				1					
				Boring backfilled with bentonite									
	-											1	
							1						
			l									Ì	
-							}			1			
					1								
<u> </u>													
- =													
												1	
·	1												
i —			\perp		<u> </u>				<u> </u>]
WL Strains	Cation	une	s reo	esent the approximate boundary between soil types. In situ, the transition may be gradu BCR BORING STARTED ACR BORING STARTED		20-		T) Lambe		
WL-T. PIPE	I	DAT	E	TIME WL-T. PIPE DATE TIME BORING COMPLET				STS OFF	- ICE		en Bay		
	I			- Rig	_	-20-	6/	DRAWN	^{BY} JJT	SHE	ET 1	OF	1
L	-			FOREMAN PI				APP'D.	BY JWK	STS	JOB NO.	13685	

: 5-983

	3		1	OMNEH		1			LUG	OF BU	HING I	IOWR	- H			ı
20	4		ŀ	Alba PROJECT	ny Intern NAME	ational				B-7 INEER	······································					
STS Consul	tani	ts L.t				mination	Assessmen	t								
TE LOC	AT	ION	I													
		П		N. Me	ade Stree	t, Applet	WELL INSTA			STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT*)	*		=		
		بيا					TOP STANDP	IPE EL.+	 ,	ETRA V FT)	MPRE	WATER CONTENT.	UNIT DRY WEIGHT (LBS/FT ³)	LIQUID/PLASTIC LIMIT	PERCENT PASSING #200 SIEVE	PERMEABILITY, K (CM/SEC)
z	w	SAMPLE DISTANCE			oron.		4770141			N G	00 e	ONTE	NY W	AS11	r PAS	/SEC
TH ELEVATION MPLE NO.	ΙΥΡ	DIS	¥		DESCR	IIPTION OF M	MIENIAL			DARC EST.	FINE STH.	EB	[E E	9 2	CEN #200	RME.
ELEVATIC	SAMPLE TYPE	MPLE	RECOVERY							TAN	SEN	WAT	S	9	PE	2
7 8	SA	SA	題	SURFACE ELI	EVATION						32					
				Blacktop a	and crushe	ed stone										
		111								20						
	ss	Щ	Щ							30						
		+	Ш							14			ļ			
	SS	Ш	H							14						
3	ss	m	Ш							20						
, m		Ш	Ш	Brown sil	ty clay (6 nse - gla	CL) - tra cial till	ce of grav - saturat	vel - loose to ted at 15.0								
LC	ss	\prod	\mathbb{M}	feet	•					15						
		Ţ														
5	ss	Ш	Ш							9						
15	_	╫	H							9	İ					
6	ss	Щ	Щ						İ	9						
-	SS	111	Ш							6						
20	-	711	Ш													
	ss		\mathbb{I}		•					5					ĺ	
	Γ	1									<u> </u>					
l =				End of Bo Boring ad	ring vanced fr	om 0.0 to	21.5 fee	t by power								
		1		auger	ckfilled	with hent	onite				-					
				BOLING DO	CKLILIO	***************************************										
										- -						
										İ						
							•								1	
							•									
									Ì			1				
	L								<u> </u>		1	1	<u> </u>		<u> </u>	<u> </u>
The atratefica	noot	imes	tebte	sent the approxim	ste boundary be	stween soil type	a. In situ, the tra ACR	BORING STARTED			I		540	Lambe	au Str	eet
L-T. PIPE		DATE	<u> </u>	TIME	WL-T. PIPE	DATE	TIME	BORING COMPLETED		20-87	STS OF	-NE	Gre		, WI.	
								nuc .			DRAWN	BY JJ	т зне	ET 1	OF	1
 	ļ			ļ		 	 	Joy 15			APP'D	ay	575	JOB NO.		

Albany International **PROJECT NAME ENGINEER** Chromium Contamination Assessment SITE LOCATION N. Meade Street, Appleton, Wisconsin UNCONFINED COMPRESSIVE STRENGTH, Qp (10NS/FT*) STANDARD PENETRATION TEST, N (B/FT) LIQUID/PLASTIC LIMIT LL/PL WATER CONTENT. % **WELL INSTALLATION** PERCENT PASSING #200 SIEVE PERMEABILITY, K (CM/SEC) UNIT DRY WEIGHT (LBS/FT³) TOP STANDPIPE EL. + SAMPLE DISTANCE ELEVATION SAMPLE TYPE DESCRIPTION OF MATERIAL RECOVERY SURFACE ELEVATION Fill: Blacktop, stone and clay ss 19 Brown to yellowish brown slightly clayey silt (ML) SS 16 trace of fine to coarse sand - moist at 5.0 feet medium dense 28 SS 17 4 SS 8 5 Brown silty clay (CL) - trace of fine to medium sand - trace of organics at 12.5 feet - loose to medium dense - moist 7 6 SS 7 7 SS Brown to pale olive silty clay (CL) - trace of 5 fine sand and wood - pale olive by wood - moist SS End of Boring Boring advanced from 0.0 to 21.5 feet by power auger Boring bacfilled with bentonite The stratification kines represent the approximate boundary between soil types. In situ, the transition may be gradual. Water levels were measured at the times indicated. Water levels may vary seasonally 540 Lambeau Street BORING STARTED 1-20-87 STS OFFICE Green Bay, WI. 54303 NLT. PIPE DATE TIME WL-T, PIPE DATE TIME BORING COMPLETED 1-20-87 DRAWN BY SHEET 1 JJT Joy 15 APP'D. BY STS JOB NO.

FOREMAN RER

13685

OWNER

: 5-983

LOG OF BORING NUMBER

	3		-	OWNER	ny Interna	tional			LOC	G C		RING N	UMBE	R			
156				PROJECT		CISHAI			FN		IEER						
STS Consu	itant	e ()	_{rt}		mium Conta	mination	Assessmen	.	E141	Giiv	*CEN						
SITE LOC										T		T					
				я. м	eade Stree	t, Applet	on, Wisco	nsin			8	¥£					
		Ī					WELL INSTA	LLATION			STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT*)	%	Ħ	LIQUID/PLASTIC LIMIT	SN SN	×
		뿡					TOP STANDP	IPE EL.+	_		NETE B/F	MP (TO)	WATER CONTENT.	UNIT ORY WEIGHT (LBS/FT3)	9 .	PERCENT PASSING #200 SIEVE	PERMEABILITY, K (CM/SEC)
3	۳	MA			DESCE	RIPTION OF M	ATERIAI		1		N.	ပ္ကခ	.NO	RY V	[SS]	P P	ABIL 1/SE
H N N	Ξ	18	≽		JCJ4.	,,, ,,,,,,,	THE LIMITE			ı	DARI	STH	EB	23	ار او	CEN #20	CG.
DEPTH ELEVATION SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	Š								TAN	REN	WA	5	ē	PE	#
XI 3	S	S	Æ	SURFACE EL	EVATION						S	SP			-		
}=									1						İ		
= ī	ss		Ш					fine sand llt - loose	1		5						
= = = = = = = = = = = = = = = = = = =	1	-	\vdash	to medium		3					İ						
2	ss	Ш	Ш					į			18						
·						,					4		·····	 	 	1	
. 3	ss	\prod	\prod								27						
10		世	Ľ	1]	[
4	ss	III	Ш								16						
								e sand - trace y clay 12.5									
;	ss			to 14.0 f	feet - str	eaks of f	ine to me	dium sand at		ļ	9			1]		
15		Ľ		15.0 to 1		- moist a	t 19.0 fe	et - loose						1			
=======================================	ss		Ш	Co measu	u deile						6			1			
		L	L														
7	ss	$\ \ $									6			ļ			
20	Ţ	Ţ	L]		
21.5	SS										5						
				End of Be Boring a	oring dvanced fr	om 0.0 to	215. fee	t by power									
	'	1	İ	auger		•								1			
				Boring b	ackfilled	with beni	cource		1					1	1		
													1				
· =				1			•									1	
		1									l						
									Ì								
` ===													ĺ				
-	Ì												1	1			
			1													ŀ	
				1									1	1		1	
				1								1 .	.[
							•										
:====																	
											1			1			
												1					
:													1				
The stratific	ation	knes	repr	esent the approxi	mate boundary be	etween soil type:	s. In situ, the tra	naition may be graduel. I	Water I	level:	were me	sured at th	e times i	ndicated.	Nater level	s may vary	leasonally.
, t _{wL}				вся			ACR	BORING STARTED		21-		STS OF		540	Lambe	au Str	eet
WL-T. PIPE	-	DAT	E	TIME	WL-T. PIPE	DATE	TIME	BORING COMPLETED	1-	21-	-87	1		200		, WI.	
f	+			-	-			RIG Joy 15				DRAWN	BY JJ	T SHE	ET 1	OF 1	
L	1							FOREMAN RER				APP'D. I	WL YE	K sts	JOB NO.	13685	

IL: 5-983

OWNER LOG OF BORING NUMBER Albany International MW-10 PROJECT NAME **ENGINEER** Chromium Contamination Assessment SITE LOCATION W. Meade Street, Appleton, Wisconsin UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT²) STANDARD PENETRATION TEST, N (B/FT) WELL INSTALLATION TOP STANDPIPE EL. + 767.46 LIOUID/PLASTIC LIMIT LL/PL UNIT DRY WEIGHT (LBS/FT) PERCENT PASSING #200 SIEVE PERMEABILITY, K (CM/SEC) WATER CONTENT. SAMPLE DISTANCE ELEVATION SAMPLE TYPE SAMPLE NO. DESCRIPTION OF MATERIAL SURFACE ELEVATION 767.80 (USGS) Brown clayey sandy silt (ML) - trace of fine 1 | 55 gravel - medium dense 23 2 SS 22 3 SS 18 4 SS 11 5 ss 11 Brown silty clay (CL) - trace of sand - fractured at 10.0 feet - moist at 20.0 feet - loose to medium dense 6 55 11 7 ss 6 20 8 | 55 5 End of Boring Boring advanced from 0.0 to 21.5 feet by power auger 2 inch diameter PVC observation well installed at 20.0 feet with protector pipe The stratification lines represent the approximate boundary between soil types, in artiu, the transition may be gradual. Water levels were measured at the times indicated. Water levels may vary seasonally. 540 Lambeau Street BORING STARTED 1-21-87 STS OFFICE NL-T. PIPE Green Bay, WI. 54303 DATE TIME WL-T. PIPE DATE TIME BORING COMPLETED 1-21-87 Dry 1-21-87 6.1 3-26-87 DRAWN BY JUT OF SHEET 1 1 7.5 1-22-87 Joy 12 APP'D. BY JWK STS JOB NO. FOREMAN RER 2-9-87 13685

	3		1	OWNER					t		RING I	NUMB	ER			
56	4		-		y Interna	tional				W-11		·	· · · · · · · · · · · · · · · · · · ·			
E	** 4 -	. 1 4	- 1	PROJECT		mination	Assessmen	ı +	ENG	INEER						
STS Consul				CILO	III WIII SOLLED	MILITA CLOT				1	T			ı		
3172 200	,,,,,			N. Me	eade Stree	et, Applet	on, Wisco	onsin	 	- 8	SIVE FT ³)			b		
		빙					WELL INSTA TOP STANDE	LLATION PIPE EL. + 768.65	<u>. </u>	STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT³)	TENT, %	UNIT DRY WEIGHT (LBS/FT ¹)	LIQUID/PLASTIC LIMIT LL/PL	PERCENT PASSING #200 SIEVE	177. K
ELEVATION MPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	≥		DESCR	RIPTION OF M	ATERIAL			ARD PE	NED CO	WATER CONTENT,	T DRY 1	/PLAS	SENT P.	PERMEABILITY, K (CM/SEC)
ELEVATION SAMPLE NO.	필	퓝	RECOVERY							NA B	AENG FING	WATE	NS S	200	PER	PER
7 8	SAN	S	왉	SURFACE EL	EVATION 76	58 .90 (US	SGS)			S	STS			-		
			T													
													Ì			
1	ss	Ш	Щ						1 1	20						
- 5	_		П						\$							
2	SS	Ш		Brown sil	ty clay (CL) - 2" 1	topsoil -	medium		24						
3	ss	\prod								24						
10 4	SS	Ti	\mathbf{H}						3	17						
		11	''' 				····	······································			ļ	<u> </u>	ļ		ļ	
5	ss	Ш	Щ							8						
- 6	SS	Ш	П	Brown sil	ty clay (CL) - tra	ce of san	d and gravel	1	5						
::-	-			moist at	15.0 feet	- loose									1	
1	ss	Щ	Щ		•					6						
20 8	SS		\mathbf{m}		-					6						
	T					····					1	†		†		
				End of Bo Boring ad	oring Nanced fr	com 0.0 to	21.5 fee	et by power								
								linstalled				1				
				at 20.0 1	feet with	protector	r pipe									
							-									
'=																
														1		
																'
===										İ						
															1	
三												ĺ			ľ	
							•									
												1				
								•						1		
H		1_	Ц						la la la la la la la la la la la la la l			1				
The stratific	t nome	nes :	epres	BCR	ate councary be	overen sou type:	s. In situ, the tra ACR	nsition may be gradual. BORING STARTED	1-21				540	Lambe	au Str	eet
VL-T. PIPE	+	DATE		TIME	WL-T. PIPE	DATE	TIME	BORING COMPLETE			STS OF	-IUE	Gre	en Bay	, WI.	-
Dry	1	21-1		 	3.1	3-26-87		RIG Joy 1			DRAWN	BY JJ7	SHEE	i 1	OF	1
	T	22 <u>-</u> 1						FOREMAN RE			APP'D.	IWL YB	srs.	IOB NO.	1368	5

OWNER LOG OF BORING NUMBER Albany International B-12 **PROJECT NAME ENGINEER** Chromium Contamination Assessment SITE LOCATION N. Meade Street, Appleton, Wisconsin UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT²) STANDARD PENETRATION TEST, N (B/FT) LIOUID/PLASTIC LIMIT LL/PL WATER CONTENT. % UNIT DRY WEIGHT (LBS/FT³) WELL INSTALLATION TOP STANDPIPE EL. +_ PERCENT PASSING #200 SIEVE PERMEABILITY, K (CM/SEC) SAMPLE TYPE SAMPLE DISTANCE RECOVERY ELEVATION **DESCRIPTION OF MATERIAL** SAMPLE NO. SURFACE ELEVATION Dark brown silty clay (CL) - medium dense 12 ss 23 2 ss 23 SS Brown silty clay (CL) - trace of sand and gravel 16 SS fractured - moist at 15.0 feet - loose to medium dense 12 SS 6 SS 5 SS 5 ss End of Boring Boring advanced from 0.0 to 21.5 feet by power auger Boring backfilled with bentonite

The stratifica	tion lines repres	ent the approxim	nate boundary be	rween soil type	s. In situ, the tra	nsition may be gradual. V	vater loveis were me	seured at the times indi	cated. Water levels may vary seasonally.
WL		BCR			ACR	BORING STARTED	1-21-87	STS OFFICE	540 Lambeau Street Green Bay, WI. 54303
. WL-T PIPE	DATE	TIME	WL-T. PIPE	DATE	TIME	BORING COMPLETED	1-21-87	DRAWN BY Tam	SHEET 1 OF 1
						AIG Joy 12			
						FOREMAN RER		APP'D. BY JWK	STS JOB NO. 13685

Albany International B-13 PROJECT NAME **ENGINEER** Chromium Contamination Assessment SITE LOCATION N. Meade Street, Appleton, Wisconsin UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT*) STANDARD PENETRATION TEST, N (B/FT) WATER CONTENT, % LIQUID/PLASTIC LIMIT WELL INSTALLATION TOP STANDPIPE EL. + PERMEABILITY, K (CM/SEC) UNIT DRY WEIGHT (LBS/FT²) SAMPLE DISTANCE RECOVERY ELEVATION SAMPLE TYPE DESCRIPTION OF MATERIAL SAMPLE NO. SURFACE ELEVATION Fill: Dark brown to brown silty clay (CL) trace of gravel - medium dense 10 1 SS 27 2 SS 26 3 SS Brown silty clay (CL) - trace of sand and gravel 20 SS moist at 15.0 feet - medium dense 13 5 SS 17 6 SS Gray to brown silty clay (CL) - trace of sand -4 SS some wood - loose Brown silty clay (CL) - trace of coarse sand -6 8 SS loose End of Boring Boring advanced from 0.0 to 21.5 feet by power auger Boring backfilled with bentonite The stratification lines represent the approximate boundary between soil types. In aftu, the transition may be gradual. Water levels were measured at the times, indicated. Water levels may vary seasonally. 540 Lambeau Street BCR ACR **BORING STARTED** 1-21-87 STS OFFICE Green Bay, WI. 54303 WL-T. PIPE TIME WL-T. PIPE DATE TIME DATE BORING COMPLETED 1-21-87 DRAWN BY JJT OF SHEET 1 1 RIG Joy 12 APP'D. BY JWK STS JOB NO. 13685 FOREMAN

RER

OWNER

-: 5-983

LOG OF BORING NUMBER

OWNER LOG OF BORING NUMBER Albany International B-14 PROJECT NAME **ENGINEER** STS Consultants Ltd. Chromium Contamination Assessment TE LOCATION N. Meade Street, Appleton, Wisconsin UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT*) STANDARD PENETRATION TEST, N (B/FT) WELL INSTALLATION TOP STANDPIPE EL. + WATER CONTENT, % LIQUID/PLASTIC LIMII LL/PL UNIT DRY WEIGHT (LBS/FT³) PERCENT PASSING #200 SIEVE PERMEABILITY, K (CM/SEC) SAMPLE DISTANCE SAMPLE TYPE DESCRIPTION OF MATERIAL SAMPLE NO. SURFACE ELEVATION Fill: Brown silty clay (CL) - some sand - trace of gravel - slight yellow stain on gravel - medium SS dense 11 2 SS 27 3 ss 20 4 ss 20 Brown silty clay (CL) - trace to a little sand - trace of gravel - fractured to 14.0 feet -SS moist at 15.0 feet - loose to medium dense 12 6 6 7 SS 6 8 SS 13 End of Boring Boring advanced from 0.0 to 21.5 feet by power auger Boring backfilled with bentonite

106.20	tratifical	ion lines repres	HIXOTOGUE BYD THE	nate boundary be	ween son type	s. in situ, the tre	nsition may be gradual. Water levels were me	asured at the times indi	cated. Water levels may vary seasonally.
777_			BCŔ			ACR	BORING STARTED 1-21-87	STS OFFICE	540 Lambeau Street
11-7 5	PIPE	DATE	TIME	WL-T. PIPE	DATE	TIME	PODUC SOLVE STREET	313 OFFICE	Green Bay, WI. 54303
		,					BORING COMPLETED 1-21-87	TELE YE HWARD	SHEET 1 OF 1
							RIG Joy 12	001	11
							FOREMAN RER	APP'D. BY JWK	STS JOB NO. 13685
5-983							****	· · · · · · · · · · · · · · · · · · ·	

B-15 Albany International PROJECT NAME **ENGINEER** Chromium Contamination Assessment Consultants Ltd. SITE LOCATION N. Meade Street, Appleton, Wisconsin UNCONFINED COMPRESSIVE STRENGTH. Qp (TONS/FT*) STANDARD PENETRATION TEST. N (B/FT) LIQUID/PLASTIC LIMIT LL/PI. WELL INSTALLATION TOP STANDPIPE EL. + UNIT DRY WEIGHT (LBS/FT) PERCENT PASSING #200 SIEVE PERMEABILITY, K (CM/SEC) WATER CONTENT. SAMPLE DISTANCE SAMPLE TYPE DESCRIPTION OF MATERIAL SAMPLE NO. RECOVERY SURFACE ELEVATION 16 1 ss Brown silty clay (CL) - little sand - trace of gravel - medium dense 2 SS 26 3 26 SS 4 SS 17 5 9 SS Brown silty clay (CL) - trace of sand and gravel moist at 15.0 to 16.5 feet - loose to medium 6 6 SS dense 7 6 SS 5 SS End of Boring Boring advanced from 0.0 to 21.5 feet by power auger Boring backfilled with bentonite The stratification lines represent the approximate boundary between soll types. In artu, the transition may be gradual. Water levels were measured at the times indicated. Water levels may vary seasonally. 540 Lambeau Street BORING STARTED 2-4-87 STS OFFICE Green Bay, WI. 54303 WL-T PIPE DATE TIME WL-T. PIPE DATE BORING COMPLETED 2-4-87 SHEET DRAWN BY JJT #12 APP'D. BY ON BOL STS 13685 FOREMAN JWK RER

OWNER

u: 5-983

LOG OF BORING NUMBER

		3		1	OWNER		15	· · · · · · · · · · · · · · · · · · ·		LOC	OF B	RING I	NUMBE	R			
7	L	4		L		y Interna	tional				B-16				·		
					PROJECT I					EN	SINEER						
STSC					Chrom	ium Conta	mination	Assessmen	E								
HTE	LOC	ATI	40	l 	N. Me	ade Stree	t, Applet	on, Wisco	nsin		8	11VE 177)					
TH ELEVATION	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	OVERY		DESCR	IPTION OF M	WELL INSTA TOP STANDP ATERIAL	LLATION IPE EL.+		STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, OP (FONS/FT*)	WATER CONTENT. %	UNIT ORY WEIGHT (LBS/FT)	LIQUID/PI.ASTIC LIMIT L/PL	PERCENT PASSING #200 SIEVE	PERMEABILITY. K (CM/SEC)
127	SA	SA	SA	띭	SURFACE ELE	VATION					S	SIS			-		
	1 2	ss ss			Fill: Bro			- trace	of sand -		. 5	 					
	3	ss	\prod	Щ	•			-			28						
10	4 5	SS				- moist			d and gravel — et — loose		13						
	6	SS	H														
20		SS	Ţ,									5					
					auger	oring wanced fr ackfilled			et by power		erio de la compansión d						
		cation	line	naon	esent the Approxim	nata boundary b	stween soil (voe	s. In situ. the tra	nation may be gradual.	Water i	evels were m	easured at 11	ne times «	vdicated. V	Vater levels	may varv	Reasonally.
·VL					BCR			ACR	BORING STARTED	2-4		STS OF		540	Lambe	au Str	eet
	PIPE	F	DA	ΓE	TIME	WL-T. PIPE	DATE	TIME	BORING COMPLETED				BY JJT			OF	54303 1
Ţ <u></u>		1							RIG #12			APP'D.			JOB NO.	1368	

.: 5-983

		3			OWNER					LOG	OF BO	RING	NUMBI	ER			1
. 2	7	-				nternation	nal			MW-	-17						
					PROJECT						INEER						
STS C					Site Rem	ediation				STS	Consu	ltants	Ltd.				1
SITE	LOC	ATI	01			Albany Int		l Chromiu	m Facility		2	IVE T³)					
			ييا					WELL INST	ALLATION PIPE EL. + 771.8	4	STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT*)	NT. %	IGHT.	CIMIT	SING	×
No	o.	/PE	STANC			DESC	RIPTION OF I	MATERIAL			D PENE	0 COM	CONTE	RY WE	LASTIC L/PL	IT PAS	ABILIT (/SEC)
ELEVATION	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY							ANDAR	ONFINE	WATER CONTENT. %	UNIT DRY WEIGHT (LBS/FT ³)	LIQUID/PLASTIC LIMIT	PERCENT PASSING #200 SIEVE	PERMEABILITY, (CM/SEC)
	SAR	SAN	SAN	Æ	SURFACE E	LEVATION +	769.07			1	ST	STR	>		5	-	
15 -20 -		HS			No sampl	les collec	ted - see	boring 1	og of MW-17A	5 патанияната патана патана патана патана патана патана патана патана патана патана патана патана патана патан							
-20					2 inch o		chedule 4	10 PVC mor	power auger	MUDICIO (S)							
The stra	tihcat	ion lir	es n	eore:	sent the approxi	nate boundary be	ntween soll type	s. in situ, the fra	nsition may be gradual.	Vater Java	3 Ware man	SUCES OF THE	l times	iceled Wa	ter levels	May year	21003/0
1/1					BCR			ACR	BORING STARTED	1-31				54	U Lam	beau Si	reet
VL-T. PI	PE	D.	ATE		TIME	WL-T. PIPE	DATE	TIME				STS OFFI	CE			ay, WI	
	\Box								BORING COMPLETED	1-31	yu	DRAWN E	Y RLS	SHEET	1	OF 3	L
l					 				RIG CME 45			APP'D. B	Y	STS JC		16000	

1		3		T	OWNER					LOG	OF	во	RING N	UMBE	R			
7	1	ų.		-		ternationa	1			-WM	-17A						,	
	_			-	PROJECT		•	•		ENG			.	r a				l
STS Co			-	_	Site Reme	diation				STS	5 CO	nsui	tants,	DEG.				
;ITE L	.oc	ATI	ON			bany Inter Wisconsin		Chromium	Facility		۽ ا	5	1.E					
								WELL INSTA	LLATION IPE EL. + 771.07			SIANDAKO PENEIHAIIUN TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT¹)	%	CH1	LIQUID/PLASTIC LIMIT LL/PL	SING	¥
			SAMPLE DISTANCE							_	1 2	(8)	ME	WATER CONTENT.	UNIT DRY WEIGHT (LBS/FT")	STIC PL	PERCENT PASSING #200 SIEVE	PERMEABILITY. (CM/SEC)
§	9	YPE	ISTA			DESCR	IPTION OF M	ATERIAL		-	9	5-	8 .	8	DRY BS/	PLAS LL//	N 00	EAB M/S
FH	W	E T	E	EBY							1	TES	NETIN	ATER	E)air	ERCE #2	₩ <u></u>
==	SAMPLE NO.	SAMPLE TYPE	4MP	RECOVERY				······································		, İ	1	<u>x</u>	SE	≩	¬	9	ā.	•
			S)	æ		EVATION +7		_			-		50					
一旦	1	PA				d and gra		. I		1								
	2	ST		\blacksquare		clay - f		- trace	of cinders - /									
					dry - to	psoil		- cruce										
	3	ST	П	П						1		•	4.5+			<u>.</u>		
		21	Ш		Reddish b	orown silt	v clav (C	L) - trac	e of gravel -	1								
			Ш	Ш	trace of	cobbles -				}			3.75					
	4	ST	Ш	H	damp - ti	111				1			3.73					
10			П	m						}						1		
	5	ST		Щ						1			3.5					
\equiv			П	П	Reddish h	orown silt	y clay (CL) - stif	f - damp -									
	6	ST		Щ	till				-	4			1.0					
13		=	-	П							+		 				<u> </u>	
· ==	7	ST	$\ \ $						vel - trace ist-firm-till	1								
		 	H							1	1					1		
	8	รา	$\ \ $	Ш			. •			1			1.0					1
20			-	 						1]					
	9	57		Ш						1			.5				ł	
			╨	Ш						1					î.			
					Brosm ci	lev clav	(CT) - +		vel - very	1	.							
25			Ļ.,	ļ.,	soft to	soft - wet	: - till	ace or gra	iver - very	1								
	10	S								1 5			.25		}			
	10	3	Ш	F	1					1			1-2		Ì			
										\$.		1					
30	(•									\$								
		Π	П										_	İ			-	
1	11	S'	Щ	Щ	}					8			.5					1
																1	1	1
													1					
		1	Π	T	1													
	12	S!	Щ	Ш	1								.75	1				
	1				į												i	
	}													1				
40	 	1	廿	Ш	1			•		3	.				1	1		
40	13	ş	r										1.5					
	ī	Т	Ť	Τ	Frd -F	orina				1				1	Π	1		1
	1				End of B	dvanced to	o 20.0 fe	et with p	ower auger and	fro	m ko).O +	42.0	feet	with :	rock b	i.d	l
	1				10.0 fee	t of 6 in	ch diamet	er tempor	ary casing ins	tall	ed v	while	drill	ing]]	1	
	<u>1</u>		\perp		1				itoring well :	1	1			t		<u></u>		
	ratifica	ation	ines	repr		mate boundary be	stween soil type		nsition may be gradual.				sured at th	e times in		ater levels 40 Lam		
VL.	HPE	Ι	D47		8CR TIME	WL-T. PIPE	DATE	TIME	BORING STARTED		0-90		STS OFF	ICE		reen B		
1		_	DAT	<u></u>	iime			*****	BORING COMPLETED	1-3	0-90	0	DRAWN	BY RLS	SHEE	1	QF	1
									RIG CME 75									
									FOREMAN BZ				APPD. 8	MAI	sts.	JOB NO.	16898X	H
. 5-983																		

165	1		1	OWNER			,		LC	og (OF BO	RING N	UMBE	R			
	N .		L		ternation	al				5-18		·····	·····				
			- 1	PROJECT	NAME				: -		NEER						
STS Consult	ants	Lt	1.	Site Reme	diation				:	STS	Consu.	tants,	Ltd.				
SITE LOCA	ATIO	AC			lbany Inte Wisconsi		Chromium	Facility			N.	11VE 17.)					
				•			WELL INSTA	LLATION			PENETRATION N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT?)	%	=	LIQUID/PLASTIC LIMIT LL/PL	9	×
.]	SAMPLE TYPE	پېر					TOP STANDE	IPE EL.+		.	ETA 3/FI	A NOT	WATER CONTENT, %	UNIT DRY WEIGHT (LBS/FT³)	D D	PERCENT PASSING #200 SIEVE	PERMEABILITY. (CM/SEC)
		¥									E S	88	E	×, 7∓	STI PP	SE	35
ELEVATION MPLE NO.	٤	15			DESCF	IIPTION OF M	IATERIAL				STANDARD TEST.	⊕	8	E SS	골크	188 188	₹ĕ
ELEVA MPLE N	ш.	ų	8							1 1	Ž.	£5	12	= = = = = = = = = = = = = = = = = = =		5.	8
ELEVATIO	절	풀	હ								¥	88	≸	5	ᅙ	2	<u>-</u>
12/2/2	8	S	뿐	SURFACE EL	EVATION -	768.94			7		0,	NS.			_		
		П	\dashv						1	1-1							
	PA			Fill: B	rown sand	and grave	el.									1	
		#	\mathbf{H}												ļ		
2	ST	Ш	Щ							.		4.5+					
<u> </u>		Ц	\exists														
		Ш					OT 1			1		3.75					
3	ST	Ц						e of gravel very stiff	7	l		3.73			l		
		П	Ш		hard - dau				1	- 1							
	ST		Щ	•								3.75					
, =10		11	H							ĺ]					
5	ST	Ш	Ш							l		1.75			1		
		П							ļ]			l		
$\cdot = $		П	Щ							1		3.50			1		
15 6	ST	Ц	Ц									3.30					
	-+	П	IIII	Reddish	brown to	brown sil	tv clav (CL) - stiff						 	╂	 	
=== 기	ST	П	Щ	moist -					ĺ			.75			}		
·				·					\top					 	 	†	
8	ST	11		Brown si	ilty clay	(CL) - fi	rm - wet	- till	- 1			.50			1		
20	_	П	H						.					Ì			
		П	Ш											ļ	ļ		
22 9	ST	Ш	Ш									1.75					
				End of	Boring					•					T		
						o 22.0 fe	et with p	ower auger									1
					backfilled				-						1	ļ	
														1	1	İ	
			1 1												1		1
,===									-					1	1		
																i	1
									İ								1
- =====================================									-								l
															ł		<u> </u>
														1			ļ
. ====													Ì			Ì	1
																1	1
F			1										1				
							-				1	}		1		1	
I																1	
												1		1			
											1	1			1	1	
									1			1		1		1	1
													1	1	1	1	1
													1	1	1	1	ı
												1					
	tion lu	ies.	epres	sent the approxim	nate boundary be	itween soil type	s. In situ, the tra	nsition may be gradue	il. Wate	r levels	were me	naured at the	e times in				
	tion la	res	epre:	sent the approxim	nate boundary be	tween soil type	s. In situ, the tra ACR	isition may be gradue BORING STARTED		r levels -1-9		sts off			540 La	mbeau :	treet
The stratificat		ATE			nate boundary be WL-T. PIPE	ntween soil type			2	-1-9	00	T			540 La Green	mbeau S Bay, W	treet 5430
The stratificat				8CR			ACR	BORING STARTED	2 ED 2		00	T	ICE		540 La Green	mbeau S Bay, W	treet

.: 5-983

	-	7		į	OWNER		5, 11			j L	OG	OF BC	RING	NUMBI	ER			1
		4				Internatio	onal				B-1							
				- 1	PROJECT					E	NGI	NEER						
STSC					Site Rem	mediation				-	STS	Consu	ltants	, Ltd.				- 1
iITE	LOC	ATI	10	1	Former Appleton	Albany Int	ernationa sin	l Chromit	ım Facility									
			E					WELL INST	TALLATION OPIPE EL. +			PENETRATION N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT*)	4T. %	GHT	LIMIT	SING	Υ. Ά
NO.	0.	<u>۾</u>	STANC			DESC	CRIPTION OF I	MATERIAL				D PENE N (B/	D COM	CONTER	RY WEI	LASTIC L/PL	T PASS) SIEVE	ABILITY I/SEC)
IH	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY								STANDARD I	ONFINE	WATER CONTENT,	UNIT DRY WEIGHT (LBS/FT ³)	LIQUID/PLASTIC LIMIT LL/PL	PERCENT PASSING #200 SIEVE	PERMEABILITY, K (CM/SEC)
A	Š	SAN	SA	띮	SURFACE E	LEVATION +	768.98			7		ST	UNC	٨		ž		
	1	AS			Fill: B	rown sand	and grav	el										
	2	ST		Ш							T		4.5+					
	3	ST		Щ	Reddish	brown sil	ty clay (CL) - tra	ce of gravel	_			4.5+					
	4	ST	I	Ш	very har	d - damp	and from - fractur	10.0 to 1 ed - till	2.0 feet -				4.5+					
10	5	ST		固														
	6	ST											4.5+					
15			Ш		~					_			4.5+					
	7	ST			Brown si	lty clay	(CL) - fi	rm - wet	- till				.75					
20	8	ST	Ш	Ш									.75					
22	9	ST		Щ			***************************************						.75					
	·				End of B	oring dvanced t	n 22 0 fa	a+ 11141	ower auger									
					Boring b	ackfilled	with gra	nular ben	ower auger tonite									
								•										
Ė																		
								-										
	odrik.																	
WL.	wite 21	-On Hr	-e3 f	CUT 05	ent the approxim	nete boundary be	oween soli type	a. In situ. Ine tra ACR	nsition may be gradual.				sured at the	times ind				
WL-T PI	PE	D	ATE		TIME	WL-T. PIPE	DATE	TIME	BORING STARTED BORING COMPLETED		31-9 31-9		STS OFFI		Gre	Lambe	, WI 5	4303
<u></u>	\dashv								RIG CME 75				DRAWN B	Y RLS	SHEET	1	OF 1	
····									FOREMAN BZ	3			APP'O. 8	MAB	STS JC	B NO.	168988	н

Albany International . B-20 **PROJECT NAME ENGINEER** Site Remediation STS Consultants, Ltd. Consultants Ltd. SITE LOCATION Former Albany International Chromium Facility UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT*) Appleton, Wisconsin STANDARD PENETRATION TEST, N (B/FT) LIQUID/PLASTIC LIMIT LL/PL WELL INSTALLATION UNIT DRY WEIGHT (LBS/FT³) PERCENT PASSING #200 SIEVE PERMEABILITY, K (CM/SEC) WATER CONTENT. TOP STANDPIPE EL. + SAMPLE DISTANCE SAMPLE TYPE **DESCRIPTION OF MATERIAL** SAMPLE NO. SURFACE ELEVATION +769.01 Fill: Brown sand and gravel 1 PA 2 4.5+ ST Reddish brown silty clay (CL) - trace of gravel yellowish brown fine sand laminations from 3.0 to 3.5 feet - trace of coarse sand from 5.0 to 7.0 3 4.5+ ST feet - 1/4 inch thick yellowish brown fine sand lense at 8.0 feet - very hard - damp - fracturedtill 4 ST 4.5+ Reddish brown silty clay (CL) - very stiff -5 3.5 ST moist - fractured - till Reddish brown silty clay (CL) - trace of 6 ST 2.25 gravel - very stiff - moist - till 7 ST .75 Brown silty clay (CL) - trace of gravel from 15.0 to 17.0 feet - firm - wet - till ST .5 .5 ST End of Boring Boring advanced to 22.0 feet with power auger Boring backfilled with bentonite The stratification lines represent the approximate boundary between soil types, in situ, the transition may be gradual. Water levels were measured at the times indicated. Water levels may vary seasonally. BCR 540 Lambeau Street BORING STARTED STS OFFICE Green Bay, WI 54303 WL-T. PIPE TIME WL-T. PIPE DATE TIME BORING COMPLETED 2-1-90 DRAWN BY RLS SHEET 1 OF CME 75

FOREMAN

LOG OF BORING NUMBER

APP'D. BY

MAB

STS JOB NO. 16898XH

OWNER

LOG OF BORING NUMBER OWNER Albany International 5-21 PROJECT NAME **ENGINEER** Site Remediation STS Consultants, Ltd. SITE LOCATION Former Albany International Chromium Facility UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT*) Appleton, Wisconsin STANDARD PENETRATION TEST, N (8/FT) LIQUID/PLASTIC LIMIT LL/PL WATER CONTENT. % WELL INSTALLATION UNIT ORY WEIGHT (LBS/FT³) PERCENT PASSING #200 SIEVE PERMEABILITY, K (CM/SEC) TOP STANDPIPE EL. + SAMPLE DISTANCE SAMPLE TYPE DESCRIPTION OF MATERIAL SAMPLE NO. SURFACE ELEVATION +769.04 Fill: Brown sand and gravel 1 PA 4.5+ 2 ST 4.5+ Reddish brown silty clay (CL) - trace of gravel - very hard - damp - fractured from 3 ST 5.0 to 10.0 feet - till 4.5+ 4 ST 4.5 5 ST Reddish brown silty clay (CL) - trace of coarse sand - trace of gravel - stiff - moist - till 1.75 6 ST 1.0 . 5 Brown silty clay (CL) - trace of gravel - firm wet - till .5 9 ST End of Boring Boring advanced to 22.0 feet with power auger Boring backfilled with bentonite

The stratification tines represent the approximate boundary between soil types. In situ, the transition may be graduel. Water levels were measured at the times indicated. Water levels may vary seasonable 540 Lambeau Street BORING STARTED STS OFFICE Green Bay, WI 54303 WL-T. PIPE TIME WL-T. PIPE DATE TIME BORING COMPLETED 2-1-90 DRAWN BY RLS SHEET 1 OF RIG **CME 75** APP'D, BY STS JOB NO. 16898XH **FOREMAN** MAB

		7		1	OWNER				*** *** *** ***	LOC	3 0	F BO	RING N	UMBE	R				
14	1	4			Albany In	ternation	al			B-22									
<i>,</i>		•		Γ	PROJECT	NAME				EN	GIN	EER							
STS Co	≥ ⊃nsul	tant	s L1	a	Site Reme	diation			•	ST	es c	onsul	tants,	Ltd.					
SITE					Former Al			Chromium	Facility			Z.	T')						
								WELL INSTA	LLATION PIPE EL. +			ETRATIC /FT)	APRESS TONS/F	NT. %	HGHT	CLIMIT	SING	¥	
ELEVATION	SAMPLE NO.	SAMPLE TYPE	MPLE DISTANC	RECOVERY			IPTION OF M	ATERIAL				STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT*)	WATER CONTENT.	UNIT DRY WEIGHT (LBS/FT ³)	LIQUID/PLASTIC LIMIT	PÉRCENT PASSING #200 SIEVE	PERMEABILITY. K (CM/SEC)	
1	'S	/S	ŝ	Œ	SURFACE ELI	EVATION +7	69.07		····				200						
	1	PA			Fill: Br	own sand	and grave	1							;				
- 5	2	ST	Ш	Щ									4.5+						
	3	ST		Ш	trace of	coarse sa	nd from 7	7.0 to 9.0	ce of gravel) feet - .0 to 7.0	-			4.5+						
10	4	ST		Ш	feet - ti	.11							4.5+						
	5	ST		Ш									4.5+						
15	6	ST		回		orown silt Ef - moist		CL) - tra	ce of gravel	-			2.75						
	7	SI		Ш	Brown si	ltv clav	(CT.) - tr	are of ar	avel from				.50						
-20	8	sı							wet - till				. 75						
22	9	S		Ш		•							.50						
					End of Boring as Boring b		o 22.0 fe with ben	et with p tonite	ower auger		٠								
												•							
-																			
												!							
The st	1 tratific	ation	Hnes	repre	sent the approxim	nate boundary bi	nween soil type	a, in situ, the tre	nsition may be gradu	al. Water I	ievels	were me	. I	e times in	dicated. V	Vator level	s may vary s	easonally.	
. VL			- []	أخلنه	BCR			ACR	BORING STARTED		-90		STS OFF		Ę	40 Lar	mbeau S	treet	
WL-T.	PIPE		DAT	E	TIME	WL-T. PIPE	DATE	TIME	BORING COMPLET	ED 2-1	-90		1			reen !	Bay, WI	54303	
<u> </u>					ļ				<u> </u>				DRAWN	BY RLS	SHE	T 1	OF	1	
·		ļ			RIG								APP'D. E	Y MAE	STS	JOB NO.	16898X	H	

.: 5-983

OWNER LOG OF BORING NUMBER Albany International B-23 **PROJECT NAME ENGINEER** STS Consultants, Ltd. Site Remediation STS Consultants Ltd. SITE LOCATION Former Albany International Chromium Facility UNCONFINED COMPRESSIVE STRENGTH, OP (TONS/FT) Appleton, Wisconsin STANDARD PENETRATION TEST, N (8/FT) WATER CONTENT. % WELL INSTALLATION TOP STANDPIPE EL. + LIQUID/PLASTIC LIMIT LL/PL PERCENT PASSING #200 SIEVE UNIT DRY WEIGHT (LBS/FT³) PERMEABILITY. ! SAMPLE DISTANCE ELEVATION SAMPLE TYPE **DESCRIPTION OF MATERIAL** SAMPLE NO. SURFACE ELEVATION +769.12 Fill: Brown sand and gravel 1 PA 4.5+ 2 ST Reddish brown silty clay (CL) - trace of gravel -3 ST 4.5+ trace of coarse sand from 3.0 to 4.0 feet very hard - damp - fractured from 5.0 to 7.0 feet - till 4 SI 4.5+ 5 ST 4.5+ Reddish brown silty clay (CL) - trace of gravel -6 ST very stiff - moist - till 2.0 End of Boring Boring advanced to 14.5 feet with power auger Boring backfilled with bentonite The strattfication lines represent the approximate boundary between soil types, in situ, the transition may be graduel. Water levels were measured at the times indicated. Water levels may very seasonally, 540 Lambeau Street NL. BCR ACR **BORING STARTED** STS OFFICE Green Bay, WI 54303 WL-T. PIPE DATE DATE TIME WLT. PIPE TIME BORING COMPLETED 2-1-90 DRAWN BY RLS SHEET 1 1 CME 75 RIG APP'D. BY STS JOB NO. 16898XH MAB FOREMAN BZ

.: 5-983

1110 S. ONEIDA STREET . APPLETON, WISCONSIN 54915 . [414] 739-9213

FAX (414) 739-5399 • TOLL FREE PHONE IN WISCONSIN 1-800-242-3556

STS Project No. 16898XH

Forty-Five (45) Soil Samples Received February 5, 1990

Sampled By: Client

Our Report No. 200856 Issued February 26, 1990

STS CONSULTANTS, LTD. 540 Lambeau Street Green Bay, WI 54303

Att'n: Mr. Mark Bergeron

Request: Total and EP Toxicity Chromium determination as listed below.

Results:

	Chromium, Total ppm. Wet Weight Basis	Chromium, EP Toxicity mg/l.
18-2	26.1	NR
18-3	46.7	NR
18-4	38.7	NR
18-5	40.0	NR
18-6	26.6	NR
18-7	23.9	NR
18 - 8	20.9	NR
18-9	20.2	NR
19-2	164	<0.04
19-3	105	0.40
19-4	138	1.7
19–5	103	2.8
19-6	42.8	NR
19-7	24.7	NR ·
19-8	23. 6	NR
19-9	22.6	NR
20-2	96.2	NR
20-3	111	0.97
20-4	138	4.0
20–5	340	10.1
20-6	167	4.5
20-7	20.5	NR
20-8	22.2	NR
20-9	22.2	NR
21-2	138	<0.04
21-3	148	0.24
21-4	170	4.3
21-5	439	10.9

WI Reg. Engineers (Corp.) #CE00601 WI DNR Certified Lab #45023150 WI Div. Health Cert. Lab #205. Bacteria water/milk USDA Certified Lab #5585, Various tests for (Meat & Poultry) foods

Members
WI Environmental Labs: Am Chemical Soc.;
Water Pollution Control Fed., T A P P I.;
WI Food Processors Assn.; Wisc. Paper Council

	Chromium, Total ppm. Wet Weight Basis	Chromium, EP Toxicity mg/l.
21-6	596	21.5
21-7	280	1.8
21-8	20.4	NR
21-9	19.6	NR
22-2	472	<0.04
22-3	150	<0.04
22-4	121	1.2
22-5	184	5.0
22-6	510	15.0
22-7	21.0	NR
22-8	20.9	NR
22-9	21.8	NR
23-2	20.4	NR
23-3	108	0.83
23-4	142	3.4
23-5	203	7.0
23-6	140	4.1
	=	

Method: Test Methods for Evaluating Solid Waste, EPA, 1982, SW-846.

BADGER LABORATORIES & ENGINEERING WDNR Certified Lab #445023150

Carla M Brown

Carla M. Brown Lab Analyst

CMB:mw

Chain of Custody Enclosed.

WELL DATA SUMMARY SHEET

June 11, 1991

Total Chromium* -----

(parts per million)

Well No.	3-31-89	6-30-89	9-28-89	12-14-89	3-30-90	6-21-90	9-27-90	12-12-90	3-26-91	6-11-91		
				***************************************			~~~~~				 	-
MW-1	<.001	.0037	<.10	<.04	.06	<0.04	<0.04	<0.04	0.07	<0.04		
MW-2	.083	.073	.13	.05	.07	0.09	0.05	0.05	<0.04	0.04		
MW-2A					<.04	<0.04	0.05	0.06	0.05	<0.04		
MW-5	18.80	1.55	3.4	4.4	14.1	1.8	0.75	1.32	2.69	1.8		
MW-5A					34.4	39.3	57.1	47.8	43.3	. 41		
MW-10	**	<.10	<.10	<.04	.07	0.05	<0.04	<0.04	<0.04	<0.04		
MW-11	14.30	40.90	24.5	9.2	18.0	31.3	28.1	19.1	11.2	14		
MW-17					<.04	0.09	<0.04	<0.04	<0.04	<0.04		
MW-17A					.04	<0.04	<0.04	<0:04	<0.04	<0.04		

^{*} Analyses were run by Badger Laboratories

^{**} Flush mounted well cap jammed

Appendix E

Laboratory Analytical Data

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

ALBANY INTERNATIONAL

253 TROY RD

RENSSLAER, NY 12144

REPORT NUMBER: 1405494 REPORT DATE: 06/17/14

SAMPLED BY: CLIENT

4 GROUNDWATERS &

3 WASTEWATERS

SAMPLE NUMBER: 44012829
DESCRIPTION: MW-20
SAMPLE DATE: 06/02/14
DATE RECEIVED: 06/02/14

TEST RESULT/FLAGS UNITS LOD LOQ METHOD ANALYZED ANALYST 7.900 CHROMIUM, TOTAL REC 338 mg/126.000 SM3111D 06/02/14 СВ HEX CHROME 338 mg/115.000 50.000 SM3500Cr 06/03/14 JW

SAMPLE NUMBER: 44012830
DESCRIPTION: MW-20A
SAMPLE DATE: 06/02/14
DATE RECEIVED: 06/02/14

TEST RESULT/FLAGS UNITS LOD LOQ METHOD ANALYZED ANALYST mg/10.100 SM3111D CHROMIUM, TOTAL REC 1.2 0.030 06/02/14 CB 0.100 SM3500Cr 06/03/14 HEX CHROME 1.06 mg/10.030 JW

SAMPLE NUMBER: 44012831
DESCRIPTION: MW-21
SAMPLE DATE: 06/02/14
DATE RECEIVED: 06/02/14

TEST RESULT/FLAGS UNITS LOD LOO METHOD ANALYZED ANALYST CHROMIUM, TOTAL REC 0.0026 0.000 0.000 SM3113D 06/17/14 mg/1CB HEX CHROME < 0.03 0.030 0.100 SM3500Cr 06/03/14 JW mg/1

SAMPLE NUMBER: 44012832
DESCRIPTION: MW-21A
SAMPLE DATE: 06/02/14
DATE RECEIVED: 06/02/14

TEST RESULT/FLAGS UNITS LOD LOQ METHOD ANALYZED ANALYST 0.0018 0.000 0.000 SM3113D 06/17/20 CHROMIUM, TOTAL REC mg/1CB 0.030 0.100 SM3500Cr 06/03/14 HEX CHROME <0.03 JW mg/1

WI DNR Certified Lab #445023150
WI Reg. Engineers (Corp.) #CE00601
WI DATCP Certified #205 (Bacteria-Water)

Members
WI Environmental Labs; Am. Chemical Soc.;
T.A.P.P.I.; WI Food Processors Assn.;
Wisc. Paper Council

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

SAMPLE NUMBER: 44012833
DESCRIPTION: SUMP
SAMPLE DATE: 06/02/14
DATE RECEIVED: 06/02/14

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
CUDOMIUM TOTAL DEC	7.0		0.300	1 000		06/11/14	
CHROMIUM, TOTAL REC	7.0	mg/1	0.300	1.000	SM2TIID	06/11/14	CB
HEX CHROME	6.8	mg/l	0.600	2.000	SM3500Cr	06/03/14	JW
METALS DIGESTION	DONE		0.000	0.000	EPA200.2	06/06/14	CB

SAMPLE NUMBER: 44012834
DESCRIPTION: MANHOLE
SAMPLE DATE: 06/02/14
DATE RECEIVED: 06/02/14

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
CUDOMILIM TOTAL DEC	1.5		0.030	0 100	 SM3111D	06/02/14	
CHROMIUM, TOTAL REC		mg/1					_
HEX CHROME	1.9	mg/1	0.060	0.200	SM3500Cr	06/03/14	JW
TURBIDITY-LAB	0.4	NTU	0.000	0.000	EPA180.1	06/03/14	CB

SAMPLE NUMBER: 44012835
DESCRIPTION: OUTFALL
SAMPLE DATE: 06/02/14
DATE RECEIVED: 06/02/14

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
CHROMIUM, TOTAL REC TURBIDITY-LAB	0.04	mg/l NTU	0.030			06/02/14 06/03/14	

BADGER LABORATORIES & ENGINEERING WDNR Certified Lab #445023150

Jeffrey M. Wagner

Approved By:

JMW:rt

SAMPLE RECEIPT FORM

CLIENT INFORMATION

COMPANY: Albany International											AMPLE TYPE:												
NAME: ADDRESS:	253	Tro	y Rose	cf			•	又口	Norma Rush	al (Appr	oval					ound astew	ater			Filtered			
PHONE/ FATP.O. #:	X:			17/16/ 4	·/										□ Co	PDES coling	Water		☐ Grail	posite	•		
PROJECT/S REPORT &	BILL TO:	Appl	Monthly	Lame Sit	Ni	Ripor	Te	A1.	braj											Proportion Proportion			
ADDITIONA	L REPOR	IS TO:	John!	Sturge-)	£ ()JC.	, 	10-2	.,1						□ 0 <i>i</i>								
CUSTOMER SAMPLE ID	SAMPLE DATE/TIME	Date rect	BL&E REPORT	BL&ESAMPLE#	TEMP	R OF CONTAINERS	los Y/N		CLIENT	1		PIF	PIL	None	SERV.		NAOH	OTHER	ANA	LYTICAL RE	EQUESTS	pH ok	EP
MW-20	6-2-14 10:WA-	80/2	5494	12829	1	2	Y		7			Y		人		4			Toto	Hex	Closery		
MU-JOA		,		1250		2		_						1		X					1		
MU-31				12F31		2	Ц.	_						7		4							
MU-21A				Mar		2	Ш							7		7						 	Ш
Sunp				MI		2_		_	1					1		4							
Manhole				17/39		2		_						1		f			4		也		
outfell ool	Th			12835	Ц									1					Total	CL	rancum		
								<u> </u>	1	\vdash		1											Ш
								-			· .									······································			Ш
																			L				
					СН	AIN O	FC	US	TOD	YR	ECC	RE)										·
FILLED IN	()	\sim 1				FILLE	DIN	IB'	BA	De	R#	\ B S	2819	NG		Mo	-chor.	7 1	ıuls	fiel	d felf icion f	cred	
SAMPLED BY: John Stock REC							ED B' ME R	کے:Y ECE	VED	UN	0 2	20	14	117	55	th	oug l	· a	5	m	ición f	ilko	~

* Temperature over 4°C are above EPA/DNR Protocol unless received on ice.

LOGGED IN:

- * EP= if pH was not correct, extra preservation was added until correct pH was achieved.
- * PIF= Preserved in field.
- * PIL= Preserved in lab.

RELINQUISHED BY:

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

ALBANY INTERNATIONAL

253 TROY ROAD

RENSSLAER, NY 12144

REPORT NUMBER: 1406724
REPORT DATE: 07/24/14
SAMPLED BY: CLIENT
EMAILED: 07/24/14

P.O. #:4500208835 13 WASTEWATERS

SAMPLE NUMBER: 44015840 DESCRIPTION: SUMP

SAMPLE DATE: 07/08/14 DATE RECEIVED: 07/08/14

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
CHROMIUM, TOTAL REC HEX CHROME METALS DIGESTION	27 27 DONE	mg/l mg/l	0.270 0.600 0.000	1.980	SM3500Cr	07/18/14 07/08/14 07/16/14	JV
THE PROPERTY.	20112		0.000	0.000		0 / / ± 0 / ± 1	CD

SAMPLE NUMBER: 44015841
DESCRIPTION: MANHOLE
SAMPLE DATE: 07/08/14
DATE RECEIVED: 07/08/14

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
CHROMIUM, TOTAL REC HEX CHROME TURBIDITY-LAB	3.8 3.20 0.3	mg/l mg/l NTU	0.110 0.060 0.000	0.198	SM3500Cr	07/09/14 07/08/14 07/09/14	JV

SAMPLE NUMBER: 44015842
DESCRIPTION: MW-05
SAMPLE DATE: 07/08/14
DATE RECEIVED: 07/08/14

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
CHROMIUM, DISSOLVED HEX CHROME	1.3 1.18	mg/l mg/l	0.030			07/09/14 07/08/14	

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

SAMPLE NUMBER: 44015843
DESCRIPTION: MW-05A
SAMPLE DATE: 07/08/14
DATE RECEIVED: 07/08/14

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
CHROMIUM, DISSOLVED HEX CHROME	0.004	mg/l mg/l				07/16/14 07/08/14	

SAMPLE NUMBER: 44015844
DESCRIPTION: MW-10
SAMPLE DATE: 07/08/14
DATE RECEIVED: 07/08/14

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
CHROMIUM, DISSOLVED HEX CHROME	18 17	mg/l mg/l				07/09/14 07/08/14	

SAMPLE NUMBER: 44015845
DESCRIPTION: MW-19A
SAMPLE DATE: 07/08/14
DATE RECEIVED: 07/08/14

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
CHROMIUM, DISSOLVED HEX CHROME	0.0038	mg/l mg/l				07/16/14 07/08/14	

SAMPLE NUMBER: 44015846
DESCRIPTION: MW-20
SAMPLE DATE: 07/08/14
DATE RECEIVED: 07/08/14

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
CHROMIUM, DISSOLVED HEX CHROME	283 89	mg/l mg/l				07/09/14 07/08/14	

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

SAMPLE NUMBER: 44015847
DESCRIPTION: MW-20A
SAMPLE DATE: 07/08/14
DATE RECEIVED: 07/08/14

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
CHROMIUM, DISSOLVED HEX CHROME	0.23 0.015	mg/l				07/09/14 07/08/14	

SAMPLE NUMBER: 44015848
DESCRIPTION: MW-200
SAMPLE DATE: 07/08/14
DATE RECEIVED: 07/08/14

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
CHROMIUM, DISSOLVED HEX CHROME	301 255	mg/l mg/l				07/09/14 07/08/14	

SAMPLE NUMBER: 44015849
DESCRIPTION: MW-21
SAMPLE DATE: 07/08/14
DATE RECEIVED: 07/08/14

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
CHROMIUM, DISSOLVED HEX CHROME	0.21 <0.003	mg/l mg/l				07/09/14 07/08/14	

SAMPLE NUMBER: 44015850
DESCRIPTION: MW-21A
SAMPLE DATE: 07/08/14
DATE RECEIVED: 07/08/14

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
CHROMIUM, DISSOLVED HEX CHROME	0.0011 <0.003	mg/l mg/l				07/16/14 07/08/14	

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

SAMPLE NUMBER: 44015851
DESCRIPTION: 001 OUTFALL
SAMPLE DATE: 07/08/14
DATE RECEIVED: 07/08/14

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
CHROMIUM, TOTAL REC TURBIDITY-LAB	0.36 0.3	mg/l NTU	0.030			07/09/14 07/09/14	

SAMPLE NUMBER: 44015852
DESCRIPTION: CANISTER A
SAMPLE DATE: 07/08/14
DATE RECEIVED: 07/08/14

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
CHROMIUM, TOTAL REC METALS DIGESTION	2.2 DONE	mg/l	0.030			07/18/14 07/16/14	

BADGER LABORATORIES & ENGINEERING WDNR Certified Lab #445023150

Jeffrey M. Wagner

Approved:

JMW:smg

BADGER LABORATORIES & ENGINEERING CO., INC. SAMPLE RECEIPT FORM

CLIENT INFORMATION								-								. 10	54	,	1			
COMPANY: Albert Internet NAME: ADDRESS: 253 Troy Road Renssleder, No PHONE/ FAX: P.O. #: 4500 208835 PROJECT/SITE: Antito CL REPORT & BILL TO: Month, ADDITIONAL REPORTS TO: John	Riper JC	12	Als	Norma Rush (il. (Appr		<i>ID</i> 1	ГІМ			ther	valer eter Water Water	,		ab Filten ileid Filte irab Composit iow Prop те Prop	red e ortione		:	, di			
CUSTOMER SAMPLE BL& E REPORT				_	_	THOD			_	SERV.	ATION							рΗ				
	BL & E SAMPLE#	EMP	# OF CONTAINERS	los Y/N	BAE	CTEM	UPS	OTHER	PIF	PIL	NON- PRES	12901	HNO3		OTHER	<u>_</u>	NALYTICA	L REQU	ESTS	ok		
Sump 7/8/4 2/8/ (0/34)	1840	1	2	\bigvee		Y			Z		1		(Tof	-4 Hr	Cl	sone			
Marhely 2:0 Pt	17341		2			1					1		6			1		٠.)			
MU-os	15/42		2	П		7					Ĺ		C						1		7	
Mu-05A	1747		.2			1					1		1				3 3		1			
Mw-19	15744		2			7					L		1									ŀ
MW-19A	15845		2			1					K		L			ž	1. 1	/				
mv-20	15846)			4					1		7				Á					
MW-JOA	1747		7			7					1		4	-	- استان می معالید این این معالید این این این این این	and the second					П	
MW-JVD	15748		3			4		·			f		C			4	2	7	Ł			
Control	1879		H			6			\mathbb{H}				1			耳	علما	Chr	1777			
Outeal ONT	- السا <u>ل</u> - شكانية	7	4	=									X				-				7	<u>'</u> ~/
		CH/	AIN O	FC	UST	OD	ΥR	ECC	RD													
FILLED IN BY CUSTOMER SAMPLED BY: JULY DATE/TIME SAMPLED: 7/8/14 25, 20 P RELINQUISHED BY:	FILLE RECEIVI DATE/TII LOGGED	ED B' ME R	r:	I	JUL	R LA				i, 40												

- *Temperature over 4°C are above EPA/DNR Protocol unless received on ice.

 EP= If pH was not correct, extra preservation was added until correct pH was achieved.
- * PIF= Preserved in field.
- * PIL= Preserved in lab.

SAMPLE RECEIPT FORM

CLIENT INFORMATION

				O,	-7111		175	. •			U	Z1A1		-							_	0	^
CLIE	NT INFO	DRMAT	LION	•															•		J 2	f	2
COMPANY: Albang International NAME: ADDRESS: 253 Tray Road Renssleder, MY 12144 PHONE/ FAX: P.O. #: 4500 208835 PROJECT/SITE: Appliton Chame Site REPORT & BILL TO: Monthly Billing No Road ADDITIONAL REPORTS TO: John Stocker & OJC				Ripor OJC	T 7	図口	Norma Rush	1.		VD 1	<u>ГИИ</u>	 }	4 N N O O		valer ater Water Water		DLab Fill Field Fill Grab Compo	lered litered site roportional					
CUSTOMER	SAMPLE		BL & E REPORT						LIVER		_				SERV	ATION					рН		
SAMPLE ID	DATE/TIME	DATE RECE	#	BL & E SAMPLE#	TEMP	E OF CONTANIERS	los Y/N	BAE	CLIEN	UPS	OTHER	PIF	PIL	NON- PRES	H2904	HNO3	NAOH	OTHER	ANALYT	ICAL REQUESTS		EP	
Mu-21	7/8/14	Hy	lety	15549	2	2	1		K					X		1			tota	Hex Chron			
MU-211		V. J		1570	\prod	2	\prod		1					K		1			*	-			
Outfall out				ITECL	Π	1	Π		X.			П				X			Total	Clonus			
Cenister A	d	1.1		ITA	T	1			1							٨			à	1			
			1																				
			:5																				
																						П	
	·		s# Î					-													1		
																					╢		
																					1		
FILLED IN			1 .		_	AIN O		BY	BA	OGE				NG									
SAMPLED BY:		7/8/14	toege ginn	14		RECEIVI DATE/TI	ED BY ME R	/: ECEI	VEQ;		1 8	201	A _	4.4	10					471.1 1			

*Temperature over Care above EPA/DNR Protocol unless received on ice.

LOGGED IN:

- * EP= If pH was not correct, extra preservation was added until correct pH was achieved.
- * PIF= Preserved in field.
- * PIL= Preserved in lab.

RELINQUISHED BY:

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

ALBANY INTERNATIONAL

253 TROY RD

RENSSLAER, NY 12144

Report Number: 1508711 Report Date: 8/21/2015

Sampled By: Client Emailed: 8/21/2015

Attn: John Stoeger PO#: 4500321596

Samples: 4

Sample Number: 45020159
Description: MANHOLE
Sample Date: 8/11/2015
Date Received: 8/11/2015

Parameter Results Units Flags LOD LOQ Method Analyzed CHROMIUM, TOTAL REC 3.7 0.11 0.37 SM3111D mg/l 08/18/15 **HEX CHROME** 0.04 0.13 SM3500CrB 08/11/15 3.2 mg/l **TURBIDITY-LAB** 0.30 NTU 0 0 08/12/15 EPA180.1

Sample Number: 45020160
Description: SUMP
Sample Date: 8/11/2015
Date Received: 8/11/2015

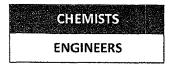
Parameter Results Units Flags LOD LOQ Method Analyzed CHROMIUM, TOTAL REC 45 mg/l 1.1 3.7 SM3111D 08/18/15 **HEX CHROME** 32 mg/l 0.40 1.3 SM3500CrB 08/11/15 **METALS DIGESTION** DONE 0 0 SM3030E 08/12/15

Sample Number: 45020161
Description: OUTFALL 001
Sample Date: 8/11/2015
Date Received: 8/11/2015

Parameter	Results	Units Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,TOTAL REC	0.13	mg/l	0.03	0.10	SM3111D	08/18/15
TURBIDITY-LAB	0.30	NTU	0	0	EPA180.1	08/12/15

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196


Sample Number: 45020162
Description: CANISTER A
Sample Date: 8/11/2015
Date Received: 8/11/2015

Parameter	Results	Units Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,TOTAL REC	0.36	mg/l	0.03	0.10	SM3111D	08/18/15
TURBIDITY-LAB	0.25	NTU	0	0	EPA180.1	08/12/15

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffry M. Wagner

JMW:sl

501 WEST BELL STREET - NEENAH, WISCONSIN 54956-4868 - EST. 1966 (920) 729-1100 - Fax (920) 729-4945 - 1-800-776-7196

1508711

SAMPLE RECEIPT FORM

COMPANY: AIL	11000 1000								N A	ROU	ND 1	TIME	i:		SA.	MPLE	TYP	E:			
NAME:		اـــــــــــــــــــــــــــــــــــ						风		Non	mal				₹	Groui	ndwat	er	☐ Lab Filtered		
ADDRESS:	753 Revisci	TS	071	Speed	4				Rus	h (Ap		/al _)	呂	Wast WPD	ewate ES	r	☐ Field Filtered ☐ Grab		
PHONE:			<i>,</i>													Coolir	ng Wa	ter	□ Composite		
P.O. #: 4500		196														Drinkii	ng Wa	ter	☐ Flow Proportional		
PROJECT/SITE:	Applet	6- (62636	_Sitz_												Solid \	Vaste		☐ Time Proportional		
REPORT & BILL TO	Mont	21 ₇ B	لنجبال	No RO 6- 4 DU	or	To	14	Be.	^7												
ADDITIONAL REPO	RTS TO: \	2 ha	Stoke	er 4 Py	_				1						ш	Other _.					
						CONT		DEI	LIVERY	METH	OD		F	RESE	RVATI	ON					
CUSTOMER SAMPLE ID	SAMPLE DATE/TIME	DATE REC'D	BL & E REPORT#	BL & E SAMPLE#	TEMP	AINER S	Ice Y/N	BL&E	CLIENT	UPS	OTHER	PIF	PIL	NON- PRES		14 HNO3	HOAM	OTHER	ANALYTICAL REQUESTS	pH ok	ЕP
Manhy	States	Shi	874	20159	1	2	Y		1			1		X		X			Tot + the Chrome		
Sump	4	,,,,		70 16S		2			L					1		7			+ +		
11	9:4m			volle!		١			4							4			Total Chronium		
Constar A	4	·		20162		١			1							L			+ +		
					T		П					T									
			:																		
			:																		
		<u> </u>			15	" 			·	<u> </u>			' '''''''''		J		<u> </u>			<u>'</u>	<u>'</u> '
		CH	IAIN O	F CUST	<u>D</u>	Y RI	EC	ORL)												
SAMPLED BY: 131 STUCKE DATE/TIME SAMPLED: 8/11/15 9-8-					FILLE RECEIV DATE/T LOGGE	IME R		-					10:	vD							

^{*} Temperature over 4°C are above EPA/DNR Protocol unless received on ice.

^{*} EP= If pH was not correct, extra preservation was added until correct pH was achieved.

^{*} PIF= Preserved in field.

^{*} PIL= Preserved in lab.

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

ALBANY INTERNATIONAL 253 TROY ROAD RENSSLAER, NY 12144 Report Number: 1410262
Report Date: 10/30/2014
Sampled By: Consultant
Emailed: 10/30/2014

PO#: 4500 321 596

Samples: 9

Sample Number: 44024510
Description: MW-05
Sample Date: 10/14/2014
Date Received: 10/14/2014

Parameter	Results	Units	Flags	LOD	LOQ	Method	Analyzed	Init.
CHROMIUM,DISSOLVED	0.960	mg/l		0.030	0.100	SM3111B	10/17/14	CB
HEX CHROME	0.960	mg/l		0.030	0.100	SM3500CrD	10/14/14	JV

Sample Number: 44024511
Description: MW-05A
Sample Date: 10/14/2014
Date Received: 10/14/2014

Parameter	Results	Units	Flags	LOD	LOQ	Method	Analyzed	Init.
CHROMIUM,DISSOLVED HEX CHROME	0.005 <0.003	mg/l mg/l		0.0001 0.003	0.0003 0.009	SM3113B SM3500CrD	10/29/14 10/14/14	_

Sample Number: 44024512
Description: MW-19
Sample Date: 10/14/2014
Date Received: 10/14/2014

Parameter	Results	Units	Flags LOD	LOQ	Method	Analyzed	Init.
CHROMIUM, DISSOLVED	21.6	mg/l	0.030	0.100	SM3111B	10/17/14	CB
HEX CHROME	21.3	mg/l	0.300	0.999	SM3500CrD	10/14/14	JV

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: 44024513
Description: MW-19A
Sample Date: 10/14/2014
Date Received: 10/14/2014

Parameter	Results	Units	Flags LOD	LOQ	Method	Analyzed	Init.
CHROMIUM,DISSOLVED	0.004	mg/l	0.0001	0.0003	SM3113B	10/29/14	_
HEX CHROME	<0.003	mg/l	0.003	0.009	SM3500CrD	10/14/14	

Sample Number: 44024514
Description: MW-20
Sample Date: 10/14/2014
Date Received: 10/14/2014

Parameter	Results	Units	Flags LOD	LOQ	Method	Analyzed	Init.
CHROMIUM,DISSOLVED	330	mg/l	300	999	SM3111B	10/17/14	
HEX CHROME	297	mg/l	3.00	9.99	SM3500CrD	10/14/14	

Sample Number: 44024515
Description: MW-20A
Sample Date: 10/14/2014
Date Received: 10/14/2014

Parameter	Results	Units	Flags LOD	LOQ	Method	Analyzed	Init.
CHROMIUM,DISSOLVED	0.117	mg/l	0.030	0.100	SM3111B	10/17/14	CB
HEX CHROME	<0.003	mg/l	0.003	0.009	SM3500CrD	10/14/14	JV

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: 44024516
Description: MW-21
Sample Date: 10/14/2014
Date Received: 10/14/2014

Parameter	Results	Units	Flags	LOD	LOQ	Method	Analyzed	Init.
CHROMIUM,DISSOLVED	<0.0001	mg/l		0.0001	0.0003	SM3113B	10/29/14	CB
HEX CHROME	<0.003	mg/l		0.003	0.009	SM3500CrD	10/14/14	JV

Sample Number: 44024517
Description: MW-21A
Sample Date: 10/14/2014
Date Received: 10/14/2014

Parameter	Results	Units	Flags	LOD	LOQ	Method	Analyzed	Init.
CHROMIUM,DISSOLVED	<0.0001	mg/l		0.0001	0.0003	SM3113B	10/29/14	CB
HEX CHROME	<0.003	mg/l		0.003	0.009	SM3500CrD	10/14/14	JV

Sample Number: 44024518
Description: OUTFALL
Sample Date: 10/14/2014
Date Received: 10/14/2014

Parameter	Results	Units Flag	gs LOD	LOQ	Method	Analyzed	Init.
CHROMIUM,TOTAL REC	<0.03	mg/l	0.03	0.10	SM3111D	10/17/14	
TURBIDITY-LAB	0.30	NTU	0	0	EPA180.1	10/15/14	

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffey M. Wagner

JMW:sg

WI DNR Certified Lab #445023150

501 WEST BELL STREET - NEENAH, WISCONSIN 54956-4868 - EST. 1966 (920) 729-1100 - Fax (920) 729-4945 - 1-800-776-7196

SAMPLE RECEIPT FORM

COMPANY: ALL	CAY	Tnt	ernat	140=1			_	<u>TUR</u>	N A	ROU	ND T	IME	ż		<u>SA</u>	MPLE TY	PE:						
NAME:			,				!	风		Non	mal				叉	Groundwa	ater	□ La	ab Filtere	đ			
ADDRESS:	253 enss/	Tr	07	Spad 1214	4		1		Rus			al		_).	呂	Wastewa WPDES	ter /	F. Fi □ G	ield Filtere rab	ed			,
PHONE:			<i>,</i>													Cooling W	/ater	□ C	omposite				
P.O.#: 45W		196														Drinking W	/ater	$\Box F$	low Propo	ortiona	I		
PROJECT/SITE:	Applet.	<u>(</u>	bries.	Sitz		\dashv	٨	. ,								Solid Wast	te	□ Ti	me Propo	rtional	1		
REPORT & BILL TO	Month	<u> </u>	لهجيلا	Ve Ro	ort	Ic	14	Be.	77							Oil							
ADDITIONAL REPO	RTS TO: J	حظ ف	Stokes	: 4 Dy					,						<u></u> j	Other							
					C	ОИТ		DEL	IVERY	METH	OD		P	RESEF	TAVS	ION		- -		····			
CUSTOMER SAMPLE ID	SAMPLE DATE/TIME	DATE REC'D	BL & E REPORT#	BL & E SAMPLE#	TEMP A	NER S		BL&E	CLIENT	UPS	OTHER	PIF	PIL	NON- PRES	H2SC	14 HNO3 NAOH	OTHER				QUESTS	рн о	K EP
MU-05	Idialia	ωL	1029	24500		2			1					X		X		10.	t & HCX	C	Lronian		
mv-05A	10: 4 A-	,	10262)	1		2			1					X		メ			<u> </u>	_	1		
MU-19			()	2		2			1					1		7							
MU-19A				ኃ		٦			_					L		X							
MU-JO				7		2			1					L		4							
MU-JUA				+		2			L					£		+							
MU-31				Ç		ე			1					4		+							
MU-31A				2		۲			1					X		+		<	ľ	<	t		
outfall ool	45			8		L			4							4		Tu	itul C	Lrun	(w ~		
		Cŀ	IAIN O	F CUSTO	ODY	RE	ECC	ORI)														
FILLED IN BY CUSTOMER SAMPLED BY: DATE/TIME SAMPLED: D Y Y Y Y Y Y Y Y Y						ECEIV ATE/TI	ED IN ED BY IME RI D IN:	BY I	BADO T D:()(GER I	1 4	201	NG	11:1 B	5								

^{*} Temperature over 4°C are above EPA/DNR/Protocol unless received on ice.

^{*} EP= If pH was not correct, extra preservation was added until correct pH was achieved.

^{*} PIF= Preserved in field.

^{*} PIL= Preserved in lab.

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

ALBANY INTERNATIONAL 253 TROY ROAD

253 TROY ROAD Report Date:
RENSSLAER, NY 12144 Sampled By:

Sampled By: Consultant Emailed: 10/24/2014

1410386

10/24/2014

PO#: 4500 321596

Samples: 3

Report Number:

Sample Number: 44024797
Description: MANHOLE
Sample Date: 10/16/2014
Date Received: 10/16/2014

Parameter	Results	Units	Flags LOD	LOQ	Method	Analyzed	Init.
CHROMIUM,TOTAL REC	3.3	mg/l	0.10	0.33	SM3111D	10/17/2014	СВ
HEX CHROME	3.3	mg/l	0.06	0.20	SM3500CrD	10/16/2014	JV
TURBIDITY-LAB	0.15	NTU	0	0	EPA180.1	10/17/2014	СВ

Sample Number: 44024798
Description: SUMP
Sample Date: 10/16/2014
Date Received: 10/16/2014

Parameter Results Units Flags LOD LOQ Method Analyzed Init. 8.0 0.77 CB CHROMIUM, TOTAL REC mg/l 0.23 SM3111D 10/23/2014 6.8 0.60 SM3500CrD JV **HEX CHROME** mg/l 2.0 10/16/2014 METALS DIGESTION DONE 0 0 EPA200.2 10/17/2014 CB

Sample Number: 44024799
Description: CANISTER A
Sample Date: 10/16/2014
Date Received: 10/16/2014

Parameter	Results	Units	Flags LO	D	LOQ	Method	Analyzed	Init.
CHROMIUM,TOTAL REC TURBIDITY-LAB	0.47 0.80	mg/l NTU	0.0	03	0.10 0	SM3111D EPA180.1	10/17/2014 10/17/2014	CB CB

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffrey M. Wagner

JMW:sg

Members
WI Environmental Labs; Am. Chemical Soc.;
T.A.P.P.I.; WI Food Processors Assn.;
Wisc. Paper Council

501 WEST BELL STREET - NEENAH, WISCONSIN 54956-4868 - EST. 1966 (920) 729-1100 - Fax (920) 729-4945 - 1-800-776-7196

SAMPLE RECEIPT FORM

COMPANY: A	ss: 253 Troy Rego Renssleaer, NY 121 145W 321 796 CTISITE: Apolitics Christs Sit							TUR	NA	ROU	ND 1	ГІМІ	i		SAN	<i>IPLE</i>	TY	PE:		
NAME:								风		Non	mal				叉(3roui	ndwa	ater	□ Lab Filtered	
ADDRESS:	253 lensel	Sagr		200d	1				Rus	h (Ar	prov	/al _)	, ~	Vast VPD			☐ Field Filtered ▼ Grab	
PHONE:) = 													Coolii	ng W	ater	☐ Composite	
P.O.#: 45W	321 3	196				····										rinkir	ng W	ater	□ Flow Proportional	
PROJECT/SITE:	Applet			Sit													Nast	e	☐ Time Proportional	
REPORT & BILL TO ADDITIONAL REPO		2/7 B	11100 1 Stokes		or.	To	A	ßε.	7								V			
						CONT		DEI	IVERY	METH	OD		P		RVATIO	N				
CUSTOMER SAMPLE ID	SAMPLE DATE/TIME	DATE REC'D	BL&E REPORT#	BL & E SAMPLE#	TEMP	AINER S	Ice Y/N	BL&E	CLIENT	UPS	OTHER	PIF	PIL	NON- PRES	H2SO4	HNO3	NAOH	OTHER	ANALYTICAL REQUESTS PH OR	EΡ
Manhole	10/16/14	BC	MIXE	277		2			X					X		T			Total Hex Chrom	
Sunp				24794		3			1					Y	ļ	۲		L	1	
Conster A	4			7432g		1			7			Ш				ىر			Total Chroniu-	
		·			•															
					<u> </u>													1		
					\vdash										╂			1		
												-					<u> </u>	1		\vdash
												-			$\ -$					
L	<u> </u>		L	<u> </u>	<u> </u>	<u>L</u>	L	<u>L</u>	<u></u>	<u>L</u>	L	<u>IL</u>	<u></u>	Ļ	ll ,		<u> </u>	<u> </u>	<u> </u>	
· · · · · · · · · · · · · · · · · · ·	·	Cł	AIN O	F CUSTO	סכ	YR	EC	ORE)											
FILLED IN BY CU					Γ	FILLI				SER I	LABS	5 & E	NG							
SAMPLED BY:C		es c				RECEI	VED BY		7	- 17	771	<i></i>	- //	:/5	-					ļ
DATE/TIME SAMPLED: RELINQUISHED BY:	10/16/19) }				DATE/		ECEIVI	ED: <i>_[_()</i>	<u>-/(g</u>	1	83	- ''	• 1	•					
	7	U.									,					1				

^{*} Temperature over 4°C are above EPA/DNR Protocol unless received on ice.

^{*} EP= if pH was not correct, extra preservation was added until correct pH was achieved.

^{*} PIF= Preserved in field.

^{*} PIL= Preserved in lab.

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

ALBANY INTERNATIONAL

253 TROY RD

RENSSLAER, NY 12144

Report Number: 1410984 Report Date: 11/21/2014

Sampled By: Client

Attn: John Stoeger PO#: 4500321596

Samples:

4 Groundwater/Wastewater

Sample Number: 44026209
Description: MANHOLE
Sample Date: 11/4/2014
Date Received: 11/4/2014

Parameter	Results	Units Flag	gs LOD	LOQ	Method	Analyzed
CHROMIUM, TOTAL REC	2.6	mg/l	0.03	0.10	SM3111D	11/12/14
HEX CHROME	2.6	mg/l	0.06	0.20	SM3500CrD	11/04/14
TURBIDITY-LAB	0.10	NTU	0	0	EPA180.1	11/10/14

Sample Number: 44026210
Description: SUMP
Sample Date: 11/4/2014
Date Received: 11/4/2014

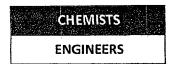
Parameter	Results	Units Fl	lags LOD	LOQ	Method	Analyzed
CHROMIUM, TOTAL REC HEX CHROME METALS DIGESTION	37 40 DONE	mg/l mg/l	0.99 0.60 0	3.3 2.0 0	SM3111D SM3500CrD EPA200.2	11/20/14 11/04/14 11/14/14

Sample Number: 44026211
Description: CANISTER A
Sample Date: 11/4/2014
Date Received: 11/4/2014

Parameter	Results	Units Flags	LOD	LOQ	Method	Analyzed
CHROMIUM, TOTAL REC	0.44	mg/l	0.03	0.10	SM3111D	11/12/14
TURBIDITY-LAB	0.20	NTU	0	0	EPA180.1	11/10/14

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196


Sample Number: 44026212
Description: 001 OUTFALL
Sample Date: 11/4/2014
Date Received: 11/4/2014

Parameter	Results	Units Flags	LOD	LOQ	Method	Analyzed
CHROMIUM, TOTAL REC	0.05	mg/l	0.03	0.10	SM3111D	11/12/14
TURBIDITY-LAB	0.10	NTU	0	0	EPA180.1	11/10/14

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffry M. Wagner

JMW:sg

501 WEST BELL STREET - NEENAH, WISCONSIN 54956-4868 - EST. 1966 (920) 729-1100 - Fax (920) 729-4945 - 1-800-776-7196

10984

SAMPLE RECEIPT FORM

OFICIAL IMI	O IZIVIA I I	OH.																				
COMPANY: ALL	عدمم	Tnt	ernat	16 nel					N A	ROU	ND 1	TIME	<u>:</u>		SAN	<i>IPLE</i>	TY	PE:				
NAME:								又		Norr	mal				叉(Groui	nđwa	ter	☐ Lab Filtered			
ADDRESS:	253	<u> </u>	07 1	Soud					Rus	h (Ap	ргоу	/al _)	尺 I	Nast	ewat	e <i>r</i>	☐ Field Filtered			
REDUCES.	Lensel			1714	4														□ Grab			
PHONE:	1		/ 													Coolii	ng Wa	ater	□ Composite			
P.O.#: 45W	321 3	196																ater	☐ Flow Proportional		1	1
PROJECT/SITE:	Applet		bring	Site			_									Solid \	Naste	€	☐ Time Proportional			
REPORT & BILL TO	Month	21- B	1/12:	Vic Rep	ort	To	14	Βc.	~ 7												,	, i
ADDITIONAL REPO	RTS TO: 🌙	مطاد	Stokes	5. 4 Dy	<u></u>				1							Other						
						CONT		DE	LIVERY	METH	OD			PRESE	RVATIC)N					T	7
CUSTOMER SAMPLE ID	SAMPLE DATE/TIME	DATE REC'D	BL & E REPORT#	BL & E SAMPLE#	TEMP	AINER S	Ice Y/N	BL&E	CLIENT	UPS	OTHER	PIF	PIL	NON- PRES	H2SO4	ниоз	NAOH	OTHER	ANALYTICAL REQUESTS	P	H ok	ΕP
Manholy	11/4/14	Щ	10924	24269	1	2	4		1			c		X		7			Total Hex Cham			
Sum				W	П	7	7		L					L		1			+ +			
Canster A				и		ı			7							4			Total Chronium			
Outfell Ooi	di			12		 [L							1			4 7		1	
Outtell DOI	7			17	Н				╢			 - `	╂	-	 	-		-	<u> </u>		\dashv	
									 			 	 		 							
																					_	
t	l	<u> </u>	<u> </u>	(L 	<u> </u>		<u> </u>	!	4	<u> </u>		<u> </u>	<u> </u>	44		······································						
		Cl	AIN O	F CUSTO	<u>'ac</u>	Y R	EC	ORI	D	********				•								
FILLED IN BY CU	STOMER		,			FILLE	ED IN	BY	BAD	GER, I	LAB	\$ & E	ENG					•	,		i	
SAMPLED BY: JOL	<u>Stur</u>	gr_			11	RECEN				_	\mathcal{W}	۲.,	<u>.</u>								:	1
DATE/TIME SAMPLED:_	11/4/14	<u> </u>	30 Am		ll	DATE/I		ECEIV	ED:	+	Ή	14	tu			1						
RELINQUISHED BY:	M_	_4			<u> </u>	LOGGE	D IN:			•	· · ·	10	いし			<u> </u>					-	

^{*} Temperature over 4°C are above EPA/DNR Protocol unless received on ice.

^{*} EP= If pH was not correct, extra preservation was added until correct pH was achieved.

^{*} PIF= Preserved in field.

^{*} PIL= Preserved in lab.

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

ALBANY INTERNATIONAL

253 TROY RD

RENSSLAER, NY 12144

Attn: JOHN STOEGER PO#: 4500321596

Samples: 4 GROUNDWATER

1500627

Client

12/30/2014

Report Number:

Report Date:

Sampled By:

Sample Number: 45001353
Description: MANHOLE
Sample Date: 12/16/2014

Date Received: 12/16/2014

Parameter Results Units Flags LOD LOQ Method Analyzed CHROMIUM, TOTAL REC 0.09 0.30 3.0 mg/l SM3113B 12/17/14 2.7 mg/l 0.06 0.20 **HEX CHROME** SM3500CrD 12/16/14 **TURBIDITY-LAB** 0.15 NTU 0 0 EPA180.1 12/17/14

Sample Number: 45001354
Description: SUMP

Sample Date: 12/16/2014 Date Received: 12/16/2014

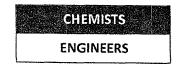
Parameter	Results	Units	Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,TOTAL REC HEX CHROME METALS DIGESTION	15 12 DONE	mg/l mg/l		0.44 0.60 0	1.5 2.0 0	SM3113B SM3500CrD EPA200.2	12/29/14 12/16/14 12/17/14

Sample Number: 45001355
Description: CANISTER A
Sample Date: 12/16/2014
Date Received: 12/16/2014

Parameter	Results	Units Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,TOTAL REC	0.72	mg/l	0.03	0.10	SM3113B	12/17/14
TURBIDITY-LAB	0.35	NTU	0	0	EPA180.1	12/17/14

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196


Sample Number: 45001356
Description: OUTFALL 001
Sample Date: 12/16/2014
Date Received: 12/16/2014

Parameter	Results	Units Flags	LOD	LOQ	Method	Analyzed
CHROMIUM,TOTAL REC	0.03	mg/l	0.001	0.003	SM3113B	12/23/14
TURBIDITY-LAB	0.10	NTU	0	0	EPA180.1	12/17/14

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffry M. Wagner

JMW:sl

BADGER LABORATORIES & ENGINEERING, INC. 501 WEST BELL STREET - NEENAH, WISCONSIN 54956-4868 - EST. 1966

(920) 729-1100 - Fax (920) 729-4945 - 1-800-776-7196

1500627

SAMPLE RECEIPT FORM

COMPANY: A	2002	TAL	erne t	14001				TUR	RN A	ROU	ND 1	TIME	<u>:</u>		SA	MPLE TYPE	: <u>:</u>			
NAME:								风		Nori	mai				叉	Groundwate	r	□ Lab Filtered		
ADDRESS:	253	Tr	071	Soud 1714	4				Rus			al _)		VVI DEO		□ Field Filtered □ Grab		
PHONE:			<i>.</i>													Cooling Water	er	□ Composite		
P.O.#: 4500	3213	196																☐ Flow Proportional		
PROJECT/SITE:	Applet	5-1	brine	_Sitz			1	: /								Solid Waste		☐ Time Proportional		
REPORT & BILL TO	: Mantl	<u> </u>	للخجيل	No Ro	<u>or</u>	10	14	150.	^7							Oil				
ADDITIONAL REPO	RTS TO: J	ba	Stokes	<u> </u>	_				,						LI	Other				
						CONT		DEI	LIVERY	′ МЕТН	OD		F	PRESE	RVAT	ION				
CUSTOMER SAMPLE ID	STOMER SAMPLE ID DATE/TIME REC'D REPORT # SAMPLE #							BL&E	CLIENT	UPS	OTHER	PIF	PIL	NON- PRES	H2S0	O4 HNO3 NAOH OT	THER	ANALYTICAL REQUESTS	рН о	k EP
Manholi	8:30 M	12/10	(,)7	1353	١	2			4			1		1		7		Tot & Hex CLOONIUM		
Sump	1			1354	1	2			7					F		7		*		
Conster A				1355)			T							1		Total Chronium		
outfull ou	与	·		1354	I	١			L			П				7		4		
				1																
																			1	
															╟				1	\parallel
	<u> </u>		L	IL	<u> </u>	Н	<u> </u>			لــــا	<u></u>	<u></u>	<u> </u>	<u> </u>	<u> </u>				ـــالــــ	
CHAIN OF CUSTOD						Y R	EC	ORE)											
FILLED IN BY CUSTOMER						FILLE	ED IN	BY	BADO	SER I	ABS	8 E	NG							
SAMPLED BY:0	SAMPLED BY: 10 L Stucge- DATE/TIME SAMPLED: 13/16/14 4:30 4- RELINQUISHED BY: M						/ED BY	יבביי	1				(7:5	50					
DATE/TIME SAMPLED:_	12/16/1	4 8	: 3v A-			RECEN DATE/T	IME R	ECEIVE	ed)E	C_1	6_	201	4	100	70					
RELINQUISHED BY:	/ <u>/</u>	32				LOGGE							Z	SP						1

^{*} Temperature over 4°C are above EPA/DNR Protocol unless received on ice.

^{*} EP= If pH was not correct, extra preservation was added until correct pH was achieved.

^{*} PIF= Preserved in field.

^{*} PIL= Preserved in lab.